

Anywhere-Anytime
Signals and Systems Laboratory
FromMATLAB to Smartphones

Third Edition

Synthesis Lectures on Signal
Processing

Editor
JoséMoura,CarnegieMellon University

Synthesis Lectures in Signal Processing publishes 80- to 150-page books on topics of interest to
signal processing engineers and researchers. The Lectures exploit in detail a focused topic. They can
be at different levels of exposition-from a basic introductory tutorial to an advanced
monograph-depending on the subject and the goals of the author. Over time, the Lectures will
provide a comprehensive treatment of signal processing. Because of its format, the Lectures will
also provide current coverage of signal processing, and existing Lectures will be updated by authors
when justified.
Lectures in Signal Processing are open to all relevant areas in signal processing. They will cover
theory and theoretical methods, algorithms, performance analysis, and applications. Some Lectures
will provide a new look at a well established area or problem, while others will venture into a brand
new topic in signal processing. By careful reviewing the manuscripts we will strive for quality both
in the Lectures’ contents and exposition.

Anywhere-Anytime Signals and Systems Laboratory: From MATLAB to Smartphones,
Third Edition
Nasser Kehtarnavaz, Fatemeh Saki, Adrian Duran, and Arian Azarang
2020

Reconstructive-Free Compressive Vision for Surveillance Applications
Henry Braun, Pavan Turaga, Andreas Spanias, Sameeksha Katoch, Suren Jayasuriya, and Cihan
Tepedelenlioglu
2019

Smartphone-Based Real-Time Digital Signal Processing, Second Edition
Nasser Kehtarnavaz, Abhishek Sehgal, Shane Parris
2018

Anywhere-Anytime Signals and Systems Laboratory: from MATLAB to Smartphones,
Second Edition
Nasser Kehtarnavaz, Fatemeh Saki, and Adrian Duran
2018

iv
Anywhere-Anytime Signals and Systems Laboratory: from MATLAB to Smartphones
Nasser Kehtarnavaz and Fatemeh Saki
2017

Smartphone-Based Real-Time Digital Signal Processing
Nasser Kehtarnavaz, Shane Parris, and Abhishek Sehgal
2015

An Introduction to Kalman Filtering with MATLAB Examples
Narayan Kovvali, Mahesh Banavar, and Andreas Spanias
2013

Sequential Monte Carlo Methods for Nonlinear Discrete-Time Filtering
Marcelo G.S. Bruno
2013

Processing of Seismic Reflection Data Using MATLAB™
Wail A. Mousa and Abdullatif A. Al-Shuhail
2011

Fixed-Point Signal Processing
Wayne T. Padgett and David V. Anderson
2009

Advanced Radar Detection Schemes Under Mismatched Signal Models
Francesco Bandiera, Danilo Orlando, and Giuseppe Ricci
2009

DSP for MATLAB™ and LabVIEW™ IV: LMS Adaptive Filtering
Forester W. Isen
2009

DSP for MATLAB™ and LabVIEW™ III: Digital Filter Design
Forester W. Isen
2008

DSP for MATLAB™ and LabVIEW™ II: Discrete Frequency Transforms
Forester W. Isen
2008

DSP for MATLAB™ and LabVIEW™ I: Fundamentals of Discrete Signal Processing
Forester W. Isen
2008

The Theory of Linear Prediction
P. P. Vaidyanathan
2007

v
Nonlinear Source Separation
Luis B. Almeida
2006

Spectral Analysis of Signals: The Missing Data Case
Yanwei Wang, Jian Li, and Petre Stoica
2006

Copyright © 2020 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by anymeans—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

Anywhere-Anytime Signals and Systems Laboratory: From MATLAB to Smartphones, Third Edition

Nasser Kehtarnavaz, Fatemeh Saki, Adrian Duran, and Arian Azarang

www.morganclaypool.com

ISBN: 9781681738857 paperback
ISBN: 9781681738864 ebook
ISBN: 9781681738871 hardcover

DOI 10.2200/S01020ED2V01Y202006SPR018

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON SIGNAL PROCESSING

Lecture #18
Series Editor: José Moura, Carnegie Mellon University
Series ISSN
Print 1932-1236 Electronic 1932-1694

www.morganclaypool.com

Anywhere-Anytime
Signals and Systems Laboratory
FromMATLAB to Smartphones

Third Edition

Nasser Kehtarnavaz, Fatemeh Saki, Adrian Duran, and Arian Azarang
University of Texas at Dallas

SYNTHESIS LECTURES ON SIGNAL PROCESSING #18

C
M
&

cLaypoolMorgan publishers&

ABSTRACT
A typical undergraduate electrical engineering curriculum incorporates a signals and systems
course. The widely used approach for the laboratory component of such courses involves the
utilization of MATLAB to implement signals and systems concepts. This book presents a newly
developed laboratory paradigm where MATLAB codes are made to run on smartphones which
are possessed by nearly all students. As a result, this laboratory paradigm provides an anywhere-
anytime hardware platform or processing board for students to learn implementation aspects
of signals and systems concepts. The book covers the laboratory experiments that are normally
covered in signals and systems courses and discusses how to run MATLAB codes for these
experiments as apps on both Android and iOS smartphones, thus enabling a truly mobile labo-
ratory paradigm. A zipped file of the codes discussed in the book can be acquired via the website
http://sites.fastspring.com/bookcodes/product/SignalsSystemsBookcodesThirdEdition.

KEYWORDS
smartphone-based signals and systems laboratory, anywhere-anytime platform for
signals and systems courses, from MATLAB to smartphones

http://sites.fastspring.com/bookcodes/product/SignalsSystemsBookcodesThirdEdition

ix

Contents
Preface . xiii

1 Introduction toMATLAB . 1
1.1 Starting MATLAB . 1

1.1.1 Arithmetic Operations . 6
1.1.2 Vector Operations . 7
1.1.3 Complex Numbers . 8
1.1.4 Array Indexing . 8
1.1.5 Allocating Memory . 9
1.1.6 Special Characters and Functions . 10
1.1.7 Control Flow . 10
1.1.8 Programming in MATLAB . 13
1.1.9 Sound Generation . 14
1.1.10 Loading and Saving Data . 15
1.1.11 Reading Wave and Image Files . 15
1.1.12 Signal Display . 16

1.2 MATLAB Programming Examples . 16
1.2.1 Signal Generation . 16
1.2.2 Generating a Periodic Signal . 19

1.3 Lab Exercises . 19

2 Software Development Tools . 23
2.1 Android Tools Installation Steps . 23

2.1.1 Java JDK . 23
2.1.2 Android Studio Development Environment and Native

Development Kit . 25
2.1.3 Android Studio Setup Wizard . 25
2.1.4 Android Emulator Configuration . 27
2.1.5 Getting Familiar with Android Software Tools 30

2.2 iOS Tools Installation Steps . 44
2.2.1 iPhone App Development with Xcode . 45
2.2.2 Setting-Up App Environment . 45

x
2.2.3 Creating Layout . 47
2.2.4 Implementing C Codes . 48
2.2.5 Executing C Codes via Objective-C . 50
2.2.6 iOS App Debugging . 50

3 FromMATLABCoder to Smartphone . 53

3.1 MATLAB Function Design . 53
3.2 Generating Signals via MATLAB on Smartphones . 54

3.2.1 Test Bench . 56
3.2.2 C Code Generation . 56
3.2.3 Source Code Integration . 61

3.3 Running MATLAB Coder-Generated C Codes on Smartphones 63
3.3.1 Running on Android Smartphones . 63
3.3.2 Running on iOS Smartphones . 67

3.4 References . 71

4 Linear Time-Invariant Systems and Convolution . 73

4.1 Convolution and Its Numerical Approximation . 73
4.2 Convolution Properties . 75
4.3 Convolution Experiments . 75
4.4 Lab Exercises . 102

4.4.1 Echo Cancellation . 102
4.4.2 Noise Reduction Using Mean Filtering . 103
4.4.3 Impulse Noise Reduction Using Median Filtering 104

4.5 Running MATLAB Coder-Generated C Codes on Smartphones 104
4.5.1 Running on Android Smartphones . 104
4.5.2 Running on iOS Smartphones . 108

4.6 Real-Time Running on Smartphones . 110
4.6.1 MATLAB Function Design . 110
4.6.2 Test Bench . 110
4.6.3 Modifying Real-Time Shell for Android . 113
4.6.4 Modifying Real-Time Shell for iOS . 119

4.7 Real-Time Labs . 124
4.8 References . 134

xi

5 Fourier Series . 135
5.1 Fourier Series Numerical Computation . 136
5.2 Fourier Series and its Applications . 137
5.3 Lab Exercises . 144

5.3.1 RL Circuit Analysis . 144
5.3.2 Doppler Effect . 151
5.3.3 Synthesis of Electronic Music . 152

5.4 Real-Time Labs . 154
5.5 References . 175

6 Continuous-Time Fourier Transform . 177
6.1 CTFT and its Properties . 177
6.2 Numerical Approximations of CTFT . 177
6.3 Evaluating Properties of CTFT . 179
6.4 Lab Exercises . 198

6.4.1 Circuit Analysis . 198
6.4.2 Doppler Effect . 204
6.4.3 Diffraction of Light . 204

6.5 Real-Time Labs . 206
6.6 References . 226

7 Digital Signals andTheir Transforms . 227
7.1 Digital Signals . 227

7.1.1 Sampling and Aliasing . 227
7.1.2 Quantization . 230
7.1.3 A/D and D/A Conversions . 233
7.1.4 DTFT and DFT . 234

7.2 Analog-to-Digital Conversion, DTFT and DFT . 235
7.3 Lab Exercises . 251

7.3.1 Dithering . 251
7.3.2 Image Processing . 252
7.3.3 DTMF Decoder . 252

7.4 References . 252

Authors’ Biographies . 253

Index . 255

xiii

Preface
A typical undergraduate electrical engineering curriculum incorporates a signals and systems
course where students normally first encounter signal processing concepts of convolution,
Fourier series, Fourier transform, and discrete Fourier transform. For the laboratory component
of such courses, the conventional approach has involved a laboratory environment consisting
of computers running MATLAB codes. There exist several lab textbooks or manuals for the
laboratory component of signals and systems courses based on MATLAB, e.g., An Interactive
Approach to Signals and Systems Laboratory by Kehtarnavaz, Loizou, and Rahman; Signals and
Systems Laboratory with MATLAB by Palamides and Veloni; Signals and Systems: A Primer with
MATLAB by Sadiku and Ali; and Signals and Systems by Mitra.

The motivation for writing this lab textbook/manual has been to provide an alternative
laboratory paradigm to the above conventional laboratory paradigm by using smartphones as
a truly mobile anywhere-anytime hardware platform or processing board for students to run
signals and systems codes written in MATLAB on them. This approach or laboratory paradigm
eases the requirement of using a dedicated laboratory room for signals and systems courses and
allows students to use their own computers/laptops and smartphones/tablets as the hardware
platform to learn the implementation aspects of signals and systems concepts. It is worth stating
that this book is only meant as an accompanying lab book to signals and systems textbooks and
is not meant to be used as a substitute for these textbooks.

The challenge in developing this alternative approach has been to limit the programming
language required from students to MATLAB and not requiring them to know any other pro-
gramming language. MATLAB is extensively used in engineering departments and students are
often expected to use it for various courses they take during their undergraduate studies.

The above challenge is met here by using the smartphone software tools that are publicly
available. The software development environments of smartphones (both Android and iOS) are
free of charge and students can download and place them on their own computers/laptops. In
this lecture series book, we have developed the software shells that allow students to run MAT-
LAB codes on their own smartphones/tablets as apps. In the first edition of the book, the im-
plementation was done on Android smartphones. In the second edition, in addition to Android
smartphones, the implementation was done on iOS smartphones. Due to various updates that
have taken place in MATLAB and in smartphone software tools, this third edition is written to
address incompatibility errors caused by the older versions of the software tools when running
the codes in the previous editions.

The book chapters correspond to the following labs for a semester-long lab course: (1) in-
troduction to MATLAB programming; (2) smartphone development tools (both Andorid

xiv PREFACE
and iOS); (3) use of MATLAB Coder to generate C codes from MATLAB and running C
codes on smartphones; (4) linear time-invariant systems and convolution; (5) Fourier series;
(6) continuous-time Fourier transform; and (7) digital signals and discrete Fourier transform.
A typical signals and systems laboratory course or component covers the labs associated with
subjects (4)–(7).

Finally, it is to be noted that the codes discussed in the book can be ac-
quired from this third-party website http://sites.fastspring.com/bookcodes/product/
SignalsSystemsBookcodesThirdEdition.

Nasser Kehtarnavaz, Fatemeh Saki, Adrian Duran, and Arian Azarang
Summer 2020

http://sites.fastspring.com/bookcodes/product/SignalsSystemsBookcodesThirdEdition
http://sites.fastspring.com/bookcodes/product/SignalsSystemsBookcodesThirdEdition

1

C H A P T E R 1

Introduction toMATLAB
MATLAB is a programming environment that is widely used to solve engineering problems.
There are many online references on MATLAB that one can read to become familiar with this
programming environment. This chapter is only meant to provide an overview or a brief intro-
duction to MATLAB. Screenshots are used to show the steps to be taken and configuration
options to set when using the Windows operating system.

1.1 STARTINGMATLAB
Assuming MATLAB is installed on the laptop or computer used, select MATLAB from the
Start bar of Windows, as illustrated in Figure 1.1. After starting MATLAB, a window called
MATLAB desktop appears, see Figure 1.2, which contains other sub-windows or panels. The
panelCommandWindow allows interactive computation to be conducted. Suppose it is desired
to compute 3 C 4 � 6. This is done by typing it at the prompt command denoted by >> ; see
Figure 1.3. Since no output variable is specified for the result of 3 C 4 � 6, MATLAB returns the
value in the variable ans , which is created by MATLAB. Note that ans is always overwritten
by MATLAB, so if the result is used for another operation, it needs to be assigned to a variable,
for example x D 3 C 4 � 6.

In practice, a sequence of operations is usually performed to achieve a desired output.
Often, a so-calledm-file script is used for this purpose. Anm-file script is a simple text file where
MATLAB commands are listed. Figure 1.4 shows how to start a new script. In the HOME
menu, locate the New Script tab under New ! Script, or Ctrl+N to create a blank script under
the panel EDITOR. When a new script is opened, it looks as shown in Figure 1.5. A script can
be saved using a specified name in a desired location. Anm-file script is saved with ‘.m’ extension.
When such a file is run, MATLAB reads the commands and executes them as though there were
the MATLAB commands and operations. The following section provides more details on the
MATLAB commands and operations.

2 1. INTRODUCTIONTOMATLAB

Figure 1.1: MATLAB appearance in windows start bar.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-000.jpg&w=215&h=343

1.1. STARTINGMATLAB 3

Figure 1.2: MATLAB interface window.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-001.jpg&w=414&h=268

4 1. INTRODUCTIONTOMATLAB

Figure 1.3: A simple computation in command window.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-002.jpg&w=413&h=330

1.1. STARTINGMATLAB 5

Figure 1.4: Starting a new m-file script in MATLAB.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-003.jpg&w=180&h=330

6 1. INTRODUCTIONTOMATLAB

Figure 1.5: An m-file script docked in EDITOR panel.

1.1.1 ARITHMETICOPERATIONS
There are four basic arithmetic operators in m-files:

+ addition
- subtraction
* multiplication
/ division (for matrices, it also means inversion)

The following three operators work on an element-by-element basis:

.* multiplication of two vectors, element-wise

./ division of two vectors, element-wise

.^ raising all the elements of a vector to a power

As an example, to evaluate the expression a3 C
p

bd � 4c, where a D 1:2, b D 2:3, c D

4:5, and d D 4, type the following commands in the Command Window to get the answer
(ans):

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-004.jpg&w=358&h=251

1.1. STARTINGMATLAB 7

>> a=1.2;
>> b=2.3;
>> c=4.5;
>> d=4;
>> a^3+sqrt(b*d)-4*c
ans =
-13.2388

Note the semicolon after each variable assignment. If the semicolon is omitted, the inter-
preter echoes back the variable value.

1.1.2 VECTOROPERATIONS
Consider the vectors x D Œx1; x2; : : : ; xn� and y D Œy1; y2; : : : ; yn�. The following operations in-
dicate the resulting vectors:

x: � y D Œx1y1; x2y2; : : : ; xnyn�

x:=y D

�
x1

y1

;
x2

y2

; : : : ;
xn

yn

�
x: ^ p D

�
x

p
1 ; x

p
2 ; : : : ; xp

n

�
:

Considering that the boldfacing of vectors/matrices are not used in .m files, in the notation
adopted in this book, no boldfacing of vectors/matrices is shown to retain notation consistency
with .m files.

The arithmetic operators C and � can be used to add or subtract matrices, vectors, or
scalars. Vectors denote 1-dimensional (1-D) arrays and matrices denote multi-dimensional ar-
rays. For example:

>> x=[1,3,4]
>> y=[4,5,6]
>> x+y
ans=
5 8 10

In this example, the operator C adds the elements of the vectors x and y , element by
element, assuming that the two vectors have the same dimension, in this case 1 � 3 or one row
with three columns. An error occurs if one attempts to add vectors having different dimensions.
The same applies for matrices.

To compute the dot product of two vectors (in other words,
P

i xiyi), use the multiplica-
tion operator `*´ as follows:

8 1. INTRODUCTIONTOMATLAB

>> x*y'
ans =
43

Note the single quote after y denotes the transpose of a vector or a matrix.
An element-by-element multiplication of two vectors (or two arrays) is computed by the

following operator:

>> x .* y
ans =

4 15 24

That is, x .* y means Œ1 � 4; 3 � 5; 4 � 6� D Œ4 15 24�.

1.1.3 COMPLEXNUMBERS
MATLAB supports complex numbers. The imaginary number is denoted with the symbol i or
j, assuming that these symbols have not been used any other place in the program. It is critical
to avoid such symbol conflicts for obtaining correct outcomes. Enter the following and observe
the outcomes:

>> z=3 + 4i % note the multiplication sign `*´ is not needed after 4
>> conj(z) % computes the conjugate of z
>> angle(z) % computes the phase of z
>> real(z) % computes the real part of z
>> imag(z) % computes the imaginary part of z
>> abs(z) % computes the magnitude of z

One can also define an imaginary number with any other user-specified variables. For
example, in the following manner:

>> img=sqrt(-1)
>> z=3+4*img
>> exp(pi*img)

1.1.4 ARRAY INDEXING
In m-files, all arrays (vectors) are indexed starting from 1; in other words, x(1) denotes the first
element of the array x. Note that arrays are indexed using parentheses (.) and not square

1.1. STARTINGMATLAB 9

brackets [.] , as done in C/C++. To create an array featuring the integers 1–6 as elements,
enter:

>> x=[1,2,3,4,5,6]

Alternatively, the notation `:´ can be used as follows:

>> x=1:6

This notation creates a vector starting from 1–6, in steps of 1. If a vector from 1–6 in steps
of 2 is desired, then type:

>> x=1:2:6
ans =
1 3 5

Additional examples are listed below:

>> ii=2:4:17
>> jj=20:-2:0
>> ii=2:(1/10):4

One can easily extract numbers in a vector. To concatenate an array, the example below
shows how to use the operator `[]´ :

>> x=[1:3 4 6 100:110]

To access a subset of this array, type the following:

>> x(3:7)
>> length(x) % gives the size of the array or vector
>> x(2:2:length(x))

1.1.5 ALLOCATINGMEMORY
Memory can get allocated for 1-D arrays (vectors) using the command or function zeros . The
following command allocates memory for a 100-dimensional array:

10 1. INTRODUCTIONTOMATLAB

>> y=zeros(100,1);
>> y(30)
ans =
0

The function zeros(n,m) creates an n�m matrix with all 0 elements. One can allo-
cate memory for 2-dimensional (2-D) arrays (matrices) in a similar fashion. The command or
function

>> y=zeros(4,5)

defines a 4 by 5 matrix.
Similar to the command zeros , the command ones can be used to define a vector

containing all ones. For example,

>> y=ones(1,5)
ans=
1 1 1 1 1

1.1.6 SPECIALCHARACTERSANDFUNCTIONS
Here is an example of the function length :

>> x=1:10;
>> length(x)
ans =

10

The function find returns the indices of a vector that are non-zero. For example,
I = find(x>4) finds all the indices of x greater than 4. Thus, for the above example:

>> find(x> 4)
ans =

5 6 7 8 9 10

1.1.7 CONTROLFLOW
m-files have the following control flow constructs:

1.1. STARTINGMATLAB 11

Table 1.1: Some widely used special characters used in m-files

Symbol Meaning

pi π(3.14.....)

^ Indicates power (for example, 3^2 = 9)

NaN Not-a-number, obtained when encountering undefi ned operations, such as 0/0

Inf Represents + ∞

; Indicates the end of a row in a matrix; also used to suppress printing on the screen

(echo off)

% Comments—anything to the right of % is ignored by the .m fi le interpreter and is

considered to be comments

' Denotes transpose of a vector or a matrix; also used to defi ne string, for example, str1

= 'DSP'

… Denotes continuation; three or more periods at the end of a line continue current

function to next line

Table 1.2: Some widely used functions

Function Meaning

sqrt Indicates square root, for example, sqrt(4) = 2

abs Absolute value |.|, for example, abs(-3) = 3

length length(x) gives the dimension of the array x

sum Finds sum of the elements of a vector

fi nd Finds indices of nonzero

• if statements

• switch statements

• for loops

• while loops

• break statements

The constructs if , for , switch , and while need to terminate with an end state-
ment. Examples are provided below:

12 1. INTRODUCTIONTOMATLAB
if

>> x=-3;
if x>0
str='positive'

elseif x<0
str='negative'

elseif x== 0
str='zero'

else
str='error'

end

See the value of `str´ after running the above code.

while

>> x=-10;
while x<0
x=x+1;

end

See the value of x after running the above code.

for loop

>> x=0;
for j=1:10
x=x+j;

end

The above code computes the sum of all the numbers from 1–10.

break
With the break statement, one can exit early from a for or a while loop. For example:

>> x=-10;
while x<0
x=x+2;
if x = = -2

1.1. STARTINGMATLAB 13

Table 1.3: Relational operators

Symbol Meaning

<= Less than equal

< Less than

>= Greater than equal

> Greater than

= = Equal

~= Not equal

Table 1.4: Logical operators

Symbol Meaning

& AND

| OR

~ NOT

break;
end

end

Some of the supported relational and logical operators are listed below.

1.1.8 PROGRAMMING INMATLAB
Open a new script file as displayed in Figures 1.3 and 1.4. Save it first in a desired directory.Then,
write your MATLAB code and press Run button from the EDITOR panel. For instance, to
write a program to compute the average (mean) of a vector x , the program should use the
vector x as its input and return the average value. To write this program, follow the steps
outlined below.

Type the following in an empty window:

x=1:10
L=length(x);
sum=0;
for j=1:L
sum=sum+x(j);

14 1. INTRODUCTIONTOMATLAB

Figure 1.6: m-file script interactive window after running the program average.

end
y=sum/L % y returns the average of x

From the EDITOR panel, go to save ! Save As and enter average.m for the filename.
Then, click on the Run button to run the program. Figure 1.6 shows the MATLAB interactive
window after running the program.

1.1.9 SOUNDGENERATION
Assuming the computer used has a sound card, one can use the function sound to play back
speech or audio files through its speakers.That is, the function sound(y,FS) sends the signal in
a vector y (with sample frequency FS) out to the speaker. Stereo sounds are played on platforms
that support them, withy being an N-by-2 matrix.

Type the following code and listen to a 400 Hz tone:

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-005.jpg&w=358&h=251

1.1. STARTINGMATLAB 15

>> t=0:1/8000:1;
>> x=cos(2*pi*400*t);
>> sound(x,8000);

Now generate a noise signal by typing:

>> noise=randn(1,8000); % generate 8000 samples of noise
>> sound(noise,8000);

The function randn generates Gaussian noise with zero mean and unit variance.

1.1.10 LOADINGANDSAVINGDATA
One can load or store data using the commands load and save . To save the vector x of the
above code in the file data.mat, type:

>> save('data.mat', 'x')

To retrieve the data previously saved, type:

>> load data

The vector x gets loaded in memory. To see memory contents, use the command whos :

>> whos
Variable Dimension Type
x 1x8000 double array

The command whos gives a list of all the variables currently in memory, along with their
dimensions and data type. In the above example, x contains 8000 samples.

To clear up memory after loading a file, type clear all when done. This is important
because if one does not clear all the variables, conflicts can occur with other codes using the
same variables.

1.1.11 READINGWAVEAND IMAGEFILES
In MATLAB, one can read data from different file types (such as .wav, .jpeg, and .bmp) and
load them in a vector.

To read an audio data file with .wav extension, use the following command:

16 1. INTRODUCTIONTOMATLAB

>> [y,Fs]=audioread('filename')

This command reads a .wav file specified by the string filename and returns the sampled data
in y with the sampling rate of Fs (in Hz).

To read an image file, use the following command:

>> [y]=imread('filename')

This command reads a grayscale or color image from the string filename and returns
the image data in the array y .

1.1.12 SIGNALDISPLAY
Graphical tools are available in MATLAB to display data in a graphical form. Throughout the
book, signals in both the time and frequency domains are displayed using the function plot,

>> plot(x,y)

This function creates a 2-D line plot of the data in y vs. corresponding x values.

1.2 MATLABPROGRAMMINGEXAMPLES
In this section, several simple MATLAB programs are covered.

1.2.1 SIGNALGENERATION
In this example, let us see how to generate and display continuous-time signals in the time
domain. One can represent such signals as a function of time. For simulation purposes, a rep-
resentation of time t is needed. Note that the time scale is continuous while computers handle
operations in a discrete manner. Continuous-time simulation is achieved by considering a very
small time interval. For example, if a 1-s duration signal in millisecond (ms) increments (time
interval of 0.001 s) is considered, then one sample every 1 ms or a total of 1000 samples are
generated for the entire signal leading to a continuous signal simulation. This continuous-time
signal approximation or simulation is used in later chapters. It is important to note that a finite
number of samples is involved in the simulation of a continuous-time signal, and thus to differ-
entiate a continuous-time signal from a discrete-time signal, a much higher number of samples
per second for a continuous-time signal needs to be used (very small time interval).

1.2. MATLABPROGRAMMINGEXAMPLES 17

0 1 2

2

3 0 1 2

2

3

x1(t) x2(t)

t t

Figure 1.7: Continuous-time signal.

Figure 1.7 shows two continuous-time signals x1.t/ and x2.t/ with a duration of
3 s. By setting the time interval dt to 0.001 s, there is a total of 3000 samples at t D

0; 0:001; 0:002; 0:003; : : : ; 2:999 s.
Note that throughout the book, the notations dt, delta, and � are used interchangeably to denote the
time interval between samples.

The signal x1.t/ can be represented mathematically as follows:

x1.t/ D

8<: 0 0 � t < 1

1 1 � t < 2

0 2 � t < 3:

(1.1)

To simulate this analog or continuous-time signal, use the MATLAB functions ones and
zeros . The signal value is zero during the first second, which means the first 1000 samples
are zero. This portion of the signal is simulated with the function zeros(1,1000) . In the
next second (next 1000 samples), the signal value is 2, and this portion is simulated by the
function 2*ones(1,1000) . Finally, the third portion of the signal is simulated by the function
zeros(1,1000) . In other words, the entire duration of the signal is simulated by the following
.m file function:

x1=[zeros(1,1/dt) 2*ones(1,1/dt) zeros(1,1/dt)]

The signal x2.t/ can be represented mathematically as follows:

x2.t/ D

8<: 2t 0 � t < 1

�2t C 4 1 � t < 2

0 2 � t < 3:

(1.2)

A linearly increasing or decreasing vector can thus be used to represent the linear portions. The
time vectors for the three portions or segments of the signal are 0:dt:1-dt, 1:dt:2-dt , and
2:dt:3-dt . The first segment is a linear function corresponding to a time vector with a slope
of 2; the second segment is a linear function corresponding to a time vector with a slope of �2

18 1. INTRODUCTIONTOMATLAB

Figure 1.8: MATLAB code of signal generation example.

and an offset of 4; and the third segment is simply a constant vector of zeros. In other words,
the entire duration of the signal for any value of dt can be simulated by the following .m file
function:

x2=[2*(0:dt:(1-dt)) -2*(1:dt:(2-dt))+4 zeros(1,1/dt)]

Figures 1.8 and 1.9 show the MATLAB code and the plot of the above signal genera-
tion, respectively. Signals can be displayed using the function plot(t,data) . For proper plot-
ting, first the correct t vector needs to be generated. Here this is done by using the function
linspace :

>> t=linspace(0,E,N)

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-006.jpg&w=414&h=289

1.3. LABEXERCISES 19

Figure 1.9: Signal plots.

This function generates a vector t of N points linearly spaced between and including 0
and E , where N is equal to E/dt .

1.2.2 GENERATINGAPERIODIC SIGNAL
In this example, a simple periodic signal is generated.This example involves generating a periodic
signal in textual mode and displaying it graphically. The shape of the signal (sin , square ,
triangle , or sawtooth) can be modified as well as its frequency and amplitude by using
appropriate control parameters. The MATLAB code and the plots generated by it are shown in
Figures 1.10 and 1.11, respectively.

Now consider an m-file code to generate four types of waveforms using the functions
sin , square , and sawtooth . To change the amplitude and frequency of the waveforms,
two control parameters named Amplitude (A) and Frequency (f) are used. Waveform Type
(w) is another parameter used for controlling the waveform type. With this control parameter,
one can select from multiple inputs. Finally, the waveforms are displayed by using the function
plot .

1.3 LABEXERCISES
1. Write an m-file code to add all the numbers corresponding to the even indices of an array.

For instance, if the array x is specified as x D [1, 3, 5, 10], then 13 (D 3 C 10) should be
returned. Use the program to find the sum of all even integers from 1–1000. Run your
code. Also, rewrite the code where x is the input vector and y is the sum of all the numbers
corresponding to the even indices of x.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-007.jpg&w=395&h=172

20 1. INTRODUCTIONTOMATLAB

Figure 1.10: Periodic signal generation example.

2. Explain the operation performed by the following .m file:

L=length(x);
for j=1:L
if x(j) < 0
x(j)=-x(j);
end
end

Rewrite this program without using a for loop.

3. Write a .m file code that implements the following hard-limiting function:

x.t/ D

�
0:2 t � 0:2

�0:2 t < 0:2:
(1.3)

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-008.jpg&w=414&h=289

1.3. LABEXERCISES 21

Figure 1.11: Plot of periodic sinusoid signal.

For t , use 1000 random numbers generated by using the function rand .

4. Write a MATLAB code to generate two sinusoid signals with the frequencies f1 Hz
and f2 Hz and the amplitudes A1 and A2, based on a sampling frequency of 8000
Hz with the number of samples being 256. Set the frequency ranges from 100–400
Hz and set the amplitude ranges from 20–200. Generate a third signal with the fre-
quency f3 = (mod (lcm (f1, f2), 400) + 100) Hz, where mod and lcm denote
the modulus and least common multiple operation, respectively, and the amplitude A3 is
the sum of the amplitudes A1 and A2. Use the same sampling frequency and number of
samples as specified for the first two signals. Display all the signals using the legend on
the same waveform graph and label them accordingly.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-009.jpg&w=251&h=222

23

C H A P T E R 2

Software Development Tools
This chapter covers the steps that need to be taken in order to install the software tools for
running C codes on Android and iPhone smartphones. Later in Chapter 3, it will be described
how to convert MATLAB codes to C codes.

The Android development environment used here is the IntelliJ IDEA-based Android
Studio Bundle (called Android Studio). C codes are made available to the Android Java envi-
ronment through the use of the Java Native Interface (JNI) wrapper. Thus, it is also necessary to
install the Android Native Development Kit (NDK). This development kit allows one to write
C codes, compile, and debug them on an emulated Android platform or on an actual Android
smartphone/tablet.

Screenshots are used to show the steps and configuration options involved in the installa-
tion when using the Windows operating system. The same software tools are also available for
other operating systems.

2.1 ANDROIDTOOLS INSTALLATIONSTEPS

This section covers the installation of the necessary software packages for Android app devel-
opment. Start by creating a directory where the tools are to be installed. A generic directory of
C:\Android is used here and the setup is done such that all Android development related files
are placed within the directory C:\Android. Before running Android Studio, the latest Java JDK
needs to be installed.

2.1.1 JAVA JDK
If the Java Development Kit (JDK) is not already installed on your computer or you do not have
the latest version, download it from Oracle’s website and follow the installation steps indicated
by the installer. The latest JDK package at the time of this writing can be found on the Oracle’s
website at http://www.oracle.com/technetwork/java/javase/downloads/index.html.

Click on the JDK Download button in the section Oracle JDK as shown in Figure 2.1 and
you will be directed to the page shown in Figure 2.2. From the list of supported platforms, select
the correct version for your operating system. For example, if you are running a 64-bit operating
system, select the appropriate package.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

24 2. SOFTWAREDEVELOPMENTTOOLS

Figure 2.1: Java installation.

Figure 2.2: Java SE development kit 14.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-010.jpg&w=413&h=195
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-011.jpg&w=395&h=213

2.1. ANDROIDTOOLS INSTALLATIONSTEPS 25

Figure 2.3: SDK download path.

2.1.2 ANDROID STUDIODEVELOPMENTENVIRONMENTAND
NATIVEDEVELOPMENTKIT

The most recent versions of Android Studio and the NDK at the time of this writing are
used to run the lab experiments in the book. For the Windows, Mac, and Linux installa-
tion, the Android Studio is available as an executable installer which includes the develop-
ment environment. For Android SDK tools, you need to download it separately. First, go
the link https://developer.android.com/studio#downloads to see Figure 2.3. Then, click on the
appropriate download option shown in this figure. A separate section of the same page gets
opened. Find the section Common Line Tools Only and download the SDK for Windows plat-
form. The NDK can be downloaded and installed from within Android Studio as described at
http://developer.android.com/studio/index.html.

Download the Android Studio installation executable and run the Android Studio
installer. For platform specific instructions, the installation instructions appear at https://
developer.android.com/studio/install.html.

During the installation of Android Studio, there are two important settings that are critical
to be performed correctly; see Figures 2.4 and 2.5. For the setting shown in Figure 2.4, make
sure that all the components are selected for installation, and for the setting shown in Figure 2.5,
make sure that Android Studio and Android SDK are installed in the directory C:\Android. To
do so, manually create the directories by using the Browse option and create a Studio folder
and an sdk folder. When the installer is finished, Android Studio can get started. Then, the
Android Studio Setup Wizard is to be activated which is covered next. The Android NDK can
be downloaded and installed from within Android Studio.

2.1.3 ANDROID STUDIO SETUPWIZARD
When Android Studio completes its installation, make sure the checkbox to run Android Studio
is checked. The Android Studio Setup Wizard begins. Follow the steps noted as follows.

https://developer.android.com/studio#downloads
http://developer.android.com/studio/index.html
https://developer.android.com/studio/install.html
https://developer.android.com/studio/install.html
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-012.jpg&w=287&h=133

26 2. SOFTWAREDEVELOPMENTTOOLS

Figure 2.4: Android Studio setup.

Figure 2.5: Configuration settings.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-013.jpg&w=291&h=226
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-014.jpg&w=291&h=225

2.1. ANDROIDTOOLS INSTALLATIONSTEPS 27

Figure 2.6: Custom installation. Figure 2.7: SDK component setup.

• Hit next on the Welcome Screen.

• Select Custom to finish the configuration, as displayed in Figure 2.6.

• Select your preferred UI Theme IntelliJ or Darcula.

• Make sure all boxes are checked under Android SDK, Performance (HAXM), and
Android Virtual Device (AVD).

– Make sure to select the SDK Location as noted above, that is C:\Android\sdk.

• Use the recommended Emulator Settings.

• Review your settings and hit Finish.

When the above is done, the Android Studio home screen should appear, as shown in
Figure 2.8.

Now run the SDKManager, whose entry can be found by clicking on theConfigure option.
From this menu, additional system images for emulation and API packages for future Android
versions can get added. Select any Android API level you may require listed on the SDK Plat-
form tab; see Figure 2.9. On the SDK Tools tab, check the CMake, LLDB, NDK (Side by side)
tools; see Figure 2.10. Click on Apply and follow the steps.

Allow the update process to complete.

2.1.4 ANDROIDEMULATORCONFIGURATION
The last item to take care of is configuring an AVD by clicking again on the Configure tab shown
in Figure 2.8 and select the AVD Manager to open the AVD Manager shown in Figure 2.11.
By default, Android Studio creates an x86 AVD. Since our development focus is ARM-based

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-015.jpg&w=198&h=149
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-016.jpg&w=198&h=149

28 2. SOFTWAREDEVELOPMENTTOOLS

Figure 2.8: Android Studio home screen.

Figure 2.9: SDK manager.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-017.jpg&w=287&h=210
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-018.jpg&w=359&h=252

2.1. ANDROIDTOOLS INSTALLATIONSTEPS 29

Figure 2.10: SDK tools.

Figure 2.11: Android virtual device.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-019.jpg&w=358&h=255
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-020.jpg&w=323&h=232

30 2. SOFTWAREDEVELOPMENTTOOLS

Figure 2.12: Device selection.

implementation, an ARM-based emulator instance is needed. Begin by deleting any existing
AVD instances.

Click the button Create Virtual Device... to start configuring the AVD (see Figure 2.11).
For theDevice option shown in Figure 2.12, select a device with a good screen resolution for your
computer—Nexus S is usually fine. For compatibility with newer smartphones, it is suggested to
select the Target as the latest available version with the CPU/ABI as ARM (armeabi-v7a). After
selecting a proper device, you will be directed to Verify Configuration shown in Figure 2.13.
Using the settings Show Advanced Settings, some changes can be made in the virtual device as
illustrated in Figure 2.14. RAM allocation does not need to be large so choose 512 MB. Lastly,
set the SD Card and Internal Storage size to 256 MB. The Snapshot option is useful to select as
it normally takes a long time for the AVD to boot. The snapshot will save the memory state of
the emulator to your hard drive so that starting the emulator occurs much faster. For the first
time, it is recommended to select Boot option as Cold boot to configure the virtual device faster.

You should now be able to create the AVDby clickingOK. Select the AVD you just created
in the list of devices and click the Start option (see Figure 2.15). The AVD for the created device
appears as shown in Figure 2.16.

2.1.5 GETTINGFAMILIARWITHANDROID SOFTWARETOOLS
This lab covers the creation of a simple app on Android smartphones by constructing a “Hello
World” program. Android Studio and NDK tools are used for code development, emulation,
and code debugging. All the codes needed for this and other labs can be extracted from the book

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-021.jpg&w=287&h=187

2.1. ANDROIDTOOLS INSTALLATIONSTEPS 31

Figure 2.13: Virtual device settings.

Figure 2.14: Advanced settings for virtual device configuration.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-022.jpg&w=251&h=181
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-023.jpg&w=359&h=311

32 2. SOFTWAREDEVELOPMENTTOOLS

Figure 2.15: AVD manager.

codes package mentioned in the preface. Start by launching Android Studio, and if not already
done, set up an AVD for use with the Android emulator.

• Begin by creating a new Android project using the Quick Start menu found on the
Android Studio home screen.

• Set the Application Name to HelloWorld and the project location to a folder within
the directory C:\Android.

• Change the Package name to utdallas.edu.helloworld . This is of importance later
as it will affect the naming of your native code methods. Refer to Figure 2.17 for the
previous three steps.

• Click Next and on the following screen, choose to create an Empty Activity . The
Target Android device should be set to Phone and Tablet using a Minimum SDK
setting of API 15 .

• Select Finish. The new app project is now created and the main app editor will open to
show the GUI layout of the app.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-024.jpg&w=359&h=258

2.1. ANDROIDTOOLS INSTALLATIONSTEPS 33

Figure 2.16: AVD appearance.

• Navigate to the java directory of the app in the Project window and open the MainAc-
tivity.java file under utdallas.edu.helloworld.

The entity that typically defines an Android app is called an Activity. Activities are gen-
erally used to define user interface elements. An Android app has activities containing various
sections that users might interact with such as the main app window. Activities can also be used
to construct and display other activities—such as if a settings window is needed. Whenever an
Android app is opened, the onCreate function or method is called. This method can be regarded
as the “main” (C terminology) of an activity. Other methods may also be called during various
portions of the app lifecycle as detailed at the following website:

http://developer.android.com/training/basics/activity-lifecycle/starting.html
In the default code created by the SDK, setContentView(R.layout.activity_main)

exhibits the GUI. The layout is described in the file res/layout/activity_main.xml in the Package
Explorer window. Open this file to preview the user interface. Layouts can be modified using

http://developer.android.com/training/basics/activity-lifecycle/starting.html
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-025.jpg&w=179&h=303

34 2. SOFTWAREDEVELOPMENTTOOLS

Figure 2.17: Initial screen of Android Studio.

the WYSIWYG editor which is built into Android Studio. For now the basic GUI suits our
purposes with one minor modification noted below:

• Open the XML text of the layout (see Figure 2.18) by double clicking on the
Hello world! text or by clicking on the activity_main.xml tab next to the Graphical
Layout tab.

• Add the line android:id =”@+id/Log” within the <TextView/> section on a new
line and save the changes. This gives a name to the TextView UI element.

TextView in the GUI acts similar to a console window. It displays text. Additional text
can be appended by adding the android:id directive to the TextView code.

After setting up the emulator and the app GUI, let us cover interfacing with C codes.
Note that it is not required to know the Java code syntax. The purpose is to show that the Java
Native Interface (JNI) is a bridge between Java and C codes. Java is useful for handling Android
APIs for sound and video i/o, whereas the processing codes are done in C. Note that to conduct
the labs in this book, the programming is not done in C and C codes are generated by the
MATLAB Coder discussed in the next chapter.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-026.jpg&w=324&h=259

2.1. ANDROIDTOOLS INSTALLATIONSTEPS 35

Figure 2.18: Hello World app.

A string returned from a C code is examined next. The procedure to integrate native
code consists of creating a C code segment and performing alterations to the project. First, it is
required to add support for the native C code to the project. The first step is to create a folder
in which the C code will be stored. In the Project listing, navigate to New ! Folder ! JNI to
create a folder in the listing called jni. Refer to Figures 2.19–2.22. Figure 2.19 shows how the
Project listing view may be changed in order to show the jni folder in the main source listing.

Android Studio now needs to be configured to build a C code using the Gradle build
utility. Begin by specifying the NDK location in the project local.properties file according to
Figure 2.23. Assuming the directory C:/Android is used for setting up the development tools,
the location specification would be as follows:

ndk.dir=C\:\\Android\\sdk\\ndk\\21.0.6113669

Next, the native library specification needs to get added to the build.gradle file within the
project listing under the “app” folder. This specification declares the type of external build and
its configuration file which defines the name of the external library that Java will load. This is
done by adding the following code within the android section:

externalNativeBuild {
cmake {

path "CMakeLists.txt"
}

}

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-027.jpg&w=413&h=149

36 2. SOFTWAREDEVELOPMENTTOOLS

Figure 2.19: JNI folder.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-028.jpg&w=397&h=312

2.1. ANDROIDTOOLS INSTALLATIONSTEPS 37

Figure 2.20: New Android activity.

Figure 2.21: Project listing.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-029.jpg&w=215&h=226
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-030.jpg&w=143&h=122

38 2. SOFTWAREDEVELOPMENTTOOLS

Figure 2.22: MainActivity.java.

Figure 2.23: local.properties.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-031.jpg&w=324&h=192
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-032.jpg&w=395&h=165

2.1. ANDROIDTOOLS INSTALLATIONSTEPS 39
The correct placement of the code is highlighted in Figure 2.24. Another part that needs to

get added is a CMakeLists.txt file in the project section and app folder as shown in Figure 2.25
and by having the following code inside the .txt file:

cmake_minimum_required (VERSION 3.4.1)
Creates and names a library, sets it as either STATIC
or SHARED, and provides the relative paths to its source code.
You can define multiple libraries, and CMake builds them for you.
Gradle automatically packages shared libraries with your APK.
add_library (# Sets the name of the library.

HelloWorld
Sets the library as a shared library.
SHARED
Provides a relative path to your source file(s).
src/main/jni/HelloWorld.c

)

The C code considered here consists of a simple method to return a string when it is
called from the onCreate method. First, the code that defines the native method needs to be
included. Create a new HelloWorld.c file. Add the following code and save the changes:

#import <jni.h>
jstring Java_utdallas_edu_helloworld_MainActivity_getString
(JNIEnv* env, jobject thiz) {

return (*env)->NewStringUTF(env, "Hello UTD!");
}

This code defines a method that returns a Java string object according to the JNI specifications
with the text Hello UTD! Thenaming for this method is dependent on what is called fully qual-
ified name of the native method which is defined in MainActivity. There are alternate methods
of defining native methods that will be discussed in later labs.

Next, the native method needs to be declared within MainActivity.java (see Figure 2.26)
according to the naming used in the C code. To do so, add this declaration below the onCreate
method already defined.

public native String getString();

Then, add the following code within public class to load the native library:

40 2. SOFTWAREDEVELOPMENTTOOLS

Figure 2.24: Code placement.

Figure 2.25: CMakeLists placement.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-033.jpg&w=395&h=200
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-034.jpg&w=395&h=213

2.1. ANDROIDTOOLS INSTALLATIONSTEPS 41

Figure 2.26: TextView.

static {
System.loadLibrary("HelloWorld");

}

To use the TextView GUI object, it needs to be imported by adding the following decla-
ration to the top of the MainActivity.java file:

import android.widget.TextView;

The TextView defined in the GUI layout needs to be hooked to the onCreate method
by adding the following lines to the end of the onCreate method code section (after
setContentView but inside the bracket):

TextView log = (TextView)findViewById(R.id.Log);
log.setText(getString());

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-035.jpg&w=395&h=238

42 2. SOFTWAREDEVELOPMENTTOOLS
This will cause the text displayed in the TextView to be changed by the second line which calls
the C getString method.

Save the changes and select the Make Project option (located under the Build category
on the main toolbar). Android Studio would display the build progress and notify if any errors
occur. Next, run the app on the Android emulator using the Run app option located in the Run
menu of the toolbar. If an emulator is already running, an option will be given to deploy the
app to the selected device (see Figure 2.27). Android Studio should launch the emulator and
the screen (see Figure 2.28) would display Hello UTD! . To confirm that the display is being
changed, comment out the line log.setText() and run the app again. This time the screen
would display Hello World! .

Note that the LogCat is equivalent to the main system log or display of the execution
information. Here, the code from the previous project is modified to enable the log output
capability as follows.

• Add the logging library to the build.gradle file by adding the line ldLibs "log�" (see
Figure 2.24) to the ndk section which was added previously.

• Add the Android logging import to the top of the HelloWorld.c source file by adding
the line #include <android/log.h> .

• Add the following code to output the test message before the return statement:

int classNum = 9001;
int secNum = 1;
__android_log_print(ANDROID_LOG_ERROR, "HelloWorld",
"DSP %d.%03d", classNum, secNum);

The android_log_print() method (two underscores at the beginning) is similar to the
printf function in C . The first two parameters are the log level and the message tag. In
the above example, the string has a specified integer for the class number inserted, followed by
a specified integer for the section number. The same number formatting that is possible when
using the printf function may also be used here. For instance, the section number can be
formatted to three characters width with leading zeros. Variables are last and are inserted with
the formatting specified in the message string in the order they are listed.

Save the changes made to the HelloWorld.c source file and run the app again. This time,
Android Studio should automatically open the Android DDMS window and show the LogCat
screen. The message DSP 9001.001 would appear in the listing if the previous procedures were
performed properly (see Figure 2.29).

2.1. ANDROIDTOOLS INSTALLATIONSTEPS 43

Figure 2.27: Choose device.

Figure 2.28: App screen.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-036.jpg&w=215&h=166
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-037.jpg&w=143&h=256

44 2. SOFTWAREDEVELOPMENTTOOLS

Figure 2.29: LogCat.

2.2 iOSTOOLS INSTALLATIONSTEPS
Similar to the previous section, this section covers the installation of the necessary software
packages for iOS app development. This time a “Hello World!” app in the iOS development
environment is constructed.

C code segments are made available to the iOS Objective-C environment through the
normal header files that are used in C. Objective-C allows C codes to run without the need for
any external wrapper. For accessing inputs and outputs or sensor signals on iPhones, the publicly
available iOS APIs in Objective-C are used.

The development environment consists of the XcodeIDE. This development environment
allows writing C codes, compiling, and debugging on an iOS device simulator or on an actual
iOS device. The Xcode IDE includes a built-in debugger that can be used to debug C codes
line-by-line and also to observe values stored for different variables. Xcode is available as a free
download on Mac machines through the Apple App Store.

To develop iOS apps, the following items are needed:

• an Apple Mac computer,

• enrollment in an Apple-approved developer program, and

• an iOS device.

Note that in the absence of an actual iOS device, the iOS Simulator can still be used.
Different iOS configurations can be selected from the scheme selector, which is located at the
top left of the Xcode window.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-038.jpg&w=413&h=158

2.2. iOS TOOLS INSTALLATIONSTEPS 45

2.2.1 iPHONEAPPDEVELOPMENTWITHXCODE
1. Launch the Xcode IDE. You should be prompted with a splash screen as shown in Fig-

ure 2.30. Select Create a new Xcode project. In case this screen does not get displayed, you
can use File -> New -> Project.

2. Select iOS -> Application -> Single View Application (see Figure 2.31). After clicking Next,
the configuration of the project appears as shown in Figure 2.32.

3. Enter Product Name as HelloWorld.

4. Enter Organization Name.

5. Enter an Organization Identifier.

6. Set Language to Objetive-C and Devices to iPhone.

7. Leave deselected Use Core Data, Include Unit Tests, and Include UI Tests.

8. Click Next. On the next page, remember to deselect Create Git Repository on.

9. Select the destination to store your project and select Create.

After clickingCreate, the settings screen of the project gets shown.Here the features of the
app can be altered. The devices supported by your project can be changed and also any additional
frameworks or libraries to be utilized by your project can be added.

If getting a warning display “No signing identity found,” this means you need to have
your Apple Developer Account accepted for iOS app development. Also, your device must be
certified for app development.

2.2.2 SETTING-UPAPPENVIRONMENT
The left column in the Xcode window is called the Navigator. Here one can select or organize
different files and environment for a project.

• In the Navigator Pane, the Main.Storyboard entry is seen. This is used to design the
layout of your app. Different UI elements in multiple views provided by the IDE can
be used to design the interface of an app. However, this is done programmatically for
this example.

• AppDelegate.h and AppDelegate.m are Objective-C files that can be used to handle
events such as:

– app termination,
– app entering background or foreground, and

46 2. SOFTWAREDEVELOPMENTTOOLS

Figure 2.30: Xcode welcome screen.

Figure 2.31: Xcode new project selection.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-039.jpg&w=251&h=239
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-040.jpg&w=287&h=207

2.2. iOS TOOLS INSTALLATIONSTEPS 47

Figure 2.32: Xcode project options.

– app loading.

These files are not accessed here.

• The files ViewController.m and ViewController.h are used to define methods and
properties specific to a particular view in the storyboard.

2.2.3 CREATINGLAYOUT
In the file ViewController.m, the method called viewDidLoad is used to perform processes
after the view has loaded successfully. This method is used here to initialize the UI elements.

In the interface section of ViewController , add the following two properties: a label
and a button:

@interface ViewController()
@property UILabel *label;
@property UIButton *button;
@end

Initialize the label and button. Then, assign them to the view. This can be done by adding
this code in the method viewDidLoad :

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-041.jpg&w=287&h=206

48 2. SOFTWAREDEVELOPMENTTOOLS

_label = [[UILabel alloc] initWithFrame:CGRectMake(10,15,300, 30)];
_label.text = @"Hello World!";
[self.view addSubview:_label];
_button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
_button.frame = CGRectMake(10, 50, 300, 30);
[_button setTitle:@"Click" forState:UIControlStateNormal];
[self.view addSubView:_button];
[_button addTarget:self action:@selector(buttonPress:)

forControlEvents:UIControlEventTouchUpInside];

An action is attached to the button buttonPress . This action will call the method which
gets executed when the button is pressed. As the control event is UIControlEventTouchUpIn-
side, the method gets executed when the user releases the button after pressing. This method is
declared as follows:

(IBAction)buttonPress:(id)sender {
}

As of now, it is a blank method. A property is assigned to it after specifying the C code that is
to be used to perform a signal processing function.

The app can be run by pressing the Play button on the top left of the Xcode window. An
actual target is not needed here and one my select the simulator; see Figure 2.33. For example,
iPhone 6 can be selected as the simulator.

When the app is run, the label “Hello World!” can be seen and the button gets created.
On clicking the button, nothing happens. This is because the method to handle the button press
is empty.

It is not required to know the Objective-C syntax. Note that one can call a C function in
Objective-C just by including a header. Objective-C is useful for handling iOS APIs for sound
and video i/o, whereas signal processing codes are done here in C.

2.2.4 IMPLEMENTINGCCODES
In this section, a C code is linked to ViewController using a header file.

• Right click on the HelloWorld folder in your project navigator in the left column and
select New File.

• Select iOS -> Source -> C File.

• Write the filename as Algorithm and select Also create a header file.

2.2. iOS TOOLS INSTALLATIONSTEPS 49

Figure 2.33: Select iPhone Simulator.

• After clicking Next, select the destination to store the files. Preferably store the files in
the folder of your project.

• In the project navigator, you can view the two new added files. Select Algorithm.c.

• In Algorithm.c, enter the following C code:

const char *HelloWorld() {
printf("Method called\n");
return "Hello UTD!";

}

• The function HellowWorld() prints a string and returns a char pointer upon execu-
tion. Let us call this function on the button press action in the view controller and alter
the label.

• To allow this function to be called in Objectve-C, the function in the header file
needs to be declared. For this purpose, in Algorithm.h, add the following line before
#endif :

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-042.jpg&w=252&h=246

50 2. SOFTWAREDEVELOPMENTTOOLS

const char *HelloWorld();

• Now a C function is created, which is called and executed via Objective-C, just by
including the header file.

2.2.5 EXECUTINGCCODESVIAOBJECTIVE-C
Now that a C code is written, it needs to be linked to the Objective-C app in order to be
executed.

• In the ViewController.m, just below #import ''ViewController.h'' , add
#import ''Algorithm.h'' .

• In the buttonPress method, include the following line:

_label.text = [NSString stringWithUTF8String:HelloWorld()];

This code line alters the text of the label in the program.

• Run the program using the simulator.

1. The text of the label changes.
2. In the Xcode window, “Method Called” gets printed in the Debug Console at the

bottom.

This shows that printing can be done from the C function to the debug console in Xcode. This
feature is used for debugging purposes.

2.2.6 iOS APPDEBUGGING
After getting some familiarity with the Xcode IDEby creating andmodifying an iOS app project
and running the app on an iPhone simulator, the following steps indicate how to debug C codes
via the built-in Xcode debugger.

To obtain familiarity with the Xcode debugging tool, perform the following.

• Open the HelloWorld project.

• Select Product -> Build.

• In the project navigator, select the Algorithm.c file.

2.2. iOS TOOLS INSTALLATIONSTEPS 51

Figure 2.34: A debug point added on line 12.

After the project is successfully built, so-called debug points can be placed inside the C
code. Debug points can be placed by clicking on the column next to the line to be debugged or
by pressing CMD C \ . A blue arrow appears, see Figure 2.34, that points toward the line to be
debugged.

The Xcode debugger allows one to:

• pause the execution at a particular line of code,

• know the value of the variable at that particular instant of execution, and

• navigate from the function call to function execution as it gets executed.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-043.jpg&w=215&h=76

53

C H A P T E R 3

FromMATLABCoder to
Smartphone

This chapter presents the steps one needs to take in order to run signals and systems algorithms
written in MATLAB on the ARM processor of smartphones. The steps needed are best con-
veyed by going through an example. This example involves a simple signal generation algorithm.
The same steps can be used to run other MATLAB codes that have already been written and
are publicly available. An alternative approach based on the use of Simulink Coder was reported
in [1].

3.1 MATLABFUNCTIONDESIGN
This section provides the steps needed in order to run a simple signal generation algorithm
written as a MATLAB script on smartphones. Before going through the example, the difference
between a MATLAB function and a MATLAB script is first stated and it is shown how to
convert a MATLAB script to a MATLAB function.

In Chapter 1, it was shown that a MATLAB script reads commands and executes them
as they are typed sequentially. In general, a program can be a script that executes a series of
MATLAB commands, or can be a function that accepts inputs and generates outputs. Both
scripts and functions contain a series of MATLAB commands which are written as text and
saved in .m format, however MATLAB functions provide more flexibility.

Let us start with a MATLAB script. Create a script, New ! Script, from the HOME
panel. Write the following code to evaluate the expression a3 C

p
bd � 4c:

>> a=2;
>> b=3;
>> c=4;
>> d=5;
>> a^3+sqrt(b*d)-4*c

Save the script by specifying a desired name, for example MyEquation. Run the code. For
the values indicated in the Command Window, this response appears:

54 3. FROMMATLABCODERTOSMARTPHONE

ans =
-4.1270

To accommodate for different a, b, c, and d values, instead of manually changing them
in the script and seeing the result, the script can be written as a function. To create a function,
open a new script and state a list of the outputs, the function name, and a list of the inputs as
follows:

function [output1, output2,...] =
name of the function(input1, input2,...)

Then, enter it as a MATLAB command after its definition. The input parameters of the
function are the parameters which control the outputs. After entering the script, save it. You
will see that MATLAB recognizes the name as you have defined it for the function (MATLAB
function filenames need to have the .m extension). Upon acceptance, save it in .m format; see
Figure 3.1.

After saving this MATLAB function, to see the result for different a, b, c, and d values,
you now only need to write the function with the desired input values in the CommandWindow,
that is:

Result = MyEquation(2,3,0,6)

The created MATLAB function can be used similar to other MATLAB functions in any
program. In practice, when an algorithm involves different parts, it is a good programming
practice to have different parts of the algorithm in separate MATLAB functions instead of
having all the parts written in one script.

3.2 GENERATINGSIGNALS VIAMATLABON
SMARTPHONES

This section covers the steps for generating a pulse and an exponential signal, see Figure 3.2, on
a smartphone. The first step involves opening the MATLAB environment and creating a new
function file for the algorithm.

Let us name the function Lab3_1. Enter the following code. In the MATLAB code, need
to keep the order of the input parameters the same as originally defined.
Note that throughout the book, the notations dt, delta, and � are used interchangeably to denote the
time interval between samples.

3.2. GENERATINGSIGNALS VIAMATLABONSMARTPHONES 55

Figure 3.1: MATLAB function.

function [x1,x2]=Lab3_1(a,b,Delta)
t=0:Delta:8-Delta; % Time at which samples are generated
x1=a*[ones(1,4/Delta) zeros(1,4/Delta)]; %Pulse function
x2=exp(-b*t); %exponential function

This function has three inputs, a , b , and Delta . The parameter a controls the am-
plitude of the pulse signal and the parameter b controls the decreasing rate of the exponential
function. The parameter Delta controls the time resolution or spacing between time samples.
x1 and x2 denote the pulse and the exponential signals, respectively.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-044.jpg&w=396&h=319

56 3. FROMMATLABCODERTOSMARTPHONE

Figure 3.2: Signal generation.

3.2.1 TESTBENCH
A useful next step is functional verification. This step helps verifying the response on a smart-
phone target. The following script shows how such verification is achieved for the above algo-
rithm:

clear;
clc;
Delta=0.001; %Time interval between samples
a=2; %amplitude of the pulse signal
b=3; %Decay rate of the exponential function

%Calling the function which performs operations
[x1,x2]=Lab3_1(a,b,Delta);

This script generates the two signals corresponding to a= 2 and b = 3 for
Delta = 0.001 .

3.2.2 CCODEGENERATION
After defining the MATLAB function and the test bench script code, an equivalent C code
needs to be generated via the MATLAB Coder. The MATLAB Coder (or simply Coder) can
be found in the toolbar under APPS. The following screenshot shows the process of generating
an equivalent C source code from a MATLAB code. Before performing this step, it is important
to make sure that the directory of the MATLAB files appears as the MATLAB directory. Run
the test bench code and then take the steps stated in Figure 3.3.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-045.jpg&w=358&h=158

3.2. GENERATINGSIGNALS VIAMATLABONSMARTPHONES 57

Figure 3.3: MATLAB Coder function selection.

Figure 3.3 shows the initial screen displayed by the Coder. Start by selecting the function
to be converted and change theNumeric Conversion option to single precision floating-point arith-
metic. Note that the single precision floating-point arithmetic is available in MATLAB 2019b and
later versions and care must be taken in using the right version of MATLAB.

After the function is selected, the input types need to be specified (see Figure 3.4).This can
be done either manually or by using the above test bench script to automatically determine the
data types. Select the test bench script and choose the Autodefine Input Types option to complete
this step.

After the input types are set, the Coder then checks to ensure that it is able to generate
a C code from the provided MATLAB script. Figure 3.5 shows the outcome with no detected
errors. Although many of the built-in MATLAB functions work with the MATLAB Coder,
not all the functions are supported. Unsupported functions need to be written from scratch by
the programmer.

Once the MATLAB script is checked and passed, a corresponding C source code can
be generated by pressing the Generate button (see Figure 3.6). Although various configuration
settings are available, the default settings are adequate for our purposes. After this step, a folder
named codegen is created in the directory of the MATLAB files.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-046.jpg&w=287&h=211

58 3. FROMMATLABCODERTOSMARTPHONE

Figure 3.4: Input types.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-047.jpg&w=359&h=264

3.2. GENERATINGSIGNALS VIAMATLABONSMARTPHONES 59

Figure 3.5: Function error check.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-048.jpg&w=395&h=280

60 3. FROMMATLABCODERTOSMARTPHONE

Figure 3.6: C source code generation.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-049.jpg&w=396&h=280

3.2. GENERATINGSIGNALS VIAMATLABONSMARTPHONES 61

Figure 3.7: Copying files.

3.2.3 SOURCECODE INTEGRATION
The final step to implement an algorithm written in MATLAB on smartphones is to deploy
the generated C code on a suitable target device. For this step, an application shell is provided
here in which the generated C source code needs to be placed. This shell operates in the same
manner as the test bench script stated earlier, that is the two signals (pulse and exponential) are
generated. Figures 3.7 and 3.8 show how the generated C code is placed or integrated into the
Android shell that is provided. The following steps need to be taken.

1. Navigate to folder named Lab3_1 (MATLAB function name) in the codegen folder; code-
gen/lib/Lab3_1. Copy all the files with .h and .c extensions; see Figure 3.7.

2. Place the copied files inside the jni folder of the shell provided. The jni folder appears at
app/src/main/jni; see Figure 3.8.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-050.jpg&w=395&h=330

62 3. FROMMATLABCODERTOSMARTPHONE

Figure 3.8: C source code integration.

3. If using MATLAB R2016b or later, it is required to add a specific header file into the jni
folder separately. This header file (tmwtypes.h) can be found in the MATLAB root with
the following path:

MATLAB root\R2019b\extern\include

4. Before building the project, first press Clean Project, as shown in Figure 3.9.

The MATLAB Coder produces C codes with the required include statements and func-
tion calls for using them. One minor modification of a generated C code that may be required
is to ensure having the correct input and output variable data types. In case of array inputs, the
generated code is specified using static array sizes and thus needs to be modified to access array
pointers.

Finally, it is worth stating that the most important consideration when transiting a MAT-
LAB function to smartphones is awareness of input and output data types. A persistent variable
storage needs to be established by declaring a persistent variable and performing a one-time
initialization. After this declaration and initialization, any data may be retained between calls to

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-051.jpg&w=414&h=256

3.3. RUNNINGMATLABCODER-GENERATEDCCODESONSMARTPHONES 63

Figure 3.9: Clean Project.

the function. With the approach presented in this chapter, practically any signals and systems
algorithm written in MATLAB can be made to run on smartphones.

3.3 RUNNINGMATLABCODER-GENERATEDCCODES
ONSMARTPHONES

3.3.1 RUNNINGONANDROID SMARTPHONES
This section covers the steps for integrating a C code generated by the MATLAB Coder into
an Android shell program for running it on an Android smartphone. The steps are as follows.

1. Creating a shell.

2. Verification of the MATLAB function to be run.

3. Using the MATLAB Coder to generate the corresponding C code to be placed in the
shell.

4. Modifications of the shell to integrate the C code into it.

The first three steps were covered in the previous sections. In this section, the fourth step is
covered. Let us consider the basic HelloWorld shell that was mentioned and the corresponding
C code generated by the MATLAB Coder. The following modifications of the shell are needed
for running the code on an Android smartphone. The HelloWorld shell for Lab3_1 is used here.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-052.jpg&w=414&h=220

64 3. FROMMATLABCODERTOSMARTPHONE
1. Navigate to the folder created by the MATLAB Coder named codegen\lib\Lab3_1. Copy

all the files with the extensions .h and .c.

2. Place the copied files inside the jni folder of the HelloWorld shell. If using MATLAB
R2016b or later, make sure the tmwtypes.h header file is also placed from the MATLAB
root in the jni folder.

3. Open the HelloWorld project in Android Studio.

4. Double click on the file HelloWorld.c in the jni folder.
Inside the code, the following statement can be seen:

#import <jni.h>
jstring Java_com_dsp_helloworld_MainActivity_getString
(JNIEnv* env, jobject thiz) {

return (*env)->NewStringUTF(env, "Hello UTD!");
}

5. Go to the folder codegen\lib\Lab3_1\examples and open the file main.c using Notepad.

6. Copy the part on the top specified by Include Files as shown below, except main.h, into
the HelloWorld.c file.

7. Next, modify the statement line from:

jstring Java_com_dsp_helloworld_MainActivity_getString
(JNIEnv* env, jobject thiz)

to

jdoubleArray Java_com_dsp_helloworld_MainActivity_getStringx1 (
JNIEnv* env, jobject thiz, jdouble a, jdouble b,
jdouble delta)

Note jdoubleArray is used instead of jstring because the intention in the Hel-
loWorld project was to return the string “Hello UTD” but here the intention is to return
an array of double type numbers. Add the input parameters and their data types of the
MATLAB function here. In Lab3_1, these parameters are a, b, and delta, that is:

3.3. RUNNINGMATLABCODER-GENERATEDCCODESONSMARTPHONES 65

Figure 3.10: main.c file located in the folder codegen\.lib\Lab3_1\examples.

jdoubleArray Java_com_dsp_helloworld_MainActivity_getString (
JNIEnv* env, jobject thiz, jdouble a, jdouble b,
jdouble delta)

8. Then, inside the function created, place the following statements:

int length=round(8/delta);
jdoubleArray jArray = (*env)->NewDoubleArray(env, length);

These statements define the output variable and allocate memory to it.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-053.jpg&w=396&h=319

66 3. FROMMATLABCODERTOSMARTPHONE
From the file main.c, copy the following lines that define and initialize the variables:

/* Initialize function 'Lab3_1' input arguments. */
emxArray_real32_T *x1;
emxArray_real32_T *x2;
emxInitArray_real32_T(&x1, 2);
emxInitArray_real32_T(&x2, 2);

Now copy the following line from the file main.c and place it in the HelloWorld file:

/* Call the entry-point 'Lab3_1'. */
Lab3_1(argInit_real32_T(), argInit_real32_T(), argInit_real32_T(),
x1, x2);

This function calls the function Lab3_1, where two output arrays x1, x2 are returned. To
assign x1 data values to Array , a temporary array called yac_temp is used within a for
loop as follows:

int i;
double yac_temp[length];
for(i = 0; i < length; i++) {

yac_temp[i] = x1->data[i];
// __android_log_print(ANDROID_LOG_ERROR,
// "HelloWorld Final 1", "%f\n", y_temp[i]);

}

Next, free the allocated memory by copying the following lines from the file main.c:

emxDestroyArray_real32_T(x2);
emxDestroyArray_real32_T(x1);

Assign yac_temp to Array and return it:

3.3. RUNNINGMATLABCODER-GENERATEDCCODESONSMARTPHONES 67

(*env)->SetDoubleArrayRegion(env,jArray,0,length,yac_temp);
return jArray;
}

These steps need to be repeated for all the defined outputs in the function Lab3_1; see the
shell provided for Lab3_1.

9. In the Project Navigator, open the file CMakeLists.txt. Under the comment “#Provides
a relative path to your source files(s)”, enter the filenames of all the .c and .h files from
MATLAB. Make sure to include the tmwtypes.h header into the CMakeLists.txt as
well. This will let Android Studio and CMAKE know of these files.

10. Finally, if desired, design your own Graphical User Interface (GUI). This link provides
guidelines as how to design GUIs: http://androidplot.com/docs/quickstart/. An example
GUI designed for this application is shown in Figure 3.11.

3.3.2 RUNNINGON iOS SMARTPHONES
This section covers the steps for integrating a C code generated by the MATLAB Coder into
an Xcode shell program for running it on iPhone smartphones. These steps are listed below.

1. Creating a shell.

2. Verification of the MATLAB function to be run.

3. Using the MATLAB Coder to generate the corresponding C code to be placed in the
shell.

4. Modifications of the shell to integrate the C code into it.

The first two steps were covered previously in the Android section and are the same for
iOS. In this section, the third and fourth steps are covered. Let us consider the lab L3_1 shell
and its corresponding C code generated by the MATLAB Coder. The following modifications
of the shell are needed for running the code on an iOS smartphone.

Here it is worth mentioning that the group structure in Xcode is not the same as the folder
structure in Finder on Mac. It can be made to be the same, but making a group does not make
a relative folder on the file system.

1. Make the directory codegen/lib/L3_1 as a subfolder in the Xcode project L3_1.

2. Navigate to the folder created by the MATLAB Coder named codegen\lib\L3_1. Copy all
the files with the extensions .h and .c to the Xcode project. Note that if using MATLAB

http://androidplot.com/docs/quickstart/

68 3. FROMMATLABCODERTOSMARTPHONE

Figure 3.11: Initial screen of Lab3_1 app and plot of x1.

R2016b or later, it is required to copy a specific header file separately. This header file
(tmwtypes.h) can be found in the MATLAB root with the following path:

MATLAB root\R2019b\extern\include

3. In the Xcode Project Navigator, click on File -> Add Files to “L3_1”.

4. Click File -> New -> Group and type in “Native Code”.

5. Select all of the .c and .h files and drag them into the “Native Code” group.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-054.jpg&w=414&h=314

3.3. RUNNINGMATLABCODER-GENERATEDCCODESONSMARTPHONES 69
The MATLAB C codes will be built and get ready for use. The code to interact with but-

tons and graphs was covered earlier. Now, the generated C code needs to get placed or integrated
into the iOS shell.

Click on “ViewController.m” to edit the file. At the top of the file above the interface
definition, import the following necessary header files:

#import "ViewController.h"
#import "Lab3_1.h"
#import "Lab3_1_emxAPI.h"

Underneath the line, in the buttonPress method,

int length = round(8.0 / delta);

add the following lines:

emxArray_real32_T *x1 = emxCreate_real32_T(1,length);
emxArray_real32_T *x2 = emxCreate_real32_T(1,length);
emxArray_real32_T *data = x1;
Lab_3_1(a, b, delta, x1, x2);

switch(_selection)
{

case 0:
data = x1;
break;

case 1:
data = x2;
break;

}

[_graphView updateBuffer:data->data withBufferSize:length];

emxDestroyArray_real32_T(x1);
emxDestroyArray_real32_T(x2);

The first two lines allocate memory for output data x1 and x2. The variable “data” is used
as a placeholder to refer to the data to be plotted. The switch statement picks the section of the

70 3. FROMMATLABCODERTOSMARTPHONE

Figure 3.12: Plot using EZPlot for L3_1 on iOS platform.

code that will assign the data to be plotted. The next line updates the graph object, providing
the location of the data and its length. Last, the memory for the two outputs are deallocated.

The iPhone apps use Cocoa Pods which are essentially a bundle or a library of codes.
The Pods used here in the Xcode shell projects are CorePlot and EZAudio. Interested read-
ers can read anout their usage and customization at these links https://github.com/syedhali/
EZAudioandhttps://github.com/core-plot/core-plot.

https://github.com/syedhali/EZAudio and https://github.com/core-plot/core-plot
https://github.com/syedhali/EZAudio and https://github.com/core-plot/core-plot
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-055.jpg&w=215&h=384

3.4. REFERENCES 71

3.4 REFERENCES
[1] R. Pourreza-Shahri, S. Parris, F. Saki, I. Panahi, and N. Kehtarnavaz. From Simulink to

Smartphone: Signal processing application examples, Proc. of IEEE ICASSP Conference,
Australia, April 2015. DOI: 10.1109/ICASSP.2015.7178293. 53

http://dx.doi.org/10.1109/ICASSP.2015.7178293

73

C H A P T E R 4

Linear Time-Invariant
Systems and Convolution

4.1 CONVOLUTIONAND ITSNUMERICAL
APPROXIMATION

The output y.t/ of a continuous-time linear time-invariant (LTI) system to an input x.t/ can be
found via the convolution integral involving the input and the system impulse response h.t/ (for
details on the theory of convolution and LTI systems, refer to signals and systems textbooks, for
example, references [1–8]):

y.t/ D

Z 1

�1

h.t � �/x.�/d�: (4.1)

For a computer program to perform the above continuous-time convolution integral, a nu-
merical approximation of the integral is needed noting that computer codes operate in a discrete
and not continuous fashion. One way to approximate the continuous functions in the integral in
Equation (4.1) is to use piecewise constant functions by defining ı�.t/ to be a rectangular pulse
of width � and height 1, centered at t D 0, as follows:

ı�.t/ D

(
1 ��=2 � t � �=2

0 otherwise:
(4.2)

Then, a continuous function x.t/ can be approximated with a piecewise constant function x�.t/

as a sequence of pulses that are spaced every � seconds in time with heights of x.k�/, i.e.,

x�.t/ D

1X
kD�1

x.k�/ı�.t � k�/: (4.3)

In the limit as � ! 0; x�.t/ ! x.t/. As an example, Figure 4.1 shows the approximation
of a decaying exponential function x.t/ D exp

�
�

t
2

�
starting from 0 by using � D 1. Similarly,

h.t/ can be approximated by

h�.t/ D

1X
kD�1

h.k�/ı�.t � k�/: (4.4)

74 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION
0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
1 32 4 65 7 98 10 1211 13 1514

t (second)

x
(t

):
ex

p
(-

0.
5*
t
)

Figure 4.1: Approximation of a decaying exponential with rectangular strips of width 1.

The convolution integral can thus be approximated by convolving the two piecewise con-
stant signals as follows:

y�.t/ D

Z 1

�1

h�.t � �/x�.�/d�: (4.5)

Notice that y�.t/ is not necessarily a piecewise constant function. For computer repre-
sentation purposes, the output needs to be generated in a discrete manner. This is achieved by
further approximating the convolution integral as indicated below:

y�.n�/ D �

1X
kD�1

x.k�/h..n � k/�/: (4.6)

By representing the signals h�.t/ and x�.t/ in a .m file as vectors containing the values of
the signals at t D n�, Equation (4.5) needs to be implemented to compute an approximation
to the convolution of x.t/ and h.t/. The discrete convolution sum

P1

kD�1 x.k�/h..n � k/�/

can be computed with the MATLAB function conv . Then, this sum can be multiplied by �

to get an estimate of the continuous signal y.t/ at t D n�. Note that as � is made smaller, one
obtains a closer approximation to y.t/.
Note that throughout the book, the notations dt, delta, and � are used interchangeably to denote the
time interval between samples.

4.2. CONVOLUTIONPROPERTIES 75

Commutative

Associative

Distributive

h1(t) h2(t) y(t) h2(t) h1(t) y(t)

h1(t)

h2(t)

h2(t)h1(t) y(t)

y(t)

x(t)

x(t)

x(t)

h1(t)*h2(t) y(t)x(t)

h2(t)+h2(t) y(t)x(t)+

Figure 4.2: Convolution properties.

4.2 CONVOLUTIONPROPERTIES
Convolution possesses the following three properties (see Figure 4.2):

Commutative property

x.t/ � h.t/ D h.t/ � x.t/: (4.7)

Associative property

x.t/ � h1.t/ � h2.t/ D x.t/ � fh1.t/ � h2.t/g : (4.8)

Distributive

x.t/ � fh1.t/ C h2.t/g D x.t/ � h1.t/ C x.t/ � h2.t/: (4.9)

4.3 CONVOLUTIONEXPERIMENTS
This lab involves experimenting with the convolution of two continuous-time signals. The equa-
tion part is written as a .m file, which is then implemented and run on a smartphone platform.
Due to the discrete-time nature of programming, an approximation of the convolution integral
is made.

76 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

Figure 4.3: L4_1.m script.

L4.1 NUMERICALAPPROXIMATIONOFCONVOLUTION
In this section, let us apply the MATLAB function conv to compute the convolution of two
signals. One can choose various values of the time interval � to compute different or coarse to
fine approximations to the convolution integral.

In this example, the function conv is used to compute the convolution of the signals
x.t/ D exp.�at/u.t/ and h.t/ D exp.�bt/u.t/, where u.t/ represents a step function starting
at 0 for 0 � t � 8. Consider the following values of the approximation pulse width or delta:
� D 0:5; 0:1; 0:05; 0:01; 0:005; 0:001. Mathematically, the actual convolution of h.t/ and x.t/ is
given by

y.t/ D
1

a � b

�
e�at

� e�bt
�

u.t/: (4.10)

Compare the approximation Oy.n�/ obtained via the function conv with the actual values
given by Equation (4.10). To better see the difference between the approximated Oy.n�/ and the
true y.n�/ values, it helps to display Oy.t/ and y.t/ in the same graph.

Next, let us compute the mean squared error (MSE) between the true and approximated
values using the following equation:

MSE D
1

N

NX
nD1

.y.n�/ � Oy.n�//2; (4.11)

where N D
�

T
�

˘
, T is an adjustable time duration expressed in seconds, and the symbol b:c

denotes the nearest integer. To begin with, let us set T D 8.
Open MATLAB (version 2015b or a later version), start a new MATLAB script in the

HOME panel, and select the New Script. Write the following MATLAB code and save the
function by using the name L4_1.m.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-056.jpg&w=414&h=145

4.3. CONVOLUTIONEXPERIMENTS 77

Figure 4.4: L4_1_testbench script.

The above code first generates a time vector t based on a time interval Delta for 8 s.
The two input signals, x1 and x2 , are then convolved using the function conv . Next, the
actual output y_ac based on Equation (4.10) is computed. The length of the time vector Lt

and the input vectors are obtained by using the command length(t) . Note that the output
vector y has a different size (for two input vectors of size m and n, the vector corresponding to
the convolution output is of size m C n � 1/. Thus, to have the same size for the output, use the
same portion of the convolution output corresponding to y(1:Lt) for the error calculation.

Next, write a script for testing purposes. Open a New Script, write your code, and save it
using the name L4_1_testbench, as shown in Figure 4.4.

Make sure that the function L4_1 and the script L4_1_testbench appear in the same
directory. The outcome can be verified by plotting x1 , x2 , y , and y_ac . Run the
script L4_1_testbench. Figure 4.5 shows an example outcome for the values specified in
L4_1_testbench.

Next, use the MATLAB Coder to generate the corresponding C code. From the APP
panel, select the MATLAB Coder and follow the steps covered in Chapter 3 to generate the
corresponding C code as outlined in Figure 4.6.

Figure 4.6 shows the initial screen for the Coder. Start by selecting the function to be
converted and change the Numeric Conversion option to single precision floating-point arith-
metic.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-057.jpg&w=395&h=207

78 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

Figure 4.5: Plots of inputs and outputs.

Figure 4.6: MATLAB Coder function selection.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-058.jpg&w=413&h=184
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-059.jpg&w=359&h=255

4.3. CONVOLUTIONEXPERIMENTS 79

Figure 4.7: Input type specification.

After the function is selected, the input types need to be specified (see Figure 4.7). This
can be done manually or by using the above test bench script to automatically determine the
data types. Select the test bench script and choose the option Autodefine Input Types to complete
this step.

After the input types are set, the Coder then checks to ensure that it is able to generate
a C code from the provided MATLAB script. Figure 4.8 shows the outcome with no detected
errors.

Once the MATLAB script is checked and passed, a corresponding C source code is gen-
erated by pressing the Generate button (see Figure 4.9). Although various configuration settings
are available, the default settings are adequate for our purposes. After this step, a folder named
codegen is created in the directory of the MATLAB files.

The final step to implement an algorithm written in MATLAB on a smartphone is to
deploy the generated C code on a suitable smartphone target device. For this step, a shell is
provided here in which the generated C source code needs to be placed. This shell operates in
the same manner as the test bench script stated earlier; that is the two signals (a pulse and an
exponential) are generated. Figures 4.10 and 4.11 show how the generated C code is integrated
into the provided Android app shell. The following steps need to be taken.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-060.jpg&w=359&h=256

80 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

Figure 4.8: Function error check.

Figure 4.9: C source code generation.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-061.jpg&w=341&h=241
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-062.jpg&w=341&h=243

4.3. CONVOLUTIONEXPERIMENTS 81

Figure 4.10: Copying files.

1. Navigate to the folder named L4_1 in the codegen folder; codegen/lib/L4_1. Copy all the
files with .h and .c extensions, as illustrated in Figure 4.10.

2. If using MATLAB R2016b or later, it is required to add a specific header file into the jni
folder separately. This header file (tmwtypes.h) can be found in the MATLAB root with
the following path:

MATLAB root\R2019b\extern\include

3. Place the copied files inside the jni folder of the shell provided. The jni folder resides at
app/src/main/jni (see Figure 4.11).

4. Before building the project, first press clean project (see Figure 4.12).

5. Then, run the project by pressing the Run button.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-063.jpg&w=359&h=294

82 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

Figure 4.11: C source code integration.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-064.jpg&w=395&h=251

4.3. CONVOLUTIONEXPERIMENTS 83

Figure 4.12: Clear project.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-065.jpg&w=395&h=256

84 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

Figure 4.13: Initial screen of the app on an Android smartphone.

When you run the project, a graphical display on the connected smartphone should pop
up. Figure 4.13 shows the graphical display screen for the app. Enter some desired values for
a, b and Delta , and then press the button PLOT AND DISPLAY MSE. As a result, y ,
y_ac , and MSE for a=2 , b=3 , and Delta= 0.05 get plotted; see Figure 4.14.

L4.2 CONVOLUTIONEXAMPLE 2
Next, consider the convolution of the two signals x.t/ D exp.�2t/u.t/ and h.t/ D rect

�
t�2

2

�
for 0 � t � 10, where u(t) denotes a step function at time 0 and rect a rectangular function
defined as

rect.t/ D

�
1 �0:5 � t < 0:5

0 otherwise. (4.12)

Let � D 0:01. Figures 4.15 and 4.16 show the MATLAB function and the test bench
script for this example. Open a New Script and place the code in Figure 4.15, then save the

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-066.jpg&w=162&h=288

4.3. CONVOLUTIONEXPERIMENTS 85

Figure 4.14: Plots of y and y_ac.

function using the name L4_2. Open another New Script and place the code in Figure 4.16 as
the test bench code, and use the name L4_2_testbench to save this script.

Follow the steps as outlined above for L4_1 to generate the corresponding C code and
then place it into the shell provided. Figures 4.17 and 4.18 show the initial screen of the app
on an Android smartphone as well as x.t/, h.t/, and x.t/ � h.t/ for Delta =0.01 in different
graphs.

L4.3 CONVOLUTIONEXAMPLE 3
In this third example, the convolution of the signals shown in Figure 4.19 is performed.

Figures 4.20 and 4.21 show the MATLAB function and the test bench script for this
example. Open a New Script and place the code listed in Figure 4.20, then save the function
using the name L4_3. Open another New Script and place the code listed in Figure 4.21 as the
test bench code, and use the name L4_3_testbench to save this script.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-067.jpg&w=162&h=288

86 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

Figure 4.15: L4_2 function performing convolution of two signals.

Figure 4.16: L4_2_testbench.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-068.jpg&w=414&h=172
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-069.jpg&w=413&h=173

4.3. CONVOLUTIONEXPERIMENTS 87

Figure 4.17: Initial screen of the app on an
Android smartphone.

Figure 4.18: Plots of x.t/, h.t/, and y.t/.

1 5

1

2

2

x1(t) x2(t)

t t

Figure 4.19: Signals x1.t/ and x2.t/.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-070.jpg&w=144&h=241
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-071.jpg&w=143&h=241

88 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

Figure 4.20: L4_3 function performing convolution of two signals.

Figure 4.21: L4_3_testbench.

Figure 4.22 shows the smartphone screen for the third convolution example and Fig-
ure 4.23 shows the plots of the signals x1.t/, x2.t/, and x1.t/ � x2.t/ in separate graphs.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-072.jpg&w=413&h=173
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-073.jpg&w=413&h=173

4.3. CONVOLUTIONEXPERIMENTS 89

Figure 4.22: Initial screen of the app on an
Android smartphone.

Figure 4.23: Plots of x.t/, h.t/, and y.t/.

L4.4 CONVOLUTIONPROPERTIES
In this section, the convolution properties are examined. Figures 4.24 and 4.25 show the MAT-
LAB function and the test bench script for this example. Open a New Script and place the code
listed in Figure 4.24, then save the function using the name L4_4. Open anotherNew Script and
place the code listed in Figure 4.25 as the test bench code, and use the name L4_4_testbench to
save this script.

Both sides of Equations (4.7), (4.8), and (4.9) are implemented in the function L4_4,
where the commutative, associative, and distributive properties of convolution are illustrated,
respectively. In this code, first the signals x.t/; h1.t/, and h2.t/ are generated. Then, the output
signal y.t/ is generated depending on the user choice of the properties. Here, the MATLAB
command switch is used. This command evaluates an expression, and chooses to execute one
set of statements out of several sets of statements.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-074.jpg&w=144&h=239
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-075.jpg&w=143&h=240

90 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

Figure 4.24: L4_4 function incorporating convolution properties.

Figure 4.25: L4_4_testbench for plotting x.t/, h1.t/, h2.t/, and y.t/ for choice 2.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-076.jpg&w=413&h=225
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-077.jpg&w=413&h=173

4.3. CONVOLUTIONEXPERIMENTS 91

switch switch_expression
case case_expression

statements
case case_expression

statements
...

otherwise
statements

end

In the function L4_4, switch_expression provides choices. A choice is denoted by an
integer number. As the function L4_4 is called for a specific choice value, MATLAB tests each
case until one of case expressions is true, that is case_expression = choice value ,
and then the corresponding statements for that case_expression are executed.

Note any variable in a MATLAB function that is not directly assigned by a MATLAB
command needs to be initialized; otherwise the MATLAB Coder will throw an error that the
C code cannot be generated. For the examples mentioned here, the variable y.t/ is not directly
assigned in a MATLAB command and its value is determined in a switch case statement. There-
fore, it is necessary to first initialize it to prevent such an error. This variable is initialized to be
x.t/ here.

After running L4_4_testbench, follow the steps in L4_1 to generate the corresponding
C code and then place it into the shell provided. Figures 4.26–4.35 show the app screen on an
Android smartphone as well as x.t/, h.t/, and y.t/ plots for different Delta. A desired plot can
be chosen from a choice picker located on the right side and by pressing the PLOT button.

L4.5 LINEARCIRCUITANALYSIS USINGCONVOLUTION
In this section, let us consider an application of convolution involving RLC linear circuits to
gain a better understanding of the convolution concept. A linear circuit is an example of a linear
system, which is characterized by its impulse response h.t/, that is, the output in response to a
unit impulse input. The input to such circuits can be considered to be an input voltage v.t/ and
the output to be the output current i.t/, as illustrated in Figure 4.36.

For a simple RC series circuit shown in Figure 4.37, the impulse response is given by [8]:

h.t/ D
1

R
exp

�
�

1

RC
t

�
; (4.13)

which can be obtained for any specified values of R and C . When an input voltage v.t/ (either
DC or AC) is applied to the circuit, the current i.t/ can be obtained by simply convolving the

92 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

Figure 4.26: L4_4 initial screen. Figure 4.27: L4_4 plot of x.t/.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-078.jpg&w=162&h=289
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-079.jpg&w=162&h=289

4.3. CONVOLUTIONEXPERIMENTS 93

Figure 4.28: Plot of h1.t/. Figure 4.29: Plot of h2.t/.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-080.jpg&w=162&h=289
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-081.jpg&w=162&h=289

94 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

Figure 4.30: Commutative property. Figure 4.31: Commutative property.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-082.jpg&w=162&h=289
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-083.jpg&w=162&h=289

4.3. CONVOLUTIONEXPERIMENTS 95

Figure 4.32: Associative property. Figure 4.33: Associative property.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-084.jpg&w=162&h=289
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-085.jpg&w=162&h=289

96 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

Figure 4.34: Distributive property. Figure 4.35: Distribute property.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-086.jpg&w=162&h=289
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-087.jpg&w=162&h=289

4.3. CONVOLUTIONEXPERIMENTS 97

h(t) i(t)v(t)

Figure 4.36: Impulse response representation of a linear circuit.

R

CDC/AC +
-

Figure 4.37: RC circuit.

circuit impulse response with the input voltage, that is

i.t/ D h.t/ � v.t/: (4.14)

Similarly, for a simple RL series circuit shown in Figure 4.38, the impulse response is
given by

h.t/ D
1

L
exp

�
�

R

L
t

�
: (4.15)

When an input voltage v.t/ is applied to the circuit, the current i.t/ can be obtained by com-
puting the convolution integral.

Figures 4.39 and 4.40 show the MATLAB function and the test bench script for this ex-
ample. Open a New Script and place the code listed in Figure 4.39, then save the function using
the name L4_5. Open another New Script and place the code listed in Figure 4.40 as the test
bench code, and use the name L4_5_testbench to save this script. The function L4_5 has the
inputs: dt, w1, w2, A, R, L , and C , where dt stands for the time interval �, w1 , and
w2 denote the input voltage type (DC, w1=0 or w1= 1 , AC) and the circuit type (RC, w2=0
or w2= 1 , RL), respectively. The notations A, R, L , and C denote voltage amplitude, resis-
tance, inductance, and capacitance values, respectively. Make sure that the order of the inputs
is kept as it appears in the MATLAB code.

After running L4_5_testbench, follow the steps outlined in L4_1 to generate the C code
and then place it into the shell provided. Figures 4.41–4.46 show the app screen on an Android
smartphone as well as x.t/, h.t/, and y.t/ for Delta D 0:01.

From the app, one can control the circuit type (RL or RC), the input voltage type (DC
or AC) and the input voltage amplitude. One can also observe the circuit response by changing
R , L , and C values. After entering the desired settings, the desired Delta and Amplitude of
the input signal and the desired R , C , and L values, press the COMPUTE button.

98 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

R

LDC/AC +
-

Figure 4.38: RL circuit.

Figure 4.39: L4_5 function for the linear circuit.

Figure 4.40: L4_5_testbench for plotting x.t/, h.t/, and y.t/ of RC circuit.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-088.jpg&w=396&h=179
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-089.jpg&w=395&h=157

4.3. CONVOLUTIONEXPERIMENTS 99

Figure 4.41: Smartphone app screen. Figure 4.42: Settings screen.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-090.jpg&w=197&h=328
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-091.jpg&w=197&h=328

100 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

Figure 4.43: Plot of input AC voltage. Figure 4.44: Plot of impulse response h.t/ for
RL circuit.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-092.jpg&w=161&h=286
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-093.jpg&w=161&h=286

4.3. CONVOLUTIONEXPERIMENTS 101

Figure 4.45: Output i.t/ for RL circuit and
AC input voltage.

Figure 4.46: Output i.t/ for RC circuit and
AC input voltage.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-094.jpg&w=160&h=286
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-095.jpg&w=158&h=281

102 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

4.4 LABEXERCISES
4.4.1 ECHOCANCELLATION
In this exercise, the problem of removing an echo from a recording of a speech signal is con-
sidered. The MATLAB function sound() can be used to play back a speech recording. Load
the file echo_1.wav provided in the book software package by using the MATLAB function
audioread('filename') . This speech file was recorded at the sampling rate of 8 kHz, which
can be played back through the computer speakers by typing

>> sound(y)

You should be able to hear the sound with an echo. Build a waveform based on the loaded
data and the time interval dt D 1=8000 noting that this speech was recorded using an 8 kHz
sampling rate.

An echo is produced when the signal (speech, in this case) is reflected off a non-absorbing
surface like a wall. What is heard is the original signal superimposed on the signal reflected off
the wall (echo). Because the speech is partially absorbed by the wall, it decreases in amplitude.
It is also delayed. The echoed signal can be modeled as ax.t � �/, where a < 1 and � denotes
the echo delay. Thus, one can represent the speech signal plus the echoed signal as [2]

y.t/ D x.t/ C ax.t � �/: (4.16)

What is heard is y.t/. It is desired here to recover x.t/—the original, echo-free signal—from
y.t/.

Method 1

In this method, remove the echo using deconvolution. Rewrite Equation (4.16) as follows [2]:

yŒn�� D xŒn�� C axŒ.n � N /�� D xŒn�� � .ıŒn�� C aıŒn � N ��/ D xŒn�� � hŒn��: (4.17)

The echoed signal is the convolution of the original signal x.n�/ and the signal h.n�/. Use the
function deconv(y,h) to recover the original signal.

Method 2

An alternative way of removing the echo is to run the echoed signal through the following linear
system:

zŒn�� D yŒn�� � azŒ.n � N /��: (4.18)
Assume that zŒn�� D 0 for n < 0. Implement the above system for different values of a and N .

Display and play back the echoed signal and the echo-free signal using both of the above
methods. Specify the parameters a and N as control parameters. Try to measure the proper
values of a and N by the autocorrelation method described below.

4.4. LABEXERCISES 103
1,200

1,000

800

600

400

200

0

-200

-400

-600

1,000

800

600

400

200

0

-200

-400
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

A
m
p
li
tu
d
e

A
m
p
li
tu
d
e

Time Time

Figure 4.47: Autocorrelation function of a signal: (left figure) echo is partially removed; (right
figure) echo is mostly removed.

The autocorrelation of a signal can be described by the convolution of a signal with its
mirror. That is,

RxxŒn� D xŒn� � xŒ�n�: (4.19)

Use the autocorrelation of the output signal (echo-free signal) to estimate the delay time
N and the amplitude of the echo a. For different values of N and a, observe the autocorrelation
output. To have an echo-free signal, the side lobes of the autocorrelation should be quite low,
as indicated in Figure 4.47.

4.4.2 NOISEREDUCTIONUSINGMEANFILTERING
The idea of mean filtering is simply to replace each value in a signal with the mean (average)
value of its neighbors. A mean filter is widely used for noise reduction.

Start by adding some random noise to a signal (use the file echo_1.wav or any other speech
data file). Then, use mean filtering to reduce the introduced noise. More specifically, take the
following steps.

1. Normalize the signal values in the range [0 1].

2. Add random noise to the signal by using the function randn . Set the noise level as a
control parameter.

3. Convolve the noise-added signal with a mean filter. This filter can be designed by taking
an odd number of ones and dividing the sum by the size. For example, a 1 � 3 size mean
filter is given by [1/3 1/3 1/3] and a 1 � 5 size mean filter by [1/5 1/5 1/5 1/5 1/5]. Set the
size of the mean filter as an odd number control parameter (3, 5, or 7, for example).

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-096.jpg&w=164&h=130
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-097.jpg&w=164&h=131

104 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

4.4.3 IMPULSENOISEREDUCTIONUSINGMEDIANFILTERING
A median filter is a nonlinear filter that replaces a data value with the median of the values within
a window. For example, the median value for this data stream [2 5 3 11 4] is 4. This type of filter
is often used to remove impulse noise. Use the file echo_1.wav or any other speech data file and
take the following steps.

1. Normalize the signal values in the range [0 1].

2. Randomly add impulse noise to the signal by using the MATLAB function randperm .
Set the noise density as a control parameter.

3. Find the median values using the function median and replace the original value with the
median value. Set the number of the window as an odd number control parameter (3, 5,
or 7, for example).

4.5 RUNNINGMATLABCODER-GENERATEDCCODES
ONSMARTPHONES

4.5.1 RUNNINGONANDROID SMARTPHONES
This section covers the steps for integrating a C code generated by the MATLAB Coder into
an Android shell program for running it on an Android smartphone. These steps are listed as
follows.

1. Creating a shell.

2. Verification of the MATLAB function to be run on smartphones.

3. Using MATLAB Coder to generate the corresponding C code to be placed in the shell.

4. Modifications of the shell to integrate the C code into it.

The first three steps were covered earlier. In this section, the fourth step is covered. Let us con-
sider the basicHelloWorld shell that wasmentioned and the C code generated by theMATLAB
Coder. The following modifications of the shell are needed for running the code on an Android
smartphone. The HelloWorld shell for L4_1:

1. Navigate to the folder created by the MATLAB Coder named codegen\lib\L4_1. Copy all
the files with the extensions .h and .c.

2. If using MATLAB R2016b or later, it is required to add a specific header file into the jni
folder separately. This header file (tmwtypes.h) can be found in the MATLAB root with
the following path:

4.5. RUNNINGMATLABCODER-GENERATEDCCODESONSMARTPHONES 105

Figure 4.48: main.c file located in the folder codegen\lib\L4_1\examples.

MATLAB root\R2019b\extern\include

3. Place the copied files inside the jni folder of the HelloWorld shell.

4. Open the HelloWorld project in Android Studio.

5. Double click on the file HelloWorld.c in the jni folder.
Inside the code, the following statement can be seen:

#import <jni.h>
jstring Java_com_dsp_helloworld_MainActivity_getString
(JNIEnv* env, jobject thiz) {

return (*env) -> NewStringUTF(env, "Hello UTD!");
}

6. Navigate to the folder codegen\lib\L4_1\examples and open the file main.c using Notepad.

7. Copy the part on the top (below Include Files in Figure 4.48, but not main.h) into the
HelloWorld.c file of the shell.

8. Next, modify the statement line from

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-098.jpg&w=287&h=193

106 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

jstring Java_com_dsp_helloworld_MainActivity_getString
(JNIEnv* env, jobject thiz)

to

jdoubleArray Java_com_dsp_Helloworld_MainActivity_getString
(JNIEnv* env, jobject thiz, jdouble a, jdouble b, jdouble delta)

Note jdoubleArray instead of jstring is used because the intention in the Hel-
loWorld project was to return the string “Hello UTD” but here the intention is to return
an array of double type numbers. Add the input parameters and their data types of the
MATLAB function here. In L4_1, these parameters are a , b , and delta as:

jdoubleArray Java_com_dsp_helloworld_MainActivity_getString
(JNIEnv* env, jobject thiz, jdouble a, jdouble b, jdouble delta)

9. Then, inside the function created, place the following statements:

int length=round(16/delta);
jdoubleArray jArray = (*env) -> NewDoubleArray(env, length);

These statements define the output variable and allocate memory to it.

From the file main.c, copy the following lines that define and
initialize the variables:

/* Initialize function 'L4_1' input arguments. */
emxArray_real32_T *x1;
emxArray_real32_T *x2;
emxArray_real32_T *y;
emxArray_real32_T *y_ac;
float MSE;
emxInitArray_real32_T(&x1, 2);
emxInitArray_real32_T(&x2, 2);
emxInitArray_real32_T(&y, 2);

4.5. RUNNINGMATLABCODER-GENERATEDCCODESONSMARTPHONES 107

emxInitArray_real32_T(&y_ac, 2);

Now copy the following line from the file main.c and place it in the HelloWorld file:

/* Call the entry-point 'L4_1'. */
L4_1(a, b, delta, x1, x2, y, y_ac, &MSE);

This function calls the function L4_1, where the five output arrays x1 , x2 , y , y_ac ,
and MSE are returned. To assign y data values to Array, a temporary array called y_temp
is used in a for loop and is filled by y data values:

int i;
doubley_temp[length];
for(i = 0; i < length; i++) {

y_temp[i] = y -> data[i];
// __android_log_print(ANDROID_LOG_ERROR,
// "HelloWorld Final 1", "%f\n", y_temp[i]);

}

Note that for MSE , this step is not needed since it is only one value.
Next, free the allocated memory by copying the following lines from the file main.c:

emxDestroyArray_real32_T(y_ac);
emxDestroyArray_real32_T(y);
emxDestroyArray_real32_T(x2);
emxDestroyArray_real32_T(x1);

Assign y_temp to Array and return it:

(*env) -> SetDoubleArrayRegion(env,jArray,0,length,y_temp);
return jArray;

}

These steps need to be repeated for all the defined outputs in the function L4_1; see the
shell provided for L4_1.

108 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION
10. Finally, design your desired Graphical User Interface (GUI). This link provides guidelines

as how to design GUIs: http://androidplot.com/docs/quickstart/

4.5.2 RUNNINGON iOS SMARTPHONES
This section covers the steps for integrating a C code generated by the MATLAB Coder into
the Xcode shell previously covered for running it on iPhone smartphones. These steps are listed
below.

1. Create the shell.

2. Verify the MATLAB function to be run.

3. Use the MATLAB Coder to generate the corresponding C code to be placed in the shell.

4. Modify the shell to integrate the C code into it.

The first three steps were covered previously in the Android section and are the same
for iOS. In this section, the fourth step is covered. Let us consider the lab L4_1 shell and its
corresponding C code generated by the MATLAB Coder. The following modifications of the
shell are needed for running the code on an iOS smartphone.

Here it is worth mentioning that the group structure in Xcode is not the same as the folder
structure in Finder on Mac. It can be made to be the same, but making a group does not make
a relative folder on the file system.

5. Make the directory codegen/lib/L4_1 as a subfolder in the Xcode project L4_1.

6. Navigate to the folder created by the MATLAB Coder named codegen\lib\L4_1. Copy all
the files with the extensions .h and .c to the Xcode project.

7. In the Xcode Project Navigator, click on File -> Add Files to “L4_1”.

8. Click File -> New -> Group and type in “Native Code”.

9. Select all of the .c and .h files and drag them into the “Native Code” group.

10. If using MATLAB R2016b or later, it is required to add a specific header file into the “Na-
tive Code” group separately.This header file (tmwtypes.h) can be found in theMATLAB
root with the following path:

MATLAB root\R2019b\extern\include

The MATLAB C codes will be built and get ready for use. The code to interact with buttons
and graphs was covered earlier. Now, the generated C code needs to get placed or integrated
into the iOS shell.

http://androidplot.com/docs/quickstart/

4.5. RUNNINGMATLABCODER-GENERATEDCCODESONSMARTPHONES 109
Click on “ViewController.m” to edit the file. At the top of the file above the interface

definition, import the following necessary header files:

#import "ViewController.h"
#import "L4_1.h"
#import "L4_1_emxAPI.h"

Underneath the line, in the buttonPress method,

int length = round(8.0 / delta);

add the following lines:

if(_x1 == NULL)
{
_x1 = emxCreate_real32_T(1,length);

}
if(_x2 == NULL)
{
_x2 = emxCreate_real32_T(1,length);

}
if(_y == NULL)
{
_y = emxCreate_real32_T(1,length);

}
if(_y_ac == NULL)
{
_y_ac = emxCreate_real32_T(1,length);

}

_yMax = 0;
L4_1(a, b, delta, _x1, _x2, _y, _y_ac, &mse);

[_mseLabel setText:[NSString stringWithFormat:@"%f", _mse]];
[self.graph1 reloadData];

The "if block" lines allocate memory for the output x1 , x2 , y , and y_ac . The Lab 4
MATLAB code will populate these variables as well as MSE variable mse. Since the variables

110 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION
are made as member variables to ViewController, they become accessible throughout with the
underscore prefix, e.g., _x1 . This allows selecting these variables to be plotted at a later time.
Calling reloadData on the graph1 object calls the delegate method “numberForPlot” which sets
the appropriate domain and range for plotting.

4.6 REAL-TIMERUNNINGONSMARTPHONES
A distinguishing attribute of the introduced smartphone-based signals and systems laboratory
paradigm from a conventional signals and systems laboratory paradigm is the ability to run sig-
nals and systems code written in MATLAB in real time on smartphones. This section presents
the steps one needs to take in order to process audio signals captured by a smartphone micro-
phone or a saved wave file in real-time through a linear time-invariant system implemented in
MATLAB. In what follows, it is explained how to integrate a C code generated by the MAT-
LAB Coder into a real-time shell allowing its real-time execution on Android and iOS smart-
phones.

4.6.1 MATLABFUNCTIONDESIGN
Let us consider the convolution algorithm written as a MATLAB script. The first step is to
open MATLAB and create a new function file to run the algorithm on a frame by frame basis,
that is by examining one frame of data samples at a time. The code appearing in Figure 4.49
is a frame-based implementation. Of particular importance in this function is the usage of the
persistent variable buffer . This variable stores previous samples of an input signal between
calls to the convolution function in order to produce the output.

4.6.2 TESTBENCH
As noted earlier, for debugging purposes as well as simulating the response of a linear time-
invariant system on a target platform, a test bench MATLAB script needs to be written. For
audio signal processing, a typical MATLAB script assumes samples of an entire audio signal are
available but on an actual smartphone target, audio signal processing takes place one frame at a
time. Thus, one needs to modify a MATLAB script for frame-based processing. The following
script in Figure 4.50 shows how such an implementation is achieved.

This script generates a test signal and writes it to a file on a target platform. The signal
is reshaped into a matrix of frame-sized columns and transposed to form frame-sized rows
as would be the behavior on a target platform. The rows are then passed to the MATLAB
function for processing. Run this test bench script and follow the steps provided in Section L4.1
to generate the corresponding C code. After generating the C code, integrate it into the real-
time shell that is provided. Figure 4.51 exhibits the initial screen and the setting menu of this
app.

4.6. REAL-TIMERUNNINGONSMARTPHONES 111

Figure 4.49: Real-time convolution MATLAB function (named LR4-2 real-time example).

Figure 4.50: Real-time convolution testbench script. (Continues.)

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-099.jpg&w=287&h=216
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-100.jpg&w=351&h=257

112 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

Figure 4.50: (Continued.) Real-time convolution testbench script.

• “Output toPlayback” –Defines which signal to be played back; Original (input signal)
or Filtered (output).

• “Sampling Frequency” – Input sampling frequency (Fs), which can be varied from
8000–48,000 Hz.

• “Frame Size” – Size of frame to be processed.

• “Debugging Level” – Defines the debugging mode; for verification purposes choose
txt file to obtain a txt file of the output array.

• “Read File Button” – Provides sound files in .wav format that can be used as input
signals; these wav files need to be stored in the filter folder of the app on the smart-
phone. After selecting a sound wav file, the processing takes place and the outcome gets
saved in a txt file in the filter folder (provided that the Debugging Level is selected as
txt file).

• “Start Button” – Starts capturing sound signals from the smartphone microphone for
processing.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-101.jpg&w=351&h=261

4.6. REAL-TIMERUNNINGONSMARTPHONES 113

Figure 4.51: Initial screen and setting menu of real-time convolution app.

4.6.3 MODIFYINGREAL-TIME SHELL FORANDROID
This section covers the steps for integrating a C code generated by the MATLAB Coder into
the Android real-time shell program. These steps are listed below.

1. Verification of the MATLAB function to be run on an Android smartphone.

2. Using the MATLAB Coder to generate the corresponding C code.

3. Creating a real-time shell.

4. Modifications of the real-time shell to integrate the C code into it.

The first two steps were covered earlier. A generic real-time shell is provided as part of the
book software package for the third step. The fourth step is covered here which involves modi-
fications of the real-time shell for the integration of the C code. The following modifications of
the shell are needed for running the C code in real-time on an Android smartphone.

1. Navigate to the folder created by the MATLAB Coder named codegen\lib\LR4_2. Copy
all the files with the extensions .h and .c.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-102.jpg&w=323&h=261

114 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION
2. If using MATLAB R2016b or later, it is required to add a specific header file into the jni

folder separately. This header file (tmwtypes.h) can be found in the MATLAB root with
the following path:

MATLAB root\R2019b\extern\include

3. Place the copied files inside the app/src/main/jni folder of the LR4_2 project.

4. Open the LR4_2 project under Android Studio.

5. Double click on the file MATLABNavtive.c in the jni folder.

Inside the code, the following statements can be seen:

#include <jni.h>
#include <stdio.h>

jfloatArray
Java_com_dsp_matlab_Filters_compute(JNIEnv *env, jobject thiz,
jfloatArray input)
{

jfloatArray output = (*env)->NewFloatArray(env, 256);
float *_output =

(*env)->GetFloatArrayElements(env, output, NULL);
float *_in = (*env)->GetFloatArrayElements(env, input, NULL);

//compute
(*env)->ReleaseFloatArrayElements(env, input, _in, 0);
(*env)->ReleaseFloatArrayElements(env, output, _output, 0);
return output;

}

voidJava
_com_dsp_matlab_Filters_initialize(JNIEnv *env, jobject thiz)
{

}

4.6. REAL-TIMERUNNINGONSMARTPHONES 115

Figure 4.52: main.c file located in the folder codegen\lib\LR4_2\examples.

void
Java_com_dsp_matlab_Filters_finish(JNIEnv *env, jobject thiz)
{

}

6. Navigate to the folder codegen\lib\LR4_2\ examples and open the filemain.c usingNotepad.

7. Copy the part on the top (below Include Files, see Figure 4.52, but not main.h) into the
MATLABNative.c file of the shell.

8. Next, modify the following statement from

Java_com_dsp_matlab_Filters_compute(JNIEnv *env, jobject thiz,
jfloatArray input)

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-103.jpg&w=396&h=277

116 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION
to

Java_com_dsp_matlab_Filters_compute(JNIEnv *env, jobject thiz,
jfloatArray input, jint Fs, jint frameSize)

To include the sampling frequency and the frame size as input, change the following
statement from

jfloatArray output = (*env)->NewFloatArray(env, 256);
float *_output = (*env)->GetFloatArrayElements(env, output, NULL);

to

jfloatArray out = (*env)->NewFloatArray(env, frameSize);
float *_in = (*env)->GetFloatArrayElements(env, input, NULL);

These statements define the input and output variables and allocate memory to them.
From the file main.c, copy the following lines that define and initialize the variables and
place them in the MATLABNative.c file:

emxArray_real32_T *con;
int x_size[2]={1,frameSize};
emxInitArray_real32_T(&con, 2);

Now copy the following line from the file main.c and place it in the MATLABNative.c
file:

/* Call the entry-point 'LR4_2'. */
LR4_2(_in, x_size, Fs, con);

This function calls the function LR4_2, where the three inputs are sampling frequency
FS , input data _in , and frame size x_size . The output is returned in con . Add the
following line to access the con data and assign it to the out variable:

4.6. REAL-TIMERUNNINGONSMARTPHONES 117

(*env)->SetFloatArrayRegion(env,out,0,frameSize,con->data);

Copy this line from main.c and place it in theMATLABNative.c file to delete the memory
allocated for con

emxDestroyArray_real32_T(con);

Next, release the allocated memory for the input and return the output as follows:

(*env)->ReleaseFloatArrayElements(env, input, _in, 0);
return out;

Modify the following function from

void
Java_com_dsp_matlab_Filters_initialize(JNIEnv *env, jobject thiz)
{
}

to

void
Java_com_dsp_matlab_Filters_initialize(JNIEnv *env, jobject thiz)
{

LR4_2_initialize();
}

and the following function from

void
Java_com_dsp_matlab_Filters_finish(JNIEnv *env, jobject thiz)
{
}

118 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION
to

void
Java_com_dsp_matlab_Filters_finish(JNIEnv *env, jobject thiz)
{

LR4_2_terminate();
}

9. To add the frame size as an input setting, navigate to the file app/src/main/res/xml/prefs.xml
in the project directory under Android Studio and add the following lines:

<ListPreference
android:key="framesize1"
android:title="Frame Size"
android:summary="Default: 256"
android:defaultValue="256"
android:entries="@array/framesizeOptions"
android:entryValues="@array/framesizeValues"/>

10. Next, navigate to app/src/main/res/values/arrays.xml and add the following lines to define
frame size options and values for users:

<string-array name="framesizeOptions">
<item>128</item>
<item>256</item>
<item>512</item>
<item>1024</item>
<item>2048</item>

</string-array>

<string-array name="framesizeValues">
<item>128</item>
<item>256</item>
<item>512</item>
<item>1024</item>
<item>2048</item>

</string-array>

4.6. REAL-TIMERUNNINGONSMARTPHONES 119

Figure 4.53: LR4_2 filtered microphone output.

11. In the Project Navigator, open the file CMakeLists.txt. Under the comment “#Provides
a relative path to your source files(s)”, enter the filenames of all the .c and .h files from
MATLAB. This will let Android Studio and CMAKE know of these files.

12. Finally, clean project and then run it while having the smartphone connected to your com-
puter. You should be able to see the app screen shown in Figure 4.53 appearing on the
smartphone.

13. Note that in order to activate the Read File button in the Android app, it is required to
enable the permission of storage and microphone for the app (see Figure 4.54).

4.6.4 MODIFYINGREAL-TIME SHELL FOR iOS
This subsection covers the modification of the Xcode project for real-time operation. As stated in
Section 3.3.2, the MATLAB .c and .h files need to be added to the project and the appropriate
C code needs to get inserted. Moreover, if using MATLAB R2016b or later, it is required to
add a specific header file into the project folder separately. This header file (tmwtypes.h) can
be found in the MATLAB root with the following path:

MATLAB root\R2019b\extern\include

For iOS, since the layout of the code is different, a different section of the code needs to
get modified.

To begin, open the LR4_2 Xcode project and open the file “AudioController.m”. This file
contains the microphone and C code interaction. For the real-time labs, .caf files or Mac format-

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-104.jpg&w=287&h=161

120 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

Figure 4.54: Permissions.

ted sound files, are provided. In the Project Navigator, an “Audio Files” group can be seen that
reference these files. A MATLAB script named create_signals.m is also provided to regenerate
these files in either .wav or .caf format. If it is desired to include other files for processing, they
can be added to this group.

Add the following import lines near the top of the file to access the MATLAB generated
code:

#import <ViewController.h>
#import <LR4_2_initialize.h>
#import <LR4_2_terminate.h>

Near the top of the file is the dealloc() method, this is called when the AudioController is
shutdown. Modify it so that it appears as follows:

-(void) dealloc
{

[[NSNotificationCenter defaultCenter] removeObserver:self];
free(_filt_data);
LR4_2_terminate():

}

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-105.jpg&w=108&h=192

4.6. REAL-TIMERUNNINGONSMARTPHONES 121

This will safely destroy all the allocated memory in the init() method. Add the following
code snippet to the init() method to allocate data and to initialize the MATLAB routines:

_filt_data = malloc(_data_size*sizeof(float));
memset(_filt_data, 0, _data_size*sizeof(float));

LR4_2_initialize();

With the memory allocated and the MATLAB files initialized, update the actual data filtering
by inserting this function into the file:

-(void) filterData:(float*)data withDataLength:(UInt32)length
{
int bytes_to_process=length;
int i=0;
int frameSize=0;

while(bytes_to_process > 0)
{

frameSize = _frameSize;
if(bytes_to_process < _frameSize) {
frameSize = bytes_to_process;

}

emxArray_real32_T *x;
emxArray_real32_T *con;
x = emxCreateWrapper_real32_T(data+(i*_frameSize),1,frameSize);
con = emxCreateWrapper_real32_T(_filt_data+(i*_frameSize),
1,frameSize+64);

LR4_2(x, _sampleRate, con);

BOOL sameptr = _filt_data+(i*_frameSize) == con->data;
if(!sampeptr) {
memcpy(_filt_data+(i*_frameSize), con->data,

frameSize*sizeof(float));
free(con->data);

}

122 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

bytes_to_process -= _frameSize;
i++;

}
}

The above block of code uses a different approach when setting up the MATLAB array
object. It creates a wrapper object for previously allocated data. Since this function is called
repeatedly, time is saved by not allocating and freeing data every block of data.

The EZAudio POD returns data in lengths that are not always equally divisible by the
chosen frame size. For this reason, enough of data must be processed until there is less than one
frame’s worth of data. In this case, whatever remains gets processed.

It should be noted that since the output filtered data are to be stored in the variable “ con ,”
enough memory needs to get allocated. If there is not enough storage, it will allocate more
memory and reassign it to a variable. This causes a memory leak. The code after the LR4_2()
function call handles such situations.

When compiled and run, one should see something similar to the plot shown in Fig-
ure 4.55.

For the real-time iOS labs, one can retrieve the output signal file using the share button.
This requires turning on Bluetooth to enable AirDrop. To add your own audio file as input, in
the Project Navigator, select the “AudioController.h” file to edit it. You will see some #define
statements toward the top; add your own filename here, e.g.,

#define MYFILE [[NSBundle mainBundle] pathForResource:@''filename''
ofType:@"ext"]

Then in the “AudioController.m,” in the init() function, add the following to the _audioList
array:

_audioList = @[@"NOT_USED",
SINE,
SQUARE1,
SQUARE2,
SQUARE3,
SAWTOOTH1,
SAWTOOTH2,
SAWTOOTH3,
CHIRP1,
CHIRP2,

4.6. REAL-TIMERUNNINGONSMARTPHONES 123

Figure 4.55: LR4_2 microphone input being filtered.

MYFILE];

This makes the code aware of your file. Also, your file in the “Audio Files” group in the Navigator
needs to get added. Once the code is recompiled and run, you should be able to see your file
in the scroll picker. This method can be done to add your own input file for all of the real-time
labs.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-106.jpg&w=215&h=384

124 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION
0

-5

-10

-15

-20

-25

-30

-35

-40
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ag

n
it

u
d
e

(d
B

)

Normalized Frequency (x ̟ rad/sample)

Figure 4.56: Magnitude of system for LR4_3.

4.7 REAL-TIMELABS
LR4_3 – In lab LR4_2, the convolution of a predefined impulse response with voice input is
done. Lab LR4_3 is similar except it uses a different filter. Repeat the steps for LR4_2 for
Android and iOS in order to run the program. Opening the file LR4_3.m will show the filter is
constructed as follows:

x2 = 0:2/64:2-2/64;
x2 = x2 / sum(x2);

The filter is normalized here so that it will have 0dB gain at its max gain. The magnitude
of x2 is shown in Figure 4.56. From this figure, it can be seen that it is a lowpass filter with
a small passband bandwidth. When running on an iPhone with a square wave at 100 Hz and
50% duty cycle, the output will appear as shown in Figure 4.57. The input voltage is 0.5 and the
output can be seen to be around 0.004.

LR4_4 – The real-time lab LR4_4 allows one to see the distributive and associative property of
convolution. Note that it is required to add to the GUI a selection widget of the output plots.
As usual, one needs to import the appropriate MATLAB codes.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-107.jpg&w=252&h=199

4.7. REAL-TIMELABS 125

Figure 4.57: iPhone display of LR4_3.

ANDROID STEPS
Let us start from the previous lab LR4_3. Copy the project folder and then update all the ref-
erencing of LR4_3 to LR4_4. Make sure to update the app/build.gradle file so that the appli-
cationID has a unique name. This determines whether a new app will appear or a previous one
is overwritten.

1. Update the CMakeFiles.txt file with the list of .cpp and .h files generated from MATLAB.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-108.jpg&w=215&h=384

126 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION
2. If using MATLAB R2016b or later, it is required to add a specific header file into the jni

folder separately. This header file (tmwtypes.h) can be found in the MATLAB root with
the following path:

MATLAB root\R2019b\extern\include

3. To add the selection choice to Android, edit the arrays.xml file in the path
app/src/main/res/values/. Similar to adding the frame size selection in Section 4.6.3, con-
sider choiceOptions and choiceValues

<resources>
...
<string-array name="choiceOptions">

<item>(h1*x)*h2</item>
<item>(h2*x)*h1</item>
<item>(x*h1)*h2</item>
<item>(h1*h2)*x</item>
<item>x*(h1+h2)</item>
<item>(x*h1)+(x*h2)</item>

</string-array>
<string-array name="choiceValues">

<item>1</item>
<item>2</item>
<item>3</item>
<item>4</item>
<item>5</item>
<item>6</item>

</string-array>
</resources>

4. In MatlabNative.c, add the choice parameter to the function signature.

Java_com_dsp_matlab_Filters_compute(JNIEnv *env, jobject thiz,
jfloatArray input, jint Fs, jint choice, jint frameSize)

This allows one to pass values from Java to the MATLAB C code.

4.7. REAL-TIMELABS 127
5. Add the new variable as a parameter to the LR4_4 function call.

LR4_4(_in, x_size, Fs, choice, y);

The variable y will now hold the output of the choice selected. Update the initialize and
terminate functions to reflect the new lab number. In the file Filter.java, pass the new
choice to the compute function as follows:

currentFrame.setFiltered(Filters.compute(currentFrame.getFloats(),
Settings.Fs, Settings.choice, Settings.blockSize));

6. And, lastly, the file Filters.java updates the interface toMatlabNative.c. Update it by adding
the new parameter,

public static native float[] compute(float[] in, int Fs,
int choice, int framesize);

These are the typical files that will change from lab to lab. Compile the code and select
different outputs.

iOS STEPS
The iOS steps in order to add the plot selection are covered here. Instead of copying the LR4_3
Xcode project, it is better to create a new project. The project initialization was covered previ-
ously. After the initialization is done, copy the Main.storyboard, ViewController, and Audio-
Controller files from the previous project to the current. This can be done in either Xcode or
in the Finder app. This allows modifying the LR4_3 code to the LR4_4 requirements. Again,
update all the references of LR4_3 to LR4_4. Add the “Native Code” group and add the .c and
.h files from MATLAB. Remember that if using MATLAB R2016b or later, it is required to
add a specific header file into the Native Code folder separately. This header file (tmwtypes.h)
can be found in the MATLAB root with the following path:

MATLAB root\R2019b\extern\include

Also, add the “Audio Files” group with the included set of .caf files. One can continue to add
new picker view option.

128 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION
1. Add the pickerView from the storyboard view. Some item may have to be re-arranged to

fit the new item.

2. Add the code that references the new picker view and also a method that returns the index
of the current selection. In ViewController.h, add within the @interface definition.

@property (weak, nonatomic) IBOutlet UIPickerView *plotPickerView;
-(NSInteger) getPlotPickerIndex;

3. Add the code to ViewController.m. Within the @interface definition, add the following:

@property NSArray* plotPickerData;

Then, within the viewDidLoad() method, add this plot text to be displayed.

_plotPickerView.delegate = self;
_plotPickerView.dataSource = self;
_plotPickerData = @[@"(h1*x)*h2",

@"(h2*x)*h1",
@"(x*h1)*h2",
@"(h1*h2)*x",
@"x*(h1+h2)",
@"(x*h1)+(x*h2)"];

The above block of code enables _plotPickerView to call on the ViewController
class in order to know how to populate itself and behave when acted upon.
This requires defining a few methods which _plotPickerView will call. The
numberOfComponentsInPickerView method has already been created and will work
as is. This method tells pickerView how many columns of data to expect. In our case, just
1 is used for both pickers. Modify numberOfRowsInMethod to return the correct value
based on the component as specified below.

-(long)pickerView:(UIPickerView*)pickerView
numberOfRowsInComponet:(NSInteger)component
{

if(pickerView == _filePickerVIew)

4.7. REAL-TIMELABS 129

{
return _pickerData.count;

} else {
return _plotPickerData.count;

}
}

Consequently, the number of elements in the array created above is returned. Next, when
the picker view populates, it needs to know the text for each row. This is done by updating
the titleForRow method. When called upon, the item from the array is returned for a
given row:

-(NSString*)pickerView:(UIPickerView*)pckerView titleForRow:
(NSInteger)row forComponent:(NSInteger)component {

if(pickerView == _filePickerView) {
return _pickerData[row];

} else {
return _plotPickerData[row];

}

Also in ViewConroller.m, create the method that returns the current index selected. Au-
dioController will use this to know what plot to generate:

-(NSInteger) getPlotPickerIndex
{

Return [_plotPickerView selectedRowInComponent:0];
}

4. Last, reference the GUI picker view with the _plotPickerView object in the code. This
is done in the storyboard view.
Display the Connections inspector, right most view in the right properties bar. Click and
drag from the empty circle to the right of “New Referencing Outlet” to the view con-
troller. A small popup will display three options. Choose the plotPickerView. Figure 4.58
illustrates this. Next, build and run the app.

5. AudioController will need to know which plot one wishes to generate. This value needs to
be obtained from the ViewController and passed to the MATLAB function LR4_4(). In
AudioController.h, add the method in the @protocol audioUIDelegate as noted below.

130 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

Figure 4.58: Reference the pickerView with an object.

@protocal audioUIDelegate
...
-(NSinteger) getPlotPickerIndex;
...
@end

Also add a variable to store the value. Within the @interface AudioController section, add
the following:

@property float plotIndex;

Then in AudioController.m, get this value when an action is taken and pass it to the MAT-
LAB function.
Within the function toggleMicrophone , add the following near the top:

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-109.jpg&w=251&h=254

4.7. REAL-TIMELABS 131

_plotIndex = [_delegate getPlotPickerIndex];

In the filterData method, update the function to use the new values. Since the MATLAB
code expects the plot index to start at 1, 1 needs to be added to the index. Compile and
run the app.

LR4_4(x,_sampleRate,_plotIndex, (_plotIndex+1), con);

LR4_5 – Real-time lab LR4_5 simulates a real-time RC circuit by using known signals as input
or by using live signals from the microphone. The MATLAB code implements the convolution
of the input with either Equation (4.13) or (4.15) depending on which selection is made.

ANDROID STEPS
Use LR4_4 as a guide to implement this lab. Remember to update the CMakeLists.txt file to
use the appropriate MATLAB code generated for this lab and update codes using the LR4_5
methods.

To change the items to plot, replace the entries defined in the file
app/src/main/res/values/arrays.xml. It needs to appear like the following when finished:

<resources>
...
<string-array name="systemOptions">

<item>RL Circuit</item>
<item>RC Circuit</item>

</string-array>
<string-array name="systemValues">

<item>1</item>
<item>2</item>

</string-array>
</resources>

iOS STEPS
Starting from the LR4_4 lab, a few updates will need to be made. To allow inputs from the user
for the resistance, capacitance, and induction values, new GUI elements, variables to store their

132 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION
values, and a way to retrieve the elements from the GUI are needed. Accessing GUI values are
briefly mentioned next.

To start, add the GUI elements. One will be able to select which system to plot by mod-
ifying the values in the array created in the last lab.

1. Replace the _plotPickerData elements with @”RC Circuit” and @”RL Circuit”. The
rest of the picker view code will work as is. This is modified in the ViewController.m file
and the viewDidLoad method.

2. To allow the AudioController to access GUI values, add the following lines to ViewCon-
troller.h within the @interface section.

@property (nonatomic, weak) IBOutlet UITextField *RInput;
@property (nonatomic, weak) IBOutlet UITextField *LInput;
@property (nonatomic, weak) IBOutlet UITextField *CInput;
- (float) getRValue;
- (float) getLValue;
- (float) getCValue;

The UITextField pointers allow one to access the text field properties. The
get{R,L,C} Value methods allow the AudioController to retrieve the data as floats.

3. Populate the get{R,L,C} Value methods in ViewController.m. These methods pull text
values entered, parse the string to a float, then return that value. There is no other error
checking.

- (float) getRValue
{

NSString *strVal = _RInput.text;
return [[NSDecimalNumber decimalNumberWithString:(strVal)]

floatValue];
}
- (float) getLValue;
{

NSString *strVal = _LInput.text;
return [[NSDecimalNumber decimalNumberWithString:(strVal)]

floatValue];
}
- (float) getCValue;

4.7. REAL-TIMELABS 133

{
NSString *strVal = _CInput.text;
return [[NSDecimalNumber decimalNumberWithString:(strVal)]

floatValue];
}

4. In the Main.Storyboard, move up the elements to fit Labels and text inputs for the R, L, C
values. Some convenient values to set are the keyboard type= Decimal Pad, correction=no,
spell checking=no. As noted before, add the references to appropriate objects as shown in
Figure 4.58.

5. Define the member variables and interface methods in AudioController.h. Within the
audioUIDelegate protocol section, add these get methods:

- (float) getRValue;
- (float) getLValue;
- (float) getCValue;

The ViewController is acting as delegate for the AudioController and these methods de-
fine the protocol that is needed to be created. Within the @interface section, add these
lines to create variables for the R, L, C values:

@property (readwrite) float R;
@property (readwrite) float L;
@property (readwrite) float C;

6. Next, edit AudioController.m to complete the implementation. As before, edit all the
LR4_4 functions to use the LR4_5 functions. In viewDidLoad, initialize the R, L, C
variables.

_R = 15.0;
_L = 10.0;
_C = 10.0;

In the togglePlaybackOutput, add these lines to retrieve the current R, L, C values from
the GUI:

134 4. LINEARTIME-INVARIANT SYSTEMSANDCONVOLUTION

_plotIndex = [_delegate getPlotPickerIndex];

_R = [_delegate getRValue];
_L = [_delegate getLValue];
_C = [_delegate getCValue];

As mentioned before, the AudioController is calling getRValue , getLValue , and
getCValue from the ViewController to assign the float values. In the filterData method, up-
date the function to use the new values. Compile and run the app.

LR4_5(x,_sampleRate,_plotIndex, _R, _L, _C, con);

4.8 REFERENCES
[1] S. Karris. Signals and Systems with MATLAB Applications, 2nd ed., Orchard Publications,

2003. 73

[2] J. Buck, M. Daniel, and A. Singer. Computer Explorations in Signal and Systems Using
MATLAB, 2nd ed., Prentice Hall, 1996. 102

[3] B. Lathi. Linear Systems and Signals, 2nd ed., Oxford University Press, 2004.

[4] D. Fannin, R. Ziemer, and W. Tranter. Signals and Systems: Continuous and Discrete, 4th
ed., Prentice Hall, 1998.

[5] B. Heck and E. Kamen. Fundamentals of Signals and Systems Using the Web and MATLAB,
3rd ed., Prentice Hall, 2006.

[6] C. Phillips, E. Riskin, and J. Parr. Signals, Systems and Transformations, 3rd ed., Prentice
Hall, 2002.

[7] S. Soliman and M. Srinath. Continuous and Discrete Signals and Systems, 2nd ed., Prentice
Hall, 1998.

[8] M. Roberts. Signals and Systems, McGraw-Hill, 2004. 73, 91

135

C H A P T E R 5

Fourier Series
A periodic signal x .t/ can be expressed by an exponential Fourier series as follows:

x.t/ D

1X
nD�1

cnej 2�nt
T ; (5.1)

where T indicates the period of the signal and cn’s are called Fourier series coefficients, which
in general are complex. These coefficients are obtained by performing the following integration:

cn D
1

T

Z
T

x.t/e�j 2�nt
T dt; (5.2)

which possesses the following symmetry properties:

jc�nj D jcnj (5.3)
†c�n D �†cn; (5.4)

where the symbol j:j denotes magnitude and † phase. Magnitudes of the coefficients possess
even symmetry and their phases odd symmetry.

A periodic signal x .t/ can also be represented by a trigonometric Fourier series as follows:

x.t/ D a0 C

1X
nD1

an cos
�

2�nt

T

�
C bn sin

�
2�nt

T

�
; (5.5)

where
a0 D

1

T

Z
T

x.t/dt; (5.6)

an D
2

T

Z
T

x.t/ cos
�

2�nt

T

�
dt; (5.7)

bn D
2

T

Z
T

x.t/ sin
�

2�nt

T

�
dt: (5.8)

The relationships between the trigonometric series and the exponential series coefficients
are given by

a0 D c0; (5.9)

136 5. FOURIER SERIES
an D 2Re fcng ; (5.10)

bn D �2Im fcng ; (5.11)

cn D
1

2
.an � jbn/ ; (5.12)

where Re and Im denote the real and imaginary parts, respectively.
According to the Parseval’s theorem, the average power in the signal x .t/ is related to its

Fourier series coefficients cn’s, as indicated below:

1

T

Z
T

jx.t/j2 dt D

1X
nD�1

jcnj
2 : (5.13)

More theoretical details of Fourier series are available in signals and systems textbooks,
e.g., [1–3].

5.1 FOURIER SERIESNUMERICALCOMPUTATION
The implementation of the integration in Equations (5.6)–(5.8) is achieved by performing sum-
mations. In other words, the integrals in (5.6)–(5.8) are approximated by summations of rect-
angular strips, each of width �t , as follows:

a0 D
1

M

MX
mD1

x .m�t/ ; (5.14)

an D
2

M

MX
mD1

x .m�t/ cos
�

2�mn

M

�
; (5.15)

bn D
2

M

MX
mD1

x .m�t/ sin
�

2�mn

M

�
; (5.16)

where x .m�t/ are M equally spaced data points representing x .t/ over a single period T , and
�t indicates the interval between data points such that �t D

T
M

.
Similarly, by approximating the integral in Equation (5.2) with a summation of rectangu-

lar strips, each of width �t , one can write

cn D
1

M

MX
mD�M

x.m�t/ exp
�

�
j 2�mn

M

�
: (5.17)

Note that throughout the book, the notations dt, delta, and � are used interchangeably to denote the
time interval between samples.

5.2. FOURIER SERIES AND ITSAPPLICATIONS 137

Table 5.1: MATLAB functions for generating various waveforms or signals

Waveform Type MATLAB Function

Square wave square(T), T denotes period

Triangular wave sawtooth (T, Width), Width = 0.5

Sawtooth wave sawtooth (T, Width), Width = 0

Half-wave rectifi ed sine wave

 sine(2 * pi * f * t) for 0 ≤ t < T/2

 0 for T/2 ≤ t < T

f = 1/T denotes frequency

Half period is sine wave and the other half is made zero

5.2 FOURIER SERIES AND ITSAPPLICATIONS
In this section, the representation of periodic signals based on Fourier series is considered. Pe-
riodic signals can be represented by a linear combination of an infinite sum of sine waves, as ex-
pressed by the trigonometric Fourier series representation, Equation (5.5). Periodic signals can
also be represented by an infinite sum of harmonically related complex exponentials, as expressed
by the exponential Fourier series representation, Equation (5.1). In this lab, both of these series
representations are implemented. In particular, the focus is placed on how to compute Fourier
series coefficients numerically.

L5.1 FOURIER SERIES SIGNALDECOMPOSITIONAND
RECONSTRUCTION
This example helps one to gain an understanding of Fourier series decomposition and recon-
struction for periodic signals. The first step involves estimating x .m�t/ which is a numerical
approximation of the periodic input signal. Although programming environments deploy dis-
crete values internally, a close analog approximation of a continuous-time signal can be obtained
by using a very small �t . That is to say, for all practical purposes, when �t is taken to be very
small, an analog signal is simulated. In this example, four input signals are created by using the
MATLAB functions listed in Table 5.1.

Open MATLAB, start a new MATLAB script in the HOME panel, and select a New
Script. Write the MATLAB code to generate these signals: sin , square , sawtooth , and
triangular . Note the square and sawtooth MATLAB functions are not supported by
the MATLAB Coder toward generating corresponding C codes. For such functions, these func-
tions need to be written from scratch. Use a switch structure to select different types of input
waveforms. Set the switch parameter w to serve as the input. Set the amplitude of signal A,
period of signal T , and number of Fourier coefficients N as control parameters. Determine the

138 5. FOURIER SERIES

Figure 5.1: L5_1 function for the Fourier series signal decomposition and reconstruction exam-
ple.

Fourier coefficients a0, an, and bn by using Equations (5.14)–(5.16). Then, reconstruct the sig-
nal from its Fourier coefficients using Equation (5.5). Determine the error between the original
signal and the reconstructed signal by simply taking the absolute values of x .t/ � Ox .t/ via the
MATLAB function abs . Finally, determine the maximum and average errors by using the

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-110.jpg&w=287&h=418

5.2. FOURIER SERIES AND ITSAPPLICATIONS 139

Figure 5.2: L5_1_testbench.

functions max and sum . Save the script using the name L5_1; see Figure 5.1. Next, write a
test script for verification purposes. Open a New Script, write your code and save it using the
name L5_1_testbench as noted in Figure 5.2.

RunL5_1_testbench for different A , T , w , and N values and observe the results. Follow
the steps as outlined for L3_1 to generate the corresponding C code and then place it into the
shell provided. Figure 5.3 shows the initial screen of the app on an Android smartphone. Enter
values for Delta , A , T , and N , select the input signal and the desired output to be plotted,
then press COMPUTE. Figures 5.5–5.9 show an, bn, periodic signal x .t/, reconstructed signal
Ox .t/, and the error. Note that a0, Maximum Error, and Average Error are displayed in the main
screen of the app.

L5.2 LINEARCIRCUITANALYSIS USINGTRIGONOMETRIC FOURIER
SERIES
In this example, linear circuit analysis is performed using the trigonometric Fourier series. The
ability to decompose any periodic signal into a number of sine waves makes the Fourier series
a powerful tool in electrical circuit analysis. The response of a circuit component when a si-
nusoidal input is applied to its terminals is well known in circuit analysis. Thus, to obtain the
response to any periodic signal, one can decompose the signal into sine waves and perform a
linear superposition of the sine waves.

Consider a simple RC circuit excited by a periodic input signal, as shown in Figure 5.10.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-111.jpg&w=414&h=200

140 5. FOURIER SERIES

Figure 5.3: Smartphone app screen. Figure 5.4: Parameter settings.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-112.jpg&w=157&h=280
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-113.jpg&w=156&h=280

5.2. FOURIER SERIES AND ITSAPPLICATIONS 141

Figure 5.5: Plot of an coefficients. Figure 5.6: Plot of bn coefficients.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-114.jpg&w=157&h=279
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-115.jpg&w=156&h=279

142 5. FOURIER SERIES

Figure 5.7: Plot of periodic x.t/. Figure 5.8: Plot of Ox.t/ or reconstructed x.t/.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-116.jpg&w=161&h=285
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-117.jpg&w=160&h=285

5.2. FOURIER SERIES AND ITSAPPLICATIONS 143

Figure 5.9: Plot of the error between x.t/ and Ox.t/.

R = 1 Ω

C = 1FVin(t)

Figure 5.10: RC series circuit with periodic input voltage.

Open MATLAB, start a new MATLAB script in the HOME panel, and select a New
Script. Write a MATLAB code to determine the Fourier series coefficients of the input voltage
signal as discussed in the previous example. Because Fourier series involves the sum of sinusoids,
phasor analysis can be used to obtain the output voltage .vc/. Let n represent the number of terms
in the Fourier series. By using the voltage divider rule, the output voltage .vc/ can be expressed

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-118.jpg&w=147&h=263

144 5. FOURIER SERIES
as [1]:

vc_n D
1= .jn!C /

R C 1= .jn!C /
vin_n: (5.18)

Because the sine and cosine components of the input voltage are known, one can easily
determine the output by adding the individual output components noting that the circuit is
linear. Determine each component of the output voltage by using Equation (5.18). Save the
script using the name L5_2, see Figure 5.11. Next, write a test script for verification purposes.
Open a New Script, write your verification code and save it using the name L5_2_testbench as
shown in Figure 5.12.

Run L5_2_testbench for different resistance, capacitance, A , T , w , and N values and
observe the results. Follow the steps as outlined in the lab L3_1 to generate the corresponding C
code and then place it into the shell provided. Figure 5.13 shows the app screen on an Android
smartphone. Enter values for Delta , A , T , and N , select the input signal and the desired
output signal to be plotted, then press COMPUTE. Figures 5.14–5.20 show an, bn, periodic
signal x .t/, VCcos_m (magnitude of the cosine components) , VCcos_a (phase of the cosine
components), VCsin_m (magnitude of the sine components), VCsin_a (phase of the sine com-
ponents), and the error. The parameters a0 and VCdc are displayed in the main screen of the
app.

5.3 LABEXERCISES
5.3.1 RLCIRCUITANALYSIS
Write a MATLAB function to analyze the RL circuit shown in Figure 5.21 using Fourier series.

The input voltage to the circuit is to be either a square wave or a triangular wave with a
period T D 2 sec. Compute and display the following:

a. the Fourier series coefficients of the input voltage v.t/;

b. the current i.t/;

c. the root mean square (RMS) value of v.t/ using (i) the original waveform and (ii) its
Fourier series coefficients (examine the difference); and

d. the average power Pav delivered by the voltage source.

RMSVALUE
The RMS value of a periodic function v .t/ with period T is given by

vRMS D

s
1

T

Z
T

v2dt: (5.19)

5.3. LABEXERCISES 145

Figure 5.11: L5_2 function for circuit analysis with trigonometric Fourier series.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-119.jpg&w=287&h=432

146 5. FOURIER SERIES

Figure 5.12: L5_2_testbench.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-120.jpg&w=395&h=329

5.3. LABEXERCISES 147

Figure 5.13: Smartphone app screen. Figure 5.14: Plot of an coefficients.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-121.jpg&w=149&h=266
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-122.jpg&w=148&h=264

148 5. FOURIER SERIES

Figure 5.15: Plot of bn coefficients. Figure 5.16: Plot of periodic x.t/.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-123.jpg&w=147&h=262
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-124.jpg&w=150&h=266

5.3. LABEXERCISES 149

Figure 5.17: Plot of VCcos_m. Figure 5.18: Plot of VCcos_a.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-125.jpg&w=150&h=266
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-126.jpg&w=144&h=257

150 5. FOURIER SERIES

Figure 5.19: Plot of VCSin_m. Figure 5.20: Plot of VCSin_a.

R = 1Ω

L = 1Hv(t) i(t)+
-

Figure 5.21: RL series circuit with periodic input voltage.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-127.jpg&w=148&h=263
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-128.jpg&w=147&h=263

5.3. LABEXERCISES 151
The RMS value of a waveform consisting of sinusoids with different frequencies is equal to
the square root of the sum of the squares of the RMS value of each sinusoid. If a waveform is
represented by the following Fourier series:

v .t/ D V0 C V1 sin .!1t ˙ �1/ C V2 sin .!2t ˙ �2/ C � � � C VN sin .!N t ˙ �N / I (5.20)

then, the RMS value VRMS is given by:

VRMS D

s
V0

2 C

�
V1
p

2

�2

C

�
V2
p

2

�2

C � � � C

�
VN
p

2

�2

: (5.21)

AVERAGEPOWER
The average power of the Fourier series can be expressed as

Pav D V0I0 C V1RMSI1RMS cos �1 C V2RMSI2RMS cos �2 C � � � : (5.22)

5.3.2 DOPPLEREFFECT
Doppler effect means the change in frequency and wavelength of a wave as perceived by an
observer moving relative to the wave source. Doppler effect can be demonstrated via time scaling
of Fourier series.The observer hears the siren of an approaching emergency vehicle with different
amplitudes and frequencies as compared to the original signal. As the vehicle passes by, the
observer hears another amplitude and frequency. The reason for the amplitude change (increased
loudness) is because of the diminishing distance of the vehicle. The closer it gets, the louder the
siren becomes. The reason for frequency (pitch) change is due to the Doppler effect. As the
vehicle approaches, each successive compression of the air caused by the siren occurs a little
closer than the last one, and the opposite happens when the vehicle moves away. The result is
the scaling of the original signal in the time domain, which changes its frequency. When the
vehicle approaches, the scaling factor is greater than 1, resulting in a higher frequency, and when
it moves away, the scaling factor is less than 1, resulting in a lower frequency. More theoretical
aspects of this phenomenon are covered in reference [4].

Define the original siren signal as x .t/. When the vehicle approaches, one can describe
the signal by

x1.t/ D B1.t/x.at/; (5.23)

where B1.t/ is an increasing function of time (assuming a linear increment with time) and a is
a scaling factor having a value greater than 1. When the vehicle moves away, one can describe
the signal by

x2.t/ D B2.t/x.bt/; (5.24)

where B2.t/ is a decreasing function of time (assuming a linear decrement with time) and b is a
scaling factor having a value less than 1.

152 5. FOURIER SERIES

Figure 5.22: Plots of Doppler effect signals.

First, generate a signal and create an upscale and a downscale version of it. Observe the
Fourier series for these signals. Set the amplitude and frequency of the original signal and the
scaling factors as control parameters. In addition, play the sounds using the function sound .
Figure 5.22 shows the original sound, and the sound as the vehicle approaches and moves away
in both time and frequency domains.

5.3.3 SYNTHESISOFELECTRONICMUSIC
In electronic music instruments, sound generation is implemented via synthesis. Different types
of synthesis techniques such as additive synthesis, subtractive synthesis and frequency mod-
ulation (FM) synthesis are used to create audio waveforms. The simplest type of synthesis is
additive synthesis, where a composite waveform is created by summing sine wave components,
which is basically an inverse Fourier series operation. However, in practice, to create a music
sound with rich harmonics requires adding a large number of sine waves, which makes the ap-
proach computationally inefficient. To avoid adding a large number of sine waves, modulation
with addition is used. This exercise involves the design of algorithms used in the Yamaha DX7
music synthesizer, which appeared as the first commercial digital synthesizer.

The primary functional circuit in DX7 consists of a digital sine wave oscillator plus a
digital envelope generator. Let us use additive synthesis and frequency modulation to achieve

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-129.jpg&w=414&h=246

5.3. LABEXERCISES 153

y(t)

1 2 3 4

Figure 5.23: Additive synthesis.

y(t)

1 Carrier

2 Modulator

Figure 5.24: FM synthesis.

y(t)

1

Figure 5.25: Self-modulation.

synthesis with six configurable operators. When one adds together the output of some operators,
an additive synthesis occurs, and when one connects the output of one operator to the input of
another operator, a modulation occurs.

In terms of block diagrams, the additive synthesis of a waveform with four operators is
illustrated in Figure 5.23.

The output for the combination shown in Figure 5.23 can be written as

y.t/ D A1 sin.!1t / C A2 sin.!2t/ C A3 sin.!3t/ C A4 sin.!4t /: (5.25)

Figure 5.24 shows the FM synthesis of a waveform with two operators.
The output for the combination shown in Figure 5.24 can be written as

y.t/ D A1 sin .!1t C A2 sin.!2t// : (5.26)

Other than addition and frequency modulation, one can use feedback or self-modulation
in DX7, which involves wrapping back and using the output of an operator to modulate the
input of the same operator, as shown in Figure 5.25.

The corresponding equation is

y.t/ D A1 sin .!1t C y.t// : (5.27)

Different arrangements of operators create different algorithms. Figure 5.26 displays the
diagram of an algorithm.

154 5. FOURIER SERIES

y(t)

2

3

4

5

6

1

Modulators

Modulator

CarrierCarrier

Figure 5.26: Diagram of a synthesis algorithm.

The output for this algorithm can be written as

y .t/ D A1 sin .!1t C A2 sin .!2t // C A3 sin .!3t C A4 sin .!4t C A5 sin .!5t C y6 .t//// :

(5.28)
With DX7, one can choose from 32 different algorithms. As one moves from algorithm

No. 32 to algorithm No. 1, the harmonics complexity increases. In algorithm No. 32, all six
operators are combined using additive synthesis with a self-modulator generating the smallest
number of harmonics. Figure 5.27 shows the diagram for all 32 combinations of operators. More
details on music synthesis and the Yamaha DX7 synthesizer can be found in references [5, 6].

Next, let us explore designing a system with six operators and set their amplitude and
frequency as controls. By combining these operators, construct any three algorithms, one from
the lower side (for example, algorithm No. 3), one from the middle side (for example, algorithm
No. 17) and the final one from the upper side (for example, algorithm No. 30). Observe the
output waves in the time and frequency domains by finding the corresponding Fourier series.

5.4 REAL-TIMELABS
LR5_1 – The real-time lab LR5_1 will allow one to examine the Fourier series coefficients of live
audio signals. The MATLAB code will decompose the signal into its Fourier series coefficients,
then will display the reconstructed signal.

ANDROID STEPS
The steps below indicate the modifications of the lab LR4_5. Copy the LR4_5 directory to
LR5_1 and rename LR4_5 to LR5_1. Let us first update the project files before updating the
code.

1. Update the applicationId in the app/build.gradle to have LR5_1 in the name instead of
LR4_5. Next, copy the MATLAB generated code into the app/src/main/jni directory.

5.4. REAL-TIMELABS 155

1 2 3 4

6

5 1 2 3 4

6

5 1 2 3 4 5 61 2 3

4 6

5 1 2 3

4

5

61

2

3 6

4

5

1 2

3

4

65

1 2

3

4

65

2 3

1

5

64

1 3

5

6

42

2 3

1

4

5

6

1 2 4 5

63

1 2 3 4 51 2 4 51

3

2 4

6

1 4

6

5

2

3

5 3 6

1 3 4 5

2 6

1 3

4

6

5
4 6

1

2 5

3

4 6

1

2 5

3

2

1 3

4

56

2

1

532
4 6

1 4

5

62

3

1 4

5

62

3

6

25 26 28 29 30 31 3227

17 18 20 21 22 23 2419

9 10 12 13 14 15 1611

1

2

3

4 6

51

2

3

4

5

6

1

2

3

4

5

6

1

2

4

5

63

1

2

4

5

63

1 2 4 5 6 7 83

1

2

3

4

6

5

1

2

3

4

6

5

1

2

3

4 6

5

Figure 5.27: Thirty-two algorithms in the Yamaha DX7 music synthesizer.

2. If using MATLAB R2016b or later, it is required to add a specific header file into the jni
folder separately. This header file (tmwtypes.h) can be found in the MATLAB root with
the following path:

MATLAB root\R2019b\extern\include

3. Update the MATLAB generated files in the CMakeLists.txt file. The section in the file
should look like the following block of code. The order of the files does not matter.

add_library(# Sets the name of the library.
matlabNative

Sets the library as a shared library.
SHARED

Provides a relative path to your source file(s).

156 5. FOURIER SERIES

src/main/jni/LR5_1.c
src/main/jni/LR5_1.h
src/main/jni/LR5_1_emxutil.c
src/main/jni/LR5_1_emxutil.h
src/main/jni/LR5_1_initialize.c
src/main/jni/LR5_1_initialize.h
src/main/jni/LR5_1_terminate.c
src/main/jni/LR5_1_terminate.h
src/main/jni/LR5_1_types.h
src/main/jni/MatlabNative.c
src/main/jni/rtwtypes.h
src/main/jni/tmwtypes.h

)

4. Moving onto AndroidManifest.xml, update the LR4_5 names to LR5_1.

5. The app/src/main/res/xml/prefs.xml file will need to be edited to remove some of the previ-
ous options. ListPreference “system1”, EditTtextPreferences “resistance1”, “inductance1”,
and “capacitance1” can be removed as they will not be used in this lab. Once these are re-
moved, the following option can be added for the number of coefficients:

<EditTextPreference
android:key="coefficients1"
android:defaultValue="32"
android:gravity="left"
android:inputType="number"
android:summary="Default: 32"
android:title="No. of Coefficients" />

6. The code update will contain small updates for many files. First, open the
fileapp/src/mian/java/com/dsp/matlab/BetteryXYSeries.java. This change will update the
graph to display the sample number instead of time. In the method getX(int index), make
the return statement return only the index as follows:

Public Number getX(int index)
{

return index;

5.4. REAL-TIMELABS 157

}

7. A similar change to specify the limits of the graph is needed in
app/src/main/java/com/dsp/matlab/DataGraphActivity.java. Update the following
line in the onCreate method as follows:

DataPlot.setDomainBoundaries(0, Settings.blockSize,
BoundaryMode.Fixed);

This will ensure having the right x-axis limits.

8. Update the file app/src/main/java/com/dsp/matlab/Filter.java by replacing the Settings.Fs
argument as follows:

currentFrame.setFiltered(Filters.compute(currentFrame.getFloats(),
Settings.coefficients, Settings.blockSize));

9. Now in the file app/src/main/java/com/dsp/matlab/Filters.java, update the compute
method as follows:

public static native float[] compute(float[] in, int coefficients,
int frameSize);

10. To make sure the coefficient input are applied to the settings, update the
updateSettings() method in app/src/main/java/com/dsp/matlab/RealTime.java by
adding the following line

Settings.setCoefficients(Integer.parseInt(preferences.getString
("coefficients1", "32")));

11. Update app/src/main/java/com/dsp/matlab/Settings.java to store and retrieve the coeffi-
cients choice by adding the following:

158 5. FOURIER SERIES

public static int coefficients = 32;
public static void setCoefficients(int coefficients1)
{ coefficients = coefficients1; }

12. Finally, update the java to C interface file app/src/main/jni/MatlabNative.c as noted below.

#include <jni.h>
#include <stdio.h>
#include "LR5_1.h"
#include "LR5_1_terminate.h"
#include "LR5_1_intialize.h"
#include "tmwtypes.h"

jfloatArray
Java_com_dsp_matlab_Filters_compute(JNIEnv *env, jobject this,
jfloatArray, input, jfloat coefficeints, jint frameSize)
{

jfloatArray output = (*env)->NewFloatArray(env, frameSize);
float *_output =

(*env)->GetFloatArrayElements(env, output, NULL);
float *_in = (*env)->GetFloatArrayElements(env, input, NULL);
//compute
int x_size[2] = {1, frameSize};
int x_hat_size[2];
LR5_1(_in, x_size, coefficients, _ouptut, x_hat_size);

(*env)->ReleaseFloatArrayElements(env, input, _in, 0);
(*env)->ReleaseFloatArrayElements(env, output,_output, 0);

return output;
}

Void Java_com_dsp_matlab_Filters_initialize(JNIENV *env,
jobject this) { LR5_1_initialize(); }

Void Java_com_dsp_matlab_Filters_finish(JNIENV *env,
jobject this) { LR5_1_terminate(); }

5.4. REAL-TIMELABS 159

Figure 5.28: Settings view and waveform of input audio.

One can see that all the LR4_5 references are changed to LR5_1. The compute method
signature is updated to accept all the arguments. The LR4_5 call is replaced by LR4_5 and the
appropriate arguments.

If everything is done correctly, you should see the outputs as shown in Figure 5.28.

iOS STEPS
As done in Chapter 4, for iOS it is easier to start a new project without copying and editing the
project references. Therefore, a new project is created as discussed earlier. After the project is
created, copy the AudioController.m, AudioController.h, Main.storyboard, ViewController.h,
and ViewController.m files from LR4_5 to the appropriate location in the LR5_1 project. Right
away, the code can get updated.

1. Edit the AudioController.h file in XCode. Replace the LR4_5 references to
LR5_1. From the AudioDelegate protocol, remove the items getRValue ,
getLValue , getCValue , getPlotPickerIndex , and the didStopPlaying .
Add a getNumCoeffs method. The protocol section should then look like the following:

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-130.jpg&w=414&h=253

160 5. FOURIER SERIES

@protocol AudioDelegate
-(void) updateGraphData:(float*)data withFilterData:
(float*)filtered_data numPoints:(int)numPoints;
-(NSInteger) getPickerIndex;
-(int) getNumCoeffs;
-(void)stoppedPlaying;
-(void didStopRecording;
@end

Within the AudioController interface section, add the following variable numCoeffs :

@interface AudioController ...
...
@property int numCoeffs
...
@end

2. Edit theAudioController.m inXCode. First, replace all of the LR4_5 references to LR5_1,
then update the include lines, initialize and terminate functions. In the init method, set
the default value for numCoeffs as follows:

...
_frameSize=128;
_numCoeffs =32;
...

3. In the togglePlaybackOutput method, one needs to get the numCoeff value from the
AudioController. Add the following call to the delegate:

...
NSInteger ind = [_delegate getPickerIndex];
_numCoeffs = [_delegate getNumCOeffs];
...

4. Update the LR5_1 method call in filterData. The call should be reduced to three argu-
ments.

5.4. REAL-TIMELABS 161

LR5_1(x -> data, x->size, _numCoeffs, con->data, con->size);

5. Moving on to the ViewController.h file, one needs to add the selection of the num-
ber of coefficients. Within the ViewController interface, remove the RInput, LIn-
put, CInput TextField objects. Also, remove the methods getRValue , getLValue ,
getCValue , and getPlotPickerIndex . Furthermore, remove the plotPickerView
pointer. A pointer is added to a UISegmentedControl and a method is added to handle
its changes as follows:

@property (nonatomic,weak) IBOutlet UISegmentedControl
*coeffControl;

-(IBAction) updateSelectedNumCoeffs: (id)sender;

6. In the AudioController.m file, remove all the previous items and add the plot picker view.
References to the _plotPickerView , _RInput , _LInput , _CInput , getRValue ,
getLValue , getCvalue , and getPlotPickerIndex methods can be removed. Also,
the numberOfRowsInComponent and titleForRow methods can be simplified to han-
dle the view _filePickerView only.

7. Next, add a few methods. Implement the updateSelectedNumCoeffs and
getNumCoeffs methods . The former is the call back function whenever a new value is
selected for the number of coefficients. The latter is called by the AudioController to
retrieve the latest value.

-(IBAction)updateSelectedNumCoeffs:(id)sender
{

NSInteger index = [sender selectedSegmentIndex];
NSString *numCoeffStr = [sender titleforSegmentAtIndex:index];
_numCoeffs = [[NSDecimalNumber decimalNumberWithString:
(numCoeffStr)] intValue];

}

-(int)getNumCoeffs
{

return _numCoeffs;
}

162 5. FOURIER SERIES
8. Update the main storyboard to add a selection of the coefficients. In this example, a seg-

mented control is used. In the space where there is a picker view and R, L, C text edit
boxes, place the new segmented control. In the Attributes Inspector (right panel), add
three segments and assign the titles of “32”, “64”, and “128”. These values will show up as
selections similar to how the sample rate selections show up.

9. In the Connections Inspector, associate the valueChanged action with the updateSelect-
edNumCoeffs method. This is done by dragging the empty circle to the right of the “Value
Changed” event over to the storyboard. A popup will list available IBActions. Choose up-
dateSelectedNumCoeffs. This was covered before in Chapter 3.

10. If using MATLAB R2016b or later, it is required to add a specific header file into the Na-
tive Code folder separately. This header file (tmwtypes.h) can be found in the MATLAB
root with the following path:

MATLAB root\R2019b\extern\include

Compile and run your app. Figure 5.29 shows an example screen for this lab.

LR5_2 – The real-time lab LR5_2 again computes the Fourier coefficients of the input signal
while being able to choose the output signal. The user will be able to select from the cos coeffi-
cients a_n, sin coefficients b_n, mean of the signal, and the magnitude and angle of the sin and
cosine components as output of an RC circuit.

ANDROID STEPS
These steps modify the LR5_1 lab. Copy the LR5_1 directory to LR5_2 and rename the rest of
the files from LR5_1 to LR5_2. Update the project files before updating the code.

1. Update the applicationId in app/build.gradle to have LR5_2 in the name instead of
LR5_1. Next, copy the MATLAB generated code into the directory app/src/main/jni.

2. If using MATLAB R2016b or later, it is required to add a specific header file into the jni
folder separately. This header file (tmwtypes.h) can be found in the MATLAB root with
the following path:

MATLAB root\R2019b\extern\include

3. Update the MATLAB generated files in the file CMakeLists.txt. The section in the file
should look like the following block of code. The order of the files does not matter.

5.4. REAL-TIMELABS 163

Figure 5.29: Example screen shots for LR5_1.

add_library(# Sets the name of the library.
matlabNative

Sets the library as a shared library.
SHARED

Provides a relative path to your source file(s).
src/main/jni/LR5_2.c
src/main/jni/LR5_2.h
src/main/jni/LR5_2_data.c
src/main/jni/LR5_2_data.h
src/main/jni/LR5_2_emxAPI.c
src/main/jni/LR5_2_emxAPI.h
src/main/jni/LR5_2_emxutil.c
src/main/jni/LR5_2_emxutil.h
src/main/jni/LR5_2_initialize.c

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-131.jpg&w=323&h=253

164 5. FOURIER SERIES

src/main/jni/LR5_2_initialize.h
src/main/jni/LR5_2_terminate.c
src/main/jni/LR5_2_terminate.h
src/main/jni/LR5_2_types.h
src/main/jni/MatlabNative.c
src/main/jni/rt_defines.h
src/main/jni/rt_nonfinite.c
src/main/jni/rt_nonfinite.h
src/main/jni/rtGetInf.c
src/main/jni/rtGetInf.h
src/main/jni/rtGetNaN.c
src/main/jni/rtGetNaN.h
src/main/jni/rtwtypes.h
src/main/jni/tmwtypes.h

)

4. Moving onto AndroidManifest.xml, update the LR5_1 names to LR5_2.

5. The app/src/main/res/xml/prefs.xml file will need to be edited to add the resistance, capac-
itance, frequency, and output settings. The number of coefficients option can be reused.
Add the following options:

<EditTextPreference
android:key="resistance1"
android:defaultValue="1"
android:gravity="left"
android:inputType="number"
android:summary="Default: 1"
android:title="Resistance (in Ohms)" />

<EditTextPreference
android:key="capacitance1"
android:defaultValue="1"
android:gravity="left"
android:inputType="number"
android:summary="Default: 1"
android:title="Capacitance (in Farad)" />

<EditTextPreference
android:key="frequency1"

5.4. REAL-TIMELABS 165

android:defaultValue="100"
android:gravity="left"
android:inputType="number"
android:summary="Default: 100"
android:title="Frequency of input signal" />

<EditTextPreference
android:key="system1"
android:title="What to output?"
android:summary="Default: an"
android:defaultValue="0"
android:gravity="left"
android:entries="@array/systemOptions"
android:entryValues="@array/systemValues"/>

As mentioned earlier, @array/systemOptions and @array/systemValues are defined in the
app/src/main/res/values/arrays.xml file. Update these next. Simply add within the xml file
the following:

<string-array name="systemOptions">
<item>an</item>
<item>bn</item>
<item>a0</item>
<item>VCdc</item>
<item>VCcos_m</item>
<item>VCcos_a</item>
<item>VCsin_m</item>
<item>VCsin_a</item>

</string-array>
<string-array name="systemValues">

<item>0</item>
<item>1</item>
<item>2</item>
<item>3</item>
<item>4</item>
<item>5</item>
<item>6</item>
<item{>7</item>

166 5. FOURIER SERIES

</string-array>

6. The code update will contain small updates for many files. Update
app/src/main/java/com/dsp/matlab/Filter.java to update the function calls. Add the
resistance, capacitance, frequency, and display choice as follows:

currentFrame.setFiltered(Filters.compute(currentFrame.getFloats(),
Settings.coefficients, Settings.resistance, Settings.capacitance,
Settings.frequency, Settings.system, Settings.blockSize));

7. Now in app/src/main/java/com/dsp/matlab/Filters.java, update the compute method as
follows:

public static native float[] compute(float[] in, int coefficients,
float R, float C, float f, float choice, int frameSize);

8. Apply the coefficient input to the settings, update the updateSettings() method in
app/src/main/java/com/dsp/matlab/RealTime.Java and add the following lines within it:

Settings.setResistance(Integer.parseInt(preferences.getString
("resistancd1", "1")));
Settings.setCapacitance(Integer.parseInt(preferences.getString
("capacitance1", "1")));
Settings.setFrequency(Integer.parseInt(preferences.getString
("frequency1", "100")));
Settings.setSystem(Integer.parseInt(preferences.getString
("system1", "0")));

9. Update app/src/main/java/com/dsp/matlab/Settings.java to store and retrieve the settings
added as follows:

public static float resistance = 1;
public static float capacitance = 1;
public static float frequency = 100;

5.4. REAL-TIMELABS 167

public static float system = 0;

public static void setResistance(float resistance1)
{ resistance=resistance1; }

public static void setCapacitance(float capacitance1)
{ capacitance = capacitance1; }

public static void setFrequency(float frequency1)
{ frequency = frequency1; }

public static void setSystem(float system1){ system = system1; }

10. Finally, update the app/src/main/jni/MatlabNative.c interface file. This file is the interface
from Java to native C. The entire file is listed below.

#include <jni.h>
#include <stdio.h>
#include "rt_nonfinite.h"
#include "LR5_2.h"
#include "LR5_2_terminate.h"
#include "LR5_2_emxAPI.h"
#include "LR5_2_intialize.h"

jfloatArray
Java_com_dsp_matlab_Filters_compute(JNIEnv *env, jobject this,
jfloatArray, input, jfloat N, jfloat R, jfloat C, jfloat f,
jfloat choice, jint frameSize)
{

jfloatArray output = (*env)-${>}$NewFloatArray(env, frameSize);
float *_in = (*env)->GetFloatArrayElements(env, input, NULL);

//compute
emxArray_real32_T *v;
int X_size[2] = {1, frameSize};
emxInitArray_real32_T(&V,2);

LR5_2(_in, X_size, N, R, C, f, choice, V);

(*env)->SetFloatArrayRegion(env,output,0,frameSize, V->data);

168 5. FOURIER SERIES

emxDestroyArray_real32_T(V);
(*env)->ReleaseFloatArrayElements(env, input, _in, 0);
return output;

}

Void Java_com_dsp_matlab_Filters_initialize
(JNIENV *env, jobject this){ LR5_2_initialize(); }

Void Java_com_dsp_matlab_Filters_finish(JNIENV *env, jobject this)
{ LR5_2_terminate(); }

One can see that all the LR5_1 references are updated to LR5_2. The compute method
signature is updated to accept all the arguments. The LR5_1 call is replaced by LR5_2 and the
appropriate arguments.

If everything is done correctly, you should be able to see the outputs as shown in Fig-
ure 5.30.

iOS STEPS
Start a new project as discussed in the previous chapters. Copy the AudioController.m, Audio-
Controller.h, Main.storyboard, ViewController.h, and ViewController.m files from LR5_1 to
the appropriate location in the LR5_2 project. The iOS project is limited to the inputs that con-
tain single frequency tones. The lab uses the frequency for some of the calculations. To provide
a better representation, limits are used for the input files as well as the microphone input.

1. Edit the AudioController.h file in XCode. Replace the LR5_1 references to LR5_2. In the
AudioDelegate protocol, add the methods getFrequency , getPlotPickerIndex ,
getResistance , and getCapacitance . getNumCoeffs can be re-used. The proto-
col block will look like the following. The updateGraphData method changes since the
displays are of different lengths.

@protocol AudioDelegate
-(void) updateGraphData:(float*)data withDataPoints:

(int)numDataPoints
withFilterData:(float*)filtered_data numPoints:(int)
numFilteredPoints;

-(NSInteger) getPickerIndex;
-(NSInteger) getPlotPickerIndex;

5.4. REAL-TIMELABS 169

Figure 5.30: Settings view (left); output of coefficients (right).

-(float) getResistance;
-(float) getFrequency;
-(float) getCapacitance;
-(int) getNumCoeffs;
-(void)didStopPlaying;
-(void didStopRecording;
@end

Within the AudioController interface section, add the following:

@interface AudioController ...
...
@property NSInteger plotIndex;

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-132.jpg&w=413&h=283

170 5. FOURIER SERIES

@property NSInteger playbackIndex;
@property float resistance;
@property float capacitance;
@property float frequency;

@property NSInteger filtered_size;
...
@end

2. Edit theAudioController.m inXCode. First, replace all of the LR5_1 references to LR5_2,
then updating the include lines, initialize and terminate functions. In the init method, set
the default values for the new variables as follows:

...
_sampleRate=44100.0;
_frameSize = 128;
_numCoeffs =32;
_frequency= 100;
_audioList = @[SQUARE1,

SQUARE2,
SQUARE3,
SAWTOOTH1,
SAWTOOTH2,
SAWTOOTH3];

...

3. In the togglePlaybackOutput method, one needs to get the new values from Audio-
Controller by add a call to the delegate as follows:

...
_playbackIndex = [_delegate getPickerIndex];
_plotIndex = [_delegate getPlotPickerIndex];
_resistance = [_delegate getResistance];
_capacitance = [_delegate getCapacitance];
_numCoeffs = [_delegate getNumCOeffs];
_frequency = [_delegate getFrequency];
...

5.4. REAL-TIMELABS 171
4. To handle a different output size, update the EZAudioPlayerDelegate method. A couple

of the methods will change from

[self.filtRecorder appendDataFromBufferList:filteredBufferList
withBufferSize:bufferSize];
...
dispatch_async(dispatch_get_main_queue(), ^{

[weakSelf.delegate updateGraphData:buffer[0]
withFilteredData:_filt_data numPoints:bufferSize];

});

to

[self.filtRecorder appendDataFromBufferList:filteredBufferList
withBufferSize:bufferSize];
...
dispatch_async(dispatch_get_main_queue(), ^{

[weakSelf.delegate updateGraphData:buffer[0] withDataPoints:
bufferSize withFilteredData:_filt_data
numFilteredPoints:_filtered_size];

});

5. In the previous labs, the input into blocks of the specified coefficient size was processed.
In this lab, however, the output is only one block of coefficient size. Therefore, remove the
loop to process the data in blocks and process all the data in one frame as follows:

-(void) filterData:(float*)data withDataLength:(UInt32)length
{

emxArray_real32_T *x = emxCreateWrapper_real32_T(data,1,length);
emxArray_real32_T *con = emxCreateWrapper_real32_T(_filt_data,

1, _numCoeffs);
LR5_2(x, _numCoeffs, _resistance, _capacitance, _frequency,

_plotIndex, con);

BOOL sameptr = _filt_data == con->data;
if(!sameptr)
{

172 5. FOURIER SERIES

memcpy(_filt_data, con->data, _numCoeffs*sizeof(float));
free(con->data);

}
_filtered_size = _numCoeffs;

}

6. Moving on to the ViewController.h file, add the get methods to meet the delegate protocol
within the interface definition as follows:

-(float) getResistance;
-(float) getFrequency;
-(float) getNumCoeffs;
-(float) getCapacitance;

7. In the AudioController.m file, add the UITexfield pointers to be able to retrieve the text
input data. Also, add a variable to hold the size of the filtered data since it is different
than the input audio data. In addition, add in the picker controls to select the desired plot.
Some of the updates are similar to the previous labs.

@property (atomic, readwrite) int filteredLen;
@property NSArray* plotPickerData;
@property (nonatomic, weak) IBOutlet UITextField *numCOeffsInput;
@property (nonatomic, weak) IBOutlet UITextField *resistanceInput;
@property (nonatomic, weak) IBOutlet UITextField *capacitanceInput;
@property (nonatomic, weak) IBOutlet UITextField *frequencyInput;

8. Now, implement these methods and update the others:

-(void)viewDidLoad {
...
// set some default values
_dataLen = 0;
_filteredLen = 0;
_plotPickerView.delegate = self;
_plotPickerView.dataSource = self;

5.4. REAL-TIMELABS 173

//Array of values displayed in picker
_plotPickerData = @[@"an",

@"bn",
@"a0",
@"VCdc",
@"VCCos_m",
@"VCCos_a",
@"VCSin_m",
@"VCSin_a"];

[self addDoneToInputs];
}
...
-(NSUInteger)numberOfRecordsForPlot:(CPTPlot *)plot
{

If([plot.identifier isEqual:@"Microphone"])
{

return (NSUInteger)_dataLen;
}
else {

return (NSUInteger)_filteredLen;
}

}
...
-(float)getNumCoeffs
{

return [[NSDecimalNumber decimalNumberWIthString:
_numCoeffsInput.text] floatValue];

}
-(float) getResistance
{

return [[NSDecimalNumber decimalNumberWithString:
_resistanceInput.text] floatValue];

}
-(float) getCapacitance
{

return [[NSDecimalNumber decimalNumberWithString:
_capacitanceInput.text] floatValue];

}

174 5. FOURIER SERIES

-(float) getFrequency
{

return [[NSDecimalNumber decimalNumberWithString:
__frequencyInput.text] floatValue];

}
...
-(void) updateGraphData:(float*)data withDataPoints:

(int)numDataPoints withFilteredData:float*)filtered_data
numFilteredPoints:(int)numFilteredPoints

{
_data = data;
memcpy(_filtered_data, filtered_data, sizeof(float)
*numFilteredPoints);
_dataLen = numDataPoints;
_filteredLen = numFilteredPoints;

}
...
-(NSInteger) getPlocPickerIndex
{

return [_plotPickerView selectedRowInComponent:0];
{
//Handle new picker view
-(long)pickerView:(UIPickerView*)pickerView
numberOfRowsInComponent: (NSInteger)component
{

long rv = 0;
if(pickerView == _pickerView)
{

rv = _pickerData.count;
}
else {

rv = _plotPickerData.count;
}
return rv;

}
-(NSString*)pickerView:(UIPickerView*)pickerView titleForRow:

(NSInteger)rowforComponent:(NSInteger)component
{

5.5. REFERENCES 175

NSString* rv;
if(pickerView == _pickerView)
{

rv = _pickerData[row];
{
else {

rv = _plotPickerData[row];
}
return rv;

}

9. To update the storyboard, first remove the selection of the sampling rate and block size.
This will leave space to add resistance, capacitance, and frequency text inputs. Refer to the
previous labs as how to setup the text inputs. Lastly, add the picker view. Do not forget to
assign the references to variables created earlier. This was shown earlier in Chapter 3.

Compile and run your app. Figure 5.31 shows an example screen of this lab.

5.5 REFERENCES
[1] J. Buck, M. Daniel, and A. Singer. Computer Explorations in Signal and Systems Using

MATLAB, 2nd ed., Prentice Hall, 1996. DOI: 10.1109/ICASSP.2015.7178293. 136,
144

[2] B. Lathi. Linear Systems and Signals, 2nd ed., Oxford University Press, 2004.

[3] D. Fannin, R. Ziemer, and W. Tranter. Signals and Systems: Continuous and Discrete, 4th
ed., Prentice Hall, 1998. 136

[4] M. Schetzen. Airborne Doppler Radar: Applications, Theory, and Philosophy, AIAA Pub-
lisher, 2006. 151

[5] D. Benson. Music: A Mathematical Offering, Cambridge University Press, 2006. 154

[6] DX7 Digital Programmable Algorithm Synthesizer, YAMAHA Manual, 1999. 154

http://dx.doi.org/10.1109/ICASSP.2015.7178293

176 5. FOURIER SERIES

Figure 5.31: Example screen shots for LR5_2.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-133.jpg&w=360&h=287

177

C H A P T E R 6

Continuous-Time Fourier
Transform

In this chapter, the continuous-time Fourier transform (CTFT), often referred to as Fourier
transform, is computed numerically. This transform is then used to solve linear systems. Also,
noise cancellation and amplitude modulation are examined as applications of Fourier transform.

6.1 CTFTAND ITS PROPERTIES
The continuous-time Fourier transform (CTFT) (commonly known as Fourier transform) of a
signal x.t/ is expressed as

X.!/ D

1Z
�1

x.t/e�j!tdt: (6.1)

The signal x.t/ can be recovered from X.!/ via this inverse transform equation

x.t/ D
1

2�

1Z
�1

X.!/ej!td!: (6.2)

Some of the properties of CTFT are listed in Table 6.1.
Refer to the signals and systems textbooks, e.g., [1–3], for more theoretical details on this

transform.

6.2 NUMERICALAPPROXIMATIONSOFCTFT
Assuming that the signal x.t/ is zero for t < 0 and t � T , one can approximate the CTFT
integration in Equation (6.1) as follows:

1Z
�1

x.t/e�j!tdt D

TZ
0

x.t/e�j!tdt �

N �1X
nD0

x.n�/e�j!n��; (6.3)

where T D N� and N is an integer. For sufficiently small � , the above summation provides a
close approximation of the CTFT integral. The summation

PN �1
nD0 x.n�/e�j!n� is widely used

178 6. CONTINUOUS-TIMEFOURIERTRANSFORM

Table 6.1: CTFT properties

Properties Time Domain Frequency Domain

Time shift x(t – t0) X(ω)e – jωt0

Time scaling x(at)
 1
X

 ω

 |a| a

Linearity a1x1(t) + a2x2(t) a1X1(ω) + a2X2(ω)

Time convolution x(t) * h(t) X(ω)H(ω)

Frequency convolution x(t)h(t) X(ω) * H(ω)

in digital signal processing, and MATLAB has a built-in function for it called fft . In a .m
file, if N samples x.n�/ are stored in a vector x, then the function call

>> xw=tau*fft(x)

computes

X!.k C 1/ D �

N �1X
nD0

x.n�/e�j!kn� 0 � k � N � 1; (6.4)

� X .!k/ ;

where

!k D

(
2�k
N�

0 � k �
N
2

2�k
N�

�
2�
�

N
2

C 1 � k � N � 1;
(6.5)

with N assumed to be even. The fft function returns the positive frequency samples before
the negative frequency samples. To place the frequency samples in the right order to compute
the inverse transform, the function fftshift can be used as indicated below:

>>xw=fftshift(tau*fft(x))

Note that X.!/ is a vector (actually, a complex vector) of dimension N . X.!/ is complex
in general despite the fact that x.t/ is real valued. The magnitude of X.!/ is computed using
the function abs and its phase using the function angle .

6.3. EVALUATINGPROPERTIESOFCTFT 179

6.3 EVALUATINGPROPERTIESOFCTFT
The example covered in this section provides an implementation of CTFT and its properties.
As mentioned earlier, implementation is carried out only in a discrete fashion. Thus, to get a
continuous-time representation of a signal, a very small value of time increment �t is used. For
example, �t D 0:001 means there are 1000 samples in 1 s, generating a good simulation of a
low-frequency continuous signal. However, when working with very high-frequency signals, �t

should be decreased further to ensure there are enough samples to adequately simulate them in
a continuous fashion over a specified duration.

L6.1 EVALUATINGPROPERTIESOFCTFTEXAMPLE
Let us write a MATLAB code to create two input signals x1 and x2. Set up a case structure by
using mode3 and mode4 for controlling x1 and x2 type, respectively; mode3/mode4 to reflect
0: Rectangular, 1: Triangular, and 2: Exponential. Find the Fourier transform (FT) of these
two signals. Set up another case structure by using mode1 switch_expression to control
the combination method of x1 and x2 in the time domain (0: Linear combination, 1: Convolu-
tion, 2: Multiplication). Finally, set up a case structure by using mode2 switch_expression
to control the combination method in the frequency domain. This operation is performed on
the FT transform of x1 and x2. First, set Pulse width, Time shift, and Time scale as control
parameters. Pulse width controls the number of ones in the pulse, which is used to increase or
decrease the pulse width. Time shift adds zeros before the pulse to provide a time delay. Time
scale is multiplied with the time increment dt to ensure appropriate scaling of the pulse. The
MATLAB function fft can be used to determine the FT of the continuous signal. Com-
bine the signals in the frequency domain and set the combination method (linear combination,
convolution or multiplication) via the parameter mode2. Compute the FT of the time domain
combinations and the inverse FT of the frequency domain combinations using the functions
fft and ifft . To shift the zero-frequency component to the center of the spectrum, use the
MATLAB function fftshift . Note that it is not necessary to use fftshift. However, its use
allows a better representation of signals in the frequency domain. Finally, determine the magni-
tude and phase of the FT using the functions abs and angle , respectively. Display the input
signals and their combinations using the plot function. Save the MATLAB script using the
name L6_1. The MATLAB code for this example is shown in Figure 6.1 in two pages.

Next, open a new script and write a verification code to evaluate the function L6_1 and
save it as L6_1_testbench. Evaluate the output for different control parameters. See Figure 6.2.
After running L6_1_testbench, follow the steps outlined in L4_1 to generate the C code and
then place it into the shell provided. If using MATLAB R2016b or later, it is required to add
a specific header file into the jni folder separately. This header file (tmwtypes.h) can be found
in the MATLAB root with this path MATLAB root\R2019b\extern\include . Figures 6.3
and 6.4 show the app screen on an Android smartphone as well as the setting parameters.

180 6. CONTINUOUS-TIMEFOURIERTRANSFORM

Figure 6.1: L6_1 CTFT and its properties. (Continues.)

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-134.jpg&w=287&h=306

6.3. EVALUATINGPROPERTIESOFCTFT 181

Figure 6.1: (Continued.) L6_1 CTFT and its properties.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-135.jpg&w=287&h=302

182 6. CONTINUOUS-TIMEFOURIERTRANSFORM

Figure 6.2: L6_1_testbench script for verifying CTFT properties.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-136.jpg&w=395&h=292

6.3. EVALUATINGPROPERTIESOFCTFT 183

Figure 6.3: Smartphone app screen. Figure 6.4: Parameter settings.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-137.jpg&w=161&h=287
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-138.jpg&w=161&h=287

184 6. CONTINUOUS-TIMEFOURIERTRANSFORM

(a) (b) (c)

Figure 6.5: Signal x1 for different pulse widths: (a) 0.03, (b) 1, and (c) 2.

L6.1.1 Varying PulseWidth
Keep the default values of Time shift .D 0/ and Time scaling .D 1/ and vary Pulse width of
the rectangular pulse. First, set the value of Pulse width to its minimum value .D 0:03/ and
then increase it. Observe that increasing Pulse width in the time domain decrements the width
in the frequency domain. When Pulse width is set to its maximum value in the frequency
domain, only one value can be seen at the center frequency indicating the signal is of DC type,
see Figures 6.5–6.7.

L6.1.2 Time Shift
Next, for a fixed pulse width, vary time shift. Observe that the phase spectrum changes but
the magnitude spectrum remains the same. If the signal f .t/ is shifted by a constant t0, its FT
magnitude does not change, but the term �!t0 gets added to its phase angle, see Figures 6.8–
6.10.

L6.1.3 Time Scaling
Observe that increasing the parameter Time scaling makes the spectrum wider. This indicates
that compressing the signal in the time domain leads to expansion in the frequency domain; see
Figures 6.11–6.13.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-139.jpg&w=372&h=212

6.3. EVALUATINGPROPERTIESOFCTFT 185

(a) (b) (c)

Figure 6.6: Magnitude spectrum of signal x1 for different pulse widths: (a) 0.03, (b) 1, and (c)
2.

(a) (b) (c)

Figure 6.7: Phase of signal x1 for different pulse widths: (a) 0.01, (b) 1, and (c) 2.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-140.jpg&w=372&h=210
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-141.jpg&w=372&h=210

186 6. CONTINUOUS-TIMEFOURIERTRANSFORM

(a) (b) (c)

Figure 6.8: Signal x1 for different time shifts: (a) 0, (b) 0.2, and (c) 0.7.

(a) (b) (c)

Figure 6.9: Magnitude spectrum of signal x1 for different time shifts: (a) 0, (b) 0.2, and (c) 0.7.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-142.jpg&w=372&h=212
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-143.jpg&w=372&h=212

6.3. EVALUATINGPROPERTIESOFCTFT 187

(a) (b) (c)

Figure 6.10: Phase of signal x1 for different time shifts: (a) 0, (b) 0.2, and (c) 0.7.

(a) (b) (c)

Figure 6.11: Signal x1 for different time scalings: (a) 1, (b) 2, and (c) 3.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-144.jpg&w=372&h=210
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-145.jpg&w=372&h=212

188 6. CONTINUOUS-TIMEFOURIERTRANSFORM

(a) (b) (c)

Figure 6.12: Magnitude spectrum of signal x1 for different time scalings: (a) 1, (b) 2, and (c) 3.

(a) (b) (c)

Figure 6.13: Phase of signal x1 for different time scalings: (a) 1, (b) 2, and (c) 3.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-146.jpg&w=371&h=210
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-147.jpg&w=371&h=210

6.3. EVALUATINGPROPERTIESOFCTFT 189

(a) (b)

Figure 6.14: (a) Plot of a1x1.t/ C a2x2.t/ and (b) plot of the inverse FT of a1X1.!/ C a2X2.!/.

L6.1.4 Linearity
In this section, two signals are combined to examine the linearity property of FT. Select
Linear Combination for the Time domain and Frequency domain combination method.
This selection combines the two time signals x1.t/ and x2.t/ linearly with the scaling factors
a1 and a2, producing a new signal a1x1.t/ C a2x2.t/. Figure 6.14a displays the FT of this
linear combination. The linear combination in the frequency domain produces a new signal
a1X1.!/ C a2X2.!/. Figure 6.14b also displays the inverse FT of this combination. Observe
that both combinations produce the same result in the time and frequency domains as shown in
Figures 6.14 and 6.15, respectively. For this example, a1 and a2 are set to 1 and 5, respectively.
The pulse width of x1.t/ and x2.t/ are set to 0.4 and 0.3, respectively.

L6.1.5 Time Convolution
In this part, two signals are convolved in the time domain to examine the time-convolution
property of FT. Select Convolution for Time domain and Multiplication for Frequency do-
main. This selection produces and displays a new signal, x1.t/ � x2.t/ by convolving the two
time signals x1.t/ and x2.t/. Multiplication in the frequency domain produces a new signal
X1.!/X2.!/. The inverse FT of this multiplied signal is displayed in Figure 6.18a. Note that

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-148.jpg&w=270&h=232

190 6. CONTINUOUS-TIMEFOURIERTRANSFORM

(a) (b)

Figure 6.15: (a) Magnitude plot of a1x1.t/ C a2x2.t/ in the frequency domain and (b) magni-
tude plot of a1X1.!/ C a2X2.!/.

(a) (b)

Figure 6.16: (a) Phase plot of a1x1.t/ C a2x2.t/ in the frequency domain and (b) phase plot of
a1X1.!/ C a2X2.!/.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-149.jpg&w=243&h=208
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-150.jpg&w=243&h=208

6.3. EVALUATINGPROPERTIESOFCTFT 191

(a) (b) (c)

Figure 6.17: (a) x1.t/ � x2.t/, (b), and (c) Fourier transform magnitude and phase of x1.t/ �

x2.t/, respectively.

(a) (b) (c)

Figure 6.18: (a) Inverse of X1.!/X2.!/, (b), and (c) magnitude and phase of X1.!/X2.!/,
respectively.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-151.jpg&w=372&h=213
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-152.jpg&w=372&h=211

192 6. CONTINUOUS-TIMEFOURIERTRANSFORM
both combinations produce the same outcome in the time and frequency domains, see Fig-
ures 6.17 and 6.18. This verifies the frequency-convolution property stated in Table 6.1.

L6.1.6 Frequency Convolution
In this section, two signals are convolved in the frequency domain to examine the frequency-
convolution property of FT. SelectConvolution for Frequencydomain andMultiplication for
Timedomain. This selection convolves the two-time signals X1.!/ and X2.!/ to produce a new
signal X1.!/ � X2.!/. The inverse FT of the convolved signal is displayed in Figure 6.20a.Mul-
tiplication in Time domain produces a new signal x1.t/x2.t/. The FT of this multiplied signal
is also displayed in Figure 6.19. Note that both combinations produce the same outcome in the
time and frequency domains; see Figures 6.19 and 6.20. This verifies the frequency-convolution
property stated in Table 6.1. In this example, the triangular and exponential functions are used
for the first and second inputs, respectively.

L6.2 AMPLITUDEMODULATION
In this section, the FT application of modulation and demodulation is examined. For transmis-
sion purposes, signals are normallymodulated with a high-frequency carrier. A typical amplitude
modulated signal can be written as

x.t/ D xm.t/ cos .2�fct / ; (6.6)
where xm.t/ is called the message waveform, which contains the data of interest, and fc is the
carrier wave frequency. Using the identity

cos .2�fct / D
1

2

�
e2�fc t

C e�2�fc t
�

D
1

2

�
e!c t

C e�!c t
�

(6.7)

and the frequency shift property of CTFT, the CTFT of x.t/ can easily be derived to be

X.!/ D
1

2
.Xm.! � !c/ C Xm.! C !c// : (6.8)

At the receiver, some noisy version of this transmitted signal is received. The signal infor-
mation resides in the envelope of the modulated signal, and thus an envelope detector can be
used to recover the message signal.

Figures 6.21 and 6.22 show the MATLAB function and the test bench code for the de-
modulation system.TheMATLAB function is named L6_2 and the test bench L6_2_testbench.
In this example, the combination of two sine waves are used to serve as a message signal. The
signal is modulated with a high-frequency carrier, and some random noise is added. The fre-
quency domain versions of the signals can also be observed using the function fft . As stated
in Equation (6.8), the CTFT of the modulated signal is merely a frequency-shifted version of
the original signal. In single sideband (SSB) modulation, only one side of the spectrum is trans-
mitted due to symmetry. That is, just one side of the spectrum is taken and converted into a

6.3. EVALUATINGPROPERTIESOFCTFT 193

(a) (b) (c)

Figure 6.19: (a) x1.t/ � x2.t/, (b), and (c) Fourier transform magnitude, and phase of x1.t/ �

x2.t/, respectively.

(a) (b) (c)

Figure 6.20: (a) Inverse of X1.!/ � X2.!/, (b), and (c) magnitude, and phase of X1.!/ � X2.!/,
respectively.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-153.jpg&w=372&h=212
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-154.jpg&w=372&h=212

194 6. CONTINUOUS-TIMEFOURIERTRANSFORM

Figure 6.21: L6.2 amplitude modulation function.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-155.jpg&w=395&h=333

6.3. EVALUATINGPROPERTIESOFCTFT 195

Figure 6.22: L6.2_testbench of amplitude modulation function.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-156.jpg&w=396&h=410

196 6. CONTINUOUS-TIMEFOURIERTRANSFORM

Figure 6.23: L6_2 initial screen on smartphone.

time signal using the function ifft . Run L6_2_testbench and then generate the C code and
incorporate it in the shell provided. Figure 6.23 shows the initial screen on a smartphone plat-
form. If using MATLAB R2016b or later, it is required to add a specific header file into the
jni folder, separately. This header file (tmwtypes.h) can be found in the MATLAB root with
this path MATLAB root\R2019b\extern\include . The frequency fc needs to be specified.
The desired output for plotting can be selected from the What to plot option, z1, z2, z3, and
z4, corresponding to Message signal, Modulated signal, Received signal (noise added), and De-
modulated signal, respectively, where y1, y2, y3, and y4 correspond to the spectrum magnitude
of these signals. Figure 6.24 shows the Message signal, Modulated signal, Received signal (noise
added), and Demodulated signal; Figure 6.25 illustrates the magnitude of these signals.

L6.3 NOISEREDUCTION
When a signal passes through a channel, it normally gets corrupted by channel noise. Various
electronic components used in a transmitter or receiver may also cause additional noise. Noise

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-157.jpg&w=157&h=280

6.3. EVALUATINGPROPERTIESOFCTFT 197

(a) (b) (d)(c)

Figure 6.24: (a) Message signal, (b) Modulated signal, (c) Received signal (noise added), and
(d) Demodulated signal.

(a) (b) (d)(c)

Figure 6.25: Frequency domain: (a) Message signal, (b) Modulated signal, (c) Received signal
(noise added), and (d) Demodulated signal.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-158.jpg&w=414&h=181
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-159.jpg&w=414&h=181

198 6. CONTINUOUS-TIMEFOURIERTRANSFORM
reduction is an essential module of any signal processing system. This section presents a simple
technique to reduce high-frequency noise.

Open a NewScript and write a MATLAB code for a noise reduction system. Consider
a sine wave signal at 2 Hz frequency. Add some high-frequency noise to this signal and then
remove the high-frequency components in the frequency domain. Finally, move the signal back
into the time domain using the inverse FT. Use two control parameters named Time frame
width and Frame number to extract a segment of the speech signal before computing Fourier
transform. Add together three sine and cosine waves with frequencies of 3.5, 3, and 2.8 kHz to
create a high-frequency noise. Then, add a scaled version of the noise signal to the signal with
the Noise Level parameter set as a control parameter. Compute the FT of the Noise added
signal using the function fft .

To remove the high-frequency noise components, use a simple lowpass filter by removing
the frequency components over a certain threshold (50%, for example). After removing the
high-frequency components, transform the signal back into the time domain using the function
ifft . To get a display of the absolute and centered frequency spectrum, use the functions abs
and fftshift .

Figures 6.26 and 6.27 show the MATLAB function for the noise reduction and
L6_3_testbench, respectively. Name the MATLAB function L6_3 and the test script
L6_3_testbench. First run L6_3_testbench and observe the results for different parameters.
Then, generate the C code using the MATLAB Coder and incorporate it into the shell provided
by following the steps mentioned in Chapter 3. If using MATLAB R2016b or later, it is re-
quired to add a specific header file into the jni folder, separately. This header file (tmwtypes.h)
can be found in the MATLAB root with this path MATLAB root\R2019b\extern\include .
Figure 6.28 shows the screen of the app on an Android smartphone with some sample setting
parameters. In the main screen, one can see there is a plot picker What to plot? z1, z2, and z3
which can be selected denoting the segment of the original signal, the signal with high frequency
noise, and the noise reduced signal, respectively. y1, y2, and y3 denote the magnitude responses
of z1, z2, and z3, respectively. In Figures 6.29 and 6.30, the plots are shown.

6.4 LABEXERCISES
6.4.1 CIRCUITANALYSIS
Find and plot the frequency response (both magnitude and phase spectrum) of each of the
circuits shown in Figure 6.31. Set the values of R, L, and C as control parameters.

Consider a message containing some hidden information. Furthermore, to make it inter-
esting, suppose the message contains a name. Assume that the message was coded using the
amplitude modulation scheme as follows [4]:

x.t/ D xm1.t/ cos .2�f1t / C xm2.t/ cos .2�f2t / C xm3.t/ cos .2�f3t / ; (6.9)

6.4. LABEXERCISES 199

Figure 6.26: L6_3 noise reduction function.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-160.jpg&w=395&h=336

200 6. CONTINUOUS-TIMEFOURIERTRANSFORM

Figure 6.27: L6_3_testbench of noise reduction function.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-161.jpg&w=395&h=337

6.4. LABEXERCISES 201

Figure 6.28: Noise reduction smartphone app.

(a) (b) (c)

Figure 6.29: (a) Plot of segment of the original sine wave (z1), (b) the noisy signal (z2), and (c)
the noise reduced signal (z3).

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-162.jpg&w=122&h=217
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-163.jpg&w=382&h=216

202 6. CONTINUOUS-TIMEFOURIERTRANSFORM

(a) (b) (c)

Figure 6.30: (a) Plot of the magnitude of the original sine wave (y1), (b) the noisy signal (y2),
and (c) the noise reduced signal (y3) in the frequency domain.

Table 6.2: Alphabet letters encoded with Morse

A . – H O – – – V ... –

B – ... I .. P . – – . W . – –

C – . – . J . – – – Q – – . – X – .. –

D – .. K – . – R . – . Y – . – –

E . L . – .. S ... Z – – ..

F .. – . M – – T –

G – –. N – . U ..–

where xm1.t/; xm2.t/, and xm3.t/ are the (message) signals containing the three letters of the
name. More specifically, let each of the signals xm1.t/; xm2.t/, and xm3.t/ correspond to a single
letter of the alphabet. Encode these letters using the International Morse Code as indicated in
Table 6.2 [4]:

As shown in Table 6.2, to encode the letter A, one needs only a dot followed by a dash.
That is, only two prototype signals are needed—one to represent the dash and one to represent

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-164.jpg&w=382&h=216

6.4. LABEXERCISES 203

R L

C
Vout

R

L

C
Vout

Vin

R L C
Vout

Vin

(a)

(b)

(c)

Figure 6.31: Linear RLC circuits.

the dot. Thus, for instance, to represent the letter A, set xm1.t/ D d.t/ C dash.t/ , where d(t)
represents the dot signal and dash(t) the dash signal. Similarly, to represent the letter O , set
xm1.t/D3dash.t/ .

Find the prototype signals d(t) and dash(t) in the supplied file morse.mat. After loading
the file morse.mat:

>>load morse

The signals d(t) and dash(t) can be located in the vectors dot and dash, respectively. The
hidden signal, which is encoded per Equation (6.9), contains the letters of the name in the vector
xt . Let the three modulation frequencies f1; f2, and f3 be 20, 40, and 80 Hz, respectively.

1. Using the amplitude modulation property of the CTFT, determine the three possible
letters and the hidden name. (Hint: Plot the CTFT of xt . Use the values of T and �

contained in the file.)

2. Explain the strategy used to decode the message. Is the coding technique ambiguous? That
is, is there a one-to-one mapping between the message waveforms (xm1.t/; xm2.t/; xm3.t/)

204 6. CONTINUOUS-TIMEFOURIERTRANSFORM
and the alphabet letters? Or can you find multiple letters that correspond to the same
message waveform?

6.4.2 DOPPLEREFFECT
The Doppler Effect phenomenon was covered in the previous chapter. In this exercise, let us
examine the Doppler Effect with a real sound wave rather than a periodic signal. The wave file
firetrucksiren.wav provided in the book software package contains a firetruck siren. Read the
file using the MATLAB function audioread and produce its upscale and downscale versions.
Show the waves in the time and frequency domains (find the CTFT). Figure 6.32 shows the
original sound, the sound as the vehicle approaches and the sound after the vehicle passes by in
both the time-domain and frequency domains.

6.4.3 DIFFRACTIONOFLIGHT
The diffraction of light can be described via a Fourier transform [5]. Consider an opaque screen
with a small slit being illuminated by a normally incident uniform light wave, as shown in Fig-
ure 6.33.

Considering that d >> �l1
2=� provides a good approximation for any l1 in the slit, the

electric field strength of the light striking the viewing screen can be expressed as [5]

E0 .l0/ D K
ej.2�d=�/

j�d
ej.�=�d/l0

2

1Z
�1

E1.l1/e�j.2�=�d/l0l1dl1; (6.10)

where
E1 D field strength at diffraction screen
E0 D field strength at viewing screen
K D constant of proportionality
� D wavelength of light

The above integral is in fact Fourier transformation in a different notation. One can write
the field strength at the viewing screen as [5]

E0.l0/ D K
ej.2�d=�/

j�d
ej.�=�d/l0

2

CTFT fE1.t/gf !l0=�d : (6.11)

The intensity I.l0/ of the light at the viewing screen is the square of the magnitude of the
field strength. That is,

I.l0/ D jE0.l0/j2 : (6.12)

Plot the intensity of the light at the viewing screen. Set the slit width to this range (0.5–
5 mm), the wavelength of light � to this range (300–800 nm), and the distance of the viewing

6.4. LABEXERCISES 205

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

0 0.5 1 1.5 2 2.5 3 3.5 4

-4000 -3000 -2000 -1000 0 4000300020001000

-4000 -3000 -2000 -1000 0 4000300020001000

-5000 -4000 -3000 -2000-1000 0 4000 5000300020001000

4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Original Sound FT of Original Sound

Sound as Vehicle Approaches FT Sound as Vehicle Approaches

Sound after Vehicle Passes FT Sound after Vehicle Passes× 10-3

Figure 6.32: Doppler Effect system, original sound, sound as vehicle approaches, and sound
after vehicle passes in both time-domain and frequency domain.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-165.jpg&w=172&h=135
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-166.jpg&w=172&h=135
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-167.jpg&w=172&h=136
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-168.jpg&w=172&h=136
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-169.jpg&w=172&h=135
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-170.jpg&w=172&h=135

206 6. CONTINUOUS-TIMEFOURIERTRANSFORM

Propagation
Direction

Diffraction
Screen

Viewing
Screen

Viewing
Screen

Viewing
Screen

Diffraction
Pattern

Diffraction
Pattern

Diffraction
Pattern

Slit

Waveforms

l1 l0

d

Figure 6.33: Diffraction of light.

screen d to this range (10–200 m) as control parameters. Assume the constant of proportionality
is 10�3, and the electric field strength at the diffraction screen is 1 V/m.

Now replace the slit with two slits, each 0.1 mm in width, separated by 1 mm (center-
to-center) and centered on the optical axis. Plot the intensity of light in the viewing screen by
setting the parameters as controls.

6.5 REAL-TIMELABS
LR6_2 – This real-time lab is a noise reduction application. The input signal is modulated with
a tone at fs/5 then noise is added to it. One should be able to choose the output to plot. The
choices are z2, the modulated input signal z3, the modulated input signal with noise y1, the fft
of the original signal y2, the fft of the modulated signal y3, the fft of the modulated signal with
noise y4, the noise removed version of y3 and y4, the noise removed version of y3 and z4, and
the inverse fft of the noise removed signal.

ANDROID STEPS
These steps modify the LR5_2 lab. Copy the LR5_2 directory to LR6_2 and rename the LR5_2
files to LR6_2. Update the project files before updating the codes.

1. Update the applicationId in app/build.gradle to have LR6_2 in the name instead of
LR5_2. Remove the old C code from app/src/main/jni and copy the new MATLAB gen-
erated code into the same directory.

2. If using MATLAB R2016b or later, it is required to add a specific header file into the jni
folder separately. This header file (tmwtypes.h) can be found in the MATLAB root with
the following path:

6.5. REAL-TIMELABS 207

MATLAB root\R2019b\extern\include

3. Update the MATLAB generated files in the file CMakeLists.txt. The section in the file
should look like the following block of code. The order of the files does not matter.

add_library(# Sets the name of the library.
matlabNative

Sets the library as a shared library.
SHARED

Provides a relative path to your source file(s).
src/main/jni/eml_rand_mt19937ar_stateful.c
src/main/jni/eml_rand_mt19937ar_stateful.h
src/main/jni/fft.c
src/main/jni/fft1.c
src/main/jni/fft1.h
src/main/jni/fft.h
src/main/jni/fftshift.c
src/main/jni/fftshift.h
src/main/jni/LR6_2.c
src/main/jni/LR6_2.h
src/main/jni/LR6_2_data.c
src/main/jni/LR6_2_data.h
src/main/jni/LR6_2_emxAPI.c
src/main/jni/LR6_2_emxAPI.h
src/main/jni/LR6_2_emxutil.c
src/main/jni/LR6_2_emxutil.h
src/main/jni/LR6_2_initialize.c
src/main/jni/LR6_2_initialize.h
src/main/jni/LR6_2_terminate.c
src/main/jni/LR6_2_terminate.h
src/main/jni/LR6_2_types.h
src/main/jni/MatlabNative.c
src/main/jni/rand.c
src/main/jni/rand.h
src/main/jni/rtGetInf.c

208 6. CONTINUOUS-TIMEFOURIERTRANSFORM

src/main/jni/rtGetInf.h
src/main/jni/rtGetNaN.c
src/main/jni/rtGetNaN.h
src/main/jni/rtwtypes.h
src/main/jni/rt_nonfinite.c
src/main/jni/rt_nonfinite.h
src/main/jni/tmwtypes.h

)

4. Moving onto app/src/main/AndroidManifest.xml, update the LR5_2 names to LR6_2.

5. The file app/src/main/res/xml/prefs.xml will need to be edited to remove the resistance,
capacitance, frequency, and output settings similar to the previous labs. This time a List-
Preference of the output choice is made:

<ListPreference
android:key="coice1"
android:title="What to plot?"
android:summary="Default: z2"
android:defaultValue="0"
android:entries="@array/choiceOptions"
android:entryValues="@array/choiceValues" />

Since the array references, @array/choiceOptions and @array/choiceValues , are
used, they need to get added to the file app/src/main/res/values/arrays.xml. Remove
systemOptions , systemValues , choiceOptions , and choiceValues .

<string-array name="choiceOptions">
<item>z2</item>
<item>z3</item>
<item>y1</item>
<item>y2</item>
<item>y3</item>
<item>y4</item>
<item>z4</item>

</string-array>
<string-array name="choiceValues">

6.5. REAL-TIMELABS 209

<item>0</item>
<item>1</item>
<item>2</item>
<item>3</item>
<item>4</item>
<item>5</item>
<item>6</item>

</string-array>

6. Moving on to the code changes, update the file
app/src/main/java/com/dsp/matlab/Filter.java for the function calls by adding resis-
tance, capacitance, frequency, and display choice,

currentFrame.setFiltered(Filters.compute(currentFrame.getFloats(),
Settings.Fs, Settings.choice, Settings.blockSize));

7. Now, in the file app/src/main/java/com/dsp/matlab/Filters.java, update the compute
method as follows:

public static native float[] compute(float[] in, int Fs,
int choice, int frameSize);

8. To make sure the coefficient input is applied to the settings, update the
updateSettings() method in app/src/main/java/com/dsp/matlab/RealTime.java
and add the following line within. The previous settings for resistance, capacitance,
coefficients, frequency, and system can be removed.

Settings.setChoice(Integer.parseInt(preferences.getString
("choice1", "0")));

9. Update app/src/main/java/com/dsp/matlab/Settings.java to store and retrieve the settings
added. Again the resistance, capacitance, coefficients, frequency, and system-related vari-
ables and methods can be removed.

210 6. CONTINUOUS-TIMEFOURIERTRANSFORM

public static float choice = 0;
public static void setChoice(int choice1){choice=choice1;}

10. Finally, update the app/src/main/jni/MatlabNative.c interface file. This file is the interface
from Java to native C. The entire file is listed below.

#include <jni.h>
#include <stdio.h>
#include "rt_nonfinite.h"
#include "LR6_2.h"
#include "LR6_2_terminate.h"
#include "LR6_2_emxAPI.h"
#include "LR6_2_intialize.h"

jfloatArray
Java_com_dsp_matlab_Filters_compute(JNIEnv *env, jobject this,
jfloatArray, input, jint Fs, jint choice, jint frameSize)
{

jfloatArray output = (*env)->NewFloatArray(env, frameSize);
float *_in = (*env)->GetFloatArrayElements(env, input, NULL);

//compute
emxArray_real32_T *result;
int X_size[2] = {1, frameSize};
emxInitArray_real32_T(&result,2);

LR6_2(_in, X_size,Fs, choice, result);

(*env)->SetFloatArrayRegion(env,output,0,frameSize,
result->data);

emxDestroyArray_real32_T(result);
(*env)->ReleaseFloatArrayElements(env, input, _in, 0);
return output;

}

Void Java_com_dsp_matlab_Filters_initialize(JNIENV *env,
jobject this){ LR6_2_initialize(); }

6.5. REAL-TIMELABS 211

Figure 6.34: Settings view (left), output of z2, modulated input (right).

Void Java_com_dsp_matlab_Filters_finish(JNIENV *env, jobject this)
{ LR6_2_terminate(); }

One can see that all the LR5_2 references are changed to LR6_2. The compute method
signature is updated to accept the correct arguments. The LR5_2 call is replaced with LR6_2
and the appropriate arguments.

If everything is done correctly you should be able see the outputs as shown in Figure 6.34.

iOS STEPS
Start a new single view project in Xcode with the same parameters used before. Copy the Au-
dioController.* and ViewController.* from LR5_2 to the new project directory. You can also
copy the file Base.lproj/Main.storyboard as well to quickly get the GUI up and running.

1. Edit the AudioController.h file in Xcode. Replace the LR4_5 references to LR6_2.
From the AudioDelegate protocol, remove getResistance , getFrequency ,
getNumCoeffs , and getPlotPickerIndex . The output data length will have differ-

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-172.jpg&w=413&h=265

212 6. CONTINUOUS-TIMEFOURIERTRANSFORM

ent lengths so it is needed to update the updateGraphData method to handle this as
indicated below.

@protocol audioUIDelegate
-(void) updateGraphData:(float*)data withDataPoints:

(int)numDataPoints withFilteredData:(float*)filtered_data
withFilteredPoints: (int)numPoints;

-(NSInteger) getFilePickerIndex;
-(NSInteger) getPlotPickerIndex;
-(void)didStopPlaying;
-(void)didStopRecording;
@end

Within the @interface code section, remove the unused variables, numCoeffs , resistance,
capacitance, and frequency.

2. Edit AudioController.m in Xcode. First, replace all of the LR5_2 references to LR6_2,
thus updating the include lines, initialize, and terminate functions. In the init method,
put back the items from the audio list. Remove references to variables _resistance ,
_capacitance , _numCoeffs , and _frequency throughout the file.

_audioList = @[@"NOT_USED",
SINE,
SQUARE1,
SQUARE2,
SQUARE3,
SAWTOOTH1,
SAWTOOTH2,
SAWTOOTH3,
CHIRP1,
CHIRP2];

In the toggleMicrophone method, override the current sample rate with the sampling
rate as follows:

BOOL isOn = [(UISwitch*)sender isOn];
AudioStreamBasicDescription currentASBD;
currentASBD = [self.microphone audioStreamBasicDescription];

6.5. REAL-TIMELABS 213

_sampleRate = currentASBD.mSampleRate;

Also, in the togglePlaybackOutput method, set the sampleRate to a specific value
as indicated below.

-(void)togglePlayBackOutput:(id)sender
{

NSINteger ind = [_delegate getFilePickerIndex];
_sampleRate=44100.0;
_plotIndex = [_delegateGetPlotPickerIndex];

...
NSURL* file = [self seletedAudioFIleURL:ind];

}

Then, further down in the file in the method with the arguments microphone,
bufferlist , bufferSize , and numberOfChannels , modify the calls for
the output data since the output length is not the same as the input. The
appendDataFromBufferList method will change to:

[self.filtRecorder appendDataFromBufferList:bufferList
withBufferSize:_frameSize];

__weak typeof (self) weakSelf = self;
dispatch_async(dispatch_get_main_queue(), ^{

[weakSelf.delegate updateGraphData:buffer withDataPoints:
bufferSize withFilteredData:_filt_data withFilteredPoints:
_frameSize];

The output data size is just the frame size chosen from the GUI. This is important to
remember when viewing the output data. It will be appended to an audio file as before,
but the data need to be reshaped to have a matrix size _frameSize x N, where N is the
number of frames that get processed.
Next, for the output from the audio file playback, the method with the arguments
audioPlayer , buffer , bufferSize , numberOfChannels , and audioFile needs
to be modified in a similar manner as indicated below.

214 6. CONTINUOUS-TIMEFOURIERTRANSFORM
...
[self.filtRecorder appendDataFromBufferList:filteredBufferList
withBufferSize:_frameSize];

free(filteredBufferList);
__weak typeof (self) weakSelf = self;
dispatch_async(dispatch_get_main_queue(), ^{

[weakSelf.delegate updateGraphData:buffer[0] withDataPoints:
bufferSize withFilteredDAta:_filt_data withFilteredPoints:
_frameSize];

});

Last, the filtererData method needs to be modified to process blocks of data. The full
method is indicated below.

-(void) filterData:(float*)data withDataLength:(UInt32)length
{
int bytes_to_process=length;
int i=0;
int frameSize=0;
while(bytes_to_process > 0)
{
frameSize=_frameSize;

emxArray_real32_T *x = emxCreateWrapper_real32_T(data
+(i*_frameSize), 1 , frameSize);

emxArray_real32_T *con = emxCreateWrapper_real32_T(_filt_data
+(i*_frameSize), 1 , frameSize+64);

LR6_2(x->data, x->size, _sampleRate, _plotIndex, con);

BOOL sameptr = _filt_data+(i*_frameSize) == con->data;
if(!sameptr)
{

memcpy(_filt_data+(i*_frameSize), con->data, frameSize*sizeof
(float)); free(con->data);

}
bytes_to_process -= _frameSize;

6.5. REAL-TIMELABS 215

i++;
}

}

3. Moving onto the ViewController.h file, update the updateGraphData argument sig-
nature and remove the previous get methods (Resistance , Frequency , NumCoeffs ,
Capacitance). Within the @interface block, update the method as noted below.

-(void) updateGraph:(float*)data withDataPoints:(int)numDataPoints
withFiltered:(float*)filtered_data withFilteredPoints:
(int)numPoints;

4. In ViewController.m, again remove the references to the numCoeff , resistance ,
capacitance , and frequency inputs and variables. Then, update the arrays that show
the picker data as noted below.

_filePickerData = @[@"microphone",
@"Sine 800,2000,3200 10s",
@"Square .5Duty 100 10s",
@"Square .5Duty 400 10s",
@"Square .5Duty 1200 10s",
@"Saw .5Duty 300 10s",
@"Saw .5Duty 500 10s",
@"Saw .5Duty 1000 10s",
@"Chirp 4000 10s",
@"Chirp 24000 10s"
];

_plotPickerData = @[@"z2 mod",
@"z3 mod+noise",
@"y1 fft",
@"y2 fft(mod)",
@"y3 fft(mod+noise)",
@"y4 fft(1/3)",
@"z4 ifft(fft(1/3))"];

216 6. CONTINUOUS-TIMEFOURIERTRANSFORM

Update the updateGraphData arguments and handle the new arguments as follows:

-(void) updateGraph:(float*)data withDataPoints:(int)numDataPoints
withFiltered:(float*)filtered_data withFilteredPoints:
(int)numPoints

{
_data = data;
memcpy(_filtered_data, filtered_data, sizeof(float)*numPoints);
_dataLen = numDataPoints;
_filteredDataLen = numPoints;

...

5. In lab LR5_2, the sample rate and the frame size options were removed. Add those GUI
elements back in the storyboard. The GUI elements need to be referenced to the code
object in order for it to function properly. The second plot picker is reused and reassigned.
Figure 6.35 shows a sample screenshot of the app.

6. If using MATLAB R2016b or later, it is required to add a specific header file into the Na-
tive Code folder separately. This header file (tmwtypes.h) can be found in the MATLAB
root with the following path:

MATLAB root\R2019b\extern\include

LR6_3 – This real-time lab involves the noise reduction application of Fourier transform. The
input signal has noise in the form of three tones added it. The user will be able control the level
of the noise. Like the last lab, the user will be able to select the desired output. The available
options for the output will be x2, the original signal with noise added y1, the fft of the signal
y2, the fft of original signal plus noise y3, the signal with the noise reduced, and the ifft
of y3 or noise reduced time domain signal z3.

ANDROID STEPS
These steps denote the modification of the LR6_2 lab codes. Copy the LR6_2 directory to
LR6_3 and rename the files LR6_2 to LR6_3. Update the project files before updating the
codes.

1. Update the applicationId in app/build.gradle to have LR6_3 in the name instead of
LR6_2. Remove the old C code from app/src/main/jni and copy the new MATLAB gen-
erated code into the same directory.

6.5. REAL-TIMELABS 217

Figure 6.35: Init screen and microphone input for LR6_2.

2. If using MATLAB R2016b or later, it is required to add a specific header file into the jni
folder separately. This header file (tmwtypes.h) can be found in the MATLAB root with
the following path:

MATLAB root\R2019b\extern\include

3. Update the MATLAB generated files in the file CMakeLists.txt. The code section in the
file appears as the following block of code. The order of the files does not matter.

add_library(# Sets the name of the library.
matlabNative

Sets the library as a shared library.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-173.jpg&w=364&h=287

218 6. CONTINUOUS-TIMEFOURIERTRANSFORM

SHARED

Provides a relative path to your source file(s).
src/main/jni/fft.c
src/main/jni/fft.h
src/main/jni/fft1.h
src/main/jni/fft1.c
src/main/jni/ifft.c
src/main/jni/ifft.h
src/main/jni/fftshift.c
src/main/jni/fftshift.h
src/main/jni/LR6_3.c
src/main/jni/LR6_3.h
src/main/jni/LR6_3_data.c
src/main/jni/LR6_3_data.h
src/main/jni/LR6_3_emxutil.c
src/main/jni/LR6_3_emxutil.h
src/main/jni/LR6_3_initialize.c
src/main/jni/LR6_3_initialize.h
src/main/jni/LR6_3_terminate.c
src/main/jni/LR6_3_terminate.h
src/main/jni/LR6_3_types.h
src/main/jni/MatlabNative.c
src/main/jni/rtGetInf.c
src/main/jni/rtGetInf.h
src/main/jni/rtGetNaN.c
src/main/jni/rtGetNaN.h
src/main/jni/rtwtypes.h
src/main/jni/rt_nonfinite.c
src/main/jni/rt_nonfinite.h
src/main/jni/tmwtypes.h

)

4. Moving onto app/src/main/AndroidManifest.xml, update the LR6_2 names to LR6_3.

5. The file app/src/main/res/xml/prefs.xml will need to be edited to add the noise level option.
Add the EditTextPreference as follows:

6.5. REAL-TIMELABS 219

<EditTextPreference
android:key="a1"
android:defaultValue="0.1"
andoiid:gravity="left"
android:inputTYpe="numberDecimal"
android:summary="Default: 0.1"
android:title="Noise level (less than 1)" />

Notice that @array/choiceOptions and @array/choiceValues are still referenced, so their
values need to get updated in the file app/src/main/res/values/arrays.xml in order to work
with the new options as follows:

<string-array name="choiceOptions">
<item>Noisy Signal</item>
<item>FFT of original</item>
<item>FFT of noisy</item>
<item>FFT of noise reduced</item>
<item>Noise reduced signal</item>

</string-array>
<string-array name="choiceValues">

<item>0</item>
<item>1</item>
<item>2</item>
<item>3</item>
<item>4</item>

</string-array>

6. Moving onto the code changes, update the file app/src/main/java/com/dsp/matlab/Filter.java
to update the function calls by adding the Settings.a argument as noted below.

currentFrame.setFiltered(Filters.compute(currentFrame.getFloats(),
Settings.Fs, Settings.a, Settings.choice, Settings.blockSize));

7. Now in app/src/main/java/com/dsp/matlab/Filters.java, update the compute method as
follows:

220 6. CONTINUOUS-TIMEFOURIERTRANSFORM

public static native float[] compute(float[] in, int Fs, float a,
int choice, int frameSize);

8. The noise option will need to be added to the updateSettings() method in
app/src/main/java/com/dsp/matlab/RealTime.java as follows:

Settings.setChoice(Float.parseFloat(preferences.getString
("a1", "0.1")));

9. Update app/src/main/java/com/dsp/matlab/Settings.java to store and retrieve the settings
added. Nothing will be removed, only add the noise variable and set method.

public static float a = (float) 0.1;
public static void setChoice(float a1){ a = a1; }

10. Finally, update the app/src/main/jni/MatlabNative.c interface file. This file is the interface
from Java to native C. The entire file is listed below.

#include <jni.h>
#include <stdio.h>
#include "rt_nonfinite.h"
#include "LR6_3.h"
#include "LR6_3_terminate.h"
#include "LR6_3_emxAPI.h"
#include "LR6_3_intialize.h"

jfloatArray
Java_com_dsp_matlab_Filters_compute(JNIEnv *env, jobject this,
jfloatArray, input, jint Fs, jfloat a, jint choice, jint frameSize)
{

jfloatArray output = (*env)->NewFloatArray(env, frameSize);
float *_output =

(*env)->GetFloatArrayElements(env, output, NULL);
float *_in = (*env)->GetFloatArrayElements(env, input, NULL);

6.5. REAL-TIMELABS 221

//compute
emxArray_real32_T *result;
int X_size[2] = {1, frameSize};
int result_size[2];

LR6_3(_in, X_size, Fs, a, choice, _output, result_size);

(*env)->ReleaseFloatArrayElements(env, input, _in, 0);
(*env)->ReleaseFloatArrayElements(env, output, _output, 0);
return output;

}

Void Java_com_dsp_matlab_Filters_initialize(JNIENV *env,
jobject this){ LR6_3_initialize(); }

Void Java_com_dsp_matlab_Filters_finish(JNIENV *env, jobject this)
{ LR6_3_terminate(); }

You can see that all the LR6_2 references are changed to LR6_3. The compute method
signature is updated to accept the correct arguments. The LR6_2 call is replaced with LR6_3
and the appropriate arguments.

If everything is done correctly, you should be able to see the outputs as shown in Fig-
ure 6.36.

iOS STEPS
Start a new single view project in Xcode with the same parameters used before. Copy the Au-
dioController.* and ViewController.* from LR6_3 to the new project directory. You can also
copy the file Base.lproj/Main.storyboard as well to quickly get the GUI up and running.

1. Edit the file AudioController.h in Xcode. Replace the LR6_2 references to LR6_3. From
the AudioDelegate protocol, only add a getNoise method.

@protocol audioUIDelegate
-(void) updateGraphData:(float*)data withDataPoints:

(int)numDataPoints withFilteredData:(float*)filtered_data
withFilteredPoints:(int)numPoints;

-(NSInteger) getFilePickerIndex;
-(NSInteger) getPlotPickerIndex;

222 6. CONTINUOUS-TIMEFOURIERTRANSFORM

Figure 6.36: Settings view (left), output of z2, and modulated input (right).

-(float) getNoise;
-(void)didStopPlaying;
-(void)didStopRecording;
@end

In the @interface block, add a noise property to store this value as follows:

@property float sampleRate;
@property int frameSize;
@property NSInteger plotIndex;
@property float noise;

2. Edit AudioController.m in Xcode. First, replace all of the LR6_2 references to LR6_3,
thus updating the include lines, initialize, and terminate functions. In the init method,
initialize the noise value to �0:1 as follows:

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-174.jpg&w=413&h=263

6.5. REAL-TIMELABS 223
...
_frameSize = 128;
_noise = 0.1;
...

In the method toggleMicrophone , add a call to the delegate to retrieve
the noise value and remove the previous update of the sample rate from
AudioStreamBasicDescription as noted below.

...
_plotIndex = [_delegate getPlotPickerIndex];
_noise = [_delegate getNoise];
BOOL isOn = [(UISwitch*)sender isOn];
if(!isOn)
...

Also, in togglePlaybackOutput , retrieve the noise value. Remove the hard code of the
sample rate as noted below.

...
NSInteger ind = [_delegate getFilePickerIndex];
_plotIndex = [_delegate getPlotPickerIndex];
_noise = [_delegate getNoise];
if (self.isRecording)
...

The last step in this file is to update the LR6_3 MATLAB call as follows:

LR6_3(x->data, x->size, _sampleRate, _noise, _plotIndex, con->data,
con->size);

3. Moving onto the ViewController.h file, only need to add the getNoise method within
the @interface block as follows:

-(float) getNoise;

224 6. CONTINUOUS-TIMEFOURIERTRANSFORM
4. In the ViewController.m, within the @interface block, add a UI textfield as follows:

@interface ViewController()
...
@property (nonatomic, weak) IBOutlet UITextField *noiseInput;
@end

Within the init method, update the options that show in the picker view. Also, add a
“Done” widget to clear the keyboard when done entering text as shown below.

_plotPickerData = @[@"X2 +noise",
@"y1 fft",
@"y2 fft(+noise)",
@"y3 fft(trunc)",
@"z3 ifft(fft(trunc))"];

UIBarButtonItem *barButton = [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemDone
target:_noiseInput action:@selector(resignFirstResponder)];

UIToolbar *toolbar = [[UIToolbar alloc]
initWithFrame:CGRectMake(0, 0, 320, 44)];

toolbar.items = [NSArray arrayWithObject:barButton];
_noiseInput.inputAccessoryView = toolbar;

The last step to do here is to add the getNoise method.

-(float) getNoise
{

NSString *noiseStr = _noiseInput.text;
return [[NSDecimalNumber decimalNumberWithString:noiseStr]

floatValue];
}

5. The GUI interface is the same as the previous lab except that a text input field is to be
added for the user noise input. With the lack of space, you can place all the labels and

6.5. REAL-TIMELABS 225

Figure 6.37: Initial screen and fft output of chirp signal.

other options in an optionsView within a ScrollView. In the ViewController.h, add
objects for these elements as follows:

@property (weak,nonatomic) IBOutlet UIView* optionsView;
@property (weak,nonatomic) IBOutlet UIScrollView* scrollView;

Then, in the viewDidLoad method, the following simple statement will allow scrolling
to see all of the available options:

_scrollView.contentSize = _optionsView.frame.size;

When all of the above are done, compile and run the app. Figure 6.37 shows sample
outputs.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-175.jpg&w=354&h=287

226 6. CONTINUOUS-TIMEFOURIERTRANSFORM

6.6 REFERENCES
[1] J. Buck, M. Daniel, and A. Singer. Computer Explorations in Signal and Systems Using

MATLAB, 2nd ed., Prentice Hall, 1996. DOI: 10.1109/ICASSP.2015.7178293. 177

[2] B. Lathi. Linear Systems and Signals, 2nd ed., Oxford University Press, 2004.

[3] D. Fannin, R. Ziemer, and W. Tranter. Signals and Systems: Continuous and Discrete, 4th
ed., Prentice Hall, 1998. 177

[4] J. Buck, M. Daniel, and A. Singer. Computer Explorations in Signal and Systems Using
MATLAB, 2nd ed., Prentice Hall, 1996. 198, 202

[5] O. Ersoy. Diffraction, Fourier Optics and Imaging, Wiley, 2006. 204

http://dx.doi.org/10.1109/ICASSP.2015.7178293

227

C H A P T E R 7

Digital Signals andTheir
Transforms

7.1 DIGITAL SIGNALS
In the previous chapters, Fourier transforms for processing analog or continuous-time signals
were covered. Now let us consider Fourier transforms for digital signals. Digital signals are sam-
pled (discrete-time) and quantized version of analog signals. The conversion of analog to digital
signals is normally performed by using an analog-to-digital (A/D) converter, and the conver-
sion of digital to analog signals is normally done by using a digital-to-analog (D/A) converter.
In the first part of this chapter, it is stated how to choose an appropriate sampling frequency to
achieve a proper analog-to-digital conversion. In the second part of the chapter, the A/D and
D/A processes are implemented.

7.1.1 SAMPLINGANDALIASING
Sampling is the process of generating discrete-time samples from an analog signal. First, it is
helpful to mention the relationship between analog and digital frequencies. Consider an analog
sinusoidal signal x.t/ D A cos.!t C �/. Sampling this signal at t D nTs , with the sampling time
interval of Ts , generates the discrete-time signal

xŒn� D A cos .!nTs C '/ D A cos .�n C '/ ; n D 0; 1; 2; :::; (7.1)

where � D !Ts D
2�f
fs

denotes digital frequency (with units being radians and ! with units
being radians/second).

The difference between analog and digital frequencies is more evident by observing that
the same discrete-time signal is obtained from different continuous-time signals if the product
!Ts remains the same. An example is shown in Figure 7.1. Likewise, different discrete-time sig-
nals are obtained from the same analog or continuous-time signal when the sampling frequency
is changed. An example is shown in Figure 7.2. In other words, both the frequency of an ana-
log signal f and the sampling frequency fs define the digital frequency � of the corresponding
digital signal.

It helps to understand the constraints associated with the above sampling process by ex-
amining signals in the frequency domain. The Fourier transform pairs for analog and digital

228 7. DIGITAL SIGNALSANDTHEIRTRANSFORMS

1

0.5

0

-0.5

-1

1

0.5

0

-0.5

-1

1

0.5

0

-0.5

-1

1

0.5

0

-0.5

-1

1 0 5 10 2015

0 5 10 2015

1.5 2

1 1.5 2

x(t) = cos(2̟t) Ts = 0.05 s

x(t) = cos(4̟t) Ts = 0.025 s

Figure 7.1: Sampling of two different analog signals leading to the same digital signal.

1

0.5

0

-0.5

-1

1

0.5

0

-0.5

-1

1

0.5

0

-0.5

-1

1

0.5

0

-0.5

-1

1 0 5 10 2015

0 5 10 2015

1.5 2

1 1.5 2

x(t) = cos(2̟t) Ts = 0.05 s

x(t) = cos(2̟t) Ts = 0.025 s

Figure 7.2: Sampling of the same analog signal leading to two different digital signals.

7.1. DIGITAL SIGNALS 229

x(t)

X(f) Y(f)

t1 t4 tt3t2 t1 t4

Ts

tt3t2

y(t)
Analog Signal Discrete Signal

Spectrum Spectrum

-W W

(a) (b)

-W W fs = 1/Tsf f

Figure 7.3: (a) Fourier transform of a continuous-time signal and (b) its discrete-time version.

signals are given by

Fourier transform pair for
analog signals

8̂̂<̂
:̂

X.!/ D

1R
�1

x.t/e�j!t dt

x.t/ D
1

2�

1R
�1

X.!/ej!t d!

(7.2)

Fourier transform pair for
discrete signals

8̂̂<̂
:̂

X.ej� / D

1P
nD�1

xŒn�e�jn� ; � D !Ts

xŒn� D
1

2�

�R
��

X.ej� /ejn�d�:
(7.3)

As illustrated in Figure 7.3, when an analog signal with a maximum bandwidth of W (or
a maximum frequency of fmax) is sampled at a rate of Ts D

1
fs

, its corresponding frequency
response is repeated every 2� radians, or fs . In other words, the Fourier transform in the digital
domain becomes a periodic version of the Fourier transform Œ0; fs=2�.

Therefore, to avoid any aliasing or distortion of the discrete signal frequency content and
to be able to recover or reconstruct the frequency content of the original analog signal, one must
have fs � 2fmax. This is known as the Nyquist rate. That is, the sampling frequency should be at

230 7. DIGITAL SIGNALSANDTHEIRTRANSFORMS

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1
0 0.5 1 1.5 2 2.5 3 4

× 10-3

3.5

Time

A
m

p
li

tu
d

e

1 kHz 200 Hz

Figure 7.4: Ambiguity caused by aliasing.

least twice the highest frequency in the analog signal. Normally, before any digital manipulation,
a front-end anti-aliasing lowpass analog filter is used to limit the highest frequency of the analog
signal.

Let us further examine the aliasing problem by considering an under-sampled sinusoid as
depicted in Figure 7.4. In this figure, a 1 kHz sinusoid is sampled at fs D 0:8 kHz, which is less
than the Nyquist rate of 2 kHz. The dashed-line signal is a 200 Hz sinusoid passing through
the same sample points. Thus, at the sampling frequency of 0.8 kHz, the output of an A/D
converter is the same if one uses the 1 kHz or 200 Hz sinusoid as the input signal. On the other
hand, over-sampling a signal provides a richer description than that of the signal sampled at the
Nyquist rate.

7.1.2 QUANTIZATION
An A/D converter has a finite number of bits (or resolution). As a result, continuous amplitude
values get represented or approximated by discrete amplitude levels. The process of converting
continuous into discrete amplitude levels is called quantization. This approximation leads to
errors called quantization noise. The input/output characteristic of a 3-bit A/D converter is
shown in Figure 7.5 illustrating how analog voltage values are approximated by discrete voltage
levels.

Quantization interval depends on the number of quantization or resolution levels, as illus-
trated in Figure 7.6. Clearly, the amount of quantization noise generated by an A/D converter

7.1. DIGITAL SIGNALS 231

Digital Output

Analog Input

Quantization Error

½ LSB

-½ LSB

Analog
Input

111

010

101

100

011

010

001

000
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

(a) (b)

Figure 7.5: Characteristic of a 3-bit A/D converter: (a) input/output transfer function and (b)
additive quantization noise.

x(t)

t

∆

Figure 7.6: Quantization levels.

depends on the size of the quantization interval. More quantization bits translate into a narrower
quantization interval and, hence, into a lower amount of quantization noise.

In Figure 7.7, the spacing � between two consecutive quantization levels corresponds
to one least significant bit (LSB). Usually, it is assumed that quantization noise is signal-
independent and is uniformly distributed over �0:5 LSB and 0:5 LSB. Figure 7.7 also shows the
quantization noise of an analog signal quantized by a 3-bit A/D converter and the corresponding
bit stream.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-187.jpg&w=162&h=102

232 7. DIGITAL SIGNALSANDTHEIRTRANSFORMS

A/D Input/Output

Quantization Error

Quantization Error

7

6

4

2

0

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

40

30

20

10

0

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

0

0-0.2-0.4-0.6 0.4 0.60.2

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Time (ms)

A
m

p
li

tu
d

e
O

cc
ur

en
ce

q
(t

)
(L

S
B

)

Time (ms)(a)

(b)

Figure 7.7: Quantization of an analog signal by a 3-bit A/D converter: (a) output signal and
quantization error; (b) histogram of quantization error; and (c) bit stream.

7.1. DIGITAL SIGNALS 233

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Sample Number(c)

b3

b2

b1

Vr+

Vm

Vr-

Figure 7.7: (Continued.) Quantization of an analog signal by a 3-bit (a) output signal and quan-
tization error; (b) histogram of quantization error; and (c) bit stream.

7.1.3 A/DANDD/ACONVERSIONS
Because it is not possible to process an actual analog signal by a computer program, an analog
sinusoidal signal is often simulated by sampling it at a very high sampling frequency. Consider
the following analog sine wave:

x.t/ D cos.2�1000t/: (7.4)

Let us sample this sine wave at 40 kHz to generate 0.125 s of x.t/. Note that the sampling
interval Ts D 2:5 � 10�5 s is very short, and thus x.t/ appears as an analog signal. Sampling
involves taking samples from an analog signal every Ts seconds. The above example generates
a discrete signal xŒn� by taking one sample from the analog signal every Ts seconds. To get a
digital signal, quantization needs to be applied to the discrete-time signal as well.

234 7. DIGITAL SIGNALSANDTHEIRTRANSFORMS

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1
-4 -2 0 2 4 6 8 10 12

Time (ms)

W
ei

gh
te

d
 S

in
cs

Sinc Function Samples

Sinc Interpolation

Interpolated Curve

Figure 7.8: Reconstruction of an analog sine wave based on its samples, f D 125 Hz and fs D 1

kHz.

According to the Nyquist theorem, an analog signal z can be reconstructed from its sam-
ples by using the following equation:

z.t/ D

1X
kD�1

z ŒkTs� sinc
�

t � kTs

Ts

�
: (7.5)

This reconstruction is based on the summations of shifted sinc .sinx=x/ functions. Figure 7.8
illustrates the reconstruction of a sine wave from its samples achieved in this manner.

It is difficult to generate sinc functions by electronic circuitry. That is why, in practice, one
uses an approximation of a sinc function. Figure 7.9 shows an approximation of a sinc function
by a pulse, which is easy to realize in electronic circuitry. In fact, the well-known sample and
hold circuit performs this approximation.

7.1.4 DTFTANDDFT
Fourier transformation pairs for analog and discrete signals are expressed in Equations (7.2)
and (7.3). Note that the discrete-time Fourier transform (DTFT) shows a list of these transfor-
mations and their behavior in the time and frequency domains. Table 7.1 shows a list of these
transformations and their behavior in the time and frequency domains.

7.2. ANALOG-TO-DIGITALCONVERSION,DTFTANDDFT 235
1

0.8

0.6

0.4

0.2

0

-0.2

-0.4
-5 -3-4 -2 -1 0 1 2 3 4 5

-Ts Ts

-Ts/2 Ts/2

Sinc Function

Pulse Approximation

Figure 7.9: Approximation of a sinc function by a pulse.

Table 7.1: Different transformations for continuous and discrete

Time Domain Spectrum Characteristics Transformation Type

Continuous (periodic) Discrete FS

Continuous (aperiodic) Continuous CTFT

Discrete (periodic) Discrete (periodic) DFT

Discrete (aperiodic) Continuous (periodic) DTFT

7.2 ANALOG-TO-DIGITALCONVERSION,DTFTAND
DFT

L7.1 SAMPLING, ALIASING,QUANTIZATION, ANDRECONSTRUCTION
The lab in this section addresses sampling, quantization, aliasing and signal reconstruction con-
cepts. Figure 7.10 shows the MATLAB function named L7_1 for this lab, where the following
four control parameters are defined in the code:

Amplitude (A)—controls the amplitude of an input sine wave;

Phase (b)—controls the phase of the input signal;

Frequency (f)—controls the frequency of the input signal;

Sampling frequency (fs)—controls the sampling rate of the corresponding discrete
signal; and

236 7. DIGITAL SIGNALSANDTHEIRTRANSFORMS

Figure 7.10: L7_1 function includes sampling, aliasing, quantization and reconstruction steps.

Number of quantization levels (q)—controls the number of quantization levels of the
corresponding digital signal.

To simulate an analog signal via a .m file, consider a very small value of time increment dt

(e.g., dt D 0:0001). To create a discrete signal, sample the analog signal at a rate controlled by
the sampling frequency. To simulate the analog signal, use the statement xa=sin(2*pi*f*t) ,
where t is a vector with increment dt D 0:0001. To simulate the discrete signal, use the statement
xd=sin(2*pi*f*n) , where n is a vector with increment dn D 1=fs . The ratio dn=dt indicates
the number of samples skipped during the sampling process. Again, the ratio of analog frequency
to sampling frequency is known as digital or normalized frequency. To convert the discrete signal
into a digital one, quantization is performed by using the MATLAB function round . Let us
set the number of quantization levels as a parameter.

To reconstruct the analog signal from the digital one, consider a linear interpolation tech-
nique via the MATLAB function interp . The samples skipped during the sampling process
can be recovered after the interpolation. Finally, let us display Original signal and Recon-
structed signal,Discretewaveform,Digitalwaveform,Analog frequency,Digital frequency,
andNumber of samples skipped in ADC as the output of the function. Use the code appearing
in Figure 7.11 to verify your code and examine proper signal sampling and reconstruction by

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-192.jpg&w=395&h=253

7.2. ANALOG-TO-DIGITALCONVERSION,DTFTANDDFT 237

Figure 7.11: L7_1_testbench to verify sampling, aliasing, quantization, and reconstruction steps.

varying the parameters. First, run L7_1_testbench and examine the output signals for different
parameters. Then, use the MATLAB Coder to generate the C code and incorporate it into the
shell provided. (1) If using MATLAB R2016b or later, it is required to add a specific header file
into the jni folder separately. This header file (tmwtypes.h) can be found in the MATLAB
root with this path MATLAB root\R2019b\extern\include . The initial screen of the app on
an Android smartphone is shown in Figure 7.12. Amplitude, Phase (degrees), Frequency, Sam-
pling Frequency and number of the quantization level are the input parameters. The output plot
can be selected from theWhat toplot picker. By pressing the PLOT button,DigitalFrequency
and Number of skipped samples are displayed as well as the desired plot gets shown in separate
graphs.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-193.jpg&w=395&h=311

238 7. DIGITAL SIGNALSANDTHEIRTRANSFORMS

(a) (b)

Figure 7.12: (a) Initial screen for L7_1 and (b) a desired setting for the input parameters.

L7.1.1 Analog andDigital Frequency
Digital frequency � is related to analog frequency f via the sampling frequency, that is, � D
2�f
fs

. Therefore, one can choose the sampling frequency fs to increase the digital or normalized
frequency of an analog signal by lowering the number of samples.

L7.1.2 Aliasing
Set the sampling frequency to fs D 100 Hz and change the analog frequency of the signal.
Observe the output for f D 10 Hz and f D 210 Hz. The analog signals appear entirely different
in these two cases but the discrete signals are similar. For the second case, the sampling frequency
is less than twice that of the analog signal frequency. This violates the Nyquist sampling rate
leading to aliasing, which means one cannot tell from which analog signal the digital signal is
created. Note the value of digital frequency is 0.1 radians for the first case and 2.1 radians for
the second case. To prevent any aliasing, keep the digital frequency less than 0.5 radians.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-194.jpg&w=307&h=259

7.2. ANALOG-TO-DIGITALCONVERSION,DTFTANDDFT 239

(a) (b)

(c) (d)

Figure 7.13: (a) Analog signals with f D 5 Hz, (b) f D 105 Hz, (c) discrete signal with fs D 50

Hz generated from (a), and (d) discrete signal with fs D 50 Hz generated from (b).

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-195.jpg&w=269&h=443

240 7. DIGITAL SIGNALSANDTHEIRTRANSFORMS
L7.1.3 Quantization
Next, change Number of quantization levels for some fixed values of Frequency and Sam-
plingFrequency. As the number of quantization levels is increased,Digital waveform becomes
smoother and a smaller amount of quantization error or noise is generated.

L7.1.4 Signal Reconstruction
Next, set the frequency f D 10 Hz and vary the sampling frequency. Observe the reconstructed
waveform. Figure 7.15 shows the reconstructed signals for three different values of skipped sam-
ples. If the sampling frequency is increased, fewer samples are skipped during the analog-to-
digital conversion, which makes the reconstruction process more accurate.

L7.2 DTFTANDDFT
In this section, let us compute and compare the DTFT and DFT of digital signals with the
CTFT and FS of analog signals. Figure 7.16 illustrates the MATLAB function of this com-
parison of transforms with the verification code provided in Figure 7.17. Name the MATLAB
function L7_2 and the verification code L7_2_testbench. As discussed previously, to simulate
an analog signal, consider a very small time interval .dt D 0:001/. The corresponding discrete
signal is considered to be the same signal with a larger time interval .dt1 D 0:01/.

Generate a periodic square wave with the time period T D 0:1. Have a switch case with
mode switch_expression to make the signal periodic or aperiodic. If the signal is periodic
(case 0), compute the FS of the analog signal and the DFT of the digital signal using the fft
function over one period of the signal. For aperiodic signals, only one period of the signal is
considered and the remaining portion is padded with zeros. For aperiodic signals, the transfor-
mations are CTFT (for analog signals) and DTFT (for digital signals), which are computed
using the fft function. In fact, this function provides a computationally efficient implementa-
tion of the DFT transformation for periodic discrete-time signals. However, because simulated
analog signals are actually discrete with a very small time interval, this function is also used to
compute the Fourier series for continuous-time signals. Because DFT requires periodicity, one
needs to treat aperiodic signals as periodic with a period T D 1 to apply this function. That
is why the fft function is also used for aperiodic signals to compute CTFT and DTFT (as
done in the earlier labs). However, in practice, it should be noted that the period of the zero
padded signal is not infinite but is assumed long enough to obtain a close approximation. Apply
the same approach to the computation of CTFT and DTFT. Because DTFT is periodic in the
frequency domain, for digital signals, repeat the frequency representation using the statement
yd=repmat(yd,1,9) noting that the fft function computes the transformation for one period
only.

Run L7_2_testbench and then generate the C code using the MATLAB Coder. Incorpo-
rate the generated C code in the shell provided. If usingMATLABR2016b or later, it is required
to add a specific header file into the jni folder separately. This header file (tmwtypes.h) can

7.2. ANALOG-TO-DIGITALCONVERSION,DTFTANDDFT 241

(a) (b) (c)

Figure 7.14: Signals corresponding to different quantization levels: (a) 8, (b) 16, and (c) 32.

(a) (b) (c)

Figure 7.15: Signal reconstruction with different number of samples skipped in ADC: (a) 20,
(b) 10, and (c) 5.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-196.jpg&w=372&h=212
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-197.jpg&w=372&h=212

242 7. DIGITAL SIGNALSANDTHEIRTRANSFORMS

Figure 7.16: L7_2 function performing DTFT and DFT transformation.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-198.jpg&w=414&h=350

7.2. ANALOG-TO-DIGITALCONVERSION,DTFTANDDFT 243

Figure 7.17: L7_2_testbench for verifying DTFT and DFT transformation.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-199.jpg&w=395&h=363

244 7. DIGITAL SIGNALSANDTHEIRTRANSFORMS

Figure 7.18: Initial screen of L7_2 DTFT and DFT transformation.

be found in the MATLAB root with this path MATLAB root\R2019b\extern\include . The
initial screen of the app is shown in Figure 7.18. One can select the input signal type as peri-
odic or aperiodic and also the signal to be plotted. Figures 7.19 and 7.20 show the plots of the
periodic and aperiodic signals.

L7.3 TELEPHONE SIGNAL
Now let us examine an application of DFT. In a touch-tone dialing system, the pressing of each
button generates a unique set of two-tone signals, called dual-tone multi-frequency (DTMF)
signals. A telephone central office processes these signals to identify the number a user presses.
The tone frequency assignments for touch-tone dialing are shown in Figure 7.21.

The sound heard when a key is pressed is a signal composed of two sine waves. That is,

x.t/ D sin .2�f1t / C sin .2�f2t / : (7.6)

For example, when a caller presses 1, the corresponding signal is

x1.t/ D sin.2�697t/ C sin.2�1209t/: (7.7)

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-200.jpg&w=146&h=259

7.2. ANALOG-TO-DIGITALCONVERSION,DTFTANDDFT 245

(a) (b)

(c) (d)

Figure 7.19: Plots of DTFT and DFT transformation for periodic signal: (a) analog signal, (b)
FS transform of analog signal, (c) discrete signal, and (d) DFT of discrete signal.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-201.jpg&w=247&h=439

246 7. DIGITAL SIGNALSANDTHEIRTRANSFORMS

(a) (b)

(c) (d)

Figure 7.20: Plots of DTFT and DFT transformation for aperiodic signal: (a) analog signal, (b)
CTFT transform of analog signal, (c) discrete signal, and (d) DTFT of discrete signal.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-202.jpg&w=244&h=440

7.2. ANALOG-TO-DIGITALCONVERSION,DTFTANDDFT 247

1 2 3

4 5 6

7 8 9

* 0 #

f1

f1

697 Hz

770 Hz

852 Hz

941 Hz

1209 Hz 1336 Hz 1477 Hz

Figure 7.21: Frequency assignments for touch-tone dialing.

Table 7.2: DTMF event

Tone Type Frequency Timing

Dial tone 350 and 440 Hz Continuous

Ringing tone 480 and 620 Hz Repeating cycles of 2 s on, 4 s off

Busy tone 480 and 620 Hz 0.5 s on, 0.5 s off

Other than touch-tone signals, modern telephone systems use DTMF. Table 7.2 lists the
frequency and timing for standard DTMF event signals.

In this application, let us examine the touch-tone dialing system of a digital telephone.
Ten input variables .k0; k1; : : : ; k9/ are assigned to the telephone keys .0; 1; : : : ; 9/. Open a new
script, create a MATLAB function using the name L7_3 which has 12 inputs: k0; k1; : : : ; k10

and tone. k10 is defined to act as a counter to count the number of times the keys are pressed; see
Figure 7.22. At the beginning, when no key is pressed, the value of k10 is zero and the system
returns the dial tone (350 and 440 Hz continuous tone). When the value of k10 is equal to
10, meaning that the keys were pressed for a total of 10 times, the system assumes that a valid
phone number was dialed and returns the busy tone or ringing tone. Tone input parameters is

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-203.jpg&w=234&h=237

248 7. DIGITAL SIGNALSANDTHEIRTRANSFORMS

Figure 7.22: L7_3 function performing touch-tone.

switch_expression to control the ringing tone. Keep the order of the inputs, as shown in
Figure 7.22. The function has two outputs: the key pad touch tone (x) and the ringing tone/busy
tone (y).

Open a new script and write a verification script for verifying the touch-tone telephone
system. Name the script L7_3_testbench; see Figure 7.23. Now generate the C code using the
MATLAB Coder. Incorporate the generated C code in the shell provided. If using MAT-
LAB R2016b or later, it is required to add a specific header file into the jni folder sepa-

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-204.jpg&w=395&h=388

7.2. ANALOG-TO-DIGITALCONVERSION,DTFTANDDFT 249

Figure 7.23: L7_3_testbench script.

rately. This header file (tmwtypes.h) can be found in the MATLAB root with this path
MATLAB root\R2019b\extern\include . Figure 7.24 shows the initial screen of the app on a
smartphone.

One can select ringing tone or the busy tone to be played when the keys are pressed for
a total of 10 times (a valid phone number). As soon as any number key is pressed, the corre-
sponding key pad tone is heard and displayed. When keys are pressed 10 times (a valid phone
number), the system plays the ringing tone or busy tone depending on the setting and displays
the tone in the lower waveform graph.

Figure 7.25 shows the app screen for busy tone and ringing tone after pressing 10 keys for
each tone type selection.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-205.jpg&w=359&h=268

250 7. DIGITAL SIGNALSANDTHEIRTRANSFORMS

Figure 7.24: Initial screen of the touch-tone app.

Figure 7.25: L7_3 app for a touch-tone telephone system for Busy tone and Ringing tone.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-206.jpg&w=133&h=237
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01020ED2V01Y202006SPR018&iName=master.img-207.jpg&w=282&h=237

7.3. LABEXERCISES 251
6

4

2

0

6

4

2

0

6

4

2

0

6

4

2

0

4

2

0

4

2

0

0 0.5 1 0 0.5 1

0 0.5 1 0 0.5 1

0 0.5 1 0 0.5 1

a b

Figure 7.26: Processing at one half-step size: left column from top, the original, digitized, and
smoothed signal without dithering; right column from top, the noise added, digitized, and
smoothed signal with dithering.

7.3 LABEXERCISES
7.3.1 DITHERING
Dithering is a method of decreasing the distortion of a low-frequency signal due to signal digi-
tization [1]. Dithering works best when the sample rate is high in comparison with the rate at
which the signal changes.

To see how this works, consider a slowly varying signal and its digitization, shown in
Figure 7.26a. If noise is added to the original signal amplitude roughly at one half the step size,
the signal will appear as shown in Figure 7.26b. If the digitized signal is passed through a resistor-
capacitor circuit to smooth it out, an approximation to the original signal can be recovered. There
is no theoretical limit to the accuracy possible with this method as long as the sampling rate is
high enough.

Design a system to analyze the dithering technique. First, show the digitized and
smoothed signal without dithering. Then, add random noise to the input signal (noise level

252 7. DIGITAL SIGNALSANDTHEIRTRANSFORMS
should not exceed 50% of the step size of the digitized signal) and show the digitized and
smoothed version. Measure the maximum and average error between the original signal and
recovered signal.

7.3.2 IMAGEPROCESSING
DFT is widely used in image processing for edge detection. A digital image is a 2-D signal that
can get stored and processed as a 2-D array. In the frequency domain, with the center denoting
(0, 0) frequency, the center portion of this 2-D array contains the low-frequency components of
the 2-D signal or image. The edges in the image can be extracted by removing the low-frequency
components.

Read and display the supplied image file image1.jpg. Then, complete the following steps:
Compute and display the 2-D DFT of the image using the MATLAB functions fft2 and
fftshift . Remove the low-frequency components of the image. A user-controlled thresh-
old can be specified to remove a varying amount of the low-frequency components. Compute
and display the inverse 2-D DFT of the image using the MATLAB functions ifft2 and
fftshift . The processed image should reflect the edges in the original image.

7.3.3 DTMFDECODER
Design a decoder app for the DTMF system described in Section 7.3. The app should be capable
of reading the touchtone signal as its input and display the corresponding decoded key number
as its output.

7.4 REFERENCES
[1] S. Mitra. Digital Signal Processing: A Computer Based Approach, 2nd ed., McGraw-Hill,

2000. 251

253

Authors’ Biographies

NASSERKEHTARNAVAZ
NasserKehtarnavaz is an Erik JonssonDistinguished Professor in the Department of Electrical
and Computer Engineering at the University of Texas at Dallas. His research areas include
signal and image processing, real-time processing on embedded processors, deep learning, and
machine learning. He has authored or co-authored more than 400 publications and 9 other
books pertaining to signal and image processing, and regularly teaches the signals and systems
laboratory course, for which this book is written. Dr. Kehtarnavaz is a Fellow of IEEE, a Fellow
of SPIE, and a licensed Professional Engineer. www.utdallas.edu/~kehtar

FATEMEHSAKI
Fatemeh Saki received her Ph.D. in Electrical Engineering from the University of Texas at
Dallas in 2017. She is currently a Senior R&D Engineer at Qualcomm. Her research interests
include signal and image processing, pattern recognition, and machine learning. Dr. Saki has
authored or co-authored 20 publications in these areas.

ADRIANDURAN
AdrianDuran received hisM.S. in Electrical Engineering from theUniversity of Texas atDallas
in 2018. He is currently a Signal Processing Analyst at Innovative Signal Analysis, Inc. His
research interests are signal and image processing, pattern recognition, and machine learning.

ARIANAZARANG
ArianAzarang is a Ph.D. candidate in theDepartment of Electrical andComputer Engineering
at the University of Texas at Dallas. His research interests include signal and image processing,
deep learning, remote sensing, and chaos theory.He has authored or co-authored 12 publications
in these areas.

www.utdallas.edu/~kehtar

255

Index

Android App
Activity, 33
Layout, 33
Lifecycle, 34
TextView, 34

Android Implementation
Adding JNI Support, 35
C implementation see Java native

interface, 1
Gradle configuration, 35

Android Studio, 25
Setup Wizard, 25

Android Tools
AVD, 27
Emulator, 27
LogCat, 42
Running an app, 39
SDK Manager, 30
Software tool installation, 23

Continuous-Time Fourier Transform
Amplitude modulation, 192
Diffraction of light, 204
Frequency convolution, 192
Linearity, 189
Morse coding, 202
Noise reduction, 196
Numerical approximations, 177
Time convolution, 189
Time scaling, 184
Time shift, 184

Digital Signals and Their Transforms
A/D, 233
Aliasing, 227
Analog frequency, 236
D/A, 233
Decoder, 252
DFT, 234
Digital frequency, 227
Dithering, 251
DTMF, 247
Fourier transform, 229, 234
Image processing, 252
Nyquist rate, 229
Quantization, 230
Sampling, 227
Telephone signal, 244

Fourier Series
Decomposition, 137
Doppler effect, 151
Numerical computation, 136
Reconstruction, 137
RL circuit, 144
Synthesis, 152
Trigonometric, 139

From MATLAB Coder to Smartphone
Autodefine input types, 57
C Code generation, 56
MATLAB function design, 53
Numeric conversion, 57
Smartphone, 53

256 INDEX
Source code integration, 61
Test bench, 56

iOS App
AudioController, 128
Create git repository, 45
Debugging, 50
iPhone, 44
Objective-C, 42
pickerView, 132
UIControlEventTouchUpInside, 48
ViewController, 47
viewDidLoad, 47
Xcode, 45

Java Native Interface, 23
Fully qualified name, 39
Native code declaration, 39
Native method, 39

Linear time-invariant systems
Associative, 75
Commutative, 75
Distibutive, 75
Echo cancellation, 102
Impulse noise reduction, 104
Linear circuit, 91
Noise reduction, 103

LogCat
__android_log_print(), 42
C Header, 42
Gradle configuration, 42

m-file, 1
MATLAB

break, 11
Command window, 6
Complex numbers, 8
Examples, 16
for loop, 11
if, 11
Logical operators, 13
m-file, 1
Programming, 13
Reading wave and image files, 15
Relational operators, 13
Sound generation, 14
switch, 11
Vector operations, 7
while loop, 11

Smartphone Implementation
Android, 30
Android Studio, 30
Android Virtual Device, 30

	Preface
	Introduction to MATLAB
	Starting MATLAB
	Arithmetic Operations
	Vector Operations
	Complex Numbers
	Array Indexing
	Allocating Memory
	Special Characters and Functions
	Control Flow
	Programming in MATLAB
	Sound Generation
	Loading and Saving Data
	Reading Wave and Image Files
	Signal Display

	MATLAB Programming Examples
	Signal Generation
	Generating a Periodic Signal

	Lab Exercises

	Software Development Tools
	Android Tools Installation Steps
	Java JDK
	Android Studio Development Environment and Native Development Kit
	Android Studio Setup Wizard
	Android Emulator Configuration
	Getting Familiar with Android Software Tools

	iOS Tools Installation Steps
	iPhone App Development with Xcode
	Setting-Up App Environment
	Creating Layout
	Implementing C Codes
	Executing C Codes via Objective-C
	iOS App Debugging

	From MATLAB Coder to Smartphone
	MATLAB Function Design
	Generating Signals via MATLAB on Smartphones
	Test Bench
	C Code Generation
	Source Code Integration

	Running MATLAB Coder-Generated C Codes on Smartphones
	Running on Android Smartphones
	Running on iOS Smartphones

	References

	Linear Time-Invariant Systems and Convolution
	Convolution and Its Numerical Approximation
	Convolution Properties
	Convolution Experiments
	Lab Exercises
	Echo Cancellation
	Noise Reduction Using Mean Filtering
	Impulse Noise Reduction Using Median Filtering

	Running MATLAB Coder-Generated C Codes on Smartphones
	Running on Android Smartphones
	Running on iOS Smartphones

	Real-Time Running on Smartphones
	MATLAB Function Design
	Test Bench
	Modifying Real-Time Shell for Android
	Modifying Real-Time Shell for iOS

	Real-Time Labs
	References

	Fourier Series
	Fourier Series Numerical Computation
	Fourier Series and its Applications
	Lab Exercises
	RL Circuit Analysis
	Doppler Effect
	Synthesis of Electronic Music

	Real-Time Labs
	References

	Continuous-Time Fourier Transform
	CTFT and its Properties
	Numerical Approximations of CTFT
	Evaluating Properties of CTFT
	Lab Exercises
	Circuit Analysis
	Doppler Effect
	Diffraction of Light

	Real-Time Labs
	References

	Digital Signals and Their Transforms
	Digital Signals
	Sampling and Aliasing
	Quantization
	A/D and D/A Conversions
	DTFT and DFT

	Analog-to-Digital Conversion, DTFT and DFT
	Lab Exercises
	Dithering
	Image Processing
	DTMF Decoder

	References

	Authors' Biographies
	Index

