


Microcontroller Programming
and Interfacing with
Texas Instruments
MSP430FR2433 and
MSP430FR5994
Second Edition



Synthesis Lectures on Digital
Circuits and Systems

Editor
Mitchell A. Thornton, SouthernMethodist University

The Synthesis Lectures on Digital Circuits and Systems series is comprised of 50- to 100-page books
targeted for audience members with a wide-ranging background. The Lectures include topics that
are of interest to students, professionals, and researchers in the area of design and analysis of digital
circuits and systems. Each Lecture is self-contained and focuses on the background information
required to understand the subject matter and practical case studies that illustrate applications. The
format of a Lecture is structured such that each will be devoted to a specific topic in digital circuits
and systems rather than a larger overview of several topics such as that found in a comprehensive
handbook. The Lectures cover both well-established areas as well as newly developed or emerging
material in digital circuits and systems design and analysis.

Microcontroller Programming and Interfacing with Texas Instruments MSP430FR2433
and MSP430FR5994, Second Edition
Steven F. Barrett and Daniel J. Pack
2019

Synthesis of Quantum Circuits vs. Synthesis of Classical Reversible Circuits
Alexis De Vos, Stijn De Baerdemacker, and Yvan Van Rentergen
2018

Boolean Differential Calculus
Bernd Steinbach and Christian Posthoff
2017

Embedded Systems Design with Texas Instruments MSP432 32-bit Processor
Dung Dang, Daniel J. Pack, and Steven F. Barrett
2016

Fundamentals of Electronics: Book 4 Oscillators and Advanced Electronics Topics
Thomas F. Schubert and Ernest M. Kim
2016

Fundamentals of Electronics: Book 3 Active Filters and Amplifier Frequency
Thomas F. Schubert and Ernest M. Kim
2016



iii
Bad to the Bone: Crafting Electronic Systems with BeagleBone and BeagleBone Black,
Second Edition
Steven F. Barrett and Jason Kridner
2015

Fundamentals of Electronics: Book 2 Amplifiers: Analysis and Design
Thomas F. Schubert and Ernest M. Kim
2015

Fundamentals of Electronics: Book 1 Electronic Devices and Circuit Applications
Thomas F. Schubert and Ernest M. Kim
2015

Applications of Zero-Suppressed Decision Diagrams
Tsutomu Sasao and Jon T. Butler
2014

Modeling Digital Switching Circuits with Linear Algebra
Mitchell A. Thornton
2014

Arduino Microcontroller Processing for Everyone! Third Edition
Steven F. Barrett
2013

Boolean Differential Equations
Bernd Steinbach and Christian Posthoff
2013

Bad to the Bone: Crafting Electronic Systems with BeagleBone and BeagleBone Black
Steven F. Barrett and Jason Kridner
2013

Introduction to Noise-Resilient Computing
S.N. Yanushkevich, S. Kasai, G. Tangim, A.H. Tran, T. Mohamed, and V.P. Shmerko
2013

Atmel AVR Microcontroller Primer: Programming and Interfacing, Second Edition
Steven F. Barrett and Daniel J. Pack
2012

Representation of Multiple-Valued Logic Functions
Radomir S. Stankovic, Jaakko T. Astola, and Claudio Moraga
2012

Arduino Microcontroller: Processing for Everyone! Second Edition
Steven F. Barrett
2012



iv
Advanced Circuit Simulation Using Multisim Workbench
David Báez-López, Félix E. Guerrero-Castro, and Ofelia Delfina Cervantes-Villagómez
2012

Circuit Analysis with Multisim
David Báez-López and Félix E. Guerrero-Castro
2011

Microcontroller Programming and Interfacing Texas Instruments MSP430, Part I
Steven F. Barrett and Daniel J. Pack
2011

Microcontroller Programming and Interfacing Texas Instruments MSP430, Part II
Steven F. Barrett and Daniel J. Pack
2011

Pragmatic Electrical Engineering: Systems and Instruments
William Eccles
2011

Pragmatic Electrical Engineering: Fundamentals
William Eccles
2011

Introduction to Embedded Systems: Using ANSI C and the Arduino Development
Environment
David J. Russell
2010

Arduino Microcontroller: Processing for Everyone! Part II
Steven F. Barrett
2010

Arduino Microcontroller Processing for Everyone! Part I
Steven F. Barrett
2010

Digital System Verification: A Combined Formal Methods and Simulation Framework
Lun Li and Mitchell A. Thornton
2010

Progress in Applications of Boolean Functions
Tsutomu Sasao and Jon T. Butler
2009

Embedded Systems Design with the Atmel AVR Microcontroller: Part II
Steven F. Barrett
2009



v
Embedded Systems Design with the Atmel AVR Microcontroller: Part I
Steven F. Barrett
2009

Embedded Systems Interfacing for Engineers using the Freescale HCS08 Microcontroller
II: Digital and Analog Hardware Interfacing
Douglas H. Summerville
2009

Designing Asynchronous Circuits using NULL Convention Logic (NCL)
Scott C. Smith and JiaDi
2009

Embedded Systems Interfacing for Engineers using the Freescale HCS08 Microcontroller
I: Assembly Language Programming
Douglas H.Summerville
2009

Developing Embedded Software using DaVinci & OMAP Technology
B.I. (Raj) Pawate
2009

Mismatch and Noise in Modern IC Processes
Andrew Marshall
2009

Asynchronous Sequential Machine Design and Analysis: A Comprehensive Development
of the Design and Analysis of Clock-Independent State Machines and Systems
Richard F. Tinder
2009

An Introduction to Logic Circuit Testing
Parag K. Lala
2008

Pragmatic Power
William J. Eccles
2008

Multiple Valued Logic: Concepts and Representations
D. Michael Miller and Mitchell A. Thornton
2007

Finite State Machine Datapath Design, Optimization, and Implementation
Justin Davis and Robert Reese
2007



vi
Atmel AVR Microcontroller Primer: Programming and Interfacing
Steven F. Barrett and Daniel J. Pack
2007

Pragmatic Logic
William J. Eccles
2007

PSpice for Filters and Transmission Lines
Paul Tobin
2007

PSpice for Digital Signal Processing
Paul Tobin
2007

PSpice for Analog Communications Engineering
Paul Tobin
2007

PSpice for Digital Communications Engineering
Paul Tobin
2007

PSpice for Circuit Theory and Electronic Devices
Paul Tobin
2007

Pragmatic Circuits: DC and Time Domain
William J. Eccles
2006

Pragmatic Circuits: Frequency Domain
William J. Eccles
2006

Pragmatic Circuits: Signals and Filters
William J. Eccles
2006

High-Speed Digital System Design
Justin Davis
2006

Introduction to Logic Synthesis using Verilog HDL
Robert B.Reese and Mitchell A.Thornton
2006



vii
Microcontrollers Fundamentals for Engineers and Scientists
Steven F. Barrett and Daniel J. Pack
2006



Copyright © 2019 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by anymeans—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

Microcontroller Programming and Interfacing with Texas Instruments MSP430FR2433
and MSP430FR5994, Second Edition

Steven F. Barrett and Daniel J. Pack

www.morganclaypool.com

ISBN: 9781681736242 paperback
ISBN: 9781681736273 hardcover

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON DIGITAL CIRCUITS AND SYSTEMS

Lecture #54
Series Editor: Mitchell A. Thornton, Southern Methodist University
Series ISSN
Print 1932-3166 Electronic 1932-3174

www.morganclaypool.com


Microcontroller Programming
and Interfacing with
Texas Instruments
MSP430FR2433 and
MSP430FR5994
Second Edition

Steven F. Barrett
University of Wyoming, Laramie, WY

Daniel J. Pack
University of Tennessee Chattanooga, TN

SYNTHESIS LECTURES ON DIGITAL CIRCUITS AND SYSTEMS #54

C
M
&

cLaypoolMorgan publishers&



ABSTRACT
This book provides a thorough introduction to the Texas Instruments MSP430TM microcon-
troller. The MSP430 is a 16-bit reduced instruction set (RISC) processor that features ultra-low
power consumption and integrated digital and analog hardware. Variants of the MSP430 mi-
crocontroller have been in production since 1993. This provides for a host of MSP430 products
including evaluation boards, compilers, software examples, and documentation. A thorough in-
troduction to theMSP430 line of microcontrollers, programming techniques, and interface con-
cepts are provided along with considerable tutorial information with many illustrated examples.
Each chapter provides laboratory exercises to apply what has been presented in the chapter. The
book is intended for an upper level undergraduate course in microcontrollers or mechatronics
but may also be used as a reference for capstone design projects. Also, practicing engineers al-
ready familiar with another microcontroller, who require a quick tutorial on the microcontroller,
will find this book very useful. This second edition introduces the MSP–EXP430FR5994 and
the MSP430–EXP430FR2433 LaunchPads. Both LaunchPads are equipped with a variety of
peripherals and Ferroelectric Random Access Memory (FRAM). FRAM is a nonvolatile, low-
power memory with functionality similar to flash memory.

KEYWORDS
MSP430 microcontroller, microcontroller interfacing, embedded systems design,
Texas Instruments



xi

To our families





xiii

Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxix

1 Introduction to Microcontroller Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background Theory: A Brief History and Terminology . . . . . . . . . . . . . . . . . . . 2
1.3 Microcontroller Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Why the Texas Instruments MSP430? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Target Microcontroller Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Introduction to the Evaluation Modules (EVM) . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Development Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8 Lab 1: Getting Acquainted with Hardware and Software Development

Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.10 References and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.11 Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 A Brief Introduction to Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Energia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Energia Quickstart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Energia Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Energia IDE Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Sketchbook Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 Energia Software, Libraries, and Language References . . . . . . . . . . . 24

2.5 Energia Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Writing an Energia Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.1 Control Algorithm for the Mini Round Robot . . . . . . . . . . . . . . . . . . 44
2.7 Some Additional Comments on Energia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.8 Programming in C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



xiv
2.9 Anatomy of a Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.9.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.9.2 Include Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.9.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.9.4 Port Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.9.5 Program Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.9.6 Interrupt Handler Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.9.7 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.9.8 Main Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.10 Fundamental Programming Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.10.1 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.10.2 Programming Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.10.3 Decision Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.11 Laboratory Exercise: Getting Acquainted with Energia and C . . . . . . . . . . . . 76
2.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.13 References and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.14 Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3 Hardware Organization and Software Programming . . . . . . . . . . . . . . . . . . . . . 81
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2 MSP430 Hardware Organization/Architecture . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.1 Chip Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2.2 Hardware Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3 Hardware Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3.1 Register Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3.2 Port System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.3 Timer System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.4 Memory System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.5 Resets and Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.3.6 Communication Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.7 Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.8 Hardware Multiplier (MPY32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4 CPU Programming Model/Register Descriptions . . . . . . . . . . . . . . . . . . . . . . 90
3.5 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.6 Software Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.6.1 MSP430 Assembly Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.6.2 Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



xv
3.6.3 Assembly Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.6.4 Instruction Set Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.7 Addressing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.7.1 Register Addressing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.7.2 Indexed Addressing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.7.3 Symbolic Addressing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.7.4 Absolute Addressing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.7.5 Indirect Register Addressing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.7.6 Indirect Autoincrement Addressing Mode . . . . . . . . . . . . . . . . . . . . 121
3.7.7 Immediate Addressing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.7.8 Programming Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.7.9 Orthogonal Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.8 Software Programming Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.9 Assembly vs. C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.9.1 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.10 Accessing and Debugging Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.11 Laboratory Exercise: Programming the MSP430 in Assembly Language . . . 128

3.11.1 Part 1: Flash an LED via Assembly Language . . . . . . . . . . . . . . . . . 128
3.11.2 Part 2: Illuminate a LED via Assembly Language . . . . . . . . . . . . . . 132
3.11.3 Part 3: Mathematical Operations in Assembly Language . . . . . . . . . 134

3.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.13 References and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.14 Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4 MSP430 Operating Parameters and Interfacing . . . . . . . . . . . . . . . . . . . . . . . . 139
4.1 Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.1.1 MSP430 3.3 VDC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.1.2 Compatible 3.3 VDC Logic Families . . . . . . . . . . . . . . . . . . . . . . . . 142
4.1.3 Microcontroller Operation at 5.0 VDC . . . . . . . . . . . . . . . . . . . . . . . 142
4.1.4 Interfacing 3.3 VDC Logic Devices with 5.0 VDC Logic Families . 144

4.2 Input Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.2.1 Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.2.2 Switch Debouncing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.2.3 Keypads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.2.4 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.2.5 Transducer Interface Design (TID) Circuit . . . . . . . . . . . . . . . . . . . . 162
4.2.6 Operational Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



xvi
4.3 Output Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.3.1 Light-Emitting Diodes (LEDs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.3.2 Seven-Segment LED Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.3.3 Tri-State LED Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.3.4 Dot Matrix Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.3.5 Liquid Crystal Display (LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.4 High-Power DC Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.4.1 DC Motor Interface, Speed, and Direction Control . . . . . . . . . . . . . 180
4.4.2 DC Solenoid Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.4.3 Stepper Motor Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.4.4 Optical Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

4.5 Interfacing to Miscellaneous DC Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
4.5.1 Sonalerts, Beepers, and Buzzers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
4.5.2 Vibrating Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
4.5.3 DC Fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
4.5.4 Bilge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

4.6 AC Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
4.7 MSP430FR5994: Educational Booster Pack MkII . . . . . . . . . . . . . . . . . . . . 203
4.8 Grove Starter Kit for LaunchPad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
4.9 Application: Special Effects LED Cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

4.9.1 Construction Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
4.9.2 LED Cube MSP430 Energia Code . . . . . . . . . . . . . . . . . . . . . . . . . . 211

4.10 Laboratory Exercise: Introduction to the Educational Booster Pack MkII
and the Grove Starter Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

4.11 Laboratory: Collection and Display of Weather Information . . . . . . . . . . . . 227
4.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
4.13 References and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
4.14 Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

5 Power Management and Clock Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
5.2 Background Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
5.3 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
5.4 The Power Management Module (PMM) and Supply Voltage Supervisor

(SVS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
5.4.1 Supply Voltage Supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239



xvii
5.4.2 PMM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

5.5 Clock System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
5.6 Battery Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
5.7 Voltage Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
5.8 High-Efficiency Charge Pump Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
5.9 Laboratory Exercise: MSP430 Power Systems and Low-Power Mode

Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
5.9.1 Current Measurements in Different Operating Modes . . . . . . . . . . . 251
5.9.2 Operating an MSP430 from a Single Regulated Battery Source . . . 252
5.9.3 Operating an MSP430 from a Single 1.5 VDC Battery . . . . . . . . . . 252

5.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
5.11 References and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
5.12 Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

6 MSP430 Memory System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
6.2 Basic Memory Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

6.2.1 Memory Buses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
6.2.2 Memory Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
6.2.3 Binary and Hexadecimal Numbering Systems . . . . . . . . . . . . . . . . . . 259
6.2.4 Memory Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
6.2.5 Memory Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
6.2.6 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
6.2.7 Direct Memory Access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

6.3 Aside: Memory Operations in C Using Pointers . . . . . . . . . . . . . . . . . . . . . . 264
6.4 Direct Memory Access (DMA) controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

6.4.1 DMA System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
6.4.2 DMA Example: Block Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

6.5 MSP430FR5994: Memory Protection Unit and IP Encapsulation Segment 276
6.6 External Memory: Bulk Storage with an MMC/SD Card . . . . . . . . . . . . . . 277
6.7 Laboratory Exercise: SD Card Operations with the MSP-EXP430FR5994 277
6.8 Laboratory Exercise: MSP-EXP430FR5994 LaunchPad DMA Transfer . . 278
6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
6.10 References and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
6.11 Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279



xviii

7 Timer Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
7.2 Motivation: Real-Time Location Systems (RTLS) . . . . . . . . . . . . . . . . . . . . 281
7.3 Time-Related Signal Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

7.3.1 Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
7.3.2 Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
7.3.3 Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
7.3.4 Pulse Width Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

7.4 Overview of MSP430 Timer Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
7.5 Energia-Related Time Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
7.6 Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

7.6.1 Protecting from Software Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
7.6.2 Interval Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

7.7 Real-Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
7.8 Real-Time Clock-MSP430FR2433 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

7.8.1 Real-Time Clock: RTC_B, RTC_C-MSP430FR5994 . . . . . . . . . . 295
7.8.2 RTC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

7.9 Input Capture and Output Compare Features . . . . . . . . . . . . . . . . . . . . . . . . 302
7.9.1 Timing System Overview and Background Theory . . . . . . . . . . . . . . 302
7.9.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

7.10 MSP430 Timers: Timer_A and Timer_B . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
7.10.1 MSP430 Free Running Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
7.10.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
7.10.3 Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
7.10.4 Timer_B System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

7.11 Laboratory Exercise: Generation of Varying Pulse Width Modulated
Signals to Control DC Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

7.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
7.13 References and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
7.14 Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

8 Resets and Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
8.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
8.3 MSP430 Resets/Interrupts Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
8.4 MSP430 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333



xix
8.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

8.5.1 Interrupt Handling Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
8.5.2 Interrupt Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
8.5.3 Interrupt Service Routine (ISR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

8.6 Laboratory Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
8.7 References and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
8.8 Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

9 Analog Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
9.1 Analog-to-Digital Conversion Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

9.1.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
9.1.2 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
9.1.3 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

9.2 Digital-to-Analog Converter Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
9.3 MSP430 ADC Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

9.3.1 MSP 430 ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
9.3.2 MSP430FR2433 10-bit Analog-to-Digital Converter . . . . . . . . . . . 366
9.3.3 MSP430FR2433 Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 371
9.3.4 Programming the MSP430FR2433 ADC in C . . . . . . . . . . . . . . . . 373

9.4 MSP430FR5994 Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . 376
9.4.1 ADC12_B Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
9.4.2 MSP430FR5994 ADC12_B Operation . . . . . . . . . . . . . . . . . . . . . . 377
9.4.3 MSP430FR5994 Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 379
9.4.4 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
9.4.5 Programming the MSP430FR5994 ADC12_B System . . . . . . . . . . 381

9.5 MSP430FR5994 Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
9.6 Advanced Analog Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

9.6.1 Smart Analog Combo (SAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
9.6.2 Enhanced Comparator (eCOMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
9.6.3 Transimpedance Amplifier (TIA) . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

9.7 Laboratory Exercise: Smart Home Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
9.8 References and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
9.9 Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

10 Communication Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
10.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
10.2 Serial Communication Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397



xx
10.3 MSP430 UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

10.3.1 UART Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
10.3.2 UART Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
10.3.3 Character Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
10.3.4 Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
10.3.5 UART Associated Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
10.3.6 UART Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

10.4 Code Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
10.4.1 Energia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
10.4.2 UART C Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

10.5 Serial Peripheral Interface-SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
10.5.1 SPI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
10.5.2 MSP430 SPI Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
10.5.3 MSP430 SPI Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . 412
10.5.4 SPI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
10.5.5 SPI Code Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

10.6 Inter-Integrated Communication – I2C Module . . . . . . . . . . . . . . . . . . . . . . 441
10.6.1 I2C Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
10.6.2 I2C Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
10.6.3 MSP430 as a Slave Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
10.6.4 MSP430 as a Master Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
10.6.5 I2C Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
10.6.6 Programming the I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

10.7 Laboratory Exercise: UART and SPI Communications . . . . . . . . . . . . . . . . . 457
10.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
10.9 References and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
10.10 Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

11 MSP430 System Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
11.2 Electromagnetic Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

11.2.1 EMI reduction Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
11.3 Cyclic Redundancy Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

11.3.1 MSP430FR5994 CRC32 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
11.3.2 CRC16 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
11.3.3 CRC32 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

11.4 AES256 Accelerator Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474



xxi
11.4.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
11.4.2 API Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

11.5 Laboratory Exercise: AES256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
11.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
11.7 References and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
11.8 Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

12 System-Level Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
12.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
12.2 What is an Embedded System? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
12.3 Embedded System Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

12.3.1 Project Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
12.3.2 Background Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
12.3.3 Pre-Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
12.3.4 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
12.3.5 Implement Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
12.3.6 Preliminary Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
12.3.7 Complete and Accurate Documentation . . . . . . . . . . . . . . . . . . . . . . 493

12.4 MSP430FR5994: Weather Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
12.4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
12.4.2 Structure Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
12.4.3 Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
12.4.4 UML Activity Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
12.4.5 Microcontroller Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
12.4.6 Project Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

12.5 Submersible Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
12.5.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
12.5.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
12.5.3 ROV Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
12.5.4 Structure Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
12.5.5 Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
12.5.6 UML Activity Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
12.5.7 MSP430 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
12.5.8 Control Housing Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
12.5.9 Final Assembly Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
12.5.10 Final Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
12.5.11 Project Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526



xxii
12.6 Mountain Maze Navigating Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

12.6.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
12.6.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
12.6.3 Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
12.6.4 Structure Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
12.6.5 UML Activity Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
12.6.6 Robot Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
12.6.7 Mountain Maze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
12.6.8 Project Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

12.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
12.8 References and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
12.9 Chapter Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

Authors’ Biographies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549



xxiii

Preface
Texas Instruments is well known for its analog and digital devices, in particular, Digital Signal
Processing (DSP) chips. Unknown to many, the company quietly developed its microcontroller
division in the early 1990s and started producing a family of controllers aimed mainly for em-
bedded meter applications, which require an extended operating time without intervention for
power companies. It was not until the mid 2000s that the company began serious effort to
present the MSP430 microcontroller family, its flagship microcontroller, to the academic com-
munity and future engineers. Their efforts have been quietly attracting many educators and stu-
dents due to the MSP430’s cost and the suitability of the controller for capstone design projects
requiring microcontrollers. In addition, Texas Instruments offers many compatible analog and
digital devices that can expand the range of the possible embedded applications of the microcon-
troller. Texas Instruments has continually added new innovation to the MSP430 microcontroller
line. The second edition introduces the MSP–EXP430FR5994 and the MSP–EXP430FR2433
LaunchPads. Both LaunchPads are equippedwith a variety of peripherals and Ferroelectric Ran-
dom Access Memory (FRAM). FRAM is a nonvolatile, low-power memory with functionality
similar to flash memory.

This book is about the MSP430 microcontroller family. We have three goals in writing
this book. The first is to introduce readers to microcontroller programming. The MSP430 mi-
crocontrollers can be programmed either using assembly language or a high–level programming
language such as C. The second goal of the book is to teach students how computers work. After
all, a microcontroller is a computer within a single integrated circuit (chip). Finally, we present
the microcontroller’s input/output interface capabilities, one of the main reasons for developing
embedded systems with microcontrollers.

Background
This book provides a thorough introduction to the Texas Instruments MSP430 microcontroller.
The MSP430 is a 16-bit reduced instruction set (RISC) processor that features ultra-low power
consumption and integrated digital and analog hardware. Variants of the MSP430 microcon-
troller have been in production since 1993 with a host of MSP430-related products including
evaluation boards, compilers, software examples, and documentation.

This book is intentionally tutorial in nature with many worked examples, illustrations,
and laboratory exercises. An emphasis is placed on real-world applications such as smart home
concepts, mobile robots, an unmanned underwater vehicle, and a DC motor controller to name
a few.



xxiv PREFACE
Intended Readers
The book is intended for an upper level undergraduate course in microcontrollers or mechatron-
ics but may also be used as a reference for capstone design projects. Also, practicing engineers
who are already familiar with another line of microcontrollers, but require a quick tutorial on
the MSP430 microcontroller, will find this book beneficial.

Approach and Organization
This book provides a thorough introduction to the MSP430 line of microcontrollers, program-
ming techniques, and interface concepts. Each chapter contains a list of objectives, background
tutorial information, and detailed information on the operation of the MSP430 system under
study. Furthermore, each chapter provides laboratory exercises to apply what has been presented
in the chapter and how the concepts are employed in real applications. Each chapter concludes
with a series of homework exercises divided into Fundamental, Advanced, and Challenging
categories. The reader will get the most out of the book by also having the following references
readily available:

• MSP430FR2433 Mixed–Signal Microcontroller, SLASE59B;

• MSP430FR4xx and MSP430FR2xx Family User’s Guide, SLAU445G;

• MSP430FR599x, MSP430FR596x Mixed–Signal Microcontrollers, SLASE54B; and

• MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s Guide,
SLAU367O.

This documentation is available for download from the Texas Instruments website [www.
ti.com].

Chapter 1 provides a brief review of microcontroller terminology and a short history fol-
lowed by an overview of the MSP430 microcontroller. The overview surveys systems onboard
the microcontroller and also various MSP430 families. The chapter concludes with an introduc-
tion to the hardware and software development tools that will be used for the remainder of the
book. Our examples employ the MSP–EXP430FR5994 and the MSP430FR2433 LaunchPads,
the Energia rapid prototyping platform, and the Texas Instruments’ Code Composer Studio In-
tegrated Development Environment (IDE). The information provided can be readily adapted
to other MSP430 based experimenter boards.

Chapter 2 provides a brief introduction to programming in C. The chapter contains mul-
tiple examples for a new programmer. It also serves as a good review for seasoned programmers.
Also, software programming tools including Energia, Code Composer Studio IDE, and debug-
ging tools are explored. This chapter was adapted from material originally written for the Texas
Instruments MSP432, a 32-bit processor that has close ties to the 16-bit MSP430.1 Embed-

1This chapter was adapted with permission from ArduinoMicrocontroller Processing for Everyone, S. Barrett, 3rd ed., Mor-
gan & Claypool Publishers, San Rafael, CA, 2013.

[www.ti.com]
[www.ti.com]


PREFACE xxv
ded system developers will find a seamless transition between the MSP430 and MSP432 line
of processors.

Chapter 3 introduces the MSP430 hardware architecture, software organization, and pro-
gramming model. The chapter also presents an introduction to the MSP430 orthogonal instruc-
tion set, including its 27 instructions and 9 emulated instructions.

Chapter 4 describes a wide variety of input and output devices and how to properly inter-
face them to the MSP430 microcontroller. We believe it is essential for the embedded system
designer to understand the electrical characteristics of the processor so a proper interface to pe-
ripheral components may be designed. We have included a chapter on these concepts for the
books we have written for the Synthesis Lecture Series. We continue to add material as new
microcontroller peripherals are developed. The chapter begins with a review of the MSP430
electrical operating parameters followed by a discussion of the port system. The chapter in-
cludes a description of a wide variety of input device concepts including switches, interfacing,
debouncing, and sensors. Output device concepts are then discussed including light-emitting
diodes (LEDs), tri–state LED indicators, liquid crystal displays (LCDs), high-power DC and
AC devices, motors, and annunciator devices.

Chapter 5 provides an in–depth discussion of the MSP430 power management system.
The power management system provides for ultra-low power operation and practices.

Chapter 6 is dedicated to the different memory components onboard the MSP430 in-
cluding the new FRAM nonvolatile memory, RAM, EEPROM and the associated memory
controllers. The Direct Memory Access (DMA) controller is also discussed.

Chapter 7 discusses the clock and timer systems aboard the MSP430. The chapter begins
with a detailed discussion of the flexible clock system, followed by a discussion of the timer
system architecture. The timer architecture discussion includes the Watchdog timers, timers A
and B, real-time clocks, and pulse width modulation (PWM).

Chapter 8 provides an introduction to the concepts of resets and interrupts. The various
interrupt systems associated with the MSP430 are discussed, followed by detailed instructions
on how to properly configure and program them.

Chapter 9 discusses the analog systems aboard the MSP430. The chapter discusses the
analog–to–digital converters (ADCs), the digital–to–analog converters (DACs), and the com-
parators.

Chapter 10 is designed for a detailed review of the complement of serial communication
systems resident onboard the MSP430, including the universal asynchronous receiver transmit-
ter (UART), the serial peripheral interface (SPI), the I2C system, the radio frequency (RF) link,
USB, and the IrDA infrared link. The systems are contained within the MSP430 universal serial
communication interfaces eUSCI_A and eUSCI_B subsystems.

Chapter 11 provides a detailed introduction to the data integrity features aboard the
MSP430 including a discussion of noise and its sources and suppression, an Advanced En-
cryption Standard (AES) 256 accelerator module, and a 16- or 32-bit cyclic redundancy check



xxvi PREFACE
(CRC) engine. This chapter was adapted from material originally written for the Texas Instru-
ments MSP432, a 32-bit processor that has close ties to the 16-bit MSP430.2 Embedded system
developers will find a seamless transition between the MSP430 and MSP432 line of processors.

Chapter 12 discusses the system design process followed by system level examples. We
view the microcontroller as the key component within the larger host system. It is essential the
embedded system designer has development, design, and project management skills to success-
fully complete a project. This chapter provides an introduction some of the skills used for project
development. We have included a chapter on these concepts for the books we have written for
the Synthesis Lecture Series. The examples have been carefully chosen to employ a wide variety
of MSP430 systems discussed throughout the book.

Table 1 provides a summary of chapter contents and related MSP430 subsystems.

Steven F. Barrett and Daniel J. Pack
July 2019

2Embedded Systems Design with the Texas Instruments MSP432 32-bit Processor, Dung Dang, Daniel J. Pack, and Steven
F. Barrett, Morgan & Claypool Publishers, San Rafael, CA, 2017.



PREFACE xxvii

Table 1: MSP-EXP430FR5994 and the MSP-EXP430FR2433 LaunchPad subsystems.

Chapter  MSP- EXP430FR2433 MSP-EXP430FR5994

Ch. 1: Introduction

Ch. 2: Programming MSP430 port system MSP430 port system 

Ch. 3: HW and SW Joint Test Action Group ( JTAG) 

serial debug port, Enhanced 

Emulation Module (EEM) onboard 

debug tool, serial Spy-Bi-Wire 

(SBY) JTAG

Joint Test Action Group ( JTAG) 

serial debug port, Enhanced 

Emulation Module (EEM) on-

board debug tool, serial Spy-Bi-

Wire (SBY) JTAG

Ch. 4: Interfacing MSP430 port system MSP430 port system

Ch. 5: Power Mgt Power Mgt Module Power Mgt: LDO, SVS, 

Brownout

Ch. 6: Memory FRAM: 15KB + 512B 

RAM: 4KB

FRAM: 256KB 

RAM: 4 KB + 4 KB 

DMA Controller 

Memory Protection Unit (MPU) 

IP Encapsulation Segment (IPE)

Ch. 7: Timer Systems 

- Clock

- Timers

Clock system (CS), LFXT 

Timer_A3(2), Timer_A2(2) 

Watchdog, Real-Time Clock

Clock system (CS), 

TB0: Timer_B, TA0: Timer_A, 

TA1: Timer_A, TA4: Timer_A, 

Watchdog, Real-Time Clock

Ch. 8: Resets and Interrupts

 Ch. 9: Analog Peripherals ADC: 8 ch, SE, 10-bit, 200 ksps Comp_E: 16 ch, Ref_A 

ADC 12_B: 16 ch SE/8 DE, 12-bit

Ch. 10: Comm Sys eUSCI_A(2) 

   - UART, IrDA, SPI 

eUSCI_B0 

   - SPI, I2C

eUSCI_A(4)  (A0 to A3) 

   - UART, IrDA, SPI 

eUSCI_B(4)  (B0 to B3) 

   - SPI, I2C

Ch. 11: System Integrity CRC16: 16-bit cyclic redun-

dancy check

CRC16: CRC-16-CCITT 

CRC32: CRC-32-ISO-3309 

AES 256: security encryption/ 

                decryption

Ch. 12: System Design





xxix

Acknowledgments
There have been many people involved in the conception and production of this book. We es-
pecially want to thank Doug Phillips, Mark Easley, and Franklin Cooper of Texas Instruments.
The future of Texas Instruments is bright with such helpful, dedicated engineering and staff
members. In 2005, Joel Claypool of Morgan & Claypool Publishers, invited us to write a book
on microcontrollers for his new series titled “Synthesis Lectures on Digital Circuits and Sys-
tems.” The result was the book Microcontrollers Fundamentals for Engineers and Scientists. Since
then we have been regular contributors to the series. Our goal has been to provide the fun-
damental concepts common to all microcontrollers and then apply the concepts to the specific
microcontroller under discussion. We believe that once you have mastered these fundamental
concepts, they are easily transportable to different processors. As with many other projects, he
has provided his publishing expertise to convert our final draft into a finished product. We thank
him for his support on this project and many others. He has provided many novice writers the
opportunity to become published authors. His vision and expertise in the publishing world made
this book possible. We thank Sara Kreisman of Rambling Rose Press, Inc. for her editorial ex-
pertise. We also thank Dr. C.L. Tondo of T&T TechWorks, Inc. and his staff for working their
magic to convert our final draft into a beautiful book. Finally, we thank our families who have
provided their ongoing support and understanding while we worked on books over the past
fifteen plus years.

Steven F. Barrett and Daniel J. Pack
July 2019





1

C H A P T E R 1

Introduction to
Microcontroller Technology

Objectives: After reading this chapter, the reader should be able to:

• describe the key technological accomplishments leading to the development of the micro-
controller;

• define microprocessor, microcontroller, and microcomputer;

• identify examples of microcontroller applications in daily life;

• list key attributes of the MSP430 microcontroller;

• describe different features that differentiate MSP430 microcontroller family members;

• list the subsystems onboard the MSP430FR2433 and the MSP430FR5994 microcon-
trollers;

• provide an example application for each subsystem onboard the MSP430microcontrollers;

• describe the hardware, software, and emulation tools available for the MSP430 microcon-
trollers; and

• employ the development tools to load and execute simple programs on the MSP-
EXP430FR2433 and the MSP-EXP430FR5994 evaluation boards.

In every chapter, we start with a motivation and background followed by a section on the-
ory. After the theory section, an example application is used to demonstrate the operational use
of chapter concepts. Each chapter includes a hands-on laboratory exercise and a list of chapter
references, which you can use to explore further areas of interest. Each chapter concludes with
a series of practice exercises, divided into Fundamental, Advanced, and Challenging levels.

1.1 MOTIVATION
This book is about microcontrollers! A microcontroller is a self-contained processor system in a
single integrated circuit (IC or chip) that contains essential functional units of a general-purpose
computer such as a central processing unit (CPU), a memory, and input/output (I/O) units.



2 1. INTRODUCTION TO MICROCONTROLLER TECHNOLOGY
Microcontrollers provide local computational resources to many products, requiring a limited
amount of processing power to perform their functions. They are everywhere! In the routine of
daily life, we use multiple microcontrollers. Take a few minutes and jot down a list of microcon-
troller equipped products, sometimes called embedded systems, you have used today.

This chapter introduces the Texas Instruments MSP430 line of microcontrollers. We
begin with a brief history of computer technology followed by an introduction to the
MSP430FR2433 and the MSP430FR5994 microcontrollers. After a review of these MSP430
microcontrollers, we introduce you to the powerful and user-friendly development tools.

1.2 BACKGROUND THEORY: A BRIEF HISTORY AND
TERMINOLOGY

The development of microcontrollers can be traced back to the time of early computing with the
first generation of computers. The generations of computer development are marked by break-
throughs in hardware and architecture innovation. The first generation of computers employed
vacuum tubes as the main switching element. Mauchly and Eckert developed the electronic
numerical integrator and calculator (ENIAC) in the mid 1940s. This computer was large and
consumed considerable power due to its use of 18,000 vacuum tubes. The computer, funded
by the U.S. Army, was employed to calculate ordnance trajectories in World War II. The first
commercially available computer of this era was the UNIVAC I [Bartee, 1972].

The second generation of computers employed transistors as the main switching element.
The transistor was developed in 1947 by John Bardeen and Walter Brattain at Bell Telephone
Laboratories. Bardeen, Brattain, and William Schockley were awarded the 1956 Nobel Prize in
Physics for development of the transistor [Nobel.org]. The transistor reduced the cost, size, and
power consumption of computers.

The third generation of processors started with the development of the integrated circuit.
The integrated circuit was developed by Jack Kilby at Texas Instruments in 1958. The inte-
grated circuit revolutionized the production of computers, greatly reducing their size and power
consumption. Computers employing integrated circuits were first launched in 1965 [Bartee,
1972], and Kilby was awarded the Nobel Prize in Physics in 2002 for his work on the integrated
circuit [Nobel.org]. The first commercially available minicomputer of this generation was the
digital equipment corporation’s (DEC) PDP-8 [Osborne, 1980].

The fourth generation of computers was marked by the advancement of levels of inte-
gration, leading to very large-scale integration (VLSI) and ultra-large scale integration (ULSI)
production techniques. In 1969, the Data Point Corporation of San Antonio, Texas had de-
signed an elementary CPU. The CPU provides the arithmetic and control for a computer. Data
Point contracted with Intel and Texas Instruments to place the design on a single integrated
circuit. Intel was able to complete the task, but Data Point rejected the processor as being too
slow for their intended application [Osborne, 1980].



1.3. MICROCONTROLLER SYSTEMS 3
Intel used the project as the basis for their first general-purpose 8-bit microprocessor,

the Intel 8008. The microprocessor chip housed the arithmetic and control unit for the com-
puter. Other related components such as memory (ROM), random access memory (RAM), I/O
components, and interface hardware were contained in external chips. From 1971–1977, Intel
released the 8008, 8080, and 8085 microprocessors which significantly reduced the number of
system components and improved upon the number of power supply voltages required for the
chips. Some of the high visibility products of this generation were the Apple II personal com-
puter, developed by Steve Jobs and Steve Wozniak and released in 1977, and the IBM personal
computer, released in 1981 [MCS 85, 1977, Osborne, 1980].

The first single-chip microcontroller was developed by Gary Boone of Texas Instruments
in the early 1970s. Amicrocontroller contains all key elements of a computer systemwithin a sin-
gle integrated circuit. Boone’s first microcontroller, the TMS 1000, contained the CPU, ROM,
RAM, and I/O and featured a 400 kHz clock [Boone, 1973, 1978]. From this early launch of
microcontrollers, an entire industry was launched. There are now over 35 plus companies man-
ufacturing microcontrollers worldwide offering over 250 different product lines [Wendt]. The
MSP430 line of microcontrollers was first developed in 1992 and became available for world-
wide release in 1997.

1.3 MICROCONTROLLER SYSTEMS
Although today’s microcontrollers physically bear no resemblance to their earlier computer pre-
decessors, they all have a similar architecture. All computers share the basic systems shown in
Figure 1.1. The processor or CPU contains both datapath and control hardware. The datapath
is often referred to as the arithmetic logic unit (ALU). As its name implies, the ALU provides
hardware to perform the mathematical and logic operations for the computer. The control unit
provides an interface between the computer’s hardware and software. It generates control signals
to the datapath and other system components such that operations occur in the correct order
and within an appropriate time to execute the desired actions of a software program.

Processor

Control

Datapath

Input

Output

Memory
System

Computer

Figure 1.1: Basic computer architecture. (Adapted from Patterson and Hennessy [1994].)



4 1. INTRODUCTION TO MICROCONTROLLER TECHNOLOGY
The memory system contains a variety of memory components to support the operation of

the computer. Typical memory systems aboard microcontrollers contain RAM, ROM, and elec-
trically erasable programmable read only memory (EEPROM) components. RAM is volatile.
When power is unavailable, the contents of RAM memory is lost. RAM is typically used in mi-
crocontroller operations for storing global variables, local variables, which are required during
execution of a function, and to support heap operations during dynamic allocation activities. In
contrast, ROM memory is nonvolatile. That is, it retains its contents even when power is not
available. ROM memory is used to store system constants and parameters. If a microcontroller
application is going to be mass produced, the resident application program may also be written
into ROM memory at the manufacturer.

EEPROM is available in two variants: byte-addressable and flash programmable. Byte-
addressable memory EEPROM, as its name implies, allows variables to be stored, read, and
written during program execution. The access time for byte-addressable EEPROM is much
slower than RAM memory; however, when power is lost, the EEPROM memory retains its
contents. Byte-addressable EEPROM may be used to store system passwords and constants.
For example, if a microcontroller-based algorithm has been developed to control the operation
of a wide range of industrial doors, system constants for a specific door type can be programmed
into the microcontroller onsite when the door is installed. Flash EEPROM can be erased or
programmed in bulk. It is typically used to store an entire program.

Ferroelectric Random Access Memory (FRAM) is a nonvolatile, ultra-low power (ULP)
with access speeds similar to RAM. It has been termed a universal memory because it can be used
for storing program code, variables, constants, and for stack operations. Note these functions
are typically performed by nonvolatile ROM and volatile RAM. FRAM also has a high level of
write endurance on the order of 1015 cycles [SLAA526A, 2014, SLAA628, 2014].

The input and output system of a microcontroller usually consists of a complement of
ports. Ports are fixed sized hardware registers that allow for the orderly transfer of data in and
out of themicrocontroller. Inmost microcontroller systems, ports are equipped for dual use.That
is, they may be used for general-purpose digital I/O operations or may have alternate functions
such as input access for the analog-to-digital (ADC) system.

Our discussion thus far has been about microcontrollers in general. For the remainder
of this chapter and the rest of the book, we concentrate on the Texas Instruments MSP430
microcontroller, specifically the MSP430FR2433 and the MSP430FR5994.

1.4 WHY THE TEXAS INSTRUMENTS MSP430?
The MSP430 line of microcontrollers began development in 1992. Since this initial start, there
have been multiple families of the microcontroller developed and produced with a wide range
of features. This allows one to choose an appropriate microcontroller for a specific application.
Texas Instruments invests considerable resources in providing support documentation, develop-
ment tools, and instructional aids for this processor family.



1.5. TARGET MICROCONTROLLER FEATURES 5
The various families of the MSP430 have the following traits [SLAB034AD, 2017]:

• low-power supply range,

• ultra-low power (ULP) consumption,

• 16-bit reduced instruction set (RISC) architecture,

• over 300 code compatible products,

• capability to integrate digital and analog components,

• compatible radio frequency (RF) peripheral components to provide wireless communica-
tions,

• onboard ADC and digital-to-analog converter (DAC) system, and

• full range of documentation and support for the student, design engineer, and instructor.

1.5 TARGET MICROCONTROLLER FEATURES
Figure 1.2 provides a summary of features for theMS430-EXPFR2433 (FR2433) and theMSP-
EXP430FR5994 (FR5994) evaluation modules (EVM). We discuss features common to both,
followed by features specific to the FR5994.

The FR2433 and FR5994 possess the following common features [SLAB034AD, 2017,
SLASE59D, 2018, SLASE54C, 2018]:

• operating frequency up to 16 MHz,

• 16-bit RISC architecture,

• low supply voltage range: 1.8–3.6 VDC,

• ULP consumption,

• brown-out reset,

• large complement of general-purpose I/O pins,

• multi-channel, high-resolution analog-to-digital converter,

• hardware multiplier,

• multiple enhanced universal serial communication interfaces (eUSCI),

• multiple basic timers,

• memory system including FRAM for program and data memory and SRAM,



6 1. INTRODUCTION TO MICROCONTROLLER TECHNOLOGY

   MSP-EXP430FR2433
Evaluation Module (EVM)
   FR2xx/FR4xx family

- Speed: 16 MHz 
- Voltage: 1.8–3.6 VDC 
- Ports 
  - PA(16), PB(3) 
 
- ADC 10-bit, 8-channel 
  conversion 
- Hardware multiplier 
  (MPY), 32 bit 
- Universal serial comm 
   interface (eUSCI)(3) 
   - A0, A1: 
     - UART, IrDA, SPI 
   - B0:  
     - I2C, SPI 
- Basic timer 
   - Timer_A2 (2) 
   - Timer_A3 (2) 
- Memory: 
   - FRAM: 15.5 KB 
     - 15K program 
     - 512 B data 
   - 4 KB SRAM 
 
- Power Mgt Module (PMM) 
 
- Clock System (CS) and 
  distribution 
- Cyclic Redundancy 
  Check (CRC), 16-bit 
- Embedded Emulation 
  Module (EEM) 
- Watch dog timer, 16-bit 
- Real-time Clock, 16-bit 
- JTAG 
- Spy-Bi-Wire (SBW) 

   MSP-EXP430FR5994 
Evaluation Module (EVM) 
   FRxx FRAM Family 
 
- Speed: 16 MHz 
- Voltage 1.8–3.6 VDC 
- Ports 
  - PA(16), PB(16), PC(16) 
    PD(16), PJ(8) 
- ADC 12-bit, 16-channel 
  conversion 
- Hardware multiplier 
  (MPY), 32 bit 
- Universal serial comm 
   interface (eUSCI)(8) 
   - A0, A1, A2, A3: 
     - UART, IrDA, SPI 
   - B0, B1, B2, B3:  
     - I2C, SPI 
- Basic timer (4) 
   - TA0, 1, 4 
   - TB0 
- Memory: 
  - FRAM: 256 KB  
     - flexible configuration 
       - xxxK program  
       - xxxB info 
  - 8 KB SRAM 
- Supply voltage 
  supervisor (SVS) 
- Clock System (CS) and 
  distribution 
- Cyclic Redundancy 
  Check (CRC), 16- or 32-bit 
- Embedded Emulation 
  Module (EEM) 
- Watch dog timer 
- Real-time Clock 
- JTAG 
- Spy-Bi-Wire (SBW) 
- Analog comparator 
  (Comp_A), 16-channel 
- Direct memory 
  access (DMA), 6-channel 
- Onboard LCD controller 
- Capacitive touch 
- Hardware encryption 
  (AES), 128- or 256-bit

Figure 1.2: MSP430 features [SLAB034AD, 2017, SLASE59D, 2018, SLASE54C, 2018].



1.5. TARGET MICROCONTROLLER FEATURES 7
• power management features,

• flexible clock system (CS),

• cyclic redundancy check (CRC),

• embedded emulation module (EEM),

• watch dog timer (WDT),

• real-time clock (RTC),

• joint test action group ( JTAG) interface,

• spy-bi-wire (SBW) JTAG interface,

• onboard light crystal display (LCD) controller (FR5994), and

• low-energy accelerator (LEA) (FR5994).

In addition, the MSP-EXP430FR5994 EVM has the following features:

• analog comparators,

• six channels of internal direct memory access (DMA),

• onboard LCD controller,

• capacitive touch features, and

• hardware AES encryption.

Provided below is a brief summary of these features. More details are found throughout
the remainder of the book [SLAB034AD, 2017, SLASE59D, 2018, SLASE54C, 2018]:

Maximum operating frequency: 16 MHz. Both the FR2433 and the FR5994 EVMs
have amaximum operating frequency of 16MHz. Generally speaking, a microcontroller’s power
consumption is linearly related to its operating frequency. Microcontrollers are typically used in
remote applications sourced by battery power. To conserve energy the microcontroller is placed
in low-power, low-frequency sleep mode when inactive. The microcontroller is awoken when
needed.Therefore, amicrocontroller needs a combination of both high- and low-frequency clock
sources, different operating modes, and the ability to quickly transition between the modes. The
MSP430 is equipped with a flexible and stable clock and distribution system to satisfy these
requirements.

16-bitRISCarchitecture.Reduced instruction set computer (RISC) architecture is based
on the premise of designing a processor that is very efficient in executing a basic set of building



8 1. INTRODUCTION TO MICROCONTROLLER TECHNOLOGY
block instructions. From this set of basic instructions more complex instructions may be con-
structed. The 16-bit data width establishes the range of numerical arguments that may be used
within the processor. For example, a 16-bit processor can easily handle 16-bit unsigned inte-
gers. This provides a range of unsigned integer arguments from 0 to .216 � 1/ or approximately
65,535. Larger arguments may be handled, but additional software manipulation is required for
processing, which consumes precious execution time.

Low supply voltage range: 1.8–3.6 VDC. The MSP430 operates at very low voltages.
Some operating voltage of interest include:

• 3.6 V: close to Li-ion battery supply range (rechargeable electronic battery);

• 1.8–3.6 V: 2x AA or AAA batteries, coin-cell applications, and energy harvesting appli-
cations. In energy harvesting techniques, energy is derived from sources external to the
microcontroller; and

• 1.8 V: many modern sensors/consumer electronics operate at 1.8 V. Being able to run the
microcontroller at this range means the whole system can operate at VCC D 1.8 V.

Ultra-low power consumption. The MSP430 has a variety of operating modes including
an active mode (AM) and multiple low-power modes (LPM). In the active mode, the MSP430
draws 126 (FR2433)/118 (FR5994) microamps of current per MHz of clock speed. In the
standby mode the MSP430 draws less than one microamp of current. In LPM 3.5 and operat-
ing from a RTC frequency of 32,768 Hz, the MSP430 draws 73 nA (FR2433) and 350 nA
(FR5994). In LPM 4.5 shutdown mode, the MSP430 draws 16 nA (FR2433) and 45 nA
(FR5994) of current [SLASE59D, 2018, SLASE54C, 2018].

Large complement of I/O ports. The FR2433 is equipped with a single 16-bit digital
I/O port, designated as PA. This port may also be subdivided into two 8-bit ports, designated as
P1 and P2. The FR2433 also has a 3-bit, port designated as PB. The FR5994 is equipped with a
four 16-bit digital I/O ports, designated as PA through PD. These ports may also be subdivided
into two 8-bit ports. For example, port PA may be as designated P1 and P2. The FR5994 also
has an 8-bit port, designated as PJ.

Multi-channel, high-resolution analog-to-digital converter. The FR2433 is equipped
with an 8-channel, 10-bit analog-to-digital converter.The FR5994 is equipped with 16 channels
of 12-bit ADC. This feature provides for a large number of converters and very good resolution
of analog signals converted.

Hardware multiplier. Many microcontrollers can perform mathematical multiplication
operations. However, most perform these calculations using a long sequence of instructions that
consume multiple clock cycles. That is, it takes a relatively long period of time to perform a mul-
tiplication operation. The MSP430 is equipped with a dedicated hardware multiplier that can



1.5. TARGET MICROCONTROLLER FEATURES 9
multiply 32-, 24-, 16-, and 8-bit signed and unsigned multiplication operations. The hardware
multiplier can also perform the signed and unsigned multiply and accumulate operation. This
operation is used extensively in digital signal processing (DSP) operations.

Multiple enhanced universal serial communication interfaces (eUSCI). The MSP430
microcontroller is equipped with the enhanced Universal Serial Communication Interface (eU-
SCI). The system is equipped with many different serial communication subsystems. The eU-
SCI consists of two different communication subsystems: eUSCI A type modules and eUSCI B
modules. The FR2433 EVM is equipped with two A modules (A0, A1) and a single B module
(B0). The FR5994 EVM is equipped with four A modules (A0 to A3) and four B modules (B0
to B3).

The eUSCI A modules provide support for the following.

• Universal asynchronous serial receiver and transmitter (UART). The UART supports a
serial data link between a transmitter and a receiver. The transmitter and receiver pair
maintains synchronization using start and stop bits that are embedded in the data stream.

• Infrared data association (IrDA). The IrDA protocol provides for a short-range data link
using an infrared (IR) link. It is a standardized protocol for IR linked devices. It is used
in various communication devices, personal area networks, and instrumentation.

• The serial peripheral interface (SPI) provides synchronous communications between a re-
ceiver and a transmitter. The SPI system maintains synchronization between the trans-
mitter and receiver pair using a common clock provided by the master designated micro-
controller. An SPI serial link has a much faster data rate than UART.

The eUSCI B modules also provide support for SPI communications and inter-integrated
communication (I2C) communications. The I2C is one of prominent communication modes,
used when multiple serial devices are interconnected through a serial bus. The I2C bus is a two-
wire bus with the serial data line (SDL) and the serial clock line (SCL). By configuring devices
connected to the common I2C line as either a master device or a slave device, multiple devices
can share information using a common bus. The I2C system is used to link multiple peripheral
devices to a microcontroller or several microcontrollers together in a system that are in close
proximity to one another [SLAU356A].

Multiple basic timers. The MSP430 employs timers for capturing the parameters of
an incoming signal (period, frequency, duty cycle, pulse length), generating a precision out-
put digital signal, or generating a pulse width modulated (PWM) signal. The FR2433 is
equipped with four 16-bit timers designated as type Timer_A3 and Timer_A2. Each of the
two Timer_A3 timers are equipped with three capture/compare registers. The two Timer_A2
timers are equipped with two capture/compare registers. The FR5994 is equipped with 6 dif-
ferent 16-bit registers with the number of capture/compare registers shown: Timer_TA0(3),
Timer_TA1(3), Timer_TA2(3), Timer_TA3(2), Timer_TA4(2), and Timer_TB0(7).



10 1. INTRODUCTION TO MICROCONTROLLER TECHNOLOGY
Memory system. FRAM is a nonvolatile and operates on ULP with access speeds similar

to RAM. It has been termed a universal memory because it can be used for storing program code,
variables, constants, and for stack operations. The FR2433 is equipped with 15 KB (kilobytes)
of FRAM for program storage and 512 bytes for data storage. The FR5994 is equipped with
256 KB of flexibly configurable FRAM for program and information storage.

Onboard RAM memory. The FR2433 hosts a 4 KB static RAM (SRAM) memory;
whereas, the FR5994 is equipped with 8 KB of SRAM memory. The SRAM memory is used
for global variables, local variables, and the dynamic allocation of user-defined data types during
program execution.

Power management system. The power management module (PMM) supplies the core
voltage for the microcontroller. It consists of an integrated voltage regulator to maintain a stable
core voltage. It is also equipped with a supply voltage supervisor and monitoring system, which
may be configured to reset the microcontroller when the core voltage falls below a preset value.

Flexible clock system. Microcontrollers are synchronous circuits. That is, all microcon-
troller operations are synchronized with a clock circuit. There are several clock source options
available for the MSP430 including a 32 kHz crystal (XT1), an internal very low-frequency
oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), an integrated digitally
controlled oscillator (DCO) employing a frequency logic loop (FLL) with a digital modulator,
and a high-frequency crystal oscillator (XT1 or XT2).

Cyclic redundancy check (CRC) generator. Data stored aboard a microcontroller may
be corrupted by noise sources flipping 1s to 0s and vice versa. The MSP430 is equipped with
the CRC16 subsystem, which employs the CRC-CCITT standard to calculate a checksum for
a block of data. The checksum is also stored with the data. When the data is used, a checksum
is calculated again and compared to the stored value. If the values agree, the data is considered
good for use. Alternately, if the checksums do not agree, the data is considered corrupted and
not available for use. The CRC system onboard the FR5994 EVM may also be used in a 32-bit
mode.

Embedded emulation module (EEM). The EEM is used to troubleshoot system oper-
ation of an embedded system. It allows events to be triggered based on memory access, CPU
access, or hardware triggers.

Watch dog timer (WDT). The WDT is a timer that, if expired, results in a processor
reset. It is used to reset the processor when a software malfunction has occurred. During normal
program processing the WDT is reset by specific program steps. Should a software malfunction
occur and the WDT timer is not reset, the WDT will timeout and result in a processor reset.
In response to the processor reset, the software malfunction may clear.



1.6. INTRODUCTION TO THE EVALUATION MODULES (EVM) 11
Real-time clock (RTC). Microcontrollers keep time based on elapsed clock ticks. They

do not “understand” the concepts of elapsed time in seconds, hours, etc. The RTC provides a
general-purpose 16-bit counter while in the Counter Mode or an RTC in the Calendar Mode.
Both timer modes can be used to read or write counters using software.

Joint test action group ( JTAG) interface. JTAG is a four-wire standard interface to send
and receive data from the microcontroller. It is defined within IEEE Standard 1149.1. The
JTAG interface allows for programming and debugging programs.

Spy-bi-wire (SBW) JTAGinterface.TheSBW is a two-wire JTAG compatible interface.
In addition to the features common between the FR2433 and the FR5994 EVMs, the

FR5994 is also equipped with the following subsystems.

Analog comparator. The FR5994 is equipped with a 16-channel analog comparator to
monitor analog signals of interest. The comparator, as its name implies, compares an analog
input signal with a pre-defined threshold.

Directmemory access (DMA).Memory transfer operations from one location to another
typically requires many clock cycles involving the CPU. The FR5994 is equipped with six DMA
channels that allow memory-to-memory location transfers without involving the CPU, freeing
the CPU to perform other instructions.

Capacitive touch. The FR5994 is equipped with capacitive touch I/O features that sup-
port simple touch screen applications.

Hardware encryption. The FR5994 is also equipped with a hardware-based advanced
encryption standard (AES) accelerator. The accelerator speeds up the encryption and decryption
of data by one to two orders of magnitude over a software-based implementation. It can be used
for 128- or 256-bit encryption.

Low-energy accelerator. The FR5994 is equipped with a 32-bit, fixed-point processor,
the low energy accelerator (LEA) for vector-based operations. Vector-based operations are com-
monly used is signal processing applications. Operations include finite impulse response (FIR)
filtering, infinite impulse response (IIR) filtering, fast fourier transforms (FFT), inverse fast
fourier transforms (IFFT), and others. The LEA, once configured for operation, executes com-
mands independent of the MSP430 CPU SLAU367O [2017].

1.6 INTRODUCTION TO THE EVALUATION MODULES
(EVM)

Throughout the rest of the book we use the MSP-EXP430FR2433 and the MSP-
EXP430FR5994 EVMs to illustrate operation of different systems aboard the MSP430.



12 1. INTRODUCTION TO MICROCONTROLLER TECHNOLOGY
MSP430FR2433 EVM. The MSP-EXP430FR2433 EVM layout is provided in Fig-

ure 1.3 and the pinout diagram in Figure 1.4. The FR2433 is programmed via a host PC or
laptop via a USB cable. The upper portion of the EVM is equipped with the eZ-FET Debug
Probe. This provides for EVM programming and also communication back to the host com-
puter. Also, the EVM is equipped with EnergyTrace Technology that allows power consump-
tion readings. The link from the upper to the lower board is provided by the Jumper Isolation
Block. The lower board is equipped with two switches, two light-emitting diodes (LEDs), and
breakout pins for a 20-pin BoosterPack. BoosterPacks allow the features of the MSP430 to be
extended [SLAU739, 2017].

MSP-EXP430FR5994 EVM. The MSP-EXP430FR5994 EVM layout is provided in
Figure 1.5 and the pinout diagram Figure 1.4. The FR5994 is programmed via a host PC or lap-
top via a USB cable. The upper portion of the EVM is equipped with the eZ-FET Debug Probe.
This provides for EVM programming and also communication back to the host computer. Also,
the EVM is equipped with EnergyTrace Technology that allows power consumption readings.
The link from the upper to the lower board is provided by the Jumper Isolation Block. The lower
board is equipped with two switches, two LEDs, and breakout pins for a 40-pin BoosterPack.
BoosterPacks allow the features of the MSP430 to be extended. The FR5994 is also equipped
with a Micro SD card [SLAU678A, 2016].

1.7 DEVELOPMENT SOFTWARE
There are multiple software tools available to support the MSP430 line of microcontrollers from
Texas Instruments and third-party producers. Throughout the book, we use Texas Instruments
Energia and code composer studio (CCS) integrated development environment (IDE).

Energia is an open-source IDE modeled after the Arduino Sketchbook concept. It allows
for rapid prototyping of a wide range of Texas Instruments microcontroller products. We use it
to rapidly prototype programs and embedded systems using the FR2433 and FR5994 EVMs.
In space lore, the Energia was a Soviet heavy lift rocket. Similarly, the Energia IDE performs
heavy lifting when learning software programming for the first time (www.energia.nu).

The CCS is used to develop code for all of TI’s digital processors including digital signal
processors (DSPs), microcontrollers, and application processors. The Platinum version provides
full product line support. The Microcontroller version, a subset of the Platinum version, provides
support for the MSP430 family of microcontrollers and other related product lines. In addition
to code development, CCS may be used for debugging and simulation (www.TI.com).

www.energia.nu
www.TI.com


1.7. DEVELOPMENT SOFTWARE 13

USB
to

Host

 
 

Reset

Energy Trace
Technology

Switch 2

LED1

20-pin BoosterPack

LED2

Switch 1

eZ-FET
Debug
Probe

Jumper Isolation
Block

MSP430FR2433

Figure 1.3: FR2433 EVM [SLAU739, 2017]. (Illustration used with permission of Texas In-
struments (www.ti.com).)

www.ti.com


14 1. INTRODUCTION TO MICROCONTROLLER TECHNOLOGY

Figure 1.4: FR2433 EVM pinmap [SLAU739, 2017]. (Illustration used with permission of
Texas Instruments (www.ti.com).)

www.ti.com


1.7. DEVELOPMENT SOFTWARE 15

USB
to

Host

 
 

Reset

Energy Trace
Technology

Switch 1

LED1

20-pin BoosterPAck

LED2

Switch 2

eZ-FET
Debug
Probe

Jumper Isolation
Block

MSP430FR5944

LED1 Micro
SD card

40-pin BoosterPack

LED2

Figure 1.5: FR5994 EVM [SLAU678A, 2016]. (Illustration used with permission of Texas
Instruments (www.ti.com).)

www.ti.com


16 1. INTRODUCTION TO MICROCONTROLLER TECHNOLOGY

Figure 1.6: FR5994 EVM pinmap [SLAU678A, 2016]. (Illustration used with permission of
Texas Instruments (www.ti.com).)

1.8 LAB 1: GETTING ACQUAINTED WITH HARDWARE
AND SOFTWARE DEVELOPMENT TOOLS

Introduction. Through this laboratory exercise, you will become familiar with the Texas In-
struments MSP430-EXP430FR2433 or the MSP430-EXP430FR5994 EVMs and the Energia
IDE.

Procedure: To start working with Energia, follow these steps (energia.nu).

• Download and install the latest version of Energia from the energia.nu website to the
host computer. It is available for different operating systems including: Windows, Mac
OS X, and Linux.

• Launch Energia on the host computer by going to the Energia folder and clicking on the
Energia icon. The icon is a red ball with a rocket silhouette.

• To install the latest Board Manager, go to Tools->Boards Manager->Online Help.

• Connect the LaunchPad to the host computer via the USB cable provided with the EVM.

• With Energia launched, go to Tools->Board-> and select the LaunchPad.

www.ti.com
energia.nu
energia.nu


1.9. SUMMARY 17
• Check the comm port setting using Tools->Serial Port.

• To load the first example use File->Examples->Basics->Blink.

• To compile, upload, and run the program, use the Upload icon (right facing arrow).

• The red LED on the LaunchPad will blink!

Investigate some of the other sample programs provided in Energia.

1.9 SUMMARY
In this chapter, we introduced microcontrollers and an overview of related technologies. We be-
gan with a brief review of computer development leading up to the release of microcontrollers,
reviewed microcontroller related terminology and provided an overview of systems associated
with the MSP-EXP430FR2433 and the MSP-EXP430FR5994 evaluation modules. The re-
mainder of the chapter was spent getting better acquainted with the EVMs and the Energia
IDE.

1.10 REFERENCES AND FURTHER READING
Bartee, T. Digital Computer Fundamentals, 3rd ed., New York, McGraw-Hill, Inc., 1972. 2

Boone, G. Computing System CPU, United States Patent 3,757,306 filed August 31, 1971, and
issued September 4, 1973. 3

Boone, G. Variable Function Programmable Calculator, United States Patent 4,074,351 filed
February 24, 1977 and issued February 15, 1978. 3

MCS 85 User’s Manual, Intel Corporation, 1977. 3

MSP Low-Power Microcontrollers, (SLAB034AD), Texas Instruments, 2017. 5, 6, 7

MSP430FR2433 LaunchPad Development Kit (MSP-EXP430FR2433), (SLAU739), Texas In-
struments, 2017. 12, 13, 14

MSP430FR2433Mixed-Signal Microcontroller, (SLASE59D), Texas Instruments, 2018. 5, 6, 7,
8

MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s Guide (SLAU367O),
Texas Instruments, 2017. 11

MSP430FR5994LaunchPadDevelopmentKit (MSP-EXP430FR5994), (SLAU678A), Texas In-
struments, 2016. 12, 15, 16



18 1. INTRODUCTION TO MICROCONTROLLER TECHNOLOGY
MSP430FR599x, MSP430FR596x Mixed-Signal Microcontrollers, (SLASE54C), Texas Instru-

ments, 2018. 5, 6, 7, 8

Nobelprize.org. The Official Web Site of the Nobel Prize, www.nobelprize.org 2

Osborne, A. An Introduction to Microcomputers Volume 1 Basic Concepts, 2nd ed., Berkeley,
Osborne/McGraw-Hill, 1980. 2, 3

Patterson, D. and Hennessy, J. Computer Organization and Design the Hardware/Software Inter-
face, San Francisco, 1994. 3

Texas Instruments MSP430 FRAM Quality and Reusability, (SLAA526A), Texas Instruments,
2014. 4

Texas Instruments MSP430 FRAM Technology-How to and Best Practices, (SLAA628), Texas In-
struments, 2014. 4

1.11 CHAPTER PROBLEMS
Fundamental

1. Define the termsmicroprocessor, microcontroller, andmicrocomputer. Provide an example
of each.

2. What were the catalysts that led to the multiple generations of computer processors?

3. What are the five main components of a computer architecture? Briefly define each.

4. Distinguish between RAM, ROM, EEPROM, and FRAM memory. Provide an example
application of how each are employed within a microcontroller.

5. What is RISC architecture? What is its fundamental premise?

Advanced

1. List the key features of the MSP430 families of microcontrollers.

2. List the key features of the MSP430FR2433 mixed signal processor.

3. List the key features of the MSP430FR5994 mixed signal processor.

4. Describe the tradeoff between processor speed and power consumption. How does the
MSP430 meet these competing demands?

Challenging

1. Write a single page paper on a specific generation of computers.

www.nobelprize.org


1.11. CHAPTER PROBLEMS 19
2. Research the difference between CISC and RISC computer architectures. Provide the

main features of each approach. Which approach is better suited for microcontroller ap-
plications?

3. Research IrDA infrared communication standards. Write a single page paper on the topic.

4. Research the CRC-CCITT standard used to calculate a checksum. Write a single page
paper on the topic.





21

C H A P T E R 2

A Brief Introduction to
Programming

Objectives: After reading this chapter, the reader should be able to:

• use the Energia Integrated Development Environment to interface with the MSP-
EXP430FR2433 and the MSP-EXP430FR5994 LaunchPads;

• describe key components of a C program;

• specify the size of different variables within the C programming language;

• define the purpose of the main program;

• explain the importance of using functions within a program;

• write functions that pass parameters and return variables;

• describe the function of a header file;

• discuss different programming constructs used for program control and decision process-
ing; and

• write programs in C for execution on the MSP-EXP430FR2433 and the MSP-
EXP430FR5994 LaunchPads.

2.1 OVERVIEW
The goal of this chapter is to provide a tutorial on how to begin programming on the MSP430
microcontroller.1 We begin with an introduction to programming using the Energia integrated
development environment (IDE), followed by an introduction to programming in C. Through-
out the chapter, we provide examples and pointers to several excellent references.

1This chapter was adapted with permission from Barret (2013).



22 2. A BRIEF INTRODUCTION TO PROGRAMMING

2.2 ENERGIA
Energia is an open-source IDE modeled after the Arduino Sketchbook concept. It allows for
rapid prototyping of a wide range of Texas Instruments microcontroller products. We use it
to prototype programs and embedded systems using the MSP-EXP430FR2433 and the MSP-
EXP430FR5994LaunchPads. In space lore, the Energia was a Soviet heavy lift rocket. Similarly,
the Energia IDE performs heavy lifting when learning software programming for the first time.

2.3 ENERGIA QUICKSTART
To quickly get up and operating with Energia, complete the following steps (energia.nu).

• Download and install the latest version of Energia from the energia.nu website to the
host computer. It is available for different operating systems including: Windows, Mac
OS X, and Linux.

• Launch Energia on the host computer by going to the Energia folder and clicking on the
Energia icon. The icon is a red ball with a rocket silhouette.

• To install the latest Board Manager, go to Tools->Boards Manager->Online Help.

• Connect the LaunchPad to the host computer via the USB cable provided with the EVM.

• With Energia launched, go to Tools->Board-> and select the LaunchPad.

• Check the comm port setting using Tools->Serial Port.

• To load the first example use File->Examples->Basics->Blink.

• To compile, upload, and run the program, use the Upload icon (right facing arrow).

• The red LED on the LaunchPad will blink!

With the first program launched, let’s take a closer look at the Energia IDE.

2.4 ENERGIA DEVELOPMENT ENVIRONMENT
In this section, we provide an overview of the Energia IDE. We begin with some background
information about the IDE and then review its user-friendly features. We then introduce the
sketchbook concept and provide a brief overview of the built-in software features within the
IDE. Our goal is to provide readers with a brief introduction to Energia features. All Energia
related features are well documented on the Energia homepage (energia.nu). We will not
duplicate this excellent source of material; but merely provide a brief introduction with pointers
to advanced features.

energia.nu
energia.nu
energia.nu


2.4. ENERGIA DEVELOPMENT ENVIRONMENT 23
2.4.1 ENERGIA IDE OVERVIEW
At its most fundamental level, the Energia IDE is a user-friendly interface to allow one to
quickly write, load, and execute code on a microcontroller. A barebones program needs only a
setup() function and a loop() function. The Energia IDE adds the other required pieces such as
header files and the main program constructs (energia.nu).

The Energia IDE is illustrated in Figure 2.1. The IDE contains a text editor, a message
area for displaying status, a text console, a tool bar of common functions, and an extensive menu
system. The IDE also provides a user-friendly interface to the LaunchPad which allows for the
quick compiling and uploading of code.

Figure 2.1: Energia IDE (energia.nu).

A close-up of the Energia toolbar is provided in Figure 2.2. The toolbar provides sin-
gle button access to the more commonly used menu features. Most of the features are self-
explanatory. The “Upload” button compiles the program and uploads it to the LaunchPad. The
“Serial Monitor” button opens a serial monitor to allow text data to be sent to and received from
the LaunchPad.

2.4.2 SKETCHBOOK CONCEPT
In keeping with a hardware and software platform for students of the arts, the Energia envi-
ronment employs the concept of a sketchbook. Artists maintain their works in progress in a

energia.nu
energia.nu


24 2. A BRIEF INTRODUCTION TO PROGRAMMING

+

Verify–checks for errors

Upload

Creates new sketch

Open

Save

Opens serial monitor

Tab features

Figure 2.2: Energia IDE buttons.

sketchbook. Similarly, we maintain our programs within a sketchbook in the Energia environ-
ment. Furthermore, we refer to individual programs as sketches. An individual sketch within
the sketchbook may be accessed via the Sketchbook entry under the file tab.

2.4.3 ENERGIA SOFTWARE, LIBRARIES, AND LANGUAGE
REFERENCES

TheEnergia IDE has a number of built-in features. Some of the featuresmay be directly accessed
via the Energia IDE drop-down toolbar illustrated in Figure 2.1. Provided in Figure 2.3 is a
handy reference to show the available features. The toolbar provides a wide variety of features to
compose, compile, load, and execute a sketch.

Aside from the toolbar accessible features, the Energia IDE contains built-in functions
that allow the user to quickly construct a sketch. These built-in functions are summarized in Fig-
ure 2.4. Complete documentation for these built-in function is available at the Energia home-
page (energia.nu). This documentation is easily accessible via the Help tab on the Energia
IDE toolbar. We refer to these features at appropriate places throughout the remainder of the
book and provide additional background information as needed.

2.5 ENERGIA PIN ASSIGNMENTS
Hardware features onboard the LaunchPad (LEDs, switches, etc.) are accessed via Energia using
pin numbers. Pin numbers range from 1–20 for the FR2433 EVM and 1–40 for the FR5994
EVM. Pin diagrams for both evaluationmodules are provided inChapter 1 (Figures 1.3 and 1.5).

2.6 WRITING AN ENERGIA SKETCH
The basic format of the Energia sketch consists of a “setup” function and a “loop” function. The
setup function is executed once at the beginning of the program. It is used to configure pins,
declare variables and constants, etc. The loop function will execute function sequentially step-

energia.nu


2.6. WRITING AN ENERGIA SKETCH 25

Menu

Edit
- Undo
- Redo
- Cut
- Copy
- Copy for Forum
- Copy as HTML
- Paste
- Select All
- Go to line
- Comment/
Uncomment
- Increase Indent
- Decrease Indent
- Find
- Find Next
- Find Previous

File
- New
- Open
- Open Recent
- Sketchbook
- Examples
- Close
- Save
- Save As
- Page Setup
- Print
- Preferences
- Quit

Sketch
- Verify/Compile
- Upload Using
Programmer
- Export compiled
Binary
- Show Sketch Folder
- Include Library
- Add File...

Tools
- Auto Format
- Archive Sketch
- Fix Encoding &
Reload
- Serial Monitor
- Serial Plotter
- Board
- Port
- Programmer

Help
- Getting Started
- Environment
- Troubleshooting
- Reference
- Find in Reference
- Frequently Asked
Questions
- Visit Energia.nu
- About Energia

Figure 2.3: Energia IDE menu (energia.nu).

Energia Environment 

Built-in Functions

Digital Input/Output  

- pinMode( ) 

- digitalWrite( ) 

- digitalRead( ) 

 

Utilities 

- sizeof( ) 

 

Analog Input/Output 

- analogReference( )  

- analogRead( ) 

- analogWrite( ) - PWM  

 

Advanced I/O 

- tone( ) 

- noTone( ) 

- shiftOut( ) 

- shiftIn( ) 

- pulseIn( )

Time 

- millis( ) 

- micros( ) 

- delay( ) 

- delayMicroseconds( )

Conversion 

- char( ) 

- byte( ) 

- int( ) 

- word( ) 

- long( ) 

- float( ) 

 

 

 

Math 

- min( ) 

- max( ) 

- abs( ) 

- constrain( ) 

- map( ) 

- pow( ) 

- sqrt( )

Trigonometry 

- sin( ) 

- cos( ) 

- tan( ) 

 

Random Numbers 

- randomSeed( ) 

- random

Bits and Bytes 

- lowByte( ) 

- highByte( ) 

- bitRead( ) 

- bitWrite( ) 

- bitSet( ) 

- bitClear( ) 

- bit( ) 

External Interrupts 

- attachInterrupt( ) 

- detachInterrupt( ) 

 

Interrupts 

- interrupts( ) 

- noInterrupts( )

Communication 

- Serial 

- Stream 

Figure 2.4: Energia IDE built-in features (energia.nu).

energia.nu
energia.nu


26 2. A BRIEF INTRODUCTION TO PROGRAMMING
-by-step. When the end of the loop function is reached, it will automatically return to the first
step of the loop function and execute the function again. This goes on continuously until the
program is stopped.

//**********************************************************

void setup()
{
//place setup code here
}

void loop()
{
//main code steps are provided here
:
:

}

//**********************************************************

Example: Blink. Let’s examine the sketch used to blink the LED (energia.nu).

//**********************************************************
//Blink---The basic Energia example.
//Turns on an LED on for one second, then off for one second,
//repeatedly. Change the LED define to blink other LEDs.
//Hardware Required: LaunchPad with an LED
//This example code is in the public domain.
//**********************************************************

//most launchpads have a red LED
#define LED RED_LED

//#define LED GREEN_LED

//the setup routine runs once when you press reset:
void setup()
{
//initialize the digital pin as an output.
pinMode(LED, OUTPUT);

energia.nu


2.6. WRITING AN ENERGIA SKETCH 27
}

//the loop routine runs over and over again forever:
void loop()
{
digitalWrite(LED, HIGH); //turn the LED on

//(HIGH is the voltage level)
delay(1000); //wait for a second
digitalWrite(LED, LOW); //turn the LED off by making

//the voltage LOW
delay(1000); // wait for a second
}

//**********************************************************

In the first line, the #define statement links the designator “LED” to the pin connected
to the red LED on the LaunchPad. In the setup function, LED is designated as an output pin.
Recall the setup function is only executed once.The program then enters the loop function that is
executed sequentially step-by-step and continuously repeated. In this example, the LED is first
set to logic high to illuminate the LED onboard the LaunchPad. Another 1000 ms delay then
occurs. The LED is then set low. A 1000 ms delay then occurs. The sequence then repeats. As a
second example, comment out the #define statement and remove the comment symbol from in
front of the second #define statement. When the modified code is verified and uploaded to the
EVM, the onboard green LED will blink.

Aside from the Blink example, there are also many program examples available to allow
a user to quickly construct a sketch. They are useful to understand the interaction between the
Energia IDE and the LaunchPad. They may also be used as a starting point to write new ap-
plications. The program examples are available via the File->Examples tab within Energia. The
examples fall within these categories:

1. Basics

2. Digital

3. Analog

4. Communication

5. Control

6. Strings

7. Sensors



28 2. A BRIEF INTRODUCTION TO PROGRAMMING
8. Display

9. Educational BP Mk II—a multifunction educational development kit containing multiple
sensors, an LCD display, and output drivers

10. MultiTasking—allows multiple tasks to be executed simultaneously.

We now examine several more Energia based examples. We use the MSP-
-EXP430FR2433 LaunchPad in the examples. The MSP-EXP430FR5994 LaunchPad may
also be used; however, pin numbers within the examples must be changed from FR2433 pins to
FR5994 pins.

Example: External LED. In this example we connect an external LED to the FR2433 Launch-
Pad pin 18. The onboard green LED will blink alternately with the external LED. The external
LED is connected to the LaunchPad as shown in Figure 2.5 using a prototype board. The board
is useful for implementing the first prototype of a circuit. Holes within a given column of the
board have a common conductor connecting them together. Holes in a row of five are con-
nected via a common conductor. Jumper wires (insulated AWG 22, solid) are used between the
MSP430 female pin connectors and the prototype board.

//**********************************************************
#define int_LED GREEN_LED
#define ext_LED 18

void setup()
{
pinMode(int_LED, OUTPUT);
pinMode(ext_LED, OUTPUT);
}

void loop()
{
digitalWrite(int_LED, HIGH);
digitalWrite(ext_LED, LOW);
delay(500); //delay specified in ms
digitalWrite(int_LED, LOW);
digitalWrite(ext_LED, HIGH);
delay(500);
}

//**********************************************************



2.6. WRITING AN ENERGIA SKETCH 29

220
external
red LED

 

(ground: pin 20)

2
2
0

(pin 18)

(a) schematic

(b) circuit layout

Figure 2.5: LaunchPad with an external LED. (Illustration used with permission of Texas In-
struments (www.ti.com).)

www.ti.com


30 2. A BRIEF INTRODUCTION TO PROGRAMMING
Example:External LED and switch. In this example we connect an external LED to LaunchPad
pin 18 and an external switch attached to pin 17. The onboard green LED will blink alternately
with the external LEDwhen the switch is depressed.The external LED and switch are connected
to the LaunchPad, as shown in Figure 2.6.

//**********************************************************

#define int_LED GREEN_LED
#define ext_LED 18
#define ext_sw 17

int switch_value;

void setup()
{
pinMode(int_LED, OUTPUT);
pinMode(ext_LED, OUTPUT);
pinMode(ext_sw, INPUT);
}

void loop()
{
switch_value = digitalRead(ext_sw);

if(switch_value == LOW)
{
digitalWrite(int_LED, HIGH);
digitalWrite(ext_LED, LOW);
delay(250);
digitalWrite(int_LED, LOW);
digitalWrite(ext_LED, HIGH);
delay(250);
}

else
{
digitalWrite(int_LED, LOW);
digitalWrite(ext_LED, LOW);
}

}
//**********************************************************



2.6. WRITING AN ENERGIA SKETCH 31

external
red LED

(a) schematic

(b) circuit layout

220
 

(ground: pin 20)

4.7 K

3.3 VDC

2
2
0

4.7K

(pin 18)

(pin 17)

(ground: pin 20)

18 20

17

to 3.3 VDC pin 

Figure 2.6: LaunchPad with an external LED and switch. (Illustration used with permission of
Texas Instruments (www.ti.com).)

www.ti.com


32 2. A BRIEF INTRODUCTION TO PROGRAMMING
Example: LED strip. LED strips may be used for motivational (fun) optical displays, games, or
for instrumentation-based applications. In this example we control an LPD8806-based LED
strip using Energia. We use a one meter, 32 RGB LED strip available from Adafruit (#306) for
approximately $30 USD (www.adafruit.com).

The red, blue, and green component of each RGB LED is independently set using
an eight-bit code. The most significant bit (MSB) is logic one followed by seven bits to set
the LED intensity (0–127). The component values are sequentially shifted out of the MSP-
EXP430FR2433 LaunchPad using the serial peripheral interface (SPI) features. The first com-
ponent value shifted out corresponds to the LED nearest the microcontroller. Each shifted
component value is latched to the corresponding R, G, and B component of the LED. As a
new component value is received, the previous value is latched and held constant. An extra byte
is required to latch the final parameter value. A zero byte .00/16 is used to complete the data
sequence and reset back to the first LED (www.adafruit.com).

Only four connections are required between the MSP-EXP430FR2433 LaunchPad and
the LED strip as shown in Figure 2.7. The connections are color coded: red-power, black-
-ground, yellow-data, and green-clock. It is important to note the LED strip requires a supply
of 5 VDC and a current rating of 2 amps per meter of LED strip. In this example we use the
Adafruit #276 5 V 2A (2000 mA) switching power supply (www.adafruit.com).

In this example each RGB component is sent separately to the strip. The example illus-
trates how each variable in the program controls a specific aspect of the LED strip. Here are
some important implementation notes.

• SPI must be configured for MSB first.

• LED brightness is 7 bits. MSB must be set to logic one.

• Each LED requires a separate R-G-B intensity component. The order of data is G-R-B.

• After sending data for all LEDs. A byte of (0x00) must be sent to return strip to first LED.

• Data stream for each LED is: 1-G6-G5-G4-G3-G2-G1-G0-1-R6-R5-R4-R3-R2-R1-
R0-1-B6-B5-B4-B3-B2-B1-B0

//***********************************************************************
//RGB_led_strip_tutorial: illustrates different variables within
//RGB LED strip
//
//LED strip LDP8806 - available from www.adafruit.com (#306)
//
//Connections:
// - External 5 VDC supply - Adafruit 5 VDC, 2A (#276) - red
// - Ground - black

www.adafruit.com
www.adafruit.com
www.adafruit.com


2.6. WRITING AN ENERGIA SKETCH 33

(a) LED strip by the meter [www.adafruit.com].

SPI SCK (pin 7) SPI MOSI (pin 15)

Ground

to 5 VDC, 2A 
power 
supply

(b) MSP-EXP430FR2433 to LED strip connection [www.adafruit.com].

Figure 2.7: LaunchPad controlling LED strip (www.adafruit.com). (Illustration used with per-
mission of Adafruit (www.adafruit.com).)

www.adafruit.com
www.adafruit.com


34 2. A BRIEF INTRODUCTION TO PROGRAMMING
// - Serial Data In - LaunchPad pin 15 (MOSI pin) P2.6 - yellow
// - CLK - LaunchPad pin 7 (SCK pin) P2.4 - green
//
//Variables:
// - LED_brightness - set intensity from 0 to 127
// - segment_delay - delay between LED RGB segments
// - strip_delay - delay between LED strip update
//
//Notes:
// - SPI must be configured for Most significant bit (MSB) first
// - LED brightness is seven bits. Most significant bit (MSB)
// must be set to logic one
// - Each LED requires a seperate R-G-B intensity component. The order
// of data is G-R-B.
// - After sending data for all strip LEDs. A byte of (0x00) must
// be sent to reutrn strip to first LED.
// - Data stream for each LED is:
//1-G6-G5-G4-G3-G2-G1-G0-1-R6-R5-R4-R3-R2-R1-R0-1-B6-B5-B4-B3-B2-B1-B0
//
//This example code is in the public domain.
//********************************************************************

#include <SPI.h>

#define LED_strip_latch 0x00

const byte strip_length = 32; //number of RGB LEDs in strip
const byte segment_delay = 100; //delay in milliseconds
const byte strip_delay = 500; //delay in milliseconds
unsigned char LED_brightness; //0 to 127
unsigned char position; //LED position in strip
unsigned char troubleshooting = 0; //allows printouts to serial

//monitor

void setup()
{
SPI.begin(); //SPI support functions
SPI.setBitOrder(MSBFIRST); //SPI bit order
SPI.setDataMode(SPI_MODE3); //SPI mode



2.6. WRITING AN ENERGIA SKETCH 35
SPI.setClockDivider(SPI_CLOCK_DIV32);//SPI data clock rate
Serial.begin(9600); //serial comm at 9600 bps
}

void loop()
{
SPI.transfer(LED_strip_latch); //reset to first segment
clear_strip(); //all strip LEDs to black
delay(500);

//increment the green intensity of the strip LEDs
for(LED_brightness = 0; LED_brightness <= 60;

LED_brightness = LED_brightness + 10)
{
for(position = 0; position<strip_length; position = position+1)

{
SPI.transfer(0x80 | LED_brightness); //Green - MSB 1
SPI.transfer(0x80 | 0x00); //Red - none
SPI.transfer(0x80 | 0x00); //Blue - none

if(troubleshooting)
{
Serial.println(LED_brightness, DEC);
Serial.println(position, DEC);
}

delay(segment_delay);
}

SPI.transfer(LED_strip_latch); //reset to first segment
delay(strip_delay);
if(troubleshooting)

{
Serial.println(" ");
}

}

clear_strip(); //all strip LEDs to black
delay(500);

//increment the red intensity of the strip LEDs



36 2. A BRIEF INTRODUCTION TO PROGRAMMING
for(LED_brightness = 0; LED_brightness <= 60;

LED_brightness = LED_brightness + 10)
{
for(position = 0; position<strip_length; position = position+1)

{
SPI.transfer(0x80 | 0x00); //Green - none
SPI.transfer(0x80 | LED_brightness); //Red - MSB1
SPI.transfer(0x80 | 0x00); //Blue - none

if(troubleshooting)
{
Serial.println(LED_brightness, DEC);
Serial.println(position, DEC);
}

delay(segment_delay);
}

SPI.transfer(LED_strip_latch); //reset to first segment
delay(strip_delay);
if(troubleshooting)

{
Serial.println(" ");
}

}

clear_strip(); //all strip LEDs to black
delay(500);

//increment the blue intensity of the strip LEDs
for(LED_brightness = 0; LED_brightness <= 60;

LED_brightness = LED_brightness + 10)
{
for(position = 0; position<strip_length; position = position+1)

{
SPI.transfer(0x80 | 0x00); //Green - none
SPI.transfer(0x80 | 0x00); //Red - none
SPI.transfer(0x80 | LED_brightness); //Blue - MSB1

if(troubleshooting)
{



2.6. WRITING AN ENERGIA SKETCH 37
Serial.println(LED_brightness, DEC);
Serial.println(position, DEC);
}

delay(segment_delay);
}

SPI.transfer(LED_strip_latch); //reset to first segment
delay(strip_delay);
if(troubleshooting)

{
Serial.println(" ");
}

}

clear_strip(); //all strip LEDs to black
delay(500);
}

//****************************************************************

void clear_strip(void)
{

//clear strip
for(position = 0; position<strip_length; position = position+1)

{
SPI.transfer(0x80 | 0x00); //Green - none
SPI.transfer(0x80 | 0x00); //Red - none
SPI.transfer(0x80 | 0x00); //Blue - none

if(troubleshooting)
{
Serial.println(LED_brightness, DEC);
Serial.println(position, DEC);
}

}
SPI.transfer(LED_strip_latch); //Latch with zero
if(troubleshooting)

{
Serial.println(" ");
}



38 2. A BRIEF INTRODUCTION TO PROGRAMMING
delay(2000); //clear delay

}

//****************************************************************

Example: Analog In-Analog Out-Serial Out. This example is modified from the example Ana-
log In-Analog Out-Serial Out provided with Energia. It illustrates several Energia built-in
functions.

• Serial.begin(baud_rate): Sets baud rate in bits per second to communicate with the host
computer.

• Serial.print(text): Prints text to Energia serial monitor.

• AnalogRead(analog_channel): Reads the analog value at the designated analog channel
and returns a value from 0 (0 VDC) to 1023 (3.3 VDC).

• map(test_value, input_low, input_high, output_low, output_high): Remaps test_value
from a value between input_low and input_high to a corresponding value between out-
put_low and output_high.

• analogWrite(analogOutPin, outputValue): Sends an output value from 0–255 to desig-
nated analogOutPin.

//****************************************************************
//Analog input, analog output, serial output - Reads an analog input pin,
//maps the result to a range from 0 to 255 and uses the result to set the
//pulsewidth modulation (PWM) of an output pin. The PWM value is sent to
//the red LED pin to modulate its intensity. Also prints the results to
//the serial monitor. Open a serial monitor using the serial monitor
//button in Energia to view the results.
//
//
//The circuit:
// - Potentiometer connected to analog pin 0 (2). The center wiper
// pin of the potentiometer goes to the analog pin. The side pins of
// the potentiometer go to +3.3 VDC and ground. Place a small value
// resistor is series with the potentiometer
// - The analog output is designated as the onboard red LED.
//
//Created: Dec 29, 2008
//Modified: Aug 30, 2011
//Author: Tom Igoe



2.6. WRITING AN ENERGIA SKETCH 39
//This example code is in the public domain.
//****************************************************************

const int analogInPin = 2; //Energia analog input pin A0
const int analogOutPin = RED_LED; //Energia onboard red LED pin

int sensorValue = 0; //value read from potentiometer
int outputValue = 0; //value output to the PWM (red LED)

void setup()
{
// initialize serial communications at 9600 bps:
Serial.begin(9600);
}

void loop()
{
//read the analog in value:
sensorValue = analogRead(analogInPin);

// map it to the range of the analog out:
outputValue = map(sensorValue, 0, 1023, 0, 255);

// change the analog out value:
analogWrite(analogOutPin, outputValue);

// print the results to the serial monitor:
Serial.print("sensor = " );
Serial.print(sensorValue);
Serial.print("\t output = ");
Serial.println(outputValue);

// wait 10 milliseconds before the next loop
// for the analog-to-digital converter to settle
// after the last reading:
delay(10);

}

//****************************************************************



40 2. A BRIEF INTRODUCTION TO PROGRAMMING
Example: Mini round autonomous maze navigating robot. In this example, an autonomous,
maze navigating robot is equipped with infrared (IR) sensors to detect the presence ofmaze walls
and navigate about the maze. The robot has no prior knowledge about the maze configuration.
It uses the IR sensors and an onboard algorithm to determine the robot’s next move. The overall
goal is to navigate from the starting point of the maze to the end point as quickly as possible
without bumping into maze walls as shown in Figure 2.8. Maze walls are usually painted white
to provide a good, light reflective surface, whereas the maze floor is painted matte black to
minimize light reflections. Alternatively, a low-cost, table-top maze may be assembled from
white foam board.

Start

Finish

Figure 2.8: Autonomous robot within maze.

Before delving into the robot design, it would be helpful to review the fundamentals of
robot steering andmotor control. Figure 2.9 illustrates the fundamental concepts. Robot steering
is dependent upon the number of powered wheels and whether the wheels are equipped with
unidirectional or bidirectional control. Additional robot steering configurations are possible. An
H-bridge is typically required for bidirectional control of a DC motor. We discuss the H-bridge
in greater detail in an upcoming chapter.

In this application project, we equip the Adafruit mini round robot (#3216) for control
by the LaunchPad as a maze navigating robot. Reference Figure 2.11. The robot is controlled by
two 6.0 VDC motors which independently drive a left and right wheel. A third non-powered
drag ball provides tripod stability for the robot.

We equip the mini round robot platform with three Sharp GP2Y0A21YKOF IR sensors
as shown in Figure 2.12. The sensors are available from SparkFun Electronics (www.sparkfun
.com). We mount the sensors on a bracket constructed from thin aluminum. Dimensions for
the bracket are provided in the figure. Alternatively, the IR sensors may be mounted to the

www.sparkfun.com
www.sparkfun.com


2.6. WRITING AN ENERGIA SKETCH 41

(b) two-wheel,  bi-directional motor control(a) two-wheel, forward motor control

(d) two-wheel, forward motor control,

 rear-wheel drive

(c) two-wheel, forward motor control,

 front-wheel drive

Pivot

Point
Pivot

Point

Pivot

Point

Pivot

Point

Pivot

Point

(e) four-wheel, bi-directional motor control

Figure 2.9: Robot control configurations.



42 2. A BRIEF INTRODUCTION TO PROGRAMMING

5 cm

3 V

Range (cm)

S
en

so
r 

O
u
tp

u
t 

V
ol

ta
ge

 (
V

)

Figure 2.10: Sharp GP2Y0A21YKOF IR sensor profile.

Figure 2.11: Mini round robot.

robot platform using “L” brackets available from a local hardware store. The characteristics of
the sensor are provided in Figure 2.10.

The circuit diagram for the robot is provided in Figure 2.13. The three IR sensors (left,
middle, and right) are mounted on the leading edge of the robot to detect maze walls. The output
from the sensors is fed to three ADC channels (analog in 0-2). The robot motors will be driven
by PWM channels (PWM: digital I/O 3 and PWM: digital I/O 4).



2.6. WRITING AN ENERGIA SKETCH 43

Bottom Platform
Mini Round Robot

Sharp
IR Sensor

(a) Top view of robot platform

(b) Construction details for sensor bracket

1-7/16”

2”

1/2”

6”

1/2”

1/2”

all holes 1/8”

Figure 2.12: Mini round robot platform modified with three IR sensors.



44 2. A BRIEF INTRODUCTION TO PROGRAMMING
To save on battery expense, a 9 VDC, 2A rated inexpensive, wall-mount power supply is

used to provide power to the robot. A power umbilical of flexible, braided wire may be used to
link the power supply to the robot while navigating about the maze. The robot motors are rated
at 6.0 VDC. Therefore, four 1N4001 diodes are placed in series with the motor to reduce the
supply voltage to be approximately 6.2 VDC. The LaunchPad is interfaced to the motors via
a Darlington NPN transistor (TIP120) with enough drive capability to handle the maximum
current requirements of the motor. A 3.3 VDC voltage regulator is used to supply power to the
LaunchPad.

Warning: It is important not to have the LaunchPad connected to the host computer
via the USB cable and an external 3.3 VDC supply at the same time. It is recommended to
download the program to the LaunchPad, disconnect the USB cable, remove the 3.3 VDC
header jumper on the Jumper Isolation Block, and then connect the 3.3 VDC external supply
to the J6 connector. Alternatively, a double-throw double-pole (DPDT) switch may be used, as
shown in Figure 2.13.

2.6.1 CONTROL ALGORITHM FOR THE MINI ROUND ROBOT
In this section, we provide the basic framework for the robot control algorithm. The control
algorithm will read the IR sensors attached to the LaunchPad analog in (pins 0–2). In response
to the wall placement detected, it will render signals to turn the robot to avoid the maze walls.
Provided in Figure 2.14 is a truth table that shows all possibilities of maze placement that the
robot might encounter. A detected wall is represented with a logic one. An asserted motor action
is also represented with a logic one.

The robot motors may only be moved in the forward direction. We review techniques
to provide bi-directional motor control in an upcoming chapter. To render a left turn, the left
motor is stopped and the right motor is asserted until the robot completes the turn. To render
a right turn, the opposite action is required.

The task of writing the control algorithm is to take the Unified Modeling Language
(UML) activity diagram provided in Figure 3.14 and the actions specified in the robot action
truth table (Figure 2.14) and transform both into an Energia sketch. This may seem formidable,
but we take it a step at a time.

The control algorithm begins with Energia pin definitions. Variables are then declared for
the readings from the three IR sensors. The two required Energia functions follow: setup() and
loop(). In the setup() function, Energia pins are declared as output. The loop() begins by reading
the current value of the three IR sensors.

The analogRead function reports a value between 0 and 1023.The 0 corresponds to 0VDC
while the value 1023 corresponds to 3.3 VDC. A specific value corresponds to a particular IR
sensor range. The threshold detection value may be adjusted to change the range at which the
maze wall is detected.



2.6. WRITING AN ENERGIA SKETCH 45

M

+

-

330
Run

6.0 VDC 

1N4001

TIP120
NPN

Darlington

TIP120
NPN

Darlington

9 VDC 9 VDC

1N4001

M 6.0 VDC

+

-

1N4001

1N4001

1N4001
protection
diode

motor
current

330

1N4001

Sensor connection:
- Red: 5 VDC
- Yellow: Signal output
- Black: Ground IR sensor

left
IR sensor
middle

IR sensor
right

voltage
dropping

diodes

left motor/wheel
interface

Note: 3.3 VDC

jumper removed

from MSP430

Program

DPDT
switch

5 VDC

5 VDC

5.0 VDC

3.3 VDC

9VDC
2A

(#276)

LM1084-3.3
3.3VDC

reg

7805
3.3VDC

reg

left turn
signal

220

10 K

(5)
2N2222

wall
left

220

10 K

(6)
2N2222

wall
center

220

10 K

(7)
2N2222

wall
right

220

10 K

(8)
2N2222

right turn
signal

220

10 K

(9)
2N2222

5 VDC 5 VDC 5 VDC 5 VDC

5 VDC 5 VDC

(4)
right motor/wheel
interface

9 
V

D
C

 p
ow

er
 u

m
bi

li
ca

l

Figure 2.13: Robot circuit diagram. (Illustration used with permission of Texas Instruments
(www.ti.com).)

Left 

Sensor

Middle 

Sensor

Right 

Sensor

Wall 

Left

Wall 

Middle

Wall 

Right

Left 

Motor

Right 

Motor

Left 

Signal

Right 

Signal
Comments

0 0 0 0 0 0 0 1 1 0 0 Forward

1 0 0 1 0 0 1 1 1 0 0 Forward

2 0 1 0 0 1 0 1 0 0 1 Right

3 0 1 1 0 1 1 0 1 1 0 Left

4 1 0 0 1 0 0 1 1 0 0 Forward

5 1 0 1 1 0 1 1 1 0 0 Forward

6 1 1 0 1 1 0 1 0 0 1 Right

7 1 1 1 1 1 1 1 0 0 1 Right

Figure 2.14: Truth table for robot action.

www.ti.com


46 2. A BRIEF INTRODUCTION TO PROGRAMMING
The read of the IR sensors is followed by an eight-part if-else if statement. The statement

contains a part for each row of the truth table provided in Figure 2.14. For a given configuration
of sensed walls, the appropriate wall detection LEDs are illuminated followed by commands to
activate the motors (analogWrite) and illuminate the appropriate turn signals.

The analogWrite command issues a signal from 0–3.3 VDC by sending a constant from
0–255 using PWM techniques. PWM techniques will be discussed in an upcoming chapter.
The turn signal commands provide to actions: the appropriate turns signals are flashed and a 1.5
s total delay is provided. This provides the robot 1.5 s to render a turn. This delay may need to
be adjusted during the testing phase.

//***********************************************************************
//robot
//
////This example code is in the public domain.
//***********************************************************************

//analog input pins
#define left_IR_sensor 2 //analog pin - left IR sensor
#define center_IR_sensor 19 //analog pin - center IR sensor
#define right_IR_sensor 10 //analog pin - right IR sensor

//digital output pins
//LED indicators - wall detectors

#define wall_left 6 //digital pin - wall_left
#define wall_center 7 //digital pin - wall_center
#define wall_right 8 //digital pin - wall_right

//LED indicators - turn signals
#define left_turn_signal 5 //digital pin - left_turn_signal
#define right_turn_signal 9 //digital pin - right_turn_signal

//motor outputs
#define left_motor 3 //digital pin - left_motor
#define right_motor 4 //digital pin - right_motor

int left_IR_sensor_value; //variable for left IR sensor
int center_IR_sensor_value; //variable for center IR sensor
int right_IR_sensor_value; //variable for right IR sensor



2.6. WRITING AN ENERGIA SKETCH 47
void setup()
{

//LED indicators - wall detectors
pinMode(wall_left, OUTPUT); //configure pin for digital output
pinMode(wall_center, OUTPUT); //configure pin for digital output
pinMode(wall_right, OUTPUT); //configure pin for digital output

//LED indicators - turn signals
pinMode(left_turn_signal,OUTPUT); //configure pin for digital output
pinMode(right_turn_signal,OUTPUT); //configure pin for digital output

//motor outputs - PWM
pinMode(left_motor, OUTPUT); //configure pin for digital output
pinMode(right_motor, OUTPUT); //configure pin for digital output
}

void loop()
{

//read analog output from IR sensors
left_IR_sensor_value = analogRead(left_IR_sensor);
center_IR_sensor_value = analogRead(center_IR_sensor);
right_IR_sensor_value = analogRead(right_IR_sensor);

//robot action table row 0 - robot forward
if((left_IR_sensor_value < 512)&&(center_IR_sensor_value < 512)&&

(right_IR_sensor_value < 512))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(left_motor, 128); //0(off)-255(full speed)
analogWrite(right_motor, 128); //0(off)-255(full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off



48 2. A BRIEF INTRODUCTION TO PROGRAMMING
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 1 - robot forward
else if((left_IR_sensor_value < 512)&&(center_IR_sensor_value < 512)&&

(right_IR_sensor_value > 512))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(left_motor, 128); //0(off)-255(full speed)
analogWrite(right_motor, 128); //0(off)-255(full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 2 - robot right



2.6. WRITING AN ENERGIA SKETCH 49
else if((left_IR_sensor_value < 512)&&(center_IR_sensor_value > 512)&&

(right_IR_sensor_value < 512))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(left_motor, 128); //0(off)-255(full speed)
analogWrite(right_motor, 0); //0(off)-255 (full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 3 - robot left
else if((left_IR_sensor_value < 512)&&(center_IR_sensor_value > 512)&&

(right_IR_sensor_value > 512))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(left_motor, 0); //0(off)-255 (full speed)
analogWrite(right_motor, 128); //0(off)-255 (full speed)

//turn signals
digitalWrite(left_turn_signal, HIGH); //turn LED on



50 2. A BRIEF INTRODUCTION TO PROGRAMMING
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, HIGH); //turn LED on
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 4 - robot forward
else if((left_IR_sensor_value > 512)&&(center_IR_sensor_value < 512)&&

(right_IR_sensor_value < 512))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(left_motor, 128); //0(off)-255 (full speed)
analogWrite(right_motor, 128); //0(off)-255 (full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off



2.6. WRITING AN ENERGIA SKETCH 51
}

//robot action table row 5 - robot forward
else if((left_IR_sensor_value > 512)&&(center_IR_sensor_value < 512)&&

(right_IR_sensor_value > 512))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(left_motor, 128); //0(off)-255 (full speed)
analogWrite(right_motor, 128); //0(off)-255 (full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 6 - robot right
else if((left_IR_sensor_value > 512)&&(center_IR_sensor_value > 512)&&

(right_IR_sensor_value < 512))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(left_motor, 128); //0(off)-255 (full speed)



52 2. A BRIEF INTRODUCTION TO PROGRAMMING
analogWrite(right_motor, 0); //0(off)-255 (full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED OFF
digitalWrite(right_turn_signal, LOW); //turn LED OFF
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 7 - robot right
else if((left_IR_sensor_value > 512)&&(center_IR_sensor_value > 512)&&

(right_IR_sensor_value > 512))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(left_motor, 128); //0(off)-255 (full speed)
analogWrite(right_motor, 0); //0(off)-255 (full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off



2.7. SOME ADDITIONAL COMMENTS ON ENERGIA 53
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

}
//***********************************************************************

Testing the control algorithm: It is recommended that the algorithm be first tested without the
entire robot platform. This may be accomplished by connecting the three IR sensors and LEDS
to the appropriate pins on the LaunchPad as specified in Figure 2.13. In place of the two motors
and their interface circuits, two LEDs with the required interface circuitry may be used. The
LEDs illuminate to indicate motor assertion. Once the algorithm is fully tested in this fashion,
the LaunchPad may be mounted to the robot platform and connected to the motors. Full up
testing in the maze may commence. Enjoy!

2.7 SOME ADDITIONAL COMMENTS ON ENERGIA
Energia is based on the open source concept. Users throughout the world are constantly adding
new built-in features. As new features are added, they will be released in future Energia IDE
versions. As an Energia user, you too may add to this collection of useful tools. In the next
section we investigate programming in C.

2.8 PROGRAMMING IN C
Most microcontrollers are programmed with some variant of the C programming language.
The C programming language provides a nice balance between the programmer’s control of the
microcontroller hardware and time efficiency in programming writing.

As you can see in Figure 2.15, the compiler software is hosted on a computer separate from
the LaunchPad. The job of the compiler is to transform the program provided by the program
writer (filename.c and filename.h) into machine code suitable for loading into the processor.

Once the source files (filename.c and filename.h) are provided to the compiler, the com-
piler executes two steps to render the machine code. The first step is the compilation process.
Here the program source files are transformed into assembly code (filename.asm). If the pro-
gram source files contain syntax errors, the compiler reports these to the user. Syntax errors are
reported for incorrect use of the C programming language. An assembly language program is
not generated until the syntax errors have been corrected. The assembly language source file is
then passed to the assembler. The assembler transforms the assembly language source file to
machine code suitable for loading to the LaunchPad.



54 2. A BRIEF INTRODUCTION TO PROGRAMMING

computer

Arduino Development
Environment  

 
or
 

C compiler

compiler

assembler

filename.c 
filename.h

filename.asm

filename.hex 
filename.eep

C compiler

USB

Energia Integrated Development Environment
or Code Composer Studio

Figure 2.15: Programming the LaunchPad. (Illustration used with permission of Texas Instru-
ments (www.ti.com).)

www.ti.com


2.9. ANATOMY OF A PROGRAM 55
During the compilation process, warnings may also be generated. Warnings do not pre-

vent the creation of an assembly language version of the C program. However, they should be
resolved since flagged incorrect usage of the C language may result in unexpected program run
time errors.

As seen earlier in the chapter, the Energia Integrated Development Environment pro-
vides a user-friendly interface to aid in program development, transformation to machine code,
and loading into the LaunchPad. As described in Chapter 1, the LaunchPad may also be pro-
grammed using Code Composer Studio, Keil and IAR Systems software. We use Code Com-
poser Studio throughout the book.

For the remaining portion of the chapter we present a brief introduction to C. Many
examples are provided. We encourage the reader to modify, load, and run the examples on the
LaunchPad.

In the next section, we will discuss the components of a C program.

2.9 ANATOMY OF A PROGRAM
Programs written for a microcontroller have a repeatable format. Slight variations exist but many
follow the format provided.
//*************************************************************
//Comments containing program information
// - file name:
// - author:
// - revision history:
// - compiler setting information:
// - hardware connection description to microcontroller pins
// - program description
//*************************************************************

//include file(s)
#include<file_name.h>

//function prototypes
A list of functions and their format used within the program

//program constants
#define TRUE 1
#define FALSE 0
#define ON 1
#define OFF 0



56 2. A BRIEF INTRODUCTION TO PROGRAMMING
//interrupt handler definitions
Used to link the software to hardware interrupt features

//global variables
Listing of variables used throughout the program

//main program

void main(void)
{

body of the main program

}

//*************************************************************
//function definitions: A detailed function body and definition
//for each function used within the program. For larger
//programs, function definitions may be placed in accompanying
//header files.
//*************************************************************

Let’s take a closer look at each part of the program.

2.9.1 COMMENTS
Comments are used throughout the program to document what and how things were accom-
plished within a program. The comments help you and others to reconstruct your work at a
later time. Imagine that you wrote a program a year ago for a project. You now want to modify
that program for a new project. The comments will help you remember the key details of the
program.

Comments are not compiled into machine code for loading into the microcontroller.
Therefore, the comments will not fill up the memory of your microcontroller. Comments are
indicated using double slashes (==). Anything from the double slashes to the end of a line is
then considered a comment. A multi-line comment is constructed using a =� at the beginning
of the comment and a �= at the end of the comment. These are handy to block out portions of
code during troubleshooting or providing multi-line comments.

At the beginning of the program, comments may be extensive. Comments may include
some of the following information:

• file name,



2.9. ANATOMY OF A PROGRAM 57
• program author and dates of creation,

• revision history or a listing of the key changes made to the program,

• compiler setting information,

• hardware connection description to microcontroller pins, and

• program description.

2.9.2 INCLUDE FILES
Often you need to add extra files to your project besides the main program. For example, most
compilers require a “personality file” on the specific microcontroller that you are using. This file
is provided with the compiler and provides the name of each register used within the microcon-
troller. It also provides the link between a specific register’s name within software and the actual
register location within hardware. These files are typically called header files and their name
ends with a “.h”. In MSP430 applications, typically the “msp430.h” header files or the device
specific header file (e.g., “msp430fr5994.h”) will be used. Within the C compiler there will also
be other header files to include in your program such as the “math.h” file when programming
with advanced math functions.

To include header files within a program, the following syntax is used:
//C programming: include files
#include<file_name1.h> //searches for file in a standard list
#include<file_name2.h>
#include "file_name3.h" //searches for file in current directory

2.9.3 FUNCTIONS
Later in the bookwe discuss in detail the top-down design, bottom-up implementation approach
to designing microcontroller-based systems. In this approach, a project including both hardware
and software is partitioned into systems, subsystems, etc. The idea is to take a complex project
and break it into smaller, doable pieces with a defined action.

We use the same approach when writing computer programs. At the highest level is the
main program which calls functions that have a defined action. When a function is called, pro-
gram control is released from the main program to the function. Once the function is complete,
program control returns to the main program.

Functionsmay in turn call other functions as shown in Figure 2.16.This approach results in
a collection of functions that may be reused in various projects. Most importantly, the program is
now subdivided into doable pieces, each with a defined action. This makes writing the program
easier but also makes it convenient to modify the program since every action is in a known
location.

There are three different pieces of code required to properly configure and call a function:



58 2. A BRIEF INTRODUCTION TO PROGRAMMING

void main(void)

{

:

function1( );

:

}

void function1(void)

{

:

function2( );

:

}

void function2(void)

{

:

}

Figure 2.16: Function calling.

• function prototype,

• function call, and

• function body.

Function prototypes are provided early in the program as previously shown in the pro-
gram template. The function prototype provides the name of the function and any variables
required and returned by the function.

The function prototype follows this format:

return_variable function_name(required_variable1, required_variable2);

If the function does not require variables or sends back a variable the word “void” is placed
in the variable’s position.

The function call is the code statement used within a program to execute the function.The
function call consists of the function name and the actual arguments required by the function.
If the function does not require arguments to be delivered to it for processing, the parenthesis
containing the variable list is left empty.

The function call follows this format:

function_name(required_variable1, required_variable2);

A function that requires no variables is called by:

function_name( );



2.9. ANATOMY OF A PROGRAM 59
When the function call is executed by the program, program control is transferred to the

function, the function is executed, and program control is then returned to the portion of the
program that called it.

The function body is a self-contained “mini-program.” The first line of the function body
contains the same information as the function prototype: the name of the function, any variables
required by the function, and any variable returned by the function. The last line of the function
contains a “return” statement. Here a variable may be sent back to the portion of the program
that called the function. The processing action of the function is contained within the open ({)
and close brackets (}). If the function requires any variables within the confines of the function,
they are declared next. These variables are referred to as local variables. A local variable is known
only within the confines of a specific function. The actions required by the function follow.

The function prototype follows this format:
return_variable function_name(required_variable1, required_variable2)
{
//local variables required by the function
unsigned int variable1;
unsigned char variable2;

//program statements required by the function

//return variable
return return_variable;
}

2.9.4 PORT CONFIGURATION
The MSP430 FR2433 is equipped with a single 16-bit digital I/O port designated PA. This port
may also be subdivided into two 8-bit ports designated P1 and P2. The FR2433 also has a 3-bit
port designated PB. The FR5994 is equipped with a four 16-bit digital I/O ports designated PA
through PD. These port may also be subdivided into two 8-bit ports. For example, port PA may
be designated P1 and P2. The FR5994 also has an 8-bit port designated PJ.

Configuration and access to digital I/O pins are provided by a complement of registers.
These registers include the following.

• Input Registers (PxIN): Allows input logic value of pin to be read (1: High, 0: Low).

• OutputRegisters (PxOUT): Value of output register is provided to corresponding output
pin (1: High, 0: Low).

• DirectionRegisters (PxDIR): Bit in PxDIR selects corresponding digital I/O pin as out-
put (1) or input(0).



60 2. A BRIEF INTRODUCTION TO PROGRAMMING
• Pull-up or Pull-down Resistor Enable Registers (PxREN): Each bit determines if an

internal pulled up (or pulled down) resistor is enabled at the corresponding pin. The value
of the corresponding PxOUT register determines if pulled up (1) or pulled down (0) is
selected. In summary, use the following PxDIR, PxREN, and PxOUT settings:

– 00x: input
– 010: input with pull-down resistor
– 011: input with pull-up resistor
– 1xx: output

• OutputDriveStrengthSelectionRegisters (PxDS): The value of the register determines
the drive strength for specific pins (1: high drive strength, 0: regular drive strength).

• Function Select Registers (PxSEL0, PxSEL1): Allows specific function of multi-
function pins to have access to I/O pin.

Throughout the book we use two approaches to configure MSP430 subsystems via their
complement of control registers. The registers may be configured directly using C programming
techniques (the “bare metal” approach) or via higher level application program interface (APIs).
The MSP430 has an extensive complement of APIs for all MSP430 subsystems within the
MSPWare library. Details on how to use the APIs are available through the Code Composer
Studio Resource Manager in the following documents:

• FR2433: MSP430 DriverLib for MSP430FR2xx 4xx Devices User’s Guide

• FR5994: MSP430 DriverLib for MSP430FR5xx 6xx Devices User’s Guide

In the following examples, we revisit the blink LED example using the “bare metal” ap-
proach. Techniques are similar for the MSP-EXP430FR5994. Note: In this first example we
provide the full Texas Instruments Incorporated copyright notification. In examples that follow
throughout the book an abbreviated version will be provided.

//*********************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2014, Texas Instruments Incorporated,
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.



2.9. ANATOMY OF A PROGRAM 61
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
// * Neither the name of Texas Instruments Incorporated nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//***********************************************************************
// MSP430 CODE EXAMPLE DISCLAIMER
// MSP430 code examples are self-contained low-level programs that
// typically
// demonstrate a single peripheral function or device feature in a highly
// concise manner. For this the code may rely on the device's power-on
// default register values and settings such as the clock configuration
// and care must be taken when combining code from several examples to
// avoid potential side effects. Also see www.ti.com/grace for a GUI- and
// www.ti.com/msp430ware
// for an API functional library-approach to peripheral configuration.
//
// --/COPYRIGHT/--
//***********************************************************************
//MSP430FR243x Demo - Toggle P1.0 using software
//
//Description: Toggle P1.0 every 0.1s using software.
//By default, FR24xx select XT1 as FLL reference.
//If XT1 is present, the PxSEL(XIN & XOUT) needs to configure.



62 2. A BRIEF INTRODUCTION TO PROGRAMMING
//If XT1 is absent, switch to select REFO as FLL reference automatically.
//XT1 is considered to be absent in this example.
//ACLK = default REFO ~32768Hz, MCLK = SMCLK = default DCODIV ~1MHz.
//
// MSP430FR2433
// ---------------
// /|\| |
// | | |
// --|RST |
// | P1.0|-->LED
//
//Cen Fang
//Texas Instruments Inc.
//Feb 2015
//Built with IAR Embedded Workbench v6.20 & Code Composer Studio v6.0.1
//***********************************************************************

#include <msp430.h>

int main(void)
{
WDTCTL = WDTPW | WDTHOLD; //Stop watchdog timer

P1OUT &= ~BIT0; //Clear P1.0 output latch for a
//defined power-on state

P1DIR |= BIT0; //Set P1.0 to output direction

PM5CTL0 &= ~LOCKLPM5; //Disable the GPIO power-on
//default high-impedance mode
//to activate previously
//configured port settings

while(1)
{
P1OUT ^= BIT0; //Toggle P1.0 using exclusive-OR
__delay_cycles(100000); //Delay for 100000*(1/MCLK)=0.1s
}

}

//***********************************************************************



2.9. ANATOMY OF A PROGRAM 63
The code example begins with the inclusion of the msp430.h header file. The Watchdog

timer that is normally on is then turned off. This is typically done during code development. The
next three statements are a shorthand method of accomplishing the following:

P1OUT = P1OUT & ~BIT0; //Clear P1.0 output latch for a
//defined power-on state

P1DIR = P1DIR | BIT0; //Set P1.0 to output direction

PM5CTL0 = PM5CTL0 & ~LOCKLPM5; //Disable the GPIO power-on
//default high-impedance mode
//to activate previously
//configured port settings

BIT0 is defined in the MSP430.h header files as 0x0001. The P1OUT register is used to set
PORT P1, pin 0 initially to logic 0. The P1DIR register is used to configure PORT P1, pin 0 to
output. The Power Mode 5 Control Register 0 is then used to disable the general-purpose I/O
power-on default configuration. LOCKLPM5 is defined as 0x0001 in the MSP430.h header
file. The program then enters an infinite loop where PORT 1, pin 0 is toggled every 0.1 s.

2.9.5 PROGRAM CONSTANTS
The #define statement is used to associate a constant name with a numerical value in a pro-
gram. It can be used to define common constants such as pi. It may also be used to give terms
used within a program a numerical value. This makes the code easier to read. For example, the
following constants may be defined within a program:

//program constants
#define TRUE 1
#define FALSE 0
#define ON 1
#define OFF 0

2.9.6 INTERRUPT HANDLER DEFINITIONS
Interrupts are functions that are written by the programmer but usually called by a specific hard-
ware event during system operation. We discuss interrupts and how to properly configure them
in an upcoming chapter.

2.9.7 VARIABLES
There are two types of variables used within a program: global variables and local variables. A
global variable is available and accessible to all portions of the program, whereas a local variable
is only known and accessible within the function where it is declared.



64 2. A BRIEF INTRODUCTION TO PROGRAMMING
When declaring a variable in C, the number of bits used to store the variable is also

specified. Variable specifications may vary by compiler. For code portability among different
platforms fixed formats may be used.

Type Size Range

unsigned char

signed char

unsigned int

signed int

float

double

1

1

2

2

4

4 - 8

0..255

-128..127

0..65535

-32768..32767

 +/-1.175e-38.. +/-3.40e+38

 compiler dependent

Figure 2.17: C variable sizes.

Fixed format variables are defined within the “stdint.h” header file [stdint.h]. Provided
below is a small extract from this header file.

//*****************************************************************

typedef signed char int8_t;
typedef unsigned char uint8_t;
typedef int int16_t;
typedef unsigned int uint16_t;
typedef long int32_t;
typedef unsigned long uint32_t;
typedef long long int64_t;
typedef unsigned long long uint64_t;

//*****************************************************************

When programming microcontrollers, it is important to know the number of bits and the
memory location used to store the variable. For example, assigning the contents of an unsigned
char variable, which is stored in 8-bits, to an 8-bit output port will have a predictable result.



2.9. ANATOMY OF A PROGRAM 65
However, assigning an unsigned int variable, which is stored in 16-bits, to an 8-bit output port
does not provide predictable results. It is wise to ensure your assignment statements are balanced
for accurate and predictable results. The modifier “unsigned” indicates all bits will be used to
specify the magnitude of the argument. Signed variables will use the left most bit to indicate the
polarity (˙) of the argument.

Variables may be read (scanned) into a program using the “scanf ” statement. The general
format of the scanf statement is provided below. The format of the variable and the variable
name are specified. Similarly, the variables may be printed using the “printf ” statement. The
backslash n specifies start a new line.

//*******************************************************************

#include<stdio.h>

int main( )
{
int input_variable;

scanf("

printf("

}

//*******************************************************************

A global variable is declared using the following format provided below. The type of the
variable is specified, followed by its name, and an initial value if desired.

//*******************************************************************

//global variables
unsigned int loop_iterations = 6;

//*******************************************************************

2.9.8 MAIN PROGRAM
The main program is the hub of activity for the entire program. The main program typically
consists of program steps and function calls to initialize the processor followed by program
steps to collect data from the environment external to the microcontroller, process the data and



66 2. A BRIEF INTRODUCTION TO PROGRAMMING
make decisions, and provide external control signals back to the environment based on the data
collected.

2.10 FUNDAMENTAL PROGRAMMING CONCEPTS
In the previous section, we covered many fundamental concepts. In this section we discuss oper-
ators, programming constructs, and decision processing constructs to complete our fundamental
overview of programming concepts.

2.10.1 OPERATORS
There are a wide variety of operators provided in the C language. An abbreviated list of common
operators is provided in Figures 2.18 and 2.19. The operators have been grouped by general cat-
egory. The symbol, precedence, and brief description of each operator are provided. The prece-
dence column indicates the priority of the operator in a program statement containing multiple
operators. Only the fundamental operators are provided.

General Operations
Within the general operations category are brackets, parenthesis, and the assignment operator.
We have seen in an earlier example how bracket pairs are used to indicate the beginning and
end of the main program or a function. They are also used to group statements in programming
constructs and decision processing constructs. This is discussed in the next several sections.

The parenthesis is used to boost the priority of an operator. For example, in the mathemat-
ical expression 7 � 3 C 10, the multiplication operation is performed before the addition since
it has a higher precedence. Parenthesis may be used to boost the precedence of the addition op-
eration. If we contain the addition operation within parenthesis 7 � .3 C 10/, the addition will
be performed before the multiplication operation and yield a different result from the earlier
expression.

The assignment operator (D) is used to assign the argument(s) on the right-hand side of
an equation to the left-hand side variable. It is important to insure that the left- and the right-
-hand side of the equation have the same type of arguments. If not, unpredictable results may
occur.

Arithmetic Operations
The arithmetic operations provide for basic math operations using the various variables described
in the previous section. As described in the previous section, the assignment operator (D) is used
to assign the argument(s) on the right-hand side of an equation to the left-hand side variable.

In this example, a function returns the sum of two unsigned int variables passed to the
function.



2.10. FUNDAMENTAL PROGRAMMING CONCEPTS 67

Symbol Precedence Description

General

{ } Brackets, used to group program statements

( ) Parenthesis, used to establish precedence

= Assignment

Symbol Precedence Description

Arithmetic Operations

Multiplication

Division

Addition 

Subtraction

Symbol Precedence Description

Logical Operations

Less than

<=

<

>

Less than or equal to

Greater 

>=

= =

!=

&&

||

Greater than or equal to

Equal to

Not equal to 

Logical AND

Logical OR

1

1

12

3

3

4

4

6

6

6

6

7

7

9

10

*

/

+

-

Figure 2.18: C operators (adapted from Barrett and Pack [2005]).



68 2. A BRIEF INTRODUCTION TO PROGRAMMING

Symbol Precedence Description

Bit Manipulation Operations

 

Symbol Precedence Description

Unary Operations

 

Shift left

Shift right

Bitwise AND

Bitwise exclusive OR

Bitwise OR

5

5

8

8

8

<<

>>

&

^

|

Unary negative

One’s complement (bit-by-bit inversion)

Increment

Decrement

Casting operator (data type conversion)

2

2

2

2

2

!

~

++

_ _
 

Type(argument)

Figure 2.19: C operators (continued) (adapted from Barrett and Pack [2005]).

//*******************************************************************

unsigned int sum_two(unsigned int variable1, unsigned int variable2)
{
unsigned int sum;

sum = variable1 + variable2;

return sum;
}

//*******************************************************************

Logical Operations
The logical operators provide Boolean logic operations. They can be viewed as comparison oper-
ators. One argument is compared against another using the logical operator provided. The result
is returned as a logic value of one (1, true, high) or zero (0 false, low). The logical operators are



2.10. FUNDAMENTAL PROGRAMMING CONCEPTS 69
used extensively in program constructs and decision processing operations to be discussed in the
next several sections.

Bit Manipulation Operations
There are two general types of operations in the bit manipulation category: shifting operations
and bitwise operations. Let’s examine several examples.

Given the following code segment, what will the value of variable2 be after execution?

//*******************************************************************

unsigned char variable1 = 0x73;
unsigned char variable2;

variable2 = variable1 << 2;

//*******************************************************************

Answer: Variable “variable1” is declared as an 8-bit unsigned char and assigned the hex-
adecimal value of .73/16. In binary, this is .0111_0011/2. The << 2 operator provides a left
shift of the argument by two places. After two left shifts of .73/16, the result is .cc/16 and will
be assigned to the variable “variable2.” Note that the left and right shift operation is equivalent
to multiplying and dividing the variable by a power of two.

The bitwise operators perform the desired operation on a bit-by-bit basis. That is, the
least significant bit (LSB) of the first argument is bit-wise operated with the LSB of the second
argument and so on.

Given the following code segment, what will the value of variable3 be after execution?

//*******************************************************************

unsigned char variable1 = 0x73;
unsigned char variable2 = 0xfa;
unsigned char variable3;

variable3 = variable1 & variable2;

//*******************************************************************

Answer: Variable “variable1” is declared as an eight bit unsigned char and assigned the
hexadecimal value of .73/16. In binary, this is .0111_0011/2. Variable “variable2” is declared
as an 8-bit unsigned char and assigned the hexadecimal value of .fa/16. In binary, this is
.1111_1010/2. The bitwise AND operator is specified. After execution variable “variable3,” de-
clared as an 8-bit unsigned char, contains the hexadecimal value of .72/16.



70 2. A BRIEF INTRODUCTION TO PROGRAMMING
Unary Operations
The unary operators, as their name implies, require only a single argument. For example, in the
following code segment, the value of the variable “i” is incremented. This is a shorthand method
of executing the operation “i D i C 1;”

//*******************************************************************
unsigned int i;

i++;

//*******************************************************************

Bit Twiddling
It is not uncommon in embedded system design projects to have every pin on a microcontroller
employed. Furthermore, it is not uncommon to have multiple inputs and outputs assigned to
the same port but on different port I/O pins. Some compilers support specific pin reference.
Another technique that is not compiler specific is bit twiddling. Figure 2.20 provides bit twid-
dling examples on how individual bits may be manipulated without affecting other bits using
bitwise and unary operators. The information provided here was extracted from the ImageCraft
ICC AVR compiler documentation [ImageCraft].

Syntax Description

a | b

a & b

a ^ b

~a

bitwise or

bitwise and

bitwise exclusive or

bitwise complement

Example

P2OUT |= 0x 80;   // turn on bit 7 (msb)

if ((P2IN & 0x81) == 0)   // check bit 7 and bit 0

P2OUT ^= 0x80;   // flip bit 7

P2OUT &= ~0x80;   // turn off bit 7

Figure 2.20: Bit twiddling [ImageCraft].

2.10.2 PROGRAMMING CONSTRUCTS
In this section, we discuss several methods of looping through a piece of code. We will examine
the “for” and the “while” looping constructs.



2.10. FUNDAMENTAL PROGRAMMING CONCEPTS 71
The for loop provides a mechanism for looping through the same portion of code a fixed

number of times. The for loop consists of three main parts:

• loop initiation,

• loop termination testing, and

• the loop increment.

In the following code fragment the for loop is executed ten times.

//*******************************************************************

unsigned int loop_ctr;

for(loop_ctr = 0; loop_ctr < 10; loop_ctr++)
{

//loop body

}

//*******************************************************************

The for loop begins with the variable “loop_ctr” equal to 0. During the first pass through
the loop, the variable retains this value. During the next pass through the loop, the variable
“loop_ctr” is incremented by one. This action continues until the “loop_ctr” variable reaches
the value of ten. Since the argument to continue the loop is no longer true, program execution
continues with the next instruction after the close bracket of the for loop.

In the previous example, the for loop counter was incremented by one.The “loop_ctr” vari-
able can be updated by any amount. For example, in the following code fragment the “loop_ctr”
variable is increased by three for every pass of the loop.

//*******************************************************************

unsigned int loop_ctr;

for(loop_ctr = 0; loop_ctr < 10; loop_ctr=loop_ctr+3)
{

//loop body

}

//*******************************************************************



72 2. A BRIEF INTRODUCTION TO PROGRAMMING
The “loop_ctr” variable may also be initialized at a high value and then decremented at

the beginning of each pass of the loop as shown below.

//*******************************************************************

unsigned int loop_ctr;

for(loop_ctr = 10; loop_ctr > 0; loop_ctr--)
{

//loop body

}

//*******************************************************************

As before, the “loop_ctr” variable may be decreased by any numerical value as appropriate
for the application at hand.

The while loop is another programming construct that allows multiple passes through a
portion of code. The while loop will continue to execute the statements within the open and
close brackets while the condition at the beginning of the loop remains logically true. The code
snapshot below will implement a ten iteration loop. Note how the “loop_ctr” variable is initial-
ized outside of the loop and incremented within the body of the loop. As before, the variable
may be initialized to a greater value and then decremented within the loop body.

//*******************************************************************

unsigned int loop_ctr;

loop_ctr = 0;
while(loop_ctr < 10)

{
//loop body

loop_ctr++;
}

//*******************************************************************

Frequently, within a microcontroller application, the program begins with system initial-
ization actions. Once initialization activities are completed, the processor enters a continuous
loop. This may be accomplished using the following code fragment.



2.10. FUNDAMENTAL PROGRAMMING CONCEPTS 73
//*******************************************************************

while(1)
{

}

//*******************************************************************

2.10.3 DECISION PROCESSING
There are a variety of constructs that allow decision making. These include the following:

• the if statement,

• the if-else construct,

• the if-else if-else construct, and

• the switch statement.

The if statement will execute the code between an open and close bracket set, should the
condition within the if statement be logically true. The if-else statement will execute the code
between an open and close bracket set, should the condition within the if statement be logically
true. If the statement is not true, the code after the else is executed.

Example: In this example switch S1 is connected to P1.3 (S1 on the MSP-EXP430FR2433
LaunchPad). If the switch is at logic one (switch not pressed), the red LED at pin P1.0 is
illuminated. If the switch is pressed taking P1.3 to logic low, the LED goes out. In the example,
pay close attention to how P1.0 is configured for output and P1.3 is configured for input with
the corresponding pull-up resistor activated using bit-twiddling techniques.

//***********************************************************************
//Copyright (c) 2014, Texas Instruments Incorporated,
//All rights reserved.
//Reference full copyright statement at first coding example and
// MSP430 CODE EXAMPLE DISCLAIMER
//***********************************************************************
//***********************************************************************
//MSP430FR243x Demo - Software Poll P1.3, Set P1.0 if P1.3 = 1
//
//Description:
//Poll P1.3 in a loop. Set P1.0 if P1.3 = 1, or reset P1.0. By default,



74 2. A BRIEF INTRODUCTION TO PROGRAMMING
//FR243x select XT1 as FLL reference. If XT1 is present, the XIN and XOUT
//pin needs to be configured. If XT1 is absent, REFO is automatically
//switched for FLL reference. XT1 is considered to be absent.
//ACLK = default REFO ~32768Hz, MCLK = SMCLK = default DCODIV ~1MHz.
//
// MSP430FR2433
// ---------------
// /|\| |
// | | |
// --|RST |
// /|\ | |
// --o--|P1.3 P1.0|-->LED
// \|/ | |
// | |
//
//Cen Fang
//Texas Instruments Inc.
//June 2013
//Built with IAR Embedded Workbench v6.20 & Code Composer Studio v6.0.1
//***********************************************************************

#include <msp430.h>

void main(void)
{
WDTCTL = WDTPW | WDTHOLD; //Stop watchdog timer

P1OUT &= ~BIT0; //Clear P1.0 output latch for a
//defined power-on state

P1DIR |= BIT0; //Set P1.0 to output direction
P1DIR &= ~BIT3; //Set P1.3 as input

PM5CTL0 &= ~LOCKLPM5; //Disable the GPIO power-on
//default high-impedance mode
//to activate previously
//configured port settings

while(1) //Test P1.3
{



2.10. FUNDAMENTAL PROGRAMMING CONCEPTS 75
if(P1IN & BIT3)

P1OUT |= BIT0; //if P1.3 set, set P1.0
else

P1OUT &= ~BIT0; //else reset
}

}

//***********************************************************************

The switch statement is used when multiple if-else conditions exist. Each possible condi-
tion is specified by a case statement. When a match is found between the switch variable and a
specific case entry, the statements associated with the case are executed until a break statement
is encountered. When a case match is not found, the default case is executed. Provided below is
a template for the switch statement.

//***********************************************************************

switch (switch_variable)
{
case 1: code steps associated with case 1;

:
:
break;

case 2: code steps associated with case 2;
:
:
break;

:
:
:

case n: code steps associated with case n;
:
:
break;

default:code steps associated with default;



76 2. A BRIEF INTRODUCTION TO PROGRAMMING
}

//***********************************************************************

An example using the switch statement is provided later in the text. That completes our
brief overview of Energia and the C programming language.

2.11 LABORATORY EXERCISE: GETTING ACQUAINTED
WITH ENERGIA AND C

Introduction. In this laboratory exercise, you will become familiar with Energia and the C
programming language through a variety of programming exercises.

If you have not done so already, download Code Composer Studio and also
execute the blink program provided in Code Composer Studio v7.x for MSP430 User’s
Guide [SLAU157AP, 2017]. Provided here are steps to compile and execute a program using
CCS from [SLAU157AP, 2017].

• Launch Code Composer Studio by clicking Start->All Programs-> Texas Instruments-
>Code Composer Studio->Code Composer Studio or by double clicking the CCS icon.

• Create a new project by clicking File->New->CCS Project and entering a project name.

• Set the Device Family to MSP430 and select the device variant to use (for example,
MSP430FR2433).

• Select “Blink The LED” in the “Project templates and example” section and then click
Finish.

• Compile the code and download the application to the target device by clicking Run-
>Debug (F11).

• To run the application, click Run->Resume (F8) or click the Play button on the toolbar.

Procedure 1: Energia.

1. Create a counter that counts continuously from 1–100 and repeats with a 50 ms delay
between counts.The onboard redLED should illuminate for odd numbers and the onboard
green LED for even numbers.

2. Modify the code produced for the previous step to illuminate the green LED when the
number is evenly divisible by three and the red LED for the other numbers.



2.12. SUMMARY 77
Procedure 2: C.

1. Develop a program that prompts the user for two integer numbers. If the first number is
less than the second, the program should count-up continuously from the lower to the
higher number with a 50 ms delay between counts. The onboard red LED should illumi-
nate for odd numbers and the onboard green LED for even numbers. If the first number
is higher than the second, the program should count down continuously from the lower
to the higher number with a 50 ms delay between counts. The onboard red LED should
illuminate for odd numbers and the onboard green LED for even numbers.

2. Develop a program that prompts the user for an integer number. If the number is evenly
divisible by 2 the red LED illuminates, evenly divisible by three the green LED, and for
other numbers no LEDs illuminate. Note: More than one LED may illuminate depending
on the number provided.

2.12 SUMMARY
The goal of this chapter was to provide a tutorial on how to begin programming. We began with
a discussion on the Energia Development Environment and how it may be used to develop a
program for the MSP430 LaunchPads. For C, we used a top-down design approach. We began
with the “big picture” of the program of interest followed by an overview of the major pieces
of the program. We then discussed the basics of the C programming language. Only the most
fundamental concepts were covered. Throughout the chapter, we provided examples and several
excellent references.

2.13 REFERENCES AND FURTHER READING
Adafruit. www.adafruit.com

Arduino homepage. www.arduino.cc

Barrett, S. F. Embedded Systems Design with the Atmel AVRMicrocontroller, Morgan & Claypool
Publishers, San Rafael, CA, 2010. DOI: 10.2200/s00225ed1v01y200910dcs025.

Barrett, S. F. and Pack, D. J. Atmel AVR Microcontroller Primer Programming
and Interfacing, Morgan & Claypool Publishers, San Rafael, CA, 2008. DOI:
10.2200/s00100ed1v01y200712dcs015.

Barrett, S. F. and Pack, D. J. Embedded Systems Design and Applications with the 68HC12 and
HCS12, Pearson Prentice Hall, 2005. 67, 68

Barrett, S. F. and Pack, D. J. Microcontrollers Fundamentals for Engineers and Scientists, Morgan
&Claypool Publishers, San Rafael, CA, 2006. DOI: 10.2200/s00025ed1v01y200605dcs001.

www.adafruit.com
www.arduino.cc
http://dx.doi.org/10.2200/s00225ed1v01y200910dcs025
http://dx.doi.org/10.2200/s00100ed1v01y200712dcs015
http://dx.doi.org/10.2200/s00100ed1v01y200712dcs015
http://dx.doi.org/10.2200/s00025ed1v01y200605dcs001


78 2. A BRIEF INTRODUCTION TO PROGRAMMING
Code Composer Studio v7.x for MSP430 User’s Guide, (SLAU157AP), Texas Instruments, 2017.

76

Energia. www.energia.nu

ImageCraft Embedded Systems C Development Tools, Palo Alto, CA. www.imagecraft.com
70

2.14 CHAPTER PROBLEMS
Fundamental

1. Describe the steps in writing a sketch and executing it on an MSP430 LaunchPads pro-
cessing board.

2. Describe the basic components of any C program.

3. Describe two different methods to program an MSP430 LaunchPad.

4. What is an include file?

5. What are the three pieces of code required for a function?

6. Describe how a program constant is defined in C.

7. What is the difference between a for loop and a while loop?

8. When should a switch statement be used vs. the if-then statement construct?

9. What is the serial monitor feature used for in the Energia Development Environment?

10. Describe what variables are required and returned and the basic function of the following
built-in Energia functions: Blink, Analog Input.

Advanced

1. Provide the C program statement to set PORT 1 pins 1 and 7 to logic one. Use bit-
twiddling techniques.

2. Provide the C program statement to reset PORT 1 pins 1 and 7 to logic zero. Use bit-
twiddling techniques.

3. Using a MSP430 LaunchPad, write a program in Energia that takes an integer input from
the user. If negative, the red LED is illuminated. If positive, the green LED is illuminated.

4. Repeat the program above using C.

www.energia.nu
www.imagecraft.com


2.14. CHAPTER PROBLEMS 79
Challenging

1. Create a counter that counts continuously from 1–100 an repeats with a 50 ms delay be-
tween counts. The onboard red LED should illuminate for odd numbers and the onboard
green LED for even numbers.

2. Develop a program that prompts the user for two integer numbers. If the first number is
less than the second, the program should count-up continuously from the lower to the
higher number with a 50 ms delay between counts. The onboard red LED should illumi-
nate for odd numbers and the onboard green LED for even numbers. If the first number
is greater than the second, the program should count down continuously from the lower
to the higher number with a 50 ms delay between counts. The onboard red LED should
illuminate for odd numbers and the onboard green LED for even numbers.





81

C H A P T E R 3

Hardware Organization and
Software Programming

Objectives: After reading this chapter, the reader should be able to:

• explain the organization of MSP430 hardware functional units;

• use controller software development tools;

• describe available MSP430 operating modes of the MSP430;

• identify and use appropriate assembly instructions;

• explain advantages and disadvantages of using a high-level programming language and the
MSP430 assembly programming language;

• program the MSP430 controller for simple applications using both C and assembly lan-
guage programs; and

• debug programs using joint test action group ( JTAG) tools.

In this chapter, we present fundamental materials to understand the software and hard-
ware systems of the MSP430 microcontroller.Mastering the contents of this chapter is critical in
proceeding with the contents in the rest of this book, as they will serve as foundational MSP430
knowledge. Before getting into the specific hardware and software environments of the MSP430
microcontroller, the overall hardware and software organizations of a typical RISC (Reduced
Instruction Set Computer) based microcontroller is presented, followed by the MSP430 specific
hardware and software environments. The objectives of this chapter are to provide readers with
a solid understanding of basic hardware and software concepts required to design, develop, and
evaluate embedded systems using the MSP430 microcontroller.

3.1 MOTIVATION
The MSP430 microcontroller was designed for applications requiring ULP consumption, typi-
cally found in portable, battery-operated embedded systems applications. The MSP430 is cur-
rently used in a wide range of products, including medical diagnostic equipment, smart power



82 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING
systems, security and fire monitoring sensors, alarm systems, power tools, and a host of con-
sumer products. It is expected that the MSP430 will continue to grow its market share in smart
homes and personal health monitoring applications.

3.2 MSP430 HARDWARE
ORGANIZATION/ARCHITECTURE

In a RISC based machine, designers attempt to optimize the performance of a computer by
simplifying hardware and providing a limited number of basic building block instructions. By
reducing the time to execute each RISC instruction, even if you may require more instructions to
execute a specific function, the goal of an RISC-based controller attempts to reduce the overall
execution time of a software program. MSP430 is a good example of an RISC-based machine.

In this section, we present the hardware components and their organization within the
MSP430 microcontroller. Once the MSP430 microcontroller hardware is presented, we delve
into additional details of the MSP430FR2433 and MSP430FR5994 controllers.

3.2.1 CHIP ORGANIZATION
Figure 3.1 shows the block diagrams of the MSP430FR2433 and the MSP430FR5994 micro-
controllers. In Chapter 1 we provided a brief overview of each of the subsystems aboard these
processors. We briefly recap some of the features here.

Beginning in the upper-left corner of the MSP430FR2433 figure, the power management
module is used by the controller to manage power when operating in one of the power saving
modes. The CS governs all operations of the controller. The CS may be connected to an external
crystal. For the MSP430FR2433 microcontroller, the clock speed can be programmed to be
up to 16 MHz and as low as 10 KHz. The speed of the clock is important since at each clock
cycle (periodic clock signal completing a cycle to go high and low) the MSP430 is executing
an instruction. In general, the faster the microcontroller clock speed, the more tasks that can be
accomplished in a given amount of time. Why not use the fastest available clock, then? The faster
the clock speed, the more power a microcontroller consumes, causing a designer to balance the
speed of the machine with the power consumption. This is especially critical in portable, battery-
operated applications, for which MSP430 controllers are designed.

Next is the 10-bit ADC converter block. It is an input port system that takes in analog
signals and converts captured signal values into their equivalent 10-bit digital representations.

Continuing from left to right, we find two different types of memory blocks (FRAM and
RAM). Typically, the FRAM memory is used to store non-volatile data and programs while
RAM is used for temporary data and a storage space during program execution.

The MPY32 module is a hardware-based multiplier subsystem added to the MSP430
microcontrollers to optimize execution time of multiplication operations used frequently in
microcontroller-based operations. It typically requires multiple clock cycles to execute the



3.2. MSP430 HARDWARE ORGANIZATION/ARCHITECTURE 83

(a) MSP430FR2443 block diagram [slase59b].

(b) MSP430FR5994 block diagram [slase54b].

Figure 3.1: MSP430FR2433 and the MSP430FR5994 block diagrams [SLASE59D, 2018,
SLASE54C, 2018]. Illustrations used with permission of Texas Instruments (www.ti.com).

www.ti.com


84 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING
most basic multiplication operations, requiring excessive execution time. The MSP430 provides
the MPY32 hardware-based multiplier to reduce the multiplication operation time. Typically,
hardware-based solutions are much faster than their software-based counterparts.

Moving to the right in the figure, the two remaining modules on the first row, show
general-purpose I/O port subsystems of the controller. The ports provide the controller access
and interface to a wide variety of peripheral components.

On the second row, the purpose of embedded emulator module (EEM) is to assist system
developers in providing access to program execution during a debugging process. This is espe-
cially helpful during program development and troubleshooting. The built-in emulator allows
us to view memory contents and insert break points. The JTAG module is used to interface the
controller with a desktop or laptop computer for loading programs and debugging programs
using the EEM during program execution. Finally, the CPU in the center of the figure contains
the arithmetic and logical unit (ALU), the CPU registers, and a Control subunit responsible for
performing program branching and data transfer.

The system Watchdog module (WDT) is responsible for keeping the microcontroller
operating properly and taking appropriate actions when abnormal activities are detected. The
WDT is a timer that, if expired, results in a processor reset. It is used to reset the processor
when a software malfunction has occurred. During normal program processing the WDT is
reset by specific program steps. Should a software malfunction occur and the WDT timer is not
reset, the WDT will timeout and result in a processor reset. In response to the processor reset,
the software malfunction may clear.

The CRC16 subsystem is responsible for the cyclical redundancy check (using 16 bits).
Cyclical redundancy checks are used to validate error-free communications among digital sys-
tems. Each time a transmitter sends a set of data to a receiver, it sends an additional value derived
from the original data called a “key.” The receiver, having received the data being sent, uses the
original data to perform the same computation to generate the key value. By comparing the
generated value with the one received, the receiver can quickly verify whether or not the original
data it received are valid.

The timer blocks represent timer-related I/O port systems. The timers are I/O systems
where external signals can be captured to measure time-related parameters such as signal fre-
quency, period, and duty cycle, and output signals intended for an external world with specific
time-related parameters are generated. In other microcontroller manufacturers, these ports are
referred to as input capture and output compare timer ports. The timer port module may also
contain channels to generate a variety of PWM output signals. A PWM signal may be used to
control the speed of a motor, the light intensity of an LED, or control various peripheral devices.

The next several modules contain the serial communication subsystem that allows the
MSP430 microcontroller to interface with external devices using the serial peripheral inter-
face (SPI), universal asynchronous receiver-transmitter (UART), and the inter-integrated circuit
(I2C) protocols.



3.3. HARDWARE SUBSYSTEMS 85
As shown in Figure 3.1b, the MSP430FR5994 has similar features and layout to the

MSP430FR2433. In addition, the MSP430FR5994 hosts the additional subsystems.

• The DMA controller shown on the left edge of the figure is responsible for accessing
memory by all subsystems of the controller. DMA provides the capability to move data
from memory location to memory location without involving the central processing unit.
This is especially useful for low power operation when moving data from peripherals to
specific memory locations [SLAU367O, 2017].

• The reference module (REF) is responsible for generating voltages required by all periph-
eral subsystems of the MSP430, including the analog-to-digital converter.

• Advanced encryption standard (AES) accelerator. The accelerator speeds up the encryp-
tion and decryption of data by one to two orders of magnitude over a software-based
implementation. It can be used for 128- or 256-bit encryption.

3.2.2 HARDWARE PIN ASSIGNMENTS
In this section, we consider the pin assignments of the MSP430FR2433 and MSP430FR5994
controllers shown in Figure 3.2. All pins can be divided into I/O pins and pins used to power
the controller. For the inputs and outputs pins, we can further categorize them into general-
purpose I/O pins, clock signal pins, input pins for the analog-to-digital converter, serial and
parallel communication signal pins, and reset and interrupt pins. These pins are also multiplexed,
meaning that many of them are used for more than one purpose. The particular use of a pin is
software programmed. As a project designers, we typically use a development board with its own
I/O pins mapped to the ones for the controller. The pinouts for the EVMs were provided earlier
in the book.

3.3 HARDWARE SUBSYSTEMS
In this section we present an overview of selected hardware subsystems of the controllers: register
block, port system, timer system, memory system, resets and interrupts, and communication
systems, analog-to-digital converter, and hardware multiplier.

3.3.1 REGISTER BLOCK
The MSP430FR2433 controller has a memory address range from 0000h to FFFFh. These
memory locations are partitioned for a variety of uses, including the register block. For the
register block, memory locations from 0100h to 074Fh are used. As the name implies, the
register block contains registers used to program functional units of the microcontroller. For
example, the analog-to-digital converter control registers reside from locations 0700h to 074Fh,
whereas, the timer control registers occupy memory locations 0380h to 047FH. Understanding



86 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING

(a) MSP430FR2443 pinout

(b) MSP430FR5994 pinout

Figure 3.2: MSP430FR2433 and MSP430FR5994 pin assignments [SLASE59D, 2018,
SLASE54C, 2018]. Illustrations used with permission of Texas Instruments (www.ti.com).

www.ti.com


3.3. HARDWARE SUBSYSTEMS 87
that the functional unit control registers are part of the allocated memory map is important. The
locations should not be used for actual data or instruction storage.

3.3.2 PORT SYSTEM
One primary feature of a microcontroller compared to a general-purpose computer processor
is its ability to interface with external devices. The MSP430 microcontroller has a number of
flexible I/O capabilities through its I/O ports. The MSP430FR2433 has Port 1, Port 2, and
a small Port 3 that can be configured to be used as general-purpose input and output pins.
For the MSP430FR5994, there are nine different I/O ports: Port 1 through Port 8 and Port J.
These ports can be programmed as general I/O ports or shared with other subsystems. The
MSP430FR5994 is equipped with the TI incorporated capacitive touch capabilities for the
ports.

3.3.3 TIMER SYSTEM
The MSP430 controller has a number of clock sources it can use to manage its computational
speed and power consumption. The timer system is based on a clock that is used by the CPU
of the microcontroller to fetch instructions and data from memory or I/O ports, encode and
execute instructions, and store results to memory or send them to external devices. The timer
system can use its built-in function such as the pulse width modulated signals for controlling
devices, the Watchdog timer to monitor proper execution of instructions, the real-time counter
to measure timer-related parameters of an incoming signals. The important capabilities of the
timer system are its ability to capture signal characteristics and generate desired signal with
time-related parameters such as the frequency of a periodic signal. These subsystems of the
timer system are called input capture and output compare systems.

3.3.4 MEMORY SYSTEM
The memory system for the MSP430 controller is made of two parts: actual memory locations
and the memory control system. The memory locations are governed by the number of address
lines used to identify each memory location. Sixteen address lines (can be expanded using addi-
tional address lines) are used to access 64 K locations which are made of a register block, ROM,
RAM, and FRAM for the MSP430FR2433 controller. For the MSP430FR5994, 18 address
lines are used to access 256 K locations of the register block, ROM, RAM, and FRAM loca-
tions. The memory map for the MSP430FR2433 microcontroller is shown in Figure 3.3 and
the one for the MSP430FR5994 microcontroller in Figure 3.4. Memory maps are necessary to
inform a programmer to use proper memory locations and types to store data and instructions
for his or her application.

The memory control system is made of three memory controllers, the FRAM memory
controller, the RAM controller, and the DMA controller. The FRAM memory controller is
used to program the fast-write nonvolatile memory locations, access capability, wait state, power



88 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING

Memory Contents 

Interrupt Vectors
(FRAM)

Code Memory
(FRAM)

Information Memory
(FRAM)

Bootstrap Loader
Segment 1

Peripherals

Random Access
Memory (RAM)

Start Address

(FF80)16

(C400)16

(2000)16

(1800)16

(1000)16

(0000)16

Stop Address

(FFFF)16

(FFFF)16

(FFFF)16

(FF80)16

(C400)16

(3000)16

(2000)16

(1800)16

(1000)16

(0000)16

(2FFF)16

(19FF)16

(17FF)16

(0FFF)16

Span

(80)16 
(128)10 ~ 128 bytes

(3C00)16 
(15360)10 ~ 15K bytes

(01000)16 
(4096)10 ~ 4K bytes

(00200)16 
(512)10 bytes

(0800)16

(2048)10 ~ 2K bytes

(1000)16

(4096)10 ~ 4K bytes

Figure 3.3: The MSP430FR2433 memory map [SLAU445G, 2016].

saving, and error correction coding. The RAM controller is used to power down in a power
saving mode, and the DMA controller is used to transfer contents of memory locations to other
memory locations without the intervention of a controller.

3.3.5 RESETS AND INTERRUPTS
Resets and interrupts are used to “interrupt” the regular flow of a program sequence to attend
to a set of special instructions for designated purposes. For example, regardless of the current
instruction being executed, a reset will bring the status of the controller to a power on state.
MSP430 controllers have a variety of resets and interrupts. There are internal and external in-
terrupts and resets. MSP controllers also have timer system interrupts, I/O-related interrupts,
and analog-to-digital controller interrupts. The use of interrupts is presented throughout the
book.



3.3. HARDWARE SUBSYSTEMS 89

Memory Contents 

Interrupt Vectors
(FRAM)

Code Memory
(FRAM)

Information Memory
A-D (FRAM)

Bootstrap Loader
Segment 0-3

Peripherals

Device Descriptor
(TLV) (FRAM)

Random Access
Memory (RAM)

Start Address

(0FF80)16

(04000)16

(01C00)16

(01A00)16

(01800)16

(01000)16

(00020)16

Stop Address

(0FFFF)16

(043FFF)16

(03BFF)16

(FFFF)16

(FF80)16

(03C00)16

(01C00)16

(01A00)16

(01800)16

(01000)16

(00000)16

(01AFF)16

(019FF)16

(017FF)16

(00FFF)16

Span

(80)16 
(128)10 ~ 128 bytes

(40000)16 
(262,144)10 ~ 256K bytes

(00100)16 
(256)10  bytes

(2000)16 
(8192)10 ~ 8K bytes

(00200)16 
(512)10 bytes

(800)16

(2048)10 ~ 2K bytes

(~1000)16

(4096)10 ~ 4K bytes

Figure 3.4: The MSP430FR5994 memory map [SLAU367O, 2017].

3.3.6 COMMUNICATION SYSTEMS
MSP430 controllers support different communication modes: serial communication interface
(SCI), synchronous peripheral interface (SPI), and inter-integrated circuit (I2C) communica-
tion. The first one is the universal asynchronous receiver and transmitter (UART) mode. It uses
either seven or eight data bits, programmable baud rates, and interrupt capabilities. The con-
troller supports both synchronous and asynchronous communication patterns, and the automatic
error detection. In the SPI mode, multiple devices can be connected to transmit and receive data
using a same clock signal with a master unit providing the clock source. In the I2C mode, mul-
tiple devices are connected together with multiple master units working on the same network.
The communication units of the controller is discussed in Chapter 10.

3.3.7 ANALOG-TO-DIGITAL CONVERTER
For microcontrollers to work with analog signals, we must first convert the analog signal
into a digital one. The 10-bit analog-to-digital converter of the MSP430FR2433 (12-bit



90 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING
MSP430FR5994) controller performs that task by implementing sampling, quantization, and
encoding processes. The sampling process is taking time-based samples of an analog signal, the
quantization process is mapping a sampled analog value to one of the available encoded level
(1024 levels generated by the 10 bits), and the encoding step is representing the quantized level
as a digital number.

Once a signal has been converted into a digital form, it can now be used in any application
that requires digital representation of an analog signal. The controller has multiple analog-to-
digital converters that can be programmed with interrupt capabilities. The converter is presented
in Chapter 9.

3.3.8 HARDWARE MULTIPLIER (MPY32)
The multiplication operation typically requires multiple clock cycles. A hardware-based mul-
tiplier significantly speeds up the multiplication operation. The MSP430 is equipped with the
MPY32 Hardware Multiplier. This system provides the flexibility to multiply any signed or un-
signed 8-bit, 16-bit, and 32-bit numbers. There is also the option to multiply a 24-bit number
with an 8-bit number as well as performing a multiplication and accumulation (add to the pre-
vious operation result). This combination of operations is common in digital signal processing
(DSP) operations. Signed numbers are used when both negative and positive numbers need
to be represented. These numbers use the 2’s complement representation. Unsigned numbers
assume all numbers, including results of operations, are positive numbers.

The multiplication operation is performed automatically, without explicit multiplication
instructions, when both operand registers are loaded with numbers. It takes some practice to
perform the multiplication operations since a number of specific registers that correspond to
the right type of multiplication desired to be performed must be used for different types of
multiplications. The registers for the operands are listed in Table 3.2 along with their base offset
addresses. Pay special attention to the register column containing information on which type of
operand registers are created.

3.4 CPU PROGRAMMING MODEL/REGISTER
DESCRIPTIONS

The MSP430 CPU block diagram is provided in Figure 3.5. The MSP430 CPU consists of a
series or registers designated R0 through R15. The registers are served by two buses: the memory
data bus (MDB) and the memory address bus (MAB). Register contents are provided to the
ALU. The MCLK serves as the clock source for the ALU. ALU operations are specified by the
program under execution. In response to ALU operations different flags (Zero, Carry, Overflow,
and Negative) are set and reset during program execution.

The programming model of a computer provides a simplified model of the CPU and the
operational status of the computer at a given time. A programming model is typically comprised



3.4. CPU PROGRAMMING MODEL/REGISTER DESCRIPTIONS 91

Table 3.1: Arithmetic operations

Register Type Access Address Off set

16-bit operand one (MPY)

16-bit operand one low byte (MPY_L)

16-bit operand one high byte (MPY_H)

8-bit operand one (MPY_B)

16-bit operand one signed (MPYS)

R/W

R/W

R/W

R/W

R/W

Word

Byte

Byte

Byte

Word

00h

00h

01h

00h

02h

16-bit operand one signed low byte (MPYS_L)

16-bit operand one signed high byte (MPYS_H)

8-bit operand one signed (MPYS_B)

16-bit operand one accumulate (MAC)

16-bit operand one accumulate low byte (MAC_L)

R/W

R/W

R/W

R/W

R/W

Byte

Byte

Byte

Word

Byte

02h

03h

02h

04h

04h

16-bit operand one accumulate high byte (MAC_H)

8-bit operand one accumulate (MAC_B)

16-bit operand one signed accumulate (MACS)

16-bit operand one signed accumulate low byte (MACS_L)

16-bit operand one signed accumulate high byte (MACS_H)

R/W

R/W

R/W

R/W

R/W

Byte

Byte

Word

Byte

Byte

05h

04h

06h

06h

07h

8-bit operand one signed accumulate (MACS_B)

16-bit operand two (OP2)

16-bit operand two low byte (OP2_L)

16-bit operand two high byte (OP2_H)

8-bit operand two (OP2_B)

R/W

R/W

R/W

R/W

R/W

Byte

Word

Byte

Byte

Byte

06h

08h

08h

09h

08h

16x16 result low word (RESLO)

16x16 result low word low byte (RESLO_L)

16x16 result high word (RESHI_H)

16x16 sum extension (SUMEXT)

32-bit operand one low word (MPY32L)

R/W

R/W

R/W

R

R/W

Word

Byte

Word

Word

Word

0Ah

0Ah

0Ch

0Eh

10h



92 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING

Table 3.2: Arithmetic operations (Continues.)

Register Type Access Address Off set

32-bit operand one low word low byte (MPY32L_L)

32-bit operand one low word high byte (MPY32L_H)

32-bit operand one high word (MPY32H)

32-bit operand one high word low byte (MPY32H_L)

32-bit operand one high word high byte (MPY32H_H)

R/W

R/W

R/W

R/W

R/W

Byte

Byte

Word

Byte

Byte

10h

11h

12h

12h

13h

24-bit operand one high byte (MPY32H_B)

32-bit operand one signed low word (MPYS32L)

32-bit operand one signed low word low byte (MPYS32L_L)

32-bit operand one signed low word high byte (MPYS32L_H)

32-bit operand one signed high word (MPYS32H)

R/W

R/W

R/W

R/W

R/W

Byte

Word

Byte

Byte

Word

12h

14h

14h

15h

16h

32-bit operand one signed high word low byte (MPYS32H_L)

32-bit operand one signed high word high byte (MPYS32H_H)

24-bit operand one signed high byte (MPYS32H_B)

32-bit operand one accumulate low word (MAC32L)

32-bit operand one accumulate low word low byte (MAC32L_L)

R/W

R/W

R/W

R/W

R/W

Byte

Byte

Byte

Word

Byte

16h

17h

16h

18h

18h

32-bit operand one accumulate low word high byte (MAC32L_H)

32-bit operand one accumulate high word (MAC32H)

32-bit operand one accumulate high word low byte (MAC32H_L)

32-bit operand one accumulate high word high byte (MAC32H_H)

24-bit operand one accumulate high byte (MAC32H_B)

R/W

R/W

R/W

R/W

R/W

Byte

Word

Byte

Byte

Byte

19h

1Ah

1Ah

1Bh

1Ah



3.4. CPU PROGRAMMING MODEL/REGISTER DESCRIPTIONS 93

Table 3.2: (Continued.) Arithmetic operations

Register Type Access Address Off set

32-bit operand one signed accumulate low word (MACS32L)

32-bit operand one signed accumulate low word low byte      

(MACS32L_L)

32-bit operand one signed accumulate low word high byte 

(MACS32L_H)

32-bit operand one signed accumulate high word

(MACS32H)

32-bit operand one signed accumulate high word low byte 

(MACS32H_L)

R/W

R/W

R/W

R/W

R/W

Word

Byte

Byte

Word

Byte

1Ch

1Ch

1Dh

1Eh

1Eh

32-bit operand one signed accumulate high word high byte 

(MACS32H_H)

24-bit operand one signed accumulate high byte

(MACS32H_B)

32-bit operand two low word (OP2L)

32-bit operand two low word low byte (OP2L_L)

32-bit operand two low word high byte (OP2L_H)

R/W

R/W

R/W

R/W

R/W

Byte

Byte

Word

Byte

Byte

1Fh

1Eh

20h

20h

21h

32-bit operand two high word (OP2H)

32-bit operand two high word low byte (OP2H_L)

32-bit operand two high word high byte (OP2H_H)

24-bit operand two high byte (OP2H_B)

32x32 result 0 (RES0)

R/W

R/W

R/W

R/W

R/W

Word

Byte

Byte

Byte

Word

22h

22h

23h

22h

24h

32x32 result 0 low byte (RES0_L)

32x32 result 1 (RES1)

32x32 result 2 (RES2)

32x32 result 3 (RES3)

R/W

R/W

R/W

R/W

Byte

Word

Word

Word

24h

26h

28h

2Ah



94 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING

MDB - Memory Data Bus MAB - Memory Address Bus

R0/PC Program Counter              0

R1/SP Pointer Stack                     0

R3/CG2 Constant Generator

R4 General Purpose

R5 General Purpose

R6 General Purpose

R7 General Purpose

R8 General Purpose

R9 General Purpose

R10 General Purpose

R11 General Purpose

R12 General Purpose

R13 General Purpose

R14 General Purpose

R15 General Purpose

16/20-bit ALU

R2/SR Status Register

16

16 15 019

20

dst src

MCLK

Zero, Z
 Carry, C

 Overflow, V
Negative, N

Figure 3.5:MSP430CPUblock diagram [SLAU208Q, 2018]. Illustration used with permission
of Texas Instruments (www.ti.com).

www.ti.com


3.4. CPU PROGRAMMING MODEL/REGISTER DESCRIPTIONS 95
of CPU registers which collectively contain pertinent information about the operational status of
the computer. For example, a programming model contains a status register that shows whether
the most recently executed instruction resulted in a negative number, a positive number, or a
zero. It shows which instruction is on queue to be executed next via the program counter (PC)
and the next available location on the stack via the stack pointer (SP).

A stack is a designated portion of RAM memory which is used to store data temporarily
during program execution. It is a first-in-last-out data structure, similar to the spring-loaded
plate holder one finds in a buffet restaurant. The first plate placed in the plate holder is the last
one used by customers. To keep track of the size of a stack, the top of the stack (either the next
available memory location to be used by the stack or the last memory location used by the stack
depending on the computer architecture) is always identified by a special register called the SP.
A programming model also includes the PC, which contains the address of the instruction to
be executed next.

The programming model for MSP430 is shown in Figure 3.6. As shown, the MSP430
microcontroller has four special and 12 general-purpose CPU registers that make up its pro-
gramming model. Registers are 16 or 20 bits wide. The first special register, R0, is the PC
register. This register contains the address of the next instruction to be executed by CPU. Since
all instructions are aligned and start at even addresses, the LSB of R0 is hardwired to zero. The
value of PC is incremented by two each time an instruction is executed to update the address of
the instruction to be executed next.

The second special register, R1, is the SP register, which contains the address of the top
of the stack. Since data is “pushed” onto the stack and “pulled” off the stack using only one end
of the stack, the top of the stack must be monitored always. The top of the stack contains the
address of the most recently added word to the stack. Again, the MSP430 always puts (pushes)
and pulls data onto and from the stack one word (16 bits) at a time, which allows the designer
of the MSP430 to hardwire the LSB of SP to zero.

The R2 register contains the current status of the computer operation. Figure 3.7 shows
the contents of the Status Register R2. The MSP430 status is shown as a series of status bits.
Most of the flag definitions are quite straightforward. The definition of the V bit is a bit more
involved.

The V bit represents overflow from the execution of the previous instruction. An overflow
occurs when the result of a signed number operation is incorrect due to the available, limited
space of a register to correctly hold the result. When this bit is set, an overflow occurred, and
when it is cleared, no overflow occurred. There are several different situations that result in an
overflow condition (adapted from Hamann [2017], Miller [1995], Mano [2002], and CPU12
[1997]).

• In an unsigned addition operation, an overflow occurs when there is a carry out of the
MSB after an addition operation.

• In an unsigned subtraction operation, an overflow occurs if the MSB requires a borrow.



96 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING

Program Counter

Stack Pointer

Status Register

Instruction Register

Programming Model

Constant Generator

0

0

0

0

0

0

R0

R1

R2

R3

R4

R15

15

15

15

15

15

15

Figure 3.6: Programming model of MSP430.

15  .......  9 8 7 6 5 4 3 2 1 0

Status Register R2

Reserved V N Z CSCG1 SCG0
OSC
OFF

CPU
OFF

GIE

Figure 3.7: The contents of status register R2 [SLAU056L, 2013].



3.4. CPU PROGRAMMING MODEL/REGISTER DESCRIPTIONS 97
• In a signed addition operation, an overflow occurs if the addition of two positive numbers

results in a negative number or if the addition of two negative numbers results in a positive
number. Recall that, in the two’s complement system, a positive number is represented by
having the MSB of a variable set to logic 0, whereas a negative number has a logic 1 in the
MSB position.

• In a signed subtraction operation, an overflow occurs if the subtraction of a negative
number from a positive number yields a negative number or if the subtraction of a positive
number from a negative number yields a positive number.

The N bit is set when the result of the previous operation is a negative number in the 2’s
complement sense. It is cleared if this bit is zero. The Z bit is set when the previous instruction’s
result was zero. It is cleared if the result of the previous instruction was not zero. The C bit
represents a carry bit. This bit is set when a carry to or borrow from of the MSB occurs. It is
cleared if there is no carry or borrow was generated by the previously executed instruction.

The GIE bit (General Interrupt Enable) is used to enable or disable maskable interrupts.
Interrupts are requests made by hardware or software to the CPU to temporarily suspend the
current flow of instruction execution and handle a special request by performing a set of in-
structions specially written to take care of the request. Interrupt-related activities are of higher
priority than routine processing tasks.

The remaining status bits SCG1 (SystemClockGenerator 1), SGC0 (SystemClockGen-
erator 0), OSCOFF (Oscillator Off), and CPUOFF (CPU Off) are used to control the opera-
tional mode of the CPU, which is the topic of the next section. The numbers under each status
bit in Figure 3.7 provide their bit location within the 16-bit status register.The bits are numbered
from the LSB (0) on the right to the MSB (15) on the left.

The last special register, R3, is a constant generator, which generates numeric values zero,
one, two, four, and eight. The rationale for having this register is based on the frequent use of
the constant values. By having these values in the CPU register, the MSP430 microcontroller
can compute instructions that use such constants with minimal clock cycles. The rest of CPU
registers, R4–R15, are general purpose-registers.

Examples: In each of the examples below, predict the value of the status register bits (V, N, Z,
C) after each operation. Assume all arguments and results are contained within 16-bit registers.

1. 0007h C 0003h
Answer: The results is 000Ah, no status flags are set.

2. CAFEh C 0D00h
Answer: The result is D7FEh, the N flag will set.

3. 7B7Ah - 7B7Ah
Answer: The results is 0000h, the Z flag will set.



98 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING
4. DECAh C CA70h

Answer: The result is A93A, the C, V, and N flags will set.

3.5 OPERATING MODES
The MSP430 microcontroller can run in an active mode and in a number of power-saving op-
erating modes. The basic premise behind the low-power operating modes is to turn off system
clocks that are not currently in use. Since a CMOS circuit consumes power when switching,
turning off clocks not in use conserves power. The operating mode of the controller is deter-
mined by the settings of four bits within the status register (R2): CPUOFF, OSCOFF, SCG0,
and SCG1. By configuring these four bits, a programmer can select the operating mode of the
controller based on the needs of a system application.

One of the advantages of designating the low-power operating mode using the bits in the
status register is that when an interrupt occurs, the operating mode configured in Status Register
R2 is automatically saved onto the stack, and the same operating mode is retrieved when the
interrupt is serviced and the program returns to routine execution. We discuss options to set or
clear low-power operational modes upon returning from servicing an interrupt in Chapter 8.

Here is a brief summary of MSP430 operating modes.

• Activemode. During normal operation in the active mode, all four bits should be cleared
(CPUOFF = 0, OSCOff = 0, SCG0 = 0, and SCG1 = 0), which allows all CPU clocks to
become active.

• LPM0. When only the CPUOFF bit is set, called low-power mode 0 (LPM0), the CPU
and the master clock (MCLK) are turned off and only the subsystem clock (SMCLK) and
auxiliary clock (ACLK) operate. The controller can be awakened by enabled interrupts,
special requests generated internally or externally (to be studied in Chapter 8).

• LPM1. Low-power mode 1 (LPM1) is similar to LPM0 with CPUOFF and SCG0 bits
set while the other two bits are cleared. In this mode, the CPU, MCLK, SMCLK, and
ACLK are configured the same as in LPM0. The digitally controlled oscillator (DCO) is
turned on/off based on the use of the DCO by the SMCLK.

• LPM 2. The MSP430 operates in the low-power mode 2 (LPM2) when both SCG0 and
OSCOFF bits are cleared and the SCG1 and CPUOFF bits are set. In this mode, the
CPU, MCLK, and SMCLK are turned off as well as the DCO. The dc-generator of the
DCO remains active along with the ACLK.

• LPM 3. When the CPUOFF, SCG0, and SCG1 bits are set and the OSCOFF bit is
cleared, the MSP430 is operating in the LPM3 operating mode; all clocks and the DCO
and CPU are turned off. Only the ACLK is enabled.



3.5. OPERATING MODES 99
• LPM 3.5. When all of bits are set (CPUOFF, OSCOff, SCG0, and SCG1) and the

PMMREGOFF is set (Regulator off bit in the Power Management Module Control Reg-
ister 0), the MSP430 is operating in LPM3.5. In this LPM the voltage regulator in the
Power Management Module is disabled. The RAM and register contents are lost but RTC
operation is possible.

• LPM 4. When all of bits are set (CPUOFF, OSCOff, SCG0, and SCG1), the MSP430
is operating in LPM4; the CPU, all clocks, the DCO, and the crystal oscillator are turned
off. The controller is wakened up by an enabled interrupt.

• LPM 4.5. In low-power mode 4.5 (LPM4.5), the MSP430 achieves the lowest power
consumption. In this mode, in addition to the CPU, MCLK, SMCLK, and the DCO
being turned off, the regulator for the PMM is also turned off. This results in turning off
the JTAG and EEM logic devices. These operating modes will be discussed in depth in
Chapter 5 when we discuss the CS onboard the MSP430 microcontroller. The different
processor operating modes are summarized in Figure 3.8.

PMMREGOFF=1

to LPM4.5

CPUOFF=1

OSCOFF=1

SCG0=1

SCG1=1

Int/NMI

CPUOFF=1

OSCOFF=0

SCG0=1

SCG1=1

CPUOFF=1

OSCOFF=0

SCG0=0

SCG1=1

CPUOFF=1

OSCOFF=0

SCG0=1

SCG1=0

LPM0:

CPU/MCLK = off

FLL = on

ACLK = on

Vcore = on

LPM1:

CPU/MCLK = off

FLL = off

ACLK = on

Vcore = on

LPM2:

CPU/MCLK = off

FLL = off

ACLK = on

Vcore = on

Active Modes:

- CPU is active

- Various modules

are active

LPM4:

CPU/MCLK = off

FLL = off

ACLK = off

Vcore = on

LPM3:

CPU/MCLK = off

FLL = off

ACLK = on

Vcore = on

CPUOFF=1

OSCOFF=0

SCG0=0

SCG1=0

Int/NMI

Int/NMI

Int/NMI

Int/NMI

Figure 3.8: MSP430 operating modes (adapted from Texas Instruments SLAU208Q [2018]).



100 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING

3.6 SOFTWARE PROGRAMMING
In this section, we describe tools and constructs of software programming for MSP430 con-
trollers, including what is known as the instruction set architecture of the microcontroller. An
instruction set architecture of a CPU determines the complexity of computer hardware and re-
quired compiler technologies. The MSP430 controller architects chose to design a RISC-based
microcontroller by limiting the type of instructions that are interpreted by the controller. The
designers of the MSP430 sought to increase the CPU performance by making all instructions
have a fixed length (1–4 words) and a fixed execution time. Such simplification of the instruction
set decreases hardware complexity and allows easier implementation of hardware modules such
as pipelining and scoreboarding.1

Each instruction consists of an opcode and an optional operand. The opcode is the portion
of the instruction that instructs hardware the nature of the instruction to be performed, and the
operand specifies either the location of or the data itself necessary for the instruction. As we will
see in this section, a method used to identify the necessary data for an instruction is called an
addressing mode.

When an editor is used to write assembly instructions for the MSP430, each instruction
should comply with the format shown below. If the C language is used to write your program,
each C instruction is converted to one or more assembly language instructions with the same
format shown below. Each instruction can have up to four separate fields, each field separated
by one or more blank spaces.

Label Mnemonic(Opcode) Operand ; Comment

The Label field should start at column one of your editor and should be made of alphanu-
meric characters. Labels are used to name particular locations within a program, such as a loca-
tion where a loop should return to or a location of an instruction set that needs to be executed as
a result of a conditional decision (if-then-else). The mnemonic field contains assembly language
instructions while the operand field contains an expression, symbols, and/or constants identi-
fying data required for the instruction specified in the mnemonic field. For TI’s presentation
of the MSP430 instruction set, reference the MSP430x4xx Family User’s Guide [SLAU056L,
2013]. It is not mandatory that each instruction have all four fields filled. As you will see, some
instructions do not require operands. For some instructions, providing comments may not be
appropriate. Furthermore, it would be excessive to put a label on every instruction.

1The principle of pipelining is to utilize all computer resources at all times to minimize the overall clock cycles to execute
a set of instructions. RISC-based instructions support such design better than CISC (Complex Instruction Set Computer)-
-based instructions since each instruction goes through the same process for execution, making it easy for a CPU to issue
one instruction and to complete an instruction at each clock cycle. The scoreboarding module’s goal is the same as the one
for pipelining: minimize clock cycles required to execute instructions. By keeping track of the progress of instructions and
allowing instructions that are ready to be executed to proceed to completion without waiting for other instructions to complete
their tasks, the module supports the goal of executing instructions within a minimal time.



3.6. SOFTWARE PROGRAMMING 101
3.6.1 MSP430 ASSEMBLY LANGUAGE
The MSP430 assembly language is designed to support the hardware functional units of the
controller. It is made of an instruction set, discussed in the next section. There is also a set of
instructions, directives used by an assembler, which we discuss next.

3.6.2 DIRECTIVES
Simply put, directives are instructions to assemblers. Directives are part of an assembly program,
but they do not get converted to machine code. Instead, directives are interpreted and executed
by assemblers. Since directives are executed by assemblers, available directives vary from an as-
sembler to an assembler. In this section, we describe the directives available for most of MSP430
assemblers: the IAR assembler and Code Composer.

There are two types of directives: macro directives and assembler directives. We explain
assembler directives first. Assembler directives are used by programmers to specify locations
for different segments of your program, initialize defined variables, reserve memory locations
for variables used in your program, and define constants, to name some of the common uses
of assembler directives. Some assembler directives are used to control the assembly process,
examine symbols, and specify libraries for macros. All MSP430 microcontroller directives start
with a period (.). For a complete presentation of directives, see the MSP430 Assembly Language
Tools User’s Guide [SLAU131R, 2018].

One can group these assembler directives into one of the following categories.

1. Define sections.

2. Define constants, variables, and reserve memory locations.

3. Control output lists.

4. Specify reference files.

5. Control assembly process flow.

6. Others

Directives that Define Sections
These directives are used by a programmer to define the starting locations of data and segments
of instructions. Each program section should start with directive .text as shown below:

.text
Assembly instructions

The assembler will take all instructions that follow the .text directive and assemble them
into the .text section. When the .sect directive is used, all instructions that follow the directive
will be assembled into a pre-named section that follows the directive: .sect “section name.” The



102 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING
.data directive works similarly. All declarations that follow this directive are assembled into the
.data section. The data section is used to initialize data used in the program.

Directives to Define Constants, Variables, and Reserve Memory Locations
The .bss directive is used to reserve bytes in a section whose data are not initialized. The format
to use the directive is as follows:

.bss symbol name,# bytes [,alignment]

The above directive reserves the designated number of bytes in the .bss section. The .byte
directive initializes one or more successive bytes: .byte value1, value 2,.. If characters need to
be initialized, one can use the .char directive, which has the same format as the .byte directive.
For initializing double (32-bit IEEE double precision) or floating point (32-bit, IEEE single
precision) values, use .double and .float directives, respectively. One can also define different size
bit values using the .field directive whose format is shown below:

.field value[, size]

A programmer can specify the size and specify the value. Integers are also defined with
.half, .int, .long, .short, and .word directives. The .half, .int, .short, and .word directives initialize
one or more successive 16-bit integers while the .long directive initializes 32-bit integers. To
initialize strings, one should use the .string directive with the following format:

.string {expr1|“string1”}[,...,{exprn|“stringn”}]

There are a number of directives that reserve memory locations. The .symbol directive
reserves a number of bytes in a named section as follows.

.symbol .usect “section name”,# bytes [,alignment]

The .align directive is used to align the program counter (PC) to a location specified by
the number of bytes within a boundary, which must be power of two. Both the .bes and .space
directives reserve the #bytes specified by the parameter which follows the directives in the cur-
rent section of the code. The difference between the two directives is that the label associated
with the .bes directive contains the memory address of the end of the reserved space while the
label associated with the .space directive contains the address of the beginning directive of the
reserved space. The .struct and .endstruct directives begins and ends a structure definition. The
.tag directive is used to define a structure and assign to a label. The .asg assigns a character string
to a symbol: .asg character string, symbol. The .equ directive is used to equate a constant to a
symbol, while the .label directive is used to define a re-locatable label in a section. The .eval di-
rective (.eval expression, symbol) performs arithmetic expression and assigns to a symbol, while
the .var directive adds a local symbol definition to a macro’s permanent list.



3.6. SOFTWARE PROGRAMMING 103
Control Output Lists
Thedirectives that we present in this section govern what will be available for programmers to see
as the output of the assembler. The .drlist directive is used to enable all directive lines to show in
the .lst file, which is the default setting. If one does not wish to see the directive lines, he/she can
use the .drnolist directive to suppress the output. The .fclist directive, the default setting, is used
to list the false conditional code block, while the .fcnolist disables the output. The .length [page
length] directive designates the page length of the source listing. The .list directive instructs an
assembler to restart the source listing.

The .mlist directive enables macro listings and loop blocks to be listed (default), while the
.mnolist directive disables the feature. The .option directive allows a programmer to select output
listings and the .page directive removes a page in the source listing. The .sslist directive is used
to include expanded symbols in the listing while the .ssnolist directive disables this feature. The
.tab directive is used to specify the tab size. The .title directive instructs an assembler to print the
title of the list while the .width directive sets the page width of the list file.

Directives to Reference Other Files
In this section, we consider assembler directives that allow a programmer to refer to variables and
programs written previously. The .copy directive is used to include declarations made in another
file: .copy filename. The .def directive is used to define one or more symbols which can be used in
the current program or other programs. The .global directive is used to define external or global
symbols while the .ref directive is used to identify symbols that are defined in other program
modules.

The .include directive is used to include source statements from other files just as the .macro
directive is used to define macro libraries.

Control Assembly Process Flow
The following directives are used to enable conditional assembly. The .break directive ends the
execution of a program if the expression that follows the directive is true.The .if directive dictates
an assembler to assemble a block of code if the expression that follows the directive is true. The
.else directive is used toassemble a block of code if the expression for the .if directive is false.
The .elseif directive is used to assemble code if the .if directive expression is false and the .elseif
expression is true. The .endif directive ends the block of code that starts with the .if directive.
The .loop directive is used to designate a block of code that will repeat as long as the expression
that follows the directive is true. The .endloop directive ends the .loop directive code.

Others
There are other directives that do not fall under the categories we defined. We explain the re-
maining assembler directives here. The .asmfunc directive is used to locate the beginning of a
code section that contains a designated function. The .cdecls directive allows an assembly pro-



104 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING
gram and a C program to share a header file. The .clink directive is used to conditionally link
current code segment. The .emsg directive can be used to send pre-defined error messages to an
output device. The .end directive informs an assembler to ignore instructions that follow this
directive, while the .endasmfunc directive identifies the end of a block that contains a function.
The .mmsg directive is used to send user messages to output device while the .wmsg directive is
used to send warning messages to output device.

Finally, the .newblock directive is used to indicate a new section of code which undefines
any previous local labels. Table 3.4 contains a summary of all assembler directives presented in
this section.

As you just saw, there are many, many directives you can use. We suggest you start with
a small set of directives in your arsenal and expand your use of other directives as you acquire
the MSP430 controller programming skills. Before leaving this section, we present a type of
directives called “macro” directives. Macro directives are also instructions to an assembler. There
are two reasons why you may want to learn to use macro directives.

The first reason is macro directives allow a programmer to combine a number of assembly
instructions and assembly directives and define them as a single macro instruction. Such capa-
bility becomes very useful if you want to repeat executing a set of instructions over and over.
For example, suppose your application requires you to read from an input port (16 bits), swap
the high byte with the low byte, invert each bit of the resulting value, and write to an output
port (16 bits). Instead of writing the required instructions each time you need the task to be
performed, you can write the following macro directive and call it when it is required. Suppose,
for our discussion, the input port is at address 0000h and the output port is at 0002h.

Invert .macro input, output
SWAP input, R15
BIT.W R15, output
.endm

The general format of a macro directive has the following format.

1. macname .macro [parameter1[,...,parametern]]

2. assembly instructions or assembler directives

n. [.mexit]

m. .endm

The Name_of_macro on line 1 is used as the label of a macro directive. For each macro directive,
you have an option to include parameters. These parameters are called substitution symbols. On
line 2 and before line 3, you put in assembly language instructions and assembler directives that
perform the task you desire. The optional2 .mexit assembler directive is used to direct the flow of

2Brackets [ ] are used to specify optional items.



3.6. SOFTWARE PROGRAMMING 105

Table 3.3: Directives (Continues.)

Directive Description Section

$

#defi ne

#elif

#else

#endif

Includes a fi le

Assigns a value to a label

Introduces a new condition in a #if..#endif block

Assembles instructions if a condition is false

Ends a #if, #ifdef, or #ifndef block 

Assembler control

C-style preprocessor

C-style preprocessor

C-style processor 

C-style processor

#error

#if

#ifdef

#ifndef

#include

Generates an error

Assembles instructions if a condition is true

Assembles instructions if a symbol is defi ned

Assembles instructions if a symbol is undefi ned

Includes a fi le

C-style processor

C-style processor

C-style processor

C-style processor

C-style processor

#message

#undef

/*comment*/

//

=

Generates a number of messages on standard output

Undefi nes a label

C-style comment delimiter

C++ style comment delimiter

Assigns a permanent value local to a module

C-style processor

C-style processor

Assembler control

Assembler control

Value assignment

ALIAS

ALIGN

ALIGNRAM

ASEG

ASEGN

Assigns a permanent value local to a module

Aligns the location counter by inserting zero-fi lled bytes

Aligns the program location counter

Begins an absolute segment

Begins a named absolute segment

Value assignment

Segment control

Segment control

Segment control

Segment control

ASSIGN

CASEOFF

CASEON

CFI

COL

Assigns a temporary value

Disables case sensitivity

Enables case sensitivity

Specifi es call frame information

Sets the number of columns per page

Value assignment

Assembler control

Assembler control

Call frame information

Listing control

COMMON

DB

DC16

DC32

DC8

Begins a common segment

Generates 8-bit byte constants, including strings

Generates 16-word constants, including strings

Genrates 32-bit long word constants

Generates 8-bit byte constants, including strings

Segment control

Data defi nition or 

allocation

Data defi nition or 

allocation

Data defi nition or 

allocation

Data defi nition or 

allocation



106 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING

Table 3.3: (Continued.) Directives

Directive Description Section

DEFINE

DF

DL

.double

DS

Defi nes a fi le-wide value

Generates a 32-bit fl oating point constant

Generates a 32-bit constant

Generates 32-bit value

Allocates space for 8-bit bytes

Value assignment

Data defi nition or 

allocation

Data defi nition or 

allocation

Data defi nition or 

allocation

Data defi nition or 

allocation

DS16

DS32

DS8

DW

ELSE

Allocates space for 16-bit words

Allocates space for 32-bit words

Allocates space for 8-bit bytes

Generates 16-bit word constants, including strings

Assembles instructions if a condition is false

Data defi nition or 

allocation

Data defi nition or 

allocation

Data defi nition or 

allocation

Data defi nition or 

allocation

Conditional assembly

ELSEIF

END

ENDIF

ENDM

ENDMOD

Specifi es a new condition in an IF ENDIF block

Terminates the assembly of the last module in a fi le

Ends an IF block

Ends a macro defi nition

Terminates the assembly of the current module

Conditional assembly

Module control

Conditional assembly

Macro processing

Module control



3.6. SOFTWARE PROGRAMMING 107

Table 3.4: Directives (Continues.)

Directive Description Section

ENDR

EQU

EVEN

EXITM

EXPORT

Ends a repeat structure

Assigns a permanent value local to a module

Aligns the program counter to an even address

Exits prematurely from a macro

Exports symbols to other modules

Macro processing

Value assignment

Segment control

Macro processing

Symbol control

EXTERN

.fl oat

IF

IMPORT

LIBRARY

Imports an external symbol

Generates 48-bit values in TI's fl oating point format

Assembles intructions if a condition is true

Imports an external symbol

Begins a library module

Symbol control

Data defi nition or 

allocation

Conditional assembly

Symbol control

Module control

LIMIT

LOCAL

LSTCND

LSTCOD

LSTEXP

Checks a value against limits

Creates symbols local to a macro

Controls conditional assembler listing

Controls multi-line code listing

Controls the listing of macro generated lines

Value assignment

Macro processing

Listing control

Listing control

Listing control

LSTMAC

LSTOUT

LSTPAG

LSTREP

LSTXRF

Controls the listing of macro defi nitions

Controls assembler listing output

Controls the formatting of output into pages

Controls the listing of lines generated by repeat directives

Generates a cross-reference table

Listing control

Listing control

Listing control

Listing control

Listing control

MACRO

MODULE

NAME

ODD

ORG

Defi nes a macro

Begins a library module

Begins a program module

Aligns the program location counter to an odd address

Sets the location counter

Macro processing

Module control

Module control

Segment control

Segment control

PAGE

PAGSIZ

PROGRAM

PUBLIC

PUBWEAK

Generates a new page

Sets the number of lines per page

Begins a program module

Exports symbols to other modules

Exports symbols to other modules, multiple defi nitions 

allowed

Listing control

Listing control

Module control

Symbol control

Symbol control



108 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING

Table 3.4: (Continued.) Directives

Directive Description Section

RADIX

REPT

REPTC

REPTI

REQUIRE

Sets the default base

Assembles instructions a specifi ed number of times

Repeats and substitutes characters

Repeats and substitutes strings

Forces a symbol to be references

Assembler control

Macro processing

Macro processing

Macro processing

Symbol control

RSEG

RTMODEL

SET

SFRB

SFRTYPE

Begins a relocatable segment

Declares runtime model attributes

Assigns a temporary value

Creates byte-access SFR labels

Specifi es SFR attributes

Segment control

Module control

Value assignment

Value assignment

Value assignment

SFRW

STACK

VAR

Creates word-access SFR labels

Begins a stack segment

Assigns a termporary value

Value assignment

Segment control

Value assignment



3.6. SOFTWARE PROGRAMMING 109
instructions in the macro directive to execute the last assembler directive shown on line m. The
.mexit directive is often used to debug your program. By inserting this directive, the execution
flow directly goes to line m, ignoring all instructions and assembler directives between .mexit
and .endm.

The second main purpose of macro directives is that they allow you, a programmer, to
access a collection of macro definitions written by you and others. Similar to using libraries in
C, you can use libraries of macro directives that have been defined. To include those directives
in your program, you need to include the library (a file with macro directive definitions) in your
program before using those macros using the following statement:

.mlib filename

where filename must be xx.asm and xx.asm contains macro definitions, such as the In-
vert macro we saw earlier.

3.6.3 ASSEMBLY PROCESS
Once an assembly language program is created, either from a high-level program using the
C/CCC programming language through a cross-compiler or by directly writing the assembly
language program, the resulting program must once more go through a conversion process. The
advantage of being able to write and understand assembly language programs is that we can
dictate the clock-by-clock execution of instructions by hardware. Such capabilities are desirable
when we are dealing with time critical applications. It is only fair to state that the cross-compiler
technologies have come a long way from the late 1980s and today’s typical cross-compilers usu-
ally generate compact and efficient assembly programs, making it less desirable for aspiring
engineers to learn assembly language programming skills. Nevertheless, we still believe both
electrical and computer engineers must learn assembly language programming skills to not only
program real-timemicrocontroller algorithms for embedded systems but also to fully understand
computer architecture issues, such as instruction sets and instruction execution cycles. In this
section, we describe how an assembler converts assembly language instructions into machine
language instructions of MSP430.

An assembler takes an assembly program as its input and generates the corresponding
machine code. In addition to the machine code, the assembler also produces a list file, a symbol
table, and an object code, as shown in Figure 3.9. A list file contains the source program (as-
sembly program) line numbers, the memory locations of instructions, actual machine code for
each instruction, and the original assembly instructions. The file is a convenient location to find
most of possible problems with your program during a debugging period.

A symbol table is generated to be used by the assembler during the assembly process,
which contains, as the name of the file indicates, all symbols used in your assembly program.
An object file contains actual machine code and their corresponding memory locations which



110 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING

Assembly Language Program

Assembler

Hexadecimal/Binary
Listing

Symbol Table

Object File List File

Figure 3.9: Assembly process of MSP430.

is used by a linker program to generate an overall machine code when more than one assembly
program is used to generate an overall code. In an object file, there are three separate sections.
The first section is executable code designated by the .text directive. The second section contains
initialized variables which is designated by the .data directive, and, finally, the third and last
section contains uninitialized variables which are reserved by the .bss directive.

The assembly process involves, typically, two phases. During the first phase, an assembler
scans through an assembly language program to identify all symbols used, including labels, and
computes their values (memory locations, offsets) and stores them to a symbol table in prepara-
tion of the second phase where actual machine code is generated using the symbol table obtained
during the first phase.

3.6.4 INSTRUCTION SET ARCHITECTURE
The MSP430 microcontroller has 27 different unique instructions and 24 emulated instructions.
Emulated instructions are those created by combining unique instructions together to create a
new instruction. Each instruction can have one of the following three formats: (1) instructions



3.6. SOFTWARE PROGRAMMING 111
requiring two operands, (2) instructions requiring a single operand, and (3) instructions whose
operands are relative offsets.

To help you get a handle on the instruction set, we group all MSP430 instructions into
one of the following six categories.

1. Data Transfer and Manipulation Instructions – Move and manipulate data.

2. Arithmetic Instructions – Perform arithmetic operations.

3. Logic and Bit instructions – Used to execute logical operations.

4. Data Test Instructions – Test the contents of a memory location or a register.

5. Branch Instructions – Performs IF-THEN-ELSE operations.

6. Function Call Instructions and Others - Initiate or terminate a subroutine or a service
routine.

Data Transfer and Manipulation Instructions
Data transfer instructions are used to move data among memory, CPU registers, and the stack.
These instructions affect the N and Z lag bits of the R2 (Status Register). Unlike accumula-
tor based microcontrollers, the MSP430’s move instructions can directly work with memory
contents without loading them into accumulators first. Mnemonics for the MSP430 move in-
structions are as follows.

• MOV.W/MOV.B – moves a word/byte from a source location to a destination location

• PUSH.W/PUSH.B – moves a word/byte from a source location to the stack

• POP.W/POP.B – moves a word/byte from the stack to a destination location

• CLR.W/CLR.B – moves a zero to a destination location

The manipulation instructions modify the contents of the a register or a memory location.
These include arithmetic and logical shift instructions in addition to rotate instructions. A shift
instruction brings in a zero and removes an original bit whether the instruction is a logical one
or an arithmetic one, except in the case of an arithmetic shift right, which repeats the sign or
the MSB. Rotate instructions do not remove any original bits, but they are simply shifted either
left or right along with a carry bit, resulting in the original value after eight rotations for a byte
number. Figure 3.10 shows both shift and rotate operations of a typical microcontroller.

Arithmetic shift instructions perform multiplications and divisions by the power of 2 for
signed numbers. The function of shift operations is a familiar one for us with decimal numbers.
Given a decimal number, say 1527, if we shift the digits to the right with respect to the radix
point, we get 0152.7. This is the same as dividing the original number by base 10. If we shift to



112 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING

Arithmetic Shift Right

b15/b7- - - - - - - - -b0 b15/b7- - - - - - - - -b0

b15/b7- - - - - - - - -b0 b15/b7- - - - - - - - -b0

b15/b7- - - - - - - - -b0 b15/b7- - - - - - - - -b0

Arithmetic Shift Left

Logical Shift Right Logical Shift Left

Rotate Right Rotate Left

C 0

C 00

C

Figure 3.10: Rotate and shift instructions of MSP430.

the left, we get 15,270, or the value obtained by multiplying the original number by base 10. The
shift instructions of the MSP430 perform the same task except in the binary number system.

Example: Suppose you start with a signed decimal number 4 represented as an 8-bit number
(0000_ 0100 binary). When we perform an arithmetic right shift, the resulting value is decimal
number 2 (0000_ 0010 binary). Shift it right again, we have decimal number 1 (0000_ 0001
binary). Thus, each shift operation is equivalent to dividing the original value by 2, and repeating
the shift operation n times results in dividing the original number by 2n.

Example: Suppose now we are working with decimal number -2 (1111_ 1110 binary 2’s com-
plement representation). An arithmetic shift left produces decimal number -4 (1111_ 1100).
Two more left shifts result in decimal number -16 (1111_0000). Thus, the arithmetic left shift
is equivalent to performing multiplication by 2n where n is the number of left shifts.

As can be seen by the simple examples above, arithmetic shift operations of the MSP430
microcontroller are used to perform multiplications and divisions by a factor of 2n.

Logical shift instructions are used to test each bit of a byte one at a time. Note from
Figure 3.10 that, for logical shift operations, a zero is introduced from the left for a right shift
and from the right for a left shift each time a shift operation is performed. We can test each bit
of a byte, say by testing the LSB, as we repeat a logical shift right operation eight times. Also,
note that once we have tested all eight bits of the byte, we replace them with zeros.



3.6. SOFTWARE PROGRAMMING 113
You might ask, where would such operations be useful? It is fairly common to use such

operations in multiple applications. One such application is managing appliances in a smart
home. As we discussed, one of the main reasons for using a microcontroller over a general-
purpose computer is its ability to interface with multiple external systems using built-in I/O
interface capabilities via the physical ports. Suppose for our discussion, that one of the MSP430
input ports (eight pins) is connected to eight different appliances in your home, where each
input pin is used by the appliances to let the MSP430 know the on/off status of the appliances.
Assuming you have the remote access capability of theMSP430, you can login to your controller,
read the input port value, perform logical shift operations to check the on/off status of your
appliances, and take appropriate actions, if necessary.

Logical shift instructions can also be used to perform multiplication and division opera-
tions. In fact, both the arithmetic shift left and the logical shift left operations perform the exact
same task and can be interchangeably used to multiply unsigned and signed numbers by a factor
of 2. The logical shift right instruction, however, should be used to divide unsigned numbers by
a factor of 2, while for signed numbers, the arithmetic shift right instruction should be used.

The rotate instruction should be used to retain the original bit order of your data, but
requires shifting bits of the data. For example, suppose you want to swap the high order four
bits with the low-order four bits of a byte, say 3Eh.3 We obtain E3h by rotating the original
value four times to either left or right. Designers of the MSP430 have combined the rotate and
shift instructions as much as possible.

The available rotate and shift instructions of the MSP430 are

• RLA – rotate left arithmetically, arithmetic shift left

• RRA – rotate right arithmetically, arithmetic shift right

• RLC – rotate left through carry

• RRC – rotate right through carry

The last category of the data manipulation instructions contain two instructions that are
used to sign extend a byte and swap bytes. The instructions format are:

• SWPB src – swaps the upper and lower bytes of a word

• SXT src – sign extends the lower byte to the upper byte of a word

The SXT instruction replaces the upper byte of a word either with 1’s (lower byte contains a
2’s complement negative number) or 0’s (lower byte contains a 2’s complement positive number).

3The h represents a hexadecimal number.



114 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING
Arithmetic Instructions
The original MSP430 microcontroller only had addition and subtraction instructions and no
multiplication or division operations. The MSP430x5xx controller family includes a separate
multiplication module called the MPY32, which you saw earlier in this chapter. For addition
and subtraction operations, instructions for binary and binary coded decimal (BCD)4 operations
are possible.

For addition, the following instructions use two operands and store the result into the
destination (dst) location.

• ADD.W/ADD.B src, dst – adds the word/byte in src and dst and stores the result to dst

• ADDC.W/ADDC.B src, dst – adds the word/byte in src and dst along with the carry bit
of the SR register (R2) and stores the result to dst

• SUB.W/SUB.B src, dst – subtracts the word/byte in dst from src and stores the result to
dst

• SUBC.W/SUBC.B src, dst – subtracts the word/byte in dst and the carry bit of the SR
register (R2) from src and stores the result to dst

• DADD.W/DADD.B src, dst – adds the word/byte in src and dst in BCD format along
with the carry bit of the SR register (R2) and stores the result to dst

The addition and subtraction instructions that only use one operand are

• ADC.W/ADC.B dst – adds a carry bit of the SR register (R2) to the word/byte in dst and
stores the result to dst

• INC.W/INC.B dst – adds one to the word/byte in dst and stores the result to dst

• INCD.W/INCD.B dst – adds two to the word/byte in dst and stores the result to dst

• SBC.W/SBC.B dst – subtracts a carry bit of the SR register (R2) from the word/byte in
dst and stores the result to dst

• DEC.W/DEC.B dst – subtracts one from the word/byte in dst and stores the result to dst

• DECD.W/DECD.B dst – subtracts two from the word byte in dst and stores the result
to dst

• DADC.W/DADC.B dst – adds a carry bit of the SR register (R2) to the word/byte in dst
and stores the result in BCD format to dst

4The BCD format uses four bits to represent decimal numbers 0–9 instead of all possible numbers four bits can represent:
0–15 decimal or 0–F in hexadecimal. Thus, decimal 37 is represented as 0011_0111 binary ($37).



3.6. SOFTWARE PROGRAMMING 115
We discuss the multiplication operation, next. Suppose you want to multiply the following

two 8-bit numbers: 78h and 03h. Again, the letter h at the end of each number represents
hexadecimal numbers. The hexadecimal number system uses 16 numbers instead of 10, as in
the decimal system, to represent each number. The numerical numbers used in the hexadecimal
number system are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. The corresponding numbers in
the decimal system are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15. Thus, 78h represents
.7 � 161/ C .8 � 160/ or decimal value 280.

The following instructions perform the multiplication operation in the MSP430.

MOV.B #78h, MPY_B ; load 78h to operand one register
MOV.B #03h, OP2_B ; load 03h to operand two register

Once the second number is loaded into the second operand register, the multiplication
starts. Note that both operands are bytes, hence the use of MPY_B and OP2_B registers. A
set of 8 bits makes up a byte. The two numbers used in the example are 0111_1000 (78h) and
0000_0011 (03h). The result is stored in the RESLO register.

As another example, suppose now you want to multiply the following two 32-bit signed
numbers: 24184219h and F249E201h. One must write the following code segment using the
appropriate 32-bit registers.

MOV #4219h, MPYS32L
MOV #2418h, MPYS32H
MOV #E201h, OP2L
MOV #F249h, OP2H

Pay special attention to the order of loading numbers in the example above. You must first
load the operand one register then the operand two register. For each register, you must also
remember to load the low byte first followed by the high byte. If one of the operand is only 16
bits long, you must write to the high byte of the target register followed by the low byte register,
which will indicate to the controller to ignore the high byte and that the operand should be
considered as a 16-bit (low byte) long number. The result of the above code will be in RES0-
RES3 registers where RES3 contains the most significant word (two bytes) and RES0 contains
the least significant word of the result.

Logic and Bit Instructions
TheMSP430microcontroller has a simplified set of logic instructions.TheMSP430’s instruction
set architecture does not include any OR instructions or 2’s complement instructions. There are



116 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING
two AND instructions, but one does not affect the flags in the status register (R2). The two
AND instructions have the following format.

• AND.W/AND.B src, dst – performs bitwise AND operation of words/bytes in src and dst
and stores the result in dst

• BIT.W/BIT.B src, dst – performs bitwise AND operation of words/bytes in src and dst,
only the SR flags are affected
Instead of implementing OR instructions, MSP430 designers rely on the bit set and bit

clear instructions to perform desired OR operations. These instructions have the following for-
mat.

• BIS.W/BIS.B src, dst – sets (change value to 1) dst bit locations which correspond to bit
locations with ones in src

• BIC.W/BIC.B src, dst – clears (change value to 0) dst bit locations which correspond to
bit locations with ones in src
How do we perform an OR operation? We can configure the bits in src, say to all 1’s, and

perform the bis instruction to perform an OR instruction. Similarly, we can perform the same
OR instruction with all bits in src to be zeros and executing the bic instruction. The exclusive
OR operation is performed using the following instruction.

• XOR src, dst – performs bitwise exclusive OR operation with words/bytes in src and dst
and stores the result to dst
The MSP430 controller also has an invert instruction that flips all bits in a word or a byte.

• INV.W/INV.B dst – invert each bit in dst
We now consider MSP430 bit manipulation instructions. Most bit manipulation instruc-

tions, besides the bis and bic instructions, are for dealing with flags in the status register (SR,
R2) as shown below. Note that all these instructions do not require any operand.

• SETC – sets the carry bit (flag) in SR

• SETN – sets the negative bit (flag) in SR

• SETZ – sets the zero bit (flag) in SR

• EINT – sets (enables) the interrupt bit (flag) in SR

• CLRC – clears the carry bit (flag) in SR

• CLRN – clears the negative bit (flag) in SR

• CLRZ – clears the zero bit (flag) in SR

• DINT – clears (disables) the interrupt bit (flag) in SR



3.6. SOFTWARE PROGRAMMING 117
Data Test Instructions
There are only two test instructions with the MSP430 microcontroller instruction set. The two
instructions directly affect the flags in the SR register, allowing instructions that immediately
follow the test instructions to use the contents of the SR register to determine the flow of pro-
gram execution. The two instructions have the format shown below.

• CMP.W/CMP.B src, dst – compares the values in src and dst and changes the bits in SR
accordingly

• TST.W/TST.B dst – compares the word/byte in dst with zero and affects the changes to
bits in SR accordingly

Flow Control Instructions
The following instructions are designed to allow programmers to change the flow of instruction
execution. The flow change can be pre-determined as in the case of calling a subroutine or
dynamic as in the result of some computation or inputs during programming execution.

Branch Instructions
Branch instructions are used to implement IF-THEN-ELSE programming constructs. There
are 11 such instructions in the MSP430 microcontroller instruction set. Typically, these instruc-
tions can be further divided into branch instructions designed to deal with signed numbers and
ones for unsigned numbers. Branch instructions for signed numbers are as follows.

• JN label – jumps to a location specified by the label if the Negative bit in the Status Register
(SR) is set

• JGE label – jumps to a location specified by the label if the test/comparison/operation
made immediately before the current instruction execution results in a signed number
greater than or equal to zero

• JL(t) label – jumps to a location specified by the label if the test/comparison/operation
made previously results in a signed number less than zero

Branch instructions for unsigned numbers are as follows.

• JHS label – jumps to a location specified by the label if the test/comparison/operation
made previously results in an unsigned number higher than or same as zero

• JLO label – jumps to a location specified by the label if the test/comparison/operation
made previously results in an unsigned number lower than zero

Other available branch instructions are as follows.

• JZ label – jumps to a location specified by the label if the zero bit in SR is set



118 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING
• JNZ label – jumps to a location specified by the label if the zero bit in SR is not set

• JC label – jumps to a location specified by the label if the carry bit in SR is set

• JNC label – jumps to a location specified by the label if the carry bit in SR is clear

• JEQ label – jumps to a location specified by the label if the test/comparison/operation
preceding the instruction results in zero

• JNE label – jumps to a location specified by the label if the test/comparison/operation
preceding the instruction results in non-zero value

Function Call Instructions and Others
In this section, we present those instructions associated with calling subroutines and service
routines.5

• CALL src – calls a subroutine with label src

• RET – returns from a subroutine

• RETI – returns from an interrupt service routine

The MS430 microcontroller also has a jump instruction that allows the program execu-
tion flow to be changed: JMP label. The instruction informs the program counter to change its
contents to the address specified by label. Why bother to use this instruction when we have the
branch always instruction BR? The JMP instruction is more compact as the instruction fits in a
single word, which is important when we want to minimize the use of controller memory. The
jump range, however, is limited to 1 K bytes from the location of the JMP instruction.

One more instruction of interest is the no operation instruction, NOP, used without any
operand. The instruction takes up one clock cycle to execute and is used for debugging of a
program or to fill up time to meet timing requirements for an application.

Examples: The JMP and RET instructions are used to jump to a subroutine and return from it.
A subroutine is a collection of assembly language instructions used to perform a common task.
For example, we might want to develop a subroutine to perform an ADC conversion.

The subroutine uses the following format:

:
:
JMP subroutine1
:
:

5A service routine is set of instructions similar to the ones that make up a subroutine except these instructions are written
specifically to respond to interrupts (special hardware and software requests).



3.7. ADDRESSING MODES 119

subroutine1: :
:
:
RET

Provided in Figure 3.11 is a summary of the MSP430 assembly language instruction set.

3.7 ADDRESSING MODES
Earlier, we mentioned that each assembly language instruction has an opcode and an operand.
The opcode tells hardware which operation should be executed. The operand specifies how the
data necessary to execute the particular operation can be found. Addressing modes are different
methods used to identify necessary data for assembly instructions. There are seven different
addressing modes in the MSP430 microcontroller. We present them next.

3.7.1 REGISTER ADDRESSING MODE
For this addressing mode, the data needed to executean instruction are the contents of registers.
For example, once the following instruction is executed,

MOV.W R5,R7

the contents of register R5 are moved to register R7.
In the following instruction

AND.B R5,R7

to execute the AND operation, the MSP430 takes the contents of R5 and R7 and performs bit
wise AND operation and stores the result in R7.

3.7.2 INDEXED ADDRESSING MODE
In this addressingmode, the address of the data necessary for an instruction is found by adding an
offset value to the contents of a register. For example, suppose you have the following instruction.

ADD.W 5(R4), R5

The instruction takes the data located at the address specified by 5 plus the contents of
R4, adds the value to the value in R5 and stores the result to R5.



120 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING

Figure 3.11: Texas Instruments MSP430 assembly language instruction set [SLAU056L, 2013].
Used with permission of Texas Instruments.



3.7. ADDRESSING MODES 121
3.7.3 SYMBOLIC ADDRESSING MODE
To those who are familiar with othermicrocontrollers’ addressingmodes, this addressingmode is
similar to a program counter (PC) relative addressingmode.The data necessary for an instruction
is found by finding the relative offset from the current instruction to a destination location.
The contents of the source address (contents of PC C X) are moved to the destination address
(contents of PC C Y).

3.7.4 ABSOLUTE ADDRESSING MODE
In this addressing mode, the contents of a memory address are used as the data necessary for an
instruction. For example, suppose we have

MOV.W ABC, R10

The instruction moves the contents of address ABC to register R10.

3.7.5 INDIRECT REGISTER ADDRESSING MODE
In this addressing mode, the contents of an address are used as the address where data for the
instruction is found.

For example,

MOV.W @R5, R10

moves the contents of address location, whose address value was determined by the contents of
R5, are moved to register R10.

3.7.6 INDIRECT AUTOINCREMENT ADDRESSING MODE
In this addressing mode, the instruction first performs its task using the register indirect address-
ing mode and then increments the contents of the register by either one for a byte operation and
two for a word operation.

MOV.B @R4+,R5

The above instruction takes the contents of R4, uses it as the address location to find the
data, moves the data to R5, then increments the contents of R4 by one.

3.7.7 IMMEDIATE ADDRESSING MODE
In this addressing mode, the actual number specified by symbol # is used by an instruction.

mov.w #78F2h, R4



122 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING
This instruction moves 78F2h to R4 where h represents a hexadecimal number.

Examples: Assume that the following instructions are not sequential. Given that the contents
of R5 is .128/10 and R6 is CAFEh, describe the results of each instruction.

1. ADD #10, R5
Answer: Add 10 to the contents of register R5.

2. ADD.B #10, R5
Answer: Add 10 to the low byte of R5.

3. MOV #AA55h, R4
Answer: Places AA55h into register R4.

4. AND R5, R4 (use R4 from the previous example)
Answer: Performs the bit-wise AND of R5 and R4, placing the result in R4 0000h.

5. BIC #FC00h, R6
Answer: Clears the 6 MSBs of R6 resulting in 02FEh.

6. BIS #FC00h, R6
Answer: Sets the 6 MSBs of R6 resulting in FEFEh.

7. CLR R5
Answer: Set R5 to zero.

8. CLR.B R6
Answer: Clears the low byte of R6 resulting in a value of CA00h.

3.7.8 PROGRAMMING CONSTRUCTS
Programming constructs determine the flow of executing a program. For any program, there can
be three principle programming constructs: a sequence, a loop, and a branch. A sequence repre-
sents a segment of a program, regardless of the programming language used, where instructions
are executed in sequence, one after another in the order shown. A loop represents a segment
of a program where the same instructions are executed a number of times specified by some
condition. Finally, a branch allows programmers to implement IF-THEN-ELSE decisions in
their programs.

The three principle constructs are shown in Figure 3.12. How these three programming
constructs are put together to write programs is the key to becoming a good programmer.
Example: Provided below is the basic assembly language construct for a loop.



3.7. ADDRESSING MODES 123

Programming Constructs

Loop

Instruction n

<argument>
true?

Instruction n + 1

Instruction n + m

Sequence

Instruction n

Instruction n + 1

Instruction n + m

IF-THEN-ELSE

Instruction n

Instruction n

Yes

No

Figure 3.12: Programming constructs.

Loop1: :
:
:
JMP Loop1

Example: Provided below is the basic assembly language construct for the if-then statement.

:
:
CMP R6, R7 ;R6 = R7:
JEQ EQUAL1
:

EQUAL1: :
:

3.7.9 ORTHOGONAL INSTRUCTION SET
Over the history of the computer industry, there have been two different approaches in design-
ing a CPU: the CISC, and the RISC. The rationale for creating a CISC based computer is
to increase computer performance by allowing programmers to write compact programs. This
means hardware is designed to accommodate a set of specialized instructions, allowing a pro-



124 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING
grammer to pick and choose appropriate instructions to perform a required task. In contrast,
RISC computers are designed to execute only a small number of (thus, reduced) instructions.
The related hardware is simple, which allows instructions to be executed in parallel, increasing
the performance of a RISC-based computer. Over the past three decades the battle between the
two approaches has been intense, but over time, computer designers have extracted advantages
of both approaches to create hybrid computers. Most of today’s computers incorporate both
CISC and RISC features.

The MSP430 architects wanted to design and develop a RISC-based controller. As men-
tioned, the controller has 27 unique instructions and 9 emulated instructions. In addition to
the RISC-based design, MSP430 designers maximized the number of functional instructions
by developing instructions that are orthogonal. The orthogonal instruction set means that each
opcode (instruction) can use any of the MSP430’s available addressing modes. his provides the
programmer with tremendous flexibility in writing the code.

3.8 SOFTWARE PROGRAMMING SKILLS
In this section, we present a system design approach called top-down design and bottom-up
implementation, which can be used to systemically plan and execute programming tasks. The
overall idea of this approach is to break down a given task (your program should be implemented
to execute the task) into smaller pieces or subtasks, solve each of the smaller subtasks, and then
integrate them together one at a time. Of course, if any smaller piece is too big, you should
repeat the process until the subtask at the lowest level is defined by a set of simple operations.

The top-down approach is sometimes called the divide-and-conquer method with two
immediate benefits. The first one is that you reduce the complexity of the overall task by only
concentrating on a simple subtask at a time. The second advantage is the by-product of the
first one: test and evaluation of smaller tasks are easy and time saving. In addition to the two
advantages, this approach makes it easy to integrate the subtask solutions, making the overall
efforts and time spent to perform the original task of writing a program minimal.

We use two powerful tools to implement this approach: structure charts and UML activity
diagrams.

• UML activity diagrams: A unified modeling language (UML) activity diagram, or flow
chart, is a tool to help visualize the different steps required for a control algorithm.

• Structure chart: A structure chart is a visual tool used to partition a large project into
“doable” smaller parts.The arrows within the structure chart indicate the data flow between
different portions of the program.

We conclude this section with a step-by-step procedure to use the top-down design and
bottom-Up implementation approach.

1. Given a task statement, write down all subtasks necessary to complete the task.



3.9. ASSEMBLY VS. C 125
2. Place the subtasks in a structure chart.

3. For each subtask, repeat step one if the subtask is too big. Stop when the subtasks cannot
be further subdivided.

4. Place each subtask on the structure chart in proper hierarchy relative to the other sub tasks.

5. Draw the UML activity diagram for each subtask showing enough detail to write instruc-
tions to accomplish the task.

6. Write a program segment to fulfill the subtask, proceeding to the next one only after you
have thoroughly tested the functionality of the subtask program segment.

7. Integrate subtask segments one at a time, testing their combined functionality (this may
require a test plan).

8. Continue this process until all subtask solution segments are integrated and the overall
task is completed.

Example: In Chapter 2 we introduced the Adafruit mini round robot.
In this example we revisit the robot control algorithm to illustrate the use of the structure

and UML activity diagram to guide development of a more sophisticated control algorithm.
The UML activity diagram for the robot is provided in Figure 3.14. As you can see, after

robot systems are initialized, the robot control system enters a continuous loop to gather data
and issue outputs to steer the robot through the maze.

The structure chart for the robot project is provided in Figure 3.13. As you can see, the
robot has three main systems: the motor control system, the sensor system, and the digital I/O
system. These three systems interact with the main control algorithm to allow the robot to au-
tonomously (by itself ) navigate through the maze by sensing and avoiding walls.

3.9 ASSEMBLY VS. C
Due to limited onboard resources, including relatively small memory, microcontrollers do not
support the sophisticated software architecture of microprocessors found onboard laptops and
PCs. Namely, typical microcontrollers do not have operating systems running onboard.

The actual programs that run onboard used to be written using an assembly programming
language rather than high-level languages used for laptop/desktop computers. Since the early
1990s, however, the use of high-level languages, mainly C, increased for microcontrollers due
to emerging compiler technologies that allowed programmers to be removed from learning the
particular hardware and machine-level software architecture of a microcontroller. The compiler
technologies, however, did not produce compact assembly code when compared to an assembly
program written by a well-trained assembly programmer. Due to the advantages a high-level



126 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING

analog-to-digital
converter (ADC)

ADC
Initialize

ReadADC

ch for
conv

conv
data

determine_robot
_action

robot
action

desired
motor
action

sensor
data

PWM_left

left
motor

left
IR sensor

middle
IR sensor

right
IR sensor

right
motor

PWM_right

motor_control
digital

input/output

left
turn

signal

right
turn

signal

running
lights

Figure 3.13: Mini round robot structure diagram.

language offers, discussed in the next section, the compiler technologies continued to improve.
Today, the difference between a converted assembly program initially written in C and an as-
sembly program written directly is very small.

Advantages/Disadvantages
So why should anyone learn to write assembly language programs? After all, high-level lan-
guages, in particular, the C language, are programmer friendly, portable, and compact. Fur-
thermore, most programmers are already familiar with high-level languages, removing the time
required to learn a new assembly language. A C program can be machine independent (portabil-
ity).6 Although programs usually become more compact when written in an assembly language,
the primary reason for most microcontroller programmers who choose to use a high-level lan-
guage is that a programmer does not need to understand the Instruction Set Architecture (ISA)
to write programs for a particular platform, while having access to bit-by-bit level instructions,
if necessary.

The proponents of assembly language programs point out the advantage of writing pro-
grams with instructions that can directly map to designed functions of a hardware platform. That
is, each instruction is written as a specific machine level instruction, allowing a programmer to
have full control of the execution of those instructions in the use of time (clock cycle by clock

6This statement is marginally true if specific ports and registers for a platform are not used in a program.



3.9. ASSEMBLY VS. C 127

while(1)

read sensor outputs
(left, middle, right)

determine robot
action

issue motor

control signals

include files
global variables

function prototypes

initialize ports
initialize ADC
initialize PWM

Figure 3.14: Robot UML activity diagram.

cycle) and hardware resources. This leads to writing an efficient program compared to the one
written with a high-level language and later converted to assembly code.

Writing programs at the level of machine language also allows programmers control over
where his/her programs will reside in memory, optimizing the use of available memory of a mi-
crocontroller. Writing assembly language programs also allow programmers to embed pertinent
error messages in their programs at the machine level, while high-level language programmers
do not have the same option. Finally, programming at the machine specific ISA level allows as-
sembly language programmers to better understand related computer architecture issues, which
enables them to take full advantages of the particular hardware and software features of each
microcontroller.



128 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING
3.9.1 OUR APPROACH
Acknowledging the advantages offered by both high-level languages and assembly languages, we
use the C language in this book. Once we establish the necessary foundation of the hardware and
software systems, we use the C programming language to concentrate on functional capabilities
of the MSP430 microcontrollers. Many of the examples provided in the book, written in C, are
also available in assembly language within MSPWare (www.ti.com).

3.10 ACCESSING AND DEBUGGING TOOLS
There are three different ways to download programs to, interact with, and debug programs on
MSP430. The first one uses the built-in eZ-FET Debug Probe resident onboard both the MSP-
EXP430FR2433 and the MSP-EXP430FR5994. The second and third methods use joint test
action group ( JTAG) interface, which uses either four wire signals (conventional) or two wire
signals (Spy-Bi-Wire). Most of the MSP430 boards contain JTAG interfaces.

3.11 LABORATORY EXERCISE: PROGRAMMING THE
MSP430 IN ASSEMBLY LANGUAGE

In this laboratory exercise we will complete three separate programs:

• flash an LED on the MSP-EXP430FR2433 evaluation board,

• illuminate an LED on the MSP-EXPFR2433 evaluation board when a switch is de-
pressed, and

• perform some mathematical operations and observe the flag values generated.

3.11.1 PART 1: FLASH AN LED VIA ASSEMBLY LANGUAGE
Introduction. In Chapter 2, we illuminated the LEDs on theMSP-EXP430FR2433 evaluation
board using a C program. In this laboratory exercise, we employ assembly language to illustrate
how to configure, assemble, and execute a program. This basic program may serve as a template
for writing future assembly language programs.

Background. The MSP-EXP430FR2433 experimenter board is equipped with two switches
(S1 and S2) and two LEDs (LED1 and LED2). These components are hardwired to the fol-
lowing pins on the MSP430 microcontroller (MSP-EXP430FR2433 evaluation board).

• Switch S1, P2.3, switch S1 is active low

• Switch S2, P2.7, switch S2 is active low

• LED1, P1.0, requires logic 1 to illuminate LED

www.ti.com


3.11. LABORATORY EXERCISE: PROGRAMMING MSP430 IN ASSEMBLY LANGUAGE 129
• LED2, P1.1, requires logic 1 to illuminate LED

There are several registers associated with each port.

• PxIN, Port x input. This register is read only and is used to determine the current value of
the specified port. For example, to read Port 2, you would read register P2IN.

• PxOUT, Port x output. This is the output register for the specified port. When a value is
written to this register, the value written appears at the specified port pins.

• PxDIR, Port x direction register. This is the pin direction register for the specified port.
Each port pin has internal interface hardware which is used to configure each pin as an
input pin or an output pin. Setting the PxDIR register for a specific port pin to a logic 1
configures the pin as an output pin. A logic 0 configures the pin as an input pin.

• PxSEL, Port x function select. Many pins on the MSP430 microcontroller have alternate
functions besides their general purpose I/O function. A logic 0 configures the pin for
general purpose I/O, whereas a logic 1 connects the pin to its alternate function.

• PxREN, Port x Pull-up/Pull-down resistor enable register. A logic 0 disables the pull-
up/pull-down resistor for the corresponding pin; whereas, a logic 1 connects the pin to a
pull-up/pull-down resistor as shown in Figure 3.15.

PxDIR

0

0

0

1

PxREN

0

1

1

x

PxOUT

x

0

1

x

          I/O Configuration

Input

Input with pull-down resistor

Input with pull-up resistor

Output

Figure 3.15: MSP430 port configuration registers.

Provided below is an assembly language program to flash an LED. Execute the code on
the MSP-EXP430FR2433 evaluation board. To assemble the code, use the same procedure as
that used for the C program. An abbreviated version of the steps is provided here for convenience
(adapted from SLAU157AP [2017]).

1. Plug the MSP-EXP430FR2433 LaunchPad into the host PC via the USB cable.

2. Start up Code Composer Studio (CCS)

3. Select File � > New � > CCS Project



130 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING
4. Select Target Family (MSP430FRxxx) and Target (MSP430FR2433).

5. Select TI MSP430 USB1 [Default] and press [Identify].

6. Enter the project name, click Next.

7. Check “Configure as an assembly only project.”

8. Click Finish.

9. Select File � > New � > Source File.

10. Enter a file name with the suffix .asm.

11. Type or paste program text into the file.

12. Select Project � > Build Project.

13. Select Run � > Debug to program the MSP430FR2433 memory.

14. Select Run � > Resume to start the program.

15. Important step: Select Run � > Terminate to properly stop the program.

; ******************************************************************
; MSP430 CODE EXAMPLE DISCLAIMER
;MSP430 code examples are self-contained low-level programs that
;typically demonstrate a single peripheral function or device feature
;in a highly concise manner. For this the code may rely on the
;device's power-on default register values and settings such as the
;clock configuration and care must be taken when combining code from
;several examples to avoid potential side effects. Also see
;www.ti.com/grace for a GUI- and www.ti.com/msp430ware for an API
;functional library-approach to peripheral configuration.
;
; --/COPYRIGHT--
;********************************************************************
;MSP430FR243x Demo - Toggle P1.0 using software
;
;Description: Toggle P1.0 every 0.1s using software.
;By default, FR413x select XT1 as FLL reference.
;If XT1 is present, the XIN and XOUT pin needs to configure.
;If XT1 is absent, switch to select REFO as FLL reference
;automatically.
; XT1 is considered to be absent in this examples.



3.11. LABORATORY EXERCISE: PROGRAMMING MSP430 IN ASSEMBLY LANGUAGE 131
; ACLK = default REFO ~32768Hz, MCLK = SMCLK = default DCODIV ~1MHz.
;
; MSP430FR2433
; ---------------
; /|\| |
; | | |
; --|RST |
; | P1.0|-->LED
;
;Cen Fang
;Texas Instruments Inc.
;June 2013
;Built with Code Composer Studio v6.0
;********************************************************************

.cdecls C,LIST,"msp430.h" ;Include device header file
;--------------------------------------------------------------------

.def RESET ;Export program entry-point to
;make it known to linker.

;--------------------------------------------------------------------
.global __STACK_END
.sect .stack ;Make stack linker segment known

.text ;Assemble to Flash memory

.retain ;Ensure current section linked

.retainrefs

RESET mov.w #__STACK_END,SP ;Initialize stack pointer
StopWDT mov.w #WDTPW+WDTHOLD,&WDTCTL ;Stop WDT
SetupP1 bic.b #BIT0,&P1OUT ;Clear P1.0 output

bis.b #BIT0,&P1DIR ;P1.0 output
bic.w #LOCKLPM5,PM5CTL0 ;Unlock I/O pins

Mainloop xor.b #BIT0,&P1OUT ;Toggle P1.0 every 0.1s
Wait mov.w #50000,R15 ;Delay to R15
L1 dec.w R15 ;Decrement R15

jnz L1 ;Delay over?
jmp Mainloop ;Again

;---------------------------------------------------------------------



132 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING
; Interrupt Vectors
;---------------------------------------------------------------------

.sect RESET_VECTOR ;MSP430 RESET Vector

.short RESET ;

.end

;*********************************************************************

3.11.2 PART 2: ILLUMINATE A LED VIA ASSEMBLY LANGUAGE
Provided in Figure 3.16 is the UML activity diagram for this portion of the laboratory assign-
ment. Also, the assembly language code is provided that will illuminate LED1 when switch S1
is depressed. Review the UML activity diagram and the assembly language code.

Clear P1.0, Set P1.0 as output
Set P1.3 as input
Unlock I/O pins

Assert LED1 Deassert LED1

Include C header
file for MSP430

Initialize Stack Pointer (SP)
Stop Watchdog Timer (WDT)

Switch 1
asserted?

No

No

Yes

Figure 3.16: UML activity diagram for laboratory part 2.

;********************************************************************
; MSP430 CODE EXAMPLE DISCLAIMER
; --/COPYRIGHT--
;********************************************************************



3.11. LABORATORY EXERCISE: PROGRAMMING MSP430 IN ASSEMBLY LANGUAGE 133
;MSP430FR243x Demo - Software Poll P1.3, Set P1.0 if P1.3 = 1
;
;Description: Poll P1.3 in a loop. Set P1.0 if P1.3 = 1, or reset P1.0.
;By default, FR413x select XT1 as FLL reference.
;If XT1 is present, the XIN and XOUT pin needs to be configured.
;If XT1 is absent, REFO is automatically switched for FLL reference.
;XT1 is considered to be absent.
; ACLK = default REFO ~32768Hz, MCLK = SMCLK = default DCODIV ~1MHz
;
; MSP430FR2433
; ---------------
; /|\| |
; | | |
; --|RST |
; /|\ | |
; --o--|P1.3 P1.0|-->LED
; \|/ | |
; | |
;
;Cen Fang
;Texas Instruments Inc.
;June 2013
;Built with Code Composer Studio v6.0
;*******************************************************************
;-------------------------------------------------------------------

.cdecls C,LIST,"msp430.h" ;Include device header file
;-------------------------------------------------------------------

.def RESET ;Export program entry-point
;to make it known to linker

;-------------------------------------------------------------------
.global __STACK_END
.sect .stack ;Make stack linker segment

;

.text ;Assemble to Flash memory

.retain ;Ensure current section gets
;linked

.retainrefs



134 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING
RESET mov.w #__STACK_END,SP ;Initialize stackpointer

mov.w #WDTPW+WDTHOLD,&WDTCTL ;Stop WDT - SET BREAKPOINT HERE

SetupP1 bic.b #BIT0,&P1OUT ;Clear P1.0 output
bis.b #BIT0,&P1DIR ;P1.0 output
bic.b #BIT3,&P1DIR ;Set P1.3 as inputs
bic.w #LOCKLPM5,PM5CTL0 ;Unlock I/O pins

Mainloop bit.b #BIT3,&P1IN
jz Clear
bis.b #BIT0,&P1OUT
jmp Mainloop

Clear bic.b #BIT0,&P1OUT
jmp Mainloop
nop

;-------------------------------------------------------------------
; Interrupt Vectors
;-------------------------------------------------------------------

.sect RESET_VECTOR ;MSP430 RESET Vector

.short RESET ;

.end

;********************************************************************

Execute the code on the MSP-EXP430FR2433 evaluation board. Then modify the pro-
gram to illuminate LED1 when switch S1 is depressed, illuminate LED2 when switch S2 is
depressed, and exit the program when switch S1 and S2 are depressed simultaneously. Provide
a UML activity diagram of the modified program in your lab notebook.

3.11.3 PART 3: MATHEMATICAL OPERATIONS IN ASSEMBLY
LANGUAGE

In this portion of the laboratory, we execute and observe a number of mathematical operations.

Background. In your lab notebook, provide a brief definition of status register bits V, N, Z, and
C.

Procedure:

1. For each of the operations listed below, predict the final result and the value of flags V, N,
Z, and C.



3.12. SUMMARY 135
2. Perform the following operations in assembly language. At least three different addressing

modes must be employed.

(a) Place (CAFE)h into R12. Rotate R12 two bits to the right.
(b) Place (CAFE)h into R12. Rotate R12 two bits to the left.
(c) Perform (CAFE)h + (DABA)h.
(d) Perform (CAFE)h - (DABA)h.
(e) Perform (CA)h x (FE)h.
(f ) Place (CAFE)h into R12. Clear even bits.
(g) Place (CAFE)h into R12. Clear odd bits.
(h) Place (CAFE)h into R12. Set even bits.
(i) Place (CAFE)h into R12. Set odd bits.
(j) Place (CAFE)h into R12. Increment R12.

3. Compare predicted and actual results. There are several features with Code Composer
Studio (CCS) that will prove very helpful in this step.

• Register contents may be viewed by selecting View � > Registers.
• You can single step through the program by selecting Target � > Assembly Step

Into.
• The single step progress can be viewed in the Disassembly window within the CCS

main screen.

3.12 SUMMARY
In this chapter, we introduced a number of fundamental concepts and tools used to program
MSP430microcontrollers.These include the programmingmodel which allows programmers to
“see” the current operation status of the controller, a number of power-saving operating modes,
the hardware and software organizations of the controller, the instruction set architecture (and
available instructions), directives which are the instructions to assemblers, and the overall as-
sembly process. We also presented good software programming skills called top-down design
and bottom-up implementation and the use of high-level and assembly languages when pro-
gramming embedded controllers such as MSP430.

3.13 REFERENCES AND FURTHER READING
68HC12 CPU12 Reference Manual (CPU12 RM/AD Rev 1), Motorala, 1997. 95

Barrett, S. F. Arduino Microcontroller: Processing for Everyone!, Morgan & Claypool Publishers,
2010. DOI: 10.2200/s00522ed1v01y201307dcs043.

http://dx.doi.org/10.2200/s00522ed1v01y201307dcs043


136 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING

Code Composer StudioTM v7.x for MSP430TM User’s Guide, (SLAU157AP), Texas Instruments,
2017. 129

Hamann, J. C. EE2390 Laboratory Manual,Department of Electrical and Computer Engineering,
University of Wyoming. 95

Miller, G. H. Microcomputer Engineering, Prentice Hall, Englewood Cliffs, NJ, 1995. 95

Morris Mano, M. Digital Design, 3rd ed., Prentice Hall, Upper Saddle River, NJ, 2002. 95

MSP430 Assembly Language Tools User’s Guide, (SLAU131R), Texas Instruments, 2018. 101

MSP430FR2433 Mixed-Signal Microcontroller, (SLASE59D), Texas Instruments, 2018. 83, 86

MSP430FR4xx and MSP430FR2xx Family User’s Guide (SLAU445G), Texas Instruments,
2016. 88

MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s Guide (SLAU367O),
Texas Instruments, 2017. 85, 89

MSP430FR599x, MSP430FR596x Mixed-Signal Microcontrollers, (SLASE54C), Texas Instru-
ments, 2018. 83, 86

Texas Instruments MSP430x4xx Family User’s Guide “RISC 16-Bit CPU” (SLAU056L), Texas
Instruments, 2013. 96, 100, 120

Texas Instruments MSP430x5xx/MSP430x6xx Family User’s Guide, (SLAU208Q), Texas Instru-
ments, 2018. 94, 99

3.14 CHAPTER PROBLEMS
Fundamental

1. What is the function of the SP, PC, and SR registers?

2. Define each bit in the SR register.

3. Perform the following operations. Express the final result in decimal, binary, and hexadec-
imal.

(a) (BABA)h + (DADA)h
(b) (BABA)h - (DADA)h
(c) (BA)h x (DA)h
(d) Describe how to observe registers during program execution with Texas Instruments

Code Composer Studio.



3.14. CHAPTER PROBLEMS 137
Advanced

1. Compare and contrast the RISC vs. the CISC approach to computer architecture design.

2. Provide a one-line definition for each system of the MSP430 microcontroller.

3. The registers onboard the MSP430 microcontroller are 16 bits wide. What is the largest
unsigned integer that can be stored in 16 bits? Signed integer?

4. What is the fundamental premise of the low-power operating modes of the MSP430 mi-
crocontroller?

5. Construct a summary chart of theMSP430 low-power operatingmodes. Include the status
register bit settings to enter a specific mode and the clock status for each mode.

6. Provide an example of each addressing mode.

7. For each of the operations listed below, predict the final result and the value of flags V, N,
Z, and C.

(a) Place (CAFE)h into R12. Rotate R12 three bits to the right.
(b) Place (CAFE)h into R12. Rotate R12 three bits to the left.
(c) Perform (CAFE)h + (DABA)h. Add the carry bit to the result. State any assumptions

made.
(d) Perform (CAFE)h - (DABA)h. Subtract the carry bit from the result. State any as-

sumptions made.
(e) Perform (CA)h x (FE)h.
(f ) Place (CAFE)h into R12. Clear even bits.
(g) Place (CAFE)h into R12. Clear odd bits.
(h) Place (CAFE)h into R12. Set even bits.
(i) Place (CAFE)h into R12. Set odd bits.
(j) Place (CAFE)h into R12. Increment R12.
(k) Place (CAFE)h into R12. Swap the high- and low-order bytes.

Challenging

1. Write an assembly language program which increments a variable. If the variable is even,
LED1 on the MSP-EXP430FR2433 evaluation board will illuminate, whereas LED2 will
illuminate for an even value. Note: You will need to single step through the program to
observe program operation.



138 3. HARDWARE ORGANIZATION AND SOFTWARE PROGRAMMING
2. Write an assembly language programwhich loads a variable and then performs a sequential

logical shift right. If the bit shifted out is even, LED1 on the MSP-EXP430FR2433
experimenter board will illuminate, whereas LED2 will illuminate for an even value. Note:
You will need to single step through the program to observe program operation.



139

C H A P T E R 4

MSP430 Operating Parameters
and Interfacing

Objectives: After reading this chapter, the reader should be able to:

• describe the voltage and current parameters for the Texas Instruments MSP430 micro-
controller;

• apply the knowledge of voltage and current parameters toward properly interfacing input
and output devices to the MSP430 microcontroller;

• distinguish between low voltage 3.3 VDC and 5.0 VDC microcontroller operations;

• interface the MSP430 microcontroller operating at 3.3 VDC with a peripheral device
operating at 5.0 VDC;

• interface a wide variety of input and output devices to the MSP430 microcontroller;

• describe the special concerns that must be followed when the MSP430 microcontroller is
used to interface to a high-power DC or AC device;

• describe how to control the speed and direction of a DC motor; and

• describe how to control several types of AC loads.

In this chapter, we introduce the important concepts of the operating envelope for amicro-
controller. We begin by reviewing the voltage and current electrical parameters for the MSP430
microcontroller. We use this information to properly interface input and output devices to the
MSP430 microcontroller. The MSP430 operates at a low voltage (3.3 VDC and below). There
are many compatible low voltage peripheral devices. However, many peripheral devices still
operate at 5.0 VDC. We discuss how to interface a 3.3 VDC microcontroller to 5.0 VDC pe-
ripherals. We then discuss the special considerations for controlling a high-power DC or AC
load such as a motor. Throughout the chapter, we provide several detailed examples to illustrate
concepts.



140 4. MSP430 OPERATING PARAMETERS AND INTERFACING

4.1 OPERATING PARAMETERS
A microcontroller is an electronic device which has precisely defined operating conditions. If
the microcontroller is used within its defined operating parameter limits, it should continue to
operate correctly. However, if the allowable conditions are violated, spurious results or micro-
controller damage may result.

4.1.1 MSP430 3.3 VDC OPERATION
Any time a device is connected to amicrocontroller, careful interface analysis must be performed.
The MSP430 is a low operating voltagemicrocontroller. It may be operated with a supply voltage
between 2.2 and 3.6 VDC. To perform the interface analysis, there are eight different electrical
specifications we must consider. The electrical parameters are:

• VOH: the lowest guaranteed output voltage for a logic high;

• VOL: the highest guaranteed output voltage for a logic low;

• IOH: the output current for a VOH logic high;

• IOL: the output current for a VOL logic low;

• VIH: the lowest input voltage guaranteed to be recognized as a logic high;

• VIL: the highest input voltage guaranteed to be recognized as a logic low;

• IIH: the input current for a VIH logic high; and

• IIL: the input current for a VIL logic low.

These drive parameters cannot be used at their face value. To properly interface a periph-
eral device to the microcontroller, the parameters provided in Figure 4.1 must be used. As shown
in the figure, operating parameter curves for the MSP430 microcontroller operating at 3.0 VDC
change under varying conditions.

It is important to realize that these are static values taken under specific operating con-
ditions. If external circuitry is connected such that the microcontroller acts as a current source
(current leaving microcontroller) or current sink (current entering microcontroller), the voltage
parameters listed above will also be affected.

In the current source case, an output voltage VOH is provided at the output pin of the
microcontroller when the load connected to this pin draws a current of IOH. If a load draws
more current from the output pin than the IOH specification, the value of VOH is reduced. If the
load current becomes too high, the value of VOH falls below the value of VIH for the subsequent
logic circuit stage, and it will not be recognized as an acceptable logic high signal. When this
situation occurs, erratic and unpredictable circuit behavior results.



4.1. OPERATING PARAMETERS 141

25

20

15

10

5

0

-5

5

0

-5

-10

-15

-20

-25

-30

85°C

25°C

-40°C

85°C

25°C

-40°C

0 0.5 1 1.5 2 3.5 3

0 0.5 1 1.5 2 3.5 3

Low-Level Output Voltage (V)

L
ow

-L
ev

el
 O

ut
p

ut
 C

ur
re

n
t 

(m
A

)
H

ig
h

-L
ev

el
 O

ut
p

ut
 C

ur
re

n
t 

(m
A

)

High-Level Output Voltage (V)

DVCC = 3 V

Typical Low-Level Output Current vs. Low-Level

Output Voltage

Typical High-Level Output Current vs. High-Level

Output Voltage

DVCC = 3 V

Figure 4.1: MSP430 drive current parameters [SLASE59C, 2018]. Illustration used with per-
mission of Texas Instruments (www.ti.com).

www.ti.com


142 4. MSP430 OPERATING PARAMETERS AND INTERFACING
In the sink case, an output voltage VOL is provided at the output pin of the microcontroller

when the load connected to this pin delivers a current of IOL to this logic pin. If a load delivers
more current to the output pin of the microcontroller than the IOL specification, the value of
VOL increases. If the load current becomes too high, the value of VOL rises above the value of VIL

for the subsequent logic circuit stage, and it will not be recognized as an acceptable logic low
signal. When this situation occurs, erratic and unpredictable circuit behavior results.

You must also ensure that total current limits for an entire microcontroller port and overall
bulk port specifications are observed. For planning purposes, the sum of current sourced or
sinked from a port should not exceed 48 mA. As before, if these guidelines are not complied
with, erratic microcontroller behavior may result. Several examples are provided in an upcoming
section.

4.1.2 COMPATIBLE 3.3 VDC LOGIC FAMILIES
For the rest of this chapter, we limit our discussion to the MSP430 operating with a 3.3 VDC
supply voltage. There are several compatible logic families that operate at 3.3 VDC. These fam-
ilies include the LVC, LVA, and the LVT logic families. Key parameters for the low voltage
compatible families are provided in Figure 4.2 [SDYU001AB, 2017].

4.1.3 MICROCONTROLLER OPERATION AT 5.0 VDC
The MSP430 operates at 3.3 VDC and below. However, many HC CMOS microcontroller
families and peripherals operate at a supply voltage of 5.0 VDC. For completeness, we pro-
vide operating parameters for these 5.0 VDC devices. This information is essential should the
MSP430 be interfaced to a 5 VDC CMOS device or peripheral.

Typical values for a microcontroller in the HC CMOS family, assuming VDD D 5:0 volts
and VSS D 0 volts, are provided below. The minus sign on several of the currents indicates a
current flowing out of the device. A positive current indicates current flowing into the device.

• VOH = 4.2 volts,

• VOL = 0.4 volts,

• IOH = �0.8 milliamps,

• IOL = 1.6 milliamps,

• VIH = 3.5 volts,

• VIL = 1.0 volt,

• IIH = 10 microamps, and

• IIL = �10 microamps.



4.1. OPERATING PARAMETERS 143

Output Gate
Parameters

VDD = 3.3 VDC

VOH = 2.4 V

VDD = 3.3 VDC

VIH = 2.0 V

VIL = 0.8 V

VSS = 0 VDC

VOL = 0.4 V

VSS = 0 VDC

Input Gate
Parameters

IOH
IIH

IIL
IOL

(a) Voltage and current electrical parameters

(b) LV parameters

LVC

1.65–3.6 V

5.5 ns

10 uA

 

Vcc

tpd

loc

LVT

2.7–3.6 V

3.5 ns

190 uA

LVA

2.0–5.5 V

14 ns

20 uA

Figure 4.2: Low voltage compatible logic families [SDYU001AB, 2017].



144 4. MSP430 OPERATING PARAMETERS AND INTERFACING

4.1.4 INTERFACING 3.3 VDC LOGIC DEVICES WITH 5.0 VDC LOGIC
FAMILIES

Although there are a wide variety of available 3.3 VDC peripheral devices available for the
MSP430, you may find a need to interface the controller with 5.0 VDC devices. If bidirec-
tional information exchange is required between the microcontroller and a peripheral device,
a bidirectional level shifter should be used. The level shifter translates the 3.3 VDC signal up
to 5 VDC for the peripheral device and back down to 3.3 VDC for the microcontroller. There
are a wide variety of unidirectional and bidirectional level shifting devices available. Texas In-
struments level shifting options include: unidirectional, bidirectional, and direction-controlled
level shifters. For example, the LSF0101, LSF0102, LSF0204, and LSF0108 level shifters are
available in the LSF010XEVM-001 Bi-Directional Multi-Voltage Level Translator Evalua-
tion Module (LSFEVM) (www.ti.com), see Figure 4.3. Later in the chapter we show how the
LSF010XEVM module is used to interface the MSP430 with a LED special effects cube.

Figure 4.3: LSF010XEVM-001 bi-birectional multi-voltage level translator evaluation module
(LSFEVM). Illustration used with permission of Texas Instruments SDLU003A [2015].

Example: Large LED displays. Large seven-segments displays with character heights of 6.5
inches are available from SparkFun Electronics (www.sparkfun.com). Multiple display char-
acters may be daisy chained together to form a display panel of desired character length. Only
four lines from the MSP430 are required to control the display panel (ground, latch, clock,
and serial data). Each character is controlled by a Large Digit Driver Board (#WIG-13279)
equipped with the Texas Instruments TPIC6C596 IC Program Logic 8-bit Shifter Register.
The shift register requires a 5 VDC supply and has a VIH value of 4.25 VDC. The MSP430,
when supplied at 3.3 VDC, has a maximum VOH value of 3.3 VDC. Since the output signal
levels from the MSP430 are not high enough to control the TPIC6C596, a level shifter (e.g.,

www.ti.com
www.sparkfun.com


4.2. INPUT DEVICES 145
LSF010XEVM module) is required to up convert the MSP430 signals to be compatible to the
ones for the TPIC6C596 [SLIS093D, 2015].

4.2 INPUT DEVICES
In this section, we discuss how to properly interface input devices to a microcontroller. We start
with the most basic input component, a simple on/off switch.

4.2.1 SWITCHES
Switches come in a variety of types. As a system designer, it is up to you to choose the appropriate
switch for a specific application. Switch varieties commonly used in microcontroller applications
are illustrated in Figure 4.4a. Provided below is a brief summary of the different types.

• Slide switch: A slide switch has two different positions: on and off. The switch is manually
moved to one position or the other. For microcontroller applications, slide switches are
available that fit in the profile of a common integrated circuit size dual inline package
(DIP). A bank of four or eight DIP switches in a single package is commonly available.

• Momentary contact pushbutton switch: A momentary contact pushbutton switch comes
in two varieties: normally closed (NC) and normally open (NO). A normally open switch,
as its name implies, does not normally provide an electrical connection between its con-
tacts. When the pushbutton portion of the switch is depressed, the connection between
the two switch contacts is made. The connection is held as long as the switch is depressed.
When the switch is released, the connection is opened. The converse is true for a nor-
mally closed switch. For microcontroller applications, pushbutton switches are available
in a small Tactile (tact) type switch configuration. The MSP-EXP430FR2433 and the
MSP-EXP430FR5994 LaunchPads are each equipped with two pushbutton tactile (tact)
switches designated S1 and S2.

• Push on/push off switches: This switch type of is also available in a normally open or nor-
mally closed configuration. For the normally open configuration, the switch is depressed
to make connection between the two switch contacts. The pushbutton must be depressed
again to release the connection.

• Hexadecimal rotary switches: Small profile rotary switches are available for microcon-
troller applications. These switches commonly have sixteen rotary switch positions. As the
switch is rotated to each position, a unique four-bit binary code is provided at the switch
contacts.

A common switch interface is shown in Figure 4.4b. This interface allows a logic one or
zero to be properly introduced to a microcontroller input port pin. The basic interface consists
of the switch in series with a current limiting resistor. The node between the switch and the



146 4. MSP430 OPERATING PARAMETERS AND INTERFACING

DIP switch Tact switch PB switch Hexadecimal
rotary switch

(a) Switch varieties

(b) Switch interface

(c) Switch interface equipped with debouncing circuitry

74LVC14

0.1 μF

VDD

VDD

4.7 kOhm

4.7 kOhm

470 kOhm

VDD

To microcontroller input
- Logic one when switch open
- Logic zero when switch is closed

microcontroller
pullup resistor
activated

Figure 4.4: Switch interface.



4.2. INPUT DEVICES 147
resistor is provided to the microcontroller input pin. In the configuration shown, the resistor
pulls the microcontroller input up to the supply voltage VDD. When the switch is closed, the
node is grounded and a logic zero is detected by the microcontroller input pin. To reverse the
logic of the switch configuration, the position of the resistor and the switch is simply reversed.

4.2.2 SWITCH DEBOUNCING
Mechanical switches do not make a clean transition from one position (on) to another (off ).
When a switch is moved from one position to another, it makes, and breaks, contact multiple
times. This activity may go on for tens of milliseconds. A microcontroller is relatively fast as
compared to the action of the switch. Therefore, the microcontroller is able to recognize each
switch bounce as a separate and erroneous transition.

To correct the switch bounce phenomena, additional external hardware components may
be used or software techniques may be employed. A hardware debounce circuit is illustrated in
Figure 4.4c. The node between the switch and the limiting resistor of the basic switch circuit
is fed to a low-pass filter (LPF), formed by the 470 kOhm resistor and the capacitor. The LPF
prevents abrupt changes (bounces) in the input signal from the microcontroller. The LPF is
followed by a 74LVC14 Schmitt trigger which is simply an inverter equipped with hysteresis.
The Schmitt trigger has a different value of threshold voltage to trigger an output change for a
positive transitioning (logic low to high) signal vs. a negative transitioning (logic high to low)
signal. This difference in threshold voltages results in typical hysteresis values of 0.3 VDC. The
hysteresis further limits the switch bouncing.

Switches may also be debounced using software techniques. This is accomplished by in-
serting a 30–50 ms lockout delay in the function responding to port pin changes. The delay pre-
vents themicrocontroller from responding to themultiple switch transitions related to bouncing.

You must carefully analyze a given design to determine if hardware or software switch
debouncing techniques should be used. It is important to remember that all switches exhibit
bounce phenomena and therefore must be debounced.

4.2.3 KEYPADS
A keypad is an extension of the simple switch configuration. A typical keypad configuration and
interface are shown in Figure 4.5. As you can see, the keypad contains multiple switches in a
two-dimensional array configuration. The switches in the array share common row and column
connections. The common column connections are pulled up to Vcc by external 10 K resistors
or by pull-up resistors within the MSP430.

To determine if a switch has been depressed, a single row of keypad switches is first as-
serted by the microcontroller, followed by a reading of the host keypad column inputs. If a switch
has been depressed, the keypad pin corresponding to the column the switch is in will also be
asserted. The combination of a row and a column assertion can be decoded to determine which
key has been pressed. The keypad rows are sequentially asserted. Since the keypad is a collection



148 4. MSP430 OPERATING PARAMETERS AND INTERFACING

30 1 2

74 5 6

B8 9 A

M  row 1

L  row 2

K  row 3

J  row 4

E F
Vcc

Vcc

Vcc

Vcc

column 4

column 3

column 2

column 1

4 5 6 7

Grayhill 88BB2

0 1 2 3

8 9 A B

C D E F

Row 1

Row 2

Row 3

Row 4

C
ol

 1

C
ol

 2

C
ol

 3

C
ol

 4
EFGH J KLM

Row
 1

Row
 2

Row
 3

Row
 4

C
ol

 4

C
ol

 3

C
ol

 2

C
ol

 1
  

Reverse View 

C D E F

G H

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

In
te

rn
al

 P
u
ll

-u
p

 R
es

is
to

rs
 A

ss
er

te
d

Figure 4.5: Keypad interface.



4.2. INPUT DEVICES 149
of switches, debounce techniques must also be employed. In the example code provided, a 200
ms delay is provided to mitigate switch bounce. In the keypad shown, the rows are sequentially
asserted active low (0).

The keypad is typically used to capture user requests to a microcontroller. A standard key-
pad with alphanumeric characters may be used to provide alphanumeric values to the microcon-
troller such as providing your personal identification number (PIN) for a financial transaction.
However, some keypads are equipped with removable switch covers such that any activity can
be associated with a key press.

Example: Keypad. In this example a Grayhill 88BB2 4-by-4 matrix keypad is interfaced to the
MSP-EXP430FR5994 LaunchPad. The example shows how a specific switch depression can
be associated with different activities by using a “switch” statement.
//*********************************************************************
//keypad_4X4
//Specified pins are for the MSP-EXP430FR5994 LuanchPad
//This code is in the public domain.
//*********************************************************************

#define row1 31
#define row2 32
#define row3 33
#define row4 34

#define col1 35
#define col2 36
#define col3 37
#define col4 38

unsigned char key_depressed = '*';

void setup()
{
//start serial connection to monitor
Serial.begin(9600);

//configure row pins as ouput
pinMode(row1, OUTPUT);
pinMode(row2, OUTPUT);
pinMode(row3, OUTPUT);
pinMode(row4, OUTPUT);



150 4. MSP430 OPERATING PARAMETERS AND INTERFACING

//configure column pins as input and assert pullup resistors
pinMode(col1, INPUT_PULLUP);
pinMode(col2, INPUT_PULLUP);
pinMode(col3, INPUT_PULLUP);
pinMode(col4, INPUT_PULLUP);
}

void loop()
{
//Assert row1, deassert row 2,3,4
digitalWrite(row1, LOW); digitalWrite(row2, HIGH);
digitalWrite(row3, HIGH); digitalWrite(row4, HIGH);

//Read columns
if (digitalRead(col1) == LOW)

key_depressed = '0';
else if (digitalRead(col2) == LOW)

key_depressed = '1';
else if (digitalRead(col3) == LOW)

key_depressed = '2';
else if (digitalRead(col4) == LOW)

key_depressed = '3';
else

key_depressed = '*';

if (key_depressed == '*')
{
//Assert row2, deassert row 1,3,4
digitalWrite(row1, HIGH); digitalWrite(row2, LOW);
digitalWrite(row3, HIGH); digitalWrite(row4, HIGH);

//Read columns
if (digitalRead(col1) == LOW)

key_depressed = '4';
else if (digitalRead(col2) == LOW)

key_depressed = '5';



4.2. INPUT DEVICES 151
else if (digitalRead(col3) == LOW)

key_depressed = '6';
else if (digitalRead(col4) == LOW)

key_depressed = '7';
else

key_depressed = '*';
}

if (key_depressed == '*')
{
//Assert row3, deassert row 1,2,4
digitalWrite(row1, HIGH); digitalWrite(row2, HIGH);
digitalWrite(row3, LOW); digitalWrite(row4, HIGH);

//Read columns
if (digitalRead(col1) == LOW)

key_depressed = '8';
else if (digitalRead(col2) == LOW)

key_depressed = '9';
else if (digitalRead(col3) == LOW)

key_depressed = 'A';
else if (digitalRead(col4) == LOW)

key_depressed = 'B';
else

key_depressed = '*';
}

if (key_depressed == '*')
{
//Assert row4, deassert row 1,2,3
digitalWrite(row1, HIGH); digitalWrite(row2, HIGH);
digitalWrite(row3, HIGH); digitalWrite(row4, LOW);

//Read columns
if (digitalRead(col1) == LOW)

key_depressed = 'C';
else if (digitalRead(col2) == LOW)

key_depressed = 'D';
else if (digitalRead(col3) == LOW)



152 4. MSP430 OPERATING PARAMETERS AND INTERFACING
key_depressed = 'E';

else if (digitalRead(col4) == LOW)
key_depressed = 'F';

else
key_depressed = '*';

}

if(key_depressed != '*')
{
Serial.write(key_depressed);
Serial.write(' ');

switch(key_depressed)
{
case '0' : Serial.println("Do something associated with case 0");

break;

case '1' : Serial.println("Do something associated with case 1");
break;

case '2' : Serial.println("Do something associated with case 2");
break;

case '3' : Serial.println("Do something associated with case 3");
break;

case '4' : Serial.println("Do something associated with case 4");
break;

case '5' : Serial.println("Do something associated with case 5");
break;

case '6' : Serial.println("Do something associated with case 6");
break;

case '7' : Serial.println("Do something associated with case 7");
break;

case '8' : Serial.println("Do something associated with case 8");



4.2. INPUT DEVICES 153
break;

case '9' : Serial.println("Do something associated with case 9");
break;

case 'A' : Serial.println("Do something associated with case A");
break;

case 'B' : Serial.println("Do something associated with case B");
break;

case 'C' : Serial.println("Do something associated with case C");
break;

case 'D' : Serial.println("Do something associated with case D");
break;

case 'E' : Serial.println("Do something associated with case E");
break;

case 'F' : Serial.println("Do something associated with case F");
break;

}
}

//limit switch bounce
delay(200);
}

//*********************************************************************

4.2.4 SENSORS
A microcontroller is typically used in control applications where data is collected. The data is
assimilated and processed by the host algorithm, and a control decision and accompanying sig-
nals are provided by the microcontroller. Input data for the microcontroller is collected by a
complement of input sensors. These sensors may be digital or analog in nature.

Digital Sensors
Digital sensors provide a series of digital logic pulses with sensor data encoded. The sensor data
may be encoded in any of the parameters associated with the digital pulse train such as duty cycle,



154 4. MSP430 OPERATING PARAMETERS AND INTERFACING
frequency, period, or pulse rate. The input portion of the timing system may be configured to
measure these parameters.

An example of a digital sensor is the optical encoder. An optical encoder consists of a
small plastic transparent disk with opaque lines etched into the disk surface. A stationary optical
emitter and detector pair are placed on either side of the disk. As the disk rotates, the opaque
lines break the continuity between the optical source and detector. The signal from the optical
detector is monitored to determine disk rotation, as shown in Figure 4.6.

S

D
Rotating
Disk

Stationary  Optical 
Source and Detector
Pair

(a) Incremental tachometer encoder

Detector Output

(b) Incremental quadrature encoder

Ch B

Ch A

Figure 4.6: Optical encoder.

There are two major types of optical encoders: incremental encoders and absolute en-
coders. An absolute encoder is used when it is required to retain position information when
power is lost. For example, if you were using an optical encoder in a security gate control
system, an absolute encoder would be used to monitor the gate position. The absolute en-
coder is equipped with multiple data tracks to determine the precise location of the encoder
disk [Stegmann].



4.2. INPUT DEVICES 155
An incremental encoder is used in applications where velocity and/or direction informa-

tion is required. The incremental encoder types may be further subdivided into tachometers and
quadrature encoders. An incremental tachometer encoder consists of a single track of etched
opaque lines as shown in Figure 4.6a. It is used when the velocity of a rotating device is re-
quired. To calculate velocity, the number of detector pulses is counted in a fixed amount of
time. Since the number of pulses per encoder revolution is known, velocity may be calculated.
The quadrature encoder contains two tracks shifted in relationship to one another by 90ı. This
allows the calculation of both velocity and direction. To determine direction, one would monitor
the phase relationship between Channel A and Channel B, as shown in Figure 4.6b [Stegmann].

Example:Optical encoder. An optical encoder provides 200 pulses per revolution. The encoder
is connected to a rotating motor shaft. If 80 pulses are counted in a 100 ms span, what is the
speed of the motor in revolutions per minute (RPM)?

.1 rev=200 pulses/ � .80 pulses=0:100 s/ � .60 s=min/ D 240 RPM:

Analog Sensors and Transducers
Analog sensors or transducers provide a DC voltage that is proportional to the physical param-
eter being measured. The analog signal may be first preprocessed by external analog hardware
such that it falls within the voltage references of the conversion subsystem. In the case of the
MSP430 microcontroller, the transducer output must fall between 0 and 3.3 VDC. The analog
voltage is then converted to a corresponding binary representation.

An example of an analog sensor is the flex sensor shown in Figure 4.7a. The flex sensor
provides a change in resistance for a change in sensor flexure. At 0ı flex, the sensor provides
10 kOhms of resistance. For 90ı flex, the sensor provides 30–40 kOhms of resistance. Since
the microcontroller cannot measure resistance directly, the change in flex sensor resistance is
converted to a change in a DC voltage. This is accomplished using the voltage divider network
shown in Figure 4.7c. For increased flex, the DC voltage will increase. The voltage can be mea-
sured using the MSP430’s analog to digital converter subsystem.

The flex sensor may be used in applications such as virtual reality data gloves, robotic
sensors, biometric sensors, and in science and engineering experiments [Images Company]. One
of the co-authors used the circuit provided in Figure 4.7 to help a colleague in zoology monitor
the movement of a newt salamander during a scientific experiment.

Example: Joystick. The thumb joystick is used to select a desired direction in an X–Y plane
as shown in Figure 4.9. The thumb joystick contains two built-in potentiometers (horizontal
and vertical). A reference voltage of 3.3 VDC is applied to the VCC input of the joystick. As
the joystick is moved, the horizontal (HORZ) and vertical (VERT) analog output voltages will
change to indicate the joystick position. The joystick is also equipped with a digital select (SEL)
button.



156 4. MSP430 OPERATING PARAMETERS AND INTERFACING

4.5 in (11.43 cm)

0.25 in (0.635 cm)

(a) Flex sensor physical dimentions

(b) Flex action

VDD

10 K Fixed
Resistor

Flex Sensor:
--   0° flex, 10 K
-- 90° flex , 30–40 K

(c) Equivalent circuit

Figure 4.7: Flex sensor.

Xmax

X1max

X1min

X2max

X2min

Xmin

Input Transducer ADC Input

Screen
Multiplier

K

B
(Bias)

Figure 4.8: A block diagram of the signal conditioning for an analog-to-digital converter. The
range of the sensor voltage output is mapped to the analog-to-digital converter input voltage
range. The scalar multiplier maps the magnitudes of the two ranges and the bias voltage is used
to align two limits.



4.2. INPUT DEVICES 157

Y-Vertical
(analog)
3.3 VDC

(a) Joystick operation

(c) !umb joystick circuit

Y-Vertical
(analog)
0 VDC

X-Horizontal
(analog)
0 VDC

Vcc

3.3 VDC

HORZ
to MSP430

VERT
to MSP430

to MSP430

X-Horizontal
(analog)
3.3 VDC

Select
(push)

(b) Sparkfun joystick (COM-09032) and

breakout board (BOB-09110)

sel

3.3 VDC

10 K

SEL

GND

Figure 4.9: Thumb joystick. Images used with permission of Sparkfun (www.sparkfun.com).

Example: IR sensor. In Chapter 2, a Sharp IR sensor is used to sense the presence of maze
walls. In this example, we use the Sharp GP2Y0A21YKOF IR sensor to control the intensity
of an LED. The profile of the Sharp IR sensor is provided in Figure 4.10.

//****************************************************************
//IR_sensor
//
//The circuit:
//- For the MSP-EXP430FR2433 LaunchPad, the IR sensor signal pin is
// connected to analog pin 0 (2).
//- The sensor power and ground pins are connected to 5 VDC and
// ground respectively.
//- The analog output is designated as the onboard red LED.
//

www.sparkfun.com


158 4. MSP430 OPERATING PARAMETERS AND INTERFACING

3 V

5 cm
Range (cm)

S
en

so
r 

O
u
tp

u
t 

V
ol

ta
ge

 (
V

)

Figure 4.10: Sharp GP2Y0A21YKOF IR sensor profile.

//Created: Dec 29, 2008
//Modified: Aug 30, 2011
//Author: Tom Igoe
//
//This example code is in the public domain.
//****************************************************************

const int analogInPin = 2; //Energia analog input pin A0
const int analogOutPin = RED_LED; //Energia onboard red LED pin

int sensorValue = 0; //value read from the OR sensor
int outputValue = 0; //value output to the PWM (red LED)

void setup()
{
// initialize serial communications at 9600 bps:
Serial.begin(9600);
}

void loop()
{
//read the analog in value:
sensorValue = analogRead(analogInPin);



4.2. INPUT DEVICES 159

// map it to the range of the analog out:
outputValue = map(sensorValue, 0, 1023, 0, 255);

// change the analog out value:
analogWrite(analogOutPin, outputValue);

// print the results to the serial monitor:
Serial.print("sensor = " );
Serial.print(sensorValue);
Serial.print("\t output = ");
Serial.println(outputValue);

// wait 10 milliseconds before the next loop
// for the analog-to-digital converter to settle
// after the last reading:
delay(10);
}

//****************************************************************

Example: Ultrasonic sensor. The ultrasonic sensor pictured in Figure 4.11 is an example of an
analog-based sensor. The sensor is based on the concept of ultrasound or sound waves that are at
a frequency above the human range of hearing (20 Hz to 20 kHz). The ultrasonic sensor pictured
in Figure 4.11c emits a sound wave at 42 kHz. The sound wave reflects from a solid surface and
returns to the sensor. The amount of time for the sound wave to transit from the surface and back
to the sensor may be used to determine the range from the sensor to the wall. Figure 4.11c,d
show an ultrasonic sensor manufactured by Maxbotix (LV-EZ3). The sensor provides an output
that is linearly related to range in three different formats: (a) a serial RS-232 compatible output
at 9600 bits per second, (b) a pulse output which corresponds to 147 us/in width, and (c) an
analog output at a resolution of 10 mV/in. The sensor is powered from a 2.5–5.5 VDC source
(www.sparkfun.com).

Example: Inertial measurement unit. Pictured in Figure 4.12 is an inertial measurement unit
(IMU) which consists of an IDG5000 dual-axis gyroscope and an ADXL335 triple axis ac-
celerometer. This sensor may be used in unmanned aerial vehicles (UAVs), autonomous heli-
copters and robots. For robotic applications the robot tilt may be measured in the X and Y
directions as shown in Figure 4.12c,d (www.sparkfun.com).

Example: Level sensor. Milone Technologies manufacture a line of continuous fluid level sen-
sors. The sensor resembles a ruler and provides a near liner response, as shown in Figure 4.13.

www.sparkfun.com
www.sparkfun.com


160 4. MSP430 OPERATING PARAMETERS AND INTERFACING

20 Hz

Bass

 

Midrange

 

Ultrasonic

20 kHz

Treble

42 kHz Frequency (Hertz)

Ultrasonic

Transducer

(a) Sound spectrum

(b) Ultrasonic range finding

O1: leave open
O2: PW
O3: analog output
O4: RX
O5: TX
O6: V+(3.3–5.0V)
O7: gnd

(c) Ultrasonic range finder Maxbotix LV-EZ3

(SparkFun SEN-08501)

(d) Pinout

Figure 4.11: Ultrasonic sensor. (Sensor image used courtesy of SparkFun, Electronics (www.sp
arkfun.com).)

www.sparkfun.com
www.sparkfun.com


4.2. INPUT DEVICES 161

(a) SparkFun IMU Analog Combo Board
5 Degrees of Freedom IDF500/ADXL335 SEN

(c) (left) Robot front view and (right) side view

(d) (left) Roll and (right) pitch

(b) IDG500/ADXL335 pinout

IMU
IDG500/ADXL335

Starboard

-30° roll -30° pitch

Port Stern Bow

IR Sensor
Array

Star
board

PortIR
 Sensor

Arra
y

drive
motor

drive
motor

driv
e

motor

driv
e

motor

battery
compartment

Stern

Bow
battery

compartment

IR Sensor
Array

IR Sensor
Array

VDD raw
grnd
xrate
yrate
vref
st
zout
yout
xout

x4.5out
y4.5out

ptats
az

Figure 4.12: Inertial measurement unit. (IMU image used courtesy of SparkFun, Electronics
(www.sparkfun.com).)

www.sparkfun.com


162 4. MSP430 OPERATING PARAMETERS AND INTERFACING
The sensor reports a change in resistance to indicate the distance from sensor top to the fluid
surface. A wide resistance change occurs from 700 ohms at a 1-in fluid level to 50 ohms at a
12.5-in fluid level (www.milonetech.com). To covert the resistance change to a voltage change
measurable by the MSP430, a voltage divider circuit as shown in Figure 4.13 may be used. With
a supply voltage (VDD) of 3.3 VDC, a VTAPE voltage of 0.855 VDC results for a one inch fluid
level. Whereas, a fluid of 12.5 in provides a VTAPE voltage level of 0.080 VDC.

4.2.5 TRANSDUCER INTERFACE DESIGN (TID) CIRCUIT
In addition to transducers, we also need a signal conditioning circuitry before we can apply the
signal for analog-to-digital conversion. The signal conditioning circuitry is called the transducer
interface. The objective of the transducer interface circuit is to scale and shift the electrical signal
range to map the output of the input transducer to the input range of the analog-to-digital
converter, which is typically 0–3.3 VDC. Figure 4.8 shows the transducer interface circuit using
an input transducer.

The transducer interface consists of two steps: scaling and shifting via a DC bias. The scale
step allows the span of the transducer output to match the span of the ADC system input range.
The bias step shifts the output of the scale step to align with the input of the ADC system. In
general, the scaling and bias process may be described by two equations:

V2max D .V1max � K/ C B

V2min D .V1min � K/ C B:

The variable V1max represents the maximum output voltage from the input transducer. This
voltage occurs when the maximum physical variable (Xmax) is presented to the input transducer.
This voltage must be scaled by the scalar multiplier (K) and then have a DC offset bias voltage
(B) added to provide the voltage V2max to the input of the ADC converter [USAFA].

Similarly, the variable V1min represents the minimum output voltage from the input trans-
ducer. This voltage occurs when the minimum physical variable (Xmin) is presented to the input
transducer. This voltage must be scaled by the scalar multiplier (K) and then have a DC offset
bias voltage (B) added to produce voltage V2min, the input of the ADC converter.

Usually the values of V1max and V1min are provided with the documentation for the trans-
ducer. Also, the values of V2max and V2min are known.They are the high and low reference voltages
for the ADC system (usually 3.3 VDC and 0 VDC for the MSP430 microcontroller). We thus
have two equations and two unknowns to solve for K and B. The circuits to scale by K and add
the offset B are usually implemented with operational amplifiers.

Example: A photodiode is a semiconductor device that provides an output current, correspond-
ing to the light impinging on its active surface. The photodiode is used with a transimpedance
amplifier to convert the output current to an output voltage. A photodiode/transimpedance am-
plifier provides an output voltage of 0 volt for maximum rated light intensity and -2.50 VDC

www.milonetech.com


4.2. INPUT DEVICES 163

R
es

is
ta

n
ce

 [
oh

m
s]

700

600

500

400

300

200

100

0
0 1 2 3 4 5 6 7 8 9 10 11 12

12

1

Distance from Sensor Top to Fluid Level (inches)

(a) Characteristics for Milone Technologies eTape TM fluid level sensor

(b) eTape Sensor

(c) Equivalent Circuit

Sensor Lead
Connections

2 kOhm fixed
resistor

eTape sensor
-- 700 ohms at 1” fluid
--50 ohms at 12.5” fluid

V
DD

 = 3.3 VDC

Connection
Area

Max

eT
ap

e

Figure 4.13: Milone technologies fluid level sensor (www.milonetech.com).

www.milonetech.com


164 4. MSP430 OPERATING PARAMETERS AND INTERFACING
output voltage for the minimum rated light intensity. Calculate the required values of K and B
for this light transducer, so it may be interfaced to a microcontroller’s ADC system.

V2max D .V1max � K/ C B

V2min D .V1min � K/ C B

3:3V D .0V � K/ C B

0V D .�2:50V � K/ C B:

The values of K and B may then be determined to be 1.3 and 3.3 VDC, respectively.

4.2.6 OPERATIONAL AMPLIFIERS
In the previous section, we discussed the transducer interface design (TID) process. Going
through this design process yields a required value of gain (K) and DC bias (B). Operational
amplifiers (op amps) are typically used to implement a TID interface. In this section, we briefly
introduce operational amplifiers including ideal op amp characteristics, classic op amp circuit
configurations, and an example to illustrate how to implement a TID with op amps. Op amps
are also used in a wide variety of other applications, including analog computing, analog filter
design, and a myriad of other applications. The interested reader is referred to the References
section at the end of the chapter for pointers to some excellent texts on this topic.

The Ideal Operational Amplifier
A generic ideal operational amplifier is shown in Figure 4.14. An ideal operational does not
exist in the real world. However, it is a good first approximation for use in developing op amp
application circuits.

The op amp is an active device (requires power supplies) equipped with two inputs, a
single output, and several voltage source inputs. The two inputs are labeled Vp, or the non-
inverting input, and Vn, the inverting input. The output of the op amp is determined by taking
the difference between Vp and Vn and multiplying the difference by the open loop gain (Avol)
of the op amp, which is typically a large value much greater than 50,000. Due to the large value
of Avol, it does not take much of a difference between Vp and Vn before the op amp will saturate.
When an op amp saturates, it does not damage the op amp, but the output is limited to ˙Vcc .
This will clip the output, and hence distort the signal, at levels slightly less than ˙Vcc . Due
to this reason, op amps are typically used in a closed loop, negative feedback configuration. A
sample of classic operational amplifier configurations with negative feedback are provided in
Figure 4.15 [Faulkenberry, 1977].

It should be emphasized that the equations provided with each operational amplifier cir-
cuit are only valid if the circuit configurations are identical to those shown. Even a slight varia-
tion in the circuit configuration may have a dramatic effect on circuit operation. To analyze each
operational amplifier circuit, use the following steps.



4.3. OUTPUT DEVICES 165

-

+

Vcc

- Vcc

Vn

Vp

Vo = Avol (Vp - Vn)

In

Ip

Ideal conditions:

-- In = Ip = 0

-- Vp = Vn

-- Avol >> 50,000

-- Vo = Avol (Vp - Vn)

Vo

Vi   = Vp - Vn

Vcc

-Vcc

saturation

saturation

linear region

Figure 4.14: Ideal operational amplifier characteristics.

• Write the node equation at Vn for the circuit.

• Apply ideal op amp characteristics to the node equation.

• Solve the node equation for Vo.

As an example, we provide the analysis of the non-inverting amplifier circuit in Fig-
ure 4.16. This same analysis technique may be applied to the remaining circuits in Figure 4.15
to arrive at the equations for Vout provided.

Example: In the previous section, it was determined that the values of K and B were 1.3 and
3.3 VDC, respectively. The two-stage op amp circuitry in Figure 4.17 implements these values
of K and B. The first stage provides an amplification of -1.3 due to the use of the non-inverting
amplifier configuration. In the second stage, a summing amplifier is used to add the output of
the first stage with a bias of 3.3 VDC. Since this stage also introduces a minus sign to the result,
the overall result of a gain of 1.3 and a bias of C3.3 VDC is achieved.

Low-voltage operational amplifiers, operating in the 2.7–5 VDC range, are readily avail-
able from Texas Instruments.

4.3 OUTPUT DEVICES
An external device should not be connected to a microcontroller without first performing careful
interface analysis to ensure the voltage, current, and timing requirements of the microcontroller
and the external device are met. In this section, we describe interface considerations for a wide
variety of external devices. We begin with the interface for a single LED.



166 4. MSP430 OPERATING PARAMETERS AND INTERFACING

+Vcc

-Vcc

-

+
Vout  = - (Rf / Ri)(Vin)Vin

Rf

Ri

Rf

Rf

Rf

RfRi

Rf

Rf

Ri

Ri

(a) Inverting amplifier

+Vcc

-Vcc

-

+
Vout  =  ((Rf + Ri)/Ri)(Vin )

Vin

(c) Non-inverting amplifier

+Vcc

-Vcc

-

+
Vout  = Vin

Vin

+Vcc

-Vcc

-

+
Vout  =  (Rf /Ri)(V2 -V1)

(d) Differential input amplifier

(b) Voltage follower

V2

V1

+Vcc

-Vcc

-

+
Vout  = - (Rf / R1)(V1)

- (Rf / R2)(V2)

- (Rf / R3)(V3)                                

R1

(e) Scaling adder amplifier

R2

R3

V1

V2

V3

+Vcc

-Vcc

-

+
Vout  = - (I Rf )

(f) Transimpedance amplifier
(current-to-voltage converter)

I

+Vcc

-Vcc

-

+
Vout  = - Rf C (dVin /dt)Vin

(g) Differentiator

C
+Vcc

-Vcc

-

+
Vout = - 1/(RfC)    (Vindt)Vin

Rf

(h) Integrator

C

Figure 4.15: Classic operational amplifier configurations. (Adapted from Faulkenberry [1977].)



4.3. OUTPUT DEVICES 167

-

+

+Vcc

-Vcc

Vin

Rf

Ri

Vout

In

Ip

Vn

Vp

Node equation at Vn :

(Vn  - Vin)/ Ri  + (Vn  - Vout)/Rf  + In = 0

Apply ideal conditions:

In   = Ip  = 0

Vn = Vp = 0  (since Vp is grounded)

Solve node equation for Vout :

Vout  = - (Rf / Ri)(Vin)

 

Figure 4.16: Operational amplifier analysis for the non-inverting amplifier. (Adapted
from Faulkenberry [1982].)

-

+

+Vcc

-Vcc

Vin

Rf  = 13 K

Ri = 10 K

-

+

+Vcc

-Vcc

Rf = 10 K

Ri = 10 K

Vout

Ri = 10 K

bias = 3.3 VDC 

-Vcc

10 K

Figure 4.17: Operational amplifier implementation of the TID example circuit.



168 4. MSP430 OPERATING PARAMETERS AND INTERFACING

4.3.1 LIGHT-EMITTING DIODES (LEDS)
A LED is typically used as a logic indicator to inform the presence of a logic one or a logic
zero at a specific pin of a microcontroller. An LED has two leads: the anode or positive lead
and the cathode or negative lead. To properly bias an LED, the anode lead must be biased at
a level approximately 1.7–2.2 volts higher than the cathode lead. This specification is known as
the forward voltage (Vf ) of the LED. The LED current must also be limited to a safe current
level known as the forward current (If ). The diode voltage and current specifications are usually
provided by the manufacturer.

An example of various LED biasing circuit is provided in Figure 4.18. In Figure 4.18a,
a logic one asserted by the microcontroller provides the voltage to forward bias the LED. The

VDD  = 3.3 VDC 

R

+

74LVC04

I

(c) LED illuminates
for a logic high

from
micro

from
micro

from
micro

from
micro

R

+

I

(a) LED illuminates
for a logic high

VDD  = 3.3 VDC 

R

+

I

(b)  LED illuminates
for a logic high

RC

+

If

RB

VDD  = 5.0 VDC 

(d) LED illuminates
for a logic high

Vf

E

B

C

Figure 4.18: Interfacing an LED.



4.3. OUTPUT DEVICES 169
microcontroller also acts as the source for the forward current through the LED. To properly bias
the LED, the value of the limit resistor (R) is chosen. Also, we must insure the microcontroller
can safely supply the voltage and current to the LED using Figure 4.1.

Example: A red (635 nm) LED is rated at 1.8 VDC with a forward operating current of 10
mA. Design a proper bias for the LED using the configuration of 4.18a.
Answer: In the configuration of Figure 4.18a, the MSP430 microcontroller pin can be viewed
as an unregulated power supply. That is, the pin’s output voltage is determined by the current
supplied by the pin as shown in Figure 4.1. The current flows out of the microcontroller pin
through the LED and resistor combination to ground (current source). In this example, we use
the MSP430 high-level output voltage characteristics provided at Figure 4.1b. When supplying
10 mA in the logic high case, the high-level output voltage drops to approximately 2.25 VDC.
The value of R may be calculated using Ohm’s Law. The voltage drop across the resistor is the
difference between the 2.25 VDC supplied by the microcontroller pin and the LED forward
voltage of 1.8 VDC. The current flowing through the resistor is the LED’s forward current (10
mA). This renders a resistance value of approximately 45 ohms. The nearest standard resistor
value is 47 ohms. The resistor’s required power rating is determined using P D V � I . This
yields a value of 4 mW. An eighth watt rated resistor may be used.

For the LED interface provided in Figure 4.18b, the LED is illuminated when the mi-
crocontroller provides a logic low. In this case, the current flows from the power supply back
into the microcontroller pin (current sink). As before, the MSP microcontroller parameters pro-
vided in Figure 4.1 must be used. For the logic low case, the characteristic curve for the low-level
output voltage must be used (Figure 4.1, upper subfigure).

If LEDs with higher forward voltages and currents are used, alternative interface circuits
may be employed. Figures 4.18c,d provide two more LED interface circuits. In Figure 4.18c, a
logic one is provided by the microcontroller to the input of the inverter. The inverter generates
a logic zero at its output, which provides a virtual ground at the cathode of the LED. Therefore,
the proper voltage biasing for the LED is provided. The resistor (R) limits the current through
the LED. A proper resistor value can be calculated using R D .VDD � VDIODE/=IDIODE. It is
important to note that the inverter usedmust have sufficient current sink capability (IOL) to safely
handle the forward current requirements of the LED. As in previous examples, the characteristic
curves of the inverter must be carefully analyzed.

An NPN transistor such as a 2N2222 (PN2222 or MPQ2222) may be used in place of
the inverter as shown in Figure 4.18d. In this configuration, the transistor is used as a switch.
When a logic low is provided by the microcontroller, the transistor is in the cutoff region. When
a logic one is provided by the microcontroller, the transistor is driven into the saturation region.
To properly interface themicrocontroller to the LED, resistor values RB and RC must be chosen.
The resistor RB is chosen to limit the base current.



170 4. MSP430 OPERATING PARAMETERS AND INTERFACING
Example: Using the interface configuration of Figure 4.18d, design an interface for an LED
with Vf of 2.2 VDC and If of 20 mA.

Answer: In this example, we use the current vs. voltage characteristics of the MSP430 (reference
Figure 4.1b). If we choose an IOH value of 2 mA, the VOH value will be approximately 2.8 VDC.
A loop equation, which includes these parameters, may be written as:

VOH D .IB � RB/ C VBE:

The transistor VBE is typically 0.7 VDC. Therefore, all equation parameters are known
except RB . Solving for RB yields a value of 1050 ohms. The closest standard value is 1 kOhm.

In this interface configuration, resistor RC is chosen to safely limit the forward LED
current to prescribed values. A loop equation may be written that includes RC :

VCC � .If � RC / � Vf � VCE.sat/ D 0:

A typical value for VCE.sat/ is 0.2 VDC. All equation values are known except RC . The
equation may be solved rendering an RC value of 130 ohms. For the PN2222 transistor, ˇ is
typically 100, insuring the transistor is driven into saturation when a logic one is provided by
the MSP430 [Sedra and Smith, 2004].

4.3.2 SEVEN-SEGMENT LED DISPLAYS
To display numeric data, seven-segment LED displays are available as shown in Figure 4.19b.
Different numerals can be displayed by asserting the proper LED segments. For example, to
display the number five, segments a, c, d, f, and g would be illuminated; see Figure 4.19a. Seven
segment displays are available in common cathode (CC) and common anode (CA) configura-
tions. As the CC designation implies, all seven individual LED cathodes on the display are tied
together.

As shown in Figure 4.19b, an interface circuit is required between the microcontroller
and the seven-segment LED. We use a 74LVC4245A octal bus transceiver circuit to translate
the 3.3 VDC output from the microcontroller up to 5 VDC and also provide a maximum IOH

value of 24 mA. A limiting resistor is required for each segment to limit the current to a safe
value for the LED. Conveniently, resistors are available in DIP packages of eight for this type
of application.

Seven segment displays are available in multi-character panels. In this case, separate mi-
crocontroller ports are not used to provide data to each seven-segment character. Instead, a single
port is used to provide character data. A portion of another port is used to sequence through each
of the characters as shown in Figure 4.19b. An NPN (for a CC display) transistor is connected
to the common cathode connection of each individual character. As the base contact of each
transistor is sequentially asserted, the specific character is illuminated. If the microcontroller se-
quences through the display characters at a rate greater than 30 Hz, the display will have steady
illumination.



4.3. OUTPUT DEVICES 171

a

b

c

d

e

f

g

a

b

c

d

e

f

g

74LVC4245A

Octal Bus

Transceiver

Common Cathode

7-segment Display

(Vf 1.85 VDC @ If 12 mA)
DIP

Resistor

VOH : 5.0 VDC

IOH  : 24 mA

R = (VOH  - Vf ) / If

R = (5.0 - 1.85)/ 12 mA

R = 262 ohms ~ 270 ohms 

(a) Seven segment display interface

M
ic

ro
co

n
tr

o
ll

er
 P

o
rt

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

numeral select

dp

a

b

c

d

e

f

g

(a)11

(b) 7

(c) 4

(d) 2

(e) 1

(f) 10

(g) 5

Quad Common Cathode

7-segment Display

MPQ2222

(b) Quad seven segment display interface

(6) (8) (9) (12)

(dp)3(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(16)

(15)

(14)

(13)

(12)

(11)

(10)

(9)

1.2K

(1)

(2)

(3) (5)

(6)

(7) (8) (14)

(13)

(12)(10)

(9)

PORTx[7]

PORTx[0]

PORTy[0]

PORTy[3]

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

12 7

1 6

(d) Quad seven segment display pinout

UN(M)5624-11 EWRS

0

1

2

3

4

5

6

7

8

9

d
p

 P
O

R
T

x
[7

]

a 
 P

O
R

T
x

[6
]

b
 P

O
R

T
x

[5
]

c 
P

O
R

T
x

[4
]

d
 P

O
R

T
x

[3
]

e 
P

O
R

T
x

[2
]

f 
P

O
R

T
x

[1
]

g
 P

O
R

T
x

[0
]

h
ex

 r
ep

1

0

1

1

0

1

0

1

1

1

1

1

1

1

1

0

0

1

1

1

1

1

0

1

1

1

1

1

1

1

1

0

1

1

0

1

1

0

1

0

1

0

1

0

0

0

1

0

1

0

1

0

0

0

1

1

1

0

1

1

0

0

1

1

1

1

1

0

1

1

N
u
m

er
al

0x7E

0x30

0x6D

0x79

0x33

0x5D

0x1F

0x70

0x7F

0x73

(c) Numeral to segment converion

74LVC4245A

octal bus

transceiver

1.2K

1.2K

1.2K

Figure 4.19: LED display devices.



172 4. MSP430 OPERATING PARAMETERS AND INTERFACING

4.3.3 TRI-STATE LED INDICATOR
A tri-state LED indicator is shown in Figure 4.20. It is used to provide the status of an entire
microcontroller port. The indicator bank consists of eight green and eight red LEDs. When an
individual port pin is logic high the green LED is illuminated. When logic low, the red LED
is illuminated. If the port pin is at a tri-state, high impedance state, no LED is illuminated.
Tri-state logic is used to connect a number of devices to a common bus. When a digital circuit
is placed in the Hi-z (high impedance) state it is electrically isolated from the bus.

The NPN/PNP transistor pair at the bottom of the figure provides a 2.5 VDC voltage
reference for the LEDs. When a specific port pin is logic high, the green LED will be forward
biased since its anode will be at a higher potential than its cathode. The 47 ohm resistor limits
current to a safe value for the LED. Conversely, when a specific port pin is at a logic low (0
VDC), the red LED will be forward biased and illuminate. For clarity, the red and green LEDs
are shown as being separate devices. LEDs are available that have both LEDs in the same device.
The 74LVC4245A octal bus transceiver translates the output voltage of the microcontroller from
3.3–5.0 VDC.

4.3.4 DOT MATRIX DISPLAY
The dot matrix display consists of a large number of LEDs configured in a single package. A
typical 5 x 7 LED arrangement is a matrix of five columns of LEDs with seven LEDs per row, as
shown in Figure 4.21. Display data for a single matrix column [R6-R0] is provided by the micro-
controller. That specific row is then asserted by the microcontroller using the column select lines
[C2-C0]. The entire display is sequentially built up a column at a time. If the microcontroller
sequences through each column fast enough (greater than 30 Hz), the matrix display appears to
be stationary to a viewer.

In Figure 4.21, we have provided the basic configuration for the dot matrix display for a
single display device. However, this basic idea can be expanded in both dimensions to provide a
multi-character, multi-line display. A larger display does not require a significant number of mi-
crocontroller pins for the interface. The dot matrix display may be used to display alphanumeric
data as well as graphics data. Several manufacturers provide 3.3 VDC compatible dot matrix
displays with integrated interface and control circuitry.

4.3.5 LIQUID CRYSTAL DISPLAY (LCD)
An LCD is an output device to display text information as shown in Figure 4.22. LCDs come
in a wide variety of configurations including multi-character, multi-line format. A 16 x 2 LCD
format is common. That is, it has the capability of displaying two lines of 16 characters each.
The characters are sent to the LCD via American Standard Code for Information Interchange
(ASCII) format a single character at a time. For a parallel configured LCD, an 8-bit data path
and two lines are required between the microcontroller and the LCD as shown in Figure 4.22a.
Many parallel configured LCDs may also be configured for a 4-bit data path thus saving several



4.3. OUTPUT DEVICES 173

47 G

R

5 VDC

3.0 K

3.0 K

-

+
LM324

2N2907

2N2222

47 G

R

47 G

R

47 G

R

47 G

R

47 G

R

47 G

R

47 G

R

M
ic

ro
c
o
n

tr
o
ll

e
r 

P
o
rt

74LVC4245A

Octal Bus

Transceiver

VOH : 5.0 VDC

IOH  : 24 mA

5 VDC

5 VDC

Figure 4.20: Tri-state LED display.



174 4. MSP430 OPERATING PARAMETERS AND INTERFACING

R6

R5

R4

R3

R2

R1

R0

In
te

rf
ac

e

C
ir

cu
it

ry

R
o
w

 S
el

ec
t

5 x 7 Dot

Matrix Display

C2

C1

C0C
o
lu

m
n

S
el

ec
t

Interface

Circuitry

M
ic

ro
co

n
tr

o
ll

er

Figure 4.21: Dot matrix display.

G
N

D
-1

V
D

D
-2

V
o

-3
R

S
-4

R
/W

-5
E

-6
D

B
0-

7
D

B
1-

8
D

B
2-

9
D

B
3-

10
D

B
4-

11
D

B
5-

12
D

B
6-

13
D

B
7-

14

V cc

V cc

10K

line1

line2

dataenable
command/data

line1

line2

ser
ial 

data

(a) Parallel configuration (b) Serial configuration

Figure 4.22: LCD display with (a) parallel interface and (b) serial interface.



4.3. OUTPUT DEVICES 175
precious microcontroller pins. A small microcontroller mounted to the back panel of the LCD
translates the ASCII data characters and control signals to properly display the characters. Sev-
eral manufacturers provide 3.3 VDC compatible displays.

To conserve precious, limited microcontroller I/O pins, a serial configured LCD may be
used. A serial LCD reduces the number of required microcontroller pins for interface, from ten
down to one, as shown in Figure 4.22b. Display data and control information is sent to the LCD
via an asynchronous UART serial communication link (8 data bits, 1 stop bit, no parity, 9600
Baud). A serial configured LCD costs slightly more than a similarly configured parallel LCD.

Example: LCD. In this example a Sparkfun LCD-09067, 3.3 VDC, serial, 16 by 2 charac-
ter, black on white LCD display is connected to the MSP430. Communication between the
MSP430 and the LCD is accomplished by a single 9600 bits per second (baud) connection us-
ing the onboard universal asynchronous receiver transmitter (UART). The UART is configured
for 8 data bits, no parity, and one stop bit (8-N-1). The MSP-EXP430FR5994 LaunchPad is
equipped with two UART channels. One is the back channel UART connection to the PC.
The other is accessible by pin 3 (RX, P6.1) and pin 4 (TX, P6.0). Provided below is the sample
Energia code to print a test message to the LCD. Note the UART is designated “Serial1” in the
program. The back channel UART for the Energia serial monitor display is designated “Serial.”
//*******************************************************************
//Serial_LCD_energia
//Serial 1 accessible at:
// - RX: P6.1, pin 3
// - TX: P6.0, pin 4
//
//This example code is in the public domain.
//*******************************************************************

void setup()
{
//Initialize serial channel 1 to 9600 baud and wait for port to open
Serial1.begin(9600);
}

void loop()
{
Serial1.print("Hello World");
delay(500);
Serial1.println("...Hello World");
delay(500);
}



176 4. MSP430 OPERATING PARAMETERS AND INTERFACING

//*******************************************************************

4.4 HIGH-POWER DC INTERFACES
There are a wide variety of DC motor types that may be controlled by a microcontroller. To
properly interface a motor to the microcontroller, we must be familiar with the different types
of motor technologies. Motor types are illustrated in Figure 4.23.

General categories of DC motor types include the following.

• DCmotor: A DC motor has a positive and a negative terminal. When a DC power supply
of suitable current rating is applied to the motor, it will rotate. If the polarity of the supply
is switched with reference to the motor terminals, the motor will rotate in the opposite
direction. The speed of the motor is roughly proportional to the applied voltage up to the
rated voltage of the motor.

• Servo motor: A servo motor provides a precision angular rotation for an applied pulse
width modulation duty cycle. As the duty cycle of the applied signal is varied, the angular
displacement of the motor also varies. This type of motor is used to change mechanical
positions such as the steering angle of a wheel.

• Steppermotor: A stepper motor, as its name implies, provides an incremental step change
in rotation (typically 2.5ı per step) for a step change in control signal sequence. The motor
is typically controlled by a two or four wire interface. For the four wire stepper motor,
the microcontroller provides a 4-bit control sequence to rotate the motor clockwise. To
turn the motor counterclockwise, the control sequence is reversed. The low-power control
signals are interfaced to the motor via metal oxide semiconductor field effect transistors
(MOSFETs) or power transistors to provide for the proper voltage and current require-
ments of the pulse sequence.

• Linear actuator: A linear actuator translates the rotation motion of a motor to linear for-
ward and reverse movement. The actuators are used in a number of different applications
where precisely controlled linear motion is required. The control software and interface for
linear actuators are very similar to DC motors.

Example: DC motor interface. A general-purpose DC motor interface is provided in Fig-
ure 4.24. This interface allows the low-voltage (3.3 VDC), low-current control signal to be
interfaced to a higher voltage, higher current motor. This interface provides for unidirectional
control. To control motor speed, PWM techniques may be used. The control signal from the
MSP430 is fed to the TIP 120 NPN Darlington transistor. The Darlington configuration al-
lows high current gain to drive the motor. Diodes are placed in series with the motor to reduce



4.4. HIGH-POWER DC INTERFACES 177

Vmotor

Veff

Veff  = Vmotor × duty cycle (%)

(a) DC motor

(b) Servo motor

(c) Stepper motor

1 Step

4 Control

Signals

Interface

Circuitry

Power  
  Ground

Figure 4.23: Motor types.

7.2 VDC

1N4001
Diodes

From
MSP430

TIP 120 NPN
Darlington Transistor

TIP 120 
Motor

Current

 
at 300 mA

1N4001 
protection 

diode

330

9.0 VDC

M

+

-

Figure 4.24: General-purpose motor interface.



178 4. MSP430 OPERATING PARAMETERS AND INTERFACING
the motor supply voltage to the required motor voltage. Each diode provides a drop of approxi-
mately 0.7 VDC. A reverse biased diode is placed across the motor and diode string to allow a
safe path for reverse current. This configuration may be adjusted for many types of DC motors
by appropriately adjusting supply voltage, number of series diodes, and the value of the base
resistance.

Example: Inexpensive laser light show. An inexpensive laser light show can be con-
structed using two servos. This application originally appeared in the third edition of Arduino
Microcontroller Processing for Everyone! The example has been adapted with permission for com-
patibility with the MSP430 [Barrett, 2013]. In this example we use two Futaba 180ı range
servos (Parallax 900-00005, available from Jameco #283021) mounted as shown in Figure 4.25.
The servos operates from 4–6 VDC. The servos expect a pulse every 20 ms (50 Hz). The pulse
length determines the degree of rotation from 1000 microseconds (5% duty cycle, �90ı rota-

Vcc = 5 VDC
(4)

(11)

(1)
(2)

(3)

LM324

White

Red
Vcc = 5 VDC Black

mirror

mirror

Parallax 900-00005
servo motor

servo

Vcc = 5 VDC
(4)

(11)

(7)
(6)

(5)

LM324
White

x

y

Red

Vcc = 5 VDC
Black

laser source

y_ch_pin
(pin 39, P2.6)

x_ch_pin
(pin 40, P2.7)

10 K

10 K

5 VDC

2.5 VDC
!reshold
Setting

Figure 4.25: Inexpensive laser light show.



4.4. HIGH-POWER DC INTERFACES 179
tion) to 2000 �s (10% duty cycle, C90ı rotation). The X and Y control signals are provided by
the MSP430. The X and Y control signals are interfaced to the servos via LM324 operational
amplifiers. The 3.3 VDC control signals from the MSP430 are up converted to 5.0 VDC by
the op-amps. The op-amps serve as voltage comparators with a 2.5 VDC threshold. The laser
source is provided by an inexpensive laser pointer.

Energia contains useful servo configuration and control functions. The “attach” function
initializes the servo at the specified pin. The MSP430-EXP430FR5994 LaunchPad has pulse
width modulated output features available on pins 19 (P5.7), 37 (P3.4), 38 (P3.5), 39 (P3.6), and
40 (P3.7). The “write” function rotates the servo the specified number of degrees. The program
sends the same signal to both channel outputs (x_ch_pin, y_ch_pin) and traces a line with the
laser. Any arbitrary shape may be traced by the laser using this technique.

//*************************************************************
//X-Y ramp
//
//This example code is in the public domain.
//*************************************************************

#include <Servo.h> //Use Servo library, included with IDE

Servo myServo_x; //Create Servo objects to control the
Servo myServo_y; //X and Y servos

void setup()
{
myServo_x.attach(40); //Servo is connected to PWM pin 40
myServo_y.attach(39); //Servo is connected to PWM pin 39
}

void loop()
{
int i = 0;
for(i=0; i<=180; i++) //Rotates servo 0 to 180 degrees
{
myServo_x.write(i); //Rotate servo counter clockwise
myServo_y.write(i); //Rotate servo counter clockwise
delay(20); //Wait 20 milliseconds
if(i==180)

delay(5000);
}



180 4. MSP430 OPERATING PARAMETERS AND INTERFACING
}

//*************************************************************

4.4.1 DC MOTOR INTERFACE, SPEED, AND DIRECTION CONTROL
Interface. A number of direct current load devices are controlled with an electronic switching
device such as a MOSFET. Specifically, an N-channel enhancement MOSFET may be used to
switch a high current load on and off (such as a motor) using a low-current control signal from a
microcontroller, as shown in Figure 4.26.The low current control signal from themicrocontroller
is connected to the gate of the MOSFET via a MOSFET driver. As shown in Figure 4.26, an
LTC 1157 MOSFET driver is used to boost the control signal from the microcontroller to be
compatible with an IRLR024 power MOSFET. The IRLR024 is rated at 60 VDC VDS and a
continuous drain current ID of 14 amps. The IRLR024 MOSFET switches the high current
load on and off consistent with the control signal. In a low-side connection, the high current
load is connected between the MOSFET source and ground.

MSP430

Microcontroller
LTC1157

MOSFET

Driver

IN1

IN2

3.3 VDC

10 uF

(8.7 VDC)

(8.7 VDC)

3.3 VDC

Load

3.3 VDC

Load

IRLR024
Power

MOSFET

IRLR024
Power

MOSFET

G2

G1

Figure 4.26: MOSFET drive circuit (adapted from Linear Technology).

Speed. As previously mentioned, DC motor speed may be varied by changing the applied
voltage.This is difficult to do with a digital control signal. However, PWM techniques combined
with a MOSFET interface circuit may be used to precisely control motor speed. The duty cycle
of the PWM signal governs the percentage of the motor supply voltage applied to the motor
and hence the percentage of rated full speed at which the motor will rotate. The interface circuit



4.4. HIGH-POWER DC INTERFACES 181
to accomplish this type of control is shown in Figure 4.27. It is a slight variation of the control
circuit provided in Figure 4.26. In this configuration, the motor supply voltage may be different
than the microcontroller’s 3.3 VDC supply. For an inductive load, a reverse biased protection
diode should be connected across the load. The interface circuit allows the motor to rotate in a
given direction.

M

DC Motor 
Supply Voltage

Protection 
Diode

MSP430
Microcontroller

LTC1157
MOSFET

Driver

IN1

IN2

3.3 VDC

30 K

G2

G1

10 uF

MTD3055EL
Power FET

Figure 4.27: DC motor interface.

Direction. For a DC motor to operate in both the clockwise and counterclockwise di-
rections, the polarity of the DC motor supplied must be changed. To operate the motor in the
forward direction, the positive battery terminal must be connected to the positive motor ter-
minal while the negative battery terminal must be attached to the negative motor terminal. To
reverse the motor direction, the motor supply polarity must be reversed. An H-bridge is a cir-
cuit employed to perform this polarity switch. An H-bridge may be constructed from discrete
components as shown in Figure 4.28. If PWM signals are used to drive the base of the transis-
tors, both motor speed and direction may be controlled by the circuit. The transistors used in
the circuit must have a current rating sufficient to handle the current requirements of the motor
during start and stall conditions.

Texas Instruments provides a self-contained H-bridge motor controller integrated circuit,
theDRV8829.Within theDRV8829 package is a singleH-bridge driver.The drivermay control
DC loads with supply voltages from 8–45 VDC with a peak current rating of 5 amps. The



182 4. MSP430 OPERATING PARAMETERS AND INTERFACING

M+

-

12 VDC

200

ZTX451

470

200

470

to PD4 to PD5

ZTX551

ZTX451

ZTX551

11DQ06

11DQ06

1000 uF

Figure 4.28: H-bridge control circuit.

single H-bridge driver may be used to control a DC motor or one winding of a bipolar stepper
motor [DRV8829].

Example: MIKROE-1526 DC MOTOR click. MikroElectronica (www.mikroe.com) man-
ufactures a number of motor interface products including the MIKROE-1526 DC MOTOR
click motor driver board. The board features the T.I. DRV8833RTY H-bridge motor driver. A
test circuit to control a DC motor’s speed and direction is provided in Figure 4.29. We use one
of the motors from the Mini Round Autonomous Maze Navigating Robot (Chapter 2).

In the test circuit, a tach switch is used to determine motor direction and a potentiometer
for motor speed control. These two inputs are read by the Energia program and proper control
signals are issued to the MIKROE-1526 (SL1, SL2, and PWM) for motor speed and direction.
The nSLP pin on the MIKROE-1526 must be logic high to enable the devive. For the test
circuit, the pin is tied to Vcc (3.3 VDC) (www.mikroe.com).

//****************************************************************
//MIKROE-1526 DC Motor click
//Sketch demonstrates operation of the MIKROE-1526 DC Motor click
//
//The circuit:
// - Motor speed control potentiometer.
// Potentiometer connected to analog pin 0 (2). The center wiper
// pin of the potentiometer goes to the analog pin. The side

www.mikroe.com
www.mikroe.com


4.4. HIGH-POWER DC INTERFACES 183

3.3 VDC

3.
3 

V
D

C

(MSP430:19)
PWM

 

(MSP430:6) SL1
(MSP430: 7) SL2

4.7 K

3.3  VDC

(ground: pin 20)

3.3 VDC

to MSP430:2

forward/reverse (MSP430:5)

(a) Forward/reverse control

(b) Speed control

(c) MIKROE-1526 DC MOTOR click

Mini round 
robot motor

3.3 VDC

M

Figure 4.29: MIKROE-1526 DC MOTOR click. (Illustration used with permission (www.mi
kroe.com).)

www.mikroe.com
www.mikroe.com


184 4. MSP430 OPERATING PARAMETERS AND INTERFACING
// pins of the potentiometer go to +3.3 VDC and ground.
// - Motor forward/reverse control.
// Tact switch connected to pin 5 of MSP430.
// - MIKROE-1526 connections:
// -- Select 1 (SL1) to MSP430 pin 6
// -- Select 2 (SL2) to MSP430 pin 7
// -- PWM to MSP430 pin 19
// -- nSLEEP to Vcc (3.3 VDC) to enable device
//
//This example code is in the public domain.
//****************************************************************

int analog_in = 2; //analog input (0 to 1023)
int analog_out = 19; //analog output (0 to 255)
int forward_reverse = 5; //direction control
int select1 = 6; //motor direction control
int select2 = 7; //SL1, SL2
int speed_value; //potentiometer input value
int switch_value;
int output_value;

void setup()
{
pinMode(forward_reverse, INPUT);
pinMode(select1, OUTPUT);
pinMode(select2, OUTPUT);
}

void loop()
{
//Deteremine motor direction
switch_value = digitalRead(forward_reverse);
if(switch_value == HIGH) //forward direction

{
digitalWrite(select1, LOW);
digitalWrite(select2, LOW);
}

else //reverse direction
{



4.4. HIGH-POWER DC INTERFACES 185
digitalWrite(select1, LOW);
digitalWrite(select2, HIGH);
}

//read analog in value
speed_value = analogRead(analog_in);

//map to analog out range
output_value = map(speed_value, 0, 1023, 0, 255);

//update analog out value
analogWrite(analog_out, output_value);

delay(50);
}

//****************************************************************

4.4.2 DC SOLENOID CONTROL
The interface circuit for a DC solenoid is shown in Figure 4.30. A solenoid is used to acti-
vate a mechanical insertion (or extraction). As in previous examples, we employ the LTC1157
MOSFET driver between the microcontroller and the power MOSFET used to activate the
solenoid. A reverse biased diode is placed across the solenoid. Both the solenoid power supply
and the MOSFET must have an appropriate voltage and current rating to support the solenoid
requirements.

4.4.3 STEPPER MOTOR CONTROL
Stepper motors are used to provide a discrete angular displacement in response to a control
signal step. There are a wide variety of stepper motors including bipolar and unipolar types
with different configurations of motor coil wiring. Due to space limitations we only discuss
the unipolar, 5-wire stepper motor. The internal coil configuration for this motor is shown in
Figure 4.31b.

Often, a wiring diagram is not available for the stepper motor. Based on the wiring con-
figuration (Figure 4.31b), one can find out the common line for both coils. It has a resistance
that is one-half of all of the other coils. Once the common connection is found, one can con-
nect the stepper motor into the interface circuit. By changing the other connections, one can
determine the correct connections for the step sequence. To rotate the motor either clockwise



186 4. MSP430 OPERATING PARAMETERS AND INTERFACING

DC Solenoid
Supply Voltage

Protection
Diode

MSP430
Microcontroller

LTC1157
MOSFET

Driver

IN1

IN2

3.3 VDC

30 K
MTD3055EL

Power FET

G2

G1

10 uF

Figure 4.30: Solenoid interface circuit.

or counterclockwise, a specific step sequence must be sent to the motor control wires as shown
in Figure 4.31b.

The microcontroller does not have sufficient capability to drive the motor directly. There-
fore, an interface circuit is required as shown in Figure 4.32. The speed of motor rotation is
determined by how fast the control sequence is completed.

//**********************************************************
//stepper
//
//This example code is in the public domain.
//**********************************************************

//external switches
#define ext_sw1 36
#define ext_sw2 35

//stepper channels
#define stepper_ch1 31
#define stepper_ch2 32
#define stepper_ch3 33
#define stepper_ch4 34



4.4. HIGH-POWER DC INTERFACES 187

step

1

2

3

4

(a) A stepper motor rotates a fixed angle per step

(b) Coil configuration and step sequence

Figure 4.31: Unipolar stepper motor. (Illustration used with permission of Texas Instruments
(www.ti.com).)

www.ti.com


188 4. MSP430 OPERATING PARAMETERS AND INTERFACING

31: stepper_ch1 
32: stepper_ch2 
33: stepper_ch3 
34: stepper_ch4

12 VDC

TIP120

TIP120

TIP120
TIP120

10 K

10 K

10 K

10 K

1N4001

TIP 
120

BCE

red yellowbrown green

orange

42BYG016, 4 phase unipolar, 1.8o/step, 12 VDC, 160 mA

Adafruit 

TXB010B

level 

shifter

4.7 K

3.3 VDC

External Switch 1
(clockwise)

External Switch 2
(clockwise)

4.7 K

3.3 VDC
35

36

Figure 4.32: Unipolar stepper motor interface circuit.



4.4. HIGH-POWER DC INTERFACES 189

int switch_value1, switch_value2;
int motor_speed = 1000; //motor increment time in ms
int last_step = 1;
int next_step;

void setup()
{
//Screen
Serial.begin(9600);

//external switches
pinMode(ext_sw1, INPUT);
pinMode(ext_sw2, INPUT);

//stepper channel
pinMode(stepper_ch1, OUTPUT);
pinMode(stepper_ch2, OUTPUT);
pinMode(stepper_ch3, OUTPUT);
pinMode(stepper_ch4, OUTPUT);

}

void loop()
{
switch_value1 = digitalRead(ext_sw1);
switch_value2 = digitalRead(ext_sw2);

if(switch_value1 == LOW) //switch1 asserted
{
while(switch_value1 == LOW) //clockwise

{
if(last_step == 1)

{
Serial.println("Switch 1: low, step 1");
digitalWrite(stepper_ch1, HIGH);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, LOW);



190 4. MSP430 OPERATING PARAMETERS AND INTERFACING
next_step = 2;
}

else if(last_step == 2)
{
Serial.println("Switch 1: low, step 2");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, HIGH);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, LOW);
next_step = 3;
}

else if(last_step == 3)
{
Serial.println("Switch 1: low, step 3");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, HIGH);
digitalWrite(stepper_ch4, LOW);
next_step = 4;
}

else if(last_step == 4)
{
Serial.println("Switch 1: low, step 4");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, HIGH);
next_step = 1;
}

else
{
;
}

last_step = next_step;
delay(motor_speed);
switch_value1 = digitalRead(ext_sw1);
}//end while
}//end if



4.4. HIGH-POWER DC INTERFACES 191
else if(switch_value2 == LOW) //switch2 asserted
{
while(switch_value2 == LOW) //counter clockwise

{
if(last_step == 1)

{
Serial.println("Switch 2: low, step 1");
digitalWrite(stepper_ch1, HIGH);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, LOW);
next_step = 4;
}

else if(last_step == 2)
{
Serial.println("Switch 2: low, step 2");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, HIGH);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, LOW);
next_step = 1;
}

else if(last_step == 3)
{
Serial.println("Switch 2: low, step 3");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, HIGH);
digitalWrite(stepper_ch4, LOW);
next_step = 2;
}

else if(last_step == 4)
{
Serial.println("Switch 2: low, step 4");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, HIGH);
next_step = 3;



192 4. MSP430 OPERATING PARAMETERS AND INTERFACING
}

else
{
;
}

last_step = next_step;
delay(motor_speed);
switch_value2 = digitalRead(ext_sw2);
}//end while
}//end if

else
{
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, LOW);
}

}
//**********************************************************

Example. Adafruit (www.adafruit.com) manufactures a DC stepper motor breakout board
(#3297) based on the Texas Instruments DRV8833RTY H-bridge motor driver. The board can
provide up to 1.2 A per channel for motors from 2.7–10.8 VDC. In this example, we use the
board to drive a Jameco (www.jameco.com) #238538 unipolar stepper motor rated at 12 VDC,
0.4 A. We power the motor at 10 VDC. The interface between the MSP-EXP430FR2433
LaunchPad, the breakout board, and the stepper motor in shown in Figure 4.33. Two external
switches are used to select motor direction.

The code used in the previous stepper motor example is modified with the step sequence
required by the driver/motor combination.

//**********************************************************
//stepper2
//
//This example code is in the public domain.
//**********************************************************

//external switches
#define ext_sw1 2
#define ext_sw2 5

www.adafruit.com
www.jameco.com


4.4. HIGH-POWER DC INTERFACES 193

4.7 K

3.3 VDC

external Switch 1
(clockwise)

external Switch 2
(counter clockwise)

4.7 K

3.3 VDC

5

2

Blk Yel Grn

Red

WhT

Blu

10 VDC 
+

3.
3 
 V

D
C

3.
3 

V
D

C
 

6 7 8 9

Step Sequence

Step 
1 
2 
3 
4 

Aout1 
1 
0 
0 
1

Aout2 
0 
1 
1 
0

Bout2 
1 
1 
0 
0

Bout1 
0 
0 
1 
1

C
W

C
C

W

Figure 4.33: Unipolar stepper motor with DRV8833 breakout board. (Illustration used with
permission of Texas Instruments (www.ti.com).)

www.ti.com


194 4. MSP430 OPERATING PARAMETERS AND INTERFACING

//stepper channels
#define stepper_ch1 6
#define stepper_ch2 7
#define stepper_ch3 8
#define stepper_ch4 9

int switch_value1, switch_value2;
int motor_speed = 10; //motor increment time in ms
int last_step = 1;
int next_step;

void setup()
{
//Screen
Serial.begin(9600);

//external switches
pinMode(ext_sw1, INPUT);
pinMode(ext_sw2, INPUT);

//stepper channel
pinMode(stepper_ch1, OUTPUT);
pinMode(stepper_ch2, OUTPUT);
pinMode(stepper_ch3, OUTPUT);
pinMode(stepper_ch4, OUTPUT);

}

void loop()
{
switch_value1 = digitalRead(ext_sw1);
switch_value2 = digitalRead(ext_sw2);

if(switch_value1 == LOW) //switch1 asserted
{
while(switch_value1 == LOW) //clockwise

{
if(last_step == 1)



4.4. HIGH-POWER DC INTERFACES 195
{
Serial.println("Switch 1: low, step 1");
digitalWrite(stepper_ch1, HIGH);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, HIGH);
digitalWrite(stepper_ch4, LOW);
next_step = 2;
}

else if(last_step == 2)
{
Serial.println("Switch 1: low, step 2");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, HIGH);
digitalWrite(stepper_ch3, HIGH);
digitalWrite(stepper_ch4, LOW);
next_step = 3;
}

else if(last_step == 3)
{
Serial.println("Switch 1: low, step 3");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, HIGH);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, HIGH);
next_step = 4;
}

else if(last_step == 4)
{
Serial.println("Switch 1: low, step 4");
digitalWrite(stepper_ch1, HIGH);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, HIGH);
next_step = 1;
}

else
{
;
}



196 4. MSP430 OPERATING PARAMETERS AND INTERFACING
last_step = next_step;
delay(motor_speed);
switch_value1 = digitalRead(ext_sw1);
}//end while
}//end if

else if(switch_value2 == LOW) //switch2 asserted
{
while(switch_value2 == LOW) //counter clockwise

{
if(last_step == 1)

{
Serial.println("Switch 2: low, step 1");
digitalWrite(stepper_ch1, HIGH);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, HIGH);
digitalWrite(stepper_ch4, LOW);
next_step = 4;
}

else if(last_step == 2)
{
Serial.println("Switch 2: low, step 2");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, HIGH);
digitalWrite(stepper_ch3, HIGH);
digitalWrite(stepper_ch4, LOW);
next_step = 1;
}

else if(last_step == 3)
{
Serial.println("Switch 2: low, step 3");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, HIGH);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, HIGH);
next_step = 2;
}

else if(last_step == 4)
{



4.5. INTERFACING TO MISCELLANEOUS DC DEVICES 197
Serial.println("Switch 2: low, step 4");aq 1q
digitalWrite(stepper_ch1, HIGH);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, HIGH);
next_step = 3;
}

else
{
;
}

last_step = next_step;
delay(motor_speed);
switch_value2 = digitalRead(ext_sw2);
}//end while
}//end if

else
{
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, LOW);
}

}
//**********************************************************

4.4.4 OPTICAL ISOLATION
It is a good design practice to provide optical isolation between a motor control circuit and
the motor. A typical optical isolator (e.g., 4N25) consists of an LED and an optical transistor
in a common package, as shown in Figure 4.34. The LED is driven by a low voltage control
signal from the MSP430, whereas the optical transistor provides the control signal to the motor
interface circuit. The link between the MSP430 to the motor interface circuit is now enabled
by light rather than an electrical link. This provides a high level of noise isolation between the
processor and the motor interface circuit. Many optical isolators also provide a signal inversion.

4.5 INTERFACING TO MISCELLANEOUS DC DEVICES
In this section, we present a potpourri of interface circuits to connect a microcontroller to a wide
variety of DC peripheral devices.



198 4. MSP430 OPERATING PARAMETERS AND INTERFACING

1

2

3
4

5

6

nc

Vcc

RL

Figure 4.34: 4N25 optical isolator (www.vishay.com).

4.5.1 SONALERTS, BEEPERS, AND BUZZERS
In Figure 4.35, we show several circuits used to interface a microcontroller to a buzzer, beeper, or
other types of annunciator devices such as a sonalert. It is important that the interface transistor
and the supply voltage are matched to the requirements of the sound producing device.

Buzzer, 3850 Hz

5 VDC, 3-14 mA

Vcc = 5 VDC

220

2N2222
from

micro

(a) 5 VDC buzzer interface

10 K

Annunciator

12 VDC, 8 mA

Vcc = 12 VDC

220

2N2222
from

micro

(b) 12 VDC annunciator

10 K

Figure 4.35: Sonalert, beepers, and buzzers.

www.vishay.com


4.6. AC DEVICES 199

4.5.2 VIBRATING MOTOR
A vibrating motor is often used to gain one’s attention as in a cell phone. These motors are
typically rated at 3 VDC and a high current. The interface circuit shown in Figure 4.26 is used
to drive the low voltage motor.

4.5.3 DC FAN
The interface circuit shown in Figure 4.24 may also be used to control a DC fan. As before, a
reverse biased diode is placed across the DC fan motor.

4.5.4 BILGE PUMP
A bilge pump is a pump specifically designed to remove water from the inside of a boat. The
pumps are powered from a 12 VDC source and have typical flow rates from 360 to over 3,500
gallons per minute. They range in price from U.S. $20–$80 (www.shorelinemarinedevelop
ment.com). An interface circuit to control a bilge pump from MSP430 is shown in Figure 4.36.
The interface circuit consists of a 470 ohm resistor, a power NPN Darlington transistor (TIP
120) and a 1N4001 diode.The 12VDC supply should have sufficient current capability to supply
the needs of the bilge pump.

(a) Shoreline
Bilge Pump 

BP 1N4001

TIP 120 NPN
Darlington
Transistor

12 VDC

470Ω

Shoreline 
Bilge Pump

from 
MSP430 

(b) MSP430 to bilge pump interface

Figure 4.36: Bilge pump interface.

4.6 AC DEVICES
A high-power alternating current (AC) load may be switched on and off using a low power
control signal from the microcontroller. In this case, a Solid State Relay is used as the switching

www.shorelinemarine development.com
www.shorelinemarine development.com


200 4. MSP430 OPERATING PARAMETERS AND INTERFACING
device. Solid state relays are available to switch a high power DC or AC load [Crydom]. For
example, the Crydom 558-CX240D5R is a printed circuit board-mounted, air-cooled, single-
pole single-throw (SPST), normally open (NO) solid-state relay. It requires aDC control voltage
of 3-15 VDC at 15 mA. This microcontroller compatible DC control signal is used to switch
12-280 VAC loads rated from 0.06–5 amps [Crydom].

To vary the direction of an AC motor, you must use a bi-directional AC motor. A bi-
directional motor is equipped with three terminals: common, clockwise, and counterclockwise.
To turn themotor clockwise, an AC source is applied to the common and clockwise connections.
In like manner, to turn the motor counterclockwise, an AC source is applied to the common and
counterclockwise connections. This may be accomplished using two of the Crydom SSRs.

PowerSwitch manufacturers an easy-to-use AC interface the PowerSwitch Tail II. The
device consists of a control module with attached AC connections rated at 120 VAC, 15 A. The
device to be controlled is simply plugged inline with the PowerSwitch Tail II. A digital control
signal from MSP430 (3 VDC at 3 mA) serves as the on/off control signal for the controlled
AC device. The controlled signal is connected to the PowerSwitch Tail II via a terminal block
connection. The PowerSwitch II may be configured as either normally closed (NC) or normally
open (NO) (www.powerswitchtail.com).

Example: PowerSwitch Tail II. In this example, we use an IR sensor to detect someone’s pres-
ence. If the IR sensor’s output reaches a predetermined threshold level, an AC desk lamp is
illuminated, as shown in Figure 4.37.
//****************************************************************
//switch_tail
//
//The circuit:
// - The IR sensor signal pin is connected to analog pin 3 (6).
// The sensor power and ground pins are connected to 5 VDC and
// ground respectively.
// - The analog output is designated as the onboard red LED.
// - The switch tail control signal is connected to P6.2 (pin 5)
//
//Adapted for code originally written by Tom Igoe
//Created: Dec 29, 2008
//Modified: Aug 30, 2011
//Author: Tom Igoe
//
//This example code is in the public domain.
//****************************************************************

const int analogInPin = 6; //Energia analog input pin A3

www.powerswitchtail.com


4.6. AC DEVICES 201

Desk Lamp

5 VDC

PowerSwitch Tail II

To AC

Wall Outlet

1:
 +

in
2:

 -
in

3:
 G

n
d

5
6

GND

R Y B

IR Sensor

Figure 4.37: PowerSwitch Tail II. (Illustration used with permission of Texas Instruments (ww
w.ti.com).)

www.ti.com
www.ti.com


202 4. MSP430 OPERATING PARAMETERS AND INTERFACING
const int analogOutPin = RED_LED; //Energia onboard red LED pin
const int switch_tail_control =5zz; //Switch Tail control signal

int sensorValue = 0; //value read from the OR sensor
int outputValue = 0; //value output to the PWM (red LED)

void setup()
{
//initialize serial communications at 9600 bps:
Serial.begin(9600);

//configure Switch Tail control pin
pinMode(switch_tail_control, OUTPUT);
}

void loop()
{
//read the analog in value:
sensorValue = analogRead(analogInPin);

//map it to the range of the analog out:
outputValue = map(sensorValue, 0, 1023, 0, 255);

//change the analog out value:
analogWrite(analogOutPin, outputValue);

//Switch Tail control signal
if(outputValue >= 128)

{
digitalWrite(switch_tail_control, HIGH);
Serial.print("Light on");
}

else
{
digitalWrite(switch_tail_control, LOW);
Serial.print("Light off");
}

// print the results to the serial monitor:



4.7. MSP430FR5994: EDUCATIONAL BOOSTER PACK MKII 203
Serial.print("sensor = " );
Serial.print(sensorValue);
Serial.print("\t output = ");
Serial.println(outputValue);

// wait 10 milliseconds before the next loop
// for the analog-to-digital converter to settle
// after the last reading:
delay(10);

}

//****************************************************************

4.7 MSP430FR5994: EDUCATIONAL BOOSTER PACK MKII
The Educational Booster Pack MkII allows rapid prototyping of designs. Shown in Figure 4.38,
it is equipped with a variety of transducers and output devices. The MkII may be mounted to the
MSP-EXP430FR5994 LaunchPad. Energia provides a variety of test programs for the MkII.

Light Sensor Temp Sensor Accelerometer
Servo Motor
Control

Switches

RGB LED
BuzzerMicrophone

Color 128 × 128 TFT LCD
Joystick

Figure 4.38: Educational Booster Pack MkII. (Illustration used with permission of Texas In-
struments (www.ti.com).)

www.ti.com


204 4. MSP430 OPERATING PARAMETERS AND INTERFACING
In the list of features below, pin numbers provided refer to the MkII pin placement. The MkII
is equipped with a [SLAU599].

• Two-axis joystick. The ITEAD Studio IM130330001 is a two-axis analog joystick
equipped with a pushbutton. The two analog signals are generated by x and y oriented
potentiometers. As the joystick is moved the analog signals relay the joystick position to
the MSP430 via the J1.2 (X) and J3.26 (Y) header pins. The joystick select pushbutton is
connected to pin J1.5.

• Microphone. The MkII is equipped with the CUI CMA-4544PW-W electret micro-
phone. The microphone signal is amplified via an OPA344 operational amplifier. The mi-
crophone has a frequency response of 20 Hz to 20 kHz. The microphone is connected to
MSP430 pin J1.6.

• Light sensor. The light sensor aboard the MkII is the OPT3001 digital ambient light
sensor. The sensor measures ambient light intensity and it is tuned to the light response
of the human eye. It also has filters to reject infrared (IR) light. It detects light intensity
in the range from 0.01–83 lux. The I2C compatible output of the sensor is provided to
MSP430 via pins J1.9 (I2C SCL), J1.10 (I2C SDA), and J1.8 (sensor interrupt).

• Temperature sensor. The temperature sensor is also I2C compatible. The TMP006 is a
noncontact sensor that passively absorbs IR wavelengths from 4–16 �m. The I2C com-
patible output is provided to the MSP430 via pins J1.9 (I2C SCL), J1.10 (I2C SDA), and
J2.11 (sensor interrupt).

• Servo motor controller. The MkII is equipped with a convenient connector for a servo
motor. The servo motor control signal is provided by MSP430 signal pin J2.19.

• Three-axis accelerometer. Aboard the MkII is a Kionix KXTC9-2050 three-axis ac-
celerometer that measures acceleration in the X, Y, and Z directions. The three-channel
analog output corresponds to acceleration from ˙1:5 g to ˙6 g. The three channels of
analog output are provided to the MSP430 via pins J3.23 (X), J3.24 (Y), and J3.25 (Z).

• Pushbuttons. The MkII is equipped with two pushbuttons designated S1 and S2. They
are connected to the MSP430 via pins J4.33 (S1) and J4.32 (S2).

• Red-Green-Blue (RGB) LED. The RGB LED aboard the MkII is the Cree CLV1A-
-FKB RGB multicolor LED. The three-color components are accessible via pins J4.39
(red), J4.38 (green), and J4.37 (blue). The intensity of each component may be adjusted
using PWM techniques.

• Buzzer.Thepiezo buzzer aboard theMkII is theCUICEM-1230.The buzzer will operate
at various frequencies using PWM techniques. The buzzer is accessible via pin J4.40.



4.8. GROVE STARTER KIT FOR LAUNCHPAD 205
• Color TFT LCD. The color 2D LCD aboard the MkII is controlled via the serial pe-

ripheral interface (SPI) system. The Crystalfontz CFAF 128128B-0145T is a color 128
by 128 pixel display.

Provided in Energia is considerable software support for the MkII. This software will
be explored in the Laboratory Exercise, Section 4.10. It is important to note that not all of
the Educational Booster Pack MkII examples included within Energia are compatible with the
MSP430FR5994.

4.8 GROVE STARTER KIT FOR LAUNCHPAD
The Seeed company provides a Grove Starter Kit for the MSP430 LaunchPad shown in Fig-
ure 4.39. It consists of a BoosterPack configured breakout board for a number of sensors and
output devices including (www.seeedstudio.com):

• buzzer

• four-digit seven-segment LED display

• relay

• proximity infrared sensor (PIR) sensor

• ultrasonic ranger

• light sensor

• rotary angle sensor

• sound sensor

• moisture sensor

• temperature and humidity sensor

The Grove Starter Kit is enhanced by considerable software support we explore in the
Laboratory Exercise, Section 4.11.

4.9 APPLICATION: SPECIAL EFFECTS LED CUBE
To illustrate some of the fundamentals ofMSP430 interfacing, we construct a three-dimensional
LED cube. This design was inspired by an LED cube kit available from Jameco (www.jameco.c
om). This application originally appeared in the third edition of ArduinoMicrocontroller Processing
for Everyone! The LED cube example has been adapted with permission for compatibility with
the MSP430 [Barrett, 2013].

The MSP430-EXP430FR5994 LaunchPad is a 3.3 VDC system. With this in mind, we
take two different design approaches:

www.seeedstudio.com
www.jameco.com
www.jameco.com


206 4. MSP430 OPERATING PARAMETERS AND INTERFACING

Figure 4.39: Grove starter kit for LaunchPad (www.seeedstudio.com). (Illustrations used with
permission of Texas Instruments (www.TI.com).)

1. Interface the 3.3 VDC MSP430 to an LED cube designed for 5 VDC operation via a
3.3–5.0 VDC level shifter.

2. Modify the design of the LED cube to operate at 3.3 VDC.

We explore each design approach in turn.

Approach 1: 5 VDC LED cube. The LED cube consists of 4 layers of LEDs with 16
LEDs per layer. Only a single LED is illuminated at a given time. However, different effects may
be achieved by how long a specific LED is left illuminated and the pattern of LED sequence
followed. A specific LED layer is asserted using the layer select pins on the microcontroller using
a one-hot-code (a single line asserted while the others are de-asserted). The asserted line is fed
through a 74HC244 (three state, octal buffer, line driver) which provides an IOH=IOL current
of ˙ 35 mA, as shown in Figure 4.40. A given output from the 74HC244 is fed to a common
anode connection for all 16 LEDs in a layer. All four LEDs in a specific LED position, each

www.seeedstudio.com
www.TI.com


4.9. APPLICATION: SPECIAL EFFECTS LED CUBE 207

+-

+-

+-

+-

0 1 2

4 5 6

8 9 10 11

12 13 14

+
_

+
_

+
_

+
_ +

LED horizontal layer 0 
top view

Notes: 
1.  LED cube consists of 4 layers of 16 LEDs each.
2.  Each LED is individually addressed by asserting the appropriate cathode signal (0‒15)
      and asserting a specific LED layer.
3.  All LEDs in a given layer share a common anode connection.
4.  All LEDs in a given position (0‒15) share a common cathode connection.
 

74HC154 
4-to-16 decoder

74HC244

1 2 3 4 5 6 7 8 9 10 1113141516 17

/E0-18 
/E1-19

Idiode  = 

IOL  = +/- 25 mA 

D C B A
20 21 22 23

led_sel0
led_sel1
led_sel2

led_sel3

24

12

Vcc = 5 VDC 

7

3+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

15

220

LED
LED0

Side 
View

Idiode

20

10

Vcc = 5 VDC 

/OEa-1 
/OEb-19

2 4 6 8

18 16 14 12

11 13 15 17

3579

LED horizontal layer 1

LED horizontal layer 2
LED horizontal layer 3

Idiode

L
E

D
 s

el
ec

t
la

ye
r 

se
le

ct layer_sel0
layer_sel1
layer_sel2

layer_sel3

Cocktail 
Straw 
Spacer

Adafruit 
TXB0108 

Level 
Shifter

31

32

33

34

35

36
37

38

M
S

P
43

0

Figure 4.40: 5 VDC LED special effects cube.



208 4. MSP430 OPERATING PARAMETERS AND INTERFACING
in a different layer, share a common cathode connection. That is, an LED in a specific location
within a layer shares a common cathode connection with three other LEDs that share the same
position in the other three layers. The common cathode connection from each LED location
is fed to a specific output of the 74HC154 4-to-16 decoder. The decoder has a one-cold-code
output (one output at logic low while the others are at logic high). To illuminate a specific
LED, the appropriate layer select and LED select line are asserted using the layer_sel[3:0] and
led_sel[3:0] lines, respectively. This basic design may be easily expanded to a larger LED cube.

To interface the 5 VDC LED cube to the 3.3 VDC MSP430, a 3.3 VDC-to-5 VDC
level shifter is required for each of the control signals (layer_sel and led_sel). In this example,
a TXB0108 (low voltage octal bidirectional transceiver) is employed to shift the 3.3 VDC sig-
nals of the MSP430 to 5 VDC levels. Adafruit provides a breakout board for the level shifter
(#TXB0108)(www.adafruit.com). Alternatively, a Texas Instruments LSF0101XEVM-001,
discussed earlier in the chapter, may be used for level shifting.

Approach 2: 3.3VDCLEDcube: A 3.3 VDC LED cube design is shown in Figure 4.41.
The 74HC154 1-of-16 decoder has been replaced by two 3.3 VDC 74LVX138 1-of-8 decoders.
The two 74LVX138 decoders form a single 1-of-16 decoder. The led_sel3 is used to select be-
tween the first decoder via enable pin /E2 or the second decoder via enable pin E3. Also, the
74HC244 has been replaced by a 3.3 VDC 74LVX244.

4.9.1 CONSTRUCTION HINTS
To limit project costs, low-cost red LEDs ( Jameco #333973) are used. This LED has a forward
voltage drop (Vf ) of approximately 1.8 VDC and a nominal forward current (If ) of 20 mA. The
project requires a total of 64 LEDs (4 layers of 16 LEDs each). An LED template pattern was
constructed from a 500 by 500 piece of pine wood. A 4-by-4 pattern of holes was drilled into the
wood. Holes were spaced 3/400 apart. The hole diameter was slightly smaller than the diameter
of the LEDs to allow for a snug LED fit.

The LED array was constructed a layer at a time using the wood template. Each LED
was tested before inclusion in the array. A 5 VDC power supply with a series 220 ohm resistor
was used to insure each LED was fully operational. The LED anodes in a given LED row were
then soldered together. A fine-tip soldering iron and a small bit of solder were used for each
interconnect as shown in Figure 4.42. Cross wires were then used to connect the cathodes of
adjacent rows. A 22 gage bare wire was used. Again, a small bit of solder was used for the
interconnect points. Four separate LED layers (4-by-4 array of LEDs) were completed.

To assemble the individual layers into a cube, cocktail straw segments were used as spacers
between the layers. The straw segments provided spacing between the layers and also offered
improved structural stability. The anodes for a given LED position were soldered together. For
example, all LEDs in position 0 for all four layers shared a common anode connection.

The completed LED cube was mounted on a perforated printed circuit board (perfboard)
to provide a stable base. LED sockets for the 74LS244 and the 74HC154 were also mounted to

www.adafruit.com


4.9. APPLICATION: SPECIAL EFFECTS LED CUBE 209

+-

+-

+-

+-

Idiode  = 

IOL  = +/- 25 mA 

LED0

Side
View

 

Idiode

Cocktail 
Straw 
Spacer

0 1 2

4 5 6

8 9 10 11

12 13 14

+
_

+
_

+
_

+
_ +

74LVX244

led_sel0
led_sel1

led_sel2

led_sel3

M
S

P
4
3
0 L

E
D

 s
el

ec
t

L
ay

er
 S

el
ec

t

31

32

33

34

35

36

37

38

layer_sel0
layer_sel1

layer_sel2

layer_sel3

7

3+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

15

220

LED

Idiode

20

10

V
cc
 = 5 VDC 

/OE1-1 
/OE2-19

2 4 6 8

18 16 14 12

11 13 15 17

3579

LED horizontal layer 1

LED horizontal layer 2
LED horizontal layer 3

O0 O1 O2 O3 O4 O5 O6 O7

A0  A1 A2

V cc
 =

 5
 V

D
C

 

V cc
 =

 5
 V

D
C

 

/E1  /E2  E3
(4)  (5)  (6)

5 VDC

(1)  (2) (3)
(8)

(16)
(15) (14) (13)(12) (11) (10) ( 9) ( 7)

LED
 0

LED
 1

LED
 2

LED
 3

LED
 4

LED
 5

LED
 6

LED
 7

LED
 8

LED
 9

LED
 1
0

LED
 1
1

LED
 1
2

LED
 1
3

LED
 1
4

LED
 1
5

O0 O1 O2 O3 O4 O5 O6 O7

A0  A1 A2/E1  /E2  E3
(4)  (5)  (6) (1)  (2) (3)

(8)

(16)
(15) (14) (13)(12) (11) (10) ( 9) ( 7)

74LVX138 74LVX138

Figure 4.41: LED special effects cube.



210 4. MSP430 OPERATING PARAMETERS AND INTERFACING

0 1 2

4 5 6

8 9 10

12 13 14

+
_

+
_

+
_

+
_

3

7

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

LED

11

15

Solder Connection

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

LED anodes are connected together
to form a common anode crossbar
between LED rows and columns

(a) LED soldering diagram

(b) 3D LED array mounted within plexiglass cube 

Figure 4.42: LED cube construction.



4.9. APPLICATION: SPECIAL EFFECTS LED CUBE 211
the perfboard. Connections were routed to a 16-pin ribbon cable connector. The other end of
the ribbon cable was interfaced to the appropriate pins of the MSP430 via the level shifter. The
entire LED cube was mounted within a 400 plexiglass cube. The cube is available from the Con-
tainer Store (www.containerstore.com). A construction diagram is provided in Figure 4.42.
A picture of the LED cube is shown in Figure 4.43.

Figure 4.43: LED cube (photo courtesy of J. Barrett).

4.9.2 LED CUBE MSP430 ENERGIA CODE
Provided below is the basic code template to illuminate a single LED (LED 0, layer 0). This
basic template may be used to generate a number of special effects (e.g., tornado, black hole,
etc.). Pin numbers are provided for the MSP-EXP430FR5994 LaunchPad.

//************************************************
//led_cube
//
//This example code is in the public domain.
//************************************************

//led select pins
#define led_sel0 31

www.containerstore.com


212 4. MSP430 OPERATING PARAMETERS AND INTERFACING
#define led_sel1 32
#define led_sel2 33
#define led_sel3 34

//layer select pins
#define layer_sel0 35
#define layer_sel1 36
#define layer_sel2 37
#define layer_sel3 38

void setup()
{
pinMode(led_sel0, OUTPUT);
pinMode(led_sel1, OUTPUT);
pinMode(led_sel2, OUTPUT);
pinMode(led_sel3, OUTPUT);

pinMode(layer_sel0, OUTPUT);
pinMode(layer_sel1, OUTPUT);
pinMode(layer_sel2, OUTPUT);
pinMode(layer_sel3, OUTPUT);
}

void loop()
{

//illuminate LED 0, layer 0
//led select

digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);

//layer select
digitalWrite(layer_sel0, HIGH);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, LOW);

delay(500); //delay specified in ms
}



4.9. APPLICATION: SPECIAL EFFECTS LED CUBE 213

//*********************************************

In the next example, a function “illuminate_LED” has been added. To illuminate a specific
LED, the LED position (0–15), the LED layer (0–3), and the length of time to illuminate the
LED in milliseconds are specified. In this short example, LED 0 is sequentially illuminated in
each layer. An LED grid map is shown in Figure 4.44. It is useful for planning special effects.

//************************************************
//led_cube2
//
//This example code is in the public domain.
//************************************************

//led select pins
#define led_sel0 31
#define led_sel1 32
#define led_sel2 33
#define led_sel3 34

//layer select pins
#define layer_sel0 35
#define layer_sel1 36
#define layer_sel2 37
#define layer_sel3 38

void setup()
{
pinMode(led_sel0, OUTPUT);
pinMode(led_sel1, OUTPUT);
pinMode(led_sel2, OUTPUT);
pinMode(led_sel3, OUTPUT);

pinMode(layer_sel0, OUTPUT);
pinMode(layer_sel1, OUTPUT);
pinMode(layer_sel2, OUTPUT);
pinMode(layer_sel3, OUTPUT);
}

void loop()
{



214 4. MSP430 OPERATING PARAMETERS AND INTERFACING

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

layer 0

layer 1

layer 2

layer 3

Figure 4.44: LED grid map.



4.9. APPLICATION: SPECIAL EFFECTS LED CUBE 215
illuminate_LED(0, 0, 500);
illuminate_LED(0, 1, 500);
illuminate_LED(0, 2, 500);
illuminate_LED(0, 3, 500);
}

//*********************************************

void illuminate_LED(int led, int layer, int delay_time)
{
if(led==0)

{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==1)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==2)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==3)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==4)



216 4. MSP430 OPERATING PARAMETERS AND INTERFACING
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

else if(led==5)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

else if(led==6)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

else if(led==7)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

if(led==8)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==9)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);



4.9. APPLICATION: SPECIAL EFFECTS LED CUBE 217
digitalWrite(led_sel3, HIGH);
}

else if(led==10)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==11)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==12)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

else if(led==13)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

else if(led==14)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

else if(led==15)
{



218 4. MSP430 OPERATING PARAMETERS AND INTERFACING
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

if(layer==0)
{
digitalWrite(layer_sel0, HIGH);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, LOW);
}

else if(layer==1)
{
digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, HIGH);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, LOW);
}

else if(layer==2)
{
digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, HIGH);
digitalWrite(layer_sel3, LOW);
}

else if(layer==3)
{
digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, HIGH);
}

delay(delay_time);
}

//*********************************************



4.9. APPLICATION: SPECIAL EFFECTS LED CUBE 219
In the next example, a “fireworks” special effect is produced. The firework goes up, splits

into four pieces, and then falls back down as shown in Figure 4.45. It is useful for planning
special effects.

//************************************************
//fireworks
//
//This example code is in the public domain.
//************************************************

//led select pins
#define led_sel0 31
#define led_sel1 32
#define led_sel2 33
#define led_sel3 34

//layer select pins
#define layer_sel0 35
#define layer_sel1 36
#define layer_sel2 37
#define layer_sel3 38
//*********************************************

void setup()
{
pinMode(led_sel0, OUTPUT);
pinMode(led_sel1, OUTPUT);
pinMode(led_sel2, OUTPUT);
pinMode(led_sel3, OUTPUT);

pinMode(layer_sel0, OUTPUT);
pinMode(layer_sel1, OUTPUT);
pinMode(layer_sel2, OUTPUT);
pinMode(layer_sel3, OUTPUT);
}

void loop()
{
int i;



220 4. MSP430 OPERATING PARAMETERS AND INTERFACING

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

layer 0

layer 1

layer 2

layer 3

Figure 4.45: LED grid map for a fire work.



4.9. APPLICATION: SPECIAL EFFECTS LED CUBE 221
//firework going up
illuminate_LED(5, 0, 100);
illuminate_LED(5, 1, 100);
illuminate_LED(5, 2, 100);
illuminate_LED(5, 3, 100);

//firework exploding into four pieces
//at each cube corner
for(i=0;i<=10;i++)
{
illuminate_LED(0, 3, 10);
illuminate_LED(3, 3, 10);
illuminate_LED(12, 3, 10);
illuminate_LED(15, 3, 10);
delay(10);
}

delay(200);

//firework pieces falling to layer 2
for(i=0;i<=10;i++)
{
illuminate_LED(0, 2, 10);
illuminate_LED(3, 2, 10);
illuminate_LED(12, 2, 10);
illuminate_LED(15, 2, 10);
delay(10);
}

delay(200);

//firework pieces falling to layer 1
for(i=0;i<=10;i++)
{
illuminate_LED(0, 1, 10);
illuminate_LED(3, 1, 10);
illuminate_LED(12, 1, 10);
illuminate_LED(15, 1, 10);
delay(10);



222 4. MSP430 OPERATING PARAMETERS AND INTERFACING
}

delay(200);

//firework pieces falling to layer 0
for(i=0;i<=10;i++)

{
illuminate_LED(0, 0, 10);
illuminate_LED(3, 0, 10);
illuminate_LED(12, 0, 10);
illuminate_LED(15, 0, 10);
delay(10);
}

delay(10);
}

//*********************************************

void illuminate_LED(int led, int layer, int delay_time)
{
if(led==0)

{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==1)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==2)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);



4.9. APPLICATION: SPECIAL EFFECTS LED CUBE 223
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==3)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==4)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

else if(led==5)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

else if(led==6)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

else if(led==7)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

if(led==8)



224 4. MSP430 OPERATING PARAMETERS AND INTERFACING
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==9)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==10)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==11)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==12)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

else if(led==13)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);



4.9. APPLICATION: SPECIAL EFFECTS LED CUBE 225
digitalWrite(led_sel3, HIGH);
}

else if(led==14)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

else if(led==15)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

if(layer==0)
{
digitalWrite(layer_sel0, HIGH);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, LOW);
}

else if(layer==1)
{
digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, HIGH);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, LOW);
}

else if(layer==2)
{
digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, HIGH);
digitalWrite(layer_sel3, LOW);
}

else if(layer==3)



226 4. MSP430 OPERATING PARAMETERS AND INTERFACING
{
digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, HIGH);
}

delay(delay_time);
}

//*********************************************

4.10 LABORATORY EXERCISE: INTRODUCTION TO THE
EDUCATIONAL BOOSTER PACK MKII AND THE
GROVE STARTER KIT

Introduction. In this laboratory exercise, we get acquainted with the features of the Educational
Booster Pack MkII and the Grove Starter Kit.

Procedure 1: Access the MkII support software available with Energia. Execute the software
and interact with the peripherals aboard the MkII. Develop a table of features for the MkII.
The table should have column headings for:

• MkII feature,

• MSP430 pins used for interface, and

• notes on interesting aspects.

Procedure 2: Access the Grove Starter Kit support software. Execute the software and interact
with the peripherals aboard the Grove. Develop a table of features for the Grove. The table
should have column headings for:

• grove feature,

• MSP430 pins used for interface, and

• notes on interesting aspects.



4.11. LABORATORY: COLLECTION AND DISPLAY OF WEATHER INFORMATION 227

4.11 LABORATORY: COLLECTION AND DISPLAY OF
WEATHER INFORMATION

Introduction and Background. In the last chapter of the book, we design and implement a
multifunction weather station. In preparation for this design project, an interface and support
software functions are required for a serial LCD.

Procedure: Earlier in the chapter, we discussed the interface for a serial configured LCD. Re-
search and locate a serial LCD compatible with the MSP430 microcontroller. Design and im-
plement the interface and support software for the LCD.

4.12 SUMMARY
In this chapter, we presented the voltage and current operating parameters for the MSP430 mi-
crocontroller. We discussed how this information may be applied to properly design an interface
for common input and output circuits. It must be emphasized a carefully and properly designed
interface allows the microcontroller to operate properly within its parameter envelope. If due
to a poor interface design, a microcontroller is used outside its prescribed operating parameter
values, spurious and incorrect logic values will result. We provided interface information for a
wide range of input and output devices. We also discussed the concept of interfacing a motor to a
microcontroller using PWM techniques coupled with high power MOSFET or SSR switching
devices.

4.13 REFERENCES AND FURTHER READING
4N25 Optocoupler, Phototransistor Output, with Base Connection, Doc: 83725, 2010. www.vishay
.com

Barrett, S. F.ArduinoMicrocontroller Processing for Everyone!, 3rd ed.,Morgan&Claypool, 2013.
DOI: 10.2200/s00522ed1v01y201307dcs043. 178, 205

Barrett, S. F. and Pack, D. J. Microcontrollers Fundamentals for Engineers and Scientists, Morgan
& Claypool Publishers, 2006. DOI: 10.2200/s00025ed1v01y200605dcs001.

Crydom Corporation, San Diego, CA. www.crydom.com 200

Electrical Signals and Systems. Primis Custom Publishing, McGraw-Hill Higher Education,
Department of Electrical Engineering, United States Air Force Academy, CO.

Faulkenberry, L. An Introduction to Operational Amplifiers, John Wiley & Sons, New York, 1977.
164, 166

Faulkenberry, L. Introduction to Operational Amplifiers with Linear Integrated Circuit Applications,
1982. 167

www.vishay.com
www.vishay.com
http://dx.doi.org/10.2200/s00522ed1v01y201307dcs043
http://dx.doi.org/10.2200/s00025ed1v01y200605dcs001
www.crydom.com


228 4. MSP430 OPERATING PARAMETERS AND INTERFACING
Images Company, Staten Island, NY, 10314. 155

Linear Technology, LTC1157 3.3 Dual Micropower High-Side/Low-Side MOSFET Driver. 180

MikroElektronika. www.mikroe.com

Milone Technologies-eTape Liquid Level Sensors. www.milonetech.com

MSP430FR2433 LaunchPad Development Kit (MSP-EXP430FR2433), (SLAU739), Texas In-
struments, 2017.

MSP430FR2433 Mixed-Signal Microcontrollers, (SLAB034AD), Texas Instruments, 2017.

MSP430FR2433 Mixed-Signal Microcontroller, (SLASE59C), Texas Instruments, 2018. 141

MSP430FR5994LaunchPadDevelopmentKit (MSP-EXP430FR5994), (SLAU678A), Texas In-
struments, 2016.

MSP430FR599x, MSP430FR596x Mixed-Signal Microcontrollers, (SLASE54C), Texas Instru-
ments, 2018.

Power Switch Tail II. www.powerswitchtail.com

Sedra, A. and Smith, K.Microelectronic Circuits, 5th ed., Oxford, Oxford University Press, 2004.
170

Seeed-The IoT Hardware Enabler. www.seeed.com

Shoreline Marine. www.shorelinemarinedevelopment.com

Sick Stegmann Incorporated, Dayton, OH. www.stegmann.com 154, 155

Sparkfun. www.sparkfun.com

Texas Instruments H-Bridge Motor Controller IC, (SLVSA74A), 2010.

Texas Instruments Logic Guide, (SDYU001AB), Texas Instruments, 2017. 142, 143

Texas Instruments LSF010XEVM-001User’s Guide, (SDLU003A), Texas Instruments, 2015. 144

Texas Instruments TPIC6C596 Power Logic 8-Bit Shift Register, (SLIS093D), 2015. 145

www.mikroe.com
www.milonetech.com
www.powerswitchtail.com
www.seeed.com
www.shorelinemarinedevelopment.com
www.stegmann.com
www.sparkfun.com


4.14. CHAPTER PROBLEMS 229

4.14 CHAPTER PROBLEMS
Fundamental

1. What will happen if a microcontroller is used outside of its prescribed operating envelope?

2. Discuss the difference between the terms “sink” and “source” as related to current loading
of a microcontroller.

3. Can an LED with a series-limiting resistor be directly driven by the MSP430 microcon-
troller? Explain.

4. In your own words, provide a brief description of each of the microcontroller electrical
parameters.

5. What is switch bounce? Describe two techniques to minimize switch bounce.

6. Describe a method of debouncing a keypad.

Advanced

1. What is the difference between an incremental encoder and an absolute encoder? Describe
applications for each type.

2. What must be the current rating of the 2N2222 and 2N2907 transistors used in the tri-
state LED circuit? Support your answer.

Challenging

1. Draw the circuit for a six-character seven segment display. Fully specify all components.
Write a program to display “MSP430.”

2. Repeat the question above for a dot matrix display.

3. Repeat the question above for a LCD display.

4. An MSP430 has been connected to a JRP 42BYG016 unipolar, 1.8ı per step, 12 VDC
at 160 mA stepper motor. A 1-s delay is used between the steps to control motor speed.
Pushbutton switches SW1 and SW2 are used to assert CW and CCW stepper motion.
Write the code to support this application.





231

C H A P T E R 5

Power Management and Clock
Systems

Objectives: After reading this chapter, the reader should be able to:

• describe strategies to minimize power consumption in an MSP430-based microcontroller
application;

• balance the power demands of a MSP430 controlled system and the power supply through
available power sources;

• describe different methods to enable ultra-low power (ULP) operation;

• define different operatingmodes for theMSP430microcontroller and how they contribute
to ULP operation;

• illustrate the MSP430 PMM and how it contributes to ULP operation;

• configure the MSP430 supply voltage supervisor (SVS) system and describe how it con-
tributes to ULP operation;

• explain the MSP430 CS and how it contributes to ULP operation;

• define battery capacity and its related parameters;

• describe voltage regulation and different methods of achieving regulation;

• describe Energy Trace Technology features of the MSP430 microcontroller; and

• employ a high-efficiency charge pump circuit to operate an MSP430 microcontroller from
a single 1.5 VDC battery.

5.1 OVERVIEW
In a basic circuits course, we learn energy consumption is the product of power and time. We
also learn that power is the product of voltage and current. This chapter discusses techniques
to minimize the energy consumption in an MSP430 microcontroller-based application. The
overriding chapter theme is to strategically use different techniques to minimize the time the
microcontroller is operated in high voltage and current modes.



232 5. POWER MANAGEMENT AND CLOCK SYSTEMS
We begin the chapter with a discussion on the balancing act microcontroller-based sys-

tem designers perform between the energy requirements of a given application and available
power sources. We also provide an overview of the ultra-low power strategies and features of
the MSP430 microcontroller that support such strategies. We then discuss the LPMs of the
MSP430 and how they help to reduce power consumption. We investigate the MSP430 subsys-
temswhich contribute toULP operation, including the PowerManagementModule, the Supply
Voltage Supervisor, and the CS. The MSP430 CS provides for a variety of clock sources and
operating frequencies for the MSP430. Since operating frequency is directly related to power
consumption, the goal is to choose the lowest operating frequency and still accomplish the mi-
crocontroller’s task. We then consider the battery supply. We begin with a discussion of battery
capacity and its key parameters. We also describe the important concept of voltage regulation
and different methods of achieving a stable voltage source within a circuit.The chapter concludes
with a laboratory exercise to investigate current drain in different MSP430 operating modes and
methods to operate an MSP430 using various power sources including a single 1.5 VDC battery
by employing a high-efficiency charge pump integrated circuit.

5.2 BACKGROUND THEORY
The MSP430 is the lowest-power consuming microcontroller available on the market [Day,
2009]. It has been designed with a wide variety of ultra-low power features. Although it can be
used in a wide variety of applications, the controller is intended for battery-operated applications
where frequent battery replacement is undesirable or impractical. Application examples include
battery-operated toys, portable measurement instruments, home automation products, medical
instruments, metering applications, and portable smart card readers [SLVS362A, 2001].

Using its power saving capabilities, the MSP430 microcontroller is typically employed in
applications where operation on a battery supply is required over an extended period. To meet
this operational requirement, the power demands of the MSP430 must be balanced with the
capacity of the battery source. The overall current demand of the MSP430, although the lowest
in the industry, increases with [Day, 2009]:

• supply voltage level,

• CPU clock speed,

• operating temperature,

• peripheral device selection,

• I/O use, and

• memory type and size.



5.3. OPERATING MODES 233
The MSP430 microcontroller was designed as an ultra-low power processor. Taking ad-

vantage of the ULP features is more involved than simply minimizing the effects listed above.
The general approach is to minimize instantaneous current draw while maximizing the time
spent in LPMs. To do this, the designer must be well acquainted with the MSP430 operating
modes, the Power Management Module, and the CS of the MSP430.

As discussed in Chapter 4, the designer must also ensure that peripheral devices are prop-
erly interfaced to the microcontroller. Input peripherals must provide a logic high at the supply
voltage level and a logic low at ground level. This avoids intermediate input voltages that may
wreak havoc upon the microcontroller. Also, a proper interface must be designed for all output
devices. Furthermore, any unused microcontroller pins should be set as outputs.

To become better acquainted with MSP430 ULP features, we review operating modes,
the PMM, the SVS, and the CS in the next several sections.

5.3 OPERATING MODES
The basic premise behind the lower power operating modes is to turn off system clocks (e.g.,
ACLK: auxiliary clock, MCLK: master clock) that are not currently in use. Since a CMOS cir-
cuit consumes power when switching logic states, turning off clocks not in use conserves power.
The operating mode of the controller is determined by the settings of four bits within the Status
Register (R2): CPUOFF, OSCOFF, SCG0 (System Clock Generator 0), and SCG1 (System
Clock Generator 1). By configuring these four bits, a designer can select the operating mode for
the controller based on the system application and at different times within an application. The
different processor operating modes are summarized in Figure 5.1. It is interesting to note that
current consumption is lower, the higher the LPM number selected. In the laboratory exercise,
we investigate the current requirements of several different low power operating modes.

One of the advantages of designating the low power operating mode with Status Register
bits is that when an interrupt occurs, the operating mode configuration is automatically saved
onto the stack. The same operating mode configuration is then retrieved and restored at the
completion of the interrupt service routine, automatically switching between two power modes.

Example: In this example, the MSP-EXP430FR5994 LaunchPad is placed in LPM 4.5 until
the switch on P1.3 is asserted. The current is measured in the different power modes.

We program in C using the Energia integrated development environment. To compile,
upload, and execute a C program in Energia; perform the following steps.

• Connect the MSP-EXP430FR5994 LaunchPad to the Energia host computer.

• Select the board type using Tools- >Board.

• Start a new sketch using File- >New.

• Click on the small down arrow icon in the top right corner of the Energia screen and then
select “New Tab.”



234 5. POWER MANAGEMENT AND CLOCK SYSTEMS

PMMREGOFF=1

to LPM4.5

CPUOFF=1

OSCOFF=1

SCG0=1

SCG1=1

Int/NMI

CPUOFF=1

OSCOFF=0

SCG0=1

SCG1=1

CPUOFF=1

OSCOFF=0

SCG0=0

SCG1=1

CPUOFF=1

OSCOFF=0

SCG0=1

SCG1=0

LPM0:

CPU/MCLK = off

FLL = on

ACLK = on

Vcore = on

LPM1:

CPU/MCLK = off

FLL = off

ACLK = on

Vcore = on

LPM2:

CPU/MCLK = off

FLL = off

ACLK = on

Vcore = on

Active Mode:

- CPU is active

- Various modules

are active

LPM4:

CPU/MCLK = off

FLL = off

ACLK = off

Vcore = on

LPM3:

CPU/MCLK = off

FLL = off

ACLK = on

Vcore = on

CPUOFF=1

OSCOFF=0

SCG0=0

SCG1=0

Int/NMI

Int/NMI

Int/NMI

Int/NMI

Figure 5.1: MSP430 operating modes. Adapted from Texas Instruments SLAU208Q [2018].
(Illustration used with permission of Texas Instruments (www.ti.com).)

• Insert filename.c into the white box at the bottom right corner of the Energia screen and
click “OK.” A new tab will now open with the designation filename.c.

• The C program may now be written in the new tab.

• Compile and load the program to the LaunchPad using the check and right arrow icons.

Note:TheMSP-EXP430FR2433LaunchPadmay also be used for this example; however,
the 32 kHz crystal is not connected. Procedures for connecting the crystal is provided in the
MSP430FR2433 LaunchPad Development Kit User’s Guide [SLAU739, 2017].

Use the following procedures tomeasure the current used by the LaunchPad [SLAU678A,
2016]:

• Remove the 3V3 jumper that links the eZ-FET Debug Probe from the MSP430FR5994
portion of the MSP-EXP430FR5994 LaunchPad, as shown in Figure 5.2.

• Connect an ammeter in place of the jumper. Insure the ammeter is capable of measuring
microamps.

www.ti.com


5.3. OPERATING MODES 235
• Disconnect the UART channel back to the host computer by removing the TXD jumper.

• Declare all unused pins as output.

• Once the current measurement is complete, restore the 3V3 and TXD jumpers.

//********************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2014, Texas Instruments Incorporated
// All rights reserved.
//
// MSP430 CODE EXAMPLE DISCLAIMER
//
//********************************************************************
//MSP430FR5x9x Demo - Entering and waking up from LPM4.5 via P1.3
//interrupt with SVS disabled.
//
//Description:
//- Download and run the program.
//- When LPM4.5 entered, no LEDs should be on.
//- Use a multimeter to measure current on JP1 and compare to the
// datasheet.
//- When a positive voltage is applied to P1.3 the device should
// wake up from LPM4.5. This will enable the LFXT oscillator
// and blink the LED (on P1.0).
//
// MSP430FR5994
// ---------------
// /|\| XIN|-
// | | | 32KHz Crystal
// --|RST XOUT|- /|\
// | | |
// | P1.0|---> LED / switch
// | | |
// | P1.3|<------------------
// Pulled-down internally.
// Apply positive voltage.
//
//William Goh
//Texas Instruments Inc.
//October 2015



236 5. POWER MANAGEMENT AND CLOCK SYSTEMS

USB
to

Host

eZ-FET
Debug
Probe

Energy Trace
Technology

Jumper Isolation
Block

LED1

A

Figure 5.2: Configuring the FR5994 for current measurements. (Illustration used with permis-
sion of Texas Instruments (www.ti.com).)

www.ti.com


5.3. OPERATING MODES 237
//Built with IAR Embedded Workbench V6.30 & Code Composer Studio V6.1
//**********************************************************************

#include <msp430.h>

//Function prototypes
void configure_GPIO(void);

int main(void)
{
WDTCTL = WDTPW | WDTHOLD; //stop watchdog timer
configure_GPIO(); //configure I/O

//Determine if MSP430 is coming out of an LPMx.5 or a regular RESET.
//SYSRSTIV used to determine source of interrupt or reset
if(SYSRSTIV == SYSRSTIV__LPM5WU)
{
PJSEL0 = BIT4 | BIT5; //for XT1

//Clock System Setup
CSCTL0_H = CSKEY_H; //Unlock CS registers
CSCTL1 = DCOFSEL_0; //Set DCO to 1MHz
CSCTL2 = SELA__LFXTCLK | SELS__DCOCLK | SELM__DCOCLK;
CSCTL3 = DIVA__1 | DIVS__1 | DIVM__1; //Set all dividers
CSCTL4 &= ~LFXTOFF;

//Configure LED pin for output
P1DIR |= BIT0;

//After wakeup from LPM4.5 state of I/Os are locked until the LOCKLPM5
//bit in the PM5CTL0 register is cleared.
//Disable the GPIO power-on default high-impedance mode to activate
//previously configured port settings. The oscillator should now
//start...
PM5CTL0 &= ~LOCKLPM5;

do{
CSCTL5 &= ~LFXTOFFG; //Clear XT1 fault flag
SFRIFG1 &= ~OFIFG;



238 5. POWER MANAGEMENT AND CLOCK SYSTEMS
}while (SFRIFG1 & OFIFG); //Test oscillator fault flag

}//end if
else

{
//Configure P1.3 Interrupt
P1OUT &= ~BIT3; //Pull-down resistor on P1.3
P1REN |= BIT3; //Select pull-down mode for P1.3
P1DIR = 0xFF ^ BIT3; //Set all but P1.1 to output

//direction
P1IES &= ~BIT3; //P1.3 Lo/Hi edge
P1IFG = 0; //Clear all P1 interrupt flags
P1IE |= BIT3; //P1.3 interrupt enabled

//Disable the GPIO power-on default high-impedance mode to activate
//previously configured port settings
PM5CTL0 &= ~LOCKLPM5;
PMMCTL0_H = PMMPW_H; //Open PMM Registers for write
PMMCTL0_L &= ~(SVSHE); //Disable high-side SVS
PMMCTL0_L |= PMMREGOFF; //and set PMMREGOFF
PMMCTL0_H = 0; //Lock PMM Registers

//Enter LPM4 Note that this operation does not return. The LPM4.5
//will exit through a RESET event, resulting in a re-start
//of the code.
__bis_SR_register(LPM4_bits); //SCG1+SCG0+OSCOFF+CPUOFF

// Should never get here...
while (1);
}

//Now blink the LED in an endless loop.
while(1)

{
P1OUT ^= BIT0; //P1.0 = toggle
__delay_cycles(100000);
}

}

//*********************************************************************



5.4. THE POWER MANAGEMENT MODULE AND SUPPLY VOLTAGE SUPERVISOR 239

void configure_GPIO(void)
{
P1OUT = 0; P1DIR = 0xFF; P2OUT = 0; P2DIR = 0xFF;
P3OUT = 0; P3DIR = 0xFF; P4OUT = 0; P4DIR = 0xFF;
P5OUT = 0; P5DIR = 0xFF; P6OUT = 0; P6DIR = 0xFF;
P7OUT = 0; P7DIR = 0xFF; P8OUT = 0; P8DIR = 0xFF;

PJOUT = 0; PJSEL0 = BIT4 | BIT5; // For XT1
PJDIR = 0xFFFF;
}

//*********************************************************************

5.4 THE POWER MANAGEMENT MODULE (PMM) AND
SUPPLY VOLTAGE SUPERVISOR (SVS)

The PMM is responsible for providing the main core voltage for the MSP430 microcontroller,
shown in Figure 5.3. The core voltage is designated as VCORE and is derived from the supply
voltage provided to the microcontroller. The externally provided supply voltage is designated as
the device VCC or DVCC. The VCORE voltage, as its name implies, provides a voltage source for the
core features of the microcontroller: the central processing unit (CPU), memories, and digital
modules. The supply voltage DVCC is primarily used to provide a voltage source for the I/O, the
oscillators, and the analog modules [SLAU208Q, 2018].

As part of the PMM, the MSP430 has an onboard, integrated low-dropout voltage reg-
ulator designated as the LDO. The LDO steps the high side supply voltage DVCC down to
the low side core voltage VCORE. The VCORE voltage may be programmed in four distinct steps.
The specific voltage is determined based on the anticipated system operating frequency, that is,
the MCLK rate. As shown in Figure 5.4, higher system operating frequencies require higher
supply voltages. The settings for the PMMCOREVx control bits for the LDO regulator (see
Figure 5.3) are shown within the field intersections in Figure 5.4. Figure 5.4 is a generic fig-
ure for microcontrollers within the MSP430 family. Each family member has a specific system
frequency vs. supply voltage profile [SLAU208Q, 2018].

5.4.1 SUPPLY VOLTAGE SUPERVISOR
In addition to providing the VCORE voltage, the PMM has a wide variety of voltage supervisory
options for both DVCC and VCORE via the SVS modules, shown in Figure 5.3. The SVS provides
two different levels of voltage level sensing: supervision and monitoring. If supervision options
are selected, the microcontroller will perform a power on reset (POR) when the sensed voltage



240 5. POWER MANAGEMENT AND CLOCK SYSTEMS
                  PMM Registers

PMM control register 0 (PMMCTL0)

PMM control register 1 (PMMCTL1)

PMM control register 2 (PMMCTL2)

PMM control register 5 (PMMCTL5)

PMM interrupt flag register (PMMIFG)

Control
Bits

Device VCC(DVCC)
- from external source
- to I/Os,
oscillators,
analog modules

Integrated low drop out
regulator (LDO)

Reference

Supervisor-Supervised
High Side (SVSH)

Supervisor-Monitored
High Side (SVMH)

CMMCOREVx:
controls VCORE values VCORE to CPU,

memory digital
modules

Supervisor-Supervised
LowSide (SVSL)

Supervisor-Monitored
Low Side (SVML)

Brownout
Reset

(BOR)

OR ResetNOR

High side Low side

Ports
ON

Figure 5.3: Power management module and supply voltage supervisor. (Adapted from
SLAU208Q [2018].)

f3

f2

f1

f0

S
ys

te
m

 F
re

qu
en

cy
 (

M
H

z)

Supply Voltage (V)

1.8 2.0 2.2 2.4 3.6

0 0, 1 0, 1, 2 0, 1, 2,3

1 1, 2 1, 2,3

2 2,3

3

Figure 5.4: Operating frequency vs. supply voltage profile for the MSP430 microcontroller.
(Adapted from SLAU208Q [2018].)



5.5. CLOCK SYSTEM 241
falls below a prescribed level. If monitoring options are selected, an interrupt is generated to
indicate which sensed voltage has fallen below prescribed levels [SLAU208Q, 2018].

The SVS also has brownout reset (BOR) circuitry which monitors the VCORE voltage.
During startup, the BOR keeps the microcontroller in the reset state until voltages have reached
minimum levels and stabilized. During normal operation, the BOR will generate a reset if VCORE

falls below prescribed levels [SLAU208Q, 2018].

5.4.2 PMM REGISTERS
All activities of the PMM and SVS are controlled by the user-defined settings of the PMM and
SVS-related registers, listed in Figure 5.3. Space does not permit a detailed description of these
registers. Refer to the specific documentation for a given MSP430 microcontroller for details
on the register settings.

5.5 CLOCK SYSTEM
The MSP430FR2433 and the MSP430FR5994 share a similar CS, as shown in Figure 5.5. The
CS allows the MSP430 to operate from many different clock sources: two external (XT1CLK
and XT2CLK) and four internal (VLOCLK, REFOCLK, DCOCLK, and the MODOSC).
The FR2433 is not equipped with the XT2CLK external clock.

The clock sources are routed through frequency dividers to the three main clocks for the
MSP430:

• Auxiliary Clock (ACLK)

• Master Clock (MCLK)

• Subsystem Master Clock (SMCLK)

The frequency dividers allow the clock sources to be divided down by a factor of 1, 2,
4, 8, 16, or 32. This allows the frequency of a specific clock to be set optimally for a given
application. A variety of clock sources provides flexibility for use in a specific application. They
are the following.

• XT1CLK, or external clock 1, provides a connection for an external clock source. The
external clock source is typically a low-frequency 32,768 Hz source from a crystal or a
resonator.1 This time base may be processed and conveniently used to provide a 1-s time
base for RTC applications. In the default configuration for the MSP-EXP430FR2433
LaunchPad, the timebase is populated but not connected.

• VLOCLK is an internal, low-frequency, low-power consumption oscillator with a fre-
quency typically of 10 kHz.

1A crystal time base is typically more stable than a resonator type time base.



242 5. POWER MANAGEMENT AND CLOCK SYSTEMS

           Clock System Control Registers

Clock System Control 0 Register (CSCTL0)

Clock System Control 1 Register (CSCTL1)

Clock System Control 2 Register (CSCTL2)

Clock System Control 3 Register (CSCTL3)

Clock System Control 4 Register (CSCTL4)

Clock System Control 5 Register (CSCTL5)

Clock System Control 6 Register (CSCTL6)

Clock System Control 7 Register (CSCTL7)

Clock System Control 8 Register (CSCTL8)

XT1CLK: 32.768 kHz crystal

- FR2433 not connected

- FR5994 connected

XT2CLK: HF crystal

- FR5994 not populated

Auxiliary Clock (ACLK)

- low frequency peripherals

- source: XT1CLK or REFOCLK

Subsystem Master Clock (SMCLK)

- peripheral clock

- source: MCLK

Master Clock (MCLK)

- CPU, CRC

- source: REFOCLK, DCOCLK,

               XT1CLK, VLOCLK

VLOCLK

10 kHz

REFOCLK

32.768 kHz

DCOCLK

1 MHz

MODOSC

5 MHz

Clock
Selection

Frequency
Divider

Frequency
Divider

Frequency
Divider

Figure 5.5: Clock system (CS) overview.

• REFOCLK is an internal low-frequency reference oscillator with a frequency of 32768
Hz.

• DCOCLK is an internal digitally controlled oscillator set for 1 MHz.

• MODOSC is an internal digitally controlled oscillator set for 5 MHz.

• XT2CLK provides a connection for an external, high-frequency clock source. This source
is not available in the MSP430FR2433. In the default configuration for the MSP-
EXP430FR5994 LaunchPad, the timebase is not populated on the printed circuit board.

The operation and configuration of the clock system is controlled by the CS con-
trol registers and their specific control bit settings. The detailed CS block diagrams for the
MSP430FR2433 and the MSP430FR5994 are shown in Figures 5.6 and 5.7. Both diagrams
provide clock sources on the left, clock divider features in the center, and clock outputs on



5.5. CLOCK SYSTEM 243
the right. We examine the flexibility of the CS with several examples [SLAU445G, 2016,
SLAU367O, 2017].

Example: In this example, the MSP-EXP430FR2433 LaunchPad is used to configure the
MCLK for 16 MHz operation. The MCLK, SMCLK, and the ACLK are routed to external
pins for observation on an oscilloscope or logic analyzer.
//********************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2014, Texas Instruments Incorporated
// All rights reserved.
//
// MSP430 CODE EXAMPLE DISCLAIMER
//
//********************************************************************
//MSP430FR243x Demo - Configure MCLK for 16MHz operation,
// and REFO sourcing FLLREF and ACLK.
//
//Description:
//- Configure MCLK for 16MHz. FLL reference clock is REFO. At this
// speed, the FRAM requires wait states.
//- ACLK = default REFO ~32768Hz, SMCLK = MCLK = 16MHz.
//- Toggle LED to indicate that the program is running.
//
// MSP430FR2433
// ---------------
// /|\| |
// | | |
// --|RST |
// | P1.0 |---> LED
// | P1.3 |---> MCLK = 16MHz
// | P1.7 |---> SMCLK = 16MHz
// | P2.2 |---> ACLK = 32768Hz
//
//
//Ling Zhu, Texas Instruments Inc., Feb 2015
//Built with IAR Embedded Workbench v6.20 & Code Composer Studio v6.0.1
//*********************************************************************

#include <msp430.h>



244 5. POWER MANAGEMENT AND CLOCK SYSTEMS

Note: XT1HF setting is device specific.
Refer to the device-specific data sheet
for details.

XT1AUTOOFF
XT1AGCOFF
XT1DRIVE

XTS XT1BYPASS

XT1IN

XT1OUT

ENSTFCNT1
XT10FFG

XT1

XT1

REFO

SELREF FLLREFDIV

FLLWARNEN, FLLULIE
FLLUNLOCKHIS, FLLUNLOCK

FLLULIFG, DCOFFG

DC OF TRIM
DCORSEL, DCO
DISMOD, MOD

DCO

DCOCLKDIV

VLOAUTOOFF

VLO

SELMS

DIVM     CPUOFF

MCLK

SMCLK

SMCLKOFFDIVS

VLOCLK

ACLK

MODCLK

MCLK Request

MODCLK Request

MODO

SELA

DIVA

SMCLK Request

XT1CLK

From Peripherals
MODCLKREQEN

From Peripherals
MCLKREQEN

From Peripherals
SMCLKREQEN

ACLK Request
From Peripherals
ACLKREQEN

MCLK Request From Peripherals
MCLKREQEN

SMCLK Request From Peripherals
SMCLKREQEN

ACLK Request From Peripherals
ACLKREQEN

00

01

10

11

D
C

O
C

L
K

FLLDFLLN

FD
LPF

REFOCLK

Figure 5.6:MSP430FR2433 clock system (CS) overview [SLAU445G, 2016]. (Illustration used
with permission of Texas Instruments (www.ti.com).)

www.ti.com


5.5. CLOCK SYSTEM 245

HFXIN

HFXOUT

LFXIN

LFXOUT

EN

LFXTBYPASS

HFXTBYPASS

HFXTDRIVE

LFXTDRIVE

Faut
Detection

Faut
Detection

ACLK

ACLK Enable Logic

MCLK Enable Logic

SELA                OSCOFF

SELM               CPUOFF

DIVA

Divider
/1/2/4/8/16/32

DIVM

Divider
/1/2/4/8/16/32

ACLK_REQEN
ACLK_REQ

MCLK_REQEN
MCLK_REQ

SELA OSCOFF

 2.7/3.3/4/5.3/6.7/8MHz

 16/20/24 MHz

DCORSELDCOFSEL

MODOSC_REQEN

MODOSC_REQ

DCOCLK

VLOCLK

HFXTCLK

LFXTCLK

LFMODCLK

Unconditional MODOSC
requests

MODOSC Enable
Logic

MODCLK

LFXTCLK

VLOCLK

SMCLK

MCLK

000

EN

001

010

011

100

101

110

111

rsvd

rsvd

rsvd

rsvd

rsvd

rsvd

rsvd

rsvd

rsvd

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

LFXT

HFXT

VLO

DCO

MODOSC
/128

/1

0

1

1

0

1

0

0

1

0

1

0

1

EN

SMCLK Enable Logic

SELS               SMCLKOFF

DIVS

Divider
/1/2/4/8/16/32

SMCLK_REQEN
SMCLK_REQ

EN

Figure 5.7:MSP430FR5994 clock system (CS) overview [SLAU367O, 2017]. (Illustration used
with permission of Texas Instruments (www.ti.com).)

www.ti.com


246 5. POWER MANAGEMENT AND CLOCK SYSTEMS
int main(void)
{
WDTCTL = WDTPW | WDTHOLD; //Stop watchdog timer

//Configure one FRAM wait state as required by the device datasheet
//for MCLK operation beyond 8MHz before configuring the clock system.
FRCTL0 = FRCTLPW | NWAITS_1;

__bis_SR_register(SCG0); //disable FLL
CSCTL3 |= SELREF__REFOCLK; //Set REFO as FLL reference
CSCTL0 = 0; //clear DCO and MOD registers
CSCTL1 &= ~(DCORSEL_7); //clear DCO freq select bits first
CSCTL1 |= DCORSEL_5; //Set DCO = 16MHz
CSCTL2 = FLLD_0 + 487; //DCOCLKDIV = 16MHz
__delay_cycles(3);
__bic_SR_register(SCG0); //enable FLL
while(CSCTL7 & (FLLUNLOCK0 | FLLUNLOCK1)); //FLL locked
CSCTL4 = SELMS__DCOCLKDIV | SELA__REFOCLK;

//set default REFO(~32768Hz) as ACLK source, ACLK = 32768Hz
//default DCOCLKDIV as MCLK and SMCLK source

P1DIR |= BIT0 | BIT3 | BIT7; //set MCLK SMCLK and LED pin as output
P1SEL1 |= BIT3 | BIT7; //set MCLK, SMCLK pin as second func
P2DIR |= BIT2; //set ACLK pin as output
P2SEL1 |= BIT2; //set ACLK pin as second function
PM5CTL0 &= ~LOCKLPM5; //disable the GPIO power-on default

//high-impedance mode
//to activate previously configured
//port settings

while(1)
{
P1OUT ^= BIT0; //Toggle P1.0 using exclusive-OR
__delay_cycles(8000000); //delay for 8000000*(1/MCLK)=0.5s
}

}

//*********************************************************************



5.5. CLOCK SYSTEM 247
Example: In this example the MSP-EXP430FR5994 LaunchPad is used to configure the
MCLK and SMCLK for 8 MHz operation. The ACLK is sourced by the VLOCLK and di-
vided for a 9.4 kHZ output. The clock signals are routed to external pins for observation on an
oscilloscope or logic analyzer.

//********************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2014, Texas Instruments Incorporated
// All rights reserved.
//
// MSP430 CODE EXAMPLE DISCLAIMER
//
//********************************************************************
//MSP430FR5x9x Demo - Configure MCLK for 8MHz operation
//
//Description: Configure SMCLK = MCLK = 8MHz, ACLK = VLOCLK.
//
// MSP430FR5994
// ---------------
// /|\| |
// | | |
// --|RST |
// | |
// | P1.0|---> LED
// | P2.0|---> ACLK = ~9.4kHz
// | P3.4|---> SMCLK = MCLK = 8MHz
//
//William Goh, Texas Instruments Inc., October 2015
//Built with IAR Embedded Workbench V6.30 & Code Composer Studio V6.1
//*********************************************************************

#include <msp430.h>

int main(void)
{
WDTCTL = WDTPW | WDTHOLD; //Stop WDT

//Configure GPIO
P1OUT &= ~BIT0;

//Clear P1.0 output latch for a defined power-on state



248 5. POWER MANAGEMENT AND CLOCK SYSTEMS
P1DIR |= BIT0; //Set P1.0 to output direction

P2DIR |= BIT0;
P2SEL0 |= BIT0; //Output ACLK
P2SEL1 |= BIT0;

P3DIR |= BIT4;
P3SEL1 |= BIT4; //Output SMCLK
P3SEL0 |= BIT4;

//Disable the GPIO power-on default high-impedance mode to activate
//previously configured port settings
PM5CTL0 &= ~LOCKLPM5;

//Clock System Setup
CSCTL0_H = CSKEY_H; //Unlock CS registers
CSCTL1 = DCOFSEL_0; //Set DCO to 1MHz

//Set SMCLK = MCLK = DCO, ACLK = VLOCLK
CSCTL2 = SELA__VLOCLK | SELS__DCOCLK | SELM__DCOCLK;

//Per Device Errata set divider to 4 before changing frequency to
//prevent out of spec operation from overshoot transient
CSCTL3=DIVA__4 | DIVS__4 | DIVM__4;//Set all corresponding clk sources

//to divide by 4 for errata
CSCTL1 = DCOFSEL_6; //Set DCO to 8MHz

//Delay by ~10us to let DCO settle.
//60 cycles = 20 cycles buffer + (10us / (1/4MHz))
__delay_cycles(60);
CSCTL3=DIVA__1 | DIVS__1 | DIVM__1;//Set all dividers to 1 for 8MHz

//operation
CSCTL0_H = 0; //Lock CS Registers

while(1)
{
P1OUT ^= BIT0; //Toggle LED
__delay_cycles(8000000); //Wait 8,000,000 CPU Cycles
}



5.6. BATTERY OPERATION 249
}
//*********************************************************************

5.6 BATTERY OPERATION
Many embedded applications involve remote, portable systems, operating from a battery supply.
To properly design a battery source for an embedded system, the operating characteristics of the
embedded system must be matched to the characteristics of the battery supply. To properly
match the battery supply to the embedded system, the following questions must be addressed.

• What are the voltage and current required by the embedded system?

• How long must the embedded system operate before battery replacement or recharge?

• Will the embedded system be powered from primary, non-rechargeable batteries or sec-
ondary, rechargeable batteries?

• Are there weight or size limitations to be considered in selecting a battery?

Once these questions have been answered, a battery may be chosen for a specific applica-
tion. To choose an appropriate battery, the following items must be specified:

• battery voltage,

• battery capacity,

• battery size and weight, and

• primary or secondary battery.

Battery capacity is typically specified as a mAH rating. The capacity is the product of the
current drain and the battery operational life at that current level. It provides an approximate
estimate of how long a battery will last under a given current drain. The capacity is reduced at
higher discharge rates. It is important to note that a battery’s voltage declines as the battery
discharges. Provided in Figure 5.8 are approximate capacity ratings for common battery sizes
and technologies (www.duracell.com).

Primary and secondary batteries are manufactured using a wide variety of processes.
In general, primary (non-rechargeable) batteries have a higher capacity than their secondary
(rechargeable) counterparts. Also, batteries with higher capacity are more expensive than those
using a lower-capacity technology. A thorough review of the manufacturers’ literature is recom-
mended to select a battery for a specific application.

www.duracell.com


250 5. POWER MANAGEMENT AND CLOCK SYSTEMS

Battery  
Designator

Primary
(non-rechargeable)
Alkaline Battery

Secondary 
(rechargeable)

Nickel-Cadmium (Ni-Cad) 

Other Battery 

Technologies 

D 
C 

AA 
AAA 

3.7 V (18650) 
9 V 
12 V

Rated 
Voltage Capacity

Rated 
Voltage Capacity

Rated 
Voltage Capacity

1.5 V 15,000 mAh 
1.5 V   7,000 mAh 
1.5 V   2,250 mAh 
1.5 V   1,000 mAh 
            --- 
9.0 V      550 mAh 
            ---

1.2 V   1,200 mAh 
1.2 V   1,200 mAh 
1.2 V      500 mAh 
1.2 V      180 mAh 
            --- 
            --- 
            --- 

                            ---  
                            --- 
                            --- 
                            --- 
  3.7 V   6,000 mAh (Li-ion) 
  9.0 V      250 mAh  (NI-MH)
12.0 V      8.5  Ah (sealed Lead Acid)

Figure 5.8: Approximate battery capacities.

5.7 VOLTAGE REGULATION
It is essential to provide a stable supply voltage to the LaunchPad. As discussed earlier in the
chapter, a voltage regulator is required to stabilize an input voltage source. Since the MSP430
is typically used in a remote application, a battery source coupled with a regulator is used to
provide the stable input voltage. Figure 5.9 provides a sample circuit to provide a C3.3 VDC
source. The LM1117-3.3 is a 3.3 VDC, 800 mA low dropout regulator. The maximum input
voltage to the regulator is 7 VDC [SNOS412N, 2016].

LM1117-3.3 +3.3 VDC

10 uF
Tantalum

I

C

O

+ +
Battery 10 uF

Tantalum

Figure 5.9: Battery supply circuits employing a 3.3 VDC regulators [SNOS412N, 2016].

5.8 HIGH-EFFICIENCY CHARGE PUMP CIRCUITS
An alternative to using a battery and regulator to power a portable application is to employ a bat-
tery and a high-efficiency charge pump circuit. For example, the Texas Instruments TPS60310
charge pump requires a 0.9–1.8 VDC input (e.g., AAA, AA battery) to produce a 3.3 VDC
output suitable for powering the MSP430 microcontroller. The TPS60310 provides a maxi-



5.9. LABORATORY EXERCISE: MSP430 POWER SYSTEMS AND LOW-POWER MODE 251
mum output current of 20 mA. In addition to the TPS60310, five additional capacitors are
required, as shown in Figure 5.10 [SLVS362A, 2001].

C1
1 uF

C1-

VIN

CIN

1 uF
COUT1

1 uF

COUT2

1 uF

0.9–1.8
VDC

SNOOZE OUT2

OUT1 2X IN
40 mA maximum     

    3.3 VDC
20 mA maximum     

TPS60310
High-efficiency Charge Pump

PG

R

GND

C1+ C2- C2+

C2
1 uF

Figure 5.10: High-efficiency charge pump circuit [SLVS362A, 2001].

5.9 LABORATORY EXERCISE: MSP430 POWER SYSTEMS
AND LOW-POWER MODE OPERATION

Throughout this chapter, we have investigated concepts related to providing a power supply to
the MSP430 microcontroller and how to best manage this power source for extended operation.
In this laboratory exercise, we investigate related aspects. The laboratory is divided into three
sections. In Section 5.9.1, the current requirement of the MSP430FR5994 is investigated for
several different modes of operation using the MSP-EXP430FR5994 LaunchPad. In Sections
5.9.2 and 5.9.3, a battery supply is developed for the MSP430 microcontroller, and its char-
acteristics are studied in detail. Specifically, each supply is characterized for use in a remote,
battery-operated application.

5.9.1 CURRENT MEASUREMENTS IN DIFFERENT OPERATING
MODES

In this portion of the laboratory exercise, we investigate the current consumption of the
MSP430FR5994 using the MSP-EXP430FR5994 LaunchPad under various operating con-
ditions. Earlier in the chapter we provided code examples to place the MSP430 in different



252 5. POWER MANAGEMENT AND CLOCK SYSTEMS
LPMs and to change the processor operating frequency. Adapt these examples to measure the
current requirement of the MSP430 operating under a variety of LPMs and frequencies. De-
velop a summary chart of your findings.

5.9.2 OPERATING AN MSP430 FROM A SINGLE REGULATED BATTERY
SOURCE

Earlier in the chapter, we discussed the design of a regulated power supply from a battery source.
Design and construct a regulated battery source. Based on measurements taken in the first sec-
tion of the laboratory, predict the operational life of the MSP430FR5994, when operated from
this supply, when operated in the active mode at the maximum operating frequency. Connect a
resistor to the power supply to simulate the load of the MSP430FR5994 when operating under
these conditions. Plot the voltage degradation as a function of time.

5.9.3 OPERATING AN MSP430 FROM A SINGLE 1.5 VDC BATTERY
Recall the design of a power supply using a single battery and a high-efficiency charge pump.
Design and construct a source of this type. Based on measurements taken in the first section of
the laboratory, predict the operational life of the MSP430FR5994 using this supply when op-
erated in the active mode at the maximum operating frequency. Connect a resistor to the power
supply to simulate the load of the MSP430FR5994 when operating under these conditions. Plot
the voltage degradation as a function of time.

5.10 SUMMARY
In this chapter, we presented the ultra-low power features of the MSP430 microcontroller. We
then reviewed the low-power operating modes to reduce power consumption. We then investi-
gated the MSP430 subsystems which contribute to ULP operation, including the power man-
agement system, the supply voltage supervisor, and the CS. By evaluating the required battery
capacity and the operating modes of the MSP430 controllers, one can choose appropriate bat-
teries to satisfy system requirements.

We then examined the other side of the coin, the battery supply. We began with a dis-
cussion of battery capacity and its key parameters. We also described the important concept of
voltage regulation and differentmethods of achieving a stable input voltage for theMSP430.The
chapter concluded with a laboratory exercise to investigate current drain in different MSP430
operating modes and how to operate an MSP430 using a single 1.5 VDC battery, by employing
a high-efficiency charge pump integrated circuit.

5.11 REFERENCES AND FURTHER READING
Day, M. Using power solutions to extend battery life in MSP430 applications. Analog Applica-
tions Journal, Texas Instruments Incorporated, 10–12, Fourth Quarter 2009. 232



5.12. CHAPTER PROBLEMS 253
LM1117 800-mA Low-Dropout Linear Regulator, (SNOS412N), Texas Instruments, 2016. 250

MSP430FR2433 LaunchPad Development Kit (MSP-EXP430FR2433), (SLAU739), Texas In-
struments, 2017. 234

MSP430FR2433 Mixed-Signal Microcontrollers, (SLAB034AD), Texas Instruments, 2017.

MSP430FR2433 Mixed-Signal Microcontroller, (SLASE59C), Texas Instruments, 2018.

MSP430FR4xx and MSP430FR2xx Family User’s Guide, (SLAU445G), Texas Instruments,
2016. 243, 244

MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s Guide, (SLAU367O),
Texas Instruments, 2017. 243, 245

MSP430FR5994LaunchPadDevelopmentKit (MSP-EXP430FR5994), (SLAU678A), Texas In-
struments, 2016. 234

MSP430FR599x, MSP430FR596x Mixed-Signal Microcontrollers, (SLASE54C), Texas Instru-
ments, 2018.

Texas Instruments MSP430x5xx/MSP430x6xx Family User’s Guide, (SLAU208Q), Texas Instru-
ments, 2018. 234, 239, 240, 241

TPS60310, TPS60311, TPS60312, TPS60313 Single-Cell to 3-V/3.3-V, 20 mA Dual Output
High-Efficiency Charge Pump with SnoozeMode, (SLVS362A), Texas Instruments, Dallas, TX,
2001. 232, 251

5.12 CHAPTER PROBLEMS
Fundamental

1. Draw a block diagram and describe the operation of the power management system
(PMM).

2. Draw a block diagram and describe the operation of the supply supervisor system (SVS).

3. Draw a block diagram and describe the operation of the clock system (CS).

4. Describe the differences of the three clocks on the MSP430: the MCLK, ACLK, and
SMCLK.

5. What is the difference between supply voltage supervision (SVS) and monitoring?

6. What is the difference between a primary and a secondary voltage sources?



254 5. POWER MANAGEMENT AND CLOCK SYSTEMS
Advanced

1. Design a 3.3 VDC source for an MSP430 using a single AA battery. Fully specify all
components.

2. Design a 3.3 VDC source for an MSP430 using a battery and a regulator. Fully specify all
components.

3. Write a single-page point paper summarizing best practices for low-power operation.

4. Write a single-page point paper on the concept of battery capacity.

5. Construct a table summarizing low-power modes (LPMs). The table should include bit
settings to enter the specific LPM and features available in the mode.

6. Construct an experiment to monitor battery voltage degradation during use. Plot results
for several different battery technologies.

7. Construct a table summarizing available primary and secondary battery sources. At a min-
imum, the table should include common battery sizes (AA, AAA, C, D, and 9 VDC) and
their capacity.

Challenging

1. Write a function in C to place the MSP430 in a specified low-power mode (LPM). The
desired LPM is passed into the function as a variable.

2. Compile a list of best practices to operate theMSP430microcontroller in themost efficient
manner.



255

C H A P T E R 6

MSP430 Memory System
Objectives: After reading this chapter, the reader should be able to:

• describe the importance of different memory components in a microcontroller-based sys-
tem;

• employ the binary and hexadecimal numbering systems to describe the contents or address
of a specific memory location;

• specify the length and width of a memory component;

• describe the function of the address, data, and control buses of a memory component;

• list the steps required for a memory component to be read from or written to;

• describe the difference between a Harvard and a von Neumann microcontroller architec-
ture;

• provide the distinguishing features of RAM, ROM, and EEPROM type memory com-
ponents;

• sketch the memory map for the MSP430FR2433 and the MSP430FR5994 microcon-
trollers;

• list the advantages of employing DMA techniques to transfer data using the
MSP430FR5994;

• program theMSP430DMAcontroller to transfer data from different portions ofmemory;
and

• explain the key attributes of FRAM.

6.1 OVERVIEW
In general, there are two purposes for a memory system in a microcontroller: the storage and
retrieval space for computer instructions and the storage and working space for data. For a
memory-mapped I/O system, memory locations are used to capture inputs, store outputs, and



256 6. MSP430 MEMORY SYSTEM
program subsystems of microcontrollers. As its name implies, the memory system allows a mi-
crocontroller to retain the program it is supposed to execute. Various memory components also
allow data to be stored and modified during program execution.

Memory is essential in all microcontroller-based applications. In a smart home applica-
tion, memory is used to store the algorithm to control the environmental factors serving the
entire home. Other memory components are used to store and allow the update of combina-
tions to secure areas of the home, control temperature, and to activate lawn irrigation systems.
Furthermore, external memory components can be used for data logging. For example, key smart
home parameters such as temperature and humidity may be measured and stored on a multi me-
dia card/secure digital (MMC/SD) card. The data may be logged over a long period of time. The
MMC/SD card may be removed from the microcontroller-based system and read by a personal
computer (PC) to examine and analyze the data. From this analysis, trends may be established
to optimize the operation of the smart home control algorithm.

The intent of this chapter is to allow the reader to become acquainted with memory con-
cepts, types of memory, and its operation. The chapter begins with a review of key memory
concepts and terminology. This is followed by detailed maps of the MSP430FR2433 and the
MSP430FR5994 microcontroller memory components. The different memory systems onboard
the MSP430 are then discussed. These include the FRAM, RAM, and the DMA memories.
We also provide examples on how to equip a LaunchPad with an MMC/SD card. The chapter
concludes with a laboratory exercise detailing the operation of the DMA memory controller.

6.2 BASIC MEMORY CONCEPTS
In this section, we review terminology and concepts associated with microcontroller memory.
Figure 6.1a provides a general model for a memory system. A microcontroller’s memory system
consists of a variety of memory technologies, including RAM, ROM, and EEPROM. Each
technology has a specific function within the microcontroller.

Memory may be viewed as a two-dimensional (2D) array of storage elements called bits. A
memory bit can store a single piece of digital information: a logic high or a logic low. Rather than
access a single bit for reading or writing, memory is typically configured such that a collection
of bits is read or written in parallel. The width, or how many bits are simultaneously accessed, is
a function of the specific microcontroller. Memory widths of a byte (8 bits) or a double byte (16
bits) are common. The term “word” is often used to describe the width of the memory system.

A memory system may be viewed as a series of different memory locations each with a
separate and unique address, as shown in Figure 6.1b. At each address is the capacity to store a
memory word of n data bits.

6.2.1 MEMORY BUSES
Memory system activities are controlled by several different buses including the address bus, the
data bus, and the control bus. A bus is a collection of conductors with a common function. The



6.2. BASIC MEMORY CONCEPTS 257

Memory Width (n)

(b) Memory length and width

(a) Memory system model
n

c

Data
Bus

Control
Bus

m
Address

Bus

Memory
System

Memory Length (2m)

0000_0000_0000_0000_0000

1111_1111_1111_1111_1111

Word 0
Word 1
Word 2

Figure 6.1: (a) General model for a memory system and (b) memory length and width.



258 6. MSP430 MEMORY SYSTEM
address bus contains a number (m) of separate address lines. Using linear addressing techniques,
the expression 2address lines shows the number of uniquely addressable memory locations. For
example, some variants of the MSP430 microcontroller have 20 address lines and, therefore,
may separately address 220 or 1,048,576 different memory locations.

The data bus width (n) usually matches the width of memory or the number of bits stored
at each memory location. This allows the contents of a specific memory location to be read from
or written to simultaneously. The MSP430 microcontroller has a 16-bit data path. The width of
the data path also determines the maximum size of mathematical arguments that can be easily
processed by the microcontroller. For example, with a 16-bit data width, the maximum unsigned
integer that may be processed without overflow is 216 or 65,535.

The control bus consists of the signal lines required to perform memory operations such
as read and write. There are typically control signals to specify the memory operation (read or
write), a clock input, and an enable output for the memory system.

6.2.2 MEMORY OPERATIONS
Operations that are typically performed on a memory system include read from and write to the
memory system. The memory read operation consists of the following activities.

• The address of the memory location to be read is provided by the microcontroller on its
address bus to the memory system.

• The control signal to read the specified memory location is asserted by the microcontroller.

• The data at the specified memory location is fetched from memory and placed on the
memory system data lines.

• The control signal to enable the memory system output is asserted. This allows the fetched
memory data access to the data bus.

The memory write operation consists of the following activities:

• The address of the memory location to be written to is provided by the microcontroller on
its address bus to the memory system.

• The data to be written to the specified memory location is provided by the microcontroller
on its data bus.

• The control signal to write to the specified memory location is asserted.

• The data is written to the specified memory location.



6.2. BASIC MEMORY CONCEPTS 259

6.2.3 BINARY AND HEXADECIMAL NUMBERING SYSTEMS
The binary, or base 2, numbering system is used to specify addresses and data within microcon-
troller systems. Examples of binary numbers and their equivalent base ten numbers are provided
in Figure 6.2a. The largest unsigned integer that can be specified with a 16-bit binary number
is 1111_1111_1111_1111 or 65; 535. Large binary numbers are difficult to read. To help in the
readability of lengthy binary numbers, underscores maybe inserted between every four bits.

(c) Binary to hexadecimal conversion

(a) Binary number system

(b) Hexadecimal number system

3
2
7
6
8

1
6
8
3
4

8
1
9
2

4
0
9
6

2
0
4
8

1
0
2
4

5
1
2

2
5
6

1
2
8

6
4

3
2

1
6 8 4 2 1

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

3
2
7
6
8

1
6
8
3
4

8
1
9
2

4
0
9
6

2
0
4
8

1
0
2
4

5
1
2

2
5
6

1
2
8

6
4

3
2

1
6 8 4 2 1

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

Binary Hex Binary Hex Binary Hex Binary Hex

0000
0001
0010
0011

0
1
2
3

0100
0101
0110
0111

4
5
6
7

1000
1001
1010
1011

8
9
a
b

1100
1101
1110
1111

c
d
e
f

Figure 6.2: (a) The binary numbering system, (b) the hexadecimal numbering system, and
(c) conversion from binary to hexadecimal.

As previously mentioned, the address bus of some variants of the MSP430 is 20 bits
wide and the data bus is 16 bits. Rather than specify large binary numbers, the contents of
the address and data bus are often expressed in the hexadecimal numbering system to enhance
readability. A set of equivalent numbers of the binary system and the hexadecimal system is
shown in Figure 6.2b.

To convert from the binary numbering system to the hexadecimal system, binary bits are
grouped in fours from either side of the radix point. Each group of four binary bits is represented
by its hexadecimal equivalent. Various methods are used to indicate that a specific number is rep-
resented in the hexadecimal numbering system. In assembly language, the number is followed
by an “h”. In the C programming language the number is preceded by a 0x. Various documen-



260 6. MSP430 MEMORY SYSTEM
tation sources will place a dollar sign ($) before the numerical value or a subscripted 16 by the
number indicating the hexadecimal content.

Microcontroller memory capacity is commonly specified in kilobytes (kB). The prefix kilo
specifies .103/ or for a kilobyte, 1,000 bytes. However, in common computer usage a kilobyte is
used to specify 1,024 bytes or 210 bytes.

Examples:

1. Some variants of the MSP430 has 16 address lines, giving it the capability to separately ad-
dress 65,536 different memory locations. What is the address of the first and last memory
location expressed in hexadecimal?

Answer: The first and last addressable memory locations expressed in hexadecimal nota-
tion are .0000/16 and (FFFF)16.

2. Express the hexadecimal number (CF)16 in binary.

Answer: Each hexadecimal value is converted into its four bit binary equivalent resulting
in the value of .1100_1111/2.

3. The MSP430 has the value of .0001_1010_1111_1100/2 present on the data base. Express
the value in hexadecimal.

Answer: Each group of four binary bits is expressed with its corresponding hexadecimal
equivalent resulting in (1AFC)16.

6.2.4 MEMORY ARCHITECTURES
There are two basic types of computer architectures based on the memory organization: the von
Neumann architecture and the Harvard architecture. The von Neumann architecture has com-
puter instructions and data resident within the same memory system, whereas the Harvard ar-
chitecture provides separate paths to obtain instructions and data. The MSP430 microcontroller
employs the vonNeumann-type architecture since data and instructions are both retained within
the same memory component.

6.2.5 MEMORY TYPES
Memory systems typically have several different types of memory technology available for use.
Each technology type has its inherent advantages and disadvantages. We briefly describe each
type.

RAM
RAM is volatile. That is, it only retains its memory contents while power is present. Within
a microcontroller system, RAM memory is used for storing global variables, local variables,



6.2. BASIC MEMORY CONCEPTS 261
stack implementation, and the dynamic allocation of user-defined data types during program
execution.

ROM
ROM is non-volatile. That is, a ROM memory retains its contents even when power is lost. A
ROM variant, EEPROM, is often referred to as flash memory. Flash memory is used to store
programs and system constants that must be retained when system power is lost (non-volatile
memory).

FRAM
Some variants of the MSP430, including the MSP430FR2433 and the MSP430FR5994, have
been equipped with FRAM memory. FRAM is a nonvolatile, ULP with access speeds similar to
RAM. It has been termed a universal memory because it can be used for storing program code,
variables, constants, and for stack operations. Note these functions are typically performed by
nonvolatile ROM and volatile RAM. FRAM also has a high level of write endurance on the
order of 1015 cycles [SLAA526A, 2014, SLAA628, 2014].

External Memory Components
A microcontroller’s memory system may be enhanced or extended using external memory com-
ponents. For example, bulk storage capability may be added to a microcontroller-based system
by interfacing a MMC/SD card. The MMC/SD card is equipped with a large complement of
flash memory. The MMC/SD card is interfaced to the microcontroller via a serial communi-
cation link. The MMC/SD card is typically housed in a socket for easy removal from the host
microcontroller-based system [SanDisk, 2000]. With an MMC/SD card, data may be logged
over a long period of time. The MMC/SD card may then be removed from the microcontroller-
-based system and read by a personal computer (PC) to examine and analyze the data. The
MSP-EXP430FR5994 LaunchPad is equipped with an onboard SD card.

Examples: A microcontroller-based application is being developed to log wind data at various
remote locations over long periods of time to determine the efficacy of a wind energy farm at a
specific site. Answer the following questions based on this scenario.

1. The algorithm to store the data is fairly complex and will require much storage space.What
memory component must you insure is adequate to hold the algorithm?
Answer: The coded algorithm to control the data collection system is stored in flash or
FRAM memory. An MSP430 variant must be chosen that has sufficient memory capacity
to hold the algorithm.

2. A good design technique is to compartmentalize specific algorithm operations into subrou-
tines or functions. What memory component is required to support the call to subroutines
or functions?



262 6. MSP430 MEMORY SYSTEM
Answer: When a subroutine or function is called, local variables are placed on the stack.
The stack is typically implemented as a portion of RAM memory.

3. The data logging system will be dispersed at a number of locations on existing farms and
ranches. The plan is to collect the data over a six-month period and then have the property
owner transfer the data to a central facility for processing. What is the appropriate memory
technology to use in this situation?

Answer: A microcontroller-based data collection system equipped with a removable
MMC/SD card would be a good choice in this situation. The data could be collected
for a long period of time, and the MMC/SD card could then be removed and sent to the
central facility.

4. How do you determine the required capacity for the MMC/SD card to log data over a
six-month period?
Answer: To determine the required memory capacity the following parameters must be
considered.

• How many data variables are collected (e.g., date, time, temperature, wind speed,
altitude) at a time?

• In what format will the data be stored (e.g., integers, floating point numbers, custom
abstract data type such as a record)?

• How often will data be collected (e.g., every 15 min, hourly, every 6 h, daily)?
• Over what time period will data be collected?

6.2.6 MEMORY MAP
The memory map is a visualization tool used to map the memory system onboard the microcon-
troller. As previously mentioned, some variants of the MSP430 has a 20 bit memory address.
This allows the microcontroller to span the address memory space from .00000/16 to (fffff )16.
Although the microcontroller may span this space, it does not necessarily mean there are mem-
ory components installed at each location. A memory map shows which addresses are occupied
by a specific memory component and what locations are currently available for connection to
other devices. The memory map for the MSP430FR2433 microcontroller is shown in Figure 6.3
and the one for the MSP430FR5994 microcontroller in Figure 6.4.

There are a variety of memory technologies within the MSP430 memory map. For each
memory component, the start and stop address is provided as well as the span on the mem-
ory component. The span is provided as the number of locations in hexadecimal, decimal, and
rounded off to the nearest byte. Most of the memory technologies provided in the memory map
have already been discussed. Some require additional comment, which follows.



6.2. BASIC MEMORY CONCEPTS 263

Memory Contents 

Interrupt Vectors
(FRAM)

Code Memory
(FRAM)

Information Memory
(FRAM)

Bootstrap Loader
Segment 1

Peripherals

Random Access
Memory (FRAM)

Start Address

(FF80)16

(C400)16

(2000)16

(1800)16

(1000)16

(0000)16

Stop Address

(FFFF)16

(FFFF)16

(FFFF)16

(FF80)16

(C400)16

(3000)16

(2000)16

(1800)16

(1000)16

(0000)16

(2FFF)16

(19FF)16

(17FF)16

(0FFF)16

Span

(80)16 
(128)10 ~ 128 bytes

(3C00)16 
(15360)10 ~ 15K bytes

(01000)16 
(4096)10 ~ 4K bytes

(00200)16 
(512)10 bytes

(0800)16

(2048)10 ~ 2K bytes

(1000)16

(4096)10 ~ 4K bytes

Figure 6.3: The MSP430FR2433 memory map.

Bootstrap Loader
The bootstrap loader (BSL) portion of flash memory allows the user to interact with the flash
memory and RAM onboard the MSP430 microcontroller. Specifically, the user can interact
with the MSP430 via a host PC during prototype development. Data is exchanged between the
host and the microcontroller via a serial link [slau319x].

Interrupt Vectors
Interrupts provide the microcontroller the capability to break out of routine processing and
temporarily respond to a higher priority event. When an interrupt occurs, the microcontroller
will temporarily suspend normal program execution and, instead, execute an interrupt service
routine for the specific interrupt. The interrupt vectors between memory locations (0FF80)16

and (0FFFF)16 show the starting locations for each of the interrupt service routines.



264 6. MSP430 MEMORY SYSTEM

Memory Contents 

Interrupt Vectors
(FRAM)

Code Memory
(FRAM)

Information Memory
A-D (FRAM)

Bootstrap Loader
Segment 0-3

Peripherals

Device Descriptor
(TLV) (FRAM)

Random Access
Memory (RAM)

Start Address

(0FF80)16

(04000)16

(01C00)16

(01A00)16

(01800)16

(01000)16

(00020)16

Stop Address

(0FFFF)16

(043FFF)16

(03BFF)16

(FFFF)16

(0FF80)16

(03C00)16

(01C00)16

(01A00)16

(01800)16

(01000)16

(00000)16

(01AFF)16

(019FF)16

(017FF)16

(00FFF)16

Span

(80)16 
(128)10 ~ 128 bytes

(40000)16 
(262,144)10 ~ 256K bytes

(00100)16 
(256)10  bytes

(2000)16 
(8192)10 ~ 8K bytes

(00200)16 
(512)10 bytes

(800)16

(2048)10 ~ 2K bytes

(~1000)16

(4096)10 ~ 4K bytes

Figure 6.4: The MSP430FR5994 memory map.

6.2.7 DIRECT MEMORY ACCESS (DMA)
DMA provides the capability to move data from memory location to memory location without
involving the CPU. This is especially useful for low-power operation when moving data from
peripherals to specific memory locations [SLAU367O, 2017].

6.3 ASIDE: MEMORY OPERATIONS IN C USING
POINTERS

Before delving into a detailed look at the MSP430 microcontroller’s memory system, we need
to discuss the concept of pointers in the C language. Pointer syntax allows one to easily refer to
a memory location’s address and the data contained at the address.1

1The information on pointers and examples provided were adapted from Dr. Jerry Cupal’s, EE4390 Microprocessors class
notes.



6.3. ASIDE: MEMORY OPERATIONS IN C USING POINTERS 265
A pointer is another name for an address. To declare a pointer, an asterisk (�) is placed in

front of the variable name. The compiler will designate the variable as an address to the variable
type specified.

Shown below is the syntax to declare an integer and a pointer (address of ) for an integer.
It is helpful to choose a variable name that helps you remember that a pointer variable has been
declared. A pointer may be declared as a global or local variable.

int x;
int *ptr_x;

Once a pointer has been declared, there is other syntax that may be used in the body of a
program to help manipulate memory addresses and data. The ampersand (&) is used to reference
the address of a variable. Whereas, the asterisk (�) is used as a dereference operator to refer to
the contents of a memory location that a pointer is referencing.

Example: Given the code snapshot below, what is the final value in variable n?

int m,n; //declare integers m and n
int *ptr_m; //declare pointer to integer type

m = 10; //set integer m equal to 10
ptr_m = &m //set integer pointer to address of integer m
n = *ptr_m; //Note use of the deference operator

Answer: The final value of n will be 10. The dereference operator in the last line of code refers
to the contents of the memory location referenced.

Example: In this example, a technique is provided to point to a location in memory space.

char *ptr_mem; //configure a pointer to 8 bit locations

:
:

ptr_mem = (char*) 0x4000; //cast the number 4000h into a pointer
//that points to character locations

The next example shows how a pointer may be used to move about memory locations by
using some basic mathematical operations.



266 6. MSP430 MEMORY SYSTEM
//************************************************************************
// This function fills a buffer located between memory locations 2000h
// 2FFFh in memory space with incrementing 16 bit numbers. The values
// loaded into memory start with 0000h and increments up to 0FFFh.
//************************************************************************

int x; //integer variable x
int *ptr_buffer; //pointer to buffer

void main( )
{
ptr_buffer = (int*) 0x2000; //cast a pointer equal to 2000
for(x=0x0000; x<=0x0fff; x++)

{
*ptr_buffer = x; //move the variable x into buffer
ptr_buffer++; //increment the pointer
}

}
//***********************************************************************

6.4 DIRECT MEMORY ACCESS (DMA) CONTROLLER
If you have ever traveled in a big, busy city, you know how frustrating it can be to get bogged
down in heavy traffic. It is particularly stressing if you are trying to get from one end of the city to
the other and you are short on time. It would be nice to have a bypass around the city to avoid the
downtown congestion and arrive safely and quickly to your destination. That is exactly what the
DMA controller provides for the MSP430 microcontroller. The DMA feature allows for the fast
and efficient transfer of data from one memory location to another without involving the CPU.
In fact, the CPU may be left in a low power mode during DMA transfers. The MSP430FR5994
is equipped with six independent DMA channels. In this section, we discuss the overall DMA
system, DMA addressing modes, transfer modes, triggering operations, the DMA register set
and provide a representative DMA transfer example [SLAU367O, 2017].

6.4.1 DMA SYSTEM
The DMA system block diagram is shown in Figure 6.5. The figure may appear overwhelming
at first but realize the DMA system in the MSP430F5438 has three independent channels. We
investigate a single channel in Figure 6.6 [SLAU367O, 2017].

The DMA system allows the efficient transfer of data from a source location(s) in memory
to a destination location(s).The source and destination addresses must be provided to the specific



6.4. DIRECT MEMORY ACCESS (DMA) CONTROLLER 267

ENNMI

DMA Channel n

DMASRSBYTE

DMAnSZ

DMAnDA

DMAnSA

DMADSTBYTE

DMASRCINCR

DMADSTINCR

2

2

3

DMADT

DMAEN

DMA Channel 1

DMASRSBYTE

DMA1SZ

DMA1DA

DMA1SA

DMADSTBYTE

DMASRCINCR

DMADSTINCR

2

2

3

DMADT

DMAEN

DMA Channel 0

DMASRSBYTE

DMA0SZ

DMA0DA

DMA0SA

DMADSTBYTE

DMASRCINCR

DMADSTINCR

2

2

3

DMADT

DMAEN

Address
Space

NMI Interrupt Request

JTAG Active

Halt

Halt CPU

ROUNDROBIN

DMARMWDIS

DMAnTSEL

DMA0TRIG31

DMA0TRIG0

DMA0TSEL

5

DMA0TRIG1

00000

00001

11111

DMA1TRIG31

DMA1TRIG0

DMA1TSEL

5

DMA1TRIG1

00000

00001

11111

DMAnTRIG31

DMAnTRIG0

5

DMAnTRIG1

00000

00001

11111

to USB
if available

to USB
if available

D
M

A
P

ri
or

it
y

an
d

C
on

tr
ol

to USB
if available

Figure 6.5: DMA block diagram [SLAU367O, 2017]. (Illustration used with permission of
Texas Instruments (www.ti.com).)

www.ti.com


268 6. MSP430 MEMORY SYSTEM

DMA0TSELx

DMA0TRIG0  00000
DMA0TRIG1  00001

DMA0TRIG31  11111

DMADSTINCR–DMA destination increment

DMADSTBYTE–DMA destination byte

DMADT–sets the DMA transfer mode type

DMAEN–DMA enable

DMASRSBYTE–DMA source byte

DMASRCINCR–DMA source increment

DMA0DA (destination address)

DMA Channel 0

DMA0SA (source address)

DMA0SZ (size)

5

2

2

Halt
3

0 DMAREQ 
1 TA0CCR0 CCIFG 
2 TA0CCR2 CCIFG T 
3 TA1CCR0 CCIFG 
4 TA1CCR2 CCIFG T 
5 TA2CCR0 CCIFG 
6 TA3CCR0 CCIFG T 
7 TB0CCR0 CCIFG 
8 TB0CCR2 CCIFG T 
9 TA4CCR0 CCIFG 
10 Reserved 
11 AES Trigger 0 
12 AES Trigger 1 
13 AES Trigger 2 
14 UCA0RXIFG 
15 UCA0TXIFG 

16 UCA1RXIFG 
17 UCA1TXIFG 
18 UCB0RXIFG (SPI) 
     UCB0RXIFG0 (I2C) 
19 UCB0TXIFG (SPI) 
     UCB0TXIFG0 (I2C) 
20 UCB0RXIFG1 (I2C) 
21 UCB0TXIFG1 (I2C) 
22 UCB0RXIFG2 (I2C) 
23 UCB0TXIFG2 (I2C) 
24 UCB0RXIFG3 (I2C) 
25 UCB0TXIFG3 (I2C) 
26 ADC12 end of conversion 
27 LEA ready(2) 
28 Reserved 
29 MPY ready 
30 DMA0IFG 
31 DMAE0

DMA0TRIGx Sources

D
M

A
 P

ri
or

it
y 

an
d

 C
on

tr
ol

Figure 6.6: DMA channel. (Illustration used with permission of Texas Instruments (www.ti.c
om).)

www.ti.com
www.ti.com


6.4. DIRECT MEMORY ACCESS (DMA) CONTROLLER 269
DMA channel as shown in Figure 6.6. This information is provided to the DMA channel via
the DMA Source Address Register (DMAxSA) and the DMA Destination Register Address
Register (DMAxDA). The “x” designates the DMA channel number. The DMAxSA, a 32-bit
register, specifies the source address for a single transfer or the first source address for a block
transfer. Similarly, the DMAxDA register specifies the destination address for single transfers
or the first destination address for block transfers [SLAU367O, 2017].

The number of byte/word transfers must also be specified using the DMA Size Address
Register (DMAxSZ). Since the DMAxSZ register is 16 bits, the maximum transfer size that
may be specified is 65,535 bytes or words. During the DMA transfer event, the value within
the DMAxSZ decrements with each byte/word transfer. Generally, two MCLK clock cycles are
required to complete each transfer [SLAU367O, 2017].

Other parameters to tailor the DMA transfer for a specific application are provided within
the DMA Channel x Control Register (DMAxCTL) by the following bits.

• DMASRCINCR specifies the DMA source increment or decrement.

• DMASRCBYTE specifies the DMA source as either a byte (1) or a word (0).

• DMAEN is the DMA enable bit.

• DMADT specifies the type of DMA transfer mode. There are six different transfer modes
that may be specified. In general, the transfer mode dictates the type of transfer (single,
burst, burst-block) and the type of triggered required.

• DMADSTBYTE selects the destination as either a byte (1) or a word (0).

• DMADSTINCR specifies the DMA destination increment or decrement.

The DMA transfer event may be initiated via a variety of different trigger sources as spec-
ified by the DMAxTSELx bits within DMA Control Register 0 (DMACTL0). We now take
a more detailed look at each of these features.

DMA Adressing Modes
The different addressing modes available with the DMA system are illustrated in Fig-
ure 6.7 [SLAU367O, 2017]. Transfers may be specified from:

• a fixed source address to a fixed destination address,

• a fixed source address to a block of destination addresses,

• a block of source addresses to a fixed destination address, and

• a block of source addresses to a block of destination addresses.



270 6. MSP430 MEMORY SYSTEM

DMA
Controller

DMA
Controller

DMA
Controller

DMA
Controller

Address
Space

Address
Space

Address
Space

Address
Space

(a) Fixed address to fixed address (b) Fixed address to block of addresses

(c) Block of addresses to fixed address (d) Block of addresses to block of addresses

Figure 6.7: DMA addressing modes [SLAU367O, 2017].

DMA Transfer Modes
There are six different transfer modes thatmay be specified. In general, the transfer mode dictates
the type of transfer (single, burst, burst-block) and the type of triggered required. The different
DMA transfer modes are illustrated in Figure 6.8 [SLAU367O, 2017].

DMA Triggering
Figure 6.8 summarizes the different triggering requirements for a specific DMA transfer mode.
The actual source of the triggering signal must also be specified. Figure 6.6 provided the various
triggering sources available to a given DMA channel. The specific trigger signal is selected using
the DMA0TSELx bits.



6.4. DIRECT MEMORY ACCESS (DMA) CONTROLLER 271

DMADTx

Single transfer

Block transfer

Burst-block transfer

Repeated single transfer

Repeated block transfer

Repeated burst-block
transfer

000

001

010, 011

100

101

110, 111

0

0

0

1

1

1

Transfer Mode Trigger Description
DMAEN After

Transfer

Each transfer requires a trigger

A complete block is transferred
with one trigger

CPU activity is interleaved
with a block transfer

Each transfer requires
a trigger

A complete block is
transferred with one trigger

CPU activity is interleaved
with a block transfer

Figure 6.8: DMA transfer modes [SLAU367O, 2017].

DMA Register Set
In the last several sections, we have seen the efficiency and flexibility of theDMA system inmov-
ing data from one location to another without involving the central processing unit. All DMA
operations are configured using the DMA-related registers illustrated in Figures 6.9 and 6.10.
We have already discussed many of the register features already. In this section, we provide a
concise review of DMA associated registers.

The MSP430FR5994 uses DMA Control Register 0 through 2 (DMACTL0 to
DMACTL2) to select the trigger source for DMA channels 0–5. The DMA trigger source
is specified as a five-bit binary value as described in Figure 6.6 [SLAU367O, 2017].

The DMA systems is also equipped with interrupts. The MSP430 interrupt system will
be discussed in an upcoming chapter.

The DMAxSA provides the source address for the DMA transfer; whereas, the DMA
Destination Address Register (DMAxDA) provides the destination address for the transfer.
The DMAxSZ specifies the number of byte/word data per block transfer [SLAU367O, 2017].

The main control register for the DMA system is the DMAxCTL illustrated in Fig-
ure 6.11.



272 6. MSP430 MEMORY SYSTEM

DMA Control 0 Register (DMACTL0)

DMA Control Register 4 (DMACTL4)

DMA Interrupt Vector Register (DMAIV)

15

reserved

r0

14

reserved

r0

13

reserved

r0

12

DMA1TSEL

rw-(0)

11

DMA1TSEL

rw-(0)

10

DMA1TSEL

rw-(0)

9

DMA1TSEL

rw-(0)

8

DMA1TSEL

rw-(0)

7

reserved

r0

6

reserved

rw-1

5

reserved

rw-0

4

DMA0TSEL

rw-1

3

DMA0TSEL

r-1

2

DMA0TSEL

rw-0

1

DMA0TSEL

rw-0

0

DMA0TSEL

rw-0

15

0

r0

14

0

r0

13

0

r0

12

0

r0

11

0

r0

10

0

r0

9

0

r0

8

0

r0

15

0

r0

14

0

r0

13

0

r0

12

0

r0

11

0

r0

10

0

r0

9

0

r0

8

0

r0

7

0

r0

6

0

r0

5

0

r0

4

0

r0

3

0

r0

2

DMARMWDIS

rw-0

1

ROUND
ROBIN

rw-0

0

ENNMI

rw-0

7

0

r0

6

0

r0

5

 

 

4

 

 

3

DMAIV

 

2

 

 

1

 
 

 

0

0

r0

Figure 6.9: DMA registers [SLAU367O, 2017].



6.4. DIRECT MEMORY ACCESS (DMA) CONTROLLER 273

DMA Source Address Register (DMAxSA)

DMA Destination Address Register (DMAxDA)

DMA Size Address Register (DMAxSZ)

DMAxSA

DMAxSA

DMAxSA

Reserved

Reserved

31 30 29 28 27 26 25 24

r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0

r-0 r-0 r-0 r-0 rw rw rw rw

rw rw rw rw rw rw rw rw

rw rw rw rw rw rw rw rw

r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0

r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0

r-0 r-0 r-(0) r-(0) r-(0) r-(0) r-(0) r-0

r-0 r-0 r-0 r-0 rw rw rw rw

rw rw rw rw rw rw rw rw

rw rw rw rw rw rw rw rw

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

DMAxDA

DMAxDA

DMAxDA

Reserved

Reserved

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

DMAIV

15 14 13 12 11 10 9 8

0 0

0 0

0 0 0 0 0 0

7 6 5 4 3 2 1 0

0

Figure 6.10: DMA registers [SLAU367O, 2017].



274 6. MSP430 MEMORY SYSTEM

DMADT

DMA
DSTBYTE

DMA
SRCBYTE

DMAEN DMAIFG DMAIE DMAREQDMAABORTDMALEVEL

DMADSTINCR DMASRCINCRReserved

DMA Channel x Control Register (DMAxCTL)

15 14 13 12 11 10 9 8

r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

7 6 5 4 3 2 1 0

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

DMADT: DMA Transfer Mode
- 000: single transfer
- 001: block transfer
- 010: burst-block transfer
- 011: burst-block transfer
- 100: repeated single transfer
- 101: repeated block transfer
- 110: repeated burst-block transfer
- 111: repeated burst-block transfer

DMASRCINCR:
DMA Source Increment
- 00: source address is unchanged
- 01: source  address is unchanged
- 10: source address is decremented
- 11: source address is incremented

DMADSTINCR:
DMA Destination Increment
- 00: destination address is unchanged
- 01: destination address is unchanged
- 10: destination address is decremented
- 11: destination address is incremented

DMASRCBYTE:
DMA source  byte
- 0: word
- 1: byte

DMADSTBYTE:
DMA Destination
Byte
- 0: word
- 1: byte

DMALEVEL
- 0: rising edge trigger
- 1: high-level trigger

DMAIFG:
DMA Interrupt Flag
- 0: no interrupt pending
- 1: interrupt pending

DMAABORT:
DMA Abort
- 0: DMA not interrupted
- 1: interrupted by NMI

DMAEN:
DMA Enable
- 0: Disabled
- 1: Enabled

DMAIE:
DMA Interrupt
Enable
- 0: disabled
- 1: enabled

DMAREQ
DMA Request
- 0: No DMA start
- 1: Start DMA

Figure 6.11: DMA channel x control register (DMAxCTL) [SLAU367O, 2017].

6.4.2 DMA EXAMPLE: BLOCK TRANSFER
In this example a 16-word block from memory locations 0x1C20-0x1C2F is transferred to lo-
cations 0x1C40h-0x1C4fh using DMA0 in a burst block using software DMAREQ as the
trigger.



6.4. DIRECT MEMORY ACCESS (DMA) CONTROLLER 275
//********************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2015, Texas Instruments Incorporated
// All rights reserved.
//
// MSP430 CODE EXAMPLE DISCLAIMER
//
//********************************************************************
//MSP430FR5x9x Demo - DMA0, Repeated Block to-from RAM,
//use Software Trigger
//
//Description:
//- A 16 word block from 1C20-1C2Fh is transferred to 1C40h-1C4fh using
// DMA0 in a burst block using software DMAREQ trigger.
//- After each transfer, source, destination and DMA size are reset to
// initial software setting because DMA transfer mode 5 is used.
//- P1.0 is toggled during DMA transfer only for demonstration purposes.
//- RAM location 0x1C00 - 0x1C3F used - make sure no compiler conflict
//- MCLK = SMCLK = default DCO
//
//
// MSP430FR5994
// -----------------
// /|\| |
// | | |
// --|RST |
// | |
// | P1.0|-->LED
//
//William Goh, Texas Instruments Inc., October 2015
//Built with IAR Embedded Workbench V6.30 & Code Composer Studio V6.1
//********************************************************************

#include <msp430.h>

int main(void)
{
WDTCTL = WDTPW | WDTHOLD; //Stop WDT

//Configure GPIO for LED



276 6. MSP430 MEMORY SYSTEM
P1OUT = 0;
P1DIR = BIT0;

//Disable the GPIO power-on default high-impedance mode to activate
//previously configured port settings

PM5CTL0 &= ~LOCKLPM5;

//Configure DMA channel 0
//Source block address

__data16_write_addr((unsigned short) &DMA0SA,(unsigned long) 0x1C20);
//Destination single address

__data16_write_addr((unsigned short) &DMA0DA,(unsigned long) 0x1C40);

DMA0SZ = 16; //Block size
DMA0CTL = DMADT_5 | DMASRCINCR_3 | DMADSTINCR_3; // Rpt, inc
DMA0CTL |= DMAEN; //Enable DMA0

while(1)
{
P1OUT |= 0x01; //P1.0 = 1, LED on
DMA0CTL |= DMAREQ; //Trigger block transfer
P1OUT &= ~0x01; //P1.0 = 0, LED off
}

}

//********************************************************************

6.5 MSP430FR5994: MEMORY PROTECTION UNIT AND
IP ENCAPSULATION SEGMENT

The MSP430FR5994 is equipped with a memory protection unit (MPU). The MPU provides
protection against accidental writes to portions of memory designated as read only. The MPU
allows configuration of the main memory into three separate segments. Segment sizes are set
by designating the begin and end address for each segment. Furthermore, access rights for each
memory segment can be independently set [SLAU367O, 2017].

The MSP430FR5994 also allows protection of intellectual property designated informa-
tion with the IP Encapsulation Segment. The protected segment is designated by setting the
start and stop segment addresses. Once configured, program code can be stored in the protected



6.6. EXTERNAL MEMORY: BULK STORAGE WITH AN MMC/SD CARD 277
area and also accessed via function calls. Furthermore, data stored within the segment can only
be accessed via protected code within the segment [SLAU367O, 2017].

6.6 EXTERNAL MEMORY: BULK STORAGE WITH AN
MMC/SD CARD

A MMC/SD card provides a handy method of providing a low power, non-volatile, and a small
form factor (32mmx 24mmx 1.4mm) bulkmemory storage for amicrocontroller.ThemicroSD
card has an even smaller form factor at 15mmx 11mmx 1mm.TheSD card is a smart peripheral
device. It contains an onboard controller tomanage SD operations.The SD card is useful for data
logging applications in remote locations. If our goal was to measure wind resources at remote
locations as potential windfarm sites, a MSP430 based data logging system equipped with an
SD card could be used. Data could be logged over a long period of time and retrieved for later
analysis on a PC.

6.7 LABORATORY EXERCISE: SD CARD OPERATIONS
WITH THE MSP-EXP430FR5994

The MSP-EXP430FR5994 LaunchPad is equipped with an onboard microSD card (SD1). The
Out-of-Box demo, available in MSPWare via the Resource Explorer, provides SD card support
functions. The demo is preloaded to the MSP-EXP430FR5994 LaunchPad at the factory.

The Out-of-Box demo has three different modes of operation [SLAU678A, 2016]:

• Live Temperature Mode

• FRAM Log Mode

• SD Card Log Mode

The different modes of operation are selected via the Out-of-Box demo GUI. Instruc-
tions for downloading the GUI is provided in “MSP430FR5994 LaunchPad Development Kit
(MSP-EXP430FR5994)” [SLAU678A, 2016]. The GUI is loaded and executed from the host
PC.

Load the GUI software to the host PC. Follow the instructions provided in SLAU678A
[2016] to examine the different operational modes of the Out-of-Box demo. The focus of this
laboratory is the SD Card Log Mode.

The SD Card Mode interacts with the onboard RTC to provide an interrupt every 5 s.
At each interrupt the MSP430 transitions out of LPM 3, illuminates the onboard green LED,
obtains a time hack from the RTC, and performs ADC conversions to obtain the temperature
and the battery level voltage. The time stamp and ADC values are then logged to a text file
onboard the microSD card via the SPI. Commands and data are sent from the MSP430 to the
SD card via this serial communication link. When data collection is complete, the microSD



278 6. MSP430 MEMORY SYSTEM
card is removed from the MSP-EXP430FR5994. Its contents may be examined with the host
PC.

To examine the supporting code in more detail, import the Out-of-Box demo software
source code into Code Composer Studio and examine its features. Construct a UML Activity
Diagram and structure chart for this program.

Currently, the Out-of-Box demo software is under the control of the GUI. The software
has been written in clearly defined compartments so pieces may be adapted for specific applica-
tions and also adapted to other microcontrollers in the MSP430 line.

6.8 LABORATORY EXERCISE: MSP-EXP430FR5994
LAUNCHPAD DMA TRANSFER

Procedure:

• In the section on DMA transfer, an example was provided to move 32 integers from a
given source address to a destination address using DMA channel 0. Develop a UML
activity diagram for this example.

• Execute the code on the MSP430 experimenter board.

• Verify proper code execution by observing memory source and destination addresses using
Code Composer Studio features.

• Write a new function that takes the contents of the source address and transfers its contents
to the destination address on the first transfer. On subsequent transfers the original value
is incremented and stored at subsequent destination addresses. Develop a UML activity
diagram for this example.

• Execute the code on the MSP430 experimenter board.

• Verify proper code execution by observing memory source and destination addresses using
Code Composer Studio features.

6.9 SUMMARY
In this chapter, with the help of the memory map, we presented the memory system of the
MSP430 microcontroller. We demonstrated how contents of a memory location are accessed
via read and write operations. We described the types of memories including RAM, ROM, and
FRAM memory. We then discussed the organization and operation of onboard flash memory
and the DMA system.



6.10. REFERENCES AND FURTHER READING 279

6.10 REFERENCES AND FURTHER READING
FRAM–New Generation of Non-Volatile Memory, Texas Instruments, 2010. www.ti.com/fram

MSP430FR2433 LaunchPad Development Kit (MSP-EXP430FR2433), (SLAU739), Texas In-
struments, 2017.

MSP430FR2433 Mixed-Signal Microcontrollers, (SLAB034AD), Texas Instruments, 2017.

MSP430FR2433 Mixed-Signal Microcontroller, (SLASE59D), Texas Instruments, 2018.

MSP430FR4xx and MSP430FR2xx Family User’s Guide, (SLAU445G), Texas Instruments,
2016.

MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s Guide, (SLAU367O),
Texas Instruments, 2017. 264, 266, 267, 269, 270, 271, 272, 273, 274, 276, 277

MSP430FR5994LaunchPadDevelopmentKit (MSP-EXP430FR5994), (SLAU678A), Texas In-
struments, 2016. 277

MSP430FR599x, MSP430FR596x Mixed-Signal Microcontrollers, (SLASE54C), Texas Instru-
ments, 2018.

MultiMedia Card Product Manual, SanDisk Corporate Headquarters, Sunnyvale, CA, 2000.
www.sandisk.com 261

Texas Instruments MSP430 FRAM Quality and Reusability, (SLAA526A), Texas Instruments,
2014. 261

Texas Instruments MSP430 FRAM Technology-How to and Best Practices, (SLAA628), Texas In-
struments, 2014. 261

Texas Instruments MSP430x5xx/MSP430x6xx Family User’s Guide, (SLAU208Q), Texas Instru-
ments, 2018.

6.11 CHAPTER PROBLEMS
Fundamental

1. Convert CAFEh to binary.

2. Convert .1101_1111_0000_1001/2 to decimal and hexadecimal numbers.

3. Convert .11341/10 to binary and hexadecimal numbers.

www.ti.com/fram
www.sandisk.com


280 6. MSP430 MEMORY SYSTEM
4. A memory system is equipped with a 12-bit address bus. Using the linear addressing

method, how many unique memory addresses are possible? What is the first and last mem-
ory addresses specified in binary? In hexadecimal?

5. A processor has a 16-bit data bus. What is the largest unsigned integer that may be carried
by the bus? Signed integer?

6. Describe the different memory components available with the MSP430 microcontroller.
Provide an application for each memory type.

7. Describe the purpose of the DMA system.

Advanced

1. Research the interface between the MSP430 and a MMC/SD card.

2. Sketch the memory map of the MSP430FR5994 microcontroller.

Challenging

1. Develop a MMC/SD card interface for the MSP430 microcontroller.

2. Write a function to clear a block of memory addresses in RAM memory. The start address
and the number of memory locations to clear are passed into the function as arguments.

3. Write a function to transfer a block of memory locations from one address to another
using DMA channel 2. The start address and the size of the memory block are passed into
the function as arguments.



281

C H A P T E R 7

Timer Systems
Objectives: After reading this chapter, the reader should be able to

• illustrate the use of the Watchdog timer;

• explain the operation of the real-time timer;

• explain the need and operation for the RTC;

• describe the timer features of Timer_A and Timer_B;

• program capture and compare subsystems to interface with external devices; and

• write basic programs using the timer subsystems (Watchdog, RTC, and capture/compare
subsystems) and their interrupt modules.

7.1 INTRODUCTION
One of the main reasons for the proliferation of microcontrollers as the “brain” of embedded
systems is their ability to interface with multiple external devices such as sensors, actuators, and
display units among others. In order to communicate with such devices, however, microcon-
trollers must have capabilities to meet time constraints enforced by those devices. For example,
an actuator which is controlled by a servo motor requires what is called a PWM signal with
precise timing requirements as its input, while a communication device may need a unique pulse
with a specified width to initiate its process. In other applications, microcontrollers need to
capture the time of an external event or distinguish periodic input signals by computing their
frequencies and periods. To meet these time constraints, embedded systems must have a fairly
sophisticated timer system to generate a variety of clock signals, capture external events, and
produce desired output time-related signals. The goal of this chapter is to address these capa-
bilities of MSP430. We first present the clock systems of MSP430 followed by the Watchdog
timer, basic timer, RTC, input capture, and output compare timer subsystems.

7.2 MOTIVATION: REAL-TIME LOCATION SYSTEMS
(RTLS)

CenTrak, Incorporated provides tracking solutions for the medical community. One of their
products, the InTouch CareTM Real Time Location System is used to track doctors, nurses,



282 7. TIMER SYSTEMS
medical staff, patients, and medical equipment. The MSP430’s ability to operate with minimal
power allows the InTouch Care to operate for six months without the need for a change of
batteries. The timer system of the MSP430 embedded in the InTouch Care system is used to
inform the system’s location periodically to a central control location for tracking. Each InTouch
Care unit comes with the DualTrackTM communication system that utilizes radio frequency
and infrared signals to transmit locations and receive commands. The system is used currently
to streamline patient and equipment tracking in a number of medical facilities in the United
States.

7.3 TIME-RELATED SIGNAL PARAMETERS
Throughout the history of microcontrollers, one of the main challenges was the need to operate
with minimal power. The motivation comes from microcontroller applications that require a
controller operating remotely without a continuous external power source. Since the power used
by a microcontroller is directly proportional to the speed of transistors switching logic states,
computer designers implemented multiple methods to reduce the clock speed. One method was
to design a controller such that the CPU operates at a high clock speed while other subsystems
run at a lower clock speed.

Such architectures with multiple clock sources can also allow programmers/engineers to
turn off subsystems while they are not in use, saving more power for the overall embedded
system. The MSP430 designers adopted this philosophy of providing users with multiple clock
sources such that, depending on applications, one can have the flexibility to configure his or her
controller appropriately. The flexible clock features of the MSP430 were previously discussed in
Chapter 5.

Before proceeding forward, we briefly review time-related signal parameters.

7.3.1 FREQUENCY
Consider a signal, x.t/, that repeats a pattern over time. We call this signal periodic with period
T , if it satisfies the following equation:

x.t/ D x.t C T /:

To measure the frequency of a periodic signal, we count the number of times a particular
event repeats within one second period. The unit of frequency is the Hertz or cycles per second.
For example, a sinusoidal signal with the 60 Hz frequency means that a full cycle of a sinusoid
signal repeats itself 60 times each second or once every 16.67 ms.

7.3.2 PERIOD
The reciprocal of frequency is defined as period. If an event occurs with a rate of 1 Hz, the period
of that event is 1 s. To find a period, given a frequency, or vice versa, we simply need to remember



7.3. TIME-RELATED SIGNAL PARAMETERS 283

their inverse relationship, f D
1
T
, where f and T represent a frequency and the corresponding

period, respectively. Both periods and frequencies of signals are often used to specify timing
constraints of embedded systems. For example, when your car is on a wintery road and slipping,
the engineers who designed your car configured the anti-slippage unit to react within some
millisecond period, say 20 ms. The constraint then forces the design team that monitors the
slippage to program their monitoring system to check a slippage at a minimum rate of 50 Hz.

7.3.3 DUTY CYCLE
In many applications, periodic pulses are used as control signals of devices. A good example is
the use of a periodic pulse to control a servo motor. To control the direction and sometimes
the speed of a motor, a periodic pulse signal with a changing duty cycle over time is used. The
periodic pulse signal shown in Figure 7.1 frame (a) is on for 50% of the signal period and off
for the rest of the period. The pulse shown in frame (b) is on for only 25% of the same period as
the signal in frame (a) and off for 75% of the period. The duty cycle is defined as the percentage
of one period a signal is on. Therefore, we call the signal in frame (a) in Figure 7.1 as a periodic
pulse signal with a 50% duty cycle and the corresponding signal in frame (b), a periodic pulse
signal with a 25% duty cycle.

100%

50%

(a)25%

(b)

100%

Figure 7.1: Two signals with the same period but different duty cycles. Frame (a) shows a periodic
signal with a 50% duty cycle and frame (b) displays a periodic signal with a 25% duty cycle.



284 7. TIMER SYSTEMS

7.3.4 PULSE WIDTH MODULATION
In this section, we show how the speed of a DC motor can be controlled by a PWM signal.
Suppose you have the circuit setup shown in Figure 7.2. The figure shows that the batteries are
connected to power the motor through a switch. It is obvious that when we close the switch
the DC motor will rotate and continue to rotate with a speed proportional to the DC voltage
provided by the batteries. Now suppose we can open and close the switch rapidly. It will cause
the motor to rotate and stop rotating per the switch position. As the time between the closing
and opening of the switch decreases, the motor will not have time to make a complete stop and
will continue to rotate with a speed proportional to the average time the switch is closed. This
is the underlying principle of controlling DC motor speed using the PWM signal. When the
logic of the PWM signal is high, the motor is turned on, and when the logic of the waveform is
low, the motor is turned off. By controlling the time the motor is on, we can control the speed
of the DC motor.

The duty cycle is defined as the fractional time the logic is high with respect to one cycle
time (period) of the PWM signal. Thus, 0% duty cycle means the motor is completely turned
off while 100% duty cycle means the motor is on all the time. Aside from motor speed control
applications, PWMtechniques are used in a wide variety of applications such as audio amplifiers,
power supplies, heating units, and inverters.

Switch

Batteries
DC

Motor

Figure 7.2: An example setup for controlling a DC motor.



7.4. OVERVIEW OF MSP430 TIMER FEATURES 285

7.4 OVERVIEW OF MSP430 TIMER FEATURES

Both the MSP430FR2433 and MSP430FR5994 LaunchPads are equipped with a host of timer
features as shown in Figure 7.3. Each of these features will be discussed in upcoming sections
along with code examples.

T.I. Product Processor
Clock and Timer

Features

MSP430FR2433 
LaunchPad

MSP430FR2433

MSP430FR5994 
LaunchPad

MSP430FR5994

TIMER0_A3 
- 3 capture/compare registers 
TIMER1_A3 
- 3 capture/compare registers 
TIMER2_A2 
- 2 capture/compare registers 
TIMER3_A2 
- 2 capture/compare registers 
Real-Time Counter 
- 16-bit 
Watchdog Timer (WDT_A)

TA0: Timer_A 
- 3 capture/compare registers 
TA1: Timer_A 
- 3 capture/compare registers 
TA2: Timer_A 
- 2 capture/compare registers 
TA3: Timer_A 
- 2 capture/compare registers 
TA4: Timer_A 
- 3 capture/compare registers 
TB0: Timer_B 
- 7 capture/compare registers 
Real-Time Clock B (RTC_B) 
Real-Time Clock C (RTC_C) 
Watchdog Timer (WDT_A) 

Figure 7.3: MSP430 variants.



286 7. TIMER SYSTEMS

7.5 ENERGIA-RELATED TIME FUNCTIONS
For the remainder of the chapter we investigate time-related peripherals onboard the MSP430
including the Watchdog timer, Timer_A, and the Real-Time Clock (RTC_C). Before doing
so, we review time-related functions available within Energia.

The Energia Development Environment has several built-in functions related to timing
events, providing delays, or generating PWM signals. The functions include (www.energia.nu)
the following.

• millis(): This function provides the number of milliseconds that has occurred since the
processor began running the current program.

• micros(): This function provides the number of microseconds that has occurred since the
processor began running the current program.

• delay(): Provides a program pause for the specified number of milliseconds.

• delayMicroseconds(): Provides a program pause for the specified number of microsec-
onds. Note: This function is accurate for values 16,383 �s or less.

• analogWrite():The analogWrite function provides a 490Hz pulse widthmodulated signal
on the specified PWM capable pin. The duty cycle is provided as an argument to the
function from 0–255. For example, to specify a 90% duty cycle, the value would be 230.

Example: In this example, time-related Energia functions are used to debounce an external
switch input.

//***********************************************************************
//This example is provided with the Energia distribution and is used with
//permission of Texas Instruments, Inc.
//
//Debounce
//***********************************************************************
//Each time the input pin goes from LOW to HIGH (e.g., because of a
//push-button press), the output pin is toggled from LOW to HIGH or
//HIGH to LOW.
//
//The circuit:
//- LED attached from pin 13 to ground
//- Pushbutton attached from pin 2 to +3.3V
//- 10K resistor attached from pin 2 to ground
//
//created: 21 Nov 2006, David A. Mellis

www.energia.nu


7.5. ENERGIA-RELATED TIME FUNCTIONS 287
//modified: 30 Aug 2011, Limor Fried
//modified: 27 Apr 2012, Robert Wessels
//
//This example code is in the public domain.
//***********************************************************************

const int buttonPin = PUSH2; //number of the pushbutton pin
const int ledPin = GREEN_LED; //number of the LED pin

int ledState = HIGH; //current state of the output pin
int buttonState; //current reading from the input pin
int lastButtonState = LOW; //previous reading from the input pin

//the following variables are long's because the time, measured in
//miliseconds, will quickly become a bigger number than can be
//stored in an int.
long lastDebounceTime = 0; //last time output pin toggled
long debounceDelay = 50; //the debounce time; increase if the

//output flickers

void setup()
{
pinMode(buttonPin, INPUT_PULLUP);
pinMode(ledPin, OUTPUT);
}

void loop()
{
//read the state of the switch into a local variable:
int reading = digitalRead(buttonPin);

//check to see if you just pressed the button
//(i.e., the input went from LOW to HIGH), and you've waited
//long enough since the last press to ignore any noise:
//If the switch changed, due to noise or pressing:
if (reading != lastButtonState)
{
lastDebounceTime = millis();
}



288 7. TIMER SYSTEMS

if ((millis() - lastDebounceTime) > debounceDelay)
{
//whatever the reading is at, it's been there for longer
//than the debounce delay, so take it as the actual current state:
buttonState = reading;
}

//set the LED using the state of the button:
digitalWrite(ledPin, buttonState);

//save the reading. Next time through the loop,
//it'll be the lastButtonState:
lastButtonState = reading;
}

//***********************************************************************

7.6 WATCHDOG TIMER
As the name implies, the primary purpose of theWatchdog timer in amicrocontroller is to watch
for and prevent software failure by forcing user code to refresh a designated control register peri-
odically throughout the execution of a program. The secondary purpose of the Watchdog timer
is to generate periodic time intervals for applications that require periodic, repeated services.

By software failure, we mean the execution of unintended instructions by MSP430,
whether it is an unintended infinite loop or a wrong segment of program being executed due
to hardware errors, programmer errors, or noise-related malfunctions. We now present how
the reader can configure the Watchdog system to function as a software failure preventer and a
periodic interval generator.

7.6.1 PROTECTING FROM SOFTWARE FAILURE
The Watchdog timer prevents software failure by enforcing the following rule. A 16-bit regis-
ter, called the Watchdog count (WDTCNT) register, counts up at each clock cycle. When it
reaches its limit, the Watchdog timer system initiates a power up clear reset (PUCR).1 Thus,
your program must clear the counter periodically before the counter reaches its limit. During
normal program execution, counter reset instructions may be placed strategically throughout the
code. When the code executes correctly, the Watchdog timer will be reset on a regular basis, in-
dicating normal operation. However, if the code is not operating correctly, the Watchdog timer

1Unlike the power-on reset (POR), the power up clear reset (PUCR) does not change the values of the WDTCTL
register.



7.6. WATCHDOG TIMER 289
will not be reset as required ,thus generating a flag or an interrupt. A user can select the limit
values as 64, 512, 8192, or 32,768 (default), which correspond to using the WDTCNT register
as a 6-, 9-, 13-, or 15-bit counter, respectively. The source for the clock cycle can be chosen
either from the SMCLK (default) or the ACLK.

The function of the Watchdog timer is governed by programming the Watchdog timer
control register (WDTCTL). To avoid accidental write to this register, it is password protected,
which means to modify the contents of the register, one must first write 0x5A (password) to the
upper byte of WDTCTL before configuring the Watchdog system using the lower byte of the
same register. MSP430 designers also implemented another safety mechanism by resetting the
controller, if a wrong password is sent to the upper byte of WDTCTL. Figure 7.4 shows the
contents of the 16-bit register.

15

WatchDog Timer Register (WDTCTL)

14 13 12 11 10 9 8

WDTHOLD WDTNMIES WDTNMI WDTTMSELWDTCNTCL WDTSSEL WDTISx

7 6 5 4 3 2 1 0

rw-0 rw-0 rw-0 rw-0 r0(w) rw-0 rw-0 rw-0

Read as 069h
WDTPW must be written as 05Ah

Figure 7.4: Watchdog timer register WDTCTL.

The 7th bit (WDTHOLD) is used to turn-on or turn-off the Watchdog timer. Setting
this bit disables the Watchdog counter, and clearing this bit configures the system to function
normally. Bits 6 and 5 are not used. Bit 4 (WDTTMSEL) determines the mode of operation
for the Watchdog timer: setting this bit selects the interval timer mode while clearing this bit
designates the Watchdog mode. Writing a logic one to bit 3 (WDTCNTCL) clears the counter.
This is how your program can prevent the Watchdog timer from generating a PUCR. Once the
WDTCNT is cleared, this bit is reset (0) automatically. The WDTSSEL bit (bit 2) selects the
clock source for the counter. Setting this bit chooses the ACLK clock while clearing this bit
selects the SMCLK clock. Finally, WDTISx bits (bits 1 and 0) are used to select the Watchdog
timer reset periods as shown below:

• 00 – use 15 bit counter and count up to 32,768

• 01 – use 13 bit counter and count up to 8,192

• 10 – use 9 bit counter and count up to 512



290 7. TIMER SYSTEMS
• 11 – use 6 bit counter and count up to 64

The default value of the register selects the 15-bit counter using the SMCLK clock as the time
source.

Associated with the control register is the IFG1 register. When the WDTCNT register
reaches its limit, the WDTIFG flag (bit 0) in the IFG1 register, located at 0x0002, is set. This
flag can be polled or can be used to initiate an interrupt when the Watchdog timer is used as a
periodic interval timer.

Example: The following C code or the corresponding assembly code turns off the Watchdog
timer, which is recommended during program development. Assuming that the registers are al-
ready defined with the proper names, the Watchdog timer may be turned off using the following
C instruction:

WDTCTL = WDTPW + WDTHOLD

In Assembly Language, use:

MOV.W #WDTPW+WDTHOLD, &WDTCTL

7.6.2 INTERVAL TIMER
The Watchdog timer can also be configured to generate a periodic interval. To do so, the
WDTTMSEL bit (bit 4) of the WDTCTL register must be set and the interval period must
be selected using the WDTISx bits (bits 2 to 0) and the WDTSSEL bits (bits 6, 5) of the same
register. When the WDTCNT register reaches the designated limit, the WDTIFG flag in the
Special Function Register SFRIFG1 register is set. If the WDTIE bit (bit 0) in the Special
Function Register Interrupt Enable IE1 register 1 (SFRIE1.0) is set and the GIE bit (overall
maskable interrupt system enable bit in the Status Register) is set, the Watchdog timer interrupt
is triggered. Figure 7.5 shows the components of the interval timer along with the related inter-
rupt system. Once the interrupt is serviced (interrupt service routine is executed), the WDTIFG
flag is automatically cleared.

Example: Provided below is the C code segment that configures the MSP430FR5994 micro-
controller board to toggle the logic state on port 1 pin 0 (red LED onboard the launchpad) every
second.

//***********************************************************************
//MSP430FR5994 Example - WDT, Toggle P1.0, Use of WDT as a timer,
//
//Description: Toggle P1.0 using software timed by WDT ISR. Toggle rate
//is 1 sec based on 32kHz ACLK WDT clock source. In this example, the
//WDT is configured to divide 32768 watch-crystal by 2^15 with an ISR
//triggered at 1Hz.



7.6. WATCHDOG TIMER 291

WDTSSEL

WDTCNT

WDTIFG

Limit Reached
GIE WDTIE

SMCLK
ACLK

Watchdog
Interrupt
System

Figure 7.5: Watchdog timer as an interval generator.

//
//An external watch crystal is installed on XIN XOUT for the ACLK.
//(ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = default DCO)
//
//D. Pack and S. Barrett, July 2018, Built with CCS v8
//***********************************************************************

#include <msp430.h>

int main(void)
{
WDTCTL = WDTPW + WDTHOLD; //Stop WDT during initialization
PMSCTL0 &= ~LOCKLPMS; //Disable GPIO high-impedance mode
P1DIR |= BIT0; //Set P1.0 (red LED) to output
P1DIR |= 0x01; //Set P1.0 to output direction
WDTCTL = WDT_ADLY_1000; //WDT 1 sec, ACLK, interval timer
SFRIE1 |= WDTIE; //Enable WDT interrupt
__enable_interrupt(); //Enable global interrupt

while(1)
{



292 7. TIMER SYSTEMS
} //Wait for interrupts

}

//***********************************************************************
//Watchdog timer interrupt service routine
//***********************************************************************

#pragma vector=WDT_VECTOR
__interrupt void watchdog_timer(void)
{
P1OUT ^= 0x01; //Toggle P1.0 using exclusive-OR
}

//***********************************************************************

7.7 REAL-TIME CLOCK
RTC features provide microcontrollers the ability to generate a periodic interrupt to accomplish
periodic, important tasks. For example, while operating a motor, it is important to periodically
monitor motor current as an indication of safe, non-obstructed operation. RTC features also
provide the microcontroller to track calendar time based on seconds, minutes, hours, etc. Both
theMSP430FR2433 and theMSP430FR5994 are equipped with RTC features. Since the RTC
features onboard these two processors are different, they will be addressed separately.

7.8 REAL-TIME CLOCK-MSP430FR2433
The MSP430FR2433 is not equipped with calendar-based RTC features. Instead, the
MSP430FR2433 may be equipped with an external RTC (Maxim DS3234) via the serial pe-
ripheral interface. An example is provided in Chapter 10.

The MSP430FR2433 is equipped with a 16-bit counter as shown in Figure 7.6. The
counter may be used to generate a periodic interrupt. The time base for the RTC counter may
be the ACLK, XT1CLK, or VLOCLK depending on the operating mode. The clock may then
be pre-divided using the Real-time clock pre-divider select bits (RTCPS). The divided clock
source signal is provided to the 16-bit counter. The counter’s value is constantly compared to
the value of the 16-bit Shadow register. When the two values are the same, an RTC interrupt
is generated, if enabled.

Example: In this example the MSP430FR2433’s RTC counter is configured to generate a 1 s
periodic interrupt.



7.8. REAL-TIME CLOCK-MSP430FR2433 293

Real-Time Clock Control Register (RTCCTL)
 RTCCTL[13:12]: RTCSS: clock source: 01 = device specific (SMCLK or ACLK) ,
  10 = XT1CLK, 11 = VLOCLK
 RTCCTL[10:8]: RTCPS: predivider:
  000 = 1, 001 = 10, 010 = 100, 011 = 1000, 100 = 16, 101 = 64, 110 = 256, 111 = 1024
 RTCCTL[6]: RTCSR: software reset: 1 = clear counter value,
  reloads shadow register from modulo register
 RTCCTL[1]: RTC interrupt enable: 0 = disabled, 1 = enabled
 RTCCTL[0]: RTC interrupt flag: 0 = none pending, 1= interrupt pending

RTCCNT

RTCSS RTCPS

Interrupt
Request

Overflow Event
to Other Modules

Reserved
Device Specific

XT1CLK
VLOCLK

RTCIE

Pre-Divider

S  Q
R

16-bit Counter
Reset

Reload

OverflowCompare Logics

16-bit Shadow Register

16-bit Modulo Register

RTCMOD RTCSR RTCIV RTCIF

00
01
10
11

7 6

15
Reserved

Reserved RTCSR RTCIE RTCIFGReserved

RTCSS RTCPSReserved
14 13 12 11 10 9

5 4 3 2 1

8

r0 r0 rw-(0) rw-(0) r0 rw-(0) rw-(0) rw-(0)

r0 w-(0) r0 r0 r0 r0 rw-(0) r-(0)

0

Figure 7.6: MSP430FR2433 RTC counter. (Illustration used with permission of Texas Instru-
ments (www.TI.com).)

//********************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2015, Texas Instruments Incorporated
// All rights reserved.
//
// MSP430 CODE EXAMPLE DISCLAIMER
//
//********************************************************************
// MSP430FR243x Demo - RTC, toggle P1.0 every 1s
//

www.TI.com


294 7. TIMER SYSTEMS
// Description: Configure ACLK to use 32kHz crystal as RTC clock,
// ACLK=XT1=32kHz, MCLK = SMCLK = default DCODIV = ~1MHz.
//
// MSP430FR2433
// -----------------
// /|\| |
// | | |
// | | XIN(P2.0)|--
// --|RST | ~32768Hz
// | XOUT(P2.1)|--
// | |
// | P1.0|-->LED
//
//Ling Zhu, Texas Instruments Inc., Feb 2015
//Built with IAR Embedded Workbench v6.20 & Code Composer Studio v6.0.1
//*********************************************************************

#include <msp430.h>

int main(void)
{
WDTCTL = WDTPW | WDTHOLD; //Stop watchdog timer
P2SEL0 |= BIT0 | BIT1; //set XT1 pin as second function
do

{
CSCTL7 &= ~(XT1OFFG | DCOFFG); //Clear XT1 and DCO fault flag
SFRIFG1 &= ~OFIFG;
}while (SFRIFG1 & OFIFG); //Test oscillator fault flag

P1OUT &= ~BIT0; //Clear P1.0 output latch for
//a defined power-on state

P1DIR |= BIT0; //Set P1.0 to output direction

PM5CTL0 &= ~LOCKLPM5; //Disable the GPIO power-on
//default high-impedance mode
//to activate previously
//configured port settings

RTCMOD = 32-1; //RTC count re-load compare



7.8. REAL-TIME CLOCK-MSP430FR2433 295
//value at 32.
//1024/32768 * 32 = 1 sec.

//Initialize RTC
//Source = 32kHz crystal,
//divided by 1024

RTCCTL = RTCSS__XT1CLK | RTCSR | RTCPS__1024 | RTCIE;
__bis_SR_register(LPM3_bits | GIE); // Enter LPM3, enable interrupt
}

//*********************************************************************
// RTC interrupt service routine
//*********************************************************************

#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector=RTC_VECTOR
__interrupt void RTC_ISR(void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(RTC_VECTOR))) RTC_ISR (void)
#else
#error Compiler not supported!
#endif
{
switch(__even_in_range(RTCIV,RTCIV_RTCIF))

{
case RTCIV_NONE: break; //No interrupt
case RTCIV_RTCIF: //RTC Overflow

P1OUT ^= BIT0;
break;

default: break;
}

}

//*********************************************************************

7.8.1 REAL-TIME CLOCK: RTC_B, RTC_C-MSP430FR5994
RTC_B and RTC_C, the MSP430 RTC, provide a clock based on seconds, minutes, hours,
etc. The RTC time base is provided by a 32,768 Hz external crystal. This time base is shown as
the BCLK in Figure 7.7. The time base is routed to the RTOPS and RT1PS dividers to provide



296 7. TIMER SYSTEMS
RTCHOLD

Set_RT0PSIFG

Set_RT1PSIFG

Set_RTCRDYIFG

Set_RTCTEVIFG

Set_RTCAIFG

BCLK

RT0IP

RT1IP

RTCTEV
RTCDOW

RTCBCD

Calendar

Alarm

RTCHOUR RTCMIN RTCSEC

RTCADOW RTCADAY RTCAHOUR RTCAMIN

RTCYEARH RTCYEARL RTCMON RTCDAY

RTCOCALS  RTCOCAL

RTCTCMPS   RTCTCMP

Calibration
Logic

Keepout
Logic

Minute Changed
Hour Changed

Midnight
Noon

8

8

3

3

2

RT0PS
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

RT1PS
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

EN

EN

EN

EN

EN

EN

111
110
101
100
011
010
001
000

111
110
101
100
011
010
001
000

00
01
10
11

Figure 7.7: RTC [SLAU367O, 2017]. (Illustration used with permission of Texas Instruments
(www.ti.com).)

www.ti.com


7.8. REAL-TIME CLOCK-MSP430FR2433 297
a 1 Hz time base to the time-keeping registers. The register contains place holders for sec-
onds (RTCSEC), minutes (RTCMIN), hours (RTCHOUR), day of the week (RTCDOW),
day (RTCDAY), month (RTCMON) , and year (RTCYEARH, RTCYEARL). Data may be
stored in BCD or hexadecimal binary format. BCD represents each digit in a number individ-
ually from 0–9 [SLAU367O, 2017].

The RTC_C is also equipped with an alarm function. The alarm is configured for a spe-
cific minute (RTCAMIN), hour (RTCAHOUR), day (RTCADAY), and day of the week (RT-
CADOW). The write operation for RTC control, clock, calendar, prescale, and offset error are
key protected [SLAU367O, 2017].

The RTC_C is supported by six prioritized interrupts designated RT0PSIFG,
RT1PSIFG, RTCRDYIFG, RTCTEVIFG, RTCAIFG, and RTCOFIFG. The six interrupt
signal flags are combined to provide a single interrupt signal. When an interrupt occurs the
interrupt vector register (RTCIV) provides the specific interrupt source [SLAU367O, 2017].

7.8.2 RTC REGISTERS
RTC_C is supported by a complement of registers. Details of specific register and bits set-
tings are contained inTexas InstrumentsMSP430FR58xx,MSP430FR59xx, andMSP430FR6xx
Family SLAU367O [2017] and will not be repeated here. The next two examples illustrate the
use of the RTC in counter and clock mode.

Example. In this example the MSP430FR5994 is employed within the counter mode. An LED
is toggled every second.

//********************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2015, Texas Instruments Incorporated
// All rights reserved.
//
// MSP430 CODE EXAMPLE DISCLAIMER
//
//********************************************************************
//MSP430FR5x9x Demo - RTC in Counter Mode toggles P1.0 every 1s
//
//This program demonstrates operation of the RTC in counter mode
//configured to source from the ACLK to toggle P1.0 LED every 1s.
//
// MSP430FR5994
// -----------------
// /|\ | |
// | | XIN|--



298 7. TIMER SYSTEMS
// ---|RST | 32768Hz
// | XOUT|--
// | |
// | P1.0|-->LED
//
//William Goh, Texas Instruments Inc., October 2015
//Built with IAR Embedded Workbench V6.30 & Code Composer Studio V6.1
//********************************************************************

#include <msp430.h>

int main(void)
{
WDTCTL = WDTPW | WDTHOLD; //Stop WDT
P1OUT &= ~BIT0;
P1DIR |= BIT0;
PJSEL0 = BIT4 | BIT5; //Initialize LFXT pins

//Disable the GPIO power-on default high-impedance mode to activate
//previously configured port settings
PM5CTL0 &= ~LOCKLPM5;

//Configure LFXT 32kHz crystal
CSCTL0_H = CSKEY_H; //Unlock CS registers
CSCTL4 &= ~LFXTOFF; //Enable LFXT
do

{
CSCTL5 &= ~LFXTOFFG; //Clear LFXT fault flag
SFRIFG1 &= ~OFIFG;
}while (SFRIFG1 & OFIFG); //Test oscillator fault flag

CSCTL0_H = 0; //Lock CS registers

//Setup RTC Timer
RTCCTL0_H = RTCKEY_H; //Unlock RTC
RTCCTL0_L = RTCTEVIE_L; //RTC event interrupt enable

//Ctr Mode, RTC1PS, 8-bit ovf
RTCCTL13 = RTCSSEL_2 | RTCTEV_0 | RTCHOLD;
RTCPS0CTL = RT0PSDIV1; //ACLK, /8



7.8. REAL-TIME CLOCK-MSP430FR2433 299
//out from RT0PS, /16

RTCPS1CTL = RT1SSEL1 | RT1PSDIV0 | RT1PSDIV1;
RTCCTL13 &= ~(RTCHOLD); //Start RTC

__bis_SR_register(LPM3_bits | GIE); //Enter LPM3 mode w/int enabled
__no_operation();
return 0;
}

//*******************************************************************
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector=RTC_C_VECTOR
__interrupt void RTC_ISR(void)
#elif defined(__GNUC__)

void __attribute__ ((interrupt(RTC_C_VECTOR))) RTC_ISR (void)
#else
#error Compiler not supported!
#endif
{
switch(__even_in_range(RTCIV, RTCIV__RT1PSIFG))

{
case RTCIV__NONE: break; //No interrupts
case RTCIV__RTCOFIFG: break; //RTCOFIFG
case RTCIV__RTCRDYIFG:break; //RTCRDYIFG
case RTCIV__RTCTEVIFG: //RTCEVIFG

P1OUT^= BIT0;//Toggle P1.0 LED
break;

case RTCIV__RTCAIFG: break; //RTCAIFG
case RTCIV__RT0PSIFG: break; //RT0PSIFG
case RTCIV__RT1PSIFG: break; //RT1PSIFG
default: break;
}

}

//********************************************************************

Example. In this example the RTC is used in clock mode to trigger an interrupt every minute
and second.



300 7. TIMER SYSTEMS
//********************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2015, Texas Instruments Incorporated
// All rights reserved.
//
// MSP430 CODE EXAMPLE DISCLAIMER
//
//********************************************************************
//MSP430FR5x9x Demo - RTC in real time clock mode
//
//Description: This program demonstrates the RTC mode by triggering an
//interrupt every second and minute. This code toggles P1.0 every
//second. This code recommends an external LFXT crystal for RTC
//accuracy.
//
// ACLK = LFXT = 32768Hz, MCLK = SMCLK = default DCO = 1MHz
//
// MSP430FR5994
// -----------------
// /|\ | XIN|-
// | | | 32768Hz
// ---|RST XOUT|-
// | |
// | P1.0 |--> Toggles every second
// | |
//
//William Goh, Texas Instruments Inc., October 2015
//Built with IAR Embedded Workbench V6.30 & Code Composer Studio V6.1
//********************************************************************

#include <msp430.h>

int main(void)
{
WDTCTL = WDTPW | WDTHOLD; //Stop Watchdog timer
P1DIR |= BIT0; //Set P1.0 as output
PJSEL0 = BIT4 | BIT5; //Initialize LFXT pins

//Disable the GPIO power-on default high-impedance mode to activate



7.8. REAL-TIME CLOCK-MSP430FR2433 301
//previously configured port settings
PM5CTL0 &= ~LOCKLPM5;

//Configure LFXT 32kHz crystal
CSCTL0_H = CSKEY_H; //Unlock CS registers
CSCTL4 &= ~LFXTOFF; //Enable LFXT
do

{
CSCTL5 &= ~LFXTOFFG; //Clear LFXT fault flag
SFRIFG1 &= ~OFIFG;
}while (SFRIFG1 & OFIFG); //Test oscillator fault flag

CSCTL0_H = 0; //Lock CS registers
//Configure RTC_C

RTCCTL0_H = RTCKEY_H; //Unlock RTC
RTCCTL0_L = RTCTEVIE_L | RTCRDYIE_L; //enable RTC read ready int

//enable RTC time event int
RTCCTL13 = RTCBCD | RTCHOLD | RTCMODE; //RTC enable, BCD mode, RTC hold

RTCYEAR = 0x2019; //Year = 0x2019
RTCMON = 0x4; //Month = 0x04 = April
RTCDAY = 0x05; //Day = 0x05 = 5th
RTCDOW = 0x01; //Day of week = 0x01 = Monday
RTCHOUR = 0x10; //Hour = 0x10
RTCMIN = 0x32; //Minute = 0x32
RTCSEC = 0x45; //Seconds = 0x45
RTCADOWDAY = 0x2; //RTC Day of week alarm = 0x2
RTCADAY = 0x20; //RTC Day Alarm = 0x20
RTCAHOUR = 0x10; //RTC Hour Alarm
RTCAMIN = 0x23; //RTC Minute Alarm
RTCCTL13 &= ~(RTCHOLD); //Start RTC

__bis_SR_register(LPM3_bits | GIE); //Enter LPM3 mode w/int enabled
__no_operation();
return 0;
}

//********************************************************************
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector=RTC_C_VECTOR



302 7. TIMER SYSTEMS
__interrupt void RTC_ISR(void)
#elif defined(__GNUC__)

void __attribute__ ((interrupt(RTC_C_VECTOR))) RTC_ISR (void)
#else
#error Compiler not supported!
#endif
{
switch(__even_in_range(RTCIV, RTCIV__RT1PSIFG))

{
case RTCIV__NONE: break; //No interrupts
case RTCIV__RTCOFIFG: break; //RTCOFIFG
case RTCIV__RTCRDYIFG: //RTCRDYIFG

P1OUT^=0x01; //Toggles P1.0 every second
break;

case RTCIV__RTCTEVIFG: //RTCEVIFG
__no_operation();// Int every minute - SET

//BREAKPOINT HERE
break;

case RTCIV__RTCAIFG: break; //RTCAIFG
case RTCIV__RT0PSIFG: break; //RT0PSIFG
case RTCIV__RT1PSIFG: break; //RT1PSIFG
default: break;
}

}
//********************************************************************

7.9 INPUT CAPTURE AND OUTPUT COMPARE
FEATURES

In this section, we study the input capture and output compare features of the MSP430 mi-
crocontroller. We begin with background information and the associated theory, followed by
MSP430 specific timer information and application examples.

7.9.1 TIMING SYSTEM OVERVIEW AND BACKGROUND THEORY
As we have learned earlier in this chapter, the heart of the timing system is the time base. The
time base frequency of an oscillating signal is used to generate a baseline clock signal. For a timer
system, the system clock is used to update the contents of a special register called a free running



7.9. INPUT CAPTURE AND OUTPUT COMPARE FEATURES 303
counter. The job of a free running counter is to count up (increment) each time it receives a
rising edge (or a falling edge) of a clock signal. Thus, if a clock is running at the rate of 2 MHz,
the free running counter will count up at every 0.5 �s. All other timer-related units reference
the contents of the free running counter to perform I/O time-related activities: measurement of
time periods, capture of timing events, and generation of time-related signals.

For input time-related activities, all microcontrollers typically have timer hardware com-
ponents that detect signal logic changes on one or more input pins. Such components rely on
a free running counter to capture external event times. We can use such ability to measure the
period of an incoming signal, the width of a pulse, and the time of a signal logic change.

You can also use the timer input system to measure the pulse width of an aperiodic signal.
For example, suppose that the times for the rising edge and the falling edge of an incoming
signal are 1.5 s and 1.6 s, respectively. We can use these values to easily compute the pulse width
of 0.1 s.

The second overall goal of the timer system is to generate signals to control external de-
vices. Again, an event simply means a change of logic states on an output pin of a microcontroller
at a specified time. Now consider Figure 7.8. Suppose an external device connected to the mi-
crocontroller requires a pulse signal to turn itself on. Suppose the particular pulse the external
device needs is 2 millisecond wide. In such situations, we can use the free running counter value
to synchronize the time of desired logic state changes. Naturally, extending the same capability,
we can also generate a periodic pulse with a fixed duty cycle or a varying duty cycle.

For output timer functions, a microcontroller uses a comparator, a free running counter,
logic switches, and special purpose registers to generate time-related signals on one or more
output pins. A comparator checks the value of the free running counter for a match with the
contents of another special purpose register where a programmer stores a specified time in terms
of the free running counter value. The checking process is executed at each clock cycle and when
a match occurs, the corresponding hardware system induces a programmed logic change on a
programmed output port pin. Using such capability, one can generate a simple logic change at
a designated time incident: a pulse with a desired time width or a pulse width modulated signal
to control servo or direct current (DC) motors.

From the examples we discussed above, you may have wondered how a microcontroller
can compute absolute times from the relative free running counter values, say 1.5 s and 1.6 s.
The simple answer is that we cannot do so directly. A programmer must use the relative system
clock values and derive the absolute time values. Suppose your microcontroller is clocked by
a 2 MHz signal and the system clock uses a 16-bit free running counter. For such a system,
each clock period represents 0.5 �s, and it takes approximately 32.78 ms to count from 0 to 216

(65,536). The timer input system then uses the clock values to compute frequencies, periods,
and pulse widths. Again, suppose you want to measure a pulse width of an incoming aperiodic
signal. If the rising edge and the falling edge occurred at count values $0010 and $0114,2 can

2The $ symbol represents that the following value is in a hexadecimal form.



304 7. TIMER SYSTEMS

Free-Running
Counter

Special Storage
Register

Programmed
Event
- Toggle
- Logic High
- Logic Low

Physical
Output

Pin

Timer Output
Flag

Timer Output
Interrupt
System

Comparator

Figure 7.8: A diagram of a timer output system.

you find the pulse width when the free running counter is counting at 2 MHz? You will need to
follow through the process similar to the one described next. We first need to convert the two
values into their corresponding decimal values, 16 and 276. The pulse width of the signal in the
number of counter value is 260. Since we already know how long it takes for the system to count
one, we can readily compute the pulse width as 260 � 0.5 �s D 130 �s.

Our calculations do not take into account time increments lasting longer than the rollover
time of the counter. When a counter rolls over from its maximum value back to zero, a flag is
set to notify the processor of this event. In such cases, the rollover incidents are incorported to
correctly determine the overall elapsed time of an event.

Elapsed time may be calculated using the following:

elapsed clock ticks D .n � 2b/ C .stop count � start count/Œclock ticks�

elapsed time D .elapsed clock ticks/ � .FRC clock period/ Œseconds�:

In this first equation, “n” is the number of timer overflows that occur between the start
and stop of an event, and “b” is the number of bits in the timer counter. The equation yields the
elapsed time in clock ticks. To convert it to seconds, the number of clock ticks are multiplied by
the period of the clock source of the free running counter.



7.9. INPUT CAPTURE AND OUTPUT COMPARE FEATURES 305

7.9.2 APPLICATIONS
In this section, we consider important uses of the timer system of a microcontroller to (1) mea-
sure an input signal timing event (input capture), (2) to count the number of external signal
occurrences (input capture), and (3) to generate timed signals (output compare). The specific
implementation details are presented in Section 7.9.2. We present the overall applications in
this section, starting with a case of measuring the time duration of an incoming signal.

Input Capture—Measuring External Timing Event
In many applications, we are interested in measuring the elapsed time or the frequency of an
external event using a microcontroller. Using the hardware and functional units discussed in the
previous sections, we now present a procedure to accomplish the task of computing the frequency
of an incoming periodic signal. Suppose that we are interested in calculating the time features
of the signal shown in Figure 7.9, an incoming periodic signal to the microcontroller.

The first necessary step for the current task is to turn on the timer system. As discussed,
to reduce power consumption, a microcontroller usually does not turn on all of its functional
systems after reset until they are needed. In addition to a separate timer module, many micro-
controller manufacturers allow a programmer to choose the rate of a separate timer clock that
governs the overall functions of a timer module.

Timer Input Port

Timer Output Port External
Device n

Microcontroller

External
Device 1 

Figure 7.9: Use of the timer input and output systems of a microcontroller. The signal on top is
fed into a timer input port. The captured signal is subsequently used to compute the input signal
frequency. The signal on the bottom is generated using the timer output system. The signal is
used to control an external device.



306 7. TIMER SYSTEMS
Once the timer is turned on and the clock rate is selected, a programmer must configure

the physical port to which the incoming signal arrives. This step is done using a special input
timer port configuration register. The next step is to configure the timer system to capture the
intended input event. In the current example, we design our system to capture two consecutive
rising edges or falling edges of an incoming signal. Again, the programming portion is done by
storing an appropriate setup value to a special register.

Assuming that the input timer system is configured appropriately, you now have two op-
tions to accomplish the desired task. The first one is the use of a polling technique; the micro-
controller continuously polls a flag, which holds a logic high signal when a programmed event
occurs on the physical pin. Once the microcontroller detects the flag, it needs to clear the flag
and record the time when the flag was set using another special register that captures the time
of the associated free running counter value (see Section 7.10.1). The program needs to con-
tinue to wait for the next flag which indicates the end of one period of the incoming signal. A
program then needs to record the newly acquired captured time represented in the form of a
free running counter value again. The period of the signal can now be computed by calculating
the time difference between the two captured event times, and, based on the clock speed of the
microcontroller, the programmer can compute the actual time changes and consequently the
frequency of the signal.

In many cases, a microcontroller can’t afford the time or resources to poll for any one
event. Such a situation calls for the second method: interrupt systems. Most microcontroller
manufacturers have developed built-in interrupt systems with their timer system. In an interrupt
system, instead of continuously polling for a flag, a microcontroller performs other tasks while
relying on its interrupt system to detect a programmed event. The task of computing the period
and the frequency is the same as the polling technique, except that the microcontroller will not
be tied down to constantly checking the flag, increasing the efficient use of the microcontroller
resources. To use interrupt systems, of course, wemust pay the price by appropriately configuring
interrupt systems to be triggered when a desired event is detected. Typically, additional registers
must be configured, and a special program called an interrupt service routine must be written.

Suppose that for the input capture scenario of the current interest, the captured times for
the two rising edges are $1000 and $5000, respectively. Note that these values are not absolute
times but the representations of times reflected as the values of the free running counter. The
period of the signal is $4000 or 16384 in decimal. Also, no timer overflows have been detected.
If we assume that the timer clock runs at 10 MHz, the period of the signal is 1.6384 ms, and
the corresponding frequency of the signal is approximately 610.35 Hz.

Counting Events
The same capability of measuring the period of a signal can also be used to simply count external
events. Suppose we want to count the number of logic state changes of an incoming signal for
a given period of time, as it may contain valuable information. Again, we can use the polling



7.10. MSP430 TIMERS: TIMER_A AND TIMER_B 307
technique or the interrupt technique to accomplish the task. For both techniques, the initial steps
of turning on a timer and configuring a physical input port pin are the same. In this application,
however, the programmed event should be any logic state changes instead of looking for a rising
or a falling edge as we have done in the previous scenario. If the polling technique is used, at
each event detection, the corresponding flag must be cleared and a counter must be updated. If
the interrupt technique is used, one must write an interrupt service routine within which the
flag is cleared and a counter is updated.

Output Compare—Generating Timing Signals to Interface External Devices
In the previous two sections, we considered two applications of capturing external incoming
signals. In this section and the next one, we consider how a microcontroller can generate time
critical signals for use by external devices. Suppose in this application, we want to send a sig-
nal shown in Figure 7.9 to turn on an external device. The timing signal is arbitrary, but the
application will show that a timer output system can generate any desired time-related signals,
permitted under the timer clock speed limit of the microcontroller.

Similar to the use of the timer input system, one must first turn on the timer system
and configure a physical pin as a timer output pin using special registers. In addition, one also
needs to program the desired external event using a special register associated with the timer
output system. To generate the signal shown in Figure 7.9, one must compute the time required
between the rising and the falling edges. Suppose also that the external device requires a pulse
which is 2 ms wide to be activated. To generate the desired pulse, one must first program the
logic state for the particular pin to be low and set the time value using a special register with
respect to the contents of the free running counter. As was previously mentioned, at each clock
cycle, the special register contents are compared with the contents of the free running counter,
and when a match occurs, the programmed logic state appears on the designated hardware pin.
Once the rising edge is generated, the program then must reconfigure the event to be a falling
edge (logic state low) and change the contents of the special register to be compared with the
free running counter. For the particular example in Figure 7.9, let’s assume that the main clock
runs at 2 MHz, the free running counter is a 16-bit counter, and the name of the special register
(16-bit register) where we can put appropriate values is output timer register. To generate the
desired pulse, we can put $0000 first to the output timer register, and after the rising edge has
been generated, we need to change the program event to a falling edge and put $0FA0 or 4000
in decimal to the output timer register. As was the case with the input timer system module, we
can use output timer system interrupts to generate the desired signals as well.

7.10 MSP430 TIMERS: TIMER_A AND TIMER_B
All MSP430 microcontrollers have both Timer_A and Timer_B I/O ports that can be used to
capture external signal events and generate time-related signals for external devices.The captured
external signal events include time stamped logic state changes, the frequency of a periodic sig-



308 7. TIMER SYSTEMS
nal, a width of a pulse to name a few. The time-related output signals range from a simple change
of logic levels on an output pin at a designated time to generation of PWM signals. We present
both input capture and output compare subsystem capabilities in this section. Both Timer_A
and Timer_B systems can be configured to function as capture and compare input/output ports.
The Timer_A system is present in all MSP430 controllers while Timer_B, with more advanced
capture and compare capabilities, is found in higher-end MSP430 family members. Much of
the discussion on Timer_A applies to Timer_B.The MSP430FR2433 and theMSP430FR5994
are both equipped with a complement of Timer_A and Timer_B timers.

The block diagram for Timer_A is shown in Figure 7.10. The main timer feature is a 16-
bit configurable up/down timer (TAxR). The timer may be clocked from a variety of sources
including the TAxCLK, ACLK, and the SMCLK. The clock source may be reduced by a series
dividers (ID, IDEX). Timer_A (and B) may be used for multiple captures and compares, pulse
width modulation, interval timing, and timer-based interrupts. Timer features are configured
using the Timer_AControl Register (TAxCTL) shown in Figure 7.11. As shown in Figure 7.11,
Timer_A (and B) may be configured for up, continuous, and up/down modes.

7.10.1 MSP430 FREE RUNNING COUNTER
In the Timer_A system, there are two to three different I/O subsystems (channels) that can
be configured independently. For the Timer_B system, the number of I/O channels vary from
three to seven. Since each channel for Timer_A and Timer_B systems has the identical hard-
ware and functional capabilities, we present only a single channel of the Timer_A system. The
source of all timer subsystems, whether they are used to capture input signal characteristics or
to generate output time-related signals, is a free running 16-bit counter, the TAxR register and
TBxR register. The counter counts up (can count down for some applications) at a specified
interval, determined by the clock source used and a pre-scalar factor, and works as the universal
timer for all time-related events. Figure 7.12 shows the free running counter, TAxR, and the
features that govern its operation.

The programming of the counter is done with the help of the Timer_A control regis-
ter (TACTL). Figure 7.13 shows the contents of the 16 bit register. Referring to Figures 7.12
and 7.13 together, one can use bits 9 and 8 (TASSELx) of the TACTL register to choose the
clock used for the free running counter as follows:

• 00 – TACTL (external clock)

• 01 – ACLK (internal “slow” clock)

• 10 – SMCLK (internal “fast” clock)

• 11 – INCLK (external clock)

The Input Divider (IDx) bits (bits 7 and 6 in the TACTL register) are used to scale the
clock source before the free running counter updates itself. The pre-scale factors are



7.10. MSP430 TIMERS: TIMER_A AND TIMER_B 309

TASSEL

CCIS

ID

CM COV

OUT

POR

OUT6 Signal

CAP

CCI

SCS

Logic

Sync

MC

22

2 2

3

2 3 15 0

15 0

IDEX

Clear RC
EQU0

EQU6

EQU0

OUTMOD

Set TAxCTL
TAIFG

Set TAxCCR6
CCIFG

Timer Clock

Timer Clock

Timer Clock

Timer Block

CCR0

CCR1

CCR2

CCR3

CCR4

CCR5

CCR6

Count
Mode

Capture
Mode

Output
Unit4

16-bit Timer
TAxR

Divider
/1.../8

Divider
/1/2/4/8

TAxCLK

TACLR

ACLK

SMCLK

INCLK

00

01

10

11

CCI6A

TAxCCR6

Comparator 6

CCI6B

GND

VCC

SCCI

D Set

Reset

Q

A
Y

EN

00

01 0

1

0

1

10

11

Figure 7.10: Timer_A block diagram [SLAU445G, 2016, SLAU367O, 2017]. (Illustration used
with permission of Texas Instruments (www.ti.com).)

www.ti.com


310 7. TIMER SYSTEMS

7 6

15
Reserved

ID MC TAIETACLR TAIFGReserved

TASSEL
14 13 12 11 10 9

5 4 3 2 1

8

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) w-(0) rw-(0) rw-(0)

0

Timer_A Control Register (TAxCTL)
 TAxCTL[9:8]: TASSEL: Timer_A clock source: 00 = TAxCLK, 01 = ACLK, 10 = SMCLK, 
  11 = INCLK
 TAxCTL[7:6]: ID: input divider: 00 = 1, 01 = 2, 10 = 4, 11 = 8
 TAxCTL[5:4]: MC: mode control: 00 = stop, 01 = up, 10 = continuous, 11 = up/down
 TAxCTL[2]: TACLR: Timer_A clear: 1 = resets TAxR register
 TAxCTL[1]: TAIE: Timer_A interrupt enable: 0 = disabled, 1 = enabled
 TAxCTL[0]: TAIFG: Timer_A interrupt flag: 0 = none, 1 = pending

 

 

     

0FFFFh

TAxCCR0

00000h
Up Mode (MC = 01)

0FFFFh

00000h
Continous Mode (MC = 10)

0FFFFh

TAxCCR0

00000h
Up/Down Mode (MC = 11)

Figure 7.11: Timer_A registers [SLAU445G, 2016, SLAU367O, 2017]. (Illustration used with
permission of Texas Instruments (www.ti.com).)

TASSELx

MCx

IDx TAR

TATFG

Clock Selection

Pre-scalar

Counting
Mode

Free Running Counter

TACLK

ACLK
SMCLK

INCLK

Figure 7.12: 16-bit free running counter.

www.ti.com


7.10. MSP430 TIMERS: TIMER_A AND TIMER_B 311

TASSELxUnused

15 14 13 12 11 10 9 8

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

MCxIDx Unused TACLR TAIE TAIFG

7 6 5 4 3 2 1 0

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) w-(0) rw-(0) rw-(0)

Timer_A Control Register (TACTL)

Figure 7.13: Timer_A control register.

• 00 – increase (decrease) the TAR counter by one at each (rising/falling edge) clock cycle

• 01 – increase (decrease) the TAR counter by one every two clock cycles

• 10 – increase (decrease) the TAR counter by one every four clock cycles

• 11 – increase (decrease) the TAR counter by one every eight clock cycles

Using the pre-scalar factors, one can slow down the frequency of the free running counter
by factor of 1, 2, 4, or 8, respectively. The mode control (MCx) bits (bits 5 and 4) of the TACTL
register govern how the counter operates as follows.

• 00 – stop counter

• 01 – count up from 0 to a value stored in the Timer_A Capture/Compare 0 (TACCR0)
register

• 10 – count from 0 to 216 (0x0000 to 0xFFFF)

• 11 – count up/down: count from 0 to the value in the TACCR0 register, then count back-
ward to 0. Repeat the process.

Thus, one can setup the counter to operate in one of the four operating modes. The Up mode
(MCx bits: 01) increments the TAR value by one until it reaches the value stored in the TACCR0
register. When the value in the TAR register changes from the value in the TACCR0 register -
1 to the value in the TACCR0 register, the TACCRO capture/compare interrupt flag (CCIFG)
bit is set, and when the value in the TAR changes from the value in TACCRO to zero during
the next clock cycle, the Timer_A Interrupt Flag (TAIFG) flag in the TACTL register is set.

When operating in the continuous mode (MCx bits: 10), the TAIFG flag is set when
the value in TAR register changes from 0xFFFFh to 0x0000h. In the Up/Down mode, the



312 7. TIMER SYSTEMS
TACCRO CCIFG flag is set when the timer TAR value changes from the value stored in the
TACCR0 register -1 to the value stored in the TACCR0 register (Up), and the TAIFG flag is
set when the timer TAR value changes from 0x01h to 0x00h (Down). Setting the TACLT bit
(bit 2) of the Timer_A Control Register (TACTL) register clears the TAR counter, resets the
divider, and changes the direction of the Up/Down counter, if the MCx bits are both set. Each
time the free running counter reaches its limit states, the TAIFG bit (bit 0) of the TACTL is
set, where the limit state is defined as follows.

• MCx: 00 – no changes to TAIFG

• MCx: 01 – TAR value changes from the value in TACCR0 to 0

• MCx: 10 – TAR value changes from 0xFFFF to 0x0000

• MCx: 11 – no changes to TAIFG

Now that we understand how to configure the counter, TAR, that is used as the basis for
all MSP430 Timer_A and Timer_B activities, we now present three different capabilities: input
capture, output compare, and a variation of the output compare—pulse width modulation. A
similar, a parallel discussion for Timer_B for the current and next sections can be derived using
Timer_B registers. For example, the explanation of the free running counter register, TAxR,
can be replaced with the one for the Timer_B system and its free running counter, TBxR.

7.10.2 INPUT CAPTURE
As mentioned earlier, the purpose of capture functions of the MSP430 microcontroller is to
capture the time of incoming external signal events. Again, all discussion pertaining to Timer_A
applies to Timer_B with appropriate register changes. In MSP430FR5994 microcontroller, for
each timer system, it contains seven channels that can be configured either as an input capture
or an output compare channel with associated interrupt sub-systems.

Suppose you want to capture the time period between two consecutive events, say cus-
tomers entering your retail store. You must have some means to record the time of the first event
and the second event. The input capture system in Timer_A and Timer_B systems give us those
capabilities, which we present in this section. Figure 7.14 shows components that make up an
input capture channel, and Figure 7.15 shows the contents of the control register to configure
the capture system. For the rest of the discussion, refer to both Figures 7.14 and 7.15.
The capture mode (CMx) bits (bits 15 and 14) of the TAxCCTLn register determine the capture
events as shown below.

• 00 – no capture

• 01 – capture rising edge

• 10 – capture falling edge



7.10. MSP430 TIMERS: TIMER_A AND TIMER_B 313

Capture
Interrupt
System

TAR

GIE CCI

Latch

CCISx

CCI1A

CCI1B

VCC

GND

CMx

TACCRx

CCIFGx

Figure 7.14: Input capture system diagram.

CAPUnusedSSCISCSCCIS0CCIS1CMXOCMX1

15 14 13 12 11 10 9 8

rw-(0) rw-(0) rw-(0) rw-(0) rw-0 r r0 rw-(0)

CCIEOUTMOD2 OUTMOD1 OUTMOD0 CCI OUT COV CCIFG

7 6 5 4 3 2 1 0

rw-(0) rw-(0) rw-(0) rw-(0) r rw-(0) rw-(0) rw-(0)

Timer_A Capture Compare Control Register 0, 1, 2 (TACCTL0, 1, 2)

Figure 7.15: Input capture and output compare control register.



314 7. TIMER SYSTEMS
• 11 – capture both edges

The capture/compare input select (CCISx) bits (bits 13 and 12) are used to select the input signal
to be captured as follows.

• 00 – capture compare input port A CCIxA

• 01 – capture compare input port B CCIxB

• 10 – Ground

• 11 – Supply voltage Vcc

The Capture Mode (CAP) bit (bit 8) of the Timer_A Capture Control Register (TAxCCTLn)
register is used to configure channel n to be either as an input capture channel (1) or as an output
compare channel (0). When the event designated by CMx bits appears on the input channel pin,
the current value of free running counter TAxR is captured in the Timer_A Capture/Compare
Register n (TAxCCRn) register and the corresponding flag, Capture/Compare Interrupt Flag
(CCIFG) (bit 0), in the TAxCCTLn register is set. If the capture/compare interrupt enable
(CCIE) bit (bit 4) is set and the GIE bit is activated, the interrupt system is configured to
service the interrupt. If another input capture event occurs before the TAxCCRn is read, the
capture overflow (COV) bit (bit 1) of the TAxCCTLn turns to 1 (set).

Example: In this input capture example, we use the MSP430FR5994 controller to capture the
VLO clock signal. The program captures rising edge of the clock signal and stores the free
running counter values in memory. When 20 rising edges are captured the logic state on pin
P1.0 changes.

//********************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2015, Texas Instruments Incorporated
// All rights reserved.
//
// MSP430 CODE EXAMPLE DISCLAIMER
//
//********************************************************************
//MSP430FR5x9x Demo - Timer0_A3 Capture of VLO Period using DCO SMCLK
//
//Description; Capture a number of periods of the VLO clock and store
//them in an array. When the set number of periods is captured the
//program is trapped and the LED on P1.0 is toggled. At this point
//halt the program execution read out the values using the debugger.
//



7.10. MSP430 TIMERS: TIMER_A AND TIMER_B 315
// ACLK = VLOCLK = 9.4kHz (typ.),
// MCLK = SMCLK = default DCO / default divider = 1MHz
//
// MSP430FR5994
// -----------------
// /|\| XIN|-
// | | |
// --|RST XOUT|-
// | |
// | P1.0|-->LED
//
//William Goh, Texas Instruments, Inc, October 2015
//Built with IAR Embedded Workbench V6.30 & Code Composer Studio V6.1
//*********************************************************************

#include <msp430.h>

#define NUMBER_TIMER_CAPTURES 20

volatile unsigned int timerAcaptureValues[NUMBER_TIMER_CAPTURES];
unsigned int timerAcapturePointer = 0;

int main(void)
{
WDTCTL = WDTPW | WDTHOLD; //Stop watchdog timer

//Configure GPIO
P1OUT &= ~0x01; //Clear P1.0 output
P1DIR |= 0x01; //Set P1.0 to output direction

//Disable the GPIO power-on default high-impedance mode to activate
//previously configured port settings
PM5CTL0 &= ~LOCKLPM5;

//Clock System Setup
CSCTL0_H = CSKEY_H; //Unlock CS registers
CSCTL2 &= ~SELA_7;
CSCTL2 |= SELA__VLOCLK; //Select ACLK=VLOCLK
CSCTL0_H = 0x00; //Lock CS module

//use byte mode to upper byte
__delay_cycles(1000); //Allow clock system to settle



316 7. TIMER SYSTEMS
//Timer0_A3 Setup

TA0CCTL2 = CM_1 | CCIS_1 | SCS | CAP | CCIE;
//Capture rising edge,
//Use CCI2B=ACLK,
//Synchronous capture,
//Enable capture mode,
//Enable capture interrupt

TA0CTL = TASSEL__SMCLK | MC__CONTINUOUS;//Use SMCLK as clock source,
//Timer in continuous mode

__bis_SR_register(LPM0_bits | GIE);
__no_operation();
}

//*********************************************************************
// Timer0_A3 CC1-4, TA Interrupt Handler
//*********************************************************************

#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector = TIMER0_A1_VECTOR
__interrupt void Timer0_A1_ISR(void)
#elif defined(__GNUC__)

void __attribute__ ((interrupt(TIMER0_A1_VECTOR))) Timer0_A1_ISR (void)
#else
#error Compiler not supported!
#endif
{
switch (__even_in_range(TA0IV, TAIV__TAIFG))

{
case TAIV__TACCR1: break;
case TAIV__TACCR2:

timerAcaptureValues[timerAcapturePointer++] = TA0CCR2;
if(timerAcapturePointer >= 20)

{
while(1)
{
P1OUT ^= 0x01; //Toggle P1.0 (LED)
__delay_cycles(100000);
}



7.10. MSP430 TIMERS: TIMER_A AND TIMER_B 317
}

break;
case TAIV__TAIFG: break;
default: break;
}

}

//*********************************************************************

7.10.3 OUTPUT COMPARE
In this section, we present the MSP430 function opposite to the input capture capabilities. The
output compare function is designed to generate desired time critical signals on an output pin.
To do so, MSP430 architects designed the compare channels using almost the same registers
used in the input capture systems previously described. Refer to Figures 7.16 and 7.15 for the
following discussion. At each clock cycle, the comparator compares the current value in the TAR
with the one previously stored in the TAxCCRn register.When the two valuesmatch (identical),
the output logic state (either logic high or logic low) will appear on the output pin based on the

Capture
Interrupt
System

TAR

GIE CCI

Latch

OUTMODx

EQU0

EQU1

OUTx

TACCRx

Comparator

CCIFGx

Figure 7.16: Output compare diagram.



318 7. TIMER SYSTEMS
programmed states of OUTMODx bits (bits 7, 6, and 5) of the TAxCCTLn register as shown
below.

• 000 – output logic is controlled by the OUT bit (bit 2)

• 001 – set the logic on the output pin high (continuous counting mode)

• 010 – toggle the logic state on the output pin (Up/Down counting mode)

• 011 – set or resets the logic state on the output pin (Up counting mode)

• 100 – toggle the logic state on the output pin (continuous counting mode)

• 101 – reset (logic zero) the logic state on the output pin (continuous counting mode)

• 110 – toggle the logic state on the output pin (Up/Down counting mode)

• 111 – set or reset the logic state on the output pin (Up counting mode)

The EQU0 signal, shown in Figure 7.16, governs modes 010, 011, 110, and 111. When
the comparison of values in TAxCCRn and TAxR results in a match, the CCIFG flag is also set
(logic 1), and if the CCI bit along with the GIE bit is set, the corresponding output compare
interrupt system is enabled. One can also use more than one channel to generate a periodic pulse.
By directing the output signal onto a single output pin and configuring two channels, say channel
0 with TAxCCR0 and channel 1 with TARCCR1, appropriately, one can generate a periodic
signal. For example, suppose we configure both channels to be output compare channels, output
event to set and reset the output logic state. If we assume continuous counting mode from
0x0000 to 0xFFFF for the free running counter, by setting the TAxCCR0 value to be zero and
the TAxCCR1 value to be 0x8000, we can generate a pulse width modulated signal with 50%
duty cycle. One can also achieve the same output signal using a single channel, say channel 0,
setting the output mode to toggle the logic states. Note that the frequency of the signal is half
of the signal generated using two channels.

In the remainder of this section, we show how register TAxIV (Timer_Ax Interrupt Vec-
tor) is used to configure a desired interrupt service routine. The first column of Table 7.1 shows
the values need to be loaded to the TAxIV register to program a particular interrupt system. The
second column of the same table shows the corresponding interrupt source for the numerical
values shown in the first column. When an interrupt occurs, the appropriate interrupt service
routine must clear the associated flag of the interrupt, shown in the last column of the table.

Thus, Timer_A capture/compare 1–6 (TAxCCR1 -TAxCCR6) or timer overflow (TAxR)
can cause interrupts in the Timer_A system. To have the corresponding interrupt to be enabled,
one must set the capture/compare interrupt enable (CCIE) bit, or Timer_A Interrupt Enable
(TAIE) bit in the Capture/Compare Control (TAxCCTLn) register or the Timer_A control
(TAxCTL) register.



7.10. MSP430 TIMERS: TIMER_A AND TIMER_B 319

Table 7.1: How register TAxIV (Timer_Ax Interrupt Vector) is used to configure a desired
interrupt service routine

Register Contents Interrupt Source Associated Flag

00h No Interrupt

02h Channel 1 TAxCCR1 CCIFG

04h Channel 2 TAxCCR2 CCIFG

06h Channel 3 TAxCCR3 CCIFG

08h Channel 4 TAxCCR4 CCIFG

0Ah Channel 5 TAxCCR5 CCIFG

0Ch Channel 6 TAxCCR6 CCIFG

0Eh Timer Overfl ow TAxCTL TAIFG

The code snapshot below shows how one can setup the Timer_A system for an interrupt
to occur every fixed period. Lines 1 and 2 are directives to define the subroutine TA_wake. Line
3 of the program contains the label of the subroutine, and the following line of code determines
the duration of the period using the TAxCCR1 register. The desired period should be calculated
based on the clock speed, and the resulting numerical number should replace symbol num on
line 4 of this program. Instructions on lines 5–7 enable the local interrupt, set up the counter
to choose the ACLK clock and the continuous count mode, and turns on the global interrupt
switch, respectively. The ret instruction on line 8 returns the program flow to the portion of
the program that called the subroutine. Instructions on lines 9–13 show how one can write a
corresponding interrupt service routine. The test instruction on line 10 clears the interrupt flag.
Your program code that performs the desired task every time the interrupt occurs will go in
the space designated by line 11. The add instruction on line 12 updates the TAxCCR1 register,
designating the period for the next interrupt to occur by adding the same amount of time to the
current time in TAxCCR1. This program can be used to wake-up the controller, periodically, to
perform required tasks using the built-in Timer_A interrupt system.

;----------------------------------------------------------------------
1 .def TA_wake
2 .text
3 TA_wake
4 mov.w #num, &TAxCCR1 ;use appropriate time number
5 mov.w #CCIE, &TAxCCTL1 ;TACCR1 interrupt enabled
6 mov.w #TASSEL_1+MC_2, &TAxCTL ;ACLK, continuous mode
7 bis.b #GIE, SR ;enable global interrupt
8 ret



320 7. TIMER SYSTEMS

9 TA_ISR
10 tst.w &TAxIV ;read clears flag
11 : ;perform required task
12 add.w #num, &TAxCCR1 ;update next interrupt time
13 reti
;----------------------------------------------------------------------

The second interrupt associated with theTimer_A system is the one related to the TAx-
CCR0 channel. When an TAxCCR0 interrupt is initiated, the CCIFG flag in the TAxCCTL0
register is set, and when the CCIE bit is set, the interrupt is serviced. The following programs,
one in C and the other in assembly, show how one can configure an output pin to toggle its logic
state using the Timer_A TAxCCRO0 interrupt vector.

;----------------------------------------------------------------------
mov.w #WDTPW+WDTHOLD,&WDTCTL ;turn off WDT
mov.b #0x01, &P1DIR ;program P1.0 as output
mov.w #0x1000, &TAxCCR0 ;initialize TAxCCR0 value
mov.b #TASSEL_1+MC_1,&TAxCTL ;select ACLK, up mode
mov.b #CCIE, &TAxCCTL0 ;enable local interrupt
mov.b #GIE, &SR ;enable global interrupt

Loop bra Loop ;wait

Timer_A0_ISR ;ISR routine
xorb #Toggle, &P1OUT ;toggle logic state
rti

;----------------------------------------------------------------------

In C:

//******************************************************************

void main(void)
{
WDTCTL = WDTPW + WDTHOLD; //disable watchdog timer
P1DIR |= 0x01; //program P1.0 as output
TAxCCR0 = 0x1000; //initialize TACCR0 value
TAxCTL = TASSEL_1 + MC_1; //select ACLK, count up mode
TAxCCTL0 = CCIE; //enable TAxCCR0 interrupt
SR = GIE; //turn on global interrupt switch



7.10. MSP430 TIMERS: TIMER_A AND TIMER_B 321

while(1) //wait for interrupt to occur
{
;
}

}

//******************************************************************
//Timer_A TAxCCR0 interrupt service routine
//******************************************************************

Interrupt(TIMERA0_VECTOR) TimerA_procedure(void)
{
P1OUT ^= 0x01; //toggle logic state
}

//******************************************************************

7.10.4 TIMER_B SYSTEM
The Timer_B system can be used as input capture and output compare timer units as we have
done with the Timer_A system. It contains up to seven different subsystems (channels) that
can be configured as capture or compare systems. The primary difference between Timer_A
and Timer_B system is that an extra buffer is introduced in the Timer_B system along with a
means to update the value of the register used to compare the free running timer value when
a channel is used as an output compare system and to capture the free running counter value
when configured as an input capture system.

Figure 7.17 shows the extra buffer used in Timer_B systems. Note that the free running
counter is now called TBxR instead of TAxR as you saw in the previous section. The TAxCTL
and TAxCCRn registers are replaced by 16 bit registers TBxCTL and TBxCCRn. When a
Timer_B channel is configured as an input capture channel and a programmed event appears
on the input pin, the free running counter value is captured in the TBxCCRn register as was
the case in the Timer_A system, but you have an option to upload that value into another 16-
bit register, TBxCLn. Why do you need this extra register? Suppose you have external events
that occur very quickly and you need to capture both events. By loading the first event time
and storing it quickly will allow the TBxCCRn register to be free to capture the second event.
Similarly, when a channel is configured as an output compare channel, the extra register allows a
programmer to generate output signals whose time values are separated by a “small1” number.3

3The small free running counter difference value is governed by the time required to upload a new value from TBxCCRn
to TBxCLn.



322 7. TIMER SYSTEMS
Referring to Figure 7.17, note that the CCLDx bits (bits 10 and 9) of the TBxCCTLn register
govern the time when the value from the TBxCCRn register is transferred to the TBxCLn
register as shown below.

• 00 – immediate

• 01 – update when TBxR value is zero

• 10 – same as 01 for continuous up count mode. If Up/Down count mode is chosen, the
transfer occurs either when TBxR = 0 or TBxCLn = TBxR

• 11 – update when TBxR = old TBxCLn

TBR

Update

TBCLx

TBCCRx

CLLDx

Comparator

Figure 7.17: Timer_B additional components.

Before we leave this section, we show an example program that uses the capabilities of
the Timer_A system of the MSP430FR2433 to generate two pulse-width modulated signals
on pins P1.4 and P1.5. The signal out of P1.4 has 75% duty cycle and the signal out of P1.5
has 25% duty cycle. The program utilizes the counting up mode along with the TA1CCR0,
TA1CCR1, and TA1CCR2 systems to generate the pulses. The duration specified by the con-
tents of the TA1CCR0 register determine the pulse periods while the values in TA1CCR1 and
TA1CCR2 registers determine the duty cycles for the two pulses. We assume that the ACLK
clock is connected to the LFX1CLK clock signal generator with 32 kHz crystal.

//********************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2015, Texas Instruments Incorporated
// All rights reserved.



7.10. MSP430 TIMERS: TIMER_A AND TIMER_B 323
//
// MSP430 CODE EXAMPLE DISCLAIMER
//
//********************************************************************
//MSP430FR243x Demo - Timer1_A3, PWM TA1.1-2, Up Mode, DCO SMCLK
//
//Description: This program generates two PWM outputs on P1.4,P1.5
//using Timer1_A configured for up mode. The value in CCR0, 1000-1,
//defines the PWM period and the values in CCR1 and CCR2 the PWM duty
//cycles. Using ~1MHz SMCLK as TACLK, the timer period is ~1ms with
//a 75
//
// ACLK = n/a, SMCLK = MCLK = TACLK = 1MHz
//
// MSP430FR2433
// ---------------
// /|\| |
// | | |
// --|RST |
// | |
// | P1.5/TA1.1|--> CCR1 - 75
// | P1.4/TA1.2|--> CCR2 - 25
//
//
//Ling Zhu, Texas Instruments Inc., Feb 2015
//Built with IAR Embedded Workbench v6.20 & Code Composer Studio v6.0.1
//*********************************************************************
#include <msp430.h>

int main(void)
{
WDTCTL = WDTPW | WDTHOLD; //Stop WDT

//Configure GPIO
P1DIR |= BIT4 + BIT5;
P1SEL1 |= BIT4 + BIT5;

//Disable the GPIO power-on default high-impedance mode to activate
//previously configured port settings
PM5CTL0 &= ~LOCKLPM5;



324 7. TIMER SYSTEMS

TA1CCR0 = 1000-1; //PWM Period
TA1CCTL1 = OUTMOD_7; //CCR1 reset/set
TA1CCR1 = 750; //CCR1 PWM duty cycle
TA1CCTL2 = OUTMOD_7; //CCR2 reset/set
TA1CCR2 = 250; //CCR2 PWM duty cycle
TA1CTL = TASSEL__SMCLK | MC__UP | TACLR; //SMCLK, up mode, clear TAR
__bis_SR_register(LPM0_bits); //Enter LPM0
__no_operation(); //For debugger
}

//*********************************************************************

7.11 LABORATORY EXERCISE: GENERATION OF
VARYING PULSE WIDTH MODULATED SIGNALS TO
CONTROL DC MOTORS

Purpose: The purpose of this laboratory exercise is to program an MSP430 series controller
to generate a pulse-width modulated signal/waveform with varying duty cycle to control the
speed of a DC motor. The program requires you to use the input capture and output compare
capabilities of the controller. To meet the requirements of this laboratory exercise, you must

• use the output compare system to modify the duty cycle of the output waveform,

• use the input capture system to monitor the number of pulses generated by the output
compare system and adjust the duty cycle of the output waveform appropriately,

• change the duty cycle based on a desired DC motor speed profile,

• configure Port 1 pins, and

• verify the output waveform by connecting the output pin on Port 1 to an oscilloscope.

Documentation: User Manual of your MSP430 microcontroller board.

Prelab: For the prelab, complete a flowchart and pseudocode for your program.

Description: As we learned in this chapter, the timer system of the MSP430 series micro-
controller is used for signal generation, measurement, and timing. In this lab, you are asked to
configure an MSP430 series controller to generate desired output waveforms using its output



7.11. LABORATORY EXERCISE: GENERATION OF VARYING PULSE WIDTH 325
compare system. The contents of the output compare system registers are programmed to set
and clear the logic states of an output pin and to cause an interrupt, related to the output pin.

The output event occurs when the free running counter (TAxR) value matches the value
stored in the designated output compare register (TAxCCRn). By adjusting the value in the
TAxCCRn register, one can program MSP430 to change the time when an output event occurs.
The input capture system is used to monitor the incoming signal. In this laboratory exercise, it
is used to count the number of pulses being generated by the output compare pin. By counting
the number of pulses, the input capture system can keep track of the time the output waveform
is generated and modify the duty cycle accordingly. The physical pins used in this laboratory are
P1.1 and P1.2, where P1.1 will be used as the input capture pin and the P1.2 pin will be used
as the output compare pin.

Tasks: In this lab, you need to write a program to modify the duty cycle of an output periodic
signal in real time. The desired speed profile (velocity vs. time) is shown in Figure 7.18. The y-

Duty Cycle

50%

0%
0 3 6 9

t(sec)

Figure 7.18: Desired speed profile for the DC motor.

axis shows the desired duty cycle, and the x-axis shows the time duration for the entire profile.
The duty cycle should increase from 0–50% during the first three seconds, maintain the 50%
duty cycle for another 3 s, and decrease to 0% duty cycle during the last three second period.
The waveform period should be adjusted to 20 ms. (This is the time for the TA1R register to
count from 0–65,536.). You must generate approximately 457 total 20 ms pulses for the total
9 s. The duty cycle should increase linearly from 0–50% in 3 s, or in 152 pulses. Using P1.2 pin
as the output pin, the TA1CCR2 register value should change from 0000–8000h in 152 pulses
or by adding approximately 216 counts to the TA1CCR2 register at each pulse.

Procedure: To generate the desired pulse width modulated signal, use P1.2 pin as the output
compare pin and P1.1 as the input capture pin.



326 7. TIMER SYSTEMS
• Turn on the Timer System.

• Turn off the Watchdog timer.

• Generate the pulse width modulated signal.

– Set the logic states on the output pin to be low (off ) when successful compares are
made by configuring bits in the TA1CCTL2 register.

– Use the TA1CCR1 register to set logic state of the pulse to be high (on) using the
TA1CCTL1 register.

• Set up the duty cycle.

– We are using the square wave period of 20 ms. We can find a corresponding number
that represents a desired duty cycle. For example, 8000h represents 50% duty cycle.
When 8000h is stored in the TA1CCR2 register and the TA1R register valuematches
with the one in TA1CCR2, the designated action (logic off ) takes place on the output
pin.

– During the acceleration period, you must add 216 to the current value in TA1CCR2,
which will increase the duty cycle at each of the 152 changes between time 0–3 s,
assuming that the TT1CCR2 value started with 0000h. During the deceleration pe-
riod, the opposite action must occur. At each pulse, the value in TA1CCR2 is decre-
mented by 216 counts. At the end of the three second period of deceleration, the duty
cycle decreases to zero.

• Measuring the number of pulses arriving at an input capture pin.

– Use the input capture system P1.1 to monitor the incoming pulses. You should con-
nect P1.2 to P1.1, which feeds the output compare signal back to input capture pin.
Use the TA1CCTL1 register to configure the input capture system to capture each
pulse entering. By counting the pulses, we can keep tract of the current time with
respect to the desired time profile. Thus, during the first 152 pulses, the input capture
system interrupt should be the one who modifies the TA1CCR2 register contents.
During the next 152 pulses, no changes should be made to the TA1CCR2 register,
and during the last 152 pulses, the value in TA1CCR2 should be decreased by 216
counts after each pulse arrives on the P1.1 pin using the input capture interrupt.

• Once the controller is configured with the steps shown above, the P1.2 pin should be
connected to an oscilloscope, and the output waveform with varying duty cycle should be
verified.



7.12. SUMMARY 327

7.12 SUMMARY
In this chapter, we showed the clock system of MSP430 microcontrollers and the timer-related
capabilities to include the Watchdog timer, basic timer, RTC, input capture system, output
compare system, and PWM system. The architects of the controller seek to provide embed-
ded system designers with flexibility and minimum power usage by implementing three differ-
ent clock signal generators (LFX1CLK, XT2CLK, and DCOCLK) and three clocks (ACLK,
MCLK, and SMCLK) that can be configured for specific application use. The controller also
allows peripheral systems, which usually run slower than the CPU, to run on a separate clock
(ACLK), different from the clock used by the central processing unit, allowing the minimum
use of power. This chapter also showed how the Watchdog timer can be used either to maintain
software execution integrity or to generate periodic time intervals.

The RTC is used to keep track of calendar time with ability to inform year, month, day,
hour, minute, and second. The input capture and output compare capabilities of the controller
are used to interact with external world with time-related events. The input capture system can
capture the time of an incoming event, which can be used to measure the pulse width of a signal
and compute the period or frequency of an incoming periodic signal. It can also be used to count
the number of event occurring externally. The output compare system is used to generate desired
events on external pins at a desired time. For example, the system can generate a logic change, a
pulse, a periodic pulse with a desired duty cycle. The timer system with its clock system and the
capture/compare capabilities allows programmers to implement any time critical applications
using MSP430.

7.13 REFERENCES AND FURTHER READING
Barrett S. F. and Pack D. J. Embedded Systems Design with the Atmel Microcontroller, Morgan &

Claypool Publishers, 2010. DOI: 10.2200/S00138ED1V01Y200910DCS024.

Texas Instruments MSP430FG461x Code Examples, (SLAC118D). www.TI.com

Texas Instruments MSP430FR2433 Mixed-Signal Microcontroller, (SLASE59D), Texas Instru-
ments, Revised 2018.

Texas Instruments MSP430FR4xx andMSP430FR2xx Family User’s Guide, (SLAU445G), Texas
Instruments, 2016. 309, 310

Texas Instruments MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family,
(SLAU367O), Texas Instruments, 2017. 296, 297, 309, 310

Texas Instruments MSP430FR599x, MSP430FR596x Mixed-Signal Microcontrollers,
(SLASE54C), Texas Instruments, 2018.

http://dx.doi.org/10.2200/S00138ED1V01Y200910DCS024
www.TI.com


328 7. TIMER SYSTEMS

7.14 CHAPTER PROBLEMS
Fundamental

1. What is the motivation for having three clock signal generators and three different clocks
in MSP430 controllers?

2. To save power usage, how does one turn off the LFXT1CLK clock signal generator?

3. We want to configure the MCLK clock to run on the XT2CLK clock signal generator.
Which register should be modified? What value should be in the register?

4. Suppose the LFXT1CLK is connected to a high-frequency watch crystal. Identify the
register and the particular bit to configure the LFX1CLK clock signal generator on a high
frequency mode.

5. How does one select the clock for the Basic Timer?

6. The Basic Timer 2 (BTCNT 2) has two scaling factors, which control register is used for
the two scaling factors?

7. What is the password value and where should you write it to access the Watchdog timer
system control register?

8. Give an example application where one might use the count Up/Down count mode for
the free running counter, TAR.

9. The TAIFG flag when set indicates the free running counter TAR reached its limit. Why
would you not want the flag to set when you are operating in the Up/Down counter mode?

Advanced

1. Program your MSP430 to generate clock signal frequency of 1.2 MHz.

2. Program your MSP430 controller to accept a pulse on the P1.0 pin and compute the pulse
width.

3. Given a periodic pulse-width input signal, write a segment of code to compute the duty
cycle using the input capture interrupt system of the MSP430 controller.

4. Program your MSP430 controller to generate a pulse (0–5 V and back down to 0 V) with
2 ms width using the Timer_A system.

5. Program your MSP430 using Timer_B system to generate a pulse-width modulated signal
with frequency of 50 Hz and duty cycle of 40%.



7.14. CHAPTER PROBLEMS 329
Challenging

1. Program your MSP430 to accept any input periodic signal with varying frequency ranging
from 10–1000 Hz and compute the input signal frequency.

2. Write a program that only activates itself if your MSP430 controller receives a 200 �s
pulse (10% tolerance on the pulse width) from an external device on P1.0 pin, updates
the number of times the designated pulse was received, displays the number on an LCD
display unit for 5 s, and “sleeps” until the next pulse arrives.





331

C H A P T E R 8

Resets and Interrupts
Objectives: After reading this chapter, the reader should be able to:

• describe MSP430 resets and their functions;

• explain the general concept of and the need for interrupts;

• describe in general terms the steps required to implement an interrupt service routine;

• identify MSP430 microcontroller’s maskable and non-maskable interrupts;

• illustrate the process to assign priorities among resets and interrupts in the MSP430 mi-
crocontroller;

• explain the process to identify the source of resets and interrupts;

• describe the process to service interrupts; and

• properly configure the MSP430 microcontroller and write interrupt service routines to
respond to interrupts

In any computer operation, it is often necessary to bring the internal processing state of a
computer back to a known state due to program or system errors, or simply because it serves the
purpose of an application at hand. Bringing the internal processing state of a computer back to
a known state involves re-initializing registers, executing start-up instructions, and configuring
peripheral devices, including I/O sub-systems. This process is called a reset. In other applica-
tions, there arises a need to stop executing the current task of a computer and taking care of an
urgent request made by internal devices, external signals, or the result of the current or other
software programs. These requests are called interrupts.

Resets and interrupts are closely related. In fact, the process of bringing the internal pro-
cessing state of a computer back to a known state and performing a service routine as a response
to an urgent request is almost identical, as we will see in this chapter.

8.1 MOTIVATION
One of the primary reasons to select a MSP430 microcontroller is its ability to minimize power
usage by allowing a programmer to configure the microcontroller to run with different oper-
ational modes based on environmental factors or timed events. The subject of this chapter is



332 8. RESETS AND INTERRUPTS
closely related to different means for the controller to implement mechanisms to switch be-
tween two or more different power consumption operating modes. Typically, while a controller
is waiting for a designated event to occur, whether it is an arrival of a particular external signal
or after a programmed elapsed time period, it operates in a power save mode with all or most of
its clocks turned off. When the time comes, the microcontroller switches the operating mode
(wake up from “sleep”), performs necessary tasks, and switches back to the power saving mode
until the next designated event occurs. The back and forth switching between operating modes
is accomplished using the built-in interrupt system, which is the topic of this chapter.

8.2 BACKGROUND

Typical embedded systems operate in environments where electrical and mechanical noises
abound. These noise sources can often interfere with the proper operation of a microcontroller
in an embedded system, which can cause skipping of intended instructions and unintentional
change of register contents. One of the primary means to combat such undesired operation in
the MSP430 microcontroller is the Watchdog timer system. By forcing the program to up-
date special registers periodically, one can make sure that intended instructions are executed in
a proper order. Otherwise, the microcontroller resets itself before resuming its operation. The
Watchdog timer system reset example illustrates the function of microcontroller resets. They are
used to bring the internal processing state of the controller to a default state.

An interrupt, on the other hand, is a software or hardware induced request which is ex-
pected to occur during the controller operation but whose time of occurrence is not known in
advance. It is the programmer’s responsibility to plan (write a special program called an interrupt
service routine) to respond to an interrupt when it occurs. For example, suppose that you know
a user will push an external button to halt a process sometime during the course of an operation
of your MSP430 microcontroller but do not know the exact time when it will occur. A button
push, in this example, is a hardware induced interrupt, and a programmer must write a separate
“program” that will respond to the event appropriately to halt the process.

In general, there is another way for a microcontroller to detect an event, called polling. The
polling method relies on using the resources of the controller to continuously monitor whether
or not an event has occurred. This can be in the form of checking a flag continuously to see the
flag status change (bit changes from 1 to 0, or vice versa) or the change of the logic level on an
input pin. As the reader can imagine, the resources of the controller is “tied up” when polling
is used to “wait” for an event to occur. The advantage of using the interrupt system, which we
focus in this chapter, compared to the polling technique is the better usage of resources. Using
the interrupt system, the controller does not have to poll an event but perform other operations
or even turn itself off to save power. When an event occurs, the controller initiates a special
routine associated with the interrupt.



8.3. MSP430 RESETS/INTERRUPTS OVERVIEW 333
Naturally, the polling method is simple to implement compared to the steps required to

implement the interrupt method. The benefit, however, of the interrupt method is the conser-
vation of limited, precious power resources.

8.3 MSP430 RESETS/INTERRUPTS OVERVIEW
The system control module (SYS) of the MSP430 governs the functions of resets and inter-
rupts. For resets, there are three types: BOR, POR, and PUC. For interrupts, two types exist:
non-maskable interrupts (NMI) or maskable interrupts (MI). The three different resets allow
the MSP430 to start at three different start up states, providing the desired flexibility. The non-
maskable interrupts are those that MSP430 controllers cannot or should not ignore, such as
the critical power level indication. The maskable interrupts, on the other hand, are those re-
quests, if necessary, that can be masked (ignored) by the CPU. The maskable interrupts require
a programmer to activate them by writing to specific registers [SLAU445G, 2016, SLAU367O,
2017].

8.4 MSP430 RESETS
The BOR is triggered by five different events for the MSP430FR5994 and MSP430FR2433
controllers. The first is when the microcontroller is turned on. The BOR also occurs when a
logic low is applied to the reset pin (RTS=NMI), configured as a reset pin by the SYSNMI bit
in SFRRPCR (Special Function Register Reset Pin Control Register), which is the second
event. Figure 8.1 shows SFRRPCR. Note that a programmer can also use the same register
to configure (SYSRSTRE—Reset enable/disable, SYSRSTUP—Reset pin pull-up/pull-down,
and SYSNMIEES—edge select) the use of the pin. The third possible event that can cause the
BOR is when the MSP430 controller wakes up from operating mode LPM3.5 or LPM4.5. The

ReservedReservedReservedReservedReservedReservedReservedReserved

15 14 13 12 11 10 9 8

r0 r0 r0 r0 r0 r0 r0 r0

ReservedReserved Reserved Reserved SYSRSTRE SYSRSTUP SYSNMIIES SYSNMI

7 6 5 4 3 2 1 0

r0 r0 r0 r0 rw-1 rw-1 rw-0 rw-0

System Function Register Reset Pin Control Register (SFRRPCR) at $0104

Figure 8.1: Special function register reset pin control register.



334 8. RESETS AND INTERRUPTS
fourth possible event for the reset is when the power management module (PMM) detects the
power level of the controller (SVS) falls below a threshold value. Finally, the last event that trig-
gers the BOR is software BOR events. For some applications, it is desired to trigger a Brownout
reset using a software instruction. Setting PMMSWBOR (Power Management Module Soft-
Ware BOR) bit in the PMMCTL0 register (Power Management Module Control Register 0)
initiates a software generated BOR [SLAU445G, 2016, SLAU367O, 2017].

The second type of reset, the POR, is automatically triggered when the BOR occurs as
shown in Figure 8.2. The POR is typically associated with the hardware system while the PUC
reset is generally linked to software events. In addition to a BOR event, the POR is triggered
by a software POR event.

From Active Mode

To Active Mode

PUC

POR

BOR

LPMx.5:

VCORE = off

(all modules off

optional RTC)
RTC Wakeup

Brownout

Fault

Security

Violation

DoBOR

Event

DoPOR

Event

PMM

Password Violation

Flash

Password Violation

WDT Active

Password Violation

WDT Active

Time Expired, Overflow

SVML OVP-Fault

SVMH OVP-Fault

RST/NMI

(reset wakeup)

SVSH Fault

SVSL Fault

Peripheral Area Fetch

Port Wakeup

RST/NMI
⇉

(reset event)

Load Calibration Data

Figure 8.2: Reset activity of the MSP430 microcontroller. (Figure used with permission of Texas
Instruments (www.ti.com).)

www.ti.com


8.5. INTERRUPTS 335
The third type of resets, the PUC reset, are initiated, in addition to the POR signal, by nine

and five different events for the MSP430FR5994 and MSP430FR2433 controllers, respectively.
For both controllers, whenever the controller detects a POR, the PUC reset is also triggered. For
both controllers, the first and the second PUC reset events are associated with the Watchdog
timer system. When the Watchdog timer expires or the Watchdog timer password is violated,
the PUC reset is triggered. The other three common events that trigger the PUC reset for both
controllers are the password violation to access the onboard flashmemory, the password violation
to access the PMM, and fetching from memory areas not populated.1 A password to access the
flash memory is necessary to prevent a runaway program from corrupting stored software. For
the MSP430FR5994 controller, the following four additional events trigger the PUC reset:
(1) memory protection unit password violation, (2) memory segmentation violation, (3) CS
password violation, and (4) uncorrectable FRAM bit error.

In terms of the level of resets, the BOR initializes all systems while the POR and the
PUC resets restore MSP430 conditions partially. Throughout the documents for the MSP430
microcontroller, one finds the POR and PUC reset values annotated using symbols such as rw-
(1 or 0). For example, rw-0 indicates that the register bit value can be read or written and the
initial value is 0 after the PUC reset, while rw-(0) denotes that the register bit can be read and
written and the initial value is 0 after the POR (the parentheses are used to distinguish between
POR and PUC). For the latter example case, the register value remains the same after the PUC
reset. The general conditions of the MSP430 microcontroller after a system reset are:

• the RTS=NMI pin is configured as the reset mode,

• all input and output pins are configured as input,

• the program counter register is loaded with the boot code start address (ex. 0xFFFE),

• the status register (SR) is cleared,

• all peripheral modules and registers are initialized, and the

• Watchdog timer is initialized (Watchdog mode).

Due to the steps taken by the MSP430 microcontroller after a reset, the programmer must
make sure that, at the start of the proper program module, the stack pointer, the Watchdog
specifications, and peripheral modules are initialized [SLAU445G, 2016, SLAU367O, 2017].

8.5 INTERRUPTS
A microcontroller normally executes instructions in an orderly fetch-decode-execute sequence
as dictated by a user-written program as shown in Figure 8.3. All microcontrollers, however,

1The VMAIE (vacant memory access interrupt enable flag) bit must be set(1) for this reset to initiate.



336 8. RESETS AND INTERRUPTS

Fetch

Decode

Execute

Interrupt 
Service 
Routine

store 
context

restore 
context

Figure 8.3: Microcontroller interrupt response.

are equipped to handle unscheduled, higher priority events that might occur inside or outside a
microcontroller. To process such events, a microcontroller requires an interrupt system.

The interrupt system onboard a microcontroller allows it to respond to higher priority
events. These events are expected events, but we do not know when they will occur. When an
interrupt event does occurs, a microcontroller normally completes the instruction it is currently
executing, stores key register values (context) on the stack, and transitions its program control to
a special routine written to respond to the interrupt event. The special routine is a function called
an interrupt service routine (ISR). Each interrupt will normally have its own interrupt specific
ISR. Once the ISR is completed, the microcontroller will restore key register values from the
stack and resume processing where it left off before the interrupt event occurred.

Applying the general concept of an interrupt, one can consider resets as interrupts with
two exceptions. A reset does not cause the program counter to return to the point of operation
when the reset was detected, and reset routines are fixed, not available to a programmer. Stretch-
ing the discussion a bit more, resets may be considered as non-maskable interrupts (NMI) with
pre-programmed initialization routines.



8.5. INTERRUPTS 337
Besides resets, there are two other types of NMIs supported by MSP430 microcontroller.

The first type is the system generated NMIs (SNMI), and the second type are the ones gen-
erated by the user (UNMI). One example of an SNMI type interrupt, is the JTAG mailbox
event. Recall that the JTAG interface is available for all MSP430 microcontrollers for the pur-
pose of programming, debugging and testing the MSP430. The JTAG interface allows access
to the CPU during program execution. One can configure the interface such that when data is
read through the interface, a non-maskable interrupt occurs. The second SNMI occurs when
FRAM errors occur and the last type of SNMI is caused by accessing a vacant memory loca-
tion [SLAU445G, 2016, SLAU367O, 2017].

For the user-specified NMIs, there are two sources that can generate an UNMI. The first
one is caused by an oscillator fault. The controller monitors the crystal oscillator frequency. An
UNMI is triggered when the frequency falls outside an acceptable range. The second UNMI is
caused by the logic state on the RTS=NMI pin when the pin is configured for the NMI mode.

The MSP430 microcontroller has many MI sources. The difference between NMIs and
MIs is that unlike NMIs, MIs can be programmed to be ignored by the CPU by turning off the
GIE bit of the status register. To enable a maskable interrupt, not only the GIE bit must be set,
but also each subsystem interrupt in use must be enabled. These subsystems are enabled using
appropriate bits in the interrupt enable register (SFRIE1), shown in Figure 8.4. When one of
these interrupts occurs, the corresponding flag in the interrupt flag register (SFRIFG1), shown
in Figure 8.5, is set.

In most microcontrollers, including the MSP430, the starting address for each interrupt
service routine, the special function to perform in response to an interrupt, is stored in a pre-
designated location which the CPU recognizes. The addresses reside in consecutive memory
locations and are collectively designated as interrupt vectors. For the MSP430 microcontroller,
the memory locations are 0xFFFF through 0xFF80, where each vector takes up two memory
locations. Memory space is available in the interrupt vector table for up to 64 different interrupt
sources. Figure 8.6 provides the table of interrupt vectors for MSP430 microcontroller.

During the development phase, it is handy to configure the top of RAM space as alterna-
tive locations for interrupt vectors by setting the SYSRIVECT (RAM-based interrupt vectors)
bit in the System Control Register (SYSCTL) register, shown in Figure 8.7.

8.5.1 INTERRUPT HANDLING PROCESS
In this section, we describe the process of handling an interrupt event. Once amaskable interrupt
is configured to be active, and an interrupt event occurs, a flag that corresponds to the particular
interrupt event is asserted to indicate to the CPU that there is an interrupt waiting to be serviced.
The CPU then takes the following actions in the order shown to provide an orderly transition
from normal program operation to the interrupt service routine and back again.

1. Complete the current instruction.



338 8. RESETS AND INTERRUPTS

ReservedReservedReservedReservedReservedReservedReservedReserved

15 14 13 12 11 10 9 8

r0 r0 r0 r0 r0 r0 r0 r0

NMIIEJMBOUTIE JMBINIE VMAIE Reserved OFIE WDTIE

7 6 5 4 3 2 1 0

rw-0 rw-0 rw-0 rw-0 rw-0 r0 rw-0 rw-0

Interrupt Enable Register (SFRIE1)

0 - interrupt disabled  1 - interrupt enabled 
 
JMBOUTIE - JTAG mailbox output interrupt enable 
JMBINIE -   JTAG mailbox input interrupt enable 
NMIIE -   NMI pin interrupt enable 
VMAIE -   Vacant memory access interrupt enable 
OFIE -   Oscillator fault interrupt enable 
WDTIE -   Watchdog timer interrupt enable

Figure 8.4: Interrupt enable register.

2. Store the contents of the program counter (PC) onto the stack.

3. Store the contents of the status register (SR) onto the stack.

4. Choose the highest priority interrupt if multiple interrupts are pending.

5. Reset the interrupt request flag.

6. Clear the Status Register to prevent additional interrupts from occurring and to switch
from the low power mode to the normal power mode (if configured).

7. Load the contents of the interrupt vector onto the program counter.

8. Execute the specified interrupt service routine.

9. Once the service routine is finished (with the RETI instruction), restore the SR and then
PC values from the stack.

10. Resume normal operation.



8.5. INTERRUPTS 339

ReservedReservedReservedReservedReservedReservedReservedReserved

15 14 13 12 11 10 9 8

r0 r0 r0 r0 r0 r0 r0 r0

NMIIFGJMBOUTIFG JMBINIFG Reserved VMAIFG Reserved OFIFG WDTIFG

7 6 5 4 3 2 1 0

rw-(1) rw-0 r0 rw-0 rw-0 r0 rw-(1) rw-0

Interrupt Flag Register (SFRIFG1)

0 - no interrupt  1 - interrupt pending 
 
JMBOUTIFG - JTAG mailbox output interrupt flag 
JMBINIFG - JTAG mailbox input interrupt flag 
NMIIFG -    NMI pin interrupt flag 
VMAIFG -   Vacant memory access interrupt flag 
OFIFG -   Oscillator fault interrupt flag 
WDTIFG -   Watchdog timer interrupt flag

Figure 8.5: Interrupt flag register.

Interrupt Source

Resets

System NMI

User NMI

Device Specific

Watchdog Timer

.

.

Flag

WDTIFG,

KEYV, ..

NMIFG,

OFIFG,

ACCVIFG,...

WDTIFG

.

.

Priority

Highest

.

.

.

.

.

.

.

.

.

.

.

.

Vector Location

FFFE

FFFC

FFFA

FFF8

.

.

.

.

Figure 8.6: MSP430 interrupt vector table [SLASE54C, 2018].



340 8. RESETS AND INTERRUPTS

ReservedReservedReservedReservedReservedReservedReservedReserved

15 14 13 12 11 10 9 8

r0 r0 r0 r0 r0 r0 r0 r0

SYSBSLINDReserved Reserved SYSJTAGPIN Reserved SYSPMMPE Reserved SYSRIVECT

7 6 5 4 3 2 1 0

r0 r0 rw-(0) r-0 r0 rw-(0) r0 rw-(0)

System Control Register (SYSCTL)

Figure 8.7: System control register.

Once an interrupt is detected, it takes six clock cycles for the MSP controller to begin
interrupt processing, and it takes five clock cycles to restore the SR and PC values and resume
executing normally after the interrupt service ends. Figure 8.8 shows the stack configuration
before and after step 3 and step 9.

Following the procedure described above, everything seems to be straightforward if for
each interrupt source, there was only a single and unique interrupt flag. Unfortunately, that is
not always the case for the MSP430 microcontroller. For example, for all interrupts associated
with the Timer_A module, a single flag, TAIFG (Timer_A interrupt flag), is set. It becomes
a programmer’s responsibility to resolve the ambiguity as a part of the interrupt service routine

Memory Address
Increasing

Stack Pointer

Stack Pointer

Value Top of Stack

SR

PC

Value

Top of Stack

Before an Interrupt After an Interrupt Handling
Process Started

Figure 8.8: Stack before and after an interrupt.



8.5. INTERRUPTS 341
by checking the TAIV register (Timer_A Interrupt Vector Register), which contains a value
identifying the interrupt source. Similarly, the source of a non-maskable interrupt or a reset is
resolved with the help of three interrupt vector registers: SYSRSTIV (Reset Interrupt Vector
register), SYSSNIV (System NMI Vector register), and SYSUNIV (User NMI Vector register).
When a reset occurs, based on the source, it generates an interrupt vector offset value in the
SYSRSTIV register, as shown in Figure 8.9.

00000000

15 14 13 12 11 10 9 8

r0 r0 r0 r0 r0 r0 r0 r0

SYSRSTVEC0 0 0

7 6 5 4 3 2 1 0

r0 r0 r-0 r-0 r-0 r-0 r-1 r0

Reset Interrupt Vector Registor (SYSRSTIV) at $019E

SYSRSTIV Value  Interrupt Type
  0000h  No interrupt
  0002h  Brownout (BOR)
  0004h  RST/NMI (BOR)
  0006h  PMMSWBOR (BOR)
  0008h  Wakeup from LPMx.5 (BOR)
  000Ah  Security violation (BOR)
  000Ch  SVSL (POR)
  000Eh  SVSH (POR)
  0010h  SVML_OVP (POR)
  0012h  SVMH_OVP (POR)
  0014h  PMMSWPOR (POR)
  0016h  WDT time out (PUC)
  0018h  WDT password violation (PUC)
  001Ah  Flash password violation (PUC)
  001Ch  PLL unlock (PUC)
  001Eh  PERF peripheral/configuration area fetch (PUC)
  0020h  PMM password violation (PUC)
  0022–003Eh Reserved for future use

Figure 8.9: Reset interrupt vector register.



342 8. RESETS AND INTERRUPTS
The SYSRSTVEC bits (Reset interrupt vectors—bits 1–5) determine the interrupt vector

offset value. Similarly, the SYSSNIV and the SYSUNIV registers are used to identify the source
of an interrupt; see Figures 8.10 and 8.11. For example, when dealing with a user non-maskable
interrupt, as the first step of the service routine, the contents of the SYSUNIV and PC are added
as shown in Figure 8.12. The offset value governs the execution of the appropriate portion of the
interrupt service routine.

00000000

15 14 13 12 11 10 9 8

r0 r0 r0 r0 r0 r0 r0 r0

SYSSNVEC0 0 0

7 6 5 4 3 2 1 0

0

r0 r0 r0 r-0 r-0 r-0 r-0 r0

System NMI Vector Registor (SYSSNIV) at $019C

SYSRSTIV Value  Interrupt Type
  0000h  No interrupt
  0002h  SVMLIFG interrupt
  0004h  SVMHIFG interrupt
  0006h  SVSMLDLYIFG interrupt
  0008h  SVSMHDLYIFG interrupt
  000Ah  VMAIFG interrupt
  000Ch  JMBINIFG interrupt
  000Eh  JMBOUTIFG interrupt
  0010h  SVMLVLRIFG interrupt
  0012h  SVMHVLRIFG interrupt
  0014h  Reserved for future use

Figure 8.10: System non-maskable interrupt vector register.

When a MSP430 microcontroller is shipped, the interrupt service routines for resets and
system non-maskable interrupts are already programmed and should not be altered. We de-
scribed the above process to illustrate a similar process to resolve the source of a non-maskable
user interrupt or maskable interrupt in your interrupt service routine. We should also note that
some devices have separate bus error interrupts, which can also be serviced in the same manner
as shown above using the SYSBERRIV (Bus Error Interrupt Vector) register.



8.5. INTERRUPTS 343

00000000

15 14 13 12 11 10 9 8

r0 r0 r0 r0 r0 r0 r0 r0

SYSUNVEC0 0 0

7 6 5 4 3 2 1 0

0

r0 r0 r0 r-0 r-0 r-0 r-0 r0

User NMI Vector Registor (SYSUNIV) at $019A

SYSRSTIV Value  Interrupt Type
  0000h  No interrupt
  0002h  NMIIFG interrupt
  0004h  OFIFG interrupt
  0006h  ACCVIFG interrupt
  0008h  Reserved for future use

Figure 8.11: User non-maskable interrupt vector register.

SNI_ISR: ADD &SSSNIV,PC  ; Add offset to jump table
  RETI    ; No interrupt
  JMP SVML_ISR  ; vector 2
  JMP SVMH_ISR  ; vector 4
  :
  JMP SVMHV_ISR  ; vector 12
Invalid_ISR RETI    ; vector 14
SVML_ISR:     ; ISR for vector 2
  :
  RETI
SVMH_ISR:     ; ISR for vector 4
  :
  RETI
:
SVMHV_ISR:     ; ISR for vector 12
  :
  RETI

Figure 8.12: Sample ISR for user non-maskable interrupts.



344 8. RESETS AND INTERRUPTS

8.5.2 INTERRUPT PRIORITY
As there are multiple reset and interrupt sources associated with the MSP430 microcontroller,
shown in Figure 8.6, priorities among interrupts must be defined in advance to handle situations
when more than one interrupt occurs simultaneously. The MSP430 microcontroller sets the
priority in the following manner. The resets hold the highest priority, followed by the system
NMIs, the user NMIs, and the device specific maskable interrupts. Figures 8.13, 8.14, and
8.15 show the priority list for the MSP430FR5994 microcontroller. Since each version of the
MSP430 controller has a different number of interrupts associated with its subsystems, one
should always consult the datasheet for the particular controller to find the interrupt priority
list.

A typicalMSP430microcontroller configuration has built-in interrupt systems for a direct
memory access (DMA) controller, a DAC, an analog comparator (Comp_B), digital I/O ports
(P1 and P2), one or more Timer_A system, a Timer_B system, a real-time clock A (RTC_A)
system, a real-time clock B (RTC_B) system, analog-to-digital converter (ADC), a UART
system, and a USB system. Since it requires a detailed understanding of each system to use the
associated interrupt, we defer the discussion of each interrupt system to chapters that cover the
subsystems.

8.5.3 INTERRUPT SERVICE ROUTINE (ISR)
Most of the interrupt handling process described in this chapter takes place automatically (you,
as a programmer, do not need to program them). In fact, for the resets, all processing is com-
pleted automatically. For maskable interrupts, however, your responsibility as a programmer is
to (1) turn on the global interrupt enable (GIE), (2) initialize the stack pointer, (3) configure
the interrupt vector table (initialize the start address of your ISR), (4) enable the appropriate
interrupt local enable bit (SFRIE1 register), and (5) write the corresponding interrupt service
routine. In this section, we present the last task, writing an ISR.

Examples: In this example, we write an ISR using the Timer_A interrupt system. Recall that all
Timer_A system related interrupts have the same interrupt vector. Thus, a Timer_A ISR must
identify the source before executing a desired task. In MSP430-related microcontrollers, the
Timer_A system contains two separate subsystems, Timer0_A and Timer1_A. Each subsystem
has I/O channels, where each channel has the same interrupt vector table entry. Using assembly
language, we can write an ISR similar to the one provided in Figure 8.12. The ISR is shown in
Figure 8.16.

The next example shows how to implement a Timer0_A0 related ISR. Note how the ISR
is configured. The code snapshot below shows how to tie the starting address of the ISR to the
proper location in the ISR. We assume definitions for all MSP430FR5994-related interrupts
are properly made.



8.5. INTERRUPTS 345

Interupt Source Interrupt Flag
System

Interrupt
Word

Address
Priority

System Reset

Power up, brownout, supply

supervisor

External reset RST

Watchdog time-out (watchdog mode)

WDT, FRCTL, MPU, CS,

PMM password violation

FRAM uncorrectable bit error detection

MPU segment violation

Software POR, BOR

SVSHIFG

PMMRSTIFG

WDTIFG

WDTPW, FRCTLPW, MPUPW, CSPW, PMMPW, 

UBDIFG

MPUSEGIIFG, MPUSEG1IFG, MPUSEG2IFG, 

MPUSEG3IFG

PMMPORIFG, PMMBORIFG

(SYSRSTIV)(1)(2)

Reset 0FFFEh Highest

System NMI

Vacant memory access

JTAG mailbox

FRAM access time error

FRAM write protection error

FRAM bit error detection

MMPU segment violation

VMAIFG

JMBINIFG, JMBOUTIFG

ACCTEIFG, WPIFG

MPUSEGIIFG, MPUSEG1IFG,

MPUSEG2IFG, MPUSEG3IFG

(sYSSNIV)(1)(3)

(Non)maskable 0FFFCh

User NMI

External NMI

Oscillator fault

NMIFG, OFFIFG

(SYSUNIV)(1)(3) (Non)maskable 0FFFAh

Comparator_E
CEIFG. CEIIFG

(CEIV)(1) Maskable 0FFF8h

TB0 TB0CCR0.CCIFG Maskable 0FFF6h

TB0

TB0CCR1.IFG ... TB0CCR6. CCIFG, TB0CTL.

TBIFG

(TB0IV)(1)
Maskable 0FFF4h

Watchdog timer (interval timer mode) WDTIFG Maskable 0FFF2h

eUSCI_A0 receive or transmit

UCA0IFG: UCRXIFG, UCTXIFG (SPI mode)

UCA0IFG: UCSTTIFG,

UCTXCPTIFG, UCRXIFG,

UCTXIFG (UART MODE)

(UCADIV)(1)

Maskable 0FFF0h

eUSCI_B0 receive or transmit

UCB0IFG: UCRXIFG, UCTXIFG (SPI mode)

UCB0IFG: UCALIFG, UCNACKIFG, UCSTTIFG, 

UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1,

UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3, 

UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode)

(UCB0IV)(1)

Maskable 0FFEEh

ADC12_B

ADC12IFG0 to ADC12IFG31

ADC12LOIFG, ADC12INIFG,

ADC12HIIFG, ADC12RDYIFG,

ADC21OVIFG, ADC12TOVIFG

(ADC12IV)(1)(4)

Maskable 0FFECh

TA0 TA0CCR0.CCIFG Maskable 0FFEAh

(1) Multiple source fl ags

(2) A reset is generated if the CPU tries to fetch instructions from peripheral space.

(3) (Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable bit cannot disable it.

(4) Only on devices with ADC, otherwise reserved.

Figure 8.13: Interrupt priority list for MSP430FR5994. (Illustration used with permission of
Texas Instruments (www.ti.com).)

www.ti.com


346 8. RESETS AND INTERRUPTS

Interupt Source Interrupt Flag
System

Interrupt
Word

Address
Priority

TA0

TA0CCR1.CCIFG, TA0CCR2.CCIFG,

TA0CTL.TAIFG

(TA0IV)(1)
Maskable 0FFE8h

EUSCI_A1 receive or transmit

UCA1IFG: UCRXIFG, UCTXIFG (SPI mode)

UCA1IFG: UCSTTIFG, UCTXCPTIFG, UCRXIFG,

UCTXIFG (UART mode)

(UCA1IV)(1)

Maskable 0FFE6h

DMA

DMA0CTL.DMAIFG, DMA1CTL.DMAIFG,

DMA2CTL.DMAIFG

(DMAIV)(1)
Maskable 0FFE4h

TA1 TA1CCR0.CCIFG Maskable 0FFE2h

TA1

TA1CCR1.CCIFG, TA1CCR2.CCIFG,

TA1CTL.TAIFG

(TA1IV)(1)
Maskable 0FFE0h

I/O port P1
P1IFG.0 to P1IFG.7

(P1IV)(1) Maskable 0FFDEh

TA2 TA2CCR0.CCIFG Maskable 0FFDCh

TA2

TA2CCR1.CCIFG

TA2CTL.TAIFG

(TA2IV)(1)
Maskable 0FFDAh

I/O port P2
P2IFG.0 to P2IFG.7

(P2IV)(1) Maskable 0FFD8h

TA3 TA3CCR0.CCIFG Maskable 0FFD6h

TA3

TA3CCR1.CCIFG

TA3CTL.TAIFG

(TA3IV)(1)
Maskable 0FFD4h

I/O port P3
P3IFG.0 to P3IFG.7

(P3IV)(1) Maskable 0FFD2h

I/O port P4
P4IFG.0 to P4IFG.2

(P4IV)(1) Maskable 0FFD0h

RTC_C

RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG,

RT1PSIFG, RTCOFIFG

(RTCIV)(1)
Maskable 0FFCEh

AES AESRDYIFG Maskable 0FFCCh

TA4 TA4CCR0.CCIFG Maskable 0FFCAh

TA4

TA4CCR1.CCIFG

TA4CTL.TAIFG

(TA4IV)(1)
Maskable 0FFC8h

I/O port P5
P5IFG.0 to P5IFG.2

(P5IV)(1) Maskable 0FFC6h

I/O port P6
P6IFG.0 to P6IFG.2

(P6IV)(1) Maskable 0FFC4h

eUSCI_A2 receive or transmit

UCA2IFG: UCRXIFG, UCTXIFG (SPI mode)

UCA2IFG: UCSTTIFG, UCTXCPTIFG, UCRXIFG,

UCTXIFG (UART mode)

(UCA2IV)(1)

Maskable 0FFC2h

eUSCI_A3 receive or transmit

UCA3IFG: UCRXIFG, UCTXIFG (SPI mode)

UCA3IFG: UCSTTIFG, UCTXCPTIFG, UCRXIFG,

UCTXIFG (UART mode)

(UCA3IV)(1)

Maskable 0FFC0h

eUSCI_B1 receive or transmit

UCB1IFG: UCRXIFG, UCTXIFG (SPI mode)

UCB1IFG: UCALIFG, UCNACKIFG, UCSTTIFG,

UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1,

UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3,

UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode)

(UCB1IV)(1)

Maskable 0FFBEh

(1) Multiple source fl ags

Figure 8.14: Interrupt priority list for MSP430FR5994. (Illustration used with permission of
Texas Instruments (www.ti.com).)

www.ti.com


8.5. INTERRUPTS 347

Interupt Source Interrupt Flag
System

Interrupt
Word

Address
Priority

eUSCI_B2 receive or transmit

UCB2IFG: UCRXIFG, UCTXIFG (SPI mode)

UCB2IFG: UCALIFG, UCNACKIFG, UCSTTIFG,

UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1,

UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3,

UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode)

(UCB2IV)(1)

Maskable 0FFBCh

eUSCI_B3 receive or transmit

UCB3IFG: UCRXIFG, UCTXIFG (SPI mode)

UCB3IFG: UCALIFG, UCNACKIFG, UCSTTIFG,

UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1,

UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3,

UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode)

(UCB3IV)(1)

Maskable 0FFBAh

I/O port P7
P7IFG.0 to P7IFG.2

(P7IV)(1) Maskable 0FFB8h

I/O port P8
P6IFG.0 to P6IFG.2

(P8IV)(1) Maskable 0FFB6h

LEA (MSP430FR599x only)
CMDIFG, SDIIFG, OORIFG,TIFG, COVLIFG

LEAIV(1) Maskable 0FFB4h

(1) Multiple source fl ags

Figure 8.15: Interrupt priority list for MSP430FR5994. (Illustration used with permission of
Texas Instruments (www.ti.com).)

TA_ISR: ADD &TA0IV,PC  ; Add offset to jump table
  RETI    ; No interrupt
  JMP CCIFG1_ISR  ; vector 2
  JMP CCIFG2_ISR  ; vector 4
  :
  JMP CCIFG6_ISR  ; vector 12
TA0IFG_ISR      ; vector 14
  :
  RETI
CCIFG1_ISR:     ; ISR for vector 2
  :
  RETI
CCIFG2_ISR:     ; ISR for vector 4
  :
  RETI
:
CCIFG6_ISR:     ; ISR for vector 12
  :
  RETI

Figure 8.16: Timer_A interrupt service routine.

www.ti.com


348 8. RESETS AND INTERRUPTS
#pragma vector=TIMER0_A0_VECTOR
__interrupt void TIMER0_A0_ISR(void)

In this example, only a single Timer0_A0 related ISR is employed.

// ******************************************************************
// MSP430 CODE EXAMPLE DISCLAIMER
//MSP430 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the
//device's power-on default register values and settings such as the
//clock configuration and care must be taken when combining code from
//several examples to avoid potential side effects. Also see
//www.ti.com/grace for a GUI- and www.ti.com/msp430ware for an API
//functional library-approach to peripheral configuration.
//
// --/COPYRIGHT--
//*******************************************************************
//MSP430FR5x9x Demo - Timer0_A3, Toggle P1.0, CCR0 Cont Mode ISR,
// DCO SMCLK
//
//Description: Toggle P1.0 using software and TA_0 ISR. Timer0_A is
//configured for continuous mode, thus the timer overflows when TAR
//counts to CCR0. In this example, CCR0 is loaded with 50000.
//ACLK = n/o, MCLK = SMCLK = TACLK = default DC0 = ~1MHz
//
// MSP430FR5994
// --------------------------
// /|\ | |
// | | |
// -- | RST |
// | |
// | P1.0 | --> LED
//
//William Goh, Texas Instruments Inc., October 2015
//Built with IAF Embedded Workbench V6.30 & Code Composer Studio V6.1
//*******************************************************************

#include <msp430.h>

int main(void)



8.5. INTERRUPTS 349
{
WDTCTL = WDTPW | WDTHOLD; //Stop WDT

P1DIR |= BIT0; //Configure GPIO
P1OUT |= BIT0;

//Disable the GPIO power-on default high-impedance mode to activate
//previously configured port settings
PM5CTL0 &= ~LOCKLPM5;

TA0CCTL0 = CCIE; //TACCR0 Interrupt enabled
TA0CCR0 = 50000;
TA0CTL = TASSEL__SMCLK | MC__CONTINOUS; //SMCLK, continuous mode
__bis_SR_register(LPM0_bits | GIE); //Enter LPM0 w/ interrupt
__no_operation(); //For debugger
}

//*******************************************************************
//Timer0_A1 interrupt service routine
//*******************************************************************

#if defined(__TI_COMPILER_VERSION__)||defined(__IAR_SYSTEMS_ICC__)
#pragma vector = TIMER0_A0_VECTOR
__interrupt void Timer0_A0_ISR (void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(TIMER0_A0_VECTOR)))Timer0_A0_ISR (void)
#else
#error Compiler not supported!
#endif
{
P1OUT ^= BIT0;
TA0CCR0 += 50000; //Add Offset to TA0CCR0
}

//*******************************************************************

In this example, the MSP430F5438 Timer0_A is again used with the associated interrupt
vector generator demonstrated.



350 8. RESETS AND INTERRUPTS
//********************************************************************
// MSP430 CODE EXAMPLE DISCLAIMER
//MSP430 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the
//device's power-on default register values and settings such as the
//clock configuration and care must be taken when combining code from
//several examples to avoid potential side effects. Also see
//www.ti.com/grace for a GUI- and www.ti.com/msp430ware for an API
//functional library-approach to peripheral configuration.
//
// --/COPYRIGHT--
//*********************************************************************
//MSP430FR5x9x Demo - Timer0_A3, Toggle P1.0, Overflow ISR, 32kHz ACLK
//
//Description: Toggle P1.0 using software and the Timer0_A overflow ISR.
//In this example, an ISR triggers when TA overflows. Inside the ISR
//P1.0 is toggled. Toggle rate is exactly 0.5Hz. Proper use of the
//TAIV interrupt vector generator is demonstrated.
//
//ACLK = TACLK = 32768Hz, MCLK = SMCLK = CD0/2 = 8 MHz/2 = 4MHz
//
// MSP430FR5994
// --------------------------
// /|\ | XIN | -
// | | |
// -- | RST XOUT | -
// | |
// | P1.0 | --> LED
//
//William Goh, Texas Instruments Inc., October 2015
//Built with IAF Embedded Workbench V6.30 & Code Composer Studio V6.1
//**********************************************************************

#include <msp430.h>

int main(void)
{
WDTCTL = WDTPW | WDTHOLD; //Stop WDT



8.5. INTERRUPTS 351

P1DIR |= BIT0; //Configure GPIO
P1OUT |= BIT0;
PJSEL0 |= BIT4 | BIT5;

//Disable the GPIO power-on default high0impedance mode to activate
//previously configured port settings
PMSCTL0 &= ~LOCKLPM5; //Setup XT1
CSCTL0_H = CSKEY_H; //Unlock CS registers
CSCTL1 = DCOFSEL_6; //Set DC0 to 8MHz

//set ACLK = XT1; MCLK = DCO
CSCTL2 = SELA__ LFXTCLK | SELS__DCOCLK | SELM__DCOCLK;
CSCTL3=DIVA__1 | DIVS__2 | DIVM__2;//Set all dividers
CSCTL4 &= ~LFXTOFF;
do

{
CSCTL5 &= ~LFXTOFFG; //Clear XT1 fault flag
SFRIFG1 &= ~OFIFG;
}while (SFRIFG1 & OFIFG); //Test oscillator fault flag
CSCTL0_H = 0;

//ACLK, contmode, clear TAR, enable overflow interrupt
TA0CTL = TASSEL__ACLK | MC__CONTINUOUS | TACLR | TAIE;
__bis_SR_register(LPM0_bits | GIE); //Enter LPM0 w/ interrupt
__no_operation(); //For debugger
}

//**********************************************************************
// Timer0_A1 Interrupt Vector (TAIV) handler
//**********************************************************************

#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector = TIMER0_A1_VECTOR
__interrupt void Timer0_A1_ISR (void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(TIMER0_A1_VECTOR))) Timer0_A1_ISR (void)
#else
#error Compiler not supported!
#endif



352 8. RESETS AND INTERRUPTS
{

switch(__even_in_range(TA0IV, TAIV__TAIFG))
{

case TAIV__NONE; break; //No interrupt
case TAIV__TACCR1; break; //CCR1 not used
case TAIV__TACCR2; break; //CCR2 not used
case TAIV__TACCR3; break; //reserved
case TAIV__TACCR4; break; //reserved
case TAIV__TACCR5; break; //reserved
case TAIV__TACCR6; break; //reserved
case TAIV__TAIFG; P1OUT ^= BIT0; //overflow

break;
default: break;
}
}

//*********************************************************************

In this final example, the Watchdog timer interrupt is used to toggle MSP430 microcon-
troller pin P1.0.

//*********************************************************************
// MSP430 CODE EXAMPLE DISCLAIMER
//MSP430 code examples are self-contained low-level programs that
//typically demonstrate a single peripheral function or device feature
//in a highly concise manner. For this the code may rely on the
//device's power-on default register values and settings such as the
//clock configuration and care must be taken when combining code from
//several examples to avoid potential side effects. Also see
//www.ti.com/grace for a GUI- and www.ti.com/msp430ware for an API
//functional library-approach to peripheral configuration.
//
// --/COPYRIGHT--
//*********************************************************************
//MSP430FR5x9x Demo-WDT, Toggle P1.0, Interval Overflow ISR, DCO SMCLK
//
//Description: Toggle P1.0 using software timed by the WDT ISR. Toggle
//rate is approximately 30ms = {(1MHz) / 32768} based on DCO = 8MHz
//clock source used in this example for the WDT.
// ACLK = n/a, SMCLK =1MHz
//



8.5. INTERRUPTS 353
// MSP430FR5994
// --------------------------
// /|\ | |
// | | |
// -- | RST |
// | |
// | P1.0 | --> LED
//
//William Goh, Texas Instruments Inc., October 2015
// Built with IAF Embedded Workbench V6.30 & Code Composer Studio V6.1
//***********************************************************************

#include <msp430.h>

void main(void)
{
WDTCTL = WDTPW | WDTSSEL__SMCLK | WDTTMSEL | WDTCNTCL | WDTIS__32k;

P1DIR |= BIT0; //Configure GPIO

//Disable the GPIO power-on default high impedance mode to activate
//previously configured port settings
PMSCTL0 &= ~LOCKLPM5;

CSCTL0_H = CSKEY_H; //Unlock CS registers
CSCTL1 = DCOFSEL_6; //Set DCO = 8MHz

//Set ACLK = VL0, MCLK = DCO
CSCTL2 = SELA__VLOCLK | SELS__DCOCLK | SELM__DCOCLK;

//Set all dividers
CSCTL3 = DIVA__1 | DIVS__8 | DIVM__8;
CSCTL0_H = 0;
SFRIE1 |= WDTIE; //Enable WDT interrupt
__bis_SR_register(LPM0_bits+GIE); //Enter LPM0, enable interrupts
__no_operation(); //For debugger
}

//***********************************************************************
// Watchdog timer interrupt service routine
//***********************************************************************



354 8. RESETS AND INTERRUPTS

#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector = WDT_VECTOR
__interrupt void WDT_ISR (void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(WDT_VECTOR))) WDT_ISR (void)
#else
#error Compiler not supported!
#endif
{
P1OUT ^= BIT0;
}

//***********************************************************************

It should be noted, if recursive interrupts or nesting interrupts are desired, the GIE bit
in SR should be set inside an ISR. If nesting interrupts are allowed on purpose, a programmer
must be sure that the stack will have enough space to accommodate the number of consecutive
nested interrupts.

8.6 LABORATORY EXERCISE
In many smart homes, electronic appliances are networked together to monitor power usage
throughout the day. The idea is to minimize collective power usage during the peak time and
perform tasks during the low power usage time. For example, a refrigerator can delay generating
ice cubes, if it detects that the electric fan is operating at the same time. An LCD may turn itself
off when it is not being used. Furthermore, assume that some of these electronic systems in house
are battery operated. In this laboratory exercise, you are to implement the controller for a battery
operated electronic temperature controller for a living room, which must periodically transmit
wirelessly its status (power level) to a central station, check to see whether the temperature is
within a programmed range, and turn on a heater/air conditioner if necessary until the desired
temperature is reached.

While it is not in use, the controller should be in a power saving mode, LPM3.5, and
should be turned on every 5 min to perform the periodic task. It should use its internal clock as
the timer and use the related interrupt system to “wake up” and “sleep” during and in between
consecutive tasks. Since we have not covered the wireless transmission capabilities of MSP430,
simply write 0x01h to Port 1 to indicate that the power level is healthy and 0xFFh to let the
central controller know that the power is below the desired level. Assume that the power level is
constantly updated at memory locations 0x1000h-0x1001h and values above 0x8000 represent
sufficient power capacity. To turn on the heater or the air conditioner, your program must write
0x01 or 0xFF to Port 2, respectively. Writing 0x00h to Port 2 turns off both systems.



8.7. REFERENCES AND FURTHER READING 355

Window

Living Room

Temperature
Controller

Power Status Signals
Heater/Air-Conditioner
Control Signals

Figure 8.17: Temperature controller for a smart home.

Figure 8.17 shows the setup for your temperature controller.

8.7 REFERENCES AND FURTHER READING
MSP430FR2433 LaunchPad Development Kit (MSP-EXP430FR2433), (SLAU739), Texas In-

struments, 2017.

MSP430FR2433 Mixed-Signal Microcontroller, (SLASE59D), Texas Instruments, 2018.

MSP430FR4xx and MSP430FR2xx Family User’s Guide, (SLAU445G), Texas Instruments,
2016. 333, 334, 335, 337

MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s Guide, (SLAU367O),
Texas Instruments, 2017. 333, 334, 335, 337



356 8. RESETS AND INTERRUPTS
MSP430FR5994LaunchPadDevelopmentKit (MSP-EXP430FR5994), (SLAU678A), Texas In-

struments, 2016.

MSP430FR599x, MSP430FR596x Mixed-Signal Microcontrollers, (SLASE54C), Texas Instru-
ments, 2018. 339

8.8 CHAPTER PROBLEMS
Fundamental

1. List three different types of resets in the MSP430 microcontroller.

2. State the purpose of resets and interrupts.

3. What is the main difference between a reset and an interrupt?

4. What is the differences between maskable and nonmaskable interrupts?

5. In addition to setting up a local interrupt enable bit, you must also set the global enable bit.
Where is the global enable bit for all MSP430 maskable interrupts? Write an instruction
to enable this global maskable interrupt enable bit.

6. What are the steps one must take to properly configure a maskable interrupt?

7. When more than one maskable interrupt occurs simultaneously, how does the MSP430
controller decide the order in which the controller service the interrupts?

Advanced

1. Why did the designers of MSP430 come up with three different types of resets?

2. Refer to the Interrupt Handling Process (Section 8.5.1) and explain the purpose for each
of the ten steps.

3. Write a segment of code to initialize the MSP430 microcontroller to operate in the power
save LPM3.5 mode and only operate in the normal mode during an interrupt.

Challenging

1. It is challenging to handle nested interrupts. What might be some applications where
nested interrupts are necessary?

2. Consider the exercise in Section 8.6. Write a program for the central station that accepts
the data from the temperature controller and log them in memory. Use an interrupt service
routine since the power level data is only sent every 5 min.



357

C H A P T E R 9

Analog Peripherals
Objectives: After reading this chapter, the reader should be able to:

• describe the function of an ADC and a DAC;

• explain the method used to perform analog conversions in the MSP430 microcontroller;

• configure the MSP430 microcontroller to accept analog signals and convert them into
digital forms;

• describe the operation of the MSP430 comparators;

• use interrupts associated with the MSP430 microcontroller’s ADC systems; and

• configure the MSP430 analog conversion process by writing an appropriate program.

We live in an analog world! When we represent physical phenomena as signals over time,
the signal may have any of an infinite number of values. For example, if we display the pitch of
your voice over time, it will be a continuous signal with your pitch varying over the period. The
intensity of sunlight, wind speed, air temperature, the rate of a bird flapping its wings, and the
speed of your car are all analog in nature. On the other hand, digital signals have a finite number
of values over time. For a binary signal, the value is either logic one or zero, which computers use.
To interact with the analog world, computers must have the capability to accept and generate
analog signals.

In this chapter, we discuss the subsystems of a microcontroller that allows input of an
analog signal: the MSP430’s ADC system. We also explore the DAC process. We also describe
the comparator system, which indicates whether a signal sample is within a set of defined voltage
thresholds.

9.1 ANALOG-TO-DIGITAL CONVERSION PROCESS
Before a computer can process any physical signals, those signals must first be converted to their
corresponding digital forms. Figure 9.1 shows an example of an analog signal. Notice that for
a given time, t , shown on the x axis, the signal can hold any value of magnitude shown on the
y axis. So, how do analog signals such as the one shown in the figure get converted into digital
signals? The ADC process consists of the three separate sub-processes: sampling, quantization,
and encoding.



358 9. ANALOG PERIPHERALS

0 2 4 6 8 10
−60

−40

−20

0

20

40

60

80

Time (sec)

M
ag
n
it
ud

e

Sample Analog Signal

Figure 9.1: Sample analog signal.

9.1.1 SAMPLING
The sampling process allows for a digital system to capture an analog signal at a specific time.
One can consider the sampling process as similar to taking snap shots of changing scenery using
a camera.

Suppose we want to capture the movement of a baseball pitcher as he throws a ball toward
home plate. Assume the only means for you to capture the motion of the pitcher is a camera.
Suppose it takes 2 s for the pitcher to throw a baseball. If you take a picture at the start of
the pitch and another one 2 s later, you have missed most of the action and will not be able to
accurately represent the motion of the pitcher and the details of the pitch path.

The time between sampled snap shots is the period specified in seconds. The inverse of
the period is the sampling frequency with the unit of Hertz (Hz). In this example, since there is
a two second interval between samples, the sampling rate is 1=2 D 0:5 Hz (f D 1=T ). As you
can imagine, the faster you take the pictures the more accurately you can recreate the pitcher’s
motion and the pitch path by sequencing photos.

The example illustrates the primary issue of the sampling process, that of the sampling
frequency. A correct sampling frequency depends on the characteristics of the analog signal. If



9.1. ANALOG-TO-DIGITAL CONVERSION PROCESS 359
the analog signal changes quickly, the sampling frequency must be high, while if the signal does
not change rapidly the sampling frequency can be slow and one can still capture the essence of
the incoming signal.

You may wonder what harm is there, then, in sampling at the highest possible rate, re-
gardless of the frequency content of the analog signal? Just as it would be a waste of resources
to take multiple pictures of the same stationary object, it would not be a good use of resources
to sample with a high frequency rate regardless of the nature of an analog signal. In the 1940s,
Henry Nyquist, who worked at Bell Laboratory, developed the concept that the minimum re-
quired sampling rate to capture the essence of an analog signal is a function of the highest input
analog signal frequency: fs � 2 � fh. The frequency fs and fh are the sampling frequency
and the highest frequency of the signal we want to capture, respectively. That is, the sampling
frequency must be greater than or equal to two times the highest frequency component of the
input signal. We illustrate the Nyquist sampling rate using Figure 9.2.

Figure 9.2a shows the analog signal of interest, a sinusoidal signal. Frame (b) of the fig-
ure shows sampling points with a rate slower than the Nyquist rate and frame (c) shows the
reconstruction of the original signals using only the sampled points shown in frame (b). Frame
(d) shows the sampled points at the Nyquist rate and the corresponding reconstructed signal is
shown in frame (e). Finally, frame (f ) shows sampled points at a rate higher than the Nyquist
sampling rate and frame (g) shows the reconstructed signal. As can be seen from this simple
example, when we sample an analog signal at the Nyquist sampling rate, we can barely generate
the characteristics of the original analog signal. While at a higher sampling rate, we can retain
the nature of an input analog signal more accurately, but at a higher cost, requiring a faster clock,
additional processing power, and more storage for the accumulated data. Let us examine one
final example before we move on to the quantization process.

Example: An average human voice contains frequencies ranging from about 200 Hz to 3.5 kHz.
What should be the minimum sampling rate for an ADC system?

Answer: According to the Nyquist sampling rate rule, we should sample at 3.5 kHz � 2 D

7 kHz, which translates to taking a sample every 142.9 usec. Your telephone company uses a
sampling rate of 8 kHz to sample your voice.

9.1.2 QUANTIZATION
Once a sample is captured, then the second step of the conversion process, quantization, can
commence. Before we explain the process, we first need to define the term quantization level.
Suppose we are working with an analog voltage signal whose values can change from 0–5 V.
Now suppose we pick a point in time. The analog signal, at that point in time, can have any
value between 0–5 V, an infinite number of possibilities (think of real numbers). Since we do
not have a means to represent an infinite number of different values in a digital system, we limit
the possible values to a finite number. So, what should this number be? Previously, we saw that



360 9. ANALOG PERIPHERALS

(a) (b)

(c) (d)

(e) (f )

(g)

Figure 9.2: Sampling rate illustration.



9.1. ANALOG-TO-DIGITAL CONVERSION PROCESS 361

there are 2b number of values we can represent with b bits. If we have a 2-bit analog-to-digital
converter, 2 bits are used to represent the analog signal; there are four different representations
we can choose from. In a 4-bit converter, we have 16 different ways to do so. If we have an 8-bit
converter, we have 256 different representations, and so on. Figure 9.3 shows both quantization
levels and the corresponding resolution for a sample input signal for a 3-bit ADC.

Quantized Level 8

Quantized Level 7 

Quantized Level 6

Quantized Level 5

Quantized Level 4

Quantized Level 3

Quantized Level 2

Quantized Level 1

Quantized Level 0

Resolution

Analog
signal
input
range

Figure 9.3: Quantization levels and the resolution of an ADC.

As you may suspect, there is a tradeoff between using a large number of bits for an accurate
representation vs. the hardware cost of designing and manufacturing a converter. A converter
which employs more bits will yield more accurate representations of the sampled signal values.
A decision made by an ADC designer determines the accuracy of a sampled data and the cost
to manufacture the converter. The number of bits used to quantize a sampled value determines
the available quantization levels. Therefore, a converter which uses 8 bits has 256 quantization
levels while a converter that uses 10 bits has 1024 quantization levels.

We need to also define what is known as the resolution of an ADC. Simply put, the reso-
lution is the smallest quantity a converter can represent or the “distance” between two adjacent
quantization levels. The resolution will naturally vary depending on the range of input analog
signal values. Suppose the input range is from 0–5 V, a typical input range of an ADC, and we
have an 8-bit converter. The resolution, ı, is then

ı D
analog input highest value � analog input lowest value

2b
D

5 � 0

256
D 19:5312 mV:

Example: Given an application that requires an input signal range of 10 V and the resolution
less than 5 mV, what is the minimum number of bits required for the ADC?



362 9. ANALOG PERIPHERALS

Answer: 10�0
210 D 9:77 mV and 10�0

211 D 4:88 mV. Thus, the minimum required number of bits
for the ADC is 11 bits.

We can now combine both sampling and quantization processes together to identify a
quantized level of a sampled value. Suppose a sampled analog signal value is 3.4 V and the
input signal range is 0–5 V. Using a converter with 8 bits, we can find the quantized level of the
sampled value using the following equation:

Quantized level D
sampled input value � lowest possible input value

ı
:

Thus, given the input sample value of 3.4 V, the quantized level becomes 3:4 V�0 V
19:53 mV Š

174:09. Since we can only have integer levels, the quantized level becomes 174.
The sampling error is the difference between the true analog value and the sampled value.

It is the amount of approximation the converter had to make. See Figure 9.4 for a pictorial view
of this concept. For the example, the input sampled value 3.4 V is represented as the quantized
level 174 and the quantized error is 0:09 � ı D 1:76 mV. Note that the maximum quantization
error is the resolution of the converter.

Example: Given a sampled signal value of 7.21 V, using a 10-bit ADC with input range of 0 V
and 10 V, find the corresponding quantization level and the associated quantization error.

Answer: First, we find the quantized level:

Quantized level D
7:21 � 0

ı
;

where ı D
10
210 D 9:77 mV. Thus, the quantized level is 738.3059. Since we always round

down, the quantized level is 738 and the associated quantization error is 0:3059 � 9:77 mV Š

2:987 mV.

9.1.3 ENCODING
The last step of the ADC process is the encoding. The encoding process converts the quan-
tized level of a sampled analog signal value into a binary number representation. Consider
the following simple case. Suppose we have a converter with four bits. The available quan-
tization levels for this converter are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15.
Using 4 bits, we can represent the quantization levels in binary as 0000, 0001, 0010, 0011,
0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, and 1111. Once we iden-
tify a quantization level, we can uniquely represent the quantization level as a binary number.
This process is called encoding. Similar to a decimal number, the position of each bit in a bi-
nary number represents a different value. For example, binary number 1100 is decimal number
.1 � 23/ C .1 � 22/ C .0 � 21/ C .0 � 20/ D 12. Knowing the weight of each bit, it is a straight
forward process to represent a decimal number as a binary number.



9.1. ANALOG-TO-DIGITAL CONVERSION PROCESS 363

Highest Possible Input Value

Lowest Possible Input Value

Quantization Level n

Sampled Value

Quantization Error

Figure 9.4: Quantized error of a sampled input signal.



364 9. ANALOG PERIPHERALS
Example: Find the encoded value of the quantization found in the previous example: 738. Recall
we are using 10 bits.

Answer: Since we are using 10 bits to represent this number, the encoded value is
.1 � 29/ C .0 � 28/ C .1 � 27/ C .1 � 26/ C .1 � 25/ C .0 � 24/ C .0 � 23/ C

.0 � 22/ C .1 � 21/ C .0 � 20/ D 738.
Thus, the encoded value is 1011100010.

9.2 DIGITAL-TO-ANALOG CONVERTER PROCESS

The opposite function of an ADC is performed by a DAC. Some variants of the MSP430 are
equipped with an onboard DAC. Neither the MSP430FR2433 or the MSP430FR5994 micro-
controllers are equipped with an onboard DAC. However, the theory behind a DAC system is
important to understand. This allows the selection of an appropriate external DAC for a given
application.

The input to a DAC converter is an encoded value which specifies the desired output
analog value. Similar to the ADC, a DAC must have both minimum and maximum reference
analog voltages. The job of a DAC is then to map a minimum digital representation to its corre-
sponding minimum analog value, a maximum digital representation to the maximum reference
analog value, and representations in between minimum and maximum digital values to their ap-
propriate analog counterparts. The most common method used to perform a DAC conversion is
to pre-designate the analog weight of each bit in the digital input representation and then sum
up the contributions to form an analog output. For example, suppose the range of output values
for a DAC is from 0–5 V. If we have a 4-bit DAC, from the most to the LSBs, each specific
bit would be weighted 2.5 V, 1.25 V, 0.625 V, and 0.3125 V, respectively. Thus, a digital input
of 1010 to this converter will result in 2:5 C 0:625 D 3:125 V, and a digital input of 1111 to
the DAC converter would result in 2:5 C 1:25 C 0:625 C 0:3125 D 4:6875 V. Given an N-bit
converter, it is straightforward to develop the following equation to describe the relationships
among the input, the number of bits used, and the output:

Analog output D
digital input

2N
Vrefmax;

where N stands for the number of bits used in the converter and Vrefmax represents the maximum
analog reference voltage of the converter. The DAC uses the summing technique where each of
the input digital bits asserts a switch to turn on its associated weighted voltage. All voltages are
summed to generate an output analog voltage. Figure 9.5 illustrates a 4-bit DAC converter with
the maximum and minimum output values of 2.5 V and 0 V, respectively.



9.3. MSP430 ADC SYSTEMS 365

Digital input value determines which
switches are closed (1) and which

switches remain open (0).

MSB

MSB

LSB

Summer

LPF

Output

1.25 V

0.625 V

0.3125 V

0.15625 V

W
ei

gh
te

d
 R

ef
er

en
ce

 V
ol

ta
ge

s

LSB

0

1

0

1

0

1

0

1

Figure 9.5: A sample 4-bit digital to analog converter. The DAC digital input governs the posi-
tions of the switches. The digital input values determine if the corresponding reference voltage
values should contribute to the converter output value. The output of the summer is typically
connected to a low pass filter (LPF) to reduce sharp signal edges resulting from the conversion
process.

9.3 MSP430 ADC SYSTEMS

In this section we begin with a general discussion of the MSP430 ADC block diagram followed
by a detailed discussion of the MSP430FR2433 ADC and the MSP430FR5994 ADC and
comparator systems.

9.3.1 MSP 430 ADC BLOCK DIAGRAM
A basic block diagram of the MSP430 ADC system is shown in Figure 9.6a. An input analog
channel is selected for conversion by the input voltage select multiplexer (mux). The selected
signal is held constant by the sample and hold (S/H) circuitry during the conversion process.
The stable signal is then fed to the successive approximation converter. The SA converter receives
input from the reference voltage select, the timing source, and trigger source for conversion.



366 9. ANALOG PERIPHERALS
The digital result of the conversion, provided as n bits, is stored in the result register. Specific
interrupts may be selected to signal different significant events in the ADC process.

A block diagram of SA converter operation is provided in Figure 9.6b. As its name implies,
the SA converter will make successive guesses at the unknown sample voltage value. It begins
with a guess of one-half of the reference voltage, as shown in Figure 9.6c. This digital guess is
converted to a corresponding analog value by the DAC. The analog guess is compared to the
unknown sample voltage by the voltage comparator. The output from the comparator prompts
the SA to guess higher or lower. This process continues n times (one for each bit in the SA
register). The guess progresses from one-half of the reference voltage to one-fourth to one-
eighth, etc. When the conversion is complete, the end of conversion signal goes logic high. As
we present a detailed discussion of the MSP430FR2433 and MSP430FR5994 ADC systems,
it may be helpful to refer back to the block diagrams.

9.3.2 MSP430FR2433 10-BIT ANALOG-TO-DIGITAL CONVERTER
The MSP430FR2433 is equipped with a flexible and powerful ADC system. It has the following
features [SLAU445G, 2016]:

• eight channels for external conversion,

• converter resolution of 10-bits per sample,

• successive approximation converter,

• selectable reference voltages, and

• input voltage range from 0 to DVcc.

The ADC is quite flexible and may be configured for the following operations:

• a single conversion on a single ADC channel,

• a single conversion on a sequence of channels,

• a repeated conversion on a single channel, or

• a repeated conversion on a sequence of channels.

The block diagram of the MSP430FR2433 ADC is shown in Figure 9.7. Like the block
diagram provided in Figure 9.6, the MSP430FR2433 ADC system may be divided into input
select, voltage reference select, time base select, trigger source select, and the output processing
sections. The ADC process is configured and monitored by a set of ADC registers.

Input select. There are 16 different inputs to the converter as shown in the left of Fig-
ure 9.7: A0–A15. Of the 16 inputs, 8 inputs (A0–A7) are used to route analog input signals to
the converter. Inputs A14 and A15 are connected to a positive reference voltage and a negative



9.3. MSP430 ADC SYSTEMS 367

Input Voltage
Select

Results
Registers

Voltage
Comparator

Interrupts

Trigger Source

Timing Source

Timing Source

Current Digital “Guess”

Current Analog “Guess”

End of Conversion Signal

VR-

n

n

VR+

Sample
Input

Unknown
Sample
Voltage

Sample
and Hold

(S/H)

Sample
and Hold

(S/H)

Successive
Approximation

Converter

Successive
Approximation
Register (SAR)

Digital-to-Analog
Converter

Reference
Voltage
Select

Input
Voltage
Select
mux

(a) Successive approximation ADC block diagram

(b) Successive approximation ADC converter

(c) Successive approximation register (SAR)

1/
2 

(V
R

+ 
- 
V
R

-)

1/
4 

(V
R

+ 
- 
V
R

-)

1/
2n

 (
V
R

+ 
- 
V
R

-)

G
ue

ss 
1

G
ue

ss 
2

G
ue

ss 
n

Figure 9.6: Basic ADC block diagram.



368 9. ANALOG PERIPHERALS
Voltage Reference SelectInput Select

ADCINCHx

ADCSR

VEREF-

VSS VCC

VR- VR+

Convert

ADC Core

ADCCONSEQx

ADC

SREF2

ADC

SREFx ADC

SSELx

ADC

BUSY

ADC

SHP

ADC

MSC

ADC

SHTx

ADC

ISSH

ADC

SHSx

ADCON

ADCDF

ADCHIx

ADCLOx

Sync

Data Format

ADCMEM

Window Comparator

ADCDIVx

ADCCLK

To Interrupt Logic

ADCPDIVx

VEREF+

Comparator Interrupt

Output Processing

Time Base
Select

Trigger Source
Select

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Sample

and Hold

Auto

Divider

+1 – +8

Sample Timer

+4 – +1024

Reference

Buffer
From on-chip

Reference Voltage

1    0

10

01

1

0
1

0

00

01

11

00

01

10

11

MODOSC

ACLK

MCLK

SMCLK

00

01

10

11

ADCSC

Timer Trigger 0

Timer Trigger 1

Timer Trigger 2

11  10  01  00

+4

+64

Figure 9.7: Block diagram of the MSP430 10-bit analog-to-digital converter. (Illustration used
with permission of Texas Instruments (www.ti.com).)

reference voltage, which can be supplied by a user with external voltage sources or using the
MSP430 internal reference voltage generator module.

Input A12 is connected to a built-in temperature diode whichmeasures the environmental
temperature of the controller (useful for a variety of meters where MSP430 controllers are used),
and input A13 is connected to a DC voltage whose value is 0.5 * (AVcc - AVss), if required for
an application.

Once an analog signal (or multiple signals) enters the converter, bits ADCINCHx (bits
3-0) of the ADC memory control register (ADCMCTLx) determine which input channel or a
starting channel of a group of input channels will be used in the converter.

Reference voltage select. The ADCSREFx bits (bits 6-4) in the ADC memory control
register x (ADCMCTLx) are used to select one of eight possible voltage reference selections as
shown in Table 9.1. The ADC uses 10 bits to sample analog signals, providing 1024 different

www.ti.com


9.3. MSP430 ADC SYSTEMS 369

Table 9.1: Voltage reference

ADCSREFx Reference Voltages

001 VR+ = AVcc and VR− = AVss

001 VR+ = VREF+ and VR− = AVss

010 VR+ = VeREF+ and VR− = AVss

011 VR+ = VeREF++ and VR− = AVss

100 VR+ = AVcc and VR− = VREF−/VeREF−

101 VR+ = VREF+ and VR− = VREF−/VeREF−

110 VR+ = VeREF+ and VR− = VREF−/VeREF−

111 VR+ = VeREF+ and VR− = VREF−/VeREF−

quantized levels (000h - 3FFh) to represent a sample value. If an input voltage value is equal to
reference low (REF�) value, 000h results while an input voltage equal to reference high (REFC)
voltage is represented as 3FFh. The results are encoded either as unsigned or 2’complement
binary values as specified by the ADC read back format (ADCDF) bit in ADC Control 2
(ADCCTL2) register.

Clock source select. ADC clock source selection is determined by the ADCSSELx bits
(bits 4-3) of the ADC control 1 (ADCTL1) register. Selecting these bits determines whether
the source clock is MODOSC (00), ACLK (01), MCLK (10), or SMCLK (11). The selected
clock source can be divided by two different stages: the ADC predivider (ADCPDIV bits) and
the ADC clock divider. The ADCPDIV bits (bits 9-8) of ADC control 2 (ADCCTL2) register
provide for a divide by 1 (00), 4 (01), or 64 (10) of the selected clock source. The ADCDIVx
bits (bits 7-5) in the ADCCTL1 register allow for an additional divide factor of 1 (000) to 8
(111).

ADC interrupts. Monitoring the ADC system is a series of six interrupts to flag differ-
ent events during ADC operation. These monitoring interrupts are normally off and must be
individually enabled as shown in Figure 9.8. Also, as with all interrupts, the GIE bit in the SR
must also be enabled. If a specific interrupt is enabled for a given application, a corresponding
interrupt service routine (ISR) must be provided.

The six ADC interrupts are [SLAU445G, 2016]:

• ADC memory interrupt flag (ADCIFGO)

• ADCMEM0 overflow (ADCOVIFG)

• Conversion time overflow (ADCTOVIFG)

• ADCLO interrupt flag (ADCLOIFG)



370 9. ANALOG PERIPHERALS

Interrupt source? 
00h: none 
02h: ADCMEM0 overflow (ADCOVIFG) 
04h: Conversion time overflow (ADCTOVIFG) 
06h: ADCHI interrupt flag (ADCHIIFG) 
08h: ADCLO interrupt flag (ADCLOIFG) 
0Ah: ADCIN interrupt flag (ADCINIFG) 
0Ch: ADC memory interrupt flag (ADCIFGO)

A
D

C
 I

n
te

rr
up

t 
V

ec
to

r 
(A

D
C

IV
) 

re
gi

st
er

ADC Interrupt Flag 
(ADCIFG) register

ADC Interrupt Enable 
(ADCIE) register

ADCIFGO

ADCOVIFG

ADCTOVIFG

ADCLOIFG

ADCINIFG

ADCHIIFG

A
D

C
TO

VIF
G

A
D

CO
VIF

G

A
D

C
H

II
FG

A
D

C
LO

IF
G

A
D

C
IN

IF
G

A
D

C
IF

G
0

A
D

C
TO

VIE

A
D

CO
VIE

A
D

C
H

II
E

A
D

C
LO

IE

A
D

C
IN

IE

A
D

C
IE

0

0

1

0

1

0

1

0

1

0

1

0

1

Figure 9.8: MSP430FR2433 ADC interrupts overview.

• ADCIN interrupt flag (ADCINIFG)

• ADCHI interrupt flag (ADCHIIFG)

As shown in Figure 9.8, a specific interrupt must be enabled by asserting its corresponding
bit in the ADC interrupt enable register (ADCIE).When an enabled interrupt event occurs, the
corresponding flag bit is set in the ADC interrupt flag (ADCIFG) register. The numerical value
of the highest priority active interrupt may be read from the ADC interrupt vector (ADCIV)
register.



9.3. MSP430 ADC SYSTEMS 371
All ADC interrupt sources are provided to the ADC interrupt vector (ADCIV) register.

When an ADC interrupt(s) occurs, the interrupt source are sent to the ADCIV register where
it is prioritized.

Results register. The result(s) of sampled and converted signal(s) is stored in the ADC
conversion memory (ADCMEM0) register. Prior to storage in the result register, the result is
formatted to a user specified configuration. Also, if the comparator features are asserted, appro-
priate interrupts are set.

9.3.3 MSP430FR2433 REGISTER SUMMARY
ADC operation and feature selection are determined by user selected settings in the ADC reg-
isters. The ADC register set includes the following registers [SLAU445G, 2016]:

• ADCCTL0 ADC Control 0 register

• ADCCTL1 ADC Control 1 register

• ADCCTL2 ADC Control 2 register

• ADCMCTL0 ADC Memory Control register

• ADCMEM0 ADC Conversion Memory register. Conversion results are stored here.

• ADCIE ADC Interrupt Enable register. Used to enable individual interrupts.

• ADCIFG ADC Interrupt Flag register. Corresponding flags for individual ADC inter-
rupts are provided here.

• ADCIV ADC Interrupt Vector register. Provides numerical value of active interrupt.

Details of configuring each register is provided in SLAU445G. We highlight the settings
of the ADC Control Registers in Figure 9.9.

Programming the MSP430FR2433 ADC in Energia
The Energia library contains several functions to support analog conversions including ADC-
and DAC-related functions (www.energia.nu):

• analogRead(): The analogRead function performs an ADC conversion on the indicated
analog pin. The measured voltage is converted to an integer value between 0 and 1023,
where 0 corresponds to 0 VDC and 1023 corresponds to 3.3 VDC.

• analogReference(): The analogReference function provides for changing the high level
reference voltage for ADC conversion. The different settings include:

– DEFAULT: sets ADC high reference level to VCC 3.3 V.

www.energia.nu


372 9. ANALOG PERIPHERALS

7 6

15

Reserved

Reserved

Reserved ADCPDIVx

Reserved Reserved

Reserved ADCINCHxADCSREFx

Reserved ADCRES ADCDF ADCSR Reserved

ADCSHTx

ADCSHSx ADCSHP ADCISSH

ADCCONSEQxADCSSELxADCDIVx ADCBUSY

ADCMSC ADCON ADCENC ADCSCReserved Reserved

14 13 12 11 10 9

5 4 3 2 1

8

15 14 13 12 11 10 9 8

15 14 13 12 11 10 9 8

r0 r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(1)

rw-(0) r0 r0 rw-(0) r0 r0 rw-(0) rw-(0)

r0 r0 r0 r0 rw-(0) rw-(0) rw-(0) rw-(0)

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r-(0)

r0 r0 r0 r0 r0 r0 rw-(0) rw-(0)

r0 r0 rw-(0) rw-(1) rw-(0) rw-(0) r0 rw-(0)

r0 r0 r0 r0 r0 r0 r0 rw-(0)

r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6

15 14 13 12 11 10 9

5 4 3 2 1

8

0

(a) ADC Control 0 register (ADCCTL0)
     ADCCTL0[4]: ADC on: ADCON: 0 = ADC off, 1 = ADC on
     ADCCTL0[1]: ADC enable conversion: ADCENC: 0 = disabled, 1 = enabled
     ADCCTL0[0]: ADC start conversion: ADCSC: 0 = no conversion, 1 = start conversion

(b) ADC Control 1 register (ADCCTL1)
     ADCCTL1[7-5]: ADC clock divider: ADCDIVx: 000 = 1 to 111 = 8
     ADCCTL1[4-3]: ADC clock source select: ADCSSELx: MODCLK (00), ACLK (01), MCLK (10), SMCLK (11)
     ADCCTL1[2-1]: ADC conversion sequence: ADCCONSEQx:
          single channel, single conversion (00): sequence of channels, single conversion (01),
          single channel, repeat conversion (10): sequence of channels, repeat conversion (11)
     ADCCTL1[0]: ADC busy: 0 = inactive, 1 = active

(c) ADC Control 2 register (ADCCTL2)
     ADCCTL2[9-8]: ADC predivider: ADCPDIVx: 00 = 1, 01 = 4, 10 = 64
     ADCCTL2[5-4]: ADC resolution: ADCRES: 00 = 8 bit, 01 = 10 bit, 10 = 12 bit
     ADCCTL2[3]: ADC read back format: ADCDF: 0: unsigned binary, 1= 2's complement signed binary
     ADCCTL2[2]: ADC sampling rate: ADCSR: 0 = 200 ksps, 1 = 50 ksps

(d) ADC Conversion Memory Control Register (ADCMCTL0)
     ADCSREFx [6-4]: Voltage reference select
     ADCINCHx [3-0]: Input channel select 0000 = A0 through 1111 = A15

Figure 9.9:MSP430FR2433ADC control registers [SLAU445G, 2016]. (Illustration used with
permission of Texas Instruments (www.ti.com).)

www.ti.com


9.3. MSP430 ADC SYSTEMS 373
– INTERNAL1V5: sets ADC high reference level to internal 1.5 VDC reference.
– INTERNAL2V5: sets ADC high reference level to internal 2.5 VDC reference.
– EXTERNAL: sets ADC high reference level to the VREF pin value.

• map:As its name implies themap functionmaps a range of integers (fromLow, fromHigh)
to a new range of integers (toLow, toHigh).

• analogWrite: The analogWrite function generates a pseudo analog output signal using a
pulse width modulated signal. The analogWrite function generates a 490 Hz signal on the
specified pin with a duty cycle specified from 0–255.

9.3.4 PROGRAMMING THE MSP430FR2433 ADC IN C
To successfully configure and program the converter, the following steps should be followed.

1. ADC pins are multiplexed with other I/O functions. Configure (set to logic one) the
proper field of the MSP430FR2433 System Configuration Register 2 (SYSCFG2) for
ADC access.

2. Select the desired ADC reference voltage via ADCSREFx bits in the ADCMCTLx reg-
ister.

3. Connect analog signal(s) for conversion to appropriate input pins (A0-A7).

4. Turn on the ADC: ADCON in ADCCTL0.

5. Select the clock source and the sampling mode in ADCCTL1.

6. Configure the converter for proper operation: single channel, single conversion; single
channel, multiple conversion; multiple channels, single conversion; or multiple channels,
multiple conversions using ADCCONSEQx bits in ADCTL1.

7. Initiate conversion: ADCENC bit in ADCCTL0.

8. Monitor for conversion completion using the ADCIFG0 flag.

9. Use the results of the conversion located in the corresponding result register
(ADC12MEM0).

10. Repeat the process starting at step 6.

Example: In this example, we show how to configure the analog-to-digital converter for a single-
channel, single-conversion mode. A single sample is made on input A1 with default reference to
AVcc. In the mainloop, the MSP430 waits in LPM0 to save power until the ADC conversion is



374 9. ANALOG PERIPHERALS
complete. The ADC_ISR will force exit from low power mode LPM0. If A1 > 0.5*AVcc, P1.0
set, else P1.0 is reset.

Note how the #if, #elif, #else, and #endif directives are used to implement conditional
compilation. This allows the same interrupt service routine to be used by the TI, IAR, or the
GNU compiler.

//*******************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2014, Texas Instruments Incorporated
// All rights reserved.
//
// MSP430 CODE EXAMPLE DISCLAIMER
//
//*******************************************************************
//MSP430FR24xx Demo - ADC, Sample A1, AVcc Ref, Set LED
// if A1 > 0.5*AVcc
//
//Description: This example works on Single-Channel Single-Conversion
//Mode. A single sample is made on A1 with default reference to AVcc.
//Software sets ADCSC to start sample and conversion. ADCSC
//automatically cleared at EOC. ADC internal oscillator times sample
//(16x) and conversion.
//In mainloop MSP430 waits in LPM0 to save power until the ADC
//conversion complete, ADC_ISR will force exit from LPM0 in mainloop
//on reti. If A1 > 0.5*AVcc, P1.0 set, else reset.
//
//ACLK = default REFO ~32768Hz, MCLK = SMCLK = default DCODIV ~1MHz.
//
// MSP430FR2433
// -----------------
// /|\| |
// | | |
// --|RST |
// | |
// >---|P1.1/A1 P1.0|--> LED
//
//
//Wei Zhao, Texas Instruments Inc., Jan 2014
//Built with IAR Embedded WB v6.20 & Code Composer Studio v6.0.1
//*******************************************************************



9.3. MSP430 ADC SYSTEMS 375

#include <msp430.h>

unsigned int ADC_Result;

int main(void)
{
WDTCTL = WDTPW | WDTHOLD; //Stop WDT

//Configure GPIO
P1DIR |= BIT0; //Set P1.0/LED to output
P1OUT &= ~BIT0; //P1.0 LED off

SYSCFG2 |= ADCPCTL1; //Configure ADC A1 pin

//Disable the GPIO power-on default high-impedance mode to activate
//previously configured port settings
M5CTL0 &= ~LOCKLPM5;

//Configure ADC10
ADCCTL0 |= ADCSHT_2 | ADCON; //ADCON, S&H=16 ADC clks
ADCCTL1 |= ADCSHP; //ADCCLK = MODOSC, sampling timer
ADCCTL2 |= ADCRES; //10-bit conversion results
ADCMCTL0 |= ADCINCH_1; //A1 ADC input select, Vref=AVC
ADCIE |= ADCIE0; //Enable ADC conv complete

//interrupt
while(1)

{
ADCCTL0 |= ADCENC | ADCSC; //Sampling and conversion start
bis_SR_register(LPM0_bits | GIE); //LPM0, ADC_ISR will force exit
__no_operation(); //For debug only
if(ADC_Result < 0x1FF)

P1OUT &= ~BIT0; //Clear P1.0 LED off
else

P1OUT |= BIT0; //Set P1.0 LED on
__delay_cycles(5000);

}
}



376 9. ANALOG PERIPHERALS
//*******************************************************************
// ADC interrupt service routine
//*******************************************************************
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector=ADC_VECTOR

__interrupt void ADC_ISR(void)
#elif defined(__GNUC__)

void __attribute__ ((interrupt(ADC_VECTOR))) ADC_ISR (void)
#else
#error Compiler not supported!
#endif
{

switch(__even_in_range(ADCIV,ADCIV_ADCIFG))
{
case ADCIV_NONE: break;
case ADCIV_ADCOVIFG: break;
case ADCIV_ADCTOVIFG: break;
case ADCIV_ADCHIIFG: break;
case ADCIV_ADCLOIFG: break;
case ADCIV_ADCINIFG: break;
case ADCIV_ADCIFG: ADC_Result = ADCMEM0;

//Clear CPUOFF bit from LPM0
__bic_SR_register_on_exit(LPM0_bits);
break;

default: break;
}

}

//*******************************************************************

9.4 MSP430FR5994 ANALOG-TO-DIGITAL CONVERTER
In this section we introduce the MSP430FR5994 system ADC referred to as ADC12_B. We
describe its features, operation, registers, and conclude with several programming examples.

9.4.1 ADC12_B FEATURES
The ADC12_B system is a flexible and powerful ADC system with an extensive list of fea-
tures [SLAU367O, 2017].



9.4. MSP430FR5994 ANALOG-TO-DIGITAL CONVERTER 377
• ADC12_B provides 14-bits of ADC resolution. Recall, the resolution of a converter pro-

vides 2b number of incremental steps between the high and low reference voltages.

• ADC12_B is a SAR type converter. A SAR converter takes the same amount of time for
converting an unknown voltage regardless of its magnitude. We discuss the operation of a
SAR type converter in the next section.

• The maximum conversion rate of ADC12_B is 200 kilo samples per second (ksps).

• ADC12_B is equipped with 32 individual input channels. The inputs may be configured
for single-ended conversion where the input signal is referenced to ground. The inputs
may also be configured for differential input. In this type of conversion, two signals are
subtracted from one another and their difference is converted. This is especially useful in
noisy environments. Signals that are common to both inputs (noise) are canceled and the
actual signal is amplified.

• Specific internal signals within the MSP432 processor may be selected for ADC conver-
sion.

• The ADC12_B may be set to provide conversion on a single channel, multiple conversions
of a single channel, a single conversion of a sequence of channels, or multiple conversions
of a sequence of channels.

• ADC12_B is supported by a variety of interrupts.

9.4.2 MSP430FR5994 ADC12_B OPERATION
A basic block diagram of ADC12_B is shown in Figure 9.6a. An input analog channel is se-
lected for conversion by the input voltage select multiplexer (mux). The selected signal is held
constant by the sample and hold (S/H) circuitry during the conversion process. The stable sig-
nal is then fed to the SA converter. The SA converter receives input from the reference voltage
select, the timing source, and trigger source for conversion. The digital result of the conver-
sion, provided as n bits, is stored in result registers. Specific interrupts may be selected to signal
different significant events in the ADC process.

A block diagram of SA converter operation is provided in Figure 9.6b. As its name im-
plies, the SA converter will make successive guesses at the unknown sample voltage value. It
begins with a guess of one-half of the reference voltage. This digital guess is converted to a cor-
responding analog value by the DAC. The analog guess is compared to the unknown sample
voltage by the voltage comparator. The output from the comparator prompts the SA to guess
higher or lower. This process continues n times (one for each bit in the SA register). The guess
progresses from one-half of the reference voltage to one-fourth to one-eighth, etc. as shown in
Figure 9.6c. When the conversion is complete, the end of conversion signal goes logic high.



378 9. ANALOG PERIPHERALS
The detailed block diagram of ADC12_B is provided in Figure 9.10. It may appear a bit

overwhelming at first; however, it is simply a more detailed version of the basic block diagram
you have seen in Figure 9.6. The operation of the ADC12_B is configured and controlled by
registers ADC12CTL0 through ADC12CTL4. The bit designators from these registers are
shown at various points on the diagram.

Reference Voltage Select

Time Base Select

Trigger Source

Result Storage and Processing

VREF+/VeREF+

VeREF-

VREF+

ADC12INCHx

ADC12CH3MAP

ADC12CH2MAP

ADC12CH0MAP

ADC12CH1MAP

ADC12TCMAP

ADC12BATMAP

ADC12VRSEL

ADC12ON

ADC12SHP

SAMPCON

ADC12ISSH
ADC12ENC

ADC12SHSx

ADC12CLK

ADC12MEM0

ADC12MEM31

ADC12CSTARTADDx

ADC12CONSEQx

ADC12MCTL0

ADC12SHT1x
ADC12MSC

ADC12HIx
To Interrupt

Logic

ADC12HLOx

SHI

Sync

ADC12BUSY
ADC12SHT0x

ADC12DIVx ADC12PDIV
ADC12SSELx

Trigger Sources

ADC12VRSEL bits 1-3

External A26

Internal 3

External A27

Internal 2

External A28

Internal 1

External A29

Internal 0

External A30

TempSense

External A31

Batt.Monitor

A0
A1
A2
A3
A4

A26

A27

A28

A29

A30

A31

REFOUT REFOUT

BUF_EXT

BUF_INT

Sample Timer
/4 ../1024

12-bit Window
Comparator

-
32 × 12

Memory
Buffer

-

ADC12MCTL31

-
32 × 16

Memory
Control

-

Convert

12-bit ADC Core

Reference
Voltage
Select

Divider
/1 ../8

VREF 1.2V, 2.0 V, 2.5 V
from shared reference

!REFOUT and ADC12VRSEL bit 0

Va- Va+

Sample
and

Hold

S/H

REFOUT

AVSSAVCC

00
01
10
11

MODCLK from UCS
ACLK
MCLK
SMCLK

0000
0001
0010
0011

...

11010

11011

...

11100

11101

11110

11111

000
001
…
…
…

111

000
001
…
…
…

111

00
01
10
11

:1
:4
:32
:64

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

1

0

1

0

4

4

5

Figure 9.10: ADC12_B block diagram. (Illustration used with permission of Texas Instruments
(www.ti.com).)

As seen in the figure, an input analog channel is selected for conversion by the input volt-
age select multiplexer by the ADC12INCHx bits. The selected signal is held constant by the
sample and hold (S/H) circuitry during the conversion process. The stable signal is then fed to
the SA converter. The SA converter receives input from the reference voltage select, the tim-
ing source, and trigger source for conversion. The specific reference voltage is selected by the
ADC12VRSEL bits. The specific timing source (MODCLK, SYSCLK, ACLK, MCLK, SM-
CLK, or HSMCLK) is selected by the ADC12SSELx bits. The selected clock source may be

www.ti.com


9.4. MSP430FR5994 ANALOG-TO-DIGITAL CONVERTER 379
further divided by the ADC12PDIV and the ADC12DIVx bit settings. The overall result is the
ADC12CLK signal. The trigger source to initiate the analog-to-digital conversion is the SAM-
PCON signal. The specific trigger source is selected by the ADC12SHSx bits. The digital result
of the conversion provided as n bits is stored in the ADC12MEM0 result registers. Specific in-
terrupts may be selected to signal different significant events in the ADC process [SLAU367O,
2017].

MSP430FR5994ADCInterrupts. Monitoring the ADC12_B system is a series of mul-
tiple interrupts to flag different events during ADC operation. These monitoring interrupts are
normally off and must be individually enabled, as shown in Figure 9.11. Also, as with all inter-
rupts, the GIE bit in the SR must also be enabled. If a specific interrupt is enabled for a given
application, a corresponding interrupt service routine (ISR) must be provided.

The ADC interrupts include [SLAU367O, 2017]:

• ADC memory interrupt flags (ADC12IFG0 to ADC12IFG31)

• ADC12MEMx overflow (ADC12OVIFG)

• Conversion time overflow (ADC12TOVIFG)

• ADC12LO interrupt flag (ADC12LOIFG)

• ADC12IN interrupt flag (ADC12INIFG)

• ADC12HI interrupt flag (ADC12HIIFG)

As shown in Figure 9.11, a specific interrupt must be enabled by asserting its corre-
sponding bit in the ADC interrupt enable registers (ADC12IE0 to ADC12IE2). When an
enabled interrupt event occurs, the corresponding flag bit is set in the ADC12_B interrupt flag
(ADC12IFG1 to ADC12IFG3) registers. The numerical value of the highest priority active
interrupt may be read from the ADC12_B interrupt vector (ADC12IV) register.

All ADC interrupt sources are provided to the ADC interrupt vector (ADC12IV) regis-
ter. When an ADC interrupt(s) occurs, the interrupt sources are sent to the ADC12IV register
where they are prioritized.

Results register. The result(s) of sampled and converted signal(s) are stored in the ADC
conversion memory (ADCMEMx) registers. Prior to storage in the result registers, the result is
formatted to user specified configuration. Also, if the comparator features are asserted, appro-
priate interrupts are set.

9.4.3 MSP430FR5994 REGISTER SUMMARY
ADC operation and feature selection are determined by user selected settings in the ADC reg-
isters. The ADC register set includes the following registers [SLAU367O, 2017]:



380 9. ANALOG PERIPHERALS

Interrupt Source

A
D

C
12

_B
 I

n
te

rr
u
p

t 
V

ec
to

r 
(A

D
C

12
IV

) 
R

eg
is

te
r

ADC12_B Interrupt Flags 
(ADCIFGR1-3) register

ADC12_B  Interrupt Enable 0-2 
(ADC12IER0 - 2) registers

ADC12IFGx

ADC12OVIFG

ADC12TOVIFG

ADC12LOIFG

ADC12INIFG

ADC12HIIFG

A
D

C
12

TO
VIF

G

A
D

C
12

O
VIF

G

A
D

C
12

H
II

FG

A
D

C
12

LO
IF

G

A
D

C
12

IN
IF

G

A
D

C
12

IF
G

x

A
D

C
12

TO
VIE

A
D

C
12

O
VIE

A
D

C
12

H
II

E

A
D

C
12

LO
IE

A
D

C
12

IN
IE

A
D

C
12

IE
x

0

1

0

1

0

1

0

1

0

1

0

1

Figure 9.11: MSP430FR5994 ADC12_B interrupts overview.



9.4. MSP430FR5994 ANALOG-TO-DIGITAL CONVERTER 381
• ADC12CTL0 to ADC12CTL3, ADC Control registers 0–3

• ADC12MCTL0 to ADC12MCTL31, ADC Memory Control registers 0–31

• ADC12MEM0 to ADC12MEM31, ADC Conversion Memory register. Conversion re-
sults are stored here.

• ADC12IER0 to ADC12IER2, ADC Interrupt Enable registers. Used to enable individ-
ual interrupts.

• ADC12IFGR0 to ADC12IFGR2, ADC Interrupt Flag registers. Corresponding flags
for individual ADC interrupts are provided here.

• ADC12IV, ADC Interrupt Vector register. Provides numerical value of active interrupt.

Details of configuring selected registers is provided in SLAU367O [2017]. We highlight
the settings of selected ADC Control Registers in Figure 9.12.

9.4.4 ANALYSIS OF RESULTS
The ADC12_B provides a digital representation of the analog sample in a binary unsigned for-
mat. The values range from 0000h to 3FFFh. If the sampled signal is below the low reference
voltage, ADC12_B reports 0000h; whereas, if the sampled signal exceeds the high reference,
ADC12_B reports 3FFFh. For analog sensed values between the low and high reference voltage,
ADC12_B reports a value of NADC when configured for single-ended operation [SLAU367O,
2017]:

NADC D 212
� ..VinC C 1=2LSB � VRC/=.VRC � VR�//;

where:
LSB D .VRC � VR�/=212:

If configured for differential mode, ADC12_B reports a value of:

NADC D 211
� ..VinC � Vin�/=.VRC � VR�// C 211:

9.4.5 PROGRAMMING THE MSP430FR5994 ADC12_B SYSTEM
The ADC12_B system may be programmed using Energia, APIs contained in DriverLib, and
via register settings in C.

Programming the MSP430FR5994 with Energia
The Energia library contains several functions to support analog conversions including ADC-
and DAC-related functions (www.energia.nu).

• analogRead(): The analogRead function performs an ADC conversion on the indicated
analog pin. The measured voltage is converted to an integer value between 0 and 1023,
where 0 corresponds to 0 VDC and 1023 corresponds to 3.3 VDC.

www.energia.nu


382 9. ANALOG PERIPHERALS

7 6

ADC12SHT1x ADC12SHT0x

ADC12MSC ADC12ON ADC12ENC ADC12SCReserved

Reserved

Can be modified only when ADC12ENC = 0

Can be modified only when ADC12ENC = 0

Can be modified only when ADC12ENC = 0

Reserved

5 4 3 2 1

15 14 13 12 11 10 9 8

ADC12PDIV ADC12SHSx ADC12SHP ADC12ISSH

ADC12BUSYADC12DIVx ADC12SSELx ADC12CONSEQx

15 14 13 12 11 10 9 8

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

r-0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

Reserved

Reserved ReservedADC12RES ADC12DF ADC12PWRMD

15 14 13 12 11 10 9 8

r0 r0 r0 r0 r0 r0 r0 r0

Reserved ADC12WINC ADC12DIF

ReservedADC12EOS ADC12INCHx

ADC12VRSELReserved

15 14 13 12 11 10 9 8

r0 rw-(0) rw-(0) r0 rw-(0) rw-(0) rw-(0) rw-(0)

rw-(0) r0 r0 rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)

r0 r0 rw-(1) rw-(0) rw-(0) r0 r0 rw-(0)

rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) r-(0)

rw-(0) r-0 r-0 rw-(0) r-0 r-0 rw-(0) rw-(0)

0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

(a) ADC12_B Control 0 register (ADC12CTL0)
     ADC12CTL0[4]: ADC on: ADC12ON: 0 = ADC off, 1 = ADC on
     ADC12CTL0[1]: ADC enable conversion: ADC12ENC: 0 = disabled, 1 = enabled
     ADC12CTL0[0]: ADC start conversion: ADC12SC: 0 = no conversion, 1 = start conversion

(c) ADC12_B Control 2 register (ADC12CTL2)
     ADC12CTL2[5-4]: ADC resolution: ADC12RES: 00 = 8 bit, 01 = 10 bit, 10 = 12 bit
     ADC12CTL2[3]: ADC read back format: ADC12DF: 0: unsigned binary, 1= 2's complement signed binary

(d) ADC12_B Conversion Memory Control Register (ADCMCTLx)
     ADCMCTLx [11-8]: ADC12VRSEL: Voltage reference select
     ADCMCTLx[7]: ADC12EOS: 0 = not complete, 1 = complete
     ADCMCTLx[4-0]: ADC12INCHx : Input channel select 00000 to 11111

(b) ADC12_B Control 1 register (ADC12CTL1)
     ADC12CTL1[14-13]: ADC12_B clock predivider: ADC12PDIV: 00 = 1, 01 = 4, 10 = 32, 11 =64
     ADC12CTL1[7-5]: ADC clock divider: ADC12DIVx: 000 = 1 to 111 = 8
     ADC12CTL1[4-3]: ADC clock source select: ADC12SSELx: MODCLK (00), ACLK (01), MCLK (10), SMCLK (11)
     ADC12CTL1[2-1]: ADC conversion sequence: ADC12CONSEQx:
          single channel, single conversion (00): sequence of channels, single conversion (01),
          single channel, repeat conversion (10): sequence of channels, repeat conversion (11)
     ADC12CTL1[0]: ADC12BUSY: 0 = inactive, 1 = active

Figure 9.12: MSP430FR5994 ADC control registers [SLAU367O, 2017]. (Illustration used
with permission of Texas Instruments (www.ti.com).)

www.ti.com


9.4. MSP430FR5994 ANALOG-TO-DIGITAL CONVERTER 383
• analogReference(): The analogReference function provides for changing the high-level

reference voltage for the ADC. The different settings include the following.

– DEFAULT: sets ADC high reference level to VCC 3.3 V.
– INTERNAL1V5: sets ADC high reference level to internal 1.5 VDC reference.
– INTERNAL2V5: sets ADC high reference level to internal 2.5 VDC reference.
– EXTERNAL: sets ADC high reference level to the VREF pin value.

• map:As its name implies themap functionmaps a range of integers (fromLow, fromHigh)
to a new range of integers (toLow, toHigh).

• analogWrite: The analogWrite function generates a pseudo analog output signal using a
pulse width modulated signal. The analogWrite function generates a 490 Hz signal on the
specified pin with a duty cycle specified from 0–255.

Programming the MSP430FR5994 ADC12_B in C
To successfully configure and program the converter, the following steps should be followed.

1. Select the desired ADC reference voltage via ADC12SREFx bits in the ADC12MCTLx
register.

2. Connect analog signal(s) for conversion to appropriate input pins (A0-A31).

3. Turn on the ADC: ADC12ON in ADC12CTL0.

4. Select the clock source and the sampling mode in ADC12CTL1.

5. Configure the converter for proper operation: single channel, single conversion; single
channel, multiple conversion; multiple channels, single conversion; or multiple channels,
multiple conversions using ADC12CONSEQx bits in ADC12CTL1.

6. Initiate conversion: ADC12ENC bit in ADC12CTL0.

7. Monitor for conversion completion using the ADC12IFG0 flag.

8. Use the results of the conversion located in the corresponding result register
(ADC12MEMx).

9. Repeat the process starting at step 6.

Example: In this example a single sample is made on analog input A1 with reference to AVcc. In
the mainloop, the MSP430FR5994 waits in LPM0 to save power until the ADC12 conversion
is complete. The ADC12 interrupt service routine will force exit from LPM0 in the mainloop



384 9. ANALOG PERIPHERALS
on the return from the interrupt. If the sampled value of A1 is greater than 0.5*AVcc, P1.0 is
set, else it is reset. The full, correct handling of the ADC12 interrupt is shown.

Note how the #if, #elif, #else, and #endif directives are used to implement conditional
compilation. This allows the same interrupt service routine to be used by the TI, IAR, or the
GNU compiler.

//******************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2015, Texas Instruments Incorporated
// All rights reserved.
//
// MSP430 CODE EXAMPLE DISCLAIMER
//
//******************************************************************
//MSP430FR5x9x Demo - ADC12, Sample A1, AVcc Ref,
//Set P1.0 if A1 > 0.5*AVcc
//
//Description: A single sample is made on A1 with reference to AVcc.
//Software sets ADC12SC to start sample and conversion - ADC12SC
//automatically cleared at EOC. ADC12 internal oscillator times
//sample (16x) and conversion. In mainloop MSP430 waits in LPM0 to
//save power until ADC12 conversion complete, ADC12_ISR will force
//exit from LPM0 in mainloop on reti. If A1 > 0.5*AVcc, P1.0 set,
//else reset. The full, correct handling of and ADC12 interrupt is
//shown as well.
//
// MSP430FR5994
// -----------------
// /|\| XIN|-
// | | |
// --|RST XOUT|-
// | |
// >---|P1.1/A1 P1.0|-->LED
//
//William Goh, Texas Instruments Inc., October 2015
//Built with IAR Embedded Workbench V6.30 & Code Composer
//Studio V6.1
//******************************************************************

#include <msp430.h>



9.4. MSP430FR5994 ANALOG-TO-DIGITAL CONVERTER 385

int main(void)
{
WDTCTL = WDTPW | WDTHOLD; //Stop WDT

//GPIO Setup
P1OUT &= ~BIT0; //Clear LED to start
P1DIR |= BIT0; //Set P1.0/LED to output
P1SEL1 |= BIT1; //Configure P1.1 for ADC
P1SEL0 |= BIT1;

//Disable the GPIO power-on default high-impedance mode to activate
//previously configured port settings
PM5CTL0 &= ~LOCKLPM5;

//Configure ADC12
ADC12CTL0 = ADC12SHT0_2 | ADC12ON; //Sample time,S&H=16, ADC12 on
ADC12CTL1 = ADC12SHP; //Use sampling timer
ADC12CTL2 |= ADC12RES_2; //12-bit conversion results
ADC12MCTL0 |= ADC12INCH_1; //A1 ADC input select; Vref=AVCC
ADC12IER0 |= ADC12IE0; //Enable ADC conv complete

//interrupt
while(1)

{
__delay_cycles(5000);
ADC12CTL0 |= ADC12ENC | ADC12SC; //Start sampling/conversion
__bis_SR_register(LPM0_bits | GIE); //LPM0, ADC12_ISR will force exit
__no_operation(); //For debugger
}

}

//******************************************************************
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector = ADC12_B_VECTOR
__interrupt void ADC12_ISR(void)

#elif defined(__GNUC__)
void __attribute__ ((interrupt(ADC12_B_VECTOR))) ADC12_ISR (void)



386 9. ANALOG PERIPHERALS
#else
#error Compiler not supported!

#endif
{
switch(__even_in_range(ADC12IV, ADC12IV__ADC12RDYIFG))

{
case ADC12IV__NONE: break; //Vector 0: No interrupt
case ADC12IV__ADC12OVIFG: break; //Vector 2: ADC12MEMx Overflow
case ADC12IV__ADC12TOVIFG: break; //Vector 4: Conv time overflow
case ADC12IV__ADC12HIIFG: break; //Vector 6: ADC12BHI
case ADC12IV__ADC12LOIFG: break; //Vector 8: ADC12BLO
case ADC12IV__ADC12INIFG: break; //Vector 10: ADC12BIN
case ADC12IV__ADC12IFG0: //Vector 12: ADC12MEM0 Interrupt

if(ADC12MEM0 >= 0x7ff) //ADC12MEM0 = A1 > 0.5AVcc?
P1OUT |= BIT0; // P1.0 = 1

else
P1OUT &= ~BIT0; //P1.0 = 0

// Exit from LPM0 and continue executing main
__bic_SR_register_on_exit(LPM0_bits);
break;

case ADC12IV__ADC12IFG1: break; //Vector 14: ADC12MEM1
case ADC12IV__ADC12IFG2: break; //Vector 16: ADC12MEM2
case ADC12IV__ADC12IFG3: break; //Vector 18: ADC12MEM3
case ADC12IV__ADC12IFG4: break; //Vector 20: ADC12MEM4
case ADC12IV__ADC12IFG5: break; //Vector 22: ADC12MEM5
case ADC12IV__ADC12IFG6: break; //Vector 24: ADC12MEM6
case ADC12IV__ADC12IFG7: break; //Vector 26: ADC12MEM7
case ADC12IV__ADC12IFG8: break; //Vector 28: ADC12MEM8
case ADC12IV__ADC12IFG9: break; //Vector 30: ADC12MEM9
case ADC12IV__ADC12IFG10: break; //Vector 32: ADC12MEM10
case ADC12IV__ADC12IFG11: break; //Vector 34: ADC12MEM11
case ADC12IV__ADC12IFG12: break; //Vector 36: ADC12MEM12
case ADC12IV__ADC12IFG13: break; //Vector 38: ADC12MEM13
case ADC12IV__ADC12IFG14: break; //Vector 40: ADC12MEM14
case ADC12IV__ADC12IFG15: break; //Vector 42: ADC12MEM15
case ADC12IV__ADC12IFG16: break; //Vector 44: ADC12MEM16
case ADC12IV__ADC12IFG17: break; //Vector 46: ADC12MEM17



9.5. MSP430FR5994 COMPARATOR 387
case ADC12IV__ADC12IFG18: break; //Vector 48: ADC12MEM18
case ADC12IV__ADC12IFG19: break; //Vector 50: ADC12MEM19
case ADC12IV__ADC12IFG20: break; //Vector 52: ADC12MEM20
case ADC12IV__ADC12IFG21: break; //Vector 54: ADC12MEM21
case ADC12IV__ADC12IFG22: break; //Vector 56: ADC12MEM22
case ADC12IV__ADC12IFG23: break; //Vector 58: ADC12MEM23
case ADC12IV__ADC12IFG24: break; //Vector 60: ADC12MEM24
case ADC12IV__ADC12IFG25: break; //Vector 62: ADC12MEM25
case ADC12IV__ADC12IFG26: break; //Vector 64: ADC12MEM26
case ADC12IV__ADC12IFG27: break; //Vector 66: ADC12MEM27
case ADC12IV__ADC12IFG28: break; //Vector 68: ADC12MEM28
case ADC12IV__ADC12IFG29: break; //Vector 70: ADC12MEM29
case ADC12IV__ADC12IFG30: break; //Vector 72: ADC12MEM30
case ADC12IV__ADC12IFG31: break; //Vector 74: ADC12MEM31
case ADC12IV__ADC12RDYIFG: break; //Vector 76: ADC12RDY
default: break;
}

}

//******************************************************************

9.5 MSP430FR5994 COMPARATOR
The MSP430FR5994 is equipped with a comparator system called COMP_E. COMP_E pro-
vides two channels of analog comparators. As its name implies, a comparator compares an analog
signal with a known reference. If the analog signal is greater than the reference, the output of
the comparator is logic high. On the other hand, if the analog signal is less than the reference,
the analog output is low.

The COMP_E system is controlled by a complement of registers. Register set-
tings are provided in MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s
Guide [SLAU367O, 2017].

• CECTL0 Comparator_E control register 0

• CECTL1 Comparator_E control register 1

• CECTL2 Comparator_E control register 2

• CECTL3 Comparator_E control register 3

• CEINT Comparator_E interrupt register

• CEIV Comparator_E interrupt vector word



388 9. ANALOG PERIPHERALS
Example: In this example, the comparator CompE is used with an internal reference to deter-
mine if the input “Vcompare” is high or low. When “Vcompare” exceeds 2.0 V, COUT goes
high and when “Vcompare” is less than 2.0 V, CEOUT goes low.

//******************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2015, Texas Instruments Incorporated
// All rights reserved.
//
// MSP430 CODE EXAMPLE DISCLAIMER
//
//******************************************************************
//MSP430FR5x9x Demo - COMPE output Toggle in LPM4; input channel C1;
//Vcompare is compared against internal 2.0V reference
//
//Description: Use CompE and internal reference to determine if
//input'Vcompare' is high or low. When Vcompare exceeds 2.0V COUT
//goes high and when Vcompare is less than 2.0V then CEOUT goes low.
//
// MSP430FR5994
// ------------------
// /|\| |
// | | |
// --|RST P1.1/C1|<--Vcompare
// | |
// | P1.2/COUT|----> 'high'(Vcompare>2.0V);
// | | 'low'(Vcompare<2.0V)
// | |
//
//William Goh, Texas Instruments Inc., October 2015
//Built with IAR Embedded Workbench V6.30 & Code Composer
//Studio V6.1
//*******************************************************************

#include <msp430.h>

int main(void)
{
WDTCTL = WDTPW | WDTHOLD; //Stop WDT



9.6. ADVANCED ANALOG PERIPHERALS 389
//Configure P1.1 as C1 and P1.2 as COUT
P1SEL0 |= BIT1;
P1SEL0 &= ~(BIT2);
P1SEL1 |= BIT1 | BIT2;
P1DIR |= BIT2;

//Disable the GPIO power-on default high-impedance mode to activate
//previously configured port settings
PM5CTL0 &= ~LOCKLPM5;

//Setup Comparator_E
CECTL0 = CEIPEN | CEIPSEL_1; //Enable V+, input ch CE1
CECTL1 = CEPWRMD_1; //normal power mode
CECTL2 = CEREFL_2 | CERS_3 | CERSEL; //VREF is applied to -term

//R-ladder off; bandgap ref
//voltage supplied to ref
//amplifier to get Vcref=2.0V

CECTL3 = BIT1; //Input Buffer Disable @P1.1/CE1
CECTL1 |= CEON; //Turn On Comparator_E
__delay_cycles(75); //delay for the ref to settle
__bis_SR_register(LPM4_bits); //Enter LPM4
__no_operation(); //For debug
}

//*******************************************************************

9.6 ADVANCED ANALOG PERIPHERALS
Although not available on the MSP430FR2433 and the MSP430FR5994 variants, this section
provides information on enhanced analog peripheral features.

9.6.1 SMART ANALOG COMBO (SAC)
Available on MSP430FR2355 and MSP430FR2311 microcontrollers, the Smart Analog
Combo is an analog peripheral module that removes needs for external Op Amps circuits for
interfacing sensors and measurement devices with the MSP430 controller. The module con-
nects the controller to a sensor whose output is a low amplitude analog signal that needs to be
amplified and digitized before it can be used by a microcontroller. It can also be configured to
generate an analog signal for driving an external device. Thus, it is a programmable submodule
of the controller that performs signal conditioning for analog input and output signals, removing
the needs for additional circuits and providing one-chip solution. The module is made of gain



390 9. ANALOG PERIPHERALS
amplifiers (gain value of up to 33) integrated with a 12-bit digital-to-analog converter (DAC).
For inputs, the module is connected internally to an internal analog-to-digital converter (ADC)
for MSP430FR2355, for example, again, allowing built-in, easy analog to digital conversion and
signal conditioning capabilities

Three configurations are available for the Smart Analog Combo module. Configuration
SAC-L1 allows only the integration of an operational amplifier function for an application.
Configuration SAC-L2 allows application of a programmable gain amplifier (PGA) with gain
up to 33, and configuration SAC-L3 allows the integration of PGA and DAC. MSP430 family
microcontrollers have varying number of SAC units in a SAC module, enabling different con-
figurations for a variety of applications. We refer the reader to obtain device specific data sheet
for details.

9.6.2 ENHANCED COMPARATOR (ECOMP)
The enhanced comparator of MSP430 controller compares an analog voltage signal with the
output of a built-in 6 bit DAC output, working as a reference signal. The comparator is available
to some of MSP430 family controllers (MSP430FR2111, MSP430FR2110, MSP430FR2100,
and MSP430FR2000) to allow a programmer to configure the controller for simple analog-to-
digital applications, applications not requiring high-resolution ADC capabilities. The enhanced
comparator is typically used to implement a simple ADC function.

9.6.3 TRANSIMPEDANCE AMPLIFIER (TIA)
Found in some of MSP430 controllers (MSP430F2274, MSP430FR2311, for example), the
transimpedance amplifier converts an electric current signal into a voltage signal. Using the
built-in analog-to-digital converter, TIA is used in an application where the input signal is in
the form of electric current. The unit contains an integrated operational amplifier, which needs
to be programmed according to requirements of an application along with a feedback resistor.
A typical application of TIA is to measure the amount of lights in an environment using a
photodiode connected to an MSP430 controller. The conversion allows a controller to initiate
actions appropriately, based on the light condition of an environment. The objective of designers
of the TIA module is to provide users with a tool to simplify an overall system design by taking
advantage of the onboard operational amplifier to create an ADC for electrical current signal
input.

9.7 LABORATORY EXERCISE: SMART HOME SENSOR
In this section, your task is to program both the ADC12 and DAC12 converters to perform two
smart home functions. How many times have you been told by your parents to turn off lights
as you were growing up? Or if you are a parent, how many times did you have to remind your
children to turn off lights when they leave their rooms? In the smart home of our choice, we



9.8. REFERENCES AND FURTHER READING 391
will solve this problem once and for all. We will do so using the MSP430 controller’s analog-
to-digital converters.

To that end, suppose that we installed infrared sensors at each room of the house to detect
human locations. A precise location of each human is measured using multiple infrared sensors,
and based on the locations of humans, in the house, lights will automatically be turned on and
turned off. An infrared sensor consists of a transmitter and a receiver. The transmitter sends out
an infrared signal and waits for any reflection of the transmitted signal. If a human is in the path
of the signal, the signal is reflected back to the receiver. By measuring the amount of reflection
of the light, we can compute the distance of a human from the particular sensor. By placing
these sensors at appropriate locations in each room and combining the sensor information, we
can compute the location of each person in the house. The job of the ADC is to convert the
received infrared light signal into appropriate distance from the sensor. That is, the received
signal strength is converted into a numerical number that represents the distance.

Suppose that the infrared light transmitter and receiver pair is calibrated such that when a
person is within 2 ft from the sensor mounted on a wall the receiver generates 2.5 VDC. When
a person is at distance 15 ft away from the sensor, the receiver generates a 1.0 VDC signal. The
output of the receiver changes linearly as the distance between the sensor and a person changes
from 2–15 ft. If no person is in front of the sensor, the receiver outputs 0 V. Suppose also that
for each sensor, a MSP430 microcontroller is attached. Your task is to write a program utilizing
the ADC module to do the following.

1. Use the 12-bit format of ADC.

2. Set reference voltages to be 2.5 V and 0 V.

3. Insure the receiver output is directly connected to pin A0. Continuously convert ADC12
inputs.

4. Using a four-sample sliding window and the associated interrupt system, continually com-
pute the average of four ADC outputs and send resulting average values to an array.

MSP430 controllers (sensors) around the smart home continuously send their data to a
central controller that controls which lights of the house get to be turned on and turned off. Of
course, some type of a high-level decision maker controller must also be involved to remove any
irritable system behavior such as turning lights off in an area when a person leaves the area for
a short time.

9.8 REFERENCES AND FURTHER READING
Analog Input to PWMOutput Using theMSP430MCUEnhanced Comparator, (SLAA833), Texas

Instruments, 2018.

MSP430F2273 Transimpedance Amplifier, (TIDU443),



392 9. ANALOG PERIPHERALS
MSP430FR4xx and MSP430FR2xx Family User’s Guide, (SLAU445G), Texas Instruments,

2016. 366, 369, 371, 372

MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s Guide, (SLAU367O),
Texas Instruments, 2017. Texas Instruments, 2014. 376, 379, 381, 382, 387

9.9 CHAPTER PROBLEMS
Fundamental

1. Using the Nyquist sampling rate, find the minimum sampling frequency of an ADC if the
highest frequency of an input analog signal is 2 kHz.

2. Given a sinusoidal input analog signal, 5 cos.2�10kt/, and sampling frequency of 1 KHz,
find the first three sampled values with starting time 0.

3. Given an 8-bit ADC and input range of 0 V and 5 V, what is the quantization level for
sampled value of 2.9 V?

4. What is the quantization error for the sampled signal in Problem 3?

5. What is the encoded value of quantization level from Problem 3?

6. Repeat questions 3–6 for a 3.3 VDC ADC.

Advanced

1. Write a program segment using the ADC to (1) operate with the 12 bit resolution, (2) use
internal reference voltages of 2.5 V and 0 V, (3) continuously sample analog signals from
pins A0 and A1, (4) use the unsigned binary format, (5) compare the input analog values,
(6) turn the logic state on Pz.x pin high if the signal on A0 is higher than the one on A1,
otherwise, turn the logic state low, and (7) turn the logic state on Pz.y pin high if the signal
on A1 is higher than the one on A1, otherwise, turn the logic state low.

2. A weather station is equipped with a vane to indicate wind direction. The output voltage
of the weather vane is linearly related to wind direction. The vane provides 0 V for wind
heading North (0 degrees) and 3.3 V for 360ı. Write a program to convert the output of
the weather vane to wind direction in degrees. Display the result on a serial configured
liquid crystal display.

3. The LM34 is a precision Fahrenheit temperature sensor. The LM34 provides a linear out-
put of 10 mV per degree Fahrenheit. Sketch the required circuit for the LM34. Write a
program to convert the output of the LM34 to temperature. Display the result on a serial
configured liquid crystal display.



9.9. CHAPTER PROBLEMS 393
Challenging

1. Present your design and write a program to construct a smart home that locate your posi-
tion in room whose size is 10 ft wide, 10 ft long, and 9 ft high. Assume that you need to use
infrared sensors to do the job. You can use as many sensors as you need but want to mini-
mize the number used. Suppose the infrared sensor output is fed to an ADC of a MSP430
and you have means to communicate among MSP430s. Design the sensor positions and
write a program to locate a person in the room.

2. Extend the weather vane example above to include eight LEDs to indicate the closest wind
direction (e.g., N, NE, E, etc.).





395

C H A P T E R 10

Communication Systems
Objectives: After reading this chapter, the reader should be able to:

• describe the differences between serial and parallel communication methods;

• present the features of the MSP430 microcontroller’s eUSCI systems A and B;

• illustrate the operation of the UART mode of the eUSCI;

• program the UART for basic transmission and reception;

• describe the operation of the SPI mode of the eUSCI;

• configure a SPI-based system to extend the features of the MSP430 microcontroller;

• describe the purpose and function of the inter-integrated communication (I2C) mode of
the eUSCI; and

• program the I2C communication system for read and write to compatible devices.

Microcontrollers must often exchange data with other microcontrollers or peripheral de-
vices. For such applications, data may be exchanged by using parallel or serial techniques. With
parallel techniques, an entire byte (or a set of n bits) of data is typically sent simultaneously from
a transmitting device to a receiving device or received at the same time from an external device.
While this is efficient from a time point of view, it requires eight separate lines (or n separate
lines) for the data transfer. Parallel connections are typically limited to short lengths.

In serial transmission, data is sent or received a single bit at a time. For a byte-size data
transmission, once eight bits have been received at the receiver, the data byte is reconstructed.
While this is inefficient from a time point of view, it only requires a line (or two) to trans-
mit and receive the data. Serial transmission techniques also help minimize the use of precious
microcontroller I/O pins.

10.1 BACKGROUND
The MSP430 microcontroller is equipped with the eUSCI, with subsystems shown in Fig-
ure 10.1. The eUSCI consists of two different communication subsystems: eUSCI_A type mod-
ules and eUSCI_B modules. Each microcontroller in the MSP430 line has a complement of A
and B type eUSCI modules. Should a specific MSP430 microcontroller type have more than



396 10. COMMUNICATION SYSTEMS

Enhanced Universal Serial
Communication Interface (eUSCI)

                   eUSCI_A0

- UART mode
- IrDA pulse shaping mode
- SPI mode

                   eUSCI_B0

- I2C mode
- SPI mode

                   eUSCI_A1

- UART mode
- IrDA pulse shaping mode
- SPI mode

                   eUSCI_B0

- I2C mode
- SPI mode

Figure 10.1: MSP430 enhanced universal serial communication interface (eUSCI).

one of the A and/or B type modules, they are numbered sequentially starting with zero (e.g., eU-
SCI_A0, A1, etc.) [SLAU445G, 2016, SLAU367O, 2017]. The MSP430FR2433 is equipped
with two eUSCI_A channels (A0, A1) and one eUSCI_B channel (B0). The MSP430FR5994
is equipped with four eUSCI_A channels (A0 to A3) and four eUSCI_B channels (B0 to B3).

As can be seen in Figure 10.1, eUSCI_Amodules provide support for [SLAU445G, 2016,
SLAU367O, 2017] the following.

• Universal asynchronous serial receiver and transmitter (UART). The UART provides a
serial data link between a transmitter and a receiver. The transmitter and receiver pair
maintains synchronization using start and stop bits that are embedded in the data stream.

• Infrared data association (IrDA). The IrDA protocol provides for a short-range data link
using an infrared (IR) link. It is a standardized optical protocol for IR linked devices. It is
used in various communication devices, personal area networks, and instrumentation.

• The serial peripheral interface (SPI). The SPI provides synchronous communications be-
tween a receiver and a transmitter. The SPI system maintains synchronization between
the transmitter and receiver pair using a common clock provided by the master designated
microcontroller. An SPI serial link has a much faster data rate than UART.



10.2. SERIAL COMMUNICATION CONCEPTS 397

• The I2C bus is a two-wire bus with a serial data line (SDL) and the serial clock line (SCL).
I2C compatible devices, each with a unique address, are connected to the two-wire bus
as either a master device or a slave device. The MSP430 eUSCI device allows its I2C
communication unit to operate either in the standard mode (100 kbps) or in the fast mode
(400 kbps) with either a 7- or 10-bit device addressing [SLAU445G, 2016, SLAU367O,
2017].

The eUSCI_Bmodules also provide support for SPI communications and inter-integrated
communication (I2C) communications. The I2C bus is a two-wire bus with a serial data line
(SDL) and the serial clock line (SCL). By configuring devices connected to the common I2C
bus as either a master device or a slave device, multiple devices can share information. The I2C
system is used to link multiple peripheral devices to a microcontroller or several microcontrollers
together in a system that are in close proximity to one another [SLAU445G, 2016, SLAU367O,
2017].

Space does not permit an in-depth discussion of all communication features of the eUSCI
system. We concentrate on the basic operation of the UART, SPI and I2C systems. For each
system, we provide a technical overview, a review of system registers, and code examples. We
begin with a review of serial communication concepts.

10.2 SERIAL COMMUNICATION CONCEPTS
Before we delve into the serial communication technologies, we first review common serial com-
munication terminology.

Asynchronousvs. synchronous serial transmission: In serial communications, the trans-
mitting and receiving devices must agree on the “rules of engagement” by using a common data
rate and protocol.This allows both the transmitter and receiver to properly coordinate data trans-
mission/reception. There are two basic methods of maintaining coordination or “sync” between
the transmitter and receiver: asynchronous and synchronous.

In an asynchronous serial communication system, such as the UART aboard the MSP430
microcontroller, framing bits are used at the beginning and end of a data byte. The framing bits
alert the receiver that an incoming data byte has arrived and also signal the completion of the
data byte reception. The data rate for an asynchronous serial system is typically much slower than
the synchronous system, but it only requires a single wire between the transmitter and receiver
(and a common ground) for simplex (one way) communication.

A synchronous serial communication system maintains “sync” between the transmitter
and receiver by employing a common clock between the two devices. Data bits are sent and
received at the time when a clock edge appears. This allows higher data transfer rates than with
asynchronous techniques but the communication method requires a minimum of two lines (and
a common ground), data and clock, to connect a receiver and a transmitter for simplex commu-
nications.



398 10. COMMUNICATION SYSTEMS
Baud rate: Data transmission rates are typically specified as a Baud or bits per second rate.

For example, 9600 Baud indicates the data is being transferred at 9600 bits per second.

Full duplex: Often serial communication systems must both transmit and receive data
simultaneously. To do so requires separate hardware for transmission and reception at each end of
the communication link. A single duplex system has a single complement of hardware that must
be switched from transmission to reception configuration. A full duplex serial communication
system has separate hardware for transmission and reception.

Non-return to zero (NRZ) coding format: There are many different coding standards
used within serial communications. The important point is a transmitter and a receiver must
use a common coding standard so data may be interpreted correctly at the receiving end. The
MSP430 microcontroller uses a non-return to zero (NRZ) coding standard. In NRZ coding, a
logic one is signaled by a logic high during the entire time slot allocated for a single bit, whereas,
a logic zero is signaled by a logic low during the entire time slot allocated for a single bit.

TheRS-232 communication protocol: When serial transmission occurs over a long dis-
tance, additional techniques may be used to insure data integrity. Over long distances, logic
levels degrade and may be corrupted by noise. When this happens at the receiving end, it is dif-
ficult to discern a logic high from a logic low. The RS-232 standard has been around for some
time. With the RS-232 standard (EIA RS-232), a logic one is represented with a �12 VDC
level while a logic zero is represented by a C12 VDC level. Chips are commonly available (e.g.,
MAX3232) that convert the output levels from a microcontroller to RS-232 compatible levels
and convert back to microcontroller compatible levels at the receiver. The RS-232 standard also
specifies other features for this communication protocol such as connector type and pinout.

Parity: To enhance data integrity during transmission, parity techniques may be used. A
parity bit is an additional bit (or bits) that is transmitted with the data byte. With a single parity
bit, a single-bit error may be detected. Parity may use an even or odd parity bit. In even parity, the
parity bit is set to one or zero such that the number of ones in the data byte including the parity
bit is an even number. In odd parity, the parity bit is set to one or zero such that the number
of ones in the data byte including the parity bit is odd. At the receiver, bits within a data byte,
including the parity bit, are counted to determine if parity has changed during transmission. A
change in parity indicates an error occurred during transmission. For single-bit error correction
or multiple-bit error detection, additional parity bits are required.

ASCII: The American Standard Code for Information Interchange (ASCII) is a stan-
dardized, seven bit method of encoding alphanumeric data. It has been in use for many decades,
so some of the characters and actions listed in the ASCII table are not in common use today.
However, ASCII is still the most common method of encoding alphanumeric data code, is
shown in Figure 10.2. For example, the capital letter “G” is encoded in ASCII as 0x47. The “0x”
symbol indicates the hexadecimal number representation. Unicode is the international counter-



10.3. MSP430 UART 399
part of ASCII. It provides standardized 16-bit encoding format for the written languages of the
world. ASCII is a subset of Unicode. The interested reader is referred to the Unicode home page
website at: www.unicode.org for additional information on this standardized encoding format.

0x_0
0x_1
0x_2
0x_3
0x_4
0x_5
0x_6
0x_7
0x_8
0x_9
0x_A
0x_B
0x_C
0x_D
0x_E
0x_F

0x0_

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI

0x1_

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

0x2_

SP
!
“
#
$
%
&
‘
(
)
*
+
‘
-
.
/

0x3_

0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

0x4_

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

0x5_

P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_

0x6_

`
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o

0x7_

p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

DEL

Most Significant Digit
L

ea
st

 S
ig

n
ifi

ca
n

t 
D

ig
it

Figure 10.2: ASCII code. The ASCII code is used to encode alphanumeric characters. The “0x”
indicates the hexadecimal notation in the C programming language.

10.3 MSP430 UART
The UART system is located within the eUSCI module A. In this section, we discuss UART
features, provide an overview of the UART hardware operation and character format, discuss
how to set the UART Baud rate, provide an overview of UART-related registers, and conclude
with several examples.

10.3.1 UART FEATURES
The MSP430 microcontroller is equipped with a powerful and flexible UART system. To select
the UART (asynchronous) mode the Synchronous Mode Enable bit (UCSYNC bit) located
in the eUCSI_Ax Control Register 0 (part of eUSCI_Ax Control Word 0) must be cleared to
0. This action places the system in the asynchronous mode. When in this mode, serial data is
transmitted from the microcontroller via the UCAxTXD pin and received via the UCAxRXD

www.unicode.org


400 10. COMMUNICATION SYSTEMS
pin. (Note: The “x” designates which eUSCI_A module is employed (e.g., 0, 1, 2)) [SLAU445G,
2016, SLAU367O, 2017].

The UART system provides features that allow the MSP430 to communicate with a wide
variety of peripheral devices or another microcontroller. These features include [SLAU445G,
2016, SLAU367O, 2017]:

• support for serial transmission protocols including the capability to transmit 7- or 8-bit
data with odd, even, or no parity;

• independent transmit and receive shift registers equipped with separate transmit and re-
ceive buffer registers;

• capability to send or receive data the LSB first or the MSB on both the transmit and
receive channels. This feature allows the MSP430 microcontroller to match the protocol
of an existing peripheral device;

• capability to operate within a multiprocessor system using the built-in, idle-line, and
address-bit communication protocols;

• auto wake-up feature from a low power mode (LPMx) when a start edge is received;

• extensive flexibility in setting programmable baud rates;

• system status flags for error detection, error suppression, and address detection; and

• interrupts for the data receive and transmit.

In the next section, we examine how these features are incorporated into the UART hard-
ware.

10.3.2 UART OVERVIEW
Provided in Figure 10.3 is a block diagram of the eUCSI_Ax module configured for UART
(asynchronous) mode (UCSYNCbit D 0).TheUARTmodule can be subdivided into the Baud-
-Rate Generator (center of Figure 10.3), the receiver-related hardware (top of figure), and the
transmit hardware (lower portion of figure). We discuss each in turn.

The eUSCI_Ax module communicates asynchronously with another device (e.g., periph-
eral) when the UCSYNC mode is set to zero. As previously mentioned, in an asynchronous
mode, the transmitter and receiver maintain synchronization with one another, using start and
stop bits to frame each data byte sent. It is essential that both transmitter and receiver are con-
figured with the same Baud rate, number of start and stop bits, and the type of parity employed
(odd, even, or none).

The Baud rate is set using the Baud-Rate Generator shown in the center of Figure 10.3.
The clock source for the Baud-Rate Generator may either be the UCAxCLK, ACLK, or SM-
CLK. The clock source is selected using the eUSCI clock source select bits (UCSSELx) located



10.3. MSP430 UART 401

UCSSELx

Receive State Machine

Receive Buffer UCAxRXBUF

Receive Shift Register

Prescaler/Divider

Transmit Shift Register

Transmit State Machine

Modulator

Receive Baudrate Generator

Receive Clock

Transmit Clock

UCMODEx UCSPB UCDORM

UCIREN

UCPEN UCPAR

UCABEN

BRCLK

UC0BRx

UCBRFx UCBRSx UCOS16

Transmit Buffer UCAxTXBUF

UCMSB UC7BIT

UCPEN

UCMODEx UCSPB

UCPAR UCMSB UC7BIT

UCIRTXPLx

UCIRRXFE

UCIRRXFLx

IrDA Decoder

IrDA Encoder

UCIRRXPL

UCLISTEN

UCIREN

UCAxRXD

UCAxTXD

Error Flags UCRXERR

UCPE

UCFE

UCOE

Set UCBRK

Set UCTXIFG

 UCTXBRK

 UCTXADDR

Set Flags

Set RXIFG Set UCRXIFG

Set UCADDR/UCIDLE

UCRXEIE

UCRXBRKIE

UCAxCLK

ACLK

SMCLK

SMCLK

00

01

10

11

2

16

4

2

3

6

6

1

01

0

0

1

0

1

Figure 10.3: Block diagram of the eUCSI_Ax module configured for UART mode (UCSYNC
bit D 0) [SLAU445G, 2016, SLAU367O, 2017]. (Illustration used with permission of Texas
Instruments (www.ti.com).)

www.ti.com


402 10. COMMUNICATION SYSTEMS
in the eUSCI_Ax Control Register 1 (UCAxCTL1). The source selected becomes the Baud-
Rate clock (BRCLK). The Baud-Rate clock may then be prescaled and divided to set the Baud
rate for the transmit and receive clock.

The receive portion of the UART system is in the upper part of Figure 10.3. Serial data is
received via the UCAxRXD pin. The serial data is routed into the Receive Shift Register when
the UCLISTEN bit located within the eUSCI_Ax Status Register (UCAxSTAT) is set to zero.
If required by the specific application, the data may first be routed through the IrDA Decoder.

The configuration of the Receive Shift Register is set by several bits located within the
eUSCU_Ax Control Register 0 (UCAxCTL0). These include the:

• parity enable bit, UCPEN (0: parity disabled, 1: parity enabled),

• parity select bit, UCPAR (0: odd parity, 1: even parity),

• MSB first select, UCMSB (0: LSB first, 1: MSB first), and

• character length bit, UC7BIT (0: 8-bit data, 1: 7-bit data)

The Receive State Machine controls the operation of the receive associated hardware. It
has control bits to:

• select the number of stop bits, UCSPB (0: one stop bit, 1: two stop bits),

• select the eUSCI mode, UCMODEx (00: UART mode), and

• select the synchronous mode, UCSYNC (0: asynchronous mode, 1: synchronous mode).

The hardware associated with serial data transmission is very similar to the receive hard-
ware with the direction of data routed for transmission out of the UCAxTXD pin.

10.3.3 CHARACTER FORMAT
As previously mentioned, the UART system has great flexibility in setting the protocol of the se-
rial data, including the number of bits (7 or 8), parity (even, odd, or none),MSB or LSB first, and
selection of transmit/receive operation. A typical serial data word is illustrated in Figure 10.4.
To verify the valid functionality of the communication using the MSP430 microcontroller, it
is very helpful to write a short program to transmit the same piece of data continuously from
the UART and observe the transmission on the UCAxTXD pin with an oscilloscope or a logic
analyzer.

10.3.4 BAUD RATE SELECTION
The MSP microcontroller also has considerable flexibility in setting the Baud rate for UART
transmission and reception. It has two different modes for Baud rate generation.



10.3. MSP430 UART 403

Start

Bits

Addr

Bit

Parity

Bit

Mark

Space

Data Bits

(7 or 8)
Stop Bit(s)

Figure 10.4: UART serial data format [SLAU445G, 2016, SLAU367O, 2017].

• Low-frequency Baud rate generation (UCOS16, Oversampling Mode Enable bit D 0).
The mode allows Baud rates to be set when the microcontroller is being clocked by a low-
frequency clock. A common choice is a 32,768 Hz crystal source. It is advantageous to do
this to reduce power consumption by using a lower frequency time base. In this mode, the
Baud-rate generator uses a prescaler and a modulator to generate the desired Baud rate.
The maximum selectable Baud rate in this mode is limited to one-third of the Baud rate
clock (BRCLK).

• Oversampling Baud rate generation (UCOS16 D 1). This mode employs a prescaler and
a modulator to generate higher sampling frequencies.

To set a specific Baud rate, the following parameters must be determined:

• The clock prescaler setting (UCBRx) in the Baud Rate Control Register 0 and 1
(UCAxBR0 and UCAxBR1) must be determined. The 16-bit value of the UCBRx
prescaler value is determined by UCAxBR0 C UCAxBR1 � 256.

• First modulation stage setting, UCBRFx bits in the eUSCI_Ax Modulation Control Reg-
ister (UCAxMCTL).

• Second modulation stage setting, UCBRSx bits in the eUSCI_Ax Modulation Control
Register (UCAxMCTL).

The documentation for the MSP430 microcontroller contains extensive tables for deter-
mining the UCBRx, UCBRFx, and UCBRSx bit settings for various combinations of the Baud
rate clock (BRCLK) and desired Baud rate [SLAU445G, 2016, SLAU367O, 2017].

10.3.5 UART ASSOCIATED INTERRUPTS
The UART system has two associated interrupts. The transmit interrupt flag (UCTXIFG) is
set when the UCAxTXBUF is empty, indicating another data byte may be sent. The receive
interrupt flag (UCRXIFG) is set when the receive buffer (UCAxRXBUF) has received a com-
plete character. Both of these interrupt flags are contained within the eUSCI_Ax interrupt flag
register (UCAxIFG).



404 10. COMMUNICATION SYSTEMS

10.3.6 UART REGISTERS
As discussed throughout this section, the basic features of the UART system is configured and
controlled by the following UART-related registers [SLAU445G, 2016, SLAU367O, 2017]:

• UCAxCTLW0 eUSCI_Ax Control Word 0

• UCAxCTL0 eUSCI_Ax Control 0

• UCAxCTL1 eUSCI_Ax Control 1

• UCAxCTLW1 eUSCI_Ax Control Word 1

• UCAxBRW eUSCI_Ax Baud Rate Control Word

• UCAxBR0 eUSCI_Ax Baud Rate Control 0

• UCAxBR1 eUSCI_Ax Baud Rate Control 1

• UCAxMCTLW eUSCI_Ax Modulation Control Word

• UCAxSTATW eUSCI_Ax Status

• UCAxRXBUF eUSCI_Ax Receive Buffer

• UCAxTXBUF eUSCI_Ax Transmit Buffer

• UCAxABCTL eUSCI_Ax Auto Baud Rate Control

• UCAxIRCTL eUSCI_Ax IrDA Control

• UCAxIRTCTL eUSCI_Ax IrDA Transmit Control

• UCAxIRRCTL eUSCI_Ax IrDA Receive Control

• UCAxIE eUSCI_Ax Interrupt Enable

• UCAxIFG eUSCI_Ax Interrupt Flag

• UCAxIV eUSCI_Ax Interrupt Vector

Details of specific register and bits settings are contained in SLAU367O [2017]
and SLAU445G [2016]. Figure 10.5 provides the bit settings of eUSCI_Ax Control Word
0 for basic UART operation using eUSCI_Ax.

10.4 CODE EXAMPLES
The MSP430 UART features may be programmed using Energia, DriverLib APIs, or in C.



10.4. CODE EXAMPLES 405

7 6

UCMODExUCSPBUC7BITUCMSBUCPARUCPEN UCSYNC

UCDORMUCBRKIE UCTXBRKUCTXADDRUCRXEIEUCSSELx

Can be modified only when UCSWRST = 1

UCSWRST
5 4 3 2 1

15 14 13 12 11 10 9 8

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1

0

UCAxCTLW0 Register
     UCAxCTLW0[15]: Parity enable: UCPEN: 0 = off, 1 = on
     UCAxCTLW0[14]: Parity select: UCPAR: 0 = odd, 1 = even
     UCAxCTLW0[13]: MSB first select: UCMSB: 0 = LSB first, 1 = MSB first
     UCAxCTLW0[12]: Character length: UC7BIT: 0 = 8-bit, 1 = 7-bit
     UCAxCTLW0[11]: Stop bit select: UCSPB: 0 = 1 stop bit, 1 = two stop bits
     UCAxCTLW0[10-9]: eUSCI_A mode: UCMODEx: 00 = UART mode
     UCAxCTLW0[8]: Synchronous mode enable: UCSYNC: 0 = Asynchronous, 1 = Synchronous
     UCAxCTLW0[7-6]: eUSCI_A clock source select: UCSSELx: 00 = UCLK, 01 = ACLK, 10 or 11 = SMCLK

Figure 10.5: eUSCI_Ax control word 0 [SLAU445G, 2016, SLAU367O, 2017]. (Illustration
used with permission of Texas Instruments (www.ti.com).)

10.4.1 ENERGIA
The Energia Integrated Development Environment has many built-in functions to support
UART operations (energia.nu). In the next several examples, we use:

• Serial.begin(baud_rate): sets the Baud rate for data transmission,

• Serial.print: prints data to the serial port as ASCII text, and

• Serial.println: prints data to the serial port as ASCII text followed by a carriage return.

Example: LCD. In this example a Sparkfun LCD-09067, 3.3 VDC, serial, 16 by 2 charac-
ter, black on white LCD display is connected to the MSP430. Communication between the
MSP430 and the LCD is accomplished by a single 9600 bits per second (BAUD) connection
using the onboard universal asynchronous receiver transmitter (UART). The UART is config-
ured for 8 bits, no parity, and one stop bit (8-N-1). The MSP-EXP430FR2433 LaunchPad is
equipped with two UART channels. One is the back channel UART connection to the PC.
The other is accessible by pin 3 (RX, P1.5) and pin 4 (TX, P1.4). Provided below is the sample
Energia code to print a test message to the LCD. Note the UART LCD channel is designated
“Serial1” in the program. The back channel UART for the Energia serial monitor display is
designated “Serial.”

//*******************************************************************
//Serial_LCD_energia
//Serial 1 accessible at:

www.ti.com
energia.nu


406 10. COMMUNICATION SYSTEMS
// - RX: P1.5, pin 3
// - TX: P1.4, pin 4
//*******************************************************************

void setup()
{
//Initialize serial channel 1 to 9600 BAUD and wait for port to open
Serial1.begin(9600);
}

void loop()
{
Serial1.print("Hello World");
delay(500);
Serial1.println("...Hello World");
delay(500);
}

//*******************************************************************

Example: Voice chip. For speech synthesis, we use the SP0-512 text to speech chip (www.sp
eechchips.com). The SP0-512 accepts UART compatible serial text stream. The text stream
should be terminated with the carriage return control sequence (backslash r). The text stream is
converted to phoneme codes used to generate an audio output. The chip requires a 9600 Baud bit
stream with no parity, 8 data bits and a stop bit. The associated circuit is provided in Figure 10.6.
Additional information on the chip and its features are available at www.speechchips.com.

//*******************************************************************
//SP0512
//Serial 1 accessible at:
// - RX: P1.5, pin 3
// - TX: P1.4, pin 4
//*******************************************************************

void setup()
{
//Initialize serial channel 1 to 9600 BAUD and wait for port to open
Serial1.begin(9600);
}

www.speechchips.com
www.speechchips.com
www.speechchips.com


10.4. CODE EXAMPLES 407

SP0512

 

 
 
 
 

 
 
 

10 K

Vcc = 3.3 VDC

Vcc = 3.3 VDC

Vcc = 3.3 VDC

LED

Speaking

4.7 uF
10 uF

10 uF

0.1 uF

+10 K

-2

3

7

LM386N- 3

6

5 VDC

4

100 u F

10 K

8 Ohm

Speaker

 

5
TX:(9600 N81)

+

MPS2222

10 K

3. 3 VDC

330

UART TX, 
P1. 4 

1- /TICLR

2- N2

3- N3

4- TX

5- N5

6- RX

7- N7

8- VSS1

9- N9

10- N10

11- N11

12- N12

13- VDD

14- N14

AVDD- 28

AVSS- 27

DAC+- 26

DAC- - 25

N24- 24

N23- 23

N22- 22

N21- 21

VCAP- 20

VSS2- 19

N18- 18

SPEAKING- 17

N16- 16

N15- 15

Figure 10.6: Speech synthesis support circuit (www.speechchips.com). (Illustration used with
permission of Texas Instruments (www.ti.com).)

www.speechchips.com
www.ti.com


408 10. COMMUNICATION SYSTEMS
void loop()

{
Serial1.print("[BD]This [BD]is [BD]a [BD]test \r");
delay(3000);
}

//*******************************************************************

10.4.2 UART C EXAMPLE
Example: In this example the MSP430 UART’s TX pin is connected to the RX pin. The exam-
ple shows proper initialization of registers and interrupts to receive and transmit data. If data is
incorrect P1.0 LED is turned ON.

//********************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2015, Texas Instruments Incorporated
// All rights reserved.
//
// MSP430 CODE EXAMPLE DISCLAIMER
//
//********************************************************************
//MSP430FR24xx Demo - USCI_A0 External Loopback test @ 115200 baud
//
//Description: This demo connects TX to RX of the MSP430 UART
//The example code shows proper initialization of registers
//and interrupts to receive and transmit data. If data is incorrect,
//P1.0 LED is turned ON.
// ACLK = n/a, MCLK = SMCLK = BRCLK = DCODIV ~1MHz.
//
// MSP430FR2433
// -----------------
// /|\| |
// | | |
// --|RST |
// | |
// | |
// | P1.4/UCA0TXD|----
// | | |
// | P1.5/UCA0RXD|----
// | |



10.4. CODE EXAMPLES 409
// | P1.0 |--> LED
// | |
//
//Ling Zhu, Texas Instruments Inc., July 2015
//Built with:
// IAR Embedded Workbench v6.20 & Code Composer Studio v6.0.1
//********************************************************************

#include <msp430.h>

unsigned char RXData = 0;
unsigned char TXData = 1;

int main(void)
{
WDTCTL = WDTPW | WDTHOLD; //Stop watchdog timer
PM5CTL0 &= ~LOCKLPM5; //Disable the GPIO power-on

//default high-impedance mode
//to activate previously
//configured port settings

P1DIR |= BIT0;
P1OUT &= ~BIT0; //P1.0 out low

//Configure UART pins
P1SEL0 |= BIT4 | BIT5; //set 2-UART pin as second

//function
//Configure UART

UCA0CTLW0 |= UCSWRST; //Put eUSCI in reset
UCA0CTLW0 |= UCSSEL__SMCLK;

//Baud Rate calculation
UCA0BR0 = 8; //1000000/115200 = 8.68
UCA0MCTLW = 0xD600; //1000000/115200

//INT(1000000/115200)=0.68
//UCBRSx value = 0xD6 (See UG)

UCA0BR1 = 0;
UCA0CTLW0 &= ~UCSWRST; //Initialize eUSCI
UCA0IE |= UCRXIE; //Enable USCI_A0 RX interrupt

while (1)
{



410 10. COMMUNICATION SYSTEMS
while(!(UCA0IFG & UCTXIFG));
UCA0TXBUF = TXData; //Load data onto buffer
__bis_SR_register(LPM0_bits|GIE); //Enter LPM0
__no_operation(); //For debugger

}
}

//********************************************************************
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector=USCI_A0_VECTOR
__interrupt void USCI_A0_ISR(void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(USCI_A0_VECTOR))) USCI_A0_ISR (void)
#else
#error Compiler not supported!
#endif
{
switch(__even_in_range(UCA0IV,USCI_UART_UCTXCPTIFG))

{
case USCI_NONE: break;
case USCI_UART_UCRXIFG:

UCA0IFG &=~ UCRXIFG; //Clear interrupt
RXData = UCA0RXBUF; //Clear buffer
if(RXData != TXData) //Check value

{
P1OUT |= BIT0; //If incorrect turn on P1.0
while(1); //trap CPU
}

TXData++; //increment data byte
__bic_SR_register_on_exit(LPM0_bits); // Exit LPM0 on reti
break;

case USCI_UART_UCTXIFG: break;
case USCI_UART_UCSTTIFG: break;
case USCI_UART_UCTXCPTIFG: break;
}

}
//********************************************************************



10.5. SERIAL PERIPHERAL INTERFACE-SPI 411

10.5 SERIAL PERIPHERAL INTERFACE-SPI
The SPI is also used for two-way serial communication between a transmitter and a receiver. In
the SPI system, the transmitter and receiver pair shares a common clock source (UCxCLK).This
requires an additional clock line between the transmitter and the receiver but allows for higher
data transmission rates as compared to the UART. The SPI system allows for fast and efficient
data exchange between microcontrollers or peripheral devices. There are many SPI compatible
external systems available to extend the features of the microcontroller. For example, a liquid
crystal display or a multi-channel DAC could be added to the microcontroller using the SPI
system.

10.5.1 SPI OPERATION
The SPI may be viewed as a synchronous 16-bit shift register with an 8-bit, half residing in
the transmitter and the other 8-bit half residing in the receiver, as shown in Figure 10.7. The
transmitter is designated as the master since it provides the synchronizing clock source between
the transmitter and the receiver. The receiver is designated as the slave. A slave is chosen for
reception by taking its slave select (SS) line low. When the SS line is taken low, the slave’s
register shifting capability is enabled.

SPI transmission is initiated by loading a data byte into the master-configured transmit
buffer (UCxTXBUF). At that time, the UCSI SPI mode Bit Clock Generator provides clock
pulses to the master and also to the slave via the UCxCLK pin. A single bit is shifted out of
the master designated shift register on the slave in master out (UCxSIMO) microcontroller pin
on every SCK pulse. The data is received at the UCxSIMO pin of the slave designated device.
In some peripheral devices, this is referred to as master out slave in (MOSI). At the same time,
a single bit is shifted out of the slave out master in (UCxSOMI) pin of the slave device and
into the UCxSOMI pin of the master device. After eight master UCxCLK clock pulses, a byte
of data has been exchanged between the master and slave designated SPI devices. Completion
of data transmission in the master and data reception in the slave is signaled by SPI-related
interrupts in both devices. At that time, another data byte may be transmitted.

10.5.2 MSP430 SPI FEATURES
As previously mentioned, the MSP430 SPI system has many features that allow the system
to be interfaced to a wide variety of SPI configured peripheral devices. These features in-
clude [SLAU445G, 2016, SLAU367O, 2017]:

• 7- or 8-bit data length,

• LSB-first or MSB-first data transmit and receive capability,

• 3- or 4-wire SPI operation,

• master or slave modes,



412 10. COMMUNICATION SYSTEMS

MOSI

UCxSOMI

UCxSIMO

UCxCLK

UCxCLK

UCxSTE

MSB LSBMSB LSB

SCK Shift

Enable
SCK

SS

MSP430 USCI

Master Device

Slave Device

SPI Data Register (SDR)

Transmit Buffer (UCxTXBUF)

Transmit Shift Register

Baud rate

clock SPI Bit Clock Generator

Status Registers

Control Registers

USCI_Ax Status Register (UCAxSTAT)

USCI_Bx Status Register (UCBxSTAT)

USCI_Ax Control Register 0 (UCAxCTL0)

USCI_Bx Control Register 0 (UCBxCTL0)

USCI_Ax Control Register 1 (UCAxCTL1)

USCI_Bx Control Register 1 (UCBxCTL1)

USCI_Ax Bit Rate Control Register 0 (UCAxBR0)

USCI_Bx Bit Rate Control Register 0 (UCBxBR0)

USCI_Ax Bit Rate Control Register 1 (UCAxBR1)

USCI_Bx Bit Rate Control Register 1 (UCBxBR1)

USCI_Ax Modulation Control Register (UCAxMCTL)

Figure 10.7: SPI overview.

• independent transmit and receive shift registers which provide continuous transmit and
receive operation,

• selectable clock polarity and phase control,

• programmable clock frequency in master mode, and

• independent interrupt capability for receive and transmit.

10.5.3 MSP430 SPI HARDWARE CONFIGURATION
The MSP430 provides support for SPI communication in both of the eUSCI_A and eUSCI_B
modules. A block diagram of an UCSI module configured for SPI operation is shown in Fig-
ure 10.8. SPI operation is selected by setting the UCSYNC (Synchronous mode enable) bit to
logic one in the module’s eUSCI_Ax or USCI_Bx Control Register 0 (UCAxCTL0 or UCBx-
CTL0).

Located in the center of the diagram, the clock source for the SPI Baud rate clock (BR-
CLK) is either provided by the ACLK or the SMCLK. The clock source is chosen using the
eUSCI clock source select (UCSSELx) bits in eUSCI_Ax (or B) control register 1 (UCAxCTL1
or UCBxCTL1).



10.5. SERIAL PERIPHERAL INTERFACE-SPI 413

Receive State Machine

Transmit State Machine

Receive Shift Register

Transmit Shift Register

Prescaler/Divider
Clock Direction

Phase and Polarity

Transmit Enable

Control

Receive Buffer UCxRXBUF

Transmit Buffer UCxTXBUF

Bit Clock Generator

Set UCOE

Set UCFE

Set UCxRXIFG

Set UCxTXIFG

UCLISTEN

UCMSB

UCSSELx

BRCLK

N/A

ACLK

SMCLK

SMCLK

00

01

10

11

UC7BIT

UCMSB

UCMODEx

UC7BIT

UCCKPH UCCKPL

UCxSOMI

UCxCLK

UCxSIMO

UCMST

UCxBRx

0

1

1

0

16

2

Figure 10.8: SPI hardware overview [SLAU445G, 2016, SLAU367O, 2017]. (Illustration used
with permission of Texas Instruments (www.ti.com).)

www.ti.com


414 10. COMMUNICATION SYSTEMS
The Baud rate clock is fed to the Bit Clock Generator. The 16-bit clock prescaler is formed

using (UCxxBR0 C UCxxBR1 � 256). The values for UCxxBR0 and UCxxBR1 are contained
in the eUSCI_xx Bit Rate Control Registers 0 and 1 (UCxxBR0 and UCxxBR1).

TheMSP430 eUSCI provides the flexibility to configure the SPI data transmission format
to match that of many different peripheral devices. Either a 7- or 8-bit data format may be
selected using the UC7BIT. Also, the phase and polarity of the data stream may be adjusted to
match peripheral devices. The polarity setting determines active high or low transmission while
the polarity bit determines if the signal is asserted in the first half of the bit frame or in the
second half. Furthermore, the data may be transmitted with the LSB first or the MSB first. In
summary, the serial data stream format is configured using the following bits in the eUSCI_Ax
(or Bx) control register 0 (UCAxCTL0) [SLAU445G, 2016, SLAU367O, 2017]:

• UCCKPH: clock phase select bit - 0: data changed on the first UCLK edge and captured
on the following edge; 1: data captured on the first edge and changed on the second edge

• UCCKPL: clock polarity select bit - 0: inactive state low; 1: inactive state high

• UCMSB: MSB first select bit - 0: LSB transmitted first; 1: MSB transmitted first

• UC7BIT: character length select bit - 0: 8-bit data; 1: 7-bit data

The clock signal is routed from the Bit Clock Generator to both the receive state ma-
chine and the transmit state machine. To transmit data, the data is loaded to the transmit buffer
(UCxTXBUF). Writing to the UCxTXBUF activates the Bit Clock Generator. The data begins
to transmit. Also, the SPI-system receives data when the transmission is active. The transmit
and receive operations occur simultaneously [SLAU445G, 2016, SLAU367O, 2017].

The SPI system is also equipped with interrupts. The UXTXIFG interrupt flag in the
eUSCI_Ax (or Bx) interrupt flag register (UCAxIFG,UCBxIFG) is set when theUCxxTXBUF
is empty indicating another character may be transmitted. The UCRXIFG interrupt flag is set
when a complete character has been received.

10.5.4 SPI REGISTERS
As discussed throughout this section, the basic features of the SPI system is configured and
controlled by the following SPI-related registers [SLAU445G, 2016, SLAU367O, 2017]:

eUSCI_A SPI Registers
• UCAxCTLW0 eUSCI_Ax Control Word 0

• UCAxCTL1 eUSCI_Ax Control 1

• UCAxCTL0 eUSCI_Ax Control 0

• UCAxBRW eUSCI_Ax Bit Rate Control Word



10.5. SERIAL PERIPHERAL INTERFACE-SPI 415
• UCAxBR0 eUSCI_Ax Bit Rate Control 0

• UCAxBR1 eUSCI_Ax Bit Rate Control 1

• UCAxSTATW eUSCI_Ax Status

• UCAxRXBUF eUSCI_Ax Receive Buffer

• UCAxTXBUF eUSCI_Ax Transmit Buffer

• UCAxIE eUSCI_Ax Interrupt Enable

• UCAxIFG eUSCI_Ax Interrupt Flag

• UCAxIV eUSCI_Ax Interrupt Vector

eUSCI_B SPI Registers
• UCBxCTLW0 eUSCI_Bx Control Word 0

• UCBxCTL1 eUSCI_Bx Control 1

• UCBxCTL0 eUSCI_Bx Control 0

• UCBxBRW eUSCI_Bx Bit Rate Control Word

• UCBxBR0 eUSCI_Bx Bit Rate Control 0

• UCBxBR1 eUSCI_Bx Bit Rate Control 1

• UCBxSTATW eUSCI_Bx Status

• UCBxRXBUF eUSCI_Bx Receive Buffer

• UCBxTXBUF eUSCI_Bx Transmit Buffer

• UCBxIE eUSCI_Bx Interrupt Enable

• UCBxIFG eUSCI_Bx Interrupt Flag

• UCBxIV eUSCI_Bx Interrupt Vector

Details of specific register and bits settings are contained in SLAU367O and SLAU445G.
Figure 10.9 provides the bit settings of eUSCI_Ax Control Word 0 for basic SPI operation using
eUSCI_Ax.



416 10. COMMUNICATION SYSTEMS

7 6

UCMODExUCMSTUC7BITUCMSBUCCKPLUCCKPH UCSYNC

Reserved UCSTEMUCSSELx

Can be modified only when UCSWRST = 1

UCSWRST
5 4 3 2 1

15 14 13 12 11 10 9 8

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1

0

UCAxCTLW0 Register
     UCAxCTLW0[15]: Clock phase select: UCCKPH: 0 = data changed on first edge, captured on second
                                                                                        1 = data is captured on first edge, changed on second
     UCAxCTLW0[14]: Clock polarity select: UCCKPL: 0 = inactive state is low, 1 = inactive state high
     UCAxCTLW0[13]: MSB first select: UCMSB: 0 = LSB first, 1 = MSB first
     UCAxCTLW0[12]: Character length: UC7BIT: 0 = 8-bit, 1 = 7-bit
     UCAxCTLW0[11]: Master mode select: UCMST: 0 = slave mode, 1 = master mode
     UCAxCTLW0[10-9]: eUSCI_A mode: UCMODEx: 00 = 3-pin SPI, 01 = 4-pin SPI with UCxSTE active high,
                                                                                                                     10 = 4-pin SPI with UCxSTE active low
     UCAxCTLW0[8]: Synchronous mode enable: UCSYNC: 0 = Asynchronous, 1 = Synchronous
     UCAxCTLW0[7-6]: eUSCI_A clock source select: UCSSELx: 00 = UCLK, 01 = ACLK, 10 or 11 = SMCLK

     

Figure 10.9: eUSCI_Ax control word 0 [SLAU445G, 2016, SLAU367O, 2017]. (Illustration
used with permission of Texas Instruments (www.ti.com).)

10.5.5 SPI CODE EXAMPLES
Energia
The Energia Integrated Development Environment has several built-in functions to support
SPI operations (energia.nu). These include:

• SPI.begin(): initializes SPI bus

• SPI.setBitOrder(direction): may be set for MSBFIRST or LSBFIRST

• SPI.setDataMode(mode): may be set for SPI modes 0 to 3 for compatibility to different
peripheral devices. The four different modes include:

– SPI_MODE0: clock polarity = 0, clock phase = 0
– SPI_MODE1: clock polarity = 0, clock phase = 1
– SPI_MODE2: clock polarity = 1, clock phase = 0
– SPI_MODE3: clock polarity = 1, clock phase = 1

• SPI.setClockDivider: use to divide (slow) the SPI clock. May be set to
SPI_CLOCK_DIV2, 4, 8, 16, 32, 64, 128.

• SPI.transfer(data): transmits one byte of data on the SPI bus

Also, the slave select line of the desired device must be taken low for SPI transfer. It is
then taken high when the data transfer is complete. In the following examples we demonstrate

www.ti.com
energia.nu


10.5. SERIAL PERIPHERAL INTERFACE-SPI 417
how to interface a number of SPI compatible devices to the MSP430FR2433 LaunchPad using
the SPI system. The SPI connections are:

• MOSI: LaunchPad pin 15, P2.6

• MISO: LaunchPad pin 14, P2.5

• SCK: LaunchPad pin 7, P2.4

• SS: LaunchPad pin 17, P3.2

Example. In Chapter 2 we used the Energia SPI features to control a one meter, 32 RGB
LED strip available from Adafruit (#306) (www.adafruit.com). Recall the red, blue, and green
component of each RGB LED was independently set using an eight-bit code. The MSB was
logic one followed by seven bits to set the LED intensity (0–127). The component values were
sequentially shifted out of the MSP430FR2433 LaunchPad using the serial peripheral interface
(SPI) features.

Example. In this example we interface the MSP430FR2433 to Sparkfun’s SerLCD display
(LCD-14072). The display may be used with UART, SPI, or an I2C interface. The connections
between the microcontroller and display are shown in Figure 10.10. The sample code example
illustrates how to display numerals and characters to the display.

//***********************************************************************
//LCD_SPI: Demonstrates use of the MSP430FR2433's SPI system
//with the Sparkfun 16x2 SerLCD (LCD-14072).
//
//LCD connections:
// - RAW: 3.3 VDC
// - -: Ground
// - Power supply grounds should be connected to common ground
// - Serial Data Out - LaunchPad pin 15 (MOSI pin), P2.6 - to LCD SDI
// - CLK - LaunchPad pin 7 (SCK pin), P2.4 - to LCD SCK
// - Chip Select - LaunchPad pin 18, P2.2 - to LCD /CS
// - Ground - black
//
//
//Notes:
// - SPI must be configured for least significant bit (LSB) first,
// Mode 0, SPI clock divide 128
//
//This example code is in the public domain.

www.adafruit.com


418 10. COMMUNICATION SYSTEMS

Chip select P2.2 (pin 18)

MOSI P2.6 (pin 15)

Clock P2.4 (pin 7)
3.

3 
VD

C

G
ro

un
d

Sparkfun LCD-14072

16 × 2 SerLCD

Figure 10.10: MSP430FR2433 interface to Sparkfun’s LCD-14072 display. (Illustration used
with permission of Sparkfun Electronics (www.sparkfun.com).)

www.sparkfun.com


10.5. SERIAL PERIPHERAL INTERFACE-SPI 419
//********************************************************************

#include <SPI.h>

#define chip_select 18 //LaunchPad pin P2.2

unsigned int numeral, number, i;
unsigned char printstring[16] = "Hello World";

void setup()
{
pinMode(chip_select, OUTPUT);
SPI.begin(); //SPI support functions
SPI.setBitOrder(MSBFIRST); //SPI bit order - MSB first
SPI.setDataMode(SPI_MODE0); //SPI mode
SPI.setClockDivider(SPI_CLOCK_DIV128);//SPI data clock rate
}

void loop()
{
digitalWrite(chip_select, HIGH); //chip select high

digitalWrite(chip_select, LOW); //chip select assert
SPI.transfer(0x7C); //enter LCD settings mode
SPI.transfer(0x2D); //clear display, cursor home
digitalWrite(chip_select, HIGH); //initialize chip select

for(numeral = 0; numeral<=9; numeral++)
{
number = numeral + 48; //convert to ASCII
digitalWrite(chip_select, LOW); //chip select assert
SPI.transfer(number); //transmit data via SPI
digitalWrite(chip_select, HIGH); //chip select high
delay(1000); //1s delay
} //end for

digitalWrite(chip_select, HIGH); //chip select high

for(i=0; i<=5; i++) //advance to line 2



420 10. COMMUNICATION SYSTEMS
{
digitalWrite(chip_select, LOW); //chip select assert
SPI.transfer(' ');
digitalWrite(chip_select, HIGH); //initialize chip select
}

//write characters to line 2
digitalWrite(chip_select, LOW); //chip select assert
for(i=0; printstring[i] != '\0'; i++)

{
SPI.transfer(printstring[i]); //transmit data via SPI
delay(1000); //1s delay
} //end for

digitalWrite(chip_select, HIGH); //chip select high

} //end void

//****************************************************************

Example. In this example the MSP430 SPI system is used to send numerical data to Spark-
fun’s 6.5” 7-segment displays (COM-08530). Two of the large digit displays are serially linked
together via Sparkfun’s Large Digit Driver (WIG-13279). The Large Digit Driver contains a
Texas Instruments TPIC6C696 Power Logic 8-bit Shift Register [TPIC6C596, 2015]. The
Large Digit Drivers are soldered to the back of the 6.5” 7-segment displays. The hardware con-
figuration is shown in Figure 10.11.

Numerical data is shifted out of the MSP430FR2433 to the TPIC6C696 shift register
within the Large Digit Driver (WIG-13279). In the first code example, LED_big_digit1, a
single display is sent an incrementing value from 0–9. The numerals are coded to match the
requirements of the Large Digit Driver.

In the second code example, LED_big_digit2, two displays are sent an incrementing value
from 00–99.

//***********************************************************************
//LED_big_digit1: Demonstrates use of the MSP430FR2433's SPI system
//to illuminate different numbers on Sparkfun's 6.5" 7-segment display
//(COM-08530). Numerals are sent from the MSP430 to Sparkfun's Large
//Digit Driver (WIG-13279).
//
//WIG-13279 pin connections:
// - External 12 VDC supply - red
// - External 5 VDC supply - orange



10.5. SERIAL PERIPHERAL INTERFACE-SPI 421

Ground
Latch P2.2 (pin 18)
Clock P2.4 (pin 7)

MOSI P2.6 (pin 15)
12 VDC

Sparkfun WIG-13279
(mounted to reverse side of

COM-08530)

PRT-10366 PRT-10366

Sparkfun COM-08530 Sparkfun COM-08530

Sparkfun WIG-13279
(mounted to reverse side of

COM-08530)

Figure 10.11: MSP430FR2433 interface to Sparkfun’s 6.5” 7-segment displays (COM-08530).
(Illustration used with permission of Sparkfun Electronics (www.sparkfun.com).)

// - Power supply grounds should be connected to common ground
// - Serial Data Out - LaunchPad pin 15 (MOSI pin), P2.6 - yellow
// - CLK - LaunchPad pin 7 (SCK pin), P2.4 - green
// - Latch - LaunchPad pin 18, P2.2 - blue
// - Ground - black
//
//
//Notes:
// - SPI must be configured for least significant bit (LSB) first
// - The numerals 0 to 9 require the following data words as required
// by the interface between the Spakfun Large Digit Driver (WIG-13279)
// and the Sparkfun 6.5" 7-segment display (COM-08530).
//
// Numeral Data representation of numeral
// 0 0xDE
// 1 0x06

www.sparkfun.com


422 10. COMMUNICATION SYSTEMS
// 2 0xBA
// 3 0xAE
// 4 0x66
// 5 0xEC
// 6 0xFC
// 7 0x86
// 8 0xFE
// 9 0xE6
//
//This example code is in the public domain.
//********************************************************************

#include <SPI.h>

//Seven-segment numeral code
#define seven_seg_zero 0xDE
#define seven_seg_one 0x06
#define seven_seg_two 0xBA
#define seven_seg_three 0xAE
#define seven_seg_four 0x66
#define seven_seg_five 0xEC
#define seven_seg_six 0xFC
#define seven_seg_seven 0x86
#define seven_seg_eight 0xFE
#define seven_seg_nine 0xE6

#define LATCH 18 //LaunchPad pin P2.2

const byte strip_length = 1; //number of 7-segment LEDs
unsigned char troubleshooting = 0; //allows printouts to serial
unsigned int numeral;
unsigned char segment_data;

void setup()
{
pinMode(LATCH, OUTPUT);
SPI.begin(); //SPI support functions
SPI.setBitOrder(LSBFIRST); //SPI bit order - LSB first
SPI.setDataMode(SPI_MODE3); //SPI mode



10.5. SERIAL PERIPHERAL INTERFACE-SPI 423
SPI.setClockDivider(SPI_CLOCK_DIV32);//SPI data clock rate
Serial.begin(9600); //serial comm at 9600 bps
}

void loop()
{
digitalWrite(LATCH, LOW); //initialize LATCH signal
SPI.transfer(seven_seg_zero); //reset to zero
assert_latch();

for(numeral = 0; numeral<=9; numeral++)
{
switch(numeral) //convert numeral to
{ //7-segment code
case 0: segment_data = seven_seg_zero; break;
case 1: segment_data = seven_seg_one; break;
case 2: segment_data = seven_seg_two; break;
case 3: segment_data = seven_seg_three; break;
case 4: segment_data = seven_seg_four; break;
case 5: segment_data = seven_seg_five; break;
case 6: segment_data = seven_seg_six; break;
case 7: segment_data = seven_seg_seven; break;
case 8: segment_data = seven_seg_eight; break;
case 9: segment_data = seven_seg_nine; break;
default: break;
}

SPI.transfer(segment_data); //transmit data via SPI
assert_latch();

delay(1000); //1s delay

if(troubleshooting)
{
Serial.println(numeral, DEC);
Serial.println(" ");
}

}
}



424 10. COMMUNICATION SYSTEMS

//****************************************************************

void assert_latch()
{
digitalWrite(LATCH, HIGH); //transmit latch pulse
delay(50);
digitalWrite(LATCH, LOW); //initialize LATCH signal
}

//****************************************************************

The two-digit example follows.

//***********************************************************************
//LED_big_digit2: Demonstrates use of the MSP430FR2433's SPI system
//to illuminate different numbers on Sparkfun's 6.5" 7-segment display
//(COM-08530). Numerals are sent from the MSP430 to Sparkfun's Large
//Digit Driver (WIG-13279).
//
//WIG-13279 pin connections:
// - External 12 VDC supply - red
// - External 5 VDC supply - orange
// - Power supply grounds should be connected to common ground
// - Serial Data Out - LaunchPad pin 15 (MOSI pin), P2.6 - yellow
// - CLK - LaunchPad pin 7 (SCK pin), P2.4 - green
// - Latch - LaunchPad pin 18, P2.2 - blue
// - Ground - black
//
//
//Notes:
// - SPI must be configured for least significant bit (LSB) first
// - The numerals 0 to 9 require the following data words as required
// by the interface between the Spakfun Large Digit Driver (WIG-13279)
// and the Sparkfun 6.5" 7-segment display (COM-08530).
//
// Numeral Data representation of numeral
// 0 0xDE
// 1 0x06
// 2 0xBA



10.5. SERIAL PERIPHERAL INTERFACE-SPI 425
// 3 0xAE
// 4 0x66
// 5 0xEC
// 6 0xFC
// 7 0x86
// 8 0xFE
// 9 0xE6
//
//This example code is in the public domain.
//********************************************************************

#include <SPI.h>

//Seven-segment numeral code
#define seven_seg_zero 0xDE
#define seven_seg_one 0x06
#define seven_seg_two 0xBA
#define seven_seg_three 0xAE
#define seven_seg_four 0x66
#define seven_seg_five 0xEC
#define seven_seg_six 0xFC
#define seven_seg_seven 0x86
#define seven_seg_eight 0xFE
#define seven_seg_nine 0xE6

#define LATCH 18 //LaunchPad pin P2.2

const byte strip_length = 1; //number of 7-segment LEDs
unsigned char troubleshooting = 0; //allows printouts to serial
unsigned int numeral, first_digit, second_digit;
unsigned char segment_data_return;

void setup()
{
pinMode(LATCH, OUTPUT);
SPI.begin(); //SPI support functions
SPI.setBitOrder(LSBFIRST); //SPI bit order - LSB first
SPI.setDataMode(SPI_MODE3); //SPI mode
SPI.setClockDivider(SPI_CLOCK_DIV32);//SPI data clock rate



426 10. COMMUNICATION SYSTEMS
Serial.begin(9600); //serial comm at 9600 bps
}

void loop()
{
digitalWrite(LATCH, LOW); //initialize LATCH signal
SPI.transfer(seven_seg_zero); //reset to zero
assert_latch();

for(numeral = 0; numeral<=99; numeral++)
{
if(numeral <= 9)

{
segment_data_return = determine_segments(numeral);
SPI.transfer(segment_data_return); //transmit data via SPI
SPI.transfer(seven_seg_zero);
assert_latch();
delay(1000); //1s delay
} //end if

else //numeral >=10 - two digit analysis
{
first_digit = numeral
second_digit = (int)((numeral-first_digit)/10);
segment_data_return = determine_segments(first_digit);
SPI.transfer(segment_data_return); //transmit data via SPI
segment_data_return = determine_segments(second_digit);
SPI.transfer(segment_data_return); //transmit data via SPI
assert_latch();
delay(1000); //1s delay
}//end else

} //end for
} //end void

//****************************************************************

void assert_latch()
{
digitalWrite(LATCH, HIGH); //transmit latch pulse
delay(50);



10.5. SERIAL PERIPHERAL INTERFACE-SPI 427
digitalWrite(LATCH, LOW); //initialize LATCH signal
}

//****************************************************************

unsigned char determine_segments(unsigned int segment_number)
{

unsigned char segment_data;

switch(segment_number) //convert numeral to
{ //7-segment code
case 0: segment_data = seven_seg_zero; break;
case 1: segment_data = seven_seg_one; break;
case 2: segment_data = seven_seg_two; break;
case 3: segment_data = seven_seg_three; break;
case 4: segment_data = seven_seg_four; break;
case 5: segment_data = seven_seg_five; break;
case 6: segment_data = seven_seg_six; break;
case 7: segment_data = seven_seg_seven; break;
case 8: segment_data = seven_seg_eight; break;
case 9: segment_data = seven_seg_nine; break;
default: break;
}

return segment_data;

}

//****************************************************************

Example. In this example we interface the MSP430FR2433 LaunchPad to the Sparkfun Real
Time Clock (BOB-10160) and the Sparkfun 16x2 SerLCD (LCD-14072). Both devices are
interfaced to the MSP430FR2433 LaunchPad via the same SPI channel. The SPI channel is
time shared between the RTC and the LCD by using different device select lines as shown in
Figure 10.12. The two different devices use different SPI modes.

The Sparkfun RTC (BOB-10160) breakout board hosts the Maxim Integrated DS3234
RTC [DS3234, 2015]. Once set the RTC tracks date and time. The RTC has two sets of reg-
isters to read and write the time values. The read registers span RTC address space from 0x00
to 0x0D while the write registers span from 0x80 to 0x8D. DS3234 register details are available



428 10. COMMUNICATION SYSTEMS
in the DS3234 data sheet. Date and time information is stored in the DS3234 in BCD format.
The code example demonstrates how to covert from decimal representation to BCD format for
storage within the DS3234. The DS3234 is configured for operation via a control register at
0x8E (Maxim DS3234 [2015]).

In the example the RTC is initialized with the current date and time. This is only accom-
plished once. The RTC continues to monitor time while on battery power. To use the software
to read the RTC at a later time simply comment out the “set_RTC” function.

Sparkfun BOB-10160
DeadOn Real Time Clock
(hosting Maxim DS3224)

SPI setting: MSBFIRST, Mode 1

3.
3 

VD
C

G
ro

un
d

Sparkfun LCD-14072
16 × 2 SerLCD

SPI setting: MSBFIRST, Mode 0

LCD chip select P2.2 (pin 18)
MOSI P2.6 (pin 15)

MOSI P2.5 (pin 14)

RTC chip select P3.2 (pin 17)

Clock P2.4 (pin 7)

Ground
3.3 VDC

Figure 10.12: MSP430FR2433 interface to Sparkfun’s real time clock (BOB-10160). (Illustra-
tion used with permission of Sparkfun Electronics (www.sparkfun.com).)

//***********************************************************************
//SPI_RTC_LCD: Demonstrates use of the MSP430FR2433's LaunchPad
//SPI system with Sparkfun's Real Time Clock (BOB-10160) hosting
//Maxim's DS3224 (Extremely Accurate SPI Bus RTC with Integrated
//Crystal and SRAM). RTC time data is displayed on Sparkfun's
//16x2 SerLCD (LCD-14072).
//
//Once the RTC time is initially set, the RTC will maintain

www.sparkfun.com


10.5. SERIAL PERIPHERAL INTERFACE-SPI 429
//clock time while on battery power.
//
//RTC SPI settings: MSBFIRST, Mode 1
//RTC connections:
// - VCC: 3.3 VDC
// - GND: Ground
// - Power supply ground should be connected to common ground
// - MOSI: LaunchPad pin 15 (MOSI pin), P2.6
// - MISO: LaunchPad pin 14 (MISO pin), P2.5
// - CLK: LaunchPad pin 7 (SCK pin), P2.4
// - SS: RTC Chip Select - LaunchPad pin 17, P3.2
//
//LCD SPI settings: MSBFIRST, Mode 0
//LCD connections:
// - RAW: 3.3 VDC
// - -: Ground
// - Power supply ground should be connected to common ground
// - SDI: LaunchPad pin 15 (MOSI pin), P2.6
// - SCK: LaunchPad pin 7 (SCK pin), P2.4
// - /SS: LCD Chip Select - LaunchPad pin 18, P2.2
//
//Note: RTC and LCD requires different SPI mode settings.
//
//RTC code adapted from code provided by Jim Lindblom of
//SparkFun Electronics (www.sparkfun.com)
//
//This example code is in the public domain.
//********************************************************************

#include <SPI.h>

#define RTC_chip_select 17 //LaunchPad pin P3.2
#define LCD_chip_select 18 //LaunchPad pin P2.2

unsigned int i;
unsigned char printstring[17] = " DS3234 RTC ";
int TimeDateGroup[7];
String TDG;



430 10. COMMUNICATION SYSTEMS
void setup()
{
pinMode(LCD_chip_select, OUTPUT);
pinMode(RTC_chip_select, OUTPUT);
Serial.begin(9600);

initialize_RTC(); //Initialize RTC
//int day (1 to 31)
//int month (1 to 12)
//int year (0 to 99)
//int hour (0 to 23)
//int minute (0 to 59)
//int second (0 to 59)

set_RTC(12, 10, 18, 5, 0, 0); //set current time in RTC
}

void loop()
{
digitalWrite(LCD_chip_select, HIGH); //LCD chip select de-assert
digitalWrite(RTC_chip_select, HIGH); //RTC chip select de-assert
TDG = ReadTimeDate(); //get current time
Serial.println(TDG); //display time to serial mon
clear_LCD(); //clear LCD, cursor to home

//Display RTC banner on LCD
SPI.setDataMode(SPI_MODE0); //SPI mode
digitalWrite(LCD_chip_select, LOW); //LCD chip select assert
for(i=0; printstring[i] != '\0'; i++)

{
SPI.transfer(printstring[i]); //transmit data via SPI
delay(100); //100 ms delay
} //end for

digitalWrite(LCD_chip_select, HIGH); //chip select high

display_time_LCD();
delay(3000);
} //end void

//****************************************************************



10.5. SERIAL PERIPHERAL INTERFACE-SPI 431
void clear_LCD(void)
{
SPI.begin(); //SPI support functions
SPI.setBitOrder(MSBFIRST); //SPI bit order - MSB first
SPI.setDataMode(SPI_MODE0); //SPI mode
SPI.setClockDivider(SPI_CLOCK_DIV128);//SPI data clock rate
delay(10);
digitalWrite(LCD_chip_select, LOW); //LCD chip select assert
SPI.transfer(0x7C); //enter LCD settings mode
SPI.transfer(0x2D); //clear display, cursor home
digitalWrite(LCD_chip_select, HIGH); //LCD chip select de-assert
}

//****************************************************************

void initialize_RTC(void)
{
SPI.begin(); //SPI support functions
SPI.setBitOrder(MSBFIRST); //SPI bit order - MSB first
SPI.setDataMode(SPI_MODE1); //SPI mode
SPI.setClockDivider(SPI_CLOCK_DIV128);//SPI data clock rate
delay(10);

digitalWrite(RTC_chip_select, LOW); //RTC chip select assert
SPI.transfer(0x8E); //0x8E: RTC control register
SPI.transfer(0x60); //turn on RTC clock
digitalWrite(RTC_chip_select, HIGH); //RTC chip select de-assert
}

//****************************************************************
//RTC code adapted from RTC code provided by Jim Lindblom of
//SparkFun Electronics (www.sparkfun.com)
//****************************************************************

void set_RTC(int day, int mon, int yr, int hr, int mn, int sec)
{

//assemble TimeDateGroup
int TimeDateGroup[7] = {sec, mn, hr, 0, day, mon, yr};



432 10. COMMUNICATION SYSTEMS
SPI.begin(); //SPI support functions
SPI.setBitOrder(MSBFIRST); //SPI bit order - MSB first
SPI.setDataMode(SPI_MODE1); //SPI mode
SPI.setClockDivider(SPI_CLOCK_DIV128);//SPI data clock rate
delay(10);

//Parse out portions of TimeDateGroup. Convert digits of each portion
//of TimeDateGroup to BCD. Transmit BCD charara ers to DS3234
//Timekeeping registers. Reference Table 1 of DS3234 data sheet.
//The DS3234 write registers begin at address location 0x80.

for(int i=0; i<=6; i++)
{
if(i==3) i++; //skip over position three

//isolate bit positions
int b= TimeDateGroup[i]/10; //10's place
int a= TimeDateGroup[i]-b*10; //1's place

if(i==2)
{
if(b==2)

b=B00000010;
else if (b==1)

b=B00000001;
}

//assemble BCD digits to
//required storage
//configuration

TimeDateGroup[i]= a+(b<<4);

digitalWrite(RTC_chip_select, LOW); //RTC chip select assert
SPI.transfer(i+0x80);
SPI.transfer(TimeDateGroup[i]);
digitalWrite(RTC_chip_select, HIGH);//RTC chip select assert
}

}

//****************************************************************
//RTC code adapted from RTC code provided by Jim Lindblom of



10.5. SERIAL PERIPHERAL INTERFACE-SPI 433
//SparkFun Electronics (www.sparkfun.com)
//****************************************************************

String ReadTimeDate()
{
String temp;

//Assemble portions of TimeDateGroup from DS3234 memory.
//Read BCD chararaters from DS3234 Timekeeping registers.
//Reference Table 1 of DS3234 data sheet. The DS3234 read
//registers begin at address location 0x00.
SPI.begin(); //SPI support functions
SPI.setBitOrder(MSBFIRST); //SPI bit order - MSB first
SPI.setDataMode(SPI_MODE1); //SPI mode
SPI.setClockDivider(SPI_CLOCK_DIV128);//SPI data clock rate
delay(10);

for(int i=0; i<=6;i++)
{
if(i==3) i++; //skip position 3

digitalWrite(RTC_chip_select, LOW); //RTC chip select assert
SPI.transfer(i+0x00); //read DS3234 register
unsigned int n = SPI.transfer(0x00);
digitalWrite(RTC_chip_select, HIGH);//RTC chip select assert

int a=n & B00001111; //assemble BCD digits
if(i==2) //null space
{
int b=(n & B00110000)>>4; //24 hour mode
if(b==B00000010)

b=20;
else if(b==B00000001)

b=10;
TimeDateGroup[i]=a+b;
}

else if(i==4) //days
{
int b=(n & B00110000)>>4;



434 10. COMMUNICATION SYSTEMS
TimeDateGroup[i]=a+b*10;
}

else if(i==5) //month
{
int b=(n & B00010000)>>4;
TimeDateGroup[i]=a+b*10;
}

else if(i==6) //year
{
int b=(n & B11110000)>>4;
TimeDateGroup[i]=a+b*10;
}

else
{
int b=(n & B01110000)>>4;
TimeDateGroup[i]=a+b*10;
}

}
temp.concat(TimeDateGroup[4]); //day
temp.concat("/") ;
temp.concat(TimeDateGroup[5]); //month
temp.concat("/") ;
temp.concat(TimeDateGroup[6]); //year
temp.concat(" ") ;
temp.concat(TimeDateGroup[2]); //hour
temp.concat(":") ;
temp.concat(TimeDateGroup[1]); //minute
temp.concat(":") ;
temp.concat(TimeDateGroup[0]); //seconds
return(temp);

}

//****************************************************************

void display_time_LCD(void)
{

for(int i=4; i<=6; i++)
{



10.5. SERIAL PERIPHERAL INTERFACE-SPI 435
int b= TimeDateGroup[i]/10; //10's place
int a= TimeDateGroup[i]-b*10; //1's place

//convert to ASCII
b = b + 48;
a = a + 48;

digitalWrite(LCD_chip_select, LOW); //LCD chip select assert
SPI.transfer(b);
digitalWrite(LCD_chip_select, HIGH);//LCD chip select high

digitalWrite(LCD_chip_select, LOW); //LCD chip select assert
SPI.transfer(a);
digitalWrite(LCD_chip_select, HIGH);//LCD chip select high
}

digitalWrite(LCD_chip_select, LOW); //LCD chip select assert
SPI.transfer(0x20);
digitalWrite(LCD_chip_select, HIGH);//LCD chip select high

for(int i=2; i>=0; i--)
{
int b= TimeDateGroup[i]/10; //10's place
int a= TimeDateGroup[i]-b*10; //1's place

//convert to ASCII
b = b + 48;
a = a + 48;

digitalWrite(LCD_chip_select, LOW); //LCD chip select assert
SPI.transfer(b);
digitalWrite(LCD_chip_select, HIGH);//LCD chip select high

digitalWrite(LCD_chip_select, LOW); //LCD chip select assert
SPI.transfer(a);
digitalWrite(LCD_chip_select, HIGH);//LCD chip select high

if (i !=0)
{
digitalWrite(LCD_chip_select, LOW); //LCD chip select assert
SPI.transfer(0x3A);



436 10. COMMUNICATION SYSTEMS
digitalWrite(LCD_chip_select, HIGH);//LCD chip select high
}

}
}

//****************************************************************

SPI C Example
In this example, code is provided for both the SPI master and the SPI slave configured processor
using the SPI 3-wiremode. Incrementing data is sent by themaster configured processor starting
at 0x01. The slave configured processor received data is expected to be same as the previous
transmission TXData D RXData � 1. The eUSCI RX interrupt service routine is used to handle
communication with the processor (www.ti.com).

Master configured SPI processor code:

//********************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2015, Texas Instruments Incorporated
// All rights reserved.
//
// MSP430 CODE EXAMPLE DISCLAIMER
//
//********************************************************************
//MSP430FR243x Demo - eUSCI_A0, SPI 3-Wire Master Incremented Data
//
//Description: SPI master talks to SPI slave using 3-wire mode.
//Incrementing data is sent by the master starting at 0x01. Received
//data is expected to be same as the previous transmission
//TXData = RXData-1. USCI RX ISR is used to handle communication
//with the CPU, normally in LPM0.
//
// ACLK = ~32.768kHz, MCLK = SMCLK = DCO ~ 1MHz. BRCLK = SMCLK/2.
//
// MSP430FR2433
// -----------------
// /|\| |
// | | |
// --|RST |
// | |

www.ti.com


10.5. SERIAL PERIPHERAL INTERFACE-SPI 437
// | P1.4|-> Data In (UCA0SIMO)
// | |
// | P1.5|<- Data OUT (UCA0SOMI)
// | |
// | P1.6|-> Serial Clock Out (UCA0CLK)
//
//
//Ling Zhu, Texas Instruments Inc., Sept 2015
//Built with IAR Embedded Workbench v6.20 & Code Composer Studio v6.0.1
//**********************************************************************

#include <msp430.h>

unsigned char RXData = 0;
unsigned char TXData;

int main(void)
{
WDTCTL = WDTPW | WDTHOLD; //Stop watchdog timer
P1SEL0 |= BIT4 | BIT5 | BIT6; //set 3-SPI pin as second func

UCA0CTLW0 |= UCSWRST; //**Put state machine in reset**
UCA0CTLW0 |= UCMST|UCSYNC|UCCKPL|UCMSB; //3-pin, 8-bit SPI master

//Clock polarity high, MSB
UCA0CTLW0 |= UCSSEL__SMCLK; //SMCLK
UCA0BR0 = 0x01; // /2,fBitClock=fBRCLK/(UCBRx+1).
UCA0BR1 = 0; //
UCA0MCTLW = 0; //No modulation
UCA0CTLW0 &= ~UCSWRST; //**Init USCI state machine**
UCA0IE |= UCRXIE; //Enable USCI_A0 RX interrupt
TXData = 0x01; //Holds TX data

PM5CTL0 &= ~LOCKLPM5; //Disable the GPIO power-on
//default high-impedance mode
//to activate previously

//configured port settings
while(1)

{
UCA0IE |= UCTXIE; //Enable TX interrupt



438 10. COMMUNICATION SYSTEMS
__bis_SR_register(LPM0_bits | GIE); //enable global interrupts,

//enter LPM0
__no_operation(); //For debug, remain in LPM0
__delay_cycles(2000); //Delay before next transmis
TXData++; //Increment transmit data
}

}

//***********************************************************************
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector=USCI_A0_VECTOR
__interrupt void USCI_A0_ISR(void)
#elif defined(__GNUC__)

void __attribute__ ((interrupt(USCI_A0_VECTOR))) USCI_A0_ISR (void)
#else
#error Compiler not supported!
#endif
{

switch(__even_in_range(UCA0IV,USCI_SPI_UCTXIFG))
{
case USCI_NONE: break; //Vector 0 - no interrupt
case USCI_SPI_UCRXIFG: RXData = UCA0RXBUF;

UCA0IFG &= ~UCRXIFG;
//Wake up to setup next TX

__bic_SR_register_on_exit(LPM0_bits);

break;

//Transmit characters
case USCI_SPI_UCTXIFG: UCA0TXBUF = TXData;

UCA0IE &= ~UCTXIE;
break;

default: break;
}

}

//***********************************************************************



10.5. SERIAL PERIPHERAL INTERFACE-SPI 439
Slave configured SPI processor code:

//********************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2015, Texas Instruments Incorporated
// All rights reserved.
//
// MSP430 CODE EXAMPLE DISCLAIMER
//
//**********************************************************************
//MSP430FR243x Demo - eUSCI_A0, SPI 3-Wire Slave Data Echo
//
//Description: SPI slave talks to SPI master using 3-wire mode.
//Data received from master is echoed back.
//ACLK = 32.768kHz, MCLK = SMCLK = DCO ~ 1MHz
//
//Note: Ensure slave is powered up before master to prevent delays due to
// slave initialization
//
// MSP430FR2433
// -----------------
// /|\| |
// | | |
// --|RST |
// | |
// | P1.4|<- Data In (UCA0SIMO)
// | |
// | P1.5|-> Data OUT (UCA0SOMI)
// | |
// | P1.6|<- Serial Clock In (UCA0CLK)
//
//
//Ling Zhu, Texas Instruments Inc., Nov 2015
//Built with IAR Embedded Workbench v6.20 & Code Composer Studio v6.0.1
//***********************************************************************

#include <msp430.h>

int main(void)
{



440 10. COMMUNICATION SYSTEMS
WDTCTL = WDTPW|WDTHOLD; //Stop watchdog timer

P1SEL0 |= BIT4 | BIT5 | BIT6; //3-SPI pin as second function
UCA0CTLW0 |= UCSWRST; //**State machine in reset**
UCA0CTLW0 |= UCSYNC|UCCKPL|UCMSB; //3-pin, 8-bit SPI slave

//Clock polarity high, MSB
UCA0CTLW0 |= UCSSEL__SMCLK; //SMCLK
UCA0BR0 = 0x01; // /2,fBitClock =

//fBRCLK/(UCBRx+1).
UCA0BR1 = 0;
UCA0MCTLW = 0; //No modulation
UCA0CTLW0 &= ~UCSWRST; //**Initialize USCI state

//machine**
UCA0IE |= UCRXIE; //Enable USCI_A0 RX interrupt

PM5CTL0 &= ~LOCKLPM5; //Disable the GPIO power-on
//default high-impedance mode
//to activate previously
//configured port settings

__bis_SR_register(LPM0_bits | GIE); //Enter LPM0, enable interrupts
}

//***********************************************************************
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector=USCI_A0_VECTOR
__interrupt void USCI_A0_ISR(void)
#elif defined(__GNUC__)

void __attribute__ ((interrupt(USCI_A0_VECTOR))) USCI_A0_ISR (void)
#else
#error Compiler not supported!
#endif
{

while (!(UCA0IFG&UCTXIFG)); // USCI_A0 TX buffer ready?
UCA0TXBUF = UCA0RXBUF; // Echo received data

}

//***********************************************************************



10.6. INTER-INTEGRATED COMMUNICATION – I2C MODULE 441

10.6 INTER-INTEGRATED COMMUNICATION – I2C
MODULE

The MSP430’s USCI can be programmed to operate in the I2C communication mode. As dis-
cussed earlier in this chapter, the eUSCI_Ax ports are programmed to operate in the UART,
IrDA, and SPI communication mode while the eUSCI_Bx ports are used for the I2C and SPI
serial communication modes.

The I2C module is a communication system used when multiple serial devices are inter-
connected using a serial bus. Devices on the bus are designated either as a master or slave device.
One of the reasons the I2C serial communication became popular is its flexibility to allow mul-
tiple master devices to co-exist on the same bus.

The I2C bus is a two-wire bus with a SDL and the SCL. I2C compatible devices, each
with a unique address, are connected to the two-wire bus as either a master device or a slave
device. The master device initiates a communication transaction by means of either requesting
data from another device or sending data to a designated device. The master device must also
provide a clock signal (SCL) to the two-wire bus as shown in Figure 10.13a. Note how each bus
line requires a pull-up resistor. The MSP430 eUSCI device allows its I2C communication unit
to operate either in the standard mode (100 kbps) or in the fast mode (400 kbps) with either a 7-
or 10-bit device addressing. Addressing capability is provided for up to four hardware designated
slave devices [SLAU445G, 2016, SLAU367O, 2017].

An I2C communication transaction is initiated by the master device. The master device
pulls the SDA line low while the SCL line is idling high. The falling edge of the SDA line
triggers the transfer. The master then sends a single byte of data containing the desired slave
address. The LSB of the address is set for read (1) or write (0). The address is transmitted MSB
first. A single bit of the data byte is sent on each SCL clock pulse. A stop condition occurs
when the SCL line idles high and at the rising edge of the SDA line. The slave device with
the matching address responds appropriately with either a read or write response as shown in
Figure 10.13b.

10.6.1 I2C INITIALIZATION
To initialize a eUSCI_Bx port as an I2C communication port, you must: (1) set the UCSWRST
bit in the UCxCTL1 register to one, (2) configure the I2C mode of operation by setting UC-
MODEx bits to 11 and initialize the eUSCI registers, and (3) set up an actual port with a
pull-up resistor. As soon as the UCSWRST bit is cleared, the I2C communication of MSP430
can commence.

10.6.2 I2C PROTOCOL
The communication performed on the I2C bus must follow a set of agreed rules, including the
data format used on the bus. Data is transferred between devices connected on the bus in 8



442 10. COMMUNICATION SYSTEMS

12C Compatible
Device

Pull-up
Resistors SCL

Vcc

SDA

SDA (data)

SCL (clock)

SCL

SDA
MSB

R/W ACK ACK
1 2 7 8 9 1 2 8 9

START
Condition (S)

STOP
Condition (P)

Acknowledgment
Signal from Receiver

Acknowledgment
Signal from Receiver

SDA, P1.2, 10
SCL, P1.3, 9

(b) 12C transaction waveform (SLAU445G)

(a) 12C bus connection

12C
bus

12C
bus

12C Compatible
DeviceSCL SDA

Figure 10.13: I2C system overview. (Illustration used with permission of Texas Instruments
(www.ti.com).)

www.ti.com


10.6. INTER-INTEGRATED COMMUNICATION – I2C MODULE 443
bits per segment, followed by control bits. Each communication “session” is started by a master
device with a start condition, which is defined as the signal changing from logic high to low on
the SDA line while the logic state on the SCL line is high. Following the start condition, the
master device must send either the 7- or 10-bit unique address of a destination device on the
SDA line [SLAU445G, 2016, SLAU367O, 2017].

Following the address, the master device sends a Read/Write bit describing its intent and
listens on the bus to hear an acknowledge bit from the receiver on the 9th SCL clock for the
7-bit addressing mode or on the both 9th and 18th clocks for the 10-bit addressing mode.

For the 10-bit addressing mode, the 10-bit address is split into two segments: two MSBs
and eight LSBs. The MSBs are sent along with pre-designated bits (11110), and the LSBs
are sent separately. After the first part of the address is sent, a Read/Write bit, followed by an
acknowledgment bit, must appear on the bus before the second part of the address is sent. After
the second part of the address, an acknowledgment bit must appear before data is sent over the
bus. Figure 10.14 shows the format of data transfer between two devices, using both the 7-bit
and 10-bit addressingmodes. For each communication session, it must end with a stop condition
(P in the figure), which is defined as the signal state on the SDA line changing from logic low
to logic high while the clock signal on the SCL line is high [SLAU445G, 2016, SLAU367O,
2017].

7-bit Addressing Mode

# Clocks
Data on SDA Line

1      7         1        1      8      1      8      1      1
S      A     R/W  Ack    D   Ack   D   Ack    P

# Clocks
Data on SDA Line

1      7         1        1      8      1      8      1      8      1       1
S    A1     R/W  Ack   A2   Ack   D   Ack   D   Ack    P

10-bit Addressing Mode

S - Start condition
A - Slave address (7-bit addressing mode)
A1 - MSB slave address - 11110 xx (10-bit addressing mode)
A2 - LSB slave address
R/W - Read or Write
D - Data
Ack - Acknowledgment

P - Stop condition

Figure 10.14: Data format for both 7-bit and 10-bit addressing modes.



444 10. COMMUNICATION SYSTEMS
10.6.3 MSP430 AS A SLAVE DEVICE
The MSP430 microcontroller can also be configured to be either as a slave device or as a master
device. To configure the controller as a slave device, the eUSCI_Bx ports must first be pro-
grammed to operate in the I2C slave mode (UCMODEx D 11, UCSYNC D 1, UCMST D

0). The slave address of MSP430 is defined using UCBxI2COA register. The UCA10 bit in
the UCBx control register 0 (UCBxCTL0) determines whether the controller is using a 7-bit
address or a 10-bit address [SLAU445G, 2016, SLAU367O, 2017].

You can program the MSP430 microcontroller to respond to a general call by setting the
general call response enable bit (UCGCEN) in the UCBxI2COA register. To receive device
addresses sent by masters, the eUSCI_Bx ports must also be configured in the receiver mode
(UCTR D 0). When the start condition is detected on the bus, the address bits are compared,
and if there is a match, the UCSTTIFG flag is set [SLAU445G, 2016, SLAU367O, 2017].

After testing that the Read/Write bit is high, MSP430 uses the clock signal on the SCL
line to send data on the SDA line. To do so, the UCTR and UCTXIFG bits are set while
holding the SCL line logic low. While the logic state on the SCL line is low, the transmit buffer
register (UCBxTXBUF) is loaded with data. Once the buffer is loaded, the UCSTTIFG flag is
cleared, which sends the data out to the SDA line, and the UCTXIFG flag is automatically set
again for the next data to be transmitted, which occurs after an acknowledge bit is detected on
the bus. If the not-acknowledge (NACK) bit is detected, followed by a stop condition, instead,
the UCSTPIFG flag is set. If the NACK bit is detected followed by a start condition, MSP430
starts to monitor this device address, again, on the SDA line [SLAU445G, 2016, SLAU367O,
2017].

If the MSP430 controller should receive data from a slave device (the Read/Write bit is
low), the UCTR bit is cleared, the receive buffer (UCBxRXBUF) is loaded with the data from
the bus, and the UCRXIFG flag is set, acknowledging the receipt of the data. Once the data in
the bus is read, the flag is cleared, and the controller is ready to receive the next 8-bit data. The
controller has an option to send the UCTXNACK bit to a master to release the bus. When a
stop condition is detected on the bus, the UCSTPIFG flag is set. If two repeated start conditions
are detected or the UCSTPIFG flag is set, the MSP430 terminates its current session and starts
monitoring its address on the bus [SLAU445G, 2016, SLAU367O, 2017].

10.6.4 MSP430 AS A MASTER DEVICE
To configure the MSP430 controller to function as a master device, the eUSCI_Bx ports must
be programmed to operate in the I2C mode (UCMODEx D 11, UCSYNC D 1), and one
must configure the MSP430 to operate in the master mode by setting the UCMST bit. Since
the I2C bus can handle more than one master device and if there are multiple master devices,
the MSP430 needs to be programmed as one of many master devices on the bus by setting the
UCMM bit and storing the address (either 7 or 10 bits) of MSP430 in the UCBxI2COA regis-
ter. As in the case of the slave mode, the address size is determined by the UCA10 bit, and the



10.6. INTER-INTEGRATED COMMUNICATION – I2C MODULE 445
general call response is programmed using the UCGCEN bit [SLAU445G, 2016, SLAU367O,
2017].

To initiate a session to transmit data, the UCTR bit and the UCTxSTT bit are set, the
UCSLA10 bit is configured to match the slave address size, and the address of a slave device is
loaded to the UCBxI2CSA. When the start condition is generated by setting the UCTxSTT
bit, the data can be loaded to the UCBxTXBUF, and the UCTxIFG bit is set. Once a slave
address acknowledges its address, the UCTxSTT and UCTxIFG bits are cleared. Once the
data is sent, the UCTxIFG flag bit is set, again, for the next set of data transfer. To generate
a stop condition, set UCTxSTP bit while UCTxIFG and UCTxSTP bits are set. If a repeated
start conditions are necessary, set UCTxSTT bit. During a data transfer session, if a slave does
not respond (i.e., send acknowledge bits), the MSP430 must either send a stop condition or a
repeated start conditions [SLAU445G, 2016, SLAU367O, 2017].

When the MSP430 controller needs to receive data from a slave, the UCTR bit must
be cleared, and the UCTxSTT bit must be set to generate a start condition. When a slave
device sends an acknowledgment, the UCTxSTT bit is cleared, and the data is received. Upon
receiving an 8-bit data set, the UCRxIFG flag is set. Once the data is read from the buffer, the
UCRxIFG flag is cleared, and the next data can be received. If only a single 8-bit byte should
be received, the controller must set the UCTxSTP bit while the byte is received [SLAU445G,
2016, SLAU367O, 2017].

10.6.5 I2C REGISTERS
I2C associated registers include [SLAU445G, 2016, SLAU367O, 2017]:

• UCBxCTLW0 eUSCI_Bx Control Word 0

• UCBxCTL1 eUSCI_Bx Control 1

• UCBxCTL0 eUSCI_Bx Control 0

• UCBxCTLW1 eUSCI_Bx Control Word 1

• UCBxBRW eUSCI_Bx Bit Rate Control Word

• UCBxBR0 eUSCI_Bx Bit Rate Control 0

• UCBxBR1 eUSCI_Bx Bit Rate Control 1

• UCBxSTATW eUSCI_Bx Status Word

• UCBxSTAT eUSCI_Bx Status

• UCBxBCNT eUSCI_Bx Byte Counter Register

• UCBxTBCNT eUSCI_Bx Byte Counter Threshold Register



446 10. COMMUNICATION SYSTEMS
• UCBxRXBUF eUSCI_Bx Receive Buffer

• UCBxTXBUF eUSCI_Bx Transmit Buffer

• UCBxI2COA0 eUSCI_Bx I2C Own Address 0

• UCBxI2COA1 eUSCI_Bx I2C Own Address 1

• UCBxI2COA2 eUSCI_Bx I2C Own Address 2

• UCBxI2COA3 eUSCI_Bx I2C Own Address 3

• UCBxADDRX eUSCI_Bx Received Address Register

• UCBxADDMASK eUSCI_Bx Address Mask Register

• UCBxI2CSA eUSCI_Bx I2C Slave Address

• UCBxIE eUSCI_Bx Interrupt Enable

• UCBxIFG eUSCI_Bx Interrupt Flag

• UCBxIV eUSCI_Bx Interrupt Vector

10.6.6 PROGRAMMING THE I2C
Programming the I2C in Energia
The Energia IDE supports the following I2C functions:

• Wire.available(): returns the numbers of bytes available to be read with the Wire.read()
function.

• Wire.begin(addr): used by a device to join the I2C bus. For a slave device, the unique slave
address is provided. If no address is provided, the device joins the bus as the master.

• Wire.beginTransmission(addr): used to begin transmission to a slave device.

• Wire.endTransmission(stop): ends transmission to a slave device.

• Wire.read(): reads a byte that was transmitted from a slave device.

• Wire.requestFrom(addr, qty, stop): used by a master device to request data bytes from a
slave device.

• Wire.write(val), Wire.write(str), Wire.write(data, length): variety of functions used to
write data from a slave designated device.



10.6. INTER-INTEGRATED COMMUNICATION – I2C MODULE 447

BLINKM

12C Controlled RGB LED

Spartful COM-08579

TMP102

Digital Temperature Sensor

Sparkfun SEN-13314

Sparkfun LCD-14072

16 × 2 SerLCD

G
ro

un
d

3.
3 

VD
C

G
ro

un
d

G
ro

un
d

3.
3 

VD
C

3.
3 

VD
CSDA P1.2, 10

SCL, P1.3, 9

SDA 

SCL

Figure 10.15: MSP430FR2433 configured with peripheral devices via I2C bus. (Figures used
courtesy of Texas Instruments (www.ti.com) and Sparkfun Electronics (www.sparkfun.com).)

www.ti.com
www.sparkfun.com


448 10. COMMUNICATION SYSTEMS
In the next several examples we illustrate writing and reading data to peripheral devices

on an I2C bus. Specifically, we connect a Sparkfun I2C compatible LCD (LCD-14072), the
BLINKM I2C controlled RGB LED (Sparkfun COM-08579), and a TMP102 digital temper-
ature sensor (Sparkfun SEN-13314), as shown in Figure 10.15.

I2CLCD. In this example we configure the Sparkfun 16x2 SerLCD (LCD-14072) as an
I2C slave device at address 0x72.
//*********************************************************************
//I2C_LCD: demonstrates initialization and operation of I2C compatible
// LCD (Sparkfun 16x2 SerLCD (LCD-14072).
//
//I2C code adapted from I2C code provided by Jim Lindblom of
//Sparkfun Electronics (www.sparkfun.com)
//*********************************************************************

#include <Wire.h>

#define lcd_addr 0x72 //OpenLCD address

int cycles = 0;

void setup()
{

Wire.begin(); //Join I2C bus as master
//bus speed: 100 kHz

Wire.beginTransmission(lcd_addr); //write mode LCD
Wire.write(0x7c); //LCD in setting mode
Wire.write(0x2d); //clear LCD display
Wire.endTransmission();
}

void loop()
{
cycles++; //cycle count
i2cSendValue(cycles); //send the count to LCD -

//integer sent as four values
delay(50); //Maximum update rate of OpenLCD

//approximately 100Hz (10ms).



10.6. INTER-INTEGRATED COMMUNICATION – I2C MODULE 449
//Shorter delay causes flicker

}

//*********************************************************************
//void i2cSendValue(int value): the function divides the integer into
//four bytes nteger into four values and sends them out over I2C
//*********************************************************************

void i2cSendValue(int value)
{
Wire.beginTransmission(lcd_addr); //write to LCD
Wire.write(0x7c); //LCD in setting mode
Wire.write(0x2d); //clear LCD display
Wire.print("Cycles: ");
Wire.print(value);
Wire.endTransmission(); //Stop I2C transmission
}

//*********************************************************************

I2C BLINKM LED. The BLINKM LED is a tri-color LED manufactured by
THINGM (www.thingm.com). An I2C compatible breakout board is available from Spark-
fun Electronics (COM-08579). The BLINKM I2C address is 0x09. The LED color is set by
sending a triplet of color values (R,G,B) to the BLINKM via the I2C bus.

//*********************************************************************
//BlinkMFlash---simple demonstration of flashing a BlinkM
//Adapted from BlinkM code provided by THINKM at http://thingm.com
//*********************************************************************

#include "Wire.h"

int blinkm_addr = 9; //default address of a blinkm

void setup()
{
Wire.begin();
}

void loop()

www.thingm.com


450 10. COMMUNICATION SYSTEMS
{
BlinkM_setRGB(blinkm_addr, 0xff, 0x00, 0x00); //red
delay(500);
BlinkM_setRGB(blinkm_addr, 0x00, 0xff, 0x00); //green
delay(500);
BlinkM_setRGB(blinkm_addr, 0x00, 0x00, 0xff); //blue
delay(500);
}

//*********************************************************************
//void BlinkM_setRGB - sets an RGB color immediately
//*********************************************************************

static void BlinkM_setRGB(byte addr, byte red, byte grn, byte blu)
{
Wire.beginTransmission(addr);
Wire.write('n');
Wire.write(red);
Wire.write(grn);
Wire.write(blu);
Wire.endTransmission();
}

//*********************************************************************

TMP102 I2C Temperature Sensor. The TMP102 is a low-power digital temperature
sensor compatible with the I2C bus. A breakout board is available from Sparkfun (SEN-13314).
The TMP102 has the unique address of 0x4B. Temperature data is stored as two bytes. The
two bytes are read from the TMP102 and then assembled as a single value. It is important to
note that the least significant nibble of the second byte does not contain temperature data. The
TMP102 has a resolution of 0.0625 degrees Centigrade per bit. In this example, temperature
data is gathered from the TMP102 converted to Centigrade and Fahrenheit and displayed on
the serial monitor [SBOS397B].

//******************************************************************
//TMP102_Example
//Adapted from TMP102_Example provided by Texas Instruments
//******************************************************************
//TMP102: low power digital temperature sensor with a two-wire
// serial interface [SOBS397B].



10.6. INTER-INTEGRATED COMMUNICATION – I2C MODULE 451
//******************************************************************

#include <Wire.h>

void setup()
{
Serial.begin(9600); //initialize for serial monitor
Wire.begin(); //initialize I2C communication
}

void loop()
{

//call the sensorRead function
double temperature = sensorRead(); //to retrieve the temperature
Serial.println(temperature, DEC); //displap temp serial monitor
delay(500); //wait 500 ms
}

//******************************************************************
//sensorRead: reads two bytes of temperature data from TMP102.
//Converts result to Centigrade and Fahrenheit.
//******************************************************************

double sensorRead(void)
{
uint8_t temp[2]; //holds two bytes of data

//read from TMP102
int16_t tempc; //holds modified data bytes
double tempf; //holds conversion from tempc

Wire.beginTransmission(0x48); //point to device 0x48
Wire.write(0x00); //point to temp register
Wire.endTransmission(); //relinquish control of I2C line
delay(10); //delay for conversion time
Wire.requestFrom(0x48, 2); //request temperature data

if(2 <= Wire.available()) //if two bytes returned
{



452 10. COMMUNICATION SYSTEMS
temp[0] = Wire.read(); //read out the data
temp[1] = Wire.read();
temp[1] = temp[1] >> 4; //ignore lower 4 bits of byte 2
tempc = ((temp[0] << 4) | temp[1]);//combine for 12 bit binary number
tempc = tempc*0.0625; //convert to celcius given

//0.0625C resolution
tempf = tempc * 9/5 + 32; //convert to fahrenheit
return tempf;
}

}

//******************************************************************

Programming the I2C in C
In this example two MSP430FR2433 LaunchPads are connected via the I2C bus. The master
configured device reads five bytes from the slave configured device.

Master configured processor:

//********************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2015, Texas Instruments Incorporated
// All rights reserved.
//
// MSP430 CODE EXAMPLE DISCLAIMER
//
//******************************************************************
//MSP430FR243x Demo - eUSCI_B0 I2C Master RX multiple bytes
//from MSP430 Slave
//
//Description: This demo connects two MSP430's via the I2C bus.
//The master reads 5 bytes from the slave. This is the MASTER CODE.
//The data from the slave transmitter begins at 0 and increments
//with each transfer. The USCI_B0 RX interrupt is used to know
//when new data has been received.
//
// ACLK = default REFO ~32768Hz, MCLK = SMCLK = BRCLK = DCODIV ~1MHz.
//
// *****used with "msp430fr243x_euscib0_i2c_11.c"****
//
// /|\ /|\



10.6. INTER-INTEGRATED COMMUNICATION – I2C MODULE 453
// MSP430FR2433 10k 10k MSP430FR2433
// slave | | master
// ----------------- | | -----------------
// | P1.2/UCB0SDA|<-|----|->|P1.2/UCB0SDA |
// | | | | |
// | | | | |
// | P1.3/UCB0SCL|<-|------>|P1.3/UCB0SCL |
// | | | P1.0|--> LED
//
//Cen Fang, Texas Instruments Inc., June 2013
//Built with IAR Embedded Workbench v6.20 & Code Composer Studio v6.0.1
//*********************************************************************

#include <msp430.h>

volatile unsigned char RXData;

int main(void)
{
WDTCTL = WDTPW | WDTHOLD;

//Configure GPIO
P1OUT &= ~BIT0; //Clear P1.0 output latch
P1DIR |= BIT0; //For LED
P1SEL0 |= BIT2 | BIT3; //I2C pins

//Disable the GPIO power-on default high-impedance mode to activate
//previously configured port settings
PM5CTL0 &= ~LOCKLPM5;

//Configure USCI_B0 for I2C mode
UCB0CTLW0 |= UCSWRST; //Software reset enabled
UCB0CTLW0 |=UCMODE_3|UCMST|UCSYNC; //I2C mode, Master mode, sync
UCB0CTLW1 |= UCASTP_2; //Automatic stop generated

// after UCB0TBCNT is reached
UCB0BRW = 0x0008; //baudrate = SMCLK / 8
UCB0TBCNT = 0x0005; //number of bytes to be received
UCB0I2CSA = 0x0048; //Slave address
UCB0CTL1 &= ~UCSWRST;
UCB0IE |= UCRXIE | UCNACKIE | UCBCNTIE;



454 10. COMMUNICATION SYSTEMS
while (1)

{
__delay_cycles(2000);
while (UCB0CTL1 & UCTXSTP); //Ensure stop condition got sent
UCB0CTL1 |= UCTXSTT; //I2C start condition
__bis_SR_register(LPM0_bits|GIE);//Enter LPM0 w/ interrupt
}

}

//*********************************************************************

#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector = USCI_B0_VECTOR
__interrupt void USCIB0_ISR(void)
#elif defined(__GNUC__)

void __attribute__ ((interrupt(USCI_B0_VECTOR))) USCIB0_ISR (void)
#else
#error Compiler not supported!
#endif
{

switch(__even_in_range(UCB0IV, USCI_I2C_UCBIT9IFG))
{
case USCI_NONE: break; //Vector 0: No interrupts
case USCI_I2C_UCALIFG: break; //Vector 2: ALIFG
case USCI_I2C_UCNACKIFG: //Vector 4: NACKIFG

UCB0CTL1 |= UCTXSTT; //I2C start condition
break;

case USCI_I2C_UCSTTIFG: break; //Vector 6: STTIFG
case USCI_I2C_UCSTPIFG: break; //Vector 8: STPIFG
case USCI_I2C_UCRXIFG3: break; //Vector 10: RXIFG3
case USCI_I2C_UCTXIFG3: break; //Vector 14: TXIFG3
case USCI_I2C_UCRXIFG2: break; //Vector 16: RXIFG2
case USCI_I2C_UCTXIFG2: break; //Vector 18: TXIFG2
case USCI_I2C_UCRXIFG1: break; //Vector 20: RXIFG1
case USCI_I2C_UCTXIFG1: break; //Vector 22: TXIFG1
case USCI_I2C_UCRXIFG0: //Vector 24: RXIFG0

RXData = UCB0RXBUF; //Get RX data
__bic_SR_register_on_exit(LPM0_bits); //Exit LPM0



10.6. INTER-INTEGRATED COMMUNICATION – I2C MODULE 455
break;

case USCI_I2C_UCTXIFG0: break; //Vector 26: TXIFG0
case USCI_I2C_UCBCNTIFG: //Vector 28: BCNTIFG

P1OUT ^= BIT0; //Toggle LED on P1.0
break;

case USCI_I2C_UCCLTOIFG: break; //Vector 30: clock low timeout
case USCI_I2C_UCBIT9IFG: break; //Vector 32: 9th bit
default: break;
}

}
//***********************************************************************

Slave configured processor:

//********************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2015, Texas Instruments Incorporated
// All rights reserved.
//
// MSP430 CODE EXAMPLE DISCLAIMER
//
//*********************************************************************
//MSP430FR243x Demo - eUSCI_B0 I2C Slave TX multiple bytes to
//MSP430 Master
//
//Description: This demo connects two MSP430's via the I2C bus. The
//master reads from the slave. This is the SLAVE code. The TX data
//begins at 0 and is incremented each time it is sent. A stop condition
//is used as a trigger to initialize the outgoing data. The USCI_B0 TX
//interrupt is used to know when to TX.
//
// ACLK = default REFO ~32768Hz, MCLK = SMCLK = default DCODIV ~1MHz.
//
// *****used with "msp430fr243x_euscib0_i2c_10.c"****
//
// /|\ /|\
// MSP430FR2433 10k 10k MSP430FR2433
// slave | | master
// ----------------- | | -----------------
// | P1.2/UCB0SDA|<-|----|->|P1.2/UCB0SDA |



456 10. COMMUNICATION SYSTEMS
// | | | | |
// | | | | |
// | P1.3/UCB0SCL|<-|------>|P1.3/UCB0SCL |
// | | | |
//
//Cen Fang, Texas Instruments Inc., June 2013
//Built with IAR Embedded Workbench v6.20 & Code Composer Studio v6.0.1
//*********************************************************************

#include <msp430.h>

volatile unsigned char TXData;

int main(void)
{
WDTCTL = WDTPW | WDTHOLD;
P1SEL0 |= BIT2 | BIT3; //Configure GPIO I2C pins

//Disable the GPIO power-on default high-impedance mode to activate
//previously configured port settings
PM5CTL0 &= ~LOCKLPM5;

//Configure USCI_B0 for I2C mode
UCB0CTLW0 = UCSWRST; //Software reset enabled
UCB0CTLW0 |= UCMODE_3 | UCSYNC; //I2C mode, sync mode
UCB0I2COA0 = 0x48 | UCOAEN; //own address is 0x48 + enable
UCB0CTLW0 &= ~UCSWRST; //clear reset register
UCB0IE |= UCTXIE0 | UCSTPIE; //transmit,stop interrupt enable
__bis_SR_register(LPM0_bits | GIE); //Enter LPM0 w/ interrupts
__no_operation();
}

//*********************************************************************

#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector = USCI_B0_VECTOR
__interrupt void USCIB0_ISR(void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(USCI_B0_VECTOR))) USCIB0_ISR (void)
#else



10.7. LABORATORY EXERCISE: UART AND SPI COMMUNICATIONS 457
#error Compiler not supported!
#endif
{

switch(__even_in_range(UCB0IV, USCI_I2C_UCBIT9IFG))
{
case USCI_NONE: break; //Vector 0: No interrupts
case USCI_I2C_UCALIFG: break; //Vector 2: ALIFG
case USCI_I2C_UCNACKIFG: break; //Vector 4: NACKIFG
case USCI_I2C_UCSTTIFG: break; //Vector 6: STTIFG
case USCI_I2C_UCSTPIFG: //Vector 8: STPIFG

TXData = 0;
UCB0IFG &= ~UCSTPIFG; //Clear stop condition int flag
break;

case USCI_I2C_UCRXIFG3: break; //Vector 10: RXIFG3
case USCI_I2C_UCTXIFG3: break; //Vector 14: TXIFG3
case USCI_I2C_UCRXIFG2: break; //Vector 16: RXIFG2
case USCI_I2C_UCTXIFG2: break; //Vector 18: TXIFG2
case USCI_I2C_UCRXIFG1: break; //Vector 20: RXIFG1
case USCI_I2C_UCTXIFG1: break; //Vector 22: TXIFG1
case USCI_I2C_UCRXIFG0: break; //Vector 24: RXIFG0
case USCI_I2C_UCTXIFG0:

UCB0TXBUF = TXData++;
break; //Vector 26: TXIFG0

case USCI_I2C_UCBCNTIFG: break; //Vector 28: BCNTIFG
case USCI_I2C_UCCLTOIFG: break; //Vector 30: clock low timeout
case USCI_I2C_UCBIT9IFG: break; //Vector 32: 9th bit
default: break;
}

}

//*********************************************************************

10.7 LABORATORY EXERCISE: UART AND SPI
COMMUNICATIONS

Configure two MSP430 LaunchPads to communicate using the UART and SPI.



458 10. COMMUNICATION SYSTEMS

10.8 SUMMARY
In this chapter we have discussed the complement of serial communication features aboard the
MSP430 microcontroller. The system is equipped with a host of different serial communication
subsystems including eUSCI_A type modules and eUSCI_B modules. Each microcontroller in
the MSP430 line has a complement of A and B type eUSCI modules.

10.9 REFERENCES AND FURTHER READING
DS3234 Extremely Accurate SPI Bus RTCwith Integrated Crystal and SRAM, Maxim Integrated,

2015. www.maximintegrated.com 427, 428

MSP430FR2433 LaunchPad Development Kit (MSP-EXP430FR2433), (SLAU739), Texas In-
struments, 2017.

MSP430FR2433 Mixed-Signal Microcontroller, (SLASE59D), Texas Instruments, 2018.

MSP430FR4xx and MSP430FR2xx Family User’s Guide, (SLAU445G), Texas Instruments,
2016. 396, 397, 400, 401, 403, 404, 405, 411, 413, 414, 416, 441, 443, 444, 445

MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s Guide, (SLAU367O),
Texas Instruments, 2017. 396, 397, 400, 401, 403, 404, 405, 411, 413, 414, 416, 441, 443,
444, 445

MSP430FR5994LaunchPadDevelopmentKit (MSP-EXP430FR5994), (SLAU678A), Texas In-
struments, 2016.

MSP430FR599x, MSP430FR596x Mixed-Signal Microcontrollers, (SLASE54C), Texas Instru-
ments, 2018.

TPIC6C596 Power Logic 8-Bit Shift Register, (SLIS093D), Texas Instruments, 2015. 420

Unicode Consortium. www.unicode.org

10.10 CHAPTER PROBLEMS
Fundamental

1. Describe the difference between parallel and serial communications.

2. If the communication cost is the primary issue, which communication methods (parallel,
series) should be used? Why?

3. What is the difference between synchronous and asynchronous communications?

www.maximintegrated.com
www.unicode.org


10.10. CHAPTER PROBLEMS 459
4. The eUSCI in the UART mode supports LIN and IrDA. For each, identify the protocol

used: serial/parallel and synchronous/asynchronous.

5. In the I2C communication protocol, how does one configure the MSP430 to become a
master device? What must be done to configure it as a slave device?

6. Give a brief description of a communication protocol.

Advanced

1. Write a function that properly initialize the SPI unit. Specify the configuration parameter
values used for the external device.

2. Describe interrupts associated with the I2C unit.

3. There are multiple I2C interrupts but a single interrupt vector. After detecting an inter-
rupt, the I2C interrupt system must identify the source of the interrupt. How is this ac-
complished?

Challenging

1. Design and program three MSP430 controller systems to measure temperatures surround-
ing the three controllers. Create a wireless communication network using the three con-
trollers along with the CC2530-ZNP radio transceivers. The controllers should constantly
share the temperature sensor data among the members. Select a central controller and dis-
play the three temperature values on a LCD display once every 5 s.

2. Design and program an I2C based system to measure and display temperature. The system
should also contain a tri-color LED to display a corresponding color based on measured
temperature.

3. Design and program an I2C based system to provide for a peripheral EEPROM (Sparkfun
COM-00525).

4. Design and program an I2C based system to provide for a peripheral DAC based on the
MPC47725 (Sparkfun BOB-12918).





461

C H A P T E R 11

MSP430 System Integrity
Objectives: After reading this chapter, the reader should be able to:

• describe the concept of electromagnetic interference (EMI);

• describe the possible sources of EMI noise in a microcontroller system;

• differentiate between conducted and radiated EMI;

• list different sources of EMI;

• list design techniques to minimize EMI;

• describe how a cyclic redundancy check (CRC) may be used to insure the integrity of data;

• describe the features of the CRC32 system onboard the MSP430FR5994;

• sketch a linear feedback shift register for a given generator polynomial;

• list common generator polynomials used within CRC systems;

• program the MSP430FR5994 CRC32 system to generate a data checksum;

• describe how the MSP430FR5994 advanced encryption standard module, the AES256,
may be used to provide for data transmission integrity;

• describe the steps used to encrypt/decrypt data using the AES256 standard;

• sketch a block diagram of the MSP430FR5994 AES256 module; and

• program the MSP430 AES256 module to encrypt and decrypt data.

11.1 OVERVIEW
This chapter may be the most important chapter in the book. It contains essential information
about how to maintain the integrity of a microcontroller-based system.1 The chapter begins with
a discussion on EMI, also known as noise. Design practices tominimize EMI are then discussed.
The second section of the chapter discusses the concept of the CRC. This is a hardware-based

1This chapter was adapted with permission from Embedded Systems Design with the Texas Instruments MSP432 32-bit
Processor, Morgan & Claypool Publishers, 2017.



462 11. MSP430 SYSTEM INTEGRITY
subsystem used to generate a checksum of a block of data. The checksum may be used to test
the integrity of data once it has been transmitted or loaded to a new location. The final section
covers the MSP430FR5994 advanced encryption standard module, the AES256. This module
is used to insure the integrity of data transmission using a key-based encryption and decryption
technique.

11.2 ELECTROMAGNETIC INTERFERENCE
EMI, commonly referred to as noise, may come from a number of sources as shown in Fig-
ure 11.1. Noise causes program malfunction and data corruption, making it impossible to com-
plete the intended task of the controller. It is important to understand the sources of noise
and coupling mechanisms to a microcontroller-based project, so proper preventive techniques
may be employed during the design process. As shown in the figure, noise may be coupled to
a victim receptor system via radiated or conducted mechanisms. Radiated sources include radio
frequency sources such as radio stations and cell phones. Naturally occurring lightning is also
a source of noise. A nearby lightning strike generates a tremendous amount of noise at a vari-
ety of frequencies. Noise may also be generated by motors and motor based appliances such as
drills, mixers, and blenders. Often microcontrollers are used to control a motor. The motor, al-
though part of the designed system, may be a source of noise for the microcontroller controlling
its operation. Electrostatic discharge (ESD), e.g., static electricity, may inject noise or damage
a microcontroller-based system. Conducted sources of noise in a microcontroller-based system
include other system components or the power supply serving the system. It is interesting to
note the microcontroller itself may also serve as a noise source for other system components or
nearby systems [AN1705, 2004, COP888, 1996].

11.2.1 EMI REDUCTION STRATEGIES
There are several strategies to minimize EMI interference. These include [AN1705, 2004,
COP888, 1996]:

• implementing EMI suppression techniques early in the design process. It is very challeng-
ing to provide EMI suppression after a system has been implemented; and

• implementing noise suppression techniques at the source of the noise, disrupting the
source to receptor transmission path, protecting the receptor system from noise, and a
combination of all three techniques.

Provided below are specific techniques to suppress EMI noise in a microcontroller-based
system [Barrett and Pack, 2004, AN1705, 2004, COP888, 1996].

• If possible, incoming signal lines to a microcontroller-based system should be twisted. This
will minimize the chance of parallel conductors inducing noise in an adjacent conductor
via crosstalk. If signals are being transmitted by amultiple conductor ribbon cable, consider



11.2. ELECTROMAGNETIC INTERFERENCE 463

Radiation
Radiated

Sources

MSP432

Conduction

Radio

Lightning

Motors

Appliances

Electrostatic
Discharge (ESD)

e.g., Static Electricity

Microcontroller
System

Components

Conducted
Sources

Power
Supply

M

Figure 11.1: Noise sources in a microcontroller-based system. (Adapted from AN1705 [2004],
COP888 [1996].)

gently twisting the cable and also providing a ground conductor alternating with signal-
carrying conductors.

• Use shielded cable for signal conductors coming into the microcontroller-based system.

• If the microcontroller is being used to control a motor, use an opto-isolator between the
microcontroller and the motor interface circuit. Also, the motor and the microcontroller
should not share a common power supply.



464 11. MSP430 SYSTEM INTEGRITY
• Use filters for signals coming into a microcontroller-based system. Filters are commonly

available in the form of ferrite beads.

• Filter the power supply lines to the circuit. Typically, a 10–470 �F capacitor is employed
for this purpose. Also, a 0.1 �F capacitor should be used between the power and ground
pins on each integrated circuit.

• Ground the metal crystal time base case to insure it does not radiate a noise signal.

• Mount the microcontroller-based project in a metal chassis.

• There are several defensive programming techniques to help combat noise. One easy to
implement technique is to declare unused microcontroller pins as output.

11.3 CYCLIC REDUNDANCY CHECK
In a previous professional life, one of the authors (sfb) served as a missileer in the United States
Air Force. On a routine basis, the guidance set aboard an assigned missile was updated with
critical data to insure the missile would serve its intended mission. Maintenance crews from a
nearby support base would transport information tapes out to the missile site where the onboard
missile guidance set was updated. A CRC checksum was generated on the information tapes
before they left the support base. After the information was loaded from the tapes to the mis-
sile guidance set, a CRC checksum was performed. If the checksum generated by the missile
guidance set matched the checksum generated at the support base, the missile was designated
as properly updated.

This scenario illustrates the application and importance of using a CRC to maintain data
integrity. This technique is often performed to ensure the integrity of transmitted or stored data.

The basic concept behind generating a CRC checksum is binary division. The basic oper-
ation of division can be defined as [AN370]:

Dividend=divisor D quotient C remainder:

The block of data to be protected via the checksum is considered the dividend. The divi-
dend is divided by a pre-selected CRC polynomial which serves as the divisor. At the comple-
tion of the division operation, a quotient and a remainder result. The remainder of the operation
serves as the CRC checksum.

Generation of a checksum is based on the concept that when a given block of data is
divided by a specific polynomial with the division hardware initialized with the same value (seed),
the same checksum will result every time the operation is performed. Similarly, if the input
data is different or in a different order, the polynomial is changed, or the division hardware is
seeded with a different initial value, a different checksum will result. A number of common



11.3. CYCLIC REDUNDANCY CHECK 465
polynomials have been developed to support CRC checksum generation. Two common ones
include [SLAU367O, 2017]:

• CRC16-CCITT defined as f .x/ D X15 C X12 C X5 C 1

• CRC32-IS3309 defined as
f .x/ D X32

C X26
C X23

C X22
C

X16
C X12

C X11
C X10

C X8
C

X7
C X5

C X4
C X2

C X C 1: (11.1)

A linear feedback shift register (LFSR) is used to generate the checksum. The polynomial
divisor chosen to generate the checksum specifies the hardware connection for the LFSR. For
example, the LFSR configuration for the CRC16-CCITT polynomial is shown in Figure 11.2.
Note how the polynomial terms specify the output connections of certain flip-flops within the
LFSR. To generate the checksum, the LFSR is initially configured to the seed value. The data
block is fed in as a serial data stream. The resulting remainder is used as the checksum and
appended to the original data block for transmission [SLAU367O, 2017].

Data

In

Shift

Clock

D  Q

0

D  Q

1

D  Q

2

D  Q

3

D  Q

4

D  Q

5

D  Q

6

D  Q

7

D  Q

8

D  Q

9

D  Q

10

D  Q

11

D  Q

12

D  Q

13

D  Q

14

D  Q

15

Figure 11.2: CRC16-CCITT polynomial and LFSR configuration [SLAU367O, 2017].

11.3.1 MSP430FR5994 CRC32 MODULE
A block diagram for the MSP430FR5994 CRC32 module is provided in Figure 11.3a. The
MSP430FR5994 CRC32 module is quite flexible. It allows for 16- or 32-bit CRC generation.
It also provides for data bit 0 being the MSB or LSB. This allows for compatibility with both
modern and legacy hardware. Also, to speed up the calculation of the CRC checksum, the linear
feedback shift register operation is implemented with an equivalent XOR gate combinational
logic tree [SLAU367O, 2017].

The UML activity diagram for the CRC operation is provided in Figure 11.3b. The op-
eration is quite straight forward. The CRC polynomial is provided to the CRC32 system along
with the seed via the CRC16INIRES (CRC32INIRES) register. The data block to perform
the checksum operation is fed into the CRC16DI (CRC32DI) register. The CRC checksum
operation is performed and the checksum is available at the CRC16INIRES (CRC32INIRES)
register [SLAU367O, 2017].



466 11. MSP430 SYSTEM INTEGRITY

CRC16INIRES/
CRC32INIRES

CRC
Checksum
Generator

(a) CRC32 block diagram

(b) CRC32 UML diagram

CRC16DI/
CRC32DI

Signature Data In Set Polynomial

Feed in Data

Get Signature Result

Seed

Figure 11.3: MSP430 CRC32 module.

11.3.2 CRC16 REGISTERS
The CRC16 system is supported by a set of the following registers [SLAU367O, 2017]:

• CRC16DI CRC16 Data Input Register

• CRCDIRB CRC16 Data In Reverse Register

• CRCINIRES CRC16 Initialization and Result Register

• CRCRESR CRC16 Result Reverse Register

Details of specific register and bit settings are contained in MSP430P4xx Family Technical Ref-
erence Manual [SLAU367O, 2017].

11.3.3 CRC32 REGISTERS
The CRC32 system is supported by a set of the following registers [SLAU367O, 2017]:

• CRC32DIW0 CRC32 Data Input Register

• CRC32DIRBW0 CRC32 Data In Reverse Register

• CRC32INIRESW0 CRC32 Initialization and Result Register 0

• CRC32INIRESW1 CRC32 Initialization and Result Register 1

• CRC32RESRW0 CRC32 Result Reverse Register 0

• CRC32RESRW1 CRC32 Result Reverse Register 1



11.3. CYCLIC REDUNDANCY CHECK 467
• CRC16DIW0 CRC16 Data Input Register

• CRC16DIRBW0 CRC16 Data In Reverse Register

• CRC16INIRESW0 CRC16 Initialization and Result Register

• CRC16RESRW0 CRC16 Result Reverse Register

Details of specific register and bits settings are contained in MSP430P4xx Family Technical Ref-
erence Manual [SLAU367O, 2017].

Example: In this example the hardware and software techniques of generating a CRC16 check-
sum is compared.

//********************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2015, Texas Instruments Incorporated
// All rights reserved.
//
// MSP430 CODE EXAMPLE DISCLAIMER
//
//********************************************************************
//MSP430FR5x9x Demo - CRC16, Compare CRC output with software-based
//algorithm
//
//Description: An array of 16 random 16-bit values are moved through
//the CRC module, as well as a software-based CRC-CCIT-BR algorithm.
//The software-based algorithm handles 8-bit inputs only, the 16-bit
//words are broken into 2 8-bit words before being run through
//(lower byte first). The outputs of both methods are then compared to
//ensure that the operation of the CRC module is consistent with the
//expected outcome. If the values of each output are equal, set P1.0,
//else reset.
//
// MCLK = SMCLK = default DCO~1MHz
//
// MSP430FR5994
// -----------------
// /|\| |
// | | |
// --|RST |
// | |



468 11. MSP430 SYSTEM INTEGRITY
// | P1.0|--> LED
//
//William Goh, Texas Instruments Inc., October 2015
//Built with IAR Embedded Workbench V6.30 & Code Composer Studio V6.1
//*********************************************************************

#include <msp430.h>

const unsigned int CRC_Init = 0xFFFF;

const unsigned int CRC_Input[] =
{
0x0fc0, 0x1096, 0x5042, 0x0010, //16 random 16-bit numbers
0x7ff7, 0xf86a, 0xb58e, 0x7651, //these numbers can be
0x8b88, 0x0679, 0x0123, 0x9599, //modified if desired
0xc58c, 0xd1e2, 0xe144, 0xb691
};

unsigned int CRC_Result; //Holds results obtained through
//the CRC16 module

unsigned int SW_Results; //Holds results obtained through
//SW

//Software Algorithm Function Declaration
unsigned int CCITT_Update(unsigned int, unsigned int);

int main(void)
{
unsigned int i;

WDTCTL = WDTPW | WDTHOLD; //Stop WDT
//Configure GPIO

P1OUT &= ~BIT0; //Clear LED to start
P1DIR |= BIT0; // P1.0 Output

//Disable the GPIO power-on default high-impedance mode to activate
//previously configured port settings
PM5CTL0 &= ~LOCKLPM5;



11.3. CYCLIC REDUNDANCY CHECK 469
//First, use the CRC16 hardware module to calculate the CRC...
CRC16INIRESW0 = CRC_Init; //Init CRC16 HW module

for(i = 0; i < (sizeof(CRC_Input) >> 1); i++)
{

//Input random values into CRC
//Hardware

CRC16DIRBW0 = CRC_Input[i]; //Input data in CRC
__no_operation();
}

CRC_Result = CRC16INIRESW0; //Save results (per CRC-CCITT
//standard)

//Now use a software routine to calculate the CRC...
SW_Results = CRC_Init; //Init SW CRC
for(i = 0; i < (sizeof(CRC_Input) >> 1); i++)

{
//First input upper byte
SW_Results = CCITT_Update(SW_Results, (CRC_Input[i] >> 8) & 0xFF);

//Then input lower byte
SW_Results = CCITT_Update(SW_Results, CRC_Input[i] & 0xFF);
}

//Compare data output results
if(CRC_Result == SW_Results) //if data is equal
P1OUT |= BIT0; //set the LED

else
P1OUT &= ~BIT0; //if not, clear LED

while(1); //infinite loop
}

//********************************************************************
// Software algorithm - CCITT CRC16 code
//********************************************************************

unsigned int CCITT_Update(unsigned int init, unsigned int input)



470 11. MSP430 SYSTEM INTEGRITY
{
unsigned int CCITT = (unsigned char) (init >> 8) | (init << 8);
CCITT ^= input;
CCITT ^= (unsigned char) (CCITT & 0xFF) >> 4;
CCITT ^= (CCITT << 8) << 4;
CCITT ^= ((CCITT & 0xFF) << 4) << 1;

return CCITT;
}

//********************************************************************

Example: In this example the hardware and software techniques of generating a CRC32 check-
sum is compared.

//********************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2016, Texas Instruments Incorporated
// All rights reserved.
//
// MSP430 CODE EXAMPLE DISCLAIMER
//
//********************************************************************

//********************************************************************
//MSP430FR5x9x Demo - CRC32, Compare CRC32 output with software-based
// algorithm
//
//Description: An array of 16 random 16-bit values are moved through
//the CRC32 module, as well as a software-based CRC32-ISO3309
//algorithm. The software-based algorithm handles 8-bit inputs only,
//the 16-bit words are broken into 2 8-bit words before being run
//through (lower byte first). The outputs of both methods are then
//compared to ensure that the operation of the CRC module is
//consistent with the expected outcome. If the values of each output
//are equal, set P1.0, else reset.
//
// MCLK = SMCLK = default DCO~1MHz
//
// MSP430FR5994
// -----------------



11.3. CYCLIC REDUNDANCY CHECK 471
// /|\| |
// | | |
// --|RST |
// | |
// | P1.0|--> LED
//
//William Goh, Texas Instruments Inc., April 2016
//Built with IAR Embedded Workbench V6.40 & Code Composer Studio V6.1
//********************************************************************

#include <msp430.h>

#define POLYNOMIAL_32 0xEDB88320

//Holds a CRC32 lookup table
unsigned long crc32Table[256];

//Global flag indicating that the CRC32 lookup table has been initialized
unsigned int crc32TableInit = 0;

const unsigned long CRC_Init = 0xFFFFFFFF;

const unsigned short CRC_Input[] =
{
0xc00f, 0x9610, 0x5042, 0x0010, // 16 random 16-bit numbers
0x7ff7, 0xf86a, 0xb58e, 0x7651, // these numbers can be
0x8b88, 0x0679, 0x0123, 0x9599, // modified if desired
0xc58c, 0xd1e2, 0xe144, 0xb691
};

//Holds results obtained through the CRC32 hardware module
unsigned long CRC32_Result;

//Holds results obtained through software algorithm
unsigned long SW_CRC32_Results;

// Software CRC32 algorithm function declaration
void initSwCrc32Table(void);
unsigned long updateSwCrc32(unsigned long crc, char c );



472 11. MSP430 SYSTEM INTEGRITY

int main(void)
{
unsigned int i;

WDTCTL = WDTPW | WDTHOLD; //Stop WDT
//Configure GPIO

P1OUT &= ~BIT0; //Clear LED to start
P1DIR |= BIT0; //P1.0 Output

//Disable the GPIO power-on default high-impedance mode to activate
//previously configured port settings
PM5CTL0 &= ~LOCKLPM5;

//First, use the CRC32 hardware module to calculate the CRC...
CRC32INIRESW0 = CRC_Init; //Init CRC32 HW module
CRC32INIRESW1 = CRC_Init; //Init CRC32 HW module

for(i = 0; i < (sizeof(CRC_Input) >> 1); i=i+2)
{
//Input values into CRC32 Hardware
CRC32DIW0 = (unsigned int) CRC_Input[i + 0];
CRC32DIW1 = (unsigned int) CRC_Input[i + 1];
}

//Save the CRC32 result
CRC32_Result = ((unsigned long) CRC32RESRW0 << 16);
CRC32_Result = ((unsigned long) CRC32RESRW1&0x0000FFFF)|CRC32_Result;

//Now use a software routine to calculate the CRC32...
//Init SW CRC32
SW_CRC32_Results = CRC_Init;

for(i = 0; i < (sizeof(CRC_Input) >> 1); i++)
{
//Calculate the CRC32 on the low-byte first
SW_CRC32_Results=updateSwCrc32(SW_CRC32_Results,(CRC_Input[i]&0xFF));

//Calculate the CRC on the high-byte



11.3. CYCLIC REDUNDANCY CHECK 473
SW_CRC32_Results=updateSwCrc32(SW_CRC32_Results,(CRC_Input[i] >> 8));
}

//Compare data output results
if(CRC32_Result == SW_CRC32_Results) //if data is equal
P1OUT |= BIT0; //set the LED

else
P1OUT &= ~BIT0; //if not, clear LED

while(1); //infinite loop
}

//********************************************************************
// Calculate the SW CRC32 byte-by-byte
//********************************************************************

unsigned long updateSwCrc32( unsigned long crc, char c )
{
unsigned long tmp, long_c;

long_c = 0x000000ffL & (unsigned long) c;

if(!crc32TableInit)
{
initSwCrc32Table();
}

tmp = crc ^ long_c;
crc = (crc >> 8) ^ crc32Table[ tmp & 0xff ];

return crc;
}

//********************************************************************
// Initializes the CRC32 table
//********************************************************************

void initSwCrc32Table(void)
{



474 11. MSP430 SYSTEM INTEGRITY
int i, j;
unsigned long crc;

for(i = 0; i < 256; i++)
{
crc = (unsigned long) i;

for(j = 0; j < 8; j++)
{
if(crc & 0x00000001L)

{
crc = ( crc >> 1 ) ^ POLYNOMIAL_32;
}

else
{
crc = crc >> 1;
}

}
crc32Table[i] = crc;

}
//Set flag that the CRC32 table is initialized
crc32TableInit = 1;

}
//********************************************************************

11.4 AES256 ACCELERATOR MODULE
The MSP430FR5994 is equipped with the AES256 Accelerator Module that allows encryption
and decryption of data using the Rijndael cryptographic algorithm. The algorithm allows the
encryption of a 128-bit plain text data block into a corresponding size cipher text block. The
data may then be transmitted in an encrypted format and decrypted using a similar algorithm
at the receiving end [FIPS-197, 2001, SLAU367O, 2017].

The data algorithm uses a 128-, 192-, or 256-bit cipher key to encrypt the plain text data
block. The length of the cipher key determines the number of rounds (10, 12, or 14, respectively)
of encryption performed on the plain text data to transform it into the cipher text block. The
basic encryption process is shown in Figure 11.4a,b. The plain text 128-bit block is formatted
into a state block. The state block then goes through a series of transformation rounds including
an initial round, the sub-byte round, the shift rows round, the mix columns round, the add key
round, and the final round to encrypt the data. As shown in Figure 11.4b, a specific round key is



11.4. AES256 ACCELERATOR MODULE 475
derived from the original cipher key and used in a given round [FIPS-197, 2001, SLAU367O,
2017].

A block diagram of the MSP430FR5994 AES256 Accelerator Module is provided in
Figure 11.4c. Input plain text data for encryption may be stored in register AESADIN or AE-
SAXDIN. Data input to AESAXDIN is XORed with the current state value. The operation of
the AES256 Accelerator module is controlled by AES Control Registers 0 and 1. The AES key
is provided to the AESAKEY register. The encrypted cipher text is output to the AESADOUT
Register [SLAU367O, 2017].

11.4.1 REGISTERS
The AES256 system is supported by a complement of registers including [SLAU367O, 2017]:

• AESACTL0 AES accelerator control register 0

• AESACTL1 AES accelerator control register 1

• AESASTAT AES accelerator status register

• AESAKEY AES accelerator key register

• AESADIN AES accelerator data in register

• AESADOUT AES accelerator data out register

• AESAXDIN AES accelerator XORed data in register

• AESAXIN AES accelerator XORed data in register (no trigger)

Details of specific register and bits settings are contained in MSP430FR58xx,
MSP430FR59xx, and MSP430FR6xx Family User’s Guide [SLAU367O, 2017] and will not be
repeated here.

11.4.2 API SUPPORT
Texas Instruments provides extensive support for many MSP430 subsystems through a series
of application program interfaces (APIs). Basically, they are a library of prewritten functions
that allow for the rapid prototyping of programs. Provided below is a list of APIs supporting
the AES256 Accelerator Modules. Details on API settings are provided in MSP430 Peripheral
Driver Library User’s Guide [Driver Library, 2015] and will not be repeated here.

• AES256_clearErrorFlag

• AES256_clearInterrupt

• AES256_decryptData



476 11. MSP430 SYSTEM INTEGRITY

out[0] out[4] out[8] out[12]

out[1] out[5] out[9] out[13]

10] out[14]

Initial Key

Round Key 1

Round Key 2

Round Key 9

Round Key 10

Initial Round

Cipher Key
(AESAKEY)

Plain Text
(AESADIN)

Ciphertext
(AESADOUT)

AES Control
Registers 0, 1

128-bit AES
State Memory

AES
Encryption and

Decryption Core

256-bit AES
Key Memory

AESAKEY
(AES accelerator

key register)

AESADIN
(AES accelerator

data in)

AESAXDIN
(AES accelerator
XORed data in)

AESADOUT
(AES accelerator

data out)

Round 1

Round 2

Round 9

Round 10

11] out[15]

s[0,0] s[0,1] s[0,2] s[0,3]

s[1,0] s[1,1] s[1,2] s[1,3]

2,2] s[2,3]

3,2] s[3,3]

in[0] in[4] in[8] in[12]

in[1] in[5]

in[2] in[6]

in[3] in[75]

in[9] in[13]

in[10] in[14]

in[11] in[15]

initial
sub-bytes
shift rows

mix columns
add round key

final round

(a) AES256 algorithm

(c) AES256 block diagram

(b) AES256 encryption process with

a 128-bit key

Figure 11.4: AES256 encryption process: (a) AES256 algorithm, (b) AES256 encryption pro-
cess with 128-bit key, and (c) MSP430FR5994 AES256 block diagram [SLAU367O, 2017].



11.4. AES256 ACCELERATOR MODULE 477
• AES256_disableInterrupt

• AES256_enableInterrupt

• AES256_encryptData

• AES256_getDataOut

• AES256_getErrorFlagStatus

• AES256_getInterruptStatus

• AES256_isBusy

• AES256_reset

• AES256_setCipherKey

• AES256_setDecipherKey

• AES256_startDecryptData

• AES256_startEncryptData

• AES256_startSetDecipherKey

Example: In this example the AES256 module is used to encrypt/decrypt data using a cipher
key and APIs from DriverLib.

//********************************************************************
// --COPYRIGHT--,BSD_EX
// Copyright (c) 2015, Texas Instruments Incorporated
// All rights reserved.
//
// MSP430 CODE EXAMPLE DISCLAIMER
//
//********************************************************************
//***********************************************************************
//Below is a simple code example of how to encrypt/decrypt data using a
//cipher key with the AES256 module
//***********************************************************************

int main(void)
{
//Load a cipher key to module



478 11. MSP430 SYSTEM INTEGRITY
MAP_AES256_setCipherKey(AES256_MODULE, CipherKey,

AES256_KEYLENGTH_256BIT);

//Encrypt data with preloaded cipher key
MAP_AES256_encryptData(AES256_MODULE, Data, DataAESencrypted);

//Load a decipher key to module
MAP_AES256_setDecipherKey(AES256_MODULE, CipherKey,

AES256_KEYLENGTH_256BIT);

//Decrypt data with keys that were generated during encryption takes
//214 MCLK cyles. This function will generate all round keys needed for
//
decryption first and then the encryption process starts
MAP_AES256_decryptData(AES256_MODULE, DataAESencrypted,

DataAESdecrypted);
}

//***********************************************************************

Example: In this example the AES256 module is used for encryption and decryption. The orig-
inal plain text data is encrypted and then decrypted. The results are compared and if they agree
an LED on P1.0 is illuminated. A UML activity diagram for the example is provided in Fig-
ure 11.5.

//***********************************************************************
//MSP430P401 Demo - AES256 Encryption & Decryption
//
//Description: This example shows a simple example of encryption and
//decryption using the AES256 module.
//
// MSP430FR5994
// -----------------
// /|\| |
// | | |
// --|RST |
// | |
// | P1.0|-->LED
//
//Key: 000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f



11.4. AES256 ACCELERATOR MODULE 479

Define data block for encryption

Define 256-bit (32-byte) cipher key

Declare encypted data variable

Declare decrypted data variable

Stop watchdog timer

Key written?

Key written?

Data match?Wait for

unit to finish

(~167 MCLK cycles)

Wait for

unit to finish

(~167 MCLK cycles)

Set P1.0 as output, turn off P1.0 LED

Write 128-bit block of data to decrypt module

Confirm decrypt data is identical to original data

Turn on P1.0 LED

Load cipher key

Set AES key length the 256 bits

Load 256-bit cipher key to AESAKEY register

Decrypt data with keys generated during encryption

(~214 MCLK cycles)

Generate all round keys needed for decryption

Begin encryption process

Reload AES key

Set AES module to decrypt mode

Set AES key length to 256 bits

Load 256-bit cypher key to AESAKEY register

Encrypt data and store to DataAESencrypted

Load 128-bit block of data to encrypt to module

Write 128-bit block encrypted data

back to DataAESdecrypted

Write 128-bit block of encrypted

data back to DataAESencrypted

Initiate encryption by setting AESKEYWR to 1

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

Figure 11.5: AES256 encryption/decryption process [SLAU367O, 2017].



480 11. MSP430 SYSTEM INTEGRITY
//Plaintext: 00112233445566778899aabbccddeeff
//Ciphertext: 8ea2b7ca516745bfeafc49904b496089
//
//Dung Dang
//Texas Instruments Inc.
//Nov 2013
//Built with Code Composer Studio V6.0
//***********************************************************************

#include "msp.h"
#include <stdint.h>

uint8_t Data[16] =
{0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff };

uint8_t CipherKey[32] =
{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f };

uint8_t DataAESencrypted[16]; //Encrypted data
uint8_t DataAESdecrypted[16]; //Decrypted data

int main(void)
{
volatile uint32_t i;
uint16_t sCipherKey, tempVariable;

WDTCTL = WDTPW | WDTHOLD; //Stop WDT

P1DIR |= BIT0; //P1.0 set as output
P1OUT &= ~BIT0; //Turn off P1.0 LED

//Step 1: Load cipher key
AESACTL0 &= ~AESOP_3; //Set AES module to encrypt mode



11.4. AES256 ACCELERATOR MODULE 481
//Set AES key length to 256 bits
AESACTL0 = AESACTL0 & (~(AESKL_1 + AESKL_2)) | AESKL__256BIT;

//Load 256-bit cipher key to the AESAKEY register
for(i = 0; i < 256/8; i = i + 2)

{
//Concatenate 2 8-bit blocks into one 16-bit block
sCipherKey =(uint16_t)(CipherKey[i]);
sCipherKey = sCipherKey |((uint16_t)(CipherKey[i + 1]) << 8);

//Load 16-bit key block to AESAKEY register
AESAKEY = sCipherKey;
}

//Wait until key is written
while((AESASTAT & AESKEYWR ) == 0);

//Step 2: Encrypt data and store to DataAESencrypted
//Load 128-bit block of data to encrypt to module
for(i = 0; i < 16; i = i + 2)

{
//Concatenate 2 8-bit blocks into one 16-bit block
tempVariable =(uint16_t)(Data[i]);
tempVariable = tempVariable |((uint16_t)(Data[i + 1]) << 8);

//Load 16-bit key block to AESADIn register
AESADIN = tempVariable;
}

//Initiate encryption by setting AESKEYWR to 1
AESASTAT |= AESKEYWR;

//Wait unit finished ~167 MCLK
while( AESASTAT & AESBUSY );

//Write 128-bit block of encrypted data back to DataAESencrypted
for(i = 0; i < 16; i = i + 2)

{



482 11. MSP430 SYSTEM INTEGRITY
tempVariable = AESADOUT;
DataAESencrypted[i] = (uint8_t)tempVariable;
DataAESencrypted[i+1] = (uint8_t)(tempVariable >> 8);
}

//Step 3: Reload AES key
//Set AES module to decrypt mode
AESACTL0 |= AESOP_1;

//Set AES key length to 256 bits
AESACTL0 = AESACTL0 & (~(AESKL_1 + AESKL_2)) | AESKL__256BIT;

//Load 256-bit cipher key to the AESAKEY register
for(i = 0; i < 256/8; i = i + 2)

{
//Concatenate 2 8-bit blocks into one 16-bit block
sCipherKey =(uint16_t)(CipherKey[i]);
sCipherKey = sCipherKey |((uint16_t)(CipherKey[i + 1]) << 8);

//Load 16-bit key block to AESAKEY register
AESAKEY = sCipherKey;
}

//Wait until key is written
while((AESASTAT & AESKEYWR ) == 0);

//Step 4: Decrypt data with keys that were generated during
//encryption takes 214 MCLK. This function will generate all round
//keys needed for decryption first and then the encryption process
//starts.

//Write 128-bit block of data to decrypt to module
for(i = 0; i < 16; i = i + 2)

{
tempVariable = (uint16_t) (DataAESencrypted[i + 1] << 8);
tempVariable = tempVariable | ((uint16_t) (DataAESencrypted[i]));
AESADIN = tempVariable;
}



11.5. LABORATORY EXERCISE: AES256 483

//Wait until finished ~167 MCLK
while(AESASTAT & AESBUSY);

//Write 128-bit block of encrypted data back to DataAESdecrypted
for(i = 0; i < 16; i = i + 2)

{
tempVariable = AESADOUT;
DataAESdecrypted[i] = (uint8_t)tempVariable;
DataAESdecrypted[i+1] =(uint8_t)(tempVariable >> 8);
}

//Step 4: Confirm decrypted data is identical to original data
for(i = 0; i < 16; i ++)

if(DataAESdecrypted[i]!= Data[i])
while(1); //Set breakpoint here for error

P1DIR |= BIT0;
P1OUT |= BIT0; //Turn on P1.0 LED = success
while(1);

}

//***********************************************************************

11.5 LABORATORY EXERCISE: AES256
Develop an algorithm to encode a plain text block of data with the AES256 system, transmit
the cipher text to another microcontroller, and then decrypt back to plain text at the receiving
microcontroller.

11.6 SUMMARY
This chapter contained essential information about how to maintain the integrity of a
microcontroller-based system. The chapter began with a discussion on EMI, also known as
noise. Design practices to minimize EMI were then discussed. The second section of the chapter
discussed the concept of the CRC. The final section covered the MSP430 advanced encryption
standard module, the AES256.



484 11. MSP430 SYSTEM INTEGRITY

11.7 REFERENCES AND FURTHER READING
Barrett, S. F. and Pack, D. J. Embedded Systems: Design and Applications with the 68HC12 and
HCS12, Prentice Hall, Upper Saddle River, NJ, 2004. 462

Federal Information Processing Standards Publication 197 (FIPS-197), November 26, 2001. 474,
475

MSP430 Peripheral Driver Library User’s Guide, Texas Instruments, 2015. 475

MSP430FR58xx, MSP430FR59xx, andMSP430FR6xx Family User’s, (SLAU367O), Texas In-
struments, 2017. 465, 466, 467, 474, 475, 476, 479

Noise Reduction Techniques for Microcontroller-Based Systems, (AN1705/D), Freescale Semicon-
ductor, 2004. 462, 463

Understanding and Eliminating EMI in Microcontroller Applications, (COP888), Texas Instru-
ments, 1996. 462, 463

11.8 CHAPTER PROBLEMS
Fundamental

1. Describe sources of EMI.

2. Describe EMI coupling mechanisms.

3. Describe three strategies to combat EMI.

4. Describe specific techniques to combat EMI.

5. Describe defensive programming techniques.

Advanced

1. Sketch a UML activity diagram for the CRC algorithm.

2. What is the purpose of generating a CRC checksum?

3. What does a correct checksum indicate? An incorrect one?

4. Research common CRC polynomials. Sketch the corresponding LFSR for each polyno-
mial.

5. What is the purpose of the AES256 subsystem?



11.8. CHAPTER PROBLEMS 485
Challenging

1. What are the advantages and disadvantages of using different encryption key lengths with
the AES256?

2. Sketch a UML activity diagram for the AES256 encryption algorithm.





487

C H A P T E R 12

System-Level Design
Objectives: After reading this chapter, the reader should be able to do the following:

• define an embedded system;

• list multiple aspects related to the design of an embedded system;

• provide a step-by-step approach to design an embedded system;

• discuss design tools and practices related to embedded systems design;

• discuss the importance of system testing;

• apply embedded system design practices in the prototype of a MSP430 based system with
several subsystems;

• provide a detailed design for a weather station including hardware layout and interface,
structure chart, UML activity diagrams, and an algorithm coded in Energia;

• provide a detailed design for a submersible remotely operated vehicle (ROV) including
hardware layout and interface, structure chart, UML activity diagrams, and an algorithm
coded in Energia; and

• provide a detailed design for a four-wheel drive (4WD) mountain maze navigating robot
including hardware layout and interface, structure chart, UML activity diagrams, and an
algorithm coded in Energia.

12.1 OVERVIEW
This chapter provides a step-by-step, methodical approach toward designing advanced embed-
ded systems. We begin with a definition of an embedded system. We then explore the process
of how to successfully (and with low stress) develop an embedded system prototype that meets
established requirements. The overview of embedded system design techniques was adapted
with permission from earlier Morgan & Claypool projects. Also, the projects have been adapted
with permission for the MSP430. We also emphasize good testing techniques. We conclude
the chapter with several extended examples. The examples illustrate the embedded system de-
sign process in the development and prototype of a weather station, a submersible ROV, and a
4WD mountain maze navigating robot. We use the MSP-EXP430FR5994 LaunchPad in the
examples to allow for the greatest project extension.



488 12. SYSTEM-LEVEL DESIGN

12.2 WHAT IS AN EMBEDDED SYSTEM?
An embedded system is typically designed for a specific task. It contains a processor to col-
lect system inputs and generate system outputs. The link between system inputs and outputs is
provided by a coded algorithm stored within the processor’s resident memory. What makes em-
bedded systems design so challenging and interesting is the design must also provide for proper
electrical interface for the input and output devices, potentially limited on-chip resources, human
interface concepts, the operating environment of the system, cost analysis, related standards, and
manufacturing aspects [Anderson, 2008]. Through careful application of this material you will
be able to design and prototype embedded systems based on MSP430.

12.3 EMBEDDED SYSTEM DESIGN PROCESS
There are many formal design processes that we could study. We concentrate on the steps that
are common to most. We purposefully avoid formal terminology of a specific approach and
instead concentrate on the activities that are accomplished during the development of a system
prototype. The design process we describe is illustrated in Figure 12.1 using a UML activity
diagram. We discuss the UML activity diagrams later in this section.

12.3.1 PROJECT DESCRIPTION
The goal of the project description step is to determine what the system is ultimately supposed to
do. Questions to raise and answer during this step include, but are not limited to, the following.

• What is the system supposed to do?

• Where will it be operating and under what conditions?

• Are there any restrictions placed on the system design?

To answer these questions, the designer interacts with the client to ensure clear agreement
on what is to be done. The establishment of clear, definable system requirements may require
considerable interaction between the designer and the client. It is essential that both parties agree
on system requirements before proceeding further in the design process. The final result of this
step is a detailed listing of system requirements and related specifications. If you are completing
this project for yourself, you must still carefully and thoughtfully complete this step.

12.3.2 BACKGROUND RESEARCH
Once a detailed list of requirements has been established, the next step is to perform back-
ground research related to the design. In this step, the designer will ensure they understand all
requirements and features required by the project. This will again involve interaction between
the designer and the client. The designer will also investigate applicable codes, guidelines, pro-
tocols, and standards related to the project. This is also a good time to start thinking about the



12.3. EMBEDDED SYSTEM DESIGN PROCESS 489

Project Description
- What is the system supposed to do?

- Operating conditions and environment
- Formal requirements

Implement Prototype
- Top down vs. bottom up

- Develop low risk hardware test platform
- Software implementation

Preliminary Testing
- Develop test plan to insure requirements

have been met
- Test under anticipated conditions

- Test under abusive conditions
- Redo testing if errors found

- Test in low-cost, low-risk environment
- Full up test

Complete and Accurate Documentation
- System description

- Requirements
- Structure chart

- UML activity diagram
- Circuit diagram

- Well-documented code
- Test plan

Background Research
- !oroughly understand desired requirements and features

- Determine applicable codes, guidelines, and protocols
- Determine interface requirements

Pre-Design
- Brainstorm possible solutions

- !oroughly investigate alternatives
- Choose best possible solution

- Identify specific target microcontroller
- Choose a design approach

Employ Design Tools
- Structure chart

- UML activity diagram
- Circuit diagram

- Supplemental information

System design
need correction?

No

Deliver Prototype

Yes

Figure 12.1: Embedded system design process.



490 12. SYSTEM-LEVEL DESIGN
interface between different portions of the input and output devices peripherally connected to
the processor. The ultimate objective of this step is to have a thorough understanding of the
project requirements, related project aspects, and any interface challenges within the project.

12.3.3 PRE-DESIGN
The goal of the pre-design step is to convert a thorough understanding of the project into possi-
ble design alternatives. Brainstorming is an effective tool in this step. Here, a list of alternatives
is developed. Since an embedded system involves hardware and/or software, the designer can
investigate whether requirements could be met with a hardware only solution or some combi-
nation of hardware and software. Generally speaking, a hardware only solution executes faster;
however, the design is fixed once fielded. On the other hand, a software implementation provides
flexibility but a slower execution speed. Most embedded design solutions will use a combination
of both hardware and software to capitalize on the inherent advantages of each.

Once a design alternative has been selected, the general partition between hardware and
software can be determined. It is also an appropriate time to select a specific hardware device
to implement the prototype design. If a technology has been chosen, it is now time to select a
specific processor. This is accomplished by answering the following questions.

• What processor systems or features (i.e., ADC, PWM, timer, etc.) are required by the
design?

• How many I/O pins are required by the design?

• What type of memory components are required?

• What is the maximum anticipated operating speed of the processor expected to be?

Due to the variety of onboard systems, clock speed, and low cost; the MSP430 may be
used in a wide array of applications typically held by microcontrollers and advanced processors.

12.3.4 DESIGN
With a clear view of system requirements and features, a general partition determined between
hardware and software, and a specific processor chosen; it is now time to tackle the actual design.
It is important to follow a systematic and disciplined approach to design. This will allow for low
stress development of a documented design solution that meets requirements. In the design step,
several tools are employed to ease the design process. They include the following:

• employing a top-down design, bottom-up implementation approach,

• using a structure chart to assist in partitioning the system,

• using a UML activity diagram to work out program flow, and



12.3. EMBEDDED SYSTEM DESIGN PROCESS 491
• developing a detailed circuit diagram of the entire system.

Let’s take a closer look at each of these. The information provided here is an abbreviated
version of the one provided in Microcontrollers Fundamentals for Engineers and Scientists. The
interested reader is referred there for additional details and an in-depth example [Barrett and
Pack, 2006].

Top-down design, bottom-up implementation. An effective tool to start partitioning
the design is based on the techniques of top-down design, bottom-up implementation. In this
approach, you start with the overall system and begin to partition it into subsystems. At this
point of the design, you are not concerned with how the design will be accomplished but how
the different pieces of the project will fit together. A handy tool to use at this design stage is
the structure chart. The structure chart shows how the hierarchy of system hardware and soft-
ware components will interact and interface with one another. You should continue partitioning
system activity until each subsystem in the structure chart has a single definable function. Di-
rectional arrows are used to indicate data flow in and out of a function.

UML activity diagram. Once the system has been partitioned into pieces, the next step
is to work out the details of the operation of each subsystem previously identified. Rather than
beginning to code each subsystem as a function, work out the information and control flow of
each subsystem using another design tool: the UML activity diagram. The activity diagram is
simply a UML compliant flow chart. UML is a standardized method of documenting systems.
The activity diagram is one of the many tools available from UML to document system design
and operation. The basic symbols used in a UML activity diagram for a processor based system
are provided in Figure 12.2 [Fowler, 2000].

To develop the UML activity diagram for the system, we can use a top-down, bottom-up,
or a hybrid approach. In the top-down approach, we begin by modeling the overall flow of the
algorithm from a high level. If we choose to use the bottom-up approach, we would begin at the
bottom of the structure chart and choose a subsystem for flow modeling. The specific course of
action chosen depends on project specifics. Often, a combination of both techniques, a hybrid
approach, is used. You should work out all algorithm details at the UML activity diagram level
prior to coding any software. If you cannot explain system operation at this higher level first, you
have no business being down in the detail of developing the code. Therefore, the UML activity
diagram should be of sufficient detail so you can code the algorithm directly from it [Dale and
Lilly, 1995].

In the design step, a detailed circuit diagram of the entire system is developed. It will serve
as a roadmap to implement the system. It is also a good idea at this point to investigate avail-
able design information relative to the project. This would include hardware design examples,
software code examples, and application notes available from manufacturers. As before, use a
subsystem approach to assemble the entire circuit. The basic building block interface circuits dis-



492 12. SYSTEM-LEVEL DESIGN

Starting

Activity

Transfer

of Control

Final State

Action StateBranch

Figure 12.2: UML activity diagram symbols. (Adapted from Fowler [2000].)

cussed in the previous chapter may be used to assemble the complete circuit. At the completion
of this step, the prototype design is ready for implementation and testing.

12.3.5 IMPLEMENT PROTOTYPE
To successfully implement a prototype, an incremental approach should be followed. Again, the
top-down design, bottom-up implementation provides a solid guide for system implementation.
In an embedded system design involving both hardware and software, the hardware system in-
cluding the processor should be assembled first. This provides the software the required signals
to interact with. As the hardware prototype is assembled on a prototype board, each compo-
nent is tested for proper operation as it is brought online. This allows the designer to pinpoint
malfunctions as they occur.

Once the hardware prototype is assembled, coding may commence. It is important to
note that on larger projects software and hardware may be developed concurrently. As before,
software should be incrementally brought online. Youmay use a top-down, bottom-up, or hybrid
approach depending on the nature of the software. The important point is to bring the software
online incrementally such that issues can be identified and corrected early on.

It is highly recommended that low-cost stand-in components be used when testing the
software with the hardware components. For example, push buttons, potentiometers, and LEDs
may be used as low-cost stand-in component simulators for expensive input instrumentation



12.3. EMBEDDED SYSTEM DESIGN PROCESS 493
devices and expensive output devices such as motors. This allows you to insure the software is
properly operating before using it to control the actual components.

12.3.6 PRELIMINARY TESTING
To test the system, a detailed test plan must be developed. Tests should be developed to verify
that the system meets all of its requirements and also intended system performance in an oper-
ational environment. The test plan should also include scenarios in which the system is used in
an unintended manner. As before, a top-down, bottom-up, or hybrid approach can be used to
test the system. In a bottom-up approach individual units are tested first.

Once the test plan is completed, actual testing may commence. The results of each test
should be carefully documented. As you go through the test plan, you will probably uncover
a number of run-time errors in your algorithm. After you correct a run-time error, the entire
test plan must be repeated. This ensures that the new fix does not have an unintended effect on
another part of the system. Also, as you process through the test plan, you will probably think
of other tests that were not included in the original test document. These tests should be added
to the test plan. As you go through testing, realize your final system is only as good as the test
plan that supports it!

Once testing is complete, you should accomplish another level of testing where you in-
tentionally try to “jam up” the system. In other words, try to get your system to fail by trying
combinations of inputs that were not part of the original design. A robust system should con-
tinue to operate correctly in this type of an abusive environment. It is imperative that you design
robustness into your system. When testing on a low cost simulator is complete, the entire test
plan should be performed again with the actual system hardware. Once this is completed you
should have a system that meets its requirements!

12.3.7 COMPLETE AND ACCURATE DOCUMENTATION
With testing complete, the system design should be thoroughly documented. Much of the doc-
umentation will have already been accomplished during system development. Documentation
will include the system description, system requirements, the structure chart, the UML activity
diagrams documenting program flow, the test plan, results of the test plan, system schematics,
and properly documented code. To properly document code, you should carefully comment all
functions describing their operation, inputs, and outputs. Also, comments should be included
within the body of the function describing key portions of the code. Enough detail should be
provided such that code operation is obvious. It is also extremely helpful to provide variables
and functions within your code names that describe their intended use.

You might think that comprehensive system documentation is not worth the time or effort
to complete it. Complete documentation pays rich dividends when it is time to modify, repair,
or update an existing system. Also, well-documented code may be often reused in other projects:
a method for efficient and timely development of new systems.



494 12. SYSTEM-LEVEL DESIGN
In the next sections we provide detailed examples of the system design process for a

weather station, a submersible robot, and a 4WD robot capable of navigating through a moun-
tainous maze.

12.4 MSP430FR5994: WEATHER STATION
In this project, we design a weather station to sense wind direction and ambient temperature.
The wind direction will be displayed on LEDs arranged in a circular pattern. The wind direction
and temperature will also be transmitted serially via the SPI from the microcontroller to the
onboard microSD flash memory card for data logging.

12.4.1 REQUIREMENTS
The requirements for this system include:

• design a weather station to sense wind direction and ambient temperature;

• wind direction should be displayed on LEDs arranged in a circular pattern; and

• wind direction and temperature should be transmitted serially from the microcontroller to
the onboard microSD card for storage.

12.4.2 STRUCTURE CHART
To begin, the design process, a structure chart is used to partition the system into definable
pieces.We employ a top-down design/bottom-up implementation approach.The structure chart
for the weather station is provided in Figure 12.3. The three main microcontroller subsystems
needed for this project are the SPI for serial communication, the ADC12 system to convert the
analog voltage from the LM34 temperature sensor and weather vane into digital signals, and
the wind direction display. The system is partitioned until the lowest level of the structure chart
contains “doable” pieces of hardware components or software functions. Data flow is shown on
the structure chart as directed arrows.

12.4.3 CIRCUIT DIAGRAM
Analog sensors: The circuit diagram for the weather station is provided in Figure 12.4. The
weather station is equipped with two input sensors: the LM34 to measure temperature and the
weather vane to measure wind direction. Both of the sensors provide an analog output that is fed
to the MSP430. The LM34 provides 10 mV output per degree Fahrenheit. The weather vane
provides a voltage output from 0–3.3 VDC for different wind direction as shown in Figure 12.4.
The weather vane must be oriented to a known direction with the output voltage at this direction
noted. We assume that 0 VDC corresponds to North.



12.4. MSP430FR5994: WEATHER STATION 495

 

Weather Station

ADC12
Wind

Direction
Display

SPI
Initialize

& Transmit

AC12
Initialize

MicroSD
Card

Data for
Display

Data
for TX

Ch for
Conv

Conv
  Data

Wind
Direction

Wind
Direction

Temp
Data

ReadADC12
Weather

Vane
LM34

Temp Sensor
LED

Interface

SPI

Figure 12.3: Weather station structure chart.

Wind direction display: There are eight different LEDs to drive for the wind direction
indicator. An interface circuit is required for each LED as shown in the figure.

12.4.4 UML ACTIVITY DIAGRAMS
The UML activity diagram for the main program is provided in Figure 12.5. After initializing
the subsystems, the program enters a continuous loop where temperature and wind direction is
sensed and displayed on the LCD and the LED display. The sensed values are then transmitted
via the SPI to the MMC/SD card. The system then enters a delay to set how often the temper-
ature and wind direction parameters are updated. We have you construct the individual UML
activity diagrams for each function as an end of chapter exercise.

12.4.5 MICROCONTROLLER CODE
For quick prototyping the first version of the code for this project is rendered in Energia. After
initializing the system, the code continuously loops and reads temperature and wind direction
data, and displays the data to the LED array. A delay should be inserted in the loop to determine
how often the weather data should be collected. During development code status is sent to the
serial monitor. Printing to the serial monitor is enabled with the variable “troubleshoot.”



496 12. SYSTEM-LEVEL DESIGN

Weather Vane

Vcc = 3.3 V

P1.5, A5 
pin 28

4

1

10 K

LM34

Vcc = 5 V 
Temperature 
Sensor75

1uF

P1.3, A3 
pin 6

3.3 VDC

10 K 10 K 10 K 10 K 10 K 10 K 10 K 10 K

MPQ2222

from MSP430

1 7
2

3 5 10 12 3 5 10 12

6 9 13 2 6 9 13
8 14 1 7 14

N

J K G2 L M N G1 4 H

NE E SE S WSW NW

N

S

EW

NE

SE

NW

SW

Sparkfun Weather 
Meters (SEN-08942)

Degrees Ohms Vout 
0 33 k 2.53 
22.5 6.57 k 1.31 
45 8.2 k 1.49 
67.5 891 0.27 
90 1 k 0.30 
112.5 688 0.21 
135 2.2 k 0.60 
157.5 1.41 k 0.41 
180 3.9 k 0.93 
202.5 3.14 k 0.79 
225 16 k 2.03 
247.5 14.12 k 1.93 
270 120 k 3.05 
292.5 42.12 k 2.67 
315 64.9 k 2.86 
337.5 21.88 k 2.26 

41

MSP-EXP430FR5994 LaunchPad

Onboard 
MicroSD

N
: P

4.
1, 

J4
, p

in
 3

1

N
E: P

4.
2, 

J4
, p

in
 3

2

E: P
4.

3, 
J4

, p
in

 3
3

SE: P
2.

5, 
J4

, p
in

 3
4

S: P
2.

6, 
J4

, p
in

 3
5

SW
: P

7.
3, 

J4
, p

in
 3

6

W
: P

3.
4, 

J4
, p

in
 3

7

N
W

: P
3.

5, 
J4

, p
in

 3
8

Figure 12.4: Circuit diagram for weather station. (Illustrations used with permission of Sparkfun
Electronics (www.sparkfun.com) and Texas Instruments (www.ti.com).)

www.sparkfun.com
www.ti.com


12.4. MSP430FR5994: WEATHER STATION 497

Include files

Global variables

Function prototypes

Initialize ADC

Initialize SPI

While(1)

Convert temp

Convert wind direction

Display wind direction

on LED

Transmit results to MMC/SD

card via SPI

Delay(desired_update_time)

Figure 12.5: Weather station UML activity diagram.



498 12. SYSTEM-LEVEL DESIGN
//***********************************************************************
//weather station
//- Equipped with:
//- Sparkfun weather meters (SEN-08942)
// -- rain gauge
// -- anemometer
// -- wind vane
//- LM34 temperature sensor
//- Sparkfun LCD-09067, serial enabled 16x2 LCD, 3.3 VDC
//***********************************************************************

//analog input pins
#define wind_dir 28 //analog pin - weather vane
#define temp_sensor 6 //analog pin - LM34 temp sensor

//digital output pins - LED indicators
#define N_LED 31 //digital pin - N LED
#define NE_LED 32 //digital pin - NE LED
#define E_LED 33 //digital pin - E LED
#define SE_LED 34 //digital pin - SE LED
#define S_LED 35 //digital pin - S LED
#define SW_LED 36 //digital pin - SW LED
#define W_LED 37 //digital pin - W LED
#define NW_LED 38 //digital pin - NW LED

int wind_dir_value; //declare variable for wind dir
int temp_value; //declare variable for temp
int troubleshoot = 1; //1: serial monitor prints

float wind_direction_float;
float temp_value_float;

void setup()
{
//LED indicators
pinMode(N_LED, OUTPUT); //config pin for digital out - N LED
pinMode(NE_LED, OUTPUT); //config pin for digital out - NE LED
pinMode(E_LED, OUTPUT); //config pin for digital out - E LED
pinMode(SE_LED, OUTPUT); //config pin for digital out - SE LED



12.4. MSP430FR5994: WEATHER STATION 499
pinMode(S_LED, OUTPUT); //config pin for digital out - S LED
pinMode(SW_LED, OUTPUT); //config pin for digital out - SW LED
pinMode(W_LED, OUTPUT); //config pin for digital out - W LED
pinMode(NW_LED, OUTPUT); //config pin for digital out - NW LED

//Serial monitor - open serial communications
if(troubleshoot == 1) Serial.begin(9600);
}

void loop()
{
//read two sensors and append to the string
//analog read returns value between 0 and 1023
wind_dir_value = analogRead(wind_dir);
temp_value = analogRead(temp_sensor);

if(troubleshoot == 1)Serial.println(wind_dir_value);
if(troubleshoot == 1)Serial.println(temp_value);

//LM34 provides 10 mV/degree
temp_value =(int)(((temp_value/1023.0) * 3.3)/.010);
if(troubleshoot == 1)Serial.println(temp_value);

//display wind direction
display_wind_direction(wind_dir_value);
}

//***********************************************************************

void display_wind_direction(unsigned int wind_dir_int)
{
float wind_dir_float;

//convert wind direction to float
wind_dir_float = wind_dir_int/1023.0 * 3.3;

if(troubleshoot == 1)Serial.println(wind_dir_float);

//N - LED0
if((wind_dir_float <= 2.56)&&(wind_dir_float > 2.50))



500 12. SYSTEM-LEVEL DESIGN
{
digitalWrite(N_LED, HIGH); digitalWrite(NE_LED, LOW);
digitalWrite(E_LED, LOW); digitalWrite(SE_LED, LOW);
digitalWrite(S_LED, LOW); digitalWrite(SW_LED, LOW);
digitalWrite(W_LED, LOW); digitalWrite(NW_LED, LOW);
}

//NE - LED1
if((wind_dir_float > 1.46)&&(wind_dir_float <= 1.52))

{
digitalWrite(N_LED, LOW); digitalWrite(NE_LED, HIGH);
digitalWrite(E_LED, LOW); digitalWrite(SE_LED, LOW);
digitalWrite(S_LED, LOW); digitalWrite(SW_LED, LOW);
digitalWrite(W_LED, LOW); digitalWrite(NW_LED, LOW);
}

//E - LED2
if((wind_dir_float > 0.27)&&(wind_dir_float <= 0.33))

{
digitalWrite(N_LED, LOW); digitalWrite(NE_LED, LOW);
digitalWrite(E_LED, HIGH); digitalWrite(SE_LED, LOW);
digitalWrite(S_LED, LOW); digitalWrite(SW_LED, LOW);/
digitalWrite(W_LED, LOW); digitalWrite(NW_LED, LOW);
}

//SE - LED3
if((wind_dir_float > 0.57)&&(wind_dir_float <= 0.63))

{
digitalWrite(N_LED, LOW); digitalWrite(NE_LED, LOW);
digitalWrite(E_LED, LOW); digitalWrite(SE_LED, HIGH);
digitalWrite(S_LED, LOW); digitalWrite(SW_LED, LOW);
digitalWrite(W_LED, LOW); digitalWrite(NW_LED, LOW);
}

//S - LED4
if((wind_dir_float > 0.9)&&(wind_dir_float <= 0.96))

{
digitalWrite(N_LED, LOW); digitalWrite(NE_LED, LOW);
digitalWrite(E_LED, LOW); digitalWrite(SE_LED, LOW);



12.4. MSP430FR5994: WEATHER STATION 501
digitalWrite(S_LED, HIGH); digitalWrite(SW_LED, LOW);
digitalWrite(W_LED, LOW); digitalWrite(NW_LED, LOW);
}

//SW - LED5
if((wind_dir_float > 2.0)&&(wind_dir_float <= 2.06))

{
digitalWrite(N_LED, LOW); digitalWrite(NE_LED, LOW);
digitalWrite(E_LED, LOW); digitalWrite(SE_LED, LOW);
digitalWrite(S_LED, LOW); digitalWrite(SW_LED, HIGH);
digitalWrite(W_LED, LOW); digitalWrite(NW_LED, LOW);
}

//W - LED6
if((wind_dir_float > 3.02)&&(wind_dir_float <= 3.08))

{
digitalWrite(N_LED, LOW); digitalWrite(NE_LED, LOW);
digitalWrite(E_LED, LOW); digitalWrite(SE_LED, LOW);
digitalWrite(S_LED, LOW); digitalWrite(SW_LED, LOW);
digitalWrite(W_LED, HIGH); digitalWrite(NW_LED, LOW);
}

//NW - LED7
if((wind_dir_float > 2.83)&& (wind_dir_float <= 2.89))

{
digitalWrite(N_LED, LOW); digitalWrite(NE_LED, LOW);
digitalWrite(E_LED, LOW); digitalWrite(SE_LED, LOW);
digitalWrite(S_LED, LOW); digitalWrite(SW_LED, LOW);
digitalWrite(W_LED, LOW); digitalWrite(NW_LED, HIGH);
}

}

//***********************************************************************

12.4.6 PROJECT EXTENSIONS
The control system provided above has a set of very basic features. Here are some possible ex-
tensions for the system.

• Equip the weather station with an LCD display.



502 12. SYSTEM-LEVEL DESIGN
• In addition to the wind vane, the Sparkfun weather meters (SEN-08942) includes a rain

gauge and anemometer. Add these features to the weather station.

• In Chapter 6 we discussed the onboard microSD card. Equip the weather station project
with the onboard microSD card to log time hacks and weather data.

12.5 SUBMERSIBLE ROBOT
The area of submersible robots is fascinating and challenging. To design a robot is quite com-
plex (yet fun). To add the additional requirement of waterproofing key components provides an
additional level of challenge. (Water and electricity do not mix!) In this section we provide the
construction details and a control system for a remotely operated vehicle, an ROV. Specifically,
we develop the structure and control system for the SeaPerch style ROV, as shown in Fig-
ure 12.6. By definition, an ROV is equipped with a tether umbilical cable that provides power
and control signals from a surface support platform. An autonomous underwater vehicle (AUV)
carries its own power and control equipment and does not require surface support [Seaperch].

Details on the construction and waterproofing of an ROV are provided in the excellent
and fascinating Build Your Own Underwater Robot and Other Wet Projects by Harry Bohm and
Vickie Jensen. For an advanced treatment, please seeTheROVManual-AUser Guide for Remotely
Operated Vehicles by Robert Crist and Robert Wernli, Sr. There is a national-level competition
for students based on the SeaPerch ROV. The goal of the program is to stimulate interest in the
next generation of marine-related engineering specialties [Seaperch].

12.5.1 APPROACH
This is a challenging project; however, we take a methodical, step-by-step approach to successful
design and construction of the ROV. We complete the design tasks in the following order.

1. Determine requirements.

2. Design and construct ROV structure.

3. Design and fabricate control electronics.

4. Design and implement control software using Energia.

5. Construct and assemble a prototype.

6. Test the prototype.

12.5.2 REQUIREMENTS
The requirements for the ROV system include the following.



12.5. SUBMERSIBLE ROBOT 503

Left

�ruster

Right

�ruster

Vertical

�ruster

Power and Control

Umbilical

Left

Float

Right

Float

Figure 12.6: SeaPerch ROV. (Adapted and used with permission of Bohm and Jensen, West
Coast Words Publishing.)

• Develop a control system to allow a three thruster (motor or bilge pump) ROV to move
forward, left (port) and right (starboard).

• The ROV will be pushed down to a shallow depth via a vertical thruster and return to
surface based on its own, slightly positive buoyancy.

• ROV movement will be under joystick control.

• LEDs are used to indicate thruster assertion.

• All power and control circuitry will be maintained in a surface support platform as shown
in Figure 12.7.

• An umbilical cable connects the support platform to the ROV.



504 12. SYSTEM-LEVEL DESIGN

L  C  R

Battery

Figure 12.7: Power and control are provided remotely to the SeaPerch ROV. (Adapted and used
with permission of Bohm and Jensen, West Coast Words Publishing.)

12.5.3 ROV STRUCTURE
The ROV structure is shown in Figure 12.8. The structure is constructed with 0.75-in PVC
piping. The structure is assembled quickly using “T” and corner connectors. The pieces are con-
nected using PVC glue or machine screws. The PVC pipe and connectors are readily available
in hardware and home improvement stores.

The fore or bow portion of the structure is equipped with plexiglass panels to serve as
mounting bulkheads for the thrusters. The panels are mounted to the PVC structure using ring
clamps. Either waterproofed electric motors or submersible bilge pumps are used as thrusters. A
bilge pump is a pump specifically designed to remove water from the inside of a boat. The pumps
are powered from a 12VDC source and have typical flow rates from 360 to over 3,500 gallons per



12.5. SUBMERSIBLE ROBOT 505

W
aterproof

In
terface

S
h

orelin
e

B
ilge P

um
p

Top View

Per side:
2 each - 4-1/2”
3 each - 4-1/2”
2 each - 7”

Side View

ring
clamp

ring
clamp

ring
clamp

ring
clamp

ring
clamp

ring
clamp

ring
clamp

ring
clamp

ring
clamp

ring
clamp

Shoreline
Bilge Pump

Shoreline
Bilge Pump

Shoreline
Bilge Pump

Up/Down
!ruster

3/4” diameter PVC

Umbilical Cable

Stern Bow

S
h

orelin
e

B
ilge P

um
p

Figure 12.8: SeaPerch ROV structure.



506 12. SYSTEM-LEVEL DESIGN
minute. They range in price from U.S. $20–$80 (www.shorelinemarinedevelopment.com).
Details on waterproofing electric motors are provided in Build Your Own Underwater Robot and
OtherWet Projects. We use three Shoreline Bilge Pumps rated at 600 gallons per minute (GPM).
They are available online from www.walmart.com.

The aft or stern portion of the structure is designed to hold the flexible umbilical cable.
The cable provides a link between the MSP430-based control system and the thrusters. Each
thruster may require up to 1–2 amps of current. Therefore, a four-conductor, 16 AWG, braided
(for flexibility) conductor cable is recommended. The cable is interfaced to the bilge pump leads
using soldered connections or Butt connectors. The interface should be thoroughly waterproofed
using caulk. For this design the interface was placed within a section of PVC pipe equipped with
end caps. The resulting container is filled with waterproof caulk.

Once the ROV structure is complete its buoyancy is tested. This is accomplished by plac-
ing the ROV structure in water. The goal is to achieve a slightly positive buoyancy. With positive
buoyancy the structure floats. With neutral buoyancy the structures hovers beneath the surface.
With negative buoyancy the structure sinks. A more positive buoyancy way be achieved by at-
taching floats or foam to the structure tubing. A more negative buoyancy may be achieved by
adding weights to the structure [Bohm and Jensen, 2012].

12.5.4 STRUCTURE CHART
The SeaPerch structure chart is provided in Figure 12.9. As can be seen in the figure, the
SeaPerch control system will accept input from the five position joystick (left, right, select,
up, and down). We use the Sparkfun thumb joystick (Sparkfun COM-09032) mounted to a
breakout board (Sparkfun BOB-09110), as shown in Figure 12.10. The joystick schematic and
connections to MSP430 are provided in Figures 12.11 and 12.12.

In response to user joystick input, the SeaPerch control algorithm will issue a control
command indicating desired ROV direction. In response to this desired direction command,
the motor control algorithm will issue control signals to assert the appropriate thrusters and
LEDs.

12.5.5 CIRCUIT DIAGRAM
The circuit diagram for the SeaPerch control system is provided in Figure 12.11. The thumb
joystick is used to select desired ROV direction. The thumb joystick contains two built-in po-
tentiometers (horizontal and vertical). A reference voltage of 3.3 VDC is applied to the VCC
input of the joystick. As the joystick ismoved, the horizontal (HORZ) and vertical (VERT) ana-
log output voltages will change to indicate the joystick position. The joystick is also equipped
with a digital select (SEL) button. The SEL button is used to activate an ROV dive. The joystick
is interfaced to MSP430 as shown in Figure 12.11.

There are three LED interface circuits connected to MSP430 header pins P4.2, P4.4, and
P4.5. The LEDs illuminate to indicate the left, vertical, and right thrusters have been asserted.

www.shorelinemarine development.com
www.walmart.com


12.5. SUBMERSIBLE ROBOT 507

Seaperch
Control System

Five Position
Joystick

Motor
Control

Motor
Interface

Left
�ruster

Vertical
�ruster

Right
�ruster

Left
LED

Vertical
LED

Right
LED

Light-Emitting
Diodes (LEDs)

Interface

ROV
Direction

Motor
Assertion

LED
Assertion

Direction

Figure 12.9: SeaPerch ROV structure chart.



508 12. SYSTEM-LEVEL DESIGN

5.0 VDC

3.3 VDC Voltage Reference
10 K

to MSP430

SEL

SEL

GND

�umb Joystick

Reverse

(stern)

Right

(starboard)

Left

(port)

X-Horizontal
(analog)
0 VDC

X-Horizontal
(analog)
3.3 VDC

Y-Vertical
(analog)
0 VDC

Y-Vertical
(analog)
3.3 VDC

Forward

(bow)

Select
(push)Select

(push)

3.3 VDC

LM

317T

0.1 uF

1 21

10 30 31 11

40 20

10 K

V
C
C

V
E

R
T

H
O

R
Z

S
E

L

G
N

D

1.0 uF

390

240
HORZ

VERT
V
CC

(a) 3.3 VDC regulator to Sparkfun thumb joystick interface

(b) Sparkfun thumb joystick on breakout board and

Jameco Prototype Builder 1.6” × 2.7” PCB (#105100)

(c) Joystick

voltages

Figure 12.10: Thumb joystick mounted to a breakout board. (Illustration used with permission
of Jameco (www.jameco.com).)

www.jameco.com


12.5. SUBMERSIBLE ROBOT 509

+

5.0 VDC

220 Ω

10 KΩ 10 KΩ

10 K

10 KΩ

Left

P4.1, 
J4 pin 31

P4.2, 
J4 pin 32

P4.3, 
J4 pin 33

PWM 
P5.7, J2, pin 19

PWM 
P3.6, J4, pin 39

    VERT
(P1.5, A5,
J3, pin 28)

HORZ
(P1.3, A3
 J1, pin 6)

SEL (P2.5,
 J4, pin 34)

PWM 
P3.7, J4, pin 40

LED "ruster Indicators

Right

220 Ω 220 Ω

470 Ω

470 Ω 470 Ω

2N2222

1N4001

1N40011N4001

TIP 120

TIP 120

5A

5A

on/off

TIP 120

390

sel

640

+

5.0 VDC

+

5.0 VDC
12 VDC

12 VDC
5 VDC

LM
317T

3.3 VDC

3.3 VDC

"umb Joystick

GND
0.33 uF

0.1 uF 1.0 uF

sel
V
CC

12 VDC12 VDC

Vertical Vertical
"ruster

M
Right 

"ruster

12 VDC
Rechargeable
Battery

M
Left 

"ruster

M

MSP-EXP430FR5994 LaunchPad

7805

Battery
Charger

sel

Select
(push)

V
C
C

V
E

R
T

H
O

R
Z

S
E

L
G

N
D

Figure 12.11: SeaPerch ROV interface control. (Illustration used with permission of Texas In-
struments (www.ti.com).)

www.ti.com


510 12. SYSTEM-LEVEL DESIGN

Select 
(push)

V
C
C

 
V

E
R

T
 

H
O

R
Z

 
S

E
L

 
G

N
D

10 K

1 21

Sparkfun thumb joystick on breakout board and 
Jameco Prototype Builder 1.6" × 2.7" PCB (#105100)

joystick_ver:28

joystick_hor: 6
34: joystick_sel

31:left_LED:31(G)
32:vertical_LED (B1)
33:right_LED (O)

40:left_thruster (Y)
39:right_thruster (Br)19:vert_thr (W)

10 11

20

30 31

40(Bk) (P)

b
e

c

22
0

10
 K

1N
40

01

1N
40

01

1N
40

01

To Vertical
$ruster

To Right
$ruster

To Left
$ruster

 

Ground

Ground

12 V

5 V

LM317

ad
j

ou
t

in
p

7805

I C O

0.
33 0.
1

1
0

10 10

64
0

39
0

1.0

to ROV

4 
C

on
du

ct
or 

Jo
ne

s 
C

on
ne

ct
or

PCB
mounting
hole for
spacer
hardware 

 

 

12 V

12 V

b
e

c

22
0

10
 K

b
e

c

22
0

10
 K

TIP
120

B C E

TIP
120

B C E

TIP
120

B C E

3.
3 

V, t
o 

jo
ys

tic
k 
V C

C
 (P

)

G
ro

un
d,

 to
 M

SP43
0 

go
un

d 
(B

k)

Lef
t t

hru
ste

r i
np

ut
, t

o 
M

SP43
0 

pi
n 

40
 (Y

)

Rig
ht

 th
ru

ste
r i

np
ut

, t
o 

M
SP43

0 
pi

n 
39

 (B
r)

Ver
t t

hru
ste

r i
np

ut
, t

o 
M

SP43
0 

pi
n 

19
 (W

)

Lef
t L

ED
 in

pu
t, 

to
 M

SP43
0 

pi
n 

31
 (G

) 

Rig
ht

 L
ED

 in
pu

t, 
to

 M
SP43

0 
pi

n 
33

 (O
) 

Ver
t L

ED
 in

pu
t, 

to
 M

SP43
0 

pi
n 

32
 (B

l)

V
cc

12 VDC
Battery

Battery
Charger

5A Fuse

5A

on/off

Figure 12.12: SeaPerch ROV printed circuit board interface. (Illustration used with permission
of Jameco (www.jameco.com).)

www.jameco.com


12.5. SUBMERSIBLE ROBOT 511
As previously mentioned, the prime mover for the ROV are three bilge pumps. The left and
right bilge pumps are driven by pulse width modulation channels (MSP430 P2.4 and P2.6) via
power NPN Darlington transistors (TIP 120), as shown in Figure 12.11. The vertical thrust is
under digital pin control P2.5 equipped with NPN Darlington transistor (TIP 120) interface.
Both the LED and the pump interfaces were discussed in an earlier chapter.

The interface circuitry between the MSP430 LaunchPad and the bilge pumps is mounted
on a printed circuit board (PCB) within the control housing. The interface between MSP430,
the PCB, and the umbilical cable is provided in Figure 12.12.

12.5.6 UML ACTIVITY DIAGRAM
The SeaPerch control system UML activity diagram is provided in Figure 12.13. After initializ-
ing the MSP430 pins the control algorithm is placed in a continuous loop awaiting user input.
In response to user input, the algorithm determines desired direction of ROV travel and asserts
appropriate control signals for the LED and motors.

12.5.7 MSP430 CODE
In this example we use the thumb joystick to control the left and right thruster (motor or bilge
pump). The joystick provides a separate voltage from 0–3.3 VDC for the horizontal (HORZ)
and vertical (VERT) position of the joystick. We use this voltage to set the duty cycle of the
pulse width modulated (PWM) signals sent to the left and right thrusters. The select push-
button (SEL) on the joystick is used to assert the vertical thruster. The analog read function
(analogRead) is used to read the X and Y position of the joystick. A value from 0–1023 is re-
ported from the analog read function corresponding to 0–3.3 VDC. After the voltage readings
are taken they are scaled to 3.3 VDC for further processing. Joystick activity is divided into mul-
tiple zones (0–8), as shown in Figure 12.14. The joystick signal is further processed consistent
with the joystick zone selected.
//***********************************************************************
//ROV
//In response to joystick input, the SeaPerch control algorithm issues
//a control command indicating desired ROV direction. In response to
//desired direction command, the motor control algorithm issues
//control signals to assert the appropriate thrusters and LEDs.
//***********************************************************************

//analog input pins
#define joystick_hor 6 //analog pin - joystick horizontal in
#define joystick_ver 28 //analog pin - joystick vertical in

//digital input pin



512 12. SYSTEM-LEVEL DESIGN

Include files
Global Variables

Function prototypes

2000 ms?

Read joystick position
(e.g., bow, stern,

starboard, port, dive)

Assert vertical thruster
and vertical LED

Zone 8?

Zone 0?

no

yes

no

yes

no

Bow

Stern

Starboard

dive

Port

no

yes

Configure pins

Zone 1

:

Zone 7

Proceed right and forward

Figure 12.13: SeaPerch ROV UML activity diagram.



12.5. SUBMERSIBLE ROBOT 513

Forward
(bow)

Reverse
(stern)

Y-Vertical
(analog)
0 VDC

Y-Vertical

(analog)

0 VDC

Forward

(bow)

Reverse

(stern)

Y-Vertical

(analog)

3.3 VDC

Y-Vertical
(analog)
3.3 VDC

X-Horizontal
(analog)
0 VDC

X-Horizontal

(analog)

0 VDC

Select

(push)

X-Horizontal
(analog)
3.3 VDC

X-Horizontal

(analog)

3.3 VDC

Left
(port)

Left
(port)

Right
(starboard)

Right
(starboard)

III

II

IV VI

I

V

VII

VIII

1.6 V (496)

1.
6 

V
 (

49
6)

1.7 V (527)

1.
7 

V
 (

52
7)Lorem ipsum

Select
(push)

Figure 12.14: Joystick position as related to thruster activity.

#define joystick_sel 34 //digital pin - joystick select in

//digital output pins - LED indicators
#define left_LED 31 //digital pin - left LED out
#define vertical_LED 32 //digital pin - vertical LED out
#define right_LED 33 //digital pin - right LED out

//thruster outputs
#define left_thruster 40 //digital pin - left thruster
#define right_thruster 39 //digital pin - right thruster
#define vertical_thruster 19 //digital pin - vertical thruster



514 12. SYSTEM-LEVEL DESIGN

int joystick_hor_value; //horizontal joystick value
int joystick_ver_value; //vertical joystick value
int joystick_sel_value; //joystick select value
int joystick_thrust_on; //1: thrust on; 0: off
int troubleshoot = 1; //1: serial monitor prints

void setup()
{
//LED indicators
pinMode(left_LED, OUTPUT); //config pin for digital out - left LED
pinMode(vertical_LED, OUTPUT); //config pin for digital out -

//vertical LED
pinMode(right_LED, OUTPUT); //config pin for digital out - right LED

//joystick select input
pinMode(joystick_sel, INPUT); //config pin for digital in - joystick sel

//thruster outputs
pinMode(left_thruster, OUTPUT); //config digital out - left thruster
pinMode(vertical_thruster, OUTPUT); //config digital out -

//vertical thruster
pinMode(right_thruster, OUTPUT); //config digital out - right thruster

//Serial monitor - open serial communications
if(troubleshoot == 1) Serial.begin(9600);
}

void loop()
{
//set update interval
delay(1000);

//turn off LEDs
digitalWrite(left_LED, LOW); //left LED - off
digitalWrite(vertical_LED, LOW); //vertical LED - off
digitalWrite(right_LED, LOW); //right LED - off

//read hor and vert joystick position



12.5. SUBMERSIBLE ROBOT 515
//analog read returns value between 0 and 1023
joystick_hor_value = analogRead(joystick_hor);
joystick_ver_value = analogRead(joystick_ver);

if(troubleshoot == 1) Serial.println(joystick_hor_value);
if(troubleshoot == 1) Serial.println(joystick_ver_value);

//Convert 0 to 1023 to 0 to 3.3 VDC value
joystick_hor_value = ((joystick_hor_value/1023.0) * 3.3);
if(troubleshoot == 1) Serial.println(joystick_hor_value);

joystick_ver_value = ((joystick_ver_value/1023.0) * 3.3);
if(troubleshoot == 1) Serial.println(joystick_ver_value);

//Read vertical thrust
joystick_thrust_on = digitalRead(joystick_sel); //vertical thrust?

//**************************************************************
//vertical thrust - active low pushbutton on joystick
//**************************************************************
if(joystick_thrust_on == 0)

{
digitalWrite(vertical_thruster, HIGH);
digitalWrite(vertical_LED, HIGH);
if(troubleshoot == 1) Serial.println("Thrust is on!");
}

else
{
digitalWrite(vertical_thruster, LOW);
digitalWrite(vertical_LED, LOW);
if(troubleshoot == 1) Serial.println("Thrust is off!");
}

//*************************************************************
//*************************************************************
//process different joystick zones
//*************************************************************
//Case 0: Joystick in null position
//Inputs:



516 12. SYSTEM-LEVEL DESIGN
// X channel between 1.60 to 1.70 VDC - null zone
// Y channel between 1.60 to 1.70 VDC - null zone
//Output:
// Shut off thrusters
//*************************************************************

if((joystick_hor_value > 1.60)&&(joystick_hor_value < 1.70)&&
(joystick_ver_value > 1.60)&&(joystick_ver_value < 1.70))

{
if(troubleshoot == 1) Serial.println("Zone 0");

if(troubleshoot == 1)
{
if(troubleshoot == 1) Serial.println(joystick_hor_value);
if(troubleshoot == 1) Serial.println(joystick_ver_value);
if(troubleshoot == 1) Serial.println(joystick_thrust_on);
}

//assert thrusters to move forward
analogWrite(left_thruster, 0);
analogWrite(right_thruster, 0);

//assert LEDs
digitalWrite(left_LED, LOW); //de-assert left LED
digitalWrite(right_LED, LOW); //de-assert right LED
}

//*************************************************************
//*************************************************************
//process different joystick zones
//*************************************************************
//Case 1:
//Inputs:
// X channel between 1.60 to 1.70 VDC - null zone
// Y channel <= 1.60 VDC
//Output:
// Move forward - provide same voltage to left and right thrusters
//*************************************************************



12.5. SUBMERSIBLE ROBOT 517

if((joystick_hor_value > 1.60)&&(joystick_hor_value < 1.70)&&
(joystick_ver_value <= 1.60))

{
if(troubleshoot == 1) Serial.println("Zone 1");

//scale joystick vertical to value from 0 to 1
joystick_ver_value = 1.60 - joystick_ver_value;

if(troubleshoot == 1) Serial.println(joystick_hor_value);
if(troubleshoot == 1) Serial.println(joystick_ver_value);
if(troubleshoot == 1) Serial.println(joystick_thrust_on);

//assert thrusters to move forward
analogWrite(left_thruster, joystick_ver_value);
analogWrite(right_thruster, joystick_ver_value);

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED,HIGH); //assert right LED
}

//**************************************************************
//**************************************************************
//Case 2:
//Inputs:
// X channel <= 1.60 VDC
// Y channel <= 1.60 VDC
//Output:
// Move forward and bare left
// - Which joystick direction is asserted more?
// - Scale PWM voltage to left and right thruster accordingly
//**************************************************************

if((joystick_hor_value <= 1.60)&&(joystick_ver_value <= 1.60))
{
if(troubleshoot == 1) Serial.println("Zone 2");

//scale joystick horizontal and vertical to value from 0 to 1



518 12. SYSTEM-LEVEL DESIGN
joystick_hor_value = 1.60 - joystick_hor_value;
joystick_ver_value = 1.60 - joystick_ver_value;

if(troubleshoot == 1) Serial.println(joystick_hor_value);
if(troubleshoot == 1) Serial.println(joystick_ver_value);
if(troubleshoot == 1) Serial.println(joystick_thrust_on);

//assert thrusters and LEDs
if(joystick_hor_value > joystick_ver_value)

{
analogWrite(left_thruster, (joystick_hor_value - joystick_ver_value));
analogWrite(right_thruster, joystick_hor_value);

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

else
{
analogWrite(left_thruster, joystick_ver_value);
analogWrite(right_thruster, (joystick_ver_value - joystick_hor_value));

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

}

//************************************************************
//************************************************************
//Case 3:
//Inputs:
// X channel <= 1.60 VDC
// Y channel between 1.60 to 1.70 VDC - null zone
//Output:
// Bare left
//************************************************************

if((joystick_hor_value <= 1.60)&&(joystick_ver_value > 1.60)&&



12.5. SUBMERSIBLE ROBOT 519
(joystick_ver_value < 1.70))

{
if(troubleshoot == 1) Serial.println("Zone 3");

//scale joystick vertical to value from 0 to 1
joystick_hor_value = 1.60 - joystick_hor_value;

if(troubleshoot == 1) Serial.println(joystick_hor_value);
if(troubleshoot == 1) Serial.println(joystick_ver_value);
if(troubleshoot == 1) Serial.println(joystick_thrust_on);

//assert thrusters
analogWrite(left_thruster, 0);
analogWrite(right_thruster, joystick_hor_value);

//assert LEDs
digitalWrite(left_LED, LOW); //de-assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

//**************************************************************
//**************************************************************
//Case 4:
//Inputs:
// X channel <= 1.60 VDC
// Y channel >= 1.70 VDC
//Output:
// Bare left to turn around
//**************************************************************

if((joystick_hor_value <= 1.60)&&(joystick_ver_value >= 1.70))
{
if(troubleshoot == 1) Serial.println("Zone 4");

//scale joystick horizontal and vertical to value from 0 to 1
joystick_hor_value = 1.60 - joystick_hor_value;
joystick_ver_value = joystick_ver_value - 1.70;

if(troubleshoot == 1) Serial.println(joystick_hor_value);



520 12. SYSTEM-LEVEL DESIGN
if(troubleshoot == 1) Serial.println(joystick_ver_value);
if(troubleshoot == 1) Serial.println(joystick_thrust_on);

//assert thrusters and LEDs
if(joystick_hor_value > joystick_ver_value)

{
analogWrite(left_thruster, 0);
analogWrite(right_thruster, (joystick_hor_value-joystick_ver_value));

//assert LEDs
digitalWrite(left_LED, LOW); //de-assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

else
{
analogWrite(left_thruster, 0);
analogWrite(right_thruster, (joystick_ver_value-joystick_hor_value));

//assert LEDs
digitalWrite(left_LED, LOW); //de-assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}
}

//**************************************************************
//**************************************************************
//Case 5:
//Inputs:
// X channel between 1.60 to 1.70 VDC - null zone
// Y channel >= 1.70 VDC
//Output:
// Move backward - provide same voltage to left and right thrusters
//**************************************************************

if((joystick_hor_value > 1.60)&&(joystick_hor_value < 1.70)&&
(joystick_ver_value >= 1.70))
{
if(troubleshoot ==1) Serial.println("Zone 5");



12.5. SUBMERSIBLE ROBOT 521
//scale joystick vertical to value from 0 to 1
joystick_ver_value = joystick_ver_value - 1.70;

if(troubleshoot == 1) Serial.println(joystick_hor_value);
if(troubleshoot == 1) Serial.println(joystick_ver_value);
if(troubleshoot == 1) Serial.println(joystick_thrust_on);

//assert thrusters
analogWrite(left_thruster, 0);
analogWrite(right_thruster, joystick_ver_value);

//assert LEDs
digitalWrite(left_LED, LOW); //de-assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

//*************************************************************
//*************************************************************
//Case 6:
//Inputs:
// X channel >= 1.70 VDC
// Y channel >= 1.70 VDC
//Output:
// Bare left to turn around
//*************************************************************

if((joystick_hor_value >= 1.70)&&(joystick_ver_value >= 1.70))
{
if(troubleshoot == 1) Serial.println("Zone 6");

//scale joystick horizontal and vertical to value from 0 to 1
joystick_hor_value = joystick_hor_value - 1.70;
joystick_ver_value = joystick_ver_value - 1.70;

if(troubleshoot == 1) Serial.println(joystick_hor_value);
if(troubleshoot == 1) Serial.println(joystick_ver_value);
if(troubleshoot == 1) Serial.println(joystick_thrust_on);

//assert thrusters and LEDs



522 12. SYSTEM-LEVEL DESIGN
if(joystick_hor_value > joystick_ver_value)

{
analogWrite(left_thruster, (joystick_hor_value-joystick_ver_value));
analogWrite(right_thruster, 0);

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, LOW); //de-assert right LED
}

else
{
analogWrite(left_thruster, (joystick_ver_value-joystick_hor_value));
analogWrite(right_thruster, 0);

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, LOW); //de-assert right LED
}
}

//**************************************************************
//**************************************************************
//Case 7:
//Inputs:
// X channel >= 1.70 VDC
// Y channel between 1.60 to 1.70 VDC - null zone
//Output:
// Bare right
//**************************************************************

if((joystick_hor_value >= 1.70)&&(joystick_ver_value > 1.60)&&
(joystick_ver_value < 1.70))
{
if(troubleshoot == 1) Serial.println("Zone 7");

//scale joystick vertical to value from 0 to 1
joystick_hor_value = joystick_hor_value - 1.70;

if(troubleshoot == 1) Serial.println(joystick_hor_value);



12.5. SUBMERSIBLE ROBOT 523
if(troubleshoot == 1) Serial.println(joystick_ver_value);
if(troubleshoot == 1) Serial.println(joystick_thrust_on);

//assert thrusters
analogWrite(left_thruster, joystick_hor_value);
analogWrite(right_thruster, 0);

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, LOW); //de-assert right LED
}

//**************************************************************
//**************************************************************
//Case 8:
//Inputs:
// X channel >= 1.70 VDC
// Y channel <= 1.60 VDC
//Output:
// Move forward and bare right
// - Which joystick direction is asserted more?
// - Scale PWM voltage to left and right thruster accordingly
//**************************************************************

if((joystick_hor_value >= 1.70)&&(joystick_ver_value <= 1.60))
{
if(troubleshoot == 1) Serial.println("Zone 8");

//scale joystick horizontal and vertical to value from 0 to 1
joystick_hor_value = joystick_hor_value - 1.70;
joystick_ver_value = 1.60 - joystick_ver_value;

if(troubleshoot == 1) Serial.println(joystick_hor_value);
if(troubleshoot == 1) Serial.println(joystick_ver_value);
if(troubleshoot == 1) Serial.println(joystick_thrust_on);

//assert thrusters and LEDs
if(joystick_hor_value > joystick_ver_value)

{



524 12. SYSTEM-LEVEL DESIGN
analogWrite(left_thruster, joystick_hor_value);
analogWrite(right_thruster, (joystick_hor_value-joystick_ver_value));

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

else
{
analogWrite(left_thruster, (joystick_ver_value-joystick_hor_value));
analogWrite(right_thruster, joystick_ver_value);

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

}
}

//**************************************************************

12.5.8 CONTROL HOUSING LAYOUT
A Plano Model 1312-00 water-resistant field box is used to house the control circuitry and
rechargeable battery. The battery is a rechargeable, sealed, lead-acid battery, 12 VDC, with
an 8.5 amp-hour capacity. It is available from McMaster-Carr (#7448K82). A battery charger
(12 VDC, 4–8 amp-hour rating) is also available (#7448K67). The layout for the ROV control
housing is provided in Figure 12.15.

The control circuitry consists of two connected plastic panels, as shown in Figure 12.15.
The top panel has the on/off switch, the LED thruster indicators (left, dive, and right), an access
hole for the joystick, and a 1/4-in jack for the battery recharge cable.

The lower panel is connected to the top panel using aluminum spacers, screws, and corre-
sponding washers, lock washers, and nuts. The lower panel contains MSP430 equipped with the
thumb joystick on the breakout board. The MSP430 LaunchPad is connected to the lower panel
using a Jameco stand off kit (#106551). The MSP430 LaunchPad is interfaced to the thrusters
via interface circuitry described in Figures 12.11 and 12.12. The interface printed circuit board
is connected to the four-conductor thruster cable via a four-conductor Jones connector.

12.5.9 FINAL ASSEMBLY TESTING
The final system is tested a subassembly at a time. The following sequence is suggested.



12.5. SUBMERSIBLE ROBOT 525

L  Bracket L  Bracket

L  Bracket

LEFT
LED

DIVE
LED

RIGHT
LED

on/off
switch

12 VDC
for Recharger 

Joystick

Joystick

L
ef

t 
!

ru
st

er

R
ig

ht
 !

ru
st

er

C
en

te
r 

!
ru

st
er

13
.6

 V
D

C
 

Inline Fuse

MSP432 with joystick
Boosterpack

Interface Printed
Circuit Board

To ROV
Structure

Batt

Access

Hole

Figure 12.15: ROV control housing layout.



526 12. SYSTEM-LEVEL DESIGN
1. Recheck all waterproofed connections. Reapply waterproof caulk as necessary.

2. With the thumb joystick on the breakout board disconnected from MSP430 LaunchPad,
test each LED indicator (left, dive, and right). This is accomplished by applying a 3.3
VDC signal in turn to the base resistor of each LED drive transistor.

3. In a similar manner each thruster (left, right, and vertical) may be tested. If available,
a signal generator may be used to generate a pulse width modulated signal to test each
thruster.

4. With power applied, the voltage regulators aboard the printed circuit board should be
tested for proper voltages.

5. The output voltages from the thumb joystick may be verified at the appropriate header
pins.

6. With the software fully functional, the thumb joystick on the breakout board may be
connected to MSP430 LaunchPad for end-to-end testing.

12.5.10 FINAL ASSEMBLY
The fully assembled ROV is shown in Figure 12.16.

12.5.11 PROJECT EXTENSIONS
The control system provided above has a set of very basic features. Here are some possible ex-
tensions for the system.

• Provide a powered dive and surface thruster. To provide for a powered dive and surface
capability, the ROV must be equipped with a vertical thruster equipped with an H-bridge
to allow for motor forward and reversal. This modification is given as an assignment at the
end of the chapter.

• Left and right thruster reverse. Currently, the left and right thrusters may only be powered
in one direction. To provide additional maneuverability, the left and right thrusters could
be equipped with an H-bridge to allow bi-directional motor control. This modification is
given as an assignment at the end of the chapter.

• Proportional speed control with bi-directional motor control. Both of these advanced fea-
tures may be provided by driving the H-bridge circuit with PWM signals. This modifica-
tion is given as an assignment at the end of the chapter.



12.5. SUBMERSIBLE ROBOT 527

Figure 12.16: ROV fully assembled. (Photo courtesy of J. Barrett, Closer to the Sun Interna-
tional, Inc.)



528 12. SYSTEM-LEVEL DESIGN

12.6 MOUNTAIN MAZE NAVIGATING ROBOT
In this project we extend the Dagu Magician maze navigating project described in Chapter 3 to
a three-dimensional mountain pass. Also, we use a robot equipped with four motorized wheels.
Each of the wheels is equipped with an H-bridge to allow bidirectional motor control. In this
example we will only control two wheels. We leave the development of a 4WD robot as an
end-of-chapter homework assignment.

12.6.1 DESCRIPTION
For this project, a DF Robot 4WD mobile platform kit was used (DFROBOT ROB0003,
Jameco #2124285). The robot kit is equipped with four powered wheels. As in the Dagu Ma-
gician project, we equipped the DF Robot with three Sharp GP2Y0A21YKOF IR sensors as
shown in Figure 12.17. The robot will be placed in a three-dimensional maze with reflective
walls modeled after a mountain pass. The goal of the project is for the robot to detect wall place-
ment and navigate through the maze. The robot will not be provided any information about the
maze. The control algorithm for the robot is hosted on MSP430.

12.6.2 REQUIREMENTS
The requirements for this project are simple, the robot must autonomously navigate through the
maze without touching maze walls as quickly as possible. Furthermore, the robot must be able
to safely navigate through the rugged maze without becoming “stuck” on maze features.

12.6.3 CIRCUIT DIAGRAM
The circuit diagram for the robot is provided in Figure 12.18. The three IR sensors (left, middle,
and right) are mounted on the leading edge of the robot to detect maze walls. The sensors’
outputs are fed to three separate ADC channels. The robot motors will be driven by PWM
channels via an H-bridge. The robot is powered by a 7.5 VDC battery pack (5 AA batteries)
which is fed to a 3.3 and 5 VDC voltage regulator. Alternatively, the robot may be powered by
a 7.5 VDC power supply rated at several amps. In this case, the power is delivered to the robot
by a flexible umbilical cable. The circuit diagram includes the inertial measurement unit (IMU)
to measure vehicle tilt and a liquid crystal display. Both were discussed in Chapter 3.

12.6.4 STRUCTURE CHART
The structure chart for the robot project is provided in Figure 12.19.

12.6.5 UML ACTIVITY DIAGRAMS
The UML activity diagram for the robot is provided in Figure 12.20.



12.6. MOUNTAIN MAZE NAVIGATING ROBOT 529

(a) Front view

Prototype Area

Prototype Area

(b) Side view

Battery
Compartment

Drive
Motor

Drive
Motor

IR Sensor
Array

IR Sensor
Array

Figure 12.17: Robot layout.



530 12. SYSTEM-LEVEL DESIGN

11DQ06
200

TIP31

TIP32

TIP31
11DQ06

7.5 VDC

M

200

TIP31

TIP31

TIP32
470

11DQ06

11DQ06

1000μF

line1

Sparkfun LCD-09067

Basic 16 × 2 character LCD
white on black, 3.3 VDC

line2

H-bridge

Forward

Reverse

Right Rear

H-bridge

Right Front

H-bridge

Left Rear

H-bridge

Left Front

H-bridge

7805
5 VDC

reg

9 VDC
2A

(#276)

LM1084-3.3
3.3 VDC

reg

l_fwd

l_rev

9
8

LM324

LM324

LM324

LM324

7

+5 VDC
+5 VDC

5

6

2 4

3

10

11

1

13
14

1M

l_motors_forward

J4, P3.7, 40, PWM

9 
V

D
C

 P
ow

er
 U

m
bi

li
ca

l

J4, P4.1, 31 J4, P4.2, 32 J4, P4.3, 33

l_motors_reverse

J4, P3.6, 39, PWM

r_motors_forward

J4, P3.5, 38, PWM

r_motors_reverse

J4, P3.4, 37, PWM 1M

1M

1M

1M

10 K

220

2N2222 2N2222 2N2222

5 VDC

5.0 VDC

3.3 VDC

220

5 VDC

220

5 VDC

5 VDC

5 VDC 5 VDC
Sensor Connection:

- Red: 5 VDC

- Yellow: Signal output

- Black: Ground

5 VDC

IR
Sensor

Left

IR
Sensor

Middle

IR
Sensor
Right

From TX pin

J1, P6.0, 4

Wall
Left

Wall
Right

Wall
Center

10 K 10 K

1M

1M

1M

12

r_fwd

r_rev

l_fwd

l_rev

r_fwd

r_rev

DPDT

Switch

Note: 3.3 VDC

jumper removed

Run

Program

A
3, 

 J1
,

P1.
3, 

6
A

3, 
 J3

,

P1.
4, 

27
A

5, 
 J3

,

P1.
5, 

28

Figure 12.18: Robot circuit diagram. (Illustration used with permission of Texas Instruments
(www.ti.com).)

www.ti.com


12.6. MOUNTAIN MAZE NAVIGATING ROBOT 531

A
D

C
12

A
D

C
12

 
In

it
ia

li
ze

R
ea

d
A

D
C

12

C
h

 f
or

 
C

on
v

Co
n

v 
D

at
a

P
W

M
_l

ef
t

P
W

M
_r

igh
t

D
es

ir
ed

M
ot

or
A

ct
io

n
 

m
ot

or
_c

on
tr

ol

d
et

er
m

in
e_

ro
bo

t 
_a

ct
io

n

S
en

so
r 

D
at

a
R

ob
ot

 
A

ct
io

n

L
iq

ui
d

 
C

ry
st

al
 D

is
p

la
y

L
C

D
In

it
ia

li
ze

p
ut

ch
ar

p
ut

co
m

m
 

 
R

ig
h

t
W

h
ee

l
C

ou
n

t 

R
ig

h
t

W
h

ee
l

E
n

co
d

er
 

W
h

ee
l

C
ou

n
t

In
te

rr
up

ts

L
ef

t
W

h
ee

l
E

n
co

d
er

 

L
ef

t
W

h
ee

l
C

ou
n

t

L
ef

t
M

ot
or

R
ig

h
t

M
ot

or
M

id
d

le
IR

 S
en

so
r

R
ig

h
t

IR
 S

en
so

r
L

ef
t

IR
 S

en
so

r

Figure 12.19: Robot structure diagram.



532 12. SYSTEM-LEVEL DESIGN

Include files

Global variables

Function prototypes

Read IR sensor inputs

(left, middle, right)

Determine robot

action

Monitor wheel rotation

via interrupts

Print walls detected to
LCD, illuminate LEDs

for wall detected

Issue motor and LED
control signals

Reset wheel counters

Initialize pins

Initialize ADC

Initialize PWM

Initialize LCD

while(1)

 

Robot action

Complete?
NoYes

Figure 12.20: Abbreviated robot UML activity diagram. The “determine robot action” consists
of multiple decision statements.



12.6. MOUNTAIN MAZE NAVIGATING ROBOT 533

12.6.6 ROBOT CODE
The code for the robot may be adapted from that for the Dagu Magician robot. Since the motors
are equippedwith anH-bridge, slightmodifications are required to the robot turning code.These
modifications include an additional signal (forward=reverse) for each H-bridge configuration to
provide forward and reverse capability. For example, when forward is desired a PWM signal is
delivered to one side of the H-bridge and a logic zero to the other side. A level shifter (Texas
Instruments PCA9306) is used to adapt the 3.3 VDC signal output from MSP430 LaunchPad
to 5.0 VDC levels.

We only provide the basic framework for the code here.

//***********************************************************************
//robot
//
//Three IR sensors (left, middle, and right) are mounted on the leading
//edge of the robot to detect maze walls. The sensors' outputs are
//fed to three separate ADC channels on pins 6, 27, and 28.
//
//The robot is equipped with:
// - serial LCD at Serial 1 accessible at:
// - RX: P6.1, pin 3
// - TX: P6.0, pin 4
// - LEDs to indicate wall detection: 31, 32, 33
// - Robot motors are driven by PWM channels via an H-bridge.
// - the same control signal is sent to left paired motors
// and the right paired motors.
// - For example, when forward robot movement is desired,
// PWM signals are sent to both of the left and right forwards
// signals and a logic zero signal to the left and right
// reverse signals.
// - To render a left robot turn, a PWM signal is sent to the
// left_reverse control line and a logic zero to the left_forward
// control line. Also, a PWM signal is sent to the right_forward
// control line and a logic zero to the right_reverse
// control line.
// The signals are held in this configuration until the wheel
// encoders indicate the turns have been completed. The wheel
// encoders provide ten counts per revolution.
// - A separate interrupt is used to count left and right wheel counts.
//
//This example code is in the public domain.



534 12. SYSTEM-LEVEL DESIGN
//*******************************************************************

//analog input pins
#define left_IR_sensor 6 //analog pin - left IR sensor
#define center_IR_sensor 27 //analog pin - center IR sensor
#define right_IR_sensor 28 //analog pin - right IR sensor

//digital output pins
//LED indicators - wall detectors

#define wall_left 31 //digital pin - wall_left
#define wall_center 32 //digital pin - wall_center
#define wall_right 33 //digital pin - wall_right

//motor outputs
#define l_motors_forward 40 //digital pin - left motors forward
#define l_motors_reverse 39 //digital pin - left motors reverse
#define r_motors_forward 38 //digital pin - right motors forward
#define r_motors_reverse 37 //digital pin - right motors reverse

//sensor value
int left_IR_sensor_value; //declare variable for left IR sensor
int center_IR_sensor_value; //declare variable for center IR sensor
int right_IR_sensor_value; //declare variable for right IR sensor

int troubleshoot; //asserts troubleshoot statements

void setup()
{
troubleshoot = 1;

//enable serial monitor
if(troubleshoot == 1) Serial.begin(9600);

//Initialize serial channel 1 to 9600 BAUD and wait for port to open
//Serial LCD, 3.3 VDC connected to P3.3, pin 4 Sparkfun LCD-09052
Serial1.begin(9600);
delay(1000); //allow LCD to boot up

//LED indicators - wall detectors
pinMode(wall_left, OUTPUT); //configure pin for digital output



12.6. MOUNTAIN MAZE NAVIGATING ROBOT 535
pinMode(wall_center, OUTPUT); //configure pin for digital output
pinMode(wall_right, OUTPUT); //configure pin for digital output

//motor outputs - PWM
pinMode(l_motors_forward, OUTPUT); //configure pin for digital output
pinMode(l_motors_reverse, OUTPUT); //configure pin for digital output
pinMode(r_motors_forward, OUTPUT); //configure pin for digital output
pinMode(r_motors_reverse, OUTPUT); //configure pin for digital output
}

void loop()
{
//read analog output from IR sensors
left_IR_sensor_value = analogRead(left_IR_sensor);
center_IR_sensor_value = analogRead(center_IR_sensor);
right_IR_sensor_value = analogRead(right_IR_sensor);

//Print sensor values to Serial Monitor
if(troubleshoot == 1)
{
Serial.print("Left IR sensor: ");
Serial.println(left_IR_sensor_value);
Serial.print("Center IR sensor: ");
Serial.println(center_IR_sensor_value);
Serial.print("Right IR sensor: ");
Serial.println(right_IR_sensor_value);
Serial.println("");
}

//to LCD
Serial1.write(254); //Command to LCD
delay(5);
Serial1.write(1); //Cursor to home position
delay(5);

Serial1.write(254); //Command to LCD
delay(5);
Serial1.write(128); //Cursor to home position
delay(5);



536 12. SYSTEM-LEVEL DESIGN
Serial1.write("Left Ctr Right");
delay(50);
Serial1.write(254); //Command to LCD
delay(5);
Serial1.write(192); //Cursor to line 2, position 1
delay(5);
Serial1.print(left_IR_sensor_value);
delay(5);
Serial1.write(254); //Command to LCD
delay(5);
Serial1.write(198); //Cursor to line 2, position 1
delay(5);
Serial1.print(center_IR_sensor_value);
delay(5);
Serial1.write(254); //Command to LCD
delay(5);
Serial1.write(203); //Cursor to line 2, position 1
delay(5);
Serial1.print(right_IR_sensor_value);
delay(5);

delay(500);

//robot action table row 0 - robot forward
if((left_IR_sensor_value < 300)&&(center_IR_sensor_value < 300)&&

(right_IR_sensor_value < 300))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(l_motors_forward, 64); //0(off)-255(full speed)
analogWrite(l_motors_reverse, 0); //0(off)-255(full speed)
analogWrite(r_motors_forward, 64); //0(off)-255(full speed)
analogWrite(r_motors_reverse, 0); //0(off)-255(full speed)

if(troubleshoot == 1) Serial.print("Table row 0 \n\n");



12.6. MOUNTAIN MAZE NAVIGATING ROBOT 537
}

//robot action table row 1 - robot forward
else if((left_IR_sensor_value < 300)&&(center_IR_sensor_value < 300)&&

(right_IR_sensor_value > 300))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(l_motors_forward, 64); //0(off)-255(full speed)
analogWrite(l_motors_reverse, 0); //0(off)-255(full speed)
analogWrite(r_motors_forward, 64); //0(off)-255(full speed)
analogWrite(r_motors_reverse, 0); //0(off)-255(full speed)

if(troubleshoot == 1) Serial.print("Table row 1 \n\n");
}

//robot action table row 2 - robot right
else if((left_IR_sensor_value < 300)&&(center_IR_sensor_value > 300)&&

(right_IR_sensor_value < 300))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(l_motors_forward, 64); //0(off)-255(full speed)
analogWrite(l_motors_reverse, 0); //0(off)-255(full speed)
analogWrite(r_motors_forward, 0); //0(off)-255(full speed)
analogWrite(r_motors_reverse, 64); //0(off)-255(full speed)

if(troubleshoot == 1) Serial.print("Table row 2 \n\n");
}

//robot action table row 3 - robot left
else if((left_IR_sensor_value < 300)&&(center_IR_sensor_value > 300)&&

(right_IR_sensor_value > 300))



538 12. SYSTEM-LEVEL DESIGN
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(l_motors_forward, 0); //0(off)-255(full speed)
analogWrite(l_motors_reverse, 64); //0(off)-255(full speed)
analogWrite(r_motors_forward, 64); //0(off)-255(full speed)
analogWrite(r_motors_reverse, 0); //0(off)-255(full speed)

if(troubleshoot == 1) Serial.print("Table row 3 \n\n");

}

//robot action table row 4 - robot forward
else if((left_IR_sensor_value > 300)&&(center_IR_sensor_value < 300)&&

(right_IR_sensor_value < 300))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(l_motors_forward, 64); //0(off)-255(full speed)
analogWrite(l_motors_reverse, 0); //0(off)-255(full speed)
analogWrite(r_motors_forward, 64); //0(off)-255(full speed)
analogWrite(r_motors_reverse, 0); //0(off)-255(full speed)

if(troubleshoot == 1) Serial.print("Table row 4 \n\n");

}

//robot action table row 5 - robot forward
else if((left_IR_sensor_value > 300)&&(center_IR_sensor_value < 300)&&

(right_IR_sensor_value > 300))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on



12.6. MOUNTAIN MAZE NAVIGATING ROBOT 539
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(l_motors_forward, 64); //0(off)-255(full speed)
analogWrite(l_motors_reverse, 0); //0(off)-255(full speed)
analogWrite(r_motors_forward, 64); //0(off)-255(full speed)
analogWrite(r_motors_reverse, 0); //0(off)-255(full speed)

if(troubleshoot == 1) Serial.print("Table row 5 \n\n");

}

//robot action table row 6 - robot right
else if((left_IR_sensor_value > 300)&&(center_IR_sensor_value > 300)&&

(right_IR_sensor_value < 300))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(l_motors_forward, 64); //0(off)-255(full speed)
analogWrite(l_motors_reverse, 0); //0(off)-255(full speed)
analogWrite(r_motors_forward, 0); //0(off)-255(full speed)
analogWrite(r_motors_reverse, 64); //0(off)-255(full speed)

if(troubleshoot == 1) Serial.print("Table row 6 \n\n");
}

//robot action table row 7 - robot reverse
else if((left_IR_sensor_value > 300)&&(center_IR_sensor_value > 300)&&

(right_IR_sensor_value > 300))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(l_motors_forward, 64); //0(off)-255(full speed)



540 12. SYSTEM-LEVEL DESIGN
analogWrite(l_motors_reverse, 0); //0(off)-255(full speed)
analogWrite(r_motors_forward, 0); //0(off)-255(full speed)
analogWrite(r_motors_reverse, 64); //0(off)-255(full speed)

if(troubleshoot == 1) Serial.print("Table row 7 \n\n");

}
}

//***********************************************************************

12.6.7 MOUNTAIN MAZE
The mountain maze was constructed from plywood, chicken wire, expandable foam, plaster
cloth, and Bondo. A rough sketch of the desired maze path was first constructed. Care was
taken to insure the pass was wide enough to accommodate the robot. The maze platform was
constructed from 3/8-in plywood on 2-by-4-in framing material. Maze walls were also con-
structed from the plywood and supported with steel L brackets.

With the basic structure complete, the maze walls were covered with chicken wire. The
chicken wire was secured to the plywood with staples. The chicken wire was then covered with
plaster cloth (Creative Mark Artist Products #15006). To provide additional stability, expand-
able foam was sprayed under the chicken wire (Guardian Energy Technologies, Inc. Foam It
Green 12). The mountain scene was then covered with a layer of Bondo for additional structural
stability. Bondo is a two-part putty that hardens into a strong resin. Mountain pass construction
steps are illustrated in Figure 12.21. The robot is shown in the maze in Figure 12.22

12.6.8 PROJECT EXTENSIONS
• Modify the turning commands such that the PWM duty cycle and the length of time the

motors are on are sent in as variables to the function.

• Develop a function for reversing the robot.

• Equip the motor with another IR sensor that looks down toward the maze floor for “land
mines.” A land mine consists of a paper strip placed in the maze floor that obstructs a
portion of the maze. If a land mine is detected, the robot must deactivate the maze by
moving slowly back and forth for 3 s and flashing a large LED.

• The current design is a two-wheel, front-wheel drive system. Modify the design for a two-
wheel, rear-wheel drive system.

• The current design is a two-wheel, front-wheel drive system.Modify the design for a 4WD
system.



12.6. MOUNTAIN MAZE NAVIGATING ROBOT 541

Figure 12.21: Mountain maze.



542 12. SYSTEM-LEVEL DESIGN

Figure 12.22: Robot in maze. (Photo courtesy of J. Barrett, Closer to the Sun International,
Inc.).

• Develop a 4WD system which includes a tilt sensor. The robot should increase motor
RPM (duty cycle) for positive inclines and reduce motor RPM (duty cycle) for negatives
inclines.

• Equip the robot with an analog inertial measurement unit (IMU) to measure vehicle tilt.
Use the information provided by the IMU to optimize robot speed going up and down
steep grades.

12.7 SUMMARY

In this chapter, we discussed the design process, related tools, and applied the process to a real-
world design. It is essential to follow a systematic, disciplined approach to embedded systems
design to successfully develop a prototype that meets established requirements.



12.8. REFERENCES AND FURTHER READING 543

12.8 REFERENCES AND FURTHER READING
Anderson, M. Help wanted: Embedded engineers why the United States is losing its edge in

embedded systems. IEEE—USA Today’s Engineer, February 2008. 488

Barrett, S. F. and Pack, D. J. Atmel AVR Processor Primer Programming and In-
terfacing, Morgan & Claypool Publishers, 2008. www.morganclaypool.com DOI:
10.2200/s00100ed1v01y200712dcs015.

Barrett, S. F. and Pack, D. J. Embedded Systems Design and Applications with the 68HC12 and
HCS12, Pearson Prentice Hall, Upper Saddle River, NJ, 2005.

Barrett, S. F. and Pack, D. J. Embedded Systems Design with the Atmel Microcontroller, Morgan
& Claypool Publishers, 2010. DOI: 10.2200/s00225ed1v01y200910dcs025.

Barrett, S. F. and Pack, D. J. Microcontrollers Fundamentals for Engineers and Sci-
entists, Morgan & Claypool Publishers, 2006. www.morganclaypool.com DOI:
10.2200/s00025ed1v01y200605dcs001. 491

Bohm, H. and Jensen, V. Build your Own Underwater Robot and Other Wet Projects, 11th ed.,
Westcoast Words, Vancouver, BC, Canada, 2012. 506

Christ, R. and Wernli, R. Sr. TheROVManual—AUser Guide for Remotely Operated Vehicle, 2nd
ed., Oxford, UK Butterworth–Heinemann imprint of Elsevier, 2014.

Dale, N. and Lilly, S. C. Pascal Plus Data Structures, 4th ed., Jones and Bartlett, Englewood
Cliffs, NJ, 1995. 491

Fowler, M. with K. Scott.UMLDistilled A Brief Guide to the Standard ObjectModeling Language,
2nd ed., Addison–Wesley, Boston, MA, 2000. 491, 492

Seaperch. www.seaperch.com 502

Texas Instruments MSP430FR2433 Mixed-Signal Microcontroller, (SLASE59D), Texas Instru-
ments, Revised 2018.

Texas Instruments MSP430FR4xx andMSP430FR2xx Family User’s Guide, (SLAU445G), Texas
Instruments, 2016.

Texas Instruments MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family,
(SLAU367O), Texas Instruments, 2017.

Texas Instruments MSP430FR599x, MSP430FR596x Mixed-Signal Microcontrollers,
(SLASE54C), Texas Instruments, Revised 2018.

www.morganclaypool.com
http://dx.doi.org/10.2200/s00100ed1v01y200712dcs015
http://dx.doi.org/10.2200/s00100ed1v01y200712dcs015
http://dx.doi.org/10.2200/s00225ed1v01y200910dcs025
www.morganclaypool.com
http://dx.doi.org/10.2200/s00025ed1v01y200605dcs001
http://dx.doi.org/10.2200/s00025ed1v01y200605dcs001
www.seaperch.com


544 12. SYSTEM-LEVEL DESIGN

12.9 CHAPTER EXERCISES
1. What is an embedded system?

2. What aspects must be considered in the design of an embedded system?

3. What is the purpose of the structure chart, UML activity diagram, and circuit diagram?

4. Why is a system design only as good as the test plan that supports it?

5. During the testing process, when an error is found and corrected, what should now be
accomplished?

6. Discuss the top-down design, bottom-up implementation concept.

7. Describe the value of accurate documentation.

8. What is required to fully document an embedded systems design?

9. For the Dagu Magician robot, modify the PWM turning commands such that the PWM
duty cycle and the length of time the motors are on are sent in as variables to the function.

10. For the Dagu Magician robot, equip the motor with another IR sensor that looks down for
“land mines.” A land mine consists of a paper strip placed in the maze floor that obstructs
a portion of the maze. If a land mine is detected, the robot must deactivate it by rotating
about its center axis three times and flashing a large LED while rotating.

11. For the Dagu Magician robot, develop a function for reversing the robot.

12. Provide a powered dive and surface thruster for the SeaPerch ROV. To provide for a
powered dive and surface capability, the ROV must be equipped with a vertical thruster
equipped with an H-bridge to allow for motor forward and reversal.

13. Provide a left and right thruster reverse for the SeaPerch ROV. Currently, the left and right
thrusters may only be powered in one direction. To provide additional maneuverability, the
left and right thrusters could be equipped with an H-bridge to allow bi-directional motor
control.

14. Provide proportional speed control with bi-directional motor control for the SeaPerch
ROV. Both of these advanced features may be provided by driving the H-bridge circuit
with PWM signals.

15. For the 4WD robot, modify the PWM turning commands such that the PWM duty cycle
and the length of time the motors are on are sent in as variables to the function.



12.9. CHAPTER EXERCISES 545
16. For the 4WD robot, equip the motor with another IR sensor that looks down for “land

mines.” A land mine consists of a paper strip placed in the maze floor that obstructs a
portion of the maze. If a land mine is detected, the robot must deactivate it by rotating
about its center axis three times and flashing a large LED while rotating.

17. For the 4WD robot, develop a function for reversing the robot.

18. For the 4WD robot, the current design is a two-wheel, front-wheel drive system. Modify
the design for a two-wheel, rear-wheel drive system.

19. For the 4WD robot, the current design is a two wheel, front wheel drive system. Modify
the design for a 4WD system.

20. For the 4WD robot, develop a 4WD system which includes a tilt sensor. The robot should
increase motor RPM (duty cycle) for positive inclines and reduce motor RPM (duty cycle)
for negatives inclines.

21. Equip the robot with an inertial measurement unit (IMU) to measure vehicle tilt. Use
the information provided by the IMU to optimize robot speed going up and down steep
grades.

22. Develop an embedded system controlled dirigible/blimp (www.microflight.com,www.
rctoys.com).

23. Develop a trip odometer for your bicycle (Hint: use a Hall Effect sensor to detect tire
rotation).

24. Develop a timing system for a four lane Pinewood Derby track.

25. Develop a playing board and control system for your favorite game (Yahtzee, Connect
Four, Battleship, etc.).

26. You have a very enthusiastic dog that loves to chase balls. Develop a system to launch balls
for the dog.

27. Construct the UML activity diagrams for all functions related to the weather station.

28. It is desired to updated weather parameters every 15 min. Write a function to provide a
15 min delay.

29. Add one of the following sensors to the weather station:

• anemometer
• barometer
• hygrometer

www.microflight.com, www.rctoys.com
www.microflight.com, www.rctoys.com


546 12. SYSTEM-LEVEL DESIGN
• rain gauge
• thermocouple

You will need to investigate background information on the selected sensor, develop an
interface circuit for the sensor, and modify the weather station code.

30. Modify the weather station software to also employ the 138 x 110 LCD. Display pertinent
weather data on the display.

31. Voice output (Hint: Use an ISD 4003 Chip Corder.)

32. Develop an embedded system controlled submarine (www.seaperch.org).

33. Equip the MSP430 with automatic cell phone dialing capability to notify you when a fire
is present in your home.



547

Authors’ Biographies

STEVEN F. BARRETT
Steven F. Barrett, Ph.D., P.E., received a B.S. in Electronic Engineering Technology from
the University of Nebraska at Omaha in 1979, an M.E.E.E. from the University of Idaho at
Moscow in 1986, and a Ph.D. from The University of Texas at Austin in 1993. He was formally
an active duty faculty member at the United States Air Force Academy, Colorado and is now
the Associate Dean of Academic Programs at the University of Wyoming. He is a member of
IEEE (senior) and Tau Beta Pi (chief faculty advisor). His research interests include digital and
analog image processing, computer–assisted laser surgery, and embedded controller systems. He
is a registered Professional Engineer in Wyoming and Colorado. He co-wrote with Dr. Daniel
Pack several textbooks on microcontrollers and embedded systems. In 2004, Barrett was named
“Wyoming Professor of the Year” by the Carnegie Foundation for the Advancement of Teaching
and in 2008 was the recipient of the National Society of Professional Engineers (NSPE) in
Higher Education, Engineering Education Excellence Award.

DANIEL J. PACK
Daniel J. Pack, Ph.D., P.E., is the Dean of the College of Engineering and Computer Science
at the University of Tennessee, Chattanooga (UTC). Prior to joining UTC, he was Professor
and Mary Lou Clarke Endowed Department Chair of the Electrical and Computer Engineer-
ing Department at the University of Texas, San Antonio (UTSA). Before his service at UTSA,
Dr. Pack was Professor (now Professor Emeritus) of Electrical and Computer Engineering at
the United States Air Force Academy (USAFA), CO, where he served as founding Director of
the Academy Center for Unmanned Aircraft Systems Research. He received a B.S. in Electri-
cal Engineering, an M.S. in Engineering Sciences, and a Ph.D. in Electrical Engineering from
Arizona State University, Harvard University, and Purdue University, respectively. He was a
visiting scholar at the Massachusetts Institute of Technology-Lincoln Laboratory. Dr. Pack has
co-authored seven textbooks on embedded systems (including 68HC12 Microcontroller: Theory
and Applications and Embedded Systems: Design and Applications with the 68HC12 and HCS12)
and published over 160 book chapters, technical journal/transactions, and conference papers on
unmanned systems, cooperative control, robotics, pattern recognition, and engineering educa-
tion. He is the recipient of a number of teaching and research awards including Carnegie U.S.
Professor of the Year Award, Frank J. Seiler Research Excellence Award, Tau Beta Pi Outstand-
ing Professor Award, Academy Educator Award, and Magoon Award. He is a member of Eta



548 AUTHORS’ BIOGRAPHIES
Kappa Nu (Electrical Engineering Honorary), Tau Beta Pi (Engineering Honorary), IEEE,
and the American Society of Engineering Education. He is a registered Professional Engineer
in Colorado, serves as Associate Editor of IEEE Systems Journal, and is a member on a number
of executive advisory or editorial boards including the Journal of Intelligent & Robotic Systems,
International Journal of Advanced Robotic Systems, and SimCenter Enterprise. His research inter-
ests include unmanned aerial vehicles, intelligent control, automatic target recognition, robotics,
and engineering education. E-mail: daniel-pack@utc.edu

daniel-pack@utc.edu


549

Index

absolute addressing mode, 121
AC device control, 199
AC interfacing, 199
ADC, 8
ADC conversion, 357
ADC programming, 373
ADC, SA converter, 377
ADC, SAR converter, 366
ADC12_B, 376
ADC12_B programming, 383
addressing modes, 119
AES accelerator, 11
AES256 Accelerator Module, 474
ALU, 3
analog sensor, 155
annunciator, 198
arithmetic instructions, 114
arithmetic operations, 66
ASCII, 398
assembly process, 109
assembly vs. C, 125

background research, 488
Bardeen, Brattain, and Schockley, 2
bare metal, 60
battery operation, 249
Baud rate, 398
bilge pump, 199
binary number system, 259
bit instructions, 115
bit twiddling, 70

Boone, Gary, 3
bottom-up approach, 491
branch instructions, 117

C bit, 97
Code Composer Studio, 12
code re-use, 493
comments, 56
COMP E, 387
comparator, 387
counting events, 306
CRC check, 84
CRC checksum, 464
CRC generator, 10
CRC polynomial, 464
CRC32 module, 465
current sink, 142
current source, 140

DAC converter, 364
data integrity, 464
data test instructions, 117
data transfer instructions, 111
DC fan, 199
DC motor, 176
decoder, 208
design, 490
design process, 488
DF robot, 528
digital sensor, 153
Direct Memory Access (DMA), 11, 264



550 INDEX
directives, 101
DMA addressing modes, 269
DMA controller, 266
DMA register set, 271
DMA transfer modes, 270
documentation, 493
dot matrix display, 172
duty cycle, 283

Educational Booster Pack MkII, 203, 226
EEPROM, 4
elapsed time, 304
electrical specifications, 140
electromagnetic interference (EMI), 462
electrostatic discharge (ESD), 462
Embedded Emulator Module (EEM), 84
embedded system, 488
EMI noise suppression, 462
EMI reduction strategies, 462
encoding, 362
Energia, 12, 22
Energia Development Environment, 22
enhanced Universal Serial Communication

Interface (eUSCI), 9, 395
ENIAC, 2
eUSCI A module, 9
eUSCI B module, 9
eUSCI_A module, 395
eUSCI_B module, 395

fireworks, 219
flow control instructions, 117
free running counter, 308
frequency, 282
frequency measurement, 306
full duplex, 398
function body, 59
function call, 58
function call instructions, 118

function prototypes, 58
functions, 57

General Interrupt Enable (GIE) bit, 97
general purpose registers, 95
Grove starter kit, 205, 226
gyroscope, 159

H-bridge, 181
hardware multiplier, 8
Harvard architecture, 260
HC CMOS, 142

I2C module, 441
I/O port, 8, 59
ideal op amp, 164
immediate addressing mode, 121
include files, 57
indexed addressing mode, 119
indirect autoincrement addressing mode, 121
indirect register addressing mode, 121
inertial measurement unit, 159
inertial measurement unit (IMU), 159
input capture, 305, 312
input devices, 145
Instruction Set Architecture (ISA), 110
integrated circuit, 2
interrupt handler, 63
interrupt priority, 344
interrupt processing, 337
interrupt service routine (ISR), 336, 344
interrupt system, 336
interrupt theory, 335
interrupt vectors, 263
interrupts, 336
interval timer, 290
IR sensor, 157
IR sensors, 40
IrDA protocol, 9, 396

joystick, 155, 506, 511



INDEX 551
keypad, 147
Kilby, Jack, 2

label field, 100
laser light show, 178
LCD, serial, 175
LED biasing, 168
LED cube, 205, 208
LED cube, construction, 208
light emitting diode (LED), 168
linear feedback shift register (LFSR), 465
liquid crystal display (LCD), 172
logic instructions, 115
logical operations, 68
loop, 71
loop(), 23
low power modes, 98
low-power modes, 8

main program, 65
maskable interrupts, 337
Mauchly and Eckert, 2
MAX3232, 398
maze, 40
memory address bus, 256
memory concepts, 256
memory data bus, 258
memory map, 262
microcontroller, 1, 3
Mini round robot, 40
mini round robot, 40
MMC/SD, 277
MMC/SD card, 261
MOSFET, 180
motor operating parameters, 180
motor, vibrating, 199
mountain maze, 528, 540
multiplication module (MPY32), 114

N bit, 97

noise, 462
non-maskable interrupts, 337
non-volatile memory, 261
NRZ format, 398
Nyquist rate, 359

octal buffer, 206
op amp, 164
op code, 119
operating modes, 98
operating parameters, 139
operational amplifier, 164
operators, 66
optical isolation, 197
orthogonal instruction set, 123
output compare, 307, 317
output device, 165
output timer, 303
overflow, 95

parity, 398
period, 282
photodiode, 162
pointers, 265
Power Management Module (PMM), 10
PowerSwitch Tail II, 200
pre-design, 490
preliminary testing, 493
program constants, 63
program constructs, 70
program counter (PC), 95
programming, 124
programming in C, 53
programming module, 90
project description, 488
prototyping, 492
pulse width modulation (PWM), 284

quantization, 359

RAM, 4, 260



552 INDEX
real-time clock (RTC), 11, 295
register addressing mode, 119
resets, 333
resolution, 361
Rijndael algorithm, 474
RISC architecture, 7
robot IR sensors, 40
robot platform, 40
robot steering, 40
robot, autonomous, 528
robot, submersible, 502
ROM, 4, 261
rotate instructions, 113
ROV, 502
ROV buoyancy, 506
ROV control housing, 524
ROV structure, 504
RS-232, 398
RTC C, 297

sampling, 358
SeaPerch, 502, 511
SeaPerch control system, 511
SeaPerch ROV, 502
sensor, level, 159
sensor, ultrasonic, 159
sensors, 153
serial communications, 395
serial peripheral interface, 411
servo motor, 176
servos, Futaba, 178
setup(), 23
shift instructions, 111
signal conditioning, 162
signal generation, 307
simplex communication, 397
sketch, 24
sketchbook, 23
software programming, 100

solenoid, 185
sonalert, 198
speech chip, SP)-512, 406
SPI, 411
SPI features, 411
SPI hardware, 412
SPI operation, 411
SPI registers, 414
SRAM memory, 10
stack, 95
stack pointer (SP), 95
status bits, 97
status register R2, 95
stepper motor, 176, 185
strip LED, 32
switch, 75
switch debouncing, 147
switch interface, 145
switches, 145
symbolic addressing mode, 121

test plan, 493
time base, 302
timer, 84
timer applications, 305
timers, 307
timing parameters, 282
TMS 1000, 3
top-down approach, 491
top-down design, bottom-up

implementation, 491
transducer interface, 162
transistor, 2
tri-state LED indicator, 172

UART, 399
UART character format, 402
UART features, 399
UART interrupts, 403



INDEX 553
UART module, 400
UART registers, 404
ultra-low power consumption, 8
UML, 44, 491
UML activity diagram, 124, 491
Unified Modeling Language (UML), 490
UNIVAC I, 2

vacuum tube, 2

variable size, 64
variables, 63
volatile memory, 260
von Neumann architecture, 260

Watchdog timer, 288
weather station, 494
while, 72

Z bit, 97


	Preface
	Acknowledgments
	Introduction to Microcontroller Technology
	Motivation
	Background Theory: A Brief History and Terminology
	Microcontroller Systems
	Why the Texas Instruments MSP430?
	Target Microcontroller Features
	Introduction to the Evaluation Modules (EVM)
	Development Software
	Lab 1: Getting Acquainted with Hardware and Software Development Tools
	Summary
	References and Further Reading
	Chapter Problems

	A Brief Introduction to Programming
	Overview
	Energia
	Energia Quickstart
	Energia Development Environment
	Energia IDE Overview
	Sketchbook Concept
	Energia Software, Libraries, and Language References

	Energia Pin Assignments
	Writing an Energia Sketch
	Control Algorithm for the Mini Round Robot

	Some Additional Comments on Energia
	Programming in C
	Anatomy of a Program
	Comments
	Include Files
	Functions
	Port Configuration
	Program Constants
	Interrupt Handler Definitions
	Variables
	Main Program

	Fundamental Programming Concepts
	Operators
	Programming Constructs
	Decision Processing

	Laboratory Exercise: Getting Acquainted with Energia and C
	Summary
	References and Further Reading
	Chapter Problems

	Hardware Organization and Software Programming
	Motivation
	MSP430 Hardware Organization/Architecture
	Chip Organization
	Hardware Pin Assignments

	Hardware Subsystems
	Register Block
	Port System
	Timer System
	Memory System
	Resets and Interrupts
	Communication Systems
	Analog-to-Digital Converter
	Hardware Multiplier (MPY32)

	CPU Programming Model/Register Descriptions
	Operating Modes
	Software Programming
	MSP430 Assembly Language
	Directives
	Assembly Process
	Instruction Set Architecture

	Addressing Modes
	Register Addressing Mode
	Indexed Addressing Mode
	Symbolic Addressing Mode
	Absolute Addressing Mode
	Indirect Register Addressing Mode
	Indirect Autoincrement Addressing Mode
	Immediate Addressing Mode
	Programming Constructs
	Orthogonal Instruction Set

	Software Programming Skills
	Assembly vs. C
	Our Approach

	Accessing and Debugging Tools
	Laboratory Exercise: Programming the MSP430 in Assembly Language
	Part 1: Flash an LED via Assembly Language
	Part 2: Illuminate a LED via Assembly Language 
	Part 3: Mathematical Operations in Assembly Language

	Summary
	References and Further Reading
	Chapter Problems

	MSP430 Operating Parameters and Interfacing
	Operating Parameters
	MSP430 3.3 VDC operation
	Compatible 3.3 VDC Logic Families
	Microcontroller Operation at 5.0 VDC
	Interfacing 3.3 VDC Logic Devices with 5.0 VDC Logic Families

	Input Devices
	Switches
	Switch Debouncing
	Keypads
	Sensors
	Transducer Interface Design (TID) Circuit
	Operational Amplifiers

	Output Devices
	Light-Emitting Diodes (LEDs)
	Seven-Segment LED Displays
	Tri-State LED Indicator
	Dot Matrix Display
	Liquid Crystal Display (LCD)

	High-Power DC Interfaces
	DC Motor Interface, Speed, and Direction Control
	DC Solenoid Control
	Stepper Motor Control
	Optical Isolation

	Interfacing to Miscellaneous DC Devices
	Sonalerts, Beepers, and Buzzers
	Vibrating Motor
	DC Fan
	Bilge Pump

	AC Devices
	MSP430FR5994: Educational Booster Pack MkII
	Grove Starter Kit for LaunchPad
	Application: Special Effects LED Cube
	Construction Hints
	LED Cube MSP430 Energia Code

	Laboratory Exercise: Introduction to the Educational Booster Pack MkII and the Grove Starter Kit
	Laboratory: Collection and Display of Weather Information
	Summary
	References and Further Reading
	Chapter Problems

	Power Management and Clock Systems
	Overview
	Background Theory
	Operating Modes
	The Power Management Module (PMM) and Supply Voltage Supervisor (SVS)
	Supply Voltage Supervisor
	PMM Registers

	Clock System
	Battery Operation
	Voltage Regulation
	High-Efficiency Charge Pump Circuits
	Laboratory Exercise: MSP430 Power Systems and Low-Power Mode Operation
	Current Measurements in Different Operating Modes
	Operating an MSP430 from a Single Regulated Battery Source
	Operating an MSP430 from a Single 1.5 VDC Battery

	Summary
	References and Further Reading
	Chapter Problems

	MSP430 Memory System
	Overview
	Basic Memory Concepts
	Memory Buses
	Memory Operations
	Binary and Hexadecimal Numbering Systems
	Memory Architectures
	Memory Types
	Memory Map
	Direct Memory Access (DMA)

	Aside: Memory Operations in C Using Pointers
	Direct Memory Access (DMA) controller
	DMA System
	DMA Example: Block Transfer

	MSP430FR5994: Memory Protection Unit and IP Encapsulation Segment
	External Memory: Bulk Storage with an MMC/SD Card
	Laboratory Exercise: SD Card Operations with the MSP-EXP430FR5994
	Laboratory Exercise: MSP-EXP430FR5994 LaunchPad DMA Transfer
	Summary
	References and Further Reading
	Chapter Problems

	Timer Systems
	Introduction
	Motivation: Real-Time Location Systems (RTLS)
	Time-Related Signal Parameters
	Frequency
	Period
	Duty Cycle
	Pulse Width Modulation

	Overview of MSP430 Timer Features
	Energia-Related Time Functions
	Watchdog Timer
	Protecting from Software Failure
	Interval Timer

	Real-Time Clock
	Real-Time Clock-MSP430FR2433
	Real-Time Clock: RTC_B, RTC_C-MSP430FR5994
	RTC Registers

	Input Capture and Output Compare Features
	Timing System Overview and Background Theory
	Applications

	MSP430 Timers: Timer_A and Timer_B
	MSP430 Free Running Counter
	Input Capture
	Output Compare
	Timer_B System

	Laboratory Exercise: Generation of Varying Pulse Width Modulated Signals to Control DC Motors
	Summary
	References and Further Reading
	Chapter Problems

	Resets and Interrupts
	Motivation
	Background
	MSP430 Resets/Interrupts Overview
	MSP430 Resets
	Interrupts
	Interrupt Handling Process
	Interrupt Priority
	Interrupt Service Routine (ISR)

	Laboratory Exercise
	References and Further Reading
	Chapter Problems

	Analog Peripherals
	Analog-to-Digital Conversion Process
	Sampling
	Quantization
	Encoding

	Digital-to-Analog Converter Process
	MSP430 ADC Systems
	MSP 430 ADC Block Diagram
	MSP430FR2433 10-bit Analog-to-Digital Converter
	MSP430FR2433 Register Summary
	Programming the MSP430FR2433 ADC in C

	MSP430FR5994 Analog-to-Digital Converter
	ADC12_B Features
	MSP430FR5994 ADC12_B Operation
	MSP430FR5994 Register Summary
	Analysis of Results
	Programming the MSP430FR5994 ADC12_B System

	MSP430FR5994 Comparator
	Advanced Analog Peripherals
	Smart Analog Combo (SAC)
	Enhanced Comparator (eCOMP)
	Transimpedance Amplifier (TIA)

	Laboratory Exercise: Smart Home Sensor
	References and Further Reading
	Chapter Problems

	Communication Systems
	Background
	Serial Communication Concepts
	MSP430 UART
	UART Features
	UART Overview
	Character Format
	Baud Rate Selection
	UART Associated Interrupts
	UART Registers

	Code Examples
	Energia
	UART C Example

	Serial Peripheral Interface-SPI
	SPI Operation
	MSP430 SPI Features
	MSP430 SPI Hardware Configuration
	SPI Registers
	SPI Code Examples

	Inter-Integrated Communication – I2C Module
	I2C Initialization
	I2C Protocol
	MSP430 as a Slave Device
	MSP430 as a Master Device
	I2C Registers
	Programming the I2C

	Laboratory Exercise: UART and SPI Communications
	Summary
	References and Further Reading
	Chapter Problems

	MSP430 System Integrity
	Overview
	Electromagnetic Interference
	EMI reduction Strategies

	Cyclic Redundancy Check
	MSP430FR5994 CRC32 Module
	CRC16 Registers
	CRC32 Registers

	AES256 Accelerator Module
	Registers
	API Support

	Laboratory Exercise: AES256
	Summary
	References and Further Reading
	Chapter Problems

	System-Level Design
	Overview
	What is an Embedded System?
	Embedded System Design Process
	Project Description
	Background Research
	Pre-Design
	Design
	Implement Prototype
	Preliminary Testing
	Complete and Accurate Documentation

	MSP430FR5994: Weather Station
	Requirements
	Structure Chart
	Circuit Diagram
	UML Activity Diagrams
	Microcontroller Code
	Project Extensions

	Submersible Robot
	Approach
	Requirements
	ROV Structure
	Structure Chart
	Circuit Diagram
	UML Activity Diagram
	MSP430 Code
	Control Housing Layout
	Final Assembly Testing
	Final Assembly
	Project Extensions

	Mountain Maze Navigating Robot
	Description
	Requirements
	Circuit Diagram
	Structure Chart
	UML Activity Diagrams
	Robot Code
	Mountain Maze
	Project Extensions

	Summary
	References and Further Reading
	Chapter Exercises

	Authors' Biographies
	Index

