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ABSTRACT
This book is about the Arduino microcontroller and the Arduino concept. The visionary Ar-
duino team of Massimo Banzi, David Cuartielles, Tom Igoe, Gianluca Martino, and David
Mellis launched a new innovation in microcontroller hardware in 2005, the concept of open-
source hardware. Their approach was to openly share details of microcontroller-based hardware
design platforms to stimulate the sharing of ideas and promote innovation. This concept has
been popular in the software world for many years. In June 2019, Joel Claypool and I met to
plan the fourth edition of Arduino Microcontroller Processing for Everyone! Our goal has been to
provide an accessible book on the rapidly evolving world of Arduino for a wide variety of au-
diences including students of the ?ne arts, middle and senior high school students, engineering
design students, and practicing scientists and engineers. To make the book even more acces-
sible to better serve our readers, we decided to change our approach and provide a series of
smaller volumes. Each volume is written to a speci?c audience. This book, Arduino II: Systems,
is a detailed treatment of the ATmega328 processor and an introduction to C programming
and microcontroller-based systems design. Arduino I: Getting Started provides an introduction
to the Arduino concept. Arduino III: the Internet of Things explores Arduino applications in the
Internet of Things (IoT).

KEYWORDS
Arduino microcontroller, Arduino UNO R3, microchip AVR ATmega328, pro-
gramming in C, microcontroller system design
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Preface
This book is about the Arduino microcontroller and the Arduino concept. The visionary Ar-
duino team of Massimo Banzi, David Cuartielles, Tom Igoe, Gianluca Martino, and David
Mellis launched a new innovation in microcontroller hardware in 2005; the concept of open-
source hardware. Their approach was to openly share details of microcontroller–based hardware
design platforms to stimulate the sharing of ideas and promote innovation. This concept has
been popular in the software world for many years. In June 2019, Joel Claypool and I met to
plan the fourth edition of Arduino Microcontroller Processing for Everyone! Our goal has been to
provide an accessible book on the rapidly changing world of Arduino for a wide variety of au-
diences including students of the fine arts, middle and senior high school students, engineering
design students, and practicing scientists and engineers. To make even the book more acces-
sible to better serve our readers, we decided to change our approach and provide a series of
smaller volumes. Each volume is written to a specific audience. This book, Arduino II: System,
is a detailed treatment of the ATmega328 processor and an introduction to C programming
and microcontroller-based systems design. Arduino I: Getting Started provides an introduction
to the Arduino concept. Arduino III: the Internet of Things explores Arduino applications in the
Internet of Things (IoT).

APPROACH OF THE BOOK
Arduino II: Systems builds upon the foundation of Arduino I: Getting Started. The reader should
have a solid grounding in the Arduino UNO R3, the Arduino Development Environment,
interfacing techniques to external devices, and writing Arduino sketches. Chapter 1 provides
a brief review of some of these concepts and introduces the Microchip ATmega328. This is
the processor hosted onboard the Arduino UNO R3. Chapter 2 provides an introduction to
programming in C for the novice programmer. It also serves as a good review for the seasoned
developer.

Chapters 3–6 provides a “deep dive” into the features of the ATmega328 microcontroller
including: analog-to-digital conversion, timing features, serial communications, and interrupts.
Each chapter provides the theory of operation, register descriptions, and detailed code examples.



xx PREFACE
Chapter 7 provides an introduction to embedded system design. It provides a systematic,

step-by-step approach on how to design complex systems in a stress free manner. It concludes
with several detailed examples.

Steven F. Barrett
August 2020
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C H A P T E R 1

Getting Started
Objectives: After reading this chapter, the reader should be able to do the following:

• successfully download and execute a simple program using the Arduino Development
Environment;

• describe the key features of the Arduino Development Environment;

• name and describe the different features aboard the Arduino UNO R3 processor board;
and

• discuss the features and functions of the Microchip ATmega328.

1.1 OVERVIEW
Welcome to the world of Arduino! The Arduino concept of open-source hardware was devel-
oped by the visionary Arduino team of Massimo Banzi, David Cuartilles, Tom Igoe, Gianluca
Martino, and David Mellis in Ivrea, Italy. The team’s goal was to develop a line of easy-to-use
microcontroller hardware and software such that processing power would be readily available to
everyone.

We assume you have a solid grounding in the Arduino UNO R3, the Arduino Devel-
opment Environment, interfacing techniques, and Arduino sketch writing. The chapter begins
with a brief review of some of these concepts.

We use a top-down design approach. We begin with the “big picture” of the chapter. We
then discuss the Ardunio Development Environment and how it may be used to quickly develop
a program (sketch) for the Arduino UNO R3. We then provide an overview of the hardware
features of the Arduino UNO R3 evaluation board which hosts the Microchip ATmega328
processor.

1.2 THE BIG PICTURE
Most microcontrollers are programmed with some variant of the C programming language. The
C programming language provides a nice balance between the programmer’s control of the mi-
crocontroller hardware and time efficiency in program writing. As an alternative, the Arduino
Development Environment (ADE) provides a user-friendly interface to quickly develop a pro-
gram, transform the program tomachine code, and then load themachine code into the Arduino
processor in several simple steps, as shown in Figure 1.1.
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Arduino UNO R3

USB

Microchip AVR
Dragon 

Option 1 
Arduino UNO R3

filename.hex 
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6-wire 

ISP ribbon 
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ISP Programming of 
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Arduino UNO R3

compiler
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filename.c 

filename.h

filename.asm

filename.hex 

filename.eep

C compiler

Arduino Development Environment

Computer

Arduino Development

Environment 

or

C compiler 

Figure 1.1: Programming the Arduino processor board. (Arduino illustrations used with per-
mission of the Arduino Team (CC BY-NC-SA) [www.arduino.cc]. Microchip AVR Dragon
illustration used with permission of Microchip, Inc. [www.microchip.com]. )

The first version of the ADE was released in August 2005. It was developed at the In-
teraction Design Institute in Ivrea, Italy to allow students the ability to quickly put processing
power to use in a wide variety of projects. Since that time, updated versions incorporating new
features have been released on a regular basis [www.arduino.cc].

At its most fundamental level, the ADE is a user-friendly interface to allow one to quickly
write, load, and execute code on a microcontroller. A barebones program need only consist of
a setup() and loop() function. The ADE adds the other required pieces such as header files and
the main program construct. The ADE is written in Java and has its origins in the Processor
programming language and the Wiring Project [www.arduino.cc].

The ADE is hosted on a laptop or personal computer (PC). Once the Arduino program,
referred to as a sketch, is written; it is verified and uploaded to the Arduino UNO R3 evaluation
board. Alternatively, a program may be written in C using a compiler. The compiled code can

www.arduino.cc
www.microchip.com
www.arduino.cc
www.arduino.cc


1.3. ARDUINO QUICKSTART 3
be uploaded to the Arduino UNO R3 using a programming pod such as the Microchip AVR
Dragon.

1.3 ARDUINO QUICKSTART
To get started using an Arduino-based platform, you will need the following hardware and
software:

• an Arduino-based hardware processing platform;

• the appropriate interface cable from the host PC or laptop to the Arduino platform;

• an Arduino compatible power supply; and

• the Arduino software.

Interface cable. The Arduino UNO R3 connects to the host laptop or PC via a USB cable
(Type A male to Type B female). Power supply. The Arduino processing boards may be powered
from the USB port during project development. However, it is highly recommended that an ex-
ternal power supply be employed. This will allow developing projects beyond the limited electri-
cal current capability of the USB port. For the UNO R3 platform, Arduino (www.arduino.cc)
recommends a power supply from 7–12 VDC with a 2.1-mm center positive plug. A power
supply of this type is readily available from a number of electronic parts supply companies. For
example, the Jameco #133891 power supply is a 9 VDC model rated at 300 mA and equipped
with a 2.1-mm center positive plug. It is available for under US$10. The UNO has an onboard
voltage regulators that maintain the incoming power supply voltage to a stable 5 VDC.

1.3.1 QUICK START GUIDE
The ADE may be downloaded from the Arduino website’s front page at www.arduino.cc. Ver-
sions are available for Windows, Mac OS X, and Linux. Provided below is a quick start step-
by-step approach to blink an onboard LED.

• Download the ADE from www.arduino.cc.

• Connect the Arduino UNO R3 processing board to the host computer via a USB cable
(A male to B male).

• Start the ADE.

• Under the Tools tab select the evaluation Board you are using and the Port that it is
connected to.

• Type the following program.

www.arduino.cc
www.arduino.cc
www.arduino.cc
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//*****************************************************************

#define LED_PIN 13

void setup()
{
pinMode(LED_PIN, OUTPUT);
}

void loop()
{
digitalWrite(LED_PIN, HIGH);
delay(500); //delay specified in ms
digitalWrite(LED_PIN, LOW);
delay(500);
}

//*****************************************************************

• Upload and execute the program by asserting the “Upload” (right arrow) button.

• The onboard LED should blink at 1-s intervals.

With the ADE downloaded and exercised, let’s take a closer look at its features.

1.3.2 ARDUINO DEVELOPMENT ENVIRONMENT OVERVIEW
The ADE is illustrated in Figure 1.2. The ADE contains a text editor, a message area for dis-
playing status, a text console, a tool bar of common functions, and an extensive menuing system.
The ADE also provides a user-friendly interface to the Arduino processor board which allows
for a quick upload of code. This is possible because the Arduino processing boards are equipped
with a bootloader program.

A close up of the Arduino toolbar is provided in Figure 1.3. The toolbar provides sin-
gle button access to the more commonly used menu features. Most of the features are self-
explanatory. As described in the previous section, the “Upload” button compiles your code and
uploads it to theArduino processing board.The “SerialMonitor” button opens the serial monitor
feature. The serial monitor feature allows text data to be sent to and received from the Arduino
processing board.
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sketch_may15a | Arduino 1.8.12

File Edit Sketch Tools Help

sketch_may15a

+ -

Figure 1.2: Arduino Development Environment [www.arduino.cc].

Open

Save

+ Opens serial monitor

Upload

Verify - checks for errors

Creates new sketch

Figure 1.3: Arduino Development Environment buttons.

1.3.3 SKETCHBOOK CONCEPT
In keeping with a hardware and software platform for students of the arts, the Arduino envi-
ronment employs the concept of a sketchbook. An artist maintains their works in progress in a
sketchbook. Similarly, programs are maintained within a sketchbook in the Arduino environ-
ment. Furthermore, we refer to individual programs as sketches. An individual sketch within
the sketchbook may be accessed via the Sketchbook entry under the file tab.

www.arduino.cc
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Figure 1.4: Arduino Development Environment menu [www.arduino.cc].

1.3.4 ARDUINO SOFTWARE, LIBRARIES, AND LANGUAGE
REFERENCES

The ADE has a number of built-in features. Some of the features may be directly accessed via the
ADE drop down toolbar illustrated in Figure 1.2. Provided in Figure 1.4 is a handy reference to
show the available features. The toolbar provides a wide variety of features to compose, compile,
load, and execute a sketch.

1.3.5 WRITING AN ARDUINO SKETCH
The basic format of the Arduino sketch consists of a “setup” and a “loop” function. The setup
function is executed once at the beginning of the program. It is used to configure pins, declare
variables and constants, etc. The loop function will execute sequentially step-by-step. When
the end of the loop function is reached it will automatically return to the first step of the loop
function and execute again. This goes on continuously until the program is stopped.

//****************************************************************

void setup()
{
//place setup code here
}

www.arduino.cc
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void loop()
{
//main code steps are provided here
:
:

}

//*****************************************************************

Example: Let’s revisit the sketch provided earlier in the chapter.

//*****************************************************************

#define LED_PIN 13 //name pin 13 LED_PIN

void setup()
{
pinMode(LED_PIN, OUTPUT); //set pin to output
}

void loop()
{
digitalWrite(LED_PIN, HIGH); //write pin to logic high
delay(500); //delay specified in ms
digitalWrite(LED_PIN, LOW); //write to logic low
delay(500); //delay specified in ms
}

//*****************************************************************

In the first line the #define statement links the designator “LED_PIN” to pin 13 on the
Arduino processor board. In the setup function, LED_PIN is designated as an output pin. Recall
the setup function is only executed once. The program then enters the loop function that is
executed sequentially step-by-step and continuously repeated. In this example, the LED_PIN
is first set to logic high to illuminate the LED onboard the Arduino processing board. A 500
ms delay then occurs. The LED_PIN is then set low. A 500 ms delay then occurs. The sequence
then repeats.

Even themost complicated sketches follow the basic format of the setup function followed
by the loop function. To aid in the development of more complicated sketches, the ADE has
many built-in features that may be divided into the areas of structure, variables, and functions.
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Digital I/O
pinMode( )

digitalWrite( )

digitalRead( )

Advanced I/O
tone( )

notone( )

shiftOut( )

shiftIn( )

pulseIn( )

Arduino Functions

Figure 1.5: Arduino Development Environment functions [www.arduino.cc].

The structure and variable features follow rules similar to the C programming language which
is discussed in Chapter 2. The built-in functions consists of a set of pre-defined activities useful
to the programmer. These built-in functions are summarized in Figure 1.5.

There are many program examples available to allow the user to quickly construct a sketch.
These programs are summarized in Figure 1.6. Complete documentation for these programs is
available at the Arduino homepage [www.arduino.cc]. This documentation is easily accessible
via the Help tab on the ADE toolbar. This documentation will not be repeated here. With the
Arduino open source concept, users throughout the world are constantly adding new built-in
features. As new features are added, they are released in future ADE versions. As an Arduino
user, you too may add to this collection of useful tools. Throughout the remainder of the book
we use both the ADE and also several C compilers to program the Arduino UNO R3. In the
next section we get acquainted with the features of the UNO R3.

1.4 ARDUINO UNO R3 PROCESSING BOARD

The Arduino UNO R3 processing board is illustrated in Figure 1.7. Working clockwise from
the left, the board is equipped with a USB connector to allow programming the processor from
a host personal computer (PC) or laptop. The board may also be programmed using In System
Programming (ISP) techniques. A 6-pin ISP programming connector is on the opposite side of
the board from the USB connector.

www.arduino.cc
www.arduino.cc
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Figure 1.6: Arduino Development Environment built-in features [www.arduino.cc].
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Figure 1.7: Arduino UNO R3 layout. (Figure adapted and used with permission of Arduino
Team (CC BY-NC-SA) [www.arduino.cc].)

www.arduino.cc
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The board is equipped with a USB-to-serial converter to allow compatibility between the

host PC and the serial communications systems aboard the Microchip ATmega328 processor.
The UNO R3 is also equipped with several small surface mount light emitting diodes (LEDs)
to indicate serial transmission (TX) and reception (RX) and an extra LED for project use. The
header strip at the top of the board provides access for an analog reference signal, pulse width
modulation (PWM) signals, digital input/output (I/O), and serial communications. The header
strip at the bottom of the board provides analog inputs for the analog-to-digital (ADC) system
and power supply terminals. Finally, the external power supply connector is provided at the
bottom left corner of the board. The top and bottom header strips conveniently mate with an
Arduino shield to extend the features of the Arduino host processor.

1.5 ARDUINO UNO R3 OPEN SOURCE SCHEMATIC
The entire line of Arduino products is based on the visionary concept of open-source hardware
and software. That is, hardware and software developments are openly shared among users to
stimulate new ideas and advance the Arduino concept. In keeping with the Arduino concept,
the Arduino team openly shares the schematic of the Arduino UNO R3 processing board; see
Figure 1.8.

1.6 ARDUINO UNO R3 HOST PROCESSOR – THE
ATMEGA328

The host processor for the Arduino UNO R3 is the Microchip ATmega328. The “328” is a
28 pin, 8-bit microcontroller. The architecture is based on the Reduced Instruction Set Com-
puter (RISC) concept which allows the processor to complete 20 million instructions per second
(MIPS) when operating at 20 MHz. The “328” is equipped with a wide variety of features as
shown in Figure 1.9. The pin out diagram and block diagram for this processor are provided in
Figures 1.10 and 1.11. The features may be conveniently categorized into the following systems:

• memory system,

• port system,

• timer system,

• analog-to-digital converter (ADC),

• interrupt system, and

• serial communications.
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hosted  on the

ATmega 328

Memory System

- 32K byte,  ISP

programmable flash

- 1K byte,  byte

addressable EEPROM

- 2K byte RAM

Timer System

- Two 8-bit timer/counter

- One 16-bit timer/counter

- Six PWM channels

Analog-to-digital converter

- 6-channel 10-bit ADC

  (PDIP)

Serial Communications

- Serial USART

- Serial peripheral interface

- Two wire interface (TWI)

Port System

- 14 digital I/O pins

   -- 6 provide PWM

- 6 analog input pins

Interrupt System

- 26 total interrupts

- 2 external pin interrupts

Arduino UNO R3

Figure 1.9: Arduino UNO R3 systems.

Figure 1.10: ATmega328 pin out. (Figure used with permission of Microchip, Inc. [www.
microchip.com].)

www.microchip.com
www.microchip.com
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Figure 1.11: ATmega328 block diagram. (Figure used with permission of Microchip, Inc. [www.
microchip.com].)

www.microchip.com
www.microchip.com
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01024ED1V01Y202006DCS059&iName=master.img-090.jpg&w=374&h=468
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1.6.1 ATMEGA328 MEMORY
The ATmega328 is equipped with three main memory sections: flash electrically erasable pro-
grammable read only memory (EEPROM), static random access memory (SRAM), and byte-
addressable EEPROM. We discuss each memory component in turn.

1.6.1.1 ATmega328 in – System Programmable Flash EEPROM
Bulk programmable flash EEPROM is used to store programs. It can be erased and programmed
as a single unit. Also, should a program require a large table of constants, it may be included
as a global variable within a program and programmed into flash EEPROM with the rest of
the program. Flash EEPROM is nonvolatile meaning memory contents are retained even when
microcontroller power is lost. The ATmega328 is equipped with 32 K bytes of onboard repro-
grammable flash memory. This memory component is organized into 16 K locations with 16
bits at each location.

1.6.1.2 ATmega328 Byte-Addressable EEPROM
Byte-addressable EEPROM memory is used to permanently store and recall variables during
program execution. It too is nonvolatile. It is especially useful for logging system malfunctions
and fault data during program execution. It is also useful for storing data that must be retained
during a power failure but might need to be changed periodically. Examples where this type
of memory is used are found in applications to store system parameters, electronic lock combi-
nations, and automatic garage door electronic unlock sequences. The ATmega328 is equipped
with 1024 bytes of EEPROM.

1.6.1.3 ATmega328 Static Random Access Memory (SRAM)
Static RAM memory is volatile. That is, if the microcontroller loses power, the contents of
SRAM memory are lost. It can be written to and read from during program execution. The AT-
mega328 is equipped with 2 K bytes of SRAM. A small portion of the SRAM is set aside for
the general-purpose registers used by the processor and also for the input/output and peripheral
subsystems aboard the microcontroller. A header file provides the link between register names
used in a program and their physical description and location in memory. During program exe-
cution, RAM is used to store global variables, support dynamic memory allocation of variables,
and to provide a location for the stack.

1.6.2 ATMEGA328 PORT SYSTEM
The Microchip ATmega328 is equipped with three, 8-bit general purpose, digital input/output
(I/O) ports designated PORTB (8 bits, PORTB[7:0]), PORTC (7 bits, PORTC[6:0]), and
PORTD (8 bits, PORTD[7:0]). As shown in Figure 1.12, each port has three registers associ-
ated with it:
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Figure 1.12: ATmega328 port configuration registers [www.microchip.com].

• Data Register PORTx—used to write output data to the port,

• Data Direction Register DDRx—used to set a specific port pin to either output (1) or
input (0), and

• Input Pin Address PINx—used to read input data from the port.

Figure 1.12b describes the settings required to configure a specific port pin to either input
or output. If selected for input, the pin may be selected for either an input pin or to operate in
the high impedance (Hi–Z) mode. If selected for output, the pin may be further configured for
either logic low or logic high.

www.microchip.com
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01024ED1V01Y202006DCS059&iName=master.img-091.jpg&w=361&h=351
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Port pins are usually configured at the beginning of a program for either input or out-

put and their initial values are then set. Usually, all eight pins for a given port are configured
simultaneously.

1.6.3 ATMEGA328 INTERNAL SYSTEMS
In this section, we provide a brief overview of the internal features of the ATmega328. It should
be emphasized that these features are the internal systems contained within the confines of
the microcontroller chip. These built-in features allow complex and sophisticated tasks to be
accomplished by the microcontroller.

1.6.3.1 ATmega328 Time Base
The microcontroller is a complex synchronous state machine. It responds to program steps in a
sequential manner as dictated by a user-written program.Themicrocontroller sequences through
a predictable fetch–decode–execute sequence. Each unique assembly language program instruc-
tion issues a series of signals to control the microcontroller hardware to accomplish instruction
related operations.

The speed at which a microcontroller sequences through these actions is controlled by a
precise time base called the clock. The clock source is routed throughout the microcontroller to
provide a time base for all peripheral subsystems. The ATmega328 may be clocked internally
using a user-selectable resistor capacitor (RC) time base or it may be clocked externally. The
RC internal time base is selected using programmable fuse bits. You may choose from several
different internal fixed clock operating frequencies.

To provide for a wider range of frequency selections an external time source may be used.
The external time sources, in order of increasing accuracy and stability, are an external RC net-
work, a ceramic resonator, or a crystal oscillator. The system designer chooses the time base
frequency and clock source device appropriate for the application at hand. Generally speak-
ing, if the microcontroller will be interfaced to external peripheral devices either a ceramic res-
onator or a crystal oscillator should be used as a time base. Both are available in a wide variety
of operating frequencies. The maximum operating frequency of the ATmega328P is 20 MHz
[www.microchip.com].

1.6.3.2 ATmega328 Timing Subsystem
The ATmega328 is equipped with a complement of timers which allows the user to generate a
precision output signal, measure the characteristics (period, duty cycle, frequency) of an incom-
ing digital signal, or count external events. Specifically, the ATmega328 is equipped with two
8-bit timer/counters and one 16-bit counter.

www.microchip.com
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1.6.3.3 Pulse Width Modulation Channels
A PWM signal is characterized by a fixed frequency and a varying duty cycle. Duty cycle is the
percentage of time a repetitive signal is logic high during the signal period. It may be formally
expressed as:

duty cycleŒ%� D .on time/period/ � .100%/:

The ATmega328 is equipped with four PWM channels. The PWM channels coupled
with the flexibility of dividing the time base down to different PWM subsystem clock source
frequencies allows the user to generate a wide variety of PWM signals: from relatively high-
frequency low-duty cycle signals to relatively low-frequency high-duty cycle signals.

PWM signals are used in a wide variety of applications including controlling the position
of a servo motor and controlling the speed of a DC motor.

1.6.3.4 ATmega328 Serial Communications
The ATmega328 is equipped with a variety of different serial communication subsystems includ-
ing the Universal Synchronous and Asynchronous Serial Receiver and Transmitter (USART),
the serial peripheral interface (SPI), and the Two-wire Serial Interface (TWI). What these sys-
tems have in common is the serial transmission of data. In a serial communications transmission,
serial data is sent a single bit at a time from transmitter to receiver.

ATmega328 Serial USART The serial USART may be used for full duplex (two-way) com-
munication between a receiver and transmitter. This is accomplished by equipping the AT-
mega328 with independent hardware for the transmitter and receiver. The USART is typically
used for asynchronous communication. That is, there is not a common clock between the trans-
mitter and receiver to keep them synchronized with one another. To maintain synchronization
between the transmitter and receiver, framing start and stop bits are used at the beginning and
end of each data byte in a transmission sequence.

The ATmega328 USART is quite flexible. It has the capability to be set to different data
transmission rates known as the Baud (bits per second) rate. The USART may also be set for
data bit widths of 5–9 bits with one or two stop bits. Furthermore, the ATmega328 is equipped
with a hardware generated parity bit (even or odd) and parity check hardware at the receiver. A
single parity bit allows for the detection of a single bit error within a byte of data. The USART
may also be configured to operate in a synchronous mode.

ATmega328 Serial Peripheral Interface (SPI) The ATmega328 Serial Peripheral Interface
(SPI) can also be used for two-way serial communication between a transmitter and a receiver.
In the SPI system, the transmitter and receiver share a common clock source. This requires an
additional clock line between the transmitter and receiver but allows for higher data transmission
rates as compared to the USART.

The SPI may be viewed as a synchronous 16-bit shift register with an 8-bit half residing
in the transmitter and the other 8-bit half residing in the receiver. The transmitter is designated
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the master since it is providing the synchronizing clock source between the transmitter and the
receiver. The receiver is designated as the slave.

ATmega328 Two-Wire Serial Interface (TWI) The TWI subsystem allows the system de-
signer to network related devices (microcontrollers, transducers, displays, memory storage, etc.)
together into a system using a two-wire interconnecting scheme. The TWI allows a maximum of
128 devices to be interconnected. Each device has its own unique address and may both transmit
and receive over the two-wire bus at frequencies up to 400 kHz. This allows the device to freely
exchange information with other devices in the network within a small area.

1.6.3.5 ATmega328 Analog to Digital Converter (ADC)
The ATmega328 is equipped with an eight-channel analog to digital converter (ADC) subsys-
tem. The ADC converts an analog signal from the outside world into a binary representation
suitable for use by the microcontroller. The ATmega328 ADC has 10-bit resolution. This means
that an analog voltage between 0 and 5 V will be encoded into one of 1024 binary representa-
tions between .000/16 and .3FF/16. This provides the ATmega328 with a voltage resolution of
approximately 4.88 mV.

1.6.3.6 ATmega328 Interrupts
The normal execution of a program follows a designated sequence of instructions. However,
sometimes this normal sequence of events must be interrupted to respond to high priority faults
and status both inside and outside the microcontroller. When these higher priority events occur,
the microcontroller suspends normal operation and executes event specific actions contained
within an interrupt service routine (ISR). Once the higher priority event has been serviced by
the ISR, the microcontroller returns and continues processing the normal program.

The ATmega328 is equipped with a complement of 26 interrupt sources. Two of the in-
terrupts are provided for external interrupt sources while the remaining interrupts support the
efficient operation of peripheral subsystems aboard the microcontroller.

1.7 SUMMARY
The goal of this chapter was to provide a tutorial on how to begin programming. We used a top-
down design approach. We began with the “big picture” of the chapter followed by an overview
of the Arduino Development Environment. Throughout the chapter, we provided examples and
also provided references to a number of excellent references.

1.8 REFERENCES
[1] Arduino homepage. www.arduino.cc

www.arduino.cc
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[2] Microchip ATmega328 PB AVRMicrocontroller with Core Independent Peripherals and Pico

Power Technology DS40001906C. Microchip Technology Incorporation, 2018. www.
microchip.com

1.9 CHAPTER PROBLEMS
1. Describe the steps in writing a sketch and executing it on an Arduino UNO R3 processing

board.

2. What is the serial monitor feature used for in the Arduino Development Environment?

3. Describe what variables are required and returned and the basic function of the following
built-in Arduino functions: Blink, Analog Input.

4. Sketch a block diagram of the ATmega328 and its associated systems. Describe the func-
tion of each system.

5. Describe the different types of memory components within the ATmega328. Describe
applications for each memory type.

6. Describe the three different register types associated with each port.

7. How may the features of the Arduino UNO R3 be extended?

8. Discuss different options for the ATmega328 time base. What are the advantages and
disadvantages of each type? Construct a summary table.

9. Discuss the three types of serial communication systems aboard the ATmega328. Research
an application for each system.

10. What is the difference between an ADC and digital-to-analog converter (DAC). Which
one is aboard the ATmega328?

11. How does the Arduino UNO R3 receive power? Describe in detail.

12. What is the time base for the Arduino UNO R3? At what frequency does it operate?
How many clock pulses per second does the time base provide? What is the time between
pulses?

13. What is meant by the term open source?

14. What is the maximum operating frequency of the ATmega328? What is the lowest oper-
ating frequency of the ATmega328?

15. What is the range of operating voltages that may be applied to the ATmega328?

www.microchip.com
www.microchip.com
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C H A P T E R 2

Programming
Objectives: After reading this chapter, the reader should be able to do the following:

• describe the key components of a program;

• specify the size of different variables within the C programming language;

• define the purpose of the main program;

• explain the importance of using functions within a program;

• write functions that pass parameters and return variables;

• describe the function of a header file;

• discuss different programming constructs used for program control and decision pro-
cessing; and

• write programs in C for use on the Arduino UNO R3 board.

2.1 OVERVIEW
We begin by revisiting the big picture of how to program the Arduino UNO R3 provided in
Chapter 1. This will help provide an overview of how chapter concepts fit together. It also in-
troduces terms used in writing, editing, compiling, loading, and executing a program.

As discussed in Chapter 1, most microcontrollers are programmed with some variant of
the C programming language.1 The C programming language provides a nice balance between
the programmer’s control of the microcontroller hardware and time efficiency in program writ-
ing. The compiler software is hosted on a computer separate from the Arduino UNO R3. The
job of the compiler is to transform the program written by the program writer (filename.c and
filename.h) into machine code (filename.hex) suitable for loading into the processor. The “file-
name.c” file contains the main program while the “filename.h” file(s) contain functions grouped
by type. This technique provides an orderly method of organizing a large program.

Once the source files (filename.c and filename.h) are provided to the compiler, the com-
piler executes two steps to render the machine code. The first step is the compilation process.

1This chapter was adapted with permission fromMicrocontroller Programming and Interfacing, S. F. Barrett and D. J. Pack,
Morgan & Claypool Publishers, 2011. It has been adapted for use with the ATmega328.
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Here the program source files are first transformed into assembly code (filename.asm). If the
program source files contain syntax errors, the compiler reports these to the user. Syntax errors
are reported for incorrect use of the C programming language. An assembly language program
is not generated until the syntax errors have been corrected. The assembly language source file
(filename.asm) is then passed to the assembler. The assembler transforms the assembly language
source file (filename.asm) to machine code (filename.hex) suitable for loading to the Arduino
processor. The machine code file can now be downloaded to the Arduino processor using the
ISP features of the Microchip AVR Dragon board. In the examples provided at the end of this
chapter we demonstrate how to program the ATmega328 aboard the UNO using two different
compilers (the Atmel® Studio [www.microchip.com] and the ImageCraft JumpStartC for AVR
[www.ImageCraft.com]) and ISP programming techniques.

In the next section, we describe the parts of a C program.

2.2 ANATOMY OF A C PROGRAM
Programs written in C for a microcontroller have a repeatable format. Slight variations exist but
many follow the format provided.
//*****************************************************************
//Comments containing program information
// - file name:
// - author:
// - revision history:
// - compiler setting information:
// - hardware connection description to microcontroller pins
// - program description
//*****************************************************************

//include files
#include<file_name.h>

//function prototypes
A list of functions and their format used within the program

//program constants
#define TRUE 1
#define FALSE 0
#define ON 1
#define OFF 0

//interrupt handler definitions

www.microchip.com
www.ImageCraft.com
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Used to link the software to hardware interrupt features

//global variables
Listing of variables used throughout the program

//main program

void main(void)
{

body of the main program

}

//*****************************************************************
//function definitions

A detailed function body and definition for each function
used within the program.

Often function definitions are placed in accompanying header files.

//*****************************************************************

Let’s take a closer look at each piece.

2.2.1 COMMENTS
Comments are used throughout the program to document what and how things were accom-
plished within a program. The comments help you reconstruct your work maybe months or even
years after completing the program. Imagine that you wrote a program a year ago for a project.
You now want to modify that program for a new project. The comments will help you remember
the key details of the program.

Comments are not compiled into machine code for loading into the microcontroller.
Therefore, the comments will not fill up the memory of your microcontroller. Comments are
indicated using double slashes (==). Anything from the double slashes to the end of a line is
then considered a comment. A multi-line comment can be constructed using a =� at the begin-
ning of the comment and a �= at the end of the comment. The multi-line comment technique
may be used to block out portions of code during troubleshooting.

At the beginning of the program, comments may be extensive. Comments may include
some of the following information:
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• file name,

• program author,

• revision history or a listing of the key changes made to the program,

• compiler setting information,

• hardware connection description to microcontroller pins, and

• program description.

2.2.2 INCLUDE FILES
Often you need to add extra files to your project besides the main program. For example, most
compilers require a “personality file” on the specific microcontroller that you are using. This file
is provided with the compiler and provides the name of each register used within the micro-
controller. It also provides the link between a specific register’s name within software and the
actual register location within hardware. These files are typically called header files and their
name ends with a “.h”. Within the C compiler there will also be other header files to include
in your program such as the “math.h” file when programming with advanced math functions.
Also, the function bodies that you write for your program may be placed in other files. This is
especially useful in large programs that contain many functions. The functions may be grouped
into different files by category. This allows a large program to be subdivided into more manage-
able, smaller files. These files can be then connected to the main program file with the #include
statements.

To include header files within a program, the following syntax is used:

//include files
#include<file_name1.h>
#include<file_name2.h>
#include<file_name3.c>

:
:

2.2.3 FUNCTIONS
In Chapter 7, we discuss the top-down design, bottom-up implementation approach to design-
ing microcontroller-based systems. In this approach, a microcontroller based project including
both hardware and software is partitioned into systems, subsystems, etc. The idea is to take a
complex project and break it into doable pieces with a defined action.
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void main(void)
{

:

function1( );

:

}

void function1(void)
{

:

function2( );

:

}

void function2(void)
{

:

}

Figure 2.1: Function calling.

We use the same approach when writing computer programs. At the highest level is the
main program which calls functions that have a defined action. When a function is called, pro-
gram control is released from the main program to the function. Once the function is complete,
program control reverts to the main program. Functions may in turn call other functions, as
shown in Figure 2.1.

Use of the top-down design, bottom-up implementation approach results in a collection
of functions that may be reused in various projects. Also, the program is subdivided into doable
pieces, each with a defined action. This makes writing the program easier. Also, it is easier to
modify a program since every action is in a known location.

There are three different pieces of code required to properly configure and call the function:

• the function prototype,

• the function call, and

• the function body.

Function prototypes are provided early in the program as previously shown in the pro-
gram template. The function prototype provides the name of the function and any variables
required by the function and any variable returned by the function.

The function prototype follows this format:

return_variable function_name(required_variable1, required_variable2);

If the function does not require variables or does not send back a variable the word “void”
is placed in the variable’s position.



26 2. PROGRAMMING
The function call is the code statement used within a program to execute the function.The

function call consists of the function name and the actual arguments required by the function.
If the function does not require arguments to be delivered to it for processing, the parenthesis
containing the variable list is left empty.

The function call follows this format:

function_name(required_variable1, required_variable2);

A function that requires no variables follows this format:

function_name( );

When the function call is executed by the program, program control is transferred to the
function, the function is executed, and program control is then returned to the portion of the
program that called it.

The function body is a self-contained “mini-program.” The first line of the function body
contains the same information as the function prototype: the name of the function, any variables
required by the function, and any variable returned by the function. The last line of the function
contains a “return” statement. Here a variable may be sent back to the portion of the program
that called the function. The processing action of the function is contained within the open
({) and close brackets (}). If the function requires any variables, they are declared next. These
variables are referred to as local variables. A local variable is known only within the confines of
a specific function. The actions required by the function follow.

The function body follows this format:

//*****************************************************************
return_variable function_name(required_variable1, required_variable2)
{
//local variables required by the function
unsigned int variable1;
unsigned char variable2;

//program statements required by the function

//return variable
return return_variable;
}

//*****************************************************************

Example: In this example, we describe how to configure the ports of the microcontroller
to act as input or output ports. Associated with each port is a register called the data direction
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//function prototypes
void initialize_ports(void);

//main function
void main(void)
{

:

initialize_ports( );

:

}

//function body
void initialize_ports(void)
{
DDRB  = 0x00;            //initialize PORTB as input
PORTB = 0x00;

DDRC =  0xFF;            //initialize PORTC as output
PORTC = 0x00;            //set pins to logic 0

DDRD =  0xFF;           //initialize PORTD as output
PORTD = 0x00;           //set pins to logic 0
}

Figure 2.2: Configuring ports.

register (DDR). Each bit in the DDR corresponds to a bit in the associated PORT. For example,
PORTB has an associated data direction register DDRB. If DDRB[7] is set to a logic 1, the
corresponding port pin PORTB[7] is configured as an output pin. Similarly, if DDRB[7] is set
to logic 0, the corresponding port pin is configured as an input pin.

During some of the early steps of a program, a function is called to initialize the ports as
input, output, or some combination of both. This is illustrated in Figure 2.2.

2.2.4 PROGRAM CONSTANTS
The#define statement is used to associate a constant namewith a numerical value in a program. It
can be used to define common constants such as pi. It may also be used to give terms used within
a program a numerical value. This makes the code easier to read. For example, the following
constants may be defined within a program:

//program constants
#define TRUE 1
#define FALSE 0
#define ON 1
#define OFF 0
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Type Size Range

unsigned char

signed char

unsigned int

signed int

float

double

1

1

2

2

4

4

0..255

-128..127

0..65535

-32768..32767

 +/-1.175e-38.. +/-3.40e+38

 +/-1.175e-38.. +/-3.40e+38

Figure 2.3: C variable sizes used with the ImageCraft ICC AVR compiler (ImageCraft [2]).

2.2.5 INTERRUPT HANDLER DEFINITIONS
Interrupts are functions that are written by the programmer but usually called by a specific hard-
ware event during system operation. We discuss interrupts and how to properly configure them
in Chapter 6.

2.2.6 VARIABLES
There are two types of variables used within a program: global variables and local variables. A
global variable is available and accessible to all portions of the program, whereas a local variable
is only known and accessible within the function where it is declared.

When declaring a variable in C, the number of bits used to store the operator is also
specified. In Figure 2.3, we provide a list of common C variable sizes used with the ImageCraft
Jumpstart C for AVR compiler. The size of other variables such as pointers, shorts, longs, etc.
are contained in the compiler documentation [www.ImageCraft.com].

A global variable is declared using the following format provided below. The type of the
variable is specified, followed by its name, and an initial value if desired. When programming
microcontrollers, it is important to know the number of bits used to store the variable and where
the variable will be assigned. For example, assigning the contents of an unsigned char variable,
which is stored in 8-bits, to an 8-bit output port will have a predictable result. However, assign-
ing an unsigned int variable, which is stored in 16-bits, to an 8-bit output port does not provide
predictable results. It is wise to insure your assignment statements are balanced for accurate and
predictable results. The modifier “unsigned” indicates all bits will be used to specify the magni-

www.ImageCraft.com
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tude of the argument. Signed variables will use the left most bit to indicate the polarity (˙) of
the argument.

//global variables
unsigned int loop_iterations = 6;

2.2.7 MAIN PROGRAM
The main program is the hub of activity for the entire program. The main program typically
consists of program steps and function calls to initialize the processor followed by program
steps to collect data from the environment external to the microcontroller, process the data and
make decisions, and provide external control signals back to the environment based on the data
collected.

2.3 FUNDAMENTAL PROGRAMMING CONCEPTS
In this section we discuss operators, programming constructs, and decision processing constructs
to complete our fundamental overview of programming concepts.

2.3.1 OPERATORS
There are many operators provided in the C language. An abbreviated list of common operators
are provided in Figures 2.4 and 2.5. The operators have been grouped by general category. The
symbol, precedence, and brief description of each operator are provided. The precedence column
indicates the priority of the operator in a program statement containingmultiple operators. Only
the fundamental operators are provided. Formore information on this topic, see Barrett and Pack
in the Reference section at the end of the chapter.

2.3.1.1 General Operations
Within the general operations category are brackets, parenthesis, and the assignment operator.
We have seen in an earlier example how bracket pairs are used to indicate the beginning and
end of the main program or a function. They are also used to group statements in programming
constructs and decision processing constructs. This is discussed in the next several sections.

The parenthesis is used to boost the priority of an operator. For example, in the mathe-
matical expression 7 � 3 C 10, the multiplication operation is performed before the addition
since it has a higher precedence. Parenthesis may be used to boost the precedence of the addition
operation. If we contain the addition operation within parenthesis, 7 � .3 C 10/, the addition
will be performed before the multiplication operation and yield a different result from the earlier
expression.
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Symbol Precedence Description

General

{ } 1 Brackets, used to group program statements

( ) 1 Parenthesis, used to establish precedence

= 12 Assignment

Symbol Precedence Description

Arithmetic Operations

* 3 Multiplication

/ 3 Division

+ 4 Addition 

- 4 Subtraction

Symbol Precedence Description

Logical Operations

< 6 Less than

<= 6 Less than or equal to

> 6 Greater 

>= 6

==

!=

&&

||

7

7

9

10

Greater than or equal to

Equal to

Not equal to 

Logical AND

Logical OR

Figure 2.4: C operators. (Adapted from Barrett and Pack [1].)
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Symbol Precedence Description

Bit Manipulation Operations

<< 5 Shift left

>> 5 Shift right

& 8 Bitwise AND 

^ 8 Bitwise exclusive OR
| 8 Bitwise OR

Symbol Precedence Description

Unary Operations

! 2 Unary negative

~ 2 One’s complement (bit-by-bit inversion)

++ 2 Increment 

-- 2

type(argument) 2

Decrement

Casting operator (data type conversion)

Figure 2.5: C operators (continued). (Adapted from Barrett and Pack [1].)

The assignment operator (D) is used to assign the argument(s) on the right-hand side of
an equation to the left-hand side variable. It is important to insure the left- and the right-hand
side of the equation have the same type of arguments. If not, unpredictable results may occur.

2.3.1.2 Arithmetic Operations
The arithmetic operations provide for basic math operations using the various variables described
in the previous section. As described in the previous section, the assignment operator (D) is used
to assign the argument(s) on the right-hand side of an equation to the left-hand side variable.

Example: In this example, a function returns the sum of two unsigned int variables passed
to the function.

unsigned int sum_two(unsigned int variable1, unsigned int variable2)
{
unsigned int sum;

sum = variable1 + variable2;
return sum;
}



32 2. PROGRAMMING
2.3.1.3 Logical Operations
The logical operators provide Boolean logic operations. They can be viewed as comparison oper-
ators. One argument is compared against another using the logical operator provided. The result
is returned as a logic value of one (1, true, high) or zero (0, false, low). The logical operators are
used extensively in program constructs and decision processing operations to be discussed in the
next several sections.

2.3.1.4 Bit Manipulation Operations
There are two general types of operations in the bit manipulation category: shifting operations
and bitwise operations. Let’s examine several examples.

Example: Given the following code segment, what will the value of variable2 be after
execution?

unsigned char variable1 = 0x73;
unsigned char variable2;

variable2 = variable1 << 2;

Answer: Variable “variable1” is declared as an eight-bit unsigned char and assigned the
hexadecimal value of .73/16. In binary notation this is expressed as .0111_0011/2. The << 2

operator provides a left shift of the argument by two places. After two left shifts of .73/16, the
result is .cc/16 and will be assigned to the variable “variable2.” Note that the left- and right-shift
operation is equivalent to multiplying and dividing the variable by a power of two, respectively.

The bitwise operators perform the desired operation on a bit-by-bit basis. That is, the
least significant bit of the first argument is bit-wise operated with the least significant bit of the
second argument, and so on.

Example: Given the following code segment, what will the value of variable3 be after
execution?

unsigned char variable1 = 0x73;
unsigned char variable2 = 0xfa;
unsigned char variable3;

variable3 = variable1 & variable2;

Answer: Variable “variable1” is declared as an eight-bit unsigned char and assigned the
hexadecimal value of .73/16. In binary notation, this is expressed as .0111_0011/2. Variable “vari-
able2” is declared as an eight-bit unsigned char and assigned the hexadecimal value of .fa/16. In
binary notation, this is expressed as .1111_1010/2. The bitwise AND operator is specified. After
execution variable “variable3,” declared as an eight-bit unsigned char, contains the hexadecimal
value of .72/16.
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Syntax Description

a | b 

 

a & b 

 

a ^ b 

 

~a

bitwise or 

 

bitwise and 

 

bitwise exclusive or 

 

bitwise complement

Example

PORTB |= 0x80;               // turn on bit 7 (msb) 

 

if ((PINB & 0x81) == 0)  // check bit 7 and bit 0 

 

PORTB ^= 0x80;             // toggle/flip bit 7 

 

PORTB &= ~0x80;         // turn off bit 7 

 

Figure 2.6: Bit twiddling (ImageCraft [2]).

2.3.1.5 Unary Operations
The unary operators, as their name implies, require only a single argument. For example, in the
following code segment, the value of the variable “i” is incremented. This is a shorthand method
of executing the operation “i D i C 1; ”

unsigned int i;

i++;

Example: It is common in embedded system design projects to have every pin on a mi-
crocontroller employed. Furthermore, it is not uncommon to have multiple inputs and outputs
assigned to the same port but on different port input/output pins. Some compilers support spe-
cific pin reference. Another technique that is not compiler specific is bit twiddling. Figure 2.6
provides bit twiddling examples on how individual bits may be manipulated without affecting
other bits using bitwise and unary operators. The information provided here was extracted from
the ImageCraft JumpStart C for AVR compiler documentation [www.ImageCraft.com].

2.3.2 PROGRAMMING CONSTRUCTS
In this section, we discuss several methods of looping through a piece of code. We will examine
the “for” and the “while” looping constructs.

The for loop provides a mechanism for looping through the same portion of code a fixed
number of times. The for loop consists of three main parts:

www.ImageCraft.com
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• loop initialization,

• loop termination testing, and

• the loop increment.

In the following code fragment the for loop is executed ten times.

unsigned int loop_ctr;

for(loop_ctr = 0; loop_ctr < 10; loop_ctr++)
{

: //loop body
:

}

The for loop begins with the variable “loop_ctr” equal to 0. During the first pass through
the loop, the variable retains this value. During the next pass through the loop, the variable
“loop_ctr” is incremented by one. This action continues until the “loop_ctr” variable reaches
the value of ten. Since the argument to continue the loop is no longer true, program execution
continues after the close bracket for the for loop.

In the previous example, the for loop counter was incremented at the beginning of each
loop pass. The “loop_ctr” variable can be updated by any amount. For example, in the following
code fragment the “loop_ctr” variable is increased by three for every pass of the loop.

unsigned int loop_ctr;

for(loop_ctr = 0; loop_ctr < 10; loop_ctr=loop_ctr+3)
{

//loop body

}

The “loop_ctr” variable may also be initialized at a high value and then decremented at
the beginning of each pass of the loop.

unsigned int loop_ctr;

for(loop_ctr = 10; loop_ctr > 0; loop_ctr--)
{

//loop body

}
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As before, the “loop_ctr” variable may be decreased by any numerical value as appropriate

for the application at hand.
The while loop is another programming construct that allows multiple passes through a

portion of code. The while loop will continue to execute the statements within the open and
close brackets while the condition at the beginning of the loop remains logically true. The code
snapshot below will implement a ten-iteration loop. Note how the “loop_ctr” variable is initial-
ized outside of the loop and incremented within the body of the loop. As before, the variable
may be initialized to a greater value and then decremented within the loop body.

unsigned int loop_ctr;

loop_ctr = 0;
while(loop_ctr < 10)
{

//loop body
loop_ctr++;
}

Frequently, within a microcontroller application, the program begins with system initial-
ization actions. Once initialization activities are complete, the processor enters a continuous
loop. This may be accomplished using the following code fragment.

while(1)
{

}

2.3.3 DECISION PROCESSING
There are a variety of constructs that allow decision making within a program. These include the
following:

• the if statement,

• the if-else construct,

• the if-else if-else construct, and the

• switch statement.

The if statement will execute the code between an open and close bracket set should the
condition within the if statement be logically true.
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Example: A debounced tact switch is attached to PORTC pin 2 (PORTC[2]) of an

ATmega328. We want to illuminate an LED connected to PORT B pin 1 (PORTB[1]) the
first time the switch is pressed.2 Provided below is a code snapshot to implement this task.

//*****************************************************************

if((PINC & 0x04)== 0x04) //Test PORTC[2] for logic one
{
PORTB = 0x02; //illuminate LED on PORTB[1]
}

//*****************************************************************

In the example provided, there is no method to turn off the LED once it is turned on.
This will require the else portion of the construct as shown in the next code fragment.

//*****************************************************************

if ((PINC & 0x04)== 0x04) //Test PORTC[2] for logic one
{
PORTB = 0x02; //illuminate LED on PORTB[1]
}

else
{
PORTB = 0x00; //extinguish the LED on PORTB[1]
}

//*****************************************************************

The if-else if-else construct may be used to implement a three switch system. In this
example, three debounced switches are connected to PORTC pins 2, 1, and 0, respectively.
The LED indicators are connected to PORTB pins 2, 1, and 0. The following code fragment
implements this LED system.

//*****************************************************************

if ((PINC & 0x04)== 0x04) //Test PORTC[2] for logic one
{
PORTB = 0x04; //illuminate LED on PORTB[2]
}

else if ((PINC & 0x02)== 0x02)//Test PORTC[1] for logic one
2Recall that pin numbering on ports begin with pin 0 and go through pin 7.
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{
PORTB = 0x02; //illuminate the LED on PORTB[1]
}

else if ((PINC & 0x01)== 0x01)//Test PORTC[0] for logic one
{
PORTB = 0x01; //illuminate the LED on PORTB[0]
}

else
{
PORTB = 0x00; //extinguish LEDs
}

//*****************************************************************

The switch statement is used when multiple if-else conditions exist. Each possible condi-
tion is specified by a case statement. When a match is found between the switch variable and a
specific case entry, the statements associated with the case are executed until a break statement
is encountered. The alternatives are processed in the order specified by the switch statement. If
no match is found, the default case is executed.

Example: Suppose eight debounced pushbutton switches are connected to PORTB. Each
switch will implement a different action. A switch statement may be used to process the multiple
possible decisions as shown in the following code fragment.

//*****************************************************************

void read_new_input(void)
{
new_PORTB = PINB; //get current value of PORTB

if(new_PORTB != old_PORTB) //check for status change PORTB

switch(new_PORTB)
{ //process change in PORTB input
case 0x01: //PB0

: //PB0 related actions
break;

case 0x02: //PB1
: //PB1 related actions

break;
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case 0x04: //PB2

: //PB2 related actions
break;

case 0x08: //PB3
: //PB3 related actions

break;

case 0x10: //PB4
: //PB4 related actions

break;

case 0x20: //PB5
: //PB5 related actions

break;

case 0x40: //PB6
: //PB6 related actions

break;

case 0x80: //PB7
: //PB7 related actions

break;

default:; //all other cases
} //end switch(new_PORTB)

} //end if new_PORTB
old_PORTB = new_PORTB; //update PORTB
}

//*****************************************************************

That completes our brief overview of the C programming language. In the next section,
we discuss how to program the Microchip ATmega328 processor.

2.4 PROGRAMMING THE ATMEGA328
There are several different methods of programming the ATmega328.

1. Onboard Arduino UNO R3 Programming: In Chapter 1 we described how to program
the ATmega328 while onboard the Arduino UNO R3 using the Arduino IDE. This tech-
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nique allows access to the user-friendly features of the Arduino IDE and also retains the
Arduino operating environment.

2. Onboard Arduino UNO R3 using In System Programming (ISP): This technique em-
ploys an ISP programmer (e.g., AVR Dragon) to program the ATmega328 while onboard
theArduinoUNOR3.This technique allows access to the user-friendly hardware interface
features of the Arduino UNO R3. However, when a program is loaded to the ATmega328
via the ISP programmer, the Arduino operating environment is overwritten. It is impor-
tant to note that the Arduino operating environment can be rewritten to the ATmega328
if need be.

3. ATmega328 using ISP: This technique employs an ISP programmer (e.g., AVR Dragon)
to program the ATmega328 via the Serial Peripheral Interface (SPI) system.

In this section we describe how to program the ATmega328 using ISP techniques.

2.4.1 ISP HARDWARE AND SOFTWARE TOOLS
Programming the ATmega328 requires several hardware and software tools. For software tools
a compiler and device programming support is required. Throughout the book we provide exam-
ples using both the ImageCraft JumpStart C for AVR compiler www.imagecraft.com and also
the Atmel® Studio gcc compiler www.atmel.com. We use the Atmel® Studio software suite
with the AVR Dragon programmer to download and program the microcontroller. The con-
nection between the host computer and the AVR Dragon is shown in Figure 2.7 with detailed
instructions.

2.4.2 IMAGECRAFT JUMPSTART C FOR AVR COMPILER DOWNLOAD,
INSTALLATION, AND ATMEGA328 PROGRAMMING

Throughout the text, we provide examples using the ImageCraft JumpStart C for AVR compiler.
This is an excellent, well-supported, user-friendly compiler. The compiler is available for pur-
chase and download at www.imagecraft.com. Details on compiler download and configuration
are provided there. ImageCraft allows a 45-day compiler “test drive” before securing a software
license. One of the authors (sfb) has used variants of this compiler for over a decade on mul-
tiple Microchip AVR products. You can expect prompt, courteous service from the company.
There are other excellent compilers available. The compiler is used to translate the source file(s)
(testbench.c and testbench.h) into machine language (testbench.hex) for loading into the AT-
mega328. We use Microchip’s Atmel® Studio to load the machine code into the ATmega328.

1. Download and install ImageCraft JumpStart C for AVR compiler.

2. Create a new project (File � > New � > Project) and select “ImageCraft AVR Project.”
Press Next.

www.imagecraft.com
www.atmel.com
www.imagecraft.com
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(a) ISP Connections to ATmeta328

(b) Adafruit 6-pin AVR ISP
Adaptor Mini-kit (1465)

(c) Connection from
AVR Dragon

Figure 2.7: Programming the ATmega328 with the AVR Dragon. (Image of Adafruit 1465 used
with permission ofAdafruit [www.adafruit.com].MicrochipAVRDragon illustration usedwith
permission of Microchip, Inc. [www.microchip.com].)

3. Provide a descriptive project title and browse to the desired folder location.

4. Select target as ATmega328. Details of the microcontroller and connected programming
pod (e.g., AVR Dragon) will populate drop down windows. Press OK. A project with a
“main.c” template will be created.

5. Open “main.c” and write your program.

6. With program writing complete, build project (Build � > Build). Correct any syntax
errors and rebuild project. Repeat this process until no syntax errors remain. Upon a suc-
cessful program build, a filename.hex and filename.elf are created.

7. Reference the next section to program the ATmega328 using ISP techniques.

2.4.3 ATMEL® STUDIO DOWNLOAD, INSTALLATION, AND
ATMEGA328 PROGRAMMING

1. Download and install the latest version of Atmel® Studio.

www.adafruit.com
www.microchip.com
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2. Connect the AVR Dragon to the host PC via a USB cable. The AVR Dragon drivers

should automatically install.

3. Configure hardware:

• Configure the Adafruit 6-pin AVR ISP adaptor mini-kit (1465) as shown in
Figure 2.7.

• Connect the Adafruit 6-pin AVR ISP adaptor to the AVR Dragon via 6-pin
socket IDC cable.

• Connect the Adafruit 6-pin AVR ISP adaptor to ATmega328 target as shown.

4. Program Compiling and Programming

• Start Atmel® Studio.

• If using the gcc compiler: File � > New � > Project � > GCC Executable
Project � > <filename>

• If using the gcc compiler: Write program

• If using the gcc compiler: Build program

• Tools Device Programming

– Dragon
– ATmega328
– Interface: ISP Apply
– Insure target chip has 5 VDC applied

Apply
– Read signature, read target voltage

• Memories: Flash: Program-Browse for desired “filename.hex” and press “Pro-
gram.”

• Fuses: Ext. Crystal Osc. 8.0- MHz: Program

2.5 EXAMPLE: ATMEGA328 TESTBENCH
In this example, we present the hardware configuration of a barebones Testbench and a basic
software framework to get the system up and operating. The purpose of the Testbench is to
illustrate the operation of selected ATmega328 subsystems working with various I/O devices.
More importantly, the Testbench will serve as a template to develop your own applications.
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2.5.1 HARDWARE CONFIGURATION
Provided in Figure 2.8 is the basic hardware configuration for the Testbench. PORTB is config-
ured with eight tact (momentary) switches with accompanying debouncing hardware. PORTD
is equipped with an eight-channel tristate LED indicator. For a given port pin, the green LED
will illuminate for a logic high, the red LED for a logic low, and no LEDs for a tristate high-
impedance state.

Aside from the input hardware on PORTB and the output display hardware on PORTD
of the controller, there are power (pins 7, 20, and 21) and ground (pins 8 and 22) connections.
A standard 5-VDC power supply may be used for the power connections. For portable appli-
cations, a 9-VDC battery equipped with a 5-VDC regulator (LM340-05 or uA7805) may be
used as a power source. The RESET pin (pin 1) has a resistor (1 Mohm), two capacitors (1.0
�F), and a tact switch configured to provide a reset switch for the microcontroller. We use a
ZTT 10-MHz ceramic resonator as the time base for the Testbench. It is connected to pins 9
(XTAL1) and 10 (XTAL2) of the ATmega328. Hardware interface details of the Testbench are
provided in “Arduino I: Getting Started!”

2.5.2 SOFTWARE CONFIGURATION
The Testbench software is provided below. The program contains the following sections.

• Comments

• Include Files: We have included the Atmel® AVR Studio include file for the ATmega
(avr/io.h). This file provides the software link between the names of the ATmega328
hardware registers and the actual hardware locations. When a register is used by name
in the program, reference is made to the contents of that register. We also include the
ImageCraft include file. Comment out the include file not in use.

• Function Prototypes

• Global Variables

• Main Program: We begin the main program by calling the function to initialize the
ports and then enter a continuous loop. Within the loop body, the ATmega328 mon-
itors for a status change on PORTB. When the user depresses one of the tact switches
connected to PORTB, a change of status is detected and the appropriate LED is illu-
minated on PORTD.

• Function Definition

//*****************************************************************
//file name: testbench.c
//function: test bench for MICROCHIP AVR ATmega328 controller
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//target controller: MICROCHIP ATmega328
//
//MICROCHIP AVR ATmega328 Controller Pin Assignments
//Chip Port Function I/O Source/Dest Asserted Notes
//Pin 1 PC6 /Reset pushbutton circuitry
//Pin 2 PD0 to tristate LED indicator
//Pin 3 PD1 to tristate LED indicator
//Pin 4 PD4 to tristate LED indicator
//Pin 5 PD3 to tristate LED indicator
//Pin 6 PD4 to tristate LED indicator
//Pin 7 VCC to 5 VDC
//Pin 8 GND to GND
//Pin 9 PB6 ZTT 10 MHz ceramic resonator
//Pin 10 PB7 ZTT 10 MHz ceramic resonator
//Pin 12 PD6 to tristate LED indicator
//Pin 13 PD7 to tristate LED indicator
//Pin 14 PB0 to active high RC debounced switch
//Pin 15 PB1 to active high RC debounced switch
//Pin 16 PB2 to active high RC debounced switch
//Pin 17 PB3 to active high RC debounced switch
//Pin 18 PB4 to active high RC debounced switch
//Pin 19 PB5 to active high RC debounced switch
//Pin 20 AVCC to 5 VDC
//Pin 21 AREF to 5 VDC
//Pin 22 GND to GND
//Pin 23 PC0
//Pin 24 PC1
//Pin 25 PC2
//Pin 26 PC3
//Pin 27 PC4
//Pin 28 PC5
//*****************************************************************

//Include Files: choose the appropriate include file depending on
//the compiler in use - comment out the include file not in use.

//include file(s) for JumpStart C for AVR Compiler*****************
#include<iom328v.h> //contains reg definitions
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//include file(s) for the Atmel Studio gcc compiler
//#include <avr/io.h> //contains reg definitions

//function prototypes**********************************************

void initialize_ports(void); //initializes ports

//main program*****************************************************
//global variables
unsigned char old_PORTB = 0x00; //present value of PORTB
unsigned char new_PORTB; //new values of PORTB

void main(void)
{
initialize_ports(); //initialize ports

while(1)
{
//main loop
new_PORTB = PINB; //read PORTB

if(new_PORTB != old_PORTB){ //process change
//in PORTB input

switch(new_PORTB){ //PORTB asserted high

case 0x01: //PB0 (0000_0001)
PORTD=0x00; //turn off all LEDs PORTD
PORTD=0x01; //turn on PD0 LED (0000_0001)
break;

case 0x02: //PB1 (0000_0010)
PORTD=0x00; //turn off all LEDs PORTD
PORTD=0x02; //turn on PD1 LED (0000_0010)
break;

case 0x04: //PB2 (0000_0100)
PORTD=0x00; //turn off all LEDs PORTD
PORTD=0x04; //turn on PD2 LED (0000_0100)
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break;

case 0x08: //PB3 (0000_1000)
PORTD=0x00; //turn off all LEDs PORTD
PORTD=0x08; //turn on PD3 LED (0000_1000)
break;

case 0x10: //PB4 (0001_0000)
PORTD=0x00; //turn off all LEDs PORTD
PORTD=0x10; //turn on PD4 LED (0001_0000)
break;

case 0x20: //PB5 (0010_0000)
PORTD=0x00; //turn off all LEDs PORTD
PORTD=0x20; //turn on PD5 LED (0010_0000)
break;

default:; //all other cases
} //end switch(new_PORTB)

} //end if new_PORTB

old_PORTB=new_PORTB; //update PORTB
} //end while(1)

} //end main

//*****************************************************************
//initialize_ports: provides initial configuration for I/O ports
//*****************************************************************

void initialize_ports(void)
{
DDRB=0x00; //PORTB[7:0] as input
PORTB=0x00; //disable PORTB

//pull-up resistors

DDRC=0xff; //set PORTC as output
PORTC=0x00; //initialize low

DDRD=0xff; //set PORTD as output



2.6. EXAMPLE: RAIN GAUGE INDICATOR 47
PORTD=0x00; //initialize low
}
//*****************************************************************

2.6 EXAMPLE: RAIN GAUGE INDICATOR
In this example we program a rain gauge indicator using the testbench hardware LEDs on
PORTD. LEDs are sequentially illuminated with a 1-s delay between PORTD changes. We
use a simple, yet inaccurate, method to generate the delay. We provide a more sophisticated and
accurate method using interrupts in an upcoming chapter.
//*****************************************************************
//Rain Gauge
//*****************************************************************

//function prototypes**********************************************
void initialize_ports(void); //initializes ports
void delay_100ms(void);
void delay_1s(void);

//Include Files: choose the appropriate include file depending on
//the compiler in use - comment out the include file not in use.

//include file(s) for JumpStart C for AVR Compiler******************
#include<iom328v.h> //contains reg definitions

//include file(s) for the Microchip Studio gcc compiler
//#include <avr/io.h> //contains reg definitions

int main(void)
{
unsigned char count = 0;

initialize_ports();

for(count = 0; count <=2; count++)
{
PORTD = 0x00; delay_1s();
PORTD = 0x01; delay_1s();
PORTD = 0x03; delay_1s();
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PORTD = 0x07; delay_1s();
PORTD = 0x0F; delay_1s();
PORTD = 0x1F; delay_1s();
PORTD = 0x3F; delay_1s();
PORTD = 0x1F; delay_1s();
PORTD = 0x7F; delay_1s();
PORTD = 0xFF; delay_1s();
}

}

//*****************************************************************
//initialize_ports: provides initial configuration for I/O ports
//*****************************************************************

void initialize_ports(void)
{
DDRB=0x00; //PORTB[7:0] as input
PORTB=0x00; //disable PORTB

//pull-up resistors

DDRC=0xff; //set PORTC as output
PORTC=0x00; //initialize low

DDRD=0xff; //set PORTD as output
PORTD=0x00; //initialize low

}

//*****************************************************************
//delay_100ms: inaccurate, yet simple method of creating delay
// - processor clock: ceramic resonator at 10 MHz
// - 100 ms delay requires 4M clock cycles
// - nop requires 1 clock cycle to execute
//*****************************************************************

void delay_100ms(void)
{
unsigned int i,j;
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for(i=0; i < 4000; i++)
{
for(j=0; j < 1000; j++)

{
asm("nop"); //inline assembly
} //nop: no operation

} //requires 1 clock cycle
}

//*****************************************************************
//delay_1s: inaccurate, yet simple method of creating delay
// - processor clock: ceramic resonator at 10 MHz
// - 100 ms delay requires 4M clock cycles
// - nop requires 1 clock cycle to execute
// - call 10 times for 1s delay
//*****************************************************************

void delay_1s(void)
{
unsigned int i;

for(i=0; i< 10; i++)
{
delay_100ms();
}

}

//******************************************************************

2.7 EXAMPLE: LOOP PRACTICE
In this example, a for loop counts from 0–100. Within the body of the loop, the current count
value is examined to determine which numbers evenly divide into count. The remainder operator
(%) is used.
//*****************************************************************
//file name: loop practice
//*****************************************************************

//function prototypes**********************************************
void initialize_ports(void); //initializes ports
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void delay_100ms(void);
void delay_1s(void);

//Include Files: choose the appropriate include file depending on
//the compiler in use - comment out the include file not in use.

//include file(s) for JumpStart C for AVR Compiler*****************
#include<iom328v.h> //contains reg definitions

//include file(s) for the Microchip Studio gcc compiler
//#include <avr/io.h> //contains reg definitions

int main(void)
{
unsigned char count = 0;

initialize_ports();

for(count = 0; count <=100; count++)
{

if(count
if(count
if(count
if(count
if(count
if(count
if(count
if(count

PORTD = 0x00; //turn off all LEDs

delay_1s();
}

}

//*****************************************************************
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2.8 SUMMARY
The goal of this chapter was to provide a tutorial on how to begin programming. We used a top-
down design approach. We began with the “big picture” of the chapter followed by an overview
of the ADE. We then discussed the basics of the C programming language. Only the most
fundamental concepts were covered. We concluded with several examples.
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2.10 CHAPTER PROBLEMS
1. Describe the steps in writing a sketch and executing it on an Arduino UNO R3 processing

board.

2. Describe the key portions of a C program.

3. Describe two different methods to program an Arduino processing board.

4. What is an include file?

5. What are the three pieces of code required for a program function?

6. Describe how to define a program constant.

7. Provide the C program statement to set PORTB pins 1 and 7 to logic one. Use bit-
twiddling techniques.

8. Provide the C program statement to reset PORTB pins 1 and 7 to logic zero. Use bit-
twiddling techniques.

9. What is the difference between a for and while loop?

http://dx.doi.org/10.2200/s00317ed1v01y201105dcs032
www.imagecraft.com
www.imagecraft.com
www.arduino.cc
www.microchip.com
www.microchip.com
http://www.morganclaypool.com/action/showLinks?system=10.2200%2Fs00317ed1v01y201105dcs032&citationId=p_53
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10. When should a switch statement be used vs. the if-then statement construct?

11. What is the serial monitor feature used for in the Arduino Development Environment?

12. Why is the delay function provided in the chapter imprecise? Explain.

13. Can C programming commands be used within the Arduino Development Environment?

14. Can an entire C program be compiled and executed within the Arduino Development
Environment?

15. What is the purpose of a “nop” command in assembly language?
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C H A P T E R 3

Analog to Digital Conversion
(ADC)

Objectives: After reading this chapter, the reader should be able to:
• illustrate the analog-to-digital conversion process;

• assess the quality of analog-to-digital conversion using the metrics of sampling rate,
quantization levels, number of bits used for encoding, and dynamic range;

• design signal conditioning circuits to interface sensors to analog-to-digital converters;

• implement signal conditioning circuits with operational amplifiers;

• describe the key registers used during an ATmega328 ADC;

• describe the steps to perform an ADC with the ATmega328;

• program the Arduino UNO R3 processing board to perform an ADC using the built-
in features of the Arduino Development Environment;

• program the ATmega328 to perform an ADC in C; and

• describe the operation of a digital-to-analog converter (DAC).

3.1 OVERVIEW
A microcontroller is used to process information from the natural world, decide on a course of
action based on the information collected, and then issue control signals to implement the de-
cision. Since the information from the natural world is analog or continuous in nature, and the
microcontroller is a digital or discrete based processor, a method to convert an analog signal to a
digital form is required. An ADC system performs this task while a digital to analog converter
(DAC) performs the conversion in the opposite direction. We will discuss both types of con-
verters in this chapter. Most microcontrollers are equipped with an ADC subsystem, whereas
DACs must be added as an external peripheral device to the controller.

In this chapter, we discuss the ADC process in some detail.1 In the first section, we dis-
cuss the conversion process itself, followed by a presentation of the successive-approximation

1The sections on ADC theory were adapted with permission from Microcontroller Fundamentals for Engineers and Scien-
tists, S. F. Barrett and D. J. Pack, Morgan & Claypool Publishers, 2006.
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hardware implementation of the process. We then review the basic features of the ATmega328
ADC system followed by a system description and a discussion of key ADC registers. We con-
clude our discussion of the analog-to-digital converter with several illustrative code examples.
We show how to program the ADC using the built-in features of the ADE and C. We conclude
the chapter with a discussion of the DAC process. We also discuss the ADE built-in features
that allow generation of an output analog signal via PWM techniques. Throughout the chapter,
we provide detailed examples.

3.2 SAMPLING, QUANTIZATION, AND ENCODING
In this section, we provide an abbreviated discussion of the ADC process. This discussion was
condensed from Atmel® AVR Microcontroller Primer Programming and Interfacing. The inter-
ested reader is referred to this text for additional details and examples in Barrett and Pack [1].
We present three important processes associated with the ADC: sampling, quantization, and
encoding.

Sampling. We first start with the subject of sampling. Sampling is the process of taking
“snapshots” of a signal over time. When we sample a signal, we want to sample it in an optimal
fashion such that we can capture the essence of the signal while minimizing the use of resources.
In essence, we want to minimize the number of samples while retaining the capability to faith-
fully reconstruct the original signal from the samples. Intuitively, the rate of change in a signal
determines the number of samples required to faithfully reconstruct the signal, provided that all
adjacent samples are captured with the same sample timing intervals.

Sampling is important since when we want to represent an analog signal in a digital sys-
tem, such as a computer, we must use the appropriate sampling rate to capture the analog signal
for a faithful representation in digital systems. Harry Nyquist from Bell Laboratory studied the
sampling process and derived a criterion that determines the minimum sampling rate for any
continuous analog signal. His, now famous, minimum sampling rate is known as the Nyquist
sampling rate, which states that one must sample a signal at least twice as fast as the highest
frequency content of the signal of interest. For example, if we are dealing with the human voice
signal that contains frequency components that span from about 20 Hz to 4 kHz, the Nyquist
sample theorem requires that we must sample the signal at least at 8 kHz, 8000 “snapshots” every
second. Engineers who work for telephone companies must deal with such issues. For further
study on the Nyquist sampling rate, refer to Pack and Barrett listed in the References section.

When a signal is sampled a low pass anti-aliasing filter must be employed to insure the
Nyquist sampling rate is not violated. In the example above, a low-pass filter with a cutoff fre-
quency of 4 KHz would be used before the sampling circuitry for this purpose.

Quantization. Now that we understand the sampling process, let’s move on to the second
process of the ADC, quantization. Each digital system has a number of bits it uses as the basic
unit to represent data. A bit is the most basic unit where single binary information, one or zero,
is represented. A nibble is made up of four bits put together. A byte is eight bits.
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We have tacitly avoided the discussion of the form of captured signal samples. When

a signal is sampled, digital systems need some means to represent the captured samples. The
quantization of a sampled signal is how the signal is represented as one of the quantization
levels. Suppose you have a single bit to represent an incoming signal. You only have two different
numbers, 0 and 1. You may say that you can distinguish only low from high. Suppose you have
two bits. You can represent four different levels, 00, 01, 10, and 11. What if you have three bits?
You now can represent eight different levels: 000, 001, 010, 011, 100, 101, 110, and 111. Think
of it as follows. When you had two bits, you were able to represent four different levels. If we add
one more bit, that bit can be one or zero, making the total possibilities eight. Similar discussion
can lead us to conclude that given n bits, we have 2n unique numbers or levels one can represent.

Figure 3.1 shows how n bits are used to quantize a range of values. Inmany digital systems,
the incoming signals are voltage signals. The voltage signals are first obtained from physical
signals (pressure, temperature, etc.) with the help of transducers, such as microphones, angle
sensors, and infrared sensors. The voltage signals are then conditioned to map their range with
the input range of a digital system, typically 0–5 volts. In Figure 3.1, n bits allow you to divide the
input signal range of a digital system into 2n different quantization levels. As can be seen from
the figure, the more quantization levels means the better mapping of an incoming signal to its
true value. If we only had a single bit, we can only represent level 0 and level 1. Any analog signal
value in between the range had to be mapped either as level 0 or level 1, not many choices. Now
imagine what happens as we increase the number of bits available for the quantization levels.
What happens when the available number of bits is 8? How many different quantization levels
are available now? Yes, 256. How about 10, 12, or 14? Notice also that as the number of bits used
for the quantization levels increases for a given input range the “distance” between two adjacent
levels decreases accordingly.

Finally, the encoding process involves converting a quantized signal into a digital binary
number. Suppose again we are using eight bits to quantize a sampled analog signal. The quan-
tization levels are determined by the eight bits and each sampled signal is quantized as one of
256 quantization levels. Consider the two sampled signals shown in Figure 3.1. The first sam-
ple is mapped to quantization level 2 and the second one is mapped to quantization level 198.
Note the amount of quantization error introduced for both samples. The quantization error is
inversely proportional to the number of bits used to quantize the signal.

Encoding.Once a sampled signal is quantized, the encoding process involves representing
the quantization level with the available bits. Thus, for the first sample, the encoded sampled
value is 0000_0001, while the encoded sampled value for the second sample is 1100_0110. As
a result of the encoding process, sampled analog signals are now represented as a set of binary
numbers. Thus, the encoding is the last necessary step to represent a sampled analog signal into
its corresponding digital form, shown in Figure 3.1.
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Figure 3.1: Sampling, quantization, and encoding.

3.2.1 RESOLUTION AND DATA RATE
Resolution. Resolution is a measure used to quantize an analog signal. In fact, resolution is
nothing more than the voltage “distance” between two adjacent quantization levels we discussed
earlier. Suppose again we have a range of 5 volts and one bit to represent an analog signal. The
resolution in this case is 2.5 volts, a very poor resolution. You can imagine how your TV screen
will look if you only had only two levels to represent each pixel, black and white. The maximum
error, called the resolution error, is 2.5 volts for the current case, 50% of the total range of the
input signal. Suppose you now have four bits to represent quantization levels. The resolution
now becomes 1.25 volts or 25% of the input range. Suppose you have 20 bits for quantization
levels. The resolution now becomes 4:77 � 10�6 volts, 9:54 � 10�5% of the total range.

The discussion we presented simply illustrates that as we increase the available number of
quantization levels within a fixed voltage range, the distance between adjacent levels decreases,
reducing the quantization error of a sampled signal. As the number grows, the error decreases,
making the representation of a sampled analog signal more accurate in the corresponding digital
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form. The number of bits used for the quantization is directly proportional to the resolution of a
system. You now should understand the technical background when you watch high definition
television broadcasting. In general, resolution may be defined as:

resolution D .voltage span/=2b
D .Vref high � Vref low/=2b

for the ATmega328, the resolution is:

resolution D .5 � 0/=210
D 4:88 mV:

Data rate. The definition of the data rate is the amount of data generated by a system
per some time unit. Typically, the number of bits or the number of bytes per second is used as
the data rate of a system. We just saw that the more bits we use for the quantization levels, the
more accurate we can represent a sampled analog signal. Why not use the maximum number
of bits current technologies can offer for all digital systems, when we convert analog signals to
digital counterparts? It has to do with the cost involved. In particular, suppose you are working
for a telephone company and your switching system must accommodate 100,000 customers.
For each individual phone conversation, suppose the company uses an 8 KHz sampling rate (fs)
and you are using 10 bits for the quantization levels for each sampled signal.2 This means the
voice conversation will be sampled every 125 �s (Ts) due to the reciprocal relationship between
(fs) and (Ts). If all customers are making out of town calls, what is the number of bits your
switching system must process to accommodate all calls? The answer will be 100,000 � 8000 �

10 or eight billion bits per every second! You will need some major computing power to meet
the requirement for processing and storage of the data. For such reasons, when designers make
decisions on the number of bits used for the quantization levels and the sampling rate, they must
consider the computational burden the selection will produce on the computational capabilities
of a digital system vs. the required system resolution.

Dynamic range. You will also encounter the term “dynamic range” when you consider
finding appropriate ADCs. The dynamic range is a measure used to describe the signal to noise
ratio. The unit used for the measurement is Decibel (dB), which is the strength of a signal with
respect to a reference signal. The greater the dB number, the stronger the signal is compared to a
noise signal. The definition of the dynamic range is 20 log 2b where b is the number of bits used
to convert analog signals to digital signals. Typically, you will find 8–12 bits used in commercial
analog-to-digital converters, translating the dynamic range from 20 log 28 dB to 20 log 212

dB.

2For the sake of our discussion, we ignore other overheads involved in processing a phone call such as multiplexing,
de-multiplexing, and serial-to-parallel conversion.



58 3. ANALOG TO DIGITAL CONVERSION (ADC)

3.3 ANALOG-TO-DIGITAL CONVERSION (ADC)
PROCESS

The goal of the ADC process is to accurately represent analog signals as digital signals. Toward
this end, three signal processing procedures, sampling, quantization, and encoding, described
in the previous section must be combined together. Before the ADC process takes place, we
first need to convert a physical signal into an electrical signal with the help of a transducer. A
transducer is an electrical and/or mechanical system that converts physical signals into electri-
cal signals or electrical signals to physical signals. Depending on the purpose, we categorize a
transducer as an input transducer or an output transducer. If the conversion is from physical to
electrical, we call it an input transducer. The mouse, the keyboard, and the microphone for your
personal computer all fall under this category. A camera, an infrared sensor, and a temperature
sensor are also input transducers. The output transducer converts electrical signals to physical
signals. The computer screen and the printer for your computer are output transducers. Speakers
and electrical motors are also output transducers. Therefore, transducers play the central part for
digital systems to operate in our physical world by transforming physical signals to and from
electrical signals. It is important to carefully design the interface between transducers and the
microcontroller to insure proper operation. A poorly designed interface could result in improper
embedded system operation or failure. Specific input and output transducer interface techniques
are discussed in Arduino I: Getting Started.

3.3.1 TRANSDUCER INTERFACE DESIGN (TID) CIRCUIT
In addition to transducers, we also need a signal conditioning circuitry before we apply the
ADC. The signal conditioning circuitry is called the transducer interface. The objective of the
transducer interface circuit is to scale and shift the electrical signal range to map the output of
the input transducer to the input range of the analog-to-digital converter which is typically 0–5
VDC. Figure 3.2 shows the transducer interface circuit using an input transducer. This process
assumes a linear input transducer.

The output of the input transducer is first scaled by constant K. As an example, in the
figure, we use a microphone as the input transducer whose output ranges from �5 to C5 VDC.
The input to the analog-to-digital converter ranges from 0–5 VDC. The scalar multiplier with
constant K maps the output range of the input transducer to the input range of the converter.
Naturally, we need to multiply all input signals by 1=2 to accommodate the mapping.

Once the range has been mapped, the signal now needs to be shifted. Note that the scale
factor maps the output range of the input transducer as �2:5 VDC to C2:5 VDC instead of 0–5
VDC. The second portion of the circuit, the bias stage, shifts the range by 2.5 VDC, thereby
completing the correct mapping. Actual implementation of the TID circuit components is ac-
complished using operational amplifiers.

In general, the scaling and bias process may be described by two equations:
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Xmin
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V1min
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V2min
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Input Transducer ADC Input

Scalar
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(Bias)

Figure 3.2: A block diagram of the signal conditioning for an analog-to-digital converter. The
range of the sensor voltage output is mapped to the analog-to-digital converter input voltage
range. The scalar multiplier maps the magnitudes of the two ranges and the bias voltage is used
to align two limits.

V2 max D .V1 max � K/ C B

V2 min D .V1 min � K/ C B:

The variable V1 max represents the maximum output voltage from the input transducer.
This voltage occurs when the maximum physical variable (Xmax) is presented to the input trans-
ducer. This voltage must be scaled by the scalar multiplier .K/ and then have a DC offset bias
voltage .B/ added to provide the voltage V2 max to the input of the ADC converter [USAFA].

Similarly, the variable V1 min represents the minimum output voltage from the input trans-
ducer. This voltage occurs when the minimum physical variable (Xmin) is presented to the input
transducer. This voltage must be scaled by the scalar multiplier .K/ and then have a DC offset
bias voltage .B/ added to produce voltage V2 min to the input of the ADC converter.

Usually, the values of V1 max and V1 min are provided with the documentation for the trans-
ducer. Also, the values of V2 max and V2 min are known. They are the high and low reference
voltages for the ADC system (usually 5 VDC and 0 VDC for a microcontroller). We thus have
two equations and two unknowns to solve for K and B . The circuits to scale by K and add the
offset B are usually implemented with operational amplifiers.

Example: A photodiode is a semiconductor device that provides an output current
corresponding to the light impinging on its active surface. The photodiode is used with a
transimpedance amplifier to convert the output current to an output voltage. A photodi-
ode/transimpedance amplifier provides an output voltage of 0 volts for maximum rated light
intensity and �2:50 VDC output voltage for the minimum rated light intensity. Calculate the



60 3. ANALOG TO DIGITAL CONVERSION (ADC)
required values of K and B for this light transducer so it may be interfaced to a microcontroller’s
ADC system.

V2 max D .V1 max � K/ C B

V2 min D .V1 min � K/ C B

5:0 V D .0 V � K/ C B

0 V D .�2:50 V � K/ C B:

The values of K and B may then be determined to be 2 and 5 VDC, respectively.

3.3.2 OPERATIONAL AMPLIFIERS
In the previous section, we discussed the transducer interface design (TID) process. Going
through this design process yields a required value of gain .K/ and DC bias .B/. Operational
amplifiers (op amps) are typically used to implement a TID interface. In this section, we briefly
introduce operational amplifiers including ideal op amp characteristics, classic op amp circuit
configurations, and an example to illustrate how to implement a TID with op amps. Op amps
are also used in a wide variety of other applications including analog computing, analog filter
design, and a myriad of other applications. We do not have the space to investigate all of these
related applications. The interested reader is referred to the References section at the end of the
chapter for pointers to some excellent texts on this topic.

3.3.2.1 The Ideal Operational Amplifier
A generic ideal operational amplifier is illustrated in Figure 3.3. An ideal operational does not
exist in the real world. However, it is a good first approximation for use in developing op amp
application circuits.

The op amp is an active device (requires power supplies) equipped with two inputs: a
single output and several voltage source inputs. The two inputs are labeled Vp, or the non-
inverting input, and Vn, the inverting input. The output of the op amp is determined by taking
the difference between Vp and Vn and multiplying the difference by the open-loop gain (Avol) of
the op amp which is typically a large value much greater than 50,000. Due to the large value of
Avol, it does not take much of a difference between Vp and Vn before the op amp will saturate.
When an op amp saturates, it does not damage the op amp but the output is limited to the
supply voltages ˙Vcc. This will clip the output, and hence distort the signal, at levels slightly
less than ˙Vcc. Op amps are typically used in a closed-loop, negative-feedback configuration.
A sample of classic operational amplifier configurations with negative feedback are provided in
Figure 3.4 (Faulkenberry [7]).
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Figure 3.3: Ideal operational amplifier characteristics.

It should be emphasized that the equations provided with each operational amplifier cir-
cuit are only valid if the circuit configurations are identical to those shown. Even a slight variation
in the circuit configuration may have a dramatic effect on circuit operation. It is important to
analyze each operational amplifier circuit using the following steps.

• Write the node equation at Vn for the circuit.

• Apply ideal op amp characteristics to the node equation.

• Solve the node equation for Vo.

As an example, we provide the analysis of the non-inverting amplifier circuit in Figure 3.5.
This same analysis technique may be applied to all of the circuits in Figure 3.4 to arrive at the
equations for Vout provided.

Example: In the previous section, it was determined that the values of K and B were 2
and 5 VDC, respectively. The two-stage op amp circuitry provided in Figure 3.6 implements
these values of K and B . The first stage provides an amplification of �2 due to the use of the
inverting amplifier configuration. In the second stage, a summing amplifier is used to add the
output of the first stage with a bias of � 5 VDC. Since this stage also introduces a minus sign
to the result, the overall result of a gain of 2 and a bias of C5 VDC is achieved.

3.4 ADC CONVERSION TECHNOLOGIES
The ATmega328 uses a successive-approximation converter technique to convert an analog sam-
ple into a 10-bit digital representation. In this section, we will discuss this type of conversion
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Figure 3.4: Classic operational amplifier configurations. Adapted from Faulkenberry [7].
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Node Equation at Vn:

(Vn - Vin)/ Ri  + (Vn - Vout)/Rf  +  In  = 0

Apply Ideal Conditions:

In = Ip = 0

Vn = Vp = 0  (since Vp is grounded)

Solve Node Equation for Vout:
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Figure 3.5: Operational amplifier analysis for the non-inverting amplifier. Adapted from
Faulkenberry [7].
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Figure 3.6: Operational amplifier implementation of the transducer interface design (TID) ex-
ample circuit.
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Figure 3.7: Successive-approximation ADC.

process. For a review of other converter techniques, the interested reader is referred to “Atmel®
AVR Microcontroller Primer: Programming and Interfacing.” In certain applications, you are
required to use converter technologies external to the microcontroller.

The successive-approximation technique uses a DAC, a controller, and a comparator to
perform the ADC process. Starting from the most significant bit down to the least significant
bit, the controller turns on each bit at a time and generates an analog signal, with the help
of the DAC, to be compared with the original input analog signal. Based on the result of the
comparison, the controller changes or leaves the current bit and turns on the nextmost significant
bit. The process continues until decisions are made for all available bits. Figure 3.7 shows the
architecture of this type of converter. The advantage of this technique is that the conversion time
is uniform for any input, but the disadvantage of the technology is the use of complex hardware
for implementation.
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3.5 THE MICROCHIP ATMEGA328 ADC SYSTEM
The Microchip ATmega328 microcontroller is equipped with a flexible and powerful ADC sys-
tem. It has the following features (Microchip [2]):

• 10-bit resolution,

• ˙2 least significant bit (LSB) absolute accuracy,

• 13 ADC clock cycle conversion time,

• six multiplexed, single-ended, input channels,

• selectable right or left result justification, and

• 0 to Vcc ADC input voltage range.

Let’s discuss each feature in turn. The first feature of discussion is “10-bit resolution.”
Resolution is defined as:

Resolution D .VRH � VRL/=2b:

VRH and VRL are the ADC high- and low-reference voltages, whereas “b” is the number
of bits available for conversion. For the ATmega processor with reference voltages of 5 VDC, 0
VDC, and 10-bits available for conversion, resolution is 4.88 mV. Absolute accuracy specified
as ˙2 LSB is then ˙9.76 mV at this resolution [Microchip [2]].

It requires 13 analog-to-digital clock cycles to perform an ADC conversion. The ADC
system may be run at a slower clock frequency than the main microcontroller clock source. The
main microcontroller clock is divided down using the ADC Prescaler Select (ADPS[2:0]) bits in
the ADC Control and Status Register A (ADCSRA). A slower ADC clock results in improved
ADC accuracy at higher controller clock speeds.

The ADC is equipped with a single successive-approximation converter. Only a single
ADC channel may be converted at a given time. The input of the ADC is equipped with a mul-
tiple input analog multiplexer. The analog input for conversion is selected using the MUX[3:0]
bits in the ADC Multiplexer Selection Register (ADMUX).

The 10-bit result from the conversion process is placed in the ADC Data Registers,
ADCH and ADCL. These two registers provide 16 bits for the 10-bit result. The result may
be left justified by setting the ADLAR (ADC Left Adjust Result) bit of the ADMUX register.
Right justification is provided by clearing this bit.

The analog input voltage for conversion must be between 0 and Vcc volts. If this is not the
case, external circuitry must be used to insure the analog input voltage is within these prescribed
bounds, as discussed earlier in the chapter.
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3.5.1 BLOCK DIAGRAM
The block diagram for the ATmega328 ADC conversion system is provided in Figure 3.8. The
left edge of the diagram provides the external microcontroller pins to gain access to the ADC.
For the ATmega328, the six analog input channels are provided at pins ADC[5:0]. The ADC
reference voltage pins are provided at AREF and AVCC. The key features and registers of the
ADC system previously discussed are included in the diagram.

3.5.2 ATMEGA328 ADC REGISTERS
The key registers for the ATmega328 ADC system are shown in Figure 3.9. It must be em-
phasized that the ADC system has many advanced capabilities that we do not discuss here.
Our goal is to review the basic ADC conversion features of this powerful system. We have
already discussed many of the register setting already. We will discuss each register in turn
[www.microchip.com].

3.5.2.1 ATmega328 ADC Multiplexer Selection Register (ADMUX)
As previously discussed, the ADMUX register contains the ADLAR bit to select left or right
justification and the MUX[3:0] bits to determine which analog input will be provided to the
ADC for conversion. To select a specific input for conversion is accomplished when a binary
equivalent value is loaded into the MUX[3:0] bits. For example, to convert channel ADC7,
“0111” is loaded into the ADMUX register. This may be accomplished using the following C
instruction:

ADMUX = 0x07;

The REFS[1:0] bits of the ADMUX register are also used to determine the reference
voltage source for the ADC system. These bits may be set to the following values:

• REFS[0:0] = 00: AREF used for ADC voltage reference

• REFS[0:1] = 01: AVCC with external capacitor at the AREF pin

• REFS[1:0] = 10: Reserved

• REFS[1:1] = 11: Internal 1.1 VDC voltage reference with an external capacitor at the
AREF pin

3.5.2.2 ATmega328 ADC Control and Status Register A (ADCSRA)
The ADCSRA register contains the ADC Enable (ADEN) bit. This bit is the “on/off ” switch
for the ADC system. The ADC is turned on by setting this bit to a logic one. The ADC Start
Conversion (ADSC) bit is also contained in the ADCSRA register. Setting this bit to logic one
initiates an ADC. The ADCSRA register also contains the ADC Interrupt flag (ADIF) bit.

www.microchip.com
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Figure 3.9: ATmega328 ADC Registers. Adapted from Microchip [www.microchip.com].

This bit sets to logic one when the ADC is complete. The ADIF bit is reset by writing a logic
one to this bit.

The ADC Prescaler Select (ADPS[2:0]) bits are used to set the ADC clock frequency.
The ADC clock is derived from dividing down the main microcontroller clock. The ADPS[2:0]
may be set to the following values:

• ADPS[2:0] = 000: division factor 2

• ADPS[2:0] = 001: division factor 2

• ADPS[2:0] = 010: division factor 4

• ADPS[2:0] = 011: division factor 8

• ADPS[2:0] = 100: division factor 16

• ADPS[2:0] = 101: division factor 32

www.microchip.com
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• ADPS[2:0] = 110: division factor 64

• ADPS[2:0] = 111: division factor 128

3.5.2.3 ATmega328 ADC Data Registers (ADCH, ADCL)
As previously discussed, the ADC Data Register contains the result of the ADC. The results
may be left (ADLAR=1) or right (ADLAR=0) justified.

3.6 PROGRAMMING THE ADC USING THE ARDUINO
DEVELOPMENT ENVIRONMENT

The ADE has the built-in function analogRead to perform an ADC conversion. The format for
the analogRead function is:

unsigned int return_value;

return_value = analogRead(analog_pin_read);

The function returns an unsigned integer value from 0–1023, corresponding to the voltage
span from 0–5 VDC.

3.7 PROGRAMMING THE ADC IN C
Provided below are two functions to operate the ATmega328 ADC system. The first function
“InitADC( )” initializes the ADC by first performing a dummy conversion on channel 0. In this
particular example, the ADC prescalar is set to 8 (the main microcontroller clock was operating
at 10 MHz).

The function then enters a while loop waiting for the ADIF bit to set indicating the
conversion is complete. After conversion the ADIF bit is reset by writing a logic one to it.

The second function, “ReadADC(unsigned char),” is used to read the analog voltage from
the specified ADC channel. The desired channel for conversion is passed in as an unsigned char-
acter variable. The result is returned as a left justified, 10-bit binary result. The ADC prescalar
must be set to 8 to slow down the ADC clock at higher external clock frequencies (>10 MHz)
to obtain accurate results. After the ADC is complete, the results in the eight bit ADCL and
ADCH result registers are concatenated into a 16-bit unsigned integer variable and returned to
the function call.

//*****************************************************************
//InitADC: initialize analog-to-digital converter
//*****************************************************************



70 3. ANALOG TO DIGITAL CONVERSION (ADC)
void InitADC( void)
{
ADMUX = 0; //Select channel 0
ADCSRA = 0xC3; //Enable ADC & start 1st dummy

//conversion
//Set ADC module prescalar to 8
//critical for accurate ADC

while (!(ADCSRA & 0x10)); //Check if conversation ready
ADCSRA |= 0x10; //Clear conv rdy flag - set bit
}

//****************************************************************
//ReadADC: read analog voltage from analog-to-digital converter -
//the desired channel for conversion is passed in as an unsigned
//character variable.
//The result is returned as a right justified, 10 bit binary
//result. The ADC prescalar must be set to 8 to slow down the ADC
//clock at higher external clock frequencies (10 MHz) to obtain
//accurate results.
//****************************************************************

unsigned int ReadADC(unsigned char channel)
{
unsigned int binary_weighted_voltage, binary_weighted_voltage_low;

//weighted binary voltage
unsigned int binary_weighted_voltage_high;

ADMUX = channel; //Select channel
ADCSRA |= 0x43; //Start conversion

//Set ADC module prescalar to 8
//critical for accurate ADC

while (!(ADCSRA & 0x10)); //Check if conversion is ready
ADCSRA |= 0x10; //Clear Conv rdy flag - set bit
binary_weighted_voltage_low = ADCL; //Read 8 low bits 1st(important)

//Read 2 high bits,
//multiply by 256

binary_weighted_voltage_high = ((unsigned int)(ADCH << 8));
binary_weighted_voltage = binary_weighted_voltage_low |

binary_weighted_voltage_high;
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return binary_weighted_voltage; //ADCH:ADCL
}

//****************************************************************

3.8 EXAMPLE: ADC RAIN GAGE INDICATOR WITH THE
ARDUINO UNO R3

In this example, we construct a rain gage-type level display using small light-emitting diodes.
The rain gage indicator consists of a panel of eight light-emitting diodes. The gage may be
constructed from individual diodes or from an LED bar containing eight elements. Whichever
style is chosen, the interface requirements between the processor and the LEDs are the same.

The requirement for this project is to use the ADC to illuminate up to eight LEDs based
on the input voltage. A 10-K Ohm trimmer potentiometer is connected to the ADC channel to
vary the input voltage. We first provide a solution using the ADE with the Arduino UNO R3
processing board. Then a solution employing the ATmega328 programmed in C is provided.

3.8.1 ADC RAIN GAGE INDICATOR USING THE ARDUINO
DEVELOPMENT ENVIRONMENT

The circuit configuration employing the Arduino UNO R3 processing board is provided in Fig-
ure 3.10. The DIGITAL pins of the microcontroller are used to communicate with the LED
interface circuit. The operation of the LED interface circuit is provided in Arduino I: Getting
Started.

The sketch to implement the project requirements is provided below. As in previous ex-
amples, we define the Arduino UNO R3 pins, set them for output via the setup() function, and
write the loop() function. In this example, the loop() function senses the voltage from the 10-K
trimmer potentiometer and illuminates a series of LEDs corresponding to the sensed voltage
levels.

//****************************************************************
#define trim_pot A0 //analog input pin

//digital output pins
//LED indicators 0 - 7

#define LED0 0 //digital pin
#define LED1 1 //digital pin
#define LED2 2 //digital pin
#define LED3 3 //digital pin
#define LED4 4 //digital pin
#define LED5 5 //digital pin
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#define LED6 6 //digital pin
#define LED7 7 //digital pin

int trim_pot_reading; //declare variable for trim pot

void setup()
{
pinMode(LED0, OUTPUT); //config pin 0 for digital out
pinMode(LED1, OUTPUT); //config pin 1 for digital out
pinMode(LED2, OUTPUT); //config pin 2 for digital out
pinMode(LED3, OUTPUT); //config pin 3 for digital out
pinMode(LED4, OUTPUT); //config pin 4 for digital out
pinMode(LED5, OUTPUT); //config pin 5 for digital out
pinMode(LED6, OUTPUT); //config pin 6 for digital out
pinMode(LED7, OUTPUT); //config pin 7 for digital out
}

void loop()
{

//read analog out from trim pot
trim_pot_reading = analogRead(trim_pot);

if(trim_pot_reading < 128)
{
digitalWrite(LED0, HIGH); digitalWrite(LED1, LOW);
digitalWrite(LED2, LOW); digitalWrite(LED3, LOW);
digitalWrite(LED4, LOW); digitalWrite(LED5, LOW);
digitalWrite(LED6, LOW); digitalWrite(LED7, LOW);
}

else if(trim_pot_reading < 256)
{
digitalWrite(LED0, HIGH); digitalWrite(LED1, HIGH);
digitalWrite(LED2, LOW); digitalWrite(LED3, LOW);
digitalWrite(LED4, LOW); digitalWrite(LED5, LOW);
digitalWrite(LED6, LOW); digitalWrite(LED7, LOW);
}

else if(trim_pot_reading < 384)
{
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digitalWrite(LED0, HIGH); digitalWrite(LED1, HIGH);
digitalWrite(LED2, HIGH); digitalWrite(LED3, LOW);
digitalWrite(LED4, LOW); digitalWrite(LED5, LOW);
digitalWrite(LED6, LOW); digitalWrite(LED7, LOW);
}

else if(trim_pot_reading < 512)
{
digitalWrite(LED0, HIGH); digitalWrite(LED1, HIGH);
digitalWrite(LED2, HIGH); digitalWrite(LED3, HIGH);
digitalWrite(LED4, LOW); digitalWrite(LED5, LOW);
digitalWrite(LED6, LOW); digitalWrite(LED7, LOW);
}

else if(trim_pot_reading < 640)
{
digitalWrite(LED0, HIGH); digitalWrite(LED1, HIGH);
digitalWrite(LED2, HIGH); digitalWrite(LED3, HIGH);
digitalWrite(LED4, HIGH); digitalWrite(LED5, LOW);
digitalWrite(LED6, LOW); digitalWrite(LED7, LOW);
}

else if(trim_pot_reading < 768)
{
digitalWrite(LED0, HIGH); digitalWrite(LED1, HIGH);
digitalWrite(LED2, HIGH); digitalWrite(LED3, HIGH);
digitalWrite(LED4, HIGH); digitalWrite(LED5, HIGH);
digitalWrite(LED6, LOW); digitalWrite(LED7, LOW);

}
else if(trim_pot_reading < 896)

{
digitalWrite(LED0, HIGH); digitalWrite(LED1, HIGH);
digitalWrite(LED2, HIGH); digitalWrite(LED3, HIGH);
digitalWrite(LED4, HIGH); digitalWrite(LED5, HIGH);
digitalWrite(LED6, HIGH); digitalWrite(LED7, LOW);

}
else

{
digitalWrite(LED0, HIGH); digitalWrite(LED1, HIGH);
digitalWrite(LED2, HIGH); digitalWrite(LED3, HIGH);
digitalWrite(LED4, HIGH); digitalWrite(LED5, HIGH);
digitalWrite(LED6, HIGH); digitalWrite(LED7, HIGH);
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}

delay(500); //delay 500 ms
}

//****************************************************************

3.8.2 ADC RAIN GAGE INDICATOR IN C
We now implement the rain gage indicator with the control algorithm (sketch) programmed
in C for the ATmega328. The circuit configuration employing the ATmega328 is provided in
Figure 3.11. PORT D of the microcontroller is used to communicate with the LED interface
circuit. The LED interface circuit is described in Arduino I: Getting Started. In this example, we
extend the requirements of the project.

• Write a function to display an incrementing binary count from 0–255 on the LEDs.

• Write a function to display a decrementing binary count from 255–0 on the LEDs.

• Use the ADC to illuminate up to eight LEDs based on the input voltage. A 10-K
trimmer potentiometer is connected to the ADC channel to vary the input voltage.

The project algorithm was written by Anthony (Tony) Kunkel, MSEE and Geoff Luke,
Ph.D., at the University of Wyoming for an Industrial Controls class assignment. A 30-ms delay
is provided between PORTD LED display updates. This prevents the display from looking as
a series of LEDs that are always illuminated.

Note: The delay function provided in this example is not very accurate. It is based on
counting the number of assembly language no operation (NOPs). If a single NOP requires a
single clock cycle to execute. A rough (and inaccurate) estimation of expended time may be
calculated. The actual delay depends on the specific resolution of clock source used with the
microcontroller, the clock frequency of the clock source and the specific compiler used to im-
plement the code. In this specific example an accurate delay is not required since we are simply
trying to slow down the code execution time so the LED changes may be observed. In the
next chapter we provide a more accurate method of providing a time delay based on counting
interrupts.

//*****************************************************************
//Tony Kunkel and Geoff Luke
//University of Wyoming
//*****************************************************************
//This program calls four functions:
//First: Display an incrementing binary count on PORTD from 0-255
//Second: Display a decrementing count on PORTD from 255-0
//Third: Display rain gauge info on PORTD
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//Fourth: Delay whenever PORTD is updated
//*****************************************************************

//MICROCHIP register definitions for ATmega328
#include<iom328pv.h>

//function prototypes
void display_increment(void); //func displays increment to PORTD
void display_decrement(void); //func displays decrement to PORTD
void rain_gage(void)
void InitADC(void); //initialize ADC converter
unsigned int ReadADC(); //read specified ADC channel
void delay(void); //function to delay

//*****************************************************************

int main(void)
{
display_increment(); //display incrementing binary on

//PORTD from 0-255
delay(); //delay
display_decrement(); //display decrementing binary on

//PORTD from 255-0
delay(); //delay
InitADC();

while(1)
{
rain_gage(); //display gage info on PORTD
delay(); //delay
}

return 0;
}

//*****************************************************************
//function definitions
//*****************************************************************
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//delay
//Note: The delay function provided in this example is not very
//accurate. It is based on counting the number of assembly language
//no operation (NOPs). If a single NOP requires a single clock cycle
//to execute. A rough (and inaccurate) estimation of expended time
//may be calculated. The actual delay depends on the specific
//resolution of clock source used with the microcontroller, the
//clock frequency of the clock source and the specific compiler used
//to implement the code. In this specific example an accurate delay
//is not required since we are simply trying to slow down the code
//execution time so the LED changes may be observed.
//*****************************************************************

void delay(void)
{
int i, k;

for(i=0; i<400; i++)
{
for(k=0; k<300; k++)

{
asm("nop"); //assembly nop, requires 2 cycles
}

}
}

//*****************************************************************
//Displays incrementing binary count from 0 to 255
//*****************************************************************

void display_increment(void)
{
int i;
unsigned char j = 0x00;

DDRD = 0xFF; //set PORTD to output

for(i=0; i<255; i++)
{
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j++; //increment j
PORTD = j; //assign j to data port
delay(); //wait
}

}

//*****************************************************************
//Displays decrementing binary count from 255 to 0
//*****************************************************************

void display_decrement(void)
{
int i;
unsigned char j = 0xFF;

DDRD = 0xFF; //set PORTD to output

for(i=0; i<256; i++)
{
j=(j-0x01); //decrement j by one
PORTD = j; //assign char j to data port
delay(); //wait
}

}

//*****************************************************************
//Initializes ADC
//*****************************************************************

void InitADC(void)
{
ADMUX = 0; //Select channel 0
ADCSRA = 0xC3; //Enable ADC & start dummy conversion

//Set ADC module prescalar
//to 8 critical for
//accurate ADC results

while (!(ADCSRA & 0x10)); //Check if conversation is ready
ADCSRA |= 0x10; //Clear conv rdy flag - set the bit
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}

//*****************************************************************
//ReadADC: read analog voltage from analog-to-digital converter -
//the desired channel for conversion is passed in as an unsigned
//character variable. The result is returned as a right justified,
//10 bit binary result. The ADC prescalar must be set to 8 to slow
//down the ADC clock at higher external clock frequencies (10 MHz)
//to obtain accurate results.
//*****************************************************************

unsigned int ReadADC(unsigned char channel)
{
unsigned int binary_weighted_voltage, binary_weighted_voltage_low;
unsigned int binary_weighted_voltage_high; //weighted binary voltage

ADMUX = channel; //Select channel
ADCSRA |= 0x43; //Start conversion

//Set ADC module prescalar
//to 8 critical for
//accurate ADC results

while (!(ADCSRA & 0x10)); //Check if conversion is ready
ADCSRA |= 0x10; //Clear Conv rdy flag - set bit
binary_weighted_voltage_low = ADCL; //Read low bits first-important

//Read 2 high bits,
//multiply by 256

binary_weighted_voltage_high = ((unsigned int)(ADCH << 8));
binary_weighted_voltage = binary_weighted_voltage_low |

binary_weighted_voltage_high;
return binary_weighted_voltage; //ADCH:ADCL
}

//*****************************************************************
//Displays voltage magnitude as LED level on PORTB
//*****************************************************************

void rain_gage(void)
{
unsigned int ADCValue;
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ADCValue = readADC(0x00);
DDRD = 0xFF; //set PORTD to output

if(ADCValue < 128)
{
PORTD = 0x01; //illuminate LED at PORTD[0]
}

else if(ADCValue < 256)
{
PORTD = 0x03; //illuminate LED at PORTD[1:0]
}

else if(ADCValue < 384)
{
PORTD = 0x07; //illuminate LED at PORTD[2:0]
}

else if(ADCValue < 512)
{
PORTD = 0x0F; //illuminate LED at PORTD[3:0]
}

else if(ADCValue < 640)
{
PORTD = 0x1F; //illuminate LED at PORTD[4:0]

}
else if(ADCValue < 768)

{
PORTD = 0x3F; //illuminate LED at PORTD[5:0]
}

else if(ADCValue < 896)
{
PORTD = 0x7F; //illuminate LED at PORTD[6:0]
}

else
{
PORTD = 0xFF; //illuminate LED at PORTD[7:0]
}

}

//*****************************************************************
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Example: In Chapter 7 an ADC voltmeter example is provided. In the example, ADC

readings are provided to an LCD digit-by-digit for display.

3.9 ONE-BIT ADC – THRESHOLD DETECTOR
A threshold detector circuit or comparator configuration contains an operational amplifier em-
ployed in the open-loop configuration. That is, no feedback is provided from the output back to
the input to limit gain. A threshold level is applied to one input of the op amp. This serves as
a comparison reference for the signal applied to the other input. The two inputs are constantly
compared to one another. When the input signal is greater than the set threshold value, the op
amp will saturate to a value slightly less than CVcc, as shown in Figure 3.12a. When the input
signal falls below the threshold the op amp will saturate at a voltage slightly greater than Vcc. If
a single-sided op amp is used in the circuit (e.g., LM324), the Vcc supply pin may be connected
to ground. In this configuration, the op map provides for a one-bit ADC circuit.

A bank of threshold detectorsmay be used to construct amulti-channel threshold detector,
as shown in Figure 3.12c. This provides a flash converter type ADC. It is a hardware version
of a rain gage indicator. A 14-channel version for use in a laboratory instrumentation project is
provided in Barrett and Sundberg [10].

3.10 DIGITAL-TO-ANALOG CONVERSION (DAC)
Once a signal is acquired to a digital system with the help of the ADC process and has been
processed, frequently the processed signal is converted back to another analog signal. A simple
example of such a conversion occurs in digital audio processing. Human voice is converted to a
digital signal, modified, processed, and converted back to an analog signal for people to hear. The
process to convert digital signals to analog signals is completed by a digital-to-analog converter.
The most commonly used technique to convert digital signals to analog signals is the summation
method shown in Figure 3.13.

With the summation method of DAC, a digital signal, represented by a set of ones and
zeros, enters the DAC from the most significant bit to the least significant bit. For each bit, a
comparator checks its logic state, high or low, to produce a clean digital bit, represented by a
voltage level. Typically, in a microcontroller context, the voltage level is C5 or 0 volts to represent
logic one or logic zero, respectively. The voltage is then multiplied by a scalar value based on its
significant position of the digital signal, as shown in Figure 3.13. Once all bits for the signal
have been processed, the resulting voltage levels are summed together to produce the final analog
voltage value. Notice that the production of a desired analog signal may involve further signal
conditioning such as a low-pass filter to “smooth” the quantized analog signal and a transducer
interface circuit to match the output of the DAC to the input of an output transducer.
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Figure 3.13: A summation method to convert a digital signal into a quantized analog signal.
Comparators are used to clean up incoming signals and the resulting values are multiplied by a
scalar multiplier and the results are added to generate the output signal. For the final analog sig-
nal, the quantized analog signal should be connected to a low-pass filter followed by a transducer
interface circuit.

3.10.1 DAC WITH THE ARDUINO DEVELOPMENT ENVIRONMENT
TheanalogWrite commandwithin theADE issues a signal from 0–5VDCby sending a constant
from 0–255 using PWM techniques. This signal, when properly filtered, serves as a DC signal.

The form of the analogWrite command is the following:
analogWrite(output pin, value);

3.10.2 DAC WITH EXTERNAL CONVERTERS
A microcontroller can be equipped with a wide variety of DAC configurations including:
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• single-channel, 8-bit DAC connected via a parallel port (e.g., Motorola MC1408P8,

Texas Instruments DAC0808);

• quad channel, 8-bit DAC connected via a parallel port (e.g., AnalogDevices AD7305);

• quad channel, 8-bit DAC connected via the SPI (e.g., Analog Devices AD7304); and

• octal channel, 8-bit DAC connected via the SPI (e.g., Texas Instrument TLC5628).

Space does not allow an in depth look at each configuration. A detailed DAC example is
provided in Barrett and Sundberg [10]. In this example an external DAC0808 with supporting
op amp circuitry is used to generate a ramp signal for a biomedical application. In Chapter 5 a
DAC0808 is used in an industrial encoder application.

3.11 SUMMARY
In this chapter, we presented the differences between analog and digital signals and used this
knowledge to discuss three sub-processing steps involved in ADC: sampling, quantization, and
encoding. We also presented the quantization errors and the data rate associated with the ADC
process. The dynamic range of an ADC, one of the measures to describe a conversion process,
was also presented. We then presented the successive-approximation converter. Transducer in-
terface design concepts were then discussed along with supporting information on operational
amplifier configurations. We then reviewed the operation, registers, and actions required to pro-
gram the ADC system aboard the ATmega328. We concluded the chapter with a discussion of
the DAC process.
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3.13 CHAPTER PROBLEMS
1. Given a sinusoid with 500Hz frequency, what should be theminimum sampling frequency

for an analog-to-digital converter, if we want to faithfully reconstruct the analog signal
after the conversion?

2. If 12 bits are used to quantize a sampled signal, what is the number of available quantized
levels? What will be the resolution of such a system if the input range of the analog-to-
digital converter is 10V?

3. Given the 12-V input range of an analog-to-digital converter and the desired resolution
of 0.125 V, what should be the minimum number of bits used for the conversion?

4. Investigate the analog-to-digital converters in your audio system. Find the sampling rate,
quantization bits, and technique used for the conversion.

5. A flex sensor provides 10 K ohm of resistance for 0ı flexure and 40 K ohm of resistance
for 90ı of flexure. Design a circuit to convert the resistance change to a voltage change
(Hint: consider a voltage divider). Then design a transducer interface circuit to convert the
output from the flex sensor circuit to voltages suitable for the ATmega328 ADC system.

6. If an analog signal is converted by an analog-to-digital converter to a binary representation
and then back to an analog voltage using a DAC, will the original analog input voltage be
the same as the resulting analog output voltage? Explain.

7. Derive each of the characteristic equations for the classic operation amplifier configura-
tions provided in Figure 3.4.
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8. If a resistor was connected between the non-inverting terminal and ground in the inverting

amplifier configuration of Figure 3.4a, how would the characteristic equation change?

9. A photodiode provides a current proportional to the light impinging on its active area.
What classic operational amplifier configuration should be used to current the diode out-
put to a voltage?

10. Does the time to convert an analog input signal to a digital representation vary in a
successive-approximation converter relative to the magnitude of the input signal? Explain.

11. Is an analog-to-digital converter with a better (smaller value of resolution) generally a
better choice than others with a poorer resolution?

12. Research the different types of external digital-to-analog converters available for the AT-
mega328. Prepare a summary table.

13. Describe in detail how the ATmega328 may be quipped with a multi-channel external
digital-to-analog converter.

14. A sinusoidal signal is generated with an external digital-to-analog converter. The signal’s
peak-to-peak value is 3 V with an average value of 1.5 V. Design a circuit to convert the
signal to 5 V peak-to-peak with an average value of 0 V.

15. Repeat the question above but interchange the values of the desired input and output
signals.
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C H A P T E R 4

Timing Subsystem
Objectives: After reading this chapter, the reader should be able to:

• explain key timing system related terminology;

• compute the frequency and the period of a periodic signal using a microcontroller;

• describe functional components of a microcontroller timer system;

• describe the procedure to capture incoming signal events;

• describe the procedure to generate time critical output signals;

• describe the timing related features of the Microchip ATmega328;

• describe the four operating modes of the Microchip ATmega328 timing system;

• describe the register configurations for the ATmega328’s Timer 0, Timer 1, and Timer
2;

• program the Arduino UNO R3 using the built-in timer features of the Arduino De-
velopment Environment; and

• program the ATmega328 timer system for a variety of applications using C.

4.1 OVERVIEW
One of themost important reasons for usingmicrocontrollers is their capability to perform time-
related tasks. In a simple application, one can program a microcontroller to turn on or turn off
an external device at a specific time. In a more involved application, we can use a microcontroller
to generate complex digital waveforms with varying pulse widths to control the speed of a DC
motor. In this chapter, we review the capabilities of the Microchip ATmega328 microcontroller
to perform time-related functions.1 We begin with a review of timing related terminology. We
then provide an overview of the general operation of a timing system followed by the timing
system features aboard the ATmega328. Next, we present a detailed discussion of each of its
timing channels and their different modes of operation. We then review the built-in timing
functions of the ADE and conclude the chapter with a variety of examples.

1The sections on timing theory were adapted with permission from Microcontroller Fundamentals for Engineers and Scien-
tists, S. F. Barrett and D. J. Pack, Morgan & Claypool Publishers, 2006.
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4.2 TIMING-RELATED TERMINOLOGY
In this section, we review timing related terminology including frequency, period, and duty
cycle.

4.2.1 FREQUENCY
Consider signal x.t/ that repeats itself. We call this signal periodic with period T , if it satisfies
the following equation:

x.t/ D x.t C T /:

To measure the frequency of a periodic signal, we count the number of times a particular
event repeats within a 1-s period. The unit of frequency is the Hertz or cycles per second. For
example, a sinusoidal signal with a 60 Hz frequency means that a full cycle of a sinusoid signal
repeats itself 60 times each second or every 16.67 ms.

4.2.2 PERIOD
The reciprocal of frequency is the period of a waveform. If an event occurs with a rate of 1
Hz, the period of that event is 1 s. To find the signal period .T /, given the signal’s frequency
.f /, we simply need to apply their inverse relationship f D

1
T

: Both the period and frequency
of a signal are often used to specify timing constraints of microcontroller-based systems. For
example, when your car is on a wintery road and slipping, the engineers who designed your
car configured the anti-slippage unit to react within some millisecond period, say 20 ms. The
constraint then requires the monitoring system to check slippage at a rate of 50 Hz.

4.2.3 DUTY CYCLE
In many applications, periodic pulses are used as control signals. A good example is the use of a
periodic pulse to control a servo motor. To control the direction and sometimes the speed of a
motor, a periodic pulse signal with a changing duty cycle over time is used. The periodic pulse
signal shown in Figure 4.1a is on for 50% of the signal period and off for the rest of the period.
The pulse shown in (b) is on for only 25% of the same period as the signal in (a) and off for 75%
of the period. The duty cycle is defined as the percentage of the period a signal is on or logic
high. Therefore, we refer to the signal in Figure 4.1a as a periodic pulse signal with a 50% duty
cycle and the corresponding signal in (b), a periodic pulse signal with a 25% duty cycle.

4.3 TIMING SYSTEM OVERVIEW
The heart of the timing system is the time base. The time base’s frequency is used to generate
a baseline clock signal. For a timer system, the system clock is used to update the contents of
a register called the free-running counter. The job of the free-running counter is to count up
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100 %

50 %

(a)25 %

(b)

100 %

Figure 4.1: Two signals with the same period but different duty cycles. The top figure (a) shows
a periodic signal with a 50% duty cycle and the lower figure (b) displays a periodic signal with a
25% duty cycle.

(increment) for each rising edge (or a falling edge) of a clock signal. For example, if a clock is
operating at a rate of 2 MHz, the free-running counter will count up or increment each 0.5 ms.
All other timer related events reference the contents of the free-running counter to perform
input and output time-related activities: measurement of time periods, capture of timing events,
and generation of time-related signals.

The ATmega328 may be clocked internally using a user-selectable RC time base or they
may be clocked externally. The RC internal time base is selected using programmable fuse bits.
You may choose an internal fixed clock operating frequency of 1, 2, 4, or 8 MHz. The frequency
may be further divided using internal dividers.

To provide for a wider range of frequency selections an external time source may be used.
The external time sources, in order of increasing accuracy and stability, are an external RC net-
work, a ceramic resonator, and a crystal oscillator. The system designer chooses the time base
frequency and clock source device appropriate for the application at hand. The maximum op-
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erating frequency of the ATmega328P with a 5 VDC supply voltage is 20 MHz. The Arduino
UNO R3 processing board is equipped with a 16 MHz crystal oscillator time base.

The timing system may be used to capture the characteristics of an incoming input signal
or generate a digital output signal. We provide a brief overview of these capabilities followed by
a more detailed treatment in the next section.

For input time-related activities, all microcontrollers typically have timer hardware com-
ponents that detect signal logic changes on one or more input pins. Such components rely on the
free-running counter to capture external event times. We can use these features to measure the
period of an incoming signal or the width of an incoming pulse. You can also use the timer input
system to measure the pulse width of an aperiodic signal. For example, suppose that the times
for the rising edge and the falling edge of an incoming signal are 1.5 s and 1.6 s, respectively.
We can use these values to easily compute the pulse width of 0.1 s.

For output timer functions, a microcontroller uses a comparator, a free-running counter,
logic switches, and special purpose registers to generate time-related signals on one or more
output pins. A comparator checks the value of the free-running counter for a match with the
contents of another special purpose register where a programmer stores a specified time in terms
of the free-running counter value. The checking process is executed at each clock cycle and when
a match occurs, the corresponding hardware system induces a programmed logic change on a
programmed output port pin. Using such capability, one can generate a simple logic change at a
designated time incident, a pulse with a desired time width, or a pulse width modulated signal
to control servo or Direct Current (DC) motors.

From the examples we discussed above, youmay have wondered how amicrocontroller can
be used to compute absolute times from the relative free-running counter values, say 1.5 s and
1.6 s. The simple answer is that we cannot do so directly. A programmer must use the system
clock values and derive the absolute time values. Suppose your microcontroller is clocked by
a 2 MHz signal and the system clock uses a 16-bit free-running counter. For such a system,
each clock period represents 0.5 ms and it takes approximately 32.78 ms to count from 0–216

(65,536). The timer input system then uses the clock values to compute frequencies, periods, and
pulse widths. For example, suppose you want to measure a pulse width of an incoming aperiodic
signal. If the rising edge and the falling edge occurred at count values $0010 and $0114,2 can you
find the pulse width when the free-running counter is counting at 2 MHz? Let’s first convert
the two values into their corresponding decimal values, 276 and 16. The pulse width of the signal
in the number of counter value is 260. Since we already know how long it takes for the system
to increment by one, we can readily compute the pulse width as 260 � 0:5 ms D 130 ms.

Our calculations do not take into account time increments lasting longer than the rollover
time of the counter. When a counter rolls over from its maximum value back to zero, a status
flag is set to notify the processor of this event. The rollover events may be counted to correctly
determine the overall elapsed time of an event.

2The $ symbol represents that the following value is in a hexadecimal form.
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To calculate the total elapsed time of an event; the event start time, stop time, and the

number of timer overflows (n) that occurred between the start time and stop time must be
known. Elapsed time may be calculated using:

elapsed clock ticks D .n � 2b/ C .stop count � start count/ Œclock ticks�

elapsed time D .elapsed clock ticks/ � .FRC clock period/ Œseconds�:

In this first equation, “n” is the number of Timer Overflow Flag (TOF) events that occur
between the start and stop events and “b” is the number of bits in the timer counter. The equa-
tion yields the elapsed time in clock ticks. To convert to seconds the number of clock ticks are
multiplied by the period of the clock source of the free-running counter.

4.4 TIMER SYSTEM APPLICATIONS
In this section, we take a closer look at some important uses of the timer system of a micro-
controller to: (1) measure an input signal timing event, termed input capture; (2) to count the
number of external signal occurrences; (3) to generate timed signals—termed output compare;
and, finally, (4) to generate pulse width modulated signals. We first start with a case of measuring
the time duration of an incoming signal.

4.4.1 INPUT CAPTURE – MEASURING EXTERNAL TIMING EVENT
In many applications, we are interested in measuring the elapsed time or the frequency of an
external event using a microcontroller. Using the hardware and functional units discussed in
the previous sections, we now present a procedure to accomplish the task of computing the
frequency of an incoming periodic signal. Figure 4.2 shows an incoming periodic signal to our
microcontroller.

The first step for input capture is to turn on the timer system. To reduce power consump-
tion a microcontroller usually does not turn on all of its functional systems after reset until they
are needed. In addition to a separate timer module, many microcontroller manufacturers allow
a programmer to choose the rate of a separate timer clock that governs the overall functions of
a timer module.

Once the timer is turned on and the clock rate is selected, a programmer must configure
the physical port to which the incoming signal arrives. This step is done using a special input
timer port configuration register. The next step is to program the input event to capture. In our
current example, we should capture two consecutive rising edges or falling edges of the incoming
signal. Again, the programming portion is done by storing an appropriate setup value to a special
register.
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Timer Input Port

Timer Output Port
External

Device

Microcontroller

Figure 4.2: Use of the timer input and output systems of a microcontroller. The signal on top is
fed into a timer input port. The captured signal is subsequently used to compute the input signal
frequency. The signal on the bottom is generated using the timer output system. The signal is
used to control an external device.

Now that the input timer system is configured appropriately, you have two options to
accomplish the task. The first one is the use of a polling technique; the microcontroller con-
tinuously polls a flag, which holds a logic high signal when a programmed event occurs on the
physical pin. Once the microcontroller detects the flag, it needs to clear the flag and record the
time when the flag was set using another special register that captures the time of the associated
free-running counter value. The program needs to continue to wait for the next flag, which in-
dicates the end of one period of the incoming signal. A programmer then needs to record the
newly acquired captured time represented in the form of a free-running counter value again.
The period of the signal can now be computed by computing the time difference between the
two captured event times, and, based on the clock speed of the microcontroller’s timer system,
the programmer can compute the actual time changes and consequently the frequency of the
signal.

In many cases, a microcontroller can’t afford the time to poll for one event. Such sit-
uation introduces the second method: interrupt systems. Most microcontrollers are equipped
with built-in interrupt systems with their timer input modules. Instead of continuously polling
for a flag, a microcontroller performs other tasks and relies on its interrupt system to detect
the programmed event. The task of computing the period and the frequency is the same as the
first method, except that the microcontroller will not be tied down to constantly checking the
flag, increasing the efficient use of the microcontroller resources. To use interrupt systems, of
course, we must pay the price by appropriately configuring the interrupt systems to be triggered
when a desired event is detected. Typically, additional registers must be configured, and a special
program called an interrupt service routine must be written.
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Suppose that for an input capture scenario the two captured times for the two rising edges

are $1,000 and $5,000, respectively. Note that these values are not absolute times but the time
hacks captured from the free-running counter. The period of the signal is $4,000 or 16,384 in
a decimal form. If we assume that the timer clock runs at 10 MHz, the period of the signal is
1.6384 ms, and the corresponding frequency of the signal is approximately 610.35 Hz.

4.4.2 COUNTING EVENTS
The same capability of measuring the period of a signal can also be used to simply count external
events. Suppose we want to count the number of logic state changes of an incoming signal for
a given period of time. Again, we can use the polling technique or the interrupt technique to
accomplish the task. For both techniques, the initial steps of turning on the timer and configur-
ing a physical input port pin are the same. In this application, however, the programmed event
should be any logic state changes instead of looking for a rising or a falling edge as we have done
in the previous section.

If the polling technique is used, at each event detection, the corresponding flag must be
cleared and a counter must be updated. If the interrupt technique is used, one must write an
interrupt service routine within which the flag is cleared and a counter is updated.

4.4.3 OUTPUT COMPARE – GENERATING TIMING SIGNALS TO
INTERFACE EXTERNAL DEVICES

In the previous two sections, we considered two applications of capturing external incoming
signals. In this section and the next one, we consider how a microcontroller can generate time
critical signals for external devices. Suppose in this application, we want to send a signal shown
in Figure 4.2 to turn on an external device. The timing signal is arbitrary but the application will
show that a timer output system can generate any desired time-related signals permitted under
the timer clock speed limit of the microcontroller.

Similar to the use of the timer input system, one must first turn on the timer system and
configure a physical pin as a timer output pin using special registers. In addition, one also needs
to program the desired external event using another special register associated with the timer
output system. To generate the signal shown in Figure 4.2, one must compute the time required
between the rising and the falling edges. Suppose that the external device requires a pulse which
is 2 ms wide to be activated. To generate the desired pulse, one must first program the logic
state for the particular pin to be low and set the time value using a special register with respect
to the contents of the free-running counter. As was mentioned in Section 7.2, at each clock
cycle, the special register contents are compared with the contents of the free-running counter
and when a match occurs, the programmed logic state appears on the designated hardware pin.
Once the rising edge is generated, the program then must reconfigure the event to be a falling
edge (logic state low) and change the contents of the special register to be compared with the
free-running counter. For the particular example in Figure 4.2, let’s assume that the main clock
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Figure 4.3: The figure shows the speed profile of a DC motor over time when a pulse-width-
modulated signal is applied to the motor.

runs at 2 MHz, the free-running counter is a 16 bit counter, and the name of the special register
(16 bit register) where we can put appropriate values is output timer register. To generate the
desired pulse, we can put $0000 first to the output timer register, and after the rising edge has
been generated, we need to change the program event to a falling edge and put $0FA0 or 4000
in decimal to the output timer register. As was the case with the input timer system module, we
can use output timer system interrupts to generate the desired signals as well.

4.4.4 INDUSTRIAL IMPLEMENTATION CASE STUDY (PWM)
In this section, we discuss a well-known method to control the speed of a DC motor using a
PWM signal. The underlying concept is as follows. If we turn on a DC motor and provide the
required voltage, the motor will run at its maximum speed. Suppose we turn the motor on and
off rapidly, by applying a periodic signal. The motor at some point cannot react fast enough to
the changes of the voltage values and will run at the speed proportional to the average time the
motor was turned on. By changing the duty cycle, we can control the speed of a DC motor as
we desire. Suppose again we want to generate a speed profile shown in Figure 4.3. As shown in
the figure, we want to accelerate the speed, maintain the speed, and decelerate the speed for a
fixed amount of time.
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As an example, an elevator control system does not immediately operate the elevatormotor

at full speed. The elevator motor speed will ramp up gradually from stop to desired speed. As
the elevator approaches, the desired floor it will gradually ramp back down to stop.

The first task necessary is again to turn on the timer system, configure a physical port, and
program the event to be a rising edge. As a part of the initialization process, we need to put
$0000 to the output timer register we discussed in the previous section. Once the rising edge is
generated, the program then needs to modify the event to a falling edge and change the contents
of the output timer register to a value proportional to a desired duty cycle. For example, if we
want to start off with 25% duty cycle, we need to input $4,000 to the register, provided that we
are using a 16-bit free-running counter. Once the falling edge is generated, we now need to go
back and change the event to be a rising edge and the contents of the output timer counter value
back to $0000. If we want to continue to generate a 25% duty cycle signal, then we must repeat
the process indefinitely. Note that we are using the time for a free-running counter to count
from $0000 to $FFFF as one period.

Now suppose we want to increase the duty cycle to 50% over 1 s and that the clock is
running at 2 MHz. This means that the free-running counter counts from $0000 to $FFFF
every 32.768 ms, and the free-running counter will count from $0000 to $FFFF approximately
30.51 times over the period of 1 s. That is we need to increase the pulse width from $4,000 to
$8,000 in approximately 30 turns, or approximately 546 clock counts every turn. This technique
may be used to generate any desired duty cycle.

4.5 OVERVIEW OF THE MICROCHIP ATMEGA328
TIMER SYSTEM

The Microchip ATmega328 is equipped with a flexible and powerful multiple channel timing
system. For the ATmega328, the timer channels are designated Timer 0, Timer 1, and Timer
2. In this section, we review the operation of the timing system in detail. We begin with an
overview of the timing system features followed by a detailed discussion of timer channel 0.
Space does not permit a complete discussion of the other two types of timing channels; we
review their complement of registers and highlight their features not contained in our discussion
of timer channel 0. The information provided on timer channel 0 is readily adapted to the other
channels.

The features of the timing system are summarized in Figure 4.4. Timer 0 and 2 are 8-
bit timers, whereas Timer 1 for the ATmega 328 is a 16-bit timers. Each timing channel is
equipped with a prescaler. The prescaler is used to subdivide the main microcontroller clock
source (designated fclk_I=O in upcoming diagrams) down to the clock source for the timing
system (clkTn).

Each timing channel has the capability to generate pulse width modulated signals, gen-
erate a periodic signal with a specific frequency, count events, and generate a precision signal
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ATmega328: Timer 1 

 

Features: 

- 16-bit timer/counter 

- 10-bit clock prescaler 

- Functions: 

  -- Pulse width modulation 

  -- Frequency generation 

  -- Event counter 

  -- Output compare -- 2 ch 

  -- Input capture 

- Modes of operation: 

  -- Normal 

  -- Clear timer on 

      compare match (CTC) 

  -- Fast PWM 

  -- Phase correct PWM 

ATmega328:Timer 0 

 

Features: 

- 8-bit timer/counter 

- 10-bit clock prescaler 

- Functions: 

  -- Pulse width modulation 

  -- Frequency generation 

  -- Event counter 

  -- Output compare -- 2 ch  

- Modes of operation: 

  -- Normal 

  -- Clear timer on 

      compare match (CTC)  

  -- Fast PWM 

  -- Phase correct PWM 

ATmega328: Timer 2 

 

Features: 

- 8-bit timer/counter 

- 10-bit clock prescaler 

- Functions: 

  -- Pulse width modulation 

  -- Frequency generation 

  -- Event counter 

  -- Output compare -- 2 ch  

- Modes of operation: 

  -- Normal 

  -- Clear timer on 

      compare match (CTC) 

  -- Fast PWM 

  -- Phase correct PWM 

Figure 4.4: Microchip timer system overview [www.microchip.com].

using the output compare channels. Additionally, Timer 1 on the ATmega328 is equipped with
the Input Capture feature.

All of the timing channels may be configured to operate in one of four operational modes
designated: Normal, Clear Timer on Compare Match (CTC), Fast PWM, and Phase Correct
PWM. We provide more information on these modes shortly.

4.6 TIMER 0 SYSTEM
In this section, we discuss the features, overall architecture, modes of operation, registers, and
programming of Timer 0. This information may be readily adapted to Timers 1, 3, 4, 5, and
Timer 2.

A Timer 0 block diagram is shown in Figure 4.5. The clock source for Timer 0 is pro-
vided via an external clock source at the T0 pin of the microcontroller. Timer 0 may also be
clocked internally via the microcontroller’s main clock (fclk_I=O ). This clock frequency may be
too rapid for many applications. Therefore, the timing system is equipped with a prescaler to
subdivide the main clock frequency down to timer system frequency (clkTn). The clock source
for Timer 0 is selected using the CS0[2:0] bits contained in the Timer/Counter Control Regis-
ter B (TCCR0B). The TCCR0A register contains the WGM0[1:0] bits and the COM0A[1:0]

www.microchip.com


4.6. TIMER 0 SYSTEM 99

Control Logic
Clock SelectclkTn

OCnA
(Int. Req.)

OCnA

OCnB

OCnB
(Int. Req.)

TOVn
(Int Req)

(From Prescaler)

Edge
Detector

Waveform
Generation

Waveform
Generation

TOP BOTTOM

=

=

= 0

Timer/Counter

TCNTn

OCRnA

TCCRnA TCCRnB

=

OCRnB

Fixed
TOP
Value

Tn

Count

Clear

Direction

D
A

T
A

 B
U

S

Figure 4.5: Timer 0 block diagram. (Figure used with permission Microchip, Inc. [www.
microchip.com].)

(and B) bits, whereas the TCCR0B register contains the WGM0[2] bit. These bits are used to
select the mode of operation for Timer 0 as well as tailor waveform generation for a specific
application.

The timer clock source (clkTn) is fed to the 8-bit Timer/Counter Register (TCNT0). This
register is incremented (or decremented) on each clkTn clock pulse. Timer 0 is also equipped with
two 8-bit comparators that constantly compares the numerical content of TCNT0 to theOutput
Compare Register A (OCR0A) andOutput Compare Register B (OCR0B).The compare signal
from the 8-bit comparator is fed to the waveform generators. The waveform generators have a
number of inputs to perform different operations with the timer system.

www.microchip.com
www.microchip.com
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The BOTTOM signal for the waveform generation and the control logic, shown in Fig-

ure 4.5, is asserted when the timer counter TCNT0 reaches all zeroes (0x00). The MAX signal
for the control logic unit is asserted when the counter reaches all ones (0xFF). The TOP signal
for the waveform generation is asserted by either reaching the maximum count values of 0xFF on
the TCNT0 register or reaching the value set in the Output Compare Register 0 A (OCR0A)
or B. The setting for the TOP signal will be determined by the Timer’s mode of operation.

Timer 0 also uses certain bits within the Timer/Counter Interrupt Mask Register 0
(TIMSK0) and the Timer/Counter Interrupt Flag Register 0 (TIFR0) to signal interrupt re-
lated events.

4.6.1 MODES OF OPERATION
Each of the timer channels may be set for a specific mode of operation: normal, clear timer
on compare match (CTC), fast PWM, and phase correct PWM. The system designer chooses
the correct mode for the application at hand. The timer modes of operation are summarized in
Figure 4.6. A specific mode of operation is selected using the Waveform Generation Mode bits
located in Timer/Control Register A (TCCR0A) and Timer/Control Register B (TCCR0B).

4.6.1.1 Normal Mode
In the normal mode, the timer will continually count up from 0x00 (BOTTOM) to 0xFF
(TOP). When the TCNT0 returns to zero on each cycle of the counter the Timer/Counter
Overflow Flag (TOV0) will be set. The normal mode is useful for generating a periodic “clock
tick” that may be used to calculate elapsed real time or provide delays within a system. We
provide an example of this application in Section 5.9.

4.6.1.2 Clear Timer on Compare Match (CTC)
In the CTC mode, the TCNT0 timer is reset to zero every time the TCNT0 counter reaches
the value set in Output Compare Register A (OCR0A) or B. The Output Compare Flag A
(OCF0A) or B is set when this event occurs. The OCF0A or B flag is enabled by asserting
the Timer/Counter 0 Output Compare Math Interrupt Enable (OCIE0A) or B flag in the
Timer/Counter Interrupt Mask Register 0 (TIMSK0) and when the I-bit in the Status Register
is set to one.

The CTC mode is used to generate a precision digital waveform such as a periodic signal
or a single pulse. The user must describe the parameters and key features of the waveform in
terms of Timer 0 “clock ticks.” When a specific key feature is reached within the waveform the
next key feature may be set into the OCR0A or B register.
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4.6.1.3 Phase Correct PWM Mode
In the Phase Correct PWM Mode, the TCNT0 register counts from 0x00 to 0xFF and back
down to 0x00 continually. Every time the TCNT0 value matches the value set in the OCR0A
or B register the OCF0A or B flag is set and a change in the PWM signal occurs.

4.6.1.4 Fast PWM
The Fast PWM mode is used to generate a precision PWM signal of a desired frequency and
duty cycle. It is called the Fast PWM because its maximum frequency is twice that of the Phase
Correct PWM mode. When the TCNT0 register value reaches the value set in the OCR0A
or B register it will cause a change in the PWM output as prescribed by the system designer. It
continues to count up to the TOP value at which time the Timer/Counter 0 Overflow Flag is
set.

4.6.2 TIMER 0 REGISTERS
A summary of the Timer 0 registers are shown in Figure 4.7.

4.6.2.1 Timer/Counter Control Registers A and B (TCCR0A and TCCR0B)
The TCCR0 register bits are used to:

• select the operational mode of Timer 0 using the Waveform Mode Generation
(WGM0[2:0]) bits;

• determine the operation of the timer within a specific mode with the Compare Match
Output Mode (COM0A[1:0] or COM0B[1:0] or) bits; and

• select the source of the Timer 0 clock using Clock Select (CS0[2:0]) bits.
The bit settings for the TCCR0 register are summarized in Figure 4.8.

4.6.2.2 Timer/Counter Register (TCNT0)
The TCNT0 is the 8-bit counter for Timer 0.

4.6.2.3 Output Compare Registers A and B (OCR0A and OCR0B)
The OCR0A and B registers holds a user-defined 8-bit value that is continuously compared to
the TCNT0 register.

4.6.2.4 Timer/Counter Interrupt Mask Register (TIMSK0)
Timer 0 uses the Timer/Counter 0 Output Compare Match Interrupt Enable A and B
(OCIE0A andB) bits and theTimer/Counter 0Overflow Interrupt Enable (TOIE0) bit.When
the OCIE0A or B bit and the I-bit in the Status Register are both set to one, the Timer/Counter
0CompareMatch interrupt is enabled.When the TOIE0 bit and the I-bit in the Status Register
are both set to one, the Timer/Counter 0 Overflow interrupt is enabled.
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egister 0 (TIFR0) 

Figure 4.7: Timer 0 registers [www.microchip.com].

4.6.2.5 Timer/Counter Interrupt Flag Register 0 (TIFR0)
Timer 0 uses the Output Compare Flag A or B (OCF0A and OCF0B) which sets for an output
compare match. Timer 0 also uses the Timer/Counter 0 Overflow Flag (TOV0) which sets
when Timer/Counter 0 overflows.

4.7 TIMER 1

Timer 1 on the ATmega328 is a 16-bit timer/counters. These timers share many of the same
features of the Timer 0 channel. Due to limited space the shared information will not be re-
peated. Instead, we concentrate on the enhancements of Timer 1 which include an additional

www.microchip.com
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Mode 

0 

1 

2 

3 

4 

5 

6 

7 

WGM[02:00] 

000 

001 

010 

011 

100 

101 

110 

111

Mode 

Normal 

PWM, Phase Correct 

CTC 

Fast PWM 

Reserved 

PWM, Phase Correct 

Reserved 

Fast PWM

Waveform Generation 

Mode

Clock Select

CS0[2:0] Clock Source 

     000 None 

     001 clkI/0 

     010 clkI/0/8 

     011 clkI/0/64 

     100 clkI/0/256 

     101 clkI/0/1024 

     110 External clock on T0 (falling edge trigger) 

     111 External clock on T1 (rising edge trigger)

Timer/Counter Control Register B (TCCR0B)

7 0

FOC0A WGM02 CS02 CS01 CS00FOC0B --- ---

Timer/Counter Control Register A (TCCR0A)

WGM00COM0A1 COM0A0 WGM01--- ---COM0B1 COM0B0

COM0A[1:0] 

00 

01 

 

 

 

10 

 

 

11

Description 

Normal, OC0A disconnected 

WGM02 = 0: normal operation, 

         OC0A disconnected 

WGM02 = 1: Toggle OC0A on 

          compare match 

Clear OC0A on compare match,  

set OC0A at Bottom 

(non-inverting mode) 

Set OC0A on compare match, 

clear OC0A at Bottom 

(inverting mode) 

 

COM0A[1:0] 

00 

01 

10 

11

Description 

Normal, OC0A disconnected 

Toggle OC0A on compare match 

Clear OC0A on compare match 

Set OC0A on compare match 

 

COM0A[1:0] 

00 

01 

 

 

 

 

10 

 

 

11

Description 

Normal, OC0A disconnected 

WGM02 = 0: normal operation, 

         OC0A disconnected 

WGM02 = 1: Toggle OC0A on 

          compare match 

Clear OC0A on compare match, 

when upcounting.  Set OC0A on 

compare match when down counting 

Set OC0A on compare match, 

when upcounting.  Set OC0A on 

compare match when down counting 

Compare Output Mode, Phase Correct PWM 

Compare Output Mode, non-PWM Mode

Compare Output Mode, Fast PWM Mode
COM0B[1:0] 

00 

01 

 

 

 

10 

 

 

11

Description 

Normal, OC0B disconnected 

Reserved 

 

 

 

Clear OC0B on compare match,  

set OC0B at Bottom 

(non-inverting mode) 

Set OC0B on compare match, 

clear OC0B at Bottom 

(inverting mode) 

 

COM0B[1:0] 

00 

01 

10 

11

Description 

Normal, OC0B disconnected 

Toggle OC0B on compare match 

Clear OC0B on compare match 

Set OC0B on compare match 

 

COM0B[1:0] 

00 

01 

 

 

 

10 

 

 

11

Description 

Normal, OC0B disconnected 

Reserved 

 

 

 

Clear OC0B on compare match, 

when upcounting.  Set OC0B on 

compare match when down counting 

Set OC0B on compare match, 

when upcounting.  Set OC0B on 

compare match when down counting 

Compare Output Mode, Phase Correct PWM 

Compare Output Mode, non-PWM Mode

Compare Output Mode, Fast PWM Mode

Figure 4.8: Timer/Counter Control Registers A and B (TCCR0A and TCCR0B) bit settings
[www.microchip.com].
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output compare channel and also the capability for input capture. The block diagram for Timer
1 is shown in Figure 4.9.

As discussed earlier in the chapter, the input capture feature is used to capture the char-
acteristics of an input signal including period, frequency, duty cycle, or pulse length. This is
accomplished by monitoring for a user-specified edge on the ICP1 microcontroller pin. When
the desired edge occurs, the value of the Timer/Counter 1 (TCNT1) register is captured and
stored in the Input Capture Register 1 (ICR1).

4.7.1 TIMER 1 REGISTERS
The complement of registers supporting Timer 1 are shown in Figure 4.10. Each register will
be discussed in turn.

4.7.1.1 TCCR1A and TCCR1B Registers
The TCCR1 register bits are used to:

• select the operational mode of Timer 1 using the Waveform Mode Generation
(WGM1[3:0]) bits;

• determine the operation of the timer within a specific mode with the Compare Match
Output Mode (Channel A: COM1A[1:0] and Channel B: COM1B[1:0]) bits; and

• select the source of the Timer 1 clock using Clock Select (CS1[2:0]) bits.

The bit settings for the TCCR1A and TCCR1B registers are summarized in Figure 4.11.

4.7.1.2 Timer/Counter Register 1 (TCNT1H/TCNT1L)
The TCNT1 is the 16-bit counter for Timer 1.

4.7.1.3 Output Compare Register 1 (OCR1AH/OCR1AL)
The OCR1A register holds a user-defined 16-bit value that is continuously compared to the
TCNT1 register when Channel A is used.

4.7.1.4 OCR1BH/OCR1BL
The OCR1B register holds a user-defined 16-bit value that is continuously compared to the
TCNT1 register when Channel B is used.

4.7.1.5 Input Capture Register 1 (ICR1H/ICR1L)
ICR1 is a 16-bit register used to capture the value of the TCNT1 register when a desired edge
on ICP1 pin has occurred.



106 4. TIMING SUBSYSTEM

Control Logic
Clock SelectclkTn

OCnA
(Int. Req.)

OCnA

OCnB

ICPn

OCnB
(Int. Req.)

ICFn (Int. Req.)

(From Analog
Comparator Output)

TOVn
(Int. Req.)

(From Prescaler)

Edge
Detector

Waveform
Generation

Waveform
Generation

Edge
Detector

Noise
Canceler

TOP BOTTOM

=

=

= 0

Timer/Counter

TCNTn

OCRnA

ICRn

TCCRnBTCCRnA

=

OCRnB

Fixed
TOP
Value

Tn

Count

Clear

Direction

D
A

T
A

 B
U

S

Figure 4.9: Timer 1 block diagram. (Figure used with Permission, Microchip, Inc. [www.
microchip.com].)
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Timer/Counter n Control Register A (TCCRnA)

COMnA1 COMnA0 COMnB1 COMnB0 WGMn1 WGMn0

Timer/Counter n Control Register B (TCCRnB)

7

Timer/Counter Interrupt Mask Register n (TIMSKn)

ICIE1 OCIE1AOCIE1B TOIE1

7

Timer/Counter 1 Interrupt Flag REgister  (TIFRn)

ICF1 OCF1AOCF1B TOV1--- --- ------

7

Input Capture Register n (ICRnH/ICRnL)

15 8

--- --- --- ---

Timer Counter n (TCNTnH/TCNTnL)

15 8

7

Output Compare Register n A (OCRnAH/OCRnAL) 

15 8

7

Output Compare Register n B (OCRnBH/OCRnBL) 

15 8

Timer/Counter n Control Register C (TCCRnC)

--- --- --- ------FOC1A FOC1B

ATmega328: n=1 

FOC1C

COMnC1 COMnC0

7

7

ICNCn ICESn --- WGMn3 WGMn2 CS12 CS11 CS10

7

7

0

0ß

0

0

0

0

0

0

0

FOCnA FOCnCFOCnB --- --- --- --- ---

egister 0 (TIFRn) 

Figure 4.10: Timer 1 registers [www.microchip.com].
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Waveform Generation Mode

Mode

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

WGM[13:12:11:10]

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Mode

Normal

PWM, Phase Correct, 8-bit

PWM, Phase Correct, 9-bit

PWM, Phase Correct, 10-bit

CTC

Fast PWM, 8-bit

Fast PWM, 9-bit

Fast PWM, 10-bit

PWM, Phase & Freq Correct

PWM, Phase & Freq Correct

PWM, Phase Correct

PWM, Phase Correct

CTC

Reserved

Fast PWM

Fast PWM

Clock Select

CS0[2:0] Clock Source

     000 None

     001 clkI/0

     010 clkI/0/8

     011 clkI/0/64

     100 clkI/0/8clkI/0/256

     101 clkI/0/8clkI/0/1024

     110 External clock on T0 (falling edge trigger)

     111 External clock on T1 (rising edge trigger)

COMx[1:0]

00

01

10

11

Description

Normal, OC0 disconnected

WGM1[3:0] = 9 or 14: toggle OCnA

on compare match, OCnB discon-

nected

WGM1[3:0]= other settings,

OC1A/1B disconnected

Clear OC0 on compare match

when up-counting.  Set OC0

on compare match when

down counting

Set OC0 on compare match

when up-counting. Clear OC0

on compare match when

down counting.

PWM, Phase Correct, Phase & Freq Correct

COMx[1:0]

00

01

10

11

Normal, CTC
Description

Normal, OC1A/1B disconnected

Toggle OC1A/1B on compare match

Clear OC1A/1B on compare match

Set OC1A/1B on compare match

COMx[1:0]

00

01

10

11

Fast PWM

Description

Normal, OC1A/1B disconnected

WGM1[3:0] = 9 or 11, toggle OC1A on

compare match OC1B disconnected

WGM1[3:0] = other settings,

OC1A/1B disconnected

Clear OC1A/1B on compare match,

set OC1A/1B on Compare Match when

down counting

Set OC1A/1B on compare match when

upcounting.  Clear OC1A/1B on Compare

Match when upcounting

Timer/Counter 1 Control Register A (TCCR1A)

7

COM1A1 COM1A0 COM1B1 COM1B0 WGM11 WGM10

7

0

0

Timer/Counter 1 Control Register B (TCCR1B)

ICNC1 ICES1 --- WGM13 WGM12 CS12 CS11 CS10

--- ---

Figure 4.11: TCCR1A and TCCR1B registers [www.microchip.com].
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4.7.1.6 Timer/Counter Interrupt Mask Register 1 (TIMSK1)
Timer 1 uses the Timer/Counter 1 Output Compare Match Interrupt Enable (OCIE1A/1B)
bits, the Timer/Counter 1 Overflow Interrupt Enable (TOIE1) bit, and the Timer/Counter 1
Input Capture Interrupt Enable (IC1E1) bit. When the OCIE1A/B bit and the I-bit in the
Status Register are both set to one, the Timer/Counter 1 Compare Match interrupt is enabled.
When the OIE1 bit and the I-bit in the Status Register are both set to one, the Timer/Counter
1 Overflow interrupt is enabled. When the IC1E1 bit and the I-bit in the Status Register are
both set to one, the Timer/Counter 1 Input Capture interrupt is enabled.

4.7.1.7 Timer/Counter Interrupt Flag Register (TIFR1)
Timer 1 uses the Output Compare Flag 1 A/B (OCF1A/B) which sets for an output compare
A/B match. Timer 1 also uses the Timer/Counter 1 Overflow Flag (TOV1) which sets when
Timer/Counter 1 overflows. Timer Channel 1 also uses the Timer/Counter 1 Input Capture
Flag (ICF1) which sets for an input capture event.

4.8 TIMER 2
Timer 2 is another 8-bit timer channel similar to Timer 0. The Timer 2 channel block diagram
is provided in Figure 4.12. Its registers are summarized in Figure 4.13.

4.8.0.1 Timer/Counter Control Register A and B (TCCR2A and B)
The TCCR2A and B register bits are used to:

• select the operational mode of Timer 2 using the Waveform Mode Generation
(WGM2[2:0]) bits;

• determine the operation of the timer within a specific mode with the Compare Match
Output Mode (COM2A[1:0] and B) bits; and

• select the source of the Timer 2 clock using Clock Select (CS2[2:0]) bits.

The bit settings for the TCCR2A and B registers are summarized in Figure 4.14.

4.8.0.2 Timer/Counter Register(TCNT2)
The TCNT2 is the 8-bit counter for Timer 2.

4.8.0.3 Output Compare Register A and B (OCR2A and B)
The OCR2A and B registers hold a user-defined 8-bit value that is continuously compared to
the TCNT2 register.
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Control Logic
Clock SelectclkTn

OCnA
(Int. Req.)

OCnA

OCnB

OCnB
(Int. Req.)

TOVn
(Int. Req.)

(From Prescaler)

Edge
Detector

Waveform
Generation

Waveform
Generation

TOP BOTTOM

=

=

= 0

Timer/Counter

TCNTn

OCRnA

TCCRnA TCCRnB

=

OCRnB

Fixed
TOP
Value

Tn
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D
A
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Figure 4.12: Timer 2 block diagram. (Figure used with Permission, Microchip, Inc. [www.
microchip.com].)

www.microchip.com
www.microchip.com


4.8. TIMER 2 111

Timer/Counter Control Register B (TCCR2B)

7

FOC2A CS22 CS21 CS20------ WGM22FOC2B

Timer/Counter Control Register A (TCCR2A)

7

WGM20COM2B1 COM2B0 WGM21COM2A1 COM2A0 --- ---

7

Timer/Counter Register (TCNT2)

7

Output Compare Register B (OCR2B)

7

Timer/Counter 2 Interrupt Mask Register (TIMSK2)

OCIE2B OCIE2A TOIE2--- --- --- --- ---

7

Timer/Counter 2 Interrupt Flag Register (TI FR2)

OCF2B TOV2OCF2A--- --- --- --- ---

7

0

0

0

0

0

0

0

Output Compare Register A (OCR2A)

Figure 4.13: Timer 2 registers [www.microchip.com].

4.8.0.4 Timer/Counter Interrupt Mask Register 2 (TIMSK2)
Timer 2 uses the Timer/Counter 2 Output Compare Match Interrupt Enable A and B
(OCIE2A and B) bits and the Timer/Counter 2 Overflow Interrupt Enable A and B (OIE2A
and B) bits. When the OCIE2A or B bit and the I-bit in the Status Register are both set to one,
the Timer/Counter 2 Compare Match interrupt is enabled. When the TOIE2 bit and the I-bit
in the Status Register are both set to one, the Timer/Counter 2 Overflow interrupt is enabled.

4.8.0.5 Timer/Counter Interrupt Flag Register 2 (TIFR2)
Timer 2 uses the Output Compare Flags 2 A and B (OCF2A and B) which sets for an output
compare match. Timer 2 also uses the Timer/Counter 2 Overflow Flag (TOV2) which sets
when Timer/Counter 2 overflows.

www.microchip.com
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Clock Select

CS2[2:0] Clock Source

     000 None

     001 clkI/0

     010 clkI/0/8

     011 clkI/0/32

     100 clkI/0/64

     101 clkI/0/128

     110                  clkI/0/256

     111  clkI/0/1024

Timer/Counter Control Register B (TCCR2B)

7 0

FOC2A CS22 CS21 CS20------ WGM22FOC2B

Timer/Counter Control Register A (TCCR2A)

WGM20COM2B1 COM2B0 WGM21COM2A1 COM2A0 --- ---

Mode

0

1

2

3

4

5

6

7

WGM[02:00]

000

001

010

011

100

101

110

111

Mode

Normal

PWM, Phase Correct

CTC

Fast PWM

Reserved

PWM, Phase Correct

Reserved

Fast PWM

Waveform Generation

Mode

COM2A[1:0]

00

01

10

11

Description

Normal, OC2A disconnected

WGM22 = 0: normal operation,

         OC2A disconnected

WGM22 = 1: Toggle OC2A on

          compare match

Clear OC2A on compare match,

set OC2A at Bottom

(non-inverting mode)

Set OC2A on compare match,

clear OC2A at Bottom

(inverting mode)

COM2A[1:0]

00

01

10

11

Description

Normal, OC2A disconnected

Toggle OC2A on compare match

Clear OC2A on compare match

Set OC2A on compare match

COM2A[1:0]

00

01

10

11

Description

Normal, OC2A disconnected

WGM22 = 0: normal operation,

         OC2A disconnected

WGM22 = 1: Toggle OC2A on

          compare match

Clear OC2A on compare match,

when upcounting.  Set OC2A on

compare match when down counting

Set OC2A on compare match,

when upcounting.  Set OC2A on

compare match when down counting

Compare Output Mode, Phase Correct PWM 

Compare Output Mode, non-PWM Mode

Compare Output Mode, Fast PWM Mode
COM2B[1:0]

00

01

10

11

Description

Normal, OC2B disconnected

Reserved

Clear OC2B on compare match,

set OC2B at Bottom

(non-inverting mode)

Set OC2B on compare match,

clear OC2B at Bottom

(inverting mode)

COM2B[1:0]

00

01

10

11

Description

Normal, OC2B disconnected

Toggle OC2B on compare match

Clear OC2B on compare match

Set OC2B on compare match

COM2B[1:0]

00

01

10

11

Description

Normal, OC2B disconnected

Reserved

Clear OC2B on compare match,

when upcounting.  Set OC2B on

compare match when down counting

Set OC2B on compare match,

when upcounting.  Set OC2B on

compare match when down counting

Compare Output Mode, Phase Correct PWM 

Compare Output Mode, non-PWM Mode

Compare Output Mode, Fast PWM Mode

Figure 4.14: Timer/Counter Control Register A and B (TCCR2A and B) bit settings [www.
microchip.com].
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4.9 PROGRAMMING THE ARDUINO UNO R3 USING
THE BUILT-IN ARDUINO DEVELOPMENT
ENVIRONMENT TIMING FEATURES

The ADE has several built-in timing features. These include the following.

• delay(unsigned long): The delay function pauses a sketch for the amount of time spec-
ified in milliseconds.

• delayMicroseconds(unsigned int): The delayMicroseconds function pauses a sketch
for the amount of time specified in microseconds.

• pulseIn(pin, value): The pulseIn function measures the length of an incoming digital
pulse. If value is specified as HIGH, the function waits for the specified pin to go
high and then times until the pin goes low. The pulseIn function returns the length of
elapsed time in microseconds as an unsigned long.

• analogWrite(pin, value): The analog write function provides a pulse width modulated
(PWM) output signal on the specified pin. The PWM frequency is approximately 490
Hz. The duty cycle is specified from 0 (value of 0) to 100 (value of 255) %.

Example: The Arduino IDE contains an example to control the intensity of an LED using
the analogWrite function. Go to: File–>Examples–>01.Basics–>Fade.

4.10 PROGRAMMING THE TIMER SYSTEM IN C
In this section we present several representative examples of using the timer system for various
applications. We will provide examples of using the timer system to generate a prescribed delay,
to generate a PWM signal, and to capture an input event.3

4.10.1 PRECISION DELAY
A precision delay may be generated by counting the number of elapsed interrupts and Timer
overflows. In the following example, the ATmega328 is configured to interrupt 65.5 ms. Dif-
ferent length delays are then created by pausing a specified number of interrupts. For example,
to delay for a second requires approximately fifteen 65.5 ms interrupts. The interrupt period will
change when the microcontroller is clocked at a different frequency. This code example may be
adjusted to different clock frequencies and different desired interrupt intervals.

The following steps are followed to achieve a desired time delay.

3Examples were originally developed for the ATmega164 and provided in Microchip AVR Microcontroller Primer: Pro-
gramming and Interfacing, S. F. Barrett and D. J. Pack, 3rd ed., 2019. The examples were adapted with permission for the
ATmega328.
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Figure 4.15: LED connected to PORTB[0].

1. Choose a desired time base value for the microcontroller. In general, the slowest frequency
appropriate for a specific application should be chosen. Power consumption of CMOS
based circuitry is linearly related to operating frequency. Also, choose the type of desired
time base for inherent accuracy (internal oscillator, external resonator, or external crystal
oscillator).

2. Choose a timer channel to generate the delay. In the following example Timer Channel
0 is used. It is an 8-bit timer with an 8-bit TCNT0 register. The TCNT0 register will
overflow every 28 counts or 256 counts.

3. Additional time division may be set using Timer 0 registers (e.g., TCCR0B).

4. With all parameters set determine the interrupt time interval.

Example: In this example we program the ATmega328 to provide a delay of some number
of 65.5 ms interrupts. The Timer 0 overflow is configured to occur every 65.5 ms. The overflow
flag is used as a “clock tick” to generate a precision delay. To create the delay the microcontroller
is placed in a while loop waiting for the prescribed number of Timer 0 overflows to occur. The
delay is used to toggle an LED connected to PORTB[0], as shown in Figure 4.15.

To arrive at the 65.5 ms interrupt time increment, the following steps were taken.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01024ED1V01Y202006DCS059&iName=master.img-131.jpg&w=360&h=248
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01024ED1V01Y202006DCS059&iName=master.img-131.jpg&w=360&h=248
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01024ED1V01Y202006DCS059&iName=master.img-131.jpg&w=360&h=248
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01024ED1V01Y202006DCS059&iName=master.img-131.jpg&w=360&h=248
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1. The internal 8 MHz internal oscillator was chosen with the divide-by-8 option using in-

ternal fuse settings.

2. The resulting 1 MHz time base was further divided by 256 using the TCCR0B register.

3. Using TCNT0, the timer overflow interrupt would set every 256 counts or 65.5 ms.

//****************************************************************
//flash_led.c
//****************************************************************

#include <iom328pv.h>
#include <macros.h>

//function prototypes*********************************************
void delay(unsigned int number_of_65_5ms_interrupts);
void init_timer0_ovf_interrupt(void);
void timer0_interrupt_isr(void);
void delay(unsigned int number_of_65_5ms_interrupts);
void initialize_ports(void);

//initialize timer0 overflow interrupt****************************
//interrupt handler def

#pragma interrupt_handler timer0_interrupt_isr:17

//global variables************************************************
unsigned int input_delay; //counts num of Timer/Ctr 0

//Overflow interrupts

//main program****************************************************

void main(void)
{
init_timer0_ovf_interrupt(); //initialize Timer/Counter0 Overflow

//interrupt - call once at beginning
initialize_ports();
PORTB = PORTB | 0x01; //PORTD[0] high

while(1)
{
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delay(15); //1 second delay
PORTB = PORTB & 0xFE; //PORTB[0] low

delay(15); //1 second delay
PORTB = PORTB | 0x01; //PORTB[1] high
}

}

//****************************************************************
//int_timer0_ovf_interrupt(): The Timer/Counter0 Overflow interrupt
//is being employed as a time base for a master timer for this
//project. The internal 8 MHz RC oscillator with the divide by 8
//fuse set is divided by 256. The 8-bit Timer0 register (TCNT0)
//overflows every 256 counts or every 65.5 ms.
//****************************************************************

void init_timer0_ovf_interrupt(void)
{
TCCR0B = 0x04; //divide timer0 timebase by 256,

//overflow occurs every 65.5 ms
TIMSK0 = 0x01; //enable timer0 overflow interrupt
asm("SEI"); //enable global interrupt
}

//****************************************************************
//timer0_interrupt_isr:
//Note: Timer overflow 0 is cleared by hardware when executing the
//corresponding interrupt handling vector.
//****************************************************************

void timer0_interrupt_isr(void)
{
input_delay++; //increment overflow counter
}

//****************************************************************
//delay(unsigned int num_of_65_5ms_interrupts): this generic delay
//function provides the specified delay as the number of 65.5 ms
//"clock ticks" from the Timer/Counter0 Overflow interrupt.
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//Note: This time delay is only accurate when the internal 8 MHz
//RC oscillator is used with the divide by 8 fuse set and
//then divided by 256. The 8-bit Timer0 register (TCNT0)
//overflows every 256 counts or every 65.5 ms.
//****************************************************************

void delay(unsigned int number_of_65_5ms_interrupts)
{
TCNT0 = 0x00; //reset timer0
input_delay = 0; //reset timer0 overflow counter
while(input_delay <= number_of_65_5ms_interrupts)

{
; //wait for number of interrupts
}

}

//****************************************************************
//initialize_ports: provides initial configuration for I/O ports
//****************************************************************

void initialize_ports(void)
{
DDRB =0xff; //set PORTB as output
PORTB=0x00; //initialize low

DDRC =0xff; //set PORTC as output
PORTC=0x00; //initialize low

DDRD =0xff; //set PORTD as output
PORTD=0x00; //initialize low
}

//****************************************************************

4.10.2 PULSE WIDTH MODULATION
Example: In this example, PWM signals are generated on OC1A (PORTB[1]) and OC1B
(PORTB[2]) pins. The ATmega328P is set for the internal 8 MHz oscillator with divide by
eight fuze set resulting in an overall operating frequency of 1 MHz.

//****************************************************************
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//pwm1.c
// - Generates PWM signals on OC1A (PORTB[1]) and OC1B (PORTB[2])
// - Internal 8 MHz oscillator with divide-by-eight fuse set
// - Overall operating frequency 1 MHz
//****************************************************************

#include <iom328pv.h>

//function prototypes*********************************************
void PWM_test(void);
void initialize_ports(void);

void main(void)
{
initialize_ports();
PWM_test();

while(1)
{
;
}

}

//****************************************************************
//void PWM_test(void): the PWM is configured to generate PWM signals
//on the OC1A (PORTB[1]) and OC1B (PORTB[2]) pins. The ATmega328P
//is set for the internal 8 MHz oscillator with divide by eight fuze
//set resulting in an overall operating frequency of 1 MHz.
//****************************************************************

void PWM_test(void)
{
TCCR1A = 0xA1; //freq = resonator/510=1 MHz/510

//freq = 1.9607 kHz
TCCR1B = 0x03; //no clock source division

//Init PWM duty cycle variables
//Set PWM to 50

OCR1BH = 0x00; //PWM duty cycle CH B
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OCR1BL = (unsigned char)(128);
OCR1AH = 0x00; //PWM duty cycle CH A
OCR1A = (unsigned char)(128);
}

//****************************************************************
//initialize_ports: provides initial configuration for I/O ports
//****************************************************************

void initialize_ports(void)
{
DDRB =0xff; //set PORTB as output
PORTB=0x01; //initialize low

DDRC =0xff; //set PORTC as output
PORTC=0x00; //initialize low

DDRD =0xff; //set PORTD as output
PORTD=0x00; //initialize low
}

//****************************************************************

Example: In this example Timer 1, Channel B (OC1B) is used to generate a pulse width
modulated signal on PORTB[2] (pin 16). An analog voltage provided to ADC Channel 3
PORTC[3] (pin 26) is used to set the desired duty cycle from 50–100%, as shown in Fig-
ure 4.16. The ATmega328P is set for the internal 8 MHz oscillator with divide by eight fuze set
resulting in an overall operating frequency of 1 MHz.

//****************************************************************
//pwm_adc.c: Timer 1, Channel B (OC1B) is used to generate a PWM
//signal on PORTB[2] (pin 16). An analog voltage provided to
//ADC Channel 3 PORTC[3] (pin 26) is used to set the desired duty
//cycle from 50 to 100
// The ATmega328P is set for the internal 8 MHz oscillator with
//divide by eight fuze set resulting in an overall operating
//frequency of 1 MHz.
//****************************************************************

#include <iom328pv.h>
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Figure 4.16: Pulse width modulation.

//function prototypes*********************************************
void InitADC( void);
unsigned int ReadADC(unsigned char channel);
void initialize_ports(void);
void set_pwm_parameters(void);

//global variables************************************************
unsigned int speed_int;
float speed_float;

//main program****************************************************

void main(void)
{
initialize_ports();
InitADC(); //Initialize ADC

while(1)
{
set_pwm_parameters();

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01024ED1V01Y202006DCS059&iName=master.img-136.jpg&w=378&h=212
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01024ED1V01Y202006DCS059&iName=master.img-136.jpg&w=378&h=212
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01024ED1V01Y202006DCS059&iName=master.img-136.jpg&w=378&h=212
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01024ED1V01Y202006DCS059&iName=master.img-136.jpg&w=378&h=212
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}

}

//****************************************************************
//InitADC: initialize analog-to-digital converter
//****************************************************************

void InitADC( void)
{
ADMUX = 0; //Select channel 0
ADCSRA = 0xC3; //Enable ADC & start 1st

//dummy conversion
//Set ADC module prescalar
//to 8 critical for
//accurate ADC results

while (!(ADCSRA & 0x10)); //Check if conversion ready
ADCSRA |= 0x10; //Clear conv rdy flag -

//set the bit
}
//***************************************************************
//ReadADC: read analog voltage from analog-to-digital converter -
//the desired channel for conversion is passed in as an unsigned
//character variable. The result is returned as a left justified,
//10 bit binary result. The ADC prescalar must be set to 8 to
//slow down the ADC clock at higher external clock frequencies
//(10 MHz) to obtain accurate results.
//****************************************************************

unsigned int ReadADC(unsigned char channel)
{
unsigned int binary_weighted_voltage, binary_weighted_voltage_low;
unsigned int binary_weighted_voltage_high; //weighted binary

//voltage
ADMUX = channel; //Select channel
ADCSRA |= 0x43; //Start conversion

//Set ADC module prescalar
//to 8 critical for
//accurate ADC results

while (!(ADCSRA & 0x10)); //Check if conversion ready
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ADCSRA |= 0x10; //Clear Conv rdy flag - set

//the bit
binary_weighted_voltage_low = ADCL; //Read 8 low bits first

//(important)
//Read 2 high bits,
//multiply by 256

binary_weighted_voltage_high = ((unsigned int)(ADCH << 8));
binary_weighted_voltage = binary_weighted_voltage_low |

binary_weighted_voltage_high;
return binary_weighted_voltage; //ADCH:ADCL
}

//****************************************************************
//initialize_ports: provides initial configuration for I/O ports
//****************************************************************

void initialize_ports(void)
{
DDRB =0xff; //set PORTB as output
PORTB=0x00; //initialize low

DDRC =0xff; //set PORTC as output
PORTC=0x00; //initialize low

DDRD =0xff; //set PORTD as output
PORTD=0x00; //initialize low
}

//****************************************************************
//void set_pwm_parameters(void): reads analog voltage on PORTA[3].
//Converts voltage to duty cycle: 0 VDC = 50
//****************************************************************

void set_pwm_parameters(void)
{

//Read PWM duty cycle setting PA3
speed_int = ReadADC(0x03); //speed setting unsigned int

//Convert max duty cycle setting
//0 VDC = 50
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speed_float = ((float)(speed_int)/(float)(0x0400));

//Convert to PWM constant 127-255
speed_int = (unsigned int)((speed_float * 127) + 128.0);

//Configure PWM clock
TCCR1A = 0xA1; //freq = int osc/64 = 1 MHz/64

//freq = 15.6 kHz
TCCR1B = 0x03; //no clock source division

//Init PWM duty cycle variables
OCR1BH = 0x00;
OCR1BL = (unsigned char)(speed_int);//Set PWM duty cycle CH B to 0

}

//*****************************************************************

4.10.3 INPUT CAPTURE MODE
This input capture example is based on a design developed by Julie Sandberg, BSEE and Kari
Fuller, BSEE at the University of Wyoming as part of their senior design project. In this ex-
ample the input capture channel (PORTB[0], ICP1) is being used to monitor the heart rate
(typically 50–120 beats per minute) of a patient. The microcontroller is clocked by an external 2
MHz ceramic resonator. The 555 timer is used to simulate a heartbeat as shown in Figure 4.17.
Results are displayed on a serial LCD module (Newhaven NHD-0216K3Z-FL-GBW-V3,
www.newhavendisplay.com). The ATmega328 communicates with the serial LCD via Universal
Synchronous and Asynchronous serial Receiver and Transmitter (USART) channel 0. USART
details are provided in the next chapter.

The resulting waveforms are provided in Figure 4.18. Note how ICP1 is triggered on every
rising edge of the heart beat signal from the 555 timer.

//****************************************************************
//file name: heartbeat3.c
//ATmega328 clocked by an external 2.0 MHz ceramic resonator
//****************************************************************

//include files***************************************************

//MICROCHIP register definitions for ATmega328
#include <iom328pv.h>

//function prototypes*********************************************
void delay(unsigned int number_of_32_8ms_interrupts);

www.newhavendisplay.com
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Figure 4.17: Heartbeat simulator.

void init_timer0_ovf_interrupt(void);
void initialize_ports(void);
void timer0_interrupt_isr(void);
void clear_LCD(void);
void calculate_trip_int(void);
void input_capture_ISR(void);
void initialize_ICP_interrupt(void);
void USART_init(void);

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01024ED1V01Y202006DCS059&iName=master.img-140.jpg&w=414&h=374
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Figure 4.18: Heartbeat ICP1 waveforms. Signal captured with a Siglent SDS 1104X-E digital
storage oscilloscope, four channel, 100 MHz.

void USART_transmit(unsigned char data);
void LCD_init(void);
void lcd_print_string(char str[]);
void move_LCD_cursor(unsigned char position);
void clear_LCD(void);
void print_heart_rate(void);
void heart_rate(void);

//interrupt handler definition
#pragma interrupt_handler timer0_interrupt_isr:17
#pragma interrupt_handler input_capture_ISR:11

//main program****************************************************

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01024ED1V01Y202006DCS059&iName=master.img-141.jpg&w=414&h=293
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//global variables
//initialize all variables as zero
unsigned int delay_timer = 0;
unsigned int first_edge=0;
unsigned int time_pulses=0;
unsigned int time_pulses_low=0;
unsigned int time_pulses_high=0;
unsigned int HR=0;
unsigned int i;

void main(void)
{
initialize_ports(); //initialize ports
USART_init();
LCD_init();
init_timer0_ovf_interrupt(); //init Timer0 for delay

clear_LCD();

initialize_ICP_interrupt(); //init input capture int

delay(30); //delay 1s
PORTD = PORTD | 0x80; //LED ON PORTD[7]

while(1)
{
delay(180); //delay 5s
print_heart_rate();
}

}

//****************************************************************
//initialize_ports: provides initial configuration for I/O ports
//****************************************************************

void initialize_ports(void)
{
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DDRB =0xfe; //PORTB[0] as input, set PORTB[7:1] as output
PORTB=0x00; //disable PORTB pull-up resistors

DDRC =0xff; //set PORTC as output
PORTC=0x00; //initialize low

DDRD =0xff; //set PORTD as output
PORTD=0x00; //initialize low
}

//****************************************************************
//delay(unsigned int num_of_32_8_ms_interrupts): this generic
//delay function provides the specified delay as the number of
//26.2 ms "clock ticks" from the Timer0 interrupt.
//Note: this function is only valid when using a 2.0 MHz
//time base.
//****************************************************************

void delay(unsigned int number_of_32_8ms_interrupts)
{
TCNT0 = 0x00; //reset delay_timer
delay_timer = 0;
while(delay_timer <= number_of_32_8ms_interrupts)

{
;
}

}

//****************************************************************
//int_timer0_ovf_interrupt(): The Timer0 overflow interrupt is
//being employed as a time base for a master timer for this
//project. The internal time base is set to operate at 2.0 MHz and
//then is divided by 256. The 8-bit Timer0 register (TCNT0)
//overflows every 256 counts or every 32.8 ms.
//****************************************************************

void init_timer0_ovf_interrupt(void)
{
TCCR0B = 0x04; //divide timer0 timebase by 256, overflow occurs
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//every 32.8 ms

TIMSK0 = 0x01; //enable timer0 overflow interrupt
asm("SEI"); //enable global interrupt
}

//****************************************************************
//void timer0_interrupt_isr(void)
//****************************************************************

void timer0_interrupt_isr(void)
{
delay_timer++; //increment timer
}

//****************************************************************
//initialize_ICP_interrupt: Initialize Timer/Counter 1 for
//input capture
//****************************************************************

void initialize_ICP_interrupt(void)
{
TIMSK1=0x20; //Allows input capture interrupts
TCCR1A=0x00; //No output comp or waveform generation mode
TCCR1B=0x45; //Capture on rising edge, clock prescalar=1024
TCNT1H=0x00; //Initially clear timer/counter 1
TCNT1L=0x00;
asm("SEI"); //Enable global interrupts
}

//****************************************************************

void input_capture_ISR(void)
{
PORTD ^= 0x80; //toggle LED PORTD[7]

if(first_edge==0)
{
ICR1L=0x00; //Clear ICR1 and TCNT1 on first edge
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ICR1H=0x00;
TCNT1L=0x00;
TCNT1H=0x00;
first_edge=1;
}

else
{
ICR1L=TCNT1L; //Capture time from TCNT1
ICR1H=TCNT1H;
TCNT1L=0x00;
TCNT1H=0x00;
first_edge=0;
}

heart_rate(); //Calculate the heart rate
TIFR1=0x20; //Clear the input capture flag
asm("RETI"); //Resets I flag to allow global interrupts
}

//****************************************************************
//void heart_rate(void)
//Note: Fosc = 2.0 MHz ceramic resonator
// TCCR1B set for divide by 1024
//****************************************************************

void heart_rate(void)
{
if(first_edge==0)
{
time_pulses_low = ICR1L; //Read 8 low bits first
time_pulses_high = ((unsigned int)(ICR1H << 8));
time_pulses = time_pulses_low | time_pulses_high;
if(time_pulses!=0) //1 counter increment = 0.51 ms

{ //Divide by 1953 to get seconds/pulse
HR=60/(time_pulses/1953); //(secs/min)/(secs/beat) =bpm
}

else
{
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HR=0;
}

}
else
{
HR=0;
}

}

//****************************************************************
//void print_heart_rate(void)
//****************************************************************

void print_heart_rate(void)
{
int hundreths_place, tens_place, ones_place;
char hundreths_place_char, tens_place_char, ones_place_char;

clear_LCD();

//move cursor to line 1, position 0
move_LCD_cursor(0x00);
lcd_print_string("Heart rate:");

//print HR
//move cursor to line 2, position 0
move_LCD_cursor(0x40);

hundreths_place = HR/100; //isolate first digit
//convert to ascii

hundreths_place_char = (char)(hundreths_place + 48);
USART_transmit(hundreths_place_char); //display first digit

//isolate tens place
tens_place = (int)((HR - (hundreths_place*100))/10);
tens_place_char=(char)(tens_place+48); //convert to ASCII
USART_transmit(tens_place_char); //print to LCD

//isolate ones place
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ones_place = (int)((HR - (hundreths_place*100))
ones_place_char=(char)(ones_place+48); //convert to ASCII
USART_transmit(ones_place_char); //print to LCD
}

//****************************************************************
//USART_init: initializes the USART system
//****************************************************************
void USART_init(void)
{
UCSR0A = 0x00; //control register init
UCSR0B = 0x08; //enable transmitter
UCSR0C = 0x06; //async, no parity, 1 stop bit

//8 data bits
//Baud Rate initialization

UBRR0H = 0x00; UBRR0L = 0x0c; //9600 BAUD, 2 MHz clocl
//set divider to 12 (0x0c)

}

//****************************************************************
//USART_transmit: transmits single byte of data
//****************************************************************

void USART_transmit(unsigned char data)
{
while((UCSR0A & 0x20)==0x00) //wait for UDRE flag
{
;
}

UDR0 = data; //load data to UDR for tx
}

//****************************************************************
//LCD_init: initializes the USART system
//****************************************************************
void LCD_init(void)
{
USART_transmit(0xFE);
USART_transmit(0x41); //LCD on
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USART_transmit(0xFE);
USART_transmit(0x46); //cursor to home
}

//****************************************************************
//void lcd_print_string(char str[])
//****************************************************************

void lcd_print_string(char str[])
{
int k = 0;

while(str[k] != 0x00)
{
USART_transmit(str[k]);
k = k+1;
}

}

//****************************************************************
//void move_LCD_cursor(unsigned char position)
//****************************************************************

void move_LCD_cursor(unsigned char position)
{
USART_transmit(0xFE);
USART_transmit(0x45);
USART_transmit(position);
}

//****************************************************************
//void clear_LCD(void)
//****************************************************************

void clear_LCD(void)
{
USART_transmit(0xFE);
USART_transmit(0x51);
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}

//****************************************************************

4.11 EXAMPLE: SERVO MOTOR CONTROL WITH THE
PWM SYSTEM IN C

A servo motor provides an angular displacement from 0–180ı. Most servo motors provide the
angular displacement relative to the pulse length of repetitive pulses sent to the motor, as shown
in Figure 4.19. A 1 ms pulse provides an angular displacement of 0ı while a 2 ms pulse provides
a displacement of 180ı. Pulse lengths in between these two extremes provide angular displace-
ments between 0 and 180ı. Usually, a 20–30 ms low signal is provided between the active pulses.

A test and interface circuit for a servo motor is provided in Figure 4.19. The PB0 and PB1
inputs of the ATmega328 provide for clockwise (CW) and counter-clockwise (CCW) rotation
of the servo motor, respectively. The time base for the ATmega328 is provided by a 128 KHz
external RC oscillator. Also, the external time base divide-by-eight circuit is active via a fuse
setting. Pulse width modulated signals to rotate the servo motor is provided by the ATmega328.
A voltage-follower op amp circuit is used as a buffer between the ATmega328 and the servo
motor.

The software to support the test and interface circuit is provided below.

//****************************************************************
//target controller: MICROCHIP ATmega328
//
//MICROCHIP AVR ATmega328PV Controller Pin Assignments
//Chip Port Function I/O Source/Dest Asserted Notes
//Pin 1 PUR Reset - 1M resistor to Vdd, tact switch to ground,
// 1.0 uF to ground
//Pin 7 Vdd - 1.0 uF to ground
//Pin 8 Gnd
//Pin 9 PB6 ceramic resonator connection
//Pin 10 PB7 ceramic resonator connection
//PORTB:
//Pin 14 PB0 to active high RC debounced switch - CW
//Pin 15 PB1 to active high RC debounced switch - CCW
//Pin 16 PB2 - to servo control input
//Pin 20 AVcc to Vdd
//Pin 21 ARef to Vdd
//Pin 22 AGnd to Ground
//
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Figure 4.19: Test and interface circuit for a servo motor.
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//include files***************************************************
//MICROCHIP register definitions for ATmega328
#include<iom328pv.h>
#include<macros.h>

//function prototypes*********************************************
void initialize_ports(void); //initializes ports
void read_new_input(void); //read input change PORTB
void init_timer0_ovf_interrupt(void); //init timer0 overflow

//main program****************************************************
//The main program checks PORTB for user input activity.
//If new activity is found, the program responds.

//global variables
unsigned char old_PORTB = 0x08; //present value of PORTB
unsigned char new_PORTB; //new values of PORTB
unsigned int PWM_duty_cycle;

void main(void)
{
initialize_ports(); //port config to default

//external ceramic resonator:
// 128 KHZ
//fuse set for divide by 8
//configure PWM clock

TCCR1A = 0xA1; //freq = oscillator/510
// = 128KHz/8/510
//freq = 31.4 Hz

TCCR1B = 0x01; //no clock source division
//duty cycle will vary from
//3.1
//= 8 counts to
//6.2
//= 16 counts
//initiate PWM duty cycle
//variables

PWM_duty_cycle = 12;
OCR1BH = 0x00;
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OCR1BL = (unsigned char)(PWM_duty_cycle);

//main activity loop - processor will continually cycle through
//loop for new activity.
//Activity initialized by external signals presented to PORTB[1:0]

while(1)
{
_StackCheck(); //check stack overflow
read_new_input(); //read input status changes
}

}//end main

//Function definitions
//****************************************************************
//initialize_ports: provides initial configuration for I/O ports
//****************************************************************

void initialize_ports(void)
{
//PORTB
DDRB=0xfc; //PORTB[7:2] out,PORTB[1:0] in
PORTB=0x00; //disable pull-up resistors

//PORTC
DDRC=0xff; //set PORTC[7-0] as output
PORTC=0x00; //initialize low

//PORTD
DDRD=0xff; //set PORTD[7-0] as output
PORTD=0x00; //initialize low
}

//****************************************************************
//read_new_input: functions polls PORTB for a change in status. If
//status change has occurred, appropriate function for status
//change is called.
// - Pin 1 PB0 to active high RC debounced switch - CW
// - Pin 2 PB1 to active high RC debounced switch - CCW
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//****************************************************************

void read_new_input(void)
{
new_PORTB = (PINB);
if(new_PORTB != old_PORTB){
switch(new_PORTB){ //process change in PORTB

case 0x01: //CW
while(PINB == 0x01)
{
PWM_duty_cycle = PWM_duty_cycle + 1;
if(PWM_duty_cycle > 16) PWM_duty_cycle = 16;
OCR1BH = 0x00;
OCR1BL = (unsigned char)(PWM_duty_cycle);
}

break;

case 0x02: //CCW
while(PINB == 0x02)
{
PWM_duty_cycle = PWM_duty_cycle - 1;
if(PWM_duty_cycle < 8) PWM_duty_cycle = 8;
OCR1BH = 0x00;
OCR1BL = (unsigned char)(PWM_duty_cycle);
}

break;

default:; //all other cases
} //end switch(new_PORTB)

} //end if new_PORTB
old_PORTB=new_PORTB; //update PORTB

}

//****************************************************************
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4.12 SUMMARY
In this chapter, we considered a microcontroller timer system, associated terminology for timer
related topics, discussed typical functions of a timer subsystem, studied timer hardware opera-
tions, and considered some applications where the timer subsystem of a microcontroller can be
used. We then took a detailed look at the timer subsystem aboard the ATmega328 and reviewed
the features, operation, registers, and programming of the three different types of timer channels.
We then investigated the built-in timing features of the ADE. We concluded with an example
employing a servo motor controlled by the ATmega328 PWM system and an inexpensive laser
light show.
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4.14 CHAPTER PROBLEMS
1. What are the trade-offs of using the internal RC oscillator vs. an external time base (e.g.,

ceramic resonator, crystal oscillator) for the ATmega328 time base?

2. Given an 8-bit free-running counter and the system clock rate of 24 MHz, find the time
required for the counter to count from zero to its maximum value.

3. If we desire to generate periodic signals with periods ranging from 125 ns to 500 ms, what
is the minimum frequency of the system clock?

4. Describe how you can compute the period of an incoming signal with varying duty cycles.

5. Describe how one can generate an aperiodic pulse with a pulse width of 2 min.
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6. Program the output compare system of the ATmega328 to generate a 1 kHz signal with a

10% duty cycle.

7. Design a microcontroller system to control a sprinkler controller that performs the fol-
lowing tasks. We assume that your microcontroller runs with 10 MHz clock and it has a
16-bit free-running counter. The sprinkler controller system controls two different zones
by turning sprinklers within each zone on and off. To turn on the sprinklers of a zone, the
controller needs to receive a 152.589 Hz PWM signal from your microcontroller. To turn
off the sprinklers of the same zone, the controller needs to receive the PWM signal with
a different duty cycle.

(a) Yourmicrocontroller needs to provide the PWMsignal with 10% duty cycle for 10ms
to turn on the sprinklers in zone one.

(b) After 15 min, your microcontroller must send the PWM signal with 15% duty cycle
for 10 ms to turn off the sprinklers in zone one.

(c) After 15 min, your microcontroller must send the PWM signal with 20% duty cycle
for 10 ms to turn on the sprinklers in zone two.

(d) After 15 min, your microcontroller must send the PWM signal with 25% duty cycle
for 10 ms to turn off the sprinklers in zone two.

(e) Should an external time base (e.g., crystal oscillator, ceramic resonator) be used when
communicating with an external LCD? Explain.

(f ) What is the highest frequency signal that may be generated by the ATmega328?
Explain.

(g) In instrumented balloon flights, the instrumentation package is powered after the
balloon is aloft. Develop a program for the ATmega328 that generates a 1-s pulse
after 50 min.

(h) How many simultaneous PWM signals may be generated by the ATmega328?

8. Modify the servo motor example to include a potentiometer connected to PORTA[0].
The servo will deflect 0ı for 0 VDC applied to PORTA[0] and 180ı for 5 VDC.

9. For the automated cooling fan example, what would be the effect of changing the PWM
frequency applied to the fan?

10. Modify the code of the automated cooling fan example to also display the set threshold
temperature.

11. Write functions to draw a circle, diamond, and a sine wave with the X-Y laser control
system.
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C H A P T E R 5

Serial Communication
Subsystem

Objectives: After reading this chapter, the reader should be able to:

• describe the differences between serial and parallel communication;

• provide definitions for key serial communications terminology;

• describe the operation of the Universal Synchronous andAsynchronous Serial Receiver
and Transmitter (USART);

• program the USART for basic transmission and reception using C;

• describe the operation of the Serial Peripheral Interface (SPI);

• program the SPI system using C;

• describe the purpose of the Two Wire Interface (TWI); and

• program the TWI system using C.

5.1 OVERVIEW
Serial communication techniques provide a vital link between a microcontroller and certain in-
put devices, output devices, and other microcontrollers. In this chapter, we investigate the serial
communication features beginning with a review of serial communication concepts and termi-
nology.1 We then investigate in turn the following serial communication systems available on
the ATmega328 microcontroller: the Universal Synchronous and Asynchronous Serial Receiver
and Transmitter (USART), the Serial Peripheral Interface (SPI), and the Two Wire Interface
(TWI). We provide guidance on how to program the USART, SPI, and TWI systems using
the C programming language.

1The sections on serial communication theory were adapted with permission from Microcontroller Fundamentals for En-
gineers and Scientists, S. F. Barrett and D. J. Pack, Morgan & Claypool Publishers, 2006.
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5.2 SERIAL COMMUNICATIONS
Microcontrollers must often exchange data with other microcontrollers or peripheral devices.
Data may be exchanged by using parallel or serial techniques. With parallel techniques, an entire
byte of data is typically sent simultaneously from the transmitting device to the receiver device.
While this is efficient from a time point of view, it requires eight separate lines for the data
transfer.

In serial transmission, a byte of data is sent a single bit at a time. Once eight bits have
been received at the receiver, the data byte is reconstructed. While this is inefficient from a time
point of view, it only requires a line (or two) to transmit the data.

The ATmega328 (UNO R3) is equipped with a host of different serial communication
subsystems including the serial USART, the serial peripheral interface or SPI, and the Two-wire
Serial Interface (TWI). What all of these systems have in common is the serial transmission of
data. Before discussing the different serial communication features aboard these processors, we
review serial communication terminology.

5.3 SERIAL COMMUNICATION TERMINOLOGY
In this section, we review common terminology associated with serial communication.

Asynchronous vs. Synchronous Serial Transmission: In serial communications, the
transmitting and receiving device must be synchronized to one another and use a common data
rate and protocol. Synchronization allows both the transmitter and receiver to be expecting data
transmission/reception at the same time. There are two basic methods of maintaining “sync”
between the transmitter and receiver: asynchronous and synchronous.

In an asynchronous serial communication system, such as the USART aboard the AT-
mega328, framing bits are used at the beginning and end of a data byte. These framing bits alert
the receiver that an incoming data byte has arrived and also signals the completion of the data
byte reception. The data rate for an asynchronous serial system is typically much slower than the
synchronous system, but it only requires a single wire between the transmitter and receiver.

A synchronous serial communication system maintains “sync” between the transmitter
and receiver by employing a common clock between the two devices. Data bits are sent and
received on the edge of the clock. This allows data transfer rates higher than with asynchronous
techniques but requires two lines, data and clock, to connect the receiver and transmitter.

Baud rate: Data transmission rates are typically specified as a Baud or bits per second rate.
For example, 9600 Baud indicates the data is being transferred at 9600 bits per second.

Full Duplex: Often serial communication systems must both transmit and receive data.
To do both transmission and reception, simultaneously, requires separate hardware for trans-
mission and reception. A single duplex system has a single complement of hardware that must
be switched from transmission to reception configuration. A full duplex serial communication
system has separate hardware for transmission and reception.
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Non-return to Zero (NRZ) Coding Format: There are many different coding standards

used within serial communications. The important point is the transmitter and receiver must
use a common coding standard so data may be interpreted correctly at the receiving end. The
Microchip ATmega328 uses a non-return to zero (NRZ) coding standard. In NRZ coding a
logic one is signaled by a logic high during the entire time slot allocated for a single bit, whereas
a logic zero is signaled by a logic low during the entire time slot allocated for a single bit.

The RS–232 Communication Protocol: When serial transmission occurs over a long
distance additional techniques may be used to insure data integrity. Over long distances logic
levels degrade and may be corrupted by noise. At the receiving end, it is difficult to discern a
logic high from a logic low. The RS-232 standard has been around for some time. With the
RS-232 standard (EIA-232), a logic one is represented with a �12 VDC level while a logic zero
is represented by a C12 VDC level. Chips are commonly available (e.g., MAX232) that convert
the 5 and 0 V output levels from a transmitter to RS-232 compatible levels and convert back
to 5 V and 0 V levels at the receiver. The RS-232 standard also specifies other features for this
communication protocol.

Parity: To further enhance data integrity during transmission, parity techniques may be
used. Parity is an additional bit (or bits) that may be transmitted with the data byte. The AT-
mega328 employs a single parity bit. With a single parity bit, a single bit error may be detected.
Parity may be even or odd. In even parity, the parity bit is set to one or zero such that the number
of ones in the data byte including the parity bit is even. In odd parity, the parity bit is set to one
or zero such that the number of ones in the data byte including the parity bit is odd. At the
receiver, the number of bits within a data byte including the parity bit are counted to insure that
parity has not changed, indicating an error, during transmission.

ASCII: The American Standard Code for Information Interchange (ASCII) is a stan-
dardized, seven bit method of encoding alphanumeric data. It has been in use for many decades,
so some of the characters and actions listed in the ASCII table are not in common use to-
day. However, ASCII is still the most common method of encoding alphanumeric data. The
ASCII code is provided in Figure 5.1. For example, the capital letter “G” is encoded in ASCII
as 0x47. The “0x” symbol indicates the hexadecimal number representation. Unicode is the inter-
national counterpart of ASCII. It provides standardized 16-bit encoding format for the written
languages of the world. ASCII is a subset of Unicode. The interested reader is referred to the
Unicode home page website, www.unicode.org, for additional information on this standardized
encoding format.

5.4 SERIAL USART
The serial Universal Synchronous and Asynchronous Serial Receiver and Transmitter (USART)
provide for full duplex (two way) communication between a receiver and transmitter. This is ac-
complished by equipping the ATmega328 with independent hardware for the transmitter and
receiver. The ATmega328 is equipped with a single USART channel. The USART is typically

 www.unicode.org
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Figure 5.1: ASCII Code. The ASCII code is used to encode alphanumeric characters. The “0x”
indicates hexadecimal notation in the C programming language.

used for asynchronous communication. That is, there is not a common clock between the trans-
mitter and receiver to keep them synchronized with one another. To maintain synchronization
between the transmitter and receiver, framing start and stop bits are used at the beginning and
end of each data byte in a transmission sequence. The Microchip USART also has synchronous
features. Space does not permit a discussion of these USART enhancements.

The ATmega USART is quite flexible. It has the capability to be set to a variety of data
transmission or Baud (bits per second) rates. The USART may also be set for data bit widths
of 5–9 bits with one or two stop bits. Furthermore, the ATmega USART is equipped with a
hardware generated parity bit (even or odd) and parity check hardware at the receiver. A single
parity bit allows for the detection of a single bit error within a byte of data. The USART may also
be configured to operate in a synchronous mode. We now discuss the operation, programming,
and application of the USART. Due to space limitations, we cover only the most basic capability
of this flexible and powerful serial communication system.

5.4.1 SYSTEM OVERVIEW
The block diagram for the USART is provided in Figure 5.2. The block diagram may appear
a bit overwhelming but realize there are four basic pieces to the diagram: the clock generator,
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Figure 5.2: Microchip AVR ATmega USART block diagram. (Figure used with permission of
Microchip, Inc., [www.microchop.com].)
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transmission hardware, receiver hardware, and three control registers (UCSRA, UCSBR, and
UCSRC). We discuss each in turn.

5.4.1.1 USART Clock Generator
The USART Clock Generator provides the clock source for the USART system and sets the
Baud rate for the USART. The Baud Rate is derived from the overall microcontroller clock
source. The overall system clock is divided by the USART Baud rate Registers UBRR[H:L]
and several additional dividers to set the Baud rate. For the asynchronous normal mode (U2X
bit D 0), the Baud Rate is determined using the following expression:

Baud rate D .system clock frequency/=.16.UBRR C 1//;

where UBRR is the contents of the UBRRH and UBRRL registers (0 to 4095). Solving for
UBRR yields:

UBRR D ..system clock generator/=.16 � Baud rate// � 1:

5.4.1.2 USART Transmitter
The USART transmitter consists of a Transmit Shift Register. The data to be transmitted is
loaded into the Transmit Shift Register via the USART I/O Data Register (UDR). The start
and stop framing bits are automatically appended to the data within the Transmit Shift Register.
The parity is automatically calculated and appended to the Transmit Shift Register. Data is
then shifted out of the Transmit Shift Register via the TxD pin a single bit at a time at the
established Baud rate. The USART transmitter is equipped with two status flags: the UDRE
and the TXC. The USART Data Register Empty (UDRE) flag sets when the transmit buffer is
empty indicating it is ready to receive new data. This bit should be written to a zero when writing
the USART Control and Status Register A (UCSRA). The UDRE bit is cleared by writing to
the USART I/O Data Register (UDR). The Transmit Complete (TXC) Flag bit is set to logic
one when the entire frame in the Transmit Shift Register has been shifted out and there are no
new data currently present in the transmit buffer. The TXC bit may be reset by writing a logic
one to it.

5.4.1.3 USART Receiver
TheUSARTReceiver is virtually identical to the USARTTransmitter except for the direction of
the data flow is reversed. Data is received a single bit at a time via the RxD pin at the established
Baud Rate. The USART Receiver is equipped with the Receive Complete (RXC) Flag. The
RXC flag is logic one when unread data exists in the receive buffer.
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5.4.1.4 USART Registers
In this section, we discuss the register settings for controlling the USART system. We have
already discussed the function of the USART I/O Data Register (UDR) and the USART Baud
Rate Registers (UBRRH and UBRRL). Note: The USART Control and Status Register C
(UCSRC) and the USART Baud Rate Register High (UBRRH) are assigned to the same I/O
location in the memory map. The URSEL bit (bit 7 of both registers) determine which register
is being accessed. The URSEL bit must be one when writing to the UCSRC register and zero
when writing to the UBRRH register.

Note: As previously mentioned, the ATmega328 is equipped with a single USART. The
registers to configure the ATmega328 is provided in Figure 5.3.

USART Control and Status Register A (UCSRA) The UCSRA register contains the RXC,
TXC, and the UDRE bits. The function of these bits have already been discussed.

USART Control and Status Register B (UCSRB) The UCSRB register contains the Re-
ceiver Enable (RXEN) bit and the Transmitter Enable (TXEN) bit. These bits are the “on/off ”
switch for the receiver and transmitter, respectively. The UCSRB register also contains the
UCSZ2 bit. The UCSZ2 bit in the UCSRB register and the UCSZ[1:0] bits contained in the
UCSRC register together set the data character size.

USART Control and Status Register C (UCSRC) The UCSRC register allows the user to
customize the data features to the application at hand. It should be emphasized that both the
transmitter and receiver be configured with the same data features for proper data transmission.
The UCSRC contains the following bits:

• USART Mode Select (UMSEL) – 0: asynchronous operation, 1: synchronous opera-
tion;

• USART Parity Mode (UPM[1:0]) – 00: no parity, 10: even parity, 11: odd parity;

• USART Stop Bit Select (USBS) – 0: 1 stop bit, 1: 2 stop bits; and

• USART Character Size (data width). (UCSZ[2:0]) – 000: 5-bit, 001: 6-bit, 010: 7-bit,
011: 8-bit, 111: 9-bit.

5.5 SYSTEM OPERATION AND PROGRAMMING IN C
The basic activities of the USART system consist of initialization, transmission, and reception.
These activities are summarized in Figure 5.4. Both the transmitter and receiver must be initial-
ized with the same communication parameters for proper data transmission. The transmission
and reception activities are similar except for the direction of data flow. In transmission, we
monitor for the UDRE flag to set indicating the data register is empty. We then load the data
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Figure 5.3: ATmega328 USART Registers.

for transmission into the UDR register. For reception, we monitor for the RXC bit to set in-
dicating there is unread data in the UDR register. We then retrieve the data from the UDR
register.

Note: As previously mentioned, the ATmega328 is equipped with a single USART chan-
nel. The registers to configure the ATmega328 is provided in Figure 5.3.

To program the USART, we implement the flow diagrams provided in Figure 5.4. In the
sample code provided, we assume the ATmega328 is operating at 10 MHz, and we desire a Baud
Rate of 9600, asynchronous operation, no parity, one stop bit, and eight data bits.
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Set USART

Communication Parameters

(data bits, stop bit, parity)
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Retrieve Received Data

from UDR Register

(c) USART Reception

Figure 5.4: USART Activities.

To achieve 9600 Baud with an operating frequency of 10 MHz requires that we set the
UBRR registers to 64 which is 0x40.2

//****************************************************************
//USART_init: initializes the USART system
//****************************************************************

void USART_init(void)
{
UCSRA = 0x00; //control register initialization
UCSRB = 0x08; //enable transmitter
UCSRC = 0x86; //async, no parity,

//1 stop bit, 8 data bits
//Baud Rate initialization

UBRRH = 0x00;
UBRRL = 0x40;

2Chapter examples were originally developed for the ATmega164 and provided in Microchip AVRMicrocontroller Primer:
Programming and Interfacing, 3rd ed., S. F. Barrett and D. J. Pack, 2019. The examples were adapted with permission for the
ATmega328.
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}

//****************************************************************
//USART_transmit: transmits single byte of data
//****************************************************************

void USART_transmit(unsigned char data)
{
while((UCSRA & 0x20)==0x00) //wait for UDRE flag

{
;
}

UDR = data; //load data to UDR for transmission
}

//****************************************************************
//USART_receive: receives single byte of data
//****************************************************************

unsigned char USART_receive(void)
{
while((UCSRA & 0x80)==0x00) //wait for RXC flag

{
;
}

data = UDR; //retrieve data from UDR
return data;
}

//****************************************************************

5.5.1 EXAMPLE: SERIAL LCD
When developing embedded solutions, it is useful to receive status information from the micro-
controller. Often liquid crystal displays (LCDs) are used for status display. LCDs are available
in serial or parallel configuration. Serial LCDs communicate with the microcontroller via the
USART system. In this example we configure the Newhaven Display #NHD-0216K3Z-FL-
GBW-V3 to communicate with the ATmega328. The interface is shown in Figure 5.5. The
ATmega328 USART channel is used. An abbreviated command set for the LCD is also shown.
Characters are sent directly to the LCD; commands must be preceded by 0xFE.
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VDD

1MVDD

1.0 uF sys reset

ZTT 2 MHz 

Resonator

Note: For USART operation, LCD R1 and R2 must be open

LCD Default Settings:

- 8-bit data

- 1 stop bit

- no parity

- 9600 BAUD

- contrast: 40 (1 to 50)

- backlight brightness: 1 (1 to 8)

Newhaven Display
NHD-0216K3Z-FL-GBW-V#

Figure 5.5: Serial LCD connections.

In this specific example a 9600 BAUD rate is required by the LCD. The ATmega328 is
clocked by a 2-MHz ceramic resonator. The UBRR registers (UBRR0H, UBRR0L) must be set
to 12 (0x0c) to achieve the desired 9600 BAUD (bits per second rate). The ASCII representation
of “G” is shown in Figure 5.6.

//****************************************************************
//serial_LCD
//****************************************************************

//Include Files: choose the appropriate include file depending on
//the compiler in use - comment out the include file not in use.
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0x47, P100_0111) at 9600 BAUD. 

The oscilloscope settings are 1 V/div horizontal, 100 us/div vertical. 

start 

bit
1 1 1 0 0 0 1 parity 

bit

stop 

bit

Figure 5.6: ASCII representation of “G”. Signal captured with a Siglent SDS 1104 X-E digital
storage oscilloscope, 4-channel, 100 MHz.

//include file(s) for JumpStart C for AVR Compiler****************
#include<iom328pv.h> //contains reg definitions

//include file(s) for the Atmel Studio gcc compiler
//#include <avr/io.h> //contains reg definitions

//function prototypes
void USART_init(void);
void USART_transmit(unsigned char data);
void LCD_init(void);
void lcd_print_string(char str[]);
void move_LCD_cursor(unsigned char position);
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int main(void)
{
unsigned int i;

USART_init();
LCD_init();

while(1)
{
USART_transmit(0xFE);
USART_transmit(0x46); //cursor to home

for(i=0; i<10; i++)
{
USART_transmit('G');
}

//move cursor to line 2, position 0
move_LCD_cursor(0x40);
lcd_print_string("Test 1 - 2");
}

}

//****************************************************************
//USART_init: initializes the USART system
//****************************************************************
void USART_init(void)
{
UCSR0A = 0x00; //control register init
UCSR0B = 0x08; //enable transmitter
UCSR0C = 0x06; //async, no parity,

//1 stop bit, 8 data bits
//Baud Rate initialization

UBRR0H = 0x00; UBRR0L = 0x0c; //9600 BAUD, 2 MHz clock
//divider set to 12

}

//****************************************************************
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//USART_transmit: transmits single byte of data
//****************************************************************

void USART_transmit(unsigned char data)
{
while((UCSR0A & 0x20)==0x00) //wait for UDRE flag

{
;
}

UDR0 = data; //load data to UDR for tx
}

//****************************************************************
//LCD_init: initializes the USART system
//****************************************************************

void LCD_init(void)
{
USART_transmit(0xFE);
USART_transmit(0x41); //LCD on

USART_transmit(0xFE);
USART_transmit(0x46); //cursor to home
}

//****************************************************************
//void lcd_print_string(char str[])
//****************************************************************

void lcd_print_string(char str[])
{
int k = 0;

while(str[k] != 0x00)
{
USART_transmit(str[k]);
k = k+1;
}

}
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//****************************************************************
//void move_LCD_cursor(unsigned char position)
//****************************************************************

void move_LCD_cursor(unsigned char position)
{
USART_transmit(0xFE);
USART_transmit(0x45);
USART_transmit(position);
}

//****************************************************************

5.5.2 EXAMPLE: PC SERIAL MONITOR
During embedded system development, it is helpful to receive viewable status back from the
microcontroller. Limited status may be sent to an LCD. In this example, we provide a one-way
link between the ATmega328 and a support computer (PC or laptop). This allows considerable
status to be sent and displayed on the support computer’s monitor.

The signal from the microcontroller is 5 VDC (if a 5-VDC power supply is used). For
proper interface to the PC, the 5 VDC signal must be translated to a compatible PC sig-
nal. This is easily accomplished using a USB cable with FTDI (Future Technology Devices
International—www.ftdichip.com set to 5 VDC. This cable is available from a number of
sources. We use a Sparkfun Electronics (www.sparkfun.com) DEV-09718 illustrated in Fig-
ure 5.7. Driver installation instructions for the cable is provided at the Sparkfun website.

Messages sent from the ATmega328 are displayed on the support computer’s monitor
using a serial monitor program. In this example, the open-source Arduino Software Integrated
Development Environment (IDE) is used.

Provided below is a program illustrating how to send characters or messages from the
ATmega328 to the support computer.

//****************************************************************
//usart_to_pc: provides one way communication from ATmega328
//USART0 back to a host (PC or laptop).
//In this example the ATmega328 was clocked by a 2.0 MHz
//external ceramic resonator.
//****************************************************************

//Include Files: choose the appropriate include file depending on
//the compiler in use - comment out the include file not in use.

www.ftdichip.com
www.sparkfun.com
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Figure 5.7: USART to computer communication link [www.sparkfun.com].

www.sparkfun.com
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01024ED1V01Y202006DCS059&iName=master.img-191.jpg&w=404&h=443
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//include file(s) for JumpStart C for AVR Compiler****************
#include<iom328pv.h> //contains reg definitions

//include file(s) for the Atmel Studio gcc compiler
//#include <avr/io.h> //contains reg definitions

//function prototypes
void USART_init(void);
void USART_transmit(unsigned char data);
void lcd_print_string(char str[]);
void delay_100ms(void);
void delay_1s(void);

int main(void)
{
unsigned int i;

USART_init();

for(i=0; i<5; i++)
{
USART_transmit('G');
lcd_print_string("\n");
delay_100ms();
}

for(i=0; i<5; i++)
{
lcd_print_string("Test print\n");
delay_100ms();
}

lcd_print_string("Test print\n\n"); //newline
lcd_print_string("Test \tprint\n"); //horizontal tab
}

//****************************************************************
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//delay_100ms: inaccurate, yet simple method of creating delay
// - processor clock: ceramic resonator at 2.0 MHz
// - 100 ms delay requires 200,000 clock cycles
// - nop requires 1 clock cycle to execute
//****************************************************************

void delay_100ms(void)
{
unsigned int i,j;

for(i=0; i < 200; i++)
{
for(j=0; j < 1000; j++)

{
asm("nop");
}

}
}

//****************************************************************
//delay_1s: inaccurate, yet simple method of creating delay
// - processor clock: ceramic resonator at 2.0 MHz
// - 100 ms delay requires 200,000 clock cycles
// - nop requires 1 clock cycle to execute
// - call 10 times for 1s delay
//****************************************************************

void delay_1s(void)
{
unsigned int i;

for(i=0; i< 10; i++)
{
delay_100ms();
}

}

//****************************************************************
//USART_init: initializes the USART system
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//****************************************************************

void USART_init(void)
{
UCSR0A = 0x00; //control register init
UCSR0B = 0x08; //enable transmitter
UCSR0C = 0x06; //async, no parity,

//1 stop bit, 8 data bits
//Baud Rate initialization

UBRR0H = 0x00; UBRR0L = 0x0c; //9600 BAUD, 2 MHz clock
//divider set to 12 (0x0c)

}

//****************************************************************
//USART_transmit: transmits single byte of data
//****************************************************************

void USART_transmit(unsigned char data)
{
while((UCSR0A & 0x20)==0x00) //wait for UDRE flag
{
;
}

UDR0 = data; //load data to UDR for tx
}

//****************************************************************
//LCD_init: initializes the USART system
//****************************************************************

void LCD_init(void)
{
USART_transmit(0xFE);
USART_transmit(0x41); //LCD on

USART_transmit(0xFE);
USART_transmit(0x46); //cursor to home
}
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//****************************************************************
//void lcd_print_string(char str[])
//****************************************************************

void lcd_print_string(char str[])
{
int k = 0;

while(str[k] != 0x00)
{
USART_transmit(str[k]);
k = k+1;
}

}

//****************************************************************
//void move_LCD_cursor(unsigned char position)
//****************************************************************

void move_LCD_cursor(unsigned char position)
{
USART_transmit(0xFE);
USART_transmit(0x45);
USART_transmit(position);
}

//****************************************************************

5.5.3 SERIAL PERIPHERAL INTERFACE (SPI)
The ATmega Serial Peripheral Interface or SPI provides for two-way serial communication be-
tween a transmitter and a receiver. In the SPI system, the transmitter and receiver share a com-
mon clock source. This requires an additional clock line between the transmitter and receiver but
allows for higher data transmission rates as compared to the USART. The SPI system allows
for fast and efficient data exchange between microcontrollers or peripheral devices. There are
many SPI compatible external systems available to extend the features of the microcontroller.
For example, a liquid crystal display or a DAC could be added to the microcontroller using the
SPI system.
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Figure 5.8: SPI Overview.

5.5.3.1 SPI Operation
The SPI may be viewed as a synchronous 16-bit shift register with an 8-bit half residing in
the transmitter and the other 8-bit half residing in the receiver as shown in Figure 5.8. The
transmitter is designated the master since it is providing the synchronizing clock source between
the transmitter and the receiver. The receiver is designated as the slave. A slave is chosen for
reception by taking its Slave Select (SS) line low. When the SS line is taken low, the slave’s
shifting capability is enabled.

SPI transmission is initiated by loading a data byte into the master configured SPI Data
Register (SPDR). At that time, the SPI clock generator provides clock pulses to the master
and also to the slave via the SCK pin. A single bit is shifted out of the master designated shift
register on theMaster Out Slave In (MOSI) microcontroller pin on every SCK pulse.The data is
received at the MOSI pin of the slave designated device. At the same time, a single bit is shifted
out of the Master In Slave Out (MISO) pin of the slave device and into the MISO pin of the
master device. After eight master SCK clock pulses, a byte of data has been exchanged between
the master- and slave-designated SPI devices. Completion of data transmission in the master
and data reception in the slave is signaled by the SPI Interrupt Flag (SPIF) in both devices. The
SPIF flag is located in the SPI Status Register (SPSR) of each device. At that time, another
data byte may be transmitted.

5.5.3.2 Registers
The registers for the SPI system are provided in Figure 5.9. We will discuss each one in turn.
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Figure 5.9: SPI Registers [www.microchip.com].

SPI Control Register (SPCR) The SPI Control Register (SPCR) contains the “on/off ”
switch for the SPI system. It also provides the flexibility for the SPI to be connected to a wide
variety of devices with different data formats. It is important that both the SPI master and slave
devices be configured for compatible data formats for proper data transmission. The SPCR con-
tains the following bits.

• SPI Enable (SPE) is the “on/off ” switch for the SPI system. A logic one turns the
system on and logic zero turns it off.

• DataOrder (DORD) allows the direction of shift frommaster to slave to be controlled.
When the DORD bit is set to one, the least significant bit (LSB) of the SPI Data
Register (SPDR) is transmitted first. When the DORD bit is set to zero the Most
Significant Bit (MSB) of the SPDR is transmitted first.

• TheMaster/Slave Select (MSTR) bit determines if the SPI systemwill serve as amaster
(logic one) or slave (logic zero).

• The Clock Polarity (CPOL) bit allows determines the idle condition of the SCK pin.
When CPOL is one, SCK will idle logic high; whereas, when CPOL is zero, SCK
will idle logic zero.

• The Clock Phase (CPHA) determines if the data bit will be sampled on the leading
(0) or trailing (1) edge of the SCK.

• The SPI SCK is derived from the microcontroller’s system clock source. The system
clock is divided down to form the SPI SCK. The SPI Clock Rate Select bits SPR[1:0]

www.microchip.com
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and theDouble SPI Speed Bit (SPI2X) are used to set the division factor.The following
divisions may be selected using SPI2X, SPR1, SPR0:

– 000: SCK D system clock/4
– 001: SCK D system clock/16
– 010: SCK D system clock/64
– 011: SCK D system clock/1284
– 100: SCK D system clock/2
– 101: SCK D system clock/8
– 110: SCK D system clock/32
– 111: SCK D system clock/64

SPI Status Register (SPSR) The SPSR contains the SPI Interrupt Flag (SPIF). The flag sets
when eight data bits have been transferred from the master to the slave. The SPIF bit is cleared
by first reading the SPSR after the SPIF flag has been set and then reading the SPIData Register
(SPDR). The SPSR also contains the SPI2X bit used to set the SCK frequency.

SPIData Register (SPDR) As previously mentioned, writing a data byte to the SPDR initi-
ates SPI transmission.

5.6 SPI PROGRAMMING IN THE ARDUINO
DEVELOPMENT ENVIRONMENT

The ADE provides the “shiftOut” command to provide ISP style serial communications [www.
Arduino.cc]. The shiftOut command requires four parameters.

• dataPin: the Arduino UNO R3 DIGITAL pin to be used for serial output.

• clockPin: the Arduino UNO R3 DIGITAL pin to be used for the clock.

• bitOrder: indicates whether the data byte will be sent most significant bit first (MS-
BFIRST) or least significant bit first (LSBFIRST).

• value: the data byte that will be shifted out.

To use the shiftOut command, the appropriate pins are declared as output using the pin-
Mode command in the setup() function.The shiftOut command is then called at the appropriate
place within the loop() function using the following syntax:

shiftOut(dataPin, clockPin, LSBFIRST, value);

As a result of the this command, the value specified will be serially shifted out of the data
pin specified, least significant bit first, at the clock rate provided at the clock pin.

www.Arduino.cc
www.Arduino.cc
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5.7 SPI PROGRAMMING IN C
To program the SPI system in C, the system must first be initialized with the desired data
format. Data transmission may then commence. Functions for initialization, transmission, and
reception are provided below. In this specific example, we divide the clock oscillator frequency
by 128 to set the SCK clock frequency. Note: For proper SPI operation the slave select pin
(PB2) must be set to output even if not used [www.avrfreaks.com].

//****************************************************************
//spi_init: initializes spi system
//****************************************************************

void spi_init(unsigned char control)
{
DDRB = 0x2c; //Set SCK (PB5), MOSI (PB3), /SS (PB2)

//for output, others to input
SPCR = 0x53; //Configure SPI Control Register (SPCR)

//SPIE:0,SPE:1,DORD:0,MSTR:1
//CPOL:0,CPHA:0,SPR:1,SPR0:1
//Divide clock by 128

}

//****************************************************************
//spi_write: Used by SPI master to transmit a data byte
//****************************************************************

void spi_write(unsigned char byte)
{
SPDR = byte;
while (!(SPSR & 0x80));
}

//****************************************************************
//spi_read: Used by SPI slave to receive data byte
//****************************************************************

unsigned char spi_read(void)
{
while (!(SPSR & 0x80));

www.avrfreaks.com
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return SPDR;
}

//****************************************************************

5.7.1 EXAMPLE: LED STRIP
LED strips may be used for motivational (fun) optical displays, games, or for instrumentation-
based applications. In this example we control an LPD8806-based LED strip. We use a 1-m,
32-RGB LED strip available from Adafruit (#306) for approximately $30 USD [www.adafruit.
com].

The red, blue, and green component of each RGB LED is independently set using an
eight-bit code. The most significant bit (MSB) is logic one followed by seven bits to set the
LED intensity (0–127). The component values are sequentially shifted out of the ATmega328
using the Serial Peripheral Interface (SPI) features. The first component value shifted out corre-
sponds to the LED nearest the microcontroller. Each shifted component value is latched to the
corresponding R, G, and, B component of the LED. As a new component value is received, the
previous value is latched and held constant. An extra byte is required to latch the final parameter
value. A zero byte .00/16 is used to complete the data sequence and reset back to the first LED
[www.adafruit.com].

Only four connections are required between the ATmega328 and the LED strip as shown
in Figure 5.10. The connections are color coded: red-power, black-ground, yellow-data, and
green-clock. The ATmega328 is equipped with a single SPI channel. This channel is used to
program the ATmega328 using ISP techniques. It is important to note the LED strip requires
a supply of 5 VDC and a current rating of 2 amps per meter of LED strip. In this example we
use the Adafruit #276 5 V 2 A (2000 mA) switching power supply [www.adafruit.com].

In this example each RGB component is sent separately to the strip. The example illus-
trates how each variable in the program controls a specific aspect of the LED strip. Here are
some important implementation notes.

• SPI must be configured for most significant bit (MSB) first.

• LED brightness is seven bits. Most significant bit (MSB) must be set to logic one.

• Each LED requires a separate R-G-B intensity component. The order of data is G-R-
B.

• After sending data for all LEDs. A byte of (0x00) must be sent to return strip to first
LED.

• Data stream for each LED is: 1-G6-G5-G4-G3-G2-G1-G0-1-R6-R5-R4-R3-R2-
R1-R0-1-B6-B5-B4-B3-B2-B1-B0.

www.adafruit.com
www.adafruit.com
www.adafruit.com
www.adafruit.com
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Figure 5.10: ATmega328 controlling LED strip [www.adafruit.com].

www.adafruit.com
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//****************************************************************
//spi.c
//****************************************************************
//RGB led strip tutorial: illustrates different variables within
//RGB LED strip
//
//LED strip LDP8806 - available from www.adafruit.com (#306)
//
//Connections:
// - External 5 VDC supply - Adafruit 5 VDC, 2A (#276) - red
// - Ground - black
// - Serial Data In: ATmega328: MOSI PORTB[3], pin 17
// - CLK: ATmega328: SCK PORTB[5], pin 19
//
//Variables:
// - LED_brightness - set intensity from 0 to 127
// - segment_delay - delay between LED RGB segments
// - strip_delay - delay between LED strip update
//
//Notes:
// - SPI must be configured for Most significant bit (MSB) first
// - LED brightness is seven bits. Most significant bit (MSB)
// must be set to logic one
// - Each LED requires a separate R-G-B intensity components.
// The order of data is G-R-B.
// - After sending data for all strip LEDs. A byte of (0x00) must
// be sent to return strip to first LED.
// - Data stream for each LED is:
//1-G6-G5-G4-G3-G2-G1-G0-1-R6-R5-R4-R3-R2-R1-R0-1-B6-B5-B4-B3-B2-B1-B0
//
//This example code is in the public domain.
//****************************************************************

#define LED_strip_latch 0x00

//function prototypes
void spi_init(void);
void spi_write(unsigned char byte);
void delay_1s(void);
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void delay_100ms(void);
void clear_strip(void);

//Include Files: choose the appropriate include file depending on
//the compiler in use - comment out the include file not in use.

//include file(s) for JumpStart C for AVR Compiler****************
#include<iom328pv.h> //contains reg definitions

//include file(s) for the Atmel Studio gcc compiler
//#include <avr/io.h> //contains reg definitions

unsigned char strip_length = 32; //number of RGB LEDs in strip
unsigned char LED_brightness; //0 to 127
unsigned char position; //LED position in strip

int main(void)
{
spi_init();
spi_write(LED_strip_latch); //reset to first segment
clear_strip(); //all strip LEDs to black
delay_100ms();

//increment the green intensity of the strip LEDs
for(LED_brightness = 0; LED_brightness <= 60;

LED_brightness = LED_brightness + 10)
{
for(position = 0; position<strip_length; position = position+1)

{
spi_write(0x80 | LED_brightness); //Green - MSB 1
spi_write(0x80 | 0x00); //Red - none
spi_write(0x80 | 0x00); //Blue - none

delay_100ms();
}

spi_write(LED_strip_latch); //reset to first segment
delay_100ms();
}
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clear_strip(); //all strip LEDs to black
delay_100ms();

//increment the red intensity of the strip LEDs
for(LED_brightness = 0; LED_brightness <= 60;

LED_brightness = LED_brightness + 10)
{
for(position = 0; position<strip_length; position = position+1)
{
spi_write(0x80 | 0x00); //Green - none
spi_write(0x80 | LED_brightness); //Red - MSB1
spi_write(0x80 | 0x00); //Blue - none

delay_100ms();
}

spi_write(LED_strip_latch); //reset to first segment
delay_100ms();
}

clear_strip(); //all strip LEDs to black
delay_100ms();

//increment the blue intensity of the strip LEDs
for(LED_brightness = 0; LED_brightness <= 60;

LED_brightness = LED_brightness + 10)
{
for(position = 0; position<strip_length; position = position+1)

{
spi_write(0x80 | 0x00); //Green - none
spi_write(0x80 | 0x00); //Red - none
spi_write(0x80 | LED_brightness); //Blue - MSB1

delay_100ms();
}

spi_write(LED_strip_latch); //reset to first segment
delay_100ms();
}

clear_strip(); //all strip LEDs to black
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delay_100ms();

}

//****************************************************************

void clear_strip(void)
{
//clear strip
for(position = 0; position<strip_length; position = position+1)

{
spi_write(0x80 | 0x00); //Green - none
spi_write(0x80 | 0x00); //Red - none
spi_write(0x80 | 0x00); //Blue - none

spi_write(LED_strip_latch); //Latch with zero
delay_100ms(); //clear delay
}

}

//****************************************************************
//spi_init: initializes spi system
//****************************************************************
void spi_init()
{
DDRB = 0x2c; //Set SCK (PB5), MOSI (PB3), /SS (PB2)

//for output, others to input
//Configure SPI Control Register (SPCR)

SPCR = 0x5F; //SPIE:0
//SPE: 1 SPI on
//DORD:0 MSB first
//MSTR:1 Master (provides clock)
//CPOL:1 Required by LED strip
//CPHA:1 Required by LED strip
//SPR1:1 SPR[1:0] 11: div clock 128
//SPR0:1

}

//****************************************************************
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//spi_write: Used by SPI master to transmit a data byte
//****************************************************************

void spi_write(unsigned char byte)
{
SPDR = byte;
while (!(SPSR & 0x80))
{
;
}

}

//****************************************************************
//delay_100ms: inaccurate, yet simple method of creating delay
// - processor clock: ceramic resonator at 2.0 MHz
// - 100 ms delay requires 200,000 clock cycles
// - nop requires 1 clock cycle to execute
//****************************************************************

void delay_100ms(void)
{
unsigned int i,j;

for(i=0; i < 200; i++)
{
for(j=0; j < 1000; j++)

{
asm("nop");
}

}
}

//****************************************************************
//delay_1s: inaccurate, yet simple method of creating delay
// - processor clock: ceramic resonator at 2.0 MHz
// - 100 ms delay requires 200,000 clock cycles
// - nop requires 1 clock cycle to execute
// - call 10 times for 1s delay
//****************************************************************
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void delay_1s(void)
{
unsigned int i;

for(i=0; i< 10; i++)
{
delay_100ms();
}

}

//****************************************************************

5.8 TWO-WIRE SERIAL INTERFACE
The TWI subsystem allows the system designer to connect a number of TWI configured devices
(microcontrollers, transducers, displays, memory storage, etc.) together into a system using a
two-wire interconnecting scheme. The TWI allows a maximum of 128 devices to be connected
together. Each device has its own unique address and may both transmit and receive over the
two-wire bus at frequencies up to 400 kHz.This allows the device to freely exchange information
with other devices in a small area network.The TWI is alternately known as the Inter-Integrated
Circuit (I 2C ) protocol [Philips [4]].

An overview of the TWI system is shown in Figure 5.11. Devices within the small area
network are connected by two wires to share data (SDA) and a common clock (SCL). Pullup
resistors are required on each of the lines. TWI compatible devices are connected to the SCL
and SDA lines as shown.

The Microchip TWI system is a state machine to control the “hand shaking” protocol be-
tween the TWI master(s) and the multiple slave devices on the TWI bus. If the system contains
more than one master designated device, arbitration detection and resolution protocols prevent
bus contention. Each slave device has a unique seven bit address to allow one-to-one communi-
cation using the Address Match Unit and address comparator. The TWI bus frequency should
not exceed 400 kHz. The bus frequency is derived from the Microchip microcontroller clock
signal using the Bit Rate Generator which contains prescalar hardware. The Microchip TWI
system also includes signal conditioning features for the SCL and SDA pins including slew rate
and spike control.

The TWI system is configured and controlled using a series of registers shown in Fig-
ure 5.11. Details on specific bit settings are provided in the Microchip ATmega328 datasheet
and will not be duplicated here [www.microchip.com]. These include:

• TWBR: TWI Bit Rate Register

www.microchip.com
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Figure 5.11: TWI system overview [Microchip [5]].

• TWCR: TWI Control Register

• TWSR: TWI Status Register

• TWDR: TWI Data Register

• TWAR: TWI Address Register

• TWAMR: TWI Slave Address Mask Register

Data is exchanged by devices on the TWI bus using s carefully orchestrated “hand shak-
ing” protocol as shown in Figure 5.12. On the left-hand side of the figure are the actions required
by the TWI application program and the right side of the figure contains the response from the
TWI compatible slave hardware. At each step in the exchange protocol action is initiated by the
application program hosted on the TWI master device with a corresponding response from the
slave configured device. If the expected response is not received, an error is triggered.
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5.8.1 EXAMPLE: TWI-COMPATIBLE LCD
In this example a TWI compatible LCD is used to display temperature data from an LM34
temperature sensor, as shown in Figure 5.13. Note how the LCD is connected to the TWI bus
via the SDA and SCL pins.

//****************************************************************
//twi2.c
//
//ATmega328 is clocked by a 2.0 MHz ceramic resonator
//
//Example provides twi communication with twi configured LCD.
// - LCD: Newhaven NHD-0216K3Z-FL-GBW-V3
// - LCD short R1 jumper, open R2 jumper
//Adapted from Microchip provided TWI examples [www.microchip.com]
//****************************************************************
//Include Files: choose the appropriate include file depending on
//the compiler in use - comment out the include file not in use.
//
//include file(s) for JumpStart C for AVR Compiler****************
#include<iom328pv.h> //contains reg definitions

//include file(s) for the Atmel Studio gcc compiler
//#include <avr/io.h> //contains reg definitions

//TWSR status codes with prescaler = 0
#define START 0x08 //START condition transmitted
#define START_REP 0x10 //Repeated START transmitted
#define MT_SLA_NO_ACK 0x20 //SLA+W has been transmitted,

//NOT ACK has been received
#define MT_SLA_ACK 0x18 //SLA+W has been transmitted,

//ACK has been received
#define MT_DATA_ACK 0x28 //Data byte has been transmitted,

//ACK has been received
#define MT_DATA_NO_ACK 0x30 //Data byte has been transmitted,

//NOT ACK has been received
#define MR_SLA_ACK 0x40 //SLA+R has been transmitted,

//ACK has been received
#define ARB_LOST 0x38 //Arbitration lost in SLA+W or

//data bytes
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Figure 5.13: TWI connecting sensor to LCD [www.sparkfun.com].

www.sparkfun.com
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//clock specifications
#define ceramic_res_freq 2000000UL //ATmega328 operating freq
#define scl_clock 100000L //desired TWI bus freq

//peripheral device addresses
#define LCD_twi_addr 0x50 //addr - LSB 0 for write

//function prototypes
void initialize_ports(void);
void ERROR(unsigned char error_number);
void LCD_init(void);
void lcd_print_string(char str[]);
void move_LCD_cursor(unsigned char position);
void twi_initialize(void);
void twi_send_byte(unsigned char slave_device_addr,

unsigned char send_data);
void InitADC( void);
unsigned int ReadADC(unsigned char channel);
void temperatureToLCD(unsigned int);
void delay_10ms(void);
void delay_100ms(void);

void main(void)
{
unsigned int temp_int;

initialize_ports();
twi_initialize();
InitADC();
LCD_init();
delay_100ms();

while(1)
{
twi_send_byte(LCD_twi_addr, 0xFE);
twi_send_byte(LCD_twi_addr, 0x51); //clear LCD
delay_10ms();

twi_send_byte(LCD_twi_addr, 0xFE);
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twi_send_byte(LCD_twi_addr, 0x46); //cursor to home
lcd_print_string("Temp:");
delay_10ms();

temp_int = ReadADC(0x02); //read temp from LM34

//move cursor line 2, pos 0
move_LCD_cursor(0x40);
temperatureToLCD(temp_int);
delay_100ms();
delay_100ms();
}

}

//***************************************************************
//initialize_ports: provides initial configuration for I/O ports
//***************************************************************

void initialize_ports(void)
{
DDRB=0xff; //PORTB[7:0] as output
PORTB=0x00; //initialize low

DDRC=0xfb; //set PORTC as output, C[2] input
PORTC=0x00; //initialize low

DDRD=0xff; //set PORTD as output
PORTD=0x00; //initialize low

}

//***************************************************************
//void ERROR - indicates error source with LED pattern
//***************************************************************

void ERROR(unsigned char error_number)
{
//Turn off error LEDs
PORTC = 0x00;
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if(error_number == 1) //Error 01
PORTC = 0x01;

else if(error_number == 2) //Error 10
PORTC = 0x02;

else if(error_number == 3) //Error 11
PORTC = 0x03;

else
PORTC = 0x00;

}

//***************************************************************
//LCD_init: initializes the USART system
//***************************************************************
void LCD_init(void)
{
twi_send_byte(LCD_twi_addr, 0xFE);
twi_send_byte(LCD_twi_addr, 0x41); //LCD on

twi_send_byte(LCD_twi_addr, 0xFE);
twi_send_byte(LCD_twi_addr, 0x46); //cursor to home

twi_send_byte(LCD_twi_addr, 0xFE);
twi_send_byte(LCD_twi_addr, 0x52);
twi_send_byte(LCD_twi_addr, 25); //set contrast

twi_send_byte(LCD_twi_addr, 0xFE);
twi_send_byte(LCD_twi_addr, 0x53);
twi_send_byte(LCD_twi_addr, 4); //set backlight
}

//***************************************************************
//void lcd_print_string(char str[])
//***************************************************************

void lcd_print_string(char str[])
{
int k = 0;
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while(str[k] != 0x00)
{
twi_send_byte(LCD_twi_addr, str[k]);
k = k+1;
delay_10ms();
}

}

//***************************************************************
//void move_LCD_cursor(unsigned char position)
//***************************************************************

void move_LCD_cursor(unsigned char position)
{
twi_send_byte(LCD_twi_addr, 0xFE);
twi_send_byte(LCD_twi_addr, 0x45);
twi_send_byte(LCD_twi_addr, position);
delay_10ms();
}

//***************************************************************
//void twi_initialize(void)
//***************************************************************

void twi_initialize(void)
{
//set twi frequency to 100 kHz with ceramic
//resonator frequency at 2.0 MHz
//twi pre-scalar = 1

TWSR = 0; //no pre-scale
TWBR = ((ceramic_res_freq/scl_clock)-16)/2;
TWCR = TWCR | 0x04; //TWEN = 1
}

//***************************************************************
//void twi_send_byte(unsigned char slave_device_addr,
// unsigned char send_data);



5.8. TWO-WIRE SERIAL INTERFACE 181
//***************************************************************

void twi_send_byte(unsigned char slave_device_addr,
unsigned char send_data)

{
//Send START condition
TWCR = (1<<TWINT)|(1<<TWSTA)|(1<<TWEN);

//Wait for TWINT Flag set. This indicates that the START
//condition has been transmitted
while (!(TWCR & (1<<TWINT)));

//Check value of TWI Status Register. Mask prescaler bits.
//If status different from START go to ERROR
if ((TWSR & 0xF8) != START)

ERROR(1);

//Load SLA_W into TWDR Register. Clear TWINT bit in
//TWCR to start transmission of address
TWDR = slave_device_addr;
TWCR = (1<<TWINT) | (1<<TWEN);

//Wait for TWINT Flag set. This indicates that the SLA+W has
//been transmitted, and ACK/NACK has been received.
while (!(TWCR & (1<<TWINT)));

//Check value of TWI Status Register. Mask prescaler bits.
//If status different from MT_SLA_ACK go to ERROR
if((TWSR & 0xF8) != MT_SLA_ACK)

ERROR(2);

//Load DATA into TWDR Register. Clear TWINT bit in TWCR
//to start transmission of data
TWDR = send_data;
TWCR = (1<<TWINT) | (1<<TWEN);

//Wait for TWINT Flag set. This indicates that the
//DATA has been transmitted, and ACK/NACK has been received.
while (!(TWCR & (1<<TWINT)));
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//Check value of TWI Status Register. Mask prescaler bits.
//If status different from MT_DATA_ACK go to ERROR
if((TWSR & 0xF8) != MT_DATA_ACK)

ERROR(3);

//Transmit STOP condition
TWCR = (1<<TWINT)|(1<<TWEN) | (1<<TWSTO);
}

//***************************************************************
//InitADC: initialize analog-to-digital converter
//***************************************************************

void InitADC( void)
{
ADMUX = 0; //Select channel 0
ADCSRA = 0xC3; //Enable ADC & start 1st

//dummy conversion
//Set ADC module prescalar
//to 8 critical for
//accurate ADC results

while (!(ADCSRA & 0x10)); //Check if conversion ready
ADCSRA |= 0x10; //Clear conv rdy flag -

//set the bit
}

//***************************************************************
//ReadADC: read analog voltage from analog-to-digital converter -
//the desired channel for conversion is passed in as an unsigned
//character variable. The result is returned as a left justified,
//10 bit binary result. The ADC prescalar must be set to 8 to
//slow down the ADC clock at higher external clock frequencies
//(10 MHz) to obtain accurate results.
//***************************************************************

unsigned int ReadADC(unsigned char channel)
{
unsigned int binary_weighted_voltage, binary_weighted_voltage_low;
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unsigned int binary_weighted_voltage_high; //weighted binary

//voltage
ADMUX = channel; //Select channel
ADCSRA |= 0x43; //Start conversion

//Set ADC module prescalar
//to 8 critical for
//accurate ADC results

while (!(ADCSRA & 0x10)); //Check if conversion ready
ADCSRA |= 0x10; //Clear Conv rdy flag - set

//the bit
binary_weighted_voltage_low = ADCL; //Read 8 low bits first

//(important)
//Read 2 high bits,
//multiply by 256

binary_weighted_voltage_high = ((unsigned int)(ADCH << 8));
binary_weighted_voltage = binary_weighted_voltage_low |

binary_weighted_voltage_high;
return binary_weighted_voltage; //ADCH:ADCL
}

//***************************************************************

void temperatureToLCD(unsigned int ADCValue)

{
float voltage,temperature;
unsigned int tens, ones, tenths;

voltage = (float)ADCValue*5.0/1024.0;
temperature = voltage*100;

tens = (unsigned int)(temperature/10);
ones = (unsigned int)(temperature-(float)tens*10);
tenths = (unsigned int)(((temperature-(float)tens*10)

-(float)ones)*10);

twi_send_byte(LCD_twi_addr, ((unsigned char)(tens)+48) );
twi_send_byte(LCD_twi_addr, ((unsigned char)(ones)+48));
twi_send_byte(LCD_twi_addr, '.');



184 5. SERIAL COMMUNICATION SUBSYSTEM
twi_send_byte(LCD_twi_addr, ((unsigned char)(tenths)+48));
twi_send_byte(LCD_twi_addr, 'F');

}

//***************************************************************
//delay_10ms: inaccurate, yet simple method of creating delay
// - processor clock: ceramic resonator at 2 MHz
// - nop requires 1 clock cycle to execute
// - 10 ms delay requires 20,000 clock cycles
//***************************************************************

void delay_10ms(void)
{
unsigned int i,j;

for(i=0; i < 20; i++)
{
for(j=0; j < 1000; j++)

{
asm("nop"); //inline assembly
} //nop: no operation

} //requires 1 clock cycle
}

//***************************************************************
//delay_10ms: inaccurate, yet simple method of creating delay
// - processor clock: ceramic resonator at 2 MHz
// - nop requires 1 clock cycle to execute
// - 100 ms delay requires 200,000 clock cycles
//***************************************************************

void delay_100ms(void)
{
unsigned int i,j;

for(i=0; i < 200; i++)
{
for(j=0; j < 1000; j++)
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{
asm("nop"); //inline assembly
} //nop: no operation

} //requires 1 clock cycle
}

//***************************************************************

This example demonstrated how to write to a TWI configured device. The TWI system
may also be used to read from TWI configured peripherals. Microchip provides a library of TWI
functions [www.microchip.com].

5.9 SUMMARY
In this chapter, we have discussed the differences between parallel and serial communications
and key serial communication related terminology. We then in turn discussed the operation of
USART, SPI, and TWI serial communication systems. We also provided basic code examples
to communicate with the USART, SPI, and TWI systems.
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5.11 CHAPTER PROBLEMS
1. Summarize the differences between parallel and serial bit stream conversion techniques.

2. Summarize the differences between the USART, SPI, and TWI methods of serial com-
munication.

3. Draw a block diagram of the USART system, label all key registers, and all keys USART
flags.

4. Draw a block diagram of the SPI system, label all key registers, and all keys SPI flags.

5. Draw a block diagram of the TWI system, label all key registers, and all keys TWI flags.

6. If an ATmega328 microcontroller is operating at 12-MHz, what is the maximum trans-
mission rate for the USART and the SPI?

7. What is the ASCII encoded value for “ATmega328”?

8. Draw the schematic of a system consisting of two ATmega328s that will exchange data
via the SPI system.

9. Write the code to implement the system described in the question above.

10. Modify the TWI example provided in the chapter to read the temperature from a TMP
102 digital temperature sensor and display the result on an LCD. Provide a schematic and
program.

11. Are there any limitations to connecting multiple devices to a TWI configured network?
Explain.

12. It is desired to equip the ATmega328 with eight channels of digital-to-analog conversion.
What serial communication system should be employed. Provide a detailed design.

13. Research the BlinkM Smart LED. Provide a schematic to connect the LED to the AT-
mega328.

14. Write a program to implement the interface between the ATmega328 and the BlinkM
Smart LED.

15. Research Sparkfun’s 6.5-inch 7-segment displays. Provide a schematic to connect the dis-
plays to the ATmega328. Write a program to implement the interface between the AT-
mega328 and the displays.
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C H A P T E R 6

Interrupt Subsystem
Objectives: After reading this chapter, the reader should be able to:

• understand the need of a microcontroller for interrupt capability;

• describe the general microcontroller interrupt response procedure;

• describe the ATmega328 interrupt features;

• properly configure and program an interrupt event for the ATmega328 in C;

• properly configure and program an interrupt event for the Arduino UNO R3 using
built-in features of the ADE;

• use the interrupt system to implement a real time clock; and

• employ the interrupt system as a component in an embedded system.

6.1 OVERVIEW
A microcontroller normally executes instructions in an orderly fetch-decode-execute sequence
as dictated by a user-written program as shown in Figure 6.1. However, the microcontroller
must be equipped to handle unscheduled (although planned), higher priority events that might
occur inside or outside the microcontroller. To process such events, a microcontroller requires
an interrupt system.1

The interrupt system onboard a microcontroller allows it to respond to higher priority
events. Appropriate responses to these events may be planned, but we do not know when these
events will occur. When an interrupt event occurs, the microcontroller will normally complete
the instruction it is currently executing and then transition program control to interrupt event
specific tasks. These tasks, which resolve the interrupt event, are organized into a function called
an interrupt service routine (ISR). Each interrupt will normally have its own interrupt specific
ISR. Once the ISR is complete, the microcontroller will resume processing where it left off
before the interrupt event occurred.

In this chapter, we discuss the ATmega328 interrupt system. We provide several examples
on how to program an interrupt in C and also using the built-in features of the ADE.

1The sections on interrupt theory were adapted with permission from Microcontroller Fundamentals for Engineers and
Scientists, S. F. Barrett and D. J. Pack, Morgan & Claypool Publishers, 2006.
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Fetch

Decode

Execute

Interrupt
Service
Routine

Figure 6.1: Microcontroller Interrupt Response.

6.1.1 ATMEGA328 INTERRUPT SYSTEM
The ATmega328 is equipped with a powerful and flexible complement of 26 interrupt sources.
Two of the interrupts originate from external interrupt sources while the remaining 24 inter-
rupts support the efficient operation of peripheral subsystems aboard the microcontroller. The
ATmega328 interrupt sources are shown in Figure 6.2. The interrupts are listed in descending
order of priority. As you can see, the RESET has the highest priority, followed by the exter-
nal interrupt request pins INT0 (pin 4) and INT1 (pin 5). The remaining interrupt sources are
internal to the ATmega328.

6.1.2 GENERAL INTERRUPT RESPONSE
When an interrupt occurs, the microcontroller completes the current instruction, stores the
address of the next instruction on the stack, and starts executing instructions in the designated
interrupt service routine (ISR) corresponding to the particular interrupt source. It also turns
off the interrupt system to prevent further interrupts while one is in progress. The execution of
the ISR is performed by loading the beginning address of the interrupt service routine specific
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for that interrupt into the program counter. The interrupt service routine will then commence.
Execution of the ISR continues until the return from interrupt instruction (reti) is encountered.
Program control then reverts back to the main program.

6.2 INTERRUPT PROGRAMMING OVERVIEW
To program an interrupt the user is responsible for the following actions.

• Ensure the interrupt service routine for a specific interrupt is tied to the correct in-
terrupt vector address, which points to the starting address of the interrupt service
routine.

• Ensure the interrupt system has been globally enabled. This is accomplished with the
assembly language instruction SEI.

• Ensure the specific interrupt subsystem has been locally enabled.

• Ensure the registers associated with the specific interrupt have been configured cor-
rectly.

In the examples that follow, we illustrate how to accomplish these steps. With several
different compilers.

6.3 PROGRAMMING ATMEGA328 INTERRUPTS IN C
AND THE ARDUINO DEVELOPMENT
ENVIRONMENT

In this section, we provide representative examples of writing interrupts. We provide both an
externally generated interrupt event and also one generated from within the microcontroller.
For each type of interrupt, we illustrate how to program it in C using both the Microchip AVR
Visual Studio gcc compiler and the ImageCraft JumpStart C for AVR compiler and also with
the ADE built-in features.

6.3.1 MICROCHIP AVR VISUAL STUDIO GCC COMPILER INTERRUPT
TEMPLATE

The Microchip AVR Visual Studio GCC compiler uses a standardized naming convention to
link an interrupt service routine to the correct interrupt vector address. The names for each
interrupt service routine vector are provided in the fifth column of Figure 6.2. Also the file
containing interrupt definitions (interrupt.h) must be added to the include file list. The interrupt
service routine definition begins with the keyword “ISR” followed by the specific name for the
desired interrupt. The body of the interrupt service routine contains interrupt specific actions.
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//****************************************************************
//include files
//Microchip register definitions for ATmega328
//****************************************************************

#include <avr/io.h>
#include <avr/interrupt.h>

//****************************************************************
//interrupt service routine definition
//****************************************************************

ISR(vector_identifier)
{

:
//programmer written interrupt specific actions
:

}

//****************************************************************

6.3.2 IMAGECRAFT JUMPSTART C FOR AVR COMPILER INTERRUPT
TEMPLATE

The ImageCraft JumpStart C for AVR compiler uses interrupt specific numbers to link an in-
terrupt service routine to the correct interrupt vector address. The #pragma with the reserved
word interrupt_handler is used to communicate to the compiler that the routine name that
follows is an interrupt service routine. The number that follows the ISR name corresponds to
the interrupt vector number in the first column of Figure 6.2. It is important that the ISR name
used in the #pragma instruction matches the name of the ISR in the function body. Since the
compiler knows the function is an ISR it will automatically place the RETI instruction at the
end of the ISR.

//****************************************************************
// ImageCraft JumpStart C for AVR compiler interrupt configuration
//****************************************************************

//include file(s) for JumpStart C for AVR Compiler
#include<iom328pv.h> //contains reg definitions
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#pragma interrupt_handler timer_handler:17

void timer_handler(void)
{

:
//programmer written interrupt specific actions
:

}
//****************************************************************

6.3.3 EXTERNAL INTERRUPT PROGRAMMING-ATMEGA328
The external interrupts INT0 (pin 4) and INT1 (pin 5) trigger an interrupt within the AT-
mega328 when an user-specified external event occurs at the pin associated with the specific
interrupt. Interrupts INT0 and INT1 may be triggered with a falling or rising edge or a low-
level signal. The specific settings for each interrupt is provided in Figure 6.3.

6.3.3.1 Programming External Interrupts in C-ImageCraft
Provided below is the code snapshot to configure an interrupt for INT0. In this specific example,
an interrupt will occur when a positive edge transition occurs on the ATmega328 INT0 external
interrupt pin.

//****************************************************************
//interrupt handler definition
#pragma interrupt_handler int0_ISR:2

//function prototypes
void int0_ISR(void);
void initialize_interrupt0(void);
//****************************************************************

//The following function call should be inserted in the main
//program to initialize the INT0 interrupt to respond to a positive
//edge trigger. This function should only be called once.

:
initialize_interrupt_int0();
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External Interrupt Control Register - EICRA

7

7

External Interrupt Mask Register - EIMSK
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        INT1

00: low level

01: logic change
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      INT0
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- INTFx flag sets when corresponding interrupt occurs.

- INTFx flag reset by executing ISR or writing logic one to flag.

External Interrupt Flag Register - EIFR

Figure 6.3: ATmega328 Interrupt INT0 and INT1 Registers.

:

//****************************************************************
//function definitions
//****************************************************************
//initialize_interrupt_int0: initializes interrupt INT0.
//Note: stack is automatically initialized by the compiler
//****************************************************************

void initialize_interrupt_int0(void) //initialize interrupt INT0
{
DDRD = 0xFB; //set PD2 (int0) as input
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PORTD &= ~0x04; //disable pullup resistor PD2
EIMSK = 0x01; //enable INT0
EICRA = 0x03; //set positive edge trigger
asm("SEI"); //global interrupt enable
}

//****************************************************************
//int0_ISR: interrupt service routine for INT0
//****************************************************************

void int0_ISR(void)
{

//Insert interrupt specific actions here.

}

//****************************************************************

The INT0 interrupt is reset by executing the associated interrupt service routine or writing
a logic one to the INTF0 bit in the External Interrupt Flag Register (EIFR).

6.3.3.2 Programming External Interrupts Using the Arduino Development Environment
Built-in Features-Atmega328

The ADE has four built-in functions to support external the INT0 and INT1 external interrupts
[www.arduino.cc].

These are the four functions.

• interrupts(). This function enables interrupts.

• noInterrupts(). This function disables interrupts.

• attachInterrupt(interrupt, function, mode). This function links the interrupt to the
appropriate interrupt service routine.

• detachInterrupt(interrupt). This function turns off the specified interrupt.

The Arduino UNO R3 processing board is equipped with two external interrupts: INT0
on DIGITAL pin 2 and INT1 on DIGITAL pin 3. The attachInterrupt(interrupt, function,
mode) function is used to link the hardware pin to the appropriate interrupt service pin. The
three arguments of the function are configured as follows.

• interrupt. Interrupt specifies the INT interrupt number: either 0 or 1.

www.arduino.cc
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• function. Function specifies the name of the interrupt service routine.

• mode. Mode specifies what activity on the interrupt pin will initiate the interrupt:
LOW level on pin, CHANGE in pin level, RISING edge, or FALLING edge.

To illustrate the use of these built-in ADE features, we revisit the previous example.

//****************************************************************

void setup()
{
attachInterrupt(0, int0_ISR, RISING);
}

void loop()
{

//wait for interrupts

}

//****************************************************************
//int0_ISR: interrupt service routine for INT0
//****************************************************************

void int0_ISR(void)
{

//Insert interrupt specific actions here.

}

//****************************************************************

6.3.4 ATMEGA328 INTERNAL INTERRUPT PROGRAMMING
In this example, we use Timer/Counter0 as a representative example on how to program internal
interrupts. In the example that follows, we use Timer/Counter0 to provide prescribed delays
within our program.

We discuss the ATmega328 timer system in detail in the next chapter. Briefly, the
Timer/Counter0 is an eight bit timer. It rolls over every time it receives 256 timer clock “ticks.”
There is an interrupt associated with the Timer/Counter0 overflow. If activated, the interrupt
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will occur every time the contents of the Timer/Counter0 transitions from 255 back to 0 count.
We can use this overflow interrupt as a method of keeping track of real clock time (hours, min-
utes, and seconds) within a program. In this specific example, we use the overflow to provide
precision program delays.

6.3.4.1 Programming an Internal Interrupt in C-Atmega328-ImageCraft
In this example, the ATmega328 is being externally clocked by a 10 MHz ceramic resonator.
The resonator frequency is further divided by 256 using the clock select bits CS[2:1:0] in
Timer/Counter Control Register B (TCCR0B). When CS[2:1:0] are set for [1:0:0], the in-
coming clock source is divided by 256. This provides a clock “tick” to Timer/Counter0 every
25.6 �s. Therefore, the eight bit Timer/Counter0 will rollover every 256 clock “ticks” or every
6.55 ms.

To create a precision delay, we write a function called delay. The function requires an
unsigned integer parameter value indicating how many 6.55 ms interrupts the function should
delay. The function stays within a while loop until the desired number of interrupts has occurred.
For example, to delay one second the function would be called with the parameter value “153.”
That is, it requires 153 interrupts occurring at 6.55 ms intervals to generate a one second delay.

The code snapshots to configure the Time/Counter0Overflow interrupt is provided below
along with the associated interrupt service routine and the delay function.

//function prototypes*********************************************
//delay number 6.55ms int

void delay(unsigned int number_of_6_55ms_interrupts);
void init_timer0_ovf_interrupt(void);//initialize timer0

//overflow interrupt

//interrupt handler definition************************************
//int handler definition

#pragma interrupt_handler timer0_interrupt_isr:17

//global variables************************************************
unsigned int input_delay; //counts Timer/Counter0

//Overflow interrupts

//main program****************************************************

void main(void)
{
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init_timer0_ovf_interrupt(); //init Timer/Counter0 Overflow

//interrupt - call once at
//beginning of program

:
:
delay(153); //1 second delay

}

//****************************************************************
//int_timer0_ovf_interrupt(): The Timer/Counter0 Overfl. interrupt
//is being employed as a time base for a master timer for this
//project. The ceramic resonator operating at 10 MHz is divided by
//256. The 8-bit Timer0 register (TCNT0) overflows every 256 counts
//or every 6.55 ms.
//*****************************************************************

void init_timer0_ovf_interrupt(void)
{
TCCR0B = 0x04; //div timer0 timebase by 256,

//overflow occurs every 6.55ms
TIMSK0 = 0x01; //en timer0 overflow interrupt
asm("SEI"); //enable global interrupt
}

//****************************************************************
//timer0_interrupt_isr:
//Note: Timer overflow 0 is cleared automatically
//when executing the corresponding interrupt handling vector.
//****************************************************************

void timer0_interrupt_isr(void)
{
input_delay++; //increment overflow counter
}

//****************************************************************



198 6. INTERRUPT SUBSYSTEM
//delay(unsigned int num_of_6_55ms_interrupts): this generic delay
//function provides the specified delay as the number of 6.55 ms
//"clock ticks" from the Timer/Counter0 Overflow interrupt.
//
//Note: this function is only valid when using a 10 MHz crystal or
//ceramic resonator. If a different source frequency is used, the
//clock tick delay value must be recalculated.
//****************************************************************

void delay(unsigned int number_of_6_55ms_interrupts)
{
TCNT0 = 0x00; //reset timer0
input_delay = 0; //reset timer0 overflow counter

while(input_delay <= number_of_6_55ms_interrupts)
{
; //wait for number of interrupts
}

}

//****************************************************************

6.3.4.2 Programming an Internal Interrupt Using the Arduino Development
Environment-Arduino UNO R3

The ADE uses the GNU tool chain and the AVR Libc to compile programs. Internal interrupt
configuration uses AVR-GCC conventions. To tie the interrupt event to the correct interrupt
service routine, the AVR-GCC interrupt name must be used. These vector names are provided
in the right column of Figure 6.2.

In the following sketch, the previous example is configured for use with the ADE using
AVR-GCC conventions. Also, the timing functions in the previous example assumed a time
base of 10 MHz. The Arduino UNO R3 is clocked with a 16 MHz crystal. Therefore, some of
the parameters in the sketch were adjusted to account for this difference in time base.

//****************************************************************
#include <avr/interrupt.h>

unsigned int input_delay; //counts Timer/Counter0
//Overflow interrupts

void setup()
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{
init_timer0_ovf_interrupt(); //init Timer/Counter0 Overflow
}

void loop()
{

:

delay(244); //1 second delay

:

}

//****************************************************************
// ISR(TIMER0_OVF_vect) - increments counter on every interrupt.
//****************************************************************

ISR(TIMER0_OVF_vect)
{
input_delay++; //increment overflow counter
}

//****************************************************************
//int_timer0_ovf_interrupt(): The Timer/Counter0 Overflow interrupt
//is being employed as a time base for a master timer for this
//project. The crystal resonator operating at 16 MHz is divided by
//256. The 8-bit Timer0 register (TCNT0) overflows every 256 counts
//or every 4.1 ms.
//****************************************************************

void init_timer0_ovf_interrupt(void)
{
TCCR0B = 0x04; //div timer0 timebase by 256,

//overflow occurs every 4.1 ms
TIMSK0 = 0x01; //en timer0 overflow interrupt
asm("SEI"); //enable global interrupt
}
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//****************************************************************
//delay(unsigned int num_of_4_1ms_interrupts): this generic delay
//function provides the specified delay as the number of 4.1 ms
//"clock ticks" from the Timer/Counter0 Overflow interrupt.
//
//Note: this function is only valid when using a 16 MHz crystal or
//ceramic resonator. If a different source frequency is used, the
//clock tick delay value must be recalculated.
//****************************************************************

void delay(unsigned int number_of_4_1ms_interrupts)
{
TCNT0 = 0x00; //reset timer0
input_delay = 0; //reset timer0 overflow counter

while(input_delay <= number_of_4_1ms_interrupts)
{
; //wait number of interrupts
}

}

//****************************************************************

6.4 FOREGROUND AND BACKGROUND PROCESSING

A microcontroller can only process a single instruction at a time. It processes instructions in a
fetch-decode-execute sequence as determined by the program and its response to external events.
In many cases, a microcontroller has to process multiple events seemingly simultaneously. How
is this possible with a single processor?

Normal processing accomplished by the microcontroller is called foreground processing.
An interrupt may be used to periodically break into foreground processing, “steal” some clock
cycles to accomplish another event called background processing, and then return processor
control back to the foreground process.

As an example, a microcontroller controlling access for an electronic door must monitor
input commands from a user and generate the appropriate PWM signals to open and close the
door. Once the door is in motion, the controller must monitor door motor operation for ob-
structions, malfunctions, and other safety related parameters. This may be accomplished using
interrupts. In this example, the microcontroller is responding to user input status in the fore-
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Figure 6.4: Interrupt used for background processing. The microcontroller responds to user in-
put status in the foreground while monitoring safety related status in the background using
interrupts.

ground while monitoring safety related status in the background using interrupts as illustrated
in Figure 6.4.

Example: This example illustrates foreground and background processing. We use a green
LED to indicate when the microcontroller is processing in the foreground and a flashing red
LED indicates background processing. A switch is connected to an external interrupt pin (INT0,
pin 2). When the switch is depressed, the microcontroller executes the associated interrupt ser-
vice routine to flash the red LED. The circuit configuration is provided in Figure 6.5.

//*****************************************************************

#define green_LED 12
#define red_LED 11
#define ext_sw 2

int switch_value;

void setup()
{
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220
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green
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Figure 6.5: Foreground background processing. (UNO R3 illustration used with permission of
the Arduino Team (CC BY-NC-SA) [www.arduino.cc].)

pinMode(green_LED, OUTPUT);
pinMode(red_LED, OUTPUT);
pinMode(ext_sw, INPUT);

//trigger int on INT0 for
//falling edge

attachInterrupt(0, background, FALLING);
}

void loop()
{
digitalWrite(green_LED, HIGH); //foreground processing
digitalWrite(red_LED, LOW);
}

void background() //background processing
{
unsigned int i;

digitalWrite(green_LED, LOW);

www.arduino.cc
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digitalWrite(red_LED, HIGH);

for (i=0; i<=64000; i++) //delay
{
asm("nop");
}

digitalWrite(red_LED, LOW);

for (i=0; i<=64000; i++) //delay
{
asm("nop");
}

digitalWrite(red_LED, HIGH);

for (i=0; i<=64000; i++) //delay
{
asm("nop");
}

digitalWrite(red_LED, LOW);

for (i=0; i<=64000; i++) //delay
{
asm("nop");
}

digitalWrite(red_LED, HIGH);
}

//****************************************************************

6.5 INTERRUPT EXAMPLES

In this section, we provide several varied examples on using interrupts internal and external to
the microcontroller.
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6.5.1 EXAMPLE: REAL TIME CLOCK IN C
A microcontroller only “understands” elapsed time in reference to its timebase clock ticks. To
keep track of clock time in seconds, minutes, hours etc., a periodic interrupt may be generated
for use as a “clock tick” for a real time clock. In this example, we use the Timer 0 overflow to
generate a periodic clock tick very 6.55 ms. The ticks are counted in reference to clock time
variables and may be displayed on a liquid crystal display. This is also a useful technique for
generating very long delays in a microcontroller.

//function prototypes*********************************************
//delay number 6.55ms int

void delay(unsigned int number_of_6_55ms_interrupts);
void init_timer0_ovf_interrupt(void);//initialize timer0 overflow interrupt

//interrupt handler definition************************************
//int handler definition

#pragma interrupt_handler timer0_interrupt_isr:17

//global variables************************************************
unsigned int days_ctr, hrs_ctr, mins_ctr, sec_ctr, ms_ctr;

//main program****************************************************

void main(void)
{
day_ctr = 0; hr_ctr = 0; min_ctr = 0; sec_ctr = 0; ms_ctr = 0;

init_timer0_ovf_interrupt(); //init Timer/Counter0 Overflow

//interrupt - call once at beginning
//of program

while(1)
{
; //wait for interrupts
}

}

//****************************************************************
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//int_timer0_ovf_interrupt(): The Timer/Counter0 Overflow interrupt
//is being employed as a time base for a master timer for this
//project. The ceramic resonator operating at 10 MHz is divided by
//256. The 8-bit Timer0 register (TCNT0) overflows every 256 counts
//or every 6.55 ms.
//****************************************************************

void init_timer0_ovf_interrupt(void)
{
TCCR0B = 0x04; //div timer0 timebase by 256,

//overflow occurs every 6.55ms

TIMSK0 = 0x01; //en timer0 overflow interrupt
asm("SEI"); //enable global interrupt
}

//****************************************************************
//timer0_interrupt_isr:
//Note: Timer overflow 0 is cleared by hardware when executing the
//corresponding interrupt handling vector.
//****************************************************************

void timer0_interrupt_isr(void)
{

//Update millisecond counter
ms_ctr = ms_ctr + 1; //increment ms counter

//update second counter
if(ms_ctr == 154) //ctr equates 1000 ms at 154
{
ms_ctr = 0; //reset ms counter
sec_ctr = sec_ctr + 1; //increment second counter
}

//Update minute counter
if(sec_ctr == 60)
{
sec_ctr = 0; //reset sec counter



206 6. INTERRUPT SUBSYSTEM
min_ctr = min_ctr + 1; //increment min counter
}

//Update hour counter
if(min_ctr == 60)
{
min_ctr = 0; //reset min counter
hr_ctr = hr_ctr + 1; //increment hr counter
}

//Update day counter
if(hr_ctr == 24)
{
hr_ctr = 0; //reset hr counter
day_ctr = day_ctr + 1; //increment day counter
}

}

//****************************************************************

6.5.2 EXAMPLE: REAL TIME CLOCK USING THE ARDUINO
DEVELOPMENT ENVIRONMENT

In this example, we reconfigure the previous example using the ADE. The timing functions in
the previous example assumed a time base of 10 MHz. The Arduino UNO R3 is clocked with
a 16 MHz crystal. Therefore, some of the parameters in the sketch are adjusted to account for
this difference in time base.

//****************************************************************
#include <avr/interrupt.h>

//global variables************************************************
unsigned int days_ctr, hrs_ctr, mins_ctr, sec_ctr, ms_ctr;

void setup()
{
day_ctr = 0; hr_ctr = 0; min_ctr = 0; sec_ctr = 0; ms_ctr = 0;
init_timer0_ovf_interrupt(); //init. Timer/Counter0 Overflow
}

void loop()
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{
:
: //wait for interrupts
:
}

//****************************************************************
// ISR(TIMER0_OVF_vect) Timer0 interrupt service routine.
//
//Note: Timer overflow 0 is cleared by hardware when executing the
//corresponding interrupt handling vector.
//****************************************************************

ISR(TIMER0_OVF_vect)
{

//Update millisecond counter
ms_ctr = ms_ctr + 1; //increment ms counter

//Update second counter
//ctr equates 1000 ms at 244

if(ms_ctr == 244) //each clock tick is 4.1 ms
{
ms_ctr = 0; //reset ms counter
sec_ctr = sec_ctr + 1; //increment second counter
}

//Update minute counter
if(sec_ctr == 60)
{
sec_ctr = 0; //reset sec counter
min_ctr = min_ctr + 1; //increment min counter
}

//Update hour counter
if(min_ctr == 60)
{
min_ctr = 0; //reset min counter
hr_ctr = hr_ctr + 1; //increment hr counter
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}

//Update day counter
if(hr_ctr == 24)

{
hr_ctr = 0; //reset hr counter
day_ctr = day_ctr + 1; //increment day counter
}

}

//****************************************************************
//int_timer0_ovf_interrupt(): The Timer/Counter0
//Overflow interrupt is being employed as a time base for a master
//timer for this project. The ceramic resonator operating at 16 MHz
//is divided by 256. The 8-bit Timer0 register (TCNT0) overflows
//every 256 counts or every 4.1 ms.
//****************************************************************

void init_timer0_ovf_interrupt(void)
{
TCCR0B = 0x04; //divide timer0 timebase by 256,

//overflow occurs every 4.1 ms
TIMSK0 = 0x01; //en timer0 overflow interrupt
asm("SEI"); //enable global interrupt
}
//*****************************************************************

6.5.3 EXAMPLE: INTERRUPT DRIVEN USART IN C
In Chapter 5, we discussed the serial communication capability of the USART in some detail.
In the following example, we revisit the USART and use it in an interrupt driven mode.

Example. You have been asked to evaluate a new positional encoder technology. The en-
coder provides 12-bit resolution. The position data is sent serially at 9600 Baud as two sequential
bytes as shown in Figure 6.6. The actual encoder is new technology and production models are
not available for evaluation.

Since the actual encoder is not available for evaluation, another Microchip ATmega328
will be used to send signals in identical format and Baud rate as the encoder. The test configura-
tion is illustrated in Figure 6.7. The ATmega328 on the bottom serves as the positional encoder.
Themicrocontroller is equipped with two pushbuttons at PD2 and PD3.The pushbutton at PD2
provides a debounced input to open a simulated door and increment the positional encoder. The
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Figure 6.6: Encoder data format. The position data is sent serially at 9600 Baud as two sequential
bytes.

pushbutton at PD3 provides a debounced input to close a simulated door and decrement the
positional encoder. The current count of the encoder (eight most significant bits) is fed to a
digital-to-analog converter (DAC0808) to provide an analog representation.

The positional data from the encoder is sent out via the USART in the format described
in Figure 6.6. The top ATmega328 receives the positional data using interrupt driven USART
techniques. The current position is converted to an analog signal via the DAC. The transmitted
and received signals may be compared at the respective DAC outputs.

Provided below is the code for the ATmega328 that serves as the encoder simulator fol-
lowed by the code for receiving the data.

//***************************************************************
//author: Steven Barrett, Ph.D., P.E.
//last revised: March 23, 2020
//file: encode.c
//target controller: MICROCHIP ATmega328
//
//ATmega328 clock source: internal 8 MHz clock
//
//MICROCHIP AVR ATmega328PV Controller Pin Assignments
//Chip Port Function I/O Source/Dest Asserted Notes
//
//Pin 1 to system reset circuitry
//Pin 2 PD0: USART receive pin (RXD)
//Pin 3 PD1: USART transmit pin (TXD)
//Pin 4 PD2 to active high RC debounced switch - Open
//Pin 5 PD3 to active high RC debounced switch - Close
//Pin 7 Vcc - 1.0 uF to ground
//Pin 8 Gnd
//Pin 9 PB6 to pin A7(11) on DAC0808
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Figure 6.7: Encoder test configuration.
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//Pin 10 PB7 to pin A8(12) on DAC0808
//Pin 14 PB0 to pin A1(5) on DAC0808
//Pin 15 PB1 to pin A2(6) on DAC0808
//Pin 16 PB2 to pin A3(7) on DAC0808
//Pin 17 PB3 to pin A4(8) on DAC0808
//Pin 18 PB4 to pin A5(9) on DAC0808
//Pin 19 PB5 to pin A6(10) on DAC0808
//Pin 20 AVCC to 5 VDC
//Pin 21 AREF to 5 VDC
//Pin 22 Ground
//****************************************************************

//include files***************************************************
#include<iom328v.h>
#include<macros.h>

//function prototypes*********************************************

//delay specified number 6.55ms int
void initialize_ports(void); //initializes ports
void USART_init(void);
void USART_TX(unsigned char data);

//main program****************************************************
//global variables
unsigned char old_PORTD = 0x08; //present value of PORTD
unsigned char new_PORTD; //new values of PORTD
unsigned int door_position = 0;

void main(void)
{
initialize_ports(); //return LED config to default
USART_init();

//main activity loop - checks PORTD to see if either PD2 (open)
//or PD3 (close) was depressed.
//If either was depressed the program responds.
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while(1)

{
_StackCheck(); //check for stack overflow
read_new_input();
//read input status changes on PORTB
}

}//end main

//Function definitions
//***************************************************************
//initialize_ports: provides initial configuration for I/O ports
//***************************************************************

void initialize_ports(void)
{
//PORTB
DDRB=0xff; //PORTB[7-0] output
PORTB=0x00; //initialize low

//PORTC
DDRC=0xff; //set PORTC[7-0] as output
PORTC=0x00; //initialize low

//PORTD
DDRD=0xf2; //set PORTD[7-4, 0] as output
PORTD=0x00; //initialize low
}

//****************************************************************
//read_new_input: functions polls PORTD for a change in status. If
//status change has occurred, appropriate function for status change
//is called
//Pin 4 PD2 to active high RC debounced switch - Open
//Pin 5 PD3 to active high RC debounced switch - Close
//****************************************************************

void read_new_input(void)
{
unsigned int gate_position; //measure instantaneous position
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//of gate

unsigned int i;
unsigned char ms_door_position, ls_door_position, DAC_data;

new_PORTD = (PIND & 0x0c);
//mask all pins but PORTD[3:2]

if(new_PORTD != old_PORTD){
switch(new_PORTD){ //process change in PORTD input

case 0x01: //Open
while(PIND == 0x04)
{
//split into two bytes
ms_door_position=(unsigned char)(((door_position >> 6)

&(0x00FF))|0x01);
ls_door_position=(unsigned char)(((door_position << 1)

&(0x00FF))&0xFE);
//TX data to USART
USART_TX(ms_door_position);
USART_TX(ls_door_position);

//format data for DAC and send to DAC on PORTB
DAC_data=(unsigned char)((door_position >> 4)&(0x00FF));
PORTB = DAC_data;

//increment position counter
if(door_position >= 4095)

door_position = 4095;
else

door_position++;
}

break;

case 0x02: //Close
while(PIND == 0x02)
{

//split into two bytes
ms_door_position=(unsigned char)(((door_position >>6)

&(0x00FF))|0x01);
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ls_door_position=(unsigned char)(((door_position <<1)

&(0x00FF))&0xFE);
//TX data to USART

USART_TX(ms_door_position);
USART_TX(ls_door_position);

//format data for DAC
//and send to DAC on PORTB

DAC_data=(unsigned char)((door_position >> 4)&(0x00FF));

PORTB = DAC_data;

//decrement position counter
if(door_position <= 0)
door_position = 0;

else
door_position-;

}
break;

default:; //all other cases
} //end switch(new_PORTD)

} //end if new_PORTD
old_PORTD = new_PORTD; //update PORTD

}

//****************************************************************
//USART_init: initializes the USART system
//
//Note: ATmega328 clocked by internal 8 MHz clock
//****************************************************************

void USART_init(void)
{
UCSRA = 0x00; //control
register initialization
UCSRB = 0x08; //enable transmitter
UCSRC = 0x86; //async, no parity,

//1 stop bit, 8 data bits
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//Baud Rate initialization
//8 MHz clock requires UBRR value of 51
// or 0x0033 to achieve 9600 Baud rate

UBRRH = 0x00;
UBRRL = 0x33;
}

//****************************************************************
//USART_transmit: transmits single byte of data
//****************************************************************

void USART_transmit(unsigned char data)
{
while((UCSRA & 0x20)==0x00) //wait for UDRE flag

{
;
}

UDR = data; //load data to UDR for transmission
}

//****************************************************************

Receive ATmega328 code follows.

//****************************************************************
//author: Steven Barrett, Ph.D., P.E.
//last revised: March 23, 2020
//file: receive.c
//target controller: MICROCHIP ATmega328
//
//ATmega328 clock source: internal 8 MHz clock
//
//MICROCHIP AVR ATmega328PV Controller Pin Assignments
//Chip Port Function I/O Source/Dest Asserted Notes
//
//Pin 1 to system reset circuitry
//Pin 2 PD0: USART receive pin (RXD)
//Pin 3 PD1: USART transmit pin (TXD)
//Pin 4 PD2 to active high RC debounced switch - Open
//Pin 5 PD3 to active high RC debounced switch - Close
//Pin 7 Vcc - 1.0 uF to ground
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//Pin 8 Gnd
//Pin 9 PB6 to pin A7(11) on DAC0808
//Pin 10 PB7 to pin A8(12) on DAC0808
//Pin 14 PB0 to pin A1(5) on DAC0808
//Pin 15 PB1 to pin A2(6) on DAC0808
//Pin 16 PB2 to pin A3(7) on DAC0808
//Pin 17 PB3 to pin A4(8) on DAC0808
//Pin 18 PB4 to pin A5(9) on DAC0808
//Pin 19 PB5 to pin A6(10) on DAC0808
//Pin 20 AVCC to 5 VDC
//Pin 21 AREF to 5 VDC
//Pin 22 Ground
//****************************************************************

//include files***************************************************
#include<iom328v.h>
#include<macros.h>
#include<eeprom.h> //EEPROM support functions

#pragma data: eeprom
unsigned int door_position_EEPROM
#pragma data:data

//function prototypes*********************************************
void initialize_ports(void); //initializes ports
void InitUSART(void);
unsigned char USART_RX(void);

//interrupt handler def
#pragma interrupt_handler USART_RX_interrupt_isr: 19

//main program****************************************************
unsigned int door_position = 0;
unsigned char data_rx;
unsigned int dummy1 = 0x1234;
unsigned int keep_going =1;
unsigned int loop_counter = 0;
unsigned int ms_position, ls_position;
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void main(void)
{
initialize_ports(); //return LED config to default
USART_init();

//limited startup features
//main activity loop
//continually cycle thru loop
//waiting for USART data

while(1)
{

//continuous loop waiting for
//interrupts

_StackCheck(); //check for stack overflow
}

}//end main

//Function definitions
//****************************************************************
//initialize_ports: provides initial configuration for I/O ports
//****************************************************************

void initialize_ports(void)
{
//PORTB
DDRB=0xff; //PORTB[7-0] output
PORTB=0x00; //initialize low

//PORTC
DDRC=0xff; //set PORTC[7-0] as output
PORTC=0x00; //initialize low

//PORTD
DDRD=0xff; //set PORTD[7-0] as output
PORTD=0x00; //initialize low
}

//****************************************************************
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//USART_init: initializes the USART system
//
//Note: ATmega328 clocked by internal 8 MHz clock
//****************************************************************

void USART_init(void)
{
UCSRA = 0x00; //control
register initialization
UCSRB = 0x08; //enable transmitter
UCSRC = 0x86; //async, no parity, 1 stop bit, 8 data

//Baud Rate initialization
//8 MHz clock requires UBRR value of 51
// or 0x0033 to achieve 9600 Baud rate

UBRRH = 0x00;
UBRRL = 0x33;
}

//****************************************************************
//USART_RX_interrupt_isr
//****************************************************************

void USART_RX_interrupt_isr(void)
{
unsigned char data_rx, DAC_data;
unsigned int ls_position, ms_position;

//Receive USART data
data_rx = UDR;

//Retrieve door position data from EEPROM
EEPROM_READ((int) &door_position_EEPROM, door_position);

//Determine which byte to update
if((data_rx & 0x01)==0x01) //Byte ID = 1

{
ms_position = data_rx;

//Update bit 7



6.5. INTERRUPT EXAMPLES 219
if((ms_position & 0x0020)==0x0020) //Test for logic 1

door_position = door_position | 0x0080; //Set bit 7 to 1
else
door_position = door_position & 0xff7f; //Reset bit 7 to 0

//Update remaining bits
ms_position = ((ms_position<<6) & 0x0f00);
//shift left 6-blank other bits
door_position = door_position & 0x00ff; //Blank ms byte
door_position = door_position | ms_position; //Update ms byte
}

else //Byte ID = 0
{
ls_position = data_rx; //Update ls_position

//Shift right 1-blank
ls_position = ((ls_position >> 1) & 0x007f); //other bits

if((door_position & 0x0080)==0x0080)
//Test bit 7 of curr position

ls_position = ls_position | 0x0080; //Set bit 7
else

ls_position = ls_position & 0xff7f; //Reset bit 7 to 0
door_position = door_position & 0xff00; //Blank ls byte
door_position = door_position | ls_position; //Update ls byte
}

//Store door position data to EEPROM
EEPROM_WRITE((int) &door_position_EEPROM, door_position);

//format data for DAC and send to DAC on PORT C
DAC_data=(unsigned char)((door_position >> 4)&(0x00FF));

PORTB= DAC_data;
}

//****************************************************************
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6.6 SUMMARY
In this chapter, we provided an introduction to the interrupt features available aboard the AT-
mega328 and the Arduino UNO R3 processing board. We also discussed how to program an
interrupt for proper operation and provided representative samples for an external interrupt and
an internal interrupt.

6.7 REFERENCES
[1] S. F. Barrett and D. J. Pack. Microcontrollers Fundamentals for Engineers and Scientists,

Morgan & Claypool Publishers, 2006. DOI: 10.2200/s00025ed1v01y200605dcs001.

[2] Arduino homepage. www.arduino.cc

[3] Microchip ATmega328 PB AVRMicrocontroller with Core Independent Peripherals and Pico
Power Technology DS40001906C, Microchip Technology Incorporation, 2018. www.
microchip.com

6.8 CHAPTER PROBLEMS
1. What is the purpose of an interrupt?

2. Describe the flow of events when an interrupt occurs.

3. Describe the interrupt features available with the ATmega328.

4. Describe the built-in interrupt features available with the Arduino Development Envi-
ronment.

5. What is the interrupt priority? How is it determined?

6. What steps are required by the system designer to properly configure an interrupt?

7. How is the interrupt system turned “ON” and “OFF”?

8. A 10-MHz ceramic resonator is not available. Redo the example of the Timer/Counter0
Overflow interrupt provided with a timebase of 1 MHz and 8 MHz.

9. What is the maximum delay that may be generated with the delay function provided in
the text without modification? How could the function be modified for longer delays?

10. In the text, we provided a 24-h timer (hh:mm:ss:ms) using the Timer/Counter0 Overflow
interrupt. What is the accuracy of the timer? How can it be improved?

11. Adapt the 24-h timer example to generate an active high logic pulse on a microcontroller
pin of your choice for 3 s. The pin should go logic high three weeks from now.

http://dx.doi.org/10.2200/s00025ed1v01y200605dcs001
www.arduino.cc
www.microchip.com
www.microchip.com
http://www.morganclaypool.com/action/showLinks?system=10.2200%2Fs00025ed1v01y200605dcs001&citationId=p_80
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12. What are the concerns when using multiple interrupts in a given application?

13. How much time can background processing relative to foreground processing be imple-
mented?

14. What is the advantage of using interrupts over polling techniques?

15. Can the USART transmit and interrupt receive system provided in the chapter be adapted
to operate in the Arduino Development Environment? Explain in detail.
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C H A P T E R 7

Embedded Systems Design
Objectives: After reading this chapter, the reader should be able to do the following:

• define an embedded system;

• list all aspects related to the design of an embedded system;

• provide a step-by-step approach to embedded system design;

• discuss design tools and practices related to embedded systems design; and

• apply embedded system design practices in the design of a microcontroller system em-
ploying several interacting subsystems.

7.1 OVERVIEW
In this chapter,1 we begin with a definition of just what is an embedded system. We then explore
the process of how to successfully (and with low stress) develop an embedded system prototype
that meets established requirements. We conclude the chapter with several examples.

7.2 WHAT IS AN EMBEDDED SYSTEM?
An embedded system contains a microcontroller to accomplish its job of processing system in-
puts and generating system outputs. The link between system inputs and outputs is provided by
a coded algorithm stored within the processor’s resident memory. What makes embedded sys-
tems design so interesting and challenging is the design must also take into account the proper
electrical interface for the input and output devices, limited on-chip resources, human interface
concepts, the operating environment of the system, cost analysis, related standards, and manu-
facturing aspects [Anderson [1]]. Through careful application of this material you will be able
to design and prototype embedded systems based on the ATmega328 microcontroller.

7.3 EMBEDDED SYSTEM DESIGN PROCESS
In this section, we provide a step-by-step approach to develop the first prototype of an embedded
system that will meet established requirements. There are many formal design processes that we

1The information on embedded system design first appeared in Microcontroller Fundamentals for Engineers and Scientists,
Morgan & Claypool Publishers, 2006. It has been adapted with permission for the Microchip ATmega328.
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could study. We concentrate on the steps that are common to most. We purposefully avoid
formal terminology of a specific approach and instead concentrate on the activities that are
accomplished as a system prototype is developed. The design process we describe is illustrated in
Figure 7.1 using a Unified Modeling Language (UML) activity diagram. We discuss the UML
activity diagrams later in the chapter.

7.3.1 PROJECT DESCRIPTION
The goal of the project description step is to determine what the system is ultimately supposed
to do. To achieve this step you must thoroughly investigate what the system is supposed to do.
Questions to raise and answer during this step include, but are not limited to, the following:

• What is the system supposed to do?

• Where will it be operating and under what conditions?

• Are there any restrictions placed on the system design?

To answer these questions, the designer interacts with the client to ensure clear agreement
on what is to be done. If you are completing this project for yourself, you must still carefully and
thoughtfully complete this step. The establishment of clear, definable system requirements may
require considerable interaction between the designer and the client. It is essential that both
parties agree on system requirements before proceeding further in the design process. The final
result of this step is a detailed listing of system requirements and related specifications.

7.3.2 BACKGROUND RESEARCH
Once a detailed list of requirements has been established, the next step is to perform back-
ground research related to the design. In this step, the designer will ensure they understand all
requirements and features required by the project. This will again involve interaction between
the designer and the client. The designer will also investigate applicable codes, guidelines, pro-
tocols, and standards related to the project. This is also a good time to start thinking about
the interface between different portions of the project particularly the input and output devices
peripherally connected to the microcontroller. The ultimate objective of this step is to have a
thorough understanding of the project requirements, related project aspects, and any interface
challenges within the project.

7.3.3 PRE-DESIGN
The goal of the pre-design step is to convert a thorough understanding of the project into possi-
ble design alternatives. Brainstorming is an effective tool in this step. Here, a list of alternatives is
developed. Since an embedded system typically involves both hardware and/or software, the de-
signer can investigate whether requirements could be met with a hardware only solution or some
combination of hardware and software. Generally speaking, a hardware only solution executes
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Project Description
- What is the system supposed to do?

- Operating conditions and environment

- Formal requirements

Background Research
- Thoroughly understand desired requirements and features

- Determine applicable codes, guidelines, and protocols

- Determine interface requirements

Pre-Design
- Brainstorm possible solutions

- Thoroughly investigate alternatives

- Choose best possible solution

- Identify specific target microcontroller

- Choose a design approach

Employ Design Tools
- Structure chart

- UML activity diagram

- Circuit diagram

- Supplemental information

Implement Prototype
- Top down versus bottom up

- Develop low risk hardware test platform

- Software implementation

Preliminary Testing
- Develop test plan to insure requirements

  have been met

- Test under anticipated conditions

- Test under abusive conditions

- Redo testing if errors found

- Test in low cost, low risk environment

- Full up test

Deliver Prototype

System design

need correction?

no

yes

Complete and Accurate Documentation
- System description

- Requirements

- Structure chart

- UML activity diagram

- Circuit diagram

- Well-documented code

- Test plan

Figure 7.1: Embedded system design process.
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faster; however, the design is fixed once fielded. On the other hand, a software implementation
provides flexibility and a typically slower execution speed. Most embedded design solutions will
use a combination of both hardware and software to capitalize on the inherent advantages of
each.

Once a design alternative has been selected, the general partition between hardware and
software can be determined. It is also an appropriate time to select a specific hardware device
to implement the prototype design. If a microcontroller technology has been chosen, it is now
time to select a specific controller. This is accomplished by answering the following questions.

• What microcontroller systems or features (i.e., ADC, PWM, timer, etc.) are required
by the design?

• How many input and output pins are required by the design?

• What is the maximum anticipated operating speed of the microcontroller expected to
be?

7.3.4 DESIGN
With a clear view of system requirements and features, a general partition determined between
hardware and software, and a specific microcontroller chosen, it is now time to tackle the actual
design. It is important to follow a systematic and disciplined approach to design. This will allow
for low stress development of a documented design solution that meets requirements. In the
design step, several tools are employed to ease the design process. They include:

• employing a top-down design, bottom-up implementation approach;

• using a structure chart to assist in partitioning the system;

• using a Unified Modeling Language (UML) activity diagram to work out program
flow; and

• developing a detailed circuit diagram of the entire system.

Let’s take a closer look at each of these. The information provided here is an abbreviated
version of the one provided in Microcontrollers Fundamentals for Engineers and Scientists. The
interested reader is referred there for additional details and an in-depth example (Barrett and
Pack [2]).

Top-down design, bottom-up implementation. An effective tool to start partitioning
the design is based on the techniques of top-down design, bottom-up implementation. In this
approach, you start with the overall system and begin to partition it into subsystems. At this
point of the design, you are not concerned with how the design will be accomplished but how
the different pieces of the project will fit together. A handy tool to use at this design stage is
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Starting

Activity

Transfer

of Control
Final State

Action StateBranch

Figure 7.2: UML activity diagram symbols. Adapted from Fowler and Scott [5].

the structure chart. The structure chart shows the hierarchy of how system hardware and soft-
ware components will interact and interface with one another. You should continue partitioning
system activity until each subsystem in the structure chart has a single definable function.

UMLActivityDiagram. Once the system has been partitioned into pieces, the next step
in the design process is to start working out the details of the operation of each subsystem we
previously identified. Rather than beginning to code each subsystem as a function, we will work
out the information and control flow of each subsystem using another design tool: UML activity
diagram. The activity diagram is simply a UML compliant flow chart. UML is a standardized
method of documenting systems. The activity diagram is one of the many tools available from
UML to document system design and operation. The basic symbols used in a UML activity
diagram for a microcontroller based system are provided in Figure 7.2 (Fowler and Scott [5]).

To develop the UML activity diagram for the system, we can use a top-down, bottom-up,
or a hybrid approach. In the top-down approach, we begin by modeling the overall flow of the
algorithm from a high level. If we choose to use the bottom-up approach, we would begin at the
bottom of the structure chart and choose a subsystem for flow modeling. The specific course of
action chosen depends on project specifics. Often, a combination of both techniques, a hybrid
approach, is used. You should work out all algorithm details at the UML activity diagram level
prior to coding any software. If you cannot explain system operation at this higher level, first, you
have no business being down in the detail of developing the code. Therefore, the UML activity
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diagram should be of sufficient detail so you can code the algorithm directly from it (Dale and
Lilly [6]).

In the design step, a detailed circuit diagram of the entire system is developed. It will serve
as a roadmap to implement the system. It is also a good idea at this point to investigate avail-
able design information relative to the project. This would include hardware design examples,
software code examples, and application notes available from manufacturers.

At the completion of this step, the prototype design is ready for implementation and
testing.

7.3.5 IMPLEMENT PROTOTYPE
To successfully implement a prototype, an incremental approach should be followed. Again, the
top-down design, bottom-up implementation provides a solid guide for system implementation.
In an embedded system design involving both hardware and software, the hardware system
including the microcontroller should be assembled first. This provides the software the required
signals to interact with. As the hardware prototype is assembled on a prototype board, each
component is tested for proper operation as it is brought online. This allows the designer to
pinpoint malfunctions as they occur.

Once the hardware prototype is assembled, coding may commence. As before, software
should be incrementally brought online. You may use a top-down, bottom-up, or hybrid ap-
proach depending on the nature of the software. The important point is to bring the software
online incrementally such that issues can be identified and corrected early on.

It is highly recommended that low-cost stand-in components be used when testing the
software with the hardware components. For example, push buttons, potentiometers, and LEDs
may be used as low-cost stand-in component simulators for expensive input instrumentation
devices and expensive output devices such as motors. This allows you to insure the software is
properly operating before using it to control the actual components.

7.3.6 PRELIMINARY TESTING
To test the system, a detailed test plan must be developed. Tests should be developed to verify
that the system meets all of its requirements and also intended system performance in an oper-
ational environment. The test plan should also include scenarios in which the system is used in
an unintended manner. As before a top-down, bottom-up, or hybrid approach can be used to
test the system.

Once the test plan is completed, actual testing may commence. The results of each test
should be carefully documented. As you go through the test plan, you will probably uncover a
number of run time errors in your algorithm. After you correct a run time error, the entire test
plan must be performed again. This ensures that the new fix does not have an unintended effect
on another part of the system. Also, as you process through the test plan, you will probably think
of other tests that were not included in the original test document. These tests should be added
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to the test plan. As you go through testing, realize your final system is only as good as the test
plan that supports it!

Once testing is complete, you might try another level of testing where you intentionally
try to “jam up” the system. In another words, try to get your system to fail by trying combinations
of inputs that were not part of the original design. A robust system should continue to operate
correctly in this type of an abusive environment. It is imperative that you design robustness into
your system. When testing on a low-cost simulator is complete, the entire test plan should be
performed again with the actual system hardware. Once this is completed you should have a
system that meets its requirements!

7.3.7 COMPLETE AND ACCURATE DOCUMENTATION
With testing complete, the system design should be thoroughly documented. Much of the doc-
umentation will have already been accomplished during system development. Documentation
will include the system description, system requirements, the structure chart, the UML activity
diagrams documenting program flow, the test plan, results of the test plan, system schematics,
and properly documented code. To properly document code, you should carefully comment all
functions describing their operation, inputs, and outputs. Also, comments should be included
within the body of the function describing key portions of the code. Enough detail should be
provided such that code operation is obvious. It is also extremely helpful to provide variables
and functions within your code names that describe their intended use.

You might think that a comprehensive system documentation is not worth the time or
effort to complete it. Complete documentation pays rich dividends when it is time to modify,
repair, or update an existing system. Also, well-documented code may be often reused in other
projects: a method for efficient and timely development of new systems. For the remainder of
the chapter, we employ these design techniques in several examples.

7.4 EXAMPLE: AUTOMATED FAN COOLING SYSTEM
In this example we describe an embedded system application to control the temperature of a
room or some device. The system is illustrated in Figure 7.3. An LM34 precision Fahrenheit
temperature sensor (PORTC[0]) is used to monitor the instantaneous temperature of the room
or device of interest. The current temperature is displayed on the Liquid Crystal Display (LCD).
The LCD (AND671GST) is parallel configured. Detailed LCD support functions are provided
in the example.

We send a 1-KHz PWM signal to a cooling fan (M) whose duty cycle is set from 50–
90% using the potentiometer connected to PORTC[2]. The PWM signal should last until the
temperature of the LM34 cools to a value as set by another potentiometer (PORTC[1]). The
LM34 provides 10 mV per degree Fahrenheit. When the temperature of the LM34 falls below
the potentiometer set level, the cooling fan is shut off. If the temperature falls while the fan is
active, the PWM signal should gently return to zero, and wait for further temperature changes.
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Figure 7.3: Automated fan cooling system.

As an example, to set the desired temperature threshold to 70ıF, the potentiometer should be
set to 0.7 VDC.

Provided below is the embedded code for the system. This solution was developed by
Geoff Luke, UW MSEE, as a laboratory assignment for an Industrial Control class.

//****************************************************************
//Geoff Luke
//EE 5880 - Industrial Controls
//PWM Fan Control
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//Last Updated: April 13, 2020
//****************************************************************
//Description: This program reads the voltage from an LM34 temp
//sensor then sends the corresponding temperature to an LCD.
//If the sensed temperature is greater than the temperature set
//by a potentiometer, then a PWM signal is turned on to trigger a
//DC fan with duty cycle set by another potentiometer.
//
//The ATmega328 is clocked from 4 MHz ceramic resonator
//
//Ports:
// PORTB[7:0]: data output to LCD
// PORTD[7:6]: LCD control pins
// PORTC[0]: LM34 temperature sensor
// PORTC[1]: threshold temperature 10 mV per degree F
// PORTC[2]: fan speed
// PORTD[4]: PWM channel B output
//
//****************************************************************

//include files***************************************************
#include<iom328pv.h>

//function prototypes*********************************************
void initializePorts(void);
void initializeADC(void);
unsigned int readADC(unsigned char);
void LCD_init(void);
void putChar(unsigned char);
void putcommand(unsigned char);
void voltageToLCD(unsigned int);
void temperatureToLCD(unsigned int);
void PWM(unsigned int);
void delay(void);

int main(void)
{
unsigned int tempVoltage, tempThreshold;
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initializePorts();
initializeADC();
LCD_init();

while(1)
{
tempVoltage = readADC(0);
temperatureToLCD(tempVoltage);
tempThreshold = readADC(1);
if(tempVoltage > tempThreshold)

{
PWM(1);
while(tempVoltage > tempThreshold)

{
tempVoltage = readADC(0);
temperatureToLCD(tempVoltage);
tempThreshold = readADC(1);
}

OCR1BL = 0x00;
}

}
return 0;
}

//****************************************************************

void initializePorts(void)
{
DDRD = 0xFF;
DDRC = 0xFF;
DDRB = 0xFF;
}

//*****************************************************************

void initializeADC(void)
{
//select channel 0
ADMUX = 0;
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//enable ADC and set module enable ADC and
//set module prescalar to 8
ADCSRA = 0xC3;

//Wait until conversion is ready
while(!(ADCSRA & 0x10));

//Clear conversion ready flag

ADCSRA |= 0x10;
}

//****************************************************************

unsigned int readADC(unsigned char channel)
{
unsigned int binary_weighted_voltage, binary_weighted_voltage_low;
unsigned int binary_weighted_voltage_high; //weighted binary

ADMUX = channel; //Select channel
ADCSRA |= 0x43; //Start conversion

//ADC module prescalar to 8
//critical accurate ADC results

while (!(ADCSRA & 0x10)); //Check if conversion is ready
ADCSRA |= 0x10; //Clear conv rdy flag-set bit

binary_weighted_voltage_low = ADCL;
//Read 8 low bits first (important)

//Read 2 high bits, multiply by 256
binary_weighted_voltage_high = ((unsigned int)(ADCH << 8));
binary_weighted_voltage = binary_weighted_voltage_low +

binary_weighted_voltage_high;
return binary_weighted_voltage; //ADCH:ADCL
}

//****************************************************************
//LCD_Init: initialization LCD connected in the following manner:
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//LCD: AND671GST 1x16 character display
//LCD configured as two 8 character lines in a 1x16 array
//LCD data bus (pin 14-pin7) MICROCHIP ATmega16: PORTB
//LCD RS (pin 4) MICROCHIP ATmega16: PORTD[7]
//LCD E (pin 6) MICROCHIP ATmega16: PORTD[6]
//****************************************************************

void LCD_init(void)
{
delay();
delay();
delay();

// output command string to
//initialize LCD

putcommand(0x38); //function set 8-bit
delay();
putcommand(0x38); //function set 8-bit
delay();
putcommand(0x38); //function set 8-bit
putcommand(0x38); //one line, 5x7 char
putcommand(0x0E); //display on
putcommand(0x01); //display clear-1.64 ms
putcommand(0x06); //entry mode set
putcommand(0x00); //clear display, cursor at home
putcommand(0x00); //clear display, cursor at home
}

//****************************************************************
//putchar: prints specified ASCII character to LCD
//****************************************************************

void putChar(unsigned char c)
{
DDRB = 0xff; //set PORTB as output
DDRD = DDRD|0xC0; //make PORTD[7:6] output
PORTB = c;
PORTD = PORTD|0x80; //RS=1
PORTD = PORTD|0x40; //E=1
PORTD = PORTD&0xbf; //E=0
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delay();
}

//****************************************************************
//performs specified LCD related command
//****************************************************************

void putcommand(unsigned char d)
{
DDRB = 0xff; //set PORTB as output
DDRD = DDRD|0xC0; //make PORTD[7:6] output
PORTD = PORTD&0x7f; //RS=0
PORTB = d;
PORTD = PORTD|0x40; //E=1
PORTD = PORTD&0xbf; //E=0
delay();
}

//****************************************************************
//delay
//Clock source: 4 MHz ceramic resonator
//Delay: 5 ms
//****************************************************************

void delay(void)
{
unsigned int i;

for(i=0; i<20000; i++)
{
asm("nop");
}

}

//****************************************************************
//This function transforms the ADC voltage measured as an unsigned
//int, isolates each voltage digit, converts to an ASCII equivalent,
//and displays the result on the LCD.



236 7. EMBEDDED SYSTEMS DESIGN
//****************************************************************

void voltageToLCD(unsigned int ADCValue)
{
float voltage;
unsigned int ones, tenths, hundredths;

voltage = (float)ADCValue*5.0/1024.0;

ones = (unsigned int)voltage;
tenths = (unsigned int)((voltage-(float)ones)*10);
hundredths = (unsigned int)(((voltage-(float)ones)*10

-(float)tenths)*10);

putcommand(0x80);

putChar((unsigned char)(ones)+48);
putChar('.');
putChar((unsigned char)(tenths)+48);
putChar((unsigned char)(hundredths)+48);
putChar('V');
putcommand(0xC0);
}

//****************************************************************

void temperatureToLCD(unsigned int ADCValue)

{
float voltage,temperature;
unsigned int tens, ones, tenths;

voltage = (float)ADCValue*5.0/1024.0;
temperature = voltage*100;

tens = (unsigned int)(temperature/10);
ones = (unsigned int)(temperature-(float)tens*10);
tenths = (unsigned int)(((temperature-(float)tens*10)

-(float)ones)*10);
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putcommand(0x80);
putChar((unsigned char)(tens)+48);
putChar((unsigned char)(ones)+48);
putChar('.');
putChar((unsigned char)(tenths)+48);
putChar('F');
}

//****************************************************************

void PWM(unsigned int PWM_incr)
{

unsigned int fan_Speed_int;
float fan_Speed_float;
int PWM_duty_cycle;

fan_Speed_int = readADC(0x02); //fan speed setting

//unsigned int convert to max duty cycle setting:
// 0 VDC = 50
// 5 VDC = 100

fan_Speed_float = ((float)(fan_Speed_int)/(float)(0x0400));

//convert volt to PWM constant 127-255
fan_Speed_int = (unsigned int)((fan_Speed_float * 127) + 128.0);

//Configure PWM clock

TCCR1A = 0xA1; //freq = resonator/510
// = 4 MHz/510
//freq = 19.607 kHz

TCCR1B = 0x02; //clock source
//division of 8: 980 Hz
//Initiate PWM duty cycle
//variables

PWM_duty_cycle = 0;
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OCR1BH = 0x00;
OCR1BL = (unsigned char)(PWM_duty_cycle);//PWM duty cycle Ch B to 0

//Ramp to fan Speed in 1.6s
OCR1BL = (unsigned char)(PWM_duty_cycle);//set PWM duty cycle Ch B

while (PWM_duty_cycle < fan_Speed_int)
{
if(PWM_duty_cycle < fan_Speed_int) //increment duty cycle
PWM_duty_cycle=PWM_duty_cycle + PWM_incr;

//set PWM duty cycle Ch B
OCR1BL = (unsigned char)(PWM_duty_cycle);
}

}

//****************************************************************

7.5 AUTONOMOUS MAZE NAVIGATING ROBOT
In this example we investigate an autonomous navigating robot design. Before delving into the
design, it is helpful to review the fundamentals of robot steering and motor control. Figure 7.4
illustrates the fundamental concepts. Robot steering is dependent upon the number of powered
wheels and whether the wheels are equipped with unidirectional or bidirectional control. Recall
from Arduino I: Getting Started an H-bridge is typically required for bidirectional control of a
DC motor. Additional robot steering configurations are possible.

An autonomous, maze-navigating robot is equipped with sensors to detect the presence
of maze walls and navigate about the maze. The robot has no prior knowledge about the maze
configuration. It uses the sensors and an onboard algorithm to determine the robot’s next move.
The overall goal is to navigate from the starting point of the maze to the end point as quickly
as possible without bumping into maze walls as shown in Figure 7.5. Maze walls are usually
painted white to provide a good, light reflective surface, whereas the maze floor is painted matte
black to minimize light reflections.

7.5.1 DAGU ROVER 5 TRACKED ROBOT
We equip the Dagu Rover 5 Tracked Robot for control by ATmega328 as a maze navigating
robot. The Rover 5 kit is available from Jameco Electronics (www.jameco.com). The Rover 5
kits comes in three variants:

• ROV5 – 1 is equipped with two motor and no motor encoders.

• ROV5 – 2 is equipped with two motor and two motor encoders.

www.jameco.com
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Figure 7.4: Robot control configurations.
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Start

Finish

Figure 7.5: Autonomous robot within maze.

• ROV5 – 3 is equipped with four motor and four motor encoders.

In this example, we use the ROV5-1 platform. It is controlled by two 7.2 VDC motors
which independently drive a left and right wheel.

We equip the Rover 5 platform with three Sharp GP2Y0A21YKOF infrared (IR) sensors
as shown in Figure 7.7. The sensors are available from SparkFun Electronics (www.sparkfun.
com). We mount the sensors on a bracket constructed from thin aluminum. The bracket is
attached to the Pololu RP5/Rover 5 extension plate (#1530) [www.pololu.com].

Dimensions for the bracket are provided in the figure. Alternatively, the IR sensors may
be mounted to the robot platform using “L” brackets available from a local hardware store.
The characteristics of the sensor are provided in Figure 7.6. The robot is placed in a maze with
reflective walls. The project goal is for the robot to detect wall placement and navigate through
the maze. It is important to note the robot is not provided any information about the maze. The
control algorithm for the robot is hosted on ATmega328.

7.5.2 REQUIREMENTS
The requirements for this project are simple: the robot must autonomously navigate through
the maze without touching maze walls. The robot motors may only be moved in the forward
direction. To render a left turn, the left motor is stopped and the right motor is asserted until
the robot completes the turn. To render a right turn, the opposite action is required. The task
in writing the control algorithm is to take the UML activity diagram provided in Figure 7.12
and the actions specified in the robot action truth table (Figure 7.8) and transform both into a
coded algorithm. This may seem formidable but we take it a step at a time.

www.sparkfun.com
www.sparkfun.com
www.pololu.com
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Figure 7.6: Sharp GP2Y0A21YKOF IR sensor profile.

7.5.3 CIRCUIT DIAGRAM-ARDUINO UNO
The circuit diagram for the robot is provided in Figure 7.9. The three IR sensors (left, middle,
and right) are mounted on the leading edge of the robot to detect maze walls. The output from
the sensors is fed to three Arduino UNO R3 ADC channels (ANALOG IN 0-2). The robot
motors are driven by PWM channels (PWM: DIGITAL 11 and PWM: DIGITAL 10). The
Arduino UNO R3 is interfaced to the motors via a Darlington NPN transistor (TIP120) with
enough drive capability to handle the maximum current requirements of the motor. Since the
motor power supply is at 9 VDC and the motors are rated at 7.2 VDC, three 1N4001 diodes are
placed in series with the motor. This reduces the supply voltage to the motor to be approximately
6.9 VDC. The robot is powered by a 9 VDC power supply which is fed to a 5 VDC voltage
regulator. To save on battery expense, it is recommended to use a 9 VDC, 2A rated inexpensive,
wall-mount power supply. A power umbilical of braided wire may be used to provide power to
the robot while navigating about the maze.

7.5.4 CIRCUIT DIAGRAM – ATMEGA328
The circuit diagram for the robot is provided in Figure 7.10. The three IR sensors (left, middle,
and right) are mounted on the leading edge of the robot to detect maze walls. The output from
the sensor is fed to three ADC channels (PORTC[2:0]). The robot motors will be driven by
PWM channels A and B (OC1A and OC1B). The microcontroller is interfaced to the motors
via a Darlington transistor with enough drive capability to handle the maximum current require-
ments of the motor. Since the motor power supply is at 9 VDC and the motors are rated at 7.2
VDC, three 1N4001 diodes are placed in series with the motor. The robot is powered by a 9
VDC battery which is fed to a 5 VDC voltage regulator. Alternatively, a 9 VDC power supply
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(a) Dagu Rover 5 Robot

Pololu RP5/Rover 5

Expansion Plate

(b) Construction Details for Sensor Bracket

(c) Dagu Rover 5-1 Tracked Robot

Sharp GP12D

IR Sensor

6”

all holes 1/8”
1/2”

1/2”

1/2”

1-7/16”

Figure 7.7: Dagu Rover 5 robot platform modified with three IR sensors.
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Figure 7.8: Truth table for robot action.

rated at several amps may be used in place of the 9 VDC battery. The supply may be connected
to the robot via a flexible umbilical cable.

7.5.5 STRUCTURE CHART
The structure chart for the robot project is provided in Figure 7.11.

7.5.6 UML ACTIVITY DIAGRAMS
The UML activity diagram for the robot is provided in Figure 7.12.

7.5.7 MICROCONTROLLER CODE – ARDUINO UNO
The control algorithm begins with Arduino UNO R3 pin definitions. Variables are then declared
for the readings from the three IR sensors. The two required Arduino functions follow: setup()
and loop(). In the setup() function, Arduino UNO R3 pins are declared as output. The loop()
begins by reading the current value of the three IR sensors. The 512 threshold value corresponds
to a desired IR sensor range. This value may be adjusted to change the range at which the maze
wall is detected. The IR sensor readings are followed by an eight part if-else if statement. The
statement contains a part for each row of the truth table provided in Figure 7.8. For a given
configuration of sensed walls, the appropriate wall detection LEDs are illuminated followed by
commands to activate the motors (analogWrite) and illuminate the appropriate turn signals. The
analogWrite command issues a signal from 0–5 VDC by sending a constant from 0–255 using
pulse width modulation (PWM) techniques. The turn signal commands provide two actions:
the appropriate turns signals are flashed and a 1.5 s total delay is provided. This provides the
robot 1.5 s to render a turn. This delay may need to be adjusted during the testing phase.

//***********************************************************************
//analog input pins

#define left_IR_sensor A0 //analog pin - left IR sensor
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Figure 7.9: Robot circuit diagram. (UNO R3 illustration used with permission of the Arduino
Team (CC BY-NC-SA) www.arduino.cc.)

www.arduino.cc
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Figure 7.10: Robot circuit diagram.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01024ED1V01Y202006DCS059&iName=master.img-284.jpg&w=319&h=468
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Figure 7.11: Robot structure diagram.

#define center_IR_sensor A1 //analog pin - center IR sensor
#define right_IR_sensor A2 //analog pin - right IR sensor

//digital output pins
//LED indicators - wall detectors

#define wall_left 3 //digital pin - wall_left
#define wall_center 4 //digital pin - wall_center
#define wall_right 5 //digital pin - wall_right

//LED indicators - turn signals
#define left_turn_signal 2 //digital pin - left_turn_signal
#define right_turn_signal 6 //digital pin - right_turn_signal

//motor outputs
#define left_motor 11 //digital pin - left_motor
#define right_motor 10 //digital pin - right_motor
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Figure 7.12: Robot UML activity diagram.
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int left_IR_sensor_value; //variable for left IR sensor
int center_IR_sensor_value; //variable for center IR sensor
int right_IR_sensor_value; //variable for right IR sensor

void setup()
{

//LED indicators - wall detectors
pinMode(wall_left, OUTPUT); //configure pin 1 for digital output
pinMode(wall_center, OUTPUT); //configure pin 2 for digital output
pinMode(wall_right, OUTPUT); //configure pin 3 for digital output

//LED indicators - turn signals
pinMode(left_turn_signal,OUTPUT); //configure pin 0 for digital output
pinMode(right_turn_signal,OUTPUT); //configure pin 4 for digital output

//motor outputs - PWM
pinMode(left_motor, OUTPUT); //config pin 11 for digital output
pinMode(right_motor, OUTPUT); //config pin 10 for digital output
}

void loop()
{

//read analog output from IR sensors
left_IR_sensor_value = analogRead(left_IR_sensor);
center_IR_sensor_value = analogRead(center_IR_sensor);
right_IR_sensor_value = analogRead(right_IR_sensor);

//robot action table row 0
if((left_IR_sensor_value < 512)&&(center_IR_sensor_value < 512)&&

(right_IR_sensor_value < 512))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(left_motor, 128); //0 (off) to

//255 (full speed)
analogWrite(right_motor, 128); //0 (off) to
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//255 (full speed)
//turn signals

digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 1
else if((left_IR_sensor_value < 512)&&(center_IR_sensor_value < 512)&&

(right_IR_sensor_value > 512))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(left_motor, 128); //0 (off) to

//255 (full speed)
analogWrite(right_motor, 128); //0 (off) to

//255 (full speed)
//turn signals

digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
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delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 2
else if((left_IR_sensor_value < 512)&&(center_IR_sensor_value > 512)&&

(right_IR_sensor_value < 512))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(left_motor, 128); //0 (off) to

//255 (full speed)
analogWrite(right_motor, 0); //0 (off) to

//255 (full speed)
//turn signals

digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 3
else if((left_IR_sensor_value < 512)&&(center_IR_sensor_value > 512)&&

(right_IR_sensor_value > 512))
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{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(left_motor, 0); //0 (off) to

//255 (full speed)
analogWrite(right_motor, 128); //0 (off) to

//255 (full speed)
//turn signals

digitalWrite(left_turn_signal, HIGH); //turn LED on
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, HIGH); //turn LED on
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 4
else if((left_IR_sensor_value > 512)&&(center_IR_sensor_value < 512)&&

(right_IR_sensor_value < 512))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(left_motor, 128); //0 (off) to

//255 (full speed)
analogWrite(right_motor, 128); //0 (off) to

//255 (full speed)
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//turn signals

digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 5
else if((left_IR_sensor_value > 512)&&(center_IR_sensor_value < 512)&&

(right_IR_sensor_value > 512))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(left_motor, 128); //0 (off) to

//255 (full speed)
analogWrite(right_motor, 128); //0 (off) to

//255 (full speed)
//turn signals

digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
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digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 6
else if((left_IR_sensor_value > 512)&&(center_IR_sensor_value > 512)&&

(right_IR_sensor_value < 512))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(left_motor, 128); //0 (off) to

//255 (full speed)
analogWrite(right_motor, 0); //0 (off) to

//255 (full speed)
//turn signals

digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED OFF
digitalWrite(right_turn_signal, LOW); //turn LED OFF
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 7
else if((left_IR_sensor_value > 512)&&(center_IR_sensor_value > 512)&&

(right_IR_sensor_value > 512))
{
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//wall detection LEDs

digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(left_motor, 128); //0 (off) to

//255 (full speed)
analogWrite(right_motor, 0); //0 (off) to

//255 (full speed)
//turn signals

digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

}

//***********************************************************************

7.5.8 MICROCONTROLLER CODE – ATMEGA328
Provided below is the basic framework for the code. As illustrated in the Robot UML activity
diagram, the control algorithm initializes various ATmega328 subsystems (ports, ADC, and
PWM), senses wall locations, and issues motor control signals to avoid walls.

It is helpful to characterize the infrared sensor response to the maze walls. This allows a
threshold to be determined indicating the presence of a wall. In this example, we assume that a
threshold of 2.5 VDC has been experimentally determined.

It is important to note that the amount of robot turn is determined by the PWM duty
cycle (motor speed) and the length of time the turn is executed. For motors without optical
tachometers, the appropriate values for duty cycle and motor on time must be experimentally
determined. In the example functions provided, the motor PWM and on time are fixed.
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//*************************************************************
//robot_control
//Note: ATmega328 is clocked by an external 2.0 MHz resonator
//*************************************************************

#include<iom328v.h> //ATmega328 include files
//function prototypes

void Init_ADC(void);
unsigned int Read_ADC(unsigned char channel);
void PWM(unsigned char Duty_Cycle_Left,

unsigned char Duty_Cycle_Right);
void ADC_values(void);
void PWM_forward(void);
void PWM_left(void);
void PWM_right(void);
void delay(unsigned int number_of_32_7ms_interrupts);
void init_timer2_ovf_interrupt(void);
void timer2_interrupt_isr(void);
void initialize_ports(void);
void determine_robot_action(void);

//interrupt handler definition
#pragma interrupt_handler timer2_interrupt_isr:10

//Global variables
float left_IR_voltage = 0.0;
float right_IR_voltage = 0.0;
float center_IR_voltage = 0.0;
unsigned int input_delay;

void main(void)
{
initialize_ports(); //initialize ports
init_timer2_ovf_interrupt(); //initialize interrupts
Init_ADC(); //initialize ADC

while(1)
{
ADC_values();
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determine_robot_action();
}

}

//**************************************************************
//void initialize_ports(void)
//Note: 1: output, 0: input
//**************************************************************

void initialize_ports(void)
{
DDRB = 0xFF;
DDRC = 0xF8; //PORTC[2:0] input
DDRD = 0xFF;
}

//*************************************************************
//void determine_robot_action(void)
//Note: we assume that a threshold of 2.5 VDC has been
//experimentally determined.
//*************************************************************

void determine_robot_action(void)
{

//wall on left and front,
//turn right

if((left_IR_voltage >= 2.5)&&(center_IR_voltage >= 2.5)&&
(right_IR_voltage < 2.5))

{
PWM_right();
}

: //insert other robot action cases
:
:

}

//***************************************************************
//void ADC_values(void)
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// PORTC[0] - Left IR Sensor
// PORTC[1] - Center IR Sensor
// PORTC[2] - Right IR Sensor
//***************************************************************

void ADC_values(void)
{
left_IR_voltage = (Read_ADC(0)*5.0)/1024.0;
center_IR_voltage = (Read_ADC(1)*5.0)/1024.0;
right_IR_voltage = (Read_ADC(2)*5.0)/1024.0;
}

//***************************************************************
//void PWM_forward(void): the PWM is configured to make the
//motors go forward.
//Implementation notes:
// - The left motor is controlled by PWM channel OC1B
// - The right motor is controlled by PWM channel OC1A
// - To go forward the same PWM duty cycle is applied to both
// the left and right motors.
// - The length of the delay controls the amount of time the
// motors are powered.
//***************************************************************

void PWM_forward(void)
{
TCCR1A = 0xA1; //freq = resonator/510 = 2 MHz/510

//freq = 3.922 kHz
TCCR1B = 0x01; //no clock source division

//Initiate PWM duty cycle variables

//Set PWM for left and right motors
//to 50

OCR1BH = 0x00;
//PWM duty cycle CH B left motor

OCR1BL = (unsigned char)(128);
OCR1AH = 0x00; //PWM duty cycle CH B right motor
OCR1AL = (unsigned char)(128);
delay(31); //delay 1s
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OCR1BL = (unsigned char)(0); //motors off
OCR1AL = (unsigned char)(0);
}

//*************************************************************
//void PWM_left(void)
//Implementation notes:
// - The left motor is controlled by PWM channel OC1B
// - The right motor is controlled by PWM channel OC1A
// - To go left the left motor is stopped and the right motor
// is provided a PWM signal. The robot will pivot about
// the left motor.
// - The length of the delay controls the amount of time the
// motors are powered.
//**************************************************************

void PWM_left(void)
{
TCCR1A = 0xA1; //freq = resonator/510 = 2 MHz/510

//freq = 3.922 kHz
TCCR1B = 0x01; //no clock source division

//Initiate PWM duty cycle variables
//Set PWM for left motor at 0
//and the right motor to 50

OCR1BH = 0x00; //PWM duty cycle CH B left motor
OCR1BL = (unsigned char)(0);
OCR1AH = 0x00; //PWM duty cycle CH B right motor
OCR1AL = (unsigned char)(128);
delay(31); //delay 1 sec
OCR1BL = (unsigned char)(0); //motors off
OCR1AL = (unsigned char)(0);
}

//***************************************************************
// void PWM_right(void)
// - The left motor is controlled by PWM channel OC1B
// - The right motor is controlled by PWM channel OC1A
// - To go right the right motor is stopped and the left motor is
// provided a PWM signal. The robot will pivot about the right
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// motor.
// - The length of the delay controls the amount of time the
// motors are powered.
//****************************************************************

void PWM_right(void)
{
TCCR1A = 0xA1; //freq = resonator/510 = 2 MHz/510

//freq = 3.922 kHz
TCCR1B = 0x01; //no clock source division

//Initiate PWM duty cycle variables
//Set PWM for left motor to 50
//and right motor to 0

OCR1BH = 0x00;
//PWM duty cycle CH B left motor

OCR1BL = (unsigned char)(128);
OCR1AH = 0x00; //PWM duty cycle CH B right motor
OCR1AL = (unsigned char)(0);
delay(31); //delay 1 sec
OCR1BL = (unsigned char)(0); //motors off
OCR1AL = (unsigned char)(0);
}

//*************************************************************

void Init_ADC(void)
{
ADMUX = 0; //Select channel 0
ADCSRA = 0xC3; //Enable ADC & start 1st

//dummy conversion
//Set ADC module prescalar to 8
//critical for accurate ADC results

while (!(ADCSRA & 0x10)); //Check if conversation is ready
ADCSRA |= 0x10; //Clear conv rdy flag - set the bit
}

//**************************************************************

unsigned int Read_ADC(unsigned char channel)
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{
unsigned int binary_weighted_voltage = 0x00;
unsigned int binary_weighted_voltage_low = 0x00;
unsigned int binary_weighted_voltage_high = 0x00;

ADMUX = channel; //Select channel
ADCSRA |= 0x43; //Start conversion

//Set ADC module prescalar to 8
//critical for accurate ADC results

while (!(ADCSRA & 0x10)); //Check if conversion is ready
ADCSRA |= 0x10; //Clear Conv rdy flag - set the bit

binary_weighted_voltage_low = ADCL; //Read 8 low bits first
//Read 2 high bits, multiply by 256
//Shift to the left 8 times to get
//the upper "ADC" result
//into the correct position to be
//ORed with the Lower result.

binary_weighted_voltage_high = ((unsigned int)(ADCH << 8));
//Cast to unsigned int
//OR the two results together
//to form the 10 bit result

binary_weighted_voltage = binary_weighted_voltage_low
| binary_weighted_voltage_high;

return binary_weighted_voltage; //ADCH:ADCL
}

//*************************************************************

void delay(unsigned int number_of_32_7ms_interrupts)
{
TCNT2 = 0x00; //reset timer2
input_delay = 0; //reset timer2 overflow counter
while(input_delay <= number_of_32_7ms_interrupts)

{
; //wait number of interrupts
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}

}

//**************************************************************
// void init_timer2_ovf_interrupt(void)
//
// - ATmega328 clock source: 2 MHz
// - Divided by 256: 7,812 KHz clock source to Timer 2
// - Timer 2 receives a clock tick every 128 microseconds
// - Overflows every 256 counts or 32.8 ms
//**************************************************************

void init_timer2_ovf_interrupt(void)
{
TCCR2A = 0x00; //Do nothing with this reg, not needed for count
TCCR2B = 0x06; //div timer2 timebase by 256, overflow at 32.7 ms
TIMSK2 = 0x01; //enable timer2 overflow interrupt
asm("SEI"); //enable global interrupt
}

//***************************************************************

void timer2_interrupt_isr(void)
{
input_delay++; //increment overflow counter
}

//****************************************************************

Provided in Figured 7.13 are images of the assembled robot using the Arduino UNO R3.
Testing the control algorithm: It is recommended that the algorithm be first tested with-

out the entire robot platform. This may be accomplished by connecting the three IR sensors and
LEDS to the appropriate pins on the ATmega328 as specified in Figure 7.10. In place of the
two motors and their interface circuits, two LEDs with the required interface circuitry may be
used. The LEDs will illuminate to indicate the motors would be on during different test sce-
narios. Once this algorithm is fully tested in this fashion, the ATmega328 may be mounted to
the robot platform and connected to the motors. Full-up testing in the maze may commence.
The design provided is very basic. The chapter homework assignments provide opportunity to
extend the design with additional features.
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(a) Dagu Rover 5-1 Front View

(b) Dagu Rover 5-1 Top View

Figure 7.13: Dagu Rover 5 robot platform modified with three IR sensors.
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7.6 SUMMARY
In this chapter, we discussed the design process, related tools, and applied the process to a real-
world design. It is essential to follow a systematic, disciplined approach to embedded systems
design to successfully develop a prototype that meets established requirements.
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7.8 CHAPTER PROBLEMS
1. What is an embedded system?

2. What aspects must be considered in the design of an embedded system?

3. What is the purpose of the structure chart, UML activity diagram, and circuit diagram?

4. Why is a system design only as good as the test plan that supports it?

5. During the testing process, when an error is found and corrected, what should now be
accomplished?

6. Discuss the top-down design, bottom-up implementation concept.

7. Describe the value of accurate documentation.

8. What is required to fully document an embedded systems design?

9. Provide a UML activity diagram and a structure chart for Automated FanCooling System.

10. What is the purpose of the 4N35 optical coupler in the motor control circuit?

11. Modify the Rover 5 design to include PWM turning commands such that the PWM duty
cycle and the length of the motors are on are sent in as variables to the function.

12. Modify the Rover 5 design to include with another IR sensor that looks down to the maze
floor for “land mines.” A land mine consists of a paper strip placed in the maze floor that
obstructs a portion of the maze. If a land mine is detected, the robot must deactivate it by
rotating three times and flashing a large LED while rotating.

13. Modify the Rover 5 design to include a function for reversing the robot.

14. Investigate the use of a Rover 5-2 tracked robot (two motors, two motor encoders) to
count the number of wheel rotations.

15. Write an interrupt driven function to count wheel rotations for the Rover 5-2 tracked
robot.
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