

Embedded Systems Design
with the Texas Instruments
MSP432 32-bit Processor

Synthesis Lectures on Digital
Circuits and Systems

Editor
Mitchell A. ornton, SouthernMethodist University

e Synthesis Lectures on Digital Circuits and Systems series is comprised of 50- to 100-page books
targeted for audience members with a wide-ranging background. e Lectures include topics that are
of interest to students, professionals, and researchers in the area of design and analysis of digital
circuits and systems. Each Lecture is self-contained and focuses on the background information
required to understand the subject matter and practical case studies that illustrate applications. e
format of a Lecture is structured such that each will be devoted to a specific topic in digital circuits
and systems rather than a larger overview of several topics such as that found in a comprehensive
handbook. e Lectures cover both well-established areas as well as newly developed or emerging
material in digital circuits and systems design and analysis.

Embedded Systems Design with the Texas Instruments MSP432 32-bit Processor
Dung Dang, Daniel J. Pack, and Steven F. Barrett
2017

Fundamentals of Electronics: Book 4 Oscillators and Advanced Electronics Topics
omas F. Schubert, Jr., and Ernest M. Kim
2016

Fundamentals of Electronics: Book 3 Active Filters and Amplifier Frequency Response
omas F. Schubert, Jr., and Ernest M. Kim
2016

Bad to the Bone: Crafting Electronic Systems with BeagleBone Black, Second Edition
Steven Barrett and Jason Kridner
2016

Fundamentals of Electronics: Book 2
omas F. Schubert, Jr., and Ernest M. Kim
2015

Fundamentals of Electronics: Book 1 Electronic Devices and Circuit Applications
omas F. Schubert and Ernest M. Kim
2015

iv

Applications of Zero-Suppressed Decision Diagrams
Tsutomu Sasao and Jon T. Butler
2014

Modeling Digital Switching Circuits with Linear Algebra
Mitchell A. ornton
2014

Arduino Microcontroller Processing for Everyone! ird Edition
Steven F. Barrett
2013

Boolean Differential Equations
Bernd Steinbach and Christian Posthoff
2013

Bad to the Bone: Crafting Electronic Systems with BeagleBone and BeagleBone Black
Steven F. Barrett and Jason Kridner
2013

Introduction to Noise-Resilient Computing
S.N. Yanushkevich, S. Kasai, G. Tangim, A.H. Tran, T. Mohamed, and V.P. Shmerko
2013

Atmel AVR Microcontroller Primer: Programming and Interfacing, Second Edition
Steven F. Barrett and Daniel J. Pack
2012

Representation of Multiple-Valued Logic Functions
Radomir S. Stankovic, Jaakko T. Astola, and Claudio Moraga
2012

Arduino Microcontroller: Processing for Everyone! Second Edition
Steven F. Barrett
2012

Advanced Circuit Simulation Using Multisim Workbench
David Báez-López, Félix E. Guerrero-Castro, and Ofelia Delfina Cervantes-Villagómez
2012

Circuit Analysis with Multisim
David Báez-López and Félix E. Guerrero-Castro
2011

Microcontroller Programming and Interfacing Texas Instruments MSP430, Part I
Steven F. Barrett and Daniel J. Pack
2011

v

Microcontroller Programming and Interfacing Texas Instruments MSP430, Part II
Steven F. Barrett and Daniel J. Pack
2011

Pragmatic Electrical Engineering: Systems and Instruments
William Eccles
2011

Pragmatic Electrical Engineering: Fundamentals
William Eccles
2011

Introduction to Embedded Systems: Using ANSI C and the Arduino Development
Environment
David J. Russell
2010

Arduino Microcontroller: Processing for Everyone! Part II
Steven F. Barrett
2010

Arduino Microcontroller Processing for Everyone! Part I
Steven F. Barrett
2010

Digital System Verification: A Combined Formal Methods and Simulation Framework
Lun Li and Mitchell A. ornton
2010

Progress in Applications of Boolean Functions
Tsutomu Sasao and Jon T. Butler
2009

Embedded Systems Design with the Atmel AVR Microcontroller: Part II
Steven F. Barrett
2009

Embedded Systems Design with the Atmel AVR Microcontroller: Part I
Steven F. Barrett
2009

Embedded Systems Interfacing for Engineers using the Freescale HCS08 Microcontroller
II: Digital and Analog Hardware Interfacing
Douglas H. Summerville
2009

vi

Designing Asynchronous Circuits using NULL Convention Logic (NCL)
Scott C. Smith and JiaDi
2009

Embedded Systems Interfacing for Engineers using the Freescale HCS08 Microcontroller
I: Assembly Language Programming
Douglas H.Summerville
2009

Developing Embedded Software using DaVinci & OMAP Technology
B.I. (Raj) Pawate
2009

Mismatch and Noise in Modern IC Processes
Andrew Marshall
2009

Asynchronous Sequential Machine Design and Analysis: A Comprehensive Development
of the Design and Analysis of Clock-Independent State Machines and Systems
Richard F. Tinder
2009

An Introduction to Logic Circuit Testing
Parag K. Lala
2008

Pragmatic Power
William J. Eccles
2008

Multiple Valued Logic: Concepts and Representations
D. Michael Miller and Mitchell A. ornton
2007

Finite State Machine Datapath Design, Optimization, and Implementation
Justin Davis and Robert Reese
2007

Atmel AVR Microcontroller Primer: Programming and Interfacing
Steven F. Barrett and Daniel J. Pack
2007

Pragmatic Logic
William J. Eccles
2007

vii

PSpice for Filters and Transmission Lines
Paul Tobin
2007

PSpice for Digital Signal Processing
Paul Tobin
2007

PSpice for Analog Communications Engineering
Paul Tobin
2007

PSpice for Digital Communications Engineering
Paul Tobin
2007

PSpice for Circuit eory and Electronic Devices
Paul Tobin
2007

Pragmatic Circuits: DC and Time Domain
William J. Eccles
2006

Pragmatic Circuits: Frequency Domain
William J. Eccles
2006

Pragmatic Circuits: Signals and Filters
William J. Eccles
2006

High-Speed Digital System Design
Justin Davis
2006

Introduction to Logic Synthesis using Verilog HDL
Robert B.Reese and Mitchell A.ornton
2006

Microcontrollers Fundamentals for Engineers and Scientists
Steven F. Barrett and Daniel J. Pack
2006

Copyright © 2017 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

Embedded Systems Design with the Texas Instruments MSP432 32-bit Processor

Dung Dang, Daniel J. Pack, and Steven F. Barrett

www.morganclaypool.com

ISBN: 9781627054959 paperback
ISBN: 9781627059756 ebook

DOI 10.2200/S00728ED1V01Y201608DCS051

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON DIGITAL CIRCUITS AND SYSTEMS

Lecture #51
Series Editor: Mitchell A. ornton, Southern Methodist University
Series ISSN
Print 1932-3166 Electronic 1932-3174

www.morganclaypool.com

Embedded Systems Design
with the Texas Instruments
MSP432 32-bit Processor

Dung Dang
Texas Instruments, TX

Daniel J. Pack
e University of Tennessee, Chattanooga, TN

Steven F. Barrett
University of Wyoming, Laramie, WY

SYNTHESIS LECTURES ON DIGITAL CIRCUITS AND SYSTEMS #51

C
M
&

cLaypoolMorgan publishers&

ABSTRACT
is book provides a thorough introduction to the Texas Instruments MPS432 TM microcon-
troller. e MPS432 is a 32-bit processor with the ARM Cortex M4F architecture and a built-in
floating point unit. At the core, the MSP432 features a 32-bit ARM Cortex-M4F CPU, a RISC-
architecture processing unit that includes a built-in DSP engine and a floating point unit. As an
extension of the ultra-low-power MSP microcontroller family, the MSP432 features ultra-low
power consumption and integrated digital and analog hardware peripherals. e MSP432 is a
new member to the MSP family. It provides for a seamless transition to applications requiring
32-bit processing at an operating frequency of up to 48 MHz. e processor may be programmed
at a variety of levels with different programming languages including the user-friendly Energia
rapid prototyping platform, in assembly language, and in C. A number of C programming op-
tions are also available to developers, starting with register-level access code where developers
can directly configure the device’s registers, to Driver Library, which provides a standardized set
of application program interfaces (APIs) that enable software developers to quickly manipulate
various peripherals available on the device. Even higher abstraction layers are also available, such
as the extremely user-friendly Energia platform, that enables even beginners to quickly proto-
type an application on MSP432. e MSP432 LaunchPad is supported by a host of technical
data, application notes, training modules, and software examples. All are encapsulated inside one
handy package called MSPWare, available as both a stand-alone download package as well as
on the TI Cloud development site: dev.ti.com e features of the MSP432 may be extended
with a full line of BoosterPack plug-in modules. e MSP432 is also supported by a variety of
third party modular sensors and software compiler companies. In the back, a thorough introduc-
tion to the MPS432 line of microcontrollers, programming techniques, and interface concepts
are provided along with considerable tutorial information with many illustrated examples. Each
chapter provides laboratory exercises to apply what has been presented in the chapter. e book
is intended for an upper level undergraduate course in microcontrollers or mechatronics but may
also be used as a reference for capstone design projects. Practicing engineers already familiar with
another microcontroller, who require a quick tutorial on the microcontroller, will also find this
book very useful. Finally, middle school and high school students will find the MSP432 highly
approachable via the Energia rapid prototyping system.

KEYWORDS
MPS432 microcontroller, microcontroller interfacing, embedded systems design,
Texas Instruments

xi

To our families.

xiii

Contents
Preface . xxiii

Acknowledgments . xxvii

1 Introduction to Microcontrollers and the MSP432 . 1
1.1 Overview . 1
1.2 Background eory: A Brief History and Terminology . 2
1.3 Microcontroller Systems . 3
1.4 Why the Texas Instruments MSP432? . 4

1.4.1 MSP432 part numbering system . 11
1.5 MSP–EXP432P401R LaunchPad . 12
1.6 BoosterPacks . 12
1.7 Software Development Tools . 15
1.8 Laboratory Exercise: Getting Acquainted with Hardware and Software

Development Tools . 16
1.9 Summary . 19
1.10 References and Further Reading . 19
1.11 Chapter Problems . 20

2 A Brief Introduction to Programming . 23
2.1 Overview . 23
2.2 Energia . 24
2.3 Energia Quickstart . 24
2.4 Energia Development Environment . 25

2.4.1 Energia IDE Overview . 25
2.4.2 Sketchbook Concept . 26
2.4.3 Energia Software, Libraries, and Language References 26

2.5 Energia Pin Assignments . 27
2.6 Writing an Energia Sketch . 30

2.6.1 Control Algorithm for the Dagu Magician Robot 50
2.7 Some Additional Comments on Energia . 63

xiv

2.8 Programming in C . 63
2.9 Anatomy of a Program . 65

2.9.1 Comments . 66
2.9.2 Include Files . 67
2.9.3 Functions . 67
2.9.4 Port Configuration . 69
2.9.5 Program Constants . 74
2.9.6 Interrupt Handler Definitions . 74
2.9.7 Variables . 75
2.9.8 Main Program . 76

2.10 Fundamental Programming Concepts . 77
2.10.1 Operators . 77
2.10.2 Programming Constructs . 81
2.10.3 Decision Processing . 83

2.11 Laboratory Exercise: Getting Acquainted with Energia and C 89
2.12 Summary . 90
2.13 References and Further Reading . 90
2.14 Chapter Problems . 91

3 MSP432 Operating Parameters and Interfacing . 93
3.1 Overview . 93
3.2 Operating Parameters . 94

3.2.1 MSP432 3.3 VDC Operation . 94
3.2.2 Compatible 3.3 VDC Logic Families . 95
3.2.3 Microcontroller Operation at 5.0 VDC . 95
3.2.4 Interfacing 3.3 VDC Logic Devices with 5.0 VDC Logic Families . . . 98

3.3 Input Devices . 99
3.3.1 Switches . 99
3.3.2 Switch Debouncing . 101
3.3.3 Keypads . 101
3.3.4 Sensors . 107
3.3.5 Transducer Interface Design (TID) Circuit . 115
3.3.6 Operational Amplifiers . 118

3.4 Output Devices . 121
3.4.1 Light Emitting Diodes (LEDs) . 121
3.4.2 Seven Segment LED Displays . 123
3.4.3 Tri-state LED Indicator . 125

xv

3.4.4 Dot Matrix Display . 127
3.4.5 Liquid Crystal Display (LCD) . 133

3.5 High Power DC Interfaces . 135
3.5.1 DC Motor Interface, Speed, and Direction Control 139
3.5.2 DC Solenoid Control . 150
3.5.3 Stepper Motor Control . 150
3.5.4 Optical Isolation . 157

3.6 Interfacing to Miscellaneous DC Devices . 157
3.6.1 Sonalerts, Beepers, Buzzers . 157
3.6.2 Vibrating Motor . 158
3.6.3 DC Fan . 158
3.6.4 Bilge Pump . 158

3.7 AC Devices . 159
3.8 Educational Booster Pack MkII . 162
3.9 Grove Starter Kit for LaunchPad . 164
3.10 Application: Special Effects LED Cube . 165

3.10.1 Construction Hints . 166
3.10.2 LED Cube MSP432 Energia Code . 169

3.11 Laboratory Exercise: Introduction to the Educational Booster Pack MkII
and the Grove Starter Kit . 185

3.12 Summary . 186
3.13 References and Further Reading . 186
3.14 Chapter Problems . 188

4 MSP432 Memory System . 191
4.1 Overview . 191
4.2 Basic Memory Concepts . 192

4.2.1 Memory Buses . 192
4.2.2 Memory Operations . 194
4.2.3 Binary and Hexadecimal Numbering Systems 194
4.2.4 Memory Architectures . 196
4.2.5 Memory Types . 196

4.3 Memory Operations in C Using Pointers . 198
4.4 Memory Map . 200
4.5 Flash Memory . 200

4.5.1 FLCTL Drivelib Support . 204

xvi

4.6 Direct Memory Access (DMA) . 208
4.6.1 DMA Specifications . 208
4.6.2 DMA Transfer Types . 209
4.6.3 DMA Registers . 209
4.6.4 DMA Drivelib Support . 211
4.6.5 DMA Example . 213

4.7 External Memory: Bulk Storage with an MMC/SD Card 217
4.8 Laboratory Exercise: MMC/SD Card . 217
4.9 Summary . 221
4.10 References and Further Reading . 222
4.11 Chapter Problems . 222

5 MSP432 Power Systems . 225
5.1 Overview . 225
5.2 Background eory . 226
5.3 Operating Modes and Speed of Operation . 227
5.4 Power Supply System . 227
5.5 e Power Control Module . 228
5.6 Operating Modes . 229
5.7 Operating Mode Summary . 230
5.8 Operating Mode Transitions . 230
5.9 PSS and PCM Registers . 230
5.10 Battery Operation . 233
5.11 DriverLib Support . 235
5.12 Programming in C . 237
5.13 Laboratory Exercise: Operating Modes . 256
5.14 Summary . 266
5.15 References and Further Reading . 267
5.16 Chapter Problems . 267

6 Time-Related Systems . 269
6.1 Overview . 269
6.2 Background . 270
6.3 Time-related Signal Parameters . 270

6.3.1 Frequency . 270
6.3.2 Period . 271

xvii

6.3.3 Duty Cycle . 271
6.3.4 Pulse Width Modulation . 271
6.3.5 Input Capture and Output Compare . 272

6.4 MSP432 Clock System . 274
6.4.1 Clock Source Registers . 276
6.4.2 DriverLib APIs . 277
6.4.3 Timer Applications in C . 279

6.5 Energia-related Time Functions . 286
6.6 Watchdog Timer . 289

6.6.1 WDT Modes of Operation . 289
6.6.2 WDT System . 289
6.6.3 Watchdog DriverLib APIs . 290

6.7 Timer32 . 300
6.7.1 Registers . 300
6.7.2 DriverLib APIs . 301

6.8 Timer_A . 309
6.8.1 Registers . 311
6.8.2 DriverLib APIs . 312

6.9 Real-Time Clock, RTC_C . 325
6.9.1 RTC Registers . 325
6.9.2 RTC DriverLib API Support . 328

6.10 Laboratory Exercise: Generation of Varying Pulse Width Modulated
Signals to Control DC Motors . 335

6.11 Summary . 335
6.12 References and Further Reading . 335
6.13 Chapter Problems . 335

7 Resets and Interrupts . 337
7.1 Overview . 337
7.2 Background . 338
7.3 MSP432 Resets . 338
7.4 Interrupts . 339

7.4.1 Interrupt Handling Process . 339
7.5 MSP432 Interrupt System . 341

7.5.1 Interrupt Service Routine (ISR) . 343
7.6 Energia Interrupt Support . 343

xviii

7.7 DriverLib . 347
7.8 Programming Interrupts in C . 348
7.9 Laboratory Exercise: Autonomous Robot . 356
7.10 Summary . 357
7.11 References and Further Reading . 357
7.12 Chapter Problems . 357

8 Analog Peripherals . 359
8.1 Overview . 359
8.2 Background . 360
8.3 Analog-to-Digital Conversion . 360

8.3.1 Sampling . 361
8.3.2 Quantization . 363
8.3.3 Encoding . 366

8.4 Digital-to-Analog Converter . 367
8.5 MSP432 Analog-to-Digital Converter . 367

8.5.1 Features . 368
8.5.2 Operation . 369
8.5.3 ADC Registers . 371
8.5.4 Analysis of Results . 371

8.6 Programming the MSP432 ADC14 System . 372
8.6.1 Energia Programming . 372
8.6.2 MSP432 Driver Library . 376
8.6.3 Programming ADC14 in C . 382

8.7 Voltage Reference . 387
8.8 Comparator . 392
8.9 Laboratory Exercise: Educational BoosterPack Mk II 396
8.10 Summary . 396
8.11 References and Further Reading . 396
8.12 Chapter Problems . 397

9 Communication Systems . 399
9.1 Overview . 399
9.2 Background . 400
9.3 Serial Communication Concepts . 401
9.4 MSP432 UART . 403

xix

9.4.1 UART Features . 403
9.4.2 UART Overview . 404
9.4.3 Character Format . 406
9.4.4 Baud Rate Selection . 407
9.4.5 UART Associated Interrupts . 407
9.4.6 UART Registers . 408
9.4.7 API Support . 408

9.5 Code Examples . 410
9.5.1 Energia . 410
9.5.2 UART DriverLib API Example . 412
9.5.3 UART C Example . 413

9.6 Serial Peripheral Interface-SPI . 417
9.6.1 SPI Operation . 417
9.6.2 MSP432 SPI Features . 418
9.6.3 MSP432 SPI Hardware Configuration . 419
9.6.4 SPI Registers . 421
9.6.5 SPI Data Structures API Support . 422
9.6.6 SPI Code Examples . 425

9.7 Inter-Integrated Communication - I2C Module . 432
9.7.1 Overview . 432
9.7.2 Programming . 432
9.7.3 MSP432 as a Slave Device . 433
9.7.4 MSP432 as a Master Device . 434
9.7.5 I2C Registers . 435
9.7.6 I2C API Support . 436
9.7.7 I2C Code Examples . 438

9.8 Laboratory Exercise: UART and SPI Communications 445
9.9 Summary . 445
9.10 References and Further Reading . 446
9.11 Chapter Problems . 446

10 MSP432 System Integrity . 449
10.1 Overview . 449
10.2 Electromagnetic Interference . 450

10.2.1 EMI Reduction Strategies . 450
10.3 Cyclic Redundancy Check . 452

10.3.1 MSP432 CRC32 Module . 453

xx

10.3.2 CRC32 Registers . 453
10.3.3 API Support . 454

10.4 AES256 Accelerator Module . 461
10.4.1 Registers . 462
10.4.2 API Support . 463

10.5 Laboratory Exercise: AES256 . 473
10.6 Summary . 473
10.7 References and Further Reading . 473
10.8 Chapter Problems . 474

11 System Level Design . 475
11.1 Overview . 475
11.2 What is an Embedded System? . 476
11.3 Embedded System Design Process . 476

11.3.1 Project Description . 476
11.3.2 Background Research . 476
11.3.3 Pre-Design . 477
11.3.4 Design . 478
11.3.5 Implement Prototype . 480
11.3.6 Preliminary Testing . 480
11.3.7 Complete and Accurate Documentation . 481

11.4 Weather Station . 481
11.4.1 Requirements . 482
11.4.2 Structure Chart . 482
11.4.3 Circuit Diagram . 482
11.4.4 UML Activity Diagrams . 483
11.4.5 Microcontroller Code . 483
11.4.6 Project Extensions . 491

11.5 Submersible Robot . 491
11.5.1 Approach . 492
11.5.2 Requirements . 493
11.5.3 ROV Structure . 494
11.5.4 Structure Chart . 496
11.5.5 Circuit Diagram . 499
11.5.6 UML Activity Diagram . 499
11.5.7 MSP432 Code . 499
11.5.8 Control Housing Layout . 514

xxi

11.5.9 Final Assembly Testing . 514
11.5.10 Final Assembly . 516
11.5.11 Project Extensions . 516

11.6 Mountain Maze Navigating Robot . 516
11.6.1 Description . 518
11.6.2 Requirements . 518
11.6.3 Circuit Diagram . 518
11.6.4 Structure Chart . 518
11.6.5 UML Activity Diagrams . 521
11.6.6 4WD Robot Algorithm Code . 521
11.6.7 Mountain Maze . 531
11.6.8 Project Extensions . 532

11.7 Laboratory Exercise: Project Extensions . 532
11.8 Summary . 534
11.9 References and Further Reading . 534
11.10 Chapter Exercises . 535

Authors’ Biographies . 539

Index . 541

xxiii

Preface
Texas Instruments is well known for its analog and digital devices, in particular, Digital Signal
Processing (DSP) chips. Unknown to many, the company quietly developed its microcontroller
division in the early 1990s and started producing a family of controllers aimed mainly for embed-
ded meter applications for power companies, which require an extended operating time without
recharging. It was not until the mid 2000s, the company began to put serious efforts to present
the MSP430 microcontroller family, its flagship microcontrollers, to the academic community
and future engineers. eir efforts have been attracting many educators and students due to the
MSP430’s cost and the suitability of the controller for capstone design projects requiring mi-
crocontrollers. e MSP432 is a natural extension to the MSP430 family. It provides 32-bit
operation at operating frequencies of up to 48 MHz. In addition, Texas Instruments offers a
large number of compatible analog and digital devices that can expand the range of the possible
embedded applications of the microcontroller.

We have four goals writing this book. e first is to introduce readers to microcontroller
programming. e MSP432 microcontrollers can be programmed using the user-friendly En-
ergia rapid prototype system, assembly language, DriverLib APIs, or a high-level programming
language such as C. e second goal of the book is to teach students how computers work. After
all, a microcontroller is a computer within a single integrated circuit (chip). ird, we present the
microcontroller’s input/output interface capabilities, one of the main reasons for developing em-
bedded systems with microcontrollers. Finally, we illustrate how a microcontroller is a component
within embedded systems controlling the interaction of the environment with system hardware
and software.

Background
is book provides a thorough introduction to the Texas Instrument MSP432 microcontroller.
e MSP432 is a 32-bit reduced instruction set (RISC) processor that features ultra-low power
consumption and integrated digital and analog hardware.

is book is intentionally tutorial in nature with many worked examples, illustrations, and
laboratory exercises. An emphasis is placed on real-world applications such as smart homes, mo-
bile robots, unmanned underwater vehicle, and DC motor controllers to name a few.

Intended Readers
e book is intended to be used in an upper-level undergraduate course in microcontrollers or
mechatronics but may also be used as a reference for capstone design projects. Also, practicing
engineers who are already familiar with another line of microcontrollers, but require a quick tu-
torial on the MSP432 microcontroller, will find this book beneficial. Finally, middle school and

xxiv PREFACE

high school students can effectively use this book as the MSP432 is highly approachable via the
Energia rapid prototyping system.

Approach and Organization
is book provides is designed to give a comprehensive introduction to theMSP432 line ofmicro-
controllers, programming techniques, and interface concepts. Each chapter contains a list of ob-
jectives, background tutorial information, and detailed materials on the operation of the MSP432
system under study. Each chapter provides laboratory exercises to give readers an opportunity to
apply what has been presented in the chapter and how the concepts are employed in real appli-
cations. Each chapter concludes with a series of homework exercises divided into Fundamen-
tal, Advanced, and Challenging categories. Because of the tight family connection between the
MSP430 16-bit microcontroller and the MSP432 32-bit microcontroller, this book is almost a
second edition of our book, “Microcontroller Programming and Interfacing: Texas Instruments
MSP430.” With Morgan and Claypool permission much of the common material between the
MSP430 and the MSP432 has been carried forward to this book. If you are a seasoned MSP430
practitioner, you will find the transition to the MSP432 seamless.

Chapter 1 provides a brief review of microcontroller terminology and history followed by
an overview of the MSP432 microcontroller. e chapter reviews systems onboard the micro-
controller and also the MSP432-EXP432P401R evaluation board (MSP432 LaunchPad). e
information provided can be readily adapted to other MSP432-based hardware platforms. It also
provides a brief introduction to the MSP432 hardware architecture, software organization, pro-
gramming model and overview of the ARM 32-bit Cortex M4F central processing unit. e
chapter concludes with an introduction to the hardware and software development tools that will
be used for the remainder of the book. It provides readers a quickstart guide to get the controller
up and operate it quickly with the Energia rapid prototyping system. e chapter provides a
number of easy-to-follow examples for the novice programmer.

Chapter 2 provides a brief introduction to programming in C. e chapter contains mul-
tiple examples for a new programmer. It also serves as a good review for seasoned programmers.

Chapter 3 describes a wide variety of input and output devices and how to properly in-
terface them to the MSP432 microcontroller. e chapter begins with a review of the MSP432
electrical operating parameters followed by a discussion of the port system. e chapter describes
a variety of input device concepts including switches, interfacing, debouncing, and sensors. Out-
put devices are discussed including light emitting diodes (LEDs), tri-state LED indicators, liquid
crystal displays (LCDs), high power DC and AC devices, motors, and annunciator devices. Also,
complete sensor modules available for the MSP432 are also discussed.

Chapter 4 is dedicated to descriptions and use of the different memory components on-
board the MSP432 including Flash, RAM, ROM, and the associated memory controllers. e
Direct Memory Access (DMA) controller is also discussed.

PREFACE xxv

Chapter 5 provides an in depth discussion of theMSP432 Power ControlManager (PCM).
e PCM enables developers to configure various operating modes depending on the application’s
requirements, and provides for ultra-low power operation and practices.

Chapter 6 presents the clock and timer systems aboard the MSP432. e chapter be-
gins with a detailed description of the flexible clocking features, followed by a discussion of the
timer system architecture. e timer architecture discussion includes clocking system sources,
the watchdog timer, thw real time clock, the flexible 16-bit timer A, the general-purpose 32-bit
timers, and pulse width modulation (PWM) features.

Chapter 7 presents an introduction to the concepts of resets and interrupts. e various
interrupt systems powered by the Nested Vector Interrupt Controller (NVIC) associated with
the MSP432 are discussed, followed by detailed instructions on how to properly configure and
program them.

Chapter 8 is dedicated to outline the analog systems aboard the MSP432. e chapter
discusses the analog-to-digital converters (ADCs), the internal reference module, and the analog
comparators. e chapter also provides pointers to a wide variety of compatible Texas Instrument
analog devices.

Chapter 9 is designed for a detailed review of the complement of serial communica-
tion systems resident on the MSP432, including the universal asynchronous receiver transmitter
(UART), the serial peripheral interface (SPI), the Inter-Integrated Circuit (I2C) system, and the
Infrared Data Association (IrDA) link.

Chapter 10 provides a detailed introduction to the data integrity features aboard the
MSP432 including a discussion of noise and its sources and suppression, an Advanced Encryption
Standard (AES) 256 accelerator module, and a 32-bit cyclic redundancy check (CRC) engine.

Chapter 11 discusses the system design process followed by system level examples. e
examples employ a wide variety of MSP432 systems discussed throughout the book.

Dung Dang, Daniel J. Pack, and Steven F. Barrett
September 2016

xxvii

Acknowledgments
ere have been many people involved in the conception and production of this book. We espe-
cially want to thank Paul Nossaman and Cathy Wicks of Texas Instruments. e future of Texas
Instruments is bright with such helpful, dedicated engineering and staff members. Joel Claypool
of Morgan & Claypool Publishers has provided his publishing expertise to convert our final draft
into a finished product. We thank him for his support on this project and many others. We also
thank him for his permission to port common information from our MSP430 text forward to this
book. His vision and expertise in the publishing world made this book possible. We also thank
Dr. C.L. Tondo of T&T TechWorks, Inc. and his staff for working their magic to convert our
final draft into a beautiful book.

Finally, we thank our families who have provided their ongoing support and understanding
while we worked on the book.

Dung Dang, Daniel J. Pack, and Steven F. Barrett
September 2016

1

C H A P T E R 1

Introduction to
Microcontrollers and the

MSP432
Objectives: After reading this chapter, the reader should be able to:

• briefly describe the key technological accomplishments leading to the development of the
microcontroller;

• define the terms microprocessor, microcontroller, and microcomputer;

• identify multiple examples of microcontroller applications in daily life;

• list key attributes of the MSP432 microcontroller;

• list the subsystems onboard the microcontroller and briefly describe subsystem operation;

• provide an example application for each subsystem onboard the MSP432 microcontroller;

• describe the hardware, software, and emulation tools available for the MSP432 microcon-
troller; and

• employ the development tools to load and execute a sample program on the MSP432
LaunchPad (MSP–EXP432P401R).

1.1 OVERVIEW
is book is all about microcontrollers! A microcontroller is a self-contained processor system
in a single integrated circuit (chip) that provides local computational or control resources to a
number of products. ese computational or control tasks can be as simple as turning on or off
a switch, a light, sensing a touch, or can be as complex as controlling a motor, operating in a
wireless network, or driving a complex graphical interface. ey are used when a product requires
a “limited” amount of processing power with a small form factor to perform its mission. ey are
everywhere! In the routine of daily life, we use multiple microcontrollers. Take a few minutes and
jot down a list of microcontroller equipped products you have used today.

2 1. INTRODUCTION TO MICROCONTROLLERS AND THE MSP432

is chapter provides an introduction to the Texas Instruments MSP432 microcontroller.
We begin with a brief history of computer technology followed by an introduction to the MSP432
microcontroller. We also introduce readers to the powerful and user-friendly development tools
in developing embedded system applications.

1.2 BACKGROUND THEORY: A BRIEF HISTORY AND
TERMINOLOGY

e development of microcontrollers can be traced back to the roots of early computing with the
first generation of computers. e generations of computer development are marked by break-
throughs in hardware and architecture innovation. e first generation of computers employed
vacuum tubes as the main switching element. Mauchly and Eckert developed the Electronic Nu-
merical Integrator and Calculator (ENIAC) in the mid 1940’s. is computer was large and
consumed considerable power due to its use of 18,000 vacuum tubes. e computer, funded by
the U.S. Army, was employed to calculate ordnance trajectories in World War II. e first com-
mercially available computer of this era was the UNIVAC I [Bartee, 1972].

e second generation of computers employed transistors as the main switching element.
e transistor was developed in 1947 by John Bardeen and Walter Brattain at Bell Telephone
Laboratories. Bardeen, Brattain, and William Schockley were awarded the 1956 Nobel Prize in
Physics for development of the transistor [Nobel.org, 1980]. e transistor reduced the cost, size,
and power consumption of computers.

e third generation of processors started with the development of the integrated circuit.
e integrated circuit was developed by Jack Kilby at Texas Instruments in 1958. e integrated
circuit revolutionized the production of computers, greatly reducing their size and power con-
sumption. Computers employing integrated circuits were first launched in 1965 [Bartee, 1972].
Kilby was awarded the Nobel Prize in Physics in 2002 for his work on the integrated circuit [No-
bel.org, 1980]. e first commercially available minicomputer of this generation was the Digital
Equipment Corporation’s (DEC) PDP–8 [Osborne, 1980].

e fourth generation of computers wasmarked by the advancement of levels of integration,
leading to very large scale integration (VLSI) and ultra large scale integration (ULSI) production
techniques. In 1969, the Data Point Corporation of San Antonio, Texas had designed an elemen-
tary central processing unit (CPU). e CPU provides the arithmetic and control for a computer.
Data Point contracted with Intel and Texas Instruments to place the design on a single integrated
circuit. Intel was able to complete the task, but Data Point rejected the processor as being too
slow for their intended application [Osborne, 1980].

Intel used the project as the basis for their first general purpose 8-bit microprocessor, the
Intel 8008. e microprocessor chip housed the arithmetic and control unit for the computer.
Other related components such as read only memory (ROM), random access memory (RAM),
input/output components, and interface hardware were contained in external chips. From 1971
to 1977, Intel released the 8008, 8080, and 8085 microprocessors which significantly reduced

1.3. MICROCONTROLLER SYSTEMS 3

the number of system components and improved upon the number of power supply voltages
required for the chips. Some of the high visibility products of this generation were the Apple II
personal computer, developed by Steve Jobs and Steve Wozniak and released in 1977, and the
IBM personal computer, released in 1981 [MCS 85, 1977, Osborne, 1980].

e first single chip microcontroller was developed by Gary Boone of Texas Instruments in
the early 1970’s. A microcontroller contains all key elements of a computer system within a sin-
gle integrated circuit. Boone’s first microcontroller, the TMS 1000, contained the CPU, ROM,
RAM, and I/O and featured a 400 kHz clock [Boone, 1971, 1977]. From this early launch of
microcontrollers, an entire industry was born. ere are now over 35 plus companies manufac-
turing microcontrollers worldwide offering over 250 different product lines. e 16-bit MSP430
line of microcontrollers was first developed in 1992 and became available for worldwide release in
1997. e 32-bit MSP432 microcontroller was formally released by Texas Instruments in 2015.

1.3 MICROCONTROLLER SYSTEMS
Although today’s microcontrollers physically bear no resemblance to their earlier computer pre-
decessors, they all have similar architecture. All computers share the basic systems shown in Fig-
ure 1.1. e processor or central processing unit (CPU) contains both datapath and control hard-
ware. e datapath is often referred to as the arithmetic logic unit (ALU). As its name implies,
the ALU provides hardware to perform the mathematical and logic operations for the computer.
e control unit provides an interface between the computer’s hardware and software. It generates
control signals to the datapath and other system components such that operations occur in the
correct order and within an appropriate time to execute the actions of a software program.

Computer

Processor

Control

Datapath Output

Input

Memory
System

Figure 1.1: Basic computer architecture. (Adapted from Patterson and Hennessy [1994].)

e memory system contains a variety of memory components to support the operation of
the computer. Typical memory systems aboard microcontrollers contain Random Access Mem-

4 1. INTRODUCTION TO MICROCONTROLLERS AND THE MSP432

ory (RAM), Read Only Memory (ROM), non-volatile memory such as Flash or Ferro-Random
Access Memory (FRAM),¹ and Electrically Erasable Programmable Read Only Memory (EEP-
ROM) components. RAM is volatile. When power is unavailable, the contents of RAM memory
is lost. RAM is typically used in microcontroller operations for storing global variables, local vari-
ables, which are required during execution of a function, and to support heap operations during
dynamic allocation activities. In contrast, ROM memory is nonvolatile. at is, it retains its con-
tents even when power is not available. ROM memory is used to store system constants and
parameters. If a microcontroller is going to be mass produced for an application, the resident
application program may be written into ROM memory at the manufacturer.

EEPROM is available in two variants: byte-addressable and flash programmable. Byte-
addressable memory EEPROM, as its name implies, allows variables to be stored, read, and writ-
ten during program execution. e access time for byte-addressable EEPROM is much slower
than RAM memory; however, when power is lost, the EEPROM memory retains its contents.
Byte-addressable EEPROM may be used to store system passwords and constants. For example,
if a microcontroller-based algorithm has been developed to control the operation of a wide range
of industrial doors, system constants for a specific door type can be programmed into the micro-
controller onsite when the door is installed. Flash EEPROM can be erased or programmed in
bulk. It is typically used to store an entire program.

e input and output system (I/O) of a microcontroller usually consists of a complement
of ports. Ports are fixed sized hardware registers that allow for the orderly transfer of data in and
out of the microcontroller. In most microcontroller systems, ports are equipped for dual use. at
is, they may be used for general purpose digital input/output operations or may have alternate
functions such as input access for the analog-to-digital (ADC) system.

Our discussion thus far has been about microcontrollers in general. For the remainder of
this chapter and the rest of the book, we concentrate on the Texas Instruments MSP432 micro-
controller.

1.4 WHY THE TEXAS INSTRUMENTS MSP432?
e 16-bit MSP430 line of microcontrollers began development in 1992. Since this initial start,
there have been multiple families of the microcontroller developed and produced with a wide
range of features. is allows one to choose an appropriate microcontroller for a specific appli-
cation. As a natural new member to the MSP family, the MSP432 32-bit microcontroller was
released in 2015. To support the use of the MSP43x processor family, Texas Instruments invests
considerable resources in providing support documentation, development tools, and instructional
aids.

A block diagram of the MSP432P401x is provided in Figure 1.2. e MSP432 has the
following features:

¹FRAM technology is only available on MSP430 MCU today.

1.4. WHY THE TEXAS INSTRUMENTS MSP432? 5

A
d

d
re

ss

D
a

ta

L
F

X
IN

,
H

F
X

IN

B
us

C
on

tr
ol

L
og

ic

D
M

A

8
C

h
an

n
el

s

A
R

M
C

or
te

x-
M

4F

M
P

U

JT
A

G
, S

W
D

IT
M

, T
P

IU

F
P

B
, D

W
T

N
V

IC
, S

ys
T

ic
k

C
P

U

L
F

X
O

U
T

,
H

F
X

O
U

T
P

1.
x

to
 P

10
.x

P

J.
x

D
C

O
R

L
P

M
3

.5
 D

o
m

a
in

C
ap

ac
it

iv
e

T
ou

ch
 I

/O
 0

,
C

ap
ac

it
iv

e
T

ou
ch

 I
/O

 1
P

C
M

P
ow

er
C

on
tr

ol
M

an
ag

er

C
R

C
32

A
E

S
25

6

S
ec

ur
it

y
E

n
cr

yp
ti

on
,

D
ec

ry
p

ti
on

S
Y

S
T

C
T

L

S
ys

te
m

C
on

tr
ol

le
r

R
S

T
C

T
L

R
es

et
C

on
tr

ol
le

r

R
O

M
(D

ri
ve

r
L

ib
ra

ry
y)

32
K

B

S
R

A
M

(i
n

cl
ud

es
B

ac
ku

p
M

em
or

y)

64
K

B
32

K
B

F
la

sh

25
6K

B
12

8K
B

eU
S

C
I_

B
0

eU
S

C
I_

B
1

eU
S

C
I_

B
2

eU
S

C
I_

B
3

(I
2 C

, S
P

I)

eU
S

C
I_

A
0

eU
S

C
I_

A
1

eU
S

C
I_

A
2

eU
S

C
I_

A
3

(U
A

R
T

,
Ir

D
A

, S
P

I)

T
im

er
32

T
w

o
32

-B
it

T
im

er
s

T
A

O
, T

A
1

T
A

2,
 T

A
3

T
im

er
_A

16
-B

it
5

C
C

R

R
E

F
_A

V
ol

ta
ge

R
ef

er
en

ce

C
om

p
_E

0
C

om
p

_E
1

A
n

al
og

C
om

p
ar

at
or

A
D

C
14

14
-B

it
1

M
sp

s
S

A
R

 A
/D

I/
O

 P
or

ts

P
1

to
 P

10
78

 I
/O

s

I/
O

 P
or

ts

P
J

6
I/

O
s

B
ac

ku
p

M
em

or
y

S
R

A
M

8K
B

W
D

T
_A

W
at

ch
d

og
T

im
er

R
T

C
_C

R
ea

l
T

im
e

C
lo

ck

C
S

C
lo

ck
S

ys
te

m

P
S

S

P
ow

er
S

up
p

ly
S

ys
te

m

Fi
gu

re
1.

2:
Ba

sic
M

SP
43

2P
40

1x
bl

oc
k

di
ag

ra
m

[S
LA

S8
26

A
,2

01
5]

.I
llu

str
at

io
n

us
ed

wi
th

pe
rm

iss
io

n
of

Te
xa

s
In

str
um

en
ts

ww
w.

ti
.c

om
.

www.ti.com

6 1. INTRODUCTION TO MICROCONTROLLERS AND THE MSP432

• mechanism to operate in a wide supply voltage range (1.62–3.7 VDC);

• ultra-low power consumption functional units;

• clock system that allows operating frequency of up to 48 MHz;

• 32-bit Reduced Instruction Set (RISC) architecture;

• onboard floating point unit (FPU);

• wide variety of memory assets with direct memory access (DMA) capability;

• flexible clocking features;

• wide variety of timing features;

• capability to integrate digital and analog components;

• serial communication subsystems including UART, SPI, IrDA, and I2C. Compatibility to
work with peripheral components to provide wireless communications;

• onboard analog-to-digital converters (ADC) and analog comparators;

• encryption and data integrity accelerators;

• support for the full ARM Cortex-M4F instruction set; and

• full range of documentation and support for the student, design engineer, and instructor.

e importance of most of these features is self-evident. A few need to be briefly described.
Feature information provided below is from [Barrett and Pack, 2006, SLAS826A, 2015].

32-bit RISC architecture. Reduced Instruction Set Computer (RISC) architecture is
based on the premise of designing a processor that is very efficient in executing a basic set of
building block instructions. From this set of basic instructions more complex instructions may
be constructed. e 32-bit data width establishes the range of numerical arguments that may be
used within the processor. For example, a 32-bit processor can easily handle 32-bit unsigned in-
tegers. is provides a range of unsigned integer arguments from 0 to .232 � 1/ or approximately
4.29G. Larger arguments may be handled, but additional software manipulation is required for
processing, which consumes precious execution time.

Integrated digital and analog components. Microcontrollers are digital processors. How-
ever, they are used to measure physical parameters in an analog world. Most physical parameters
such as temperature, pressure, displacement, and velocity are analog in nature. A microcontroller
is typically used in applications where these physical parameters are measured. Based on the mea-
surements, a control algorithm hosted on the microcontroller will issue control signals to control
a physical process that will affect the physical world. Often these control signals may be digital,

1.4. WHY THE TEXAS INSTRUMENTS MSP432? 7

analog, or a combination of both. e MPS432 family is equipped with a large complement of
analog-to-digital converters to process analog input signals. e MSP432 is also equipped with
two analog comparators. e MPS432 is compatible with a large complement of analog compo-
nents.

RF connectivity. Microcontrollers are often used in remote or portable applications. For
example, they may be used to monitor the energy consumption of a home, power (kW) con-
sumed over time (kWh). e power utility company charges customers by the kWh based on
their monthly power consumption. A person may be employed by the power company to read
the energy meters. Alternately, a microcontroller integrated within the energy meter may track
monthly consumption and report the value when polled via an RF link. e MPS432 has several
RF compatible transmitters and receivers that may be easily interfaced to the microcontroller for
such applications.

Low supply voltage range: 1.62–3.7 VDC. e MSP432 operates at very low voltages.
Some operating voltage of interest include:

• 3.7V: close to Li-Ion battery supply range (rechargeable electronic battery);

• 1.8–3.3V: 2x AA or AAA batteries, coin-cell applications, and energy harvesting appli-
cations. In energy harvesting techniques, energy is derived from sources external to the
microcontroller; and

• 1.62V: 1.8 �10%: many modern sensors/consumer electronics operate at 1.8V, being able
to run the microcontroller down to this range means the whole system can operate natively
in the ideal VCC D 1.8V.

Ultra-low power consumption. e MSP432 has an active mode (AM) and multiple low
power modes (LPM). In the active mode, the MSP432 draws 90 microamps of current per MHz
of clock speed. Similarly, in standby mode (LPM3), the MSP432 consumes down to 850nA. In
many low-power or energy-harvesting applications where the microcontroller can sleep most of
the time and only periodically wake up to perform a task for a short period of time, this low
LPM3 current can translate to 10–20 years of operation on a single battery charge.

Onboard flash memory: 256 kbytes. Flash memory is used to store programs and, also,
system constants that must be retained when system power is lost (non-volatile memory). e
256 kbytes of flash memory allow a memory space for substantial program development.

OnboardRAMmemory: 64 kbytes. e MSP432 also hosts a large RAM memory. RAM
memory is used for global variables, local variables, and the dynamic allocation of user-defined
data types during program execution.

Power Control Manager (PCM). Texas Instruments has spent considerable effort mini-
mizing the power consumption of the MSP432 microcontroller under varying conditions. Flex-
ibility is provided to the designer with multiple Low Power Modes (LPM): 0, 3, 3.5, 4, and 4.5.
Also, additional power saving features have been implemented including turning off clocks to
peripheral devices when not in use, removing power from portions of circuitry when not in use,

8 1. INTRODUCTION TO MICROCONTROLLERS AND THE MSP432

and providing flexible “wake-up” prompts while in the CPU sleep modes. Also, a power policy
manager has been implemented to optimize low power performance with little input needed from
the designer [SLAA668, SPRY282].

Large complement of input/output ports. e MSP432P401R is a 100-pin integrated
circuit. Most of the pins have multiple functions as shown in Figure 1.3. e general purpose
input/output (I/O) pins have been subdivided into ports (P10[5:0], P9[7:0] through P1[7:0],
and PJ[5:0]). e I/O pins are all equipped with capacitive touch capability. Up to 48 pins are
equipped with interrupt and wake-up capability.

Clock system. Microcontrollers are synchronous circuits. at is, all microcontroller oper-
ations are synchronized with a clock circuit. ere are a number of clock source options available
for the MSP432, including a 32 kHz crystal (LFXT), an internal very low frequency oscillator
(VLO), an internal trimmed low-frequency oscillator (REFO), a module oscillator (MODOSC),
a system oscillator (SYSOSC), and a high-frequency crystal oscillator up to 48 MHz (HFXT).

Four 16-bit timers and two 32-bit timers. e MSP432 has four separate, 16-bit timer
channels (TA0, TA1, TA2, and TA3) and two 32-bit timers. ese timers are employed for cap-
turing the parameters of an incoming signal (period, frequency, duty cycle, pulse length), gener-
ating an internal interval, generating a precision output digital signal, or generating a pulse width
modulated (PWM) signal.

Eight universal serial communication interfaces (eUSCI_A0 to A3 and eUSCI_B0 to
B3). e eUSCI system is used to provide serial communications. e MSP432 is equipped with
eight separate eUSCI channels designated eUSCI_A0 to A3 and eUSCI_B0 to B3. e eUSCI
channels are quite versatile. ey provide many different types of serial communications including
the following.

• Synchronous serial peripheral interface (SPI). e SPI provides relatively high-speed serial,
two-way communication between a transmitter and a receiver. Synchronization is main-
tained between the transmitter and receiver using a common clock signal provided by the
master designated device.

• Inter-Integrated Circuit (I2C) (also known as inter IC, IIC, or I 2C). I2C was developed
by Philips to provide for a two-wire serial communications between components on the
same circuit board or those within close proximity of one another. It is especially useful in
microcontroller-based systems employing multiple peripheral components such as sensors,
input devices, and displays.

• Universal asynchronous receiver transmitter (UART). e UART is used to communi-
cate with RS232 compatible devices. e RS232 serial communications standard has been
around for some time but it is still popular in many applications. Synchronization is main-
tained between a transmitter and a receiver using start and stop bits to frame the data.

1.4. WHY THE TEXAS INSTRUMENTS MSP432? 9

75 £ P9.3/TA3.4

74 £ P9.2/TA3.3

73 £ DVCC2

72 £ DVSS2

71 £ P5.7/TA2.2/VREF-/VeREF-/C1.6

70 £ P5.6/TA2.1/VREF+/VeREF+/C1.7

69 £ P5.5/A0

68 £ P5.4/A1

67 £ P5.3/A2

66 £ P5.2/A3

65 £ P5.1/A4

64 £ P5.0/A5

63 £ P4.7/A6

62 £ P4.6/A7

61 £ P4.5/A8

60 £ P4.4/HSMCLK/SVMHOUT/A9

59 £ P4.3/MCLK/RTCCLK/A10

58 £ P4.2/ACLK/TA2CLK/A11

57 £ P4.1/A12

56 £ P4.0/A13

55 £ P6.1/A14

54 £ P6.0/A15

53 £ P9.1/A16

52 £ P9.0/A17

51 £ P8.7/A18

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

P10.1/UCB3CLK £

P10.2/UCB3SIMO/UCB3SDA £

P10.3/UCB3SOMI/UCB3SCL £

P1.0/UCA0STE £

P1.1/UCA0CLK £

P1.2/UCA0RXD/UCA0SOMI £

P1.3/UCA0TXD/UCA0SIMO £

P1.4/UCB0STE £

P1.5/UCB0CLK £

P1.6/UCB0SIMO/UCB0SDA £

P1.7/UCB0SOMI/UCB0SCL £

VCORE £

DVCC1 £

VSW £

DVSS1 £

P2.0/PM_UCA1STE £

P2.1/PM_UCA1CLK £

P2.2/PM_UCA1RXD/PM_UCA1SOMI £

PS.3/PM_UCA1TXD/PM_UCA1SIMO £

P2.4/PM_TA0.1 £

P2.5/PM_TA0.2 £

P2.6/PM_TA0.3 £

P2.7/PM_TA0.4 £

P10.4//TA3.0/C0.7 £

P10.5/TA3.1/C0.6 £

 £
 P

10
.0

/U
C

B
2S

T
E

 £
 P

9.
7/

U
C

A
3T

X
D

/U
C

A
3S

IM
O

 £
 P

9.
6/

U
C

A
3R

X
D

/U
C

A
3S

O
M

I

 £
 P

9.
5/

U
C

A
3C

L
K

 £
 P

9.
4/

U
C

A
3S

T
E

 £
 S

W
C

L
K

T
C

K

 £
 S

W
D

IO
T

M
S

 £
 P

J.
5/

T
D

O
/S

W
O

 £
 P

J.
4/

T
D

I/
A

D
C

14
C

L
K

 £
 P

7.
3/

P
M

_T
A

0.
0

 £
 P

7.
2/

P
M

_C
1O

U
T

/P
M

_T
A

1C
L

K

 £
 P

7.
1/

P
M

_C
0O

U
T

/P
M

_T
A

0C
L

K

 £
 P

7.
0/

P
M

_S
M

C
L

K
/P

M
_D

M
A

E
0

 £
 A

V
C

C
2

 £
 P

J.
3/

H
F

X
IN

 £
 P

J.
2/

H
F

X
O

U
T

 £
 A

V
S
S

2

 £
 R

S
T

n
/N

M
I

 £
 D

V
S
S

3

 £
 P

6.
7/

T
A

2.
4/

U
C

B
3S

O
M

I/
U

C
B

3S
C

L
/C

1.
0

 £
 P

6.
6/

T
A

2.
3/

U
C

B
3S

IM
O

/U
C

B
3S

D
A

/C
1.

1

 £
 P

6.
5/

U
C

B
1S

O
M

I/
U

C
B

1S
C

L
/C

1.
2

 £
 P

6.
4/

U
C

B
1S

IM
O

/U
C

B
1S

D
A

/C
1.

3

 £
 P

6.
3/

U
C

B
1C

L
K

/C
1.

4

 £
 P

6.
2/

U
C

B
1S

T
E

/C
1.

5

P
7.

4/
P

M
_T

A
1.

4/
C

0.
5
£

P
7.

5/
P

M
_T

A
1.

3/
C

0.
4
£

P
7.

6/
P

M
_T

A
1.

2/
C

0.
3
£

P
7.

7/
P

M
_T

A
1.

1/
C

0.
2
£

P
8.

0/
U

C
B

3S
T

E
/T

A
1.

0/
C

0.
1
£

P
8.

1/
U

C
B

3C
L

K
/T

A
2.

0/
C

0.
0
£

P
3.

0/
P

M
_U

C
A

2S
T

E
 £

P
3.

1/
P

M
_U

C
A

2C
K

L
 £

P
3.

2/
P

M
_U

C
A

2R
X

D
/P

M
_U

C
A

2S
O

M
I
£

P
3.

3/
P

M
_U

C
A

2T
X

D
/P

M
_U

C
A

2S
IM

O
 £

P
3.

4/
P

M
_U

C
B

2S
T

E
 £

P
3.

5/
P

M
_U

C
B

2C
L

K
 £

P
3.

6/
P

M
_U

C
B

2S
IM

O
/P

M
_U

C
B

2S
D

A
 £

P
3.

7/
P

M
_U

C
B

2S
O

M
I/

P
M

_U
C

B
2S

C
L

 £

A
V

S
S

3
£

P
J.
0/

L
F

X
IN

 £

P
J.
1/

L
F

X
O

U
T

 £

A
V

S
S

1
£

D
C

O
R

 £

A
V

C
C

1
£

P
8.

2/
T

A
2.

3/
A

23
 £

P
8.

3/
T

A
3C

K
/A

22
 £

P
8.

4/
A

21
 £

P
8.

5/
A

20
 £

P
8.

6/
A

19
 £

100 99

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 760

Figure 1.3: MSP432P401R in 100-pin QFP package [SLAS826A, 2015]. Illustration used with per-
mission of Texas Instruments www.ti.com.

www.ti.com

10 1. INTRODUCTION TO MICROCONTROLLERS AND THE MSP432

• Infrared Data Association (IrDA). e IrDA provides for the short range exchange of data
using an infrared link. It is useful in hazardous environments where RF communications
may not be possible.
irty two input channel 14-bit analog-to-digital converter. e MPS432 is equipped

with the ADC14 analog-to-digital converter system. e system has 32 channels of 14-bit ADC.
is capability provides for a large number of conversion channels and very good resolution of
analog signals converted.

High-performance arithmetic. Instead of a hardware multiplier (MPY) like MSP430, the
MSP432 includes the following high-performance arithmetic processing features:

• Digital Signal Processing (DSP) instruction set that can be extremely powerful for vector-
based math or filtering operations;

• hardware multiply and divide; and

• built-in floating point engine that outperforms a software implementation of a floating
point operation.
Many microcontrollers can perform mathematical multiplication operations. However,

many perform these calculations using a long sequence of instructions that can consume mul-
tiple clock cycles. at is, it takes a relatively long period of time to perform a multiplication
operation. e MSP432 Cortex–M4F CPU is equipped with a dedicated hardware multiplier
and a dedicated hardware divider that can perform signed and unsigned multiplication and divi-
sion operations. e hardware multiplier and divider can also perform the signed and unsigned
multiply and accumulate or divide operations. Extending beyond just multiplication and division
operations, the Cortex–M4F also includes digital signal processing (DSP) instruction set that
enables DSP or vector-based math operations. is operation is used extensively in digital signal
processing (DSP) operations.

Floating PointUnit. e MSP432 is equipped with a hardware floating point unit (FPU).
It provides single-precision arithmetic based on the IEEE 754 standard for adding, subtracting,
multiplying, dividing, and performing square root. e FPU can also perform the multiply and
accumulate (MAC) function common in digital signal processing.

Eight channels of internal direct memory access (DMA). Memory transfer operations
from one location to another typically requires many clock cycles involving the central processing
unit (CPU). e MPS432 is equipped with eight DMA channels that allow memory-to-memory
location transfers without involving the CPU, freeing the CPU to perform other instructions.

Real-time clock (RTC). Microcontrollers keep time based on elapsed clock ticks. ey do
not “understand” the concepts of elapsed time in seconds, hours, etc. e RTC provides a general
purpose 32-bit counter while in the Counter Mode or an RTC in the Calendar Mode. Both timer
modes can be used to read or write counters using software.

Cyclic redundancy check (CRC) generator. Data stored aboard a microcontroller may be
corrupted by noise sources flipping 1’s to 0’s and vice versa. e MPS432 is equipped with the

1.4. WHY THE TEXAS INSTRUMENTS MSP432? 11

CRC32 subsystem, which employs the CRC-CCITT standard to calculate a checksum for a
block of data. e checksum is also stored with the data. When the data is used, a checksum
is calculated again and compared to the stored value. If the values agree, the data is considered
good for use. Alternately, if the checksums do not agree, the data is considered corrupted and not
available for use.

AES256 Encryption Accelerator. e MSP432 is also equipped with a hardware-based
Advanced Encryption Standard (AES) accelerator. e accelerator speeds up the encryption and
decryption of data by one to two orders of magnitude over a software-based implementation.

1.4.1 MSP432 PART NUMBERING SYSTEM
e MSP432 part numbering system employed by Texas Instruments is shown in Figure 1.4.
e MSP designator indicates the “432” line of processors that employ mixed signal processing
(MSP) techniques. at is, it can process digital and analog signals. e “432” indicates a 32-bit,
low power platform. e next letter following MSP432 “P” indicates the processor is a member
of the performance and low-power series. e “401R” indicates a flash-based memory device
operating up to 48 MHz equipped with the ADC14 converter, 256-Kbytes of flash memory, and
64-Kbytes of RAM (www.ti.com).

MSP 432 P I T XXPZ401R
optional: additional features

optional: distribution format

packaging

optional: temperature

feature set:
1st digit: 4: �ash-based device up to 48 MHz
2nd digit: 0: general purpose
3rd digit: 1: ADC14
4th digit: R: 256-Kbyte �ash, 64-Kbyte RAM
 M: 128-Kbyte �ash, 32 Kbyte RAM

P: performance and low-power series

432 MCU platform (32-bit, low power platform)

Processor family: MSP: Mixed Signal Processor

Figure 1.4: Texas Instruments MSP432 numbering system. (Adapted from Texas Instruments.)

As previously mentioned, the MSP–EXP432P401R LaunchPad is equipped with the
MSP432P401R microcontroller.

www.ti.com

12 1. INTRODUCTION TO MICROCONTROLLERS AND THE MSP432

1.5 MSP–EXP432P401R LAUNCHPAD
roughout the book we employ the MSP–EXP432P401R LaunchPad. is easy-to-use evalu-
ation module (EVM) hosts the MSP432P401R processor, as shown in Figure 1.5.

e LaunchPad is divided into two sections. e top portion hosts the XDS110–ET on-
-board emulator, featuring the energy–aware debugging technology called EnergyTrace. e
“XDS” provides a communication link between the host personal computer (PC) and the
LaunchPad, allowing remote programming and debugging of the MSP432P401R processor.
e XDS also provides power to the entire LaunchPad via the USB connection from the host
PC [SLAU597A, 2015].

e LaunchPad’s top section also has the EnergyTrace Technology (ETT). e ETT pro-
vides real–time monitoring of power consumption. e power consumption is monitored via
the host PC-based graphical user interface (GUI). e ETT is essential in developing ultra-low
power applications [SLAU597A, 2015].

e lower section of the LaunchPad hosts the MSP432P401R microcontroller and asso-
ciated interface. Interface components include two switches (S1 and S2) and two light-emitting
diodes (LEDs), designated LED1 and LED2. At the bottom of the LaunchPad is a breakout
section for user available pins. Also, the LaunchPad is equipped with a 40-pin standard interface
for MSP432 compatible BoosterPacks [SLAU597A, 2015].

e link between the XDS and the MSP432P401R microcontroller portions of the
LaunchPad is provided by the Jumper Isolation block. e block consists of header pins with
removable jumpers to allow connection/disconnection between the two sections as a specific ap-
plication dictates. e J6 header at the lower corner of the LaunchPad allows for external power.
e LaunchPad may be powered from 1.62–3.7 VDC [SLAU597A, 2015].

A wide variety of BoosterPacks are available to extend the features of the LaunchPad.
BoosterPacks are connected to the LaunchPad via the standard 40–pin interface consisting of
header pins J1–J4. e standard configuration is shown in Figure 1.6.

1.6 BOOSTERPACKS
BoosterPacks extend the features of the MSP432. ere are a wide variety of MSP432 Booster-
Packs available including (www.ti.com):

• stepper motor drivers,

• RFID transponders,

• motor drivers,

• data converters,

• display development tools,

www.ti.com

1.6. BOOSTERPACKS 13

Fanout of
unused pins

LED1 LED2

Switch S1 Switch S2

MSP432P401R
microcontroller J6

40-pin BoosterPack
plug-in module

40-pin BoosterPack
plug-in module

Reset
pushbutton

JTAG switch

Jumper isolation
block

XDS110-ET
on-board
emulater

Energy
Trace

Technology

Mini-USB
to host PC

Figure 1.5: MSP432 LaunchPad. (Adapted from Texas Instruments [SLAU597A, 2015].) Illustra-
tion used with permission of Texas Instruments www.ti.com.

www.ti.com

14 1. INTRODUCTION TO MICROCONTROLLERS AND THE MSP432

Figure 1.6: MSP432 BoosterPack standard interface [SLAU597A, 2015]. Illustration used with per-
mission of Texas Instruments www.ti.com.

www.ti.com

1.7. SOFTWARE DEVELOPMENT TOOLS 15

• ethernet development tools,

• capacitive touch development kits,

• WiFi development kits,

• temperature sensing kits,

• a multi–sensor platform, and a

• multifunction educational development kit, the Educational BoosterPack MK–II, contain-
ing multiple sensors, an LCD display, and output drivers.

Additional details about specific BoosterPacks will be provided in the book. It is important
to note new BoosterPacks are under development. Also, you may develop your own BoosterPack.
For more information on the LaunchPad and BoosterPack ecosystem from TI, go to ti.com/l
aunchpad.

1.7 SOFTWARE DEVELOPMENT TOOLS
ere are many software tools and resources available to support the MSP432 line of microcon-
trollers from Texas Instruments and third party producers. Here is a partial listing (www.ti.com).

• CodeComposer Studio: roughout the book, we use Texas Instruments Code Composer
Studio (CCS) Integrated Development Environment (IDE). CCS is used to develop code
for all of TI’s digital processors including digital signal processors (DSPs), microcontrollers,
and application processors. In addition to code development, CCS may be used for debug-
ging and simulation (www.TI.com).

• CCS Cloud: In addition to CCS Desktop, CCS Cloud is a development environment for
MSP432 that can be accessible from a web browser. While CCS Cloud only provides a
subset of programming or debugging capabilities compared to CCS, it can be a convenient
platform to quickly develop and prototype an MSP432 application.

• Other IDEs: In addition to CCS, the MSP432 may also be programmed using the Keil
and IAR Systems IDEs. roughout the book, we use the CCS IDE.

• TI Resource Explorer: e TI Resource Explorer is a “one-stop” location for documenta-
tion, code examples, libraries, and data sheets. It may be accessed from within CCS.

• Energia: Energia is a user-friendly development environment to allow for quick develop-
ment of software applications. Similar to the Arduino sketchbook approach, Energia allows
MSP microcontroller access to budding engineers and scientists and those without an ex-
tensive programming background. Energia allows several activities to be executed (run) in
parallel.

ti.com/launchpad
ti.com/launchpad
www.ti.com
www.TI.com

16 1. INTRODUCTION TO MICROCONTROLLERS AND THE MSP432

• Driver Library: Driver Library is an application programming interface (API) library pro-
viding rapid software development and prototyping. It encapsulates many of the lower level
details in easy-to-use functions. e MSP432 Driver Library provides application functions
for virtually every system aboard the MSP432. Also, the source code for each function is
available to the user.

• MSPWare: MSPWare is a complete collection of development and learning resources for
MSP microcontrollers. It is the one-stop shop for all MSP developers to gain access to any
design resources they might need during the entire learning or design cycle of their MSP
application. MSPWare includes documentation such as device technical reference manuals
and datasheets, code examples, libraries of various abstraction layers such as the periph-
eral Driver Library, USB, real-time operating systems, the Graphical Library, Application
Notes, and practical training material on various aspects of the MSP microcontrollers.

1.8 LABORATORY EXERCISE: GETTING ACQUAINTED
WITH HARDWARE AND SOFTWARE DEVELOPMENT
TOOLS

Introduction. In this first laboratory exercise, we get acquainted with the Texas Instruments
MSP–EXP432P401R LaunchPad and Code Composer Studio.
Procedure 1: Install Code Composer Studio. In this first procedure we install Code Composer
Studio (CCS) version 6.1 or higher.is procedure was adapted from “CodeComposer Studio 6.1
for MSP432” [SLAU575B, 2015].

1. Download CCS from www.ti.com/tool/ccstudio.

2. Check for software updates.

3. Start up CCS. From within CCS install MSPWare and Energia.

Procedure 2: Out-of-box Demo In this procedure we complete the “Out-of-box Demo.”
is procedure has been adapted from “Meet the MSP432P401R LaunchPad Development
Kit” [SLAU596, 2015]. In the procedure the Red-Green-Blue (RGB) light emitting diode
(LED) aboard the MSP–EXP432P401R is varied using a user-friendly graphical user interface
(GUI) run on the host PC. e GUI is shown in Figure 1.7.

1. Download software from www.ti.com/beginMSP432launchpad.

2. Connect the LaunchPad to the host PC using the USB cable. With the USB cable con-
nected, the green LED should illuminate and the RGB LED (LED2) should flash during
startup.

www.ti.com/tool/ccstudio
www.ti.com/beginMSP432launchpad

1.8. LABORATORYEXERCISE:GETTINGACQUAINTEDWITHHARDWAREANDSOFTWARE 17

Figure 1.7: RGB LED interface. Illustration used with permission of Texas Instruments www.ti.c
om.

3. Open the GUI at MSPWare –> Development Tools –> MSP –EXP432P401R –> Ex-
amples –> Out of Box Experience.

4. From the GUI change the color of the LED and the speed of the LED flash.

Procedure 3: Blink LED In this procedure we blink LED1 on the MSP–EXP432P401R
using the code segment below. e code segment is accessible from within CCS. e code does
the following.

• Turns off the MSP432P401R watchdog timer.

• Configures the P1.0 port pin of the MSP432P401R as an output pin [SLAU597A, 2015].

• Enters a while loop to toggle LED1 connected to the P1.0 pin.

//***
// MSP432 main.c template - P1.0 port toggle
//
//Copyright Texas Instruments [www.ti.com]
//***

www.ti.com
www.ti.com

18 1. INTRODUCTION TO MICROCONTROLLERS AND THE MSP432

#include "msp.h"

void main(void)
{

volatile uint32_t i;

WDT_A->rCTL.r = WDTPW | WDTHOLD; // Stop watchdog timer

// The following code toggles P1.0 port
DIO->rPADIR.b.bP1DIR |= BIT0; // Configure P1.0 as output

while(1)
{

DIO->rPAOUT.b.bP1OUT ^= BIT0; // Toggle P1.0
for(i=10000; i>0; i--); // Delay

}
}
//***

To execute the code snippet, perform the following steps to generate a CCS project. e
project contains source, include, and configuration files for a specific application [SLAU575B,
2015].

1. Start CCS.

2. Select a workspace location or select “OK” to use the default location.

3. When CCS launches, select File –> New–> Project –> Code Composer Studio –> CCS
Project

4. Select MSP432 as the target family and MSP432P401R as the device.

5. Select the XDS110 as the debug probe. Recall this debugger is part of the MSP–
EXP432P401R LaunchPad.

6. Select a new project name for your application.

7. Select “Blink the LED” from the “Project templates and examples” list.

8. Click “Finish” to complete your project.

9. To launch the debug session, select Run –> Debug. e project will then be built.

10. To run the program, select Run –> Go Main

1.9. SUMMARY 19

11. LED1 will be blinking!

1.9 SUMMARY
In this chapter, we introduced microcontrollers and an overview of related technologies. We be-
gan with a brief review of computer development leading up to the release of microcontrollers,
reviewed microcontroller related terminology and provided an overview of systems associated
with the MPS432P401R microcontroller. e remainder of the chapter was spent getting bet-
ter acquainted with the MPS432P401R microcontroller and its associated support hardware and
software.

1.10 REFERENCES AND FURTHER READING
Barrett, S. and Pack, D.Microcontroller Fundamentals for Engineers and Scientists, San Rafael, CA,

Morgan & Claypool Publishers, 2006. DOI: 10.2200/s00025ed1v01y200605dcs001. 6

Barrett, S. and Pack, D. Microcontroller Programming and Interfacing, Texas Instru-
ments MSP430, San Rafael, CA, Morgan & Claypool Publishers, 2011. DOI:
10.2200/s00340ed1v01y201105dcs033.

Bartee, T. Digital Computer Fundamentals, 3rd ed., New York, McGraw-Hill, 1972. 2

Boone, G. Computing System CPU. United States Patent 3,757,306 filed August 31, 1971, and
issued September 4, 1973. 3

Boone, G. Variable Function Programmable Calculator. United States Patent 4,074,351 filed
February 24, 1977 and issued February 15, 1978. 3

Dale, N. and Lilly, S.C. Pascal Plus Data Structures, 4th ed. Englewood Cliffs, NJ, Jones and
Bartlett, 1995.

Fowler,M. and Scott, K.UMLDistilled—ABrief Guide to the StandardObjectModeling Language,
2nd ed., Boston, Addison-Wesley, 2000.

MCS 85 User’s Manual, Intel Corporation: 1977. DOI: 10.1057/9781137002419.0006. 3

Nobelprize.org e Official Web Site of the Nobel Prize. http://www.nobelprize.org. 2

Osborne, A. An Introduction to Microcomputers Volume 1 Basic Concepts, 2nd ed., Berkeley,
Osborne/McGraw-Hill, 1980. 2, 3

Patterson, D. and Hennessy, J. Computer Organization and Design the Hardware/Software Inter-
face, San Francisco, Morgan Kaufman, 1994. 3

http://dx.doi.org/10.2200/s00025ed1v01y200605dcs001
http://dx.doi.org/10.2200/s00340ed1v01y201105dcs033
http://dx.doi.org/10.2200/s00340ed1v01y201105dcs033
http://dx.doi.org/10.1057/9781137002419.0006
http://www.nobelprize.org

20 1. INTRODUCTION TO MICROCONTROLLERS AND THE MSP432

Texas Instruments Code Composer Studio 6.1 for MSP432 (SLAU575B), Texas Instruments, 2015.
16, 18

Texas Instruments Designing an Ultra–Low–Power (ULP) Application With MSP432 Microcon-
trollers (SLAA668), Texas Instruments, 2015. 8

Texas InstrumentsDesigningRTOSPowerManagementEmerges as aKey forMCU–based IoTNodes
(SPRY282), Texas Instruments, 2015. 8

Texas Instruments MSP432P401R LaunchPad Development Kit (MSP–EXP432P401R)
(SLAU597A), Texas Instruments, 2015. 12, 13, 14, 17

Texas Instruments Meet the MSP432P401R LaunchPad Development Kit (SLAU596), Texas In-
struments, 2015. 16

Texas Instruments MSP432P401x Mixed–Signal Microcontrollers (SLAS826A), Texas Instru-
ments, 2015. 5, 6, 9

1.11 CHAPTER PROBLEMS
Fundamental

1. Define the terms microprocessor, microcontroller, and microcomputer. Provide an example
of each.

2. What were the catalysts that led to the multiple generations of computer processors?

3. What are the five main components of a computer architecture? Briefly define each.

4. Distinguish between RAM, ROM, and EEPROM memory. Provide an example applica-
tion of how each can be employed within a microcontroller.

5. What is RISC architecture? What is its fundamental premise?

6. What is an API? Why is it important?

7. What is the function of an emulator?

8. Why is a floating point unit (FPU) an important onboard feature of a microcontroller?

Advanced

1. List the key features of the MSP432 families of microcontrollers.

2. What is the importance of integrated digital and analog hardware within a single micro-
controller?

1.11. CHAPTER PROBLEMS 21

3. What is the advantage of a 32-bit microcontroller vs. a 16-bit microcontroller?

4. Why are ULP features important?

5. What is DMA? Why is it an important feature on a microcontroller?

Challenging

1. Write one-page paper on a specific generation of computers.

2. Research the difference between CISC and RISC computer architectures. Provide the main
features of each approach. Which approach is better suited for microcontroller applications?

3. Research IrDA infrared communication standards. Write one-page paper on the topic.

4. Research the I2C standard and write one-page paper on the topic.

5. Research the CRC–CCITT standard used to calculate a checksum. Write one-page paper
on the topic.

23

C H A P T E R 2

A Brief Introduction to
Programming

Objectives: After reading this chapter, the reader should be able to:

• successfully download and execute a program using Energia;

• describe the key features of the Energia Integrated Development Environment;

• write programs using Energia for the MSP–EXP432P401R LaunchPad;

• describe how to launch multiple programs simultaneously with Energia multitasking fea-
tures;

• list the programming support information available at the Energia home page (energia.
nu);

• describe key components of a C program;

• specify the size of different variables within the C programming language;

• define the purpose of the main program;

• explain the importance of using functions within a program;

• write functions that pass parameters and return variables;

• describe the function of a header file;

• discuss different programming constructs used for program control and decision processing;
and

• write programs in C for execution on the MSP–EXP432P401R LaunchPad.

2.1 OVERVIEW
e goal of this chapter is to provide a tutorial on how to begin programming on the MSP432
microcontroller.¹ We begin with an introduction to programming using the Energia Integrated
¹is chapter was adapted with permission from S. Barret, Arduino Microcontroller Processing for Everyone, 3rd ed., San Rafael,
CA, Morgan & Claypool Publishers, 2013.

energia.nu
energia.nu

24 2. A BRIEF INTRODUCTION TO PROGRAMMING

Development Environment (IDE), followed by an introduction to programming in C. rough-
out the chapter, we provide examples and pointers to a number of excellent references.

2.2 ENERGIA
Energia is an open-source IDEmodeled after theArduino Sketchbook concept. It allows for rapid
prototyping of a wide range of Texas Instruments microcontroller products. We use it to rapidly
prototype programs and embedded systems using the MSP–EXP432P401R LaunchPad. Energia
MT (multitasking) allows multiple tasks to be run seemingly simultaneously (energia.nu). In
space lore, the Energia was a Soviet heavy lift rocket. Similarly, the Energia IDE performs heavy
lifting when learning software programming for the first time.

2.3 ENERGIA QUICKSTART
To quickly get up and operating with Energia, follow these steps (energia.nu).

• Download and install Energia MT, version 16 or newer from the energia.nu website to
the host computer. It is available for different operating systems including: Windows, Mac
OS X, and Linux.

• If using the Windows operating system, download and install drivers for the LaunchPad
from the Energia website. e drivers allow communication between the LaunchPad and
the host computer’s serial com ports.

• Launch Energia on the host computer by going to the Energia folder and clicking on the
Energia icon. e icon is a red ball with a rocket silhouette.

• Connect the LaunchPad to the host computer via the USB cable provided with the Launch-
Pad.

• With Energia launched, go to Tools –> Board –> and select the LaunchPad w/msp432
EMT (48MHz).

• Check the comm port setting using Tools –> Serial Port.

• To load the first example use File –> Examples –> Basics –> Blink.

• To compile, upload, and run the program, use the Upload icon (right facing arrow).

• e red LED on the LaunchPad will blink!

With our first program launched, let’s take a closer look at the Energia IDE.

energia.nu
energia.nu
energia.nu

2.4. ENERGIA DEVELOPMENT ENVIRONMENT 25

2.4 ENERGIA DEVELOPMENT ENVIRONMENT

In this section, we provide an overview of the Energia IDE. We begin with some background
information about the IDE and then review its user-friendly features. We then introduce the
sketchbook concept and provide a brief overview of the built-in software features within the IDE.
Our goal is to provide readers with a brief introduction to Energia features. All Energia-related
features are well-documented on the Energia homepage (energia.nu). We will not duplicate
this excellent source of material; but merely provide a brief introduction with pointers to advanced
features.

2.4.1 ENERGIA IDE OVERVIEW
At its most fundamental level, the Energia IDE is a user-friendly interface to allow one to quickly
write, load, and execute code on a microcontroller. A barebones program needs only a setup() and
a loop() function. e Energia IDE adds the other required pieces such as header files and the
main program constructs (energia.nu).

e Energia IDE is illustrated in Figure 2.1. e IDE contains a text editor, a message
area for displaying status, a text console, a tool bar of common functions, and an extensive menu
system. e IDE also provides a user-friendly interface to the LaunchPad which allows for the
quick compiling and uploading of code.

sketch_may15a | Energia 0101E0016

File Edit Sketch Tools Help

sketch_maay15a

+

LaunchPad w/msp432 EMT (48 Mhz) on COM 4

Figure 2.1: Energia IDE (energia.nu).

energia.nu
energia.nu
energia.nu

26 2. A BRIEF INTRODUCTION TO PROGRAMMING

A close-up of the Energia toolbar is provided in Figure 2.2. e toolbar provides single but-
ton access to the more commonly used menu features. Most of the features are self-explanatory.
e “Upload” button compiles the program and uploads it to the LaunchPad. e “Serial Moni-
tor” button opens a serial monitor to allow text data to be sent to and received from the Launch-
Pad. e tab feature allows multiple tabs to be opened simultaneously for program multitasking.

+

Verify - checks for errors

Upload

Creates new sketch

Tab features

Open

Save

Opens serial monitor

Figure 2.2: Energia IDE buttons.

2.4.2 SKETCHBOOK CONCEPT
In keeping with a hardware and software platform for students of the arts, the Energia envi-
ronment employs the concept of a sketchbook. Artists maintain their works in progress in a
sketchbook. Similarly, we maintain our programs within a sketchbook in the Energia environ-
ment. Furthermore, we refer to individual programs as sketches. An individual sketch within the
sketchbook may be accessed via the Sketchbook entry under the file tab.

2.4.3 ENERGIA SOFTWARE, LIBRARIES, AND LANGUAGE REFERENCES
e Energia IDE has a number of built-in features. Some of the features may be directly accessed
via the Energia IDE drop down toolbar illustrated in Figure 2.1. Provided in Figure 2.3 is a handy
reference to show all of the available features. e toolbar provides a wide variety of features to
compose, compile, load, and execute a sketch.

Aside from the toolbar accessible features, the Energia IDE contains a number of built–in
functions that allow the user to quickly construct a sketch. ese built-in functions are summa-
rized in Figure 2.4. Complete documentation for these built-in function is available at the Energia
homepage (energia.nu). is documentation is easily accessible via the Help tab on the Ener-
gia IDE toolbar. We refer to these features at appropriate places throughout the remainder of the
book and provide additional background information as needed.

energia.nu

2.5. ENERGIA PIN ASSIGNMENTS 27

Menu

File
- New
- Open
- Sketchbook
- Examples
- Close
- Save
- Save As
- Upload
- Upload and the open
 Serial Monitor
- Upload Using
 Programmer
- Page Setup
- Print
- Preferences
- Quit

Edit
- Undo
- Redo
- Cut
- Copy
- Copy for Forum
- Copy as HTML
- Paste
- Select All
- Comment/
 Uncomment
- Increase Indent
- Decrease Indent
- Find
- Find Next

Help
- Getting Started
- Environment
- Troubleshooting
- Reference
- Find in Reference
- Frequently Asked
 Questions
- Visit Energia.nu
- Goto Support
 Forum
- Goto the Wiki
- File a Bug
- About Energia

Sketch
- Verify/Compile
- Copy Hex !le
 as Path
- Show Compilation
 Folder
- Show Sketch Folder
- Add File
- Import Library

Tools
- Auto Format
- Archive Sketch
- Fix Encoding &
 Reload
- Board
- Serial Port
- Update Programmer

Figure 2.3: Energia IDE menu (energia.nu).

2.5 ENERGIA PIN ASSIGNMENTS
Hardware features onboard the LaunchPad (LEDs, switches, etc.) are accessed via Energia using
pin numbers. Pin numbers range from 1–72 as shown in Figure 2.5. is information is also
contained in a header file within Energia. It is provided here for easy reference (energia.nu).
We refer to this frequently in the upcoming examples to obtain pin number access for MSP–
EXP432P401R LaunchPad features and systems.

//**
//Copyright (c) 2015, Texas Instruments Incorporated
//All rights reserved.
//**

#ifndef Pins_Energia_h
#define Pins_Energia_h

#include <stdbool.h>
#include <stdint.h>

static const uint8_t RED_LED = 75; //RGB LED - red component
static const uint8_t GREEN_LED = 76; //RGB LED - green component

energia.nu
energia.nu

28 2. A BRIEF INTRODUCTION TO PROGRAMMING

E
n

er
g

ia
 E

n
v

ir
o

n
m

en
t

B
u

il
t-

in
 F

u
n

ct
io

n
s

D
ig

it
al

 I
n

p
u

t/
O

u
tp

u
t

-
p

in
M

od
e(

)
-

d
ig

it
al

W
ri

te
(

)
-d

ig
it

al
R

ea
d

(
)

U
ti

li
ti

es
-

si
ze

of
(

)

A
n

al
o

g
In

p
u

t/
O

u
tp

u
t

-
an

al
og

R
ef

er
en

ce
(

)
-

an
al

og
R

ea
d

(
)

-
an

al
og

W
ri

te
(

)
-

P
W

M

A
d

va
n

ce
d

 I
/O

-
to

n
e(

)
-

n
oT

on
e(

)
-

S
h

if
tO

ut
(

)
-

sh
if

tI
n

(
)

-
p

ul
se

In
(

)

T
im

e
-

m
il

li
s(

)
-

m
ic

ro
s(

)
-

d
el

ay
(

)
-

d
el

ay
M

ic
ro

se
co

n
d

s(
)

-
sl

ee
p

(
)

C
o

n
ve

rs
io

n
-

ch
ar

(
)

-
by

te
(

)
-

in
t(

)
-

w
or

d
(

)
-

lo
n

g(
)

-
!

oa
t(

)

T
ri

go
n

o
m

et
ry

-
si

n
(

)
-

co
s(

)
-

ta
n

(
)

R
an

d
o

m
 N

u
m

b
er

s
-

ra
n

d
om

S
ee

d
(

)
-

ra
n

d
om

(
)

E
xt

er
n

al
 I

n
te

ru
p

ts
-

at
ta

ch
In

te
rr

up
t(

)
-

d
et

ac
h

In
te

rr
up

t(
)

In
te

rr
u

p
ts

-
in

te
rr

up
ts

(
)

-
n

oI
n

te
rr

up
ts

(
)

M
at

h
-

m
in

(
)

-
m

ax
(

)
-

ab
s(

)
-

co
n

st
ra

in
(

)
-

m
ap

(
)

-
p

ow
(

)
-

sq
rt

B
it

s
an

d
 B

yt
es

-
lo

w
B

yt
e(

)
-

h
ig

h
B

yt
e(

)
-

bi
tR

ea
d

(
)

-
bi

tW
ri

te
(

)
-

bi
tS

et
(

)
-

bi
tC

le
ar

(
)

-
bi

t

C
o

m
m

u
n

ic
aa

ti
o

n
-

E
th

er
n

et
(

)
-

S
er

ia
l(

)
-

S
tr

ea
m

(
)

-
S

P
I(

)
-

W
iF

i(
)

-
bi

tC
le

ar
(

)
-

W
ir

e

Fi
gu

re
2.

4:
E
ne

rg
ia

ID
E

bu
ilt

-in
fe

at
ur

es
(e
ne

rg
ia

.n
u)

.

energia.nu

2.5. ENERGIA PIN ASSIGNMENTS 29

Fi
gu

re
2.

5:
M

SP
EX

P4
32

P4
01

R
pi

n
m

ap
(e
ne

rg
ia

.n
u)

.I
llu

str
at

io
n

us
ed

wi
th

pe
rm

iss
io

n
of

Te
xa

sI
ns

tru
m

en
ts
ww

w.
ti

.c
om

.

energia.nu
www.ti.com

30 2. A BRIEF INTRODUCTION TO PROGRAMMING

static const uint8_t BLUE_LED = 77; //RGB LED - blue component
static const uint8_t YELLOW_LED = 78; //Mapped to the other RED LED
static const uint8_t PUSH1 = 73; //Switch 1
static const uint8_t PUSH2 = 74; //Switch 2

static const uint8_t A0 = 30; //analog-to-digital converter
static const uint8_t A1 = 29; //channels 0 to 23
//static const uint8_t A2 = n/a;
static const uint8_t A3 = 12;
static const uint8_t A4 = 33;
static const uint8_t A5 = 13;
static const uint8_t A6 = 28;
static const uint8_t A7 = 8;
static const uint8_t A8 = 27;
static const uint8_t A9 = 27;
static const uint8_t A10 = 6;
static const uint8_t A11 = 25;
static const uint8_t A12 = 5;
static const uint8_t A13 = 24;
static const uint8_t A14 = 23;
static const uint8_t A15 = 2;
static const uint8_t A16 = 59;
static const uint8_t A17 = 42;
static const uint8_t A18 = 58;
static const uint8_t A19 = 57;
static const uint8_t A20 = 41;
static const uint8_t A21 = 43;
static const uint8_t A22 = 69;
static const uint8_t A23 = 44;

#endif
//**

2.6 WRITING AN ENERGIA SKETCH
e basic format of the Energia sketch consists of a “setup” and a “loop” function. e setup
function is executed once at the beginning of the program. It is used to configure pins, declare
variables and constants, etc. e loop function will execute sequentially step-by-step. When the
end of the loop function is reached, it will automatically return to the first step of the loop function
and execute the function again. is goes on continuously until the program is stopped.

2.6. WRITING AN ENERGIA SKETCH 31

//**

void setup()
{
//place setup code here
}

void loop()
{
//main code steps are provided here
:
:

}

//**

Example 1: Blink. Let’s examine the sketch used to blink the LED (energia.nu).

//**
//Blink: Turns on an LED on for one second, then off for
//one second, repeatedly.
//
//Change the LED color using the #define statement to select
//another LED number.
//
// This example code is in the public domain.
//**

//the red LED is connected to Energia pin 75
#define LED 75

//the setup routine runs once when you press reset:
void setup()
{
//Configure pin 75 as a digital output pin
pinMode(LED, OUTPUT);
}

//the loop routine runs continuously
void loop()

energia.nu

32 2. A BRIEF INTRODUCTION TO PROGRAMMING

{
digitalWrite(LED, HIGH); //turn the LED on
delay(1000); //wait a second
digitalWrite(LED, LOW); //turn the LED off
delay(1000); //wait for a second

}

//**

In the first line the #define statement links the designator “LED” to pin 75 on the Launch-
Pad. In the setup function, LED is designated as an output pin. Recall the setup function is only
executed once. e program then enters the loop function that is executed sequentially step-by-
-step and continuously repeated. In this example, the LED is first set to logic high to illuminate
the LED onboard the LaunchPad. A 1000 ms delay then occurs. e LED is then set low. A
1000 ms delay then occurs. e sequence then repeats.

Aside from the Blink example, there are also a number of program examples available to
allow a user to quickly construct a sketch. ey are useful to understand the interaction between
the Energia IDE and the LaunchPad. ey may also be used as a starting point to write new
applications. e program examples are available via the File –> Examples tab within Energia.
e examples fall within these categories:

1. Basics

2. Digital

3. Analog

4. Communication

5. Control

6. Strings

7. Sensors

8. Display

9. Educational BP Mk II–a multifunction educational development kit containing multiple
sensors, an LCD display, and output drivers

10. MultiTasking–allows multiple tasks to be executed simultaneously
We now examine several more Energia based examples.

Example 2: External LED. In this example we connect an external LED to LaunchPad pin 40.
e onboard green LED (pin 76) will blink alternately with the external LED. e external LED
is connected to the LaunchPad, as shown in Figure 2.6.

2.6. WRITING AN ENERGIA SKETCH 33

220 external
red LED

(ground: pin 20)

(a) schematic.

Figure 2.6: LaunchPad with an external LED. (Continues.)

//**

#define int_LED 76
#define ext_LED 40

void setup()
{
pinMode(int_LED, OUTPUT);
pinMode(ext_LED, OUTPUT);
}

void loop()
{
digitalWrite(int_LED, HIGH);
digitalWrite(ext_LED, LOW);
delay(500); //delay specified in ms

34 2. A BRIEF INTRODUCTION TO PROGRAMMING

2
2
0

(b) circuit layout.

Figure 2.6: (Continued.) LaunchPad with an external LED.

digitalWrite(int_LED, LOW);
digitalWrite(ext_LED, HIGH);
delay(500);
}

//**

Example3:External LED and switch. In this example we connect an external LED toLaunchPad
pin 40 and an external switch attached to pin 31. e onboard green LED will blink alternately
with the external LED when the switch is depressed. e external LED and switch is connected
to the LaunchPad, as shown in Figure 2.7.

//**

#define int_LED 76
#define ext_LED 40

2.6. WRITING AN ENERGIA SKETCH 35

#define ext_sw 31

int switch_value;

void setup()
{
pinMode(int_LED, OUTPUT);
pinMode(ext_LED, OUTPUT);
pinMode(ext_sw, INPUT);
}

void loop()
{
switch_value = digitalRead(ext_sw);
if(switch_value == LOW)

{
digitalWrite(int_LED, HIGH);
digitalWrite(ext_LED, LOW);
delay(50);
digitalWrite(int_LED, LOW);
digitalWrite(ext_LED, HIGH);
delay(50);
}

else
{
digitalWrite(int_LED, LOW);
digitalWrite(ext_LED, LOW);
}

}
//**

Example 4: MultiTasking (MT). Energia MT provides for multitasking on the MSP432–
EXPP401R LaunchPad. is feature allows for multiple tasks to be executed simultaneously.
To configure an application for multitasking, independent tasks are provided unique “setup” and
“loop” names. e tasks may be placed in the same Energia sketch or may be placed in different
tabs. e example below was modified from the example found within Energia (File –> Exam-
ples –> MultiTasking –> MultiBlink). Note three independent tasks have been placed in the
same sketchbook. Each task controls the blink rate on a different LED. In more advanced appli-
cations, information may be exchanged between the tasks using global variables (energia.nu).

energia.nu

36 2. A BRIEF INTRODUCTION TO PROGRAMMING

220 external
red LED

(ground: pin 20)

5 VDC

4.7K

(a) schematic.

Figure 2.7: LaunchPad with an external LED and switch. (Continues.)

To place the tasks under independent tabs, launch a new tab for each task using the new tab icon
(downward arrow) on the right side of the Energia IDE.

//**

#define LED BLUE_LED

void setupBlueLed()
{
//initialize the digital pin as an output.
pinMode(LED, OUTPUT);
}

//the loop routine runs over and over again forever as a task.
void loopBlueLed()
{
digitalWrite(LED, HIGH); //turn the LED on (HIGH is the voltage level)

2.6. WRITING AN ENERGIA SKETCH 37

2
2
0

4.7K

(b) circuit layout.

Figure 2.7: (Continued.) LaunchPad with an external LED and switch.

delay(100); //wait for 100 ms
digitalWrite(LED, LOW); //turn the LED off by making the voltage LOW
delay(100); //wait for 100 ms
}

//**
#define LED GREEN_LED

void setupGreenLed()
{
//initialize the digital pin as an output.
pinMode(LED, OUTPUT);
}

//the loop routine runs over and over again forever as a task.

38 2. A BRIEF INTRODUCTION TO PROGRAMMING

void loopGreenLed()
{
digitalWrite(LED, HIGH); //turn the LED on (HIGH is the voltage level)
delay(500); //wait for half a second
digitalWrite(LED, LOW); //turn the LED off by making the voltage LOW
delay(500); //wait for half a second
}

//**
#define LED RED_LED

void setupRedLed()
{
// initialize the digital pin as an output.
pinMode(LED, OUTPUT);
}

//the loop routine runs over and over again forever as a task.
void loopRedLed()
{
digitalWrite(LED, HIGH); //turn the LED on (HIGH is the voltage level)
delay(1000); //wait for a second
digitalWrite(LED, LOW); //turn the LED off by making the voltage LOW
delay(1000); //wait for a second
}

//**

Example 5: LED strip. LED strips may be used for motivational (fun) optical displays, games,
or for instrumentation-based applications. In this example we control an LPD8806-based LED
strip using Energia. We use a 1-m, 32-RGB LED strip available from Adafruit (#306) for ap-
proximately $30 USD (www.adafruit.com).

e red, blue, and green component of each RGB LED is independently set using an eight-
bit code. e most significant bit (MSB) is logic one followed by seven bits to set the LED inten-
sity (0–127). e component values are sequentially shifted out of the MSP432–EXP432P401R
LaunchPad using the Serial Peripheral Interface (SPI) features. e first component value shifted
out corresponds to the LED nearest the microcontroller. Each shifted component value is latched
to the corresponding R, G, and B component of the LED. As a new component value is received,
the previous value is latched and held constant. An extra byte is required to latch the final param-
eter value. A zero byte .00/16 is used to complete the data sequence and reset back to the first
LED (www.adafruit.com).

www.adafruit.com
www.adafruit.com

2.6. WRITING AN ENERGIA SKETCH 39

Only four connections are required between the MSP432–EXP432P401R LaunchPad and
the LED strip as shown in Figure 2.8. e connections are color coded: red–power, black–ground,
yellow–data, and green–clock. It is important to note the LED strip requires a supply of 5 VDC
and a current rating of 2 amps per meter of LED strip. In this example we use the Adafruit #276
5V 2A (2000mA) switching power supply (www.adafruit.com).

(a) LED strip by the meter (www.adafruit.com).

Figure 2.8: LaunchPad controlling LED strip (www.adafruit.com). (Continues.)

In this example each RGB component is sent separately to the strip. e example illustrates
how each variable in the program controls a specific aspect of the LED strip. Here are some
important implementation notes.

• SPI must be configured for most significant bit (MSB) first.

• LED brightness is seven bits. Most significant bit (MSB) must be set to logic one.

• Each LED requires a separate R–G–B intensity component. e order of data is G–R–B.

• After sending data for all LEDs. A byte of (0x00) must be sent to return strip to first LED.

• Data stream for each LED is: 1–G6–G5–G4–G3–G2–G1–G0–1–R6–R5–R4–R3–R2–
R1–R0–1–B6–B5–B4–B3–B2–B1–B0

//***
//RGB_led_strip_tutorial: illustrates different variables within
//RGB LED strip

www.adafruit.com
www.adafruit.com
www.adafruit.com

40 2. A BRIEF INTRODUCTION TO PROGRAMMING

Ground

to 5 VDC
power
supply

(b) MSP432-EXP432P401R to LED strip connection (www.adafruit.com).

Figure 2.8: (Continued.) LaunchPad controlling LED strip (www.adafruit.com).

//
//LED strip LDP8806 - available from www.adafruit.com (#306)
//
//Connections:
// - External 5 VDC supply - Adafruit 5 VDC, 2A (#276) - red
// - Ground - black
// - Serial Data In - LaunchPad pin 14 (MOSI pin USI) P1.6 - yellow
// - CLK - LaunchPad pin 7 (SCK pin) P1.5 - green
//

www.adafruit.com
www.adafruit.com

2.6. WRITING AN ENERGIA SKETCH 41

//Variables:
// - LED_brightness - set intensity from 0 to 127
// - segment_delay - delay between LED RGB segments
// - strip_delay - delay between LED strip update
//
//Notes:
// - SPI must be configured for Most significant bit (MSB) first
// - LED brightness is seven bits.
Most significant bit (MSB)
// must be set to logic one
// - Each LED requires a seperate R-G-B intensity component.
The order
// of data is G-R-B.
// - After sending data for all strip LEDs.
A byte of (0x00) must
// be sent to reutrn strip to first LED.
// - Data stream for each LED is:
//1-G6-G5-G4-G3-G2-G1-G0-1-R6-R5-R4-R3-R2-R1-R0-1-B6-B5-B4-B3-B2-B1-B0
//
//This example code is in the public domain.
//**

#include <SPI.h>

#define LED_strip_latch 0x00

const byte strip_length = 32; //number of RGB LEDs in strip
const byte segment_delay = 100; //delay in milliseconds
const byte strip_delay = 500; //delay in milliseconds
unsigned char LED_brightness; //0 to 127
unsigned char position; //LED position in strip
unsigned char troubleshooting = 0; //allows printouts to serial

//monitor

void setup()
{
SPI.begin(); //SPI support functions
SPI.setBitOrder(MSBFIRST); //SPI bit order
SPI.setDataMode(SPI_MODE3); //SPI mode

42 2. A BRIEF INTRODUCTION TO PROGRAMMING

SPI.setClockDivider(SPI_CLOCK_DIV32);//SPI data clock rate
Serial.begin(9600); //serial comm at 9600 bps
}

void loop()
{
SPI.transfer(LED_strip_latch); //reset to first segment
clear_strip(); //all strip LEDs to black
delay(500);

//increment the green intensity of the strip LEDs
for(LED_brightness = 0; LED_brightness <= 60;

LED_brightness = LED_brightness + 10)
{
for(position = 0; position<strip_length; position = position+1)
{
SPI.transfer(0x80 | LED_brightness); //Green - MSB 1
SPI.transfer(0x80 | 0x00); //Red - none
SPI.transfer(0x80 | 0x00); //Blue - none

if(troubleshooting)
{
Serial.println(LED_brightness, DEC);
Serial.println(position, DEC);
}

delay(segment_delay);
}

SPI.transfer(LED_strip_latch); //reset to first segment
delay(strip_delay);
if(troubleshooting)

{
Serial.println(" ");
}

}

clear_strip(); //all strip LEDs to black
delay(500);

//increment the red intensity of the strip LEDs

2.6. WRITING AN ENERGIA SKETCH 43

for(LED_brightness = 0; LED_brightness <= 60;
LED_brightness = LED_brightness + 10)

{
for(position = 0; position<strip_length; position = position+1)
{
SPI.transfer(0x80 | 0x00); //Green - none
SPI.transfer(0x80 | LED_brightness); //Red - MSB1
SPI.transfer(0x80 | 0x00); //Blue - none

if(troubleshooting)
{
Serial.println(LED_brightness, DEC);
Serial.println(position, DEC);
}

delay(segment_delay);
}

SPI.transfer(LED_strip_latch); //reset to first segment
delay(strip_delay);
if(troubleshooting)
{
Serial.println(" ");
}

}

clear_strip(); //all strip LEDs to black
delay(500);

//increment the blue intensity of the strip LEDs
for(LED_brightness = 0; LED_brightness <= 60;

LED_brightness = LED_brightness + 10)
{
for(position = 0; position<strip_length; position = position+1)
{
SPI.transfer(0x80 | 0x00); //Green - none
SPI.transfer(0x80 | 0x00); //Red - none
SPI.transfer(0x80 | LED_brightness); //Blue - MSB1

if(troubleshooting)
{

44 2. A BRIEF INTRODUCTION TO PROGRAMMING

Serial.println(LED_brightness, DEC);
Serial.println(position, DEC);
}

delay(segment_delay);
}

SPI.transfer(LED_strip_latch); //reset to first segment
delay(strip_delay);
if(troubleshooting)
{
Serial.println(" ");
}

}

clear_strip(); //all strip LEDs to black
delay(500);
}

//**

void clear_strip(void)
{
//clear strip
for(position = 0; position<strip_length; position = position+1)

{
SPI.transfer(0x80 | 0x00); //Green - none
SPI.transfer(0x80 | 0x00); //Red - none
SPI.transfer(0x80 | 0x00); //Blue - none

if(troubleshooting)
{
Serial.println(LED_brightness, DEC);
Serial.println(position, DEC);
}

}
SPI.transfer(LED_strip_latch); //Latch with zero
if(troubleshooting)

{
Serial.println(" ");
}

2.6. WRITING AN ENERGIA SKETCH 45

delay(2000); //clear delay
}

//**

Example 6: Analog In–Analog Out–Serial Out. is example is modified from the example Ana-
log In–Analog Out–Serial Out provided with Energia. It illustrates several Energia built-in func-
tions.

• Serial.begin(baud_rate): Sets baud rate in bits per second to communicate with the host
computer.

• Serial.print(text): Prints text to Energia serial monitor.

• AnalogRead(analog_channel): Reads the analog value at the designated analog channel
and returns a value from 0 (0 VDC) to 1023 (3.3 VDC).

• map(test_value, input_low, input_high, output_low, output_high): Remaps test_value
from a value between input_low and input_high to a corresponding value between out-
put_low and output_high.

• analogWrite(analogOutPin, outputValue): Sends an output value from 0–255 to desig-
nated analogOutPin.

//**
//Analog input, analog output, serial output - Reads an analog input pin,
//maps the result to a range from 0 to 255 and uses the result to set the
//pulsewidth modulation (PWM) of an output pin.
The PWM value is sent to
//the red LED pin to modulate its intensity.
Also prints the results to
//the serial monitor. Open a serial monitor using the serial monitor
//button in Energia to view the results.
//
//
//The circuit:
// - Potentiometer connected to analog pin 0 (30). The center wiper
// pin of the potentiometer goes to the analog pin.
The side pins of
// the potentiometer go to +3.3 VDC and ground.
// - The analog output is designated as the onboard red LED.
//
//Created: Dec 29, 2008

46 2. A BRIEF INTRODUCTION TO PROGRAMMING

//Modified: Aug 30, 2011
//Author: Tom Igoe
//
//This example code is in the public domain.
//**

const int analogInPin = 30; //Energia analog input pin A0
const int analogOutPin = 75; //Energia onboard red LED pin

int sensorValue = 0; //value read from potentiometer
int outputValue = 0; //value output to the PWM (red LED)

void setup()
{
// initialize serial communications at 9600 bps:
Serial.begin(9600);
}

void loop()
{
//read the analog in value:
sensorValue = analogRead(analogInPin);

// map it to the range of the analog out:
outputValue = map(sensorValue, 0, 1023, 0, 255);

// change the analog out value:
analogWrite(analogOutPin, outputValue);

// print the results to the serial monitor:
Serial.print("sensor = ");
Serial.print(sensorValue);
Serial.print("\t output = ");
Serial.println(outputValue);

// wait 10 milliseconds before the next loop
// for the analog-to-digital converter to settle
// after the last reading:
delay(10);

2.6. WRITING AN ENERGIA SKETCH 47

}

//**

Example 7: Dagu Magician Autonomous Maze Navigating Robot. In this example, an au-
tonomous, maze navigating robot is equipped with infrared (IR) sensors to detect the presence of
maze walls and navigate about the maze. e robot has no prior knowledge about the maze con-
figuration. It uses the IR sensors and an onboard algorithm to determine the robot’s next move.
e overall goal is to navigate from the starting point of the maze to the end point as quickly as
possible without bumping into maze walls, as shown in Figure 2.9. Maze walls are usually painted
white to provide a good, light reflective surface, whereas, the maze floor is painted matte black to
minimize light reflections.

start

�nish

Figure 2.9: Autonomous robot within maze.

Before delving into the design, it would be helpful to review the fundamentals of robot
steering and motor control. Figure 2.10 illustrates the fundamental concepts. Robot steering is
dependent upon the number of powered wheels and whether the wheels are equipped with uni-
directional or bidirectional control. Additional robot steering configurations are possible. An H–
bridge is typically required for bidirectional control of a DC motor. We discuss the H–bridge in
greater detail in an upcoming chapter.

In this application project, we equip theDaguMagician robot for control by the LaunchPad
as a maze navigating robot; see Figure 2.12. e Magician kit may be purchased from SparkFun
Electronics (www.sparkfun.com). e robot is controlled by two 7.2 VDC motors which inde-

www.sparkfun.com

48 2. A BRIEF INTRODUCTION TO PROGRAMMING

pivot
point

(a) two-wheel, forward motor control.

pivot
point

(b) two-wheel, bi-directional motor con-
trol.

pivot
point

(c) two-wheel, forward motor control, front
wheel drive.

pivot
point

(d) two-wheel, forward motor control, rear
wheel drive.

Figure 2.10: Robot control configurations. (Continues.)

pendently drive a left and right wheel. A third non-powered drag ball provides tripod stability for
the robot.

We equip the Dagu Magician robot platform with three Sharp GP2Y0A21YKOF IR sen-
sors as shown in Figure 2.13. e sensors are available from SparkFun Electronics (www.sparkf
un.com). We mount the sensors on a bracket constructed from thin aluminum. Dimensions for
the bracket are provided in the figure. Alternatively, the IR sensors may be mounted to the robot
platform using “L” brackets available from a local hardware store. e characteristics of the sensor
are provided in Figure 2.11. e robot is placed in a maze with reflective walls. e project goal
is for the robot to detect wall placement and navigate through the maze. It is important to note
the robot does not have any a priori information about the maze. e control algorithm for the

www.sparkfun.com
www.sparkfun.com

2.6. WRITING AN ENERGIA SKETCH 49

pivot
point

(e) four-wheel, bi-directional motor con-
trol.

Figure 2.10: (Continued.) Robot control configurations.

robot is hosted on the LaunchPad. e requirements for this project are simple, the robot must
autonomously navigate through the maze without touching maze walls.

e circuit diagram for the robot is provided in Figure 2.14. e three IR sensors (left,
middle, and right) are mounted on the leading edge of the robot to detect maze walls. e output
from the sensors is fed to three ADC channels (analog in 3–5). e robot motors will be driven
by PWM channels (PWM: DIGITAL 11 and PWM: DIGITAL 10).

To save on battery expense, a 9 VDC, 2A rated inexpensive, wall-mount power supply is
used to provide power to the robot. A power umbilical of flexible, braided wire may be used to
link the power supply to the robot while navigating about the maze. e robot motors are rated
at 7.2 VDC. erefore, three 1N4001 diodes are placed in series with the motor to reduce the
supply voltage to be approximately 6.9 VDC. e LaunchPad is interfaced to the motors via
a Darlington NPN transistor (TIP120) with enough drive capability to handle the maximum
current requirements of the motor. A 3.3 VDC voltage regulator is used to supply power to the
LaunchPad.

Warning: It is important not to have the LaunchPad connected to the host computer via
the USB cable and an external 3.3 VDC supply at the same time. It is recommended to download
the program to the LaunchPad, disconnect the USB cable, remove the 3.3 VDC header jumper
on the Jumper Isolation Block, and then connect the 3.3 VDC external supply to the J6 connector.
Alternatively, a double throw double pole (DPDT) switch may be used, as shown in Figure 2.14.

50 2. A BRIEF INTRODUCTION TO PROGRAMMING

3V

5 cm
Range [cm]

S
en

so
r

ou
tp

ut
 v

ol
ta

ge
 [

V
]

Figure 2.11: Sharp GP2Y0A21YKOF IR sensor profile.

Structure chart: A structure chart is a visual tool used to partition a large project into “doable”
smaller parts. It also helps to visualize what systems will be used to control different features of
the robot. e arrows within the structure chart indicate the data flow between different portions
of the program controlling the robot. e structure chart for the robot project is provided in
Figure 2.15. As you can see, the robot has three main systems: the motor control system, the
sensor system, and the digital input/output system. ese three systems interact with the main
control algorithm to allow the robot to autonomously (by itself) navigate through the maze by
sensing and avoiding walls.
UML activity diagrams: A Unified Modeling Language (UML) activity diagram, or flow chart,
is a tool to help visualize the different steps required for a control algorithm. e UML activity
diagram for the robot is provided in Figure 2.16. As you can see, after robot systems are initialized,
the robot control system enters a continuous loop to gather data and issue outputs to steer the
robot through the maze.

2.6.1 CONTROL ALGORITHM FOR THE DAGU MAGICIAN ROBOT
In this section, we provide the basic framework for the robot control algorithm. e control
algorithm will read the IR sensors attached to the LaunchPad analog in (pins 3–5). In response
to the wall placement detected, it will render signals to turn the robot to avoid the maze walls.
Provided in Figure 2.17 is a truth table that shows all possibilities of maze placement that the
robot might encounter. A detected wall is represented with a logic one. An asserted motor action
is also represented with a logic one.

2.6. WRITING AN ENERGIA SKETCH 51

Figure 2.12: Dagu Magician robot.

e robot motors may only be moved in the forward direction. We review techniques to
provide bi-directional motor control in an upcoming chapter. To render a left turn, the left motor
is stopped and the right motor is asserted until the robot completes the turn. To render a right
turn, the opposite action is required.

52 2. A BRIEF INTRODUCTION TO PROGRAMMING

Sharp
IR sensor

Bottom platform
Dagu Magician robot

(a) Top view of robot platform.

1-7/16”

all holes 1/8”

2”

6”

1/2”

1/2”

1/2”

(b) Construction details for sensor bracket.

Figure 2.13: Dagu Magician robot platform modified with three IR sensors.

2.6. WRITING AN ENERGIA SKETCH 53

M+ -

+ -M

(3
6)

(3
4)

(3
2)

(3
1)

(3
9)

(3
5)

9 VDC power umbilical

w
al

l
ri

gh
t

w
al

l
ce

nt
er

w
al

l
le

ft
9V

D
C

2A
(#

27
6)L
M

10
84

-3
.3

3.
3

V
D

C
re

g

78
05

5
V

D
C

re
g

ri
gh

t
tu

rn
si

gn
al

le
ft

 t
ur

n
si

gn
al

(4
0)

10
K

2N
22

22

22
0

10
K

2N
22

22

22
0

10
K

2N
22

22

22
0

10
K

2N
22

22

22
0

10
K

2N
22

22

22
0

N
ot

e:
 3

.3
 V

D
C

ju
m

pe
r

re
m

ov
ed

D
P

D
T

sw
it

ch

P
ro

gr
am

R
un

p
ro

te
ct

io
n

d
io

d
e

5
V

D
C

5
V

D
C

9
V

D
C

IN
40

01

vo
lt

ag
e

d
ro

p
p

in
g

d
io

d
es

m
ot

or
cu

rr
en

t

33
0

33
0

le
ft

 m
ot

or
/w

h
ee

l
in

te
rf

ac
e

ri
gh

t
m

ot
or

/w
h

ee
l

in
te

rf
ac

e

T
IP

12
0

N
P

N
D

ar
lin

gt
on

T
IP

12
0

N
P

N
D

ar
li

n
gt

on

7.
2

V
D

C
7.

2
V

D
C

IN
40

01

IN
40

01

IN
40

01

A
3

(1
5)

A
3

(1
2)

A
3

(3
3)

IN
40

01

IN
40

01

IN
40

01

IN
40

01

9
V

D
C

5
V

D
C

5
V

D
C

5
V

D
C

5
V

D
C

5
V

D
C

3.
3

D
C

5.
0

V
D

C

5
V

D
C

S
en

so
r

co
n

n
ec

ti
on

:
-

R
ed

: 5
V

D
C

-
Y

el
lo

w
: S

ig
n

al
 o

ut
p

ut
-

B
la

ck
: G

ro
un

d
IR

 S
en

so
r

le
ft

IR
 S

en
so

r
m

id
d

le
IR

 S
en

so
r

ri
gh

t

Fi
gu

re
2.

14
:

R
ob

ot
cir

cu
it

di
ag

ra
m

.

54 2. A BRIEF INTRODUCTION TO PROGRAMMING

Read ADCPWM_left
running

lights

right
turn

signal

left
turn

signal

right
motor

right
IR sensor

middle
IR sensor

left
IR sensor

left
motor

ADC
Initialize

PWM_right

sensor
data

robot
action

digital
input/output

conv
data

ch for
conv

desired
motor
action

analog-to-digital
converter (ADC)

motor_control

determine_robot
_action

Figure 2.15: Dagu robot structure diagram.

e task in writing the control algorithm is to take the UML activity diagram provided in
Figure 2.16 and the actions specified in the robot action truth table (Figure 2.17) and transform
both into an Energia sketch. is may seem formidable but we take it a step at a time.

e control algorithm begins with Energia pin definitions. Variables are then declared for
the readings from the three IR sensors. e two required Energia functions follow: setup() and
loop(). In the setup() function, Energia pins are declared as output. e loop() begins by reading
the current value of the three IR sensors.

e analogRead function reports a value between 0 and 1023. e 0 corresponds to 0 VDC
while the value 1023 corresponds to 3.3 VDC. A specific value corresponds to a particular IR
sensor range. e threshold detection value may be adjusted to change the range at which the
maze wall is detected.

e read of the IR sensors is followed by an eight part if–else if statement. e statement
contains a part for each row of the truth table provided in Figure 2.17. For a given configuration
of sensed walls, the appropriate wall detection LEDs are illuminated followed by commands to
activate the motors (analogWrite) and illuminate the appropriate turn signals.

e analogWrite command issues a signal from 0–3.3 VDC by sending a constant from
0–255 using pulse width modulation (PWM) techniques. PWM techniques will be discussed in
an upcoming chapter. e turn signal commands provide to actions: the appropriate turns signals

2.6. WRITING AN ENERGIA SKETCH 55

Issue motor
control signals

Determine robot
action

Read sensor outputs
(left, middle, right)

While (1)

Initialize ports
Initialize ADC
Initalize PWM

Include �les
Global variables

Function prototypes

Figure 2.16: Robot UML activity diagram.

are flashed and a 1.5 s total delay is provided. is provides the robot 1.5 s to render a turn. is
delay may need to be adjusted during the testing phase.

//***
//robot
//
////This example code is in the public domain.
//***

//analog input pins

56 2. A BRIEF INTRODUCTION TO PROGRAMMING

L
ef

t
S

en
so

r

M
id

d
le

 S
en

so
r

R
ig

h
t

S
en

so
r

W
al

l L
ef

t

W
al

l M
id

d
le

W
al

l R
ig

h
t

L
ef

t
M

o
to

r

R
ig

h
t

M
o

to
r

L
ef

t
S

ig
n

al

R
ig

h
t

S
ig

n
al

Comments

0

1

0

0

0

0

0

1

0

0

0

0

0

1

1

1

1

1

0

0

0

0

Forward

Forward

2

3

0

0

1

1

0

1

0

0

1

1

0

1

1

0

0

1

0

1

1

0

Right

Left

4

5

1

1

0

0

0

1

1

1

0

0

0

1

1

1

1

1

0

0

0

0

Forward

Forward

6

7

1

1

1

1

0

1

1

1

1

1

0

1

1

1

0

0

0

0

1

1

Right

Right

Figure 2.17: Truth table for robot action.

#define left_IR_sensor 12 //analog pin - left IR sensor
#define center_IR_sensor 33 //analog pin - center IR sensor
#define right_IR_sensor 13 //analog pin - right IR sensor

//digital output pins
//LED indicators - wall detectors

#define wall_left 31 //digital pin - wall_left
#define wall_center 32 //digital pin - wall_center
#define wall_right 34 //digital pin - wall_right

//LED indicators - turn signals
#define left_turn_signal 35 //digital pin - left_turn_signal
#define right_turn_signal 36 //digital pin - right_turn_signal

//motor outputs
#define left_motor 39 //digital pin - left_motor
#define right_motor 40 //digital pin - right_motor

int left_IR_sensor_value; //declare variable for left IR sensor

2.6. WRITING AN ENERGIA SKETCH 57

int center_IR_sensor_value; //declare variable for center IR sensor
int right_IR_sensor_value; //declare variable for right IR sensor

void setup()
{

//LED indicators - wall detectors
pinMode(wall_left, OUTPUT); //configure pin for digital output
pinMode(wall_center, OUTPUT); //configure pin for digital output
pinMode(wall_right, OUTPUT); //configure pin for digital output

//LED indicators - turn signals
pinMode(left_turn_signal,OUTPUT); //configure pin for digital output
pinMode(right_turn_signal,OUTPUT); //configure pin for digital output

//motor outputs - PWM
pinMode(left_motor, OUTPUT); //configure pin for digital output
pinMode(right_motor, OUTPUT); //configure pin for digital output
}

void loop()
{

//read analog output from IR sensors
left_IR_sensor_value = analogRead(left_IR_sensor);
center_IR_sensor_value = analogRead(center_IR_sensor);
right_IR_sensor_value = analogRead(right_IR_sensor);

//robot action table row 0 - robot forward
if((left_IR_sensor_value < 512)&&(center_IR_sensor_value < 512)&&

(right_IR_sensor_value < 512))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(left_motor, 128); //0(off)-255(full speed)
analogWrite(right_motor, 128); //0(off)-255(full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off

58 2. A BRIEF INTRODUCTION TO PROGRAMMING

digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 1 - robot forward
else if((left_IR_sensor_value < 512)&&(center_IR_sensor_value < 512)&&

(right_IR_sensor_value > 512))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(left_motor, 128); //0(off)-255(full speed)
analogWrite(right_motor, 128); //0(off)-255(full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off

2.6. WRITING AN ENERGIA SKETCH 59

}

//robot action table row 2 - robot right
else if((left_IR_sensor_value < 512)&&(center_IR_sensor_value > 512)&&

(right_IR_sensor_value < 512))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(left_motor, 128); //0(off)-255(full speed)
analogWrite(right_motor, 0); //0(off)-255 (full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 3 - robot left
else if((left_IR_sensor_value < 512)&&(center_IR_sensor_value > 512)&&

(right_IR_sensor_value > 512))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(left_motor, 0); //0(off)-255 (full speed)

60 2. A BRIEF INTRODUCTION TO PROGRAMMING

analogWrite(right_motor, 128); //0(off)-255 (full speed)
//turn signals

digitalWrite(left_turn_signal, HIGH); //turn LED on
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, HIGH); //turn LED on
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 4 - robot forward
else if((left_IR_sensor_value > 512)&&(center_IR_sensor_value < 512)&&

(right_IR_sensor_value < 512))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(left_motor, 128); //0(off)-255 (full speed)
analogWrite(right_motor, 128); //0(off)-255 (full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off

2.6. WRITING AN ENERGIA SKETCH 61

digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 5 - robot forward
else if((left_IR_sensor_value > 512)&&(center_IR_sensor_value < 512)&&

(right_IR_sensor_value > 512))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(left_motor, 128); //0(off)-255 (full speed)
analogWrite(right_motor, 128); //0(off)-255 (full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 6 - robot right
else if((left_IR_sensor_value > 512)&&(center_IR_sensor_value > 512)&&

(right_IR_sensor_value < 512))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, HIGH); //turn LED on

62 2. A BRIEF INTRODUCTION TO PROGRAMMING

digitalWrite(wall_right, LOW); //turn LED off
//motor control

analogWrite(left_motor, 128); //0(off)-255 (full speed)
analogWrite(right_motor, 0); //0(off)-255 (full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED OFF
digitalWrite(right_turn_signal, LOW); //turn LED OFF
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 7 - robot right
else if((left_IR_sensor_value > 512)&&(center_IR_sensor_value > 512)&&

(right_IR_sensor_value > 512))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(left_motor, 128); //0(off)-255 (full speed)
analogWrite(right_motor, 0); //0(off)-255 (full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off

2.7. SOME ADDITIONAL COMMENTS ON ENERGIA 63

digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

}
//***

Testing the control algorithm: It is recommended that the algorithm be first tested without the
entire robot platform. is may be accomplished by connecting the three IR sensors and LEDS
to the appropriate pins on the LaunchPad as specified in Figure 2.14. In place of the two motors
and their interface circuits, two LEDs with the required interface circuitry may be used. e
LEDs will illuminate to indicate the motors would be on during different test scenarios. Once
this algorithm is fully tested in this fashion, the LaunchPadmay bemounted to the robot platform
and connected to the motors. Full up testing in the maze may commence. Enjoy!

2.7 SOME ADDITIONAL COMMENTS ON ENERGIA
Keep in mind the Energia is based on the open source concept. Users throughout the world are
constantly adding new built-in features. As new features are added, they will be released in future
Energia IDE versions. As an Energia user, you too may add to this collection of useful tools. In
the next section we investigate programming in C.

2.8 PROGRAMMING IN C
Most microcontrollers are programmed with some variant of the C programming language. e
C programming language provides a nice balance between the programmer’s control of the mi-
crocontroller hardware and time efficiency in programming writing.

As you can see in Figure 2.18, the compiler software is hosted on a computer separate from
the LaunchPad. e job of the compiler is to transform the program provided by the program
writer (filename.c and filename.h) into machine code suitable for loading into the processor.

Once the source files (filename.c and filename.h) are provided to the compiler, the compiler
executes two steps to render the machine code. e first step is the compilation process. Here the
program source files are transformed into assembly code (filename.asm). If the program source
files contains syntax errors, the compiler reports these to the user. Syntax errors are reported for
incorrect use of the C programming language. An assembly language program is not generated
until the syntax errors have been corrected. e assembly language source file is then passed to the

64 2. A BRIEF INTRODUCTION TO PROGRAMMING

USB

 lename.hex
 lename.eep

 lename.asm

assembler

compiler lename.c
 lename.h

C compiler

Energia Integrated Development Environment

Arduino Development
Environment

or

C compiler

Computer

Figure 2.18: Programming the LaunchPad.

2.9. ANATOMY OF A PROGRAM 65

assembler. e assembler transforms the assembly language source file to machine code suitable
for loading to the LaunchPad.

During the compilation process, warnings may also be generated. Warnings do not prevent
the creation of an assembly language version of the C program. However, they should be resolved
since flagged incorrect usage of the C language may result in unexpected program run time errors.

As seen earlier in the chapter, the Energia Integrated Development Environment provides
a user-friendly interface to aid in program development, transformation to machine code, and
loading into the LaunchPad. As described in Chapter 1, the LaunchPad may also be programmed
using Code Composer Studio, Keil, and IAR Systems software. We use Code Composer Studio
throughout the book.

For the remaining portion of the chapter we present a brief introduction to C. Many ex-
amples are provided. We encourage the reader to modify, load, and run the examples on the
LaunchPad.

Example 8: If not already done, complete Lab 1: Getting Acquainted with Hardware and
Software Development Tools in Chapter 1.

In the next section, we will discuss the components of a C program.

2.9 ANATOMY OF A PROGRAM
Programs written for a microcontroller have a fairly repeatable format. Slight variations exist but
many follow the format provided.
//***
//Comments containing program information
// - file name:
// - author:
// - revision history:
// - compiler setting information:
// - hardware connection description to microcontroller pins
// - program description
//***

//include files
#include<file_name.h>

//function prototypes
A list of functions and their format used within the program

//program constants
#define TRUE 1
#define FALSE 0

66 2. A BRIEF INTRODUCTION TO PROGRAMMING

#define ON 1
#define OFF 0

//interrupt handler definitions
Used to link the software to hardware interrupt features

//global variables
Listing of variables used throughout the program

//main program

void main(void)
{

body of the main program

}

//***
//function definitions: A detailed function body and definition
//for each function used within the program.
For larger
//programs, function definitions may be placed in accompanying
//header files.
//***

Let’s take a closer look at each part of the program.

2.9.1 COMMENTS
Comments are used throughout the program to document what and how things were accom-
plished within a program. e comments help you and others to reconstruct your work at a later
time. Imagine that you wrote a program a year ago for a project. You now want to modify that
program for a new project. e comments will help you remember the key details of the program.

Comments are not compiled into machine code for loading into the microcontroller. ere-
fore, the comments will not fill up the memory of your microcontroller. Comments are indicated
using double slashes (==). Anything from the double slashes to the end of a line is then consid-
ered a comment. A multi–line comment can be constructed using a =� at the beginning of the
comment and a �= at the end of the comment. ese are handy to block out portions of code
during troubleshooting or providing multi-line comments.

2.9. ANATOMY OF A PROGRAM 67

At the beginning of the program, comments may be extensive. Comments may include
some of the following information:

• file name,

• program author and dates of creation,

• revision history or a listing of the key changes made to the program,

• compiler setting information,

• hardware connection description to microcontroller pins, and

• program description.

2.9.2 INCLUDE FILES
Often you need to add extra files to your project besides the main program. For example, most
compilers require a “personality file” on the specific microcontroller that you are using. is file
is provided with the compiler and provides the name of each register used within the microcon-
troller. It also provides the link between a specific register’s name within software and the actual
register location within hardware. ese files are typically called header files and their name ends
with a “.h”. Within the C compiler there will also be other header files to include in your program
such as the “math.h” file when programming with advanced math functions.

To include header files within a program, the following syntax is used:

//C programming: include files
#include<file_name1.h> //searches for file in a standard list
#include<file_name2.h>
#include ''file_name3.h''//searches for file in current directory

2.9.3 FUNCTIONS
Later in the book we discuss in detail the top-down design, bottom-up implementation approach
to designing microcontroller based systems. In this approach, a microcontroller based project
including both hardware and software is partitioned into systems, subsystems, etc. e idea is to
take a complex project and break it into doable pieces with a defined action.

We use the same approach when writing computer programs. At the highest level is the
main programwhich calls functions that have a defined action.When a function is called, program
control is released from themain program to the function.Once the function is complete, program
control reverts back to the main program.

Functions may in turn call other functions as shown in Figure 2.19. is approach results
in a collection of functions that may be reused over and over again in various projects. Most
importantly, the program is now subdivided into doable pieces, each with a defined action. is

68 2. A BRIEF INTRODUCTION TO PROGRAMMING

makes writing the program easier but also makes it convenient to modify the program since every
action is in a known location.

void function2(void)

{

:

}

void function1(void)

{

:

function2();

:

}

void main(void)

{

:

function1();

:

}

Figure 2.19: Function calling.

ere are three different pieces of code required to properly configure and call a function:

• function prototype,

• function call, and

• function body.

Function prototypes are provided early in the program as previously shown in the program
template. e function prototype provides the name of the function and any variables required by
the function and any variable returned by the function.

e function prototype follows this format:

return_variable function_name(required_variable1, required_variable2);

If the function does not require variables or sends back a variable the word “void” is placed
in the variable’s position.

e function call is the code statement used within a program to execute the function. e
function call consists of the function name and the actual arguments required by the function.
If the function does not require arguments to be delivered to it for processing, the parenthesis
containing the variable list is left empty.

e function call follows this format:

2.9. ANATOMY OF A PROGRAM 69

function_name(required_variable1, required_variable2);

A function that requires no variables is called by:

function_name();

When the function call is executed by the program, program control is transferred to the
function, the function is executed, and program control is then returned to the portion of the
program that called it.

e function body is a self-contained “mini-program.” e first line of the function body
contains the same information as the function prototype: the name of the function, any variables
required by the function, and any variable returned by the function. e last line of the function
contains a “return” statement. Here a variable may be sent back to the portion of the program that
called the function. e processing action of the function is contained within the open ({) and
close brackets (}). If the function requires any variables within the confines of the function, they
are declared next. ese variable are referred to as local variables. A local variable is known only
within the confines of a specific function. e actions required by the function follow.

e function prototype follows this format:

return_variable function_name(required_variable1, required_variable2)
{
//local variables required by the function
unsigned int variable1;
unsigned char variable2;

//program statements required by the function

//return variable
return return_variable;
}

2.9.4 PORT CONFIGURATION
e MSP432 is equipped with a complement of input/output (I/O) ports designated P1 through
P10 and PJ. Ports P1–P10 may be read and written as 8-bit ports or may be grouped into pairs and
designated PA, PB, etc. e half-word (16-bit) letter designated ports may be read or written. To
provide for complete flexibility, each individual port pin may be separately addressed. e specific
configuration of digital I/O pins as individual pins, 8-bit ports, or 16-bit ports is determined by
the specific application.

Configuration and access to digital I/O pins is provided by a complement of registers. ese
registers include the following.

70 2. A BRIEF INTRODUCTION TO PROGRAMMING

• Input Registers (PxIN): Allows input logic value of pin to be read (1: High, 0: Low).

• Output Registers (PxOUT): Value of output register is provided to corresponding output
pin (1: High, 0: Low).

• Direction Registers (PxDIR): Bit in PxDIR slects corresponding digital I/O pin as (1:
output, 0: input).

• Pullup or PulldownResistor Enable Registers (PxREN): Each bit determines if an inter-
nal pulled up (or pulled down) resistor is enabled at the corresponding pin. e value of the
corresponding PxOUT register determines if pulled up (1) or pulled down (0) is selected.
In summary, use the following PxDIR, PxREN, and PxOUT settings:

– 00x: input
– 010: input with pulldown resistor
– 011: input with pullup resistor
– 1xx: output

• Output Drive Strength Selection Registers (PxDS): e value of the register determines
the drive strength for specific pins (1: high drive strength, 0: regular drive strength).

• Function Select Registers (PxSEL0, PxSEL1): Allows specific function of multi–function
pins to have access to I/O pin.

roughout the book we use two approaches to configure MSP432 subsystems via their
complement of control registers. e registers may be configured directly using C programming
techniques (the “bare metal” approach) or via higher level application program interface (APIs).
e MSP432 has an extensive complement of APIs for all MSP432 subsystems within the MSP-
Ware library.

For example, MSPWare has the following APIs available for general purpose input/output:

• void GPIO_setAsOutputPin(uint_fast8_t selectedPort, uint_fast16_t selectedPins)

• void GPIO_setAsInputPin(uint_fast8_t selectedPort, uint_fast16_t selectedPins)

• void GPIO_setAsPeripheralModuleFunctionOutputPin(uint_fast8_t selectedPort,
uint_fast16_t selectedPins, uint_fast8_t mode)

• void GPIO_setAsPeripheralModuleFunctionInputPin(uint_fast8_t selectedPort,
uint_fast16_t selectedPins, uint_fast8_t mode)

• void GPIO_setOutputHighOnPin(uint_fast8_t selectedPort, uint_fast16_t selectedPins)

• void GPIO_setOutputLowOnPin(uint_fast8_t selectedPort, uint_fast16_t selectedPins)

2.9. ANATOMY OF A PROGRAM 71

• void GPIO_setAsInputPinWithPullDownResistor(uint_fast8_t selectedPort,
uint_fast16_t selectedPins)

• void GPIO_setAsInputPinWithPullUpResistor(uint_fast8_t selectedPort, uint_fast16_t
selectedPins)

• uint8_t GPIO_getInputPinValue(uint_fast8_t selectedPort, uint_fast16_t selectedPins)

• void GPIO_setDriveStrengthHigh(uint_fast8_t selectedPort, uint_fast8_t selectedPins)

• void GPIO_setDriveStrengthLow(uint_fast8_t selectedPort, uint_fast8_t selectedPins)

In the following examples, we revisit the blink LED example using the “bare metal” ap-
proach and the MSPWare API approach.

Register configuration: e “msp.h” header file within the CCS compiler provides the
link between software and the MSP432 hardware. Definitions for each user-accessible MSP432
register and pin is provided here. It is recommended the reader take a few minutes and examine
the contents of the “msp.h” header file. Provided below is a snapshot of the file containingmemory
locations for the Port A associated registers.

//***
// DIO Registers
//
//Copyright, Texas Instruments, [www.TI.com]
//***
#define PAIN (HWREG16(0x40004C00)) //Port A Input
#define PAOUT (HWREG16(0x40004C02)) //Port A Output
#define PADIR (HWREG16(0x40004C04)) //Port A Direction
#define PAREN (HWREG16(0x40004C06)) //Port A Resistor Enable
#define PADS (HWREG16(0x40004C08)) //Port A Drive Strength
#define PASEL0 (HWREG16(0x40004C0A)) //Port A Select 0
#define PASEL1 (HWREG16(0x40004C0C)) //Port A Select 1
//***

Recall the 16-bit PORTA is comprised of two 8-bit ports P1 and P2. Provided below is a
snapshot of the file containing memory locations for the Port P1 and P2 associated registers.

//***
// DIO Registers
//
//Copyright, Texas Instruments, [www.TI.com]
//***
#define P1IN (HWREG8(0x40004C00)) //Port 1 Input

72 2. A BRIEF INTRODUCTION TO PROGRAMMING

#define P2IN (HWREG8(0x40004C01)) //Port 2 Input
#define P2OUT (HWREG8(0x40004C03)) //Port 2 Output
#define P1OUT (HWREG8(0x40004C02)) //Port 1 Output
#define P1DIR (HWREG8(0x40004C04)) //Port 1 Direction
#define P2DIR (HWREG8(0x40004C05)) //Port 2 Direction
#define P1REN (HWREG8(0x40004C06)) //Port 1 Resistor Enable
#define P2REN (HWREG8(0x40004C07)) //Port 2 Resistor Enable
#define P1DS (HWREG8(0x40004C08)) //Port 1 Drive Strength
#define P2DS (HWREG8(0x40004C09)) //Port 2 Drive Strength
#define P1SEL0 (HWREG8(0x40004C0A)) //Port 1 Select 0
#define P2SEL0 (HWREG8(0x40004C0B)) //Port 2 Select 0
#define P1SEL1 (HWREG8(0x40004C0C)) //Port 1 Select 1
#define P2SEL1 (HWREG8(0x40004C0D)) //Port 2 Select 1
//***

Also included in the header file are definitions for each register. For example, provided
below is the definition for the PADIR register referred to as “rPADIR.”

//***

union
{ //PADIR Register
__IO uint16_t r;

struct
{ //PADIR Bits
__IO uint16_t bP1DIR : 8; //Port 1 Direction
__IO uint16_t bP2DIR : 8; //Port 2 Direction
}b;

}rPADIR;
//***

Definitions are also provided for the constituent bP1DIR and bP2DIR bits:

//***
//PADIR[P1DIR] Bits

#define P1DIR_OFS (0) //P1DIR Offset
#define P1DIR_M (0x00ff) //Port 1 Direction

//PADIR[P2DIR] Bits
#define P2DIR_OFS (8) //P2DIR Offset
#define P2DIR_M (0xff00) //Port 2 Direction
//***

2.9. ANATOMY OF A PROGRAM 73

e following example toggles the LED at pin P1.0. e program begins by disabling the
watchdog timer. is timer is discussed in a later chapter. e next line configures pin P1.0 as an
output pin. Note how the specific bit related to pin P1.0 is accessed within the PADIR register.
is technique will be used throughout the book to configure registers.

//***
// MSP432 main.c - P1.0 port toggle
//
//Copyright, Texas Instruments, [www.TI.com]
//***

#include "msp.h"

void main(void)
{
volatile uint32_t i;

WDT_A->rCTL.r = WDTPW | WDTHOLD; //Stop watchdog timer

DIO->rPADIR.b.bP1DIR |= BIT0; //Configure P1.0 as output

//Code toggles P1.0 port
while(1)
{
DIO->rPAOUT.b.bP1OUT ^= BIT0; //Toggle P1.0
for(i=10000; i>0; i--); //Delay
}

}
//***

MSPWare API approach: e “driverlib.h” header file pulls in other multiple header files
containing API definitions for the subsystems aboard the MSP432. e following example tog-
gles the LED connected to P1.0 using APIs.

//***
//MSP432 main.c - P1.0 port toggle
//copyright: Texas Instruments, Inc
//Created by: E. Chen, March 2015
//Built with Code Composer Studio v6
//***

74 2. A BRIEF INTRODUCTION TO PROGRAMMING

#include <driverlib.h>

void main(void)
{
volatile uint32_t i;

WDT_A_hold(WDT_A_BASE); //Stop watchdog timer

//Set P1.0 to output
GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);

while(1)
{

//Toggle P1.0 output
GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);

for(i=10000; i>0; i--); //Delay
}

}
//***

2.9.5 PROGRAM CONSTANTS
e #define statement is used to associate a constant name with a numerical value in a program. It
can be used to define common constants such as pi. It may also be used to give terms used within
a program a numerical value. is makes the code easier to read. For example, the following
constants may be defined within a program:

//program constants
#define TRUE 1
#define FALSE 0
#define ON 1
#define OFF 0

2.9.6 INTERRUPT HANDLER DEFINITIONS
Interrupts are functions that are written by the programmer but usually called by a specific hard-
ware event during system operation. We discuss interrupts and how to properly configure them
in an upcoming chapter.

2.9. ANATOMY OF A PROGRAM 75

2.9.7 VARIABLES
ere are two types of variables used within a program: global variables and local variables. A
global variable is available and accessible to all portions of the program, whereas a local variable
is only known and accessible within the function where it is declared.

When declaring a variable in C, the number of bits used to store the variable is also speci-
fied. Variable specifications may vary by compiler. For code portability among different platforms
fixed formats may be used.

Type Size Range

unsigned char 1 0..255

signed char 1 -128..127

unsigned int 2 0..65535

signed int 2 -32768..32767

� oat 4 +/-1.175e-38..+/-3.40e+38

double 4 - 8 compiler dependent

Figure 2.20: C variable sizes.

Fixed format variable are defined within the “stdint.h” header file [stdint.h]. Provided below
is a small extract from this header file.

//***

typedef signed char int8_t;
typedef unsigned char uint8_t;
typedef int int16_t;
typedef unsigned int uint16_t;
typedef long int32_t;
typedef unsigned long uint32_t;
typedef long long int64_t;
typedef unsigned long long uint64_t;

//***

When programming microcontrollers, it is important to know the number of bits and the
memory location used to store the variable. For example, assigning the contents of an unsigned
char variable, which is stored in 8–bits, to an 8-bit output port will have a predictable result.
However, assigning an unsigned int variable, which is stored in 32-bits, to an 8-bit output port
does not provide predictable results. It is wise to ensure your assignment statements are balanced

76 2. A BRIEF INTRODUCTION TO PROGRAMMING

for accurate and predictable results. e modifier “unsigned” indicates all bits will be used to
specify the magnitude of the argument. Signed variables will use the left most bit to indicate the
polarity (�) of the argument.

Variables may be read (scanned) into a program using the “scanf ” statement. e general
format of the scanf statement is provided below. e format of the variable and the variable name
are specified. Similarly, the variables may be printed using the “printf ” statement. e backslash
n specifies start a new line.

//***

#include<stdio.h>

int main()
{
int input_variable;

scanf("%d", &input_variable);

printf("%d\n", input_variable);

}

//***

A global variable is declared using the following format provided below. e type of the
variable is specified, followed by its name, and an initial value if desired.

//***

//global variables
unsigned int loop_iterations = 6;

//***

2.9.8 MAIN PROGRAM
e main program is the hub of activity for the entire program. e main program typically con-
sists of program steps and function calls to initialize the processor followed by program steps to
collect data from the environment external to the microcontroller, process the data and make de-
cisions, and provide external control signals back to the environment based on the data collected.

2.10. FUNDAMENTAL PROGRAMMING CONCEPTS 77

2.10 FUNDAMENTAL PROGRAMMING CONCEPTS
In the previous section, we covered many fundamental concepts. In this section we discuss oper-
ators, programming constructs, and decision processing constructs to complete our fundamental
overview of programming concepts.

2.10.1 OPERATORS
ere are a wide variety of operators provided in the C language. An abbreviated list of common
operators are provided in Figures 2.21 and 2.22. e operators have been grouped by general cate-
gory. e symbol, precedence, and brief description of each operator are provided. e precedence
column indicates the priority of the operator in a program statement containing multiple opera-
tors. Only the fundamental operators are provided.

General

Symbol Precedence Description

{ }

()

 =

1

1

12

Brackets, used to group program statements

Parenthesis, used to establish precedence

Assignment

Arithmetic Operations

Symbol Precedence Description

*

/

+

-

3

3

4

4

Multiplication

Division

Addition

Subtraction

Logical Operations

Symbol Precedence Description

<

<=

>

>=

==

!=

&&

||

6

6

6

6

7

7

8

10

Less than

Less than or equal to

Greater than

Greater than or equal to

Equal to

Not equal to

Logical AND

Logical OR

Figure 2.21: C operators. (Adapted from Barrett and Pack [2005].)

78 2. A BRIEF INTRODUCTION TO PROGRAMMING

Bit Manipulation Operations

Symbol Precedence Description

<<

>>

&

^

|

5

5

8

8

8

Shift left

Shift right

Bitwise AND

Bitwise exclusive OR

Bitwise OR

Unary Operations

Symbol Precedence Description

!

~

++

--

type (argument)

2

2

2

2

2

Unary negative

One’s complement (bit-by-bit inversion)

Increment

Decrement

Casting operator (data type conversion)

Figure 2.22: C operators. (Adapted from Barrett and Pack [2005].)

General Operations
Within the general operations category are brackets, parenthesis, and the assignment operator.
We have seen in an earlier example how bracket pairs are used to indicate the beginning and
end of the main program or a function. ey are also used to group statements in programming
constructs and decision processing constructs. is is discussed in the next several sections.

e parenthesis is used to boost the priority of an operator. For example, in the mathemati-
cal expression 7x3 C 10, the multiplication operation is performed before the addition since it has
a higher precedence. Parenthesis may be used to boost the precedence of the addition operation. If
we contain the addition operation within parenthesis 7x.3 C 10/, the addition will be performed
before the multiplication operation and yield a different result from the earlier expression.

e assignment operator (D) is used to assign the argument(s) on the right-hand side of an
equation to the left-hand side variable. It is important to insure that the left and the right–hand
side of the equation have the same type of arguments. If not, unpredictable results may occur.

Arithmetic Operations
e arithmetic operations provide for basic math operations using the various variables described
in the previous section. As described in the previous section, the assignment operator (D) is used
to assign the argument(s) on the right-hand side of an equation to the left-hand side variable.

2.10. FUNDAMENTAL PROGRAMMING CONCEPTS 79

In this example, a function returns the sum of two unsigned int variables passed to the
function.
//***

unsigned int sum_two(unsigned int variable1, unsigned int variable2)
{
unsigned int sum;

sum = variable1 + variable2;

return sum;
}

//***

Logical Operations
e logical operators provide Boolean logic operations. ey can be viewed as comparison oper-
ators. One argument is compared against another using the logical operator provided. e result
is returned as a logic value of one (1, true, high) or zero (0 false, low). e logical operators are
used extensively in program constructs and decision processing operations to be discussed in the
next several sections.

Bit Manipulation Operations
ere are two general types of operations in the bit manipulation category: shifting operations
and bitwise operations. Let’s examine several examples.

Given the following code segment, what will the value of variable2 be after execution?
//***

unsigned char variable1 = 0x73;
unsigned char variable2;

variable2 = variable1 << 2;

//***

Answer: Variable “variable1” is declared as an eight bit unsigned char and assigned the
hexadecimal value of .73/16. In binary this is .0111_0011/2. e << 2 operator provides a left
shift of the argument by two places. After two left shifts of .73/16, the result is .cc/16 and will
be assigned to the variable “variable2.” Note that the left and right shift operation is equivalent
to multiplying and dividing the variable by a power of two.

80 2. A BRIEF INTRODUCTION TO PROGRAMMING

e bitwise operators perform the desired operation on a bit-by-bit basis. at is, the least
significant bit of the first argument is bit-wise operated with the least significant bit of the second
argument and so on.

Given the following code segment, what will the value of variable3 be after execution?

//***

unsigned char variable1 = 0x73;
unsigned char variable2 = 0xfa;
unsigned char variable3;

variable3 = variable1 & variable2;

//***

Answer: Variable “variable1” is declared as an eight bit unsigned char and assigned the
hexadecimal value of .73/16. In binary, this is .0111_0011/2. Variable “variable2” is declared
as an eight bit unsigned char and assigned the hexadecimal value of .fa/16. In binary, this is
.1111_1010/2. e bitwise AND operator is specified. After execution variable “variable3,” de-
clared as an eight bit unsigned char, contains the hexadecimal value of .72/16.

Unary Operations
e unary operators, as their name implies, require only a single argument. For example, in the
following code segment, the value of the variable “i” is incremented. is is a shorthand method
of executing the operation “i D i C 1; ”

//***
unsigned int i;

i++;

//***

Example 9: It is not uncommon in embedded system design projects to have every pin
on a microcontroller employed. Furthermore, it is not uncommon to have multiple inputs and
outputs assigned to the same port but on different port input/output pins. Some compilers support
specific pin reference. Another technique that is not compiler specific is bit twiddling. Figure 2.23
provides bit twiddling examples on how individual bits may be manipulated without affecting
other bits using bitwise and unary operators. e information provided here was extracted from
the ImageCraft ICC AVR compiler documentation [ImageCraft].

2.10. FUNDAMENTAL PROGRAMMING CONCEPTS 81

Syntax Description Example

a | b

a & b

a ^ b

~a

Bitwise or

Bitwise and

Bitwise exclusive or

Bitwise complement

P2OUT |= 0x80; // turn on bit 7 (msb)

if ((P2IN & 0x81) == 0) // check bit 7 and bit 0

P2OUT ^= 0x80l // � ip bit 7

P2OUT & = ~0x80; // turn o� bit 7

Figure 2.23: Bit twiddling [ImageCraft].

2.10.2 PROGRAMMING CONSTRUCTS
In this section, we discuss several methods of looping through a piece of code. We will examine
the “for” and the “while” looping constructs.

e for loop provides a mechanism for looping through the same portion of code a fixed
number of times. e for loop consists of three main parts:

• loop initiation,

• loop termination testing, and

• the loop increment.

In the following code fragment the for loop is executed ten times.

//***

unsigned int loop_ctr;

for(loop_ctr = 0; loop_ctr < 10; loop_ctr++)
{

//loop body

}

//***

e for loop begins with the variable “loop_ctr” equal to 0. During the first pass through the
loop, the variable retains this value. During the next pass through the loop, the variable “loop_ctr”
is incremented by one. is action continues until the “loop_ctr” variable reaches the value of ten.
Since the argument to continue the loop is no longer true, program execution continues with the
next instruction after the close bracket of the for loop.

82 2. A BRIEF INTRODUCTION TO PROGRAMMING

In the previous example, the for loop counter was incremented by one. e “loop_ctr” vari-
able can be updated by any amount. For example, in the following code fragment the “loop_ctr”
variable is increased by three for every pass of the loop.

//***

unsigned int loop_ctr;

for(loop_ctr = 0; loop_ctr < 10; loop_ctr=loop_ctr+3)
{

//loop body

}

//***

e “loop_ctr” variable may also be initialized at a high value and then decremented at the
beginning of each pass of the loop as shown below.

//***

unsigned int loop_ctr;

for(loop_ctr = 10; loop_ctr > 0; loop_ctr--)
{

//loop body

}

//***

As before, the “loop_ctr” variable may be decreased by any numerical value as appropriate
for the application at hand.

e while loop is another programming construct that allows multiple passes through a
portion of code. e while loop will continue to execute the statements within the open and
close brackets while the condition at the beginning of the loop remains logically true. e code
snapshot below will implement a ten iteration loop. Note how the “loop_ctr” variable is initialized
outside of the loop and incremented within the body of the loop. As before, the variable may be
initialized to a greater value and then decremented within the loop body.

//***

2.10. FUNDAMENTAL PROGRAMMING CONCEPTS 83

unsigned int loop_ctr;

loop_ctr = 0;
while(loop_ctr < 10)
{

//loop body
loop_ctr++;
}

//***

Frequently, within a microcontroller application, the program begins with system initializa-
tion actions. Once initialization activities are completed, the processor enters a continuous loop.
is may be accomplished using the following code fragment.

//***

while(1)
{

}

//***

2.10.3 DECISION PROCESSING
ere are a variety of constructs that allow decision making. ese include the following:

• the if statement,

• the if–else construct,

• the if–else if–else construct, and the

• switch statement.

e if statement will execute the code between an open and close bracket set should the
condition within the if statement be logically true. e if–else statement will execute the code
between an open and close bracket set should the condition within the if statement be logically
true. If the statement is not true, the code after the else is executed.

Example 10: In this example switch S1 is connected to P1.1 (S1 on the MSP–
EXP432P401R LaunchPad). If the switch is at logic one (switch not pressed), the red LED

84 2. A BRIEF INTRODUCTION TO PROGRAMMING

at pin P1.0 is illuminated. If the switch is pressed taking P1.1 to logic low, the LED goes out. In
the example, pay close attention to how P1.0 is configured for output and P1.1 is configured for
input with the corresponding pullup resistor activated using bit-twiddling techniques.

//***
// if_example.c
//***

#include "msp.h"

void main(void)
{
unsigned char switch_value;

WDT_A->rCTL.r = WDTPW | WDTHOLD; //Stop watchdog timer

//Configure P1.0 as output (1) for LED
//0x used to designate hexadecimal number
DIO->rPADIR.b.bP1DIR |= 0x01; //Bit 0 to logic 1

//Configure P1.1 as input (0) for switch with pullup
//resistor enabled:
// PxDIR = 0, PxREN = 1, PxOUT = 1
DIO->rPADIR.b.bP1DIR &= 0xfd; //Bit 1 to logic 0
DIO->rPAREN.b.bP1REN |= 0x02; //Bit 1 to logic 1
DIO->rPAOUT.b.bP1OUT |= 0x02; //Bit 1 to logic 1

while(1)
{
switch_value = DIO->rPAIN.b.bP1IN;

if((switch_value & 0x02) == 0x02)
{
DIO->rPAOUT.b.bP1OUT |= 0x01; //P1.0 to logic one
printf("high\n");
}

else
{
DIO->rPAOUT.b.bP1OUT &= 0xFE; //P1.0 to logic zero
printf("low\n");

2.10. FUNDAMENTAL PROGRAMMING CONCEPTS 85

}
}

}

//***

e if–else if–else construct may be used to implement a three LED system. In this exam-
ple, the individual component colors of the RGB LED are illuminated depending on the integer
input by the user.

//***
//if_RGB.c
//
//User is prompted for an integer between 0 and 100. Based on the number
//provided the red (0 to 33), green (34 to 66), or blue (67 to 100) will
//be illuminated.
//
//Copyright, Texas Instruments, [www.TI.com]
//***

#include "msp.h"
#include <stdio.h>

int integer_value;

void main(void)
{
WDT_A->rCTL.r = WDTPW | WDTHOLD; //Stop watchdog timer

//Configure P2.0 as output (1) for red LED
DIO->rPADIR.b.bP2DIR |= 0x01; //Bit 0 to logic 1

//Configure P2.1 as output (1) for green LED
DIO->rPADIR.b.bP2DIR |= 0x02; //Bit 1 to logic 1

//Configure P2.2 as output (1) for blue LED
DIO->rPADIR.b.bP2DIR |= 0x04; //Bit 2 to logic 1

86 2. A BRIEF INTRODUCTION TO PROGRAMMING

while(1)
{
printf("Insert an integer between 0 and 100 and press [Enter].\n");

scanf("%d", &integer_value); //retrieve integer value
printf("%d\n\n", integer_value); //echo integer value

if((integer_value >= 0) && (integer_value <= 33))
{
DIO->rPAOUT.b.bP2OUT |= 0x01; //P2.0 to logic one
DIO->rPAOUT.b.bP2OUT &= 0xFD; //P2.1 to logic zero
DIO->rPAOUT.b.bP2OUT &= 0xFB; //P2.2 to logic zero
printf("RED\n\n");
}

else if((integer_value >= 34) && (integer_value <= 66))
{
DIO->rPAOUT.b.bP2OUT &= 0xFE; //P2.0 to logic zero
DIO->rPAOUT.b.bP2OUT |= 0x02; //P2.1 to logic one
DIO->rPAOUT.b.bP2OUT &= 0xFB; //P2.2 to logic zero
printf("GREEN\n\n");
}

else if((integer_value >= 67) && (integer_value <= 100))
{
DIO->rPAOUT.b.bP2OUT &= 0xFE; //P2.0 to logic zero
DIO->rPAOUT.b.bP2OUT &= 0xFD; //P2.1 to logic zero
DIO->rPAOUT.b.bP2OUT |= 0x04; //P2.2 to logic one
printf("BLUE\n\n");
}

else
{
DIO->rPAOUT.b.bP2OUT &= 0xFE; //P2.0 to logic zero
DIO->rPAOUT.b.bP2OUT &= 0xFD; //P2.1 to logic zero
DIO->rPAOUT.b.bP2OUT &= 0xFB; //P2.2 to logic zero
printf("RGB off\n\n");
}

}

2.10. FUNDAMENTAL PROGRAMMING CONCEPTS 87

}
//***

e switch statement is used when multiple if–else conditions exist. Each possible condi-
tion is specified by a case statement. When a match is found between the switch variable and a
specific case entry, the statements associated with the case are executed until a break statement
is encountered. When a case match is not found, the default case is executed.

Example 11: In this example the user is prompted for an integer between 1 and 70 evenly
divisible by 10. Using a switch statement the appropriate LED combination is illuminated.

//***
//switch_RGB.c
//User prompted for an integer between 1 and 70 evenly divisible by 10.
//
//Copyright, Texas Instruments, [www.TI.com]
//***

#include "msp.h"
#include <stdio.h>

int integer_value;

void main(void)
{
WDT_A->rCTL.r = WDTPW | WDTHOLD; //Stop watchdog timer

//Configure P2.0 as output (1) for red LED
DIO->rPADIR.b.bP2DIR |= 0x01; //Bit 0 to logic 1

//Configure P2.1 as output (1) for green LED
DIO->rPADIR.b.bP2DIR |= 0x02; //Bit 1 to logic 1

//Configure P2.2 as output (1) for blue LED
DIO->rPADIR.b.bP2DIR |= 0x04; //Bit 2 to logic 1

while(1)
{
printf("Insert an integer between 1 and 70 and "

"evenly divisible by 10 and press [Enter].\n");

88 2. A BRIEF INTRODUCTION TO PROGRAMMING

scanf("%d", &integer_value); //retrieve integer value
printf("%d\n\n", integer_value); //echo integer value

switch(integer_value)
{
case 10: //RGB - 100

DIO->rPAOUT.b.bP2OUT |= 0x01; //P2.0 to logic one
DIO->rPAOUT.b.bP2OUT &= 0xFD; //P2.1 to logic zero
DIO->rPAOUT.b.bP2OUT &= 0xFB; //P2.2 to logic zero
printf("RED\n");
break;

case 20: //RGB - 010
DIO->rPAOUT.b.bP2OUT &= 0xFE; //P2.0 to logic zero
DIO->rPAOUT.b.bP2OUT |= 0x02; //P2.1 to logic one
DIO->rPAOUT.b.bP2OUT &= 0xFB; //P2.2 to logic zero
printf("GREEN\n");
break;

case 30: //RGB - 110
DIO->rPAOUT.b.bP2OUT |= 0x01; //P2.0 to logic one
DIO->rPAOUT.b.bP2OUT |= 0x02; //P2.1 to logic one
DIO->rPAOUT.b.bP2OUT &= 0xFB; //P2.2 to logic zero
printf("RED-GREEN\n");
break;

case 40: //RGB - 001
DIO->rPAOUT.b.bP2OUT &= 0xFE; //P2.0 to logic zero
DIO->rPAOUT.b.bP2OUT &= 0xFD; //P2.1 to logic zero
DIO->rPAOUT.b.bP2OUT |= 0x04; //P2.2 to logic one
printf("BLUE\n");
break;

case 50: //RGB - 101
DIO->rPAOUT.b.bP2OUT |= 0x01; //P2.0 to logic one
DIO->rPAOUT.b.bP2OUT &= 0xFD; //P2.1 to logic zero
DIO->rPAOUT.b.bP2OUT |= 0x04; //P2.2 to logic one
printf("RED-BLUE\n");
break;

2.11. LABORATORY EXERCISE: GETTING ACQUAINTED WITH ENERGIA AND C 89

case 60: //RGB - 110
DIO->rPAOUT.b.bP2OUT |= 0x01; //P2.0 to logic one
DIO->rPAOUT.b.bP2OUT |= 0x02; //P2.1 to logic one
DIO->rPAOUT.b.bP2OUT &= 0xFB; //P2.2 to logic zero
printf("RED-GREEN\n");
break;

case 70: //RGB - 111
DIO->rPAOUT.b.bP2OUT |= 0x01; //P2.0 to logic one
DIO->rPAOUT.b.bP2OUT |= 0x02; //P2.1 to logic one
DIO->rPAOUT.b.bP2OUT |= 0x04; //P2.2 to logic one
printf("RED-GREEN-BLUE\n");
break;

default: //RGB - 000
DIO->rPAOUT.b.bP2OUT &= 0xFE; //P2.0 to logic zero
DIO->rPAOUT.b.bP2OUT &= 0xFD; //P2.1 to logic zero
DIO->rPAOUT.b.bP2OUT &= 0xFB; //P2.2 to logic zero
printf("RGB off\n\n");
break;

}//end switch
}//end while

}
//***

at completes our brief overview of Energia and the C programming language.

2.11 LABORATORY EXERCISE: GETTING ACQUAINTED
WITH ENERGIA AND C

Introduction. In this laboratory exercise, you will become familiar with Energia and the C pro-
gramming language through a variety of programming exercises.

Procedure 1: Energia.

1. Create a counter that counts continuously from 1–100 and repeats with a 50 ms delay be-
tween counts. e onboard red LED should illuminate for odd numbers and the onboard
green LED for even numbers.

90 2. A BRIEF INTRODUCTION TO PROGRAMMING

2. Take the last three numbers of your identification card (e.g., driver license, student ID, etc.).
Blink the red, green, and blue components of the onboard RGB at different intervals. For
example, if the last three digits of your ID is 732, blink the red LED at 70 ms, the green
LED at 30 ms, and the blue LED at 20 ms intervals.

Procedure 2: C.

1. Develop a program that prompts the user for two integer numbers. If the first number is less
than the second, the program should count up continuously from the lower to the higher
number with a 50 ms delay between counts. e onboard red LED should illuminate for
odd numbers and the onboard green LED for even numbers. If the first number is higher
than the lower, the program should count down continuously from the lower to the higher
number with a 50 ms delay between counts. e onboard red LED should illuminate for
odd numbers and the onboard green LED for even numbers.

2. Develop a program that prompts the user for an integer number. If the number is evenly
divisible by 2 the red LED illuminates, evenly divisible by 3 the green LED, evenly divis-
ible by 5 the blue LED, and evenly divisible by 7 LED1. Note: More than one LED may
illuminate depending on the number provided.

2.12 SUMMARY
e goal of this chapter was to provide a tutorial on how to begin programming. We began with
a discussion on the Energia Development Environment and how it may be used to develop a
program for the MSP–EXP432P401R LaunchPad. For C, we used a top-down design approach.
We began with the “big picture” of the program of interest followed by an overview of the major
pieces of the program. We then discussed the basics of the C programming language. Only the
most fundamental concepts were covered. roughout the chapter, we provided examples and a
number of excellent references.

2.13 REFERENCES AND FURTHER READING
Arduino homepage, www.arduino.cc.

Barrett, J. Closer to the Sun International,
www.closertothesunfineartndesign.com.

Barrett, S. (2010) Embedded Systems Design with the Atmel AVRMicrocontroller, San Rafael, CA,
Morgan & Claypool Publishers. DOI: 10.2200/S00225ED1V01Y200910DCS025.

Barrett, S. and Pack, D. (2008) Atmel AVR Microcontroller Primer Program-
ming and Interfacing, San Rafael, CA, Morgan & Claypool Publishers. DOI:
10.2200/S00100ED1V01Y200712DCS015.

www.arduino.cc
www.closertothesunfineartndesign.com
http://dx.doi.org/10.2200/S00225ED1V01Y200910DCS025
http://dx.doi.org/10.2200/S00100ED1V01Y200712DCS015
http://dx.doi.org/10.2200/S00100ED1V01Y200712DCS015

2.14. CHAPTER PROBLEMS 91

Barrett, S.F. and Pack, D.J. Embedded Systems Design and Applications with the 68HC12 and
HCS12, Pearson Prentice Hall, 2005. 77, 78

Barrett, S. and Pack, D. (2006) Microcontrollers Fundamentals for Engineers
and Scientists, San Rafael, CA, Morgan & Claypool Publishers. DOI:
10.2200/S00025ED1V01Y200605DCS001.

ImageCraft Embedded SystemsCDevelopmentTools, 706ColoradoAvenue, #10-88, PaloAlto,
CA, 94303, www.imagecraft.com. 80, 81

2.14 CHAPTER PROBLEMS
Fundamental

1. Describe the steps in writing a sketch and executing it on anMSP–EXP432P401RLaunch-
Pad processing board.

2. Describe the key components of any C program.

3. Describe two different methods to program an MSP–EXP432P401R LaunchPad process-
ing board.

4. What is an include file?

5. What are the three pieces of code required for a program function?

6. Describe how a program constant is defined in C.

7. What is the difference between a for and while loop?

8. When should a switch statement be used vs. the if–then statement construct?

9. What is the serial monitor feature used for in the Energia Development Environment?

10. Describe what variables are required and returned and the basic function of the following
built-in Energia functions: Blink, Analog Input.

Advanced

1. Provide theC program statement to set PORT1 pins 1 and 7 to logic one. Use bit-twiddling
techniques.

2. Provide the C program statement to reset PORT 1 pins 1 and 7 to logic zero. Use bit-
twiddling techniques.

http://dx.doi.org/10.2200/S00025ED1V01Y200605DCS001
http://dx.doi.org/10.2200/S00025ED1V01Y200605DCS001
www.imagecraft.com

92 2. A BRIEF INTRODUCTION TO PROGRAMMING

3. Using MSP–EXP432P401R LaunchPad, write a program in Energia that takes an integer
input from the user. If negative, the red LED is illuminated. If odd the green LED is
illuminated or the blue LED for an even number.

4. Repeat the program above using C.

Challenging

1. Create a counter that counts continuously from 1–100 and repeats with a 50 ms delay be-
tween counts. e onboard red LED should illuminate for odd numbers and the onboard
green LED for even numbers.

2. Take the last three numbers of your identification card (e.g., driver license, student ID, etc.).
Blink the red, green, and blue components of the onboard RGB at different intervals. For
example, if the last three digits of your ID is 732, blink the red LED at 70 ms, the green
LED at 30 ms, and the blue LED at 20 ms intervals.

3. Develop a program that prompts the user for two integer numbers. If the first number is less
than the second, the program should count up continuously from the lower to the higher
number with a 50 ms delay between counts. e onboard red LED should illuminate for
odd numbers and the onboard green LED for even numbers. If the first number is greater
than the second, the program should count down continuously from the lower to the higher
number with a 50 ms delay between counts. e onboard red LED should illuminate for
odd numbers and the onboard green LED for even numbers.

4. Develop a program that prompts the user for an integer number. If the number is evenly
divisible by 2 the red LED illuminates, evenly divisible by 3 the green LED, evenly divis-
ible by 5 the blue LED, and evenly divisible by 7 LED1. Note: More than one LED may
illuminate depending on the number provided.

93

C H A P T E R 3

MSP432 Operating Parameters
and Interfacing

Objectives: After reading this chapter, the reader should be able to:

• describe the voltage and current parameters for the Texas Instrument MSP432 microcon-
troller;

• apply the voltage and current parameters toward properly interfacing input and output de-
vices to the MSP432 microcontroller;

• interface the MSP432 microcontroller operating at 3.3 VDC with a peripheral device op-
erating at 5.0 VDC;

• interface a wide variety of input and output devices to the MSP432 microcontroller;

• describe the special concerns that must be followed when the MSP432 microcontroller is
used to interface to a high power DC or AC device;

• describe how to control the speed and direction of a DC motor;

• describe how to control several types of AC loads;

• describe the peripheral components available aboard the Educational Booster Pack MkII
(MkII);

• describe the peripheral components accessible via the Grove starter kit for the LaunchPad;
and

• write programs using Energia to interact with the MkII and the Grove Starter Kit.

3.1 OVERVIEW
In this chapter,¹ we introduce the important concepts of the operating envelope for a microcon-
troller. By operating envelope, we mean the parameters and conditions for a microcontroller to

¹is chapter was adapted with permission from S. Barret and D. Pack, Microcontroller Programming and Interfacing Texas
Instruments MSP430, San Rafael, CA, Morgan & Claypool Publishers, 2011.

94 3. MSP432 OPERATING PARAMETERS AND INTERFACING

function successfully, as it operates alone or interfaces with external devices. We begin by review-
ing the voltage and current electrical parameters for the MSP432 microcontroller. We use this
information to properly interface input and output devices to the microcontroller. e MSP432
operates at a low voltage (1.62–3.7 VDC) by design. Since the MSP-EXP432P401R LaunchPad
operates at 3.3 VDC, we concentrate our discussions at this supply voltage. Although there are
many compatible low voltage peripheral devices, many conventional peripheral devices operate at
5.0 VDC. In this chapter, we discuss how to interface a 3.3 VDC microcontroller to 5.0 VDC
peripherals, a variety of other devices to the MSP432, and a high power DC or AC load such as a
motor. roughout the chapter, we provide a number of detailed examples to illustrate concepts.

3.2 OPERATING PARAMETERS
A microcontroller is an electronic device with precisely defined operating conditions. As long as
the microcontroller is used within its defined operating parameter limits or envelope, it should
continue to operate correctly. However, if the allowable conditions are violated, spurious results
or damage to the processor may result.

3.2.1 MSP432 3.3 VDC OPERATION
Anytime a device is connecte d to a microcontroller, careful interface analysis must be performed.
e MSP432 is a low operating voltage microcontroller with a supply voltage between 1.62 and
3.7 VDC. To perform the interface analysis, there are eight different electrical specifications we
must consider. e electrical parameters are:

• VOH : the lowest guaranteed output voltage for a logic high;

• VOL: the highest guaranteed output voltage for a logic low;

• IOH : the output current for a VOH logic high;

• IOL: the output current for a VOL logic low;

• VIH : the lowest input voltage guaranteed to be recognized as a logic high;

• VIL: the highest input voltage guaranteed to be recognized as a logic low;

• IIH : the input current for a VIH logic high; and

• IIL: the input current for a VIL logic low.

Additionally, the MSP432 microcontroller has two different general purpose input/output
drive strengths [SLAS826A]:

• full drive strength with IOH and IOL ratings of 10–20 mA maximum when operating at
3.0 VDC, and

3.2. OPERATING PARAMETERS 95

• reduced drive strength with IOH and IOL ratings of 2–6 mA maximum when operating at
3.0 VDC.

Furthermore, it is also important to note the MSP432 has a maximum current limit for all
outputs combined. It is important to realize that these parameters are static values taken under
very specific operating conditions. If external circuitry is connected such that the microcontroller
acts as a current source (current leaving microcontroller) or current sink (current entering micro-
controller), the voltage parameters listed above will also be affected.

In the current source case, an output voltage VOH is provided at the output pin of the mi-
crocontroller when the load connected to this pin draws a current of IOH . If a load draws more
current from the output pin than the IOH specification, the value of VOH is reduced. If the load
current becomes too high, the value of VOH falls below the value of VIH for the subsequent logic
circuit stage, and it will not be recognized as an acceptable logic high signal. When this situation
occurs, erratic and unpredictable circuit behavior may result.

In the sink case, an output voltage VOL is provided at the output pin of the microcontroller
when the load connected to this pin delivers a current of IOL to this logic pin. If a load delivers
more current to the output pin of the microcontroller than the IOL specification, the value of VOL

increases. If the load current becomes too high, the value of VOL rises above the value of VIL for
the subsequent logic circuit stage, and it will not be recognized as an acceptable logic low signal.
As before, when this situation occurs, erratic and unpredictable circuit behavior may result.

You must also ensure that total current limit for an entire microcontroller port and overall
bulk port specifications are met. For planning purposes with the MSP432, the sum of current
sourced or sinked from a port should not exceed 100 mA for the full drive strength setting or
48 mA for the reduced drive current setting. As before, if these guidelines are not complied with,
erratic microcontroller behavior may result [SLAS826A, 2015]. A summary of MSP432 digital
input/output parameters are shown in Figure 3.1.

3.2.2 COMPATIBLE 3.3 VDC LOGIC FAMILIES
Since the MSP-EXP432P401R LaunchPad operates at 3.3 VDC, we concentrate our discussions
at this supply voltage for the rest of this chapter. ere are several compatible logic families that
operate at 3.3 VDC. ese families include the LVC, LVA, and the LVT logic families. Key
parameters for the low voltage compatible families are provided in Figure 3.2. A wide range of
logic devices are available within these logic families.

3.2.3 MICROCONTROLLER OPERATION AT 5.0 VDC
Many HC CMOS microcontroller families and peripherals operate at a supply voltage of
5.0 VDC. For completeness, we provide operating parameters for these type of devices. is
information is essential should the MSP432 be interfaced to a 5 VDC CMOS device or periph-
eral.

96 3. MSP432 OPERATING PARAMETERS AND INTERFACING

MSP432 Digital Input/Output Parameters

Digital Inputs (applies to both normal and high drive)

Parameter Vcc Min Max Test Conditions

VIT+ Positive-going input threshold voltage 2.2 V

3.0 V

0.99 V

1.35 V

1.65 V

2.25 V

VIT- Negative-going input threshold voltage 2.2 V

3.0 V

0.55 V

0.75 V

1.21 V

1.65 V

Digital Outputs (applies to normal drive)

Parameter Vcc Min Max Test Conditions

VOH High-level output voltage 2.2 V

2.2 V

1.95 V

1.60 V

2.2 V

2.2 V

IOHmax = -1 mA

IOHmax = -3 mA

3.0 V

3.0 V

2.75 V

2.40 V

3.0 V

3.0 V

IOHmax = -2 mA

IOHmax = -6 mA

VOL Low-level output voltage 2.2 V

2.2 V

0.00 V

0.00 V

0.25 V

0.60 V

IOLmax = 1 mA

IOLmax = 3 mA

3.0 V

3.0 V

0.00 V

0.00 V

0.25 V

0.60 V

IOLmax = 2 mA

IOLmax = 6 mA

Digital Outputs (applies to high drive)

Parameter Vcc Min Max Test Conditions

VOH High-level output voltage 2.2 V

2.2 V

1.95 V

1.60 V

2.2 V

2.2 V

IOHmax = -5 mA

IOHmax = -15 mA

3.0 V

3.0 V

2.75 V

2.70 V

3.0 V

3.0 V

IOHmax = -10 mA

IOHmax = -20 mA

VOL Low-level output voltage 2.2 V

2.2 V

0.00 V

0.00 V

0.25 V

0.60 V

IOLmax = 5 mA

IOLmax = 15 mA

3.0 V

3.0 V

0.00 V

0.00 V

0.25 V

0.30 V

IOLmax = 10 mA

IOLmax = 20 mA

Figure 3.1: MSP432 digital input/output parameters [SLAS826A, 2015].

3.2. OPERATING PARAMETERS 97

VOL = 0.4 V
VSS = 0 VDC

IOL

VIL = 0.8 V

VSS = 0 VDC

VIH = 2.0 V

VDD = 3.3 VDC

IL

IH
IOH

VDD = 3.3 VDC
VOH = 2.4 V

Input Gate
Parameters

Output Gate
Parameters

(a) Voltage and current electrical parameters.

LVC LVA LVT

Vcc 1.65–3.6 V 2.0–5.5 V 2.7–3.6V

tpd 5.5 ns 14 ns 3.5 ns

loc 10 uA 20 uA 190 uA

(b) LV parameters.

Figure 3.2: Low voltage compatible logic families.

Typical values for a microcontroller in the HC CMOS family, assuming VDD D 5:0 volts
and VSS D 0 volts, are provided below.eminus sign on several of the currents indicates a current
flow out of the device. A positive current indicates current flow into the device.

• VOH D 4:2 volts,

• VOL D 0:4 volts,

• IOH D � 0:8 milliamps,

• IOL D 1:6 milliamps,

• VIH D 3:5 volts,

• VIL D 1:0 volt,

• IIH D 10 microamps, and

• IIL D � 10 microamps.

98 3. MSP432 OPERATING PARAMETERS AND INTERFACING

3.2.4 INTERFACING 3.3 VDC LOGIC DEVICES WITH 5.0 VDC LOGIC
FAMILIES

Although there are a wide variety of available 3.3 VDC peripheral devices available for the
MSP432, you may find a need to interface the controller with 5.0 VDC devices. If bidirec-
tional information exchange is required between the microcontroller and a peripheral device, a
bidirectional level shifter should be used. e level shifter translates the 3.3 VDC signal up to
5 VDC for the peripheral device and back down to 3.3 VDC for the microcontroller. ere are
a wide variety of unidirectional and bidirectional level shifting devices available. Texas Instru-
ments level shifting options include: unidirectional, bidirectional, and direction controlled level
shifters. For example, the LSF0101, LSF0102, LSF0204, and LSF0108 level shifters are available
in the LSF010XEVM-001 Bi-Directional Multi-Voltage Level Translator Evaluation Module
(LSFEVM) (www.ti.com). Later in the chapter we show how the LSF010XEVM module is
used to interface the MSP432 with a LED special effects cube.

Figure 3.3: LSF010XEVM-001 Bi-Directional Multi-Voltage Level Translator Evaluation Module
(LSFEVM). Image used with permission of Texas Instruments (www.ti.com).

Example 1: LargeLEDDisplays. Large seven-segments displays with character heights of
6.5 inches are available from SparkFun Electronics (www.sparkfun.com). Multiple display char-
acters may be daisy chained together to form a display panel of desired character length. Only four
lines from the MSP432 are required to control the display panel (ground, latch, clock, and serial
data). Each character is controlled by a Large Digit Driver Board (#WIG-13279) equipped with
the Texas Instrument TPIC6C596 IC Program Logic 8-bit Shifter Register. e shift register re-
quires a 5 VDC supply and has a VIH value of 4.25 VDC. eMSP432 when supplied at 3.3 VDC
has a maximum VOH value of 3.3 VDC. Since the output signal levels from the MSP432 are not
high enough to control the TPIC6C596, a level shifter (e.g., LSF010XEVM module) is required
to up convert the MSP432 signals to be compatible to the ones for the TPIC6C596 [SLIS093D].

www.ti.com
www.ti.com
www.sparkfun.com

3.3. INPUT DEVICES 99

3.3 INPUT DEVICES
In this section, we present techniques to properly interface a variety of input devices to a micro-
controller. We start with the most basic input component, a simple on/off switch.

3.3.1 SWITCHES
Switches come in all sizes and types. e system designer must choose the appropriate switch
for a specific application. Switch varieties commonly used in microcontroller applications are
illustrated in Figure 3.4a. Here is a brief summary of the different types.

• Slide switch: A slide switch has two different positions: on and off. e switch is manually
moved to one position or the other. For microcontroller applications, slide switches are
available that fit in the profile of a common integrated circuit size dual inline package (DIP).
A bank of four or eight DIP switches in a single package is commonly available. Slide
switches are often used to read application specific settings at system startup.

• Momentary contact pushbutton switch: A momentary contact pushbutton switch comes
in two varieties: normally closed (NC) and normally open (NO). A normally open switch, as
its name implies, does not provide an electrical connection between its contacts. When the
switch is depressed, the connection between the two switch contacts is made. e connec-
tion is held as long as the switch is depressed. When the switch is released, the connection is
opened. e converse is true for a normally closed switch. For microcontroller applications,
pushbutton switches are available in a small tactile (tact) type switch configuration. e
MSP-EXP432P401R LaunchPad is equipped with two pushbutton tactile (tact) switches
designated S1 (P1.1) and S2 (P1.4).

• Push on/push off switches: ese type of switches are also available in a normally open or
normally closed configuration. For the normally open configuration, the switch is depressed
to make connection between the two switch contacts. e pushbutton must be depressed
again to release the connection.

• Hexadecimal rotary switches: Small profile rotary switches are available for microcontroller
applications. ese switches commonly have sixteen rotary switch positions. As the switch
is rotated to each position, a unique four bit binary code is provided at the switch contacts.
Hexadecimal switches are often used to read application specific settings at system startup.

A common switch interface is shown in Figure 3.4b. is interface allows a logic one or
zero to be properly introduced to a microcontroller input port pin. e basic interface consists
of the switch in series with a current limiting resistor. e node between the switch and the
resistor is connected to the microcontroller input pin. In the configuration shown, the resistor
pulls the microcontroller input up to the supply voltage VDD. When the switch is closed, the
node is grounded and a logic zero is detected by the microcontroller input pin. To reverse the

100 3. MSP432 OPERATING PARAMETERS AND INTERFACING

DIP switch Tact switch PB switch Hexadecimal
rotary switch

(a) Switch varieties.

VDD

 4.7 k ohm

VDD

 microcontroller
 pullup resistor
 activatedTo microcontroller input

- Logic one when switch open
- Logic zero when switch is closed

(b) Switch interface.

VDD

 4.7 k ohm

 470 k ohm

74LVC14

0.1 μF

(c) Switch interface equipped with debouncing circuitry.

Figure 3.4: Switches and switch interfaces.

logic of the switch configuration, the position of the resistor and the switch is simply reversed.
As discussed in Chapter 2, the MSP432 is equipped with code configurable pullup or pulldown
resistors, removing the need for an external resistor, if the internal resistors are asserted.

3.3. INPUT DEVICES 101

3.3.2 SWITCH DEBOUNCING
Mechanical switches do not make a clean transition from one position (on) to another (off).
When a switch is moved from one position to another, it makes and breaks contact multiple times.
is activity may go on for tens of milliseconds. A microcontroller is relatively fast as compared
to the action of the switch. erefore, the microcontroller is able to recognize each switch bounce
as a separate and erroneous transition.

To correct the switch bounce phenomena, additional external hardware components may
be used or software techniques may be employed. A hardware debounce circuit is shown in Fig-
ure 3.4c. e node between the switch and the limiting resistor of the basic switch circuit is
connected to a low pass filter (LPF), formed by the 470 kOhm resistor and the capacitor. e
LPF isolates abrupt changes (bounces) in the input signal from reaching the microcontroller. e
LPF is followed by a 74LVC14 Schmitt Trigger, an inverter equipped with hysteresis. Hysteresis
provides different threshold points when transitioning from logic high to low and low to high.
is provides a lockout window where switch transitions are not allowed. is further limits the
switch bouncing.

Switches may also be debounced using software techniques. is is accomplished by insert-
ing a 30–50 ms lockout delay in the function responding to port pin changes. e delay prevents
the microcontroller from responding to the multiple switch transitions related to bouncing.

You must carefully analyze a given design to determine if hardware or software switch
debouncing techniques should be used. It is important to remember that all switches exhibit
bounce phenomena and therefore must be debounced.

3.3.3 KEYPADS
A keypad is an extension of the simple switch configuration. A typical keypad configuration and
interface are shown in Figure 3.5. As you can see, the keypad contains multiple switches in a
two-dimensional array configuration. e switches in the array share common row and column
connections. e common column connections are pulled up to Vcc by external 10 K resistors or
by pullup resistors within the MSP432.

To determine if a switch has been depressed, a single row of keypad switches are first as-
serted by the microcontroller, followed by a reading of the host keypad column inputs. If a switch
has been depressed, the keypad pin corresponding to the column the switch is in will also be as-
serted. e combination of a row and a column assertion can be decoded to determine which key
has been pressed. e keypad rows are sequentially asserted. Since the keypad is a collection of
switches, debounce techniques must also be employed. In the example code provided, a 200 ms
delay is provided to mitigate switch bounce. In the keypad shown, the rows are sequentially as-
serted active low (0).

e keypad is typically used to capture user requests to amicrocontroller. A standard keypad
with alphanumeric characters may be used to provide alphanumeric values to the microcontroller
such as providing your personal identification number (PIN) for a financial transaction. However,

102 3. MSP432 OPERATING PARAMETERS AND INTERFACING

C
ol

 1
C

ol
 2

C
ol

 3
C

ol
 4 C

ol
 1
C

ol
 2
C

ol
 3
C

ol
 4
Row

 1

Row
 2

Row
 3

Row
 4

EFGHJKLM

0 1 2 3

4 5 6 7

8 9 A B

C D E F

Row 1

Row 2

Row 3

Row 4

Grayhill 88BB2 Reverse View

0 1 2 3

4 5 6 7

8 9 A B

C D E

E F G H

F

M row 1

L row 2

K row 3

J row 4

P6.1 (23)

P4.0 (24)

P4.2 (25)

P4.4 (26)

P5.5 (30)

P5.4 (29)

P4.7 (28)

P4.5 (27)

Vcc

Vcc

Vcc

Vcc

column 1

column 2

column 3

column 4

in
te

rn
al

 p
u
ll

u
p

 r
es

is
to

rs
 a

ss
er

te
d

Figure 3.5: Keypad interface.

3.3. INPUT DEVICES 103

some keypads are equipped with removable switch covers such that any activity can be associated
with a key press.
Example 2: Keypad. In this example a Grayhill 88BB2 4-by-4 matrix keypad is interfaced to the
MSP432. e example shows how a specific switch depression can be associated with different
activities by using a “switch” statement.

//***
//keypad_4X4
//
//This code is in the public domain.
//***

#define row1 23
#define row2 24
#define row3 25
#define row4 26

#define col1 27
#define col2 28
#define col3 29
#define col4 30

unsigned char key_depressed = '*';

void setup()
{
//start serial connection to monitor
Serial.begin(9600);

//configure row pins as ouput
pinMode(row1, OUTPUT);
pinMode(row2, OUTPUT);
pinMode(row3, OUTPUT);
pinMode(row4, OUTPUT);

//configure column pins as input and assert pullup resistors
pinMode(col1, INPUT_PULLUP);
pinMode(col2, INPUT_PULLUP);
pinMode(col3, INPUT_PULLUP);
pinMode(col4, INPUT_PULLUP);

104 3. MSP432 OPERATING PARAMETERS AND INTERFACING

}

void loop()
{
//Assert row1, deassert row 2,3,4
digitalWrite(row1, LOW); digitalWrite(row2, HIGH);
digitalWrite(row3, HIGH); digitalWrite(row4, HIGH);

//Read columns
if (digitalRead(col1) == LOW)

key_depressed = '0';
else if (digitalRead(col2) == LOW)

key_depressed = '1';
else if (digitalRead(col3) == LOW)

key_depressed = '2';
else if (digitalRead(col4) == LOW)

key_depressed = '3';
else

key_depressed = '*';

if (key_depressed == '*')
{
//Assert row2, deassert row 1,3,4
digitalWrite(row1, HIGH); digitalWrite(row2, LOW);
digitalWrite(row3, HIGH); digitalWrite(row4, HIGH);

//Read columns
if (digitalRead(col1) == LOW)
key_depressed = '4';

else if (digitalRead(col2) == LOW)
key_depressed = '5';

else if (digitalRead(col3) == LOW)
key_depressed = '6';

else if (digitalRead(col4) == LOW)
key_depressed = '7';

else
key_depressed = '*';

3.3. INPUT DEVICES 105

}

if (key_depressed == '*')
{
//Assert row3, deassert row 1,2,4
digitalWrite(row1, HIGH); digitalWrite(row2, HIGH);
digitalWrite(row3, LOW); digitalWrite(row4, HIGH);

//Read columns
if (digitalRead(col1) == LOW)
key_depressed = '8';

else if (digitalRead(col2) == LOW)
key_depressed = '9';

else if (digitalRead(col3) == LOW)
key_depressed = 'A';

else if (digitalRead(col4) == LOW)
key_depressed = 'B';

else
key_depressed = '*';

}

if (key_depressed == '*')
{
//Assert row4, deassert row 1,2,3
digitalWrite(row1, HIGH); digitalWrite(row2, HIGH);
digitalWrite(row3, HIGH); digitalWrite(row4, LOW);

//Read columns
if (digitalRead(col1) == LOW)
key_depressed = 'C';

else if (digitalRead(col2) == LOW)
key_depressed = 'D';

else if (digitalRead(col3) == LOW)
key_depressed = 'E';

else if (digitalRead(col4) == LOW)
key_depressed = 'F';

else
key_depressed = '*';

}

106 3. MSP432 OPERATING PARAMETERS AND INTERFACING

if(key_depressed != '*')
{
Serial.write(key_depressed);
Serial.write(' ');

switch(key_depressed)
{
case '0' : Serial.println("Do something associated with case 0");

break;

case '1' : Serial.println("Do something associated with case 1");
break;

case '2' : Serial.println("Do something associated with case 2");
break;

case '3' : Serial.println("Do something associated with case 3");
break;

case '4' : Serial.println("Do something associated with case 4");
break;

case '5' : Serial.println("Do something associated with case 5");
break;

case '6' : Serial.println("Do something associated with case 6");
break;

case '7' : Serial.println("Do something associated with case 7");
break;

case '8' : Serial.println("Do something associated with case 8");
break;

case '9' : Serial.println("Do something associated with case 9");
break;

case 'A' : Serial.println("Do something associated with case A");

3.3. INPUT DEVICES 107

break;

case 'B' : Serial.println("Do something associated with case B");
break;

case 'C' : Serial.println("Do something associated with case C");
break;

case 'D' : Serial.println("Do something associated with case D");
break;

case 'E' : Serial.println("Do something associated with case E");
break;

case 'F' : Serial.println("Do something associated with case F");
break;

}
}

//limit switch bounce
delay(200);
}

//***

3.3.4 SENSORS
A microcontroller is typically used in control applications where data is collected, assimilated, and
processed by the host algorithm, and a control decision and accompanying signals are generated
by the microcontroller. Input data for the microcontroller is collected by a complement of input
sensors. ese sensors are either digital or analog in nature.

Digital Sensors
Digital sensors provide a series of digital logic pulses with sensor data encoded. e sensor data
may be encoded in any of the parameters associated with the digital pulse train such as duty cycle,
frequency, period, or pulse rate. e input portion of the timing system may be configured to
measure these parameters.

An example of a digital sensor is the optical encoder. An optical encoder consists of a
small plastic transparent disk with opaque lines etched into the disk surface. A stationary optical
emitter and detector source are placed on either side of the disk. As the disk rotates, the opaque

108 3. MSP432 OPERATING PARAMETERS AND INTERFACING

lines break the continuity between the optical source and detector. e signal from the optical
detector is monitored to determine disk rotation, as shown in Figure 3.6.

Stationary optical source
and detector pairRotating disk

Detector output

D

S

(a) Incremental tachometer encoder.

Ch A

Ch B

(b) Incremental quadrature encoder.

Figure 3.6: Optical encoder.

ere are two major types of optical encoders: incremental encoders and absolute encoders.
An absolute encoder is used when it is required to retain position information when power is lost.
For example, if you were using an optical encoder in a security gate control system, an absolute en-
coder would be used to monitor the gate position. An incremental encoder is used in applications
where a velocity or a velocity and direction information is required.

e incremental encoder types may be further subdivided into tachometers and quadrature
encoders. An incremental tachometer encoder consists of a single track of etched opaque lines as
shown in Figure 3.6a. It is used when the velocity of a rotating device is required. To calculate
velocity, the number of detector pulses is counted in a fixed amount of time. Since the number of
pulses per encoder revolution is known, velocity may be calculated.

Example 3: Optical Encoder. An optical encoder provides 200 pulses per revolution. e
encoder is connected to a rotating motor shaft. If 80 pulses are counted in a 100 ms span, what
is the speed of the motor in revolutions per minute (RPM)?

3.3. INPUT DEVICES 109

Answer:

.1rev=200 pulses/ � .80 pulses=0:100 s/ � .60 s=min/ D 240 RPM:

e quadrature encoder contains two tracks shifted in relationship to one another by 90ı.
is allows the calculation of both velocity and direction. To determine direction, one would
monitor the phase relationship between Channel A and Channel B as shown in Figure 3.6b. e
absolute encoder is equipped with multiple data tracks to determine the precise location of the
encoder disk [Sick Stegmann].

Analog Sensors and Transducers
Analog sensors or transducers provide a DC voltage that is proportional to the physical param-
eter being measured. e analog signal may be first preprocessed by external analog hardware
such that it falls within the voltage references of the conversion subsystem. In the case of the
MSP432 microcontroller, the transducer output must fall between 0 and 3.3 VDC when oper-
ated at a supply voltage of 3.3 VDC. e analog voltage is then converted to a corresponding
binary representation.

Example 4: Flex Sensor. An example of an analog sensor is the flex sensor shown in Fig-
ure 3.7a. e flex sensor provides a change in resistance for a change in sensor flexure. At 0ı flex,
the sensor provides 10 k ohms of resistance. For 90ı flex, the sensor provides 30-40 k ohms of
resistance. Since the microcontroller cannot measure resistance directly, the change in flex sensor
resistance must be converted to a change in a DC voltage. is is accomplished using the volt-
age divider network shown in Figure 3.7c. For increased flex, the DC voltage will increase. e
voltage can be measured using the MSP432’s analog-to-digital converter (ADC) subsystem.

e flex sensor may be used in applications such as virtual reality data gloves, robotic sen-
sors, biometric sensors, and in science and engineering experiments [Images Company]. One of
the co-authors used the circuit provided in Figure 3.7 to help a colleague in Zoology monitor the
movement of a newt salamander during a scientific experiment.

Example 5: Joystick. e thumb joystick is used to select desired direction in an X-Y plane,
as shown in Figure 3.9. e thumb joystick contains two built-in potentiometers (horizontal
and vertical). A reference voltage of 3.3 VDC is applied to the VCC input of the joystick. As
the joystick is moved, the horizontal (HORZ) and vertical (VERT) analog output voltages will
change to indicate the joystick position. e joystick is also equipped with a digital select (SEL)
button.

Example 6: IR Sensor. In Chapter 2, a Sharp IR sensor is used to sense the presence
of maze walls. In this example, we use the Sharp GP2Y0A21YKOF IR sensor to control the
intensity of an LED. e profile of the Sharp IR sensor is provided in Figure 3.10.

110 3. MSP432 OPERATING PARAMETERS AND INTERFACING

4.5 in (11.43 cm)

0.25 in (0.635 cm)

(a) Flex sensor physical dimensions.

(b) Flex action.

VDD

10K �xed
resistor

�ex sensor:
-- 0° �ex, 10K
-- 90° �ex, 30-40K

(c) Equivalent circuit.

Figure 3.7: Flex sensor.

Xmax

V1max

V1min

V2max

V2min
Xmin

Input Transducer ADC Input
Scaler Multiplier

K ∑

B
(Bias)

Figure 3.8: A block diagram of the signal conditioning for an ADC. e range of the sensor voltage
output is mapped to the ADC input voltage range. e scalar multiplier maps the magnitudes of the
two ranges and the bias voltage is used to align two limits.

3.3. INPUT DEVICES 111

Y-Vertical
(analog)
0 VDC

Y-Vertical
(analog)
3.3 VDC

X-Horizontal
(analog)
3.3 VDC

X-Horizontal
(analog)
0 VDC

Select
(push)

(a) Joystick operation. (b) Sparkfun joystick (COM-09032) and breakout board (BOB-
09110).

VCC

3.3 VDC

VERT
to MSP432

to MSP432

HORZ
to MSP432

sel

3.3 VDC

10K

SEL

GND

(c) umb joystick circuit.

Figure 3.9: umb joystick. Images used with permission of Sparkfun (www.sparkfun.com).

3V

5 cm
Range [cm]

S
en

so
r

ou
tp

ut
 v

ol
ta

ge
 [

V
]

Figure 3.10: Sharp GP2Y0A21YKOF IR sensor profile.

www.sparkfun.com

112 3. MSP432 OPERATING PARAMETERS AND INTERFACING

//**
//IR_sensor
//
//The circuit:
// - The IR sensor signal pin is connected to analog pin 0 (30).
// The sensor power and ground pins are connected to 5 VDC and
// ground respectively.
// - The analog output is designated as the onboard red LED.
//
//Created: Dec 29, 2008
//Modified: Aug 30, 2011
//Author: Tom Igoe
//
//This example code is in the public domain.
//**

const int analogInPin = 30; //Energia analog input pin A0
const int analogOutPin = 75; //Energia onboard red LED pin

int sensorValue = 0; //value read from the OR sensor
int outputValue = 0; //value output to the PWM (red LED)

void setup()
{
// initialize serial communications at 9600 bps:
Serial.begin(9600);
}

void loop()
{
//read the analog in value:
sensorValue = analogRead(analogInPin);

// map it to the range of the analog out:
outputValue = map(sensorValue, 0, 1023, 0, 255);

// change the analog out value:
analogWrite(analogOutPin, outputValue);

3.3. INPUT DEVICES 113

// print the results to the serial monitor:
Serial.print("sensor = ");
Serial.print(sensorValue);
Serial.print("\t output = ");
Serial.println(outputValue);

// wait 10 milliseconds before the next loop
// for the analog-to-digital converter to settle
// after the last reading:
delay(10);

}

//**

Example 7: Ultrasonic Sensor. e ultrasonic sensor pictured in Figure 3.11 is an example
of an analog based sensor. e sensor is based on the concept of ultrasound or sound waves that are
at a frequency above the human range of hearing (20 Hz–20 kHz). e ultrasonic sensor pictured
in Figure 3.11c emits a sound wave at 42 kHz. e sound wave reflects from a solid surface and
returns back to the sensor. e amount of time for the sound wave to transit from the surface and
back to the sensor may be used to determine the range from the sensor to the wall. Figure 3.11c
and d show an ultrasonic sensor manufactured by Maxbotix (LV-EZ3). e sensor provides an
output that is linearly related to range in three different formats: (a) a serial RS-232 compatible
output at 9600 bits per second, (b) a pulse output which corresponds to 147 us/inch width, and
(c) an analog output at a resolution of 10 mV/inch. e sensor is powered from a 2.5–5.5 VDC
source (www.sparkfun.com).

Example 8: Inertial Measurement Unit. Pictured in Figure 3.12 is an inertial measure-
ment unit (IMU) which consists of an IDG5000 dual-axis gyroscope and an ADXL335 triple
axis accelerometer. is sensor may be used in unmanned aerial vehicles (UAVs), autonomous
helicopters and robots. For robotic applications the robot tilt may be measured in the X and Y
directions as shown in Figures 3.12c and d (www.sparkfun.com).

Example9:LevelSensor.Milone Technologies manufacture a line of continuous fluid level
sensors. e sensor resembles a ruler and provides a near liner response as shown in Figure 3.13.
e sensor reports a change in resistance to indicate the distance from sensor top to the fluid
surface. A wide resistance change occurs from 700 ohms at a one inch fluid level to 50 ohms at a
12.5 inch fluid level (www.milonetech.com). To covert the resistance change to a voltage change
measurable by the MSP432, a voltage divider circuit as shown in Figure 3.13 may be used. With
a supply voltage (VDD) of 3.3 VDC, a VTAPE voltage of 0.855 VDC results for a 1 inch fluid level.
Whereas, a fluid of 12.5 inches provides a VTAPE voltage level of 0.080 VDC.

www.sparkfun.com)
www.sparkfun.com
www.milonetech.com

114 3. MSP432 OPERATING PARAMETERS AND INTERFACING

20 Hz
Bass Midrange Ultrasonic

20 kHz
Treble

42 kHz Frequency [Hertz}

(a) Sound spectrum.

Ultrasonic

Transducer

(b) Ultrasonic range finding.

(c) Ultrasonic range finder Maxbotix LV-
EZ3 (SparkFun SEN-08501).

1: leave open
2: PW
3: analog output
4: RX
5: TX
6: V+ (3.3 - 5.0 V)
7: gnd

(d) Pinout.

Figure 3.11: Ultrasonic sensor. (Sensor image used courtesy of SparkFun (www.sparkfun.com),
Electronics.)

www.sparkfun.com

3.3. INPUT DEVICES 115

(a) SparkFun IMU Analog
Combo Board 5ı of Freedom
IDG500/ADXL335 SEN.

IMU
IDG500/ADXL335

VDD raw
grnd
xrate
yrate
vref
st
zout
yout
xout

x4.5out
y4.5out

ptats
az

(b) IDG500/ADXL335
pinout.

Starboard Port Stern Bow

IR sensor
array

IR sensor
array

battery
compartment

drive
motor

drive
motor

(c) (left) Robot front view and (right) side view.

Stern

Bow

IR sensor
array

battery

compartment

Star
board

PortIR
 se

nsor

arr
ay

driv
e

motor

driv
e

motor

-30° roll
-30° pitch

(d) (left) Roll and (right) pitch.

Figure 3.12: Inertial measurement unit. (IMU image used courtesy of SparkFun (www.sparkfun.c
om), Electronics.)

3.3.5 TRANSDUCER INTERFACE DESIGN (TID) CIRCUIT
In addition to a transducer, interface circuitry is required to match the output from the transducer
to the ADC system. e objective of the transducer interface circuit is to scale and shift the

www.sparkfun.com
www.sparkfun.com

116 3. MSP432 OPERATING PARAMETERS AND INTERFACING

Distance from sensor top to �uid level (inches)

R
es

is
ta

n
ce

 (
o
h

m
s)

700

600

500

400

300

200

100

0

0 1 2 3 4 5 6 7 8 9 10 11 12

(a) Characteristics for Milone Technologies eTapeTM fluid level sensor.

12

1

Sensor Lead
Connections

Connection
Area

Max

e
T
a
p
e

(b) eTape sensor.

VDD = 3.3 VDC

 2 K ohm �xed
resistor

 eTape sensor
 -- 700 ohms at 1 inch �uid
 -- 50 ohms at 12.5 inch �uid

(c) Equivalent circuit.

Figure 3.13: Milone Technologies fluid level sensor. (www.milonetech.com)

www.milonetech.com

3.3. INPUT DEVICES 117

transducer output signal range to the input range of ADC, which is typically 0–3.3 VDC for the
MSP432. Figure 3.8 shows the transducer interface circuit using an input transducer.

e transducer interface consists of two steps: scaling and then shifting via a DC bias. e
scale step allows the span of the transducer output to match the span of ADC system input range.
e bias step shifts the output of the scale step to align with the input of the ADC system. In
general, the scaling and bias process may be described by two equations:

V2 max D .V1 max � K/ C B

V2 min D .V1 min � K/ C B:

e variable V1 max represents the maximum output voltage from the input transducer. is
voltage occurs when the maximum physical variable (Xmax) being measured is presented to the
input transducer. is voltage must be scaled by the scalar multiplier (K) and then have a DC
offset bias voltage (B) added to provide the voltage V2 max to the input of the ADC converter.

Similarly, the variable V1 min represents the minimum output voltage from the input trans-
ducer. is voltage occurs when the minimum physical variable (Xmin) being measured is pre-
sented to the input transducer. is voltage must be scaled by the scalar multiplier (K) and then
have aDC offset bias voltage (B) added to produce voltage V2 min, the input of the ADC converter.

Usually the values of V1 max and V1 min are provided with the documentation for the trans-
ducer. Also, the values of V2 max and V2 min are known. ey are the high and low reference voltages
for the ADC system (usually 3.3 VDC and 0 VDC for the MPS432 microcontroller). We thus
have two equations and two unknowns to solve for K and B . e circuits to scale by K and add
the offset B are usually implemented with operational amplifiers. is transducer interface design
technique assumes the transducer has a linear response between X1;2 max and X1;2 min.

Example 10: Transducer Interface Design with Photodiode. A photodiode is a semiconductor
device that provides an output current, corresponding to the amount of light impinging on its
active surface.e photodiode is used with transimpedance amplifier to convert the output current
to an output voltage. A photodiode/transimpedance amplifier provides an output voltage of 0 volts
for maximum rated light intensity and �2.50 VDC output voltage for the minimum rated light
intensity. Calculate the required values of gain (K) and bias (B) for this light transducer to be
interfaced with a microcontroller’s ADC system. Assume the ADC is operating at 3.3 VDC.

V2 max D .V1 max � K/ C B

V2 min D .V1 min � K/ C B

3:3V D .0V � K/ C B

0V D .�2:50V � K/ C B:

e values of K and B are determined to be 1.3 and 3.3 VDC, respectively.

118 3. MSP432 OPERATING PARAMETERS AND INTERFACING

3.3.6 OPERATIONAL AMPLIFIERS
In the previous section, we discussed the transducer interface design (TID) process. is design
process yields a required value of gain (K) and DC bias (B). Operational amplifiers (op-amps)
are typically used to implement a TID interface. In this section, we briefly introduce operational
amplifiers including ideal op-amp characteristics, classic op-amp circuit configurations, and an
example to illustrate how to implement a TID with op-amps. Op-amps are also used in a wide
variety of other applications, including analog computing, analog filter design, and a myriad of
other applications. e interested reader is referred to the References section at the end of the
chapter for pointers to some excellent texts on this topic.

e Ideal Operational Amplifier
Ageneric ideal operational amplifier is shown in Figure 3.14. An ideal operational does not exist in
the real world. However, it is a good first approximation for use in developing op-amp application
circuits.

-

+

Ideal conditions:
-- In = Ip = 0
-- Vp = Vn

-- Avol>> 50,000
-- Vo = Avol (Vp - Vn)

Vn

Vo

Vcc

-Vcc

Vcc

Vo = Avol (Vp - Vn)

-Vcc

Vp

In

Ip

saturation

saturation

linear region

Vi = Vp - Vn

Figure 3.14: Ideal operational amplifier characteristics.

e op-amp is an active device (requires power supplies) equipped with two inputs, a single
output, and several voltage source inputs. e two inputs are labeled Vp, or the non-inverting in-
put, and Vn, the inverting input. e output of the op-amp is determined by taking the difference
between Vp and Vn and multiplying the difference by the open loop gain (Avol) of the op-amp,
which is typically a large value much greater than 50,000.

Due to the large value of Avol, it does not take much of a difference between Vp and Vn
before the op-amp will saturate. When an op-amp saturates, it does not damage the op-amp, but
the output is limited to the range of the supply voltages (�Vcc). is will clip the output, and
hence distort the signal, at levels less than �Vcc.

3.3. INPUT DEVICES 119

-

+

Rf

Ri

Vin
Vout = -(Rf / Ri)(Vin)

-Vcc

+Vcc

(a) Inverting amplifier.

-

+

+Vcc

-VccVin

Vout = Vin

(b) Voltage follower.

-

+
Vout = ((Rf + Ri)/Ri)(Vin)

Rf

Ri

-Vcc

+Vcc

Vin

(c) Non-inverting amplifier.

-

+

Rf

-Vcc

+Vcc

Ri

Ri Rf

V1

V2

Vout =

-(Rf / Ri)(V2- V1)

(d) Differential input amplifier.

-

+

Rf

-Vcc

+Vcc

V1

V2

V3

R
1

R
2

R
3

Vout = -(Rf / R1)(V1)

-(Rf / R2)(V2)

-(Rf / R3)(V3)

(e) Scaling adder amplifier.

-

Rf

-Vcc

+Vcc

Vout = -(IRf)

I

(f) Transimpedance amplifier (current-to-
voltage converter).

-

+

Rf

-Vcc

Vin

+Vcc

Vout = -Rf C(dVin/dt)

C

(g) Differentiator.

-

+

C

-Vcc

+VccRf

Vin Vout =

- 1/(RfC) (Vindt)

(h) Integrator.

Figure 3.15: Classic operational amplifier configurations. Adapted from [Faulkenberry, 1977].

120 3. MSP432 OPERATING PARAMETERS AND INTERFACING

Op-amps are typically used in a closed loop, negative feedback configuration. A sam-
ple of classic operational amplifier configurations with negative feedback are provided in Fig-
ure 3.15 [Faulkenberry, 1977]. It should be emphasized that the equations provided with each
operational amplifier circuit are only valid if the circuit configurations are identical to those shown.
Even a slight variation in the circuit configuration may have a dramatic effect on circuit operation.
To analyze each operational amplifier circuit, use the following steps.

• Write the node equation at Vn for the circuit.

• Apply ideal op-amp characteristics to the node equation.

• Solve the node equation for Vo.

As an example, we provide the analysis of the non-inverting amplifier circuit in Figure 3.16.
is same analysis technique may be applied to all of the circuits in Figure 3.15 to arrive at the
equations for Vout provided.

-

+

-Vcc

+Vcc

Rf

In

Ip

Ri

Vin

Vn

Vp

Vout

Node equation at Vn

(Vn - Vin) / Ri + (Vn - Vout) / Rf + In = 0

Apply ideal conditions:

In = Ip = 0

Vn = Vp = 0 (since Vp is grounded)

Solve node equation for Vout:

Vout = - (Rf / Ri) (Vin)

Figure 3.16: Operational amplifier analysis for the non-inverting amplifier. Adapted from [Faulken-
berry, 1977].

Example 11: TID (continued). In the previous section, it was determined that the values of
gain (K) and bias (B) were 1.3 and 3.3 VDC, respectively. e two-stage op-amp circuitry in
Figure 3.17 implements these values of K and B . e first stage provides an amplification of
�1:3 due to the use of the inverting amplifier configuration. In the second stage, a summing
amplifier is used to add the output of the first stage with a bias of 3.3 VDC. Since this stage also
introduces a minus sign to the result, the overall result of a gain of 1.3 and a bias of C3:3 VDC
is achieved. Low-voltage operational amplifiers, operating in the 2.7–5 VDC range, are readily
available from Texas Instruments.

3.4. OUTPUT DEVICES 121

-

+

-

+

Rf = 13 K

Rf = 10 K

Ri = 10 K

Ri = 10 K

Ri = 10 K

bias = 3.3 VDC

Vin

+Vcc

-Vcc

-Vcc

+Vcc

-Vcc

Vout

10 K

Figure 3.17: Operational amplifier implementation of the transducer interface design (TID) example
circuit.

3.4 OUTPUT DEVICES

An external device should not be connected to a microcontroller without first performing careful
interface analysis to ensure the voltage, current, and timing requirements of the microcontroller
and the external device are met. In this section, we describe interface considerations for a wide
variety of external devices. We begin with the interface for a single light-emitting diode.

3.4.1 LIGHT EMITTING DIODES (LEDS)
An LED is typically used as a logic indicator to inform the presence of a logic one or a logic zero
at a microcontroller pin. An LED has two leads: the anode or positive lead and the cathode or
negative lead. To properly bias an LED, the anode lead must be biased at a level approximately
1.7–2.2 volts higher than the cathode lead. is specification is known as the forward voltage
(Vf) of the LED.

e LED current must also be limited to a safe current level known as the forward current
(If). e diode voltage and current specifications are usually provided by the manufacturer.

Examples of various LED biasing circuits are provided in Figure 3.18. In Figure 3.18a,
a logic one provided by the microcontroller provides the voltage to forward bias the LED. e
microcontroller also acts as the source for the forward current through the LED. To properly bias
the LED, the value of the limit resistor (R) is chosen. Also, we must insure the microcontroller
is capable of supplying the voltage and current to the LED.

Example 12: LEDInterface. A red (635 nm) LED is rated at 1.8 VDC with a forward operating
current of 10 mA. Design a proper bias for the LED using the configuration of Figure 3.18a.

122 3. MSP432 OPERATING PARAMETERS AND INTERFACING

from
micro

R
I

+

(a) LED illuminates for a
logic high.

from

micro

VDD = 3.3 VDC

R
I

+

(b) LED illuminates for a
logic high.

from

micro

VDD = 3.3 VDC

R

74LVC04

I

+

(c) LED illuminates for a logic
high.

from

micro

VDD = 5.0 VDC

RC

RB

If

Vf

B

C

E

+

(d) LED illuminates for a logic high.

Figure 3.18: Interfacing an LED.

Answer: In the configuration of Figure 3.18a, the MSP432 microcontroller pin can be viewed as
an unregulated power supply. at is, the pin’s output voltage is determined by the current sup-
plied by the pin. e current flows out of the microcontroller pin through the LED and resistor
combination to ground (current source). In this example, we use the full drive strength character-
istics described earlier in the chapter for the high level output voltage. When supplying 10 mA in
the logic high case, let’s assume the high level output voltage drops to approximately 2.75 VDC.
e value of R may be calculated using Ohm’s Law. e voltage drop across the resistor is the dif-
ference between the 2.75 VDC supplied by the microcontroller pin and the LED forward voltage
of 1.8 VDC. e current flowing through the resistor is the LED’s forward current (10 mA). is
renders a resistance value of 95 ohms. A common resistor value close to 95 ohms is 100 ohms.

3.4. OUTPUT DEVICES 123

For the LED interface shown in Figure 3.18b, the LED is illuminated when the micro-
controller provides a logic low. In this case, the current flows from the power supply back into
the microcontroller pin (current sink). As before, the MSP microcontroller full drive strength
parameters provided earlier in the chapter must be used.

If LEDs with higher forward voltages and currents are used, alternative interface circuits
may be employed. Figures 3.18c and 3.18d provide two more LED interface circuits. In Fig-
ure 3.18c, a logic one is provided by the microcontroller to the input of the inverter. e inverter
produces a logic zero at its output, which provides a virtual ground at the cathode of the LED.
erefore, the proper voltage biasing for the LED is provided. e resistor (R) limits the current
through the LED. A proper resistor value can be calculated using R D .VDD � VDIODE/=IDIODE.
It is important to note that the inverter used must have sufficient current sink capability (IOL) to
safely handle the forward current requirements of the LED.

An NPN transistor such as a 2N2222 (PN2222 or MPQ2222) may also be used in place
of the inverter, as shown in Figure 3.18d. In this configuration, the transistor is used as a switch.
When a logic low is provided by the microcontroller, the transistor is in the cutoff region. When
a logic one is provided by the microcontroller, the transistor is driven into the saturation region.
To properly interface the microcontroller to the LED, resistor values RB and RC must be chosen.
e resistor RB is chosen to limit the base current. e following example shows how an LED is
interfaced with a microcontroller using an NPN transistor.

Example 13: LED Interface. Using the interface configuration of Figure 3.18d, design an inter-
face for an LED with Vf of 2.2 VDC and If of 20 mA.

In this example, we can use the reduced drive strength of the MSP432 discussed earlier in
the chapter. If we choose an IOH value of 2 mA, the VOH value will be approximately 3.0 VDC.
A loop equation, which includes these parameters, may be written as:

VOH D .IB � RB/ C VBE:

e transistor VBE is typically 0.7 VDC. erefore, all equation parameters are known ex-
cept RB . Solving for RB yields a value of 1.15 K ohm.

In this interface configuration, resistor RC is chosen as in previous examples to safely limit
the forward LED current to prescribed values. A loop equation may be written that includes RC :

VCC � .If � RC / � Vf � VCE.sat/ D 0:

A typical value for VCE.sat/ is 0.2 VDC. All equation values are known except RC . e
equation may be solved rendering an RC value of 130 ohms.

3.4.2 SEVEN SEGMENT LED DISPLAYS
To display numeric data, seven segment LED displays are available as shown in Figure 3.19b.
Different numerals are displayed by asserting the proper LED segments. For example, to display

124 3. MSP432 OPERATING PARAMETERS AND INTERFACING

the number five, segments a, c, d, f, and g need to be illuminated. See Figure 3.19a. Seven segment
displays are available in common cathode (CC) and common anode (CA) configurations. As the
CC designation implies, all seven individual LED cathodes on the display are tied together.

m
ic

ro
co

n
tr

ol
le

r
p

or
t

VOH : 5.0 VDC
IOH : 24mA

R = (VOH - Vf) / If
R = (5.0 - 1.85) / 12 mA
R = 262 ohms ~ 270 ohms

74LVC4245A
octal bus

transceiver

DIP
resistor

common cathode
7-segment display

(Vf 1.85 VDC @ If 12 mA)

a

b

c

d

e

f

g

f

e

b

c

g

a

d

(a) Seven-segment display interface.

74LVC4245A
octal bus

transceiver
quad common cathode
seven-segment display

PORTx[7]

numeral select

PORTx[10]

PORTy[3]

PORTy[0]

dp

a

b

c

d

e

f

g

(dp)3

(1)11

(b)7

(c)4

(d)2

(e)1

(f)10

(g)5

(16)

(15)

(14)

(13)

(12)

(11)

(10)

(9)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(2)

(6)

(9)

(13)

1.2 K

(6) (8) (9) (12)

(1) (7) (8) (14)

(3) (5) (10) (12)

1.2 K

1.2 K

1.2 K

MPQ2222

a

f

e

b

c

g

d

a

f

e

b

c

g

d

a

f

e

b

c

g

d

a

f

e

b

c

g

d

(b) Quad seven-segment display interface.

Figure 3.19: LED display devices. (Continues.)

As shown in Figure 3.19b, an interface circuit is required between the microcontroller and
the seven segment LED. We use a 74LVC4245A octal bus transceiver circuit to translate the
3.3 VDC output from the microcontroller up to 5 VDC and also provide a maximum IOH value
of 24 mA. A limiting resistor is required for each segment to limit the current to a safe value for

3.4. OUTPUT DEVICES 125

N
u
m

er
al

d
p

 P
O

R
T

 x
 [

7
]

a
P

O
R

T
 x

 [
6
]

b
 P

O
R

T
 x

 [
5
]

c
P

O
R

T
 x

 [
4
]

d
 P

O
R

T
 x

 [
3
]

e
P

O
R

T
 x

 [
2
]

f
P

O
R

T
 x

 [
1
]

g
P

O
R

T
 x

 [
0
]

h
ex

 r
ep

0
1

1
0

1
1

1
1

1
0

1
0

1
0

0
0

0 x 7E
0 x 30

2
3

1
1

1
1

0
1

1
1

1
0

0
0

1
1

0 x 6D
0 x 79

4
5

0
1

1
0

1
1

0
1

0
0

1
1

1
1

0 x 33
0 x 5D

6
7

0
1

0
1

1
1

1
0

1
0

1
0

1
0

0 x 1F
0 x 70

8
9

1
1

1
1

1
1

1
0

1
0

1
1

1
1

0 x 7F
0 x 73

(c) Numeral to segment conversion.

12

1 6

7

a

f

e

b

c

g

d

a

f

e

b

c

g

d

a

f

e

b

c

g

d

a

f

e

b

c

g

d

(d) Quad seven-segment display
pinout UN(M)5624-11 EWRS.

Figure 3.19: (Continued.) LED display devices.

the LED. Conveniently, resistors are available in dual in-line (DIP) packages of eight for this
type of application. Alternatively, a Texas Instrument LSF0101XEVM-001 discussed earlier in
the chapter may be used for level shifting.

Seven-segment displays are available in multi-character panels. In this case, separate mi-
crocontroller ports are not used to provide data to each seven segment character. Instead, a single
port is used to provide character data. A portion of another port is used to sequence through each
of the characters as shown in Figure 3.19b. An NPN (for a CC display) transistor is connected to
the common cathode connection of each individual character. As the base contact of each transis-
tor is sequentially asserted, the specific character is illuminated. If the microcontroller sequences
through the display characters at a rate greater than 30 Hz, the display will have steady illumina-
tion. Alternatively, specially equipped LED displays can be daisy changed together and controlled
by common data, latch and clock lines as discussed earlier in the chapter. We investigate seven
segment displays later in the chapter with the Grove Starter Kit for the Launch Pad.

3.4.3 TRI-STATE LED INDICATOR
A tri-state LED indicator is shown in Figure 3.20. It is used to provide the status of an entire
microcontroller port. e indicator bank consists of eight green and eight red LEDs. When an
individual port pin is logic high the green LED is illuminated. When logic low, the red LED is
illuminated. If the port pin is at a tri-state, high impedance state, the LED is not illuminated.
Tri-state logic is used to connect a number of devices to a common bus. When a digital circuit is
placed in the Hi-z (high impedance) state it is electrically isolated from the bus.

126 3. MSP432 OPERATING PARAMETERS AND INTERFACING

-

+

VOH : 5.0 VDC

IOH : 24 mA

74LVC4245A

Octal Bus

Transceiver

M
ic

ro
c
o
n
tr

o
ll
e
r

P
o
rt

47

47

47

47

47

47

47

47

5 VDC

5 VDC

5 VDC

2N2222

2N2907

3.0 K

3.0 K

LM324

G

R

G

R

G

R

G

R

G

R

G

R

G

R

G

R

G

R

Figure 3.20: Tri-state LED display.

3.4. OUTPUT DEVICES 127

e NPN/PNP transistor pair at the bottom of the figure provides a 2.5 VDC voltage
reference for the LEDs. When a specific port pin is logic high, the green LED will be forward
biased, since its anode will be at a higher potential than its cathode. e 47 ohm resistor limits
current to a safe value for the LED. Conversely, when a specific port pin is at a logic low (0 VDC),
the red LED will be forward biased and illuminate. For clarity, the red and green LEDs are
shown as being separate devices. LEDs are available that have both LEDs in the same device.
e 74LVC4245A octal bus transceiver translates the output voltage of the microcontroller from
3.3 VDC to 5.0 VDC. Alternatively, a Texas Instrument LSF0101XEVM-001 discussed earlier
in the chapter may be used for level shifting.

3.4.4 DOT MATRIX DISPLAY
e dot matrix display consists of a large number of LEDs configured in a single package. A
typical 5 � 7 LED arrangement is a matrix of five columns of LEDs with seven LED rows
as shown in Figure 3.21. Display data for a single matrix column [R6-R0] is provided by the
microcontroller. at specific row is then asserted by the microcontroller using the column select
lines [C2-C0]. e entire display is sequentially built up a column at a time. If the microcontroller
sequences through each column fast enough (greater than 30 Hz), the matrix display appears to
be stationary to a viewer.

5 x 7 dot
Matrix Display

Interface
Circuitry

In
te

rf
ac

e
C

ir
cu

it
ry

C
ol

um
n

S
el

ec
t

R
ow

 S
el

ec
t

M
ic

ro
co

n
tr

ol
le

r

C2

C1

C0

R6

R5

R4

R3

R2

R1

R0

Figure 3.21: Dot matrix display.

128 3. MSP432 OPERATING PARAMETERS AND INTERFACING

In Figure 3.21, we have provided the basic configuration for the dot matrix display for a
single character device. However, this basic idea can be expanded in both dimensions to provide
a multi-character, multi-line display. A larger display does not require a significant number of
microcontroller pins for the interface. e dot matrix display may be used to display alphanumeric
data as well as graphics data. Several manufacturers provide 3.3 VDC compatible dot matrix
displays with integrated interface and control circuitry. Also, a dot matrix display BoosterPack is
available from Olimex (www.olimex.com).

Example 14: Dot matrix display. In this example we use a LITEON LPT2157AG-NB,
cathode column, anode row, 5 by 7 dot matrix display. To illuminate a specific LED in the matrix,
its corresponding row is set logic high and corresponding column is set to logic low. Resistors are
used to limit LED current.

C
ol

um
n

S
el

ec
t

R
ow

 S
el

ec
t

C5

C4

C3

C2

C1

R1

R2

R3

R4

R5

R6

R7

35, P6.7

34, P2.3

33, P5.1

32, P3.5

31, P3.7

36, P6.6

37, P5.6

38, P2.4

39, P2.6

40, P2.7

11, P3.6

12, P5.2

M
S

P
43

2
M

ic
ro

co
nt

ro
lle

r

Adafruit
TXB0108

Level
Shifter

LITEON LTP-2157AG
Cathode column, anode row
5 x 7 green dot matrix display

C5

R1

Vdiode = 2.1 V
Idiode = 11 mA

(13)

(9)

(14)

(8)

(12.5)

(1)

(7)

(2)

(3) (4.11) (10) (6)

220 ohms

Figure 3.22: Dot matrix display test circuit.

We use API functions from the “driverlib.h” in this example. ere are functions available
to configure the GPIO pins for high current drive capability.

//***
//matrix_ex
//

www.olimex.com

3.4. OUTPUT DEVICES 129

//This example code is in the public domain.
//***

#include "driverlib.h"

//function prototypes
void illuminate_LED(int row, int column);

void main(void)
{
// Stop watchdog timer
WDT_A_hold(WDT_A_BASE);

//Configure GPIO pins as output
//Column pins
GPIO_setAsOutputPin(GPIO_PORT_P3, GPIO_PIN7); //column 1
GPIO_setAsOutputPin(GPIO_PORT_P3, GPIO_PIN5); //column 2
GPIO_setAsOutputPin(GPIO_PORT_P5, GPIO_PIN1); //column 3
GPIO_setAsOutputPin(GPIO_PORT_P2, GPIO_PIN3); //column 4
GPIO_setAsOutputPin(GPIO_PORT_P6, GPIO_PIN7); //column 5

//Row pins
GPIO_setAsOutputPin(GPIO_PORT_P6, GPIO_PIN6); //Row 1
GPIO_setAsOutputPin(GPIO_PORT_P5, GPIO_PIN6); //Row 2
GPIO_setAsOutputPin(GPIO_PORT_P2, GPIO_PIN4); //Row 3
GPIO_setAsOutputPin(GPIO_PORT_P2, GPIO_PIN6); //Row 4
GPIO_setAsOutputPin(GPIO_PORT_P2, GPIO_PIN7); //Row 5
GPIO_setAsOutputPin(GPIO_PORT_P3, GPIO_PIN6); //Row 6
GPIO_setAsOutputPin(GPIO_PORT_P5, GPIO_PIN2); //Row 7

//Configure GPIO pins for high drive strength
//Column pins
GPIO_setDriveStrengthHigh(GPIO_PORT_P3, GPIO_PIN7); //column 1
GPIO_setDriveStrengthHigh(GPIO_PORT_P3, GPIO_PIN5); //column 2
GPIO_setDriveStrengthHigh(GPIO_PORT_P5, GPIO_PIN1); //column 3
GPIO_setDriveStrengthHigh(GPIO_PORT_P2, GPIO_PIN3); //column 4
GPIO_setDriveStrengthHigh(GPIO_PORT_P6, GPIO_PIN7); //column 5

130 3. MSP432 OPERATING PARAMETERS AND INTERFACING

//Row pins
GPIO_setDriveStrengthHigh(GPIO_PORT_P6, GPIO_PIN6); //Row 1
GPIO_setDriveStrengthHigh(GPIO_PORT_P5, GPIO_PIN6); //Row 2
GPIO_setDriveStrengthHigh(GPIO_PORT_P2, GPIO_PIN4); //Row 3
GPIO_setDriveStrengthHigh(GPIO_PORT_P2, GPIO_PIN6); //Row 4
GPIO_setDriveStrengthHigh(GPIO_PORT_P2, GPIO_PIN7); //Row 5
GPIO_setDriveStrengthHigh(GPIO_PORT_P3, GPIO_PIN6); //Row 6
GPIO_setDriveStrengthHigh(GPIO_PORT_P5, GPIO_PIN2); //Row 7

while(1)
{
//specify row (1-7), column (1-5)
illuminate_LED(1, 2);
illuminate_LED(2, 2);
illuminate_LED(3, 2);
illuminate_LED(4, 2);
illuminate_LED(5, 2);
illuminate_LED(6, 2);
illuminate_LED(7, 2);
__delay_cycles(500000); //delay at 48 MHz, each delay count=0.2 us
}

}
//***

void illuminate_LED(int row, int column)
{
switch(row) //select row R1 through R7
{
case 1 : //row 1: logic high row 2-7: logic low

GPIO_setOutputHighOnPin(GPIO_PORT_P6, GPIO_PIN6); //Row 1
GPIO_setOutputLowOnPin(GPIO_PORT_P5, GPIO_PIN6); //Row 2
GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN4); //Row 3
GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN6); //Row 4
GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN7); //Row 5
GPIO_setOutputLowOnPin(GPIO_PORT_P3, GPIO_PIN6); //Row 6 6
GPIO_setOutputLowOnPin(GPIO_PORT_P5, GPIO_PIN2); //Row 7
break;

case 2 : //row 2: logic high row 1, 3-7: logic low

3.4. OUTPUT DEVICES 131

GPIO_setOutputLowOnPin(GPIO_PORT_P6, GPIO_PIN6); //Row 1
GPIO_setOutputHighOnPin(GPIO_PORT_P5, GPIO_PIN6); //Row 2
GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN4); //Row 3
GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN6); //Row 4
GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN7); //Row 5
GPIO_setOutputLowOnPin(GPIO_PORT_P3, GPIO_PIN6); //Row 6
GPIO_setOutputLowOnPin(GPIO_PORT_P5, GPIO_PIN2); //Row 7
break;

case 3 : //row 3: logic high row 1,2, 4-7: logic low
GPIO_setOutputLowOnPin(GPIO_PORT_P6, GPIO_PIN6); //Row 1
GPIO_setOutputLowOnPin(GPIO_PORT_P5, GPIO_PIN6); //Row 2
GPIO_setOutputHighOnPin(GPIO_PORT_P2, GPIO_PIN4); //Row 3
GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN6); //Row 4
GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN7); //Row 5
GPIO_setOutputLowOnPin(GPIO_PORT_P3, GPIO_PIN6); //Row 6
GPIO_setOutputLowOnPin(GPIO_PORT_P5, GPIO_PIN2); //Row 7
break;

case 4 : //row 4: logic high row 1-3, 5-7: logic low
GPIO_setOutputLowOnPin(GPIO_PORT_P6, GPIO_PIN6); //Row 1
GPIO_setOutputLowOnPin(GPIO_PORT_P5, GPIO_PIN6); //Row 2
GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN4); //Row 3
GPIO_setOutputHighOnPin(GPIO_PORT_P2, GPIO_PIN6); //Row 4
GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN7); //Row 5
GPIO_setOutputLowOnPin(GPIO_PORT_P3, GPIO_PIN6); //Row 6
GPIO_setOutputLowOnPin(GPIO_PORT_P5, GPIO_PIN2); //Row 7
break;

case 5 : //row 5: logic high row 1-4, 6,7: logic low
GPIO_setOutputLowOnPin(GPIO_PORT_P6, GPIO_PIN6); //Row 1
GPIO_setOutputLowOnPin(GPIO_PORT_P5, GPIO_PIN6); //Row 2
GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN4); //Row 3
GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN6); //Row 4
GPIO_setOutputHighOnPin(GPIO_PORT_P2, GPIO_PIN7); //Row 5
GPIO_setOutputLowOnPin(GPIO_PORT_P3, GPIO_PIN6); //Row 6
GPIO_setOutputLowOnPin(GPIO_PORT_P5, GPIO_PIN2); //Row 7
break;

132 3. MSP432 OPERATING PARAMETERS AND INTERFACING

case 6 : //row 6: logic high row 1-5, 7: logic low
GPIO_setOutputLowOnPin(GPIO_PORT_P6, GPIO_PIN6); //Row 1
GPIO_setOutputLowOnPin(GPIO_PORT_P5, GPIO_PIN6); //Row 2
GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN4); //Row 3
GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN6); //Row 4
GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN7); //Row 5
GPIO_setOutputHighOnPin(GPIO_PORT_P3, GPIO_PIN6); //Row 6
GPIO_setOutputLowOnPin(GPIO_PORT_P5, GPIO_PIN2); //Row 7
break;

case 7 : //row 7: logic high row 1-6: logic low
GPIO_setOutputLowOnPin(GPIO_PORT_P6, GPIO_PIN6); //Row 1
GPIO_setOutputLowOnPin(GPIO_PORT_P5, GPIO_PIN6); //Row 2
GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN4); //Row 3
GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN6); //Row 4
GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN7); //Row 5
GPIO_setOutputLowOnPin(GPIO_PORT_P3, GPIO_PIN6); //Row 6
GPIO_setOutputHighOnPin(GPIO_PORT_P5, GPIO_PIN2); //Row 7
break;

default: break;
}

switch(column)
{
case 1 : //col 1: logic low col 2-5: logic high

GPIO_setOutputLowOnPin(GPIO_PORT_P3, GPIO_PIN7); //column 1
GPIO_setOutputHighOnPin(GPIO_PORT_P3, GPIO_PIN5); //column 2
GPIO_setOutputHighOnPin(GPIO_PORT_P5, GPIO_PIN1); //column 3
GPIO_setOutputHighOnPin(GPIO_PORT_P2, GPIO_PIN3); //column 4
GPIO_setOutputHighOnPin(GPIO_PORT_P6, GPIO_PIN7); //column 5
break;

case 2 : //col 2: logic low col 1, 3-5: logic high
GPIO_setOutputHighOnPin(GPIO_PORT_P3, GPIO_PIN7); //column 1
GPIO_setOutputLowOnPin(GPIO_PORT_P3, GPIO_PIN5); //column 2
GPIO_setOutputHighOnPin(GPIO_PORT_P5, GPIO_PIN1); //column 3
GPIO_setOutputHighOnPin(GPIO_PORT_P2, GPIO_PIN3); //column 4
GPIO_setOutputHighOnPin(GPIO_PORT_P6, GPIO_PIN7); //column 5

3.4. OUTPUT DEVICES 133

break;

case 3 : //col 3: logic low col 1-2, 4-5: logic high
GPIO_setOutputHighOnPin(GPIO_PORT_P3, GPIO_PIN7); //column 1
GPIO_setOutputHighOnPin(GPIO_PORT_P3, GPIO_PIN5); //column 2
GPIO_setOutputLowOnPin(GPIO_PORT_P5, GPIO_PIN1); //column 3
GPIO_setOutputHighOnPin(GPIO_PORT_P2, GPIO_PIN3); //column 4
GPIO_setOutputHighOnPin(GPIO_PORT_P6, GPIO_PIN7); //column 5
break;

case 4 : //col 4: logic low col 1-3, 5: logic high
GPIO_setOutputHighOnPin(GPIO_PORT_P3, GPIO_PIN7); //column 1
GPIO_setOutputHighOnPin(GPIO_PORT_P3, GPIO_PIN5); //column 2
GPIO_setOutputHighOnPin(GPIO_PORT_P5, GPIO_PIN1); //column 3
GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN3); //column 4
GPIO_setOutputHighOnPin(GPIO_PORT_P6, GPIO_PIN7); //column 5
break;

case 5 : //col 5: logic low col 1-4: logic high
GPIO_setOutputHighOnPin(GPIO_PORT_P3, GPIO_PIN7); //column 1
GPIO_setOutputHighOnPin(GPIO_PORT_P3, GPIO_PIN5); //column 2
GPIO_setOutputHighOnPin(GPIO_PORT_P5, GPIO_PIN1); //column 3
GPIO_setOutputHighOnPin(GPIO_PORT_P2, GPIO_PIN3); //column 4
GPIO_setOutputLowOnPin(GPIO_PORT_P6, GPIO_PIN7); //column 5
break;

default: break;
}

__delay_cycles(500000); //delay at 48 MHz, each delay count=0.2 us
}

//***

3.4.5 LIQUID CRYSTAL DISPLAY (LCD)
An LCD is an output device to display text information, as shown in Figure 3.23. LCDs come in a
wide variety of configurations includingmulti-character, multi-line format. A 16 � 2 LCD format
is common. at is, it has the capability of displaying 2 lines of 16 characters each. e characters
are sent to the LCD via American Standard Code for Information Interchange (ASCII) format

134 3. MSP432 OPERATING PARAMETERS AND INTERFACING

a single character at a time. For a parallel configured LCD, an eight bit data path and two lines
are required between the microcontroller and the LCD, as shown in Figure 3.23a. Many parallel
configured LCDs may also be configured for a four bit data path thus saving several precious
microcontroller pins. A small microcontroller mounted to the back panel of the LCD translates
the ASCII data characters and control signals to properly display the characters. Several manu-
facturers provide 3.3 VDC compatible displays.

Vcc comman
d/data

en
ab

le
data

G
N

D
-1

V
D

D
-2

V
o
-3

R
S

-4

R
/W

-5

E
-6

D
B

0
-7

D
B

1
-8

D
B

2
-0

D
B

3
-1

0

D
B

4
-1

1

D
B

5
-1

2

D
B

6
-1

3

D
B

7
-1

4

line1

line2

10 K

(a) Parallel configuration.

Vccser
ial

 data

line1

line2

(b) Serial configuration.

Figure 3.23: LCD display with (a) parallel interface and (b) serial interface.

To conserve precious, limited microcontroller input/output pins a serial configured LCD
may be used. A serial LCD reduces the number of required microcontroller pins for interface,
from ten down to one, as shown in Figure 3.23b. Display data and control information is sent
to the LCD via an asynchronous UART serial communication link (8 bit, 1 stop bit, no parity,
9600 Baud). A serial configured LCD costs slightly more than a similarly configured parallel
LCD. Additional information on using the serial LCD is provided with the 4 W robot example
in Chapter 11.
Example 15: LCD. In this example a Sparkfun LCD-09067, 3.3 VDC, serial, 16 by 2 character,
black on white LCD display is connected to the MSP432. Communication between the MSP432
and the LCD is accomplished by a single 9600 bits per second (BAUD) connection using the
onboard Universal Asynchronous Receiver Transmitter (UART). e UART is configured for
8 bits, no parity, and one stop bit (8-N-1). e MSP-EXP432P401R LaunchPad is equipped
with two UART channels. One is the back channel UART connection to the PC. e other is
accessible by pin 3 (RX, P3.2) and pin 4 (TX, P3.3). Provided below is the sample Energia code
to print a test message to the LCD. Note the UART is designated “Serial1” in the program. e
back channel UART for the Energia serial monitor display is designated “Serial.”

//***

3.5. HIGH POWER DC INTERFACES 135

//Serial_LCD_energia
//Serial 1 accessible at:
// - RX: P3.2, pin 3
// - TX: P3.3, pin 4
//
//This example code is in the public domain.
//***

void setup()
{
//Initialize serial channel 1 to 9600 BAUD and wait for port to open
Serial1.begin(9600);
}

void loop()
{
Serial1.print("Hello World");
delay(500);
Serial1.println("...Hello World");
delay(500);
}

//***

3.5 HIGH POWER DC INTERFACES
ere are a wide variety of DC motor types that may be controlled by a microcontroller. To
properly interface a motor to the microcontroller, we must be familiar with the different types of
motor technologies. Motor types are illustrated in Figure 3.24.

General categories of DC motor types include the following:

• DCmotor: A DC motor has a positive and a negative terminal. When a DC power supply
of suitable current rating is applied to the motor, it will rotate. If the polarity of the supply
is switched with reference to the motor terminals, the motor will rotate in the opposite
direction. e speed of the motor is roughly proportional to the applied voltage up to the
rated voltage of the motor.

• Servomotor:A servomotor provides a precision angular rotation for an applied pulse width
modulation duty cycle. As the duty cycle of the applied signal is varied, the angular displace-
ment of the motor also varies. is type of motor is used to change mechanical positions
such as the steering angle of a wheel.

136 3. MSP432 OPERATING PARAMETERS AND INTERFACING

Vmotor

 Ve!

Ve! = Vmotor x duty cycle [%]

(a) DC motor.

(b) Servo motor.

4 Control
 Signals

Interface
Circuitry

Power
Ground

1 Step

(c) Stepper motor.

Figure 3.24: Motor types.

• Stepper motor: A stepper motor, as its name implies, provides an incremental step change
in rotation (typically 2.5ı per step) for a step change in control signal sequence. e motor
is typically controlled by a two- or four-wire interface. For the four-wire stepper motor, the
microcontroller provides a four bit control sequence to rotate the motor clockwise. To turn
the motor counterclockwise, the control sequence is reversed. e low power control signals
are interfaced to the motor via MOSFETs or power transistors to provide for the proper
voltage and current requirements of the pulse sequence.

• Linear actuator: A linear actuator translates the rotation motion of a motor to linear for-
ward and reverse movement. e actuators are used in a number of different applications
where precisely controlled linear motion is required. e control software and interface for
linear actuators are very similar to DC motors.

3.5. HIGH POWER DC INTERFACES 137

Example 16: DC Motor Interface. A general purpose DC motor interface is provided in Fig-
ure 3.25. is interface allows the low-voltage (3.3 VDC), low-current control signal to be inter-
faced to a higher voltage, higher current motor. is interface provides for unidirectional control.
To control motor speed, pulse width modulation (PWM) techniques may be used. e control
signal from the MSP432 is fed to the TIP 120 NPN Darlington transistor. e Darlington con-
figuration allows high current gain to drive the motor. Diodes are placed in series with the motor
to reduce the motor supply voltage to the required motor voltage. Each diode provides a drop of
approximately 0.7 VDC. A reverse biased diode is placed across the motor and diode string to
allow a safe path for reverse current. is configuration may be adjusted for many types of DC
motors by appropriately adjusting supply voltage, number of series diodes, and the value of the
base resistance.

M

+

-

9.0 VDC

motor
current

TIP 120

TIP 120 NPN
Darlington transistor

from
MSP432

330

M7.2 VDC
at 300 mA

1N4001
diodes 1N4001

protection
diode

Figure 3.25: General purpose motor interface.

Example 17: Inexpensive Laser Light Show. An inexpensive laser light show can be con-
structed using two servos. is application originally appeared in the third edition of “Arduino
Microcontroller Processing for Everyone!” e example has been adapted with permission for
compatibility with the MSP432 [Barrett, 2013]. In this example we use two Futaba 180ı range
servos (Parallax 900-00005, available from Jameco #283021) mounted as shown in Figure 3.26.
e servos operates from 4–6 VDC. e servos expect a pulse every 20 ms (50 Hz). e pulse
length determines the degree of rotation from 1000 ms (5% duty cycle, �90ı rotation) to 2000 ms
(10% duty cycle, C90ı rotation). e X and Y control signals are provided by the MSP432. e X
and Y control signals are interfaced to the servos via LM324 operational amplifiers. e 3.3 VDC
control signals from the MSP432 are up converted to 5.0 VDC by the op-amps. e op-amps

138 3. MSP432 OPERATING PARAMETERS AND INTERFACING

serve as voltage comparators with a 2.5 VDC threshold. e laser source is provided by an inex-
pensive laser pointer.

Vcc = 5 VDC

Vcc = 5 VDC
Vcc = 5 VDC

Vcc = 5 VDC

(4)(3)

(2)

(5)

(6)

(1)

(11)

(4)

(7)

(11)

5 VDC

10 K

10 K

LM324

LM324

y_ch_pin

(pin 39, P2.6)

x_ch_pin

(pin 40, P2.7)

2.5 VDC

threshold

setting

Parallax 900-00005

servo motor

White

White

Red

Red

Black

Black
servo

mirror

mirror

laser source

y

x

Figure 3.26: Inexpensive laser light show.

Energia contains useful servo configuration and control functions. e “attach” function
initializes the servo at the specified pin. e MSP432 has pulse width modulated output features
available on pins 19 (P2.5), 37 (P5.6), 38 (P2.4), 39 (P2.6), and 40 (P2.7). e “write” function
rotates the servo the specified number of degrees. e program sends the same signal to both
channel outputs (x_ch_pin, y_ch_pin) and traces a line with the laser. Any arbitrary shape may
be traced by the laser using this technique.

3.5. HIGH POWER DC INTERFACES 139

//***
//X-Y ramp
//
//This example code is in the public domain.
//***

#include <Servo.h> //Use Servo library, included with IDE

Servo myServo_x; //Create Servo objects to control the
Servo myServo_y; //X and Y servos

void setup()
{
myServo_x.attach(40); //Servo is connected to PWM pin 40
myServo_y.attach(39); //Servo is connected to PWM pin 39
}

void loop()
{
int i = 0;
for(i=0; i<=180; i++) //Rotates servo 0 to 180 degrees
{
myServo_x.write(i); //Rotate servo counter clockwise
myServo_y.write(i); //Rotate servo counter clockwise
delay(20); //Wait 20 milliseconds
if(i==180)

delay(5000);
}

}

//***

3.5.1 DC MOTOR INTERFACE, SPEED, AND DIRECTION CONTROL
Interface. A number of direct current devices are controlled with an electronic switching device
such as aMOSFET (metal oxide semiconductor field effect transistor). Specifically, anN-channel
enhancement MOSFET may be used to switch a high current load on and off (such as a motor)
using a low current control signal from a microcontroller as shown in Figure 3.27. e low current
control signal from the microcontroller is connected to the gate of the MOSFET via a MOSFET
driver. As shown in Figure 3.27, an LTC 1157 MOSFET driver is used to boost the control signal

140 3. MSP432 OPERATING PARAMETERS AND INTERFACING

from the microcontroller to be compatible with an IRLR024 power MOSFET. e IRLR024
is rated at 60 VDC VDS and a continuous drain current ID of 14 amps. e IRLR024 MOS-
FET switches the high current load on and off consistent with the control signal. In a low-side
connection, the high current load is connected between the MOSFET source and ground.

3.3 VDC

MSP432
Microcontroller LTC1157

MOSFET
Driver

IN1

IN2

G1

G2

(8.7 VDC)

(8.7 VDC)

IRLR024
power
MOSFET

 IRLR024
 power
 MOSFET

3.3 VDC
load

3.3 VDC
load

10 µF

Figure 3.27: MOSFET drive circuit (adapted from Linear Technology).

Speed. As previously mentioned, DC motor speed may be varied by changing the applied
voltage. is is difficult to do with a digital control signal. However, pulse width modulation
(PWM) techniques combined with a MOSFET interface circuit may be used to precisely control
motor speed. e duty cycle of the PWM signal governs the percentage of the motor supply
voltage applied to the motor and hence the percentage of rated full speed at which the motor
will rotate. e interface circuit to accomplish this type of control is shown in Figure 3.28. It is
a slight variation of the control circuit provided in Figure 3.27. In this configuration, the motor
supply voltage may be different than the microcontroller’s 3.3 VDC supply. For an inductive load,
a reverse biased protection diode should be connected across the load. e interface circuit allows
the motor to rotate in a given direction.

Direction. For a DC motor to operate in both the clockwise and counterclockwise di-
rections, the polarity of the DC motor supplied must be changed. To operate the motor in the
forward direction, the positive battery terminal must be connected to the positive motor terminal
while the negative battery terminalmust be attached to the negativemotor terminal. To reverse the
motor direction, the motor supply polarity must be reversed. An H-bridge is a circuit employed
to perform this polarity switch. An H-bridge may be constructed from discrete components as

3.5. HIGH POWER DC INTERFACES 141

3.3 VDC
DC Motor
Supply Voltage

Protection
Diode

30 K

MSP432
Microcontroller LTC1157

MOSFET
Driver

IN1

IN2

G1

G2

10 µF
M

MTD3055EL
power FET

Figure 3.28: DC motor interface.

shown in Figure 3.29. If PWM signals are used to drive the base of the transistors, both motor
speed and direction may be controlled by the circuit. e transistors used in the circuit must have
a current rating sufficient to handle the current requirements of the motor during start and stall
conditions.

+ -

12 VDC

1000 µF

to PD4 to PD5

200 200

470 470

11DQ06
ZTX451

ZTX551

ZTX451

ZTX55111DQ06

M

Figure 3.29: H-bridge control circuit.

142 3. MSP432 OPERATING PARAMETERS AND INTERFACING

Texas Instruments provides a self-contained H-bridge motor controller integrated circuit,
the DRV8829. Within the DRV8829 package is a single H-bridge driver. e driver may con-
trol DC loads with supply voltages from 8–45 VDC with a peak current rating of 5 amps. e
single H-bridge driver may be used to control a DC motor or one winding of a bipolar stepper
motor [DRV8829, 2010].

Example 18: SN754410 H-bridge. Texas Instruments manufactures the SN754410 quad
half-H driver. It provides bi-directional current up to 1A to a wide variety of loads in-
cluding DC motors, relays, and solenoids. e loads can have operating voltages from 4.5–
36 VDC [SLRS007C]. In this example, we use the SN754410 to give the Dagu Magician robot
motors the capability to go forward and reverse. Recall from Chapter 2, the robot is controlled
by two 7.2 VDC motors which independently drive left and right wheels. A third non-powered
drag ball provides tripod stability for the robot.

In this example, we develop a circuit and test program to investigate the bi-directional fea-
tures of the robot motors, as illustrated in Figure 3.30. A keypad is used to select the direction and
speed for the Dagu robot motors. Motor control signals from the MSP432 are fed through digi-
tal logic to provide a direction and motor speed (PWM) signal to the two motors. e resulting
control signals are then fed to the SN754410 to interface to the motors.

e Energia program was adapted from the keypad interface program provided earlier in
the chapter.

//***
//h_bridge
//
//This example code is in the public domain.
//***

#define row1 23
#define row2 24
#define row3 25
#define row4 26

#define col1 27
#define col2 28
#define col3 29
#define col4 30

#define motorl_for_rev 37
#define motorl_pwm 38

#define motorr_for_rev 39

3.5. HIGH POWER DC INTERFACES 143

L:f_low

R:o

L:f_med

R:o

L:f_medhi

R:o

L:f_high

R:o

L:r_low

R:o

L:r_med

R:o

L:r_medhi

R:o

L:r_high

R:o

R:f_low

L:o

R:f_med

L:o

R:f_medhi

L:o

R:f_high

L:o

R:r_low

L:o

R:r_med

L:o

R:r_medhi

L:o

R:o

L:o

SN754410
motor l
enable

motor l
forward (PWM)

motor r
reverse (PWM)

Dagu Magician
robot, right motor
(6 VDC max,
stall current 1A)

Dagu Magician
robot, left motor
(6 VDC max,
stall current 1A)

motor r
forward (PWM)

motor r
enable

IC logic voltage
(+5 VDC)

motor l
reverse (PWM)

P2.7 (pin 40), PWM

P2.6 (pin 39) GPIO

Mright PWM

Mright F/R

to pin 10 Mright forward (PWM)

to pin 15 M2right reverse (PWM)

to pin 2 Mleft forward (PWM)

to pin 7 Mleft reverse (PWM)

Mleft PWM

Mleft F/R

P2.4 (pin 38), PWM

P5.6 (pin 37) GPIO

motor supply
voltage (+6 VDC)

+

M

-

+

M

-

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

7408

MSP432

7404

1

2

3

4

2

1
3

4

5
6

9

10
8

13

12
11

Figure 3.30: H-bridge control circuit for Dagu robot.

144 3. MSP432 OPERATING PARAMETERS AND INTERFACING

#define motorr_pwm 40

unsigned char key_depressed = '*';

void setup()
{
//start serial connection to monitor
Serial.begin(9600);

//configure row pins as ouput
pinMode(row1, OUTPUT);
pinMode(row2, OUTPUT);
pinMode(row3, OUTPUT);
pinMode(row4, OUTPUT);

//configure column pins as input and assert pullup resistors
pinMode(col1, INPUT_PULLUP);
pinMode(col2, INPUT_PULLUP);
pinMode(col3, INPUT_PULLUP);
pinMode(col4, INPUT_PULLUP);

//configure motor control pins as ouput
pinMode(motorl_for_rev, OUTPUT);
pinMode(motorl_pwm, OUTPUT);
pinMode(motorr_for_rev, OUTPUT);
pinMode(motorr_pwm, OUTPUT);
}

void loop()
{
//Assert row1, deassert row 2,3,4
digitalWrite(row1, LOW); digitalWrite(row2, HIGH);
digitalWrite(row3, HIGH); digitalWrite(row4, HIGH);

//Read columns
if (digitalRead(col1) == LOW)

key_depressed = '0';

3.5. HIGH POWER DC INTERFACES 145

else if (digitalRead(col2) == LOW)
key_depressed = '1';

else if (digitalRead(col3) == LOW)
key_depressed = '2';

else if (digitalRead(col4) == LOW)
key_depressed = '3';

else
key_depressed = '*';

if (key_depressed == '*')
{
//Assert row2, deassert row 1,3,4
digitalWrite(row1, HIGH); digitalWrite(row2, LOW);
digitalWrite(row3, HIGH); digitalWrite(row4, HIGH);

//Read columns
if (digitalRead(col1) == LOW)
key_depressed = '4';

else if (digitalRead(col2) == LOW)
key_depressed = '5';

else if (digitalRead(col3) == LOW)
key_depressed = '6';

else if (digitalRead(col4) == LOW)
key_depressed = '7';

else
key_depressed = '*';

}

if (key_depressed == '*')
{
//Assert row3, deassert row 1,2,4
digitalWrite(row1, HIGH); digitalWrite(row2, HIGH);
digitalWrite(row3, LOW); digitalWrite(row4, HIGH);

//Read columns
if (digitalRead(col1) == LOW)
key_depressed = '8';

else if (digitalRead(col2) == LOW)

146 3. MSP432 OPERATING PARAMETERS AND INTERFACING

key_depressed = '9';
else if (digitalRead(col3) == LOW)
key_depressed = 'A';

else if (digitalRead(col4) == LOW)
key_depressed = 'B';

else
key_depressed = '*';

}

if (key_depressed == '*')
{
//Assert row4, deassert row 1,2,3
digitalWrite(row1, HIGH); digitalWrite(row2, HIGH);
digitalWrite(row3, HIGH); digitalWrite(row4, LOW);

//Read columns
if (digitalRead(col1) == LOW)
key_depressed = 'C';

else if (digitalRead(col2) == LOW)
key_depressed = 'D';

else if (digitalRead(col3) == LOW)
key_depressed = 'E';

else if (digitalRead(col4) == LOW)
key_depressed = 'F';

else
key_depressed = '*';

}

if(key_depressed != '*')
{
Serial.write(key_depressed);
Serial.write(' ');

switch(key_depressed)
{
case '0' : Serial.println("Motor L - forward low speed");

Serial.println("Motor R - off");
digitalWrite(motorl_for_rev, HIGH);
analogWrite(motorl_pwm, 64);

3.5. HIGH POWER DC INTERFACES 147

digitalWrite(motorr_for_rev, HIGH);
analogWrite(motorr_pwm, 0);
break;

case '1' : Serial.println("Motor L - forward medium speed");
Serial.println("Motor R - off");
digitalWrite(motorl_for_rev, HIGH);
analogWrite(motorl_pwm, 128);
digitalWrite(motorr_for_rev, HIGH);
analogWrite(motorr_pwm, 0);
break;

case '2' : Serial.println("Motor L - forward medium high speed");
Serial.println("Motor R - off");
digitalWrite(motorl_for_rev, HIGH);
analogWrite(motorl_pwm, 192);
digitalWrite(motorr_for_rev, HIGH);
analogWrite(motorr_pwm, 0);
break;

case '3' : Serial.println("Motor L - forward high speed");
Serial.println("Motor R - off");
digitalWrite(motorl_for_rev, HIGH);
analogWrite(motorl_pwm, 255);
digitalWrite(motorr_for_rev, HIGH);
analogWrite(motorr_pwm, 0);
break;

case '4' : Serial.println("Motor L - reverse low speed");
Serial.println("Motor R - off");
digitalWrite(motorl_for_rev, LOW);
analogWrite(motorl_pwm, 64);
digitalWrite(motorr_for_rev, HIGH);
analogWrite(motorr_pwm, 0);
break;

case '5' : Serial.println("Motor L - reverse medium speed");
Serial.println("Motor R - off");
digitalWrite(motorl_for_rev, LOW);

148 3. MSP432 OPERATING PARAMETERS AND INTERFACING

analogWrite(motorl_pwm, 128);
digitalWrite(motorr_for_rev, HIGH);
analogWrite(motorr_pwm, 0);
break;

case '6' : Serial.println("Motor L - reverse medium high speed");
Serial.println("Motor R - off");
digitalWrite(motorl_for_rev, LOW);
analogWrite(motorl_pwm, 192);
digitalWrite(motorr_for_rev, HIGH);
analogWrite(motorr_pwm, 0);
break;

case '7' : Serial.println("Motor L - reverse high speed");
Serial.println("Motor R - off");
digitalWrite(motorl_for_rev, LOW);
analogWrite(motorl_pwm, 255);
digitalWrite(motorr_for_rev, HIGH);
analogWrite(motorr_pwm, 0);
break;

case '8' : Serial.println("Motor R - forward low speed");
Serial.println("Motor L - off");
digitalWrite(motorr_for_rev, HIGH);
analogWrite(motorr_pwm, 64);
digitalWrite(motorl_for_rev, HIGH);
analogWrite(motorl_pwm, 0);
break;

case '9' : Serial.println("Motor R - forward medium speed");
Serial.println("Motor L - off");
digitalWrite(motorr_for_rev, HIGH);
analogWrite(motorr_pwm, 128);
digitalWrite(motorl_for_rev, HIGH);
analogWrite(motorl_pwm, 0);
break;

case 'A' : Serial.println("Motor R - forward medium high speed");
Serial.println("Motor L - off");

3.5. HIGH POWER DC INTERFACES 149

digitalWrite(motorr_for_rev, HIGH);
analogWrite(motorr_pwm, 192);
digitalWrite(motorl_for_rev, HIGH);
analogWrite(motorl_pwm, 0);
break;

case 'B' : Serial.println("Motor R - forward high speed");
Serial.println("Motor L - off");
digitalWrite(motorr_for_rev, HIGH);
analogWrite(motorr_pwm, 255);
digitalWrite(motorl_for_rev, HIGH);
analogWrite(motorl_pwm, 0);
break;

case 'C' : Serial.println("Motor R - reverse low speed");
Serial.println("Motor L - off");
digitalWrite(motorr_for_rev, LOW);
analogWrite(motorr_pwm, 64);
digitalWrite(motorl_for_rev, HIGH);
analogWrite(motorl_pwm, 0);
break;

case 'D' : Serial.println("Motor R - reverse medium speed");
Serial.println("Motor L - off");
digitalWrite(motorr_for_rev, LOW);
analogWrite(motorr_pwm, 128);
digitalWrite(motorl_for_rev, HIGH);
analogWrite(motorl_pwm, 0);
break;

case 'E' : Serial.println("Motor R - reverse medium high speed");
Serial.println("Motor L - off");
digitalWrite(motorr_for_rev, LOW);
analogWrite(motorr_pwm, 192);
digitalWrite(motorl_for_rev, HIGH);
analogWrite(motorl_pwm, 0);
break;

case 'F' : Serial.println("Motor R - reverse high speed");

150 3. MSP432 OPERATING PARAMETERS AND INTERFACING

Serial.println("Motor L - off");
digitalWrite(motorr_for_rev, LOW);
analogWrite(motorr_pwm, 0);
digitalWrite(motorl_for_rev, HIGH);
analogWrite(motorl_pwm, 0);
break;

}
}

//limit switch bounce
delay(200);
}

//***

3.5.2 DC SOLENOID CONTROL
e interface circuit for a DC solenoid is shown in Figure 3.31. A solenoid is used to activate a
mechanical insertion (or extraction). As in previous examples, we employ the LTC1157 MOS-
FET driver between the microcontroller and the power MOSFET used to activate the solenoid.
A reverse biased diode is placed across the solenoid. Both the solenoid power supply and the
MOSFET must have the appropriate voltage and current rating to support the solenoid require-
ments.

3.5.3 STEPPER MOTOR CONTROL
Stepper motors are used to provide a discrete angular displacement in response to a control signal
step. ere are a wide variety of stepper motors including bipolar and unipolar types with different
configurations of motor coil wiring. Due to space limitations we only discuss the unipolar, 5 wire
stepper motor. e internal coil configuration for this motor is shown in Figure 3.32b.

Often, a wiring diagram is not available for the stepper motor. Based on the wiring con-
figuration (see Figure 3.32b), one can find out the common line for both coils. It has a resistance
that is one-half of all of the other coils. Once the common connection is found, one can con-
nect the stepper motor into the interface circuit. By changing the other connections, one can
determine the correct connections for the step sequence. To rotate the motor either clockwise or
counterclockwise, a specific step sequence must be sent to the motor control wires as shown in
Figure 3.32b.

e microcontroller does not have sufficient capability to drive the motor directly. ere-
fore, an interface circuit is required as shown in Figure 3.33. e speed of motor rotation is de-
termined by how fast the control sequence is completed.

3.5. HIGH POWER DC INTERFACES 151

3.3 VDC

MSP432
Microcontroller

LTC1157
MOSFET

Driver

DC Solenoid
Supply Voltage

Protection
Diode

MTD3055EL
power FETIN1

IN2

G1

G2

30 K

10 µF

Figure 3.31: Solenoid interface circuit.

//**
//stepper
//
//This example code is in the public domain.
//**

//external switches
#define ext_sw1 23
#define ext_sw2 24

//stepper channels
#define stepper_ch1 25
#define stepper_ch2 26
#define stepper_ch3 27
#define stepper_ch4 28

int switch_value1, switch_value2;
int motor_speed = 1000; //motor increment time in ms
int last_step = 1;

152 3. MSP432 OPERATING PARAMETERS AND INTERFACING

(a) A stepper motor rotates a fixed angle per step.

step

1

2

3

4

(b) Coil configuration and step sequence.

Figure 3.32: Unipolar stepper motor.

int next_step;

void setup()
{
//Screen
Serial.begin(9600);

//external switches
pinMode(ext_sw1, INPUT);

3.5. HIGH POWER DC INTERFACES 153

3.3 VDC

4.7 K

3.3 VDC

4.7 K

external switch 1
(clockwise)

external switch 2
(clockwise)

 12 VDC
orange

1N4001

25: stepper_ch1
26: stepper_ch2
27: stepper_ch3
28: stepper_ch4

Adafruit
TXB010B

level
shifter

10 K

10 K

10 K

10 K

brown green red yellow

TIP 120

TIP 120

TIP 120

TIP 120
TIP
120

BCE42BYG016, 4 phase unipolar, 1.8°/step, 12 VDC, 160 mA

Figure 3.33: Unipolar stepper motor interface circuit.

154 3. MSP432 OPERATING PARAMETERS AND INTERFACING

pinMode(ext_sw2, INPUT);

//stepper channel
pinMode(stepper_ch1, OUTPUT);
pinMode(stepper_ch2, OUTPUT);
pinMode(stepper_ch3, OUTPUT);
pinMode(stepper_ch4, OUTPUT);

}

void loop()
{
switch_value1 = digitalRead(ext_sw1);
switch_value2 = digitalRead(ext_sw2);

if(switch_value1 == LOW) //switch1 asserted
{
while(switch_value1 == LOW) //clockwise

{
if(last_step == 1)
{
Serial.println("Switch 1: low, step 1");
digitalWrite(stepper_ch1, HIGH);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, LOW);
next_step = 2;
}

else if(last_step == 2)
{
Serial.println("Switch 1: low, step 2");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, HIGH);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, LOW);
next_step = 3;
}

else if(last_step == 3)
{

3.5. HIGH POWER DC INTERFACES 155

Serial.println("Switch 1: low, step 3");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, HIGH);
digitalWrite(stepper_ch4, LOW);
next_step = 4;
}

else if(last_step == 4)
{
Serial.println("Switch 1: low, step 4");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, HIGH);
next_step = 1;
}

else
{
;
}

last_step = next_step;
delay(motor_speed);
switch_value1 = digitalRead(ext_sw1);
}//end while

}//end if

else if(switch_value2 == LOW) //switch2 asserted
{
while(switch_value2 == LOW) //counter clockwise

{
if(last_step == 1)
{
Serial.println("Switch 2: low, step 1");
digitalWrite(stepper_ch1, HIGH);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, LOW);
next_step = 4;
}

156 3. MSP432 OPERATING PARAMETERS AND INTERFACING

else if(last_step == 2)
{
Serial.println("Switch 2: low, step 2");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, HIGH);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, LOW);
next_step = 1;
}

else if(last_step == 3)
{
Serial.println("Switch 2: low, step 3");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, HIGH);
digitalWrite(stepper_ch4, LOW);
next_step = 2;
}

else if(last_step == 4)
{
Serial.println("Switch 2: low, step 4");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, HIGH);
next_step = 3;
}

else
{
;
}

last_step = next_step;
delay(motor_speed);
switch_value2 = digitalRead(ext_sw2);
}//end while

}//end if

else
{

3.6. INTERFACING TO MISCELLANEOUS DC DEVICES 157

digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, LOW);
}

}
//**

3.5.4 OPTICAL ISOLATION
It is a good design practice to provide optical isolation between a motor control circuit and the
motor. A typical optical isolator (e.g., 4N25) consists of an LED and an optical transistor in a
common package as shown in Figure 3.34. e LED is driven by a low voltage control signal from
the MSP432, whereas, the optical transistor provides the control signal to the motor interface
circuit. e link between the MSP432 to the motor interface circuit is now enabled by light
rather than an electrical link. is provides a high level of noise isolation between the processor
and the motor interface circuit. Many optical isolators also provide a signal inversion.

1

2

3

6

5

4

Vcc

RL

nc

Figure 3.34: 4N25 optical isolator.

3.6 INTERFACING TO MISCELLANEOUS DC DEVICES
In this section, we present a potpourri of interface circuits to connect a microcontroller to a wide
variety of DC peripheral devices.

3.6.1 SONALERTS, BEEPERS, BUZZERS
In Figure 3.35, we show several circuits used to interface a microcontroller to a buzzer, beeper, or
other types of annunciator devices such as a sonalert. It is important that the interface transistor
and the supply voltage are matched to the requirements of the sound producing device.

158 3. MSP432 OPERATING PARAMETERS AND INTERFACING

Vcc = 5 VDC

buzzer, 3850 Hz

5 VDC, 3–14 mA

220

2N2222
10 Kfrom

micro

(a) 5 VDC buzzer interface.

Vcc = 12 VDC

annunciator
12 VDC, 8 mA

220

2N2222
10 Kfrom

micro

(b) 12 VDC annunciator.

Figure 3.35: Sonalert, beepers, buzzers.

3.6.2 VIBRATING MOTOR
A vibratingmotor is often used to gain one’s attention as in a cell phone.esemotors are typically
rated at 3 VDC and a high current. e interface circuit shown in Figure 3.27 is used to drive the
low voltage motor.

3.6.3 DC FAN
e interface circuit shown in Figure 3.25 may also be used to control a DC fan. As before, a
reverse biased diode is placed across the DC fan motor.

3.6.4 BILGE PUMP
Abilge pump is a pump specifically designed to remove water from the inside of a boat.e pumps
are powered from a 12 VDC source and have typical flow rates from 360 to over 3,500 gallons per
minute. ey range in price from US $20–US $80 (www.shorelinemarinedevelopment.com).
An interface circuit to control a bilge pump from MSP432 is shown in Figure 3.36. e interface
circuit consists of a 470 ohm resistor, a powerNPNDarlington transistor (TIP 120) and a 1N4001
diode. e 12 VDC supply should have sufficient current capability to supply the needs of the
bilge pump.

www.shorelinemarine development.com

3.7. AC DEVICES 159

(a) Shoreline Bilge Pump.

12 VDC

470 Ω

Shoreline
Bilge Pump

from
MSP432

TIP 120 NPN
Darlington
transistor

 +

BP

 -

1N4001

(b) MSP432 to bilge pump interface.

Figure 3.36: Bilge pump interface.

3.7 AC DEVICES

Ahigh-power alternating current (AC) loadmay be switched on and off using a low-power control
signal from the microcontroller. In this case, a Solid State Relay is used as the switching device.
Solid state relays are available to switch a high power DC or AC load [Crydom]. For example, the
Crydom 558-CX240D5R is a printed circuit board mounted, air-cooled, single pole single throw
(SPST), normally open (NO) solid state relay. It requires a DC control voltage of 3–15 VDC at
15 mA. is microcontroller compatible DC control signal is used to switch 12–280 VAC loads
rated from 0.06–5 amps [Crydom].

To vary the direction of an AC motor, you must use a bi-directional AC motor. A bi-
-directional motor is equipped with three terminals: common, clockwise, and counterclockwise.
To turn the motor clockwise, an AC source is applied to the common and clockwise connections.
In like manner, to turn the motor counterclockwise, an AC source is applied to the common and
counterclockwise connections. is may be accomplished using two of the Crydom SSRs.

PowerSwitch manufacturers an easy-to-use AC interface the PowerSwitch Tail II. e de-
vice consists of a control module with attached AC connections rated at 120 VAC, 15 A. e
device to be controlled is simply plugged inline with the PowerSwitch Tail II. A digital control
signal from MSP432 (3 VDC at 3 mA) serves as the on/off control signal for the controlled AC
device. e controlled signal is connected to the PowerSwitch Tail II via a terminal block con-
nection. e PowerSwitch II may be configured as either normally closed (NC) or normally open
(NO) (www.powerswitchtail.com).

www.powerswitchtail.com

160 3. MSP432 OPERATING PARAMETERS AND INTERFACING

Example 19:PowerSwitchTail II. In this example, we use an IR sensor to detect someone’s
presence. If the IR sensor’s output reaches a predetermined threshold level, an AC desk lamp is
illuminated as shown in Figure 3.37.

//**
//switch_tail
//
//The circuit:
// - The IR sensor signal pin is connected to analog pin 0 (30).
// The sensor power and ground pins are connected to 5 VDC and
// ground respectively.
// - The analog output is designated as the onboard red LED.
// - The switch tail control signal is connected to P6.0 (pin 2)
//
//Adapted for code originally written by Tom Igoe
//Created: Dec 29, 2008
//Modified: Aug 30, 2011
//Author: Tom Igoe
//
//This example code is in the public domain.
//**

const int analogInPin = 30; //Energia analog input pin A0
const int analogOutPin = 75; //Energia onboard red LED pin
const int switch_tail_control =2; //Switch Tail control signal

int sensorValue = 0; //value read from the OR sensor
int outputValue = 0; //value output to the PWM (red LED)

void setup()
{
//initialize serial communications at 9600 bps:
Serial.begin(9600);

//configure Switch Tail control pin
pinMode(switch_tail_control, OUTPUT);
}

void loop()
{

3.7. AC DEVICES 161

desk lamp

PowerSwitch Tail II

1
: +

in

2
: -

in

3
: G

n
d to AC

wall outlet

IR sensor

R Y B

Figure 3.37: PowerSwitch Tail II.

162 3. MSP432 OPERATING PARAMETERS AND INTERFACING

//read the analog in value:
sensorValue = analogRead(analogInPin);

//map it to the range of the analog out:
outputValue = map(sensorValue, 0, 1023, 0, 255);

//change the analog out value:
analogWrite(analogOutPin, outputValue);

//Switch Tail control signal
if(outputValue >= 128)

{
digitalWrite(switch_tail_control, HIGH);
Serial.print("Light on");
}

else
{
digitalWrite(switch_tail_control, LOW);
Serial.print("Light off");
}

// print the results to the serial monitor:
Serial.print("sensor = ");
Serial.print(sensorValue);
Serial.print("\t output = ");
Serial.println(outputValue);

// wait 10 milliseconds before the next loop
// for the analog-to-digital converter to settle
// after the last reading:
delay(10);

}

//**

3.8 EDUCATIONAL BOOSTER PACK MKII

e Educational Booster Pack MkII allows rapid prototyping of designs. Shown in Figure 3.38,
it is equipped with a variety of transducers and output devices including [SLAU599, 2015].

3.8. EDUCATIONAL BOOSTER PACK MKII 163

• Two-axis joystick. e ITEAD Studio IM130330001 is a two-axis analog joystick
equipped with a pushbutton. e two analog signals are generated by x- and y-oriented
potentiometers. As the joystick is moved the analog signals relay the joystick position to
the MSP432 via the J1.2 (X) and J3.26 (Y) header pins. e joystick select pushbutton is
connected to pin J1.5.

• Microphone. e MkII is equipped with the CUI CMA-4544PW-W electret micro-
phone. e microphone signal is amplified via an OPA344 operational amplifier. e mi-
crophone has a frequency response of 20 Hz to 20 kHz. e microphone is connected to
MSP432 pin J1.6.

• Light sensor. e light sensor aboard the MkII is the OPT3001 digital ambient light sen-
sor. e sensor measures ambient light intensity and it is tuned to the light response of the
human eye. It also has filters to reject infrared (IR) light. It detects light intensity in the
range from 0.01–83 lux. e I2C compatible output of the sensor is provided to MSP432
pins J1.9 (I2C SCL), J1.10 (I2C SDA), and J1.8 (sensor interrupt).

• Temperature sensor. e temperature sensor is also I2C compatible. e TMP006 is a
noncontact sensor that passively absorbs IR wavelengths from 4–16 �m. e I2C com-
patible output is provided to MSP432 pins J1.9 (I2C SCL), J1.10 (I2C SDA), and J2.11
(sensor interrupt).

• Servo motor controller. e MkII is equipped with a convenient connector for a servo
motor. e servo motor control signal is provided by MSP432 signal pin J2.19.

• ree-axis accelerometer. Aboard the MkII is a Kionix KXTC9-2050 three-axis ac-
celerometer that measures acceleration in the X, Y, and Z directions. e three-channel
analog output corresponds to acceleration from � 1.5 g–� 6 g. e three channels of ana-
log output are available at MSP432 pins J3.23 (X), J3.24 (Y), and J3.25 (Z).

• Pushbuttons. e MkII is equipped with two pushbuttons designated S1 and S2. ey are
connected to the MSP432 via pins J4.33 (S1) and J4.32 (S2).

• Red-Green-Blue (RGB)LED. e RGB LED aboard the MkII is the Cree CLV1A-FKB
RGB multicolor LED. e three color components are accessible via MSP432 pins J4.39
(red), J4.38 (green), and J4.37 (blue). e intensity of each component may be adjusted
using pulse width modulation (PWM) techniques.

• Buzzer. e piezo buzzer aboard the MkII is the CUI CEM-1230. e buzzer will operate
at various frequencies using PWM techniques. e buzzer is accessible via MSP432 J4.40.

• ColorTFTLCD.ecolor 2DLCDaboard theMkII is controlled via the serial peripheral
interface (SPI) system. e Crystalfontz CFAF 128128B-0145T is a color 128 by 128 pixel
display.

164 3. MSP432 OPERATING PARAMETERS AND INTERFACING

Light Sensor Temp Sensor Accelerometer

Switches

RGB LED
BuzzerMicrophone

Joystick
Color 128 x 128 TFT LCD

Servo Motor
Control

Figure 3.38: Educational Booster Pack MkII. Illustration used with permission of Texas Instru-
ments www.ti.com.

Provided in Energia 17 (and beyond) is considerable software support for the MkII. is
software will be explored in the Laboratory Exercise accompanying this chapter.

3.9 GROVE STARTER KIT FOR LAUNCHPAD
Seeed provides a Grove Starter Kit for the MSP432 LaunchPad shown in Figure 3.39. It consists
of a BoosterPack configured breakout board for a number of sensors and output devices including
(www.seeedstudio.com):

• buzzer;

• four-digit seven segment LED display;

• relay;

• proximity Infrared Sensor (PIR) sensor;

• ultrasonic ranger;

• light sensor;

• rotary angle sensor;

www.ti.com
www.seeedstudio.com

3.10. APPLICATION: SPECIAL EFFECTS LED CUBE 165

• sound sensor;

• moisture sensor; and

• temperature and humidity sensor.

Figure 3.39: Grove Starter Kit for LaunchPad (www.seeedstudio.com). Illustrations used with per-
mission of Texas Instruments (www.TI.com).

e Grove Starter Kit is enhanced by considerable software support we explore in the Lab-
oratory Exercise section of the chapter.

3.10 APPLICATION: SPECIAL EFFECTS LED CUBE
To illustrate some of the fundamentals of MSP432 interfacing, we construct a three-dimensional
LED cube. is design was inspired by an LED cube kit available from Jameco (www.jameco.c
om).is application originally appeared in the third edition of “ArduinoMicrocontroller Process-
ing for Everyone!” e LED cube example has been adapted with permission for compatibility
with the MSP432 [Barrett, 2013].

e MSP432-EXP432P401R LaunchPad is a 3.3 VDC system. With this in mind, we
take two different design approaches.

www.seeedstudio.com
www.TI.com
www.jameco.com
www.jameco.com

166 3. MSP432 OPERATING PARAMETERS AND INTERFACING

1. Interface the 3.3 VDC MSP432 to an LED cube designed for 5 VDC operation via a
3.3–5.0 VDC level shifter.

2. Modify the design of the LED cube to operate at 3.3 VDC.

We explore each design approach in turn.
Approach 1: 5 VDC LED cube. e LED cube consists of four layers of LEDs with

16 LEDs per layer. Only a single LED is illuminated at a given time. However, different ef-
fects may be achieved by how long a specific LED is left illuminated and the pattern of LED
sequence followed. A specific LED layer is asserted using the layer select pins on the microcon-
troller using a one-hot-code (a single line asserted while the others are de-asserted). e asserted
line is fed through a 74HC244 (three state, octal buffer, line driver) which provides an IOH=IOL

current of � 35 mA as shown in Figure 3.40. A given output from the 74HC244 is fed to a com-
mon anode connection for all 16 LEDs in a layer. All four LEDs in a specific LED position, each
in a different layer, share a common cathode connection. at is, an LED in a specific location
within a layer shares a common cathode connection with three other LEDs that share the same
position in the other three layers. e common cathode connection from each LED location is
fed to a specific output of the 74HC154 4–16 decoder. e decoder has a one-cold-code output
(one output at logic low while the others are at logic high). To illuminate a specific LED, the
appropriate layer select and LED select line are asserted using the layer_sel[3:0] and led_sel[3:0]
lines respectively. is basic design may be easily expanded to a larger LED cube.

To interface the 5 VDC LED cube to the 3.3 VDC MSP432, a 3.3 VDC–5 VDC
level shifter is required for each of the control signals (layer_sel and led_sel). In this exam-
ple, a TXB0108 (low voltage octal bidirectional transceiver) is employed to shift the 3.3 VDC
signals of the MSP432 to 5 VDC levels. Adafruit provides a breakout board for the level
shifter (#TXB0108)(www.adafruit.com). Alternatively, a Texas Instrument LSF0101XEVM-
001, discussed earlier in the chapter, may be used for level shifting.

Approach 2: 3.3 VDC LED cube. A 3.3 VDC LED cube design is shown in Figure 3.41.
e 74HC154 1-of-16 decoder has been replaced by two 3.3 VDC 74LVX138 1-of-8 decoders.
e two 74LVX138 decoders form a single 1-of-16 decoder.e led_sel3 is used to select between
the first decoder via enable pin /E2 or the second decoder via enable pin E3. Also, the 74HC244
has been replaced by a 3.3 VDC 74LVX244.

3.10.1 CONSTRUCTION HINTS
To limit project costs, low-cost red LEDs (Jameco #333973) are used. is LED has a forward
voltage drop (Vf) of approximately 1.8 VDC and a nominal forward current (If) of 20 mA. e
project requires a total of 64 LEDs (4 layers of 16 LEDs each). An LED template pattern was
constructed from a 5” by 5” piece of pine wood. A 4-by-4 pattern of holes were drilled into the
wood. Holes were spaced 3/4” apart. e hole diameter was slightly smaller than the diameter of
the LEDs to allow for a snug LED fit.

www.adafruit.com

3.10. APPLICATION: SPECIAL EFFECTS LED CUBE 167

_

+

LED
LED0

LED horizontal layer 0
top view

cocktail
straw
spacer

side
view

Idiode =

IOL = +/- 25 mA

- +

- +

- +

- +

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15
220

74HC244

/OEa-1

/OEb-19

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

Idiode

Idiode

LED horizontal layer 3
LED horizontal layer 2
LED horizontal layer 1

Vcc = 5 VDC

Vcc = 5 VDC

18 16 14 12 9 7 5 3

2 4 6 8 11 13 15 17
10

20

1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 24

/EO-18
/E1-19

74HC154
4-to-16 decoder

Adafruit
TXB0108

level
shifter

20 21 22 23 12

D

led_sel0
led_sel1
led_sel2

led_sel3

23
24
25

26

layer_sel 0
layer_sel1

layer_sel2

layer_sel3

27
28

29

30

C B A

M
S

P
43

2 L
E

D
 s

el
ec

t
la

ye
r

se
le

ct

Notes:
1. LED cube consists of 4 layers of 16 LEDs each.
2. Each LED is individually addressed by asserting the appropriate cathode signal
 (0–15) and asserting a speci!c LED layer.
3. All LEDs in a given layer share a common anode connection.
4. All LEDs in a given position (0–15) share a common cathode connection.

Figure 3.40: 5 VDC LED special effects cube.

168 3. MSP432 OPERATING PARAMETERS AND INTERFACING

+

led_sel0
led_sel1
led_sel2

led_sel3

23
24
25

26

layer_sel0

layer_sel1

layer_sel2

layer_sel3

27

28

29

30

M
S

P
4
3
2 L

E
D

 s
el

ec
t

la
ye

r
se

le
ct

LED
0 1 2 3

4 5 6 7

8 9 10 11

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

LED0

cocktail
straw
spacer

side
view

Idiode =

IOL = +/- 25 mA

- +

- +

- +

- +

12 13 14 15
220

74LVX244

/OE1-1

/OE2-19

-

+

-

+

-

+

-

+

Idiode

Idiode

LED horizontal layer 3
LED horizontal layer 2
LED horizontal layer 1

Vcc = 5 VDC

V cc
 =

5 V
D

C

V cc
 =

5 V
D

C

LED
 15

LED
 14

LED
 13

LED
 12

LED
 11

LED
 10

LED
 9

LED
 8

LED
 7

LED
 6

LED
 5

LED
 4

LED
 3

LED
 2

LED
 1

LED
 0

18 16 14 12 9 7 5 3

2 4 6 8 11 13 15 17

10

20

 O0 O1 O2 O3 O4 O5 O6 O7 (16)
(15) (14) (13) (12) (11) (10) (9) (7)

 O0 O1 O2 O3 O4 O5 O6 O7 (16)
(15) (14) (13) (12) (11) (10) (9) (7)

74LVX138 74LVX138
 (4) (5) (6)
/E1 /E2 E3

 (1) (2) (3)
 A0 A1 A2

 (4) (5) (6)
/E1 /E2 E3

 (1) (2) (3)
 A0 A1 A2

5 VDC

(8)(8)

Figure 3.41: LED special effects cube.

3.10. APPLICATION: SPECIAL EFFECTS LED CUBE 169

e LED array was constructed a layer at a time using the wood template. Each LED was
tested before inclusion in the array. A 5VDCpower supply with a series 220 ohm resistor was used
to insure eachLEDwas fully operational.eLEDanodes in a givenLED rowwere then soldered
together. A fine tip soldering iron and a small bit of solder were used for each interconnect, as
shown in Figure 3.42. Cross wires were then used to connect the cathodes of adjacent rows. A
22 gage bare wire was used. Again, a small bit of solder was used for the interconnect points. Four
separate LED layers (4 by 4 array of LEDs) were completed.

To assemble the individual layers into a cube, cocktail straw segments were used as spacers
between the layers. e straw segments provided spacing between the layers and also offered
improved structural stability. e anodes for a given LED position were soldered together. For
example, all LEDs in position 0 for all four layers shared a common anode connection.

e completed LED cube was mounted on a perforated printed circuit board (perfboard)
to provide a stable base. LED sockets for the 74LS244 and the 74HC154 were also mounted to
the perfboard. Connections were routed to a 16 pin ribbon cable connector. e other end of the
ribbon cable was interfaced to the appropriate pins of the MSP432 via the level shifter. e entire
LED cubewasmountedwithin a 4” plexiglass cube.e cube is available from theContainer Store
(www.containerstore.com). A construction diagram is provided in Figure 3.42. A picture of
the LED cube is shown in Figure 3.43.

3.10.2 LED CUBE MSP432 ENERGIA CODE
Provided below is the basic code template to illuminate a single LED (LED 0, layer 0). is basic
template may be used to generate a number of special effects (e.g., tornado, black hole, etc.). Pin
numbers are provided for the MSP-EXP432P401R LaunchPad.

//**
//led_cube
//
//This example code is in the public domain.
//**

//led select pins
#define led_sel0 23
#define led_sel1 24
#define led_sel2 25
#define led_sel3 26

//layer select pins
#define layer_sel0 27
#define layer_sel1 28
#define layer_sel2 29

www.containerstore.com

170 3. MSP432 OPERATING PARAMETERS AND INTERFACING

_

_

LED solder connection

LED annodes are connected together
to form a common annode crossbar
between LED rows and columns

0-

+
1-

+
2-

+
3-

+

4-

+
5-

+
6-

+
7-

+

8-

+
9-

+
10-

+
11-

+

12-

+
13-

+
14-

+
15-

+

(a) LED soldering diagram.

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

(b) 3D LED array mounted within plexiglass cube.

Figure 3.42: LED cube construction.

3.10. APPLICATION: SPECIAL EFFECTS LED CUBE 171

Figure 3.43: LED Cube (photo courtesy of J. Barrett, Closer to the Sun International, 2015).

#define layer_sel3 30

void setup()
{
pinMode(led_sel0, OUTPUT);
pinMode(led_sel1, OUTPUT);
pinMode(led_sel2, OUTPUT);
pinMode(led_sel3, OUTPUT);

pinMode(layer_sel0, OUTPUT);
pinMode(layer_sel1, OUTPUT);
pinMode(layer_sel2, OUTPUT);
pinMode(layer_sel3, OUTPUT);
}

void loop()
{

//illuminate LED 0, layer 0

172 3. MSP432 OPERATING PARAMETERS AND INTERFACING

//led select
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);

//layer select
digitalWrite(layer_sel0, HIGH);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, LOW);

delay(500); //delay specified in ms
}

//***

In the next example, a function “illuminate_LED” has been added. To illuminate a specific
LED, the LED position (0–15), the LED layer (0–3), and the length of time to illuminate the
LED in milliseconds are specified. In this short example, LED 0 is sequentially illuminated in
each layer. An LED grid map is shown in Figure 3.44. It is useful for planning special effects.

//**
//led_cube2
//
//This example code is in the public domain.
//**

//led select pins
#define led_sel0 23
#define led_sel1 24
#define led_sel2 25
#define led_sel3 26

//layer select pins
#define layer_sel0 27
#define layer_sel1 28
#define layer_sel2 29
#define layer_sel3 30

void setup()
{

3.10. APPLICATION: SPECIAL EFFECTS LED CUBE 173

layer 3

layer 2

layer 1

layer 0

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 3.44: LED grid map.

174 3. MSP432 OPERATING PARAMETERS AND INTERFACING

pinMode(led_sel0, OUTPUT);
pinMode(led_sel1, OUTPUT);
pinMode(led_sel2, OUTPUT);
pinMode(led_sel3, OUTPUT);

pinMode(layer_sel0, OUTPUT);
pinMode(layer_sel1, OUTPUT);
pinMode(layer_sel2, OUTPUT);
pinMode(layer_sel3, OUTPUT);
}

void loop()
{
illuminate_LED(0, 0, 500);
illuminate_LED(0, 1, 500);
illuminate_LED(0, 2, 500);
illuminate_LED(0, 3, 500);
}

//***

void illuminate_LED(int led, int layer, int delay_time)
{
if(led==0)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==1)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==2)
{

3.10. APPLICATION: SPECIAL EFFECTS LED CUBE 175

digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==3)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==4)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

else if(led==5)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

else if(led==6)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

else if(led==7)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);

176 3. MSP432 OPERATING PARAMETERS AND INTERFACING

}
if(led==8)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==9)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==10)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==11)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==12)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

else if(led==13)
{
digitalWrite(led_sel0, HIGH);

3.10. APPLICATION: SPECIAL EFFECTS LED CUBE 177

digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

else if(led==14)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

else if(led==15)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

if(layer==0)
{
digitalWrite(layer_sel0, HIGH);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, LOW);
}

else if(layer==1)
{
digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, HIGH);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, LOW);
}

else if(layer==2)
{
digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, HIGH);
digitalWrite(layer_sel3, LOW);

178 3. MSP432 OPERATING PARAMETERS AND INTERFACING

}
else if(layer==3)
{
digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, HIGH);
}

delay(delay_time);
}

//***

In the next example, a “fireworks” special effect is produced. e firework goes up, splits
into four pieces, and then falls back down as shown in Figure 3.45. It is useful for planning special
effects.

//**
//fireworks
//
//This example code is in the public domain.
//**

//led select pins
#define led_sel0 23
#define led_sel1 24
#define led_sel2 25
#define led_sel3 26

//layer select pins
#define layer_sel0 27
#define layer_sel1 28
#define layer_sel2 29
#define layer_sel3 30
//***

void setup()
{
pinMode(led_sel0, OUTPUT);
pinMode(led_sel1, OUTPUT);

3.10. APPLICATION: SPECIAL EFFECTS LED CUBE 179

layer 3

layer 2

layer 1

layer 0

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 3.45: LED grid map for a fire work.

180 3. MSP432 OPERATING PARAMETERS AND INTERFACING

pinMode(led_sel2, OUTPUT);
pinMode(led_sel3, OUTPUT);

pinMode(layer_sel0, OUTPUT);
pinMode(layer_sel1, OUTPUT);
pinMode(layer_sel2, OUTPUT);
pinMode(layer_sel3, OUTPUT);
}

void loop()
{
int i;

//firework going up
illuminate_LED(5, 0, 100);
illuminate_LED(5, 1, 100);
illuminate_LED(5, 2, 100);
illuminate_LED(5, 3, 100);

//firework exploding into four pieces
//at each cube corner
for(i=0;i<=10;i++)
{
illuminate_LED(0, 3, 10);
illuminate_LED(3, 3, 10);
illuminate_LED(12, 3, 10);
illuminate_LED(15, 3, 10);
delay(10);
}

delay(200);

//firework pieces falling to layer 2
for(i=0;i<=10;i++)
{
illuminate_LED(0, 2, 10);
illuminate_LED(3, 2, 10);
illuminate_LED(12, 2, 10);
illuminate_LED(15, 2, 10);

3.10. APPLICATION: SPECIAL EFFECTS LED CUBE 181

delay(10);
}

delay(200);

//firework pieces falling to layer 1
for(i=0;i<=10;i++)
{
illuminate_LED(0, 1, 10);
illuminate_LED(3, 1, 10);
illuminate_LED(12, 1, 10);
illuminate_LED(15, 1, 10);
delay(10);
}

delay(200);

//firework pieces falling to layer 0
for(i=0;i<=10;i++)
{
illuminate_LED(0, 0, 10);
illuminate_LED(3, 0, 10);
illuminate_LED(12, 0, 10);
illuminate_LED(15, 0, 10);
delay(10);
}

delay(10);
}

//***

void illuminate_LED(int led, int layer, int delay_time)
{
if(led==0)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);

182 3. MSP432 OPERATING PARAMETERS AND INTERFACING

digitalWrite(led_sel3, LOW);
}

else if(led==1)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==2)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==3)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==4)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

else if(led==5)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

else if(led==6)
{

3.10. APPLICATION: SPECIAL EFFECTS LED CUBE 183

digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

else if(led==7)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

if(led==8)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==9)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==10)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==11)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);

184 3. MSP432 OPERATING PARAMETERS AND INTERFACING

}
else if(led==12)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

else if(led==13)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

else if(led==14)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

else if(led==15)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

if(layer==0)
{
digitalWrite(layer_sel0, HIGH);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, LOW);
}

else if(layer==1)
{

3.11. LABORATORYEXERCISE: INTRODUCTIONTOTHEEDUCATIONALBOOSTERPACKMKIIANDTHEGROVESTARTERKIT 185

digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, HIGH);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, LOW);
}

else if(layer==2)
{
digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, HIGH);
digitalWrite(layer_sel3, LOW);
}

else if(layer==3)
{
digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, HIGH);
}

delay(delay_time);
}

//***

3.11 LABORATORY EXERCISE: INTRODUCTION TO THE
EDUCATIONAL BOOSTER PACK MKII AND THE
GROVE STARTER KIT

Introduction. In this laboratory exercise, we get acquainted with the features of the Educational
Booster Pack MkII and the Grove Starter Kit.
Procedure 1: Access the MkII support software available with Energia. Execute the software and
interact with the peripherals aboard the MkII. Develop a table of features for the MkII. e table
should have column headings for:

• MkII feature,

• MSP432 pins used for interface, and

• notes on interesting aspects.

186 3. MSP432 OPERATING PARAMETERS AND INTERFACING

Procedure 2: Access the Grove Starter Kit support software. Execute the software and
interact with the peripherals aboard the Grove. Develop a table of features for the Grove. e
table should have column headings for:

• grove feature,

• MSP432 pins used for interface, and

• notes on interesting aspects.

3.12 SUMMARY
In this chapter, we presented the voltage and current operating parameters for the MSP432 mi-
crocontroller. We discussed how this information may be applied to properly design an interface
for common input and output circuits. It must be emphasized a carefully and properly designed
interface allows the microcontroller to operate properly within its parameter envelope. If due to
a poor interface design, a microcontroller is used outside its prescribed operating parameter val-
ues, spurious and incorrect logic values will result. We provided interface information for a wide
range of input and output devices. We also discussed the concept of interfacing a motor to a
microcontroller using PWM techniques coupled with high power MOSFET or SSR switching
devices.

3.13 REFERENCES AND FURTHER READING
Barrett, S. (2013) Arduino Microcontroller Processing for Everyone! San Rafael, CA, Morgan &

Claypool Publishers. DOI: 10.2200/s00283ed1v01y201005dcs029. 137, 165

Barrett S. and Pack D. (2011) Microcontroller Programming and Interfacing Texas
Instruments MSP430. San Rafael, CA, Morgan & Claypool Publishers. DOI:
10.2200/s00340ed1v01y201105dcs033.

Barrett, S. and Pack, D. (2006) Microcontrollers Fundamentals for Engineers and Scientists. San
Rafael, CA, Morgan & Claypool Publishers. DOI: 10.2200/s00025ed1v01y200605dcs001.

Crydom Corporation, 2320 Paseo de las Americas, Suite 201, San Diego, CA (www.crydom.c
om). 159

Faulkenberry, L. An Introduction to Operational Amplifiers, John Wiley & Sons, New York, 1977.
119, 120

Faulkenberry, L. Introduction to Operational Amplifiers with Linear Integrated Circuit Applications,
John Wiley & Sons, New York, 1982.

Electrical Signals and Systems. Primis Custom Publishing, McGraw-Hill Higher Education, De-
partment of Electrical Engineering, United States Air Force Academy, CO.

http://dx.doi.org/10.2200/s00283ed1v01y201005dcs029
http://dx.doi.org/10.2200/s00340ed1v01y201105dcs033
http://dx.doi.org/10.2200/s00340ed1v01y201105dcs033
http://dx.doi.org/10.2200/s00025ed1v01y200605dcs001
www.crydom.com
www.crydom.com

3.13. REFERENCES AND FURTHER READING 187

Images Company, 39 Seneca Loop, Staten Island, NY 10314. 109

Jameco Electronics, 1355 Shoreway Road, Belmont, CA 94002 (www.jameco.com).

Linear Technology, LTC1157 3.3 Dual Micropower High-Side/Low-Side MOSFET Driver.

Milone Technologies eTape liquid level sensors, 17 Ravenswood Way, Sewell, NJ 08080 (www.
milonetech.com).

Olimex Limited, 2 Pravda St., P.O.Box 237, Plovdiv 4000 Bulgaria (www.olimex.com).

Power Switching Tools for the Maker and DIY’ers, PowerSwitchTail.com, LLC (www.powers
witchtail.com).

Seeed Grow the Difference, Seeed Technology Limited, F5, Building 8, Shiling Industrial Park,
Xinwei, Number32, Tongsha Road Xili Town, Nanshan District, Shenzhen, China. P.R.C
518055 (www.seeedstudio.com).

Shoreline Marine, 1950 Stanley Street Northbrook, IL 60062, (http://www.shoreline\pr
otect\discretionary{\char\hyphenchar\font}{}{}-1111-marinedevelopment.co
m/).

Sick/Stegmann Incorporated, Dayton, OH (www.stegmann.com). 109

SparkFun Electronics, 6333 Dry Creek Parkway, Niwot, CO 80503 (www.sparkfun.com).

e Container Store, (www.containerstore.com).

Texas Instruments (www.ti.com). DOI: 10.1016/0141-9331(82)90083-7.

Texas Instruments 4N25, 4N26, 4N27, 4N28 Optocouplers SOOS035, 1978.

Texas Instruments BOOSTXL-EDUMKII Educational BoosterPack Mark II Plug-in Module
SLAU599, 2015. 162

Texas Instruments DRV8829 5-A 45-V Single H-Bridge Motor Driver SLVSA74E, 2010. 142

Texas Instruments SN754410 Quadruple Half-H Driver SLR8007C, 2015.

Texas Instruments H-bridge Motor Controller IC, SLVSA74A, 2010.

Texas Instruments MSP432P401XMixed-Signal Microcontrollers SLAS826A, 2015. 95, 96

Texas Instruments, TPIC6C596 Power Logic 8-Bit Shift Register (SLIS093D), Texas Instruments,
2015. 98

Texas Instruments TPIC6C596 Power Logic 8-Bit Shift Register TPIC6C596, 2015.

www.jameco.com
www.milonetech.com
www.milonetech.com
www.olimex.com
www.powerswitchtail.com
www.powerswitchtail.com
www.seeedstudio.com
http://www.shoreline\protect \discretionary {\char \hyphenchar \font }{}{}-1111-marinedevelopment.com/
http://www.shoreline\protect \discretionary {\char \hyphenchar \font }{}{}-1111-marinedevelopment.com/
http://www.shoreline\protect \discretionary {\char \hyphenchar \font }{}{}-1111-marinedevelopment.com/
www.stegmann.com
www.sparkfun.com
www.containerstore.com
www.ti.com
http://dx.doi.org/10.1016/0141-9331(82)90083-7

188 3. MSP432 OPERATING PARAMETERS AND INTERFACING

Texas Instruments, SN754410 Quadruple Half–H Driver (SLRS007C), Texas Instruments, 2015.
142

USAFA

3.14 CHAPTER PROBLEMS
Fundamental

1. What will happen if a microcontroller is used outside of its prescribed operating envelope?

2. Discuss the difference between the terms “sink” and “source” as related to current loading
of a microcontroller.

3. Can an LED with a series limiting resistor be directly driven by the MPS432 microcon-
troller? Explain.

4. Describe the UART channels aboard the MSP432.

5. Discuss isolation methods to handle signal inversion.

Advanced

1. In your own words, provide a brief description of each of the microcontroller electrical
parameters.

2. What is switch bounce? Describe in detail two techniques to minimize switch bounce.

3. Describe a method of debouncing a keypad.

4. What is the difference between an incremental encoder and an absolute encoder? Describe
applications for each type.

5. What must be the current rating of the 2N2222 and 2N2907 transistors used in the tri-state
LED circuit? Support your answer.

6. Why are internal pull-up or pull-down resistors help in switch debouncing.

7. Describe the difference between the MSP432 normal and high drive features. Describe how
a specific drive feature is selected for a MSP432 pin.

8. A 60 pulse per revolution optical encoder is mounted to a motor shaft. If 125 pulses are
counted in 80 ms, what is the speed of the motor in RPM?

9. Derive the output expressions for the classic operational amplifier configurations provided
in Figure 3.15.

3.14. CHAPTER PROBLEMS 189

Challenging

1. Draw the circuit for a six-character seven-segment display. Fully specify all components.
Write a program to display “MSP432” on the display.

2. Repeat the question above for a dot matrix display.

3. Repeat the question above for an LCD display.

4. AnMSP432 has been connected to a JRP 42BYG016 unipolar, 1.8 degree per step, 12VDC
at 160 mA stepper motor. A 1 s delay is used between the steps to control motor speed.
Pushbutton switches SW1 and SW2 are used to assert CW and CCW stepper motion.
Write the code to support this application.

5. Describe the operation of the Texas Instrument LSF010XEVM-001 bi-directional multi-
voltage level translator evaluation module (LSFEVM).

6. An analog joystick supplied at 3.3 VDC is used to control an underwater ROV. Develop
an Energia program to map joystick response to the following nautical directions: fore, aft,
port, and starboard.

7. Can the dot matrix display interface be accomplished without the level shifter? Explain.

191

C H A P T E R 4

MSP432 Memory System
Objectives: After reading this chapter, the reader should be able to:

• describe the importance of different memory components in a microcontroller-based sys-
tem;

• employ the binary and hexadecimal numbering systems to describe the contents or address
of a specific memory location;

• specify the length and width of a memory unit;

• describe the function of the address, data, and control buses of a memory unit;

• list the steps required for a memory unit to be read from or written to;

• provide the distinguishing characteristics of random access memory (RAM), read only
memory (ROM), and electrically erasable ROM (EEPROM) type memory units;

• explain the concept of a memory map;

• sketch the memory map for the Texas Instruments MSP432 microcontroller;

• list the advantages of employingDirectMemory Access (DMA) techniques to transfer data;

• describe the key features and operation of the MSP432 flash memory controller, the
MSP432 RAM controller, and the MSP432 DMA controller; and

• program the MSP432 DMA controller to transfer data between different portions of mem-
ory.

4.1 OVERVIEW
In general, there are two purposes for a memory system in a microcontroller. Memory resources
serve as the storage and retrieval space for computer instructions and the storage and working
space for data. As its name implies, the memory system allows a microcontroller to “remember”
the program it is supposed to execute. Various memory components also allow data to be stored
and modified during program execution.

e intent of this chapter is to acquaint the reader with basic memory concepts, types
of memory, and its operation. e chapter begins with a review of key memory concepts and

192 4. MSP432 MEMORY SYSTEM

terminology.is is followed by a detailedmap of the Texas InstrumentsMSP432microcontroller
memory components. e different memory systems and controllers onboard the MSP432 are
then discussed. ese include the flash, RAM, flash main memory, flash information memory,
and the DMA memory controllers. e chapter concludes with a laboratory exercise detailing the
operation of the DMA memory controller.

4.2 BASIC MEMORY CONCEPTS
In this section, we review terminology and concepts associated with microcontroller memory.
Figure 4.1a provides a general model for a memory system. A microcontroller’s memory system
consists of a variety of memory technologies, including random access memory (RAM), several
types of read only memory (ROM), and electrically erasable programmable read only memory
(EEPROM). Each technology has a specific function within the microcontroller.

Memory may be viewed as a two-dimensional (2D) array of storage elements called bits. A
memory bit can store a single piece of digital information: a logic high or a logic low. Rather than
access a single bit for reading or writing, memory is typically configured such that a collection
of bits are read or written in parallel. e width, or how many bits are simultaneously accessed,
is a function of the specific microcontroller. Memory widths of a byte (8 bits) or a double byte
(16 bits) are common. e term “word” is often used to describe the width of the memory system.
e MSP432 has a word size of 32 bits. A memory system may be viewed as a series of different
memory locations each with a separate and unique address, as shown in Figure 4.1b. At each
address is the capacity to store a memory word of n data bits.

4.2.1 MEMORY BUSES
Memory system activities are controlled by several different buses including the address bus, the
data bus, and the control bus. A bus is a collection of conductors with a common function. e ad-
dress bus contains a number (m) of separate address lines. Using linear addressing techniques, the
expression 2address lines provides the number of uniquely addressable memory locations. For exam-
ple, the MSP432 microcontroller is equipped with 32 address lines and, therefore, may separately
address 232 or 4,294,967,296 (approximately 4G) different memory locations.

e data bus width (n) usually matches the width of memory or the number of bits stored
at each memory location. is allows the contents of a specific memory location to be read from
or written to simultaneously. e MSP432 microcontroller has a 32-bit data path. e width of
the data path also determines the maximum size of mathematical arguments that can be easily
processed by the microcontroller. For example, with a 32-bit data width, the maximum unsigned
integer that may be processed without overflow is 232 or 4,294,967,296.

e control bus consists of the signal lines required to perform memory operations such as
read and write. ere are typically control signals to specify the memory operation (read or write),
a clock input, and an enable output for the memory system.

4.2. BASIC MEMORY CONCEPTS 193

Memory
System

Address
Bus

Control
Bus

Data
Bus

m

c

n

(a) memory system model.

memory address
0000_0000_0000_0000_0000_0000_0000_0000

1111_1111_1111_1111_1111_1111_1111_1111

word 0
word 1
word 2

memory width (n)

memory length (2m)

(b) memory length and width.

Figure 4.1: (a) General model for a memory system and (b) memory length and width.

194 4. MSP432 MEMORY SYSTEM

4.2.2 MEMORY OPERATIONS
Operations that are typically performed on a memory system include read from and write to the
memory system. e memory read operation consists of the following activities.

• e address of the memory location to be read is provided by the microcontroller on the
address bus to the memory system.

• e control signal to read the specified memory location is asserted by the microcontroller.

• e data at the specified memory location is fetched from memory and placed on the mem-
ory system data lines.

• e control signal to enable the memory system output is asserted. is allows the fetched
memory data access to the data bus.

e memory write operation consists of the following activities.

• e address of the memory location to be written to is provided by the microcontroller on
the address bus to the memory system.

• e data to be written to the specified memory location is provided by the microcontroller
on the data bus.

• e control signal to write to the specified memory location is asserted.

• e data is written to the specified memory location.

4.2.3 BINARY AND HEXADECIMAL NUMBERING SYSTEMS
e binary, or base 2, numbering system is used to specify addresses and data within
microcontroller systems. A review of the binary numbers is provided in Figure 4.2a.
e largest unsigned integer that can be specified with a 32 bit binary number is
1111_1111_1111_1111_1111_1111_1111_1111 or 4; 294; 967; 296. Large binary numbers are
difficult to read. To help in the readability of lengthy binary numbers, underscores are often in-
serted between every four bits as shown above.

As previously mentioned, the address bus and the data bus of the MSP432 is 32 bits wide.
Rather than specifying large binary numbers, the contents of the address and data bus are often
expressed in the hexadecimal numbering system to enhance readability. A review of this system
is provided in Figure 4.2b.

To convert from the binary numbering system to the hexadecimal system, binary bits are
grouped in fours from either side of the radix point. Each group of four binary bits is represented
by its hexadecimal equivalent. Various methods are used to indicate that a specific number is
represented in the hexadecimal numbering system. In assembly language, the number is followed
by an “h”. In theC programming language the number is preceded by a 0x. Various documentation

4.2. BASIC MEMORY CONCEPTS 195

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

3
2
7
6
8

1
6
8
3
4

8
1
9
2

4
0
9
6

2
0
4
8

1
0
2
4

5
1
2

2
5
6

1
2
8

6
4

3
2

1
6 8 4 2 1

(a) binary number system.

binary hex binary hex binary hex binary hex

0000
0001
0010
0011

0
1
2
3

0100
0101
0110
0111

4
5
6
7

1000
1001
1010
1011

8
9
a
b

c
d
e
f

1100
1101
1110
1111

(b) hexadecimal number system.

3
2
7
6
8
 =

 8
0
0
0
h

 =
 1

0
0
0
_
0
0
0
0
_
0
0
0
0
_
0
0
0
0

1
6
8
3
4
 =

 4
0
0
0
h

 =
 0

1
0
0
_
0
0
0
0
_
0
0
0
0
_
0
0
0
0

8
1
9
2
 =

 2
0
0
0
h

 =
 0

0
1
0
_
0
0
0
0
_
0
0
0
0
_
0
0
0
0

4
0
9
6
 =

 1
0
0
0
h

 =
 0

0
0
1
_
0
0
0
0
_
0
0
0
0
_
0
0
0
0

2
0
4
8
 =

 0
8
0
0
h

 =
 0

0
0
0
_
1
0
0
0
_
0
0
0
0
_
0
0
0
0

1
0
2
4
 =

 0
4
0
0
h

 =
 0

0
0
0
_
0
1
0
0
_
0
0
0
0
_
0
0
0
0

5
1
2
 =

 0
2
0
0
h

 =
 0

0
0
0
_
0
0
1
0
_
0
0
0
0
_
0
0
0
0

2
5
6
 =

 0
1
0
0
h

 =
 0

0
0
0
_
0
0
0
1
_
0
0
0
0
_
0
0
0
0

1
2
8
 =

 0
0
8
0
h

 =
 0

0
0
0
_
0
0
0
0
_
1
0
0
0
_
0
0
0
0

6
4
 =

 0
0
4
0
h

 =
 0

0
0
0
_
0
0
0
0
_
0
1
0
0
_
0
0
0
0

3
2
 =

 =
=
2
=
h

 =
 0

0
0
0
_
0
0
0
0
_
0
0
1
0
_
0
0
0
0

1
6
 =

 0
0
1
0
h

 =
 0

0
0
0
_
0
0
0
0
_
0
0
0
1
_
0
0
0
0

8
 =

 0
0
0
8
h

 =
 0

0
0
0
_
0
0
0
0
_
0
0
0
0
_
1
0
0
0

4
 =

 0
0
0
4
h

 =
 0

0
0
0
_
0
0
0
0
_
0
0
0
0
_
0
1
0
0

2
 =

 0
0
0
2
h

 =
 0

0
0
0
_
0
0
0
0
_
0
0
0
0
_
0
0
1
0

1
 =

 0
0
0
1
h

 =
 0

0
0
0
_
0
0
0
0
_
0
0
0
0
_
0
0
0
1

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

(c) binary to hexadecimal conversion.

Figure 4.2: (a) e binary numbering system, (b) the hexadecimal numbering system, and (c) con-
version from binary to hexadecimal.

sources will place a dollar sign ($) before the numerical value or a subscripted 16 by the number
indicating the hexadecimal content.

196 4. MSP432 MEMORY SYSTEM

Examples:

1. Some microcontrollers have 16 address lines, giving it the capability to separately address
65,536 differentmemory locations.What is the address of the first and last memory location
expressed in hexadecimal?
Answer: e first and last addressable memory locations expressed in hexadecimal notation
are .0000/16 and .ffff /16.

2. Express the hexadecimal number .cf /16 in binary.
Answer: Each hexadecimal value is converted into its four bit binary equivalent resulting
in the value of .1100_1111/2

3. e MSP432 has the value of .0001_1010_1111_1100_0001_1010_1111_1100/2 present
on the data base. Express the value in hexadecimal.
Answer: Each group of four binary bits is expressed with its corresponding hexadecimal
equivalent resulting in .1afc1afc/16.

4.2.4 MEMORY ARCHITECTURES
ere are two basic types of computer architectures based on the memory organization: the von
Neumann architecture and the Harvard architecture. e von Neumann architecture has com-
puter instructions and data resident within the same memory system, whereas, the Harvard archi-
tecture uses separate units to store instructions and data. e MSP432 microcontroller employs
the von Neumann type architecture since data and instructions are both retained within the same
memory component.

4.2.5 MEMORY TYPES
Memory systems typically use several different types of memory technologies. Each technology
type has its inherent advantages and disadvantages. We briefly describe each type.

RAM
Random access memory (RAM) is volatile. at is, it only retains its memory contents while
power is present. Within a microcontroller system, RAM memory is used for storing global
variables, local variables, stack implementation, and the dynamic allocation of user-defined data
types during program execution. Variants of the MSP432 hosts onboard RAM memory of up to
64 Kbytes [SLAS826A, 2015].

ROM
Read only memory (ROM) is non-volatile. at is, a ROM memory retains its contents even
when power is lost. A ROM variant, EEPROM (for electrically erasable programmable read

4.2. BASIC MEMORY CONCEPTS 197

only memory), is often referred to as flash memory. ere are two main variants of flash memory
onboard the MSP432: flash main memory and flash information memory. Flash main mem-
ory is used to store programs and system constants that must be retained when system power is
lost (non-volatile memory). Flash information memory contains data used for program execu-
tion. Variants of the MSP432 host flash main memory up to 256 Kbytes and flash information
memory up to 16 Kbytes. e 256 kbytes of flash memory allow for substantial program develop-
ment. Provided below is a list of MSP432 variants with associated flash main memory and RAM
size [SLAS826A, 2015].

• MSP432P401RIPZ, flash main memory: 256 Kbytes, RAM: 64 Kbytes

• MSP432P401MIPZ, flash main memory: 128 Kbytes, RAM: 32 Kbytes

• MSP432P401RIZXH, flash main memory: 256 Kbytes, RAM: 64 Kbytes

• MSP432P401MIZXH, flash main memory: 128 Kbytes, RAM: 32 Kbytes

• MSP432P401RIRGC, flash main memory: 256 Kbytes, RAM: 64 Kbytes

• MSP432P401MIRGC, flash main memory: 128 Kbytes, RAM: 32 Kbytes

e MSP-EXP432P401R LaunchPad is equipped with the MSP432P401RIPZ proces-
sor [SLAU597A, 2015].

External Memory Components
A microcontroller’s memory system may also be enhanced or extended using external memory
components. For example, bulk storage capability may be added to a microcontroller-based sys-
tem by interfacing a Multi Media Card/Secure Digital (MMC/SD) card. e MMC/SD card
is equipped with a large complement of flash memory. e MMC/SD card is interfaced to the
microcontroller via a serial communication link. e MMC/SD card is typically housed in a
socket for easy removal from the host microcontroller-based system [SanDisk, 2000]. With an
MMC/SD card, data may be logged over a long period of time. e MMC/SD card may then
be removed from the microcontroller-based system and read by a personal computer (PC) to
examine and analyze the data.

Examples: A microcontroller-based application is being developed to log wind data at various
remote locations over long periods of time to determine the efficacy of a wind energy farm at a
remote site. Answer the following questions based on this scenario.

1. e algorithm to store the data is fairly complex and will require much storage space. What
memory component must you use to adequately to hold the algorithm?
Answer: e coded algorithm to control the data collection system is stored in flash main
memory. An MSP432 variant must be chosen that has sufficient flash memory capacity to
hold the algorithm.

198 4. MSP432 MEMORY SYSTEM

2. A good design technique is to compartmentalize specific algorithm operations into subrou-
tines or functions. What memory component is required to support the call to subroutines
or functions?
Answer: When a subroutine or function is called, local variables are placed on the stack.
e stack is typically implemented as a portion of RAM memory.

3. e data logging system will be dispersed at a number of locations on existing farms and
ranches. e plan is to collect the data over a six-month period and then have the property
owner transfer the data to a central facility for processing. What is the appropriate memory
technology to use in this situation?
Answer: A microcontroller-based data collection system equipped with a removable
MMC/SD card would be a good choice in this situation. e data could be collected for a
long period of time, and the MMC/SD card could then be removed and sent to the central
facility.

4. How do you determine the required capacity for the MMC/SD card to log data over a
six-month period?
Answer: To determine the required memory capacity the following parameters must be
considered:

• How many data variables are collected (e.g., date, time, temperature, wind speed, al-
titude) at a time?

• In what format will the data be stored (e.g., integers, floating point numbers, custom
abstract data type such as a record)?

• How often will data be collected (e.g., every 15 minutes, hourly, every 6 hours, daily)?
• Over what period of time will data be collected?

4.3 MEMORY OPERATIONS IN C USING POINTERS
Before delving into a detailed look at the MSP432 microcontroller’s memory system, we need to
discuss the concept of pointers in the C language. Pointer syntax allows one to easily refer to a
memory location’s address and the data contained at the address.¹

A pointer is another name for an address. To declare a pointer, an asterisk (�) is placed in
front of the variable name. e compiler will designate the variable as an address to the variable
type specified.

Shown below is the syntax to declare an integer and a pointer (address of) for an integer.
It is helpful to choose a variable name that helps you remember that a pointer variable has been
declared. A pointer may be declared as a global or local variable.
¹e information on pointers and examples provided were adapted from Dr. Jerry Cupal’s, EE4390 Microprocessors class notes
at the University of Wyoming.

4.3. MEMORY OPERATIONS IN C USING POINTERS 199

int x;
int *ptr_x;

Once a pointer has been declared, there is other syntax that may be used in the body of a
program to help manipulate memory addresses and data. e ampersand (&) is used to reference
the address of a variable, whereas the asterisk (�) is used as a dereference operator to refer to the
contents of a memory location that a pointer is referencing.

Example 1: Given the code snapshot below, what is the final value in variable n?

//***

int m,n; //declare integers m and n
int *ptr_m; //declare pointer to integer type

m = 10; //set integer m equal to 10
ptr_m = &m //set integer pointer to address of integer m
n = *ptr_m; //Note use of the deference operator

//***

Answer: e final value of n will be 10. e dereference operator in the last line of code refers to
the contents of the memory location referenced.

Example 2: In this example, a technique is provided to point to a location in memory space.

//***
char *ptr_mem; //configure a pointer to 8 bit locations

:
:

ptr_mem = (char*) 0x01000000; //cast the number 01000000h into a pointer
//that points to character locations

//***

Example 3: is example shows how a pointer may be used to move about memory locations by
using some basic mathematical operations.

//***
// This function fills a buffer located between memory locations 4000h
// 5FFFh in memory space with incrementing 32 bit numbers.

200 4. MSP432 MEMORY SYSTEM

The values
// loaded into memory start with 0000h and increments up to 0FFFh.
//***

int x; //integer variable x
int *ptr_buffer; //pointer to buffer

void main()
{
ptr_buffer = (int*) 0x4000; //cast a pointer equal to 4000
for(x=0x0000; x<=0x0fff; x++)
{
*ptr_buffer = x; //move the variable x into buffer
ptr_buffer++; //increment the pointer
}

}
//***

4.4 MEMORY MAP
A memory map is a visualization tool used to map the memory system onboard a microcontroller.
As previously mentioned, the MSP432 has a 32 bit memory address. is allows the microcon-
troller to span the address memory space from .00000000/16 to .ffffffff /16. Although the micro-
controller may span this space, it does not necessarily mean there are memory units installed at
each and every location. A memory map shows which addresses in memory are occupied by a
specific memory component and what locations are currently available for connection to other
devices. e memory map for the MSP432 microcontroller is shown in Figure 4.3.

As can be seen in Figure 4.3, there are a variety of memory units using different technologies
within the MSP432 memory map. For each memory component, the start and stop addresses are
provided as well as the address span on the memory component. e span is provided as the
number of locations in hexadecimal, decimal, and rounded off to the nearest byte. Additional
details of each memory unit is provided moving in the figure from left to right.

4.5 FLASH MEMORY
In the MSP432, Flash memory is divided into Main Memory and Information Memory. As can
be seen in the MSP432 memory map (Figure 4.3), the size of Flash Main Memory is 256 KB
and it spans the memory addresses from .00000000/16 to .0003FFFF/16. is memory space is
subdivided into 64 sectors of 4 KB each. Bulk operations on Flash Main Memory are performed
in 4 KB blocks. e 256 KB Flash Main Memory is organized into two separate, independent

4.5. FLASH MEMORY 201

512 MB
zones

0xFFFF_FFFF

0x0000_0000

0xE000_0000
0xDFFF_FFFF

0xC000_0000
0xBFFF_FFFF

0xA000_0000
0x9FFF_FFFF

0x8000_0000
0x7FFF_FFFF

0x6000_0000
0x5FFF_FFFF

0x4000_0000
0x3FFF_FFFF

0x2000_0000
0x1FFF_FFFF

0x5FFF_FFFF

0x4400_0000
0x4200_0000

0x4010_0000
0x4000_0000

0x3FFF_FFFF

0x2400_0000
0x2200_0000

0x2010_0000
0x2000_0000

0x1FFF_FFFF

0x0210_0000

0x0200_0000

0x0110_0000

0x0100_0000

0x0040_0000

0x0000_0000

0x010F_FFFF

0x0101_0000

0x003F_FFFF

0x0020_4000

0x0020_0000

0x0004_0000

0x0000_0000

0x0100_0000

Debug/Trace
Peripherals

Unused

Memory Map

Peripheral Zone Memory
(not to scale)

SRAM Code Zone
(not to scale)

Flash Memory
Region

(not to scale)

Unused

Unused

Unused

Peripherals

SRAM

Code

Peripheral Bit-Band
Alias Region

SRAM Bit-Band
Alias Region

SRAM Code
Region

SRAM
Memory

ROM
Region
(1 MB)

SRAM
Region
(1 MB)

Flash Memory
Region
(1 MB)

Flash Information
Memory
(16 MB)

Flash Main
Memory
(256 KB)

Code Zone Memory
(not to scale)

SRAM Zone Memory
(not to scale)

Peripheral
Region

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved Reserved

Reserved

Reserved

Figure 4.3: e MSP432 memory map [SLAS826A, 2015].

128 KB banks. is allows for simultaneous operations on both banks. Flash Main memory is
primarily used for user application code and data [SLAU356A, 2015, SLAS826A, 2015].

Flash Information Memory spans the location from .00200000/16 to .0020FFFF/16. e
16 KB space is subdivided into 4 sectors of 4 KB each. e 16 KB Flash Information Memory
is organized into two separate, independent 8 KB banks. is allows for simultaneous operations
on both banks. e Flash Information Memory is primarily reserved, but can be used to store
user data [SLAU356A, 2015, SLAS826A, 2015].

e Flash Controller (FLCTL) serves as the interface between the software and Flash
memory assets. It controls operations such as memory read and write, memory write and
erase protection, and auto-verify features. FLCTL operations are controlled by dedicated reg-
isters [SLAU356A, 2015]. Registers include:

• FLCTL_POWER_STAT Power Status Register

• FLCTL_BANK0_RDCTL Bank0 Read Control Register

202 4. MSP432 MEMORY SYSTEM

• FLCTL_BANK1_RDCTL Bank1 Read Control Register

• FLCTL_RDBRST_CTLSTAT Read Burst/Compare Control and Status Register

• FLCTL_RDBRST_STARTADDR Read Burst/Compare Start Address Register

• FLCTL_RDBRST_LEN Read Burst/Compare Length Register

• FLCTL_RDBRST_FAILADDR Read Burst/Compare Fail Address Register

• FLCTL_RDBRST_FAILCNT Read Burst/Compare Fail Count Register

• FLCTL_PRG_CTLSTAT Program Control and Status Register

• FLCTL_PRGBRST_CTLSTAT Program Burst Control and Status Register

• FLCTL_PRGBRST_STARTADDR Program Burst Start Address Register

• FLCTL_PRGBRST_DATA0_0 Program Burst Data0 Register0

• FLCTL_PRGBRST_DATA0_1 Program Burst Data0 Register1

• FLCTL_PRGBRST_DATA0_2 Program Burst Data0 Register2

• FLCTL_PRGBRST_DATA0_3 Program Burst Data0 Register3

• FLCTL_PRGBRST_DATA1_0 Program Burst Data1 Register0

• FLCTL_PRGBRST_DATA1_1 Program Burst Data1 Register1

• FLCTL_PRGBRST_DATA1_2 Program Burst Data1 Register2

• FLCTL_PRGBRST_DATA1_3 Program Burst Data1 Register3

• FLCTL_PRGBRST_DATA2_0 Program Burst Data2 Register0

• FLCTL_PRGBRST_DATA2_1 Program Burst Data2 Register1

• FLCTL_PRGBRST_DATA2_2 Program Burst Data2 Register2

• FLCTL_PRGBRST_DATA2_3 Program Burst Data2 Register3

• FLCTL_PRGBRST_DATA3_0 Program Burst Data3 Register0

• FLCTL_PRGBRST_DATA3_1 Program Burst Data3 Register1

• FLCTL_PRGBRST_DATA3_2 Program Burst Data3 Register2

• FLCTL_PRGBRST_DATA3_3 Program Burst Data3 Register3

4.5. FLASH MEMORY 203

• FLCTL_ERASE_CTLSTAT Erase Control and Status Register

• FLCTL_ERASE_SECTADDR Erase Sector Address Register

• FLCTL_BANK0_INFO_WEPROT Information Memory Bank0 Write/Erase Protec-
tion Register

• FLCTL_BANK0_MAIN_WEPROT Main Memory Bank0 Write/Erase Protection
Register

• FLCTL_BANK1_INFO_WEPROT Information memory Bank1 Write/Erase Protec-
tion Register

• FLCTL_BANK1_MAIN_WEPROT Main Memory Bank1 Write/Erase Protection
Register

• FLCTL_BMRK_CTLSTAT Benchmark Control and Status Register

• FLCTL_BMRK_IFETCH Benchmark Instruction Fetch Count Register

• FLCTL_BMRK_DREAD Benchmark Data Read Count Register

• FLCTL_BMRK_CMP Benchmark Count Compare Register

• FLCTL_IFG Interrupt Flag Register

• FLCTL_IE Interrupt Enable Register

• FLCTL_CLRIFG Clear Interrupt Flag Register

• FLCTL_SETIFG Set Interrupt Flag Register

• FLCTL_READ_TIMCTL Read Timing Control Register

• FLCTL_READMARGIN_TIMCTL Read Margin Timing Control Register

• FLCTL_PRGVER_TIMCTL Program Verify Timing Control Register

• FLCTL_ERSVER_TIMCTL Erase Verify Timing Control Register

• FLCTL_LKGVER_TIMCTL Leakage Verify Timing Control Register

• FLCTL_PROGRAM_TIMCTL Program Timing Control Register

• FLCTL_ERASE_TIMCTL Erase Timing Control Register

• FLCTL_MASSERASE_TIMCTL Mass Erase Timing Control Register

• FLCTL_BURSTPRG_TIMCTL Burst Program Timing Control Register
Details of specific register and bits settings are contained inMSP432P4xx Family Technical

Reference Manual [SLAU356A, 2015] and will not be repeated here.

204 4. MSP432 MEMORY SYSTEM

4.5.1 FLCTL DRIVELIB SUPPORT
Texas Instruments provides extensive MSP432 FLCTL support through a series of Application
Program Interfaces (APIs). Provided below is a list of FLCTL APIs. Details on API settings are
provided in MSP432 Peripheral Driver Library User’s Guide [DriverLib, 2015] and will not be
repeated here.

• void FlashCtl_clearInterruptFlag (uint32_t flags)

• void FlashCtl_clearProgramVerification (uint32_t verificationSetting)

• void FlashCtl_disableInterrupt (uint32_t flags)

• void FlashCtl_disableReadBuffering (uint_fast8_t memoryBank, uint_fast8_t access-
Method)

• void FlashCtl_disableWordProgramming (void)

• void FlashCtl_enableInterrupt (uint32_t flags)

• void FlashCtl_enableReadBuffering (uint_fast8_t memoryBank, uint_fast8_t access-
Method)

• void FlashCtl_enableWordProgramming (uint32_t mode) bool FlashCtl_eraseSector
(uint32_t addr)

• uint32_t FlashCtl_getEnabledInterruptStatus (void)

• uint32_t FlashCtl_getInterruptStatus (void)

• uint32_t FlashCtl_getReadMode (uint32_t flashBank)

• uint32_t FlashCtl_getWaitState (uint32_t bank)

• bool FlashCtl_isSectorProtected (uint_fast8_t memorySpace, uint32_t sector)

• uint32_t FlashCtl_isWordProgrammingEnabled (void)

• bool FlashCtl_performMassErase (void)

• bool FlashCtl_programMemory (void *src, void *dest, uint32_t length)

• bool FlashCtl_protectSector (uint_fast8_t memorySpace, uint32_t sectorMask)

• void FlashCtl_registerInterrupt (void(*intHandler)(void))

• void FlashCtl_setProgramVerification (uint32_t verificationSetting)

• bool FlashCtl_setReadMode (uint32_t flashBank, uint32_t readMode)

4.5. FLASH MEMORY 205

• void FlashCtl_setWaitState (uint32_t bank, uint32_t waitState)

• bool FlashCtl_unprotectSector (uint_fast8_t memorySpace, uint32_t sectorMask)

• void FlashCtl_unregisterInterrupt (void)

• bool FlashCtl_verifyMemory (void *verifyAddr, uint32_t length, uint_fast8_t pattern)

Example 4: Texas Instruments provides a number of MSP432 examples in DriverLib available
within Code Composer Studio. Several FLCTL examples are provided including the one shown
below. is example demonstrates the mass erase API.

//**
//MSP432 DriverLib - v01_04_00_18
//
//--COPYRIGHT--,BSD,BSD
//Copyright (c) 2015, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// - Neither the name of Texas Instruments Incorporated nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

206 4. MSP432 MEMORY SYSTEM

//***
//MSP432 Flash Controller - Mass Erase
//Description: This example shows the functionality of the mass erase
//API in DriverLib.
At the start of the example, flash bank 1 sectors
//30 and 31 are unprotected (0x3E000 - 0x3FFFF) and then programmed with
//filler data.
Sector 31 is then protected and a mass erase is performed.
//Since the mass erase will only erase unprotected sectors, after the
//mass erase finishes only the data in sector 30 will be erased (as can
//be observed through the memory browser in the debugger).
//
//Author: Timothy Logan
//***

//DriverLib Includes
#include "driverlib.h"

//Standard Includes
#include <stdint.h>
#include <stdbool.h>
#include <string.h>

#define BANK1_S30 0x3E000

//Statics
uint8_t patternArray[8192];

int main(void)
{
//Since this program has a huge buffer that simulates the calibration
//data, halting the watch dog is done in the reset ISR to avoid a
//watchdog timeout during the zero

//Setting our MCLK to 48MHz for faster programming
MAP_PCM_setCoreVoltageLevel(PCM_VCORE1);
MAP_CS_setDCOCenteredFrequency(CS_DCO_FREQUENCY_48);

//Initializing buffer to a pattern of 0xA5

4.5. FLASH MEMORY 207

memset(patternArray, 0xA5, 8192);

//Unprotecting User Bank 1, Sectors 30 and 31
MAP_FlashCtl_unprotectSector(FLASH_MAIN_MEMORY_SPACE_BANK1,

FLASH_SECTOR30 | FLASH_SECTOR31);

//Trying a mass erase.
Since we unprotected User Bank 1, sectors 31
//and 32, this should erase these sectors.
If it fails, we trap inside
//an infinite loop.
if(!MAP_FlashCtl_performMassErase())
while(1);

//Trying to program the filler data.
If it fails, trap inside an
//infinite loop
if(!MAP_FlashCtl_programMemory (patternArray, (void*) BANK1_S30, 8192))
while(1);

//Setting sector 31 back to protected
MAP_FlashCtl_protectSector(FLASH_MAIN_MEMORY_SPACE_BANK1,FLASH_SECTOR31);

//Performing the mass erase again.
Now, since we protected Sector31,
//only Sector 30 (0x3E000 - 0x3EFFF) should be erased.
Set a breakpoint
//after this call to observe the memory in the debugger.
if(!MAP_FlashCtl_performMassErase())
while(1);

//Deep Sleeping when not in use
while (1)
{
MAP_PCM_gotoLPM3();
}

}
//***

208 4. MSP432 MEMORY SYSTEM

4.6 DIRECT MEMORY ACCESS (DMA)
Direct memory access (DMA) provides the capability to move data from a source memory lo-
cation to a destination memory location without involving the central processing unit (CPU).
is is especially useful for low power operation when moving data from peripherals to specific
memory locations [SLAU208G, 2010]. DMA may be likened to the highway bypass arteries
around major cities. is allows the traveler to reach a destination in a timely manner without
going through the heart of a city. Similarly, DMA provides for the rapid transmission of data
from source to destination without involving the CPU.

In this section we briefly introduce the flexible and powerful MSP432 DMA system. We
begin with an overview of system specifications, followed by a description different types of avail-
able transfers. We then review MSP432 registers and driverlib API support used to configure
DMA transfers. We conclude with an illustrative example.

4.6.1 DMA SPECIFICATIONS
e MSP432 DMA is a flexible and powerful subsystem to enable fast data transfers without
involving the CPU. It provides for eight channels of simultaneous transfers from specific sources
and destinations within the MSP432, including MSP432 peripherals and memory locations. Fig-
ure 4.4 shows a summary of MSP432 sources. A specific source is specified by the Source Con-
figuration Register (SRCCFG) [SLAS826A, 2015].

SRCCFG=0

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

SRCCFG=1

eUSCI_A0 TX

eUSCI_A0 RX

eUSCI_A1 TX

eUSCI_A1 RX

eUSCI_A2 TX

eUSCI_A2 RX

eUSCI_A3 TX

eUSCI_A3 RX

SRCCFG=2

eUSCI_B0 TX

eUSCI_B0 RX

eUSCI_B1 TX

eUSCI_B1 RX

eUSCI_B2 TX

eUSCI_B2 RX

eUSCI_B3 TX

eUSCI_B3 RX

SRCCFG=3

eUSCI_B3 TX1

eUSCI_B3 RX1

eUSCI_B0 TX1

eUSCI_B0 RX1

eUSCI_B1 TX1

eUSCI_B1 RX1

eUSCI_B2 TX1

eUSCI_B2 RX1

SRCCFG=4

eUSCI_B2 TX2

eUSCI_B2 RX2

eUSCI_B3 TX2

eUSCI_B3 RX2

eUSCI_B0 TX2

eUSCI_B0 RX2

eUSCI_B1 TX2

eUSCI_B1 RX2

SRCCFG=5

eUSCI_B1 TX3

eUSCI_B1 RX3

eUSCI_B2 TX3

eUSCI_B2 RX3

eUSCI_B3 TX3

eUSCI_B3 RX3

eUSCI_B0 TX3

eUSCI_B0 RX3

SRCCFG=6

TA0CCR0

TA0CCR2

TA1CCR0

TA1CCR2

TA2CCR0

TA2CCR2

TA3CCR0

TA0CCR2

SRCCFG=7

AES256_Trigger0

AES256_Trigger0

AES256_Trigger0

Reserved

Reserved

Reserved

DMAEO
(external pin)

ADC14

ADC: analog-to-digital conversion
eUSCI_A0 - A3: UART IrDA, SPI
eUSCI_B0 - B3: I2C, SPI
TA0 - TA3: timers
AES: security encryption/decryption
DMA: direct memory access

Figure 4.4: MSP432 DMA sources [SLAS826A, 2015].

e specific width of the DMA transfer may be set for 8, 16, or 32 bits, depending on the
type of data being transferred. Whichever width is selected, both source and destination widths
must be equal. e number of data items per transfer may be set from 1–1024. e details of a
DMA transfer is specified using the DMA associated registers [SLAS826A, 2015].

4.6. DIRECT MEMORY ACCESS (DMA) 209

4.6.2 DMA TRANSFER TYPES
e MSP432 has several different transfer types available. A brief definition of each follows. Ad-
ditional technical detail of transfer types are provided in SLAU356A [2015], SLAS826A [2015].

• Invalid: e invalid DMA transfer type is used to signal the end of a DMA transfer. It
prevents the DMA system from repeating a completed transfer [SLAU356A, 2015].

• Auto-request: e auto-request DMA transfer type is used for large DMA transfers. Once
enabled the specified transfer will run to completion [SLAU356A, 2015].

• Ping-Pong: In the game of ping-pong, a ball is volleyed back and forth between two sides
of the table. is also describes this type of DMA transfer. Data from a source is alter-
nately deposited into two different destinations. e first batch of data is transferred to
the first destination. While the second batch of data is being transferred to the second
destination, while the first batch of data may be processed by the CPU. e process can
repeat [SLAU356A, 2015].

• Memory Scatter-Gather: In the memory scatter-gather DMA transfer, data from memory
is transferred in four packets from memory to two different data structures designated as
primary and secondary. Continued transfers alternate between the primary and secondary
structures [SLAU356A, 2015].

• Peripheral Scatter-Gather: In the peripheral scatter-gather DMA transfer, data from a
designated peripheral is transferred in four packets from memory to two different data struc-
tures, designated as primary and secondary. Continued transfers alternate between the pri-
mary and secondary structures [SLAU356A, 2015].

• Basic: e basic DMA transfer is shown in Figure 4.5. When the DMA is enabled, it will
poll for any active channel requests. If a request is active, theDMA systemwill then check to
see if there is a higher priority request pending. If a higher priority request (lower number)
is pending, the higher priority DMA transfer will start. If not, the DMA request with the
lowest number will start.

4.6.3 DMA REGISTERS
e DMA system is controlled by register settings. A list of registers supporting the DMA system
is provided below. Register setting details are provided in [SLAU356A, 2015]. We illustrate how
to use the registers in an upcoming example.

• DMA_DEVICE_CFG: Device Configuration Status Register

• DMA_SW_CHTRIG: Software Channel Trigger Register

210 4. MSP432 MEMORY SYSTEM

Start polling

Start DMA transfer

Active channel
request?

High priority
level?

Select highest priority
channel (lowest number)

Select channel with the
lowest number

no

no

yes

yes

Figure 4.5: MSP432 basic DMA transfer [SLAU356A, 2015].

• DMA_CHn_SRCCFG: Channel n Source Configuration Register. Note: n = 0 to
NUM_DMA_CHANNELS

• DMA_INT1_SRCCFG: Interrupt 1 Source Channel Configuration Register

• DMA_INT2_SRCCFG: Interrupt 2 Source Channel Configuration n Register

• DMA_INT3_SRCCFG: Interrupt 3 Source Channel Configuration Register

• DMA_INT0_SRCFLG: Interrupt 0 Source Channel Flag Register

• DMA_INT0_CLRFLG: Interrupt 0 Source Channel Clear Flag Register

• DMA_STAT: Status Register

4.6. DIRECT MEMORY ACCESS (DMA) 211

• DMA_CFG: Configuration Register

• DMA_CTLBASE: Channel Control Data Base Pointer Register

• DMA_ALTBASE: Channel Alternate Control Data Base Pointer Register

• DMA_WAITSTAT: Channel Wait on Request Status Register

• DMA_SWREQ: Channel Software Request Register

• DMA_USEBURSTSET: Channel Useburst Set Register

• DMA_USEBURSTCLR: Channel Useburst Clear Register

• DMA_REQMASKSET: Channel Request Mask Set Register

• DMA_REQMASKCLR: Channel Request Mask Clear Register

• DMA_ENASET: Channel Enable Set Register

• DMA_ENACLR: Channel Enable Clear Register

• DMA_ALTSET: Channel Primary-Alternate Set Register

• DMA_ALTCLR: Channel Primary-Alternate Clear Register

• DMA_PRIOSET: Channel Priority Set Register

• DMA_PRIOCLR: Channel Priority Clear Register

• DMA_ERRCLR: Bus Error Clear Register

Details of specific APIs are contained in MSP432 Peripheral Driver Library User’s
Guide [DriverLib, 2015] and will not be repeated here.

4.6.4 DMA DRIVELIB SUPPORT
Texas Instruments provides extensive MSP432 DMA support through a series of Application
Program Interfaces (APIs). Provided below is a list of DMA APIs. Details on API settings are
provided in MSP432 Peripheral Driver Library User’s Guide [DriverLib, 2015] and will not be
repeated here.

• #define DMA_TaskStructEntry(transferCount, itemSize, srcIncrement, srcAddr, dstIn-
crement, dstAddr, arbSize, mode)

• void DMA_assignChannel (uint32_t mapping)

• void DMA_assignInterrupt (uint32_t interruptNumber, uint32_t channel)

212 4. MSP432 MEMORY SYSTEM

• void DMA_clearErrorStatus (void)

• void DMA_clearInterruptFlag (uint32_t intChannel)

• void DMA_disableChannel (uint32_t channelNum)

• void DMA_disableChannelAttribute (uint32_t channelNum, uint32_t attr)

• void DMA_disableInterrupt (uint32_t interruptNumber)

• void DMA_disableModule (void)

• void DMA_enableChannel (uint32_t channelNum)

• void DMA_enableChannelAttribute (uint32_t channelNum, uint32_t attr)

• void DMA_enableInterrupt (uint32_t interruptNumber)

• void DMA_enableModule (void)

• uint32_t DMA_getChannelAttribute (uint32_t channelNum)

• uint32_t DMA_getChannelMode (uint32_t channelStructIndex)

• uint32_t DMA_getChannelSize (uint32_t channelStructIndex)

• void *DMA_getControlAlternateBase (void)

• void *DMA_getControlBase (void)

• uint32_t DMA_getErrorStatus (void)

• uint32_t DMA_getInterruptStatus (void)

• bool DMA_isChannelEnabled (uint32_t channelNum)

• void DMA_registerInterrupt (uint32_t intChannel, void(*intHandler)(void))

• void DMA_requestChannel (uint32_t channelNum)

• void DMA_requestSoftwareTransfer (uint32_t channel)

• void DMA_setChannelControl (uint32_t channelStructIndex, uint32_t control)

• void DMA_setChannelScatterGather (uint32_t channelNum, uint32_t taskCount, void
*taskList, uint32_t isPeriphSG)

• void DMA_setChannelTransfer (uint32_t channelStructIndex, uint32_t mode, void *sr-
cAddr, void *dstAddr, uint32_t transferSize) void DMA_setControlBase (void *con-
trolTable) void DMA_unregisterInterrupt (uint32_t intChannel)

4.6. DIRECT MEMORY ACCESS (DMA) 213

4.6.5 DMA EXAMPLE
Texas Instruments provides a number of MSP432 examples in DriverLib available within Code
Composer Studio. Several DMA examples are provided including the one below. is example
routes data quickly to the CRC32 module via the DMA controller. e CRC32 system is used to
calculate a cyclic redundancy check (CRC) checksum. Additional discussion on this system will
follow. Provided in Figure 4.6 is the UML activity diagram for the example.
Example 5: is example demonstrates the DMA on the MSP432.

//**
//MSP432 DriverLib - v01_04_00_18
//
//--COPYRIGHT--,BSD,BSD
//Copyright (c) 2015, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// - Neither the name of Texas Instruments Incorporated nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//***

214 4. MSP432 MEMORY SYSTEM

Con�gure DMA module:*
MAP_DMA_enableModule(void) //enables DMA module

MAP_DMA_setControlBase(ControlBase) //sets base addr for Control Table

Set DMA Control Index
Source: random data array
Destination: CRC32 data

Assign and enable interrupts

MAP_DMA_setChannelControl(
UDMA_PRI_SELECT,
UDMA_SIZE_8 |
UDMA_SRC_INC_8 |
UDMA_DST_INC_NONE |
UDMA_ABR_1024);

MAP_DMA_setChannelTransfer(
UDMA_PRI_SELECT,
UDMA_MODE_AUTO,
data_array,
(void*) (CRC32_BASE + OFS_CRC32DI)
1024);

MAP_DMA_assigninterrupt(

DMA_INT1,
0);

MAP_Interrupt_enableMaster()

MAP_DMA_enableChannel(0);

When DMA interrupt complete:

void dma_1_interrupt(void
{
MAP_DMA_disableChannel(0); //disables DMA channel
crcSignature=MAP_CRC32_getResult(CRC32_mode);
}

//assigns DMA channel
//to interrupt handler
//interrupt number
//assigned int channel

//enable processor int

//enables DMA channel

//set DMA channel Control parameters
//data structure
//data size
//source address increment
//destination address increment
//arbitration size - transfer size before
//relinquiching channel

//set DMA ch control transfer parameters
//data structure
//DMA mode select
//source address
 //destination address
//transfer size

Include: driverlib.h, stdint.h,
string.h, stdbool.h

Declare 32-bit (uint32_t)
for CRC signature

MAP_PCM_gotoLPMO();
//transition to low power mode 0

*Note: If MAPpre�x used on API, the header �le
will determine if ROM or FLASH version
of API will be used.

Declare external data_array
of 8-bit (uint8_t)

Halt watchdog timer

while(1)

Construct DMA Control Table:
DATA_ALIGN(controlTable, 256)
//Control Table resides in system
//memory and holds control info
//for each DMA channel

Force a software transfer on
DMA Channel 0

MAP_DMA_requestSoftware Transfer(0);
//initializes SW transfer on DMA channel

Figure 4.6: CRC Checksum via DMA [DriverLib, 2015].

4.6. DIRECT MEMORY ACCESS (DMA) 215

//***
//MSP432 DMA - CRC32 calculation using DMA
//
//Description: This code example shows how to use the DMA module on
//MSP432 to feed data into the CRC32 module for a CRC32 signature
//calculation.
This use case is particularly useful when the user wants
//to calculate the CRC32 signature of a large data array (such as a
//firmware image) but still wants to maximize power consumption.
After
//the DMA transfer is setup, a software initiation occurs and the MSP432
//device is put to sleep.
Once the transfer completes, the DMA interrupt
//occurs and the CRC32 result is placed into a local variable for the
//user to examine.
//
//Author: Timothy Logan
//***

//DriverLib Includes
#include "driverlib.h"

//Standard Includes
#include <stdint.h>

#include <string.h>
#include <stdbool.h>

//Statics
static volatile uint32_t crcSignature;

//DMA Control Table
#ifdef ewarm
#pragma data_alignment=256
#else
#pragma DATA_ALIGN(controlTable, 256)
#endif
uint8_t controlTable[256];

216 4. MSP432 MEMORY SYSTEM

//Extern
extern uint8_t data_array[];

int main(void)
{
//Halting Watchdog Timer
MAP_WDT_A_holdTimer();

//Configuring DMA module
MAP_DMA_enableModule();
MAP_DMA_setControlBase(controlTable);

//Setting Control Indexes.
In this case we will set the source of the
//DMA transfer to our random data array and the destination to the
//CRC32 data in register address
MAP_DMA_setChannelControl(UDMA_PRI_SELECT,

UDMA_SIZE_8 | UDMA_SRC_INC_8 | UDMA_DST_INC_NONE | UDMA_ARB_1024);
MAP_DMA_setChannelTransfer(UDMA_PRI_SELECT, UDMA_MODE_AUTO, data_array,

(void*) (CRC32_BASE + OFS_CRC32DI), 1024);

//Assigning/Enabling Interrupts
MAP_DMA_assignInterrupt(DMA_INT1, 0);
MAP_Interrupt_enableInterrupt(INT_DMA_INT1);
MAP_Interrupt_enableMaster();

//Enabling DMA Channel 0
MAP_DMA_enableChannel(0);

//Forcing a software transfer on DMA Channel 0
MAP_DMA_requestSoftwareTransfer(0);

while(1)
{
MAP_PCM_gotoLPM0();
}

}

//***

4.7. EXTERNAL MEMORY: BULK STORAGE WITH AN MMC/SD CARD 217

//Completion interrupt for DMA
//***

void dma_1_interrupt(void)
{
MAP_DMA_disableChannel(0);
crcSignature = MAP_CRC32_getResult(CRC32_MODE);
}

//**

4.7 EXTERNAL MEMORY: BULK STORAGE WITH AN
MMC/SD CARD

A MultiMediaCard/SanDisk (MMC/SD) card provides a handy method of providing a low-
power, non-volatile, and a small form factor (32 mm � 24 mm � 1.4 mm) bulk memory storage
for a microcontroller. For example, the SD card is useful for data logging applications in remote
locations. For example, if our goal was to measure wind resources at remote locations as potential
windfarm sites, a MSP432-based data logging system equipped with an SD card could be used.
Data could be logged over a long period of time and retrieved for later analysis on a PC.

e MMC/SD card is a smart peripheral device. It contains an onboard controller to man-
age MMC/SD operations. In the following laboratory exercise, we provide details of equipping
the MSP432 with an MMC/SD card [SanDisk, 2000].

4.8 LABORATORY EXERCISE: MMC/SD CARD
Introduction. In this laboratory exercise, we equip the MSP-EXP432P401R LaunchPad with a
2 GB SD card, capture data from three analog sensors, and store the data to the SD card.

is laboratory consists of three parts:

• formatting the SD card with the File Allocation Table (FAT) 32 structure;

• constructing the interface between the SD card and the MSP-EXP432P401R LaunchPad;
and

• modifying the Arduino based software for use with the MSP432 processor.

We complete each step in turn.
An SD card may be purchased in the camera or computer section at a local retailer. For this

example, a 2 GB SD card was used. e SD card is inserted into the SD card slot in your laptop
or PC. Open the file manager and right click on the SD card. en click on “format” and select
FAT32.

218 4. MSP432 MEMORY SYSTEM

e MSP-EXP432P401R LaunchPad communicates with the SD card via the Serial Pe-
ripheral Interface (SPI) system. An easy method to construct an interface between the MSP432
and the SD card is via an SD card reader and breakout board. For this example, the card reader
available from 43oh.com was used. A 6-pin header was soldered to the breakout board J5 con-
nector. An interface diagram for the MSP432 and the 43oh.com breakout board is shown in
Figure 4.7.

�e Card Reader
430h.com v1.3
SDCard Breakout

MSP432 (connections from code)

Gnd
Vcc

MISO
MOSI
SCLK

CS

Gnd (J3, pin 22)
Vcc: + 3.3 VDC (J1, pin 1)
MIS(P1.7, J2. pin 14)
MOSI-TX (P1.6, J2, pin 15)
SCLK (P1.5, J1, pin 7)
CS (P3.0, J2, pin 18)

Vcc + 3.3 VDC
(J1, pin 1)

Vcc + 3.3 VDC
(J1, pin 1)

3.3 K

47 K

100 nF

Figure 4.7: MSP432 to SD card breakout board interface.

ree analog sensors were connected to the MSP-EXP432P401R LaunchPad pins 12, 13,
and 33.

e data logging software may be downloaded from the Arduino website www.arduino.
cc. is public domain code was originally developed for the Arduino processor by Tom Igoe. It
requires two modifications for use with the MSP432. e software modification was originally
developed by M. Valencia (www.element14.com).

• File “Sd2PinMap.h” must be updated with the MSP-EXP432P401R LaunchPad pin as-
signments (MOSI-pin 15, MISO-pin 14, CLK-pin, and CS-pin 18). is may be accom-
plished using Code Composer Studio.

• As shown in the code below, the chip select assignment needs to be set to pin 18 (two
places).

//***
//SD card datalogger
//This example was originally developed by Tom Igoe for the Arduino
//processor on 24 November 2010.

43oh.com
43oh.com
www.arduino.cc
www.arduino.cc
www.element14.com

4.8. LABORATORY EXERCISE: MMC/SD CARD 219

//
//It was modified for use with the MSP432 LaunchPad by Martin Valencia
//in February 2016 Element 14 post "Interfacing SD Card with MSP432."
//
//Details on the interface between the SD card and the MSP432 were
//adapted from "Interfacing an SD-Card to the LaunchPad - A Walkthrough
//Tutorial by 43oh, December 21, 2013.
//
//All pin numbers and connections are provided for the
//MSP-EXP432P401R LaunchPad.
//
//This example shows how to log data from three analog sensors
//to an SD card using the SD library.
//
//The circuit:
// - Analog sensors are connected to MSP-EXP432P401R LaunchPad pins:
// - 12, 13, 33
// - The SD card is interfaced to the MSP432 via the SPI. SPI
// connections:
// - MOSI - pin 15
// - MISO - pin 14
// - CLK - pin 7
// - CS - pin 18 (also referred to as SS pin)
//
//Software modifications:
// - Update file: Sd2PinMap.h with pin assignments provided above.
// - Change CS (Chip Select) to pin 18 in code below.
//
//Created 24 Nov 2010
//Modified 9 Apr 2012
//by Tom Igoe
//This example code is in the public domain.
//www.arduino.cc
//***

#include <SPI.h>
#include <SD.h>

#define left_sensor 12 //analog pin - left sensor

220 4. MSP432 MEMORY SYSTEM

#define center_sensor 33 //analog pin - center sensor
#define right_sensor 13 //analog pin - right sensor

int left_sensor_value;
int center_sensor_value;
int right_sensor_value;

const int chipSelect = 18;

void setup()
{
delay(5000); //5s delay to open Serial Monitor Window
Serial.begin(9600); //Open serial communications
Serial.print("Initializing SD card...");
pinMode(18, OUTPUT);

// see if the card is present and can be initialized:
if (!SD.begin(chipSelect))

{
Serial.println("Card failed, or not present");
// don't do anything more:
return;
}

Serial.println("card initialized.");
}

void loop()
{
// make a string for assembling the data to log:
String dataString = "";

// read three sensors and append to the string:
left_sensor_value = analogRead(left_sensor);
center_sensor_value = analogRead(center_sensor);
right_sensor_value = analogRead(right_sensor);

dataString += String(left_sensor_value);
dataString += ",";
dataString += String(center_sensor_value);

4.9. SUMMARY 221

dataString += ",";
dataString += String(right_sensor_value);
dataString += ",";
delay(1000);

// open the file. note that only one file can be open at a time,
// so you have to close this one before opening another.
File dataFile = SD.open("datalog1.txt", FILE_WRITE);

// if the file is available, write to it:
if (dataFile)

{
dataFile.println(dataString);
dataFile.close();
// print to the serial port too:
Serial.println(dataString);
}

// if the file isn't open, pop up an error:
else
{
Serial.println("error opening datalog1.txt");
}
}

//***

Once the code is compiled and launched, data will be collected from the three analog
sensors, displayed on the Serial Monitor, and logged to the SD card. Once the data is collected,
the SD card may be removed from the card reader and inserted into the PC card reader. e data
comma separated values (CSV) may then be read into Excel, analyzed, and plotted.

4.9 SUMMARY

In this chapter, with the help of the memory map, we presented the memory system of the
MSP432 microcontroller. We demonstrated how contents of a memory location are accessed
via read and write operations. We described the types of memories including RAM, ROM, and
Flash. We then discussed the organization and operation of onboard flash memory and the direct
memory access (DMA) system.

222 4. MSP432 MEMORY SYSTEM

4.10 REFERENCES AND FURTHER READING
MSP432 Peripheral Driver Library User’s Guide. Texas Instruments, 2015. 204, 211, 214

MSP432P4xx Family Technical Reference Manual (SLAU356A). Texas Instruments, 2015. 201,
203, 209, 210

MultiMedia Card Product Manual, SanDisk Corporate Headquarters, 140 Caspian Court, Sun-
nyvale, CA, http://www.sandisk.com, 2000. 197, 217

Texas Instruments MSP432P401R LaunchPad Development Kit (MSP-EXP432P401R)
(SLAU597A). Texas Instruments, 2015. 197

Texas InstrumentsMSP432P401xMixed-SignalMicrocontrollers (SLAS826A).Texas Instruments,
2015. 196, 197, 201, 208, 209

Texas Instruments MSP432x5xx/MSP432x6xx Family User’s Guide (SLAU208G). Texas Instru-
ments, 2010. 208

4.11 CHAPTER PROBLEMS
Fundamental

1. Convert CAFEh to binary.

2. Convert .1101_1111_0000_1001/2 to decimal and hexadecimal numbers.

3. Convert .11341/10 to binary and hexadecimal numbers.

4. Amemory system is equippedwith a 12 bit address bus. Using the linear addressingmethod,
how many unique memory addresses are possible? What is the first and last memory ad-
dresses specified in binary? In hexadecimal?

5. A processor has a 16 bit data bus. What is the largest unsigned integer that may be carried
by the bus? Signed integer?

6. Describe the different memory components available with the MSP432 microcontroller.
Provide an application for each memory type.

7. Describe the purpose of the Direct Memory Access system.

Advanced

1. Research the interface between the MSP432 and a MultiMediaCard/Secure Digital
(MMC/SD) card.

http://www.sandisk.com

4.11. CHAPTER PROBLEMS 223

2. Sketch the memory map of the MSP432 microcontroller.

Challenging

1. Develop a MMC/SD card interface for the MSP432 microcontroller.

2. Write a function to clear a block of memory addresses in RAM memory. e start address
and the number of memory locations to clear are passed into the function as arguments.

225

C H A P T E R 5

MSP432 Power Systems
Objectives: After reading this chapter, the reader should be able to:

• explain common practices to reduce power consumption in a microcontroller application;

• describe voltage regulation and methods of achieving regulation aboard the MSP432;

• illustrate the operation of the MSP432 Power Supply System;

• describe the operation of the MSP432 Power Control Module;

• define different operating modes of the MSP432 microcontroller;

• define battery capacity and its related parameters; and

• program the MSP432 to operate at different operating voltages and modes.

5.1 OVERVIEW
e MSP432 microcontroller is the lowest-power consuming microcontroller available on the
market. It has been designed with a wide variety of ultra-low power (ULP) features. Although
it can be used in a wide variety of applications, the controller is intended for battery operated
applications where frequent battery replacement is undesirable or impractical. Application exam-
ples include pagers, battery-operated toys, portable measurement instruments, home automation
products, medical instruments, metering applications, and portable smart card readers. e goal
of this chapter is to present the MSP432’s low power features so designers may take full advan-
tage for microcontroller applications. e designer must also take into account battery capacity
and understand how the required battery capacity relates to choosing an appropriate battery for
a specific application.

In this chapter, we begin with a discussion on the balancing act microcontroller-based ap-
plication designers must perform, during the design process, between the power requirements of
a given project and available power sources. To that end, we overview the MSP432 low power
features.

To optimize available power, we first present the active and low-power operating modes
(LPM) of the MSP432 and how they help the controller to reduce its power consumption. We
the investigate the MSP432 subsystems which contribute to low power operation, including the

226 5. MSP432 POWER SYSTEMS

Power Supply System (PSS) and the Power Control Module (PCM). e battery supply is con-
sidered next. We begin with a discussion of battery capacity and its key parameters. We also
describe the important concept of voltage regulation and different methods of achieving a stable
voltage source within a circuit. e chapter concludes with a laboratory exercise to investigate
different MSP432 operating modes.

5.2 BACKGROUND THEORY
e MSP432 microcontroller is used in a number of applications where operation on a battery
supply is required over a long period of time. To meet this operational requirement, the power
demands of theMSP432must be understood and balanced with the capacity of the battery source.

Generally speaking, the overall current demand of the MSP432, although the lowest in the
industry, increases with [Day, 2009]:

• supply voltage level,

• central processing unit (CPU) clock speed,

• operating temperature,

• peripheral device selection,

• input/output use, and

• memory type and size.

e MSP432 microcontroller was designed as an ultra-low power processor. In general, to
minimize power consumption in a given application and hence extend battery life, the following
general procedures are followed [SLAA668, 2015]:

• reduce the microcontroller operating voltage;

• reduce the microcontroller operating frequency;

• minimize time spent in microcontroller active modes and maximize time spent in low power
or sleep modes;

• minimize the transition time between power modes; and

• carefully examine the dependencies between modules.

Taking advantage of the low power features is, of course, more involved than simply mini-
mizing the effects listed above. e general approach is to minimize instantaneous current draw
while maximizing the time spent in low power modes. To do this, the designer must be well
acquainted with the operating modes, the Power Supply System (PSS), and the Power Control
Module (PCM). In addition, one must be well acquainted with the variety of MSP432 clock
sources. MSP432 clock sources are described in Chapter 6.

5.3. OPERATING MODES AND SPEED OF OPERATION 227

5.3 OPERATING MODES AND SPEED OF OPERATION
As shown in Figure 5.1, the operating frequency of the MSP432 is related to the supply voltage
and mode of operation. Shown around the outer arc is the desired processor operating frequency.
Generally speaking, to achieve a higher operating frequency requires a higher operating voltage.

LPMO and active modes

DC-DC

2.0-3.7 VDC

 LDO

1.62-3.7 VDC

high MHz

1 MHz

128 kHz

32-50 kHz

LPM3

AM_LF

48 MHz

Figure 5.1: MSP432 operating modes vs. speed of operation [SLAA668, 2015].

5.4 POWER SUPPLY SYSTEM
e MSP432 is equipped with a flexible and powerful Power Supply System (PSS). As shown
in Figure 5.2, the PSS is an integral part of the Power Control Manager (PCM). We discuss the
PSS first followed by the PCM [SLAU356A, 2015].

A voltage regulator maintains a stable output voltage under varying input voltage condi-
tions. e main purpose of the PSS is to provide a regulated VCORE voltage to the main processor
should the input voltage provided to the processor vary. e VCORE voltage ranges from 1.62–
3.70 VDC. e exact value is determined by the operational needs of the specific application.
As shown in Figure 5.2a, an external regulated voltage source is provided to the MSP432 via the
DVcc pin. Typically, DVcc (digital source voltage) and AVcc (analog source voltage) are com-
mon. e DVcc voltage is regulated to the VCORE voltage level using one of two regulators: the
Low Drop Out (LDO) regulator or the DC-DC regulator [SLAU356A, 2015].

e LDO regulator is less efficient but more nimble in that fewer clock cycles are required
between operating mode transitions. e DC-DC regulator operates with a better efficiency with
a lower power consumption. However, it requires external components and has a longer wakeup
time from various sleep modes [SLAU356A, 2015].

228 5. MSP432 POWER SYSTEMS

e PSS is equipped with a number of voltage monitors including VCCDET, SVSMH,
and SVSL. All three monitors generate a Power On/Off Reset (POR) in the event of an out of
tolerance voltage condition. VCCDEThas a wide variation in threshold detection and is used pri-
marily to detect a power on/off condition.e Supply Voltage Supervisor andMonitor (SVSMH)
monitors the high side DVcc value. e Supply Voltage Supervisor monitors the low side VCORE

value [SLAU356A, 2015].

DVcc/AVcc
(from regulated
external supply)

regulator
LDO

DC-DC Vcore
(to CPU, memories,

digital modules)

to Power On/O!
Reset (POR)

I/O, analog modules

High Side

SVSMH SVSLreference

VCCDET

Low Side

(a) Power Supply System (PSS).

Peripherals

Program Control Manager (CM)

Processor

Power Supply
System (PSS)

Clock System (CS)

p
w

r_
re

q

cl
k_

re
q

p
w

r_
re

q

cl
k_

re
q

ps
s_

co
nt

ro
l

ps
s_

sta
tu

s

cs
_c

on
tro

l

cs
_s

ta
tu

s

(b) Power Control Manager (PCM).

Figure 5.2: MSP432 power systems. (a) Power Supply System, and (b) Power Control Man-
ager [SLAU356A, 2015].

5.5 THE POWER CONTROL MODULE
e PSS is an integral portion of the Power Control Module (PCM). As shown in Figure 5.2, the
PCM obtains system status information from the PSS and also the Clock System (CS). It also
responds to requests from peripherals and the main processor core to optimize the operation of

5.6. OPERATING MODES 229

the onboard power system. e PCM allows the MSP432 to be placed in a wide variety of active
and low power modes. e selection of operational modes is determined by a variety of events
including: PCM Control 0 register settings, interrupt and wakeup events, reset events, and debug
events [SLAU356A, 2015].

5.6 OPERATING MODES
As shown in Figure 5.3, the MSP432 may be placed into a variety of operating modes. It is
up to the designer to determine the best, most efficient operating mode(s) for the specific ap-
plication. A detailed summary of each operating mode is provided in the next section. Out of
hard reset the processor will transition to an active mode where CPU execution is possible. e
Low Power Modes (LPM) may be entered from an active mode. When a specific low power
mode is exited, the processor returns to an active mode. Processor execution is halted during an
LPM [SLAU356A, 2015].

Hard Reset

Active Modes
(run mode)

AM_LDO_VCORE0
after wakeup

LPM3
(deep sleep)

LPM4
(deep sleep)

LPMO
(sleep)

LPM3.5 or 4.5
(stop or

shutdown)

Figure 5.3: MSP432 power mode transitions [SLAU356A, 2015].

230 5. MSP432 POWER SYSTEMS

5.7 OPERATING MODE SUMMARY
Figures 5.4 and 5.5 provide a summary of the active and low power modes available for the
MSP432. e designer chooses the appropriate mode(s) based on the specific application at hand.
A determination is made based on the operating frequency required by the application and spe-
cific subsystems required. A specific LPM is determined based on the ongoing processor activity
required by the application. An operating mode name indicates active or low power mode (AM
or LPMx), followed by the regulator used (LDO or LF), and the core voltage selected (0 or
1) [SLAU356A, 2015].

5.8 OPERATING MODE TRANSITIONS
Switching operating modes in a microcontroller can be illustrated well with the analogy of driving
a manual transmission vehicle. When first learning how to drive one, there are several basic rules
to follow: (1) step on the clutch when changing gears, (2) when at a stop, start with first gear, and
(3) as the vehicle gains speed, different gears are selected going from first, to second, to third, etc.
When the vehicles slows, gears are selected going from a higher number to a lower number.

e operating mode transition on the MSP432 is very similar. One cannot simply change
from one operational mode to another. Specific sequences of events must occur when chang-
ing operational modes. e sequences are followed to insure the VCORE voltage is at a sufficient
value to support the desired operational frequency of the processor. e specific sequence of mode
changes are provided in Section 7.5 Power Mode Transitions of theMSP432P4xx Family Techni-
cal ReferenceManual [SLAU356A, 2015]. Examples are provided later in the chapter to illustrate
transitions between processor operating modes.

5.9 PSS AND PCM REGISTERS
e PSS and PCM are supported by a variety registers including:

• PSSKEY Key Register

• PSSCTL0 Control 0 Register

• PSSIE Interrupt Enable Register

• PSSIFG Interrupt Flag Register

• PSSCLRIFG Clear Interrupt Flag Register

• PCMCTL0 Control 0 Register

• PCMCTL1 Control 1 Register

• PCMIE Interrupt Enable register

5.9. PSS AND PCM REGISTERS 231

Power Mode Operating State Features/Application Constraints

Active Mode

(Run Mode)

AM_LDO_VCORE0

LDO or DC-DC regulator-based active modes at core voltage level 0.

CPU is active and full peripheral functionality is available.

CPOand DMA maximum operating frequency is 24 MHz.

AM_DCDC_VCORE0

Peripherals maximum input clock frequency is 12 MHz.

All low- and high-frequency clock sources can be active.

Flash memory and all enabled SRAM banks are active.

AM_LDO_VCORE1

LDO or DC-DC regulator-based active modes at core voltage level 1.

CPU is active and full peripheral functionality is available.

CPU and DMA maximum operating frequency is 48 MHz.

AM_DCDC_VCORE1

Peripherals maximum input clock frequency is 24 MHz.

All low- and high-frequency clock sources can be active.

Flash memory and all enabled SRAM banks are active

AM_LF_VCORE0

LDO-based low-frequency active modes at core voltage level 0 or 1.

CPU is active and full peripheral functionality is available.

CPU, DMA, and peripherals maximum operating frequency is 128 kHz.

Only low-frequency clock sources (LFXT, REFO, and VLO) can be active.

AM_LF_VCORE1

All high-frequency clock sources need to be disabled by application.

Flash memory and all enabled SRAM banks are active.

Flash erase/program operations and SRAM bank enable or retention en-

able con� guration changes must not be performed by application.

DC-DC regulator can not be used.

LPM0

(Sleep)

LPM0_LDO_VCORE0
LDO or DC-DC regulator-based operating modes at core voltage level 0.

CPU is inactive but full peripheral functionality is available.

LPM0_DCDC_VCORE0

DMA maximum operating frequency is 24 MHz. Peripherals maximum

input clock frequency is 12 MHz.

All low- and high-frequency clock sources can be active.

Flash memory and all enabled SRAM banks are active.

LPM0_LDO_VCORE1
LDO or DC-DC regulator-based operating modes at core voltage lavel 1.

CPU is inactive but full peripheral functionality is available.

LPM0_DCDC_VCORE1

MA maximum operating frequency is 48 MHz. Peripherals maximum

input clock frequency is 24 MHz.

All low- and high-frequency clock sources can be active.

Flash memory and all enabled SRAM banks are active.

LPM0_LF_VCORE0

LDO-based low-frequency operating modes at core voltage level 0 or 1.

CPU is inactive but full peripheral functionality is available.

DMA and peripherals maximum operating frequency is 128 kHz.

Only low-frequency clock sources (LXFT, REFO, and VLO) can be active.

LPM0_LF_VCORE1

All high-frequency clock sources need to be disabled by application.

Flash memory and all enabled SRAM banks are active.

Flash erase/program operations and SRAM bank enable or retention en-

able con� guration changes must not be performed by application.

DC-DC regulator cannot be used.

Figure 5.4: MSP432 power mode summary [SLAU356A, 2015]. Illustration used with permission
of Texas Instruments www.ti.com.

www.ti.com

232 5. MSP432 POWER SYSTEMS

Power Mode Operating State Features/Application Constraints

LPM3

(Deep Sleep)

LDO_VCORE0

LDO-based operating modes at core voltage level 0 or 1.

CPU is inactive and peripheral functionality is reduced.

Only RTC and WDT modules can be funtional with maximum input

clock frequency of 32.768 kHz.

All other peripherals and retention-enabled SRAM banks are kept under

state retention power gating.

LDO_VCORE1

Flash memory is disabled. SRAM banks not con� gured for retention are

disabled.

Only low-frequency clock sources (LFXT, REFO, and VLO) can be active.

All high-frequency clock sources are disabled.

Device I/O pin states are latched and retained.

DC-DC regulator cannot be used.

LPM4

(Deep Sleep)

LDO_VCORE0

LDO-based operating modes at core voltage level 0 or 1.

Achieved by entering LPM3 with RTC and WDT modules disabled.

CPU is inactive with no peripheral functionality.

All peripherals and retention-enabled SRAM banks are kept under state

retention power gating.

LDO_VCORE1

Flash memory is disabled. SRAM banks not con� gured for retention are

disabled.

All low- and high-frequency clock sources are disabled.

Device I/O pin states are latched and retained.

DC-DC regulator cannot be used.

LPM3.5

(Stop or Shut

Down)

LDO_VCORE0

LDO-based operating mode at core voltage level 0.

Only RTC and WDT modules can be functional with maximum input clock

frequency of 32.768 kHz.

CPU and all other peripherals are powered down.

Only Bank-0 of SRAM is under data retention. All other SRAM banks and

� ash memory are powered down.

Only low-frequency clock sources (LFXT, REFO, and VLO) can be active.

All high-frequency clock sources are disabled.

Device I/O pin states are latched and retained.

DC-DC regulator cannot be used.

LPM4.5

(Stop or Shut

Down)

VCORE_OFF

Core voltage is turned o� .

CPU, � ash memory, all SRAM bankcs, and all peripherals are powered down.

All low- and high-frequency clock sources are powered down.

Device I/O pin states are latched and retained.

Figure 5.5: MSP432 power mode summary [SLAU356A, 2015]. Illustration used with permission
of Texas Instruments www.ti.com.

www.ti.com

5.10. BATTERY OPERATION 233

• PCMIFG Interrupt Flag Register

• PCMCLRIFG Clear Interrupt Flag Register

Details of specific register and bit settings are contained in MSP432P4xx Family Techni-
cal Reference Manual [SLAU356A, 2015] and will not be repeated here. However, PCMCTL0
Control 0 Register contains control bits for the mode transitions. A summary of PCMCTL0
settings is shown in Figure 5.6.

5.10 BATTERY OPERATION
Many embedded applications involve remote, portable systems, operating from a battery supply.
To properly design a battery source for an embedded system, the operating needs of the embedded
system must be matched to the characteristics of the battery supply. To properly match the battery
supply to the embedded system, the following operational details must be known.

• What are the voltage and current required by the embedded system?

• How long must the embedded system operate before battery replacement or recharge?

• Will the embedded system be powered from primary, non-rechargeable batteries or sec-
ondary, rechargeable batteries?

• Are there weight or size limitations to be considered in selecting a battery?

Once these questions have been answered, a batterymay be chosen for a specific application.
To choose an appropriate battery, the following items must be specified:

• battery voltage,

• battery capacity,

• battery size and weight,and

• primary or secondary battery.

Battery capacity is typically specified as a mAH rating. e capacity is the product of the
current drain and the battery operational life at that current level. It provides an approximate
estimate of how long a battery will last under a given current drain. e capacity is reduced at
higher discharge rates. It must also be kept in mind that a battery’s voltage declines as the battery
discharges.

Example 1: A typical 9 VDC non-rechargeable alkaline battery has a capacity of 550 mAH. If
the system has a maximum operating current of 50 mA, it will operate for approximately 11 hours
before battery replacement is required. Also, the battery voltage will be somewhat less than 9VDC
at the 11 hour point.

234 5. MSP432 POWER SYSTEMS

Mode Description
PCMCTL0

SLEEPDEEP
Entry

MechanismAMR[3:0] LPMR[3.0]

AM_LDO_VCORE0

Active mode

Core voltage level 0

LDO operation

0h x 0

Writing of AMR

register

AM_LDO_VCORE1

Active mode

Core voltage level 1

LDO operation

1h x 0

AM_DCDC_VCORE0

Active mode

Core voltage level 0

DC-DC operation

4h x 0

AM_DCDC_VCORE1

Active mode

Core voltage level 1

DC-DC operation

5h x 0

AM_LF_VCORE0

Low-Frequency

Active mode

Core voltage level 0

LDO operation

8h x 0

AM_LF_VCORE1

Low-Frequency

Active mode

Core voltage level 1

LDO operation

9h x 0

LPM0_LDO-VCORE0

LPM0_DCDC_VCORE0

LPM0_LF_VCORE0

LPM0_LDO-VCORE1

LPM0_DCDC_VCORE1

LPM0_LF_VCORE1

LPMO modes

Core voltage level

same as respective

active mode

Same as the

corresponding

active mode.

Programming

AMR is not a

pre-requisite for

the device to

enter LPMO.

x 0
WFI, WFE,

Sleep-on-exit

LPM3

LPM4

LPM3, LPM4

modes

Core voltage level

same as respective

active mode

x 0h 1
WFI, WFE,

Sleep-on-exit

LPM3.5
LPM3.5 mode

Core voltage level 0
x Ah 1

WFI, WFE,

Sleep-on-exit

LPM4.5

LPM4.5 mode

Core voltage

turned o�

x Ch 1
WFI, WFE,

Sleep-on-exit

Figure 5.6: PCMCTL0 Control 0 Register settings [SLAU356A, 2015]. Illustration used with per-
mission of Texas Instruments www.ti.com.

www.ti.com

5.11. DRIVERLIB SUPPORT 235

A battery is typically used with a voltage regulator to maintain the voltage at a prescribed
level. As mentioned earlier in the chapter, the MSP432 is typically powered from a 3.3 VDC
source. Figure 5.7 shows a sample circuit to provide a C3.3 VDC source. e LM1117-3.3 is
a 3.3 VDC, 800 mA low dropout regulator. e choice of a specific battery source depends on
capacity requirements of the system.

I O

C

LM1117-3.3 +3.3 VDC

Battery 10 µF
Tantalum

10 µF
Tantalum

+ +

Figure 5.7: Battery supply circuits employing a 3.3 VDC regulators.

Primary and secondary batteries are manufactured using a wide variety of processes. In gen-
eral, primary (non-rechargeable) batteries have a higher capacity than their secondary (recharge-
able) counterparts. Also, batteries with higher capacity are more expensive than those using a
lower capacity technology. A thorough review of the manufacturers’ literature is recommended
to select a battery for a specific application.

5.11 DRIVERLIB SUPPORT
e DriverLib library provides API support for the PSS and the PCM systems.

PSS support:

• void PSS_clearInterruptFlag(void)

• void PSS_disableHighSide(void)

• void PSS_disableHighSideMonitor(void)

• void PSS_disableHighSidePinToggle(void)

• void PSS_disableInterrupt(void)

• void PSS_disableLowSide(void)

• void PSS_enableHighSide(void)

• void PSS_enableHighSideMonitor(void)

236 5. MSP432 POWER SYSTEMS

• void PSS_enableHighSidePinToggle(bool activeLow)

• void PSS_enableInterrupt(void)

• void PSS_enableLowSide(void)

• uint_fast8_t PSS_getHighSidePerformanceMode(void)

• uint_fast8_t PSS_getHighSideVoltageTrigger(void)

• uint32_t PSS_getInterruptStatus(void)

• uint_fast8_t PSS_getLowSidePerformanceMode(void)

• void PSS_registerInterrupt(void(*intHandler)(void))

• void PSS_setHighSidePerformanceMode(uint_fast8_t powerMode)

• void PSS_setHighSideVoltageTrigger(uint_fast8_t triggerVoltage)

• void PSS_setLowSidePerformanceMode(uint_fast8_t ui8PowerMode)

• void PSS_unregisterInterrupt(void)

PCM support:

• void PCM_clearInterruptFlag(uint32_t flags)

• void PCM_disableInterrupt(uint32_t flags)

• void PCM_disableRudeMode(void)

• void PCM_enableInterrupt(uint32_t flags)

• void PCM_enableRudeMode(void)

• uint8_t PCM_getCoreVoltageLevel(void)

• uint32_t PCM_getEnabledInterruptStatus(void)

• uint32_t PCM_getInterruptStatus(void)

• uint8_t PCM_getPowerMode(void)

• uint8_t PCM_getPowerState(void)

• bool PCM_gotoLPM0(void)

• bool PCM_gotoLPM0InterruptSafe(void)

5.12. PROGRAMMING IN C 237

• bool PCM_gotoLPM3(void)

• bool PCM_gotoLPM3InterruptSafe(void)

• void PCM_registerInterrupt(void(*intHandler)(void))

• bool PCM_setCoreVoltageLevel(uint_fast8_t voltageLevel)

• bool PCM_setCoreVoltageLevelWithTimeout(uint_fast8_t voltageLevel, uint32_t time-
Out)

• bool PCM_setPowerMode(uint_fast8_t powerMode)

• bool PCM_setPowerModeWithTimeout(uint_fast8_t powerMode, uint32_t timeOut)

• bool PCM_setPowerState(uint_fast8_t powerState)

• bool PCM_setPowerStateWithTimeout(uint_fast8_t powerState, uint32_t timeout)

• bool PCM_shutdownDevice(uint32_t shutdownMode)

• void PCM_unregisterInterrupt(void)

Details of specific APIs are contained in MSP432 Peripheral Driver Library User’s
Guide [DriverLib, 2015]. Examples are provided in the next section employing API support.

5.12 PROGRAMMING IN C
MSPWare provides a wide variety of examples related to power management and operating
modes of the MSP432. In this section we highlight several representative examples from MSP-
Ware [MSPWare].
Example 2: In this example the MSP432 is placed in LPM0 mode.

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:

238 5. MSP432 POWER SYSTEMS

//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//

5.12. PROGRAMMING IN C 239

// --/COPYRIGHT/--
//***
//MSP432P401 Demo - Enter LPM0 with ACLK = REFO, SMCLK = 1.5MHz
//
//Description: Go to LPM0 mode
//
// MSP432p401rpz
// -----------------
// /|\| |
// | | |
// --|RST |
// | |
// | |
//
//Dung Dang
//Texas Instruments Inc.
//Nov 2013
//Built with Code Composer Studio V6.0
//***

#include "msp.h"

int main(void)
{
WDTCTL = WDTPW | WDTHOLD; // Stop WDT

__sleep();
__no_operation();
}

//***

Example 3: In this example the MSP432 is changed from VCORE level 0 to level 1.

//***
// MSP432 DriverLib - v2_20_00_08
//***
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated

240 5. MSP432 POWER SYSTEMS

//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:

5.12. PROGRAMMING IN C 241

// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--
//***
//MSP432P401 Demo - Change VCORE from LEVEL 0 to LEVEL 1
//
//
//Description: Change VCORE from LEVEL 0 to LEVEL 1
//
// MSP432p401rpz
// -----------------
// /|\| |
// | | |
// --|RST |
// | |
// | |
//
//Dung Dang
//Texas Instruments Inc.
//Nov 2013
//Built with Code Composer Studio V6.0
//***

#include "msp.h"
#include "stdint.h"

void error(void);

int main(void)
{
uint32_t currentPowerState;
volatile uint32_t i;

WDTCTL = WDTPW | WDTHOLD; //Stop WDT
P1DIR |= BIT0;

242 5. MSP432 POWER SYSTEMS

//Get current power state
currentPowerState = PCMCTL0 & CPM_M;

//Transition to VCORE Level 1 from current power state properly
switch (currentPowerState)
{
case CPM_0: //AM0_LDO, need to switch to AM1_LDO

while((PCMCTL1 & PMR_BUSY));
PCMCTL0 = PCM_CTL_KEY_VAL | AMR_1;
while((PCMCTL1 & PMR_BUSY));
if(PCMIFG & AM_INVALID_TR_IFG)
error(); //Error if transition was not successful

break;

case CPM_4: //AM0_DCDC, need to switch to AM1_DCDC
while((PCMCTL1 & PMR_BUSY));
PCMCTL0 = PCM_CTL_KEY_VAL | AMR_5;
while((PCMCTL1 & PMR_BUSY));
if (PCMIFG & AM_INVALID_TR_IFG)
error(); //Error if transition was not successful

break;

default: //Device is in some other state, which is unexpected
error();

}

P1OUT |= BIT0; //VCore switching sequence successful
__no_operation();
while(1);

}

//***
// void error(void)
//***

void error(void)
{
volatile uint32_t i;

5.12. PROGRAMMING IN C 243

while(1)
{
P1OUT ^= BIT0;
for(i=0;i<20000;i++); // Blink LED forever
}

}

//***

Example4:is example assumes theMSP432 is in an activemode employing the LDO regulator
(mode AM0_LDO or AM1_LDO). A transition from DCDC mode to the low frequency (LF)
mode requires an intermediate transition through LDO mode.

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

244 5. MSP432 POWER SYSTEMS

//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/-
//**
// MSP432P401 Demo - Enter Low-Frequency Active mode
//
//Note: This example assumes the device is currently in LDO mode
// AM0_LDO or AM1_LDO (Active Mode using LDO, VCore=0/1)
//
// A transition from DCDC mode to LF mode requires an intermediate
// transition through LDO mode.
For more information on transition
// patterns please refer to the PCM chapter in the device user's
// guide.
//
// AM1_DCDC <-----> AM1_LDO <--@--> AM1_LF
// ^
// |

5.12. PROGRAMMING IN C 245

// |
// v
// AM0_DCDC <-----> AM0_LDO* <--@--> AM0_LF
//
// *: power state condition after reset
// @: transitions demonstrated in this code example
//
// MSP432p401rpz
// -----------------
// /|\| |
// | | |
// --|RST |
// | P1.0|----> LED
// | |
//
//Dung Dang
//Texas Instruments Inc.
//Nov 2013
//Built with Code Composer Studio V6.0
//***

#include "msp.h"
#include "stdint.h"

void error(void);

int main(void)
{
uint32_t currentPowerState;
volatile uint32_t i;

WDTCTL = WDTPW | WDTHOLD; //Stop WDT
P1DIR |= BIT0;

//Switch MCLK over to REFO clock for low frequency operation first
CSKEY = CSKEY_VAL; //Unlock CS module
CSCTL1 = (CSCTL1 & ~(SELM_M | DIVM_M)) | SELM_2;
CSKEY = 0; //Lock CS module

246 5. MSP432 POWER SYSTEMS

//Get current power state
currentPowerState = PCMCTL0 & CPM_M;

//Transition to Low-Frequency Mode from current LDO power
//state properly

switch (currentPowerState)
{
case CPM_0: //AM0_LDO, need to switch to AM0_Low-Frequency Mode

while((PCMCTL1 & PMR_BUSY));
PCMCTL0 = PCM_CTL_KEY_VAL | AMR_8;
while((PCMCTL1 & PMR_BUSY));
if(PCMIFG & AM_INVALID_TR_IFG)
error(); //Error if transition was not successful

break;

case CPM_1: //AM1_LDO, need to switch to AM1_Low-Frequency Mode
while((PCMCTL1 & PMR_BUSY));
PCMCTL0 = PCM_CTL_KEY_VAL | AMR_9;
while((PCMCTL1 & PMR_BUSY));
if(PCMIFG & AM_INVALID_TR_IFG)
error(); //Error if transition was not successful

break;

case CPM_8: //Device is already in AM0_Low-Frequency Mode
break;

case CPM_9: //Device is already in AM1_Low-Frequency Mode
break;

default: //Device is in some other state, which is unexpected
error();

}

P1OUT |= BIT0; //Transition LDO to Low-Frequency Mode successful
__no_operation();
while(1);

5.12. PROGRAMMING IN C 247

}

//***
// void error(void)
//***

void error(void)
{
volatile uint32_t i;

while(1)
{
P1OUT ^= BIT0;
for(i=0;i<20000;i++); //Blink LED forever
}

}

//***

Example5: In this example theMSP432 PCMmodule is configured to use theDC-DC regulator
instead of the default LDO regulator. e DC-DC regulator requires an external 4.7 uH inductor
connected between VSW and VCORE pins. e VCORE pin requires a 100 nF and a 4.7 uF capacitor.

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//

248 5. MSP432 POWER SYSTEMS

//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--
//***
//MSP432P401 Demo - Use DC-DC Regulator
//
//
//Description: Configure PCM module to use the DC-DC regulator instead of

5.12. PROGRAMMING IN C 249

//the default LDO. Note that DC-DC usage requires a 4.7uH inductor
//connected between VSW and VCORE pins.
VCORE pin still requires its
//regular 100nF and 4.7uF capacitors.
//
//Note: the code in this example assumes the device is currently in LDO
//mode AM_LDO_VCORE0 or AM_LDO_VCORE1 (Active Mode using LDO, VCore=0/1
//respectively)
//
//Transition from DCDC mode to Low-Frequency Mode requires intermediate
//transition through LDO mode.
For more information refer to the PCM
//chapter in the device user's guide.
//
// AM_DCDC_VCORE1 <-----> AM_LDO_VCORE1 <-----> AM_LF_VCORE1
// ^
// |
// |
// |
// v
// AM_DCDC_VCORE0 <-----> AM_LDO_VCORE0* <-----> AM_LF_VCORE0
//
// *: power state condition after reset
// @: transitions demonstrated in this code example
//
// MSP432P401R
// -----------------
// /|\| |
// | | VCORE |------
// --|RST | |
// | | 4.7uH
// | | |
// | VSW |------
//
//Dung Dang
//Texas Instruments Inc.
//Nov 2013
//Built with Code Composer Studio V5.5
//***

250 5. MSP432 POWER SYSTEMS

#include "msp.h"
#include "stdint.h"

void error(void);

int main(void)
{
uint32_t currentPowerState;

WDTCTL = WDTPW | WDTHOLD; //Stop WDT
P1DIR |= BIT0;

//Get current power state
currentPowerState = PCMCTL0 & CPM_M;

//Transition to DCDC from current LDO power state properly
switch(currentPowerState)
{
case CPM_0: //AM_LDO_VCORE0, need to switch to AM_DCDC_VCORE0

while((PCMCTL1 & PMR_BUSY));
PCMCTL0 = PCM_CTL_KEY_VAL | AMR_4;
while((PCMCTL1 & PMR_BUSY));
if(PCMIFG & AM_INVALID_TR_IFG)
error(); //Error if transition was not successful

break;

case CPM_1: //AM_LDO_VCORE1, need to switch to AM_DCDC_VCORE1
while((PCMCTL1 & PMR_BUSY));
PCMCTL0 = PCM_CTL_KEY_VAL | AMR_5;
while((PCMCTL1 & PMR_BUSY));
if(PCMIFG & AM_INVALID_TR_IFG)
error(); //Error if transition was not successful

break;

case CPM_4: //Device is already in AM_LF_VCORE0
break;

case CPM_5: //Device is already in AM_LF_VCORE1

5.12. PROGRAMMING IN C 251

break;

default: //Device is in some other state, which is unexpected
error();

}

P1OUT |= BIT0; //LDO --> DCDC switching sequence successful
__no_operation();
while(1);
}

//***
// void error(void)
//***

void error(void)
{
volatile uint32_t i;

while(1)
{
P1OUT ^= BIT0;
for(i=0;i<20000;i++); //Blink LED forever
}

}

//***

Example 6: In this example the MSP432 is configured to operate at 48 MHz using the DC-DC
regulator instead of the default LDO regulator.

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions

252 5. MSP432 POWER SYSTEMS

//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.

5.12. PROGRAMMING IN C 253

//
// --/COPYRIGHT/--
//***
//
//MSP432P401 Demo - device operation at 48MHz with DC-DC Regulator
//
//
//Description: Configure device to operate at 48MHz and use the DC-DC
//regulator instead of the default LDO. The following steps must be taken
//in sequence shown below to ensure proper Flash operation at 48MHz and
//with DC-DC regulator:
// 1. VCORE LEVEL = 1
// 2. Switch from LDO to DC-DC.
// 3. Configure flash Wait-state = 2 (Flash max frequency = 16MHz)
// 4. Configure DCO to 48MHz
// 5. Switch MCLK to use DCO as source
//
//Note: DC-DC usage requires a 4.7uH inductor connected between VSW and
//VCORE pins.
VCORE pin still requires its regular 100nF and 4.7uF
//capacitors.
//
//Note: the code in this example assumes the device is currently in
//AM0_LDO (Active Mode using LDO, VCore=0/1 respectively).
//
//Transition from DCDC mode to Low-Frequency Mode requires intermediate
//transition through LDO mode.
For more information refer to the PCM
//chapter in the device user's guide.
//
// AM_DCDC_VCORE1 <-----> AM_LDO_VCORE1 <-----> AM_LF_VCORE1
// ^
// |
// |
// |
// v
// AM_DCDC_VCORE0 <-----> AM_LDO_VCORE0* <-----> AM_LF_VCORE0
//
// *: power state condition after reset

254 5. MSP432 POWER SYSTEMS

// @: transitions demonstrated in this code example
//
// MSP432P401R
// -----------------
// /|\| |
// | | VCORE |------
// --|RST | |
// | | 4.7uH
// | | |
// | VSW |------
// | |
// | P1.0 |------> LED
// | |
// | P4.3 |------> MCLK
//
//Dung Dang
//Texas Instruments Inc.
//Nov 2013
//Built with Code Composer Studio V6.0
//***

#include "msp.h"
#include "stdint.h"

#define FLCTL_BANK0_RDCTL_WAIT__2 (2 << 12)
#define FLCTL_BANK1_RDCTL_WAIT__2 (2 << 12)

void error(void);

int main(void)
{
uint32_t currentPowerState;

WDTCTL = WDTPW | WDTHOLD; //Stop WDT
P1DIR |= BIT0;

//NOTE: This example assumes the default power state is AM_LDO_VCORE0.

5.12. PROGRAMMING IN C 255

//Step 1: Transition to VCORE Level 1: AM_LDO_VCORE0 --> AM_LDO_VCORE1
//Get current power state, if it's not AM_LDO_VCORE0, error out
currentPowerState = PCMCTL0 & CPM_M;
if(currentPowerState != CPM_0)
error();

while((PCMCTL1 & PMR_BUSY));
PCMCTL0 = PCM_CTL_KEY_VAL | AMR_1;
while((PCMCTL1 & PMR_BUSY));
if(PCMIFG & AM_INVALID_TR_IFG)

error(); //Error if transition was not successful
if((PCMCTL0 & CPM_M) != CPM_1)

error(); //Error if device is not in AM1_LDO mode

//Step 2: Transition from AM1_LDO to AM1_DCDC
while((PCMCTL1 & PMR_BUSY));
PCMCTL0 = PCM_CTL_KEY_VAL | AMR_5;
while((PCMCTL1 & PMR_BUSY));
if(PCMIFG & AM_INVALID_TR_IFG)
error(); //Error if transition was not successful

if((PCMCTL0 & CPM_M) != CPM_5)
error(); //Error if device is not in AM_DCDC_VCORE1 mode

//Step 3: Configure Flash wait-state to 2 for both banks 0 & 1
FLCTL_BANK0_RDCTL = FLCTL_BANK0_RDCTL & ~FLCTL_BANK0_RDCTL_WAIT_M |

FLCTL_BANK0_RDCTL_WAIT_2;
FLCTL_BANK1_RDCTL = FLCTL_BANK0_RDCTL & ~FLCTL_BANK1_RDCTL_WAIT_M |

FLCTL_BANK1_RDCTL_WAIT_2;

//Step 4&5: Configure DCO to 48MHz, ensure MCLK uses DCO as source
CSKEY = CSKEY_VAL; //Unlock CS module for register access
CSCTL0 = 0; //Reset tuning parameters
CSCTL0 = DCORSEL_5; //Set DCO to 48MHz

//Select MCLK = DCO, no divider
CSCTL1 = CSCTL1 & ~(SELM_M | DIVM_M) | SELM_3;
CSKEY = 0; //Lock CS module from unintended accesses

P1OUT |= BIT0; //All operations successful

256 5. MSP432 POWER SYSTEMS

//Output MCLK to port pin to demonstrate 48MHz operation
P4DIR |= BIT3;
P4SEL0 |=BIT3; //Output MCLK
P4SEL1 &= ~(BIT3);

__no_operation();
while(1);
}

//***
// void error(void)
//***

void error(void)
{
volatile uint32_t i;

while(1)
{
P1OUT ^= BIT0;

for(i=0;i<20000;i++); //Blink LED forever
}

}

//***

5.13 LABORATORY EXERCISE: OPERATING MODES
In this laboratory exercise the MSP432 is placed in its various operating modes. e program
starts the MSP432 in PCM_AM0_LDO mode. Each time the pushbutton connected to P1.1 is
depressed, the MSP432 cycles to the next operating mode. e LED connected to P1.0 blinks
to indicate the state transition.

e EnergyTrace+ tool is used to measure the energy consumption of the state. Energy-
Trace is a code analysis tool to measure and display an application’s energy profile (www.ti.com).
//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX

www.ti.com

5.13. LABORATORY EXERCISE: OPERATING MODES 257

//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.

258 5. MSP432 POWER SYSTEMS

Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--
/**
//MSP432 Power Lab - Cycle through available power states & measure power
//
//Description: The goal of the lab is to explore and use the power API
//to exercise various power states available on the MSP432P401. The
//program will start up in default mode PCM_AM0_LDO. Push button P1.1
//can be used to cycle to the next power mode from the below.
P1.0 LED
//blinks to indicate the power state transition.
//
//In each power state, use EnergyTrace+ Tool to measure the energy
//consumption of that power state.
Document results across all 13
//different states.
//
// - \b PCM_AM_LDO_VCORE0, [Active Mode, LDO, VCORE0]
// - \b PCM_AM_LDO_VCORE1, [Active Mode, LDO, VCORE1]
// - \b PCM_AM_DCDC_VCORE0, [Active Mode, DCDC, VCORE0]
// - \b PCM_AM_DCDC_VCORE1, [Active Mode, DCDC, VCORE1]
// - \b PCM_AM_LPR_VCORE0, [Active Mode, Low Frequency, VCORE0]
// - \b PCM_AM_LPR_VCORE1, [Active Mode, Low Frequency, VCORE1]
// - \b PCM_LPM0_LDO_VCORE0, [LMP0, LDO, VCORE0]
// - \b PCM_LPM0_LDO_VCORE1, [LMP0, LDO, VCORE1]
// - \b PCM_LPM0_DCDC_VCORE0, [LMP0, DCDC, VCORE0]
// - \b PCM_LPM0_DCDC_VCORE1, [LMP0, DCDC, VCORE1]
// - \b PCM_LPM0_LPR_VCORE0, [LMP0, Low Frequency, VCORE0]
// - \b PCM_LPM0_LPR_VCORE1, [LMP0, Low Frequency, VCORE1]
// - \b PCM_LPM3, [LPM3]
// - \b PCM_LPM35_VCORE0, [LPM3.5 VCORE 0]
//
//Once Deep Sleep mode is entered, the next transition will start again
//with PCM_AM0_LDO.

5.13. LABORATORY EXERCISE: OPERATING MODES 259

//
//Power mode transition is accomplished using DriverLib API:
// PCM_setPowerState()
//Other related APIs: PCM_setPowerMode(), PCM_gotoSleep(), PCM_gotoLPM3()
//
//
// MSP432P401
// ------------------
// /|\| |
// | | |
// --|RST P1.1 |<--Toggle Switch
// | |
// | P1.0 |----> LED (red)
// | |
// | |
// | |
//
//Dung Dang
//Texas Instruments Inc.
//April 2014
//Built with Code Composer Studio V6.0
//***

#include "driverlib.h"

//Application Data
volatile uint32_t curPowerState, ledState=0;
volatile bool stateChange;
volatile uint32_t ledBlinkCount, ledBlinkMax=0;

#define NUMBER_OF_POWER_STATES 13

void InitializeDevice(void);

int main(void)
{
//Halting the Watchdog
WDT_A_holdTimer();
InitializeDevice();

260 5. MSP432 POWER SYSTEMS

curPowerState=0;

while (1)
{
//If we have a state change request...
if(stateChange)

{
Interrupt_disableMaster();
stateChange = false;
Interrupt_enableMaster();

//Step 1: Find the correct Power API to change power state
//Step 2: Fill in different switch cases to change device to different
// power states
//Step 3: Notice special clock handling for the Low-Power Run modes
// where MCLK is restricted to <=128kHz
//Hint: Comment out the #error line after adding your solution code

switch(curPowerState)
{
case 0: #error "Invoke PCM API to change to Active Mode, VCORE = 0

using LDO"
break;

case 1: #error "Invoke PCM API to change to Active Mode, VCORE = 1
using LDO"

break;

case 2: #error "Invoke PCM API to change to Active Mode, VCORE = 0
using DC-DC"
break;

case 3: #error "Invoke PCM API to change to Active Mode, VCORE = 1
using DC-DC"
break;

case 4: //Switch all clocks to low-frequency operation prior to LF
//operations

5.13. LABORATORY EXERCISE: OPERATING MODES 261

CS_initClockSignal(CS_MCLK, CS_REFOCLK_SELECT,
CS_CLOCK_DIVIDER_1);

CS_initClockSignal(CS_SMCLK, CS_REFOCLK_SELECT,
CS_CLOCK_DIVIDER_1);

CS_initClockSignal(CS_ACLK, CS_REFOCLK_SELECT,
CS_CLOCK_DIVIDER_1);

#error "Invoke PCM API to change to Active Mode, VCORE = 0
using Low-Frequency Mode"
break;

case 5: #error "Invoke PCM API to change to Active Mode, VCORE = 1
using Low-Frequency Mode"
break;

case 6: //Switch back to using LDO regulator first before
//increasing the clocks
#error "Invoke PCM API to change to Active Mode, VCORE = 0
using LDO"

//Switch clocks back to high-frequency operation
CS_initClockSignal(CS_MCLK, CS_DCOCLK_SELECT,

CS_CLOCK_DIVIDER_1);
CS_initClockSignal(CS_SMCLK, CS_DCOCLK_SELECT,

CS_CLOCK_DIVIDER_1);
#error "Invoke PCM API to change to LPM0 Mode, VCORE = 0
using LDO"
break;

case 7: #error "Invoke PCM API to change to LPM0 Mode, VCORE = 1
using LDO"
break;

case 8: #error "Invoke PCM API to change to LPM0 Mode, VCORE = 0
using DC-DC"
break;

case 9: #error "Invoke PCM API to change to LPM0 Mode, VCORE = 1
using DC-DC"
break;

262 5. MSP432 POWER SYSTEMS

case 10: //Switch all clocks to low-frequency operation prior to LF
//operations
CS_initClockSignal(CS_MCLK, CS_REFOCLK_SELECT,

CS_CLOCK_DIVIDER_1);
CS_initClockSignal(CS_SMCLK, CS_REFOCLK_SELECT,

CS_CLOCK_DIVIDER_1);
CS_initClockSignal(CS_ACLK, CS_REFOCLK_SELECT,

CS_CLOCK_DIVIDER_1);
#error "Invoke PCM API to change to LPM0 Mode, VCORE = 0
using Low-Frequency Mode"
break;

case 11: #error "Invoke PCM API to change to LPM0 Mode, VCORE = 1
using Low-Frequency Mode"
break;

case 12: //Switch back to using LDO regulator first before
//increasing the clocks
#error "Invoke PCM API to change to Active Mode, VCORE = 0
using LDO"

//Switch clocks back to high-frequency operation
CS_initClockSignal(CS_MCLK, CS_DCOCLK_SELECT,

CS_CLOCK_DIVIDER_1);
CS_initClockSignal(CS_SMCLK, CS_DCOCLK_SELECT,

CS_CLOCK_DIVIDER_1);
#error "Invoke PCM API to change to LPM3 Mode"
break;

default: break;
}

}
}

}

//***
//Port 1 interrupt handler. This handler is called whenever the switch
//attached to P1.1 is pressed.

5.13. LABORATORY EXERCISE: OPERATING MODES 263

A status flag is set to signal for the
//main application to change power states
//***

void Port1IsrHandler(void)
{
uint32_t status = GPIO_getEnabledInterruptStatus(GPIO_PORT_P1);
GPIO_clearInterruptFlag(GPIO_PORT_P1, status);

if(status & GPIO_PIN1)
{
Interrupt_disableInterrupt(INT_PORT1);
if(curPowerState == 12) //Power State is PCM_DSL[Deep Sleep Mode]

{
curPowerState = 0;
}

else
{
curPowerState++;
}

ledBlinkMax = (curPowerState) * 2;
ledBlinkCount = 0;
if(++ledState==8)
ledState = 1;

P2OUT &= ~(0x07);
Interrupt_enableInterrupt(INT_TA0_0);
Timer_A_startCounter(TIMER_A0_MODULE,TIMER_A_UP_MODE);

}
}

//***
//Flashes LED
//***

void Timer_AIsrHandler(void)
{
Timer_A_clearCaptureCompareInterrupt(TIMER_A0_MODULE,

264 5. MSP432 POWER SYSTEMS

TIMER_A_CAPTURECOMPARE_REGISTER_0);
if(ledBlinkMax>0)
P2OUT ^= ledState;

ledBlinkCount++;

if((ledBlinkCount == ledBlinkMax) || (ledBlinkMax==0))
{
stateChange = true;
Timer_A_stopTimer(TIMER_A0_MODULE);
Interrupt_disableInterrupt(INT_TA0_0);
//Re-enabling port pin interrupt
GPIO_clearInterruptFlag(GPIO_PORT_P1, GPIO_PIN1);
Interrupt_enableInterrupt(INT_PORT1);
}

}

//***
//Terminate GPIO
//***

void TerminateGPIO(void)
{
P1DIR = 0x00;
P2DIR = 0x00;
P3DIR = 0x00;
P4DIR = 0x00;
P5DIR = 0x00;
P6DIR = 0x00;
P7DIR = 0x00;
P8DIR = 0x00;
P9DIR = 0x00;
P10DIR = 0x00;
P1REN = 0xff;
P2REN = 0xff;
P3REN = 0xff;
P4REN = 0xff;
P5REN = 0xff;
P6REN = 0xff;
P7REN = 0xff;

5.13. LABORATORY EXERCISE: OPERATING MODES 265

P8REN = 0xff;
P9REN = 0xff;
P10REN = 0xff;
P1OUT = 0x00;
P2OUT = 0x00;
P3OUT = 0x00;
P4OUT = 0x00;
P5OUT = 0x00;
P6OUT = 0x00;
P7OUT = 0x00;
P8OUT = 0x00;
P9OUT = 0x00;
P10OUT = 0x00;

PSS_setHighSidePerformanceMode(PSS_NORMAL_PERFORMANCE_MODE);
//PSS_setLowSidePerformanceMode(PSS_NORMAL_PERFORMANCE_MODE);
PCM_enableRudeMode();
}

//***
//Initialize Device
//***

void InitializeDevice(void)
{
//TimerA UpMode Configuration Parameter
Timer_A_UpModeConfig upConfig =
{
TIMER_A_CLOCKSOURCE_ACLK, //SMCLK Clock Source
TIMER_A_CLOCKSOURCE_DIVIDER_1, //SCLK/1 = 3MHz
16000, //50000 tick period
TIMER_A_TAIE_INTERRUPT_DISABLE, //Disable Timer interrupt
TIMER_A_CCIE_CCR0_INTERRUPT_ENABLE , //Enable CCR0 interrupt
TIMER_A_SKIP_CLEAR //Clear value
};

Interrupt_disableMaster();
TerminateGPIO();

266 5. MSP432 POWER SYSTEMS

//Initializing Variables
curPowerState = 0;
stateChange = false;
ledBlinkCount = 0;

//Setting the Reference Oscillator to 128KHz.
For Low Power Run modes,
//the MCLK frequency is required to be scaled back to 128KHz.
CS_setReferenceOscillatorFrequency(CS_REFO_128KHZ);

//Setting up TimerA to be sourced from ACLK and for ACLK to be sourced
//from the 128Khz REFO. Since the frequency of MCLK will be changed when
//we go into LPR mode, we want to make our LED blink look consistent.
CS_initClockSignal(CS_ACLK, CS_REFOCLK_SELECT, CS_CLOCK_DIVIDER_1);
Timer_A_configureUpMode(TIMER_A0_MODULE, &upConfig);
Timer_A_enableCaptureCompareInterrupt(TIMER_A0_MODULE,

TIMER_A_CAPTURECOMPARE_REGISTER_0);

//Configuring P2 as output and P1.1 (switch) as input
GPIO_setAsOutputPin(GPIO_PORT_P2, GPIO_PIN0 | GPIO_PIN1 | GPIO_PIN2);

//Confinguring P1.1 as an input and enabling interrupts
GPIO_setAsInputPinWithPullUpResistor(GPIO_PORT_P1, GPIO_PIN1);
GPIO_clearInterruptFlag(GPIO_PORT_P1, GPIO_PIN1);
GPIO_enableInterrupt(GPIO_PORT_P1, GPIO_PIN1);
GPIO_interruptEdgeSelect(GPIO_PORT_P1, GPIO_PIN1,

GPIO_HIGH_TO_LOW_TRANSITION);
Interrupt_enableInterrupt(INT_PORT1);
Interrupt_disableSleepOnIsrExit();
SysCtl_enableSRAMBankRetention(SYSCTL_SRAM_BANK7);
Interrupt_enableMaster();
}

//***

5.14 SUMMARY
In this chapter, we began with a discussion on the balancing act microcontroller-based designers
must perform between the power requirements of a given application and available power sources.
To assist the designers, we overviewed the low power features of the MSP432 microcontroller.

5.15. REFERENCES AND FURTHER READING 267

To optimize the available power use, we presented the active and low-power operating modes
(LPM) of the MSP432 and how they help to reduce power consumption. We then investigated
the MSP432 subsystems which contribute to low-power operation, including the Power Supply
System (PSS) and the Power Control Module (PCM). By evaluating the required battery capacity
and the operating modes of the MSP432 controllers, one can choose appropriate batteries to
satisfy system requirements. We then looked at the other side of the coin, the battery supply.
We began with a discussion of battery capacity and its key parameters. We also described the
important concept of voltage regulation and different methods of achieving a stable source of
voltage within a circuit. e chapter concluded with a laboratory exercise to investigate different
MSP432 operating modes.

5.15 REFERENCES AND FURTHER READING
Day, M. Using power solutions to extend battery life in MSP430 applications. Analog Applic. J.,

Fourth Quarter 2009, Texas Instruments Incorporated, 10–12. 226

Designing an Ultra-Low-Power (ULP) Application With MSP432 Microcontrollers (SLAA668).
Texas Instruments, 2015. 226, 227

MSP432 Peripheral Driver Library User’s Guide. Texas Instruments, 2015. 237

MSP432P4xx Family Technical Reference Manual (SLAU356A). Texas Instruments, 2015. 227,
228, 229, 230, 231, 232, 233, 234

MSPWare for MSP Microcontrollers., http://www.ti.com/tool/mspware, Texas Instruments,
2016. 237

5.16 CHAPTER PROBLEMS
Fundamental

1. Draw a block diagram and describe the operation of the Power Management System
(PMM).

2. Draw a block diagram and describe the operation of the Power Control Module (PCM).

3. What is the difference between supply voltage supervision and monitoring?

4. What is the difference between a primary voltage source and a secondary voltage source?

Advanced

1. Design a 3.3 VDC source for an MSP432 using a AA battery pack. Fully specify all com-
ponents. What is the capacity of the battery pack?

http://www.ti.com/tool/mspware

268 5. MSP432 POWER SYSTEMS

2. Write a one-page point paper summarizing best practices for low-power operation.

3. Write a one-page point paper on the concept of battery capacity.

4. A common battery used for microcontroller applications is the CR2032 “coin” battery. is
is a lithium battery at 3 VDC with a capacity of 250 mAh. Is the battery suitable to power
the MSP432? Explain.

5. Construct a table summarizing low power modes (LPM). e table should include bit set-
tings to enter the specific LPM and features available in the mode.

6. Construct an experiment to monitor battery voltage degradation during use. Plot results for
several different battery technologies.

7. Construct a table summarizing available primary and secondary battery sources. At a min-
imum, the table should include common battery sizes (AA, AAA, C, D, and 9 VDC) and
their capacity.

Challenging

1. Write a function in C to place the MSP432 in a specified low power mode (LPM). e
desired LPM is passed into the function as an unsigned integer variable.

2. Compile a list of best practices to operate the MSP432 microcontroller in the most efficient
manner.

3. Write a power management program to be installed on a remote weather station using the
MSP432. Make reasonable assumptions for sensors on the weather station and its power
usage.

269

C H A P T E R 6

Time-Related Systems
Objectives: After reading this chapter, the reader should be able to:

• explain clock signal generators available on the MSP432;

• describe the process used to select each clock signal generator as the MSP432 clock source;

• illustrate the use of the Watchdog Timer;

• describe the features of the Timer32 system;

• configure the Timer32 system for different applications;

• describe the features of the Timer_A system;

• configure the Timer_A system for different applications;

• explain the operation of the Real-Time Clock timer (RTC_C);

• describe the Real-Time Clock timer system;

• program Timer_A capture and compare subsystems to interface with external devices;

• describe time related features supported within Energia; and

• write programs using the timer subsystems (Watchdog, real-time clock, and cap-
ture/compare subsystems) and their interrupt modules.

6.1 OVERVIEW
One of the main reasons for the proliferation of microcontrollers as the “brain” of embedded
systems is their ability to interface with multiple external devices such as sensors, actuators, and
display units. In order to communicate successfully with such devices, microcontrollers must have
capabilities to meet signal time constraints required by the external devices. As the number and
complexities of external devices intended to be interfaced with the microcontroller grow, the as-
sociated timer systems must also possess sophisticated timer features to accommodate the needs
of the devices.

For example, consider an actuator controlled by a servo motor requiring a pulse width mod-
ulated signal with precise timing requirements as its input. A communication device connected to

270 6. TIME-RELATED SYSTEMS

a microcontroller may need a unique pulse with a specified width to initiate its process. In other
applications, microcontrollers need to capture the time of an external event or distinguish peri-
odic input signals by computing their frequencies and periods. To meet these time constraints,
embedded systems must have a fairly sophisticated timer system to generate a variety of clock
signals, capture external event capabilities, and produce desired output time related signals.

e goal of this chapter is to introduce the timing related features of theMSP432.We begin
with background information and related terminology followed by the clock systems of MSP432.
We then discuss the Watchdog Timer (WDT), Timer32, Timer_A, and the Real-Time Clock
(RTC_3) system.

6.2 BACKGROUND
roughout the history of microcontrollers, one of the main challenges was the need to operate
with minimal power. e motivation comes from microcontrollers working as the “brain” of em-
bedded systems that are often operating remotely without a continuous external power source.
Since the power used by a microcontroller is directly proportional to the speed of transistors
switching logic states, computer designers implemented multiple methods to reduce the clock
speed. One method was to design a controller such that the central processing unit operates at a
high clock speed while other subsystems run at a lower clock speed.

Such architectures with multiple clock sources can also allow programmers/engineers to
turn off subsystems while they are not in use, saving more power for the overall embedded system.
e MSP432 designers adopted this philosophy of providing users with multiple clock sources
such that, depending on applications, one can have the flexibility to configure his or her controller
appropriately. In the next section, we review time-related terminology followed by descriptions
of the MSP432 clock system and the timer systems that take advantages of the multiple clock
sources.

6.3 TIME-RELATED SIGNAL PARAMETERS
In this section we review time related terminology used throughout the chapter.

6.3.1 FREQUENCY
Consider a signal x.t/ that repeats itself. We call this signal periodic with period T , if it satisfies
the following equation:

x.t/ D x.t C T /:

To measure the frequency of a periodic signal, we count the number of times a particular
event repeats within a one second period. e unit of frequency is Hertz or cycles per second. For
example, a sinusoidal signal with a 60 Hz frequency means that a full cycle of the sinusoid signal
repeats itself 60 times each second or once every 16.67 ms.

6.3. TIME-RELATED SIGNAL PARAMETERS 271

6.3.2 PERIOD
e reciprocal of frequency is a period. If an event occurs with a rate of 1 Hz, the period of that
event is 1 s. To find the period, given a frequency, or vice versa, we simply need to remember their
inverse relationship f D

1
T

where f and T represent a frequency and the corresponding period,
respectively. Both periods and frequencies of signals are often used to specify timing constraints
of embedded systems.

For example, when your car is on a wintery road and slipping, the engineers who designed
your car configured the anti-slippage unit to react within some millisecond period, say 20 ms. e
constraint then forces the design team that monitors the slippage to program their monitoring
system to check a slippage at a minimum rate of 50 Hz.

6.3.3 DUTY CYCLE
In many applications, periodic pulses are used as control signals. A good example is the use of a
periodic pulse to control a servo motor. To control the direction and sometimes the speed of a
motor, a periodic pulse signal with a changing duty cycle over time is used. e periodic pulse
signal, shown in Figure 6.1 frame (a), is on for 50% of the signal period and off for the rest of
the period. e pulse shown in frame (b) is on for only 25% of the same period as the signal in
frame (a) and off for 75% of the period. e duty cycle is defined as the percentage of one period
a signal is on. erefore, we call the signal in frame (a) in Figure 6.1 as a periodic pulse signal
with a 50% duty cycle and the corresponding signal in frame (b), a periodic pulse signal with a
25% duty cycle.

6.3.4 PULSE WIDTH MODULATION
e speed of a DC motor can be controlled by a pulse width modulated (PWM) signal. Suppose
you have the circuit setup as shown in Figure 6.2.e figure shows how the batteries are connected
to power the motor through a switch. It is obvious that when we close the switch the DC motor
will rotate and continue to rotate with a set speed proportional to the DC voltage provided by the
batteries.

Now suppose we open and close the switch rapidly. It will cause the motor to rotate and
stop rotating per the switch position. As the time between the closing and opening of the switch
decreases, the motor will not have time to make a complete stop and will continue to rotate with a
speed proportional to the time the switch is closed. is is the underlying principle of controlling
DC motor speed using the PWM signal. When the logic of the PWM signal is high, the motor
is turned on, and when the logic of the waveform is low, the motor is turned off. By controlling
the time the motor is on, we can control the speed of the DC motor.

e duty cycle is defined as the fractional time the logic is high with respect to one cycle
time of the PWM signal. us, 0% duty cycle means the motor is completely turned off while
100% duty cycle means the motor is on all the time. Aside from motor speed control applications,

272 6. TIME-RELATED SYSTEMS

50%

100%

(a)

100%

25%

(b)

Figure 6.1: Two signals with the same period but different duty cycles. Frame (a) shows a periodic
signal with a 50% duty cycle, and frame (b) displays a periodic signal with a 25% duty cycle.

PWM techniques are used in a wide variety of applications such as in communications, as control
signals, in power delivery systems, and regulating voltage.

6.3.5 INPUT CAPTURE AND OUTPUT COMPARE
e heart of a timing system is the time base. e time base frequency of an oscillating signal is
used to generate a baseline clock signal. For a timer system, the system clock is used to update the
contents of a special register called a free running counter. e job of a free running counter is to
count up (increment) each time it sees a rising edge (or a falling edge) of a clock signal. us, if
a clock is running at the rate of 2 MHz, the free running counter will count up at every 0.5 �s.
All other timer-related units reference the contents of the free running counter to perform input
and output time-related activities: measurement of time periods, capture of timing events, and
generation of time-related signals.

6.3. TIME-RELATED SIGNAL PARAMETERS 273

Switch

Batteries DC Motor

Figure 6.2: An example setup for controlling a DC motor.

For input time-related activities, all microcontrollers typically have timer hardware compo-
nents that detect signal logic changes on one or more input pins. Such components rely on a free
running counter to capture external event times. We can use this feature to measure the period of
an incoming signal, the width of a pulse, and the time of a signal logic change.

You can also use the timer input system to measure the pulse width of an aperiodic signal.
For example, suppose that the times for the rising edge and the falling edge of an incoming signal
are 1.5 s and 1.6 s, respectively. We can use these values to easily compute the pulse width of 0.1 s.

For output timer functions, a microcontroller uses a comparator, a free running counter,
logic switches, and special purpose registers to generate time related signals on one or more output
pins. A comparator checks the value of the free running counter for a match with the contents of
another special purpose register where a programmer stores a specified time in terms of the free
running counter value. e checking process is executed at each clock cycle and when a match
occurs, the corresponding hardware system induces a programmed logic change on a programmed
output port pin. Using this feature, one can generate a simple logic change at a designated time
incident: a pulse with a desired time width or a pulse width modulated signal to control servo or
Direct Current (DC) motors.

From the examples above, you may have wondered how a microcontroller can compute
absolute times from the relative free running counter values, say 1.5 s and 1.6 s. e simple
answer is that we cannot do so directly. A programmer must use the relative system clock values
and derive the absolute time values.

274 6. TIME-RELATED SYSTEMS

Suppose your microcontroller is clocked by a 2 MHz signal and the system clock uses a
16-bit free running counter. For such a system, each clock period represents 0.5 �s, and it takes
approximately 32.78 ms to count from 0–216 (65,536). e timer input system then uses the clock
values to compute frequencies, periods, and pulse widths. Again, suppose you want to measure
a pulse width of an incoming aperiodic signal. If the rising edge and the falling edge occurred at
count values $0010 and $0114,¹ can you find the pulse width when the free running counter is
counting at 2 MHz? Let’s first convert the two values into their corresponding decimal values, 16
and 276. e pulse width of the signal in the number of counter value is 260. Since we already
know how long it takes for the system to count one, we can readily compute the pulse width as
260 � 0.5 �s D 130 �s.

Our calculations do not take into account time increments lasting longer than the rollover
time of the counter. When a counter rolls over from its maximum value back to zero, a flag is set
to notify the processor of this event. e rollover events may be counted to correctly determine
the overall elapsed time of an event. Elapsed time may be calculated using the following:

elapsed clock ticks D .n � 2b/ C .stop count � start count/Œclock ticks�

elapsed time D .elapsed clock ticks/ � .FRC clock period/Œseconds�:

In this first equation, “n” is the number of timer overflow events that occur between the
start and stop events, and “b” is the number of bits in the timer counter. e equation yields the
elapsed time in clock ticks. To convert to seconds, the number of clock ticks are multiplied by the
period of the clock source of the free running counter.

6.4 MSP432 CLOCK SYSTEM
e architects of the MSP432 designed the controller’s clock system to provide flexibility and
minimum power consumption based on intended applications. Note microcontroller power con-
sumption is directly related to the oscillation speed of the clock. e higher the frequency of a
clock signal, the more power is used. For example, typical microcontroller applications require a
high frequency clock for the central processing unit but not for the input/output interface systems.
Running input/output subsystems based on a slower clock saves power.

e MSP432 clock system is quite versatile. It may use an internal time base, external
crystals for precise time resolution, or external resonators for the time base. e MSP432 clock
system is shown in Figure 6.3 [SLAU356A, 2015].

eMSP432 clock system’s time basemay be provided for an external source via the LFXIN
(low frequency) or the HFXIN (high frequency) external input pins. ese input signals become
the LFXTCLK or theHFXTCLK signals. Alternatively, the time basemay be provided internally
via the Digital Controlled Oscillator (DCO), REFOCLK, MODOSC, or SYSOSC. Provided
below is additional information on each clock source [SLAU356A, 2015]:
¹e $ symbol represents that the following value is in a hexadecimal form.

6.4. MSP432 CLOCK SYSTEM 275

Figure 6.3: MSP432 clock system. Illustration used with permission of Texas Instruments www.ti
.com.

www.ti.com
www.ti.com

276 6. TIME-RELATED SYSTEMS

• LFXTCLK: is low-frequency external time source is typically provided by a 32,768 Hz
time source such as an external crystal or resonator. e frequency is 215 and may be divided
to provide a 1 Hz time base for use in keeping real time. For example, a 15-bit counter will
rollover once per second when clocked from a 32,768 Hz source.

• HFXTCLK: is high-frequency time source is provided externally in a range from 1–
48 MHz. e time base may be an external crystal or resonator. Typically, a crystal is more
accurate than a ceramic resonator.

• DCOCLK: is signal is provided internally by the Digitally Controlled Oscillator. e
DCOCLK operating frequency may be set for a variety of different frequencies using soft-
ware configurable register settings.

• VLOCLK: is internal clock source features very low-power, very low-frequency opera-
tion. It is typically set for 10 kHz operation.

• REFOCLK: is internal clock source features low-power, low-frequency operation. It is
typically set for a 32,768 Hz or 128 kHz frequency of operation.

• MODCLK: is internal low power oscillator operates at 24 MHz.

• SYSCLK: is internal clock source typically operates at 5 MHz.

As can be seen in Figure 6.3, the clock sources are routed to different portions of the
MSP432 to become the ACLK, MCLK, HSMCLK, SMCLK, BCLK, LFXTCLK, VLOCLK,
REFOCLK, MODCLK, and SYSCLK. Source selection for each of these clocks are controlled
by various multiplexers input select bits (e.g., SELA, SELM, SELS, etc.). e sources may also
be divided down to slower frequencies as shown in Figure 6.3 [SLAU356A, 2015].

6.4.1 CLOCK SOURCE REGISTERS
e clock source is configured using a series of registers including [SLAU356A, 2015]:

• CSKEY: Clock System Key Register

• CSCTL0: Clock System Control 0 Register

• CSCTL1: Clock System Control 1 Register

• CSCTL2: Clock System Control 2 Register

• CSCTL3: Clock System Control 3 Register

• CSCLKEN: Clock System Clock Enable Register

• CSSTAT: Clock System Status Register

6.4. MSP432 CLOCK SYSTEM 277

• CSIE: Clock System Interrupt Enable Register

• CSIFG: Clock System Interrupt Flag Register

• CSCLRIFG: Clock System Clear Interrupt Flag Register

• CSSETIFG: Clock System Set Interrupt Flag Register

• CSDCOERCAL: Clock System DCO External Resistor Calibration Register

Details of specific register and bits settings are contained inMSP432P4xx Family Technical
Reference Manual [SLAU356A, 2015] and will not be repeated here.

6.4.2 DRIVERLIB APIS
e Clock System is well supported by several APIs including [DriverLib, 2015]:

• void CS_clearInterruptFlag(uint32_t flags)

• void CS_disableClockRequest(uint32_t selectClock)

• void CS_disableDCOExternalResistor(void)

• void CS_disableFaultCounter(uint_fast8_t counterSelect)

• void CS_disableInterrupt(uint32_t flags)

• void CS_enableClockRequest(uint32_t selectClock)

• void CS_enableDCOExternalResistor(void)

• void CS_enableFaultCounter(uint_fast8_t counterSelect)

• void CS_enableInterrupt(uint32_t flags)

• uint32_t CS_getACLK(void)

• uint32_t CS_getBCLK(void)

• uint32_t CS_getDCOFrequency(void)

• uint32_t CS_getEnabledInterruptStatus(void)

• uint32_t CS_getHSMCLK(void)

• uint32_t CS_getInterruptStatus(void)

• uint32_t CS_getMCLK(void)

• uint32_t CS_getSMCLK(void)

278 6. TIME-RELATED SYSTEMS

• void CS_initClockSignal(uint32_t selectedClockSignal, uint32_t clockSource, uint32_t
clockSourceDivider)

• void CS_registerInterrupt(void(*intHandler)(void))

• void CS_resetFaultCounter(uint_fast8_t counterSelect)

• void CS_setDCOCenteredFrequency(uint32_t dcoFreq)

• void CS_setDCOExternalResistorCalibration(uint_fast8_t uiCalData)

• void CS_setDCOFrequency(uint32_t dcoFrequency)

• void CS_setExternalClockSourceFrequency(uint32_t lfxt_XT_CLK_frequency, uint32_t
hfxt_XT_CLK_frequency)

• void CS_setReferenceOscillatorFrequency(uint8_t referenceFrequency)

• void CS_startFaultCounter(uint_fast8_t counterSelect, uint_fast8_t countValue)

• void CS_startHFXT(bool bypassMode)

• void CS_startHFXTWithTimeout(bool bypassMode, uint32_t timeout)

• void CS_startLFXT(uint32_t xtDrive)

• void CS_startLFXTWithTimeout(uint32_t xtDrive, uint32_t timeout)

• void CS_tuneDCOFrequency(int16_t tuneParameter)

• void CS_unregisterInterrupt(void)

Details of specific APIs are contained in MSP432 Peripheral Driver Library User’s
Guide [DriverLib, 2015] and will not be repeated here.
Example 1: In this example an external high frequency crystal serves as the clock source and is
also routed to serve as the source for the MCLK. Also, a general purpose input/output pin is
configured as an output to support an LED [DriverLib, 2015].

//**
//This example is used with permission from:
//MSP432 Peripheral Driver Library User's Guide [DriverLib]
//**

//Configuring pins for peripheral/crystal usage and LED for output
MAP_GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_PJ,

GPIO_PIN3 | GPIO_PIN4, GPIO_PRIMARY_MODULE_FUNCTION);

6.4. MSP432 CLOCK SYSTEM 279

MAP_GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);

//Setting the external clock frequency.
This API is optional,
//but will come in handy if the user ever wants to use the
//getMCLK, getACLK, etc. functions
CS_setExternalClockSourceFrequency(32000, 48000000);

//Starting HFXT in non-bypass mode without a timeout.
//Before we start we have to change VCORE to 1 to support
//the 48MHz frequency
MAP_PCM_setCoreVoltageLevel(PCM_VCORE1);
MAP_FlashCtl_setWaitState(FLASH_BANK0, 2);
MAP_FlashCtl_setWaitState(FLASH_BANK1, 2);
CS_startHFXT(false);

//Initializing MCLK to HFXT (effectively 48MHz)
MAP_CS_initClockSignal(CS_MCLK, CS_HFXTCLK_SELECT, CS_CLOCK_DIVIDER_1);
//**

6.4.3 TIMER APPLICATIONS IN C
e MSP432 timer system may also be programmed using C with register configuration tech-
niques. In this section we provide several representative examples.
Example 2: In this example the MSP432 is configured for an MCLK frequency of 12 MHz. e
SMCLK is also set for this frequency while the ACLK is sourced from the REFOCLK operating
at approximately 32 kHz.

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.

280 6. TIME-RELATED SYSTEMS

//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--
//***

6.4. MSP432 CLOCK SYSTEM 281

//MSP432P401 Demo - Configure MCLK for 12MHz operation
//
//Description: Configure SMCLK = MCLK = 12MHz, ACLK = REFOCLK.
//
// MSP432P401RPZ
// ---------------
// /|\| |
// | | |
// --|RST |
// | |
// | P1.0|---> LED
// | P4.2|---> ACLK = ~32kHz
// | P4.3|---> MCLK = SMCLK = 12MHz
//
//Dung Dang
//Texas Instruments Inc.
//Nov 2013
//Built with Code Composer Studio V6.0
//***

#include "msp.h"

int main(void)
{
volatile unsigned int i;

WDTCTL = WDTPW | WDTHOLD; //Stop the watchdog timer
P1DIR |= BIT0; //P1.0 set as output

P4DIR |= BIT2 | BIT3;
P4SEL0 |= BIT2 | BIT3; //Output ACLK & MCLK
P4SEL1 &= ~(BIT2 | BIT3);

CSKEY = CSKEY_VAL; //Unlock CS module for access
CSCTL0 = 0; //Reset tuning parameters
CSCTL0 = DCORSEL_3; //Set DCO to 12MHz (nominal,

//center of 8-16MHz range)
//Select ACLK = REFO,

282 6. TIME-RELATED SYSTEMS

//SMCLK = MCLK = DCO
CSCTL1 = SELA_2 | SELS_3 | SELM_3;
CSKEY = 0; //Lock CS module from

//unintended accesses

while(1) //continuous loop
{
P1OUT ^= BIT0; //XOR P1.0
for (i = 20000; i > 0; i--); //Delay
}

}
//***

Example 3: In this example the MSP432 is configured for an MCLK operating frequency of
48 MHz. is will include actions to configure the VCORE level to one, the flash wait state
to two, the DCO frequency to 48 MHz, and the DCO as the MCLK time source. After these
configuration actions, the MCLK is output to port pin P4.3 for observation.

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

6.4. MSP432 CLOCK SYSTEM 283

//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--
//***
//MSP432P401 Demo - Device configuration for operation at
//MCLK = DCO = 48MHz
//
//Description: Proper device configuration to enable operation at
//MCLK=48MHz including:
// 1. Configure VCORE level to 1
// 2. Configure flash wait-state to 2
// 3. Configure DCO frequency to 48MHz
// 4. Ensure MCLK is sourced by DCO

284 6. TIME-RELATED SYSTEMS

//
//After configuration is complete, MCLK is output to port pin P4.3.
//
// MSP432P401RPZ
// -----------------
// /|\| |
// | | |
// --|RST |
// | P4.3|----> MCLK
// | |
//
//Dung Dang
//Texas Instruments Inc.
//Nov 2013
//Built with Code Composer Studio V6.0
//***

#include "msp.h"
#include "stdint.h"

#define FLCTL_BANK0_RDCTL_WAIT__2 (2 << 12)
#define FLCTL_BANK1_RDCTL_WAIT__2 (2 << 12)

void error(void);

int main(void)
{
uint32_t currentPowerState;
WDTCTL = WDTPW | WDTHOLD; //Stop the WDT

//NOTE: This example assumes the default power state is AM0_LDO.
//Refer to MSP4322001_pcm_0x code examples for more complete PCM
//operations to exercise various power state transitions between
//active modes.
//
//Step 1: Transition to VCORE Level 1: AM0_LDO --> AM1_LDO
//Get current power state, if it's not AM0_LDO, error out

currentPowerState = PCMCTL0 & CPM_M;

6.4. MSP432 CLOCK SYSTEM 285

if(currentPowerState != CPM_0)
error();

while((PCMCTL1 & PMR_BUSY));
PCMCTL0 = PCM_CTL_KEY_VAL | AMR_1;
while((PCMCTL1 & PMR_BUSY));
if(PCMIFG & AM_INVALID_TR_IFG)
error(); //Error if transition was not

//successful
if((PCMCTL0 & CPM_M) != CPM_1)
error(); //Error if device is not in

//AM1_LDO mode

//Step 2: Configure Flash wait-state to 2 for both banks 0 & 1

FLCTL_BANK0_RDCTL = FLCTL_BANK0_RDCTL & ~FLCTL_BANK0_RDCTL_WAIT_M |
FLCTL_BANK0_RDCTL_WAIT_2;

FLCTL_BANK1_RDCTL = FLCTL_BANK0_RDCTL & ~FLCTL_BANK1_RDCTL_WAIT_M |
FLCTL_BANK1_RDCTL_WAIT_2;

//Step 3: Configure DCO to 48MHz, ensure MCLK uses DCO as source

CSKEY = CSKEY_VAL; //Unlock CS module for register
//access

CSCTL0 = 0; //Reset tuning parameters
CSCTL0 = DCORSEL_5; //Set DCO to 48MHz

//Select MCLK = DCO,
//no divider

CSCTL1 = CSCTL1 & ~(SELM_M | DIVM_M) | SELM_3;
CSKEY = 0; //Lock CS module from unintended

//accesses

//Step 4: Output MCLK to port pin to demonstrate 48MHz operation
P4DIR |= BIT3;
P4SEL0 |=BIT3; //Output MCLK
P4SEL1 &= ~(BIT3);

//Go to sleep
__sleep();

286 6. TIME-RELATED SYSTEMS

__no_operation(); //For debugger

}

//***

void error(void)
{
volatile uint32_t i;
P1DIR |= BIT0;

while (1)
{
P1OUT ^= BIT0;
for(i=0;i<20000;i++); //Blink LED forever
}

}

//***

6.5 ENERGIA-RELATED TIME FUNCTIONS
For the remainder of the chapter we investigate time-related peripherals onboard the MSP432
including the Watchdog Timer, Timer32, Timer_A, and the Real-Time Clock (RTC_C). Before
doing so, we review time related functions available within Energia.

e Energia Development Environment has several built-in functions related to timing
events, providing delays, or generating pulse width modulated (PWM) signals. e functions
include (www.energia.nu) the following.

• millis(): is function provides the number of milliseconds that has occurred since the pro-
cessor began running the current program.

• micros(): is function provides the number of microseconds that has occurred since the
processor began running the current program.

• delay(): Provides a program pause for the specified number of milliseconds.

• delayMicroseconds(): Provides a program pause for the specified number of microseconds.
Note: is function is accurate for values 16,383 �s or less.

• analogWrite(): e analogWrite function provides a 490 Hz pulse width modulated sig-
nal on the specified PWM capable pin. e duty cycle is provided as an argument to the
function from 0–255. For example, to specify a 90% duty cycle, the value would be 230.

www.energia.nu

6.5. ENERGIA-RELATED TIME FUNCTIONS 287

Example 4: In this example, time-related Energia functions are used to debounce an external
switch input.

//***
//This example is provided with the Energia distribution and is used with
//permission of Texas Instruments, Inc.
//
//Debounce
//***
//Each time the input pin goes from LOW to HIGH (e.g., because of a
//push-button press), the output pin is toggled from LOW to HIGH or
//HIGH to LOW.
//
//The circuit:
//- LED attached from pin 13 to ground
//- Pushbutton attached from pin 2 to +3.3V
//-10K resistor attached from pin 2 to ground
//
//created: 21 Nov 2006, David A. Mellis
//modified: 30 Aug 2011, Limor Fried
//modified: 27 Apr 2012, Robert Wessels
//
//This example code is in the public domain.
//***

const int buttonPin = PUSH2; //number of the pushbutton pin
const int ledPin = GREEN_LED; //number of the LED pin

int ledState = HIGH; //current state of the output pin
int buttonState; //current reading from the input pin
int lastButtonState = LOW; //previous reading from the input pin

//the following variables are long's because the time, measured in
//miliseconds, will quickly become a bigger number than can be
//stored in an int.
long lastDebounceTime = 0; //the last time the output pin was toggled
long debounceDelay = 50; //the debounce time; increase if the

//output flickers

void setup()

288 6. TIME-RELATED SYSTEMS

{
pinMode(buttonPin, INPUT_PULLUP);
pinMode(ledPin, OUTPUT);
}

void loop()
{
//read the state of the switch into a local variable:
int reading = digitalRead(buttonPin);

//check to see if you just pressed the button
//(i.e., the input went from LOW to HIGH), and you've waited
//long enough since the last press to ignore any noise:
//If the switch changed, due to noise or pressing:
if (reading != lastButtonState)
{
lastDebounceTime = millis();
}

if ((millis() - lastDebounceTime) > debounceDelay)
{
//whatever the reading is at, it's been there for longer
//than the debounce delay, so take it as the actual current state:
buttonState = reading;
}

//set the LED using the state of the button:
digitalWrite(ledPin, buttonState);

//save the reading.
Next time through the loop,
//it'll be the lastButtonState:
lastButtonState = reading;
}

//***

6.6. WATCHDOG TIMER 289

6.6 WATCHDOG TIMER

e MSP432 is equipped with a Watchdog Timer designated WDT_A. As the name implies,
the primary purpose of the Watchdog timer is to monitor and prevent software failure by forcing
the user code to refresh a designated control register periodically throughout the execution of a
program. e secondary purpose of the watchdog timer is to generate periodic time intervals.

By software failure, we mean the execution of unintended instructions by the MSP432,
whether it is an unintended infinite loop or a wrong segment of program being executed due
to hardware errors, programmer errors, or noise related malfunctions. We now present how we
configure the watchdog system to prevent software failure or as a periodic interval generator.

6.6.1 WDT MODES OF OPERATION
e Watchdog timer prevents software failure by enforcing the following rule: a 32-bit register,
called the Watchdog Count (WDTCNT) register, counts up at each clock cycle. If the register
reaches its maximum count, the processor generates a reset. When developing an application, the
designer should strategically place commands to reset theWDTCNT from reaching its maximum
count and thereby preventing a reset. Under normal operation a reset will not occur. However, if
the processor experiences a fault, the WDTCNT may not receive its required reset signal and the
processor will reset in attempt to clear the fault. e WDT feature is available in the active and
LPM0 power modes [SLAU356A, 2015].

e Watchdog timer can also be configured to generate a periodic interval. In this mode the
WDT generates an interrupt rather than a processor reset. e interval timer mode is available
in the active mode, LPM0, LPM3 with the BCLK or VLOCLK, or LPM 3.5 with the BCLK
or VLOCLK [SLAU356A, 2015].

It is important to note that from reset, the MSP432 is configured with the Watchdog
Timer active with an SMCLK source. erefore, the WDT must be halted, reset, or reconfigured
before the WDTCNT reaches its maximum count at approximately 10.92 ms. Recall that in
examples provided thus far in the book, the WDT is typically halted in the first step of each
program [SLAU356A, 2015].

6.6.2 WDT SYSTEM
A block diagram of the Watchdog Timer (WDT) is provided in Figure 6.4. e WDT contains
two key registers: the WDT Timer Control Register (WDTCTL) and the 32-bit WDT Count
(WDTCNT) register. e WDTCTL is a 16-bit register containing a password compare upper
byte and control bits in the lower byte. When writing to this register, it must be written using
half word (16-bit) based instructions. During the write operation the upper byte must contain the
password .5A/h. If the password is incorrect, the processor will reset. As shown in Figure 6.4, the
time base for the WDT system may be the SMCLK, ACLK, VLOCLK, or the BCLK. e clock

290 6. TIME-RELATED SYSTEMS

source is chosen using the WDTSSEL[1:0] select bits in the WDTCTL register [SLAU356A,
2015].

6.6.3 WATCHDOG DRIVERLIB APIS
e following APIs are available in DriverLib to support the Watchdog System:

• void WDT_A_clearTimer(void)

• void WDT_A_holdTimer(void)

• void WDT_A_initIntervalTimer(uint_fast8_t clockSelect, uint_fast8_t clockDivider)

• void WDT_A_initWatchdogTimer(uint_fast8_t clockSelect, uint_fast8_t clockDivider)

• void WDT_A_registerInterrupt(void(*intHandler)(void))

• void WDT_A_setPasswordViolationReset(uint_fast8_t resetType)

• void WDT_A_setTimeoutReset(uint_fast8_t resetType)

• void WDT_A_startTimer(void)

• void WDT_A_unregisterInterrupt(void)

Details of specific APIs are contained in MSP432 Peripheral Driver Library User’s
Guide [DriverLib, 2015] and will not be repeated here.
Example 5: In this short code snapshot, the WDT is configured to generate a periodic inter-
rupt [DriverLib, 2015].

//**
//This example is used with permission from:
//MSP432 Peripheral Driver Library User's Guide [DriverLib]
//**
//Configure the WDT in the interval mode to trigger every
//32K clock cycles - approximately half second intervals
//**

MAP_WDT_A_initIntervalTimer(WDT_A_CLOCKSOURCE_SMCLK, WDT_A_CLOCKITERATIONS_32K);

//**

Example 6: In the following example, the WDT is configured in the interval mode to blink an
LED at a regular interval.

6.6. WATCHDOG TIMER 291

Figure 6.4: Watchdog Timer [SLAU356A, 2015]. Illustration used with permission of Texas Instru-
ments www.ti.com.

www.ti.com

292 6. TIME-RELATED SYSTEMS

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that

6.6. WATCHDOG TIMER 293

//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--
//***
//MSP432 WDT - Interval Mode
//
//Description: In this example, the WDT module is setup in interval mode.
//This turns the watchdog timer into a normal 16-bit up counter that can
//be operated in LPM3 mode.
Given that the WDT can be operated in LPM3
//mode (DSL), this is useful to wake up processor once put to LPM3. In
//this example, a simple LED is blinked at a constant interval using the
//WDT.
//
// MSP432P401
// ------------------
// /|\| |
// | | |
// --|RST P1.0 |---> P1.0 LED
// | |
// | |
// | |
// | |
// | |
//
//Author: Timothy Logan
//**

//DriverLib Includes
#include "driverlib.h"

294 6. TIME-RELATED SYSTEMS

//Standard Includes
#include <stdint.h>
#include <stdbool.h>

#define WDT_A_TIMEOUT RESET_SRC_1

int main(void)
{
//Halting the Watchdog (while we set it up)
MAP_WDT_A_holdTimer();

//Setting MCLK to REFO at 128kHz for LF mode
//Setting SMCLK to 64kHz
MAP_CS_setReferenceOscillatorFrequency(CS_REFO_128KHZ);
MAP_CS_initClockSignal(CS_MCLK, CS_REFOCLK_SELECT, CS_CLOCK_DIVIDER_1);
MAP_CS_initClockSignal(CS_SMCLK, CS_REFOCLK_SELECT, CS_CLOCK_DIVIDER_2);
MAP_PCM_setPowerState(PCM_AM_LF_VCORE0);

//Enabling SRAM Bank Retention
MAP_SysCtl_enableSRAMBankRetention(SYSCTL_SRAM_BANK1);

//Configuring GPIO1.0 as an output
MAP_GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);
MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0);

//Configuring WDT in interval mode to trigger every 32K clock iterations.
//This comes out to roughly every half a second
MAP_WDT_A_initIntervalTimer(WDT_A_CLOCKSOURCE_SMCLK,

WDT_A_CLOCKITERATIONS_32K);

//Enabling interrupts and starting the watchdog timer
MAP_Interrupt_enableInterrupt(INT_WDT_A);
MAP_Interrupt_enableMaster();
MAP_Interrupt_enableSleepOnIsrExit();
MAP_WDT_A_startTimer();

//LPM3ing when not in use
while(1)

6.6. WATCHDOG TIMER 295

{
MAP_PCM_gotoLPM3();
}

}

//**
//WDT ISR - This ISR toggles the LED on P1.0
//**

void WDT_A_isr(void)
{
MAP_GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);
}

//**

Example 7: In this example, the WDT is configured as a watchdog timer to detect a system fault
and generate a processor reset.

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

296 6. TIME-RELATED SYSTEMS

//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--
//***
//MSP432 WDT - Servicing the Dog
//
//Description: In this example, the WDT module is used in a typical use
//case that illustrates how the watchdog can initiate a reset if the
//system becomes unresponsive.
The watchdog timer is setup to initiate
//a soft reset if it hasn't been serviced in 4 seconds.
A simple SysTick
//is also setup to make it so that the watchdog is serviced every second.

6.6. WATCHDOG TIMER 297

//When the GPIO button connected to P1.1 is pressed, the SysTick
//interrupt will be disabled causing the watchdog to timeout.
Upon reset,
//the program will detect that the watchdog timeout triggered a soft
//reset and blink the LED on P1.0 to signify the watchdog timeout.
//
//
// MSP432P401
// ------------------
// /|\| |
// | | |
// --|RST P1.1 |<--- Switch
// | |
// | |
// | P1.0 |---> LED
// | |
// | |
//
//Author: Timothy Logan
//**

//DriverLib Includes
#include "driverlib.h"

//Standard Includes
#include <stdint.h>
#include <stdbool.h>

#define WDT_A_TIMEOUT RESET_SRC_1

int main(void)
{
volatile uint32_t ii;

//Halting the Watchdog (while we set it up)
MAP_WDT_A_holdTimer();

//If the watchdog just reset, we want to toggle a GPIO to illustrate
//that the watchdog timed out.

298 6. TIME-RELATED SYSTEMS

Period of LED is 1s
if(MAP_ResetCtl_getSoftResetSource() & WDT_A_TIMEOUT)
{
MAP_GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);

while(1)
{
MAP_GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);
for(ii=0;ii<4000;ii++)
{

}
}

}//end if

//Setting MCLK to REFO at 128Khz for LF mode and SMCLK to REFO
MAP_CS_setReferenceOscillatorFrequency(CS_REFO_128KHZ);
MAP_CS_initClockSignal(CS_MCLK, CS_REFOCLK_SELECT, CS_CLOCK_DIVIDER_1);
MAP_CS_initClockSignal(CS_HSMCLK, CS_REFOCLK_SELECT, CS_CLOCK_DIVIDER_1);
MAP_CS_initClockSignal(CS_SMCLK, CS_REFOCLK_SELECT, CS_CLOCK_DIVIDER_1);
MAP_PCM_setPowerState(PCM_AM_LF_VCORE0);

//Configuring GPIO6.7 as an input for button press
MAP_GPIO_setAsInputPinWithPullUpResistor(GPIO_PORT_P1, GPIO_PIN1);
MAP_GPIO_clearInterruptFlag(GPIO_PORT_P1, GPIO_PIN1);

//Configuring WDT to timeout after 512k iterations of SMCLK, at 128k,
//this will roughly equal 4 seconds
MAP_SysCtl_setWDTTimeoutResetType(SYSCTL_SOFT_RESET);
MAP_WDT_A_initWatchdogTimer(WDT_A_CLOCKSOURCE_SMCLK,

WDT_A_CLOCKITERATIONS_512K);

//Setting our SysTick to wake up every 128000 clock iterations to service
//the dog.
MAP_SysTick_enableModule();
MAP_SysTick_setPeriod(128000);
MAP_SysTick_enableInterrupt();

//Enabling interrupts and starting the watchdog timer

6.6. WATCHDOG TIMER 299

MAP_GPIO_enableInterrupt(GPIO_PORT_P1, GPIO_PIN1);
MAP_Interrupt_enableInterrupt(INT_PORT1);
MAP_Interrupt_enableSleepOnIsrExit();
MAP_Interrupt_enableMaster();
MAP_WDT_A_startTimer();

//Sleeping when not active
while(1)
{
MAP_PCM_gotoLPM0();
}

}

//**
//SysTick ISR - This ISR will fire every 1s and "service the dog"
//(reset) to prevent a watchdog timeout
//**

void systick_isr(void)
{
MAP_WDT_A_clearTimer();
}

//**
//GPIO ISR for button press - When a button is pressed
//**

void gpio_isr(void)
{
uint32_t status;

status = MAP_GPIO_getEnabledInterruptStatus(GPIO_PORT_P1);
MAP_GPIO_clearInterruptFlag(GPIO_PORT_P1, status);

if(status & GPIO_PIN1)
{
MAP_SysTick_disableInterrupt();
}

}

300 6. TIME-RELATED SYSTEMS

//**

6.7 TIMER32
e Timer32 system consists of two identical channels of 32-bit (or 16-bit) timers. e timers
may be configured for three different modes [SLAU356A, 2015].

• Free runningmode: In this mode the counter counts down from a preloaded value to zero.
When zero is reached the counter returns to the preset value and continues counting down
on each clock pulse.

• Periodic timer mode: In this mode the counter counts down from a preloaded value to
zero. When zero is reached the counter generates an interrupt and returns to the preset
value and continues counting down on each clock pulse. is results in a periodic interrupt
at an interval set by the preset counter value.

• One shot timer mode: In this mode the counter counts down from a preloaded value to
zero. When zero is reached the counter generates an interrupt and stops.

In all modes, the counter decrements by one on each incoming clock pulse. e clock source
may be prescaled by a factor of 1, 16, or 256.

6.7.1 REGISTERS
e Timer32 channels are supported and configured by the following registers:

• T32LOAD1: Timer 1 Load Register

• T32VALUE1: Timer 1 Current Value Register

• T32CONTROL1: Timer 1 Timer Control Register

• T32INTCLR1: Timer 1 Interrupt Clear Register

• T32RIS1: Timer 1 Raw Interrupt Status Register

• T32MIS1: Timer 1 Interrupt Status Register

• T32BGLOAD1: Timer 1 Background Load Register

• T32LOAD2: Timer 2 Load Register

• T32VALUE2: Timer 2 Current Value Register

• T32CONTROL2: Timer 2 Timer Control Register

6.7. TIMER32 301

• T32INTCLR2: Timer 2 Interrupt Clear Register

• T32RIS2: Timer 2 Raw Interrupt Status Register

• T32MIS2: Timer 2 Interrupt Status Register

• T32BGLOAD2: Timer 2 Background Load Register

Details of specific register and bits settings are contained inMSP432P4xx Family Technical
Reference Manual [SLAU356A, 2015] and will not be repeated here.

6.7.2 DRIVERLIB APIS
DriverLib provides a library of helpful APIs to support the configuration and operation of
Timer32 [DriverLib, 2015]:

• void Timer32_clearInterruptFlag (uint32_t timer)

• void Timer32_disableInterrupt (uint32_t timer)

• void Timer32_enableInterrupt (uint32_t timer)

• uint32_t Timer32_getInterruptStatus (uint32_t timer)

• uint32_t Timer32_getValue (uint32_t timer)

• void Timer32_haltTimer (uint32_t timer)

• void Timer32_initModule (uint32_t timer, uint32_t preScaler, uint32_t resolution,
uint32_t mode)

• void Timer32_registerInterrupt (uint32_t timerInterrupt, void(*intHandler)(void))

• void Timer32_setCount (uint32_t timer, uint32_t count)

• void Timer32_setCountInBackground (uint32_t timer, uint32_t count)

• void Timer32_startTimer (uint32_t timer, bool oneShot)

• void Timer32_unregisterInterrupt (uint32_t timerInterrupt)

Details of specific APIs are contained in MSP432 Peripheral Driver Library User’s
Guide [DriverLib, 2015] and will not be repeated here.
Example 8: In the following example, Timer32 is configured as a down counter to generate in-
terrupts [DriverLib, 2015].

302 6. TIME-RELATED SYSTEMS

//**
//This example is used with permission from:
//MSP432 Peripheral Driver Library User's Guide [DriverLib]
//www.TI.com
//**

int main(void)
{
volatile uint32_t curValue;

//Holding the Watchdog
MAP_WDT_A_holdTimer();

//Initializing Timer32 in 32-bit free-run mode.
//The timer has a maximum value of 0xFFFFFFFF.
MAP_Timer32_initModule(TIMER32_0_MODULE, TIMER32_PRESCALER_256,

TIMER32_32BIT, TIMER32_FREE_RUN_MODE);

//Starting the timer
MAP_Timer32_startTimer(TIMER32_0_MODULE, true);
while(1)
{
//Getting the current value of the Timer32
curValue = MAP_Timer32_getValue(TIMER32_0_MODULE);
}

}

//**

Example 9: In this example Timer32 is configured for one shot mode with the MCLK, scaled by
256 serving as the time source.

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without

6.7. TIMER32 303

//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/

304 6. TIME-RELATED SYSTEMS

//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--
//***
//MSP432 Timer32 - Free Run One Shot
//
//Description: In this very simple code example, one of the Timer32
//modules is setup in 32-bit free-run mode and started in one shot mode.
//This means that the timer starts at UINT32_MAX (0xFFFFFFFF) and runs to
//0. Once the timer reaches zero, it halts (one shot). The Timer32 is
//sourced by MCLK and in this example is configured to have a prescaler
//of 256 every one tick of the Timer32 module is 256 ticks of MCLK).
//
// MSP432P401
// ------------------
// /|\| |
// | | |
// --|RST |
// | |
// | |
// | |
// | |
// | |
//
//Author: Timothy Logan
//***

//DriverLib Includes
#include "driverlib.h"

//Standard Includes
#include <stdint.h>
#include <stdbool.h>

int main(void)
{
volatile uint32_t curValue;

//Holding the Watchdog

6.7. TIMER32 305

MAP_WDT_A_holdTimer();

//Initializing Timer32 in module in 32-bit free-run mode
//(with max value of 0xFFFFFFFF
MAP_Timer32_initModule(TIMER32_0_MODULE, TIMER32_PRESCALER_256,

TIMER32_32BIT, TIMER32_FREE_RUN_MODE);

//Starting the timer
MAP_Timer32_startTimer(TIMER32_0_MODULE, true);

while(1)
{
//Getting the current value of the Timer32
curValue = MAP_Timer32_getValue(TIMER32_0_MODULE);
}

}

//***

Example 10: In this example Timer32 is started with a button press, an LED is then toggled for
a timer period. e LED is turned off at the end of the period.

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived

306 6. TIME-RELATED SYSTEMS

//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--
//***
//
//MSP432 Timer32 - Periodic LED Blink
//
//Description: Starts timer on a button press, toggles GPIO/LED for
//a timer period, and then turns off LED at end of period.
//

6.7. TIMER32 307

// MSP432P401
// ------------------
// /|\| |
// | | |
// --|RST P1.1 |<--- Switch
// | |
// | |
// | P1.0 |---> LED
// | |
// | |
//
//Author: Timothy Logan
//***

//DriverLib Includes
#include "driverlib.h"

//Standard Includes
#include <stdint.h>
#include <stdbool.h>

int main(void)
{
//Halting the Watchdog
MAP_WDT_A_holdTimer();

//Setting MCLK to REFO at 128Khz for LF mode
MAP_CS_setReferenceOscillatorFrequency(CS_REFO_128KHZ);
MAP_CS_initClockSignal(CS_MCLK, CS_REFOCLK_SELECT, CS_CLOCK_DIVIDER_1);
MAP_PCM_setPowerState(PCM_AM_LF_VCORE0);

//Configuring GPIO
MAP_GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);
MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0);
MAP_GPIO_setAsInputPinWithPullUpResistor(GPIO_PORT_P1, GPIO_PIN1);
MAP_GPIO_clearInterruptFlag(GPIO_PORT_P1, GPIO_PIN1);
MAP_GPIO_enableInterrupt(GPIO_PORT_P1, GPIO_PIN1);

//Configuring Timer32 to 128000 (1s) of MCLK in periodic mode

308 6. TIME-RELATED SYSTEMS

MAP_Timer32_initModule(TIMER32_0_MODULE, TIMER32_PRESCALER_1,
TIMER32_32BIT, TIMER32_PERIODIC_MODE);

//Enabling interrupts
MAP_Interrupt_enableInterrupt(INT_PORT1);
MAP_Interrupt_enableInterrupt(INT_T32_INT1);
MAP_Interrupt_enableMaster();

//Sleeping when not in use
while(1)
{
MAP_PCM_gotoLPM0();
}

}

//***
//GPIO ISR
//***

void gpio_isr(void)
{
uint32_t status = MAP_GPIO_getEnabledInterruptStatus(GPIO_PORT_P1);
MAP_GPIO_clearInterruptFlag(GPIO_PORT_P1,status);

if(GPIO_PIN1 & status)
{
MAP_GPIO_disableInterrupt(GPIO_PORT_P1, GPIO_PIN1);
MAP_GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN0);
MAP_Timer32_setCount(TIMER32_0_MODULE,128000);
MAP_Timer32_enableInterrupt(TIMER32_0_MODULE);
MAP_Timer32_startTimer(TIMER32_0_MODULE, true);
}

}

//***
//Timer32 ISR
//***

void timer32_isr(void)

6.8. TIMER_A 309

{
MAP_Timer32_clearInterruptFlag(TIMER32_0_MODULE);
MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0);
MAP_GPIO_enableInterrupt(GPIO_PORT_P1, GPIO_PIN1);
}

//***

6.8 TIMER_A

e Timer_A subsystem consists of a complement of identical 16-bit timers. e individual
timers are designated Timer_A0 through Timer_A3. e heart of each timer is a 16-bit timer
register TAxR. Where “x” corresponds to the Timer_A timer number. e block diagram of a
Timer_A channel is provided in Figure 6.5 [SLAU356A, 2015].

e TAxR register can be clocked from several sources including the TAxCLK, ACLK,
SMCLK, and INCLK. e specific clock source is determined by the Timer_A Clock Source
Select (TASSEL) bits. e timer source is routed to the TAxR timer via two stages of dividers.
e first divider may be set to 1, 2, 4, or 8 using the ID bits. e second divider may be set from
1–7 using the IDEX bits [SLAU356A, 2015].

e TAxR timer may be configured for various count modes using the Mode Control (MC)
bits.esemodes include stop (00), up (01), continuous (10), and up/down (11). As can be seen in
Figure 6.5, each TAxR timer is equipped with seven identical capture/compare blocks designated
CCR0 through CCR7 [SLAU356A, 2015].

As seen in Figure 6.5 each capture/compare block is equipped with hardware for supporting
the capture mode and the compare mode. e capture portion of the hardware is selected by
setting the Capture Mode (CAP) bit to logic one. e purpose of the capture mode is to capture
key events of an input signal such as a rising edge, a falling edge, or any edge. e specific event
of interest is selected using the Capture Mode (CM) bits. e input signal for the capture system
is selected by the CCIS bits. e input may be from an external pin (CCInA or CCInB), ground,
or Vcc. A specific input is selected using the Cpature/Compare Input Select (CCIS) bits. e “n”
corresponds to the specific capture/compare block in use (0–6). When the specified edge occurs
on the input signal, the current count in the 16-bit timer (TAxR) is captured to the TAxCCRn
register. Also, the Capture/Compare Interrupt Flag (CCIFG) interrupt occurs.

e compare hardware is selected by setting the CAP bit to logic zero. e compare hard-
ware is used to generate output signals such as a periodic signal, a pulse, or a pulse width modu-
lated signal. e signals are constructed as a series of key events (toggling, setting, or resetting) at
specific points in time. e desired event time is loaded in advance to the TAxCCRn register. e
value of the current value of the 16-bit Timer (TAxR) is constantly compared to the preset value
of the TAxCCRn register. When the two register values match, the prescribed key event occurs

310 6. TIME-RELATED SYSTEMS

Figure 6.5: Timer_A block diagram [SLAU356A, 2015]. Illustration used with permission of Texas
Instruments www.ti.com.

www.ti.com

6.8. TIMER_A 311

and the CCIFG interrupt is triggered. A signal is built up as a series of key events. e available
output modes, selected by the OUTMOD bits include the following [SLAU356A, 2015].

• Output,OUTMODx [000]: e output signal (OUTn) is updated when OUT is updated.

• Set, OUTMODx [001]: e output signal (OUTn) is set when the TAxR 16-bit timer
value equals TAxCCRn.

• Toggle/Reset, OUTMODx [010]: e output signal (OUTn) is toggled when the TAxR
16-bit timer value equals TAxCCRn and subsequently resets when the timer reaches the
TAxCCR0 value.

• Set/Reset, OUTMODx [011]: e output signal (OUTn) is set when the TAxR 16-bit
timer value equals TAxCCRn and subsequently resets when the timer reaches the TAx-
CCR0 value.

• Toggle, OUTMODx [100]: e output signal (OUTn) toggles when the TAxR 16-bit
timer value equals TAxCCRn.

• Reset, OUTMODx [101]: e output signal (OUTn) resets when the TAxR 16-bit timer
value equals TAxCCRn.

• Toggle/Set, OUTMODx [110]: e output signal (OUTn) is toggled when the TAxR
16-bit timer value equals TAxCCRn and subsequently sets when the timer reaches the
TAxCCR0 value.

• Reset/Set, OUTMODx [111]: e output signal (OUTn) is reset when the TAxR 16-bit
timer value equals TAxCCRn and subsequently sets when the timer reaches the TAxCCR0
value.

6.8.1 REGISTERS
e Timer_A system channels are supported by several registers including [SLAU356A, 2015]:

• TAxCTL Timer_Ax Control

• TAxCCTL0 Timer_Ax Capture/Compare Control 0 to TAxCCTL6 Timer_Ax Cap-
ture/Compare Control 6

• TAxR Timer_Ax Counter

• TAxCCR0 Timer_Ax Capture/Compare 0 to TAxCCR6 Timer_Ax Capture/Compare 6

• TAxIV Timer_Ax Interrupt Vector

• TAxEX0 Timer_Ax Expansion 0
Details of specific register and bits settings are contained in MSP432P4xx Family Technical Ref-
erence Manual [SLAU356A, 2015] and will not be repeated here.

312 6. TIME-RELATED SYSTEMS

6.8.2 DRIVERLIB APIS
e Timer_A system is supported by a number of DriverLib data structures, type definitions, and
APIs [DriverLib, 2015]:

e data structures include:

• struct _Timer_A_CaptureModeConfig

• struct _Timer_A_CompareModeConfig

• struct _Timer_A_ContinuousModeConfig

• struct _Timer_A_PWMConfig

• struct _Timer_A_UpDownModeConfig

• struct _Timer_A_UpModeConfig

e type definitions include:

• typedef struct _Timer_A_CaptureModeConfig Timer_A_CaptureModeConfig

• typedef struct _Timer_A_CompareModeConfig Timer_A_CompareModeConfig

• typedef struct _Timer_A_ContinuousModeConfig Timer_A_ContinuousModeConfig

• typedef struct _Timer_A_PWMConfig Timer_A_PWMConfig

• typedef struct _Timer_A_UpDownModeConfig Timer_A_UpDownModeConfig

• typedef struct _Timer_A_UpModeConfig Timer_A_UpModeConfig

e functions include:

• void Timer_A_clearCaptureCompareInterrupt(uint32_t timer, uint_fast16_t capture-
CompareRegister)

• void Timer_A_clearInterruptFlag(uint32_t timer)

• void Timer_A_clearTimer(uint32_t timer)

• void Timer_A_configureContinuousMode(uint32_t timer,
const Timer_A_ContinuousModeConfig *config)

• void Timer_A_configureUpDownMode(uint32_t timer,
const Timer_A_UpDownModeConfig *config)

• void Timer_A_configureUpMode(uint32_t timer, const Timer_A_UpModeConfig *con-
fig)

6.8. TIMER_A 313

• void Timer_A_disableCaptureCompareInterrupt(uint32_t timer, uint_fast16_t capture-
CompareRegister)

• void Timer_A_disableInterrupt(uint32_t timer)

• void Timer_A_enableCaptureCompareInterrupt(uint32_t timer, uint_fast16_t capture-
CompareRegister)

• void Timer_A_enableInterrupt(uint32_t timer) void Timer_A_generatePWM(uint32_t
timer, const Timer_A_PWMConfig *config)

• uint_fast16_t Timer_A_getCaptureCompareCount(uint32_t timer, uint_fast16_t capture-
CompareRegister)

• uint32_t Timer_A_getCaptureCompareEnabledInterruptStatus(uint32_t timer,
uint_fast16_t captureCompareRegister)

• uint32_t Timer_A_getCaptureCompareInterruptStatus(uint32_t timer, uint_fast16_t
captureCompareRegister, uint_fast16_t mask)

• uint16_t Timer_A_getCounterValue(uint32_t timer)

• uint32_t Timer_A_getEnabledInterruptStatus(uint32_t timer)

• uint32_t Timer_A_getInterruptStatus(uint32_t timer)

• uint_fast8_t Timer_A_getOutputForOutputModeOutBitValue (uint32_t timer,
uint_fast16_t captureCompareRegister)

• uint_fast8_t Timer_A_getSynchronizedCaptureCompareInput (uint32_t timer,
uint_fast16_t captureCompareRegister, uint_fast16_t synchronizedSetting)

• void Timer_A_initCapture(uint32_t timer, const Timer_A_CaptureModeConfig *config)

• void Timer_A_initCompare(uint32_t timer,
const Timer_A_CompareModeConfig *config)

• void Timer_A_registerInterrupt (uint32_t timer,
uint_fast8_t interruptSelect, void(*intHandler)(void))

• void Timer_A_setCompareValue(uint32_t timer, uint_fast16_t compareRegister,
uint_fast16_t compareValue)

• void Timer_A_setOutputForOutputModeOutBitValue(uint32_t timer,
uint_fast16_t captureCompareRegister, uint_fast8_t outputModeOutBitValue)

• void Timer_A_startCounter(uint32_t timer, uint_fast16_t timerMode)

314 6. TIME-RELATED SYSTEMS

• void Timer_A_stopTimer(uint32_t timer)

• void Timer_A_unregisterInterrupt(uint32_t timer, uint_fast8_t interruptSelect)

Details of specific APIs are contained in MSP432 Peripheral Driver Library User’s
Guide [DriverLib, 2015] and will not be repeated here.
Example 11: In this example, Timer_A is used in the up mode to toggle an LED every 0.5 s.

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.

6.8. TIMER_A 315

// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--
//***
//MSP432 PWM TA1.1-2, Up/Down Mode, DCO SMCLK
//
//Description: Toggle P1.0 using software and TA_0 ISR. Timer0_A is
//configured for up mode, thus the timer overflows when TAR counts
//to CCR0. In this example, CCR0 is loaded with 0x2DC6 which makes the
//LED toggle every half a second.
//
//ACLK = n/a, MCLK = SMCLK = default DCO ~1MHz
//TACLK = SMCLK/64
//
// MSP432P401
// -------------------
// /|\| |
// | | |
// --|RST |
// | |
// | P1.0|-->LED
// | |
//
//Author: Timothy Logan

316 6. TIME-RELATED SYSTEMS

//***

//DriverLib Includes
#include "driverlib.h"

//Application Defines
#define TIMER_PERIOD 0x2DC6

//Timer_A UpMode Configuration Parameter
const Timer_A_UpModeConfig upConfig =
{
TIMER_A_CLOCKSOURCE_SMCLK, //SMCLK Clock Source
TIMER_A_CLOCKSOURCE_DIVIDER_64, //SMCLK/1 = 3MHz
TIMER_PERIOD, //5000 tick period
TIMER_A_TAIE_INTERRUPT_DISABLE, //Disable Timer interrupt
TIMER_A_CCIE_CCR0_INTERRUPT_ENABLE , //Enable CCR0 interrupt
TIMER_A_DO_CLEAR //Clear value
};

int main(void)
{
//Stop WDT
MAP_WDT_A_holdTimer();

//Configuring P1.0 as output
MAP_GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);
MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0);

//Configuring Timer_A1 for Up Mode
MAP_Timer_A_configureUpMode(TIMER_A1_MODULE, &upConfig);

//Enabling interrupts and starting the timer
MAP_Interrupt_enableSleepOnIsrExit();
MAP_Interrupt_enableInterrupt(INT_TA1_0);
MAP_Timer_A_startCounter(TIMER_A1_MODULE, TIMER_A_UP_MODE);

//Enabling MASTER interrupts
MAP_Interrupt_enableMaster();

6.8. TIMER_A 317

//Sleeping when not in use
while(1)
{
MAP_PCM_gotoLPM0();
}

}

//***
void timer_a_0_isr(void)
{
MAP_GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);
MAP_Timer_A_clearCaptureCompareInterrupt(TIMER_A1_MODULE,

TIMER_A_CAPTURECOMPARE_REGISTER_0);
}

//***

Example 12: In this example an Interrupt Service Routine (ISR) is triggered every time the timer
overflows. An LED is toggled within the ISR.

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//

318 6. TIME-RELATED SYSTEMS

//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--
//***
//MSP432 Timer_A - Continuous Overflow Interrupt
//
//Description: Toggle P1.0 using software and the Timer0_A overflow ISR.
//In this example an ISR triggers when TA overflows.
Inside the ISR P1.0
//is toggled.
Toggle rate is exactly 0.5Hz.
//

6.8. TIMER_A 319

//ACLK = TACLK = 32768Hz, MCLK = SMCLK = DCO = 3MHz
//
// MSP432P401
// ------------------
// /|\| |
// | | |
// --|RST P1.0 |---> P1.0 LED
// | |
// | |
// | |
// | |
//
//Author: Timothy Logan
//***

//DriverLib Includes
#include "driverlib.h"

//Standard Includes
#include <stdint.h>

//Statics
const Timer_A_ContinuousModeConfig continuousModeConfig =
{
TIMER_A_CLOCKSOURCE_ACLK, //ACLK Clock Source
TIMER_A_CLOCKSOURCE_DIVIDER_1, //ACLK/1 = 32.768khz
TIMER_A_TAIE_INTERRUPT_ENABLE, //Enable Overflow ISR
TIMER_A_DO_CLEAR //Clear Counter
};

int main(void)
{
//Stop watchdog timer
MAP_WDT_A_holdTimer();

//Configuring P1.0 as output
MAP_GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);
MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0);

320 6. TIME-RELATED SYSTEMS

//Starting and enabling ACLK (32kHz)
MAP_CS_setReferenceOscillatorFrequency(CS_REFO_128KHZ);
MAP_CS_initClockSignal(CS_ACLK, CS_REFOCLK_SELECT, CS_CLOCK_DIVIDER_4);

//Configuring Continuous Mode
MAP_Timer_A_configureContinuousMode(TIMER_A0_MODULE,

&continuousModeConfig);

//Enabling interrupts and going to sleep
MAP_Interrupt_enableSleepOnIsrExit();
MAP_Interrupt_enableInterrupt(INT_TA0_N);

//Enabling MASTER interrupts
MAP_Interrupt_enableMaster();

//Starting the Timer_A0 in continuous mode
MAP_Timer_A_startCounter(TIMER_A0_MODULE, TIMER_A_CONTINUOUS_MODE);

while(1)
{
MAP_PCM_gotoLPM0();
}

}

//***
//TIMERA interrupt vector service routine
//***

void timer_a_0_isr(void)
{
MAP_Timer_A_clearInterruptFlag(TIMER_A0_MODULE);
MAP_GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);
}

//***

Example 13: In this example the input capture feature of Timer_A is used to measure the period
of the clock.

//**
// MSP432 DriverLib - v2_20_00_08

6.8. TIMER_A 321

//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's

322 6. TIME-RELATED SYSTEMS

//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--
//***
//MSP432 Timer_A - VLO Period Capture
//
//Description: Capture a number of periods of the VLO clock and store
//them in an array.
When the set number of periods is captured the
//program is trapped and the LED on P1.0 is toggled.
At this point halt
//the program execution read out the values using the debugger.
//
//ACLK = VLOCLK = 14kHz (typ.), MCLK = SMCLK = default DCO = 3MHz
//
// MSP432P401
// ------------------
// /|\| |
// | | |
// --|RST P1.0 |---> P1.0 LED
// | |
// | |
// | |
// | |
//
//Author: Timothy Logan
//***

//DriverLib Includes
#include "driverlib.h"

//Standard Includes

6.8. TIMER_A 323

#include <stdint.h>
#define NUMBER_TIMER_CAPTURES 20

//Timer_A Continuous Mode Configuration Parameter
const Timer_A_ContinuousModeConfig continuousModeConfig =
{
TIMER_A_CLOCKSOURCE_SMCLK, //SMCLK Clock Source
TIMER_A_CLOCKSOURCE_DIVIDER_1, //SMCLK/1 = 3MHz
TIMER_A_TAIE_INTERRUPT_DISABLE, //Disable Timer ISR
TIMER_A_SKIP_CLEAR //Skip Clear Counter
};

//Timer_A Capture Mode Configuration Parameter
const Timer_A_CaptureModeConfig captureModeConfig =
{
TIMER_A_CAPTURECOMPARE_REGISTER_1, //CC Register 2
TIMER_A_CAPTUREMODE_RISING_EDGE, //Rising Edge
TIMER_A_CAPTURE_INPUTSELECT_CCIxB, //CCIxB Input Select
TIMER_A_CAPTURE_SYNCHRONOUS, //Synchronized Capture
TIMER_A_CAPTURECOMPARE_INTERRUPT_ENABLE, //Enable interrupt
TIMER_A_OUTPUTMODE_OUTBITVALUE //Output bit value
};

//Statics
static volatile uint_fast16_t timerAcaptureValues[NUMBER_TIMER_CAPTURES];
static volatile uint32_t timerAcapturePointer = 0;

int main(void)
{
//Stop watchdog timer
MAP_WDT_A_holdTimer();

//Configuring P1.0 as output
MAP_GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);

//Setting ACLK = VLO = 14kHz
MAP_CS_initClockSignal(CS_ACLK, CS_VLOCLK_SELECT, CS_CLOCK_DIVIDER_1);

324 6. TIME-RELATED SYSTEMS

//Configuring Capture Mode
MAP_Timer_A_initCapture(TIMER_A0_MODULE, &captureModeConfig);

//Configuring Continuous Mode
MAP_Timer_A_configureContinuousMode(TIMER_A0_MODULE,

&continuousModeConfig);

//Enabling interrupts and going to sleep
MAP_Interrupt_enableSleepOnIsrExit();
MAP_Interrupt_enableInterrupt(INT_TA0_N);
MAP_Interrupt_enableMaster();

//Starting the Timer_A0 in continuous mode
MAP_Timer_A_startCounter(TIMER_A0_MODULE, TIMER_A_CONTINUOUS_MODE);

MAP_PCM_gotoLPM0();

}

//***
//TIMERA interrupt vector service routine
//***

void timer_a_ccr_isr(void)
{
uint32_t jj;

timerAcaptureValues[timerAcapturePointer++] =
MAP_Timer_A_getCaptureCompareCount(TIMER_A0_MODULE,

TIMER_A_CAPTURECOMPARE_REGISTER_1);

if(timerAcapturePointer >= NUMBER_TIMER_CAPTURES)
{
while(1)

{
MAP_GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);
for(jj=0;jj<10000;jj++);
}

}

6.9. REAL-TIME CLOCK, RTC_C 325

}

//***

6.9 REAL-TIME CLOCK, RTC_C
RTC_C, the MSP432 real-time clock (RTC), provides a clock based on seconds, minutes, hours,
etc. e RTC time base is provided by a 32,768 Hz external crystal. is time base is shown as
the BCLK in Figure 6.6. e time base is routed to the RTOPS and RT1PS dividers to pro-
vide a 1 Hz time base to the time keeping registers. e register contains place holders for sec-
onds (RTCSEC), minutes (RTCMIN), hours (RTCHOUR), day of the week (RTCDOW), day
(RTCDAY), month (RTCMON), and year (RTCYEARH, RTCYEARL). Data may be stored
in binary coded decimal (BCD) or hexadecimal binary format. BCD represents each digit in a
number individually from 0–9 [SLAU356A, 2015].

e RTC_C is also equipped with an alarm function. e alarm is configured for a spe-
cific minute (RTCAMIN), hour (RTCAHOUR), day (RTCADAY), and day of the week (RT-
CADOW). e write operation for RTC control, clock, calendar, prescale, and offset error are
key protected [SLAU356A, 2015].

eRTC_C is supported by six prioritized interrupts designated RT0PSIFG, RT1PSIFG,
RTCRDYIFG, RTCTEVIFG, RTCAIFG, and RTCOFIFG. e six interrupt signal flags are
combined to provide a single interrupt signal. When an interrupt occurs the interrupt vector
register (RTCIV) provides the specific interrupt source [SLAU356A, 2015].

6.9.1 RTC REGISTERS
RTC_C is supported by a complement of registers including [SLAU356A, 2015]:

• RTCCTL0 Real-Time Clock Control 0

• RTCCTL0_L Real-Time Clock Control 0

• RTCCTL0_H Real-Time Clock Control 0

• RTCCTL13 Real-Time Clock Control 1

• RTCCTL1 Real-Time Clock Control 1

• RTCCTL3 Real-Time Clock Control 3

• RTCOCAL Real-Time Clock Offset

• RTCTCMP Real-Time Clock Temperature

• RTCPS0CTL Real-Time Prescale Timer 0

326 6. TIME-RELATED SYSTEMS

Figure 6.6: Real-Time Clock [SLAU356A, 2015]. Illustration used with permission of Texas Instru-
ments www.ti.com.

www.ti.com

6.9. REAL-TIME CLOCK, RTC_C 327

• RTCPS1CTL Real-Time Prescale Timer 1

• RTCPS Real-Time Prescale Timer 0

• RTCPS0 Real-Time Prescale Timer 0

• RTCPS1 Real-Time Prescale Timer 1

• RTCIV Real-Time Clock Interrupt Vector

• RTCSEC Real-Time Clock Seconds

• RTCMIN Real-Time Clock Minutes

• RTCTIM1 Real-Time Clock Hour, Day of Week

• RTCHOUR Real-Time Clock Hour

• RTCDOW Real-Time Clock Day of Week

• RTCDATE Real-Time Clock Date

• RTCDAY Real-Time Clock Day of Month

• RTCMON Real-Time Clock Month

• RTCYEAR Real-Time Clock Year

• RTCAMINHR Real-Time Clock Minutes, Hour Alarm

• RTCAMIN Real-Time Clock Minutes Alarm

• RTCAHOUR Real-Time Clock Hours Alarm

• RTCADOWDAY Real-Time Clock Day of Week, Day of Month Alarm

• RTCADOW Real-Time Clock Day of Week Alarm

• RTCADAY Real-Time Clock Day of Month Alarm

• RTCBIN2BCD Binary-to-BCD conversion register

• RTCBCD2BIN BCD-to-binary conversion register

Details of specific register and bits settings are contained inMSP432P4xx Family Technical
Reference Manual [SLAU356A, 2015] and will not be repeated here.

328 6. TIME-RELATED SYSTEMS

6.9.2 RTC DRIVERLIB API SUPPORT
RTC_C is supported by a complement of DriverLib APIs [DriverLib, 2015]:

• void RTC_C_clearInterruptFlag(uint_fast8_t interruptFlagMask)

• uint16_t RTC_C_convertBCDToBinary(uint16_t valueToConvert)

• uint16_t RTC_C_convertBinaryToBCD(uint16_t valueToConvert)

• void RTC_C_definePrescaleEvent(uint_fast8_t prescaleSelect,
uint_fast8_t prescaleEventDivider)

• void RTC_C_disableInterrupt(uint8_t interruptMask)

• void RTC_C_enableInterrupt(uint8_t interruptMask)

• RTC_C_Calendar RTC_C_getCalendarTime(void)

• uint_fast8_t RTC_C_getEnabledInterruptStatus(void)

• uint_fast8_t RTC_C_getInterruptStatus(void)

• uint_fast8_t RTC_C_getPrescaleValue(uint_fast8_t prescaleSelect)

• void RTC_C_holdClock(void)

• void RTC_C_initCalendar(const RTC_C_Calendar *calendarTime, uint_fast16_t format-
Select)

• void RTC_C_registerInterrupt(void(*intHandler)(void))

• void RTC_C_setCalendarAlarm(uint_fast8_t minutesAlarm, uint_fast8_t hoursAlarm,
uint_fast8_t dayOfWeekAlarm, uint_fast8_t dayOfmonthAlarm)

• void RTC_C_setCalendarEvent(uint_fast16_t eventSelect)

• void RTC_C_setCalibrationData(uint_fast8_t offsetDirection, uint_fast8_t offsetValue)

• void RTC_C_setCalibrationFrequency(uint_fast16_t frequencySelect)

• void RTC_C_setPrescaleValue(uint_fast8_t prescaleSelect, uint_fast8_t prescaleCounter-
Value)

• bool RTC_C_setTemperatureCompensation(uint_fast16_t offsetDirection, uint_fast8_t
offsetValue)

• void RTC_C_startClock(void)

6.9. REAL-TIME CLOCK, RTC_C 329

• void RTC_C_unregisterInterrupt(void)

Details of specific APIs are contained in MSP432 Peripheral Driver Library User’s
Guide [DriverLib, 2015] and will not be repeated here.
Example14:is code example shows how to configure the RTC_Cmodule and create a calendar
event.

//***
//This example is used with permission from:
//MSP432 Peripheral Driver Library User's Guide [DriverLib]
//This code example shows how to configure the RTC_C module and create a
//calendar event.
//[www.ti.com]
//***

//Configuration structure to set the date:
//Time is November 12th 1955 10:03:00 PM

const RTC_C_Calendar currentTime =
{
0x00,
0x03,
0x22,
0x12,
0x11,
0x1955
};

//Initializing RTC with current time as described in time in
//definitions section
MAP_RTC_C_initCalendar(¤tTime, RTC_C_FORMAT_BCD);

//Setup Calendar Alarm for 10:04pm (for the flux capacitor)
MAP_RTC_C_setCalendarAlarm(0x04, 0x22, RTC_C_ALARMCONDITION_OFF,

RTC_C_ALARMCONDITION_OFF);

//Specify an interrupt to assert every minute
MAP_RTC_C_setCalendarEvent(RTC_C_CALENDAREVENT_MINUTECHANGE);

//Enable interrupt for RTC Ready Status, which asserts when the RTC
//Calendar registers are ready to read.

330 6. TIME-RELATED SYSTEMS

//Also, enable interrupts for the Calendar alarm and Calendar event.

MAP_RTC_C_clearInterruptFlag(RTC_C_CLOCK_READ_READY_INTERRUPT |
RTC_C_TIME_EVENT_INTERRUPT |
RTC_C_CLOCK_ALARM_INTERRUPT);

MAP_RTC_C_enableInterrupt(RTC_C_CLOCK_READ_READY_INTERRUPT |
RTC_C_TIME_EVENT_INTERRUPT |
RTC_C_CLOCK_ALARM_INTERRUPT);

//Start RTC Clock
MAP_RTC_C_startClock();

//**

Example 15: is example demonstrates the use of the RTC_C and generates interrupts every
second and every minute.

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

6.9. REAL-TIME CLOCK, RTC_C 331

//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--
//***
//MSP432 RTC - Calendar Mode
//
//Interruptions every 1s, 1m, and 5th day of week at 5:00pm
//
//Description: This program demonstrates the RTC mode by triggering an
//interrupt every second and minute.
This code toggles P1.0 every second.
//This code recommends an external LFXT1 crystal for RTC accuracy.
//Note that if XT1 is not present the code loops in an infinite loop.
//
//ACLK = LFXT1 = 32768Hz, MCLK = default DCO of 3MHz
//

332 6. TIME-RELATED SYSTEMS

// MSP432P401
// ------------------
// /|\| |
// | | |
// --|RST P1.0 |---> P1.0 LED
// | PJ.0 LFXIN |---------
// | | |
// | | < 32khz xTal >
// | | |
// | PJ.1 LFXOUT |---------
//
//Author: Timothy Logan
// //***

//DriverLib Includes
#include "driverlib.h"

//Statics
static volatile RTC_C_Calendar newTime;

//Time is November 12th 1955 10:03:00 PM
const RTC_C_Calendar currentTime =
{
0x00,
0x03,
0x22,
0x12,
0x11,
0x1955
};

int main(void)
{
//Halting WDT
MAP_WDT_A_holdTimer();

//Configuring pins for peripheral/crystal usage and LED for output
MAP_GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_PJ,

6.9. REAL-TIME CLOCK, RTC_C 333

GPIO_PIN0 | GPIO_PIN1, GPIO_PRIMARY_MODULE_FUNCTION);
MAP_GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0);

//Setting the external clock frequency.
This API is optional, but will
//come in handy if the user ever wants to use the getMCLK/getACLK/etc
//functions
CS_setExternalClockSourceFrequency(32000,48000000);

//Starting LFXT in non-bypass mode without a timeout.
CS_startLFXT(false);

//Initializing RTC with current time as described in time in
//definitions section
MAP_RTC_C_initCalendar(¤tTime, RTC_C_FORMAT_BCD);

//Setup Calendar Alarm for 10:04pm (for the flux capacitor)
MAP_RTC_C_setCalendarAlarm(0x04, 0x22, RTC_C_ALARMCONDITION_OFF,

RTC_C_ALARMCONDITION_OFF);

//Specify an interrupt to assert every minute
MAP_RTC_C_setCalendarEvent(RTC_C_CALENDAREVENT_MINUTECHANGE);

//Enable interrupt for RTC Ready Status, which asserts when the RTC
//Calendar registers are ready to read.
Also, enable interrupts for the
//Calendar alarm and Calendar event.
MAP_RTC_C_clearInterruptFlag(RTC_C_CLOCK_READ_READY_INTERRUPT |

RTC_C_TIME_EVENT_INTERRUPT |
RTC_C_CLOCK_ALARM_INTERRUPT);

MAP_RTC_C_enableInterrupt(RTC_C_CLOCK_READ_READY_INTERRUPT |
RTC_C_TIME_EVENT_INTERRUPT |
RTC_C_CLOCK_ALARM_INTERRUPT);

//Start RTC Clock
MAP_RTC_C_startClock();

//Enable interrupts and go to sleep.
MAP_Interrupt_enableInterrupt(INT_RTC_C);
MAP_Interrupt_enableSleepOnIsrExit();

334 6. TIME-RELATED SYSTEMS

MAP_Interrupt_enableMaster();

while(1)
{
MAP_PCM_gotoLPM3();
}

}

//***
//RTC ISR
//***

void rtc_isr(void)
{
uint32_t status;

status = MAP_RTC_C_getEnabledInterruptStatus();
MAP_RTC_C_clearInterruptFlag(status);

if(status & RTC_C_CLOCK_READ_READY_INTERRUPT)
{
MAP_GPIO_toggleOutputOnPin(GPIO_PORT_P1, GPIO_PIN0);
}

if(status & RTC_C_TIME_EVENT_INTERRUPT)
{
//Interrupts every minute - Set breakpoint here
__no_operation();
newTime = MAP_RTC_C_getCalendarTime();
}

if(status & RTC_C_CLOCK_ALARM_INTERRUPT)
{
//Interrupts at 10:04pm
__no_operation();
}

}

//***

6.10. LABORATORY EXERCISE: GENERATION OF VARYING PULSE WIDTH 335

6.10 LABORATORY EXERCISE: GENERATION OF VARYING
PULSE WIDTH MODULATED SIGNALS TO CONTROL
DC MOTORS

In this laboratory the parameters of a pulse width modulated signal is set by two potentiometers.
e first potentiometer is used to set the frequency from 1 kHz (0 VDC) to 10 kHz (3.3 VDC).
e second potentiometer sets the duty cycle of the signal from 5% (0 VDC) to 95% (3.3 VDC).

Your solution should include a UML activity diagram and also well-documented code.

6.11 SUMMARY
is chapter provided an introduction to the time related features onboard the MSP432. We
began with an introduction to MSP432 clock system followed by a discussion of the Watchdog
Timer system. We then examined the MSP432 timer systems including Timer32 and the com-
plement of Timer_A channels. We concluded by investigating the Real-Time clock, RTC_C.
roughout the chapter, examples were used to illustrate related concepts.

6.12 REFERENCES AND FURTHER READING
MSP432 Peripheral Driver Library User’s Guide. Texas Instruments, 2015. 277, 278, 290, 301,

312, 314, 328, 329

MSP432P4xx Family Technical Reference Manual (SLAU356A). Texas Instruments, 2015. 274,
276, 277, 289, 290, 291, 300, 301, 309, 310, 311, 325, 326, 327

6.13 CHAPTER PROBLEMS
Fundamental

1. Describe the different time base sources available on the MSP432. Identify whether the
sources are external or internal to the MSP432.

2. What is the significance of a 32,768 Hz time base?

3. What is the purpose of Watchdog Timer?

4. Describe the two different modes of the Watchdog Timer. In what power modes are these
different WDT modes available?

5. What is the password value and where should you write it to access the Watchdog Timer
system control register?

6. Describe the three modes of operation for Timer32.

336 6. TIME-RELATED SYSTEMS

7. Describe the modes of operation for Timer_A.

8. What are the timing sources available for Timer_A? How is a specific timing source se-
lected?

9. Describe the different operating modes of Timer_A. Provide an example application where
each mode might be used.

10. What is the time base for the Real-Time Clock? Is it preferable to use a crystal or resonator
for the time base? Explain.

Advanced

1. Program your MSP432 to generate clock signal frequency of 1.2 MHz.

2. Program your MSP432 controller to accept a pulse on the P1.0 pin and compute the pulse
width.

3. Given a periodic pulse width input signal, write a segment of code to compute the duty
cycle using the input capture interrupt system of the MSP432 controller.

4. Program the MSP432 controller to generate a pulse (0–3.3 V and back down to 0 V) with
2 ms width using the Timer_A system.

5. Program your MSP432 using Timer_A system to generate a pulse width modulated signal
with frequency of 50 Hz and duty cycle of 40%.

Challenging

1. Program your MSP432 to accept any periodic signal input with varying frequency ranging
from 10–1000 Hz and compute the input signal frequency.

2. Write a program that only activates itself if your MSP432 controller receives a 200 usec
pulse (10% tolerance on the pulse width) from an external device on a specific pin, updates
the number of times the designated pulse was received, displays the number on an LCD
display unit for 5 s, and “sleeps” until the next pulse arrives.

337

C H A P T E R 7

Resets and Interrupts
Objectives: After reading this chapter, the reader should be able to:

• describe MSP432 resets and their functions;

• explain the general concept of and the need for interrupts;

• describe in general terms the steps required to implement an interrupt service routine;

• identify MSP432 microcontroller maskable and non-maskable interrupts;

• illustrate how the priority among resets and interrupts is determined in the MSP432 mi-
crocontroller;

• explain the process to identify the source of resets and interrupts;

• describe the operation of the MSP432 Nested Vector Interrupt Controller (NVIC);

• describe the process to service interrupts; and

• properly configure the MSP432 microcontroller and write interrupt service routines to re-
spond to interrupts.

7.1 OVERVIEW
In computer operation, there is often a need to bring the computer back to a known state due to
program or system errors or simply because it serves the purpose of an application. Bringing the
computer back to a known state involves re-initializing registers, executing start up instructions,
and setting up peripheral devices, including input and output systems, to default states. is
process and the source that caused the process is called a reset.

In other applications, there is a need to stop executing the current task and take care of
an urgent, higher priority request made by an internal device, external signal, or the result of a
current software operation. ese requests are called interrupts.

Resets and interrupts are closely related. e process of bringing the computer back to a
known state and performing an unplanned service as a response to an urgent request is almost
identical as we will see in this chapter.

338 7. RESETS AND INTERRUPTS

7.2 BACKGROUND
Typical embedded systems operate in environments where electrical and mechanical noise sources
abound. ese noise sources can interfere with the proper function of the microcontroller in an
embedded system, which can appear during the operation of the system as skipping intended
instructions and unintentionally changing the contents of registers.

One of the primary means to remedy such malfunctions in the MSP432 microcontroller
is the Watchdog Timer System we introduced in Chapter 6. By forcing the program to update a
designated register periodically, one can make sure that intended instructions are executed in the
proper order, and if not, make the controller reset and resume normal operation.

Interrupts are requests whose time of occurrence is not known in advance, but the pro-
grammer can plan to service them when they occur. For example, suppose that you know a user
will push an external button to indicate that a task should be finished during the course of an
operation of your MSP432 microcontroller but do not know when it will occur. You can write a
separate “program” that will respond to the event appropriately.

ere are two ways for a microcontroller to detect the time of an event. e first method,
called polling, relies on the resources of the controller to continuously monitor whether or not an
event has occurred. is can be in the form of checking a flag continuously to see the flag status
change (bit changes from 1–0, or vice versa) or the change of the logic level on an input pin. e
second method, which is the focus of this chapter, is using the interrupt method. In this approach,
the processor performs other critical tasks (use resources optimally) or even placed in a low power
mode to save power and only react to an event when it occurs. Naturally, the polling method is
simple to implement compared to the configuration required to implement the interrupt method.
e benefit, however, of the interrupt method is the conservation of limited, precious resources.

You can imagine how inefficient your time spent in a course would be, if your instructor
would occasionally suspend their lecture while each student was sequentially asked if she or he had
any question on the ongoing lecture. is is similar to the technique of microcontroller polling.
Instead, students “interrupt” the normal flow of a lecture when they have an important question
to ask about the material. is is similar to the microcontroller interrupt technique.

7.3 MSP432 RESETS
e MSP432, hosting the Cortex M4F processor, is equipped with different classes of resets
designated 0–4. e Class 0 reset is the highest priority. Each class of reset generates associated
actions and also incorporates lower priority (higher class number) reset actions. Here is a brief
summary of resets and associated actions [SLAU356A, 2015].

• Class 0: e Class 0 reset is also known as the Power On/Off Reset (POR) Class. It results
due to a power-on event or loss of power to the device, an exception from the Power Supply
System (PSS), exit from LPM 3.5 or 4.5 modes of operation, or user initiated reset via the
Reset pushbutton (S3 RST on the MSP-EXP432P401R) [SLAU356A, 2015].

7.4. INTERRUPTS 339

• Class 1: e Class 1 reset is designated as the Reboot Reset. is reset is initiated under
software control and is similar in result to the POR reset [SLAU356A, 2015].

• Class 2: e Class 2 reset is designated as the Hard Reset. It is initiated as directed by a
user-written application. It is useful to return the system to a known state in response to
an application detected fault. It is important to note this type of reset does not reboot the
processor [SLAU356A, 2015].

• Class 3: e Class 3 reset is designated as the Soft Reset. It is initiated as directed by the
action of a user-written application. It is useful to return the system to a known state in
response to an application detected fault. It is important to note this type of reset does not
reboot the processor [SLAU356A, 2015].

7.4 INTERRUPTS
A microcontroller normally executes instructions in an orderly fetch-decode-execute sequence as
dictated by a user-written program, as shown in Figure 7.1. However, the microcontroller must
be equipped to handle unscheduled, yet planned, higher priority events that might occur inside
or outside the microcontroller. To process such events, a microcontroller requires an interrupt
system.

e interrupt system onboard a microcontroller allows it to respond to higher priority
events. ese events are planned, but we do not know when they will occur. When an interrupt
event occurs, the microcontroller will normally complete the instruction it is currently executing,
store key register values to capture the context of current events, and then transition program
control to interrupt event specific tasks. ese tasks, which resolve the interrupt event, are orga-
nized into a function called an interrupt service routine (ISR). Each interrupt will normally have
its own interrupt specific ISR. Once the ISR is executed, the microcontroller restores the register
values before the interrupt occurred, and resumes processing where it left off.

Applying the general concept of an interrupt, one can consider resets as interrupts with one
exception. Resets do not return to the original task and instead resets the controller, whereas, after
an interrupt service routine, a controller resumes execution of the task just before the interrupt
was detected.

In most microcontrollers, including the MSP432, the starting address for each interrupt
service routine, the special function to perform the service, is stored in a pre-designated location
which the CPU recognizes. ese locations are located in consecutive memory locations and are
collectively designated interrupt vectors.

7.4.1 INTERRUPT HANDLING PROCESS
In this subsection, we describe the process of handling an interrupt event. Once a maskable in-
terrupt is configured to be active, and an interrupt event occurs, a flag that corresponds to the
particular interrupt event is asserted to indicate to the processor that there is an interrupt waiting

340 7. RESETS AND INTERRUPTS

Fetch
Interrupt
Service
Routine

Decode

Execute

Figure 7.1: Microcontroller interrupt response.

to be serviced. e processor then takes the following actions in the order shown to provide an
orderly transition from normal program operation to the interrupt service routine and back again.

1. Complete the current instruction.

2. Store the contents of the Program Counter onto the stack.

3. Store the contents of the Status Register onto the stack.

4. Choose the highest priority interrupt if multiple interrupts are pending.

5. Reset the interrupt request flag.

6. Clear the Status Register to prevent additional interrupts from occurring.

7. Load the contents of the interrupt vector onto the Program Counter.

8. Execute the specified interrupt service routine.

9. Once the service routine is finished, restore the Status Register and the Program Counter
values from the stack.

10. Resume normal operation.

7.5. MSP432 INTERRUPT SYSTEM 341

7.5 MSP432 INTERRUPT SYSTEM

e MSP432 hosting the Cortex M4F processor is equipped with a powerful and flexible ex-
ception system controlled by the Nested Vector Interrupt Controller (NVIC). e NVIC works
closely with the processor to prioritize and respond to exception events including resets, non-
maskable (NMI) interrupts, and user-programmable interrupts. A summary of exception types is
provided in Figure 7.2. e resets have the highest priority, followed by NMI interrupts, and the
user-programmable interrupts. Priorities among interrupts must be defined in advance to handle
situations when more than one interrupt occurs simultaneously [SLAU356A, 2015].

Exception Type
Vector

Number
Priority

Vector

Address or

O! set

Activation

- 0 - 0x0000_0000 Stack top is loaded from the

! rst entry of the vector table on

reset

Reset 1 -3 (highest) 0x0000_0004 Asynchronous

Non-Maskable

interrupt (NMI)

2 -2 0x0000_0008 Asynchronous

Hard Fault 3 -1 0x0000_000C -

Memory

Management

4 Programmable 0x0000_0010 Synchronous

Bus Fault 5 Programmable 0x0000_0014 Synchronous when precise and

asynchronous when imprecise

Usage Fault 6 Programmable 0x0000_0018 Synchronous

- 7-10 - - Reserved

SVCall 11 Programmable 0x0000_002C Synchronous

Debug Monitor 12 Programmable 0x0000_0030 Synchronous

- 13 - - Reserved

PendSV 14 Programmable 0x0000_0038 Asynchronous

SysTick 15 Programmable 0x0000_003C Asynchronous

Interrupts 16 and

above

Programmable 0x0000_0040

and above

Asynchronous

Figure 7.2: MSP432 Exceptions [SLAU356A, 2015]. Illustration used with permission of Texas In-
struments www.ti.com.

www.ti.com

342 7. RESETS AND INTERRUPTS

When an exception occurs, the pre-defined actions associated with the exception takes
place. For an interrupt, the ISR associated with the interrupt is executed. While the key regis-
ter values are being stored on the stack, the starting address for the ISR (the vector address) is
also fetched. Typically, it takes 12 clock cycles for the MSP432 controller before the interrupt
processing starts once an interrupt is detected, and it takes 12 clock cycles to restore the Status
Register and Program Counter values and resume executing normally after the interrupt service
routine is completed. Figure 7.3 shows the exception stack frame after the interrupt event has
occurred. e Pre-IRQ top of stack is shown at the top of the image. e frame illustrates the
key register values stored on the stack for safe keeping during execution of the interrupt service
routine [SLAU356A, 2015].

Figure 7.3: MSP432 stack frame [SLAU356A, 2015]. Illustration used with permission of Texas
Instruments www.ti.com.

www.ti.com

7.6. ENERGIA INTERRUPT SUPPORT 343

7.5.1 INTERRUPT SERVICE ROUTINE (ISR)
Most of the interrupt handling process described in this chapter takes place automatically (you, as
a programmer, do not need to program them). In fact, for the resets, all processing is completed
automatically. For maskable interrupts; however, your responsibility as a programmer is to:

1. turn on the global interrupt,

2. initialize the stack pointer,

3. configure the interrupt vector table (initialize the start address of your ISR),

4. enable the appropriate interrupt local enable bit, and

5. write the corresponding interrupt service routine.

e next several sections provide examples on configuring interrupts using Energia, the
DriverLib library, and the C programming language.

7.6 ENERGIA INTERRUPT SUPPORT
Energia provides four functions to support interrupt operations including (www.energia.nu).

• noInterrupts: is function allows maskable interrupts to be suspended. is function is
usually used to temporarily suspend interrupts during a portion of time-sensitive code. e
interrupts are then re-enabled using the interrupts function.

• interrupts: is Energia function enables interrupts after they have been suspended by the
noInterrupts function.

• attachInterrupt: e attachInterrupt function allows a pin driver interrupt event to be asso-
ciated with a specific interrupt routine. e function requires three arguments: the interrupt
pin, the name of the associated interrupt service routine, and the edge type to trigger the
interrupt (RISING or FALLING).

• detachInterrupt: is function allows a specific interrupt to be suspended. e required
argument is the corresponding interrupt pin used in the attachInterrupt function.

e following examples illustrate how to configure pin change interrupts using Energia
functions.

Example 1: In this example the program normally executes instructions in function void
loop(). When switch 2 (SW2) is pushed on the MSP432, an interrupt is asserted, the green
LED changes state, and an interrupt counter is incremented. Printouts are provided on the serial
monitor to indicate when the program is in the main program or in the interrupt.

www.energia.nu

344 7. RESETS AND INTERRUPTS

//**
//Interrupt1
//Adapted from example provided at www.arduino.cc
//This example is in the public domain.
//**

volatile int state = HIGH;
volatile int flag = HIGH;
int count = 0;

void setup()
{
Serial.begin(9600);
pinMode(GREEN_LED, OUTPUT);
digitalWrite(GREEN_LED, state);

//Enable internal pullup.
Without the pin will float
//and the example will not work.
pinMode(PUSH2, INPUT_PULLUP);

// Interrupt is asserted when switch 2 is depressed
attachInterrupt(PUSH2, blink, FALLING);
}

void loop()
{
digitalWrite(GREEN_LED, state); //LED starts ON
delay(1000);
Serial.println("In the main program\n");
if(flag)
{
count++;
Serial.println(count);
flag = LOW;
}

}

//**

7.6. ENERGIA INTERRUPT SUPPORT 345

//blink interrupt service routine
//**

void blink()
{
state = !state;
flag = HIGH;
Serial.println("Inside interrupt 1\n\n\n");
}

//**

Example 2: In this example the program normally executes instructions in function void
loop(). When switch 1 (SW1) is pushed on the MSP432, an interrupt is asserted, the red LED
changes state, and an interrupt counter is incremented. Similarly, when switch 2 (SW2) is pushed
on the MSP432, an interrupt is asserted, the green LED changes state, and an interrupt counter
is incremented. Printouts are provided on the serial monitor to indicate when the program is in
the main program or in the interrupts.

//**
//Interrupt2
//Adapted from example provided at www.arduino.cc
//This example is in the public domain.
//**

volatile int state1 = HIGH;
volatile int flag1 = HIGH;
int count1 = 0;

volatile int state2 = HIGH;
volatile int flag2 = HIGH;
int count2 = 0;

void setup()
{
Serial.begin(9600);
pinMode(RED_LED, OUTPUT);
digitalWrite(RED_LED, state1);

pinMode(GREEN_LED, OUTPUT);
digitalWrite(GREEN_LED, state2);

346 7. RESETS AND INTERRUPTS

//Enable internal pullup.
Without the pin will float
//and the example will not work.
pinMode(PUSH1, INPUT_PULLUP);

// Interrupt is asserted when switch 1 is depressed
attachInterrupt(PUSH1, blink1, FALLING);

//Enable internal pullup.
Without the pin will float
//and the example will not work.
pinMode(PUSH2, INPUT_PULLUP);

// Interrupt is asserted when switch 1 is depressed
attachInterrupt(PUSH2, blink2, FALLING);
}

void loop()
{
digitalWrite(RED_LED, state1); //LED starts ON
digitalWrite(GREEN_LED, state2); //LED starts ON
delay(500);
Serial.println("In the main program\n");

if(flag1)
{
count1++;
Serial.print("Count1:");
Serial.println(count1);
Serial.println("");
flag1 = LOW;
}

if(flag2)
{
count2++;
Serial.print("Count2:");
Serial.println(count2);

7.7. DRIVERLIB 347

Serial.println("");
flag2 = LOW;
}

}

//**
//blink1 interrupt service routine
//**
void blink1()
{
state1 = !state1;
flag1 = HIGH;
Serial.println("Inside interrupt 1\n\n\n");

}

//**
//blink2 interrupt service routine
//**

void blink2()
{
state2 = !state2;
flag2 = HIGH;
Serial.println("Inside interrupt 2\n\n\n");

}

//**

7.7 DRIVERLIB
e MSP432 interrupt system is well supported by several APIs including [DriverLib, 2015]:

• void Interrupt_disableInterrupt(uint32_t interruptNumber)

• bool Interrupt_disableMaster(void)

• void Interrupt_disableSleepOnIsrExit(void)

• void Interrupt_enableInterrupt(uint32_t interruptNumber)

• bool Interrupt_enableMaster(void)

• void Interrupt_enableSleepOnIsrExit(void)

348 7. RESETS AND INTERRUPTS

• uint8_t Interrupt_getPriority(uint32_t interruptNumber)

• uint32_t Interrupt_getPriorityGrouping(void)

• uint8_t Interrupt_getPriorityMask(void)

• uint32_t Interrupt_getVectorTableAddress(void)

• bool Interrupt_isEnabled(uint32_t interruptNumber)

• void Interrupt_pendInterrupt(uint32_t interruptNumber)

• void Interrupt_registerInterrupt(uint32_t interruptNumber, void(*intHandler)(void))

• void Interrupt_setPriority(uint32_t interruptNumber, uint8_t priority)

• void Interrupt_setPriorityGrouping(uint32_t bits)

• void Interrupt_setPriorityMask(uint8_t priorityMask)

• void Interrupt_setVectorTableAddress(uint32_t addr)

• void Interrupt_unpendInterrupt(uint32_t interruptNumber)

• void Interrupt_unregisterInterrupt(uint32_t interruptNumber)

Details of specific APIs are contained in MSP432 Peripheral Driver Library User’s
Guide [DriverLib, 2015] and will not be repeated here.

7.8 PROGRAMMING INTERRUPTS IN C
Example 3: In this example the technique of polling is illustrated. Pin P6.7 is polled within a
loop. If the pin is found to be high, pin P1.0 is set high, else it is set low.

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright

7.8. PROGRAMMING INTERRUPTS IN C 349

// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--

350 7. RESETS AND INTERRUPTS

//***
//MSP432P401 Demo - Software Poll P6.7, Set P1.0 if P6.7 = 1
//
//Description: Poll P6.7 in a loop, if high P1.0 is set,
// if low, P1.0 reset.
//
//ACLK = n/a, MCLK = SMCLK = default DCO
//
// MSP432p401rpz
// -----------------
// /|\| XIN|-
// | | |
// --|RST XOUT|-
// /|\ | |
// --o--|P6.7 P1.0|-->LED
// \|/
//
//Dung Dang
//Texas Instruments Inc.
//Nov 2013
//Built with Code Composer Studio V6.0
//***

#include "msp.h"

int main(void)
{
WDTCTL = WDTPW | WDTHOLD; //Stop watchdog timer

//Configure GPIO
P1DIR |= BIT0; //Set P1.0 to output direction
P6DIR &= ~BIT7; //Set P6.7 to input direction

while(1) //Test P6.7
{
if (P6IN & BIT7)

P1OUT |= BIT0; //if P6.7 set, set P1.0
else

P1OUT &= ~BIT0; //else reset

7.8. PROGRAMMING INTERRUPTS IN C 351

}
}

//***

Example 4: In this example the processor is configured to enter the LPM3 mode. Pin P1.1 is
configured as an input. When the button connected to P1.1 is depressed, the processor wakes up
and executes the P1.1 associated interrupt. e ISR toggles the LED connected to P1.0.

As illustrated in this example, unused pins should be set to output for proper termination.
An unused pin configured as an input may provide a path for noise into the processor.

A UML activity diagram for the example is provided in Figure 7.4.

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

352 7. RESETS AND INTERRUPTS

Halt watchdog timer

Con�gure Port J

Con�gure PJ.0 and PJ.1 fot XT1

Enable PCM rude mode

Do not wakeup on exit from ISR

Setting the sleep deep bit

Go to LPM3

Start LFXT in non-bypass
mode without a timeout

Turn o� PSS high-side
and low-side supervisors

Enable all SRAM bank
retentions before LPM3

Con�gure P1.0 as output
Con�gure P1.1 as input
with pullup for switch

Con�gure remaining pins
as output low

Enable Port 1 interrupt
on the NVIC

Terminate all remaining
pins on device

upon interrupt

Toggle LED on output

Perform software debounce

Figure 7.4: Interrupt example.

7.8. PROGRAMMING INTERRUPTS IN C 353

//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//***
//MSP432P401 Demo - Software Port Interrupt Service on P1.1 from LPM3
//
//Description: MSP432 device is configured to enter LPM3 mode
//with GPIOs properly terminated.
P1.1 is configured as an input.
//Pressing the button connected to P1.1 results in device waking up and
//servicing the Port1 ISR. LPM3 current can be measured when P1.0 is
//output low (e.g., LED off).
//
// ACLK = 32kHz, MCLK = SMCLK = default DCO
//
// MSP432p401rpz
// -----------------
// /|\| |
// | | |
// --|RST |
// /|\ | |
// --o--|P1.1 P1.0|-->LED

354 7. RESETS AND INTERRUPTS

// \|/
//
//Dung Dang
//Texas Instruments Inc.
//Nov 2013
//Built with Code Composer Studio V6.0
//***

#include "msp.h"
int main(void)
{
//Hold the watchdog
WDTCTL = WDTPW | WDTHOLD;

//Configuring P1.0 as output and P1.1 (switch) as input with pull-up
//resistor. Rest of pins are configured as output low.
//Notice intentional '=' assignment since all P1 pins are being
//deliberately configured.

P1DIR = ~(BIT1);
P1OUT = BIT1;
P1REN = BIT1; //Enable pull-up resistor (P1.1 output high)

P1SEL0 = 0;
P1SEL1 = 0;
P1IFG = 0; //Clear all P1 interrupt flags
P1IE = BIT1; //Enable interrupt for P1.1
P1IES = BIT1; //Interrupt on high-to-low transition

//Enable Port 1 interrupt on the NVIC
NVIC_ISER1 = 1 << ((INT_PORT1 - 16) & 31);

//Terminate all remaining pins on the device
P2DIR |= 0xFF; P2OUT = 0;
P3DIR |= 0xFF; P3OUT = 0;
P4DIR |= 0xFF; P4OUT = 0;
P5DIR |= 0xFF; P5OUT = 0;
P6DIR |= 0xFF; P6OUT = 0;
P7DIR |= 0xFF; P7OUT = 0;

7.8. PROGRAMMING INTERRUPTS IN C 355

P8DIR |= 0xFF; P8OUT = 0;
P9DIR |= 0xFF; P9OUT = 0;
P10DIR |= 0xFF; P10OUT = 0;

//Configure Port J
PJDIR |= (BIT2 | BIT3); PJOUT &= ~(BIT2 | BIT3);

//PJ.0 & PJ.1 configured for XT1
PJSEL0 |= BIT0 | BIT1;
PJSEL1 &= ~(BIT0 | BIT1);

//Starting LFXT in non-bypass mode without a timeout.
CSKEY = CSKEY_VAL;
CSCTL1 &= ~(SELA_M | SELB);
CSCTL1 |= SELA__LFXTCLK; //Source LFXTCLK to ACLK & BCLK
CSCTL2 &= ~(LFXTDRIVE_M); //Configure to lowest drive-strength
CSCTL2 |= LFXT_EN;
while (CSIFG & LFXTIFG)
CSCLRIFG |= LFXTIFG;

CSKEY = 0;

//Turn off PSS high-side & low-side supervisors
PSSKEY = PSS_KEY_KEY_VAL;
PSSCTL0 |= SVSMHOFF | SVSLOFF;
PSSKEY = 0;

//Enable PCM rude mode, which allows device to enter LPM3 without
//waiting for peripherals
PCMCTL1 = PCM_CTL_KEY_VAL | FORCE_LPM_ENTRY;

//Enable all SRAM bank retentions prior to going to LPM3
SYSCTL_SRAM_BANKRET |= SYSCTL_SRAM_BANKRET_BNK7_RET;
__enable_interrupt();

//Do not wake up on exit from ISR
SCB_SCR |= SCB_SCR_SLEEPONEXIT;

//Setting the sleep deep bit
SCB_SCR |= (SCB_SCR_SLEEPDEEP);

356 7. RESETS AND INTERRUPTS

//Go to LPM3
__sleep();
}

//***
//Port1 ISR
//***

void Port1Handler(void)
{
volatile uint32_t i, status;

//Toggling the output on the LED
if(P1IFG & BIT1)
P1OUT ^= BIT0;

//Delay for switch debounce
for(i = 0; i < 10000; i++)

P1IFG &= ~BIT1;

}

//***

7.9 LABORATORY EXERCISE: AUTONOMOUS ROBOT

In Chapter 2 we configured a Dagu Magician robot as an autonomous maze navigating robot.
For this laboratory exercise add an additional IR sensor to the robot to detect “landmines.” A
landmine in the maze is a paper strip placed across the robot’s path in the maze. When the robot
detects the landmine, an interrupt service routine is executed to deactivate the landmine. e
deactivation sequence should be some distinctive operation by the robot. For example, the robot
could rotate about its axis several times, it could flash a special sequence of LEDs, it could make a
distinctive sound, or better yet a combination of all three actions. If the robot rolls over the paper
strip without executing the landmine deactivation sequence, the robot is considered destroyed and
out of action. Have fun!

7.10. SUMMARY 357

7.10 SUMMARY
For efficient use of a microcontroller, resets and interrupts offer the flexibility needed by a pro-
grammer. In this chapter we have described the MSP432 resets and their functions and explored
the general concepts of interrupts. We also investigated the steps required to implement an in-
terrupt service routine. We discussed the assigned priorities for resets and interrupts. A brief
introduction was provided to the MSP432 Nested Vector Interrupt Controller (NVIC). Several
interrupt examples were shown.

7.11 REFERENCES AND FURTHER READING
Arduino homepage, www.arduino.cc.

Energia homepage, www.energia.nu.

MSP432 Peripheral Driver Library User’s Guide. Texas Instruments, 2015. 347, 348

MSP432P4xx Family Technical Reference Manual (SLAU356A). Texas Instruments, 2015. 338,
339, 341, 342

Texas Instruments Code Composer Studio6.1 for MSP432 (SLAU575B). Texas Instruments, 2015.

7.12 CHAPTER PROBLEMS
Fundamental

1. List three different types of resets in the MSP432 microcontroller.

2. State the purpose of resets and interrupts.

3. What is the main difference between a reset and an interrupt?

4. What are the differences between maskable and nonmaskable interrupts?

5. In addition to setting up a local interrupt enable bit, you must also set the global enable bit.
Where is the global enable bit for all MSP432 maskable interrupts? Write an instruction
to enable this global maskable interrupt enable bit.

6. What are the steps one must take to properly configure a maskable interrupt?

7. When more than one maskable interrupt occurs simultaneously, how does the MSP432
controller decide the order in which the controller service the interrupts?

Advanced

1. Why did the designers of MSP432 come up with three different types of resets?

www.arduino.cc
www.energia.nu

358 7. RESETS AND INTERRUPTS

2. Refer to the Interrupt Handling Process section and explain the purpose for each of the ten
steps.

3. Write a segment of code to initialize the MSP432 microcontroller to operate in the power
save LPM3.5 mode and only operate in the normal mode during an interrupt.

Challenging

1. It is challenging to handle nested interrupts.Whatmight be some applications where nested
interrupts are necessary?

359

C H A P T E R 8

Analog Peripherals
Objectives: After reading this chapter, the reader should be able to:

• describe the function of an analog-to-digital converter (ADC) and a digital-to-analog con-
verter (DAC);

• explain the methods used to perform ADC conversions on the MSP432 microcontroller;

• configure the MSP432 microcontroller to accept analog signals and convert them into dig-
ital forms;

• use interrupts associated with the MSP432 microcontroller’s ADC system;

• describe the operation and function of the MSP432 REF_A system;

• describe the operation and function of the MSP432 COMP_E system; and

• interface the MSP432 microcontroller with compatible Texas Instruments analog devices.

8.1 OVERVIEW
In this chapter, we discuss the subsystems that allow the microcontroller to accept and analyze
external analog signals and to build and generate analog signals for other devices. Physical param-
eters of interest such as temperature, light intensity, sound, etc. are analog in nature. A physical
parameter of interest must first be converted to an analog signal such as voltage by a transducer.
e voltage is then conditioned such that it is compatible with the input requirements of the
microcontroller’s ADC system.

Consider a simple example of your voice signal. To process, store, and transmit a voice
signal using a digital system, such as the MSP432 controller, a system must have a means to
convert analog signals to their equivalent digital forms and also to convert back to a useful analog
forms. e analog-to-digital converter and the digital-to-analog converter perform these required
tasks. In Chapter 4, we presented the input and output interfaces of MSP432 microcontroller. In
this chapter, we introduce the MSP432’s analog-to-digital converter (ADC) system, the analog
reference system (REF_A), and the analog comparator (COMP_E).

360 8. ANALOG PERIPHERALS

8.2 BACKGROUND
To convert an analog signal to a digital form, one must first capture the signal at a particular time
(sample), find the analog signal value (quantize), and represent it (encode) before it is sent to a
digital system. An analog-to-digital converter’s job is to perform these three tasks. Depending on
how fast we can sample and how many bits are used to represent an analog value, the quality and
accuracy of representation of analog signals vary, which we study in this chapter.

Once a signal is processed, the processed signal may need to be sent back to the analog
world. e digital-to-analog converter performs this task. A simple example is to amplify your
voice using a microphone using a digital system. Your voice is first converted into its correspond-
ing digital representation, the resulting signals are converted back to analog forms using a digital-
-to-analog converter, and its volume is amplified. We present the processes involved in both
conversions and how those conversions are performed in the MSP432 microcontroller next.

Sample Analog Signal

Time (sec)

M
ag

n
it

u
d

e

80

60

40

20

0

-20

-40

-60
0 2 4 6 8 10

Figure 8.1: Sample analog signal.

8.3 ANALOG-TO-DIGITAL CONVERSION
Before a computer can process a physical signal, the signal must first be converted to a correspond-
ing digital form. Figure 8.1 shows an example of an analog signal. Notice that for a given time,

8.3. ANALOG-TO-DIGITAL CONVERSION 361

tx , the signal can hold any value along the y axis. So, how do analog signals such as the one shown
in the figure get converted into digital signals? e analog-to-digital conversion process consists
of the three separate sub-processes previously discussed: sampling, quantization, and encoding.

8.3.1 SAMPLING
e sampling process is the way for a digital system to capture an analog signal at a particular
point in time. One can consider the sampling process as similar to taking snap shots of changing
scenery using a camera.

Suppose we want to capture the movement of a baseball pitcher as he throws a ball toward
home plate. Also let us assume the only means for you to capture the motion of the pitcher is with
a camera. Suppose it takes two seconds for the pitcher to throw a baseball. If you take a picture
at the start of the pitching and another one two seconds later, you have missed most of the action
and will not be able to accurately represent the motion of the pitcher.

e inverse of the period between taking pictures in this example is the sampling frequency
with the unit of Hertz (Hz). Since there is a 2 s interval between samples, the sampling rate is
1=2 D 0:5 Hz. As you can imagine, the faster you take the pictures the more accurately you can
re-create the pitcher’s motion by sequencing photos.

e above example illustrates the primary issue of the sampling process, that of the sampling
frequency. A correct sampling frequency depends on the characteristics of the analog signal of
interest. If the analog signal changes quickly, the sampling frequency must be high. If the signal
does not change rapidly, the sampling frequency can be slow and still capture the essence of the
incoming signal.

You may wonder what harm does it cause to sample at the highest frequency possible re-
gardless of the frequency content of the analog signal? e answer lies in optimizing resources.
Just as it would be a waste to take multiple pictures of the same static object, it would not be a good
use of resources to sample with a high frequency rate regardless of the nature of an analog signal.
In the 1940’s, Henry Nyquist, who worked at IBM Bell Laboratory, developed the concept that
the minimum required sampling rate is a function of the highest input analog signal frequency:
fs � 2 � fh. e frequency fs and fh are the sampling frequency and the highest frequency of
the signal we want to capture, respectively. at is, the sampling frequency must be greater than
or equal to two times the highest frequency component of the input signal. Using the illustration
of taking pictures again, the rate that you take a sequence of pictures must be at least two times
as fast as the highest frequency of changes in the environment of which you are taking pictures
to reconstruct the “signals” in the environment. We illustrate the Nyquist sampling rate using
Figure 8.2.

Figure 8.2 shows the analog signal of interest, a sinusoidal signal. Frame (b) of the figure
shows sampling points with a rate slower than the Nyquist rate and frame (c) shows the re-
construction of the original signals using only the sampled points shown in frame (b). Frame (d)
shows the sampled points at the Nyquist rate and the corresponding reconstructed signal is shown

362 8. ANALOG PERIPHERALS

(a) (b)

(c) (d)

Figure 8.2: Sampling rate illustration. (Continues.)

in frame (e). Finally, frame (f) shows sampled points at a rate higher than the Nyquist sampling
rate and frame (g) shows the reconstructed signal.

As can be seen from this simple example, when we sample an analog signal at the Nyquist
sampling rate, we can barely generate the characteristics of the original analog signal. While at
a higher sampling rate, we can retain the nature of an input analog signal more accurately at a
higher cost, requiring a faster clock, additional processing power, and more storage facilities. Let
us examine one final example before we move on to the quantization process.

Example 1: An average human voice contains frequencies ranging from about 200 Hz to
3.5 kHz. What should be the minimum sampling rate for an ATD converter?

Answer: According to the Nyquist sampling rate rule, we should sample at 3.5 kHz � 2 D 7 kHz,
which translate to taking a sample every 142.9 us. Your telephone company uses sampling rate of
8 kHz to sample your voice so that it can be delivered to a receiver.

It is important to note that once the upper frequency of interest is established, the sampled
signal does not exceed this frequency. A low pass filter (LPF) is typically used to limit the fre-

8.3. ANALOG-TO-DIGITAL CONVERSION 363

(e) (f)

(g)

Figure 8.2: (Continued.) Sampling rate illustration.

quency of the sampled signal. e LPF prevents aliasing errors and is typically referred to as an
anti-aliasing filter.

8.3.2 QUANTIZATION
Once a sample is captured, then the second step, quantization, can commence. Before we explain
the process, we first need to define the term quantization level. Suppose we are working with an
analog voltage signal whose values can change from 0–5 V. Now suppose we pick a point in time.
e analog signal, at that point in time, can have any value between 0V and 5V, an infinite number
of possibilities (think of real numbers). Since we do not have a means to represent infinitely
different values in a digital system, we limit the possible values to a finite number. So, what
should this number be? Previously, we saw that there are 2b number of values we can represent
with b bits. If we have a 2-bit analog-to-digital converter, 2-bits are used to represent the analog
signal; there are four different representations we can choose from. In a 4-bit converter, we have
16 different ways to do so. If we have an 8-bit converter, we have 256 different representations,
and so on.

364 8. ANALOG PERIPHERALS

As you may suspect, there is a tradeoff between using a large number of bits for an accurate
representation vs. the hardware cost of designing and manufacturing a converter. A converter
which employs more bits will yield more accurate representations of the sampled signal values. A
decision made by an ADC converter designer determines the accuracy of a sampled data and the
cost tomanufacture the converter.e number of bits used to quantize a sampled value determines
the available quantization levels. erefore, a converter which uses 8-bits has 256 quantization
levels while a converter that uses 10-bits has 1024 quantization levels.

Quantized Level 8

Quantized Level 7

Quantized Level 6

Quantized Level 5

Quantized Level 4

Quantized Level 3

Quantized Level 2

Quantized Level 1

Quantized Level 0

Resolution

Analog
signal
input
range

Figure 8.3: Quantization levels and resolution of an analog-to-digital converter.

We need to also define what is known as the resolution of an ADC converter. Simply put,
the resolution is the smallest quantity a converter can represent or the “distance” between two
adjacent quantization levels. e resolution will naturally vary depending on the range of input
analog signal values. Suppose the input range is from 0–5 V, a typical input range of an ADC
converter, and we have an 8-bit converter. e resolution ı is then

ı D
analog input highest value � analog input lowest value

2b
D

5 � 0

256
D 19:5312mV:

Figure 8.3 shows both quantization levels and the corresponding resolution for a sample
input signal for an ADC converter.

Example 2: Given an application that requires an input signal range of 10 V and the resolution
less than 5 mV, what is the minimum number of bits required for the ADC converter?

Answer: 10�0
210 D 9:77 mV and 10�0

211 D 4:88 mV. us, the required number of bits for the ADC
converter is 11-bits.

8.3. ANALOG-TO-DIGITAL CONVERSION 365

Highest possible input value

Lowest possible input value

Quantization level n

Sample value

Quantization error

Figure 8.4: Quantized error of a sampled input signal.

366 8. ANALOG PERIPHERALS

We can now combine both sampling and quantization processes together to identify a quan-
tized level of a sampled value. Suppose a sampled analog signal value is 3.4 V and the input signal
range is 0–5 V. Using a converter with 8-bits, we can find the quantized level of the sampled
value using the following equation:

Quantized level D
sampled input value � lowest possible input value

ı
:

us, given the input sample value of 3.4 V, the quantized level becomes 3:4 V�0 V
19:53 mV Š

174:09. Since we can only have integer levels, the quantized level becomes 174. So the sam-
pling error is the difference between the true analog value and the sampled value. It is the amount
of approximation the converter had to make. See Figure 8.4 for a pictorial view of this concept.
For the example, the input sampled value 3.4 V is represented as the quantized level 174 and
the quantized error is 0:09 � ı D 1:76 mV. Note that the maximum quantization error is the
resolution of the converter.

Example 3: Given a sampled signal value of 7.21 V, using a 10 bit ADC converter with input
range of 0 V and 10 V, find the corresponding quantization level and the associated quantization
error.

Answer: First, we find the quantized level:

Quantized level D
7:21 � 0

ı
;

where ı D
10
210 D 9:77 mV. us, the quantized level is 738.3059. If the converter rounds down,

the quantized level is 738 and the associated quantization error is 0:3059 � 9:77 mV Š 2:987 mV.

8.3.3 ENCODING
e last step of the ADC conversion process is the encoding. e encoding process converts the
quantized level of a sampled analog signal value into a binary number representation. Consider the
following simple case, first. Suppose we have a converter with four bits. e available quantization
levels for this converter are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15. Using four bits,
we can represent the quantization levels as 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,
1000, 1001, 1010, 1011, 1100, 1101, 1110, and 1111. Once we identify a quantization level, we
can uniquely represent the quantization level as a binary number. is process is called encoding.
Similar to a decimal number, the position of each bit in a binary number represents a different
value. For example, binary number 1100 is decimal number .1 � 23/ C .1 � 22/ C .0 � 21/ C

.0 � 20/ D 12. Knowing the weight of each bit, it is a straightforward process to represent a
decimal number as a binary number.

8.4. DIGITAL-TO-ANALOG CONVERTER 367

Example 4: Find the encoded value of the quantization found in the previous example: 738.
Recall we are using 10 bits.

Answer: Since we are using 10 bits to represent this number, the encoded value is
.1 � 29/ C .0 � 28/ C .1 � 27/ C .1 � 26/ C .1 � 25/ C .0 � 24/ C .0 � 23/C 0 � 22/ C .1 �

21/ C .0 � 20/ D 738.
us, the encoded value is 1011100010.

8.4 DIGITAL-TO-ANALOG CONVERTER
e opposite function of an ADC converter is performed by a Digital-to-Analog (DAC) con-
verter. e input to a DAC converter is an encoded value which specifies the desired output
analog value. Similar to the ADC converter just discussed, a DAC converter must have both
minimum and maximum reference analog voltages. e job of a DAC converter is then to map a
minimum digital representation to its corresponding minimum analog value, a maximum digital
representation to the maximum reference analog value, and representations in between minimum
and maximum digital values to their appropriate analog counter parts. e most common method
used to perform a DAC conversion is to pre-designate the analog weight of each bit in the digital
input representation and then sum up the contributions to form an analog output. For example,
suppose the range of output values for a DAC converter is from 0–5 V. If we have a four bit
DAC converter, from the most to the least significant bits, each specific bit would be weighted
2.5 V, 1.25 V, 0.625 V, and 0.3125 V. us, a digital input of 1010 to this converter will re-
sult in 2:5 C 0:625 D 3:125 V, and a digital input of 1111 to the DAC converter would result in
2:5 C 1:25 C 0:625 C 0:3125 D 4:6875 V. Given an N-bit converter, it is straightforward to de-
velop the following equation to describe the relationships among the input, number of bits used,
and the output:

Analog output D
digital input

2N
Vrefmax;

where N stands for the number of bits used in the converter and Vrefmax represents the maximum
analog reference voltage of the converter. Figure 8.5 illustrates a four bit DAC converter with the
maximum and minimum output values of 2.5 V and 0 V, respectively.

8.5 MSP432 ANALOG-TO-DIGITAL CONVERTER
In this section we introduce the MSP432 ADC referred to as ADC14. We describe its features,
operation, registers, and conclude with several programming examples.

368 8. ANALOG PERIPHERALS

MSB

LSB

Summer

LPF Output

1.25 V

0.625 V

0.3125 V

0.15625 V

Digital input value determines which
switches are closed (1) and which
switches remain open (0)

∑

Figure 8.5: A sample 4-bit digital to analog converter. A digital input governs the positions of the
switches, which determine whether or not their corresponding voltage values with respect to the refer-
ence voltage output values should contribute to the converter output value. e output of the converter
is typically connected to a low pass filter before being used to remove any sharp edges resulting from
switching from discrete voltage outputs of the converter.

8.5.1 FEATURES
e ADC14 system is a flexible and powerful analog-to-digital conversion system with an exten-
sive list of features [SLAU356A].

• ADC14 provides 14-bits of ADC resolution. Recall, the resolution of a converter provides
2b number of incremental steps between the high and low reference voltage.

• ADC14 is a successive approximation register (SAR) type converter. A SAR converter takes
the same amount of time for converting an unknown voltage regardless of its magnitude.
We discuss the operation of a SAR type converter in the next section.

• e maximum conversion rate of ADC14 is 1 Mega sample per second (Msps).

• ADC14 is equipped with 32 individual input channels. e inputs may be configured for
single-ended conversion where the input signal is referenced to ground. e inputs may also
be configured for differential input. In this type of conversion, two signals are subtracted

8.5. MSP432 ANALOG-TO-DIGITAL CONVERTER 369

from one another and their difference is converted. is is especially useful in noisy en-
vironments. Signals that are common to both inputs (noise) are cancelled and the actual
signal is amplified.

• Selected, specific internal signals within the MSP432 processor may be selected for ADC
conversion.

• e ADC14 may be set to provide conversion on a single channel, multiple conversions of
a single channel, a single conversion of a sequence of channels, or multiple conversions of a
sequence of channels.

• ADC14 is supported by a variety of interrupts.

8.5.2 OPERATION
A basic block diagram of ADC14 is shown in Figure 8.6a. An input analog channel is selected
for conversion by the input voltage select multiplexer (mux). e selected signal is held constant
by the sample and hold (S/H) circuitry during the conversion process. e stable signal is then
fed to the SAR converter. e SAR converter receives input from the reference voltage select, the
timing source, and trigger source for conversion. e digital result of the conversion, provided as
n bits, is stored in result registers. Specific interrupts may be selected to signal different significant
events in the ADC process.

A block diagram of SAR converter operation is provided in Figure 8.6b. As its name im-
plies, the SAR converter will make successive guesses at the unknown sample voltage value. It
begins with a guess of one-half of the reference voltage. is digital guess is converted to a corre-
sponding analog value by the digital-to-analog converter (DAC). e analog guess is compared to
the unknown sample voltage by the voltage comparator. e output from the comparator prompts
the SAR to guess higher or lower. is process continues n times (one for each bit in the SAR
register). e guess progresses from one-half of the reference voltage to one-fourth to one-eighth,
etc. When the conversion is complete, the end of conversion signal goes logic high.

e detailed block diagram of ADC14 is provided in Figure 8.7. It may appear a bit over-
whelming at first; however, it is simply a more detailed version of the basic block diagram already
provided. e operation of the ADC14 is configured and controlled by registers ADC14CTL0
and ADC14CTL1. e bit designators from these registers are shown at various points on the
diagram.

As seen in the figure, an input analog channel is selected for conversion by the input voltage
select multiplexer by the ADC14INCHx bits. e selected signal is held constant by the sample
and hold (S/H) circuitry during the conversion process. e stable signal is then fed to the SAR
converter. e SAR converter receives input from the reference voltage select, the timing source,
and trigger source for conversion. e specific reference voltage is selected by the ADC14VRSEL
bits. e specific timing source (MODCLK, SYSCLK, ACLK, MCLK, SMCLK, or HSM-

370 8. ANALOG PERIPHERALS

VR- VR+

n

Input Voltage
Select

Input
Voltage
Select
mux

Sample
and Hold

(S/H)

Successive
Approximation

Converter

Timing Source

Trigger Source

InterruptsResults
Registers

Reference
Voltage
Select

Sample
Input

(a) successive approximation ADC block diagram.

n
Current Digital “Guess”

Current Analog “Guess”

Sample
and Hold

(S/H)

Successive
Approximation
Register (SAR)Timing Source

End of Conversion Signal

Voltage
Comparator

Digital-to-Analog
Converter

Unknown
Sample
Voltage

(b) successive approximation register ADC converter.

Figure 8.6: Basic ADC14 block diagram.

CLK) is selected by the ADC14SSELx bits. e selected clock source may be further divided
by the ADC14PDIV and the ADC14DIVx bit settings. e overall result is the ADC14CLK
signal. e trigger source to initiate the ADC conversion is the SAMPCON signal. e specific
trigger source is selected by the ADC14SHSx bits. e digital result of the conversion provided
as n bits is stored in the ADC14MEM0 result registers. Specific interrupts may be selected to
signal different significant events in the ADC process [SLAU356A, 2015].

8.5. MSP432 ANALOG-TO-DIGITAL CONVERTER 371

Figure 8.7: ADC14 block diagram. Illustration used with permission of Texas Instruments www.ti
.com.

8.5.3 ADC REGISTERS
e operation of the ADC14 is configured and controlled by registers ADC14CTL0 and
ADC14CTL1, as shown in Figure 8.8. Details concerning register settings are provided in
SLAU356A the MSP432P4xx Family Technical Reference Manual [SLAU356A, 2015].

8.5.4 ANALYSIS OF RESULTS
ADC14 provides a digital representation of the analog sample in a binary unsigned format. e
values range from 0000h to 3fffh. If the sampled signal is below the low reference voltage,
ADC14 reports 0000h; whereas, if the sampled signal exceeds the high reference, ADC14 reports
3fffh. For analog sensed values between the low and high reference voltage, ADC14 reports a
value of NADC when configured for single-ended operation [SLAU356A, 2015]:

NADC D 214
� ..VINC � VRC/=.VRC � VR�//:

www.ti.com
www.ti.com

372 8. ANALOG PERIPHERALS

Figure 8.8: ADC14CTL0 and ADC14CTL1 ADC14 registers [SLAU356A, 2015]. Illustration
used with permission of Texas Instruments www.ti.com.

If configured for differential mode, ADC14 reports a value of:

NADC D 214
� ..VINC � VIN�/=.VRC � VR�// C 8192:

8.6 PROGRAMMING THE MSP432 ADC14 SYSTEM
e ADC14 system may be programmed using Energia, APIs contained in DriverLib, and via
register settings in C. We discuss each in turn.

8.6.1 ENERGIA PROGRAMMING
e Energia library contains several functions to support analog conversions including ADC-
and DAC-related functions (www.energia.nu).

www.ti.com
www.energia.nu

8.6. PROGRAMMING THE MSP432 ADC14 SYSTEM 373

• analogRead(): e analogRead function performs an ADC conversion on the indicated
analog pin. e MSP-EXP432P401R LaunchPad analog pins are provided in the MSP432
BoosterPack standard interface diagram in Figure 1.6. e measured voltage is converted to
an integer value between 0 and 1023 where 0 corresponds to 0 VDC and 1023 corresponds
to 3.3 VDC.

• analogReference(): e analogReference function provides for changing the high level ref-
erence voltage for ADC conversion. e different settings include:

– DEFAULT: sets ADC high reference level to VCC 3.3 V.
– INTERNAL1V5: sets ADC high reference level to internal 1.5 VDC reference.
– INTERNAL2V5: sets ADC high reference level to internal 2.5 VDC reference.
– EXTERNAL: sets ADC high reference level to the VREF pin value.

• map: As its name implies the map function maps a range of integers (fromLow, fromHigh)
to a new range of integers (toLow, toHigh).

• analogWrite: e analogWrite function generates a pseudo analog output signal using a
pulse width modulated signal. e analogWrite function generates a 490 Hz signal on the
specified pin with a duty cycle specified from 0–255.

Example 5: e Educational BoosterPack MKII is equipped with a number of analog sensors.
e joystick is an analog input sensor that provides analog x and y voltages indicating the position
of the joystick. In this example, the x position of the joystick is used to determine the intensity
of the onboard green LED. If the joystick is pushed straight down, the red LED is illuminated.
Note how different analog related functions are employed in the example.

//**
//Joystick example for Educational BoosterPack MK II
//http://boosterpackdepot.info/wiki/index.php?title=
// Educational_BoosterPa//ck_MK_II
//
//Move the joystick around in x & y axes (pin 2 & 26) to
//adjust/mix the Green LED.
//Press straight down on the joystick center button to turn
//on the Red LED.
//
//The circuit:
// * Joystick X attached to pin 2
// * Joystick Y attached to pin 26
// * Joystick Sel attached to pin 5

374 8. ANALOG PERIPHERALS

// * Blue LED (analog) attached to pin 37
// * Green LED (analog) attached to pin 38
// * Red LED (digital) attached to pin 39
//
//Dec 03 2013 for Educational BoosterPack MK II
//by Dung Dang
//
//This example code is in the public domain.
//
//**

const int joystickSel = 5; //joystick select pin
const int joystickX = 2; //joystick X-axis analog
const int joystickY = 26; //joystick Y-axis analog

const int ledBlue = 37; //LED pin number
const int ledGreen = 38; //LED pin number
const int ledRed = 39; //LED pin number
int joystickSelState = 0; //joystick sel status
int joystickXState, joystickYState; //joystick position

void setup()
{
//By default MSP432 has analogRead() set to 10 bits.
//This Sketch assumes 12 bits.

Uncomment to line below
//to set analogRead() to 12 bit resolution for MSP432.
//analogReadResolution(12);

//initialize the LED pins as output:
pinMode(ledRed, OUTPUT);

//initialize the pushbutton pin as an input:
pinMode(joystickSel, INPUT_PULLUP);
}

void loop()
{
//read the analog value of joystick x axis

8.6. PROGRAMMING THE MSP432 ADC14 SYSTEM 375

joystickXState = analogRead(joystickX);

//scale the analog input range [0,4096]
//into the analog write range [0,255]
joystickXState = map(joystickXState, 0, 4096, 0, 255);

//output to the led
analogWrite(ledGreen, joystickXState);

//read the analog value of joystick y axis
joystickYState = analogRead(joystickY);

//scale the analog input range [0,4096]
//into the analog write range [0,255]
joystickYState = map(joystickYState, 0, 4096, 0, 255);

//output to the led
analogWrite(ledBlue, joystickYState);

// read the state of the joystick select button value:
joystickSelState = digitalRead(joystickSel);

//check if the pushbutton is pressed.
//if it is, the buttonState is HIGH:
if(joystickSelState == LOW)

{
//turn LED on:
digitalWrite(ledRed, HIGH);
}

else
{
//turn LED off:
digitalWrite(ledRed, LOW);
}

}
//**

376 8. ANALOG PERIPHERALS

8.6.2 MSP432 DRIVER LIBRARY
e MSP432 Peripheral Driver Library has many application programming interface (API) func-
tions supporting the ADC14 system. API details are provided in the MSP432 Peripheral Driver
Library User’s Guide. An API function list is provided below.

• void ADC14_clearInterruptFlag(uint_fast64_t mask)

• bool ADC14_configureConversionMemory(uint32_t memorySelect, uint32_t refSelect,
uint32_t channelSelect, bool differntialMode)

• bool ADC14_configureMultiSequenceMode(uint32_t memoryStart, uint32_t memo-
ryEnd, bool repeatMode)

• bool ADC14_configureSingleSampleMode(uint32_t memoryDestination, bool repeat-
Mode)

• bool ADC14_disableComparatorWindow(uint32_t memorySelect)

• void ADC14_disableConversion(void)

• void ADC14_disableInterrupt(uint_fast64_t mask)

• bool ADC14_disableModule(void)

• bool ADC14_disableReferenceBurst(void)

• bool ADC14_disableSampleTimer(void)

• bool ADC14_enableComparatorWindow(uint32_t memorySelect, uint32_t windowSe-
lect)

• bool ADC14_enableConversion(void)

• void ADC14_enableInterrupt(uint_fast64_t mask)

• void ADC14_enableModule(void)

• bool ADC14_enableReferenceBurst(void)

• bool ADC14_enableSampleTimer(uint32_t multiSampleConvert)

• uint_fast64_t ADC14_getEnabledInterruptStatus(void)

• uint_fast64_t ADC14_getInterruptStatus(void)

• void ADC14_getMultiSequenceResult(uint16_t *res)

• uint_fast32_t ADC14_getResolution(void)

8.6. PROGRAMMING THE MSP432 ADC14 SYSTEM 377

• uint_fast16_t ADC14_getResult(uint32_t memorySelect)

• void ADC14_getResultArray(uint32_t memoryStart, uint32_t memoryEnd, uint16_t *res)

• bool ADC14_initModule(uint32_t clockSource, uint32_t clockPredivider, uint32_t clock-
Divider, uint32_t internalChannelMask)

• bool ADC14_isBusy(void)

• void ADC14_registerInterrupt(void(*intHandler)(void))

• bool ADC14_setComparatorWindowValue(uint32_t window, int16_t low, int16_t high)

• bool ADC14_setPowerMode(uint32_t powerMode)

• void ADC14_setResolution(uint32_t resolution)

• bool ADC14_setResultFormat(uint32_t resultFormat)

• bool ADC14_setSampleHoldTime(uint32_t firstPulseWidth,
uint32_t secondPulseWidth)

• bool ADC14_setSampleHoldTrigger(uint32_t source, bool invertSignal)

• bool ADC14_toggleConversionTrigger(void)

• void ADC14_unregisterInterrupt(void)

Details of specific APIs are contained in MSP432 Peripheral Driver Library User’s
Guide [DriverLib, 2015] and will not be repeated here.
Example 6: e example is included within MSPWare and demonstrates how DriverLib APIs
may be used to sense the internal temperature sensor in both Celsius and Fahrenheit. A UML
activity diagram for this example is provided in Figure 8.9.

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD,BSD
//Copyright (c) 2014, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright

378 8. ANALOG PERIPHERALS

Halt watchdog timer

Con�gure ADC memory

Trigger sample start

While(1)

Go to LPMO

Clear interrupt �ag

Upon interrupt

Calculate temperatures

Con�gure sample/hold (S/H) time

Enable sample timer

Enable interrupt
use option to

sleep on ISR exit

Initialize ADC parameters
Use internal temperature sensor

as ADC source

Enable interrupts
- ADC14
- master

Enable Floating Point Unit (FPU)
for math processing

Set reference voltage to 2.5 V
and enable temperature sensor

Figure 8.9: ADC14 example using DriverLib APIs.

8.6. PROGRAMMING THE MSP432 ADC14 SYSTEM 379

// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//***
//MSP432 ADC14 - Single Channel Repeat Temperature Sensor
//
//Description: This example shows the use of the internal temperature
//sensor. A simple continuous ADC sample/conversion is set up with a
//software trigger. The sample time is set as speced by the User's
//Guide.
All calculations take place in the ISR which take advantage of
//the Stacking Mode of the FPU. The temperature is calculated in both
//Celsius and Fahrenheit.
//
// MSP432P401
// ------------------
// /|\| |
// | | |
// --|RST P5.5 |
// | |

380 8. ANALOG PERIPHERALS

// | |
// | |
//
//Author: Timothy Logan
//***

//DriverLib Includes
#include "driverlib.h"

//Standard Includes
#include <stdint.h>
#include <string.h>

volatile float tempC;
volatile float tempF;

int main(void)
{
//Halting WDT
WDT_A_holdTimer();
Interrupt_enableSleepOnIsrExit();

//Enabling the FPU with stacking enabled (for use within ISR)
FPU_enableModule();
FPU_enableLazyStacking();

//Initializing ADC (MCLK/1/1) with temperature sensor routed
ADC14_enableModule();
ADC14_initModule(ADC_CLOCKSOURCE_MCLK, ADC_PREDIVIDER_1,

ADC_DIVIDER_1, ADC_TEMPSENSEMAP);

//Configuring ADC Memory (ADC_MEM0 A22 (Temperature Sensor)
//in repeat mode).
ADC14_configureSingleSampleMode(ADC_MEM0, true);
ADC14_configureConversionMemory(ADC_MEM0, ADC_VREFPOS_AVCC_VREFNEG_VSS,

ADC_INPUT_A22, false);

//Configuring the sample/hold time
ADC14_setSampleHoldTime(ADC_PULSE_WIDTH_192,ADC_PULSE_WIDTH_192);

8.6. PROGRAMMING THE MSP432 ADC14 SYSTEM 381

//Enabling sample timer in auto iteration mode and interrupts
ADC14_enableSampleTimer(ADC_AUTOMATIC_ITERATION);
ADC14_enableInterrupt(ADC_INT0);

//Setting reference voltage to 2.5 and enabling temperature sensor
REF_A_setReferenceVoltage(REF_A_VREF2_5V);
REF_A_enableReferenceVoltage();
REF_A_enableTempSensor();

//Enabling Interrupts
Interrupt_enableInterrupt(INT_ADC14);
Interrupt_enableMaster();

//Triggering the start of the sample
ADC14_enableConversion();
ADC14_toggleConversionTrigger();

//Going to sleep
while(1)
{
PCM_gotoLPM0();
}

}

//***
//This interrupt happens every time a conversion has completed.
Since
//the FPU is enabled in stacking mode, we are able to use the FPU safely
//to perform efficient floating point arithmetic.
//***

void adc_isr(void)
{
uint64_t status;
uint32_t cal30, cal85;

status = ADC14_getEnabledInterruptStatus();
ADC14_clearInterruptFlag(status);

382 8. ANALOG PERIPHERALS

if(status & ADC_INT0)
{
cal30 = SysCtl_getTempCalibrationConstant(SYSCTL_2_5V_REF,

SYSCTL_30_DEGREES_C);
cal85 = SysCtl_getTempCalibrationConstant(SYSCTL_2_5V_REF,

SYSCTL_85_DEGREES_C);

tempC =(float)(((uint32_t) ADC14_getResult(ADC_MEM0)-cal30)*(85 - 30))
/(cal85 - cal30) + 30.0f;

tempF = tempC * 9.0f / 5.0f + 32.0f;
}

}
//***

8.6.3 PROGRAMMING ADC14 IN C
In this section, a representative example is provided of programming the ADC14 system using C.
In this example the repeat sequence-of-channels mode is used on channels A0, A1, A2, and A3
with results stored to ADC14MEM0, ADC14MEM1, ADC14MEM2, and ADC14MEM3.
After the completion of each sequence, the four conversion results are moved to A0results[],
A1results[], A2results[], and A3results[]. A UML activity diagram for this example is provided
in Figure 8.10.
Example 7: is example performs a repeated sequence of conversions using repeat sequence-of-
channels mode.

//**
//--COPYRIGHT--,BSD, EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of

8.6. PROGRAMMING THE MSP432 ADC14 SYSTEM 383

Enable ADC interrupt
Turn on ADC 14

Extend sampling time

Set number of results

Stop watch dog timer

Enable ADC on channels 0–3

Wake on exit from ISR

While(1)

Start conversion software trigger

Declare variables
for results

upon interrupt

Move ADC results

Clear interrupt �ag

Figure 8.10: ADC14 example using C.

//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

384 8. ANALOG PERIPHERALS

//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
//
//***
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib for an API functional library
// https://dev.ti.com/pinmux/ for a GUI approach to peripheral
// configuration.
//
//--COPYRIGHT--
//***
//MSP432P401 Demo - ADC14, Repeated Sequence of Conversions
//
//Description: This example shows how to perform a repeated sequence of
//conversions using "repeat sequence-of-channels" mode.
AVcc is used
//for the reference and repeated sequence of conversions is performed on
//Channels A0, A1, A2, and A3. Each conversion result is stored in
//ADC14MEM0, ADC14MEM1, ADC14MEM2, and ADC14MEM3 respectively.
After each
//sequence, the 4 conversion results are moved to A0results[],
//A1results[], A2results[], and A3results[].
//
//Test by applying voltages to channels A0 - A3. Open a watch window in
//debugger and view the results.
Set Breakpoint1 in the index increment
//line to see the array values change sequentially and Breakpoint2 to see
//the entire array of conversion results in A0results[], A1results[],

8.6. PROGRAMMING THE MSP432 ADC14 SYSTEM 385

//A2results[], and A3results[]for the specified Num_of_Results.
//
//Note that a sequence has no restrictions on which channels are
//converted.
For example, a valid sequence could be A0, A3, A2, A4, A2,
//A1, A0, and A7.
//
// MSP432P401
// -----------------
// /|\| |
// | | |
// --|RST |
// | |
// Vin0 -->|P5.5/A0 |
// Vin1 -->|P5.4/A1 |
// Vin2 -->|P5.3/A2 |
// Vin3 -->|P5.2/A3 |
// | |
//
//Wei Zhao
//Texas Instruments Inc.
//June 2014
//Built with Code Composer Studio V6.0
//***

#include "msp.h"
#include <stdint.h>

#define Num_of_Results 8

volatile uint16_t A0results[Num_of_Results];
volatile uint16_t A1results[Num_of_Results];
volatile uint16_t A2results[Num_of_Results];
volatile uint16_t A3results[Num_of_Results];
static uint8_t index;

int main(void)
{
WDTCTL = WDTPW+WDTHOLD; //Stop watchdog timer

386 8. ANALOG PERIPHERALS

//Configure GPIO
P5SEL1 |= BIT5 | BIT4 | BIT3 |BIT2; //Enable A/D channel A0-A3
P5SEL0 |= BIT5 | BIT4 | BIT3 |BIT2;

__enable_interrupt();
NVIC_ISER0 = 1 << ((INT_ADC14 - 16) & 31);//Enable ADC interrupt

//in NVIC module
//Turn on ADC14,
//extend sampling time

ADC14CTL0 = ADC14ON | ADC14MSC | ADC14SHT0__192 | ADC14SHP |
ADC14CONSEQ_3;

//to avoid overflow of results
ADC14MCTL0 = ADC14INCH_0; //ref+=AVcc, channel = A0
ADC14MCTL1 = ADC14INCH_1; //ref+=AVcc, channel = A1
ADC14MCTL2 = ADC14INCH_2; //ref+=AVcc, channel = A2
ADC14MCTL3 = ADC14INCH_3+ADC14EOS; //ref+=AVcc, channel = A3,

//end seq.
ADC14IER0 = ADC14IE3; //Enable ADC14IFG.3

SCB_SCR &= ~SCB_SCR_SLEEPONEXIT; //Wake up on exit from ISR

while(1)
{
ADC14CTL0 |= ADC14ENC | ADC14SC; //Start conv-software trigger
__sleep();
__no_operation(); //For debugger
}

}

//***
// ADC14 interrupt service routine
//***

void ADC14IsrHandler(void)
{
if(ADC14IFGR0 & ADC14IFG3)

8.7. VOLTAGE REFERENCE 387

{
A0results[index] = ADC14MEM0; //Move A0 results, IFG is cleared
A1results[index] = ADC14MEM1; //Move A1 results, IFG is cleared
A2results[index] = ADC14MEM2; //Move A2 results, IFG is cleared
A3results[index] = ADC14MEM3; //Move A3 results, IFG is cleared
index = (index + 1) & 0x7; //Increment results index, modulo
__no_operation(); //Set Breakpoint1 here
}

}

//***

8.7 VOLTAGE REFERENCE
e MSP432 is equipped with an internal voltage reference system called REF_A. It provides
reference voltages from peripheral systems throughout the MSP432 but also may be routed to an
external pin. e three available reference voltages are 1.2 V, 1.45 V, or 2.5 V [DriverLib, 2015,
SLAU356A, 2015].

e REF_A operation is controlled by the settings of REF Control Register 0 (REFCTL0)
shown in Figure 8.11.

Figure 8.11: REF_A Control Register 0 [SLAU356A, 2015]. Illustration used with permission of
Texas Instruments www.ti.com.

e DriverLib contains the following APIs to support use of REF_A [DriverLib, 2015]:

• void REF_A_disableReferenceVoltage (void)

• void REF_A_disableReferenceVoltageOutput (void)

• void REF_A_disableTempSensor (void)

• void REF_A_enableReferenceVoltage (void)

• void REF_A_enableReferenceVoltageOutput (void)

www.ti.com

388 8. ANALOG PERIPHERALS

• void REF_A_enableTempSensor (void)

• uint_fast8_t REF_A_getBandgapMode (void)

• bool REF_A_getBufferedBandgapVoltageStatus (void)

• bool REF_A_getVariableReferenceVoltageStatus (void)

• bool REF_A_isBandgapActive (void)

• bool REF_A_isRefGenActive (void)

• bool REF_A_isRefGenBusy (void)

• void REF_A_setBufferedBandgapVoltageOneTimeTrigger (void)

• void REF_A_setReferenceVoltage (uint_fast8_t referenceVoltageSelect)

• void REF_A_setReferenceVoltageOneTimeTrigger (void)

Details of specific APIs are contained in MSP432 Peripheral Driver Library User’s
Guide [DriverLib, 2015] and will not be repeated here.
Example 8: Provided below is an example using the DriverLib APIs to enable REF_A module
with a 2.5 VDC reference [DriverLib, 2015].

//***

//Setting reference voltage to 2.5 and enabling reference
MAP_REF_A_setReferenceVoltage(REF_A_VREF2_5V);
MAP_REF_A_enableReferenceVoltage();

//***

Example 9: In this example, the REF_A voltage level is routed to pin P5.6. e program cycles
through the available voltage levels.

//**
//--COPYRIGHT--,BSD, EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright

8.7. VOLTAGE REFERENCE 389

// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// //***
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib for an API functional library
// https://dev.ti.com/pinmux/ for a GUI approach to peripheral
// configuration.
//
//--COPYRIGHT--
//***
//MSP432P401 Demo - Output reference module voltage to a port pin

390 8. ANALOG PERIPHERALS

//
//Description: Configure and enable the reference module.
Output the
//reference voltage to a port pin.
Cycle through the available voltage
//levels, which can be observed on the oscilloscope/meter at port
//pin P5.6.
//
//
// MSP432p401rpz
// -----------------
// /|\| |
// | | |
// --|RST |
// | P5.6|-->VREF
// | P1.0|-->LED
//
// Dung Dang
// Texas Instruments Inc.
// Nov 2013
// Built with Code Composer Studio V6.0
//***

#include "msp.h"
#include "stdint.h"

int main(void)
{
volatile uint32_t i;
WDTCTL = WDTPW | WDTHOLD; //Stop WDT
P1DIR |= BIT0; //P1.0 set as output

//Configure P5.6 to its analog function to output VREF
P5SEL0 |= BIT6;
P5SEL1 |= BIT6;

REFCTL0 |= REFON; //Turn on reference module
REFCTL0 |= REFOUT; //Output ref voltage to a pin

8.7. VOLTAGE REFERENCE 391

while (1)
{
//Output VREF = 1.2V
REFCTL0 &= ~(REFVSEL_3); //Clear existing VREF voltage

//level setting
REFCTL0 |= REFVSEL_0; //Set VREF = 1.2V
while (REFCTL0 & REFGENBUSY); //Wait until the reference

//generation is settled
for (i = 50000; i > 0; i--);
P1OUT ^= BIT0; //Toggle P1.0 LED indicator

//Output VREF = 1.45V
REFCTL0 &= ~(REFVSEL_3); //Clear existing VREF voltage

//level setting
REFCTL0 |= REFVSEL_1; //Set VREF = 1.45V
while (REFCTL0 & REFGENBUSY); //Wait until the reference

//generation is settled
for (i = 50000; i > 0; i--);
P1OUT ^= BIT0; //Toggle P1.0 LED indicator

//Output VREF = 2.0V
REFCTL0 &= ~(REFVSEL_3); //Clear existing VREF voltage

//level setting
REFCTL0 |= REFVSEL_1; //Set VREF = 1,45V
while (REFCTL0 & REFGENBUSY); //Wait until the reference

//generation is settled
for (i = 50000; i > 0; i--);
P1OUT ^= BIT0; //Toggle P1.0 LED indicator

//Output VREF = 2.5V
REFCTL0 |= REFVSEL_3; //Set VREF = 2.5V
while (REFCTL0 & REFGENBUSY); //Wait until the reference

//generation is settled
for (i = 50000; i > 0; i--);
P1OUT ^= BIT0; //Toggle P1.0 LED indicator
}
}

//***

392 8. ANALOG PERIPHERALS

8.8 COMPARATOR
e MSP432 is equipped with a comparator system called COMP_E. COMP_E provides two
channels of analog comparators. As its name implies, a comparator compares an analog signal with
a known reference. If the analog signal is greater than the reference, the output of the comparator
is logic high. On the other hand, if the analog signal is less than the reference, the analog output
is low.

e COMP_E system is controlled by a complement of registers. Register settings are
provided in MSP432P4xx Family Technical Reference Manual [SLAU356A, 2015].

• CExCTL0 Comparator control register 0

• Comparator control register 1

• Comparator control register 2

• Comparator control register 3

• Comparator interrupt register

• Comparator interrupt vector

Details of specific register and bits settings are contained inMSP432P4xx Family Technical
Reference Manual [SLAU356A, 2015] and will not be repeated here.

COMP_E is supported by a series of DriverLib APIs provided below.

• typedef struct _COMP_E_Config COMP_E_Config

• void COMP_E_clearInterruptFlag (uint32_t comparator, uint_fast16_t mask)

• void COMP_E_disableInputBuffer (uint32_t comparator, uint_fast16_t inputPort)

• void COMP_E_disableInterrupt (uint32_t comparator, uint_fast16_t mask)

• void COMP_E_disableModule (uint32_t comparator)

• void COMP_E_enableInputBuffer (uint32_t comparator, uint_fast16_t inputPort)

• void COMP_E_enableInterrupt (uint32_t comparator, uint_fast16_t mask)

• void COMP_E_enableModule (uint32_t comparator)

• uint_fast16_t COMP_E_getEnabledInterruptStatus (uint32_t comparator)

• uint_fast16_t COMP_E_getInterruptStatus (uint32_t comparator)

• bool COMP_E_initModule (uint32_t comparator, const COMP_E_Config *config)

8.8. COMPARATOR 393

• uint8_t COMP_E_outputValue (uint32_t comparator)

• void COMP_E_registerInterrupt (uint32_t comparator, void(*intHandler)(void))

• void COMP_E_setInterruptEdgeDirection (uint32_t comparator, uint_fast8_t edgeDi-
rection)

• void COMP_E_setPowerMode (uint32_t comparator, uint_fast16_t powerMode)

• void COMP_E_setReferenceAccuracy (uint32_t comparator, uint_fast16_t referenceAc-
curacy)

• void COMP_E_setReferenceVoltage (uint32_t comparator, uint_fast16_t supplyVolt-
ageReferenceBase, uint_fast16_t lowerLimitSupplyVoltageFractionOf32, uint_fast16_t
upperLimitSupplyVoltageFractionOf32)

• void COMP_E_shortInputs (uint32_t comparator)

• void COMP_E_swapIO (uint32_t comparator)

• void COMP_E_toggleInterruptEdgeDirection (uint32_t comparator)

• void COMP_E_unregisterInterrupt (uint32_t comparator)

• void COMP_E_unshortInputs (uint32_t comparator)

Details of specific APIs are contained in MSP432 Peripheral Driver Library User’s
Guide [DriverLib, 2015] and will not be repeated here.
Example 11: Provided below is an example of programming the COMP_E system in C. In the
example an input voltage “Vcompare” is compared to a 2.0 VDC reference. If the input is greater
than 2.0 VDC, C0OUT is logic high, otherwise, it is logic low.

//**
//--COPYRIGHT--,BSD, EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.

394 8. ANALOG PERIPHERALS

//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
//
//***
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib for an API functional library
// https://dev.ti.com/pinmux/ for a GUI approach to peripheral
// configuration.
//
//--COPYRIGHT--
//***
//MSP432P401 Demo - COMP output Toggle in LPM0 ; input channel C01;
// Vcompare is compared against internal 2.0V reference
//
//Description: Use Comp and internal reference to determine if

8.8. COMPARATOR 395

//input'Vcompare' is high or low.
When Vcompare exceeds 2.0V C0OUT goes
//high and when Vcompare is less than 2.0V then C0OUT goes low.
//
// MSP432P401RPZ
// ------------------
// /|\| |
// | | |
// --|RST P8.0/C01|<--Vcompare
// | |
// | P7.1/C0OUT|----> 'high'(Vcompare>2.0V);
// | | 'low'(Vcompare<2.0V)
// | |
//
//
//Dung Dang
//Texas Instruments Inc.
//Nov 2013
//Built with Code Composer Studio V6.0
//***

#include "msp.h"
#include "stdint.h"

int main(void)
{
volatile uint32_t i;

WDTCTL = WDTPW | WDTHOLD; //Stop WDT

//Configure C0OUT port ping
P7DIR |= BIT1; //P3.5 output direction
P7SEL0 |= BIT1; //Select C0OUT function on P7.1

//Setup Comparator_E
CE0CTL0 = CEIPEN | CEIPSEL_M; //Enable V+, input channel CE1
CE0CTL1 = CEPWRMD_1; //normal power mode
CE0CTL2 = CEREFL_2 | CERS_3 | CERSEL; //VREF is applied to -terminal

//R-ladder off; bandgap ref

396 8. ANALOG PERIPHERALS

//voltage supplied to ref
//amplifier to get Vcref=2.0V

CE0CTL3 = BIT1; //Input Buffer Disable @P1.1/CE1
CE0CTL1 |= CEON; //Turn On Comparator_E
for (i=0;i<75;i++); //delay for the ref to settle

__sleep();
__no_operation(); //For debug
}

//***

8.9 LABORATORY EXERCISE: EDUCATIONAL
BOOSTERPACK MK II

In this laboratory exercise, we equip the MSP-EXP432P401R LaunchPad with the Educational
BoosterPack Mk II and exercise several onboard analog sensors.

e Educational BoosterPack Mk II is equipped with a number of analog sensors. Com-
plete the following tasks.

• Develop a table of analog sensors onboard theMkII including their function and connection
pin to the MSP-EXP432P401R LaunchPad.

• Develop an application using as many of the sensors as possible.

• Provide a UML activity diagram, structure chart, and code for your application.

• Develop and execute a test plan to demonstrate the function of your application.

8.10 SUMMARY
In this chapter, we discussed the subsystems that allow the microcontroller to input and ana-
lyze analog signals. We provided and introduction to the MSP432’s analog-to-digital converter
(ADC) system, the analog reference system (REF_A), and the analog comparator (COMP_E).

8.11 REFERENCES AND FURTHER READING
Arduino homepage, www.arduino.cc.

Barrett, S. and Pack, D. 2012. Atmel AVR Microcontroller Primer: Programming
and Interfacing, 2nd ed., San Rafael, CA, Morgan & Claypool Publishers. DOI:
10.2200/s00427ed1v01y201206dcs039.

www.arduino.cc
http://dx.doi.org/10.2200/s00427ed1v01y201206dcs039
http://dx.doi.org/10.2200/s00427ed1v01y201206dcs039

8.12. CHAPTER PROBLEMS 397

Barrett, S. and Pack, D. 2006. Microcontrollers Fundamentals for Engineers and Scientists, Morgan
& Claypool Publishers. DOI: 10.2200/s00025ed1v01y200605dcs001.

MSP432 Peripheral Driver Library User’s Guide. Texas Instruments, 2015. 377, 387, 388, 393

MSP432P4xx Family Technical Reference Manual (SLAU356A). Texas Instruments, 2015. 370,
371, 372, 387, 392

Texas Instruments BOOSTXL-EDUMKII Educational BoosterPack Mark II Plug-in Module
SLAU599, 2015.

Texas Instruments Code Composer Studio6.1 for MSP432 (SLAU575B). Texas Instruments, 2015.

Texas Instruments Meet the MSP432P401R LaunchPad Development Kit (SLAU596). Texas In-
struments, 2015.

Texas Instruments MSP432P401R LaunchPad Development Kit (MSP-EXP432P401R)
(SLAU597A). Texas Instruments, 2015.

Texas InstrumentsMSP432P401xMixed-SignalMicrocontrollers (SLAS826A).Texas Instruments,
2015.

Texas Instruments MSP432x5xx/MSP432x6xx Family User’s Guide (SLAU208G). Texas Instru-
ments, 2010.

8.12 CHAPTER PROBLEMS
Fundamental

1. Using the Nyquist sampling rate, find the minimum sampling frequency of an ATD con-
verter, if the highest frequency of an input analog signal is 2 kHz.

2. Given a sinusoidal input analog signal, 5 cos.2�10kt/, and sampling frequency of 1 KHz,
find the first three sampled values with starting time 0.

3. Given an 8 bit ATD converter and input range of 0 V and 3.3 V, what is the quantization
level for sampled value of 2.9 V?

4. What is the quantization error for the sampled signal in Problem 3?

5. What is the encoded value of quantization level from Problem 3?

Advanced

http://dx.doi.org/10.2200/s00025ed1v01y200605dcs001

398 8. ANALOG PERIPHERALS

1. Write a program segment using the ADC14 converter to (1) operate with 14 bit resolution,
(2) use internal reference voltages of 2.5 V and 0 V, (3) continuously sample analog signals
from pins A0 and A1, (4) use the unsigned binary format, (5) compare the input analog
values, (6) turn the logic state on Pz.x pin high if the signal on A0 is higher than the one
on A1; otherwise, turn the logic state low, and (7) turn the logic state on Pz.y pin high if
the signal on A1 is higher than the one on A1; otherwise, turn the logic state low.

Challenging

1. Present your design and write a program to construct a smart home program that locates
your position in room whose size is 10 ft wide, 10 ft long, and 9 ft high. Assume that
you need to use infrared sensors to do the job. You can use as many sensors as you need but
want to minimize the number used. Suppose the infrared sensor output is fed to an ADC14
converter of a MSP432 and you have means to communicate among MSP432s. Design the
sensor positions and write a program to locate a person in the room.

399

C H A P T E R 9

Communication Systems
Objectives: After reading this chapter, the reader should be able to:

• describe the differences between serial and parallel communication methods;

• present the features of the MSP432 microcontroller’s enhanced Universal Serial Commu-
nication Interface (eUSCI) systems A and B;

• illustrate the operation of the Universal Asynchronous Serial Receiver and Transmitter
(UART) mode of the eUSCI;

• program the UART for basic transmission and reception;

• describe the operation of the Serial Peripheral Interface (SPI) mode of the eUSCI;

• configure a SPI-based system to extend the features of the MSP432 microcontroller;

• describe the purpose and function of the Inter-Integrated Communication (I2C) mode of
the eUSCI; and

• program the I2C communication system.

9.1 OVERVIEW
Microcontrollers must often exchange data with other microcontrollers or peripheral devices. For
such applications, data may be exchanged by using parallel or serial techniques. With parallel
techniques, an entire byte (or a set of n bits) of data is typically sent simultaneously from a trans-
mitting device to a receiving device or received at the same time from an external device. While
this is efficient from a time point of view, it requires eight separate lines (or n separate lines) for
the data transfer.

In serial transmission, however, data is sent or received single bit at a time. For a byte size
data transmission, once eight bits have been received at the receiver, the data byte is reconstructed.
While this is inefficient from a time point of view, it only requires a line (or two) to transmit and
receive the data. Serial transmission techniques also help minimize the use of precious microcon-
troller input/output pins.

400 9. COMMUNICATION SYSTEMS

9.2 BACKGROUND
e MSP432 microcontroller is equipped with the enhanced Universal Serial Communication
Interface (eUSCI). e system is equipped with a host of different serial communication subsys-
tems, as shown in Figure 9.1. e eUSCI consists of two different communication subsystems:
eUSCI A type modules and eUSCI B modules. Each microcontroller in the MSP432 line has a
complement of A and B type eUSCI modules. Should a specific MSP432 microcontroller type
have more than one of the A and/or B type modules, they are numbered sequentially starting with
zero (e.g., e_USCI A0, A1, etc.) [SLAU356A, 2015].

 eUSCI_A0

- UART mode
- IrDA pulse shaping mode
- SPI mode

 eUSCI_A1

- UART mode
- IrDA pulse shaping mode
- SPI mode

 eUSCI_B0

- I2C mode
- SPI mode

 eUSCI_B0

- I2C mode
- SPI mode

Enhanced Universal Serial
Communication Interface (eUSCI)

Figure 9.1: MSP432 enhanced Universal Serial Communication Interface (eUSCI).

As can be seen in the figure, eUSCI A modules provide support for [SLAU356A, 2015].

• Universal Asynchronous Serial Receiver and Transmitter (UART). e UART provides
a serial data link between a transmitter and a receiver. e transmitter and receiver pair
maintains synchronization using start and stop bits that are embedded in the data stream.

• InfraredData Association (IrDA). e IrDA protocol provides for a short-range data link
using an infrared (IR) link. It is a standardized protocol for IR optically linked devices. It
is used in various communication devices, personal area networks, and instrumentation.

9.3. SERIAL COMMUNICATION CONCEPTS 401

• eSerial Peripheral Interface (SPI). e SPI provides synchronous communications be-
tween a receiver and a transmitter. e SPI system maintains synchronization between the
transmitter and receiver pair using a common clock provided by the master designated mi-
crocontroller. An SPI serial link has a much faster data rate than UART.

e eUSCI B modules also provide support for SPI communications and Inter-Integrated
Communication (I2C) communications. e I2C is one of prominent communication modes
used when multiple serial devices are interconnected using a serial bus. e I2C bus is a two-
-wire bus with the serial data line (SDL) and the serial clock line (SCL). By configuring devices
connected to the common I2C line as either a master device or a slave device, multiple devices can
share information using a common bus. e I2C system is used to link multiple peripheral devices
to a microcontroller or several microcontrollers together in a system that are in close proximity to
one another [SLAU356A, 2015].

Space does not permit an in-depth discussion of all communication features of the eUSCI
system. We concentrate on the basic operation of the UART, SPI, and I2C systems. For each
system, we provide a technical overview, a review of system registers, and code examples. We
begin with a review of serial communication concepts.

9.3 SERIAL COMMUNICATION CONCEPTS
Before we delve into the serial communication technologies, we first review common serial com-
munication terminology.

Asynchronous vs. synchronous serial transmission: In serial communications, the trans-
mitting and receiving devices must agree on the “rules of engagement” by using a common data
rate and protocol. is allows both the transmitter and receiver to properly coordinate data trans-
mission/reception. ere are two basic methods of maintaining coordination or “sync” between
the transmitter and receiver: asynchronous and synchronous.

In an asynchronous serial communication system, such as the UART aboard the MSP432
microcontroller, framing bits are used at the beginning and end of a data byte. ese framing bits
alert the receiver that an incoming data byte has arrived and also signals the completion of the
data byte reception. e data rate for an asynchronous serial system is typically much slower than
the synchronous system, but it only requires a single wire between the transmitter and receiver
for simplex (one way) communication.

A synchronous serial communication system maintains “sync” between the transmitter and
receiver by employing a common clock between the two devices. Data bits are sent and received
on the edge of the clock. is allows data transfer rates higher than with asynchronous tech-
niques but requires two lines, data and clock, to connect a receiver and a transmitter for simplex
communications.

Baud rate: Data transmission rates are typically specified as a Baud or bits per second rate.
For example, 9600 Baud indicates the data is being transferred at 9600 bits per second.

402 9. COMMUNICATION SYSTEMS

Full Duplex: Often serial communication systems must both transmit and receive data
simultaneously. To do so requires separate hardware for transmission and reception at each end of
the communication link. A single duplex system has a single complement of hardware that must
be switched from transmission to reception configuration. A full duplex serial communication
system has separate hardware for transmission and reception.

Non-return to Zero (NRZ) Coding Format: ere are many different coding standards
used within serial communications. e important point is a transmitter and a receiver must use a
common coding standard so data may be interpreted correctly at the receiving end. e MSP432
microcontroller uses a non-return to zero (NRZ) coding standard. In NRZ coding a logic one is
signaled by a logic high during the entire time slot allocated for a single bit, whereas, a logic zero
is signaled by a logic low during the entire time slot allocated for a single bit.

e RS-232 Communication Protocol: When serial transmission occurs over a long dis-
tance, additional techniques may be used to insure data integrity. Over long distances, logic levels
degrade and may be corrupted by noise. When this happens at the receiving end, it is difficult
to discern a logic high from a logic low. e RS-232 standard has been around for some time.
With the RS-232 standard (EIA-232), a logic one is represented with a �12 VDC level while a
logic zero is represented by a C12 VDC level. Chips are commonly available (e.g., MAX232) that
convert the output levels from a microcontroller to RS-232 compatible levels and convert back to
microcontroller compatible levels at the receiver.e RS-232 standard also specifies other features
for this communication protocol such as connector type and pinout.

Parity: To further enhance data integrity during transmission, parity techniques may be
used. A parity bit is an additional bit (or bits) that is transmitted with the data byte. With a single
parity bit, a single bit error may be detected. Parity may use an even or odd parity bit. In even
parity, the parity bit is set to one or zero such that the number of ones in the data byte including
the parity bit is an even number. In odd parity, the parity bit is set to one or zero such that the
number of ones in the data byte including the parity bit is odd. At the receiver, the number of
bits within a data byte, including the parity bit, are counted to insure that parity has not changed,
indicating an error did not occur during transmission. For single bit error correction or multiple
bit error detection, additional parity bits are required.

ASCII: e American Standard Code for Information Interchange or ASCII is a stan-
dardized, seven bit method of encoding alphanumeric data. It has been in use for many decades,
so some of the characters and actions listed in the ASCII table are not in common use today.
However, ASCII is still the most common method of encoding alphanumeric data. e ASCII
code is shown in Figure 9.2. For example, the capital letter “G” is encoded in ASCII as 0x47. e
“0x” symbol indicates the hexadecimal number representation. Unicode is the international coun-
terpart of ASCII. It provides standardized 16-bit encoding format for the written languages of the
world. ASCII is a subset of Unicode. e interested reader is referred to the Unicode home page
website at: www.unicode.org for additional information on this standardized encoding format.

www.unicode.org

9.4. MSP432 UART 403

Most

Signi� cant Digit

0x0_ 0x1_ 0x2_ 0x3_ 0x4_ 0x5_ 0x6_ 0x7_

L
ea

st
 s

ig
n

i�
 c

an
t

d
ig

it
0x_0

0x_1

0x_2

0x_3

0x_4

0x_5

0x_6

0x_7

0x_8

0x_9

0x_A

0x_B

0x_C

0x_D

0x_E

0x_F

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

SP

!

“

#

$

%

&

‘

(

)

*

+

‘

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

DEL

Figure 9.2: ASCII Code. e ASCII code is used to encode alphanumeric characters. e “0x” indi-
cates hexadecimal notation in the C programming language.

9.4 MSP432 UART

e UART system is located within the eUSCI module A. In this section, we discuss UART
features, provide an overview of the UART hardware operation and character format, discuss
how to set the UART Baud rate, provide an overview of UART related registers, and conclude
with several examples.

9.4.1 UART FEATURES
e MSP432 microcontroller is equipped with a powerful and flexible UART system. To select
the UART mode the Synchronous Mode Enable bit (UCSYNC bit) located in the eUCSI_Ax
Control Register 0 (part of eUSCI_Ax Control Word 0) must be cleared to 0. is places the
system in the asynchronous mode when, in this mode, serial data is transmitted outside of the

404 9. COMMUNICATION SYSTEMS

microcontroller via the UCAxTXD pin and received via the UCAxRXD pin. (Note: e “x”
designates which USCI A module is employed (e.g., 0, 1, 2)) [SLAU356A, 2015].

e UART system provides a number of features that allow the MSP432 to commu-
nicate with a wide variety of peripheral devices or another microcontroller. ese features in-
clude [SLAU356A, 2015]:

• support for serial transmission protocols including the capability to transmit 7- or 8-bit data
with odd, even, or no parity;

• independent transmit and receive shift registers equipped with separate transmit and receive
buffer registers;

• the capability to send or receive data the least significant bit (LSB) first or the most signifi-
cant bit (MSB) on both the transmit and receive channels. is feature allows the MSP432
microcontroller to match the protocol of an existing peripheral device;

• the capability to operate within a multiprocessor system using the built-in, idle-line, and
address-bit communication protocols;

• auto wake-up feature from a low power mode (LPMx) when a start edge is received;

• extensive flexibility in setting programmable baud rates;

• a number of system status flags for error detection, error suppression, and address detection;
and

• interrupts for the data receive and transmit.

In the next section, we examine how these features are incorporated into the UART hard-
ware.

9.4.2 UART OVERVIEW
Provided in Figure 9.3 is a block diagram of the eUCSI_Ax module configured for UART mode
(UCSYNC bit D 0). e UART module can be subdivided into the Baudrate Generator (center
of Figure 9.3), the receiver related hardware (top of figure), and the transmit hardware (lower
portion of figure). We discuss each in turn.

e eUSCI_Ax module communicates asynchronously with another device (e.g., periph-
eral) when the UCSYNC mode is set to zero. As previously mentioned, in an asynchronous mode,
the transmitter and receiver maintain synchronization with one another, using start and stop bits
to frame each data byte sent. It is essential that both transmitter and receiver are configured with
the same Baud rate, number of start and stop bits, and the type of parity employed (odd, even or
none.)

9.4. MSP432 UART 405

Figure 9.3: Block diagram of the eUCSI_Ax module configured for UART mode (UCSYNC bit D

0) [slau208g]. Illustration used with permission of Texas Instruments www.ti.com.

www.ti.com

406 9. COMMUNICATION SYSTEMS

e Baud rate is set using the Baudrate generator shown in the center of Figure 9.3. e
clock source for the Baudrate generator may either be the UCAxCLK, the ACLK, or the SM-
CLK. e clock source is selected using the eUSCI clock source select bits (UCSSELx) located
in the eUSCI_Ax Control Register 1 (UCAxCTL1). e source selected becomes the Baudrate
clock (BRCLK). e Baudrate clock may then be prescaled and divided to set the Baud rate for
the transmit and receive clock.

e receive portion of the UART system is in the upper portion of Figure 9.3. Serial data
is received via the UCAxRXD pin. e serial data is routed into the Receive Shift Register when
the UCLISTEN bit located within the eUSCI_Ax Status Register (UCAxSTAT) is set to zero.
If required by the specific application, the data may first be routed through the IrDA Decoder.

e configuration of the Receive Shift Register is set by several bits located within the
eUSCU_Ax Control Register 0 (UCAxCTL0). ese include the:

• parity enable bit, UCPEN (0: parity disabled, 1: parity enabled);

• parity select bit, UCPAR (0: odd parity, 1: even parity);

• MSB first select, UCMSB (0: LSB first, 1: MSB first); and

• character length bit, UC7BIT (0: 8-bit data, 1: 7-bit data).

e Receive State Machine controls the operation of the receive associated hardware. It
has control bits to:

• select the number of stop bits, UCSPB (0: one stop bit, 1: two stop bits);

• select the eUSCI mode, UCMODEx (00: UART mode); and

• select the synchronous mode, UCSYNC (0: asynchronous mode, 1: synchronous mode).

e hardware associated with serial data transmission is very similar to the receive hardware
with the direction of data routed for transmission out of the UCAxTXD pin.

9.4.3 CHARACTER FORMAT
As previously mentioned, the UART system has great flexibility in setting the protocol of the
serial data, including the number of bits (7 or 8), parity (even, odd, or none), MSB or LSB first,
and selection of transmit/receive operation. A typical serial data word is illustrated in Figure 9.4.
To verify the valid functionality of the communication using the MSP432 microcontroller, it
is very helpful to write a short program to transmit the same piece of data continuously from
the UART and observe the transmission on the UCAxTXD pin with an oscilloscope or a logic
analyzer.

9.4. MSP432 UART 407

Start
Bits

Data Bits
(7 or 8)

Addr
Bit

Parity
Bit Stop Bit(s)

Mark

Space

Figure 9.4: UART serial data format [slau208g].

9.4.4 BAUD RATE SELECTION
e MSP microcontroller also has considerable flexibility in setting the Baud rate for UART
transmission and reception. It has two different modes for Baud rate generation.

• Low-frequency Baud rate generation (UCOS16, Oversampling Mode Enable bit D 0).
e mode allows Baud rates to be set when the microcontroller is being clocked by a low
frequency clock. It is advantageous to do this to reduce power consumption by using a lower
frequency time base. In this mode, the Baudrate Generator uses a prescaler and a modulator
to generate the desired Baud rate. e maximum selectable Baud rate in this mode is limited
to one-third of the Baud rate clock (BRCLK).

• Oversampling Baud rate generation (UCOS16 D 1). is mode employs a prescaler and
a modulator to generate higher sampling frequencies.
To set a specific Baud rate, the following parameters must be determined.

• e clock prescaler setting (UCBRx) in the Baud Rate Control Register 0 and 1 (USAxBR0
and UCAxBR0) must be determined. e 16-bit value of the UCBRx prescaler value is
determined by UCAxBR0 C UCAxBR1 � 256.

• First, modulation stage setting, UCBRFx bits in the eUSCI_Ax Modulation Control Reg-
ister (UCAxMCTL).

• Second, modulation stage setting, UCBRSx bits in the eUSCI_Ax Modulation Control
Register (UCAxMCTL).
e documentation for the MSP432 microcontroller contains extensive tables for deter-

mining the UCBRx, UCBRFx, and UCBRSx bit settings for various combinations of the Baud
rate clock (BRCLK) and desired Baud rate [SLAU356A, 2015].

9.4.5 UART ASSOCIATED INTERRUPTS
e UART system has two associated interrupts. e Transmit Interrupt Flag (UCTXIFG) is
set when the UCAxTXBUF is empty, indicating another data byte may be sent. e Receive
Interrupt Flag (UCRXIFG) is set when the receive buffer (UCAxRXBUF) has received a com-
plete character. Both of these interrupt flags are contained within the eUSCI_Ax Interrupt Flag
Register (UCAxIFG).

408 9. COMMUNICATION SYSTEMS

9.4.6 UART REGISTERS
As discussed throughout this section, the basic features of the UART system is configured and
controlled by the following UART related registers [SLAU356A, 2015]:

• UCAxCTLW0 eUSCI_Ax Control Word 0

• UCAxCTL0(1) eUSCI_Ax Control 0

• UCAxCTL1 eUSCI_Ax Control 1

• UCAxCTLW1 eUSCI_Ax Control Word 1

• UCAxBRW eUSCI_Ax Baud Rate Control Word

• UCAxBR0(1) eUSCI_Ax Baud Rate Control 0

• UCAxBR1 eUSCI_Ax Baud Rate Control 1

• UCAxMCTLW eUSCI_Ax Modulation Control Word

• UCAxSTATW eUSCI_Ax Status

• UCAxRXBUF eUSCI_Ax Receive Buffer

• UCAxTXBUF eUSCI_Ax Transmit Buffer

• UCAxABCTL eUSCI_Ax Auto Baud Rate Control

• UCAxIRCTL eUSCI_Ax IrDA Control

• UCAxIRTCTL eUSCI_Ax IrDA Transmit Control

• UCAxIRRCTL eUSCI_Ax IrDA Receive Control

• UCAxIE eUSCI_Ax Interrupt Enable

• UCAxIFG eUSCI_Ax Interrupt Flag

• UCAxIV eUSCI_Ax Interrupt Vector

Details of specific register and bits settings are contained inMSP432P4xx Family Technical
Reference Manual [SLAU356A, 2015] and will not be repeated here.

9.4.7 API SUPPORT
Texas Instruments provides extensive MSP432 UART support through a series of Application
Program Interfaces (APIs). Provided below is a list of UART data structures and APIs. Details on
API settings are provided in MSP432 Peripheral Driver Library User’s Guide [DriverLib, 2015]
and will not be repeated here.

9.4. MSP432 UART 409

Data Structures
• struct _eUSCI_eUSCI_UART_Config

Functions
• void UART_clearInterruptFlag(uint32_t moduleInstance, uint_fast8_t mask)

• void UART_disableInterrupt(uint32_t moduleInstance, uint_fast8_t mask)

• void UART_disableModule(uint32_t moduleInstance)

• void UART_enableInterrupt(uint32_t moduleInstance, uint_fast8_t mask)

• void UART_enableModule(uint32_t moduleInstance)

• uint_fast8_t UART_getEnabledInterruptStatus(uint32_t moduleInstance)

• uint_fast8_t UART_getInterruptStatus(uint32_t moduleInstance, uint8_t mask)

• uint32_t UART_getReceiveBufferAddressForDMA(uint32_t moduleInstance)

• uint32_t UART_getTransmitBufferAddressForDMA(uint32_t moduleInstance)

• bool UART_initModule(uint32_t moduleInstance, const eUSCI_UART_Config *config)

• uint_fast8_t UART_queryStatusFlags(uint32_t moduleInstance, uint_fast8_t mask)

• uint8_t UART_receiveData(uint32_t moduleInstance)

• void UART_registerInterrupt(uint32_t moduleInstance, void(*intHandler)(void))

• void UART_resetDormant(uint32_t moduleInstance)

• void UART_selectDeglitchTime(uint32_t moduleInstance, uint32_t deglitchTime)

• void UART_setDormant(uint32_t moduleInstance)

• void UART_transmitAddress(uint32_t moduleInstance, uint_fast8_t transmitAddress)

• void UART_transmitBreak(uint32_t moduleInstance)

• void UART_transmitData(uint32_t moduleInstance, uint_fast8_t transmitData)

• void UART_unregisterInterrupt(uint32_t moduleInstance)

Texas Instruments provides extensive MSP432 UART support through a series of Appli-
cation Program Interfaces (APIs). Provided below is a list of UART data structures and APIs.
Details on API settings are provided in MSP432 Peripheral Driver Library User’s Guide [Driver-
Lib, 2015] and will not be repeated here.

410 9. COMMUNICATION SYSTEMS

9.5 CODE EXAMPLES
e MSP432 UART features may be programmed using Energia, DriverLib APIs, or in C.

9.5.1 ENERGIA
Example: LCD. In this example a Sparkfun LCD-09067, 3.3 VDC, serial, 16 by 2 character,
black on white LCD display is connected to the MSP432. Communication between the MSP432
and the LCD is accomplished by a single 9600 bits per second (BAUD) connection using the
onboard Universal Asynchronous Receiver Transmitter (UART). e UART is configured for
8 bits, no parity, and one stop bit (8-N-1). e MSP-EXP432P401R LaunchPad is equipped
with two UART channels. One is the back channel UART connection to the PC. e other is
accessible by pin 3 (RX, P3.2) and pin 4 (TX, P3.3). Provided below is the sample Energia code
to print a test message to the LCD. Note the UART is designated “Serial1” in the program. e
back channel UART for the Energia serial monitor display is designated “Serial.”

//***
//Serial_LCD_energia
//Serial 1 accessible at:
// - RX: P3.2, pin 3
// - TX: P3.3, pin 4
//***

void setup()
{
//Initialize serial channel 1 to 9600 BAUD and wait for port to open
Serial1.begin(9600);
}

void loop()
{
Serial1.print("Hello World");
delay(500);
Serial1.println("...Hello World");
delay(500);
}

//***

Example: Voice chip. For speech synthesis, we use the SP0-512 text to speech chip (www.sp
eechchips.com). e SP0-512 accepts UART compatible serial text stream. e text stream
should be terminated with the carriage return control sequence (back slash r). e text stream is

www.speechchips.com
www.speechchips.com

9.5. CODE EXAMPLES 411

converted to phoneme codes used to generate an audio output. e chip requires a 9600 Baud bit
stream with no parity, 8 data bits and a stop bit. e associated circuits is provided in Figure 9.5.
Additional information on the chip and its features are available at www.speechchips.com.

Vcc = 3.3 VDC Vcc = 3.3 VDC

Vcc = 3.3 VDC

TX:(9600 N81)

UART TX,
P3.3,

J1, pin 4

10 K

10 K

10 µF

10 µF

100 µF

8 ohm
speaker

5 VDC

SP0512

3.3 VDC

4.7 µF

0.1 µF

10 K

10 K

MPS2222

1 - /TICLR
2 - N2
3 - N3
4 - TX
 5 - N5
6 - RX
7 - N7
8 - VS S1
9 - N9
10 - N10
11 - N11
12 - N12
13 - VDD
14 - N14

AVDD - 28
AVSS - 27

DAC + - 26
DAC - - 25

N24 - 24
N23 - 23
N22 - 22
N21 - 21

VCAP - 20
VSS2 - 19
N18 - 18

SPEAKING - 17
N16 - 16
N15 - 15

3

2

6

7

+

-

LM386N - 3

4

330

5

LED
speaking

+

Figure 9.5: Speech synthesis support circuit (www.speechchips.com).

//***
//SP0512

www.speechchips.com
www.speechchips.com

412 9. COMMUNICATION SYSTEMS

//Serial 1 accessible at:
// - RX: P3.2, pin 3
// - TX: P3.3, pin 4
//***

void setup()
{
//Initialize serial channel 1 to 9600 BAUD and wait for port to open
Serial1.begin(9600);
}

void loop()
{
Serial1.print("[BD]This [BD]is [BD]a [BD]test \r");
delay(3000);
}

//***

9.5.2 UART DRIVERLIB API EXAMPLE
Example: Provided below is a very brief code example showing how to configure and enable the
UART module using DriverLib APIs [DriverLib, 2015].

//***
//MCLK operating off of DCO and DCO tuned to 12MHz.
//- eUSCI A UART module to operate with a 9600 baud rate
//- Configuration parameter values determined using online calculator
// at:
//http://softwaredl.ti.com/msp430/msp430_public_sw/mcu/msp430/
// MSP430BaudRateConverter/index.html
//
//Used courtesy of Texas Instruments, Inc.
//
//***

//UART data structure
const eUSCI_UART_Config uartConfig =
{
EUSCI_A_UART_CLOCKSOURCE_SMCLK, //SMCLK Clock Source
78, //BRDIV = 78

9.5. CODE EXAMPLES 413

2, //UCxBRF = 2
0, //UCxBRS = 0
EUSCI_A_UART_NO_PARITY, //No Parity
EUSCI_A_UART_MSB_FIRST, //MSB First
EUSCI_A_UART_ONE_STOP_BIT, //One stop bit
EUSCI_A_UART_MODE, //UART mode
EUSCI_A_UART_OVERSAMPLING_BAUDRATE_GENERATION //Oversampling
};

//This code snippet is the actual configuration of the UART
//module using the DriverLib APIs:

//Configuring UART Module
MAP_UART_initModule(EUSCI_A0_MODULE, &uartConfig);

//Enable UART module
MAP_UART_enableModule(EUSCI_A0_MODULE);

//Enabling interrupts
MAP_UART_enableInterrupt(EUSCI_A0_MODULE,

EUSCI_A_UART_RECEIVE_INTERRUPT);
MAP_Interrupt_enableInterrupt(INT_EUSCIA0);
MAP_Interrupt_enableSleepOnIsrExit();
MAP_Interrupt_enableMaster();

//***

9.5.3 UART C EXAMPLE
Example: In this example the MSP432 UART echoes back characters received via a PC serial
port. e SMCLK/DCO is used as a clock source and the device is placed to operate in the
LPM3 mode. Note: Level shifter hardware (MAXIM232) is needed to shift between the RS232
and the MSP 3.3 VDC voltage levels (www.maximintegrated.com).

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.

www.maximintegrated.com

414 9. COMMUNICATION SYSTEMS

//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib

9.5. CODE EXAMPLES 415

//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--
//***
//MSP432P401 Demo - eUSCI_A0 UART echo at 9600 baud using BRCLK = 12MHz
//
//Description: This demo echoes back characters received via a PC serial
//port.
SMCLK/ DCO is used as a clock source and the device is put in
//LPM3. The auto-clock enable feature is used by the eUSCI and SMCLK is
//turned off when the UART is idle and turned on when a receive edge is
//detected.
Note that level shifter hardware is needed to shift between
//RS232 and MSP voltage levels.
//
//The example code shows proper initialization of registers and
//interrupts to receive and transmit data.
To test code in LPM3,
//disconnect the debugger.
//
//
//
// MSP432P401
// -----------------
// /|\| |
// | | |
// --|RST |
// | |
// | |
// | P1.3/UCA0TXD|----> PC (echo)
// | P1.2/UCA0RXD|<---- PC
// | |
//
// Wei Zhao
// Texas Instruments Inc.
// June 2014
// Built with Code Composer Studio V6.0

416 9. COMMUNICATION SYSTEMS

//***

#include "msp.h"

int main(void)
{
WDTCTL = WDTPW | WDTHOLD; //Stop watchdog timer

CSKEY = 0x695A; //Unlock CS module for reg access
CSCTL0 = 0; //Reset tuning parameters
CSCTL0 = DCORSEL_3; //Set DCO to 12MHz (nominal,

//center of 8-16MHz range)
//Select ACLK=REFO, SMCLK=MCLK=DCO

CSCTL1 = SELA_2 | SELS_3 | SELM_3;
CSKEY = 0; //Lock CS module from unintended

//accesses

//Configure UART pins
P1SEL0 |= BIT2 | BIT3; //set 2-UART pin as second function
__enable_interrupt();
NVIC_ISER0 = 1 << ((INT_EUSCIA0 - 16) & 31); //Enable eUSCIA0 interrupt

//in NVIC module

//Configure UART
UCA0CTLW0 |= UCSWRST;
UCA0CTLW0 |= UCSSEL__SMCLK; //Put eUSCI in reset

//Baud Rate calculation:
// 12000000/(16*9600) = 78.125
// Fractional portion = 0.125
// User's Guide Table 21-4: UCBRSx = 0x10
// UCBRFx = int ((78.125-78)*16) = 2
UCA0BR0 = 78; //12000000/16/9600
UCA0BR1 = 0x00;
UCA0MCTLW = 0x1000 | UCOS16 | 0x0020;

UCA0CTLW0 &= ~UCSWRST; //Initialize eUSCI
UCA0IE |= UCRXIE; //Enable USCI_A0 RX interrupt

9.6. SERIAL PERIPHERAL INTERFACE-SPI 417

__sleep();
__no_operation(); //For debugger
}

//***
// UART interrupt service routine
//***

void eUSCIA0IsrHandler(void)
{
if(UCA0IFG & UCRXIFG)
{
while(!(UCA0IFG&UCTXIFG));
UCA0TXBUF = UCA0RXBUF;
__no_operation();
}

}

//***

9.6 SERIAL PERIPHERAL INTERFACE-SPI
e Serial Peripheral Interface or SPI is also used for two-way serial communication between a
transmitter and a receiver. In the SPI system, the transmitter and receiver pair shares a common
clock source (UCxCLK). is requires an additional clock line between the transmitter and the
receiver but allows for higher data transmission rates as compared to the UART. e SPI system
allows for fast and efficient data exchange between microcontrollers or peripheral devices. ere
are many SPI compatible external systems available to extend the features of the microcontroller.
For example, a liquid crystal display or a multi-channel digital-to-analog converter could be added
to the microcontroller using the SPI system.

9.6.1 SPI OPERATION
e SPI may be viewed as a synchronous 16-bit shift register with an 8-bit, half residing in
the transmitter and the other 8-bit half residing in the receiver, as shown in Figure 9.6. e
transmitter is designated as themaster since it is providing the synchronizing clock source between
the transmitter and the receiver. e receiver is designated as the slave. A slave is chosen for
reception by taking its Slave Select (SS) line low. When the SS line is taken low, the slave’s
shifting capability is enabled.

418 9. COMMUNICATION SYSTEMS

SPI transmission is initiated by loading a data byte into the master-configured Transmit
Buffer (UCxTXBUF). At that time, the UCSI SPI mode Bit Clock Generator provides clock
pulses to the master and also to the slave via the UCxCLK pin. A single bit is shifted out of the
master designated shift register on the Slave In Master Out (UCxSIMO) microcontroller pin on
every SCK pulse. e data is received at the UCxSIMO pin of the slave designated device. In
some peripheral devices, this is referred to as Master Out Slave In (MOSI). At the same time, a
single bit is shifted out of the Slave Out Master In (UCxSOMI) pin of the slave device and into
the UCxSOMI pin of the master device. After eight master UCxCLK clock pulses, a byte of data
has been exchanged between the master and slave designated SPI devices. Completion of data
transmission in the master and data reception in the slave is signaled by SPI related interrupts in
both devices. At that time, another data byte may be transmitted.

MSP430 USCI
Master Device Slave Device

SPI Data Register (SDR)
MSB LSBMSB LSB

SCK

MISO

UCxSOMI

UCxSOMI

UCxCLK
Baud rate
Clock

USCI_Ax Status Register (UCAxSTAT)
USCI_Bx Status Register (UCBxCTL0)

USCI_Ax Countrol Register 0 (UCAxCTL0)
USCI_Bx Countrol Register 0 (UCBxCTL0)
USCI_Ax Countrol Register 1 (UCAxCTL1)
USCI_Bx Countrol Register 1 (UCBxCTL1)
USCI_Ax Bit Rate Countrol Register 0 (UCAxBR0)
USCI_Bx Bit Rate Countrol Register 0 (UCBxBR0)
USCI_Ax Bit Rate Countrol Register 1 (UCAxBR1)
USCI_Bx Bit Rate Countrol Register 1 (UCBxBR1)
USCI_Ax Modulation Countrol Register 0 (UCAxMCTL)

UCxSOMI

UCxSTE

MOSI

SCK

SS

shift

enable

Transmit Bu!er (UCxTXBUF)

Transmit Shift Register

SPI Bit Clock Generator

Figure 9.6: SPI overview.

9.6.2 MSP432 SPI FEATURES
As previously mentioned, the MSP432 SPI system has many features that allow the system to
be interfaced to a wide variety of SPI configured devices. ese features include [SLAU356A,
2015]:

• 7-bit or 8-bit data length;

• LSB-first or MSB-first data transmit and receive capability;

9.6. SERIAL PERIPHERAL INTERFACE-SPI 419

• 3 or 4 wire SPI operation;

• master or slave modes;

• independent transmit and receive shift registers which provide continuous transmit and
receive operation;

• selectable clock polarity and phase control;

• programmable clock frequency in master mode; and

• independent interrupt capability for receive and transmit.

9.6.3 MSP432 SPI HARDWARE CONFIGURATION
e MSP432 provides support for SPI communication in both of the eUSCI_A and eUSCI_B
modules. A block diagram of an UCSI module configured for SPI operation is shown in Fig-
ure 9.7. SPI operation is selected by setting the UCSYNC (Synchronous mode enable) bit to
logic one in the module’s eUSCI_Ax or USCI_Bx Control Register 0 (UCAxCTL0 or UCBx-
CTL0).

Located in the center of the diagram, the clock source for the SPI Baud rate clock (BRCLK)
is either provided by the ACLK or the SMCLK. e clock source is chosen using the eUSCI
clock source select (UCSSELx) bits in eUSCI_Ax (or B) Control Register 1 (UCAxCTL1 or
UCBxCTL1).

e Baud rate clock is fed to the Bit Clock Generator. e 16-bit clock prescaler is formed
using .UCxxBR0 C UCxxBR1 � 256/. e values for UCxxBR0 and UCxxBR1 are contained in
the eUSCI_xx Bit Rate Control Registers 0 and 1 (UCxxBR0 and UCxxBR1).

e MSP432 eUSCI provides the flexibility to configure the SPI data transmission format
to match that of many different peripheral devices. Either a seven or eight bit data format may be
selected using the UC7BIT. Also, the phase and polarity of the data stream may be adjusted to
match peripheral devices. e polarity setting determines active high or low transmission while
the polarity bit determines if the signal is asserted in the first half of the bit frame or in the second
half. Furthermore, the data may be transmitted with the least significant bit (LSB) first or the
most significant bit (MSB) first. In summary, the serial data stream format is configured using the
following bits in the eUSCI_Ax (or Bx) Control Register 0 (UCAxCTL0) [SLAU356A, 2015].

• UCCCPH: clock phase select bit - 0: data changed on the first UCLK edge and captured
on the following edge; 1: data captured on the first edge and changed on the second edge.

• UCCKPL: clock polarity select bit - 0: inactive state low; 1: inactive state high.

• UCMSB: MSB first select bit - 0: LSB transmitted first; 1: MSB transmitted first.

• UC7BIT: character length select bit - 0: 8-bit data; 1: 7-bit data.

420 9. COMMUNICATION SYSTEMS

Figure 9.7: SPI hardware overview [SLAU356A, 2015]. Illustration used with permission of Texas
Instruments www.ti.com.

www.ti.com

9.6. SERIAL PERIPHERAL INTERFACE-SPI 421

e clock signal is routed from the Bit Clock Generator to both the receive state ma-
chine and the transmit state machine. To transmit data, the data is loaded to the Transmit Buffer
(UCxTXBUF). Writing to the UCxTXBUF activates the bit clock generator. e data begins to
transmit. Also, the SPI system receives data when the transmission is active. e transmit and
receive operations occur simultaneously [SLAU356A, 2015].

e SPI system is also equipped with interrupts. e UXTXIFG interrupt flag in the eU-
SCI_Ax (or Bx) Interrupt Flag Register (UCAxIFG, UCBxIFG) is set when the UCxxTXBUF
is empty indicating another character may be transmitted. e UCRXIFG interrupt flag is set
when a complete character has been received.

9.6.4 SPI REGISTERS
As discussed throughout this section, the basic features of the SPI system is configured and con-
trolled by the following SPI-related registers [SLAU356A, 2015]:

eUSCI_A SPI Registers
• UCAxCTLW0 eUSCI_Ax Control Word 0

• UCAxCTL1 eUSCI_Ax Control 1

• UCAxCTL0 eUSCI_Ax Control 0

• UCAxBRW eUSCI_Ax Bit Rate Control Word

• UCAxBR0 eUSCI_Ax Bit Rate Control 0

• UCAxBR1 eUSCI_Ax Bit Rate Control 1

• UCAxSTATW eUSCI_Ax Status

• UCAxRXBUF eUSCI_Ax Receive Buffer

• UCAxTXBUF eUSCI_Ax Transmit Buffer

• UCAxIE eUSCI_Ax Interrupt Enable

• UCAxIFG eUSCI_Ax Interrupt Flag

• UCAxIV eUSCI_Ax Interrupt Vector

eUSCI_B SPI Registers
• UCBxCTLW0 eUSCI_Bx Control Word 0

• UCBxCTL1 eUSCI_Bx Control 1

• UCBxCTL0 eUSCI_Bx Control 0

422 9. COMMUNICATION SYSTEMS

• UCBxBRW eUSCI_Bx Bit Rate Control Word

• UCBxBR0 eUSCI_Bx Bit Rate Control 0

• UCBxBR1 eUSCI_Bx Bit Rate Control 1

• UCBxSTATW eUSCI_Bx Status

• UCBxRXBUF eUSCI_Bx Receive Buffer

• UCBxTXBUF eUSCI_Bx Transmit Buffer

• UCBxIE eUSCI_Bx Interrupt Enable

• UCBxIFG eUSCI_Bx Interrupt Flag

• UCBxIV eUSCI_Bx Interrupt Vector

Details of specific register and bits settings are contained inMSP432P4xx Family Technical
Reference Manual [SLAU356A, 2015] and will not be repeated here.

9.6.5 SPI DATA STRUCTURES API SUPPORT
Texas Instruments provides extensive MSP432 SPI support through a series of Application Pro-
gram Interfaces (APIs). Provided below is a list of SPI data structures and APIs. Details on API
settings are provided in MSP432 Peripheral Driver Library User’s Guide [DriverLib, 2015] and
will not be repeated here.

Data Structures
struct _eUSCI_SPI_MasterConfig
struct _eUSCI_SPI_SlaveConfig

Typedefs
typedef struct
_eUSCI_SPI_MasterConfig eUSCI_SPI_MasterConfig
typedef struct
_eUSCI_SPI_SlaveConfig eUSCI_SPI_SlaveConfig

Functions
• void EUSCI_A_SPI_changeClockPhasePolarity(uint32_t baseAddress, uint16_t clock-

Phase, uint16_t clockPolarity)

• void EUSCI_A_SPI_clearInterruptFlag(uint32_t baseAddress, uint8_t mask)

• void EUSCI_A_SPI_disable(uint32_t baseAddress)

9.6. SERIAL PERIPHERAL INTERFACE-SPI 423

• void EUSCI_A_SPI_disableInterrupt(uint32_t baseAddress, uint8_t mask)

• void EUSCI_A_SPI_enable(uint32_t baseAddress)

• void EUSCI_A_SPI_enableInterrupt(uint32_t baseAddress, uint8_t mask)

• uint8_t EUSCI_A_SPI_getInterruptStatus(uint32_t baseAddress, uint8_t mask)

• uint32_t EUSCI_A_SPI_getReceiveBufferAddressForDMA(uint32_t baseAddress)

• uint32_t EUSCI_A_SPI_getTransmitBufferAddressForDMA(uint32_t baseAddress)

• bool EUSCI_A_SPI_isBusy(uint32_t baseAddress)

• void EUSCI_A_SPI_masterChangeClock(uint32_t baseAddress, uint32_t clockSource-
Frequency, uint32_t desiredSpiClock)

• uint8_t EUSCI_A_SPI_receiveData(uint32_t baseAddress)

• void EUSCI_A_SPI_select4PinFunctionality(uint32_t baseAddress,
uint8_t select4PinFunctionality)

• bool EUSCI_A_SPI_slaveInit(uint32_t baseAddress, uint16_t msbFirst, uint16_t clock-
Phase, uint16_t clockPolarity, uint16_t spiMode)

• void EUSCI_A_SPI_transmitData(uint32_t baseAddress, uint8_t transmitData)

• void EUSCI_B_SPI_changeClockPhasePolarity(uint32_t baseAddress, uint16_t clock-
Phase, uint16_t clockPolarity)

• void EUSCI_B_SPI_clearInterruptFlag(uint32_t baseAddress, uint8_t mask)

• void EUSCI_B_SPI_disable(uint32_t baseAddress)

• void EUSCI_B_SPI_disableInterrupt(uint32_t baseAddress, uint8_t mask)

• void EUSCI_B_SPI_enable(uint32_t baseAddress)

• void EUSCI_B_SPI_enableInterrupt(uint32_t baseAddress, uint8_t mask)

• uint8_t EUSCI_B_SPI_getInterruptStatus(uint32_t baseAddress, uint8_t mask)

• uint32_t EUSCI_B_SPI_getReceiveBufferAddressForDMA(uint32_t baseAddress)

• uint32_t EUSCI_B_SPI_getTransmitBufferAddressForDMA(uint32_t baseAddress)

• bool EUSCI_B_SPI_isBusy(uint32_t baseAddress)

424 9. COMMUNICATION SYSTEMS

• void EUSCI_B_SPI_masterChangeClock(uint32_t baseAddress, uint32_t clockSource-
Frequency, uint32_t desiredSpiClock)

• uint8_t EUSCI_B_SPI_receiveData(uint32_t baseAddress)

• void EUSCI_B_SPI_select4PinFunctionality(uint32_t baseAddress,
uint8_t select4PinFunctionality)

• bool EUSCI_B_SPI_slaveInit(uint32_t baseAddress, uint16_t msbFirst, uint16_t clock-
Phase, uint16_t clockPolarity, uint16_t spiMode)

• void EUSCI_B_SPI_transmitData(uint32_t baseAddress, uint8_t transmitData)

• void SPI_changeClockPhasePolarity(uint32_t moduleInstance, uint_fast16_t clockPhase,
uint_fast16_t clockPolarity)

• void SPI_changeMasterClock(uint32_t moduleInstance, uint32_t clockSourceFrequency,
uint32_t desiredSpiClock)

• void SPI_clearInterruptFlag(uint32_t moduleInstance, uint_fast8_t mask)

• void SPI_disableInterrupt(uint32_t moduleInstance, uint_fast8_t mask)

• void SPI_disableModule(uint32_t moduleInstance)

• void SPI_enableInterrupt(uint32_t moduleInstance, uint_fast8_t mask)

• void SPI_enableModule(uint32_t moduleInstance)

• uint_fast8_t SPI_getEnabledInterruptStatus(uint32_t moduleInstance)

• uint_fast8_t SPI_getInterruptStatus(uint32_t moduleInstance, uint16_t mask)

• uint32_t SPI_getReceiveBufferAddressForDMA(uint32_t moduleInstance)

• uint32_t SPI_getTransmitBufferAddressForDMA(uint32_t moduleInstance)

• bool SPI_initMaster(uint32_t moduleInstance, const eUSCI_SPI_MasterConfig *config)

• bool SPI_initSlave(uint32_t moduleInstance, const eUSCI_SPI_SlaveConfig *config)

• uint_fast8_t SPI_isBusy(uint32_t moduleInstance)

• uint8_t SPI_receiveData(uint32_t moduleInstance) void SPI_registerInterrupt(uint32_t
moduleInstance, void(*intHandler)(void))

• void SPI_selectFourPinFunctionality(uint32_t moduleInstance,
uint_fast8_t select4PinFunctionality)

• void SPI_transmitData(uint32_t moduleInstance, uint_fast8_t transmitData)

• void SPI_unregisterInterrupt(uint32_t moduleInstance)

9.6. SERIAL PERIPHERAL INTERFACE-SPI 425

9.6.6 SPI CODE EXAMPLES
Energia
InChapter 2 we used the Energia SPI features to control a onemeter, 32 RGBLED strip available
from Adafruit (#306) (www.adafruit.com). Recall the red, blue, and green component of each
RGB LED was independently set using an eight-bit code. e most significant bit (MSB) was
logic one followed by seven bits to set the LED intensity (0–127). e component values were
sequentially shifted out of the MSP432-EXP432P401R LaunchPad using the Serial Peripheral
Interface (SPI) features.

SPI API Example
Example: In this code example the SPI module is configured in three wire master mode.

//***
//SPI Master Configuration Parameter
const eUSCI_SPI_MasterConfig spiMasterConfig =
{
EUSCI_A_SPI_CLOCKSOURCE_ACLK, //ACLK Clock Source
32768, //ACLK = LFXT = 32.768khz
500000, //SPICLK = 500khz
EUSCI_A_SPI_MSB_FIRST, //MSB First
EUSCI_A_SPI_PHASE_DATA_CHANGED_ONFIRST_CAPTURED_ON_NEXT, //Phase
EUSCI_A_SPI_CLOCKPOLARITY_INACTIVITY_HIGH, //High polarity
EUSCI_A_SPI_3PIN //3Wire SPI Mode
};

//Selecting P1.1 P1.2 and P1.3 in SPI mode
GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P1,
GPIO_PIN1 | GPIO_PIN2 | GPIO_PIN3, GPIO_PRIMARY_MODULE_FUNCTION);

//Configuring SPI in 3wire master mode
SPI_initMaster(EUSCI_A0_MODULE, &spiMasterConfig);

//Enable SPI module
SPI_enableModule(EUSCI_A0_MODULE);

//Enabling interrupts
SPI_enableInterrupt(EUSCI_A0_MODULE, EUSCI_A_SPI_RECEIVE_INTERRUPT);
Interrupt_enableInterrupt(INT_EUSCIA0);
Interrupt_enableSleepOnIsrExit();

www.adafruit.com

426 9. COMMUNICATION SYSTEMS

//***

SPI C Example
In this example, code is provided for both the SPI master and the SPI slave configured processor
using the SPI 3-wire mode. Incrementing data is sent by the master configured processor start-
ing at 0x01. e slave configured processor received data is expected to be same as the previous
transmission TXData D RXData � 1. e eUSCI RX interrupt service routine is used to handle
communication with the processor (www.ti.com).

Master configured SPI processor code:

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

www.ti.com

9.6. SERIAL PERIPHERAL INTERFACE-SPI 427

//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--
//***
//MSP432P401 Demo - eUSCI_A3, SPI 3-Wire Master Incremented Data
//
//Description: SPI master talks to SPI slave using 3-wire mode.
//Incrementing data is sent by the master starting at 0x01.
//Received data is expected to be same as the previous transmission
//TXData = RXData-1. USCI RX ISR is used to handle communication with
//the CPU, normally in LPM0.
//
//
//
// MSP432P401R
// -----------------
// /|\| |
// | | |
// --|RST |
// | |
// | P9.7|-> Data In (UCA3SIMO)

428 9. COMMUNICATION SYSTEMS

// | |
// | P9.6|<- Data OUT (UCA3SOMI)
// | |
// | P9.5|-> Serial Clock Out (UCA3CLK)
//
//
//Wei Zhao
//Texas Instruments Inc.
//June 2014
//Built with Code Composer Studio V6.0
//***

#include "msp.h"

static uint8_t RXData = 0;
static uint8_t TXData;

int main(void)
{
volatile uint32_t i;

WDTCTL = WDTPW | WDTHOLD; //Stop watchdog timer

P9SEL0 |= BIT5 | BIT6 | BIT7; //set 3-SPI pin as second
//function

__enable_interrupt();
NVIC_ISER0 = 1 << ((INT_EUSCIA3 - 16) & 31); //Enable eUSCIA3

//interrupt in NVIC module

UCA3CTLW0 |= UCSWRST; //**Put state machine in
//reset**

UCA3CTLW0 |= UCMST|UCSYNC|UCCKPL|UCMSB; //3-pin, 8-bit SPI master
//Clock polarity high, MSB

UCA3CTLW0 |= UCSSEL__ACLK; //ACLK
UCA3BR0 = 0x01; // /2,fBitClock =

//fBRCLK/(UCBRx+1).
UCA3BR1 = 0;
UCA3MCTLW = 0; //No modulation

9.6. SERIAL PERIPHERAL INTERFACE-SPI 429

// **Initialize USCI state machine**
UCA3CTLW0 &= ~UCSWRST; //UCA3IE |= UCRXIE;

//Enable USCI_A3 RX interrupt
TXData = 0x01; //Holds TX data

SCB_SCR &= ~SCB_SCR_SLEEPONEXIT; //Wake up on exit from ISR

while(1)
{
UCA3IE |= UCTXIE; //Enable TX interrupt
__sleep();
__no_operation(); //For debug,Remain in LPM0

for(i = 2000; i > 0; i--); //Delay before next tx
TXData++; //Increment transmit data

}
}

//***
//SPI interrupt service routine
//***

void eUSCIA3IsrHandler(void)
{

if(UCA3IFG & UCTXIFG)
{
UCA3TXBUF = TXData; //Transmit characters
UCA3IE &= ~UCTXIE;
while (!(UCA3IFG&UCRXIFG));
RXData = UCA3RXBUF;
UCA3IFG &= ~UCRXIFG;
}

}

//***

430 9. COMMUNICATION SYSTEMS

Slave configured SPI processor code:

//***
//MSP432P401 Demo - eUSCI_A3, SPI 3-Wire Slave Data Echo
//
//Description: SPI slave talks to SPI master using 3-wire mode.
Data
//received from master is echoed back.
//
//Note: Ensure slave is powered up before master to prevent delays due to
// slave initialization.
//
//
// MSP432P401R
// -----------------
// /|\ | |
// | | |
// -|->| |
// | |
// | P9.7|<- Data In (UCA3SIMO)
// | |
// | P9.6|-> Data Out (UCA3SOMI)
// | |
// | P9.5|-> Serial Clock Out (UCA3CLK)
//
//
//Wei Zhao
//Texas Instruments Inc.
//June 2014
//Built with Code Composer Studio V6.0
//***

#include "msp.h"

int main(void)
{
WDTCTL = WDTPW|WDTHOLD; //Stop watchdog timer

P9SEL0 |= BIT5 | BIT6 | BIT7; //set 3-SPI pin as second function

9.6. SERIAL PERIPHERAL INTERFACE-SPI 431

__enable_interrupt();
NVIC_ISER0 = 1 << ((INT_EUSCIA3 - 16) & 31); //Enable eUSCIA3 interrupt

//in NVIC module

// **Put state machine in reset**
UCA3CTLW0 |= UCSWRST;
UCA3CTLW0 |= UCSYNC|UCCKPL|UCMSB; //3-pin, 8-bit SPI slave

//Clock polarity high, MSB
UCA3CTLW0 |= UCSSEL__ACLK; //ACLK
UCA3BR0 = 0x01; // /2,fBitClock = fBRCLK/(UCBRx+1).
UCA3BR1 = 0; //
UCA3MCTLW = 0; //No modulation

// **Initialize USCI state machine**
UCA3CTLW0 &= ~UCSWRST;
UCA3IE |= UCRXIE; //Enable USCI_A3 RX interrupt
__sleep();
}

//***
// SPI interrupt service routine
//***

void eUSCIA3IsrHandler(void)
{
if(UCA3IFG & UCRXIFG)
{
while (!(UCA3IFG&UCTXIFG)); //USCI_A3 TX buffer ready?
UCA3TXBUF = UCA3RXBUF; //Echo received data
}

}

//***

432 9. COMMUNICATION SYSTEMS

9.7 INTER-INTEGRATED COMMUNICATION - I2C
MODULE

9.7.1 OVERVIEW
e I2C is one of prominent communication modes used when multiple serial devices are inter-
connected using a serial bus. e I2C bus is a two-wire bus with the serial data line (SDL) and
the serial clock line (SCL). By configuring devices connected to the common I2C line as either a
master device or a slave device, multiple devices can share information using the common bus.

e difference between a master device and a slave device is that a master device initiates
a communication by means of either requesting data from another device or sending data to a
designated device. A master device must also provide a clock signal (SCL).

e MSP432’s universal serial communication interface (USCI) can be programmed to
operate in the I2C communication mode. As seen earlier in this chapter, the eUSCI_Ax ports are
programmed to operate in the UART, IrDA, and SPI communication mode while the eUSCI_Bx
ports are used for the I2C and SPI serial communication modes.

I2C communication is initiated by sending an address of a desired destination device con-
nected to a common I2C bus. e device address can be either a 7-bit number or a 10-bit number,
depending on the number of devices connected to the bus. Of course, all devices on the same bus
must use the same addressing mode and program accordingly.

One of the reasons the I2C serial communication became popular is its flexibility to al-
low multiple master devices to co-exist on a same bus. e MSP432 eUSCI device allows its
I2C communication unit to operate either in the standard mode (100 kbps) or in the fast mode
(400 kbps).

9.7.2 PROGRAMMING
To initialize a eUSCI_Bx port as an I2C communication port, you must: (1) set the UCSWRST
bit in the UCxCTL1 register to one, (2) configure the I2C mode of operation by setting UC-
MODEx bits to 11 and initialize the eUSCI registers, and (3) set up an actual port with a pull
up resistor. As soon as the UCSWRST bit is cleared, the I2C communication of MSP432 can
commence.

e communication performed on the I2C bus must follow a set of agreed rules, including
the data format used on the bus. Data is transferred between devices connected on the bus in 8 bits
per segment, followed by control bits. For each communication “session,” it must be started by a
master device with a start condition, which is defined as the signal changing from logic high to
low on the SDA line while the logic state on the SCL line is high. Following the start condition,
the master device must send either the 7- or 10-bit address of a destination device on the SDA
line.

9.7. INTER-INTEGRATED COMMUNICATION - I2C MODULE 433

7-bit addressing mode

S - Start condition
A - Slave address (7-bit addressing mode)
A1 - MSB slave address - 11110 xx (10-bit addressing mode)
A2 - LSB slave address
R/W - Read or Write
D - Data
Ack - Acknowledgment
P - Stop condition

clocks
Data on SDA line

1
S

7
A

1
R/W

1
Ack

1
Ack

1
Ack

8
D

8
D

10-bit addressing mode

clocks
Data on SDA line

1
S

7
A1

1
R/W

1
Ack

1
Ack

1
Ack

1
Ack

8
A2

8
D

8
D

1
P

1
P

Figure 9.8: Data format for both 7-bit and 10-bit addressing modes.

Following the address, the master device sends a Read/Write bit describing its intent and
listens on the bus to hear an acknowledge bit from the receiver on the 9th SCL clock for the 7-bit
addressing mode or on the both 9th and 18th clocks for the 10-bit addressing mode.

For the 10-bit addressing mode, the 10-bit address is split into two segments: two most
significant bits (MSBs) and eight least significant bits (LSBs). e MSBs are sent along with
pre-designated bits (11110), and the LSBs are sent separately. After the first part of the address
is sent, a Read/Write bit, followed by an acknowledgment bit, must appear on the bus before the
second part of the address is sent. After the second part of the address, an acknowledgement bit
must appear before data is sent over the bus. Figure 9.8 shows the format of data transfer between
two devices, using both the 7-bit and the 10-bit addressing modes. For each communication
session, it must end with a stop condition (P in the figure), which is defined as the signal state
on the SDA line changing from logic low to logic high while the clock signal on the SCL line is
high.

9.7.3 MSP432 AS A SLAVE DEVICE
eMSP432microcontroller can also be configured to be either as a slave device or as amaster de-
vice. To configure the controller as a slave device, the eUSCI_Bx ports must first be programmed
to operate in the I2C slave mode (UCMODEx D 11, UCSYNC D 1, UCMST D 0). e slave
address of MSP432 is defined using UCBxI2COA register. e UCA10 bit in the UCBx Control

434 9. COMMUNICATION SYSTEMS

Register 0 (UCBxCTL0) determines whether the controller is using a 7-bit address or a 10-bit
address.

You can program the MSP432 microcontroller to respond to a general call by setting the
general call response enable bit (UCGCEN) in the UCBxI2COA register. To receive device ad-
dresses sent bymasters, the eUSCI_Bx ports must also be configured in the receiver mode (UCTR
D 0). When the start condition is detected on the bus, the address bits are compared, and if there
is a match, the UCSTTIFG flag is set.

After testing that the Read/Write bit is high, MSP432 uses the clock signal on the SLK
line to send data on the SDA line. To do so, the UCTR and UCTXIFG bits are set while holding
the SCL line logic low. While the logic state on the SCL line is low, the transmit buffer register
(UCBxTXBUF) is loaded with data. Once the buffer is loaded, the UCSTTIFG flag is cleared,
which sends the data out to the SDA line, and the UCTXIFG flag is automatically set again
for the next data to be transmitted, which occurs after an acknowledge bit is detected on the
bus. If the not-acknowledge (NACK) bit is detected, followed by a stop condition, instead, the
UCSTPIFG flag is set. If the NACK bit is detected followed by a start condition, MSP432 starts
to monitor this device address, again, on the SDA line.

If the MSP432 controller should receive data from a slave device (the Read/Write bit is
low), the UCTR bit is cleared, the receive buffer (UCBxRXBUF) is loaded with the data from
the bus, and the UCRXIFG flag is set, acknowledging the receipt of the data. Once the data in
the bus is read, the flag is cleared, and the controller is ready to receive the next 8-bit data. e
controller has an option to send the UCTXNACK bit to a master to release the bus. When a
stop condition is detected on the bus, the UCSTPIFG flag is set. If two repeated start conditions
are detected or the UCSTPIFG flag is set, the MSP432 terminates its current session and starts
monitoring its address on the bus.

9.7.4 MSP432 AS A MASTER DEVICE
To configure the MSP432 controller to function as a master device, the eUSCI_Bx ports must
be programmed to operate in the I2C mode (UCMODEx D 11, UCSYNC D 1), and one must
configure the MSP432 to operate in the master mode by setting the UCMST bit. Since the I2C
bus can handle more than one master device and if there are multiple master devices, the MSP432
needs to be programmed as one of many master devices on the bus by setting the UCMM bit and
storing the address (either 7- or 10-bits) of MSP432 in the UCBxI2COA register. As in the case
of the slave mode, the address size is determined by the UCA10 bit, and the general call response
is programmed using the UCGCEN bit.

To initiate a session to transmit data, the UCTR bit and the UCTxSTT bit are set, the
UCSLA10 bit is configured to match the slave address size, and the address of a slave device is
loaded to the UCBxI2CSA. When the start condition is generated by setting the UCTxSTT bit,
the data can be loaded to the UCBxTXBUF, and the UCTxIFG bit is set. Once a slave address
acknowledges its address, the UCTxSTT and UCTxIFG bits are cleared. Once the data is sent,

9.7. INTER-INTEGRATED COMMUNICATION - I2C MODULE 435

the UCTxIFG flag bit is set, again, for the next set of data transfer. To generate a stop condition,
set UCTxSTP bit while UCTxIFG and UCTxSTP bits are set. If a repeated start conditions are
necessary, set UCTxSTT bit. During a data transfer session, if a slave does not respond (i.e., send
acknowledge bits), the MSP432 must either send a stop condition or a repeated start conditions.

When the MSP432 controller needs to receive data from a slave, the UCTR bit must be
cleared, and the UCTxSTT bit must be set to generate a start condition. When a slave device
sends an acknowledgement, the UCTxSTT bit is cleared, and the data is received. Upon receiving
an 8-bit data set, the UCRxIFG flag is set. Once the data is read from the buffer, the UCRxIFG
flag is cleared, and the next data can be received. If only a single 8-bit byte should be received,
the controller must set the UCTxSTP bit while the byte is received.

9.7.5 I2C REGISTERS
I2C associated registers include:

• UCBxCTLW0 eUSCI_Bx Control Word 0

• UCBxCTL1 eUSCI_Bx Control 1

• UCBxCTL0 eUSCI_Bx Control 0

• UCBxCTLW1 eUSCI_Bx Control Word 1

• UCBxBRW eUSCI_Bx Bit Rate Control Word

• UCBxBR0 eUSCI_Bx Bit Rate Control 0

• UCBxBR1 eUSCI_Bx Bit Rate Control 1

• UCBxSTATW eUSCI_Bx Status Word

• UCBxSTAT eUSCI_Bx Status

• UCBxBCNT eUSCI_Bx Byte Counter Register

• UCBxTBCNT eUSCI_Bx Byte Counter reshold Register

• UCBxRXBUF eUSCI_Bx Receive Buffer

• UCBxTXBUF eUSCI_Bx Transmit Buffer

• UCBxI2COA0 eUSCI_Bx I2C Own Address 0

• UCBxI2COA1 eUSCI_Bx I2C Own Address 1

• UCBxI2COA2 eUSCI_Bx I2C Own Address 2

• UCBxI2COA3 eUSCI_Bx I2C Own Address 3

436 9. COMMUNICATION SYSTEMS

• UCBxADDRX eUSCI_Bx Received Address Register

• UCBxADDMASK eUSCI_Bx Address Mask Register

• UCBxI2CSA eUSCI_Bx I2C Slave Address

• UCBxIE eUSCI_Bx Interrupt Enable

• UCBxIFG eUSCI_Bx Interrupt Flag

• UCBxIV eUSCI_Bx Interrupt Vector

9.7.6 I2C API SUPPORT
In this section, we list the data structures and API functions associated with the I2C subsystem.

Data Structures
struct _eUSCI_I2C_MasterConfig

Functions
• void I2C_clearInterruptFlag(uint32_t moduleInstance, uint_fast16_t mask)

• void I2C_disableInterrupt(uint32_t moduleInstance, uint_fast16_t mask)

• void I2C_disableModule(uint32_t moduleInstance)

• void I2C_disableMultiMasterMode(uint32_t moduleInstance)

• void I2C_enableInterrupt(uint32_t moduleInstance, uint_fast16_t mask)

• void I2C_enableModule(uint32_t moduleInstance)

• void I2C_enableMultiMasterMode(uint32_t moduleInstance)

• uint_fast16_t I2C_getEnabledInterruptStatus(uint32_t moduleInstance)

• uint_fast16_t I2C_getInterruptStatus(uint32_t moduleInstance, uint16_t mask)

• uint_fast8_t I2C_getMode(uint32_t moduleInstance)

• uint32_t I2C_getReceiveBufferAddressForDMA(uint32_t moduleInstance)

• uint32_t I2C_getTransmitBufferAddressForDMA(uint32_t moduleInstance)

• void I2C_initMaster(uint32_t moduleInstance, const eUSCI_I2C_MasterConfig *config)

• void I2C_initSlave(uint32_t moduleInstance, uint_fast16_t slaveAddress, uint_fast8_t
slaveAddressOffset, uint32_t slaveOwnAddressEnable)

9.7. INTER-INTEGRATED COMMUNICATION - I2C MODULE 437

• uint8_t I2C_isBusBusy(uint32_t moduleInstance)

• bool I2C_masterIsStartSent(uint32_t moduleInstance)

• uint8_t I2C_masterIsStopSent(uint32_t moduleInstance)

• uint8_t I2C_masterReceiveMultiByteFinish(uint32_t moduleInstance)

• bool I2C_masterReceiveMultiByteFinishWithTimeout(uint32_t moduleInstance, uint8_t
*txData, uint32_t timeout)

• uint8_t I2C_masterReceiveMultiByteNext(uint32_t moduleInstance)

• void I2C_masterReceiveMultiByteStop(uint32_t moduleInstance)

• uint8_t I2C_masterReceiveSingle(uint32_t moduleInstance)

• uint8_t I2C_masterReceiveSingleByte(uint32_t moduleInstance)

• void I2C_masterReceiveStart(uint32_t moduleInstance)

• void I2C_masterSendMultiByteFinish(uint32_t moduleInstance, uint8_t txData)

• bool I2C_masterSendMultiByteFinishWithTimeout(uint32_t moduleInstance, uint8_t
txData, uint32_t timeout)

• void I2C_masterSendMultiByteNext(uint32_t moduleInstance, uint8_t txData)

• bool I2C_masterSendMultiByteNextWithTimeout(uint32_t moduleInstance, uint8_t tx-
Data, uint32_t timeout)

• void I2C_masterSendMultiByteStart(uint32_t moduleInstance, uint8_t txData)

• bool I2C_masterSendMultiByteStartWithTimeout(uint32_t moduleInstance, uint8_t tx-
Data, uint32_t timeout)

• void I2C_masterSendMultiByteStop(uint32_t moduleInstance)

• bool I2C_masterSendMultiByteStopWithTimeout(uint32_t moduleInstance, uint32_t
timeout)

• void I2C_masterSendSingleByte(uint32_t moduleInstance, uint8_t txData)

• bool I2C_masterSendSingleByteWithTimeout(uint32_t moduleInstance, uint8_t txData,
uint32_t timeout)

• void I2C_masterSendStart(uint32_t moduleInstance)

• void I2C_registerInterrupt(uint32_t moduleInstance, void(*intHandler)(void))

438 9. COMMUNICATION SYSTEMS

• void I2C_setMode(uint32_t moduleInstance, uint_fast8_t mode) void
I2C_setSlaveAddress(uint32_t moduleInstance, uint_fast16_t slaveAddress)

• uint8_t I2C_slaveGetData(uint32_t moduleInstance)

• void I2C_slavePutData(uint32_t moduleInstance, uint8_t transmitData)

• void I2C_unregisterInterrupt(uint32_t moduleInstance)

9.7.7 I2C CODE EXAMPLES
API
Provided in Figure 9.9 are UML diagrams to configure the master and slave configured I2C
processors. e code example configures a processor for master operation using DriverLib
APIs [DriverLib, 2015].

Enhanced Universal Serial
Communication Interface (eUSCI)

 eUSCI_A0
- UART mode
- IrDA pulse shaping mode
- SPI mode

 eUSCI_B0
- I2C mode
- SPI mode

 eUSCI_A1
- UART mode
- IrDA pulse shaping mode
- SPI mode

 eUSCI_B0
- I2C mode
- SPI mode

Figure 9.9: I2C UML for master and slave configured processors [DriverLib, 2015].

//***
//I2C Master Configuration Parameter
//***

const eUSCI_I2C_MasterConfig i2cConfig =

9.7. INTER-INTEGRATED COMMUNICATION - I2C MODULE 439

{
EUSCI_B_I2C_CLOCKSOURCE_SMCLK, //SMCLK Clock Source
3000000, //SMCLK = 3MHz
EUSCI_B_I2C_SET_DATA_RATE_400KBPS, //Desired I2C Clock of 400khz
0, //No byte counter threshold
EUSCI_B_I2C_NO_AUTO_STOP //No Autostop
};

//DriverLib calls to configure/setup the I2C module

//Initializing I2C Master to SMCLK at 400kbs with no autostop
MAP_I2C_initMaster(EUSCI_B0_MODULE, &i2cConfig);

//Specify slave address
MAP_I2C_setSlaveAddress(EUSCI_B0_MODULE, SLAVE_ADDRESS);

//Set Master in receive mode
MAP_I2C_setMode(EUSCI_B0_MODULE, EUSCI_B_I2C_TRANSMIT_MODE);

//Enable I2C Module to start operations
MAP_I2C_enableModule(EUSCI_B0_MODULE);

//Enable and clear the interrupt flag
MAP_I2C_clearInterruptFlag(EUSCI_B0_MODULE,
EUSCI_B_I2C_TRANSMIT_INTERRUPT0 + EUSCI_B_I2C_NAK_INTERRUPT);

//Enable master Receive interrupt
MAP_I2C_enableInterrupt(EUSCI_B0_MODULE,
EUSCI_B_I2C_TRANSMIT_INTERRUPT0 + EUSCI_B_I2C_NAK_INTERRUPT);
MAP_Interrupt_enableInterrupt(INT_EUSCIB0);

//***

C
Master configured processor:

//**
// MSP432 DriverLib - v2_20_00_08
//**
//

440 9. COMMUNICATION SYSTEMS

//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several

9.7. INTER-INTEGRATED COMMUNICATION - I2C MODULE 441

//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--
//***
//MSP432P401 Demo - eUSCI_B0 I2C Master RX multiple bytes from MSP432
//Slave
//
//Description: This demo connects two MSP432's via the I2C bus.
//The master reads 5 bytes from the slave.
This is the MASTER CODE. The
//data from the slave transmitter begins at 0 and increments with each
//transfer. The USCI_B0 RX interrupt is used to know when new data has
//been received.
//
// *****used with "MSP432P401_euscib0_i2c_11.c"****
//
// /|\ /|\
// MSP432P401 10k 10k MSP432P401
// slave | | master
// ----------------- | | -----------------
// | P1.6/UCB0SDA|<-|----|->|P1.6/UCB0SDA |
// | | | | |
// | | | | |
// | P1.7/UCB0SCL|<-|------>|P1.7/UCB0SCL |
// | | | P1.0|--> LED
//
//Wei Zhao
//Texas Instruments Inc.
//June 2014
//Built with Code Composer Studio V6.0
//***

#include "msp.h"
#include <stdint.h>

442 9. COMMUNICATION SYSTEMS

uint8_t RXData = 0;

int main(void)
{
volatile uint32_t i;
WDTCTL = WDTPW | WDTHOLD;

//Configure GPIO
P1OUT &= ~BIT0; //Clear P1.0 output latch
P1DIR |= BIT0; //For LED
P1SEL0 |= BIT6 | BIT7; //I2C pins

__enable_interrupt();
NVIC_ISER0 = 1 << ((INT_EUSCIB0 - 16) & 31); //Enable eUSCIB0 interrupt

//in NVIC module
//Configure USCI_B0 for I2C mode
UCB0CTLW0 |= UCSWRST; //Software reset enabled
UCB0CTLW0 |= UCMODE_3 | UCMST | UCSYNC; //I2C mode, Master mode, sync
UCB0CTLW1 |= UCASTP_2; //Automatic stop generated

//after UCB0TBCNT is reached
UCB0BRW = 0x0018; //baudrate = SMCLK / 8
UCB0TBCNT = 0x0005; //number of bytes to be received
UCB0I2CSA = 0x0048; //Slave address
UCB0CTLW0 &= ~UCSWRST;
UCB0IE |= UCRXIE | UCNACKIE | UCBCNTIE;

while(1)
{
for (i = 2000; i > 0; i--);
while (UCB0CTLW0 & UCTXSTP); //Ensure stop condition got sent
UCB0CTLW0 |= UCTXSTT; //I2C start condition
__sleep(); //Go to LPM0
}

}

//***
// I2C interrupt service routine
//***

9.7. INTER-INTEGRATED COMMUNICATION - I2C MODULE 443

void eUSCIB0IsrHandler(void)
{
if(UCB0IFG & UCNACKIFG)
{
UCB0IFG &= ~ UCNACKIFG;
SCB_SCR |= SCB_SCR_SLEEPONEXIT; //Don't wake up on exit from ISR
UCB0CTLW0 |= UCTXSTT; //I2C start condition
}

if(UCB0IFG & UCRXIFG0)
{
UCB0IFG &= ~ UCRXIFG0;
SCB_SCR &= ~SCB_SCR_SLEEPONEXIT; //Wake up on exit from ISR
RXData = UCB0RXBUF; //Get RX data
}

if(UCB0IFG & UCBCNTIFG)
{
UCB0IFG &= ~ UCBCNTIFG;
SCB_SCR |= SCB_SCR_SLEEPONEXIT; //Don't wake up on exit from ISR
P1OUT ^= BIT0; //Toggle LED on P1.0
}

}

//***

Slave configured processor:

//***
//MP432P401 Demo - eUSCI_B0 I2C Slave TX multiple bytes to MSP432 Master
//
//Description: This demo connects two MSP432's via the I2C bus.
The
//master reads from the slave.
This is the SLAVE code.
The TX data begins
//at 0 and is incremented each time it is sent.
A stop condition is used
//as a trigger to initialize the outgoing data.
The USCI_B0 TX interrupt

444 9. COMMUNICATION SYSTEMS

//is used to know when to TX.
//
// *****used with "MSP432P401_euscib0_i2c_10.c"****
//
// /|\ /|\
// MSP432P401 10k 10k MSP432P401
// slave | | master
// ----------------- | | -----------------
// | P1.6/UCB0SDA|<-|----|->|P1.6/UCB0SDA |
// | | | | |
// | | | | |
// | P1.7/UCB0SCL|<-|------>|P1.7/UCB0SCL |
// | | | |
//
//Wei Zhao
//Texas Instruments Inc.
//June 2014
//Built with Code Composer Studio V6.0
//***

#include "msp.h"

uint8_t TXData;

int main(void)
{
WDTCTL = WDTPW | WDTHOLD;

//Configure GPIO
P1SEL0 |= BIT6 | BIT7; //I2C pins

__enable_interrupt();
NVIC_ISER0 = 1 << ((INT_EUSCIB0 - 16) & 31); //Enable eUSCIB0 interrupt

//in NVIC module

//Configure USCI_B0 for I2C mode
UCB0CTLW0 = UCSWRST; //Software reset enabled
UCB0CTLW0 |= UCMODE_3 | UCSYNC; //I2C mode, sync mode
UCB0I2COA0 = 0x48 | UCOAEN; //own address is 0x48 + enable

9.8. LABORATORY EXERCISE: UART AND SPI COMMUNICATIONS 445

UCB0CTLW0 &= ~UCSWRST; //clear reset register
UCB0IE |= UCTXIE0 | UCSTPIE; //transmit,stop int enable

SCB_SCR |= SCB_SCR_SLEEPONEXIT; //Don't wake up on ISR exit

__sleep();
__no_operation();
}

//***
// I2C interrupt service routine
//***

void eUSCIB0IsrHandler(void)
{
if(UCB0IFG & UCSTPIFG)
{
UCB0IFG &= ~ UCSTPIFG;
TXData = 0;
UCB0IFG &= ~UCSTPIFG; //Clear stop condition int flag
}

if(UCB0IFG & UCTXIFG0)
{
UCB0IFG &= ~ UCTXIFG0;
UCB0TXBUF = TXData++;
}

}

//***

9.8 LABORATORY EXERCISE: UART AND SPI
COMMUNICATIONS

Configure two MSP432 LaunchPads to communicate using the UART and SPI.

9.9 SUMMARY
In this chapter we have discussed the complement of serial communication features aboard the
MSP432 microcontroller. e system is equipped with a host of different serial communication

446 9. COMMUNICATION SYSTEMS

subsystems including eUSCI A type modules and eUSCI B modules. Each microcontroller in
the MSP432 line has a complement of A and B type eUSCI modules.

9.10 REFERENCES AND FURTHER READING
Maxim Integrated, www.maximintegrated.com.

MSP430x5xx andMSP430x6xx Family User’s Guide (slaug208g). Texas Instruments, 2015. 405,
407

MSP432 Peripheral Driver Library User’s Guide. Texas Instruments, 2015. 408, 409, 412, 422,
438

MSP432P4xx Family Technical Reference Manual (SLAU356A). Texas Instruments, 2015. 400,
401, 404, 407, 408, 418, 419, 420, 421, 422

Unicode Consortium, www.unicode.org.

9.11 CHAPTER PROBLEMS
Fundamental

1. Describe the difference between parallel and serial communications.

2. If the communication cost is the primary issue, which communication methods (parallel,
series) should be used? Why?

3. What is the difference between synchronous and asynchronous communications?

4. e eUSCI in the UART mode supports LIN and IrDA. For each identify the protocol
used: serial/parallel and synchronous/asynchronous.

5. In the I2C communication protocol, how does one configure the MSP432 to become a
master device? What must be done to configure it as a slave device?

6. Give a brief description of a communication protocol.

Advanced

1. Write a subroutine that properly initialize the SPI unit. Specify the configuration parameter
values used for the external device.

2. Describe interrupts associated with the I2C unit.

3. ere are multiple I2C interrupts but a single interrupt vector. After detecting an interrupt,
the I2C interrupt system must identify the source of the interrupt. How is this accom-
plished?

www.maximintegrated.com
www.unicode.org

9.11. CHAPTER PROBLEMS 447

Challenging

1. Design and program three MSP432 controller systems to measure temperatures surround-
ing the three controllers. Create a wireless communication network using the three con-
trollers along with the CC2530-ZNP radio transceivers. e controllers should constantly
share the temperature sensor data among the members. Select a central controller and dis-
play the three temperature values on a LCD display once every 5 s.

449

C H A P T E R 10

MSP432 System Integrity
Objectives: After reading this chapter, the reader should be able to:

• describe the sources of noise in a microcontroller system;

• describe the concept of electromagnetic interference (EMI);

• differentiate between conducted and radiated EMI;

• list different sources of EMI;

• list design techniques to minimize EMI;

• describe how a cyclic redundancy check (CRC) may be used to insure the integrity of data;

• describe the features of the CRC32 system onboard the MSP432;

• sketch a linear feedback shift register for a given generator polynomial;

• list common generator polynomials used within CRC systems;

• program the MSP432 CRC32 system to generate a data checksum;

• describe how the MSP432 advanced encryption standard module, the AES256, may be
used to provide for data transmission integrity;

• describe the steps used to encrypt/decrypt data using the AES256 standard;

• sketch a block diagram of the MSP432 AES256 module; and

• program the MSP432 AES256 module to encrypt and decrypt data.

10.1 OVERVIEW
is chapter may be the most important chapter in the book. It contains essential information
about how to maintain the integrity of a microcontroller based system. e chapter begins with
a discussion on electromagnetic interference (EMI), also known as noise. Design practices to
minimize EMI are then discussed. e second section of the chapter discusses the concept of
the Cyclic Redundancy Check or CRC. is is a hardware-based subsystem used to generate a
checksum of a block of data. e checksum may be used to check the integrity of data once it

450 10. MSP432 SYSTEM INTEGRITY

has been transmitted or loaded to a new location. e final section covers the MSP432 advanced
encryption standard module, the AES256. is module is used to insure the integrity of data
transmission using a key-based encryption and decryption technique.

10.2 ELECTROMAGNETIC INTERFERENCE
Electromagnetic interference (EMI), commonly referred to as noise, may come from a number of
sources as shown in Figure 10.1. Noise causes program malfunction and data corruption, making
it impossible to complete the intended task of the controller. It is important to understand the
sources of noise and coupling mechanisms to a microcontroller-based project, so proper preven-
tive techniques may be employed during the design process. As shown in Figure 10.1, noise may
be coupled to a victim receptor system via radiated or conducted mechanisms. Radiated sources
include radio frequency sources such as radio stations and cell phones. Naturally occurring light-
ning is also a source of noise. A nearby lightning strike generates a tremendous amount of noise at
a variety of frequencies. Noise may also be generated by motors and motor based appliances such
as drills, mixers, and blenders. Often microcontrollers are used to control a motor. e motor,
although part of the designed system, may be a source of noise for the microcontroller controlling
its operation. Electrostatic discharge (ESD), e.g., static electricity, may inject noise or damage
a microcontroller based system. Conducted sources of noise in a microcontroller based system
include other system components or the power supply serving the system. It is interesting to note
the microcontroller itself may also serve as a noise source for other system components or nearby
systems [AN1705, 2004, COP888, 1996].

10.2.1 EMI REDUCTION STRATEGIES
ere are several strategies to follow to minimize EMI interference. ese include [AN1705,
2004, COP888, 1996]:

• implementing EMI suppression techniques early in the design process. It is very challenging
to provide EMI suppression after a system has been implemented; and

• implementing noise suppression techniques at the source of the noise, disrupting the source
to receptor transmission path, protecting the receptor system from noise, and a combination
of all three techniques.

Provided below are specific techniques to suppress EMI noise in a microcontroller-based
system [Barrett and Pack, 2004, AN1705, 2004, COP888, 1996].

• If possible, incoming signal lines to a microcontroller based system should be twisted. is
will minimize the chance of parallel conductors inducing noise in an adjacent conductor
via crosstalk. If signals are being transmitted by a multiple conductor ribbon cable, consider
gently twisting the cable and also providing a ground conductor alternating with signal
carrying conductors.

10.2. ELECTROMAGNETIC INTERFERENCE 451

Radio

Lightning

Motors

Appliances

Electrostatic
Discharge (ESD)

e.g., Static Electricity

Microcontroller
System

Components

Conducted
Sources

Power Supply

MSP432

Radiated Radiation

Conduction

Sources

Figure 10.1: Noise sources in a microcontroller-based system (adapted from [AN1705, 2004,
COP888, 1996]).

• Use shielded cable for signal conductors coming into the microcontroller based system.

• If the microcontroller is being used to control a motor, use an opto-isolator between the
microcontroller and the motor interface circuit. Also, the motor and the microcontroller
should not share a common power supply.

• Use filters for signals coming into a microcontroller-based system. Filters are commonly
available in the form of ferrite beads.

• Filter the power supply lines to the circuit. Typically, a 10–470 �F capacitor is employed
for this purpose. Also, a 0:1�F capacitor should be used between the power and ground
pins on each integrated circuit.

452 10. MSP432 SYSTEM INTEGRITY

• Ground the metal crystal time base case to insure it does not radiate a noise signal.

• Mount the microcontroller based project in a metal chassis.

• ere are several defensive programming techniques to help combat noise. One easy to
implement technique is to declare unused microcontroller pins as output.

10.3 CYCLIC REDUNDANCY CHECK
In a previous professional life, one of the authors (sfb) served as amissileer in the United States Air
Force. On a routine basis, the guidance set aboard an assigned missile was updated with critical
data to insure the missile would serve its intended mission. Maintenance crews from a nearby
support base would transport information tapes out to the missile site where the onboard missile
guidance set was updated. A CRC checksum was generated on the information tapes before they
left the support base. After the information was loaded from the tapes to the missile guidance set,
a CRC checksum was performed. If the checksum generated by the missile guidance set matched
the checksum generated at the support base, the missile was designated as properly updated.

is scenario illustrates the application and importance of using a Cyclic Redundancy
Check (CRC) to maintain data integrity. is technique is often performed to ensure the in-
tegrity of transmitted or stored data.

e basic concept behind generating a CRC checksum is binary division. e basic oper-
ation of division can be defined as [AN370]:

Dividend=divisor D quotient C remainder

e block of data to be protected via the checksum is considered the dividend. e dividend is
divided by a pre-selected CRC polynomial which serves as the divisor. At the completion of the
division operation, a quotient and a remainder result. e remainder of the operation serves as
the CRC checksum.

Generation of a checksum is based on the concept that when a given block of data is divided
by a specific polynomial with the division hardware initialized with the same value (seed), the
same checksum will result every time the operation is performed. Similarly, if the input data is
different, the polynomial is changed, or the division hardware is seeded with a different initial
value, a different checksum will result. A number of common polynomials have been developed
to support CRC checksum generation. Two common ones include [SLAU356A, 2015]:

• CRC16-CCITT defined as f .x/ D X15 C X12 C X5 C 1

• CRC32-IS3309 defined as

f .x/ D X32
C X26

C X23
C X22

C

X16
C X12

C X11
C X10

C X8
C

X7
C X5

C X4
C X2

C X C 1 (10.1)

10.3. CYCLIC REDUNDANCY CHECK 453

A linear feedback shift register (LFSR) is used to generate the checksum. e polynomial
divisor chosen to generate the checksum specifies the hardware connection for the LFSR. For
example, the LFSR configuration for the CRC16-CCITT polynomial is shown in Figure 10.2.
Note how the polynomial terms specify the output connections of certain flip-flops within the
LFSR. To generate the checksum, the LFSR is initially configured to the seed value. e data
block is fed in as a serial data stream. e resulting remainder is used as the checksum and ap-
pended to the original data block for transmission.

data
in

shift
clock

D Q

0

D Q

1

D Q

2

D Q

3

D Q

4

D Q

5

D Q

6

D Q

7

D Q

8

D Q

9

D Q

10

D Q

11

D Q

12

D Q

13

D Q

14

D Q

15

Figure 10.2: CRC16-CCITT polynomial and LFSR configuration [SLAU356A, 2015].

10.3.1 MSP432 CRC32 MODULE
A block diagram for the MSP432 CRC32 module is provided in Figure 10.3a. e MSP432
CRC32 module is quite flexible. It allows for 16- or 32-bit CRC generation. It also provides
for data bit 0 being the MSB or LSB. is allows for compatibility with both modern and legacy
hardware. Also, to speed up the calculation of the CRC checksum, the linear feedback shift regis-
ter operation is implemented with an equivalent XOR gate combinational logic tree [SLAU356A,
2015].

e UML activity diagram for the CRC operation is provided in Figure 10.3b. e op-
eration is quite straight forward. e CRC polynomial is provided to the CRC32 system along
with the seed via the CRC16INIRES (CRC32INIRES) register. e data block to perform the
checksum operation is fed into the CRC16DI (CRC32DI) register. e CRC checksum op-
eration is performed and the checksum is available at the CRC16INIRES (CRC32INIRES)
register [SLAU356A, 2015].

10.3.2 CRC32 REGISTERS
e CRC32 system is supported by a set of the following registers [SLAU356A, 2015].

• CRC32DI CRC32 Data Input Low

• CRC32DIRB CRC32 Data In Reverse Low

• CRC32INIRES_LO CRC32 Initialization and Result Low

454 10. MSP432 SYSTEM INTEGRITY

CRC16INIRES/
CRC32INIRES

CRC16DI/
CRC32DI

CRC
Checksum
Generator

signature seed data in

(a) CRC32 block diagram.

Set polynomial

Feed in data

Get signature result

(b) CRC32 UML diagram.

Figure 10.3: MSP432 CRC32 module.

• CRC32INIRES_HI CRC32 Initialization and Result High

• CRC32RESR_LO CRC32 Result Reverse Low

• CRC32RESR_HI CRC32 Result Reverse High

• CRC16DI CRC16 Data Input Low

• CRC16DIRB CRC16 Data In Reverse Low

• CRC16INIRES CRC16 Initial and Result

• CRC16RESR CRC16 Result Reverse

Details of specific register and bits settings are contained in MSP432P4xx Family Technical Ref-
erence Manual [SLAU356A, 2015] and will not be repeated here.

10.3.3 API SUPPORT
Texas Instruments provides extensive MSP432 CRC32 support through a series of Application
Program Interfaces (APIs). Provided below is a list of CRC32 APIs. Details on API settings are
provided in MSP432 Peripheral Driver Library User’s Guide [DriverLib] and will not be repeated
here.

• uint32_t CRC32_getResult(uint_fast8_t crcType)

• uint32_t CRC32_getResultReversed(uint_fast8_t crcType)

10.3. CYCLIC REDUNDANCY CHECK 455

• void CRC32_set16BitData(uint16_t dataIn, uint_fast8_t crcType)

• void CRC32_set16BitDataReversed(uint16_t dataIn, uint_fast8_t crcType)

• void CRC32_set32BitData(uint32_t dataIn)

• void CRC32_set32BitDataReversed(uint32_t dataIn)

• void CRC32_set8BitData(uint8_t dataIn, uint_fast8_t crcType)

• void CRC32_set8BitDataReversed(uint8_t dataIn, uint_fast8_t crcType)

• void CRC32_setSeed(uint32_t seed, uint_fast8_t crcType)

Example: In this example a data array is fed into the CRC32 module and the 32-bit checksum
is retrieved [DriverLib].

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

456 10. MSP432 SYSTEM INTEGRITY

//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--
//***
//In the following very simple code example, an array of data is fed into
//the CRC32 module and the 32-bit calculation is retrieved.
//***

//Statics:
static const uint8_t myData[15] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15};

int main(void)
{
volatile uint32_t hwCalculatedCRC;
uint32_t ii;

10.3. CYCLIC REDUNDANCY CHECK 457

//Halting the Watchdog
MAP_WDT_A_holdTimer();

//Setting the polynomial and feeding in the data
MAP_CRC32_setSeed(CRC32_POLY, CRC32_MODE);

for(ii=0;ii<15;ii++)
MAP_CRC32_set8BitData(myData[ii], CRC32_MODE);

//Getting the result from the hardware module
hwCalculatedCRC = MAP_CRC32_getResult(CRC32_MODE);

//Pause for the debugger
__no_operation();
}

//**

Example: In this example a data array of sixteen 16-bit values are sent to the CRC32 module.
Also, software-based CRC-CCIT-BR algorithm is used to calculate the CRC checksum on the
same block of data. e outputs of both methods are compared. If the two checksums agree, an
LED is illuminated on P1.0.

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//

458 10. MSP432 SYSTEM INTEGRITY

//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--
//***

//***
//MSP432P401 Demo - CRC16, Compare CRC output with software-based
//algorithm

10.3. CYCLIC REDUNDANCY CHECK 459

//
//Description: An array of 16 random 16-bit values are moved through the
//CRC module, as well as a software-based CRC-CCIT-BR algorithm.
Due to
//the fact that the software-based algorithm handles 8-bit inputs only,
//the 16-bit words are broken into 2 8-bit words before being run through
//(lower byte first). The outputs of both methods are then compared to
//ensure that the operation of the CRC module is consistent with the
//expected outcome.
If the values of each output are equal, set P1.0,
//else reset.
//
//MCLK = SMCLK = default DCO~1MHz
//
// MSP432p401rpz
// ---------------
// /|\| |
// | | |
// --|RST |
// | |
// | P1.0|---> LED
//
//Wei Zhao
//Texas Instruments Inc.
//Jun 2014
//Built with Code Composer Studio V6.0
//***

#include "msp.h"

const uint16_t CRC16_Init = 0xFFFF;

const uint16_t CRC16_Input[] = {
0x0fc0, 0x1096, 0x5042, 0x0010, //16 random 16-bit numbers
0x7ff7, 0xf86a, 0xb58e, 0x7651, //these numbers can be
0x8b88, 0x0679, 0x0123, 0x9599, //modified if desired
0xc58c, 0xd1e2, 0xe144, 0xb691

};

460 10. MSP432 SYSTEM INTEGRITY

uint16_t CRC16_Result; //Holds results obtained through the CRC16 module
uint16_t SW_Results; //Holds results obtained through SW

// Software Algorithm Function Declaration
uint16_t CCITT_Update(uint16_t, uint16_t);

int main(void)
{
uint16_t i;

WDTCTL = WDTPW | WDTHOLD; //Stop WDT

//Configure GPIO
P1OUT &= ~BIT0; //Clear LED to start
P1DIR |= BIT0; //P1.0 Output

//First, use the CRC16 hardware module to calculate the CRC...
CRC16INIRES = CRC16_Init; //Init CRC16 HW module

for(i=0;i<16;i++)
{
//Input random values into CRC Hardware
CRC16DIRB = CRC16_Input[i]; //Input data in CRC
__no_operation();
}

CRC16_Result = CRC16INIRES; //Save results(per CRC-CCITT
//standard)

//Now use a software routine to calculate the CRC...
SW_Results = CRC16_Init; //Init SW CRC

for(i=0;i<16;i++)
{
//First input lower byte
SW_Results = CCITT_Update(SW_Results, CRC16_Input[i] & 0xFF);

//Then input upper byte
SW_Results = CCITT_Update(SW_Results, (CRC16_Input[i] >> 8) & 0xFF);

10.4. AES256 ACCELERATOR MODULE 461

}

//Compare data output results
if(CRC16_Result==SW_Results) //if data is equal
P1OUT |= BIT0; //set the LED

else
P1OUT &= ~BIT0; //if not, clear LED

while(1); //infinite loop
}

//***
//Software algorithm - CCITT CRC16 code
//***

uint16_t CCITT_Update(uint16_t init, uint16_t input)
{
uint16_t CCITT = (unsigned char) (init >> 8) | (init << 8);
CCITT ^= input;
CCITT ^= (unsigned char) (CCITT & 0xFF) >> 4;
CCITT ^= (CCITT << 8) << 4;
CCITT ^= ((CCITT & 0xFF) << 4) << 1;
return CCITT;
}

//***

10.4 AES256 ACCELERATOR MODULE
e MSP432 is equipped with the AES256 Accelerator Module that allows encryption and de-
cryption of data using the Rijndael cryptographic algorithm. e algorithm allows the encryption
of a 128-bit plain text data block into a corresponding size cipher text block. e data may then
be transmitted in an encrypted format and decrypted using a similar algorithm at the receiving
end [FIPS, 2001, SLAU356A, 2015].

e data algorithm uses a 128-, 192-, or 256-bit cipher key to encrypt the plain text data
block. e length of the cipher key determines the number of rounds (10, 12, or 14, respectively)
of encryption performed on the plain text data to transform it into the cipher text block. e basic
encryption process is shown in Figures 10.4a and 10.4b. e plain text 128-bit block is formatted
into a state block. e state block then goes through a series of transformation rounds including
an initial round, the sub-byte round, the shift rows round, the mix columns round, the add key

462 10. MSP432 SYSTEM INTEGRITY

round, and the final round to encrypt the data. As shown in Figure 10.4b, a specific round key is
derived from the original cipher key and used in a given round [FIPS, 2001, SLAU356A, 2015].

out[0] out[4] out[8] out[12]

out[1] out[5] out[9] out[13]

0] out[14]

1] out[15]

in[0] in[4] in[8] in[12]

in[1] in[5] in[9] in[13]

in[2] in[6] in[10] in[14]

in[3] in[7] in[11] int[15]

s[0,0] s[0.1] s[0,2] s[0,3]

 s[1,0] s[1.1] s[1,2] s[1,3]

[2,2] s[2,3]

[3,2] s[3,3]

initial
sub-bytes
shift rows

mix columns
add round key

�nal round

(a) AES256 algorithm.

Cipher Key
(AESAKEY)

Initial Key

Round Key 1

Round Key 2

Round Key 9

Round Key 10

Initial Round

Round 1

Round 2

Round 9

Round 10

Plain Text
(AESADIN)

Ciphertext
(AESADOUT)

(b) AES256 encryption process with a 128-
bit key.

Figure 10.4: AES256 encryption process. (a) AES256 algorithm and (b) AES256 encryption process
with 128-bit key. (Continues.)

A block diagram of the MSP432 AES256 Accelerator Module is provided in Figure 10.4c.
Input plain text data for encryption may be stored in register AESADIN or AESAXDIN. Data
input to AESAXDIN is XORed with the current state value. e operation of the AES256
Accelerator module is controlled by AES Control Registers 0 and 1. e AES key is pro-
vided to the AESAKEY register. e encrypted cipher text is output to the AESAOUT Regis-
ter [SLAU356A, 2015].

10.4.1 REGISTERS
e AES256 system is supported by a complement of registers including [SLAU356A, 2015]:

• AESACTL0 AES accelerator control register 0

10.4. AES256 ACCELERATOR MODULE 463

AESADIN
(AES accelerator

data in)

128-bit AES
State Memory

256-bit AES
Key Memory

AESAKEY
(AES accelerator

key register)

AES
Encryption and

Decryption Core

AESADOUT
(AES accelerator

data out)

AES Control
Registers 0.1

AESAXDIN
(AES accelerator
XORed data in)

(c) AES256 block diagram.

Figure 10.4: (Continued.) AES256 encryption process. (c) MSP432 AES256 block dia-
gram [SLAU356A, 2015].

• AESACTL1 AES accelerator control register 1

• AESASTAT AES accelerator status register

• AESAKEY AES accelerator key register

• AESADIN AES accelerator data in register

• AESADOUT AES accelerator data out register

• AESAXDIN AES accelerator XORed data in register

• AESAXIN AES accelerator XORed data in register (no trigger)

Details of specific register and bits settings are contained inMSP432P4xx Family Technical
Reference Manual [SLAU356A, 2015] and will not be repeated here.

10.4.2 API SUPPORT
Texas Instruments provides extensive MSP432 AES256 support through a series of Application
Program Interfaces (APIs). Provided below is a list of AES256 APIs. Details on API settings are

464 10. MSP432 SYSTEM INTEGRITY

provided in MSP432 Peripheral Driver Library User’s Guide [DriverLib] and will not be repeated
here.

• void AES256_clearErrorFlag(uint32_t moduleInstance)

• void AES256_clearInterruptFlag(uint32_t moduleInstance)

• void AES256_decryptData(uint32_t moduleInstance, const uint8_t *data, uint8_t *de-
cryptedData)

• void AES256_disableInterrupt(uint32_t moduleInstance)

• void AES256_enableInterrupt(uint32_t moduleInstance)

• void AES256_encryptData(uint32_t moduleInstance, const uint8_t *data, uint8_t *en-
cryptedData)

• bool AES256_getDataOut(uint32_t moduleInstance, uint8_t *outputData)

• uint32_t AES256_getErrorFlagStatus(uint32_t moduleInstance)

• uint32_t AES256_getInterruptFlagStatus(uint32_t moduleInstance)

• uint32_t AES256_getInterruptStatus(uint32_t moduleInstance)

• bool AES256_isBusy(uint32_t moduleInstance)

• void AES256_registerInterrupt(uint32_t moduleInstance, void(*intHandler)(void))

• void AES256_reset(uint32_t moduleInstance)

• bool AES256_setCipherKey(uint32_t moduleInstance, const uint8_t *cipherKey,
uint_fast16_t keyLength)

• bool AES256_setDecipherKey(uint32_t moduleInstance, const uint8_t *cipherKey,
uint_fast16_t keyLength)

• void AES256_startDecryptData(uint32_t moduleInstance, const uint8_t *data)

• void AES256_startEncryptData(uint32_t moduleInstance, const uint8_t *data)

• bool AES256_startSetDecipherKey(uint32_t moduleInstance, const uint8_t *cipherKey,
uint_fast16_t keyLength)

• void AES256_unregisterInterrupt(uint32_t moduleInstance)

Example: In this example the AES256 module is used to encrypt/decrypt data using a cipher key
and APIs from DriverLib.

10.4. AES256 ACCELERATOR MODULE 465

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--
//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that

466 10. MSP432 SYSTEM INTEGRITY

//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--
//***
//Below is a simple code example of how to encrypt/decrypt data using a
//cipher key with the AES256 module
//***

int main(void)
{
//Load a cipher key to module
MAP_AES256_setCipherKey(AES256_MODULE, CipherKey,

AES256_KEYLENGTH_256BIT);

//Encrypt data with preloaded cipher key
MAP_AES256_encryptData(AES256_MODULE, Data, DataAESencrypted);

//Load a decipher key to module
MAP_AES256_setDecipherKey(AES256_MODULE, CipherKey,

AES256_KEYLENGTH_256BIT);

//Decrypt data with keys that were generated during encryption - takes
//214 MCLK cyles.
This function will generate all round keys needed for
//
decryption first and then the encryption process starts
MAP_AES256_decryptData(AES256_MODULE, DataAESencrypted,

DataAESdecrypted);
}

10.4. AES256 ACCELERATOR MODULE 467

//***

Example: In this example the AES256module is used for encryption and decryption.e original
plain text data is encrypted and then decrypted.e results are compared and if they agree an LED
on P1.0 is illuminated. A UML activity diagram for the example is provided in Figure 10.5.

//**
// MSP432 DriverLib - v2_20_00_08
//**
//
//--COPYRIGHT--,BSD_EX
//Copyright (c) 2013, Texas Instruments Incorporated
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//- Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//- Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//Neither the name of Texas Instruments Incorporated nor the names of
//its contributors may be used to endorse or promote products derived
//from this software without specific prior written permission.
//
//THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
//"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
//LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
//FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
//COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
//INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
//BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
//OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
//ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
//TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
//USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
//DAMAGE.
// --COPYRIGHT--

468 10. MSP432 SYSTEM INTEGRITY

Reload AES key
 Keyset AES module to decrypt mode

Set AES key length to 256 bits
Load 256-bit cipher key to AESAKEY register

Decrypt data with keys generated during encryption
(~214 MCLK cycles)

Generate all round keys needed for decryption
Begin encryption process

Load CIPHER key
Set AES key length to 256 Bits

Load 256-bit cipher key to AESAKEY register

De�ne data block for encryption

De�ne 256-bit (32 byte) cipher key

Declare encrypted data variable

Declare decrypted data variable

Stop watchdog timer

Key written?

Key Written?

Data match?
 Wait for

unit to fnish
(-167 MCLK cycles)

 Wait for
unit to �nish

(-167 MCLK cycles)

Set P1.0 as output, turn o� P1.0 LeD

Initiate encryption by setting AESKEYSR to 1

Encrypt data and store to dataAESencrypted
Load 128-bit block of data to encrypt to module

Write 128-bit block of encrypted
data back to dataAESencrypted

Write 128-bit block of encrypted
data back to dataAESencrypted

Write 128-bit block of data to decrypt module

Con�rm decrypt data is identical to original data

Turn on P1.0 LED

no

yes

no

yes

no

yes

no

yes

no

yes

Figure 10.5: AES256 encryption/decryption process [SLAU356A, 2015].

10.4. AES256 ACCELERATOR MODULE 469

//**
//
// MSP432 CODE EXAMPLE DISCLAIMER
//
//MSP432 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the device's
//power-on default register values and settings such as the clock
//configuration and care must be taken when combining code from several
//examples to avoid potential side effects.
Also see:
// http://www.ti.com/tool/mspdriverlib
//for an API functional library and:
// https://dev.ti.com/pinmux/
//for a GUI approach to peripheral configuration.
//
// --/COPYRIGHT/--
//***
//MSP432P401 Demo - AES256 Encryption & Decryption
//
//Description: This example shows a simple example of encryption and
//decryption using the AES256 module.
//
// MSP432p401rpz
// -----------------
// /|\| |
// | | |
// --|RST |
// | |
// | P1.0|-->LED
//
//Key: 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
//Plaintext: 00112233445566778899aabbccddeeff
//Ciphertext: 8ea2b7ca516745bfeafc49904b496089
//
//Dung Dang
//Texas Instruments Inc.
//Nov 2013
//Built with Code Composer Studio V6.0

470 10. MSP432 SYSTEM INTEGRITY

//***

#include "msp.h"
#include <stdint.h>

uint8_t Data[16] =
{0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff };

uint8_t CipherKey[32] =
{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f };

uint8_t DataAESencrypted[16]; //Encrypted data
uint8_t DataAESdecrypted[16]; //Decrypted data

int main(void)
{
volatile uint32_t i;
uint16_t sCipherKey, tempVariable;

WDTCTL = WDTPW | WDTHOLD; //Stop WDT

P1DIR |= BIT0; //P1.0 set as output
P1OUT &= ~BIT0; //Turn off P1.0 LED

//Step 1: Load cipher key
AESACTL0 &= ~AESOP_3; //Set AES module to encrypt mode

//Set AES key length to 256 bits
AESACTL0 = AESACTL0 & (~(AESKL_1 + AESKL_2)) | AESKL__256BIT;

//Load 256-bit cipher key to the AESAKEY register
for(i = 0; i < 256/8; i = i + 2)
{
//Concatenate 2 8-bit blocks into one 16-bit block

10.4. AES256 ACCELERATOR MODULE 471

sCipherKey =(uint16_t)(CipherKey[i]);
sCipherKey = sCipherKey |((uint16_t)(CipherKey[i + 1]) << 8);

//Load 16-bit key block to AESAKEY register
AESAKEY = sCipherKey;
}

//Wait until key is written
while((AESASTAT & AESKEYWR) == 0);

//Step 2: Encrypt data and store to DataAESencrypted
//Load 128-bit block of data to encrypt to module
for(i = 0; i < 16; i = i + 2)

{
//Concatenate 2 8-bit blocks into one 16-bit block
tempVariable =(uint16_t)(Data[i]);
tempVariable = tempVariable |((uint16_t)(Data[i + 1]) << 8);

//Load 16-bit key block to AESADIn register
AESADIN = tempVariable;
}

//Initiate encryption by setting AESKEYWR to 1
AESASTAT |= AESKEYWR;

//Wait unit finished ~167 MCLK
while(AESASTAT & AESBUSY);

//Write 128-bit block of encrypted data back to DataAESencrypted
for(i = 0; i < 16; i = i + 2)

{
tempVariable = AESADOUT;
DataAESencrypted[i] = (uint8_t)tempVariable;
DataAESencrypted[i+1] = (uint8_t)(tempVariable >> 8);
}

//Step 3: Reload AES key
//Set AES module to decrypt mode

472 10. MSP432 SYSTEM INTEGRITY

AESACTL0 |= AESOP_1;

//Set AES key length to 256 bits
AESACTL0 = AESACTL0 & (~(AESKL_1 + AESKL_2)) | AESKL__256BIT;

//Load 256-bit cipher key to the AESAKEY register
for(i = 0; i < 256/8; i = i + 2)
{
//Concatenate 2 8-bit blocks into one 16-bit block
sCipherKey =(uint16_t)(CipherKey[i]);
sCipherKey = sCipherKey |((uint16_t)(CipherKey[i + 1]) << 8);

//Load 16-bit key block to AESAKEY register
AESAKEY = sCipherKey;
}

//Wait until key is written
while((AESASTAT & AESKEYWR) == 0);

//Step 4: Decrypt data with keys that were generated during
//encryption takes 214 MCLK. This function will generate all round
//keys needed for decryption first and then the encryption process
//starts.

//Write 128-bit block of data to decrypt to module
for(i = 0; i < 16; i = i + 2)
{
tempVariable = (uint16_t) (DataAESencrypted[i + 1] << 8);
tempVariable = tempVariable | ((uint16_t) (DataAESencrypted[i]));
AESADIN = tempVariable;
}

//Wait until finished ~167 MCLK
while(AESASTAT & AESBUSY);

//Write 128-bit block of encrypted data back to DataAESdecrypted
for(i = 0; i < 16; i = i + 2)
{

10.5. LABORATORY EXERCISE: AES256 473

tempVariable = AESADOUT;
DataAESdecrypted[i] = (uint8_t)tempVariable;
DataAESdecrypted[i+1] =(uint8_t)(tempVariable >> 8);
}

//Step 4: Confirm decrypted data is identical to original data
for(i = 0; i < 16; i ++)

if(DataAESdecrypted[i]!= Data[i])
while(1); //Set breakpoint here for error

P1DIR |= BIT0;
P1OUT |= BIT0; //Turn on P1.0 LED = success
while(1);

}

//***

10.5 LABORATORY EXERCISE: AES256
Develop an algorithm to encode a plain text block of data with the AES256 system, transmit
the cipher text to another microcontroller, and then decrypt back to plain text at the receiving
microcontroller.

10.6 SUMMARY
is chapter contained essential information about how to maintain the integrity of a
microcontroller-based system. e chapter began with a discussion on electromagnetic interfer-
ence (EMI), also known as noise. Design practices to minimize EMI were then discussed. e
second section of the chapter discussed the concept of the Cyclic Redundancy Check or CRC.
e final section covered the MSP432 advanced encryption standard module, the AES256.

10.7 REFERENCES AND FURTHER READING
Barrett, S. and Pack, D. 2004. Embedded Systems: Design and Applications with the 68HC12 and
HCS12, Upper Saddle River, NJ, Prentice Hall. 450

DriverLib 454, 455, 464

Federal Information Processing Standards Publication 197 (FIPS-197). November 26, 2001. 461,
462

474 10. MSP432 SYSTEM INTEGRITY

Microchip CRC Generating and Checking (AN370) Microchip, 2000. 452

MSP432 Peripheral Driver Library User’s Guide. Texas Instruments, 2015.

MSP432P4xx Family Technical Reference Manual (SLAU356A). Texas Instruments, 2015. 452,
453, 454, 461, 462, 463, 468

Noise Reduction Techniques forMicrocontroller-Based Systems (AN1705/D). Freescale Semiconduc-
tor, 2004. 450, 451

Understanding and Eliminating EMI in Microcontroller Applications (COP888). Texas Instru-
ments, 1996. 450, 451

10.8 CHAPTER PROBLEMS
Fundamental

1. Describe sources of EMI.

2. Describe EMI coupling mechanisms.

3. Describe three strategies to combat EMI.

4. Describe specific techniques to combat EMI.

5. Describe defensive programming techniques.

Advanced

1. Sketch a UML activity diagram for the CRC algorithm.

2. What is the purpose of generating a CRC checksum?

3. What does a correct checksum indicate? An incorrect one?

4. Research commonCRCpolynomials. Sketch the correspondingLFSR for each polynomial.

5. What is the purpose of the AES256 subsystem?

Challenging

1. What are the advantages and disadvantages of using different encryption key lengths with
the AES256?

2. Sketch a UML activity diagram for the AES256 encryption algorithm.

475

C H A P T E R 11

System Level Design
Objectives: After reading this chapter, the reader should be able to:

• define an embedded system;

• list multiple aspects related to the design of an embedded system;

• provide a step-by-step approach to design an embedded system;

• discuss design tools and practices related to embedded systems design;

• discuss the importance of system testing;

• apply embedded system design practices in the prototype of a MSP432-based system with
several subsystems;

• develop a detailed design for a weather station including hardware layout and interface,
structure chart, UML activity diagrams, and an algorithm coded in Energia;

• develop a detailed design for a submersible remotely operated vehicle (ROV) including
hardware layout and interface, structure chart, UML activity diagrams, and an algorithm
coded in Energia; and

• develop a detailed design for a four wheel drive (4WD) mountain maze navigating robot
including hardware layout and interface, structure chart, UML activity diagrams, and an
algorithm coded in Energia.

11.1 OVERVIEW
is chapter presents a step-by-step, methodical approach toward designing advanced embedded
systems. We begin with a definition of an embedded system. We then explore the process of how
to successfully (and with low stress) develop an embedded system prototype that meets established
requirements. e overview of embedded system design techniques was adapted with permission
from earlier Morgan & Claypool publications and several projects have been adapted for the
MSP432 with permission. We also emphasize good testing techniques. We conclude the chapter
with several extended examples. e examples illustrate the embedded system design process in
the development and prototype of a weather station, a submersible remotely operated vehicle
(ROV), and a four-wheel drive (4WD) mountain maze navigating robot.

476 11. SYSTEM LEVEL DESIGN

11.2 WHAT IS AN EMBEDDED SYSTEM?
An embedded system is typically designed for a specific task. It contains a processor to collect sys-
tem inputs and generate system outputs. e link between system inputs and outputs is provided
by a coded algorithm stored within the processor’s resident memory. What makes embedded sys-
tems design so challenging and interesting is the design must also provide for proper electrical
interface for the input and output devices, potentially limited on-chip resources, human interface
concepts, the operating environment of the system, cost analysis, related standards, and manu-
facturing aspects [Anderson, 2008]. rough careful application of this material the reader will
be able to design and prototype embedded systems based on MSP432.

11.3 EMBEDDED SYSTEM DESIGN PROCESS
ere aremany available formal design processes.We concentrate on the steps that are common to
most. We purposefully avoid formal terminology of a specific approach, and instead, concentrate
on the activities that are accomplished during the development of a system prototype. e design
process we describe is illustrated in Figure 11.1 using a Unified Modeling Language (UML)
activity diagram. We discuss the UML activity diagrams later in this section.

11.3.1 PROJECT DESCRIPTION
e goal of the project description step is to determine what the system is ultimately supposed to
do. Questions to raise and answer during this step include, but are not limited to, the following.

• What is the system supposed to do?

• Where will it be operating and under what conditions?

• Are there any restrictions placed on the system design?

To answer these questions, the designer interacts with the client to ensure clear agreement
on what is to be done. e establishment of clear, definable system requirements may need con-
siderable interaction between the designer and the client. It is essential that both parties agree on
system requirements before proceeding further in the design process. e final result of this step
is a detailed listing of system requirements and related specifications.

11.3.2 BACKGROUND RESEARCH
Once a detailed list of requirements has been established, the next step is to perform background
research related to the design. In this step, the designer will ensure they understand all require-
ments and features required by the project.is will again involve interaction between the designer
and the client. e designer will also investigate applicable codes, guidelines, protocols, and stan-
dards related to the project. is is also a good time to start thinking about the interface between
different portions of the input and output devices peripherally connected to the processor. e

11.3. EMBEDDED SYSTEM DESIGN PROCESS 477

-

 Project Description

- What is the system supposed to do?
- Operating conditions and environment
- Formal requirements

 Pre-Design

- Brainstorm possible solutions
- �oroughly investigate alternatives
- Choose best possible solution
- Identify speci�c target microcontroller
- Choose a design approach

 Implement Prototype

- Top down vs. bottom up
- Develop low-risk hardware test platform
- Software implementation

System design
need correction?

 Preliminary Testing

- Develop test plan to insure requirements
 have been met
- Test under anticipated conditions
- Test under abusive conditions
- Redo testing if errors found
- Test in low-cost, low-risk environment
- Full up test

 Complete and Accurate Documentation

- System description
- Requirements
- Structure chart
- UML activity diagram
- Circuit diagram
- Well-documented code
- Test plan

 Employ Design Tools

- Structure chart
- UML activity diagram
- Circuit diagram
- Supplemental information

 Background Research

- �oroughly understand desired requirements and features
- Determine applicable codes, guidelines, and protocols
- Determine interface requirements

Deliver Prototype

yes

no

Figure 11.1: Embedded system design process.

ultimate objective of this step is to have a thorough understanding of the project requirements,
related project aspects, and any interface challenges within the project.

11.3.3 PRE-DESIGN
e goal of the pre-design step is to convert a thorough understanding of the project into possible
design alternatives. Brainstorming is an effective tool in this step. Here, a list of alternatives is
developed. Since an embedded system involves hardware and/or software, the designer can in-
vestigate whether requirements could be met with a hardware only solution or some combination

478 11. SYSTEM LEVEL DESIGN

of hardware and software. Generally speaking, a hardware only solution executes faster; however,
the design is fixed once fielded. On the other hand, a software implementation provides flexibility
but a slower execution speed. Most embedded design solutions will use a combination of both
hardware and software to capitalize on the inherent advantages of each.

Once a design alternative has been selected, the general partition between hardware and
software can be determined. It is also an appropriate time to select a specific hardware device
to implement the prototype design. If a technology has been chosen, it is now time to select a
specific processor. is is accomplished by answering the following questions.

• What processor systems or features (i.e., ADC, PWM, timer, etc.) are required by the de-
sign?

• What is the power requirement for the electronic system?

• How many input and output pins are required by the design?

• What type of memory components are required?

• What is the maximum anticipated operating speed of the processor expected to be?

Due to the variety of onboard systems, clock speed, and low cost; the MSP432 may be used
in a wide array of applications typically held by microcontrollers and advanced processors.

11.3.4 DESIGN
With a clear view of system requirements and features, a general partition determined between
hardware and software, and a specific processor chosen, it is now time to tackle the actual design.
It is important to follow a systematic and disciplined approach to design. is will allow for low
stress development of a documented design solution that meets requirements. In the design step,
several tools are employed to ease the design process. ey include:

• employing a top-down design, bottom up implementation approach;

• using a structure chart to assist in partitioning the system;

• using a Unified Modeling Language (UML) activity diagram to work out program flow;
and

• developing a detailed circuit diagram of the entire system.

Let’s take a closer look at each of these. e information provided here is an abbreviated
version of the one provided in “Microcontrollers Fundamentals for Engineers and Scientists.”
e interested reader is referred there for additional details and an in-depth example [Barrett and
Pack, 2005].

11.3. EMBEDDED SYSTEM DESIGN PROCESS 479

Top-down design, bottom-up implementation. An effective tool to start partitioning the
design is based on the techniques of top-down design, bottom-up implementation. In this ap-
proach, you start with the overall system and begin to partition it into subsystems. At this point of
the design, you are not concerned with how the design will be accomplished but how the different
pieces of the project will fit together. A handy tool to use at this design stage is the structure chart.
e structure chart shows how the hierarchy of system hardware and software components will
interact and interface with one another. You should continue partitioning system activity until
each subsystem in the structure chart has a single definable function. Directional arrows are used
to indicate data flow in and out of a function.

UML Activity Diagram. Once the system has been partitioned into pieces, the next step
is to work out the details of the operation of each subsystem previously identified. Rather than
beginning to code each subsystem as a function, work out the information and control flow of each
subsystem using another design tool: the Unified Modeling Language (UML) activity diagram.
e activity diagram is simply a UML compliant flow chart. UML is a standardized method
of documenting systems. e activity diagram is one of the many tools available from UML to
document system design and operation. e basic symbols used in a UML activity diagram for a
processor based system are provided in Figure 11.2 [Fowler, 2000].

Starting
Activity

Transfer
of Control

Final State

Action StateBranch

Figure 11.2: UML activity diagram symbols. Adapted from [Fowler, 2000].

To develop the UML activity diagram for the system, we can use a top-down, bottom-up,
or a hybrid approach. In the top-down approach, we begin by modeling the overall flow of the
algorithm from a high level. If we choose to use the bottom-up approach, we would begin at the

480 11. SYSTEM LEVEL DESIGN

bottom of the structure chart and choose a subsystem for flow modeling. e specific course of
action chosen depends on project specifics. Often, a combination of both techniques, a hybrid
approach, is used. You should work out all algorithm details at the UML activity diagram level
prior to coding any software. If you cannot explain system operation at this higher level first, you
have no business being down in the detail of developing the code. erefore, the UML activity
diagram should be of sufficient detail so you can code the algorithm directly from it [Dale and
Lilly, 1995].

In the design step, a detailed circuit diagram of the entire system is developed. It will serve
as a roadmap to implement the system. It is also a good idea at this point to investigate available
design information relative to the project. is would include hardware design examples, software
code examples, and application notes available from manufacturers. As before, use a subsystem
approach to assemble the entire circuit. e basic building block interface circuits discussed in the
previous chapter may be used to assemble the complete circuit. At the completion of this step,
the prototype design is ready for implementation and testing.

11.3.5 IMPLEMENT PROTOTYPE
To successfully implement a prototype, an incremental approach should be followed. Again, the
top-down design, bottom-up implementation provides a solid guide for system implementation.
In an embedded system design involving both hardware and software, the hardware system in-
cluding the processor should be assembled first. is provides the software the required signals to
interact with. As the hardware prototype is assembled on a prototype board, each component is
tested for proper operation as it is brought online. is allows the designer to pinpoint malfunc-
tions as they occur.

Once the hardware prototype is assembled, coding may commence. It is important to note
that on larger projects software and hardware may be developed concurrently. As before, software
should be incrementally brought online. You may use a top-down, bottom-up, or hybrid approach
depending on the nature of the software. e important point is to bring the software online
incrementally such that issues can be identified and corrected early on.

It is highly recommended that low cost stand-in components be used when testing the soft-
ware with the hardware components. For example, push buttons, potentiometers, and LEDs may
be used as low-cost stand-in component simulators for expensive input instrumentation devices
and expensive output devices such as motors. is allows you to ensure the software is properly
operating before using it to control the actual components.

11.3.6 PRELIMINARY TESTING
To test the system, a detailed test plan must be developed. Tests should be developed to verify
that the system meets all of its requirements and also intended system performance in an opera-
tional environment. e test plan should also include scenarios in which the system is used in an

11.4. WEATHER STATION 481

unintended manner. As before, a top-down, bottom-up, or hybrid approach can be used to test
the system. In a bottom-up approach individual units are tested first.

Once the test plan is completed, actual testing may commence. e results of each test
should be carefully documented. As you go through the test plan, you will probably uncover a
number of run-time errors in your algorithm. After you correct a run-time error, the entire test
plan must be repeated. is ensures that the new fix does not have an unintended effect on another
part of the system. Also, as you process through the test plan, you will probably think of other
tests that were not included in the original test document. ese tests should be added to the
test plan. As you go through testing, realize your final system is only as good as the test plan that
supports it!

Once testing is complete, you should accomplish another level of testing where you in-
tentionally try to “jam up” the system. In other words, try to get your system to fail by trying
combinations of inputs that were not part of the original design. A robust system should con-
tinue to operate correctly in this type of an abusive environment. It is imperative that you design
robustness into your system. When testing on a low-cost simulator is complete, the entire test
plan should be performed again with the actual system hardware. Once this is completed you
should have a system that meets its requirements!

11.3.7 COMPLETE AND ACCURATE DOCUMENTATION
With testing complete, the system design should be thoroughly documented. Much of the docu-
mentation will have already been accomplished during system development. Documentation will
include the system description, system requirements, the structure chart, the UML activity dia-
grams, documenting program flow, the test plan, results of the test plan, system schematics, and
properly documented code. To properly document code, you should carefully comment all func-
tions describing their operation, inputs, and outputs. Also, comments should be included within
the body of the function describing key portions of the code. Enough detail should be provided
such that code operation is obvious. It is also extremely helpful to provide variables and functions
within your code names that describe their intended use.

You might think that comprehensive system documentation is not worth the time or effort
to complete it. Complete documentation pays rich dividends when it is time to modify, repair, or
update an existing system. Also, well-documented code may be often reused in other projects: a
method for efficient and timely development of new systems.

In the next sections we provide detailed examples of the system design process for a weather
station, a submersible robot, and a four wheel drive robot capable of navigating through a moun-
tainous maze.

11.4 WEATHER STATION
In this project, we design a weather station to sense wind direction and ambient temperature. e
wind direction will be displayed on LEDs arranged in a circular pattern. e wind direction and

482 11. SYSTEM LEVEL DESIGN

temperature will also be transmitted serially via the SPI from the microcontroller to an MMC/SD
flash memory card for data logging.

11.4.1 REQUIREMENTS
e requirements for this system include:

• design a weather station to sense wind direction and ambient temperature;

• wind direction should be displayed on LEDs arranged in a circular pattern; and

• wind direction and temperature should be transmitted serially from the microcontroller to
an MMC/SD card for storage.

11.4.2 STRUCTURE CHART
To begin, the design process, a structure chart is used to partition the system into definable pieces.
We employ a top-down design/bottom-up implementation approach. e structure chart for the
weather station is provided in Figure 11.3. e three main microcontroller subsystems needed
for this project are the SPI for serial communication to the MMC/SD card, the ADC14 system
to convert the analog voltage from the LM34 temperature sensor and weather vane into digital
signals, and the wind direction display. e system is partitioned until the lowest level of the
structure chart contains “doable” pieces of hardware components or software functions. Data flow
is shown on the structure chart as directed arrows.

11.4.3 CIRCUIT DIAGRAM
Analog sensors: e circuit diagram for the weather station is provided in Figure 11.4. e
weather station is equipped with two input sensors: the LM34 to measure temperature and the
weather vane to measure wind direction. Both of the sensors provide an analog output that is fed
to the MSP432 on P5.2 (J2, pin 12) and P5.0 (J2, pin 13). e LM34 provides 10 mV output
per degree Fahrenheit. e weather vane provides a voltage output from 0–3.3 VDC for different
wind directions, as shown in Figure 11.4. e weather vane must be oriented to a known direction
with the output voltage at this direction noted. We assume that 0 VDC corresponds to North.

Wind direction display: ere are eight different LEDs to drive for the wind direction
indicator. An interface circuit is required for each LED as shown in the figure.

MMC/SDflashmemory card: e system also includes an MMC/SD flash memory card
as a data logger. e card is interfaced to the MSP432 via the serial peripheral interface (SPI).
An easy method to construct an interface between the MSP432 and the SD card is via an SD
card reader and breakout board. For this example, the card reader available from 43oh.com was
used. A 6-pin header was soldered to the breakout board J5 connector. e interface between the
MSP432 and the 43oh.com breakout board is shown in Figure 11.4.

43oh.com
43oh.com

11.4. WEATHER STATION 483

Weather Station

ADC14
Wind direction

display
SPI

SPI
initialize

and transmit

MMC/SD
card

Read ADC14

ADC14
initialize

Weather
vane

LM34
temp sensor

LED
interface

data
for TX

data
for display

ch for
conv

conv
data

wind
direction

wind
direction

temp
data

Figure 11.3: Weather station structure chart.

11.4.4 UML ACTIVITY DIAGRAMS
e UML activity diagram for the main program is provided in Figure 11.5. After initializing
the subsystems, the program enters a continuous loop where temperature and wind direction are
sensed and displayed on the LCD and the LED display. e sensed values are then transmitted
via the SPI to the MMC/SD card. e system then enters a delay, which determines how often
the temperature and wind direction parameters are updated.

11.4.5 MICROCONTROLLER CODE
For quick prototyping the first version of the code for this project is rendered in Energia. After
initializing the system, the code continuously loops and reads temperature and wind direction
data, displays the data to the LED array, and stores the data to the MMC/SD card. A delay
should be inserted in the loop to determine how often the weather data should be collected.
During development code status is sent to the serial monitor. Printing to the serial monitor is
enabled with the variable “troubleshoot.”

//***
//weather station
//- Equipped with Sparkfun weather meters (SEN-08942)

484 11. SYSTEM LEVEL DESIGN

from MSP432

3.3 VDC
120 N

N

J

1

3
10 K

10 K

10 K 10 K 10 K 10 K 10 K 10 K 10 K
5 10 12 5 10 123

2 6 9 13 2 6 9 13

7

4

4

1

1

8 14 1 7 14

K G2 L M N G1 H

NE

NE

E

E

SE

SE

S

S

SW

SW

W

W

WN

NW

MPQ2222

N
: P

4.
0,

 J3
, p

in
 2

4
N

E
: P

4.
1,

 J1
, p

in
 5

E
: P

4.
2,

 J1
, p

in
 2

5

SE
: P

4.
3,

 J1
, p

in
 6

S:
 P

4.
4,

 J1
, p

in
 2

6

SW
: P

4.
5,

J3
, p

in
 2

7
W

: P
4.

6,
 J1

, p
in

 8
N

W
: P

4.
7,

J3
, p

in
 2

8

P5.2, A3
pin 12

weather vane

Degrees
0
22.5
45
67.5
90
112.5
135
157.5
180
202.5
225
247.5
270
292.5
315
337.5

Ohms
33 K
6.5 K
8.2 K
891
1 K
688
2.2 K
1.41 K
3.9 K
3.14 K
16 K
14.12 K
120 K
42.12 K
64.9 K
21.88 K

Vout
2.53
1.31
1.49
0.27
0.30
0.21
0.60
0.41
0.93
0.79
2.03
1.93
3.05
2.67
2.86
2.26

Sparkfun Weather
Meters (SEN-08942)

Vcc = 5V

Vcc = 3.3V

LM34
temperature
sensor

!e Card Reader
43oh.com v1.3
SDCard Breakout

Vcc + 3.3 VDC
(J1, pin 1)

Vcc + 3.3 VDC
(J1, pin 1)

Gnd
Vcc

MISO
MOSI
SCLK

CS

Gnd (J3, pin 22)
Vcc: +3.3 VDC (J1, pin 1)
MISO (P1.7, J2, pin 14)
MOSI-Tx (P1.6, J2, pin 15)
SCLK (P1.5, J1, pin 7)
CS (P3.0, J2, pin 18)

75
1 µF

J5
3.3 K

100 nF

47 K

P5.0, A5
pin 13

Figure 11.4: Circuit diagram for weather station.

11.4. WEATHER STATION 485

Include �les
Global variables

Function prototypes

Initialize ADC
Initialize SPI

While(1)

Convert temp

Convert wind direction

Delay
(desired_update_time)

Display wind direction
on LED

Transmit results to
MMC/SD card via SPI

Figure 11.5: Weather station UML activity diagram.

486 11. SYSTEM LEVEL DESIGN

// - rain gauge
// - anemometer
// - wind vane
//- SD card datalogger
// - Orginally developed by Tom Igoe for the Arduino processor
// 24 November 2010.
// - Modified for use with the MSP432 LaunchPad by Martin Valencia
// February 2016, Element 14 post "Interfacing SD Card with MSP432."
// - Interface details between SD card and MSP432 adapted from
// "Interfacing an SD-Card to the LaunchPad - A Walkthrough
// Tutorial by 43oh," December 21, 2013.
// - The SD card is interfaced to the MSP432 via the SPI. SPI
// connections:
// - MOSI - pin 15
// - MISO - pin 14
// - CLK - pin 7
// - CS - pin 18 (also referred to as SS pin)
// - Software modifications:
// - Update file: Sd2PinMap.h with pin assignments provided above.
// - Change CS (Chip Select) to pin 18 in code below.
// - SD card datalogger
// - Created 24 Nov 2010
// - Modified 9 Apr 2012
// - by Tom Igoe
// - SD datalogger code is in the public domain.
//- LM34 temperature sensor
//- Sparkfun LCD-09067, serial enabled 16x2 LCD, 3.3 VDC
//This code is in the public domain.
//***

#include <SPI.h> //include files for SD card datalogger
#include <SD.h>

//analog input pins
#define wind_dir 13 //analog pin - weather vane
#define temp_sensor 12 //analog pin - LM34 temp sensor

//digital output pins - LED indicators
#define N_LED 24 //digital pin - N LED

11.4. WEATHER STATION 487

#define NE_LED 5 //digital pin - NE LED
#define E_LED 25 //digital pin - E LED
#define SE_LED 6 //digital pin - SE LED
#define S_LED 26 //digital pin - S LED
#define SW_LED 27 //digital pin - SW LED
#define W_LED 8 //digital pin - W LED
#define NW_LED 28 //digital pin - NW LED

int wind_dir_value; //declare variable for wind dir
int temp_value; //declare variable for temp
int troubleshoot = 1; //1: serial monitor prints

const int chipSelect = 18;

float wind_direction_float;
float temp_value_float;

void setup()
{
//LED indicators
pinMode(N_LED, OUTPUT); //config pin for digital out - N LED
pinMode(NE_LED, OUTPUT); //config pin for digital out - NE LED
pinMode(E_LED, OUTPUT); //config pin for digital out - E LED
pinMode(SE_LED, OUTPUT); //config pin for digital out - SE LED
pinMode(S_LED, OUTPUT); //config pin for digital out - S LED
pinMode(SW_LED, OUTPUT); //config pin for digital out - SW LED
pinMode(W_LED, OUTPUT); //config pin for digital out - W LED
pinMode(NW_LED, OUTPUT); //config pin for digital out - NW LED

//SD card chip select
pinMode(18, OUTPUT); //config pin for digital out - SD CS

//Serial monitor - open serial communications
if(troubleshoot == 1) Serial.begin(9600);

//SD card initialization
if(troubleshoot == 1) Serial.print("Initializing SD card...");

//see if the card is present and can be initialized:

488 11. SYSTEM LEVEL DESIGN

if(!SD.begin(chipSelect))
{
if(troubleshoot == 1) Serial.println("Card failed, or not present");
// don't do anything more:
return;
}

if(troubleshoot == 1) Serial.println("card initialized.");

}

void loop()
{
// make a string for assembling the data to log:
String dataString = "";

//read two sensors and append to the string
//analog read returns value between 0 and 1023
wind_dir_value = analogRead(wind_dir);
temp_value = analogRead(temp_sensor);

if(troubleshoot == 1)Serial.println(wind_dir_value);
if(troubleshoot == 1)Serial.println(temp_value);

//LM34 provides 10 mV/degree
temp_value =(int)(((temp_value/1023.0) * 3.3)/.010);
if(troubleshoot == 1)Serial.println(temp_value);

dataString += String(wind_dir_value);
dataString += ",";
dataString += String(temp_value);
dataString += ",";
delay(10000); //data update cycle time

//Open the file.
Note that only one file can be open at a time,
File dataFile = SD.open("datalog1.txt", FILE_WRITE);

// if the file is available, write to it:
if (dataFile)

11.4. WEATHER STATION 489

{
dataFile.println(dataString);
dataFile.close();
// print to the serial port too:
if(troubleshoot == 1)Serial.println(dataString);
}

// if the file isn't open, pop up an error:
else
{
if(troubleshoot == 1) Serial.println("error opening datalog1.txt");
}

//display wind direction
display_wind_direction(wind_dir_value);

}

//***

void display_wind_direction(unsigned int wind_dir_int)
{
float wind_dir_float;

//convert wind direction to float
wind_dir_float = wind_dir_int/1023.0 * 3.3;

if(troubleshoot == 1)Serial.println(wind_dir_float);

//N - LED0
if((wind_dir_float <= 2.56)&&(wind_dir_float > 2.50))

{
digitalWrite(N_LED, HIGH); digitalWrite(NE_LED, LOW);
digitalWrite(E_LED, LOW); digitalWrite(SE_LED, LOW);
digitalWrite(S_LED, LOW); digitalWrite(SW_LED, LOW);
digitalWrite(W_LED, LOW); digitalWrite(NW_LED, LOW);
}

//NE - LED1
if((wind_dir_float > 1.46)&&(wind_dir_float <= 1.52))

{
digitalWrite(N_LED, LOW); digitalWrite(NE_LED, HIGH);

490 11. SYSTEM LEVEL DESIGN

digitalWrite(E_LED, LOW); digitalWrite(SE_LED, LOW);
digitalWrite(S_LED, LOW); digitalWrite(SW_LED, LOW);
digitalWrite(W_LED, LOW); digitalWrite(NW_LED, LOW);
}

//E - LED2
if((wind_dir_float > 0.27)&&(wind_dir_float <= 0.33))

{
digitalWrite(N_LED, LOW); digitalWrite(NE_LED, LOW);
digitalWrite(E_LED, HIGH); digitalWrite(SE_LED, LOW);
digitalWrite(S_LED, LOW); digitalWrite(SW_LED, LOW);
digitalWrite(W_LED, LOW); digitalWrite(NW_LED, LOW);
}

//SE - LED3
if((wind_dir_float > 0.57)&&(wind_dir_float <= 0.63))

{
digitalWrite(N_LED, LOW); digitalWrite(NE_LED, LOW);
digitalWrite(E_LED, LOW); digitalWrite(SE_LED, HIGH);
digitalWrite(S_LED, LOW); digitalWrite(SW_LED, LOW);
digitalWrite(W_LED, LOW); digitalWrite(NW_LED, LOW);
}

//S - LED4
if((wind_dir_float > 0.9)&&(wind_dir_float <= 0.96))

{
digitalWrite(N_LED, LOW); digitalWrite(NE_LED, LOW);
digitalWrite(E_LED, LOW); digitalWrite(SE_LED, LOW);
digitalWrite(S_LED, HIGH); digitalWrite(SW_LED, LOW);
digitalWrite(W_LED, LOW); digitalWrite(NW_LED, LOW);
}

//SW - LED5
if((wind_dir_float > 2.0)&&(wind_dir_float <= 2.06))

{
digitalWrite(N_LED, LOW); digitalWrite(NE_LED, LOW);
digitalWrite(E_LED, LOW); digitalWrite(SE_LED, LOW);
digitalWrite(S_LED, LOW); digitalWrite(SW_LED, HIGH);
digitalWrite(W_LED, LOW); digitalWrite(NW_LED, LOW);

11.5. SUBMERSIBLE ROBOT 491

}

//W - LED6
if((wind_dir_float > 3.02)&&(wind_dir_float <= 3.08))

{
digitalWrite(N_LED, LOW); digitalWrite(NE_LED, LOW);
digitalWrite(E_LED, LOW); digitalWrite(SE_LED, LOW);
digitalWrite(S_LED, LOW); digitalWrite(SW_LED, LOW);
digitalWrite(W_LED, HIGH); digitalWrite(NW_LED, LOW);
}

//NW - LED7
if((wind_dir_float > 2.83)&& (wind_dir_float <= 2.89))

{
digitalWrite(N_LED, LOW); digitalWrite(NE_LED, LOW);
digitalWrite(E_LED, LOW); digitalWrite(SE_LED, LOW);
digitalWrite(S_LED, LOW); digitalWrite(SW_LED, LOW);
digitalWrite(W_LED, LOW); digitalWrite(NW_LED, HIGH);
}

}

//***

11.4.6 PROJECT EXTENSIONS
e control system provided above has a set of very basic features. Here are some possible exten-
sions for the system.

• Equip the weather station with an LCD display.

• In addition to the wind vane, the Sparkfun weather meters (SEN-08942) include a rain
gauge and an anemometer. Add these features to the weather station.

• Extend the eight LED display to sixteen LEDs.

11.5 SUBMERSIBLE ROBOT
e area of submersible robots is fascinating and challenging. To design a robot is quite com-
plex (yet fun). To add the additional requirement of waterproofing key components provides an
additional level of challenge. (Water and electricity do not mix!) In this section we provide the
construction details and a control system for a remotely operated vehicle, an ROV. Specifically,
we develop the structure and control system for the SeaPerch style ROV, as shown in Figure 11.6.

492 11. SYSTEM LEVEL DESIGN

By definition, an ROV is equipped with a tether umbilical cable that provides power and control
signals from a surface support platform. An Autonomous Underwater Vehicle (AUV) carries its
own power and control equipment and does not require surface support [Seaperch].

Details on the construction and waterproofing of an ROV are provided in the excellent
and fascinating Build Your Own Underwater Robot and Other Wet Projects by Harry Bohm and
Vickie Jensen. For an advanced treatment, please see eROVManual-A User Guide for Remotely
Operated Vehicles by Robert Crist and Robert Wernli, Sr. ere is a national-level competition for
students based on the SeaPerch ROV. e goal of the program is to stimulate interest in the next
generation of marine related engineering specialties [Seaperch].

Left
Float

Right
Float

Right
�ruster

Left
�ruster

Vertical
�ruster

Power and Control
Umbilical

Figure 11.6: SeaPerch ROV. (Adapted and used with permission of Bohm and Jensen, West Coast
Words Publishing.)

11.5.1 APPROACH
is is a challenging project; however, we take a methodical, step-by-step approach to successful
design and construction of the ROV. We complete the design tasks in the following order:

• determine requirements;

• design and construct ROV structure;

11.5. SUBMERSIBLE ROBOT 493

L C R

Battery

Figure 11.7: Power and control are provided remotely to the SeaPerch ROV. (Adapted and used with
permission of Bohm and Jensen, West Coast Words Publishing.)

• design and fabricate control electronics;

• design and implement control software using Energia;

• construct and assemble a prototype; and

• test the prototype.

11.5.2 REQUIREMENTS
e requirements for the ROV system include:

494 11. SYSTEM LEVEL DESIGN

• develop a control system to allow a three thruster (motor or bilge pump) ROV to move
forward, left (port), and right (starboard);

• the ROV will be pushed down to a shallow depth via a vertical thruster and return to surface
based on its own, slightly positive buoyancy;

• ROV movement will be under joystick control;

• light-emitting diodes (LEDs) are used to indicate thruster assertion;

• all power and control circuitry will be maintained in a surface support platform, as shown
in Figure 11.7; and

• an umbilical cable connects the support platform to the ROV.

11.5.3 ROV STRUCTURE
eROV structure is shown in Figure 11.8.e structure is constructed with 0.75-in PVCpiping.
e structure is assembled quickly using “T” and corner connectors. e pieces are connected
using PVC glue ormachine screws.e PVCpipe and connectors are readily available in hardware
and home improvement stores.

e fore or bow portion of the structure is equipped with plexiglass panels to serve as
mounting bulkheads for the thrusters. e panels are mounted to the PVC structure using ring
clamps. Either waterproofed electric motors or submersible bilge pumps are used as thrusters. A
bilge pump is a pump specifically designed to remove water from the inside of a boat. e pumps
are powered from a 12 VDC source and have typical flow rates from 360 to over 3,500 gallons
per minute. ey range in price from U.S. $20–80 (www.shorelinemarinedevelopment.com).
Details on waterproofing electric motors are provided in Build Your Own Underwater Robot and
Other Wet Projects. We use three Shoreline Bilge Pumps rated at 600 gallons per minute (GPM).
ey are available online from www.walmart.com.

e aft or stern portion of the structure is designed to hold the flexible umbilical cable.
e cable provides a link between the MSP432 based control system and the thrusters. Each
thruster may require up to 1-2 amps of current. erefore, a 4-conductor, 16 AWG, braided (for
flexibility) conductor cable is recommended. e cable is interfaced to the bilge pump leads using
soldered connections or Butt connectors. e interface should be thoroughly waterproofed using
caulk. For this design the interface was placed within a section of PVC pipe equipped with end
caps. e resulting container is filled with waterproof caulk.

Once the ROV structure is complete, its buoyancy is tested. is is accomplished by plac-
ing the ROV structure in water. e goal is to achieve a slightly positive buoyancy. With positive
buoyancy the structure floats. With neutral buoyancy the structures hovers beneath the surface.
With negative buoyancy the structure sinks. A more positive buoyancy way be achieved by attach-
ing floats or foam to the structure tubing. A more negative buoyancy may be achieved by adding
weights to the structure [Bohm and Jensen, 2012].

www.shorelinemarine development.com
www.walmart.com

11.5. SUBMERSIBLE ROBOT 495

Stern

Umbilical Cable Side View

Top View

Bow

3/4” diameter PVC

up/down

thruster

Per side:

2 each - 4-1/2”

3 each - 4-1/2”

2 each - 7”

Shoreline
Bilge Pump

S
h
orelin

e
B

ilge P
um

p
S

h
orelin

e
B

ilge P
um

p

W
aterproof

In
terface

Shoreline
Bilge Pump

Shoreline
Bilge Pump

ring
clamp

ring
clamp

ring
clamp

ring
clamp

ring
clamp

ring
clamp

ring
clamp

ring
clamp

Figure 11.8: SeaPerch ROV structure.

496 11. SYSTEM LEVEL DESIGN

11.5.4 STRUCTURE CHART
e SeaPerch structure chart is provided in Figure 11.9. As can be seen in the figure, the SeaPerch
control system will accept input from the five position joystick (left, right, select, up, and down).
We use the Sparkfun thumb joystick (Sparkfun COM-09032) mounted to a breakout board
(Sparkfun BOB-09110), as shown in Figure 11.11. A MSP432 compatible booster pack is con-
structed from two 2 � 10 edge connectors and a prototype builder 1.6” � 2.7” epoxy glass PCB
(Jameco #105100). e joystick breakout board is mounted to this PCB.

e joystick schematic and connections to MSP432 are provided in Figures 11.10
and 11.11.

Seaperch

Control System

Five Position

Joystick

Motor

Control

Motor

Assertion

Motor

Interface

Left

�ruster

Vertical

�ruster

Right

�ruster

Left

LED

Vertical

LED

Right

LED

Light Emitting
Diodes (LEDs)

Interface

LED

assertion

ROV

Direction
Direction

Figure 11.9: SeaPerch ROV structure chart.

In response to user joystick input, the SeaPerch control algorithm will issue a control com-
mand indicating desired ROV direction. In response to this desired direction command, the mo-
tor control algorithm will issue control signals to assert the appropriate thrusters and signals to
illuminate appropriate LEDs.

11.5. SUBMERSIBLE ROBOT 497

5.0 VDC

220 Ω

470 Ω

470 Ω

470 Ω
TIP120

220 Ω 220 Ω

5.0 VDC 5.0 VDC 12 VDC

12 VDC

LED thruster indicators

12 VDC

12 VDC
rechargeable
battery

5 VDC

3.3 VDC

3.3 VDC

5A

5A
battery
charger

on/o"

12 VDC

+ + +
left vertical right

P4.2,

J3 pin 25

PWM

P2.4, J4, pin 30
PWM

P2.6, J4, pin 39

PWM

P2.5, J2, pin 19

P4.4,

J3 pin 26

P4.5,

J3 pin 25

10 KΩ

10 K

SEL (P4.7,
J3 pin 28)

10 KΩ 10 KΩ 2N2222

1N4001

1N4001

7805 LM
317T

640

390

GND

thumb joystick

sel

V
cc

V
E

R
T

H
O

R
Z

S
E

L

G
N

D

Select
(push)

Vcc

1N4001

TIP 120

TIP 120

vertical

thruster

left

thruster

right

thruster

0.33 µF

0.1 µF 0.1 µF

++

-

+

-

+

-

+

-

HORZ
(P5.2, A3,
J2, pin 12)

VERT
(P5.0, A5,
J2, pin 13)

M

M M

Figure 11.10: SeaPerch ROV interface control.

498 11. SYSTEM LEVEL DESIGN

c
b

e

c
b

e

c
b

e

1.0

12 V

ground

3.
3

V, t
o

jo
ys

tic
k

Vcc
 (P

)

gr
ou

nd
, t

o
M

SP43
2

gr
ou

nd
 (B

k)

lef
t L

ED
 in

pu
t,

to
 M

SP43
2

pi
n

25
 (G

)

lef
t t

hru
ste

r i
np

ut
, t

o
M

SP43
2

pi
n

30
 (Y

)

rig
ht L

ED
 in

pu
t,

to
 M

SP43
2

pi
n

27
 (O

)

ve
rt

LED
 in

pu
t,

to
 M

SP43
2

pi
n

26
 (B

1)

rig
ht t

hru
ste

r i
np

ut
, t

o
M

SP43
2

pi
n

40
 (B

r)

ve
rt

th
ru

ste
r i

np
ut

, t
o

M
SP43

2
pi

n
19

 (W
)

40: right_thruster(Br)

Sparkfun thumb joystick on breakout board and

Jameco Protype Builder 1.6” X 2.7” PCB (#105100)

19: vertical_thruster(W)

13: joystick_vert
12: joystick_hor

40 20(P)(B1)121

Select

(push)

V
C

C

V
E

R
T

H
O

R
Z

S
E

L

G
N

D

to ROV

5A fuse

5A

on/o!

12 VDC

Battery

Battery

Charger

4
co

n
d

uc
to

r
Jo

n
es

co
n

n
ec

to
r

peb
mounting hole for
spacer hardware

to vertical
thruster

to right
thruster

to left
thruster12 V

12 V 5 V ground

10
 K

10 K

0.
33 0.

1

ad
j

ou
t

in
p

64
0

39
0

IN
40

01

IN
40

01

IN
40

01

10 10 10

22
0

22
0

22
0

10
 K

10
 K

7805
I C O

LM317

TIP
120

B C E

TIP
120

B C E

TIP
120

B C E

(G)l3lef t_LED: 25
(B1)ver t ica l_LED: 26

(O)r ight_LED: 27
joyst ick_sel : 28

(Y)lef t_thruster : 30

Figure 11.11: SeaPerch ROV printed circuit board interface.

11.5. SUBMERSIBLE ROBOT 499

11.5.5 CIRCUIT DIAGRAM
e circuit diagram for the SeaPerch control system is shown in Figure 11.10. e thumb joystick
is used to select desired ROV direction. e thumb joystick contains two built-in potentiometers
(horizontal and vertical). A reference voltage of 3.3 VDC is applied to the VCC input of the
joystick. As the joystick is moved, the horizontal (HORZ) and vertical (VERT) analog output
voltages will change to indicate the joystick position. e joystick is also equipped with a digital
select (SEL) button. e SEL button is used to activate an ROV dive using the vertical thruster.
e joystick is interfaced to MSP432, as shown in Figure 11.10.

ere are three LED interface circuits connected to MSP432 header pins P4.2, P4.4, and
P4.5. e LEDs illuminate to indicate the left, vertical and right thrusters have been asserted. As
previously mentioned, the prime mover for the ROV are three bilge pumps. e left and right
bilge pumps are driven by pulse width modulation channels (MSP432 P2.4 and P2.6) via power
NPN Darlington transistors (TIP 120), as shown in Figure 11.10. e vertical thrust is under
digital pin control P2.5 equipped with NPN Darlington transistor (TIP 120) interface. Both the
LED and the pump interfaces were discussed in an earlier chapter.

e interface circuitry between the MSP432 LaunchPad and the bilge pumps is mounted
on a printed circuit board (PCB) within the control housing. e interface between MSP432, the
PCB, and the umbilical cable is provided in Figure 11.11.

11.5.6 UML ACTIVITY DIAGRAM
e SeaPerch control system UML activity diagram is shown in Figure 11.12. After initializing
the MSP432 pins the control algorithm is placed in a continuous loop awaiting user input. In
response to user input, the algorithm determines desired direction of ROV travel and asserts
appropriate control signals for the LED and motors.

11.5.7 MSP432 CODE
In this example we use the thumb joystick to control the left and right thruster (motor or bilge
pump). e joystick provides a separate voltage from 0–3.3 VDC for the horizontal (HORZ)
and vertical (VERT) position of the joystick. We use this voltage to set the duty cycle of the
pulse width modulated (PWM) signals sent to the left and right thrusters. e select pushbutton
(SEL) on the joystick is used to assert the vertical thruster. e analog read function (analogRead)
is used to read the X and Y position of the joystick. A value from 0–1023 is reported from the
analog read function corresponding to 0–3.3 VDC. After the voltage readings are taken they are
scaled to 3.3 VDC for further processing. Joystick activity is divided into multiple zones (0–8) as
shown in Figure 11.13. e joystick signal is further processed, consistent with the joystick zone
selected.

500 11. SYSTEM LEVEL DESIGN

no

no

no

yes

yes

yes

no

Bow

Stern

Por t

Dive

Starboard

Zone 1

.

.

Zone 7

Inc lude !les
Global var iables

Funct ion prototypes

Read joyst ick posi t ion
(e.g. , bow, s tern,

star toard, por t , dive)

Asser t ver t ica l thruster
and ver t ica l LED

Proceed r ight
and for ward

Con!gure pins

2000 ms?

Zone 0?

Zone 8?

Figure 11.12: SeaPerch ROV UML activity diagram.

11.5. SUBMERSIBLE ROBOT 501
Forward

(bow)

Left
(port)

Left
(port)

Right
(starboard)

Right
(starboard)

Reverse
(stern)

Reverse
(stern)

Y-Vertical (analog)
3.3 VDC

Y-Vertical (analog)
0 VDC

Y-Vertical (analog)
0 VDC
Forward
(bow)

X-Horizontal
(analog)
0 VDC

X-Horizontal
(analog)
0 VDC

X-Horizontal
(analog)
3.3 VDC

X-Horizontal
(analog)
3.3 VDC

Y-Vertical (analog)
3.3 VDC

Select
(push)

Select
(push)

1.6 V (496)

1.7 V (527)

1.
6

V
 (

49
6)

1.
7

V
 (

52
7)

II

I

V

III VII

VIII

IV VI

Figure 11.13: Joystick position as related to thruster activity.

//***
//ROV
//In response to joystick input, the SeaPerch control algorithm issues
//a control command indicating desired ROV direction.
In response to
//desired direction command, the motor control algorithm issues
//control signals to assert the appropriate thrusters and LEDs.
//
//This code example is in the public domain.
//***

//analog input pins
#define joystick_hor 12 //analog pin - joystick horizontal in

502 11. SYSTEM LEVEL DESIGN

#define joystick_ver 13 //analog pin - joystick vertical in

//digital input pin
#define joystick_sel 28 //digital pin - joystick select in

//digital output pins - LED indicators
#define left_LED 25 //digital pin - left LED out
#define vertical_LED 26 //digital pin - vertical LED out
#define right_LED 27 //digital pin - right LED out

//thruster outputs
#define left_thruster 30 //digital pin - left thruster
#define right_thruster 40 //digital pin - right thruster
#define vertical_thruster 19 //digital pin - vertical thruster

int joystick_hor_value; //horizontal joystick value
int joystick_ver_value; //vertical joystick value
int joystick_sel_value; //joystick select value
int joystick_thrust_on; //1: thrust on; 0: off
int troubleshoot = 1; //1: serial monitor prints

void setup()
{
//LED indicators
pinMode(left_LED, OUTPUT); //config pin for digital out - left LED
pinMode(vertical_LED, OUTPUT); //config pin for digital out - vert LED
pinMode(right_LED, OUTPUT); //config pin for digital out - right LED

//joystick select input
pinMode(joystick_sel, INPUT); //config pin for digital in - joystick sel

//thruster outputs
pinMode(left_thruster, OUTPUT); //config digital out - left thruster
pinMode(vertical_thruster, OUTPUT); //config digital out - vertical thruster
pinMode(right_thruster, OUTPUT); //config digital out - right thruster

//Serial monitor - open serial communications
if(troubleshoot == 1) Serial.begin(9600);
}

11.5. SUBMERSIBLE ROBOT 503

void loop()
{
//set update interval
delay(1000);

//turn off LEDs
digitalWrite(left_LED, LOW); //left LED - off
digitalWrite(vertical_LED, LOW); //vertical LED - off
digitalWrite(right_LED, LOW); //right LED - off

//read hor and vert joystick position
//analog read returns value between 0 and 1023
joystick_hor_value = analogRead(joystick_hor);
joystick_ver_value = analogRead(joystick_ver);

//Print sensor values to Serial Monitor
if(troubleshoot == 1)
{
Serial.print("Joystick H: ");
Serial.println(joystick_hor_value);
Serial.print("Joystick V: ");
Serial.println(joystick_ver_value);
}

//Read vertical thrust
joystick_thrust_on = digitalRead(joystick_sel); //vertical thrust?

//**
//vertical thrust - active low pushbutton on joystick
//**
if(joystick_thrust_on == 0)
{
digitalWrite(vertical_thruster, HIGH);
digitalWrite(vertical_LED, HIGH);
if(troubleshoot == 1) Serial.println("Thrust is on!");
}

else
{

504 11. SYSTEM LEVEL DESIGN

digitalWrite(vertical_thruster, LOW);
digitalWrite(vertical_LED, LOW);
if(troubleshoot == 1) Serial.println("Thrust is off!");
}

//***
//process different joystick zones
//***
//Case 0: Joystick in null position
//Inputs:
// X channel between 1.60 to 1.70 VDC - null zone (496 to 527)
// Y channel between 1.60 to 1.70 VDC - null zone (496 to 527)
//Output:
// Shut off thrusters
//***

if((joystick_hor_value > 496)&&(joystick_hor_value < 527)&&
(joystick_ver_value > 496)&&(joystick_ver_value < 527))

{
if(troubleshoot == 1) Serial.println("Zone 0");

if(troubleshoot == 1)
{
Serial.print("Joystick H: ");
Serial.println(joystick_hor_value);
Serial.print("Joystick V: ");
Serial.println(joystick_ver_value);
Serial.print("Thrust: ");
Serial.println(joystick_thrust_on);
Serial.println("");
Serial.println("");
}

//assert thrusters to move forward
analogWrite(left_thruster, 0);
analogWrite(right_thruster, 0);

//assert LEDs

11.5. SUBMERSIBLE ROBOT 505

digitalWrite(left_LED, LOW); //de-assert left LED
digitalWrite(right_LED, LOW); //de-assert right LED
}

//***
//***
//process different joystick zones
//***
//Case 1:
//Inputs:
// X channel between 1.60 to 1.70 VDC - null zone (496 to 527)
// Y channel <= 1.60 VDC (496)
//Output:
// Move forward - provide same voltage to left and right thrusters
//***

if((joystick_hor_value > 496)&&(joystick_hor_value < 527)&&
(joystick_ver_value <= 496))

{
if(troubleshoot == 1) Serial.println("Zone 1");

//scale joystick vertical to value from 0 to 1
joystick_ver_value = 496 - joystick_ver_value;

if(troubleshoot == 1)
{
Serial.print("Joystick H: ");
Serial.println(joystick_hor_value);
Serial.print("Joystick V: ");
Serial.println(joystick_ver_value);
Serial.print("Thrust: ");
Serial.println(joystick_thrust_on);
Serial.println("");
Serial.println("");
}

//assert thrusters to move forward
analogWrite(left_thruster, joystick_ver_value);
analogWrite(right_thruster, joystick_ver_value);

506 11. SYSTEM LEVEL DESIGN

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED,HIGH); //assert right LED
}

//**
//Case 2:
//Inputs:
// X channel <= 1.60 VDC (496)
// Y channel <= 1.60 VDC (496)
//Output:
// Move forward and bare left
// - Which joystick direction is asserted more?
// - Scale PWM voltage to left and right thruster accordingly
//**

if((joystick_hor_value <= 496)&&(joystick_ver_value <= 496))
{
if(troubleshoot == 1) Serial.println("Zone 2");

//scale joystick horizontal and vertical to value from 0 to 1
joystick_hor_value = 496 - joystick_hor_value;
joystick_ver_value = 496 - joystick_ver_value;

if(troubleshoot == 1)
{
Serial.print("Joystick H: ");
Serial.println(joystick_hor_value);
Serial.print("Joystick V: ");
Serial.println(joystick_ver_value);
Serial.print("Thrust: ");
Serial.println(joystick_thrust_on);
Serial.println("");
Serial.println("");
}

//assert thrusters and LEDs

11.5. SUBMERSIBLE ROBOT 507

if(joystick_hor_value > joystick_ver_value)
{
analogWrite(left_thruster, (joystick_hor_value - joystick_ver_value));
analogWrite(right_thruster, joystick_hor_value);

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

else
{
analogWrite(left_thruster, joystick_ver_value);
analogWrite(right_thruster, (joystick_ver_value - joystick_hor_value));

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

}

//**
//Case 3:
//Inputs:
// X channel <= 1.60 VDC (496)
// Y channel between 1.60 to 1.70 VDC - null zone (496 to 527)
//Output:
// Bare left
//**

if((joystick_hor_value <= 496)&&(joystick_ver_value > 496)&&
(joystick_ver_value < 527))

{
if(troubleshoot == 1) Serial.println("Zone 3");

//scale joystick vertical to value from 0 to 1
joystick_hor_value = 496 - joystick_hor_value;

if(troubleshoot == 1)

508 11. SYSTEM LEVEL DESIGN

{
Serial.print("Joystick H: ");
Serial.println(joystick_hor_value);
Serial.print("Joystick V: ");
Serial.println(joystick_ver_value);
Serial.print("Thrust: ");
Serial.println(joystick_thrust_on);
Serial.println("");
Serial.println("");
}

//assert thrusters
analogWrite(left_thruster, 0);
analogWrite(right_thruster, joystick_hor_value);

//assert LEDs
digitalWrite(left_LED, LOW); //de-assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

//**
//Case 4:
//Inputs:
// X channel <= 1.60 VDC (496)
// Y channel >= 1.70 VDC (527)
//Output:
// Bare left to turn around
//**

if((joystick_hor_value <= 496)&&(joystick_ver_value >= 527))
{
if(troubleshoot == 1) Serial.println("Zone 4");

//scale joystick horizontal and vertical to value from 0 to 1
joystick_hor_value = 496 - joystick_hor_value;
joystick_ver_value = joystick_ver_value - 527;

if(troubleshoot == 1)
{

11.5. SUBMERSIBLE ROBOT 509

Serial.print("Joystick H: ");
Serial.println(joystick_hor_value);
Serial.print("Joystick V: ");
Serial.println(joystick_ver_value);
Serial.print("Thrust: ");
Serial.println(joystick_thrust_on);
Serial.println("");
Serial.println("");
}

//assert thrusters and LEDs
if(joystick_hor_value > joystick_ver_value)

{
analogWrite(left_thruster, 0);
analogWrite(right_thruster, (joystick_hor_value-joystick_ver_value));

//assert LEDs
digitalWrite(left_LED, LOW); //de-assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

else
{
analogWrite(left_thruster, 0);
analogWrite(right_thruster, (joystick_ver_value-joystick_hor_value));

//assert LEDs
digitalWrite(left_LED, LOW); //de-assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

}

//**
//Case 5:
//Inputs:
// X channel between 1.60 to 1.70 VDC - null zone (496 to 527)
// Y channel >= 1.70 VDC (527)
//Output:
// Move backward - provide same voltage to left and right thrusters
//**

510 11. SYSTEM LEVEL DESIGN

if((joystick_hor_value > 496)&&(joystick_hor_value < 527)&&
(joystick_ver_value >= 527))
{
if(troubleshoot ==1) Serial.println("Zone 5");

//scale joystick vertical to value from 0 to 1
joystick_ver_value = joystick_ver_value - 527;

if(troubleshoot == 1)
{
Serial.print("Joystick H: ");
Serial.println(joystick_hor_value);
Serial.print("Joystick V: ");
Serial.println(joystick_ver_value);
Serial.print("Thrust: ");
Serial.println(joystick_thrust_on);
Serial.println("");
Serial.println("");
}

//assert thrusters
analogWrite(left_thruster, 0);
analogWrite(right_thruster, joystick_ver_value);

//assert LEDs
digitalWrite(left_LED, LOW); //de-assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

//***
//Case 6:
//Inputs:
// X channel >= 1.70 VDC (527)
// Y channel >= 1.70 VDC (527)
//Output:
// Bare left to turn around
//***

11.5. SUBMERSIBLE ROBOT 511

if((joystick_hor_value >= 527)&&(joystick_ver_value >= 527))
{
if(troubleshoot == 1) Serial.println("Zone 6");

//scale joystick horizontal and vertical to value from 0 to 1
joystick_hor_value = joystick_hor_value - 527;
joystick_ver_value = joystick_ver_value - 527;

if(troubleshoot == 1)
{
Serial.print("Joystick H: ");
Serial.println(joystick_hor_value);
Serial.print("Joystick V: ");
Serial.println(joystick_ver_value);
Serial.print("Thrust: ");
Serial.println(joystick_thrust_on);
Serial.println("");
Serial.println("");
}

//assert thrusters and LEDs
if(joystick_hor_value > joystick_ver_value)

{
analogWrite(left_thruster, (joystick_hor_value-joystick_ver_value));
analogWrite(right_thruster, 0);

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, LOW); //de-assert right LED
}

else
{
analogWrite(left_thruster, (joystick_ver_value-joystick_hor_value));
analogWrite(right_thruster, 0);

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, LOW); //de-assert right LED

512 11. SYSTEM LEVEL DESIGN

}
}

//**
//Case 7:
//Inputs:
// X channel >= 1.70 VDC (527)
// Y channel between 1.60 to 1.70 VDC - null zone (496 to 527)
//Output:
// Bare right
//**

if((joystick_hor_value >= 527)&&(joystick_ver_value > 496)&&
(joystick_ver_value < 527))
{
if(troubleshoot == 1) Serial.println("Zone 7");

//scale joystick vertical to value from 0 to 1
joystick_hor_value = joystick_hor_value - 527;

if(troubleshoot == 1)
{
Serial.print("Joystick H: ");
Serial.println(joystick_hor_value);
Serial.print("Joystick V: ");
Serial.println(joystick_ver_value);
Serial.print("Thrust: ");
Serial.println(joystick_thrust_on);
Serial.println("");
Serial.println("");
}

//assert thrusters
analogWrite(left_thruster, joystick_hor_value);
analogWrite(right_thruster, 0);

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, LOW); //de-assert right LED

11.5. SUBMERSIBLE ROBOT 513

}

//**
//Case 8:
//Inputs:
// X channel >= 1.70 VDC (527)
// Y channel <= 1.60 VDC (496)
//Output:
// Move forward and bare right
// - Which joystick direction is asserted more?
// - Scale PWM voltage to left and right thruster accordingly
//**

if((joystick_hor_value >= 527)&&(joystick_ver_value <= 496))
{
if(troubleshoot == 1) Serial.println("Zone 8");

//scale joystick horizontal and vertical to value from 0 to 1
joystick_hor_value = joystick_hor_value - 527;
joystick_ver_value = 496 - joystick_ver_value;

if(troubleshoot == 1)
{
Serial.print("Joystick H: ");
Serial.println(joystick_hor_value);
Serial.print("Joystick V: ");
Serial.println(joystick_ver_value);
Serial.print("Thrust: ");
Serial.println(joystick_thrust_on);
Serial.println("");
Serial.println("");
}

//assert thrusters and LEDs
if(joystick_hor_value > joystick_ver_value)

{
analogWrite(left_thruster, joystick_hor_value);
analogWrite(right_thruster, (joystick_hor_value-joystick_ver_value));

514 11. SYSTEM LEVEL DESIGN

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

else
{
analogWrite(left_thruster, (joystick_ver_value-joystick_hor_value));
analogWrite(right_thruster, joystick_ver_value);

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

}
}

//**

11.5.8 CONTROL HOUSING LAYOUT
A Plano Model 1312-00 water-resistant field box is used to house the control circuitry and
rechargeable battery. e battery is a rechargeable, sealed, lead-acid battery, 12 VDC, with
an 8.5 amp-hour capacity. It is available from McMaster-Carr (#7448K82). A battery charger
(12 VDC, 4-8 amp-hour rating) is also available (#7448K67). e layout for the ROV control
housing is provided in Figure 11.14.

e control circuitry consists of two connected plastic panels as shown in Figure 11.14. e
top panel has the on/off switch, the LED thruster indicators (left, dive, and right), an access hole
for the joystick, and a 1/4-in jack for the battery recharge cable.

e lower panel is connected to the top panel using aluminum spacers, screws, and cor-
responding washers, lock washers, and nuts. e lower panel contains the MSP432 equipped
with the thumb joystick booster pack assembly. e MSP432 LaunchPad is connected to the
lower panel using a Jameco stand off kit (#106551). e MSP432 LaunchPad is interfaced to the
thrusters via interface circuitry described in Figures 11.10 and 11.11. e interface printed circuit
board is connected to the four conductor thruster cable via a Jones connector.

11.5.9 FINAL ASSEMBLY TESTING
e final system is tested a subassembly at a time. e following sequence is suggested.

• Recheck all waterproofed connections. Reapply waterproof caulk as necessary.

11.5. SUBMERSIBLE ROBOT 515

To ROV
structure

on/o�
switch

L bracket L bracket

L bracket

Left
LED

Dive
LED

Right
LED

joystick

joystick

MSP432 with joystick
boosterpack

Interface printed
circuit board

Battery
access
hole

Inline Fuse

L
ef

t
th

ru
st

er

R
ig

h
t

th
ru

st
er

C
en

te
r

th
ur

st
er

13
.6

 V
D

C

12 VDC
for recharger

Figure 11.14: ROV control housing layout.

516 11. SYSTEM LEVEL DESIGN

• With power applied, the voltage regulators aboard the printed circuit board should be tested
for proper voltages.

• With theMSP432 LaunchPad disconnected, test each LED indicator (left, dive, and right).
is is accomplished by applying a 3.3 VDC signal in turn to P4.2 (left LED), P4.4 (vertical
LED), and P4.5 (tight LEDs).

• In a similar manner each thruster (left, right, and vertical) may be tested. If available, a signal
generator may be used to generate a pulse width modulated signal to test each thruster.

• e output voltages from the thumb joystick may be verified at header P5.0 and P5.2 and
also the select pushbutton at header P4.7.

• With the software fully functional, the circuit board may be connected to MSP432 Launch-
Pad for end-to-end testing.

11.5.10FINAL ASSEMBLY
e fully assembled ROV is shown in Figure 11.15.

11.5.11PROJECT EXTENSIONS
e control system provided above has a set of very basic features. Here are some possible exten-
sions for the system.

• Provide a powered dive and surface thruster. To provide for a powered dive and surface
capability, the ROV must be equipped with a vertical thruster equipped with an H-bridge
to allow for motor forward and reversal. is will require a reversible, waterproof motor.
is modification is given as an assignment at the end of the chapter.

• Left and right thruster reverse. Currently, the left and right thrusters may only be powered
in one direction. To provide additional maneuverability, the left and right thrusters could
be equipped with an H-bridge to allow bi-directional motor control. is will require a
reversible, waterproof motors. is modification is given as an assignment at the end of the
chapter.

• Proportional speed control with bi-directional motor control. Both of these advanced fea-
tures may be provided by driving the H-bridge circuit with PWM signals. is modification
is given as an assignment at the end of the chapter.

11.6 MOUNTAIN MAZE NAVIGATING ROBOT
In this project we extend the Dagu Magician maze navigating project described in Chapter 3 to a
three-dimensional mountain pass. We use a robot equipped with four motorized wheels. Each of

11.6. MOUNTAIN MAZE NAVIGATING ROBOT 517

Figure 11.15: ROV fully assembled. (Photo courtesy of J. Barrett, Closer to the Sun International.)

518 11. SYSTEM LEVEL DESIGN

the wheels is equipped with an H-bridge to allow bidirectional motor control. Two of the wheels
are equipped with encoders to track wheel rotation.

11.6.1 DESCRIPTION
For this project, a DFRobot 4WDmobile platform kit was used (DFROBOTROB0003, Jameco
#2124285). e robot kit is equipped with four powered wheels. As in theDagu Magician project,
we equip theDFRobot with three SharpGP2Y0A21YKOF IR sensors, as shown in Figure 11.16.
e robot is placed in a three-dimensional maze with reflective walls modeled after a mountain
pass. e goal of the project is for the robot to detect wall placement and navigate through the
maze. e robot will not be provided with any information about the maze. e control algorithm
for the robot is hosted on MSP432.

11.6.2 REQUIREMENTS
e requirements for this project are simple: the robot must autonomously navigate through the
maze without touching maze walls as quickly as possible. Furthermore, the robot must be able to
safely navigate through the rugged maze without becoming “stuck” on maze features.

11.6.3 CIRCUIT DIAGRAM
e circuit diagram for the robot is provided in Figure 11.17. e three IR sensors (left, middle,
and right) are mounted on the leading edge of the robot to detect maze walls. e sensors’ outputs
are fed to three separate analog-to-digital (ADC) channels. e robot motors are driven by PWM
channels via anH-bridge.e robot is powered by a 7.5 VDCbattery pack (5 AA batteries) which
is fed to a 3.3 VDC and 5 VDC voltage regulator. Alternatively, the robot may be powered by a
7.5 VDC power supply rated at several amps. In this case, the power is delivered to the robot by a
flexible umbilical cable. e circuit diagram includes the wheel encoders, a liquid crystal display,
LEDs to indicate wall detection, and the H-bridge circuit interface. e H-bridge circuit was
discussed early in the text. We use four PWM channels to control the forward and reverse action
of the motor. e PWM signals are interfaced to the H-bridge via LM324 op amps configured as
comparators. e op amps in this configuration translate the 3.3 VDC signals from MSP432 to
5 VDC signals and also boost the sync/source current capability. In the configuration shown, the
same control signal is sent to left paired motors and the right paired motors. Other configurations
may be used. e printed circuit board (PCB) layout for the robot is provided in Figure 11.18.
e assembled robot is shown in Figure 11.19.

11.6.4 STRUCTURE CHART
e structure chart for the robot project is shown in Figure 11.20.

11.6. MOUNTAIN MAZE NAVIGATING ROBOT 519

Prototype Area

IR Sensor
Array

drive
motor

drive
motor

(a) front view.

Prototype Area

4-channel H-bridge

Battery
Compartment

IR Sensor
Array

(b) side view.

Figure 11.16: Robot layout.

520 11. SYSTEM LEVEL DESIGN

IR
sensor

left

IR
sensor

middle

IR
sensor

right

Sensor connection:
- Red: 5 VDC
- Yellow: Signal output
- Black: Ground

Sparkfun LCD-09067

basic 16 x 2 character LCD
white on black, 3.3 VDC

line 1

line 2

5 VDC

Program

Run

DPDT
switch

A
3

(1
2)

,

P5.
2 A

4
(3

3)
,

P5.
1 A

5
(1

5)
,

P1.
6

5 VDC 5 VDC

5 VDC

5 VDC

+5 VDC

1 M

1 M

1 M

1 M

1 M

1 M

+5 VDC
l_fwd

left front

H-bridge

right front

H-bridge

left rear

H-bridge

right rear

H-bridge

l_rev

r_fwd

r_rev

l_fwd

l_rev

r_fwd

r_rev

220

10 K

P3.7, 37 P3.5, 32 P2.3, 34
2N2222 2N2222 2N2222

10 K 10 K

wall
left

wall
center

wall
right

220 220

200 200
1000 µF

7.5 VDC

470 470

5 VDC 5 VDC

5.0 VDC

3.3 VDC

from TX pin
P3.3, pin 4

Note: 3.3 VDC
jumper removed

7805
5 VDC

reg

9 VDC
2A

(#276)

LM1084-3.3
3.3 VDC

reg

9
 V

D
C

 p
o
w

er
 u

m
b
il

ic
al

2

3

-

+

-

+

-

+

-

+

9

10

13

12

6

5
7

8

14

LM324

LM324

LM324

LM324

l_motors_forward
P2.4, pin 38, PWM

l_motors_reverse
P2.5, pin 19, PWM

r_motors_forward
P2.6, pin 39, PWM

r_motors_reverse
P2.7, pin 40, PWM

forward

reverse

TIP31 llDQ06

llDQ06

llDQ06

llDQ06

TIP31

TIP31

TIP31

TIP31 TIP31

M

Figure 11.17: Robot circuit diagram.

11.6. MOUNTAIN MAZE NAVIGATING ROBOT 521

20
0

47
0

47
0

47
0

47
0

47
0

47
0

47
0

47
0

11
D

Q
06

11
D

Q
06

11
D

Q
06

11
D

Q
06

11
D

Q
06

11
D

Q
06

11
D

Q
06

11
D

Q
06

11
D

Q
06

11
D

Q
06

11
D

Q
06

11
D

Q
06

11
D

Q
06

11
D

Q
06

11
D

Q
06

11
D

Q
06

20
0

20
0

20
0

20
0

20
0

20
0

20
0

1000 µF

1000 µF

1000 µF

1000 µF

TIP31

TIP32

TIP31

TIP32

TIP31

TIP32

TIP31

TIP32

TIP31

TIP32

TIP31

TIP32

TIP31

TIP32

TIP31

TIP32

TIP31 TIP31 TIP31 TIP31

TIP31 TIP31 TIP31TIP31

To front
left motor

To rear
left motor

To front
right motor

To rear
right motor

From
power
supply

From
l_rev

From
l_fwd

From
r_rev

From
r_fwd

Figure 11.18: 4WD robot PCB.

11.6.5 UML ACTIVITY DIAGRAMS
e UML activity diagram for the robot is provided in Figure 11.21.

11.6.6 4WD ROBOT ALGORITHM CODE
e code for the robot may be adapted from that of the Dagu Magician robot. With the robot
wheel motors equipped with an H-bridge, slight modifications are required to the robot turning
code. For example, when forward robot movement is desired, PWM signals are sent to both of
the left and right forwards signals and a logic zero signal to the left and right reverse signals. To
render a left robot turn, a PWM signal is sent to the left_reverse control line and a logic zero to
the left_forward control line. Also, a PWM signal is sent to the right_forward control line and
a logic zero to the right_reverse control line. e signals are held in this configuration until the
program completes the loop cycle. is time can be controlled using the delay function.

522 11. SYSTEM LEVEL DESIGN

Figure 11.19: 4WD robot.

//***
//robot
//
//Three IR sensors (left, middle, and right) are mounted on the leading
//edge of the robot to detect maze walls.
The sensors' outputs are
//fed to three separate ADC channels on pins 12, 33, and 13.
//
//The robot is equipped with:
// - serial LCD at Serial 1 accessible at:
// - RX: P3.2, pin 3

11.6. MOUNTAIN MAZE NAVIGATING ROBOT 523

d
et

er
m

in
e_

ro
b
ot

_
ac

ti
on

L
iq

u
id

C
ry

st
al

 D
is

p
la

y

D
es

ir
ed

m
ot

or
ac

ti
on

L
C

D
in

it
ia

li
ze

ch
 f

or
co

n
v

co
n

v
d

at
a

L
ef

t
m

ot
or

R
ig

h
t

m
ot

or
L

ef
t

IR
 s

en
so

r
M

id
d

le
IR

 s
en

so
r

R
ig

h
t

IR
 s

en
so

r

W
h

ee
l

co
u
n

t
in

te
rr

u
p

ts

L
ef

t
w

h
ee

l
co

u
n

t

R
ig

h
t

w
h

ee
l

co
u
n

t

L
ef

t
w

h
ee

l
en

co
d

er

R
ig

h
t

w
h

ee
l

en
co

d
er

A
D

C
1
4

in
it

ia
li

ze

m
ot

or
_
co

n
tr

olro
b
ot

ac
ti

on
se

n
so

r
d

at
a

p
u
tc

h
ar

p
u
tc

om
m

R
ea

dA
D

C
14

P
W

M
_l

ef
t

P
W

M
_r

ig
ht

A
D

C
1
4

Fi
gu

re
11

.2
0:

R
ob

ot
str

uc
tu

re
di

ag
ra

m
.

524 11. SYSTEM LEVEL DESIGN

Determine robot
action

Monitor wheel rotation
via interrupts

Include !les
Global variables

Function prototypes

Initialize pins
Initialize ADC
Initialize PWM
Initialize LCD

While(1)

Robot action
complete?

Read IR sensor inputs
(left, middle, right)

Print walls detected to
LCD, illuminate LEDs

for wall detected

Issue motor and LED
control signals

Reset wheel counters

yes no

Figure 11.21: Abbreviated robot UML activity diagram. e “determine robot action” consists of
multiple decision statements.

11.6. MOUNTAIN MAZE NAVIGATING ROBOT 525

// - TX: P3.3, pin 4
// - LEDs to indicate wall detection: 37, 32 and 34
// - Robot motors are driven by PWM channels via an H-bridge.
// - the same control signal is sent to left paired motors
// and the right paired motors.
// - For example, when forward robot movement is desired,
// PWM signals are sent to both of the left and right forwards
// signals and a logic zero signal to the left and right reverse signals.
// - To render a left robot turn, a PWM signal is sent to the
// left_reverse control line and a logic zero to the left_forward
// control line.
Also, a PWM signal is sent to the right_forward
// control line and a logic zero to the right_reverse control line.
// The signals are held in this configuration until the wheel
// encoders indicate the turns have been completed.
The wheel
// encoders provide ten counts per revolution.
// - A separate interrupt is used to count left and right wheel counts.
//
//This example code is in the public domain.
//***

//analog input pins
#define left_IR_sensor 12 //analog pin - left IR sensor
#define center_IR_sensor 33 //analog pin - center IR sensor
#define right_IR_sensor 13 //analog pin - right IR sensor

//digital output pins
//LED indicators - wall detectors

#define wall_left 37 //digital pin - wall_left
#define wall_center 32 //digital pin - wall_center
#define wall_right 34 //digital pin - wall_right

//motor outputs
#define l_motors_forward 38 //digital pin - left motors forward
#define l_motors_reverse 19 //digital pin - left motors reverse
#define r_motors_forward 39 //digital pin - right motors forward
#define r_motors_reverse 40 //digital pin - right motors reverse

526 11. SYSTEM LEVEL DESIGN

//sensor value
int left_IR_sensor_value; //declare variable for left IR sensor
int center_IR_sensor_value; //declare variable for center IR sensor
int right_IR_sensor_value; //declare variable for right IR sensor

int troubleshoot; //asserts troubleshoot statements

void setup()
{
troubleshoot = 1;

//enable serial monitor
if(troubleshoot == 1) Serial.begin(9600);

//Initialize serial channel 1 to 9600 BAUD and wait for port to open
//Serial LCD, 3.3 VDC connected to P3.3, pin 4 Sparkfun LCD-09052
Serial1.begin(9600);
delay(1000); //allow LCD to boot up

//LED indicators - wall detectors
pinMode(wall_left, OUTPUT); //configure pin for digital output
pinMode(wall_center, OUTPUT); //configure pin for digital output
pinMode(wall_right, OUTPUT); //configure pin for digital output

//motor outputs - PWM
pinMode(l_motors_forward, OUTPUT); //configure pin for digital output
pinMode(l_motors_reverse, OUTPUT); //configure pin for digital output
pinMode(r_motors_forward, OUTPUT); //configure pin for digital output
pinMode(r_motors_reverse, OUTPUT); //configure pin for digital output
}

void loop()
{
//read analog output from IR sensors
left_IR_sensor_value = analogRead(left_IR_sensor);
center_IR_sensor_value = analogRead(center_IR_sensor);
right_IR_sensor_value = analogRead(right_IR_sensor);

//Print sensor values to Serial Monitor
if(troubleshoot == 1)

11.6. MOUNTAIN MAZE NAVIGATING ROBOT 527

{
Serial.print("Left IR sensor: ");
Serial.println(left_IR_sensor_value);
Serial.print("Center IR sensor: ");
Serial.println(center_IR_sensor_value);
Serial.print("Right IR sensor: ");
Serial.println(right_IR_sensor_value);
Serial.println("");
}

//to LCD
Serial1.write(254); //Command to LCD
delay(5);
Serial1.write(1); //Cursor to home position
delay(5);

Serial1.write(254); //Command to LCD
delay(5);
Serial1.write(128); //Cursor to home position
delay(5);
Serial1.write("Left Ctr Right");
delay(50);
Serial1.write(254); //Command to LCD
delay(5);
Serial1.write(192); //Cursor to line 2, position 1
delay(5);
Serial1.print(left_IR_sensor_value);
delay(5);
Serial1.write(254); //Command to LCD
delay(5);
Serial1.write(198); //Cursor to line 2, position 1
delay(5);
Serial1.print(center_IR_sensor_value);
delay(5);
Serial1.write(254); //Command to LCD
delay(5);
Serial1.write(203); //Cursor to line 2, position 1
delay(5);
Serial1.print(right_IR_sensor_value);

528 11. SYSTEM LEVEL DESIGN

delay(5);

delay(500);

//robot action table row 0 - robot forward
if((left_IR_sensor_value < 300)&&(center_IR_sensor_value < 300)&&
(right_IR_sensor_value < 300))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(l_motors_forward, 64); //0(off)-255(full speed)
analogWrite(l_motors_reverse, 0); //0(off)-255(full speed)
analogWrite(r_motors_forward, 64); //0(off)-255(full speed)
analogWrite(r_motors_reverse, 0); //0(off)-255(full speed)

if(troubleshoot == 1) Serial.print("Table row 0 \n\n");
}

//robot action table row 1 - robot forward
else if((left_IR_sensor_value < 300)&&(center_IR_sensor_value < 300)&&

(right_IR_sensor_value > 300))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(l_motors_forward, 64); //0(off)-255(full speed)
analogWrite(l_motors_reverse, 0); //0(off)-255(full speed)
analogWrite(r_motors_forward, 64); //0(off)-255(full speed)
analogWrite(r_motors_reverse, 0); //0(off)-255(full speed)

if(troubleshoot == 1) Serial.print("Table row 1 \n\n");
}

11.6. MOUNTAIN MAZE NAVIGATING ROBOT 529

//robot action table row 2 - robot right
else if((left_IR_sensor_value < 300)&&(center_IR_sensor_value > 300)&&

(right_IR_sensor_value < 300))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(l_motors_forward, 64); //0(off)-255(full speed)
analogWrite(l_motors_reverse, 0); //0(off)-255(full speed)
analogWrite(r_motors_forward, 0); //0(off)-255(full speed)
analogWrite(r_motors_reverse, 64); //0(off)-255(full speed)

if(troubleshoot == 1) Serial.print("Table row 2 \n\n");
}

//robot action table row 3 - robot left
else if((left_IR_sensor_value < 300)&&(center_IR_sensor_value > 300)&&

(right_IR_sensor_value > 300))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(l_motors_forward, 0); //0(off)-255(full speed)
analogWrite(l_motors_reverse, 64); //0(off)-255(full speed)
analogWrite(r_motors_forward, 64); //0(off)-255(full speed)
analogWrite(r_motors_reverse, 0); //0(off)-255(full speed)

if(troubleshoot == 1) Serial.print("Table row 3 \n\n");

}

//robot action table row 4 - robot forward
else if((left_IR_sensor_value > 300)&&(center_IR_sensor_value < 300)&&

(right_IR_sensor_value < 300))
{

530 11. SYSTEM LEVEL DESIGN

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(l_motors_forward, 64); //0(off)-255(full speed)
analogWrite(l_motors_reverse, 0); //0(off)-255(full speed)
analogWrite(r_motors_forward, 64); //0(off)-255(full speed)
analogWrite(r_motors_reverse, 0); //0(off)-255(full speed)

if(troubleshoot == 1) Serial.print("Table row 4 \n\n");

}

//robot action table row 5 - robot forward
else if((left_IR_sensor_value > 300)&&(center_IR_sensor_value < 300)&&

(right_IR_sensor_value > 300))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(l_motors_forward, 64); //0(off)-255(full speed)
analogWrite(l_motors_reverse, 0); //0(off)-255(full speed)
analogWrite(r_motors_forward, 64); //0(off)-255(full speed)
analogWrite(r_motors_reverse, 0); //0(off)-255(full speed)

if(troubleshoot == 1) Serial.print("Table row 5 \n\n");

}

//robot action table row 6 - robot right
else if((left_IR_sensor_value > 300)&&(center_IR_sensor_value > 300)&&

(right_IR_sensor_value < 300))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, HIGH); //turn LED on

11.6. MOUNTAIN MAZE NAVIGATING ROBOT 531

digitalWrite(wall_right, LOW); //turn LED off
//motor control

analogWrite(l_motors_forward, 64); //0(off)-255(full speed)
analogWrite(l_motors_reverse, 0); //0(off)-255(full speed)
analogWrite(r_motors_forward, 0); //0(off)-255(full speed)
analogWrite(r_motors_reverse, 64); //0(off)-255(full speed)

if(troubleshoot == 1) Serial.print("Table row 6 \n\n");
}

//robot action table row 7 - robot reverse
else if((left_IR_sensor_value > 300)&&(center_IR_sensor_value > 300)&&

(right_IR_sensor_value > 300))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(l_motors_forward, 64); //0(off)-255(full speed)
analogWrite(l_motors_reverse, 0); //0(off)-255(full speed)
analogWrite(r_motors_forward, 0); //0(off)-255(full speed)
analogWrite(r_motors_reverse, 64); //0(off)-255(full speed)

if(troubleshoot == 1) Serial.print("Table row 7 \n\n");

}
}

//***

11.6.7 MOUNTAIN MAZE
e mountain maze is constructed from plywood, chicken wire, expandable foam, plaster cloth,
and Bondo. A rough sketch of the desired maze path is first constructed. Care is taken to ensure
the pass is wide enough to accommodate the robot. e maze platform is constructed from 3/8-in
plywood on 2 by 4-in framing material. Maze walls are also constructed from the plywood and
supported with steel L brackets.

532 11. SYSTEM LEVEL DESIGN

With the basic structure complete, the maze walls are covered with chicken wire. e
chicken wire is secured to the plywood with staples. e chicken wire is then covered with plaster
cloth (Creative Mark Artist Products #15006). To provide additional stability, expandable foam
is sprayed under the chicken wire (Guardian Energy Technologies, Inc. Foam It Green 12). e
mountain scene is then covered with a layer of Bondo for additional structural stability. Bondo is
a two-part putty that hardens into a strong resin. Mountain pass construction steps are illustrated
in Figure 11.22. e robot is shown in the maze in Figure 11.23

11.6.8 PROJECT EXTENSIONS
• Modify the turning commands such that the PWM duty cycle and the length of time the

motors are on are sent in as variables to the function.

• Develop a function for reversing the robot.

• Equip the robot wheels with encoders to control the length of a turn.

• Equip the motor with another IR sensor that looks down toward the maze floor for “land
mines.” A landmine consists of a paper strip placed in themaze floor that obstructs a portion
of the maze. If a land mine is detected, the robot must deactivate it by moving slowly back
and forth for 3 s and flashing a large LED.

• Develop a four-wheel drive system which includes a tilt sensor. e robot should increase
motor RPM (duty cycle) for positive inclines and reduce motor RPM (duty cycle) for neg-
atives inclines.

• Equip the robot with an analog inertial measurement unit (IMU) to measure vehicle tilt.
Use the information provided by the IMU to optimize robot speed going up and down steep
grades.

11.7 LABORATORY EXERCISE: PROJECT EXTENSIONS
e weather station presented earlier in the chapter has a set of very basic features. Implement
the following extensions to the system.

• Equip the weather station with an LCD display.

• In addition to the wind vane, the Sparkfun weather meters (SEN-08942) include a rain
gauge and anemometer. Add these features to the weather station.

• Extend the 8 LED display to 16 LEDs.

11.7. LABORATORY EXERCISE: PROJECT EXTENSIONS 533

Figure 11.22: Mountain maze.

534 11. SYSTEM LEVEL DESIGN

Figure 11.23: Robot in maze. (Photo courtesy of J. Barrett, Closer to the Sun International.)

11.8 SUMMARY
In this chapter, we discussed the design process and related tools, and applied the process to real
world designs. It is essential to follow a systematic, disciplined approach to embedded systems
design to successfully develop a prototype that meets established requirements.

11.9 REFERENCES AND FURTHER READING
Anderson, M. Help wanted: embedded engineers why the United States is losing its edge in

embedded systems. IEEE-USA Today’s Engineer, Feb 2008. 476

Barrett, S. and Pack, D. 2012. Atmel AVR Processor Primer: Programming and
Interfacing, 2nd ed., San Rafael, CA, Morgan & Claypool Publishers. DOI:
10.2200/s00427ed1v01y201206dcs039.

http://dx.doi.org/10.2200/s00427ed1v01y201206dcs039
http://dx.doi.org/10.2200/s00427ed1v01y201206dcs039

11.10. CHAPTER EXERCISES 535

Barrett, S. and Pack, D. 2005. Embedded Systems Design and Applications with the 68HC12 and
HCS12. Upper Saddle River, NJ, Pearson Prentice Hall. Print. 478

Barrett, S. and Pack, D. 2006. Processors Fundamentals for Engineers and Scientists, San Rafael,
CA, Morgan & Claypool Publishers. www.morganclaypool.com

Bohm, H. and Jensen, V. 2012. Build Your Own Underwater Robot and Other Wet Projects, 11th
ed., Vancouver, B.C. Canada, Westcoast Words. 494

Christ, R. and Wernli, Sr. R. 2014. e ROVManual–A User Guide for Remotely Operated Vehicle.
2nd ed., Oxford. U.K., Butterworth-Heinemann imprint of Elsevier.

Dale, N. and Lilly, S. C. 1995. Pascal Plus Data Structures, 4th ed., Englewood Cliffs, NJ, Jones
and Bartlett. 480

Fowler, M. and Scott, K. 2000. UML Distilled A Brief Guide to the Standard Object Modeling
Language, 2nd ed., Boston, MA, Addison-Wesley. 479

Seaperch, www.seaperch.com 492

11.10 CHAPTER EXERCISES
Fundamental

1. What is an embedded system?

2. What aspects must be considered in the design of an embedded system?

3. What is the purpose of the structure chart, UML activity diagram, and circuit diagram?

4. Why is a system design only as good as the test plan that supports it?

5. During the testing process, when an error is found and corrected, what should now be
accomplished?

6. Discuss the top-down design, bottom-up implementation concept.

7. Describe the value of accurate documentation.

8. What is required to fully document an embedded systems design?

9. For the Dagu Magician robot, modify the PWM turning commands such that the PWM
duty cycle and the length of time the motors are on are sent in as variables to the function.

www.morganclaypool.com
www.seaperch.com

536 11. SYSTEM LEVEL DESIGN

10. For the Dagu Magician robot, equip the motor with another IR sensor that looks down for
“land mines.” A land mine consists of a paper strip placed in the maze floor that obstructs
a portion of the maze. If a land mine is detected, the robot must deactivate it by rotating
about its center axis three times and flashing a large LED while rotating.

11. For the Dagu Magician robot, develop a function for reversing the robot.

Advanced

1. Provide a powered dive and surface thruster for the SeaPerchROV.To provide for a powered
dive and surface capability, the ROV must be equipped with a vertical thruster equipped
with an H-bridge to allow for motor forward and reversal.

2. Provide a left and right thruster reverse for the SeaPerch ROV. Currently, the left and right
thrusters may only be powered in one direction. To provide additional maneuverability, the
left and right thrusters could be equipped with an H-bridge to allow bi-directional motor
control.

3. Provide proportional speed control with bi-directional motor control for the SeaPerch ROV.
Both of these advanced featuresmay be provided by driving theH-bridge circuit with PWM
signals.

4. For the 4WD robot, modify the PWM turning commands such that the PWM duty cycle
and the length of time the motors are on are sent in as variables to the function.

5. For the 4WD robot, equip the motor with another IR sensor that looks down for “land
mines.” A land mine consists of a paper strip placed in the maze floor that obstructs a
portion of the maze. If a land mine is detected, the robot must deactivate it by rotating
about its center axis three times and flashing a large LED while rotating.

6. For the 4WD robot, develop a function for reversing the robot.

7. For the 4WD robot, develop a four wheel drive system which includes a tilt sensor. e
robot should increase motor RPM (duty cycle) for positive inclines and reduce motor RPM
(duty cycle) for negatives inclines.

8. Equip the robot with an inertial measurement unit (IMU) to measure vehicle tilt. Use the
information provided by the IMU to optimize robot speed going up and down steep grades.

9. Develop an embedded system controlled dirigible/blimp (www.microflight.com,www.rc
toys.com).

Challenging

1. Develop a trip odometer for your bicycle (Hint: use a Hall Effect sensor to detect tire rota-
tion).

www.microflight.com, www.rctoys.com
www.microflight.com, www.rctoys.com

11.10. CHAPTER EXERCISES 537

2. Develop a timing system for a four lane Pinewood Derby track.

3. Develop a playing board and control system for your favorite game (Yahtzee, Connect Four,
Battleship, etc.).

4. You have a very enthusiastic dog that loves to chase balls. Develop a system to launch balls
for the dog.

5. Construct the UML activity diagrams for all functions related to the weather station.

6. It is desired to updated weather parameters every 15 min. Write a function to provide a
15 minute delay.

7. Add one of the following sensors to the weather station:

• anemometer
• barometer
• hygrometer
• rain gauge
• thermocouple

You will need to investigate background information on the selected sensor, develop an
interface circuit for the sensor, and modify the weather station code.

8. Modify the weather station software to also employ the 138 � 110 LCD. Display pertinent
weather data on the display.

9. Modify the 4WD robot to generate voice output (Hint: Use an ISD 4003 Chip Corder).

10. Develop an embedded system controlled submarine (www.seaperch.org).

11. Equip the MSP432 with automatic cell phone dialing capability to notify you when a fire
is present in your home.

www.seaperch.org

539

Authors’ Biographies

DUNG DANG
Dung Dang has served as an applications engineer for Texas Instruments since 2007. He has
served in various positions with the MSP430 and MSP432 microcontroller product lines and
now serves as the MSP432 Platform Marketing Manager. He is an advocate of open–source
platforms to allow ready adoption of microcontroller innovations in education and industry. He
is the technical founder of the TI LaunchPad ecosystem. His service has taken him worldwide
for customer field training and support. On a daily basis he collaborates with teams in Germany,
India, China, and the U.S. Dung Dang holds an MSEE degree from Saint Mary’s University at
San Antonio, concentrating on embedded systems and image processing. He served as a Research
Assistant at Saint Mary’s for two years.

DANIEL J. PACK
Daniel J. Pack is the Dean of the College of Engineering and Computer Science at the Univer-
sity of Tennessee, Chattanooga (UTC). Prior to joining UTC, he was Professor and Mary Lou
Clarke Endowed Chair of the Electrical and Computer Engineering Department at the Univer-
sity of Texas, San Antonio, after serving as Professor (now Professor Emeritus) of Electrical and
Computer Engineering at the United States Air Force Academy (USAFA), CO, where he served
as Director of the Academy Center for Unmanned Aircraft Systems Research.

He received a Bachelor of Science degree in Electrical Engineering, a Master of Science de-
gree in Engineering Sciences, and a Ph.D. degree in Electrical Engineering from Arizona State
University, Harvard University, and Purdue University, respectively. He also spent a year as a
visiting scholar at the Massachusetts Institute of Technology–Lincoln Laboratory. Dr. Pack has
co-authored seven textbooks on embedded systems (including 68HC12 Microcontroller: eory
and Applications and Embedded Systems: Design and Applications with the 68HC12 and HCS12)
and published over 130 book chapters, technical journal/transactions, and conference papers on
unmanned systems, cooperative control, robotics, pattern recognition, and engineering educa-
tion. He is the recipient of a number of teaching and research awards including Carnegie U.S.
Professor of the Year Award, Frank J. Seiler Research Excellence Award, Tau Beta Pi Outstand-
ing Professor Award, Academy Educator Award, and Magoon Award. He is a member of Eta
Kappa Nu (Electrical Engineering Honorary), Tau Beta Pi (Engineering Honorary), IEEE (se-
nior member), and the American Society of Engineering Education.

540 AUTHORS’ BIOGRAPHIES

He is a registered Professional Engineer in Colorado and currently serves as Editor–at–
Large for Journal of Intelligent & Robotic Systems and as Associate Editor for IEEE Systems Jour-
nal. His research interests include unmanned aerial vehicles, intelligent control, automatic target
recognition, robotics, and engineering education.

STEVEN F. BARRETT
Steven F. Barrett, Ph.D., P.E., received a B.S. in Electronic Engineering Technology from the
University of Nebraska Lincoln (Omaha campus) in 1979, a M.E. in Electrical Engineering from
the University of Idaho at Moscow in 1986, and a Ph.D. in Electrical Engineering from e Uni-
versity of Texas at Austin in 1993. He was formally an active duty faculty member at the United
States Air Force Academy, Colorado and now serves as the Associate Dean of Academic Pro-
grams and professor of electrical and computer engineering at the University of Wyoming. He is
a member of IEEE (senior) and Tau Beta Pi (chief faculty advisor). His research interests include
digital and analog image processing, computer–assisted laser surgery, and embedded controller
systems. He is a registered Professional Engineer in Wyoming and Colorado and serves on the
Wyoming State Board of Professional Engineers and Surveyors. He has co–written several text-
books on microcontrollers and embedded systems. In 2004, Barrett was named “Wyoming Pro-
fessor of the Year” by the Carnegie Foundation for the Advancement of Teaching and in 2008 was
the recipient of the National Society of Professional Engineers (NSPE) Professional Engineers
in Higher Education, Engineering Education Excellence Award.

541

Index

AC device control, 159
AC interfacing, 159
ADC, 10
ADC conversion, 360
ADC process, 360
ADC, SAR converter, 369
ADC14, 367
AES accelerator, 11
AES256 Accelerator Module, 461
ALU, 3
annunciator, 157
arithmetic operations, 78
ASCII, 402

background research, 476
Bardeen, Brattain and Schockley, 2
bare metal, 70
battery capacity, 233
battery operation, 233
battery, primary and secondary, 235
Baud rate, 401
bilge pump, 158
binary number system, 194
bit twiddling, 80
Boone, Gary, 3
BoosterPacks, 12
bottom-up approach, 479

CCS Cloud, 15
checksum, 213
Clock System, 8

clock system, 274
Code Composer Studio, 15
code re-use, 481
comments, 66
COMP E, 392
comparator, 392
CRC checksum, 452
CRC generator, 11
CRC polynomial, 452
CRC32, 213
CRC32 module, 453
current sink, 95
current source, 95

DAC converter, 367
Dagu Magician robot, 47
data integrity, 452
data logging, 198
DC fan, 158
DC motor, 135
decoder, 166
design, 478
design process, 476
DF robot, 518
digital-to-analog converter (DAC), 7
Direct Memory Access (DMA), 10, 208
documentation, 481
dot matrix display, 127
Driver Library, 16
duty cycle, 271

542 INDEX

Educational Booster Pack MkII, 162, 185
Educational BoosterPack MKII, 373
EEPROM, 4
elapsed time, 274
electrical specifications, 94
electromagnetic interference (EMI), 450
electrostatic discharge (ESD), 450
embedded system, 476
EMI noise suppression, 450
EMI reduction strategies, 450
emulator, 12
encoder, absolute, 108
encoder, incremental, 108
encoder, quadrature, 109
encoding, 366
Energia, 15, 24
Energia Development Environment, 25
Energia MT, 24
EnergyTrace, 12
enhanced Universal Serial Communication

Interface (eUSCI), 400
ENIAC, 2
eUSCI A module, 400
eUSCI B module, 400

fireworks, 178
flash memory, 7
floating point unit, 10
frequency, 270
full duplex, 402
function body, 69
function call, 68
function prototypes, 68
functions, 67

Grove Starter Kit, 164, 185
gyroscope, 113

H-bridge, 140, 142

hardware multiplier, 10
Harvard architecture, 196
HC CMOS, 97

I2C module, 432
I2C, 8
ideal op-amp, 118
if-else, 85
include files, 67
inertial measurement unit, 113
inertial measurement unit (IMU), 113
input capture, 272
input devices, 99
input/output ports, 8
integrated circuit, 2
interrupt handler, 74
interrupt processing, 339
interrupt service routine (ISR), 339, 343
interrupt system, 339
interrupt theory, 339
interrupts, 339
interrupts, MSP432, 341
interval timer, 289
IR sensor, 109
IR sensors, 48
IrDA, 10
IrDA protocol, 400

joystick, 109, 496, 499
jumper isolation block, 12

keypad, 101, 142
Kilby, Jack, 2

laser light show, 137
LaunchPad, 11
LCD, serial, 134
LDO regulator, 227
LED biasing, 121
LED cube, 165, 169

INDEX 543

LED cube, construction, 166
LED, seven segment, 123
LED, tri-state, 125
light-emitting diode (LED), 121
linear feedback shift register (LFSR), 453
liquid crystal display (LCD), 133
logical operations, 79
loop, 81
loop(), 25
low power modes, 7
low-power operating modes, 225

main program, 76
Mauchly and Eckert, 2
MAX232, 402
maze, 47
memory address bus, 192
memory concepts, 192
memory data bus, 192
memory map, 200
memory map, MSP432, 200
memory operations, 194
memory pointers, 198
memory, flash, 200
microcontroller, 1, 3
MMC/SD, 217
MMC/SD card, 197, 217, 482
MOSFET, 139
motor operating parameters, 140
motor, vibrating, 158
mountain maze, 516, 531
MSPWare, 16
multitasking, 24

noise, 450
non-volatile memory, 196
NRZ format, 402
Nyquist rate, 361

octal buffer, 166

op-amp, 118
operating mode transitions, 230
operating modes, 229
operating parameters, 93
operational amplifier, 118
operators, 77
optical encoder, 107
optical isolation, 157
output compare, 272
output device, 121
output timer, 273

parity, 402
part numbering, 11
PCM, 228
period, 271
photodiode, 117
pin assignments, 27
pointers, 198
port configuration, 69
Power Control Module (PCM), 226
Power Supply System (PSS), 226
PowerSwitch Tail II, 159
pre-design, 477
preliminary testing, 480
program constants, 74
program constructs, 81
programming in C, 63
project description, 476
prototyping, 480
PSS, 227
pulse width modulation (PWM), 271

quantization, 363

RAM, 4, 196
RAM memory, 7
real-time clock (RTC), 10, 325
resets, 338
resolution, 364
RF connectivity, 7

544 INDEX

Rijndael algorithm, 461
RISC architecture, 6
robot IR sensors, 47
robot platform, 48
robot steering, 47
robot, autonomous, 518
robot, submersible, 491
ROM, 4, 196
ROV, 491
ROV buoyancy, 494
ROV control housing, 514
ROV structure, 494
RS-232, 402
RTC C, 325

sampling, 361
SeaPerch, 491, 499
SeaPerch control system, 499
SeaPerch ROV, 492
sensor, analog, 109
sensor, digital, 107
sensor, flex, 109
sensor, level, 113
sensor, ultrasonic, 113
sensors, 107
serial communications, 399
serial peripheral interface, 417
serial peripheral interface (SPI), 8
servo motor, 135
servos, Futaba, 137
setup(), 25
simplex communication, 401
sketch, 26, 30
sketchbook, 26
solenoid, 150
sonalert, 157
speech chip, SPO-512, 410
SPI, 417
SPI features, 418

SPI hardware, 419
SPI operation, 417
SPI registers, 421
stepper motor, 136, 150
strip LED, 38
switch, 87
switch debouncing, 101
switch interface, 99
switch, hexadecimal, 99
switches, 99

tact switch, 99
test plan, 480
TI Resource Explorer, 15
time base, 272
Timer 32, 300
Timer A, 309
timer channels, 8
timing parameters, 270
TMS 1000, 3
top-down approach, 479
top-down design, bottom-up

implementation, 479
transducer interface, 115
transistor, 2

UART, 8, 403
UART character format, 406
UART features, 403
UART interrupts, 407
UART module, 404
UART registers, 408
ultra-low power, 225
ultra-low power consumption, 7
UML, 479
UML activity diagram, 50, 479
Unified Modeling Language (UML), 478
UNIVAC I, 2

INDEX 545

Universal Serial Communication Interfaces
(USCI), 8

vacuum tube, 2
variable size, 75
variables, 75
volatile memory, 196

von Neumann architecture, 196

watchdog timer, 289
WDT modes, 289
weather station, 481
while, 82

	Preface
	Acknowledgments
	Introduction to Microcontrollers and the MSP432
	Overview
	Background Theory: A Brief History and Terminology
	Microcontroller Systems
	Why the Texas Instruments MSP432?
	MSP432 part numbering system

	MSP–EXP432P401R LaunchPad
	BoosterPacks
	Software Development Tools
	Laboratory Exercise: Getting Acquainted with Hardware and Software Development Tools
	 Laboratory Exercise: Getting Acquainted with Hardware and Software Development Tools
	Summary
	References and Further Reading
	Chapter Problems

	A Brief Introduction to Programming
	Overview
	Energia
	Energia Quickstart
	Energia Development Environment
	Energia IDE Overview
	Sketchbook Concept
	Energia Software, Libraries, and Language References

	Energia Pin Assignments
	Writing an Energia Sketch
	Control Algorithm for the Dagu Magician Robot

	Some Additional Comments on Energia
	Programming in C
	Anatomy of a Program
	Comments
	Include Files
	Functions
	Port Configuration
	Program Constants
	Interrupt Handler Definitions
	Variables
	Main Program

	Fundamental Programming Concepts
	Programming Constructs
	Decision Processing

	Laboratory Exercise: Getting Acquainted with Energia and C
	Summary
	References and Further Reading
	Chapter Problems

	MSP432 Operating Parameters and Interfacing
	Overview
	Operating Parameters
	MSP432 3.3 VDC Operation
	Compatible 3.3 VDC Logic Families
	Microcontroller Operation at 5.0 VDC
	Interfacing 3.3 VDC Logic Devices with 5.0 VDC Logic Families

	Input Devices
	Switches
	Switch Debouncing
	Keypads
	Sensors
	Transducer Interface Design (TID) Circuit
	Operational Amplifiers

	Output Devices
	Light Emitting Diodes (LEDs)
	Seven Segment LED Displays
	Dot Matrix Display
	Liquid Crystal Display (LCD)

	High Power DC Interfaces
	DC Motor Interface, Speed, and Direction Control
	DC Solenoid Control
	Stepper Motor Control
	Optical Isolation

	Interfacing to Miscellaneous DC Devices
	Sonalerts, Beepers, Buzzers
	Vibrating Motor
	DC Fan
	Bilge Pump

	AC Devices
	Educational Booster Pack MkII
	Grove Starter Kit for LaunchPad
	Application: Special Effects LED Cube
	Construction Hints
	LED Cube MSP432 Energia Code

	Laboratory Exercise: Introduction to the Educational Booster Pack MkII and the Grove Starter Kit
	Summary
	References and Further Reading
	Chapter Problems

	MSP432 Memory System
	Overview
	Basic Memory Concepts
	Memory Buses
	Memory Operations
	Binary and Hexadecimal Numbering Systems
	Memory Architectures
	Memory Types

	Memory Operations in C Using Pointers
	Memory Map
	Flash Memory
	FLCTL Drivelib Support

	Direct Memory Access (DMA)
	DMA Specifications
	DMA Transfer Types
	DMA Registers
	DMA Drivelib Support
	DMA Example

	External Memory: Bulk Storage with an MMC/SD Card
	Laboratory Exercise: MMC/SD Card
	Summary
	References and Further Reading
	Chapter Problems

	MSP432 Power Systems
	Overview
	Background Theory
	Operating Modes and Speed of Operation
	Power Supply System
	The Power Control Module
	Operating Modes
	Operating Mode Summary
	Operating Mode Transitions
	PSS and PCM Registers
	Battery Operation
	DriverLib Support
	Programming in C
	Laboratory Exercise: Operating Modes
	Summary
	References and Further Reading
	Chapter Problems

	Time-Related Systems
	Overview
	Background
	Time-related Signal Parameters
	Frequency
	Period
	Duty Cycle
	Pulse Width Modulation
	Input Capture and Output Compare

	MSP432 Clock System
	Clock Source Registers
	DriverLib APIs
	Timer Applications in C

	Energia-related Time Functions
	Watchdog Timer
	WDT Modes of Operation
	WDT System
	Watchdog DriverLib APIs

	Timer32
	Registers
	DriverLib APIs

	Timer_A
	Registers
	DriverLib APIs

	Real-Time Clock, RTC_C
	RTC Registers
	RTC DriverLib API Support

	Laboratory Exercise: Generation of Varying Pulse Width Modulated Signals to Control DC Motors
	Summary
	References and Further Reading
	Chapter Problems

	Resets and Interrupts
	Overview
	Background
	MSP432 Resets
	Interrupts
	Interrupt Handling Process

	MSP432 Interrupt System
	Interrupt Service Routine (ISR)

	Energia Interrupt Support
	DriverLib
	Programming Interrupts in C
	Laboratory Exercise: Autonomous Robot
	Summary
	References and Further Reading
	Chapter Problems

	Analog Peripherals
	Overview
	Background
	Analog-to-Digital Conversion
	Sampling
	Quantization
	Encoding

	Digital-to-Analog Converter
	MSP432 Analog-to-Digital Converter
	Features
	Operation
	ADC Registers
	Analysis of Results

	Programming the MSP432 ADC14 System
	Energia Programming
	MSP432 Driver Library
	Programming ADC14 in C

	Voltage Reference
	Comparator
	Laboratory Exercise: Educational BoosterPack Mk II
	Summary
	References and Further Reading
	Chapter Problems

	Communication Systems
	Overview
	Background
	Serial Communication Concepts
	MSP432 UART
	UART Overview
	Character Format
	Baud Rate Selection
	UART Associated Interrupts
	UART Registers
	API Support

	Code Examples
	Energia
	UART DriverLib API Example
	UART C Example

	Serial Peripheral Interface-SPI
	SPI Operation
	MSP432 SPI Features
	MSP432 SPI Hardware Configuration
	SPI Registers
	SPI Data Structures API Support
	SPI Code Examples

	Inter-Integrated Communication - I2C Module
	Overview
	Programming
	MSP432 as a Slave Device
	MSP432 as a Master Device
	I2C Registers
	I2C API Support
	 I2C Code Examples

	Laboratory Exercise: UART and SPI Communications
	Summary
	References and Further Reading
	Chapter Problems

	MSP432 System Integrity
	Overview
	Electromagnetic Interference
	EMI Reduction Strategies

	Cyclic Redundancy Check
	MSP432 CRC32 Module
	CRC32 Registers
	API Support

	AES256 Accelerator Module
	Registers
	API Support

	Laboratory Exercise: AES256
	Summary
	References and Further Reading
	Chapter Problems

	System Level Design
	Overview
	What is an Embedded System?
	Embedded System Design Process
	Project Description
	Background Research
	Pre-Design
	Design
	Implement Prototype
	Preliminary Testing
	Complete and Accurate Documentation

	Weather Station
	Requirements
	Structure Chart
	Circuit Diagram
	UML Activity Diagrams
	Microcontroller Code
	Project Extensions

	Submersible Robot
	Approach
	Requirements
	ROV Structure
	Structure Chart
	Circuit Diagram
	UML Activity Diagram
	MSP432 Code
	Control Housing Layout
	Final Assembly Testing
	Final Assembly
	Project Extensions

	Mountain Maze Navigating Robot
	Description
	Requirements
	Circuit Diagram
	Structure Chart
	UML Activity Diagrams
	4WD Robot Algorithm Code
	Mountain Maze
	Project Extensions

	Laboratory Exercise: Project Extensions
	Summary
	References and Further Reading
	Chapter Exercises

	Authors' Biographies
	Index
	Blank Page

