
Series Editor: Mitchell A. Thornton, Southern Methodist University

Programming the ARM® Cortex®-M4-based STM32F4
Microcontrollers with Simulink®
Farzin Asadi, Maltepe University
Sawai Pongswatd, King Mongkut’s Insitute of Technology

A microcontroller is a compact, integrated circuit designed to govern a specific operation in an
embedded system. A typical microcontroller includes a processor, memory, and input/output
(I/O) peripherals on a single chip.
 When they first became available, microcontrollers solely used Assembly language.
Today, the C programming language (and some other high-level languages) can be used as well.
Some of advanced microcontrollers support another programming technique as well: Graphical
programming. In graphical programming, the user does not write any code but draws the block
diagram of the system he wants. Then a software converts the drawn block diagram into a suitable
code for the target device.
 Programming microcontrollers using graphical programming is quite easier than
programming in C or Assembly. You can implement a complex system within hours with graphical
programming while its implementation in C may take months. These features make graphical
programming an important option for engineers.
 This book explains the graphical programming of STM32F4 high-performance
microcontrollers with the aid of Simulink® and Waijung blockset. Students of engineering (for
instance, electrical, biomedical, mechatronics and robotic to name a few), engineers who work in
industry, and anyone who want to learn the graphical programming of STM32F4 can benefit from
this book. Prerequisite for this book is the basic knowledge of MATLAB®/Simulink®.

Series ISSN: 1932-3166

About SYNTHESIS
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis
books provide concise, original presentations of important research and
development topics, published quickly, in digital and print formats.

store.morganclaypool.com

A
SA

D
I • PO

N
G

SW
AT

D
PR

O
G

R
A

M
M

IN
G

 T
H

E
 A

R
M

® C
O

R
T

E
X

®-M
4-B

A
SE

D
 ST

M
32F4 M

IC
R

O
C

O
N

T
R

O
LLE

R
S W

IT
H

 SIM
U

LIN
K

®
M

O
RG

A
N

 &
 C

LAYPO
O

L

Programming the ARM®
Cortex®-M4-based
STM32F4Microcontrollers
with Simulink®

Synthesis Lectures onDigital
Circuits and Systems

Editor
Mitchell A.Thornton, SouthernMethodist University

The Synthesis Lectures on Digital Circuits and Systems series is comprised of 50- to 100-page books
targeted for audience members with a wide-ranging background. The Lectures include topics that
are of interest to students, professionals, and researchers in the area of design and analysis of digital
circuits and systems. Each Lecture is self-contained and focuses on the background information
required to understand the subject matter and practical case studies that illustrate applications. The
format of a Lecture is structured such that each will be devoted to a specific topic in digital circuits
and systems rather than a larger overview of several topics such as that found in a comprehensive
handbook. The Lectures cover both well-established areas as well as newly developed or emerging
material in digital circuits and systems design and analysis.

Programming the ARM® Cortex®-M4-based STM32F4 Microcontrollers with
Simulink®
Farzin Asadi and Sawai Pongswatd
2021

Arduino III: Internet of Things
Steven F. Barrett
2021

Arduino II: Systems
Steven F. Barrett
2020

Arduino I: Getting Started
Steven F. Barrett
2020

Index Generation Functions
Tsutomu Sasao
2019

Microchip AVR® Microcontroller Primer: Programming and Interfacing, Third Edition
Steven F. Barrett and Daniel J. Pack
2019

iii
Microcontroller Programming and Interfacing with Texas Instruments MSP430FR2433
and MSP430FR5994 – Part II, Second Edition
Steven F. Barrett and Daniel J. Pack
2019

Microcontroller Programming and Interfacing with Texas Instruments MSP430FR2433
and MSP430FR5994 – Part I, Second Edition
Steven F. Barrett and Daniel J. Pack
2019

Synthesis of Quantum Circuits vs. Synthesis of Classical Reversible Circuits
Alexis De Vos, Stijn De Baerdemacker, and Yvan Van Rentergen
2018

Boolean Differential Calculus
Bernd Steinbach and Christian Posthoff
2017

Embedded Systems Design with Texas Instruments MSP432 32-bit Processor
Dung Dang, Daniel J. Pack, and Steven F. Barrett
2016

Fundamentals of Electronics: Book 4 Oscillators and Advanced Electronics Topics
Thomas F. Schubert and Ernest M. Kim
2016

Fundamentals of Electronics: Book 3 Active Filters and Amplifier Frequency
Thomas F. Schubert and Ernest M. Kim
2016

Bad to the Bone: Crafting Electronic Systems with BeagleBone and BeagleBone Black,
Second Edition
Steven F. Barrett and Jason Kridner
2015

Fundamentals of Electronics: Book 2 Amplifiers: Analysis and Design
Thomas F. Schubert and Ernest M. Kim
2015

Fundamentals of Electronics: Book 1 Electronic Devices and Circuit Applications
Thomas F. Schubert and Ernest M. Kim
2015

Applications of Zero-Suppressed Decision Diagrams
Tsutomu Sasao and Jon T. Butler
2014

iv
Modeling Digital Switching Circuits with Linear Algebra
Mitchell A. Thornton
2014

Arduino Microcontroller Processing for Everyone! Third Edition
Steven F. Barrett
2013

Boolean Differential Equations
Bernd Steinbach and Christian Posthoff
2013

Bad to the Bone: Crafting Electronic Systems with BeagleBone and BeagleBone Black
Steven F. Barrett and Jason Kridner
2013

Introduction to Noise-Resilient Computing
S.N. Yanushkevich, S. Kasai, G. Tangim, A.H. Tran, T. Mohamed, and V.P. Shmerko
2013

Atmel AVR Microcontroller Primer: Programming and Interfacing, Second Edition
Steven F. Barrett and Daniel J. Pack
2012

Representation of Multiple-Valued Logic Functions
Radomir S. Stankovic, Jaakko T. Astola, and Claudio Moraga
2012

Arduino Microcontroller: Processing for Everyone! Second Edition
Steven F. Barrett
2012

Advanced Circuit Simulation Using Multisim Workbench
David Báez-López, Félix E. Guerrero-Castro, and Ofelia Delfina Cervantes-Villagómez
2012

Circuit Analysis with Multisim
David Báez-López and Félix E. Guerrero-Castro
2011

Microcontroller Programming and Interfacing Texas Instruments MSP430, Part I
Steven F. Barrett and Daniel J. Pack
2011

Microcontroller Programming and Interfacing Texas Instruments MSP430, Part II
Steven F. Barrett and Daniel J. Pack
2011

v
Pragmatic Electrical Engineering: Systems and Instruments
William Eccles
2011

Pragmatic Electrical Engineering: Fundamentals
William Eccles
2011

Introduction to Embedded Systems: Using ANSI C and the Arduino Development
Environment
David J. Russell
2010

Arduino Microcontroller: Processing for Everyone! Part II
Steven F. Barrett
2010

Arduino Microcontroller Processing for Everyone! Part I
Steven F. Barrett
2010

Digital System Verification: A Combined Formal Methods and Simulation Framework
Lun Li and Mitchell A. Thornton
2010

Progress in Applications of Boolean Functions
Tsutomu Sasao and Jon T. Butler
2009

Embedded Systems Design with the Atmel AVR Microcontroller: Part II
Steven F. Barrett
2009

Embedded Systems Design with the Atmel AVR Microcontroller: Part I
Steven F. Barrett
2009

Embedded Systems Interfacing for Engineers using the Freescale HCS08 Microcontroller
II: Digital and Analog Hardware Interfacing
Douglas H. Summerville
2009

Designing Asynchronous Circuits using NULL Convention Logic (NCL)
Scott C. Smith and JiaDi
2009

vi
Embedded Systems Interfacing for Engineers using the Freescale HCS08 Microcontroller
I: Assembly Language Programming
Douglas H.Summerville
2009

Developing Embedded Software using DaVinci & OMAP Technology
B.I. (Raj) Pawate
2009

Mismatch and Noise in Modern IC Processes
Andrew Marshall
2009

Asynchronous Sequential Machine Design and Analysis: A Comprehensive Development
of the Design and Analysis of Clock-Independent State Machines and Systems
Richard F. Tinder
2009

An Introduction to Logic Circuit Testing
Parag K. Lala
2008

Pragmatic Power
William J. Eccles
2008

Multiple Valued Logic: Concepts and Representations
D. Michael Miller and Mitchell A. Thornton
2007

Finite State Machine Datapath Design, Optimization, and Implementation
Justin Davis and Robert Reese
2007

Atmel AVR Microcontroller Primer: Programming and Interfacing
Steven F. Barrett and Daniel J. Pack
2007

Pragmatic Logic
William J. Eccles
2007

PSpice for Filters and Transmission Lines
Paul Tobin
2007

vii
PSpice for Digital Signal Processing
Paul Tobin
2007

PSpice for Analog Communications Engineering
Paul Tobin
2007

PSpice for Digital Communications Engineering
Paul Tobin
2007

PSpice for Circuit Theory and Electronic Devices
Paul Tobin
2007

Pragmatic Circuits: DC and Time Domain
William J. Eccles
2006

Pragmatic Circuits: Frequency Domain
William J. Eccles
2006

Pragmatic Circuits: Signals and Filters
William J. Eccles
2006

High-Speed Digital System Design
Justin Davis
2006

Introduction to Logic Synthesis using Verilog HDL
Robert B.Reese and Mitchell A.Thornton
2006

Microcontrollers Fundamentals for Engineers and Scientists
Steven F. Barrett and Daniel J. Pack
2006

Copyright © 2022 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by anymeans—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

Programming the ARM® Cortex®-M4-based STM32F4 Microcontrollers with Simulink®

Farzin Asadi and Sawai Pongswatd

www.morganclaypool.com

ISBN: 9781636392448 paperback
ISBN: 9781636392455 ebook
ISBN: 9781636392462 hardcover

DOI 10.2200/S01128ED1V01Y202109DCS061

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON DIGITAL CIRCUITS AND SYSTEMS

Lecture #61
Series Editor: Mitchell A. Thornton, Southern Methodist University
Series ISSN
Print 1932-3166 Electronic 1932-3174

Programming the ARM®
Cortex®-M4-based
STM32F4Microcontrollers
with Simulink®

Farzin Asadi
Maltepe University, Istanbul, Turkey

Sawai Pongswatd
King Mongkut’s Institute of Technology, Ladkrabang, Thailand

SYNTHESIS LECTURES ON DIGITAL CIRCUITS AND SYSTEMS #61

C
M
&

cLaypoolMorgan publishers&

x

ABSTRACT
A microcontroller is a compact, integrated circuit designed to govern a specific operation in an
embedded system. A typical microcontroller includes a processor, memory, and input/output
(I/O) peripherals on a single chip.

When they first became available, microcontrollers solely used Assembly language. To-
day, the C programming language (and some other high-level languages) can be used as well.
Some of advanced microcontrollers support another programming technique as well: Graphi-
cal programming. In graphical programming, the user does not write any code but draws the
block diagram of the system he wants. Then a software converts the drawn block diagram into
a suitable code for the target device.

Programming microcontrollers using graphical programming is quite easier than pro-
gramming in C or Assembly. You can implement a complex system within hours with graphical
programming while its implementation in C may take months. These features make the graph-
ical programming an important option for engineers.

This book study the graphical programming of STM32F4 high-performance microcon-
trollers with the aid of Simulink® and Waijung blockset. Students of engineering (for instance,
electrical, biomedical, mechatronics and robotic to name a few), engineers who work in indus-
try, and anyone who want to learn the graphical programming of STM32F4 can benefit from
this book. Prerequisite for this book is the basic knowledge of MATLABi®/Simulink®.

KEYWORDS
ARM Cortex, graphical programming, microcontroller, Simulink, STM32F4,
Waijung blockset

xi

Contents
Preface . xiii

1 Basics of Simulinkr . 1
1.1 Introduction . 1
1.2 Example 1: Step Response of a Transfer Function Model 1
1.3 Example 2: PID Controller Design in MATLAB Environment 16
1.4 Example 3: Feedback Control System . 18
1.5 Example 4: PID Controller Design in Simulink Environment 26
1.6 Example 5: Plot Two or More Waveforms in One Scope Block 28
1.7 Example 6: Simulation of Differential Equations . 32

2 Introduction toWaijung Blockset . 55
2.1 Introduction . 55
2.2 Example 1: Blinking the On-Board LEDs . 55

2.2.1 Manual Programming of the Board . 68
2.3 Example 2: Reading Digital Inputs . 71
2.4 Example 3: Determining the High and Low Voltage Levels for

Input/Output . 76
2.4.1 Different Types of Digital Output . 76
2.4.2 Data Type Conversion Block . 76

2.5 Example 4: Comparison of Open Drain and Push-Pull Outputs 84
2.6 Example 5: Sequentially Turning the On-Board LEDs On and Off 87
2.7 Example 6: Binary Counting . 87
2.8 Example 7: Changing the State of Output with a Button 101
2.9 Example 8: Counting the Number of Times a Switch is Pressed 104
2.10 Example 9: Implementation of Truth Table . 108

3 PulseWidthModulation (PWM) . 113
3.1 Introduction . 113
3.2 Example 1: Generation of Pulse Width Modulation (PWM) Signal with

the Basic PWM Block . 113

xii
3.3 Example 2: Two-Channel PWM with Basic PWM Block 113
3.4 Example 3: Generating a PWM Signal with Variable Duty Cycle 118
3.5 Example 4: Measurement of Frequency, Width C, and Duty Cycle with

PWM Capture Block . 119
3.6 Example 5: Controlling a DC Motor . 126

4 Analog to Digital Conversion and Timer . 129
4.1 Introduction . 129
4.2 Example 1: Regular ADC Block . 129
4.3 Example 2: Timer Block . 132
4.4 Example 3: Generation of Analog Waveforms . 138

5 Serial Communication . 147
5.1 Introduction . 147
5.2 Example 1: Serial Communication (I) . 147
5.3 Example 2: Serial Communication (II) . 153

A Installation of theWaijung Block Set . 157

Authors’ Biographies . 169

xiii

Preface
A microcontroller is a compact, integrated circuit designed to govern a specific operation in an
embedded system. A typical microcontroller includes a processor, memory, and input/output
(I/O) peripherals on a single chip.

Sometimes referred to as an embedded controller or microcontroller unit (MCU), mi-
crocontrollers are found in vehicles, robots, office machines, medical devices, mobile radio
transceivers, vending machines, and home appliances, among other devices. They are essen-
tially simple miniature personal computers (PCs) designed to control small features of a larger
component, without a complex front-end operating system (OS).

When they first became available, microcontrollers solely used Assembly language. To-
day, the C programming language (and some other high-level languages) can be used as well.
Some of advanced microcontrollers support another programming technique as well: graphi-
cal programming. In graphical programming, the user does not write any code but draws the
block diagram of the system he wants. Then a software converts the drawn block diagram into
a suitable code for the target device.

Programming microcontrollers using graphical programming is quite easier than pro-
gramming in C or Assembly. You can implement a complex system within hours with graphical
programming while its implementation in C may take months. These features make the graph-
ical programming an important option for engineers.

This book studies the graphical programming of STM32F4 high-performance microcon-
trollers with the aid of Simulink® and Waijung blockset. Students of engineering (for instance,
electrical, biomedical, mechatronics and robotic to name a few), engineers who work in indus-
try, and anyone who want to learn the graphical programming of STM32F4 can benefit from
this book. Prerequisite for this book is the basic knowledge of MATLAB®/Simulink®.

We hope that this book will be useful to the readers, and we welcome comments on the
book.

Farzin Asadi (farzinasadi@maltepe.edu.tr)
Sawai Pongswatd (sawai.po@kmitl.ac.th)
October 2021

1

C H A P T E R 1

Basics of Simulinkr

1.1 INTRODUCTION
Simulink is a software package for modeling, simulating, and analyzing dynamic systems. It
supports linear and nonlinear systems, modeled in continuous time, sampled time, or a hybrid
of the two. This chapter shows the basics of simulation with Simulinkr. If you are familiar with
Simulink environment, you can start from Chapter 2.

1.2 EXAMPLE 1: STEPRESPONSEOFATRANSFER
FUNCTIONMODEL

In this example, a transfer function is stimulated with unit step signal and its response is ob-
served. Enter to the Simulink environment with the aid of the simulink command (Fig. 1.1).

Figure 1.1

The Simulink Start Page window appeared. Click the BlankModel (Fig. 1.2). Now the Simulink
environment with a blank project is ready (Fig. 1.3). Click the Library Browser button (Fig. 1.4).
After clicking the Library Browser icon, the Simulink Library Browser window (Fig. 1.5) will
be opened and you can add required components to the model.

Simulink Library browser contains many blocks and it is impossible to memorize each
block locations. The Enter search term box is useful to find a block when you forgot its location.
For instance, assume that you need a PID controller block but you don’t know where it is. In
this case, just type pid in the Enter search term box (Fig. 1.6) and press the Enter key of your
keyboard. After pressing the Enter key, Simulink will list blocks related to the entered term in
the right side of the window.

2 1. BASICSOF SIMULINKr

Figure 1.2

1.2. EXAMPLE 1: STEPRESPONSEOFATRANSFERFUNCTIONMODEL 3

Figure 1.3

Figure 1.4

4 1. BASICSOF SIMULINKr

Figure 1.5

1.2. EXAMPLE 1: STEPRESPONSEOFATRANSFERFUNCTIONMODEL 5

Figure 1.6

6 1. BASICSOF SIMULINKr

The Transfer Fcn block can be found in the Continuous section of Simulink Library
Browser (Fig. 1.7). Click on the Transfer Fcn block to select it, then drag and drop it to the
model (Fig. 1.8).

Figure 1.7

Add a Step block (Fig. 1.9) to the model (Fig. 1.10). Add a Scope block (Fig. 1.11) to the model
(Fig. 1.12).

1.2. EXAMPLE 1: STEPRESPONSEOFATRANSFERFUNCTIONMODEL 7

Figure 1.8

Figure 1.9

8 1. BASICSOF SIMULINKr

Figure 1.10

Figure 1.11

1.2. EXAMPLE 1: STEPRESPONSEOFATRANSFERFUNCTIONMODEL 9

Figure 1.12

When you bring the mouse pointer close to the blocks terminals, it will be changed to
crosshair and permit you to start connecting them. After seeing the crosshair, hold down the left
mouse key and drag the connection toward the destination terminal and release the left mouse
button on the destination terminal. Use this method to connect the blocks together.

Figure 1.13

Double click the blocks and do their settings similar to what is shown in Figs. 1.14 and
1.15. Settings of Fig. 1.14 generate a pulse which jumps from 0 to 1 at t D 0. Settings of Fig. 1.15
simulate the 100

s2C8sC100
transfer function.

10 1. BASICSOF SIMULINKr

Figure 1.14

1.2. EXAMPLE 1: STEPRESPONSEOFATRANSFERFUNCTIONMODEL 11

Figure 1.15

12 1. BASICSOF SIMULINKr

Assume that you want to simulate the behavior of system for time length of 2 s. Enter 2
to the Stop Time box and click the Run button (or press the Ctrl+T) to simulate the behavior of
the system (Fig. 1.16). Sometimes you need to do the simulation with a specific solver. In these
cases, use the Model Settings (Fig. 1.17) to select the desired solver. After clicking the Model
Solver icon (or pressing the Ctrl+E), the window shown in Fig. 1.18 appears and you can select
the desired type of solver.

Figure 1.16

Figure 1.17

The simulation result is shown in Fig. 1.19. The simulation result can be copied into the
clipboard by pressing Ctrl+C. You can paste the copied waveform in other software by pressing
the Ctrl+V. This is very useful when you want to prepare a presentation or report.

You can use the CursorMeasurement (Fig. 1.20) to read the coordinate of different points
of the graph. After clicking the Cursor Measurement, two vertical lines will be added to the
graph (Fig. 1.21). You can move them to read the coordinate of different points of the graph.

1.2. EXAMPLE 1: STEPRESPONSEOFATRANSFERFUNCTIONMODEL 13

Figure 1.18

14 1. BASICSOF SIMULINKr

Figure 1.19

1.2. EXAMPLE 1: STEPRESPONSEOFATRANSFERFUNCTIONMODEL 15

Figure 1.20

16 1. BASICSOF SIMULINKr

Figure 1.21

1.3 EXAMPLE 2: PIDCONTROLLERDESIGN INMATLAB
ENVIRONMENT

Let’s design a PID controller for the transfer function of the previous example. The command
shown in Fig. 1.22 enters the transfer function to the MATLAB environment.

The pidTuner command (Fig. 1.23) helps you to tune the PID controller. After running
the pidTuner command, the window shown in Fig. 1.24 appears.

Move the sliders until you obtain a good response. By default, the PID tuner does the
tuning in the time domain (Fig. 1.25). You can do it in the frequency domain, as well (Fig. 1.26).

1.3. EXAMPLE 2: PIDCONTROLLERDESIGN INMATLABENVIRONMENT 17

Figure 1.22: Entering the H.s/ D
100

s2C8sC100
to MATLAB.

Figure 1.23

Figure 1.24

18 1. BASICSOF SIMULINKr

Figure 1.25

Figure 1.26

Sometimes the output signal of plant is quite good, however the control signal (which is
applied to the input of plant) is too big. So, it is a good idea to activate the Controller effort
window (Fig. 1.27) to see the control signal as well (Fig. 1.28). This allows you to see whether
or not the control signal is in the allowed range.

After designing a suitable controller, you can export the designed controller to the MAT-
LAB environment by clicking the Export button (Fig. 1.29). After clicking the Export button,
the window shown in Fig. 1.30 appears. Enter the desired name to Export PID controller box
and press the OK button.

1.4 EXAMPLE 3: FEEDBACKCONTROL SYSTEM
In this example wewill simulate a feedback control system. Consider the feedback control system
shown in Fig. 1.31. The plant transfer function is 100

s2C8sC100
. This simulation uses the Sum

(Fig. 1.32) and PID controller (Fig. 1.33) blocks. Settings of Sum and PID controller blocks
are shown in Figs. 1.34 and 1.35, respectively.

Run the Simulation. The result shown in Fig. 1.36 is obtained.

1.4. EXAMPLE 3: FEEDBACKCONTROL SYSTEM 19

Figure 1.27

20 1. BASICSOF SIMULINKr

Figure 1.28

1.4. EXAMPLE 3: FEEDBACKCONTROL SYSTEM 21

Figure 1.29

Figure 1.30

num(s)

den(s)
PID(s)+

–

Figure 1.31

22 1. BASICSOF SIMULINKr

Figure 1.32

1.4. EXAMPLE 3: FEEDBACKCONTROL SYSTEM 23

Figure 1.33

24 1. BASICSOF SIMULINKr

Figure 1.34

1.4. EXAMPLE 3: FEEDBACKCONTROL SYSTEM 25

Figure 1.35

26 1. BASICSOF SIMULINKr

Figure 1.36

1.5 EXAMPLE 4: PIDCONTROLLERDESIGN IN
SIMULINKENVIRONMENT

You can do the tuning in the Simulink environment as well. In this example, we will tune a PID
controller in the Simulink environment. Consider the Simulink model shown in Fig. 1.37. The
plant transfer function is 100

s2C8sC100
. The PID controller block has the default parameter values.

Double click the PID controller block and click the Tune button (Fig. 1.38). After clicking
the Tune button, the window shown in Fig. 1.39 appears and permits you to tune the controller.

1.5. EXAMPLE 4: PIDCONTROLLERDESIGN IN SIMULINKENVIRONMENT 27

num(s)

den(s)
PID(s)+

–

Figure 1.37

Figure 1.38

28 1. BASICSOF SIMULINKr

Figure 1.39

Sometimes the output signal of plant is quite good, however the control signal (which is
applied to the input of plant) is too big. So, it is a good idea to activate the controller effort
window (Fig. 1.40) to see the control signal as well (Fig. 1.41). This allows you to see whether
or not the control signal is in the allowed range. After tuning the controller, click the Update
Block button to apply the changes to the block.

1.6 EXAMPLE 5: PLOTTWOORMOREWAVEFORMS IN
ONE SCOPEBLOCK

In this example we see how to see two or more signals simultaneously. Consider the model
shown in Fig. 1.42. Plant transfer function is 100

s2C8sC100
. Settings of the PID controller block

are shown Fig. 1.43.
Click on the connection between the scope and output of system (Fig. 1.44) and press the

Delete key to remove it (Fig. 1.45).

1.6. EXAMPLE 5: PLOTTWOORMOREWAVEFORMS INONE SCOPEBLOCK 29

Figure 1.40

30 1. BASICSOF SIMULINKr

Figure 1.41

num(s)

den(s)
PID(s)+

–

Figure 1.42

1.6. EXAMPLE 5: PLOTTWOORMOREWAVEFORMS INONE SCOPEBLOCK 31

Figure 1.43

num(s)

den(s)
PID(s)+

–

Figure 1.44

32 1. BASICSOF SIMULINKr

num(s)

den(s)
PID(s)+

–

Figure 1.45

Double click on the scope block and select 2 for Number of Input Ports (Fig. 1.46). The
Scope blocks changes to what is shown in Fig. 1.47. Connect the inputs of Scope block to the
desired nodes of the system.

Run the simulation. The result shown in Fig. 1.49 is obtained. One of the signals has
round markers on it. You can remove these round markers by clicking the Style icon (Fig. 1.50).
After clicking the Style icon, the window shown in Fig. 1.51 appears. Convert the Marker box
to None (Fig. 1.52). Now the waveform has no round markers on it (Fig. 1.53).

There is another way to see two or more signals simultaneously: using the multiplexer
(Mux) block (Fig. 1.54). If you double click on the Mux block, the window shown in Fig. 1.55
appears and permits you to determine the desired number of inputs for the Mux block. The
block diagram shown in Fig. 1.56 shows the output of system and control input simultaneously
(Fig. 1.57).

1.7 EXAMPLE 6: SIMULATIONOFDIFFERENTIAL
EQUATIONS

In this example we want to simulate the following system:

Ry C 5 Py � 10y D 7 sin
�
3t C

�

3

�
; y .0/ D 1; Py .0/ D 4 (1.1)

Let’s define two new variables and convert the given equation into the state space system.8<: x1 D y

x2 D Py D
dy

dt

(1.2)

The state space representation of the system is:8<: Px1 D x2

Px2 D 10x1 � 5x2 C 7 sin
�
3t C

�

3

� ; x0 D

"
1

4

#
(1.3)

where x0 shows the initial condition of the system. This state space representation is suitable
for drawing the Simulink model. Add two Integrator blocks (Fig. 1.58) to the Simulink model
(Fig. 1.59).

1.7. EXAMPLE 6: SIMULATIONOFDIFFERENTIALEQUATIONS 33

Figure 1.46

num(s)

den(s)
PID(s)+

–

Figure 1.47

34 1. BASICSOF SIMULINKr

num(s)

den(s)
PID(s)+

–

Figure 1.48

Figure 1.49

1.7. EXAMPLE 6: SIMULATIONOFDIFFERENTIALEQUATIONS 35

Figure 1.50

Figure 1.51

36 1. BASICSOF SIMULINKr

Figure 1.52

1.7. EXAMPLE 6: SIMULATIONOFDIFFERENTIALEQUATIONS 37

Figure 1.53

38 1. BASICSOF SIMULINKr

Figure 1.54

1.7. EXAMPLE 6: SIMULATIONOFDIFFERENTIALEQUATIONS 39

Figure 1.55

num(s)

den(s)
PID(s)+

–

Figure 1.56

40 1. BASICSOF SIMULINKr

Figure 1.57

1.7. EXAMPLE 6: SIMULATIONOFDIFFERENTIALEQUATIONS 41

Figure 1.58

1
s

1
s

Figure 1.59

42 1. BASICSOF SIMULINKr

The relationship between the integrator input and outputs are showed in Fig. 1.60.

1
s

ẋ2 x2 ẋ1 x11
s

Figure 1.60

According to the obtained state space model, Px1 D x2. Implementation of this equation
is shown in Fig. 1.61.

1
s

1
s

Figure 1.61

We need Gain (Fig. 1.62), Sum (Fig. 1.63), and Sine wave (Fig. 1.64) blocks to imple-
ment the Px2 D 10x1 � 5x2 C 7sin.3t C

�
3

/. The implementation of this equation is shown in
Fig. 1.65. Note that gain blocks are rotated by clicking on them and pressing the Ctrl+R.

Settings of blocks in Fig. 1.65 are shown in Figs. 1.66–1.71. Add two scope blocks to
the Simulink model (Fig. 1.72).

We want to study the system behavior for 1 s. Enter 1 to the Stop Time box and run
the simulation (Fig. 1.73). Results are shown in Figs. 1.74 and 1.75. According to the obtained
result, the system is unstable.

1.7. EXAMPLE 6: SIMULATIONOFDIFFERENTIALEQUATIONS 43

Figure 1.62

44 1. BASICSOF SIMULINKr

Figure 1.63

1.7. EXAMPLE 6: SIMULATIONOFDIFFERENTIALEQUATIONS 45

Figure 1.64

46 1. BASICSOF SIMULINKr

1
s

–5

+
+
+

Integrator 1

1
s

Integrator 2

G1

10

G2

Figure 1.65

1.7. EXAMPLE 6: SIMULATIONOFDIFFERENTIALEQUATIONS 47

Figure 1.66

48 1. BASICSOF SIMULINKr

Figure 1.67

1.7. EXAMPLE 6: SIMULATIONOFDIFFERENTIALEQUATIONS 49

Figure 1.68

50 1. BASICSOF SIMULINKr

Figure 1.69

1.7. EXAMPLE 6: SIMULATIONOFDIFFERENTIALEQUATIONS 51

Figure 1.70

Figure 1.71

52 1. BASICSOF SIMULINKr

1
s

–5

+
+
+

Integrator 1

1
s

Integrator 2

x2

G1

10

G2

x1

Figure 1.72

Figure 1.73

1.7. EXAMPLE 6: SIMULATIONOFDIFFERENTIALEQUATIONS 53

Figure 1.74

54 1. BASICSOF SIMULINKr

Figure 1.75

55

C H A P T E R 2

Introduction toWaijung
Blockset

2.1 INTRODUCTION
Waijung blockset is a Simulinkr blockset that can be used to easily and automatically generate
C code from your Simulink simulation models for many kinds of microcontrollers (Targets).
Installation of Waijung blockset is shown in Appendix A.

Waijung 1 Blockset has been designed specifically to support the STM32F4 family of
microcontrollers (STM32F4 Target) which is high performance and DSP MCU from ST Mi-
croelectronics.

In this book we will use the STM32F407G-DISC1 board to do the experiments.

2.2 EXAMPLE 1: BLINKINGTHEON-BOARDLEDS
In this example we want to blink the on-board LED. In order to do this:

1. Right click on the MATLAB icon and click the Run as administrator (Fig. 2.1).

Figure 2.1

2. Make a separate folder for your STM32 projects. In this book we will use the
C:nMySTM32Projects. Make a folder with name “1” inside the C:nMySTM32Projects
(Fig. 2.2). Files related to the first example will be saved in this folder.

3. Enter into the Simulink environment and save a blank model with the name blink.slx into
the C:nMySTM32Projetcsn1 (Fig. 2.3).

56 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Figure 2.2

Figure 2.3

4. Add the Target setup (Fig. 2.4), Pulse Generator (Fig. 2.5), Logical Operator (Fig. 2.6),
and Digital Output (Fig. 2.7) blocks to the Simulink model (Fig. 2.8).

5. Double click on the Target Setup block. This opens the window shown in Fig. 2.9. Ensure
that selected model in the MCU box is the same as the model printed on the microcon-
troller (Fig. 2.10). There is no need to change other settings in Fig. 2.9.

6. Double click on the Logical Operator block and select the NOT for Operator box
(Fig. 2.11).

7. Double click on the Pulse Generator block and do the settings similar to Fig. 2.12. These
settings make a square wave with amplitude of 1 and frequency of 1=0:1 D 10 Hz. The
width of high portion of generated signal is Pulse Width (% of period) � Period (sec)
D 0:5 � 0:1 s D 50 msec. The width of low portion of generated signal is (1-Pulse Width
(% of period)) � Period (sec) D .1 � 0:5/ � 0:1 s D 50 msec.

8. Connect the blocks together (Fig. 2.13) and press the Ctrl+S to save the changes.

2.2. EXAMPLE 1: BLINKINGTHEON-BOARDLEDS 57

Figure 2.4

58 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Figure 2.5

2.2. EXAMPLE 1: BLINKINGTHEON-BOARDLEDS 59

Figure 2.6

60 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Figure 2.7

2.2. EXAMPLE 1: BLINKINGTHEON-BOARDLEDS 61

Figure 2.8

62 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Figure 2.9

2.2. EXAMPLE 1: BLINKINGTHEON-BOARDLEDS 63

• Evaluation board with

 STM32F407VGT6 MCU

 (168 MHz/210 DMIPS

 execution performance

 from lash memory)

• Embedded ST-LNK/V2-A

• 2x USB connectors

 (debugging/programming

 application)

• Audio DAC with integrated

 class D speaker driver

• mbed-enabled

STM32F407 MCU,

WITH MEMS AUDIO

SENSOR AND 3-AXIS

ACCELEROMETER

Figure 2.10

64 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Figure 2.11

2.2. EXAMPLE 1: BLINKINGTHEON-BOARDLEDS 65

Figure 2.12

66 2. INTRODUCTIONTOWAIJUNGBLOCKSET

NOT

Target setup

Digital output

Pulse
generator

Logical
operator

Waijung: 17.03a
Compiler: GNU ARM
MCU: STM32F417IG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.01

Port: D
Speed (MHz): 100

Type (PP/OD): Push Pull
Ts (sec): 0

PD12

PD13

PD14

PD15

Figure 2.13

9. Use the Browse for folder icon (Fig. 2.14) to open the C:nMySTM32Projectsn1
(Fig. 2.15).

Figure 2.14

Note that the Current Folder path (Fig. 2.15) must be the same as the path you saved the
Simulink file (Fig. 2.3), otherwise you will receive an error (Fig. 2.16) when you want to
compile your model.

10. Connect the Discovery board to the computer.

11. Click the Build Model icon (Fig. 2.17).

12. The window shown in Fig. 2.18 appears once the compile process is finished successfully.
This window shows that Discovery board is programmed successfully.

Now, the on-board LEDs must start to blink.

2.2. EXAMPLE 1: BLINKINGTHEON-BOARDLEDS 67

Figure 2.15

Figure 2.16

68 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Figure 2.17

Figure 2.18

13. TheWaijung added two folders to the C:nMySTM32Projectsn1: slprj and blink_stm32f4
(Fig. 2.19). The generated hex file for the drawn Simulink model is in the blink_stm32f4
folder (Fig. 2.20).

2.2.1 MANUALPROGRAMMINGOFTHEBOARD
TheWaijung blockset automatically program theDiscovery board after clicking the BuildModel
icon (Fig. 2.17). You can upload the generated hex file to the board manually if, for any reason,
the Waijung blockset didn’t upload the hex file to the board. In order to manually upload the
hex file to the Discovery board.

1. Run the STM32 ST-LINKUtility (Fig. 2.21).This opens the window shown in Fig. 2.22.

2. Use the File> Open file… (Fig. 2.23) to open the hex file.

3. Connect the Discovery board to the computer.

2.2. EXAMPLE 1: BLINKINGTHEON-BOARDLEDS 69

Figure 2.19

Figure 2.20

Figure 2.21

70 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Figure 2.22

Figure 2.23

2.3. EXAMPLE 2: READINGDIGITAL INPUTS 71
4. Click the Target> Program… or Target> Program & Verify… to program the Discovery

board (Fig. 2.24).

Figure 2.24

2.3 EXAMPLE 2: READINGDIGITAL INPUTS
Simulink model of this example is shown in Fig. 2.25. In this example, when you press the on-
board push button, the green LED which is connected to PD12 turns on. When you release
the button, the orange LED which is connected to PD13 turns on. Settings of digital input and
digital output blocks in Fig. 2.25 are shown in Figs. 2.26 and 2.27, respectively. In Fig. 2.26,
Port A and Pin 0 are selected. So, PA0 is defined as input. In Fig. 2.27, Port D and Pins 12 and
13 are selected. So, PD12 and PD13 are defined as output.

72 2. INTRODUCTIONTOWAIJUNGBLOCKSET

NOT

Target setup

Digital outputLogical
operator

Waijung: 17.03a
Compiler: GNU ARM
MCU: STM32F407VG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.01

Port: D
Speed (MHz): 100

Type (PP/OD): Push Pull
Ts (sec): –1

Digital input

Port: A
Speed (MHz): 100
Type (PU/PD): None
Ts (sec): –1

PD12

PD13

PA0

Figure 2.25

2.3. EXAMPLE 2: READINGDIGITAL INPUTS 73

Figure 2.26

74 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Figure 2.27

2.3. EXAMPLE 2: READINGDIGITAL INPUTS 75
Figure 2.28 shows two ways to connect a button to a microcontroller pin. The capacitor in

this circuit solves the bouncing problem of mechanical switches. In Fig. 2.28(A), the pin reads
0 when the button is not pressed. When the button is pressed, the pin reads 1. In Fig. 2.28(B),
the pin reads 1 when the button is not pressed. When the button is pressed, the pin reads 0.

R38

VDD VDD

100

R35

C

100nK

4 1

S
W

-P
U

S
H

-C
M

S
*

S
W

-P
U

S
H

-C
M

S
*

3 2

4 1
3 2

C

100nK
R39
220K

R37
100K

330

uC Pin

uC Pin

(a) (b)

Figure 2.28

VDD VDD

R35

4 1

S
W

-P
U

S
H

-C
M

S
*

S
W

-P
U

S
H

-C
M

S
*

3 2

4 1
3 2

R39
220K

R37
100K

330

uC Pin

uC Pin

(a) (b)

Figure 2.29

76 2. INTRODUCTIONTOWAIJUNGBLOCKSET
You can use the circuit shown in Fig. 2.29 as well. In this circuit, the bouncing problem

is solved with the aid of the Debounce block shown in Fig. 2.30. The required Simulink model
is shown in Fig. 2.31. In fact, the Debounce block is a time delay block. Presence of time delay
permits the switch contacts to reach steady state before being read. The amount of time delay is
set with the aid of the Prescale (Debounce count) drop-down list (Fig. 2.32). Bigger numbers
in this list generate bigger delays. A number between 8–32 is suitable for most applications.

2.4 EXAMPLE 3: DETERMININGTHEHIGHANDLOW
VOLTAGELEVELS FOR INPUT/OUTPUT

Simulink model of this example is shown in Fig. 2.33. The waveform shown in Fig. 2.34 is
applied to Pin PA1 and its digital version is taken from output PA2. The waveform of input
and output are shown in Fig. 2.35. The diagram shown in Fig. 2.36 can be drawn based on the
obtained waveform. When the input is bigger than 1.7 V, the output is high (C3 V). When
input is less than 1.2 V, the output is low. Between 1.2 V and 1.7 V, the output retains its value.

2.4.1 DIFFERENTTYPESOFDIGITALOUTPUT
Different types of digital outputs are shown in Fig. 2.37. Figure 2.37(A) is called open drain
output. When the transistor S1 is off, the Vout is C3 V. When the transistor S1 is on, the
Vout is 0 V. When you want to use an open drain port, you need to add a pull-up resistor to
it (Fig. 2.37(A)). Without a pull-up resistor, the open drain ports can’t generate correct output
since the circuit is not completed (Fig. 2.37(B)).

Figure 2.37(B) is called push-pull. Generally, this type of output is preferred since it can
sink and source more current. Note that S1 and S2 are never on simultaneously. When S2 is on,
S1 is off. In this case, Vout is C3 V. When S1 is on, S2 is off. In this case, Vout is 0 V.

2.4.2 DATATYPECONVERSIONBLOCK
Data Type Conversion block (Fig. 2.39) permits you to ensure that what reaches the block is
what it should be. For instance, consider the Simulink model shown in Fig. 2.40. In this case,
the digital input block generates logical 0 and 1. The generated logical 0 and 1 can’t directly be
entered into the gain block because the gain block expects a number, not a logical value. So, in
this case, we need to put a Data Conversion block between these two blocks.

If you double click the Data Type Conversion block, the window shown in Fig. 2.41
appears. There is no need to change these settings. Simulink automatically determines what was
entered and what should get out once you click the Build model icon (Fig. 2.17).

2.4. EXAMPLE 3: DETERMININGTHEHIGHANDLOWVOLTAGELEVELS 77

Debounce

Button Pressed
(Normal)

Debounce count: 4

Figure 2.30

78 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Debounce

Button Pressed
(Normal)

Debounce count: 4

Digital input

Port: A
Speed (MHz): 100
Type (PU/PD): None
Ts (sec): –1

PA1

Figure 2.31

Figure 2.32

Target setup2

Convert

Data type conversion
Digital output

Waijung: 15.04a
Compiler: GNU ARM
MCU: STM32F407VG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.001

Port: A
Speed (MHz): 100

Type (PP/OD): Open Drain
Ts (sec): –1

Digital input

Port: A
Speed (MHz): 100
Type (PU/PD): None
Ts (sec): –1

PA2PA1

Figure 2.33

2.4. EXAMPLE 3: DETERMININGTHEHIGHANDLOWVOLTAGELEVELS 79

3.0

2.5

2.0

1.5

1.0

0.5

0.0
0 1 2 3 4 5

Time (ms)

V
ol

ta
ge

 (
V

)

6 7 8 9 10

Figure 2.34

Figure 2.35

80 2. INTRODUCTIONTOWAIJUNGBLOCKSET

3 V

0 V

1.2 V 1.7 V in

out

Figure 2.36

(a) (b)

1kΩ

Vout
Vout

+

+
+

+

– – – –

IN

IN

1kΩ

3V 3V

S2

S1S1

Figure 2.37

2.4. EXAMPLE 3: DETERMININGTHEHIGHANDLOWVOLTAGELEVELS 81

(a) (b)

Vout

+

+

– –

IN

1kΩ

3V 3V

S1
Vout

+

+

– –

IN

S1

Figure 2.38

82 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Figure 2.39

2.4. EXAMPLE 3: DETERMININGTHEHIGHANDLOWVOLTAGELEVELS 83

Target setup

Convert

Data type conversion
Gain

Basic PWM

Waijung: 17.03a
Compiler: GNU ARM
MCU: STM32F407VG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.01

Timer: 1
Polarity: Active High

Perion (sec): 0.02
Ts (sec): –1

Digital input

Port: A
Speed (MHz): 100
Type (PU/PD): None
Ts (sec): –1

CH1 (A8)50PA0

Figure 2.40: The PWM block is studied in Section 3.3.

Figure 2.41

84 2. INTRODUCTIONTOWAIJUNGBLOCKSET

2.5 EXAMPLE 4: COMPARISONOFOPENDRAINAND
PUSH-PULLOUTPUTS

The Simulink model of this example is shown in Fig. 2.42. Note that the Data conversion blocks
convert the numeric values into logical values. (Non-zero numeric values are converted into high
and zero numeric value is converted into low.)The hardware connection of this example is shown
in Fig. 2.43. LEDs and 560 � resistors are available on the discovery board. You only need to
add the 1 k� pull-up resistor between the PD13 and VDD line.

Target setup

Convert1

Data type conversion2

Digital output1

Waijung: 15.04a
Compiler: GNU ARM
MCU: STM32F407VG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.01

Port: D
Speed (MHz): 100

Type (PP/OD): Push Pull
Ts (sec): –1

Constant2

PD14

Convert1

Data type conversion1
Digital output

Port: D
Speed (MHz): 100

Type (PP/OD): Open Drain
Ts (sec): –1

Constant1

PD12

PD13

Convert1

Data type conversionConstant

Figure 2.42

Double click the “Digital Output” block and select the Open Drain for Type (Push-Pull/Open-
Drain) drop-down box (Fig. 2.44). Double click the “Digital Output 1” block and ensure that
Push-Pull is selected for Type (Push-Pull/Open-Drain) drop-down box.

After uploading the code into the board you will see that red LED connected to PD14
and orange LED connected to Pin PD13 are turned on, however, the green LED connected to
PD12 is off.

The reason is easily understandable with the aid of Fig. 2.45. Note that absence of pull-up
resistor doesn’t permit the circuit to be completed. The PD14 is configured as push-pull and
needs to pull-up resistor.

2.5. EXAMPLE 4: COMPARISONOFOPENDRAINANDPUSH-PULLOUTPUTS 85

1kΩ

560Ω
560Ω

VDD
Discovery Board

PD12

PD13

PD14

3V

R_pull_p

Green

LED
Orange

LED

560Ω

Red

LED

Figure 2.43

86 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Figure 2.44

2.6. EXAMPLE 5: SEQUENTIALLYTURNINGTHEON-BOARDLEDSONANDOFF 87

1kΩ

560Ω

VDD
3V

PD13

R_pull_p

Orange

LED

Q1

560Ω

PD12

Green

LED

Q1

Figure 2.45

2.6 EXAMPLE 5: SEQUENTIALLYTURNINGTHE
ON-BOARDLEDSONANDOFF

A schematic of this example is shown in Fig. 2.46. In this example, the on-board LEDs are
turned on one-by-one sequentially.

Settings of the Counter Limited block (Fig. 2.47) are shown in Fig. 2.48. These settings
generate the 0, 1, 2, 3, 0, 1, 2, 3,… sequence. Duration of each value is 1 sec since the Sample
time box is filled with 1 sec.

The Compare To Constant block (Fig. 2.49) compares the output of Counter Limited
block with a constant value entered to the Constant value box (Fig. 2.50). Select the “==” from
the Operator drop-down list (Fig. 2.50) since we want to turn on the LEDs when the output of
Counter Limited block equals a specific value.

Upload the model to the board. You will see that LEDs turn on one-by-one and each
LED is on for period of 1 sec.

2.7 EXAMPLE 6: BINARYCOUNTING
Simulink model of this example is shown in Fig. 2.51. In this example we want to use the on-
board LEDs to count in binary.

88 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Target setup

• • 0

Compare to constant

Digital output

Counter
limited

lim

Waijung: 17.03a
Compiler: GNU ARM
MCU: STM32F407VG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.01

Port: D
Speed (MHz): 100

Type (PP/OD): Push Pull
Ts (sec): 0

PD12

PD13

PD14

PD15• • 1

Compare to constant1

• • 2

Compare to constant2

• • 3

Compare to constant3

Figure 2.46

2.7. EXAMPLE 6: BINARYCOUNTING 89

Figure 2.47

90 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Figure 2.48

2.7. EXAMPLE 6: BINARYCOUNTING 91

Figure 2.49

92 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Figure 2.50

Target setup

Integer to bit
converter

Integer to bit
converter Digital output

Counter
limited

lim

Waijung: 17.03a
Compiler: GNU ARM
MCU: STM32F417IG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.01

Port: D
Speed (MHz): 100

Type (PP/OD): Push Pull
Ts (sec): –1

PD12

PD13

PD14

PD15

Figure 2.51

2.7. EXAMPLE 6: BINARYCOUNTING 93
In this example we used an Integer to Bit Converter block (Fig. 2.52) to convert the output

of the Counter Limited block into a binary number. Each bit of the binary number is shown on
one of the on-board LEDs. Settings of the Integer to Bit Converter and Counter limited blocks
are shown in Figs. 2.53 and 2.54, respectively.

Figure 2.52

94 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Figure 2.53

Figure 2.54

2.7. EXAMPLE 6: BINARYCOUNTING 95
The Integer to Bit Converter block (Fig. 2.52) takes a decimal integer and converts it into a
binary number. The obtained binary number can be converted into a decimal number again
with the aid of Bit to Integer Converter block (Fig. 2.55).

Figure 2.55

You can do the decimal to binary conversion with the aid of the MATLAB Function
block (Fig. 2.56) as well. The binary equivalent of decimal numbers from 1 to 15 are shown in
Table 2.1.

Let’s use the MATLAB Function block to do the decimal to binary conversion. Draw the
Simulink model shown in Fig. 2.57. Double click on the MATLAB Function block. This opens
the window shown in Fig. 2.58. Enter the code of Table 2.2 to the MATLAB Function block
(Fig. 2.59).

96 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Figure 2.56

2.7. EXAMPLE 6: BINARYCOUNTING 97

Table 2.1: Decimal to binary conversion

Input b3 b2 b1 b0

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

98 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Target setup

fcn

u y

MATLAB function

Digital output

Counter
limited

lim

Waijung: 17.03a
Compiler: GNU ARM
MCU: STM32F417IG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.01

Port: D
Speed (MHz): 100

Type (PP/OD): Push Pull
Ts (sec): 0

PD12

PD13

PD14

PD15

Figure 2.57

Figure 2.58

2.7. EXAMPLE 6: BINARYCOUNTING 99

Table 2.2: Code for MATLAB Function block

function y = fcn(u)

out=[0 0 0 0];

switch u

 case 0

 out=[0 0 0 0];

 case 1

 out=[0 0 0 1];

 case 2

 out=[0 0 1 0];

 case 3

 out=[0 0 1 1];

 case 4

 out=[0 1 0 0];

 case 5

 out=[0 1 0 1];

 case 6

 out=[0 1 1 0];

 case 7

 out=[0 1 1 1];

 case 8

 out=[1 0 0 0];

 case 9

 out=[1 0 0 1];

 case 10

 out=[1 0 1 0];

 case 11

 out=[1 0 1 1];

 case 12

 out=[1 1 0 0];

 case 13

 out=[1 1 0 1];

 case 14

 out=[1 1 1 0];

 case 15

 out=[1 1 1 1];

end

y=out

100 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Figure 2.59

2.8. EXAMPLE 7: CHANGINGTHE STATEOFOUTPUTWITHABUTTON 101
Compile and upload the Simulink model into the board. Output is the same as the Simulink
model shown in Fig. 2.51.

2.8 EXAMPLE 7: CHANGINGTHE STATEOFOUTPUT
WITHABUTTON

Simulink model of this example is shown in Fig. 2.60. In this example, the state of the on-board
green LED connected to Pin PD12 is changed by pressing the button connected to PA0.When
the LED is on, pressing the button cause it to turn off. When the LED is off, pressing the
button causes it to turn on. This model uses the Triggered Subsystem (Fig. 2.61) and Memory
(Fig. 2.62) blocks. Settings of Memory block are shown in Fig. 2.63.

Target setup

Digital output

Waijung: 17.03a
Compiler: GNU ARM
MCU: STM32F407VG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.01

Port: D
Speed (MHz): 100

Type (PP/OD): Push Pull
Ts (sec): –1

PD12

Digital input

Port: A
Speed (MHz): 100
Type (PU/PD): None
Ts (sec): –1

PA0

Debounce

Triggered
subsystem

Trigger

Memory

Logical
operator

NOT

Out1

1

f

Button Pressed
(Normal)

Debounce count: 4

Out1

Figure 2.60

102 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Figure 2.61

2.8. EXAMPLE 7: CHANGINGTHE STATEOFOUTPUTWITHABUTTON 103

Figure 2.62

104 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Figure 2.63

The NOT gate in Fig. 2.60 is a Logical Operator block (Fig. 2.64). In order to convert
the block into a NOT, double click on the block and select the NOT for Operator drop down
list (Fig. 2.65).

2.9 EXAMPLE 8: COUNTINGTHENUMBEROFTIMESA
SWITCH IS PRESSED

Simulink model of this example is shown in Fig. 2.66. In this example, the on-board LEDs turn
on if the user presses the on-board switch more than or equal to three times. When the user
presses the on-board LED, the value stored in the memory block increases by one. Settings of
the Memory block are shown in Fig. 2.67.

A compare-to-constant block (Fig. 2.49) is used to see whether the value inside the mem-
ory block is bigger than three. If output of the block is logical 1, then all the on-board LEDs
turn on.

2.9. EXAMPLE 8: COUNTINGTHENUMBEROFTIMESA SWITCH IS PRESSED 105

Figure 2.64

106 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Figure 2.65

2.9. EXAMPLE 8: COUNTINGTHENUMBEROFTIMESA SWITCH IS PRESSED 107

T
ar

ge
t

se
tu

p

W
ai

ju
n

g:
 1

7
.0

3
a

C
om

p
il

er
: G

N
U

 A
R

M
M

C
U

: S
T

M
3
2
F

4
1
7
IG

A
u
to

 C
om

p
il

e
D

ow
n

lo
ad

: O
N

F
u
ll

 C
h

ip
 E

ra
se

: O
F

F
A

u
to

 r
u
n

 a
p

p
: O

N
E

xe
cu

ti
on

 P
ro

fi
le

r:
 N

on
e

B
as

e
T

s
(s

ec
):

 0
.0

1

D
ig

it
al

 i
n

p
u
t

P
or

t:
 A

S
p

ee
d

 (
M

H
z)

: 1
0
0

T
yp

e
(P

U
/P

D
):

 N
on

e
T

s
(s

ec
):

 –
1

P
A

0

D
eb

ou
n

ce

T
ri

gg
er

ed
su

b
sy

st
em

T
ri

gg
er

M
em

or
y

O
u
t1

C
on

st
an

t

1

1

f

B
u
tt

on
 P

re
ss

ed
(N

or
m

al
)

D
eb

ou
n

ce
 c

ou
n

t:
 4

O
u
t1

D
ig

it
al

 o
u
tp

u
t

P
or

t:
 D

S
p

ee
d

 (
M

H
z)

: 1
0
0

T
yp

e
(P

P
/O

D
):

 P
u
sh

 P
u
ll

T
s

(s
ec

):
 0

P
D

1
2

P
D

1
3

P
D

1
4

P
D

1
5

C
on

ve
rt

D
at

a
ty

p
e

co
n

ve
rs

io
n

+ –

>
3

C
om

p
ar

e
to

 c
on

st
an

t

Fi
gu
re

2.
66

108 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Figure 2.67

2.10 EXAMPLE 9: IMPLEMENTATIONOFTRUTHTABLE
In this example we want to implement the truth table shown in Table 2.3.

Table 2.3: Truth table of Example 9

Input 1
(PA 0)

Input 2
(PA 1)

Input 3
(PA 2)

Output 1
(PD 12)

Output 2
(PD 13)

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

2.10. EXAMPLE 9: IMPLEMENTATIONOFTRUTHTABLE 109
Draw the Simulink model shown in Fig. 2.68. This model used a Combinational Logic block
(Fig. 2.69) to implement the given truth table. Settings of the truth table are shown in Fig. 2.70.
Note that only the output rows of the given truth table are entered into the Truth table box in
Fig. 2.70.

Target setup

Digital output

Combinatorial
logic

Waijung: 17.03a
Compiler: GNU ARM
MCU: STM32F417IG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.01

Port: D
Speed (MHz): 100

Type (PP/OD): Push Pull
Ts (sec): –1

PD12

PD13

Digital input

Port: A
Speed (MHz): 100
Type (PU/PD): None
Ts (sec): –1

PA0

PA1

PA2

Figure 2.68

110 2. INTRODUCTIONTOWAIJUNGBLOCKSET

Figure 2.69

2.10. EXAMPLE 9: IMPLEMENTATIONOFTRUTHTABLE 111

Figure 2.70

113

C H A P T E R 3

PulseWidthModulation
(PWM)

3.1 INTRODUCTION
Pulse Width Modulation (PWM) is a method of controlling the average power delivered to
the load. This technique has many applications (DC motor speed/position control, switch
mode power supply to name a few). This chapter shows how to generate a PWM signal with
STM32F407G-DISC1 board.

3.2 EXAMPLE 1: GENERATIONOFPULSEWIDTH
MODULATION (PWM) SIGNALWITHTHEBASIC
PWMBLOCK

The basic PWM block (Fig. 3.1) can be used for generation of PWM signal. Input of the block
is the required duty cycle. Input of the block can change from 0 up to 100. For instance, when
the input is 75 the duty cycle of output signal of the block is 75%. PWM Period (seconds)
box determine the frequency of output signal of the block. For instance, in Fig. 3.1, PWM
Period (seconds) is filled with 0.02 sec. So, the output frequency of the block is 1=0:02 D 50 Hz.
Sample time (sec) box determines the sampling time of the input duty cycle signal. For instance,
in Fig. 3.1 sample time (sec) box equals to 0.01 s. This means that the block reads input (duty
cycle) signal at t D 0; 0:01; 0:02; 0:03; : : : and other values of input signal are ignored.

Draw the Simulink model shown in Fig. 3.2. Settings of Basic PWM block are shown in
Fig. 3.3.

Upload the model into the board and use an oscilloscope to see the voltage of Pin A8.
Waveform of Pin A8 is shown in Fig. 3.4. Note that the frequency of the obtained waveform is
50 Hz and its duty cycle is 75% as expected.

3.3 EXAMPLE 2: TWO-CHANNELPWMWITHBASIC
PWMBLOCK

Simulinkmodel of this example is shown in Fig. 3.5. In this example, we want to generate PWM
signal on two different pins. Settings of the Basic PWM block are shown in Fig. 3.6.

114 3. PULSEWIDTHMODULATION (PWM)

Basic PWM

Timer: 1
Polarity: Active High

Period (sec): 0.02
Ts (sec): –1

CH1 (A8)

Figure 3.1

3.3. EXAMPLE 2: TWO-CHANNELPWMWITHBASIC PWMBLOCK 115

Target setup

Convert

Data type conversion

Basic PWM

Waijung: 17.03a
Compiler: GNU ARM
MCU: STM32F407VG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.01

Timer: 1
Polarity: Active High

Period (sec): 0.02
Ts (sec): –1

CH1 (A8)75

Constant

Figure 3.2

Figure 3.3

116 3. PULSEWIDTHMODULATION (PWM)

Figure 3.4

Target setup

Waijung: 17.03a
Compiler: GNU ARM
MCU: STM32F417IG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.01

Convert25

Data type conversion1

Basic PWM

Timer: 1
Polarity: Active High

Period (sec): 0.0001
Ts (sec): –1

Constant1

CH1 (A8)

CH2 (E11)

Convert75

Data type conversionConstant

Figure 3.5

3.3. EXAMPLE 2: TWO-CHANNELPWMWITHBASIC PWMBLOCK 117

Figure 3.6

118 3. PULSEWIDTHMODULATION (PWM)
Upload the code to the board and use an oscilloscope to observe the signals on Pins A8

and E11. According to Fig. 3.7, frequency of both signal is 10 kHz. Note that duty cycle of
signals in Fig. 3.7 are 25% and 75%.

Figure 3.7

3.4 EXAMPLE 3: GENERATINGAPWMSIGNALWITH
VARIABLEDUTYCYCLE

Simulink model of this example is shown in Fig. 3.8. In this example, the duty cycle is a variable
signal and changes with time. Settings of Counter Limited block are shown in Fig. 3.9.

Target setup

Convert

Data type conversion

Basic PWM

Waijung: 17.03a
Compiler: GNU ARM
MCU: STM32F407VG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.01

Timer: 1
Polarity: Active High

Period (sec): 0.02
Ts (sec): –1

CH1 (A8)

Counter
limited

lim

Figure 3.8

3.5. EXAMPLE 4:MEASUREMENTOFFREQUENCY,WIDTH C ANDDUTYCYCLE 119

Figure 3.9

Connect an oscilloscope to PinA8 and observe the increase in the duty cycle of a generated
signal.

3.5 EXAMPLE 4:MEASUREMENTOFFREQUENCY,
WIDTH C, ANDDUTYCYCLEWITHPWMCAPTURE
BLOCK

Simulink model of this example is shown in Fig. 3.10. In this example we want to measure the
frequency, width of high portion, and duty cycle (= width of high portion of signal divided by
the period of the signal) of an input signal applied to Pin B6. Input signal is a pulse signal.
Aforementioned quantities can be measured with the aid of PWM Capture block.

Settings of blocks used in Fig. 3.10 are shown in Figs. 3.11, 3.12, and 3.13. Serial
communication is studied in Chapter 5. Use the Docklightr program to receive and see the
data that comes from the Discovery board. The Docklight can be downloaded from https:
//docklight.de/downloads/.

Upload the code to the board and use a signal generator to produce the input pulse. Con-
nect the ground of signal generator block to the ground of Discovery board and connect the

120 3. PULSEWIDTHMODULATION (PWM)

Target setup

Waijung: 17.03a
Compiler: GNU ARM
MCU: STM32F407IG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.01

PWM Capture

Timer: 4 (10 bit)
Input Pin: B6
Edge: Rising
Ts (sec): –1

Module: USART3_Tx
Packet: ASCII

Transfer: Blocking
Ts (sec): –1

Module: USART3_Setup
Baud (Bps): 115200

DMA Buffer: 512/512
Tx/Rx Pin: 06/09

READY

+Width (sec)

+Duty (%)

Frequency (Hz)

Enabled subsystem

Enable

UART Tx

UART Setup

In1

1 Int32

In2

2 Int32

In3

3 Int32

Convert

Data type conversion In1
In2
In3Convert

Data type conversion1

Convert

Data type conversion2

Figure 3.10

other wire to Pin PB6 of Discovery board. Figures 3.14–3.16 show the outputs for different
input pulses.

3.5. EXAMPLE 4:MEASUREMENTOFFREQUENCY,WIDTH C ANDDUTYCYCLE 121

Figure 3.11

122 3. PULSEWIDTHMODULATION (PWM)

Figure 3.12

3.5. EXAMPLE 4:MEASUREMENTOFFREQUENCY,WIDTH C ANDDUTYCYCLE 123

Figure 3.13

124 3. PULSEWIDTHMODULATION (PWM)

Figure 3.14: Low frequency (10 Hz).

3.5. EXAMPLE 4:MEASUREMENTOFFREQUENCY,WIDTH C ANDDUTYCYCLE 125

Figure 3.15: High frequency 1 (25 kHz).

126 3. PULSEWIDTHMODULATION (PWM)

Figure 3.16: High frequency 2 (50 kHz).

3.6 EXAMPLE 5: CONTROLLINGADCMOTOR
The schematic of this example is shown in Fig. 3.17. In this example, when you press the on-
board switch connected to Pin PA0, a PWM signal with duty cycle of 50% appears on the Pin
A8. When PA0 is not pressed, no signal is available on the Pin PA8. If you connect the Pin
PA8 to “PWM IN” of a DC motor driver, then the motor starts to rotate when PA0 is pressed
(Fig. 3.18).

3.6. EXAMPLE 5: CONTROLLINGADCMOTOR 127

Target setup

Convert

Data type conversion
Gain

Basic PWM

Waijung: 17.03a
Compiler: GNU ARM
MCU: STM32F407VG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.01

Timer: 1
Polarity: Active High

Period (sec): 0.02
Ts (sec): –1

Digital input

Port: A
Speed (MHz): 100
Type (PU/PD): None
Ts (sec): –1

CH1 (A8)50PA0

Figure 3.17

PA.8 PWM output

Motor
supply

Max
35 V

1

2

3
4 5 6 7 8 9 10 11 12

Enable
pin

Figure 3.18

129

C H A P T E R 4

Analog to Digital Conversion
and Timer

4.1 INTRODUCTION
The Analog to Digital Converter (ADC) block permits you to generate an analog signal. The
Timer block is used to execute some actions periodically. This chapter focuses on these two
blocks.

4.2 EXAMPLE 1: REGULARADCBLOCK
The simulink model of this example is shown in Fig. 4.1. In this example we will use a poten-
tiometer block to control the on-board LEDs.The potentiometer block is connected to the port
PA5 (Fig. 4.2). In Fig. 4.1, the regular ADC block reads the voltage of pin A5 and generates a
value between 0 and 4095. 0 shows 0 V and 4095 shows 3 V. So, if we multiply the output of the
block by 3/4095, we will obtain the input analog voltage value. Note that the voltage entering
the Discovery board must be between 0 and C3 V. Larger and negative voltages may damage
the board.

According to the diagram shown in Fig. 4.1, if the input voltage applied to pin PA5 is
greater than,

1. 1000 �
3

4095
D 0:733 V, then the on-board green LED connected to PD 12 turns on.

2. 2000 �
3

4095
D 1:465 V, then the on-board orange LED connected to PD 13 turns on.

3. 3000 �
3

4095
D 2:198 V, then the on-board red LED connected to PD 14 turns on.

4. 4000 �
3

4095
D 2:930 V, then the on-board blue LED connected to PD 15 turns on.

Settings of the ADC block in Fig. 4.1 are shown in Fig. 4.3.
Upload the Simulink model to the board. Rotate the potentiometer and measure the volt-

ages that turn on each LED. Compare them with values given above. As another example, up-
load the Simulink model shown in Fig. 4.4 and measure the voltages that turns on the LEDs.

130 4. ANALOGTODIGITALCONVERSIONANDTIMER

Target setup

Digital output

Waijung: 17.03a
Compiler: GNU ARM
MCU: STM32F407VG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.01

Port: D
Speed (MHz): 100

Type (PP/OD): Push Pull
Ts (sec): 0

PD12

PD13

PD14

PD15>= 3000

Compare to constant2

>= 2000

Compare to constant1

>= 1000

Compare to constant

>= 4000

Compare to constant3

Convert

Data type conversion

Regular ADC

ADC: Module 1
Output Data Type: Double
Ts (sec): –1

AN5

Figure 4.1

Pot(10kΩ)

VDD
3V

PA.5

Figure 4.2

4.2. EXAMPLE 1: REGULARADCBLOCK 131

Figure 4.3

132 4. ANALOGTODIGITALCONVERSIONANDTIMER

Target setup

Digital output

Waijung: 17.03a
Compiler: GNU ARM
MCU: STM32F407VG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.01

Port: D
Speed (MHz): 100

Type (PP/OD): Push Pull
Ts (sec): –1

PD12

PD13

PD14

PD15>= 1.5

Compare
to constant2

>= 1.0

Compare
to constant1

>= 0.5

Compare
to constant

>= 2.0

Compare
to constant3

Convert

Data type
conversion Gain

Regular ADC

ADC: Module 1
Output Data Type: Double
Ts (sec): –1

AN5 3/4095

Figure 4.4

4.3 EXAMPLE 2: TIMERBLOCK
Timer block (Fig. 4.5) is used to execute some actions periodically. If you double click the Timer
block, the window shown in Fig. 4.6 appears. The amount of time which actions are repeated
must be entered into the Sample time (sec). [No greater than 47.7204 sec] box. The actions that
must be done are determined with the aid of Function-Call Subsystem block (Fig. 4.7).

Let’s study a simple example. The block diagram shown in Fig. 4.8 change the status of
the on-board green LED connected to pin PD12 each 1 sec. So, the LED is off for 1 sec and it
is on for 1 sec and this process repeats. Settings of the Timer and Memory blocks are shown in
Figs. 4.9 and 4.10, respectively.

4.3. EXAMPLE 2: TIMERBLOCK 133

Figure 4.5

134 4. ANALOGTODIGITALCONVERSIONANDTIMER

Figure 4.6

4.3. EXAMPLE 2: TIMERBLOCK 135

Figure 4.7

136 4. ANALOGTODIGITALCONVERSIONANDTIMER

Target setup

Waijung: 15.04a
Compiler: GNU ARM
MCU: STM32F405RG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.01

Time (Time Base) IRQ

Timer: TIM2
Priority Group: 4
Pre-Emption (Basic) Priority: 0
Subpriority: 0
Ts (sec): –1

IRQ

Function-cell
subsystem

function

Memory

function()

f()

Logical
operator

NOT

Digital output

Port: D
Speed (MHz): 100

Type (PP/OD): Push Pull
Ts (sec): –1

PD12

Figure 4.8

4.3. EXAMPLE 2: TIMERBLOCK 137

Figure 4.9

Figure 4.10

138 4. ANALOGTODIGITALCONVERSIONANDTIMER

4.4 EXAMPLE 3: GENERATIONOFANALOG
WAVEFORMS

You can generate an analog signal with the aid of Regular DAC block (Fig. 4.11).

Figure 4.11

If you double click on the Regular DAC block, the window shown in Fig. 4.12 appears on the
screen. The Input Type has two types of options: Volts and Raw � Bits.

When you select Volts (double) or Volts (single), the output of block equals to the value
which enters to the block. In other words, Vout D Input.

4.4. EXAMPLE 3: GENERATIONOFANALOGWAVEFORMS 139

Figure 4.12

When you select Raw � bits, the output of block equals to Vout D
VRef
4095

� Input. Input Vref
box (Fig. 4.13) determines the value of VRef .

Let’s study an example.The Simulinkmodel in Fig. 4.14 generates the vout .t/ D 0:7 C
1
2

�

sin .2� � 1000 � t / C
1
4

� sin .2� � 3000 � t / . Graph of this function is shown in Fig. 4.15.
According to Fig. 4.15, the function is not negative and its values are less than 3 V. So, it can
be generated by the Discovery board. Settings of the blocks used in Fig. 4.14 are shown in
Figs. 4.16–4.18.

Upload the Simulink model to the board and use an oscilloscope to see the voltage of pin
PA4. Result is shown in Fig. 4.19. Enter 1/200/1000 to the Sample time boxes in Figs. 4.17 and
4.18. This time the waveform shown in Fig. 4.20 is obtained.

140 4. ANALOGTODIGITALCONVERSIONANDTIMER

Figure 4.13

4.4. EXAMPLE 3: GENERATIONOFANALOGWAVEFORMS 141

Target setup1

Sine wave

Waijung: 17.03a
Compiler: GNU ARM
MCU: STM32F407VG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.01

Regular DAC

[Regular DAC]
Input: Volts (double)

Vref (V): 3
Ts (sec): –1

DAC1 (A4)

Sine wave1

+
–

Figure 4.14

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Zaman (ms)

G
er

il
im

 (
V

)

Figure 4.15

142 4. ANALOGTODIGITALCONVERSIONANDTIMER

Figure 4.16

4.4. EXAMPLE 3: GENERATIONOFANALOGWAVEFORMS 143

Figure 4.17

144 4. ANALOGTODIGITALCONVERSIONANDTIMER

Figure 4.18

4.4. EXAMPLE 3: GENERATIONOFANALOGWAVEFORMS 145

Figure 4.19: Waveform for Sample time D 1/20/1000.

Figure 4.20: Waveform for Sample time D 1/200/1000.

147

C H A P T E R 5

Serial Communication
5.1 INTRODUCTION
Serial communication permits the microcontroller to speak with the real world, i.e., receive/send
data from/to outside. This chapter studies the blocks related to serial communication.

5.2 EXAMPLE 1: SERIALCOMMUNICATION (I)
The UART Tx block (Fig. 5.1) permits the Discovery board to send out the data to outside.

UART Tx

Module: USART3_Tx
Packet: Binary

Transfer: Blocking
Ts (sec): 0

double

int8

Figure 5.1

The UART Rx block (Fig. 5.2) permits the Discovery board to receive the data from outside.

UART Rx

Module: USART3_Rx
Packet: Binary
Transfer: Blocking
Ts (sec): 0

double

int8

Figure 5.2

When you want to use serial communications, your model must contain a UART Setup
block. Settings of UART block are shown in Fig. 5.3. The Baud rate (bps) box determines the
speed of transfer.

Let’s study an example. The Simulink model shown in Fig. 5.4 sends out the data gener-
ated by the Counter Limited block. Settings of used blocks are shown in Figs. 5.5–5.7.

148 5. SERIALCOMMUNICATION

Figure 5.3

5.2. EXAMPLE 1: SERIALCOMMUNICATION (I) 149

Target setup

Waijung: 17.03a
Compiler: GNU ARM
MCU: STM32F407VG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.01

Convert

Data type conversion

UART Rx

Module: USART3_Tx
Packet: Ascii

Transfer: Blocking
Ts (sec): –1

UART setup

Module: USART3_Setup
Baud (Bps): 115200

DMA Buffer: 512/512
Tx/Rx Pin: D8/D9

int32

Counter
limited

lim

Figure 5.4

Figure 5.5

150 5. SERIALCOMMUNICATION

Figure 5.6

5.2. EXAMPLE 1: SERIALCOMMUNICATION (I) 151

Figure 5.7

You can use a computer to read the data send by the board. If you want to use a computer
to read the data, then you need a USB-Serial converter. Connections are shown in Fig. 5.8. Tx
pin of the Discovery board (pin PD8) is connected to the Rx pin of the USB-Serial converter.
The ground pin of the Discovery board must be connected to the ground pin of the USB-Serial
converter.

Ensure that Docklight settings are the same as the UART Setup block (Fig. 5.9).

152 5. SERIALCOMMUNICATION

STM32f4

Tx(D8)

GND

USB-Serial

Rx

GND

USART1 – Tx USART1 – Rx

Rx Tx

GND

Figure 5.8

5.3. EXAMPLE 2: SERIALCOMMUNICATION (II) 153

1. Double click here

Dockflight

UART setup

2.

Figure 5.9

Upload the model to the board. The Docklight starts to receive the data from the micro-
controller (Fig. 5.10).

5.3 EXAMPLE 2: SERIALCOMMUNICATION (II)
The Simulink model of this example is shown in Fig. 5.11. In this example we want to receive
a serial data from outside. So, the Discovery board is a receiver in this example. This example
turns on the on-board LED’s if the received value is less than or equal to 3. Settings of UART
Rx block is shown in Fig. 5.12.

You can use a computer to send data to the board. If you want to use a computer to send
the data, then you need a USB-Serial converter. Connections are shown in Fig. 5.13. Rx pin
of the Discovery board (pin PD9) is connected to the Tx pin of the USB-Serial converter. The
ground pin of theDiscovery boardmust be connected to the ground pin of USB-Serial converter.
Upload the model to the Discovery board. Use the Docklight to send a number to the Discovery
board. If the number is less than or equal to 3, then all of the on-board LEDs turn on.

154 5. SERIALCOMMUNICATION

Figure 5.10

Target setup

Digital output

Waijung: 17.03a
Compiler: GNU ARM
MCU: STM32F407VG

Auto Compile Download: ON
Full Chip Erase: OFF

Auto run app: ON
Execution Profiler: None

Base Ts (sec): 0.01

Port: D
Speed (MHz): 100

Type (PP/OD): Push Pull
Ts (sec): 0

PD12

PD13

PD14

PD15<= 3

Compare
to constant

Convert

Data type conversion

UART Rx

Module: USART3_Rx
Packet: ACII
Transfer: Blocking
Ts (sec): –1

UART setup

Module: USART3_Setup
Baud (Bps): 115200

DMA Buffer: 512/512
Tx/Rx Pin: D8/D9

int32

Figure 5.11

5.3. EXAMPLE 2: SERIALCOMMUNICATION (II) 155

Figure 5.12

156 5. SERIALCOMMUNICATION

STM32f4

Rx(D9)

GND

USB-Serial

Tx

GND

USART1 – Tx USART1 – Rx

Rx Tx

GND

Figure 5.13

157

A P P E N D I X A

Installation of theWaijung
Block Set

The “Waijung 1” block set is used in this book. Waijung 1 blockset only works with MATLAB
between R2009a and R2018b. Go to https://www.aimagin.com/en/waijung-1-stm32-target.
html in order to install the block set (Fig. A.1).

Figure A.1

158 A. INSTALLATIONOFTHEWAIJUNGBLOCK SET
Scroll down the page and click the Create an Account in order to make an account (Fig. A.2).
After making the account sign into your account and download the waijung17_03a.7z. The
download instructions can be found in https://www.aimagin.com/en/download as well.

Figure A.2

Right click on the downloaded file and click the Extract Here. This extracts the files in
the Waijung17_03a folder (Fig. A.3). Open the MATLAB and click the “Browse for folder”
icon (Fig. A.4). This opens the Select a new folder dialog box (Fig. A.5). Go to the path that
you extracted the downloaded file and open the Waijung17_03a folder (Fig. A.6).

Type the install_waijung in theMATLAB command window and press the Enter key
(Fig. A.7).This installs the block set. After installation, open the Simulink and click the Library
Browser (Fig. A.8). Note that Waijung blockset is added to Simulink (Fig. A.9).

A. INSTALLATIONOFTHEWAIJUNGBLOCK SET 159

Figure A.3

Figure A.4

160 A. INSTALLATIONOFTHEWAIJUNGBLOCK SET

Figure A.5

Figure A.6

A. INSTALLATIONOFTHEWAIJUNGBLOCK SET 161

Figure A.7

Figure A.8

162 A. INSTALLATIONOFTHEWAIJUNGBLOCK SET

Figure A.9

A. INSTALLATIONOFTHEWAIJUNGBLOCK SET 163
The blocks that are used in this book can be found in the STM32F4 Target section (Fig. A.10).

Figure A.10

The Waijung blockset has a demo folder. The demo folder contains many inspiring
Simulink models. Click the Open icon (Fig. A.11) to open the Demo folder.

Go to Waijung17_03a folder and open the “targets” folder (Fig. A.12). Open the
stm32f4_target folder (Fig. A.13). Open the stm32f4 folder (Fig. A.14). Open the “demo”
folder (Fig. A.15). Now you have access to the sample Simulink models (Fig. A.16).

164 A. INSTALLATIONOFTHEWAIJUNGBLOCK SET

Figure A.11

Figure A.12

A. INSTALLATIONOFTHEWAIJUNGBLOCK SET 165

Figure A.13

Figure A.14

166 A. INSTALLATIONOFTHEWAIJUNGBLOCK SET

Figure A.15

Figure A.16

A. INSTALLATIONOFTHEWAIJUNGBLOCK SET 167
Another source to increase your knowledge is https://waijung1.aimagin.com/ (Fig. A.17).

This page contains many sample projects and other useful material.

Figure A.17

169

Authors’ Biographies

FARZINASADI
Farzin Asadi received his B.Sc. in Electronics Engineering,
M.Sc. in Control Engineering, and Ph.D. in Mechatronics
Engineering. Currently, he is with the Department of Elec-
trical and Electronics Engineering at Maltepe University, Is-
tanbul, Turkey.

Dr. Asadi has published more than 40 international pa-
pers and 15 books. He is on the editorial board of 7 scien-
tific journals as well. His research interests include switching
converters, control theory, robust control of power electronics
converters, and robotics.

SAWAI PONGSWATD
Sawai Pongswatd received his B.Sc. in Instrumentation Engi-
neering, M.Sc. in Electrical Engineering, and Ph.D. in Elec-
trical Engineering. Currently, he is with theDepartment of In-
strumentation and Control Engineering, King Mongkut’s In-
stitute of Technology Ladkrabang (KMITL), Bangkok, Thai-
land.

Dr. Pongswatd is a chairman of technical committee of
Thai Industrial Standards Institute and instructor of Fieldbus
Certified Training Program (FCTP). His research interest in-
cludes power electronics, energy conversion, and industrial ap-
plications.

