

Arduino I
Getting Started

Synthesis Lectures onDigital
Circuits and Systems

Editor
Mitchell A.Thornton, SouthernMethodist University

The Synthesis Lectures on Digital Circuits and Systems series is comprised of 50- to 100-page books
targeted for audience members with a wide-ranging background. The Lectures include topics that
are of interest to students, professionals, and researchers in the area of design and analysis of digital
circuits and systems. Each Lecture is self-contained and focuses on the background information
required to understand the subject matter and practical case studies that illustrate applications. The
format of a Lecture is structured such that each will be devoted to a specific topic in digital circuits
and systems rather than a larger overview of several topics such as that found in a comprehensive
handbook. The Lectures cover both well-established areas as well as newly developed or emerging
material in digital circuits and systems design and analysis.

Arduino I: Getting Started
Steven F. Barrett
2020

Index Generation Functions
Tsutomu Sasao
2019

Microchip AVR® Microcontroller Primer: Programming and Interfacing, Third Edition
Steven F. Barrett and Daniel J. Pack
2019

Microcontroller Programming and Interfacing with Texas Instruments MSP430FR2433
and MSP430FR5994 – Part II, Second Edition
Steven F. Barrett and Daniel J. Pack
2019

Microcontroller Programming and Interfacing with Texas Instruments MSP430FR2433
and MSP430FR5994 – Part I, Second Edition
Steven F. Barrett and Daniel J. Pack
2019

iii
Synthesis of Quantum Circuits vs. Synthesis of Classical Reversible Circuits
Alexis De Vos, Stijn De Baerdemacker, and Yvan Van Rentergen
2018

Boolean Differential Calculus
Bernd Steinbach and Christian Posthoff
2017

Embedded Systems Design with Texas Instruments MSP432 32-bit Processor
Dung Dang, Daniel J. Pack, and Steven F. Barrett
2016

Fundamentals of Electronics: Book 4 Oscillators and Advanced Electronics Topics
Thomas F. Schubert and Ernest M. Kim
2016

Fundamentals of Electronics: Book 3 Active Filters and Amplifier Frequency
Thomas F. Schubert and Ernest M. Kim
2016

Bad to the Bone: Crafting Electronic Systems with BeagleBone and BeagleBone Black,
Second Edition
Steven F. Barrett and Jason Kridner
2015

Fundamentals of Electronics: Book 2 Amplifiers: Analysis and Design
Thomas F. Schubert and Ernest M. Kim
2015

Fundamentals of Electronics: Book 1 Electronic Devices and Circuit Applications
Thomas F. Schubert and Ernest M. Kim
2015

Applications of Zero-Suppressed Decision Diagrams
Tsutomu Sasao and Jon T. Butler
2014

Modeling Digital Switching Circuits with Linear Algebra
Mitchell A. Thornton
2014

Arduino Microcontroller Processing for Everyone! Third Edition
Steven F. Barrett
2013

iv
Boolean Differential Equations
Bernd Steinbach and Christian Posthoff
2013

Bad to the Bone: Crafting Electronic Systems with BeagleBone and BeagleBone Black
Steven F. Barrett and Jason Kridner
2013

Introduction to Noise-Resilient Computing
S.N. Yanushkevich, S. Kasai, G. Tangim, A.H. Tran, T. Mohamed, and V.P. Shmerko
2013

Atmel AVR Microcontroller Primer: Programming and Interfacing, Second Edition
Steven F. Barrett and Daniel J. Pack
2012

Representation of Multiple-Valued Logic Functions
Radomir S. Stankovic, Jaakko T. Astola, and Claudio Moraga
2012

Arduino Microcontroller: Processing for Everyone! Second Edition
Steven F. Barrett
2012

Advanced Circuit Simulation Using Multisim Workbench
David Báez-López, Félix E. Guerrero-Castro, and Ofelia Delfina Cervantes-Villagómez
2012

Circuit Analysis with Multisim
David Báez-López and Félix E. Guerrero-Castro
2011

Microcontroller Programming and Interfacing Texas Instruments MSP430, Part I
Steven F. Barrett and Daniel J. Pack
2011

Microcontroller Programming and Interfacing Texas Instruments MSP430, Part II
Steven F. Barrett and Daniel J. Pack
2011

Pragmatic Electrical Engineering: Systems and Instruments
William Eccles
2011

Pragmatic Electrical Engineering: Fundamentals
William Eccles
2011

v
Introduction to Embedded Systems: Using ANSI C and the Arduino Development
Environment
David J. Russell
2010

Arduino Microcontroller: Processing for Everyone! Part II
Steven F. Barrett
2010

Arduino Microcontroller Processing for Everyone! Part I
Steven F. Barrett
2010

Digital System Verification: A Combined Formal Methods and Simulation Framework
Lun Li and Mitchell A. Thornton
2010

Progress in Applications of Boolean Functions
Tsutomu Sasao and Jon T. Butler
2009

Embedded Systems Design with the Atmel AVR Microcontroller: Part II
Steven F. Barrett
2009

Embedded Systems Design with the Atmel AVR Microcontroller: Part I
Steven F. Barrett
2009

Embedded Systems Interfacing for Engineers using the Freescale HCS08 Microcontroller
II: Digital and Analog Hardware Interfacing
Douglas H. Summerville
2009

Designing Asynchronous Circuits using NULL Convention Logic (NCL)
Scott C. Smith and JiaDi
2009

Embedded Systems Interfacing for Engineers using the Freescale HCS08 Microcontroller
I: Assembly Language Programming
Douglas H.Summerville
2009

Developing Embedded Software using DaVinci & OMAP Technology
B.I. (Raj) Pawate
2009

vi
Mismatch and Noise in Modern IC Processes
Andrew Marshall
2009

Asynchronous Sequential Machine Design and Analysis: A Comprehensive Development
of the Design and Analysis of Clock-Independent State Machines and Systems
Richard F. Tinder
2009

An Introduction to Logic Circuit Testing
Parag K. Lala
2008

Pragmatic Power
William J. Eccles
2008

Multiple Valued Logic: Concepts and Representations
D. Michael Miller and Mitchell A. Thornton
2007

Finite State Machine Datapath Design, Optimization, and Implementation
Justin Davis and Robert Reese
2007

Atmel AVR Microcontroller Primer: Programming and Interfacing
Steven F. Barrett and Daniel J. Pack
2007

Pragmatic Logic
William J. Eccles
2007

PSpice for Filters and Transmission Lines
Paul Tobin
2007

PSpice for Digital Signal Processing
Paul Tobin
2007

PSpice for Analog Communications Engineering
Paul Tobin
2007

PSpice for Digital Communications Engineering
Paul Tobin
2007

vii
PSpice for Circuit Theory and Electronic Devices
Paul Tobin
2007

Pragmatic Circuits: DC and Time Domain
William J. Eccles
2006

Pragmatic Circuits: Frequency Domain
William J. Eccles
2006

Pragmatic Circuits: Signals and Filters
William J. Eccles
2006

High-Speed Digital System Design
Justin Davis
2006

Introduction to Logic Synthesis using Verilog HDL
Robert B.Reese and Mitchell A.Thornton
2006

Microcontrollers Fundamentals for Engineers and Scientists
Steven F. Barrett and Daniel J. Pack
2006

Copyright © 2020 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by anymeans—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

Arduino I: Getting Started

Steven F. Barrett

www.morganclaypool.com

ISBN: 9781681738185 paperback
ISBN: 9781681738192 ebook
ISBN: 9781681738208 hardcover

DOI 10.2200/S01001ED1V01Y202003DCS058

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON DIGITAL CIRCUITS AND SYSTEMS

Lecture #58
Series Editor: Mitchell A. Thornton, Southern Methodist University
Series ISSN
Print 1932-3166 Electronic 1932-3174

www.morganclaypool.com

Arduino I
Getting Started

Steven F. Barrett
University of Wyoming, Laramie, WY

SYNTHESIS LECTURES ON DIGITAL CIRCUITS AND SYSTEMS #58

C
M
&

cLaypoolMorgan publishers&

ABSTRACT
This book is about the Arduino microcontroller and the Arduino concept. The visionary Ar-
duino team of Massimo Banzi, David Cuartielles, Tom Igoe, Gianluca Martino, and David
Mellis launched a new innovation in microcontroller hardware in 2005, the concept of open-
source hardware. Their approach was to openly share details of microcontroller-based hardware
design platforms to stimulate the sharing of ideas and promote innovation.This concept has been
popular in the software world for many years. In June 2019, Joel Claypool and I met to plan the
fourth edition of Arduino Microcontroller Processing for Everyone! Our goal has been to provide
an accessible book on the rapidly changing world of Arduino for a wide variety of audiences
including students of the fine arts, middle and senior high school students, engineering design
students, and practicing scientists and engineers. To make the book more accessible to better
serve our readers, we decided to change our approach and provide a series of smaller volumes.
Each volume is written to a specific audience. This book, Arduino I: Getting Started is written for
those looking for a quick tutorial on the Arduino environment, platforms, interface techniques,
and applications. Arduino II will explore advanced techniques, applications, and systems design.
Arduino III will explore Arduino applications in the Internet of Things (IoT). Arduino I: Get-
ting Started covers three different Arduino products: the Arduino UNO R3 equipped with the
Microchip ATmega328, the Arduino Mega 2560 equipped with the Microchip ATmega2560,
and the wearable Arduino LilyPad.

KEYWORDS
Arduino microcontroller, Arduino UNO R3, LilyPad, Arduino Mega 2560, mi-
crocontroller interfacing

xi

To Mom and Dad.

– Steven

xiii

Contents
Preface . xvii

Acknowledgments . xix

1 Getting Started . 1
1.1 Overview . 1
1.2 The Big Picture . 1
1.3 Arduino Quickstart . 3

1.3.1 Quick Start Guide . 4
1.3.2 Arduino Development Environment Overview 5
1.3.3 Sketchbook Concept . 5
1.3.4 Arduino Software, Libraries, and Language References 6
1.3.5 Writing an Arduino Sketch . 6

1.4 Application: Robot IR Sensor . 14
1.5 Application: Blink LED Fiber . 16
1.6 Application: LilyPad with LED Fibers . 18
1.7 Application: Friend or Foe Signal . 20
1.8 Application: LED Strip . 21
1.9 Application: External Interrupts . 27
1.10 Summary . 31
1.11 References . 31
1.12 Chapter Problems . 31

2 Arduino Platforms . 33
2.1 Overview . 33
2.2 Arduino UNO R3 Processing Board . 33
2.3 Advanced: Arduino UNO R3 Host Processor – The ATmega328 34

2.3.1 Arduino UNO R3/ATmega328 Hardware Features 35
2.3.2 ATmega328 Memory . 35
2.3.3 ATmega328 Port System . 38
2.3.4 ATmega328 Internal Systems . 38

xiv
2.4 Arduino UNO R3 Open Source Schematic . 41
2.5 Arduino Mega 2560 R3 Processing Board . 43
2.6 Advanced: Arduino Mega 2560 Host Processor – The ATmega2560 43

2.6.1 Arduino Mega 2560 /ATmega2560 Hardware Features 44
2.6.2 ATmega2560 Memory . 45
2.6.3 ATmega2560 Port System . 47
2.6.4 ATmega2560 Internal Systems . 49

2.7 Arduino Mega 2560 Open Source Schematic . 51
2.8 LilyPad Arduino . 52

2.8.1 Advanced: LilyPad Processor . 52
2.9 Other Arduino-Based Platforms . 54
2.10 Extending the Hardware Features of the Arduino Platforms 54
2.11 Application: Arduino Hardware Studio . 56
2.12 Application: Autonomous Maze Navigating Robot . 56

2.12.1 Requirements . 57
2.12.2 Circuit Diagram . 57
2.12.3 Mini Round Robot Control Algorithm . 61

2.13 Summary . 72
2.14 References . 72
2.15 Chapter Problems . 73

3 Arduino Power and Interfacing . 75
3.1 Overview . 75
3.2 Arduino Power Requirements . 75
3.3 Project Requirements . 76

3.3.1 AC Operation . 76
3.3.2 DC Operation . 77
3.3.3 Powering the Arduino from Batteries . 78
3.3.4 Solar Power . 78

3.4 Advanced: Operating Parameters . 79
3.4.1 Advanced: HC CMOS Parameters . 80

3.5 Input Devices . 83
3.5.1 Switches . 83
3.5.2 Keypads . 85
3.5.3 Remote Control . 91
3.5.4 Sensors . 91

xv
3.5.5 Joystick . 94
3.5.6 Level Sensor . 94

3.6 Output Devices . 98
3.6.1 Light-Emitting Diodes (LEDs) . 98
3.6.2 Seven-Segment LED Displays – Small . 99
3.6.3 Seven-Segment LED Displays – Large . 99
3.6.4 Dot Matrix Display . 105
3.6.5 Serial Liquid Crystal Display (LCD) . 106
3.6.6 Text-to-Speech Module . 108

3.7 External Memory-SD Card . 111
3.7.1 Musical Tone Generator . 112

3.8 High-Power DC Devices . 114
3.8.1 DC Load Control . 114
3.8.2 DC Solenoid Control . 115
3.8.3 DC Motor Speed and Direction Control . 115
3.8.4 DC Motor Operating Parameters . 117
3.8.5 H-Bridge Direction Control . 118
3.8.6 Servo Motor Interface . 123
3.8.7 Stepper Motor Control . 125

3.9 AC Devices . 132
3.10 Interfacing to Miscellaneous Devices . 136

3.10.1 Sonalerts, Beepers, Buzzers . 136
3.10.2 Vibrating Motor . 136

3.11 Application: Special Effects LED Cube . 138
3.11.1 Construction Hints . 138
3.11.2 LED Cube Arduino Sketch Code . 141

3.12 Summary . 151
3.13 References . 152
3.14 Chapter Problems . 153

4 Arduino System Examples . 155
4.1 Overview . 155
4.2 Weather Station . 155

4.2.1 Structure Chart . 155
4.2.2 Circuit Diagram . 156
4.2.3 Bottom-Up Implementation . 158
4.2.4 UML Activity Diagram . 171

xvi
4.2.5 Microcontroller Code . 171
4.2.6 Final Assembly . 171

4.3 Submersible Robot . 171
4.3.1 Approach . 173
4.3.2 Requirements . 174
4.3.3 ROV Structure . 174
4.3.4 Structure Chart . 175
4.3.5 Circuit Diagram . 179
4.3.6 UML Activity Diagram . 180
4.3.7 Arduino UNO R3 Sketch . 180
4.3.8 Control Housing Layout . 194
4.3.9 Final Assembly Testing . 194
4.3.10 Final Assembly . 194

4.4 Summary . 197
4.5 References . 197
4.6 Chapter Problems . 197

Author’s Biography . 199

Index . 201

xvii

Preface
This book is about the Arduino microcontroller and the Arduino concept. The visionary Ar-
duino team of Massimo Banzi, David Cuartielles, Tom Igoe, Gianluca Martino, and David
Mellis launched a new innovation in microcontroller hardware in 2005: the concept of open-
source hardware. Their approach was to openly share details of microcontroller-based hardware
design platforms to stimulate the sharing of ideas and promote innovation.This concept has been
popular in the software world for many years. In June 2019, Joel Claypool and I met to plan the
fourth edition of Arduino Microcontroller Processing for Everyone! Our goal has been to provide
an accessible book on the rapidly changing world of Arduino for a wide variety of audiences
including students of the fine arts, middle and senior high school students, engineering design
students, and practicing scientists and engineers. To make the book more accessible to better
serve our readers, we decided to change our approach and provide a series of smaller volumes.
Each volume is written to a specific audience. This book, Arduino I: Getting Started is written for
those looking for a quick tutorial on the Arduino environment, platforms, interface techniques,
and applications. Arduino II will explore advanced techniques, applications, and systems design.
Arduino III will explore Arduino applications in the Internet of Things (IoT). Arduino I: Get-
ting Started covers three different Arduino products: the Arduino UNO R3 equipped with the
Microchip ATmega328, the Arduino Mega 2560 equipped with the Microchip ATmega2560,
and the wearable Arduino LilyPad.

APPROACHOFTHEBOOK
Chapters 1 and 2 are intended for novice microcontroller users. Chapter 1 provides an intro-
duction to programming and introduces the Arduino Development Environment and how to
program sketches. Chapter 2 provides an introduction to the Arduino concept, a description of
the Arduino UNO R3, the Arduino Mega 2560, and the LilyPad development boards. Chap-
ter 3 introduces the extremely important concept of the operating envelope for a microcontroller.
The voltage and current electrical parameters for the Arduino microcontrollers are presented and
applied to properly interface input and output devices to the Arduino UNO R3, the Arduino
Mega 2560, and the LilyPad. Chapter 4 provides several detailed small system examples includ-
ing a remote weather station and an underwater ROV.

Steven F. Barrett
March 2020

xix

Acknowledgments
A number of people have made this book possible. I would like to thank Massimo Banzi of
the Arduino design team for his support and encouragement in writing the first edition of this
book. In 2005, Joel Claypool of Morgan & Claypool Publishers, invited Daniel Pack and me to
write a book on microcontrollers for his new series titled “Synthesis Lectures on Digital Circuits
and Systems.” The result was the book Microcontrollers Fundamentals for Engineers and Scientists.
Since then we have been regular contributors to the series. Our goal has been to provide the
fundamental concepts common to all microcontrollers and then apply the concepts to the specific
microcontroller under discussion. We believe that once you have mastered these fundamental
concepts, they are easily transportable to different processors. As with many other projects, he
has provided his publishing expertise to convert our final draft into a finished product. We thank
him for his support on this project and many others. He has provided many novice writers the
opportunity to become published authors. His vision and expertise in the publishing world made
this book possible. We also thank Dr. C.L. Tondo of T&T TechWorks, Inc. and his staff for
working their magic to convert our final draft into a beautiful book.

I would also like to thank Sparkfun, Adafruit, DFRobot, Mikroe, and Microchip for their
permission to use images of their products and copyrighted material throughout the text. Several
Microchip acknowledgments are in order.

• This book contains copyrighted material of Microchip Technology Incorporated repli-
cated with permission. All rights reserved. No further replications may be made without
Microchip Technology Inc’s prior written consent.

• Arduino I: Getting Started is an independent publication and is not affiliated with, nor has
it been authorized, sponsored, or otherwise approved by Microchip.

I would like to dedicate this book to my close friend Dr. Daniel Pack, Ph.D., P.E.
In 2000, Daniel suggested that we might write a book together on microcontrollers. I had
always wanted to write a book but I thought that’s what other people did. With Daniel’s
encouragement we wrote that first book (and several more since then). Daniel is a good fa-
ther, good son, good husband, brilliant engineer, a work ethic second to none, and a good friend.

xx ACKNOWLEDGMENTS
To you, good friend, I dedicate this book. I know that we will do many more together. It is hard
to believe we have been writing together for 20 years. Finally, I would like to thank my wife and
best friend of many years, Cindy.

Steven F. Barrett
March 2020

1

C H A P T E R 1

Getting Started
Objectives: After reading this chapter, the reader should be able to do the following:

• successfully download and execute a simple program using the Arduino Development En-
vironment;

• describe the key features of the Arduino Development Environment;

• list the programming support information available at the Arduino home page; and

• write programs for use on the ArduinoUNOR3,Mega 2560 R3, and the LilyPadArduino
processing boards.

1.1 OVERVIEW
Welcome to the world of Arduino! The Arduino concept of open-source hardware was devel-
oped by the visionary Arduino team of Massimo Banzi, David Cuartilles, Tom Igoe, Gianluca
Martino, and David Mellis in Ivrea, Italy. The team’s goal was to develop a line of easy-to-use
microcontroller hardware and software such that processing power would be readily available to
everyone.

Chapters 1 and 2 provide a tutorial on the Arduino programming environment and some
of the Arduino hardware platforms. As you begin your Arduino adventure, you will find your-
self going back and forth between Chapters 1 and 2. Chapter 1 concentrates on the Arduino
programming environment. To the novice, programming a microcontroller may appear myste-
rious, complicated, overwhelming, and difficult. When faced with a new task, one often does
not know where to start. The goal of this chapter is to provide a tutorial on how to begin pro-
gramming. We will use a top-down design approach. We begin with the “big picture” of the
chapter. We then discuss the Ardunio Development Environment and how it may be used to
quickly develop a program (sketch) for the Arduino UNO R3, the Arduino Mega 2560 R3, and
the LilyPad Arduino processor boards. Throughout the chapter, we provide examples and also
provide pointers to a number of excellent references. To get the most out of this chapter, it is
highly recommended to work through each example.

1.2 THEBIGPICTURE
We begin with the big picture of how to program different Arduino development boards, as
shown in Figure 1.1. This will help provide an overview of how chapter concepts fit together.

2 1. GETTINGSTARTED

Computer

Arduino Development Environment

USB

USB

USB2

Arduino Development

Environment

LilyPad Arduino

Arduino USB2SERIAL

Arduino MEGA 2560 R3

Arduino UNO R3

Figure 1.1: Programming the Arduino processor board. (Arduino illustrations used with per-
mission of the Arduino Team (CC BY-NC-SA), www.arduino.cc.)

www.arduino.cc

1.3. ARDUINOQUICKSTART 3
Most microcontrollers are programmed with some variant of the C programming lan-

guage. The C programming language provides a nice balance between the programmer’s control
of the microcontroller hardware and time efficiency in program writing. As an alternative, the
Arduino Development Environment (ADE) provides a user-friendly interface to quickly de-
velop a program, transform the program to machine code, and then load the machine code into
the Arduino processor in several simple steps. We use the ADE throughout the book.

The first version of the ADE was released in August 2005. It was developed at the In-
teraction Design Institute in Ivrea, Italy to allow students the ability to quickly put processing
power to use in a wide variety of projects. Since that time, updated versions incorporating new
features have been released on a regular basis (www.arduino.cc).

At its most fundamental level, the ADE is a user-friendly interface to allow one to quickly
write, load, and execute code on a microcontroller. A barebones program need only consist of
a setup() and loop() function. The ADE adds the other required pieces such as header files and
the main program construct. The ADE is written in Java and has its origins in the Processor
programming language and the Wiring Project (www.arduino.cc).

1.3 ARDUINOQUICKSTART
To get started using an Arduino-based platform, you will need the following hardware and
software:

• an Arduino-based hardware processing platform,

• the appropriate interface cable from the host PC or laptop to the Arduino platform,

• an Arduino compatible power supply, and

• the Arduino software.

InterfaceCable.TheUNOand theMEGAconnect to a host PC via aUSB cable (TypeA
male to Type B female).TheLilyPad requires a USB 2 serial converter (ArduinoUSB2SERIAL)
and an USB 2 cable (Type A male to mini Type B female).

Power Supply. The Arduino processing boards may be powered from the USB port dur-
ing project development. However, it is highly recommended that an external power supply be
employed. This will allow developing projects beyond the limited electrical current capability of
the USB port. For the UNO and the MEGA platforms, Arduino (www.arduino.cc) recom-
mends a power supply from 7–12 VDC with a 2.1-mm center positive plug. A power supply of
this type is readily available from a number of electronic parts supply companies. For example,
the Jameco #133891 power supply is a 9 VDC model rated at 300 mA and equipped with a
2.1-mm center positive plug. It is available for under US$10. Both the UNO and MEGA have
onboard voltage regulators that maintain the incoming power supply voltage to a stable 5 VDC.

www.arduino.cc
www.arduino.cc
www.arduino.cc

4 1. GETTINGSTARTED

1.3.1 QUICK STARTGUIDE
The ADE may be downloaded from the Arduino website’s front page at www.arduino.cc.
Versions are available for Windows, Mac OS X, and Linux. Provided below is a quick start
step-by-step approach to blink an onboard LED.

• Download the ADE from www.arduino.cc.

• Connect the Arduino UNO R3 processing board to the host computer via a USB cable
(A male to B male).

• Start the ADE.

• Under the Tools tab select the evaluation Board you are using and the Port that it is
connected to.

• Type the following program.

//***

#define LED_PIN 13

void setup()
{
pinMode(LED_PIN, OUTPUT);
}

void loop()
{
digitalWrite(LED_PIN, HIGH);
delay(500); //delay specified in ms
digitalWrite(LED_PIN, LOW);
delay(500);
}

//***

• Upload and execute the program by asserting the “Upload” (right arrow) button.

• The onboard LED should blink at one second intervals.

With the ADE downloaded and exercised, let’s take a closer look at its features.

www.arduino.cc
www.arduino.cc

1.3. ARDUINOQUICKSTART 5
sketch_may15a | Arduino 1.8.9

File Edit Sketch Tools Help

sketch_maay15a

+ -

Figure 1.2: Arduino Development Environment (www.arduino.cc).

1.3.2 ARDUINODEVELOPMENTENVIRONMENTOVERVIEW
The ADE is illustrated in Figure 1.2. The ADE contains a text editor, a message area for dis-
playing status, a text console, a tool bar of common functions, and an extensive menuing system.
The ADE also provides a user-friendly interface to the Arduino processor board which allows
for a quick upload of code. This is possible because the Arduino processing boards are equipped
with a bootloader program.

A close up of the Arduino toolbar is provided in Figure 1.3. The toolbar provides sin-
gle button access to the more commonly used menu features. Most of the features are self-
explanatory. As described in the previous section, the “Upload” button compiles your code and
uploads it to theArduino processing board.The “SerialMonitor” button opens the serial monitor
feature. The serial monitor feature allows text data to be sent to and received from the Arduino
processing board.

1.3.3 SKETCHBOOKCONCEPT
In keeping with a hardware and software platform for students of the arts, the Arduino envi-
ronment employs the concept of a sketchbook. An artist maintains their works in progress in a
sketchbook. Similarly, we maintain our programs within a sketchbook in the Arduino environ-
ment. Furthermore, we refer to individual programs as sketches. An individual sketch within
the sketchbook may be accessed via the Sketchbook entry under the file tab.

www.arduino.cc

6 1. GETTINGSTARTED

Open

Save

+ Opens Serial Monitor

Upload

Verify - Checks for Errors

Creates New Sketch

Figure 1.3: Arduino Development Environment buttons.

Menu

File

- New
- Open
- Open Recent
- Sketchbook
- Examples
- Close
- Save
- Save As
- Page Setup
- Print
- Preferences
- Quit

Edit
- Undo
- Redo
- Cut
- Copy
- Copy for Forum
- Copy as HTML
- Paste
- Select All
- Go to line...
- Comment/
 Uncomment
- Increase Indent
- Decrease Indent
- Increase Font Size
- Decrease Font Size
- Find
- Find Next
- Find Previous

Sketch

- Verify/Compile
- Upload
- Upload Using
 Programmer
- Export Compiled
 Binary
- Show Sketch Folder
- Include Library
- Add File

Tools

- Auto Format
- Archive Sketch
- Fix Encoding &

Reload
- Merge Libraries
- Serial Monitor
- Serial Plotter
- WiFi101/WiFi NINA

 Firmware Updater
- Board: xxx
- Port
- Get Board Info
- Programmer: xxx
- Burn Bootloader

Help

- Getting Started
- Environment
- Troubleshooting
- Reference
- Galileo Help
- Getting Started
- Troubleshooting
- Edison Help
- Getting Started
- Troubleshooting
- Find in Reference
- Frequently Asked
 Questions
- Visit Arduino.cc
- About Arduino

Figure 1.4: Arduino Development Environment menu (www.arduino.cc).

1.3.4 ARDUINOSOFTWARE, LIBRARIES, ANDLANGUAGE
REFERENCES

The ADE has a number of built-in features. Some of the features may be directly accessed via the
ADE drop down toolbar illustrated in Figure 1.2. Provided in Figure 1.4 is a handy reference to
show the available features. The toolbar provides a wide variety of features to compose, compile,
load, and execute a sketch.

1.3.5 WRITINGANARDUINOSKETCH
The basic format of the Arduino sketch consists of a “setup” and a “loop” function. The setup
function is executed once at the beginning of the program. It is used to configure pins, declare
variables and constants, etc. The loop function will execute sequentially step-by-step. When

www.arduino.cc

1.3. ARDUINOQUICKSTART 7
the end of the loop function is reached it will automatically return to the first step of the loop
function and execute again. This goes on continuously until the program is stopped.

//**

void setup()
{
//place setup code here
}

void loop()
{
//main code steps are provided here
:
:

}

//**

Example: Let’s revisit the sketch provided earlier in the chapter.

//**

#define LED_PIN 13 //name pin 13 LED_PIN

void setup()
{
pinMode(LED_PIN, OUTPUT); //set pin to output
}

void loop()
{
digitalWrite(LED_PIN, HIGH); //write pin to logic high
delay(500); //delay specified in ms
digitalWrite(LED_PIN, LOW); //write to logic low
delay(500); //delay specified in ms
}

//**

8 1. GETTINGSTARTED

Digital I/O

pinMode()

digitalWrite()

digitalRead()

Communication

Serial()

Stream()

External Interrupts

attachInterrupt()

detachInterrupt()

Bits and Bytes

lowByte()

HighByte()

bitReat()

bitWrite()

bitSet()

bitClear()

bit()

Interrupts

Interrupts()

noInterrupts()

Random Numbers

randomSeed()

random()

Trigonometry

sin()

cos()

tan()

Analog I/O

analogReference()

analogRead()

analogWrite() (PWM)

Advanced I/O

tone()

notone()

shiftOut()

shiftIn()

pulseIn()

Math

min()

max()

abs()

constrain()

map()

pow()

sqrt()

Time

millis()

micros()

delay()

delayMicroseconds()

Arduino Functions

Figure 1.5: Arduino Development Environment functions (www.arduino.cc).

In the first line the #define statement links the designator “LED_PIN” to pin 13 on the
Arduino processor board. In the setup function, LED_PIN is designated as an output pin. Recall
the setup function is only executed once. The program then enters the loop function that is
executed sequentially step-by-step and continuously repeated. In this example, the LED_PIN
is first set to logic high to illuminate the LED onboard the Arduino processing board. A 500
ms delay then occurs. The LED_PIN is then set low. A 500-ms delay then occurs. The sequence
then repeats.

Even themost complicated sketches follow the basic format of the setup function followed
by the loop function. To aid in the development of more complicated sketches, the ADE has
many built-in features that may be divided into the areas of structure, variables and functions.
The structure and variable features follow rules similar to the C programming language which
is discussed in the text Arduino II: Systems. The built-in functions consists of a set of pre-defined
activities useful to the programmer. These built-in functions are summarized in Figure 1.5.

There are many program examples available to allow the user to quickly construct a sketch.
These programs are summarized in Figure 1.6. Complete documentation for these programs is
available at the Arduino homepage www.arduino.cc. This documentation is easily accessible
via the Help tab on the ADE toolbar. This documentation will not be repeated here. Instead,
we refer to these features at appropriate places throughout the remainder of the book. With the
Arduino open-source concept, users throughout the world are constantly adding new built-in

www.arduino.cc
www.arduino.cc

1.3. ARDUINOQUICKSTART 9

Arduino Environment

Built-in Programs

Digital Input/Output
- Blink (under Basics)
- Blink without delay
- Button
- Debounce
- Digital Input Pullup
- State Change
 Detection
- Tone Keyboard
- Tone Melody
- Tone Multiple

 - Tone Pitch Follower

Analog Input/Output
- Analog InOut Serial
- Analog Input
- Analog Write Mega
- Calibration
- Fading
- Smoothing

Control Structures
- Array
- For Loop Interation
- If Statement
 Conditional
- Switch Case
- Switch Case 2
- While Statement
 Conditional

Sensors
- ADX3xx

Accelerometer

- Knock Detector

- Memsic2125 Two-axis
 Accelerometer

- Ping Ultrasonic Range
 Finder

Communication
- ASCII Table
- Dimmer
- Graph
- MIDI
- MultiSerial
- Physical Pixel
- Read ASCII String
- Serial Call Response
- Serial Call Response

 ASCII
- Serial Event

 - Serial Passthrough
- Virtual Color Mixer

Multiple Libraries
- Strings
- USB
- LCD
- Robot Control
- Robot Motor
- SD Card
- Servo
- Stepper
 :

Figure 1.6: Arduino Development Environment built-in features (www.arduino.cc).

features. As new features are added, they will be released in future ADE versions. As an Arduino
user, you too may add to this collection of useful tools. We continue with another example.

Example: In this example we connect an external LED to Arduino UNO R3 pin 12. The on-
board LED will blink alternately with the external LED. The external LED is connected to the
Arduino UNO R3 as shown in Figure 1.7. The LED has a positive (anode) and negative (cath-
ode) lead. As you look down from above, a round LED has a flat side. The lead closest to the
flat side is the cathode.

In the bottom-right portion of the figure, a cutaway is provided of a prototype board.
Prototype boards provide a convenient method of interconnecting electronic components. The
boards are configured to accept dual inline package (DIP) integrated circuits (ICs or chips). The
ICs are placed over the center channels. Other components may also be placed on the boards.
The boards are covered with multiple connection points. Typically, the board’s connection points
are arranged in columns and five connection point rows. The connection points in a column
are connected at the board’s base by a conductor. Also, connection points in a board row are
connected.

The connection points readily accept insulated, solid 22 AWG insulated wire. This wire
type is available in variety of colors (www.jameco.com). To connect two circuit points together,

www.arduino.cc
www.jameco.com

10 1. GETTINGSTARTED

220

2
2
0

+

-

(a) Schematic

(b) Circuit Layout

Figure 1.7: Arduino UNO R3 with an external LED. (UNO R3 illustration used with permis-
sion of the Arduino Team (CC BY-NC-SA) www.arduino.cc).

www.arduino.cc

1.3. ARDUINOQUICKSTART 11
estimate the length of wire needed to connect the points. Cut the solid 22AWG insulated wire to
that length plus an additional one-half inch (approximately 13 mm). Using a wire stripper (e.g.,
Jameco #159291), strip off approximately one-quarter inch (7.5 mm) from each end of the wire.
The conductor exposed ends of the wire can then be placed into appropriate circuit locations for
a connection. Once a wire end is placed in a breadboard hole, the exposed conductor should not
be visible. Circuit connections may also be made using prefabricated jumper wires. These are
available from a number of sources such as Jameco www.jameco.com, Adafruit www.adafruit.
com, and SparkFun Electronics (www.sparkfun.com).

//**

#define int_LED 13 //name pin 13 int_LED
#define ext_LED 12 //name pin 12 ext_LED

void setup()
{
pinMode(int_LED, OUTPUT); //set pin to output
pinMode(ext_LED, OUTPUT); //set pin to output
}

void loop()
{
digitalWrite(int_LED, HIGH); //set pin logic high
digitalWrite(ext_LED, LOW); //set pin logic low
delay(500); //delay specified in ms
digitalWrite(int_LED, LOW); //set pin logic low
digitalWrite(ext_LED, HIGH); //set pin logic high
delay(500);
}

//**

Example: In this example we connect an external LED to Arduino UNO R3 pin 12 and an
external switch attached to pin 11. The onboard LED will blink alternately with the external
LED when the switch is depressed. The external LED and switch is connected to the Arduino
UNO R3, as shown in Figure 1.8.

www.jameco.com
www.adafruit.com
www.adafruit.com
www.sparkfun.com

12 1. GETTINGSTARTED

2
2
0

4.7K

220

4.7K

5 VDC

(a) Schematic

(b) Circuit Layout

Figure 1.8: Arduino UNO R3 with an external LED. (UNO R3 illustration used with permis-
sion of the Arduino Team (CC BY-NC-SA) www.arduino.cc).

www.arduino.cc

1.3. ARDUINOQUICKSTART 13
//**

#define int_LED 13 //name pin 13 int_LED
#define ext_LED 12 //name pin 12 ext_LED
#define ext_sw 11 //name pin 11 ext_sw

int switch_value; //integer variable to
//store switch status

void setup()
{
pinMode(int_LED, OUTPUT); //set pin to output
pinMode(ext_LED, OUTPUT); //set pin to output
pinMode(ext_sw, INPUT); //set pin to input
}

void loop()
{
switch_value = digitalRead(ext_sw); //read switch status
if(switch_value == LOW) //if switch at logic low,

{ //do steps with braces
digitalWrite(int_LED, HIGH); //set pin logic high
digitalWrite(ext_LED, LOW); //set pin logic low
delay(50); //delay 50 ms
digitalWrite(int_LED, LOW); //set pin logic low
digitalWrite(ext_LED, HIGH); //set pin logic high
delay(50); //delay 50ms
}

else //if switch at logic high,
{ //do steps between braces
digitalWrite(int_LED, LOW); //set pins low
digitalWrite(ext_LED, LOW); //set pins low
}

}

//**

14 1. GETTINGSTARTED

3 2 1 0

1 1 1 1 DIGITAL

ANALOG IN

5 VDC

220

2N2222

Ground

10 K

9 8

0

R Y

IR Sensor

Arduino

UNO R3

B

5VGnd 1 2 3 4 5

7 6 5 4 3 2 1 0

Figure 1.9: IR sensor interface.

1.4 APPLICATION: ROBOT IR SENSOR
In this example we investigate a sketches’s interaction with the Arduino UNO R3 processing
board and external sensors and indicators. We will use the robot project as an ongoing example.

In Chapter 2, we equip a robot platform with three Sharp GP2Y0A41SK0F (we abbre-
viate as GP2Y) infrared (IR) sensors. The IR sensor provides a voltage output that is inversely
proportional to the sensor distance from the maze wall. It is desired to illuminate the LED if
the robot is within 10 cm of the maze wall. The sensor provides an output voltage of 2.5 VDC
at the 10-cm range. The interface between the IR sensor and the Arduino UNO R3 board is
provided in Figure 1.9.

The IR sensor’s power (red wire) and ground (black wire) connections are connected to
the 5V and Gnd pins on the Arduino UNO R3 board, respectively. The IR sensor’s output con-
nection (yellow wire) is connected to the ANALOG IN 5 pin on the Arduino UNO R3 board.
The LED circuit shown in the top-right corner of the diagram is connected to the DIGITAL 0
pin on the Arduino UNO R3 board. We discuss the operation of this circuit in Chapter 3.

//***
#define LED_PIN 0 //digital pin - LED connection
#define IR_sensor_pin 5 //analog pin - IR sensor

1.4. APPLICATION: ROBOT IR SENSOR 15

int IR_sensor_value; //declare variable for IR sensor value

void setup()
{
pinMode(LED_PIN, OUTPUT); //configure pin 0 for digital output

}

void loop()
{

//read analog output from IR sensor
IR_sensor_value = analogRead(IR_sensor_pin);

if(IR_sensor_value > 512) //0 to 1023 maps to 0 to 5 VDC
{
digitalWrite(LED_PIN, HIGH); //turn LED on
}

else
{
digitalWrite(LED_PIN, LOW); //turn LED off
}

}
//***

The sketch begins by providing names for the two Arduino UNO R3 board pins that will
be used in the sketch. This is not required but it makes the code easier to read. We define the
pin for the LED as “LED_PIN.” Any descriptive name may be used here. Whenever the name
is used within the sketch, the number “0” will be substituted for the name by the compiler.

After providing the names for pins, the next step is to declare any variables required by
the sketch. In this example, the output from the IR sensor will be converted from an analog
to a digital value using the built-in Arduino “analogRead” function. A detailed description of
the function may be accessed via the Help menu. It is essential to carefully review the support
documentation for a built-in Arduino function the first time it is used. The documentation
provides details on variables required by the function, variables returned by the function, and an
explanation on function operation.

The “analogRead” function requires the pin for analog conversion variable passed to it and
returns the analog signal read as an integer value (int) from 0–1023. So, for this example, we
need to declare an integer value to receive the returned value. We have called this integer variable
“IR_sensor_value.”

16 1. GETTINGSTARTED
Following the declaration of required variables are the two required functions for an Ar-

duino UNO R3 program: setup and loop. The setup function calls an Arduino built-in function,
pinMode, to set the “LED_PIN” as an output pin. The loop function calls several functions to
read the current analog value on pin 5 (the IR sensor output) and then determine if the reading
is above 512 (2.5 VDC). If the reading is above 2.5 VDC, the LED on DIGITAL pin 0 is
illuminated, else it is turned off.

After completing writing the sketch with the ADE, it must be compiled and then up-
loaded to the Arduino UNO R3 board. These two steps are accomplished using the “Sketch—
Verify/Compile” and the “File—Upload to I/O Board” pull down menu selections.

As an exercise, develop a range vs. voltage plot for the IR sensor for ranges from 0–25 cm.

1.5 APPLICATION: BLINKLEDFIBER
For the next two applications we use optical fibers coupled to light-emitting diodes (LED) for
visual display effects. We start with some background information on optical fibers. Optical
fibers are used to link two devices via light rather than an electronic signal. The flexible optical
links are used in electronically noisy environments because the optical link is not susceptible to
electronic noise. In a typical application an electronic signal is converted to light, transmitted
down the optical fiber, and converted back to an electronic signal.

As shown in Figure 1.10a an optical fiber consists of several concentric layers of mate-
rial including the core where light is transmitted, the cladding, the buffer, and the protective
outer jacket. Light is transmitted through the fiber via the concept of total internal reflection.
The core material is more optically dense than the cladding material. At shallow entry angles
the light reflects from the core/cladding boundary and stays within the fiber core, as shown in
Figure 1.10b. This allows for the transmission of light via fiber for long distances with limited
signal degradation.

To provide an interface between an electronic signal and the fiber, an optical emitter is
used as shown in Figure 1.10c. The optical emitter contains an LED as the light source. At
the far end of the optical fiber an optical detector is used to convert the light signal back to an
electronic one.

It is important to note that optical emitters, detectors, and fibers are available in a variety
of wavelengths as shown in Figure 1.10d. It is important that the emitter, detector, and fiber are
capable at operating at the same optical wavelengths.

In this example we use a transistor (PN2222) to boost the current from the Arduino so
it is compatible with the voltage and current requirements of the red LED (660 nm, IF-E97,
Vf D 1:7; If 40 mA), as shown in Figure 1.11. We describe this interface circuit in more detail
in Chapter 3.

We reuse the code example of flashing an external LED.

1.5. APPLICATION: BLINKLEDFIBER 17

Core

Cladding

Buffer Jacket

(a) Optical Fiber Layers

(b) Total Internal Reflection

(c) Optical Communication Link

Optical Emitter

(LED inside)

Optical Detector

(detector electronics inside)

Optical Fiber
Electronic Digital

Signal In

Electronic Digital

Signal Out

Ultraviolet Infrared

Visible

380 nm

780 nm

(d) Visible Light Spectrum

Figure 1.10: Optical fibers.

18 1. GETTINGSTARTED

R = (5 V - 1.9 V)/ 40 mA

 = 78 ohms ~ 82 ohms

+

From Arduino

UNO R3 pin 12

Vcc = 5 VDC

10 K

PN2222

LED within IF-E97

Figure 1.11: Interface for optical fibers.

//**

#define ext_LED 12 //name pin 12 ext_LED
#define int_LED 13 //name pin 13 int_LED

void setup()
{
pinMode(int_LED, OUTPUT); //set pin to output
pinMode(ext_LED, OUTPUT); //set pin to output
}

void loop()
{
digitalWrite(int_LED, HIGH); //set pin to logic high
digitalWrite(ext_LED, LOW); //set pin to logic low
delay(500); //delay specified in ms
digitalWrite(int_LED, LOW); //set pin to logic low
digitalWrite(ext_LED, HIGH); //set pin to logic high
delay(500); //delay specified in ms
}

//**

1.6 APPLICATION: LILYPADWITHLEDFIBERS
The LilyPad is a wearable Arduino. In this example, we use the LilyPad Arduino 328 Main
Board (Sparkfun #DEV-13342) equipped with the Microchip Mega 328P. More information

1.6. APPLICATION: LILYPADWITHLEDFIBERS 19

R = (5 V - 4.2 V)/ 35 mA
 = 23 ohms ~ 27 ohms

+

From

LilyPad

pin 12

Vcc = 5 VDC

10 K

PN2222

LED within IF-E92B

(blue 470 nm)

LED within IF-E97

(red 660 nm)

R = (5 V - 1.9 V)/ 40 mA
 = 78 ohms ~ 82 ohm

+

From

LilyPad

pin 10

Vcc = 5 VDC

10 K

PN2222

LED within IF-E93

(green 530 nm)

R = (5 V - 4.2 V)/ 35 mA
= 23 ohms ~ 27 ohms

+

From

LilyPad

pin 11

Vcc = 5 VDC

10 K

PN2222

(a) LED within IF-E92B (blue 470 nm) (b) LED within IF-E9 (red 660 nm)

(b) LED within IF-E93 (green 530 nm)

Figure 1.12: LilyPad interface for optical fibers.

about this board is provided in the next chapter.The LilyPad is connected to three different fibers
sourced with different LEDs (red, blue, and green) via pins 10, 11, and 12. As in the previous
example, transistors are used to interface the LilyPad to the fibers as shown in Figure 1.12.

The example code sequentially illuminates each fiber.

//**

#define ext_fiber_red 10 //name pin 10 ext_fiber_red
#define ext_fiber_green 11 //name pin 11 ext_fiber_green
#define ext_fiber_blue 12 //name pin 12 ext_fiber_blue

void setup()
{
pinMode(ext_fiber_red, OUTPUT); //set pin to output
pinMode(ext_fiber_green, OUTPUT); //set pin to output

20 1. GETTINGSTARTED
pinMode(ext_fiber_blue, OUTPUT); //set pin to output
}

void loop()
{
digitalWrite(ext_fiber_red, HIGH);//set pin logic high
digitalWrite(ext_fiber_green, LOW);//set pin logic low
digitalWrite(ext_fiber_blue, LOW);//set pin logic low
delay(500); //delay specified in ms

digitalWrite(ext_fiber_red, LOW);//set pin logic low
digitalWrite(ext_fiber_green,HIGH);//set pin logic high
digitalWrite(ext_fiber_blue, LOW);//set pin logic low
delay(500); //delay specified in ms

digitalWrite(ext_fiber_red, LOW);//set pin logic low
digitalWrite(ext_fiber_green, LOW);//set pin logic low
digitalWrite(ext_fiber_blue, HIGH);//set pin logic high
delay(500); //delay specified in ms
}

//**

1.7 APPLICATION: FRIENDORFOE SIGNAL
In aerial combat a “friend or foe” signal is used to identify aircraft on the same side. The signal
is a distinctive pattern only known by aircraft on the same side. In this example, we generate a
friend signal on the internal LED on pin 13 that consists of 10 pulses of 40 ms each followed
by a 500-ms pulse and then 1000 ms when the LED is off.

In this example we use a for loop. The for loop provides a mechanism for looping through
the same portion of code a fixed number of times. The for loop consists of three main parts:

• loop initialization,

• loop termination testing, and

• the loop increment.

In the following code fragment the for loop is executed ten times.

1.8. APPLICATION: LED STRIP 21

//***

#define LED_PIN 13 //name pin 13 LED_PIN

void setup()
{
pinMode(LED_PIN, OUTPUT); //set pin to output
}

void loop()
{
int i; //for loop counter

for(i=0; i<=9; i++) //for loop control
{ //execute loop 10 times
digitalWrite(LED_PIN, HIGH); //set pin high
delay(20); //delay specified in ms
digitalWrite(LED_PIN, LOW); //set pin low
delay(20); //delay specified in ms
} //exit loop

digitalWrite(LED_PIN, HIGH); //set pin high
delay(500); //delay specified in ms
digitalWrite(LED_PIN, LOW); //set pin low
delay(1000); //delay specified in ms
}

//***

1.8 APPLICATION: LED STRIP

Example: LED strips may be used for motivational (fun) optical displays, games, or for
instrumentation-based applications. In this example we control an LPD8806-based LED strip
using the Arduino UNO R3. We use a one meter, 32 RGB LED strip available from Adafruit
(#306) for approximately $30 USD (www.adafruit.com).

The red, blue, and green component of each RGB LED is independently set using an
eight-bit code. The most significant bit (MSB) is logic one followed by seven bits to set the LED
intensity (0–127). The component values are sequentially shifted out of the Arduino UNO R3

www.adafruit.com

22 1. GETTINGSTARTED

SPI SCK (pin 13)

SPI MOSI (pin 11)

(a) LED Strip by the Meter [www.adafruit.com]

(b) Arduino UNO R3 to LED Strip Connection [www.adafruit.com]

Ground

to 5 VDC, 2A

Power

Supply

Figure 1.13: UNO R3 controlling LED strip. LED strip illustration used with permission of
Adafruit (www.adafruit.com). UNO R3 illustration used with permission of the Arduino
Team (CC BY-NC-SA) (www.arduino.cc).

using the Serial Peripheral Interface (SPI) features. The first component value shifted out corre-
sponds to the LED nearest the microcontroller. Each shifted component value is latched to the
corresponding R, G, and B component of the LED. As a new component value is received, the
previous value is latched and held constant. An extra byte is required to latch the final parameter
value. A zero byte .00/16 is used to complete the data sequence and reset back to the first LED
(www.adafruit.com).

Only four connections are required between the UNO R3 and the LED strip, as shown in
Figure 1.13. The connections are color coded: red-power, black-ground, yellow-data, and green-
clock. It is important to note the LED strip requires a supply of 5 VDC and a current rating of
2 amps per meter of LED strip. In this example we use the Adafruit #276 5V 2A (2000 mA)
switching power supply (www.adafruit.com).

In this example each RGB component is sent separately to the strip. The example illus-
trates how each variable in the program controls a specific aspect of the LED strip. Here are
some important implementation notes.

www.adafruit.com
www.arduino.cc
www.adafruit.com
www.adafruit.com

1.8. APPLICATION: LED STRIP 23
• SPI must be configured for most significant bit (MSB) first.

• LED brightness is seven bits. Most significant bit (MSB) must be set to logic one.

• Each LED requires a separate R-G-B intensity component. The order of data is G-R-B.

• After sending data for all LEDs. A byte of (0x00) must be sent to return strip to first LED.

• Data stream for each LED is: 1-G6-G5-G4-G3-G2-G1-G0-1-R6-R5-R4-R3-R2-R1-
R0-1-B6-B5-B4-B3-B2-B1-B0.

//***
//RGB_led_strip_tutorial: illustrates different variables within
//RGB LED strip
//
//LED strip LDP8806 - available from www.adafruit.com (#306)
//
//Connections:
// - External 5 VDC supply - Adafruit 5 VDC, 2A (#276) - red
// - Ground - black
// - Serial Data In - Arduino pin 11 (MOSI pin)- yellow
// - CLK - Arduino pin 13 (SCK pin)- green
//
//Variables:
// - LED_brightness - set intensity from 0 to 127
// - segment_delay - delay between LED RGB segments
// - strip_delay - delay between LED strip update
//
//Notes:
// - SPI must be configured for Most significant bit (MSB) first
// - LED brightness is seven bits. Most significant bit (MSB)
// must be set to logic one
// - Each LED requires a separate R-G-B intensity component. The order
// of data is G-R-B.
// - After sending data for all strip LEDs. A byte of (0x00) must
// be sent to return strip to first LED.
// - Data stream for each LED is:
//1-G6-G5-G4-G3-G2-G1-G0-1-R6-R5-R4-R3-R2-R1-R0-1-B6-B5-B4-B3-B2-B1-B0
//
//This example code is in the public domain.
//**

24 1. GETTINGSTARTED
#include <SPI.h>

#define LED_strip_latch 0x00

const byte strip_length = 32; //number of RGB LEDs in strip
const byte segment_delay = 100; //delay in milliseconds
const byte strip_delay = 500; //delay in milliseconds
unsigned char LED_brightness; //0 to 127
unsigned char position; //LED position in strip
unsigned char troubleshooting = 0; //allows printouts to serial

//monitor

void setup()
{
SPI.begin(); //SPI support functions
SPI.setBitOrder(MSBFIRST); //SPI bit order
SPI.setDataMode(SPI_MODE3); //SPI mode
SPI.setClockDivider(SPI_CLOCK_DIV32);//SPI data clock rate
Serial.begin(9600); //serial comm at 9600 bps
}

void loop()
{
SPI.transfer(LED_strip_latch); //reset to first segment
clear_strip(); //all strip LEDs to black
delay(500);

//increment the green intensity of the strip LEDs
for(LED_brightness = 0; LED_brightness <= 60;

LED_brightness = LED_brightness + 10)
{
for(position = 0; position<strip_length; position = position+1)

{
SPI.transfer(0x80 | LED_brightness); //Green - MSB 1
SPI.transfer(0x80 | 0x00); //Red - none
SPI.transfer(0x80 | 0x00); //Blue - none

if(troubleshooting)
{

1.8. APPLICATION: LED STRIP 25
Serial.println(LED_brightness, DEC);
Serial.println(position, DEC);
}

delay(segment_delay);
}

SPI.transfer(LED_strip_latch); //reset to first segment
delay(strip_delay);
if(troubleshooting)

{
Serial.println(" ");
}

}

clear_strip(); //all strip LEDs to black
delay(500);

//increment the red intensity of the strip LEDs
for(LED_brightness = 0; LED_brightness <= 60;

LED_brightness = LED_brightness + 10)
{
for(position = 0; position<strip_length; position = position+1)

{
SPI.transfer(0x80 | 0x00); //Green - none
SPI.transfer(0x80 | LED_brightness); //Red - MSB1
SPI.transfer(0x80 | 0x00); //Blue - none

if(troubleshooting)
{
Serial.println(LED_brightness, DEC);
Serial.println(position, DEC);
}

delay(segment_delay);
}

SPI.transfer(LED_strip_latch); //reset to first segment
delay(strip_delay);
if(troubleshooting)
{
Serial.println(" ");
}

26 1. GETTINGSTARTED
}

clear_strip(); //all strip LEDs to black
delay(500);

//increment the blue intensity of the strip LEDs
for(LED_brightness = 0; LED_brightness <= 60;

LED_brightness = LED_brightness + 10)
{
for(position = 0; position<strip_length; position = position+1)

{
SPI.transfer(0x80 | 0x00); //Green - none
SPI.transfer(0x80 | 0x00); //Red - none
SPI.transfer(0x80 | LED_brightness); //Blue - MSB1

if(troubleshooting)
{
Serial.println(LED_brightness, DEC);
Serial.println(position, DEC);
}

delay(segment_delay);
}

SPI.transfer(LED_strip_latch); //reset to first segment
delay(strip_delay);
if(troubleshooting)
{
Serial.println(" ");
}

}

clear_strip(); //all strip LEDs to black
delay(500);

}

//**

void clear_strip(void)
{

//clear strip

1.9. APPLICATION: EXTERNAL INTERRUPTS 27
for(position = 0; position<strip_length; position = position+1)

{
SPI.transfer(0x80 | 0x00); //Green - none
SPI.transfer(0x80 | 0x00); //Red - none
SPI.transfer(0x80 | 0x00); //Blue - none

if(troubleshooting)
{
Serial.println(LED_brightness, DEC);
Serial.println(position, DEC);
}

}
SPI.transfer(LED_strip_latch); //Latch with zero
if(troubleshooting)

{
Serial.println(" ");
}

delay(2000); //clear delay
}

//**

1.9 APPLICATION: EXTERNAL INTERRUPTS
The interrupt system onboard a microcontroller allows it to respond to higher priority events.
Appropriate responses to these events may be planned, but we do not know when these events
will occur. When an interrupt event occurs, the microcontroller will normally complete the in-
struction it is currently executing and then transition program control to interrupt event specific
tasks. These tasks, which resolve the interrupt event, are organized into a function called an in-
terrupt service routine (ISR). Each interrupt will normally have its own interrupt specific ISR.
Once the ISR is complete, the microcontroller will resume processing where it left off before
the interrupt event occurred.

The ADE has four built-in functions to support external the INT0 and INT1 external
interrupts (www.arduino.cc).

These are the four functions.
• interrupts(). This function enables interrupts.

• noInterrupts(). This function disables interrupts.

• attachInterrupt(interrupt, function, mode). This function links the interrupt to the ap-
propriate interrupt service routine.

www.arduino.cc

28 1. GETTINGSTARTED

Fetch

Decode

Execute

Interrupt

Service

Routine

Figure 1.14: Microcontroller Interrupt Response.

• detachInterrupt(interrupt). This function turns off the specified interrupt.

The Arduino UNO R3 processing board is equipped with two external interrupts: INT0
on pin 2 and INT1 on pin 3. The Arduino Mega 2560 processing board is equipped with six
external interrupts: INT0 at pin 2, INT1 at pin 3, INT2 at pin 21, INT3 at pin 1, INT4 at pin
19, and INT5 at pin 18.

The attachInterrupt(interrupt, function, mode) function is used to link the hardware
pin to the appropriate interrupt service pin. The three arguments of the function are configured
as follows.

• interrupt. Interrupt specifies the INT interrupt number: either 0 or 1.

• function. Function specifies the name of the interrupt service routine.

• mode. Mode specifies what activity on the interrupt pin will initiate the interrupt: LOW
level on pin, CHANGE in pin level, RISING edge, or FALLING edge.

Provided below is a template to configure an interrupt.

1.9. APPLICATION: EXTERNAL INTERRUPTS 29
//**

void setup()
{
attachInterrupt(0, int0_ISR, FALLING);
}

void loop()
{

//wait for interrupts

}

//**
//int0_ISR: interrupt service routine for INT0
//**

void int0_ISR(void)
{

//Insert interrupt specific actions here.

}
//***

As an example, we connect an external tact switch to INT0 (pin 2) andmeasure the elapsed
time between two switch presses. The switch configuration provided earlier in Figure 1.8 may
be used.

//**
//Program measures the elapsed time in ms between two switch
//closures. A tact switch with a series 4.7K resistor is attached
//to INT0 (pin 2) of the UNO R3.
//**

unsigned long first, second, elapsed_time;
unsigned int first_time_hack = 1;

void setup()
{

30 1. GETTINGSTARTED
Serial.begin(9600);
pinMode(2, INPUT);
attachInterrupt(0, int0_ISR, FALLING);
}

void loop()
{

//wait for interrupts

}

//**
//int0_ISR: interrupt service routine for INT0
//**

void int0_ISR(void)
{
if(first_time_hack ==1)

{
first = millis();
first_time_hack = 0;
delay(5);
}

else
{
second = millis();
first_time_hack = 1;
elapsed_time = second - first;
Serial.print(elapsed_time);
Serial.println(" ms");
Serial.println();
delay(5);
}

}

//***

1.10. SUMMARY 31

1.10 SUMMARY
The goal of this chapter was to provide a tutorial on how to begin programming. We used a top-
down design approach. We began with the “big picture” of the chapter followed by an overview
of the ADE. Throughout the chapter, we provided examples and also provided references to a
number of excellent references.

1.11 REFERENCES
[1] Arduino homepage, www.arduino.cc.

[2] Duree G. (2011). Optics for Dummies, Wiley Publishing, Inc.

1.12 CHAPTERPROBLEMS
1.1. Describe the steps in writing a sketch and executing it on an Arduino UNO R3 pro-

cessing board.

1.2. What is the serial monitor feature used for in the ADE?

1.3. Describe what variables are required and returned and the basic function of the following
built-in Arduino functions: Blink, Analog Input.

1.4. Adapt Application: Robot IR sensor for the Arduino Mega 2560 processor board.

1.5. Adapt Application: Art Piece Illumination System for the Arduino Mega 2560 proces-
sor board.

1.6. Adapt Application: LED Strip to a light sequence of your creation.

www.arduino.cc

33

C H A P T E R 2

Arduino Platforms
Objectives: After reading this chapter, the reader should be able to the following:

• describe the Arduino concept of open-source hardware;

• diagram the layout of the Arduino UNO R3 processor board;

• name and describe the different features aboard the Arduino UNO R3 processor board;

• discuss the features and functions of the Microchip ATmega328;

• diagram the layout of the Arduino Mega 2560 processor board;

• name and describe the different features aboard the Arduino Mega 2560 R3 processor
board;

• discuss the features and functions of the Microchip ATmega2560;

• diagram the layout of the Arduino LilyPad;

• name and describe the different features aboard the Arduino LilyPad;

• discuss the features and functions of the LilyPad; and

• describe how to extend the hardware features of the Arduino processor using Arduino
Shields.

2.1 OVERVIEW
Throughout the book, we use three different Arduino processing boards: the Arduino UNO
R3 board (UNO), the Arduino Mega 2560 REV3 board (MEGA), and the Arduino LilyPad.
Starter kits for these platforms are available from a number of sources.

2.2 ARDUINOUNOR3 PROCESSINGBOARD
The Arduino UNO R3 processing board is illustrated in Figure 2.1. Working clockwise from
the left, the board is equipped with a USB connector to allow programming the processor from
a host personal computer (PC) or laptop. The board may also be programmed using In System

34 2. ARDUINOPLATFORMS

USB

Connector

(to PC)

Power Supply

Connector

(7-12 VDC)

Power Supply

Terminals
Analog Inputs

ISP Programming

Connector

Ser
ia

l C
om

m

Digital I/O

PW
M

A
na

lo
g

R
ef

er
en

ce

USB-to-Serial

Converter

Switch

Timebase

LED Power

Indicator

LED

TX LED

RX LED

Figure 2.1: Arduino UNO R3 layout. (Figure adapted and used with permission of Arduino
Team (CC BY-NC-SA) www.arduino.cc.)

Programming (ISP) techniques. A 6-pin ISP programming connector is on the opposite side of
the board from the USB connector.

The board is equipped with a USB-to-serial converter to allow compatibility between the
host PC and the serial communications systems aboard the Microchip ATmega328 processor.
The UNO R3 is also equipped with several small surface-mount LEDs to indicate serial trans-
mission (TX) and reception (RX) and an extra LED for project use. The header strip at the
top of the board provides access for an analog reference signal, pulse width modulation (PWM)
signals, digital input/output (I/O), and serial communications. The header strip at the bottom
of the board provides analog inputs for the analog-to-digital (ADC) system and power supply
terminals. Finally, the external power supply connector is provided at the bottom left corner
of the board. The top and bottom header strips conveniently mate with an Arduino shield to
extend the features of the Arduino host processor.

2.3 ADVANCED: ARDUINOUNOR3HOSTPROCESSOR –
THEATMEGA328

The host processor for the Arduino UNO R3 is the Microchip Atmega328. The “328” is a
28 pin, 8-bit microcontroller. The architecture is based on the Reduced Instruction Set Com-
puter (RISC) concept which allows the processor to complete 20 million instructions per second
(MIPS) when operating at 20 MHz. The “328” is equipped with a wide variety of features as
shown in Figure 2.2. The features may be conveniently categorized into the following systems:

www.arduino.cc

2.3. ADVANCED: ARDUINOUNOR3HOSTPROCESSOR –THEATMEGA328 35

Arduino UNO R3

Hosted on the

AT mega 328

Memory System

- 32K byte, ISP

Programmable Flash

- 1K byte, byte

Addressable EEPROM

- 2K byte RAM

Timer System

- Two 8-bit Timer/Counter

- One 16-bit Timer/Counter

- Six PWM Channels

Analog-to-Digital Converter

- 6 Channel 10-bit ADC

 (PDIP)

Serial Communications

- Serial USART

- Serial Peripheral Interface

- Two Wire Interface (TWI)

Port System

- 14 digital I/O Pins

 -- 6 Provide PWM

- 6 Analog Input Pins

Interrupt System

- 26 Total Interrupts

- 2 External Pin Interrupts

Figure 2.2: Arduino UNO R3 systems.

• memory system,

• port system,

• timer system,

• analog-to-digital converter (ADC),

• interrupt system, and

• serial communications.

2.3.1 ARDUINOUNOR3/ATMEGA328HARDWAREFEATURES
The Arduino UNO R3’s processing power is provided by the ATmega328. The pin out diagram
and block diagram for this processor are provided in Figures 2.3 and 2.4. In this section, we
provide a brief overview of the systems aboard the processor.

2.3.2 ATMEGA328MEMORY
The ATmega328 is equipped with three main memory sections: flash electrically erasable pro-
grammable read-only memory (EEPROM), static random access memory (SRAM), and byte-
addressable EEPROM. We discuss each memory component in turn.

36 2. ARDUINOPLATFORMS

Figure 2.3: ATmega328 pin out. (Figure used with permission of Microchip, Incorporated.)

2.3.2.1 ATmega328 In-System Programmable Flash EEPROM
Bulk programmable flash EEPROM is used to store programs. It can be erased and programmed
as a single unit. Also, should a program require a large table of constants, it may be included
as a global variable within a program and programmed into flash EEPROM with the rest of
the program. Flash EEPROM is nonvolatile meaning memory contents are retained even when
microcontroller power is lost. The ATmega328 is equipped with 32K bytes of onboard repro-
grammable flash memory. This memory component is organized into 16K locations with 16 bits
at each location.

2.3.2.2 ATmega328 Byte-Addressable EEPROM
Byte-addressable EEPROM memory is used to permanently store and recall variables during
program execution. It too is nonvolatile. It is especially useful for logging system malfunctions
and fault data during program execution. It is also useful for storing data that must be retained
during a power failure but might need to be changed periodically. Examples where this type
of memory is used are found in applications to store system parameters, electronic lock combi-
nations, and automatic garage door electronic unlock sequences. The ATmega328 is equipped
with 1024 bytes of EEPROM.

2.3.2.3 ATmega328 Static RandomAccessMemory (SRAM)
Static RAM memory is volatile. That is, if the microcontroller loses power, the contents of
SRAM memory are lost. It can be written to and read from during program execution. The

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01001ED1V01Y202003DCS058&iName=master.img-187.jpg&w=287&h=204

2.3. ADVANCED: ARDUINOUNOR3HOSTPROCESSOR –THEATMEGA328 37

Figure 2.4: ATmega328 block diagram. (Figure used with permission of Microchip, Incorpo-
rated.)

ATmega328 is equipped with 2K bytes of SRAM. A small portion of the SRAM is set aside for
the general-purpose registers used by the processor and also for the input/output and peripheral
subsystems aboard the microcontroller. A header file provides the link between register names
used in a program and their physical description and location in memory. During program exe-
cution, RAM is used to store global variables, support dynamic memory allocation of variables,
and to provide a location for the stack.

38 2. ARDUINOPLATFORMS

2.3.3 ATMEGA328 PORT SYSTEM
The Microchip ATmega328 is equipped with four, 8-bit general purpose, digital input/output
(I/O) ports designated PORTB (8 bits, PORTB[7:0]), PORTC (7 bits, PORTC[6:0]), and
PORTD (8 bits, PORTD[7:0]). As shown in Figure 2.5, each port has three registers associated
with it:

• Data Register PORTx—used to write output data to the port,

• Data Direction Register DDRx—used to set a specific port pin to either output (1) or
input (0), and

• Input Pin Address PINx—used to read input data from the port.

Figure 2.5b describes the settings required to configure a specific port pin to either input
or output. If selected for input, the pin may be selected for either an input pin or to operate in
the high impedance (Hi-Z) mode. If selected for output, the pin may be further configured for
either logic low or logic high.

Port pins are usually configured at the beginning of a program for either input or out-
put and their initial values are then set. Usually all eight pins for a given port are configured
simultaneously.

2.3.4 ATMEGA328 INTERNAL SYSTEMS
In this section, we provide a brief overview of the internal features of the ATmega328. It should
be emphasized that these features are the internal systems contained within the confines of
the microcontroller chip. These built-in features allow complex and sophisticated tasks to be
accomplished by the microcontroller.

2.3.4.1 ATmega328 Time Base
The microcontroller is a complex synchronous state machine. It responds to program steps in a
sequential manner as dictated by a user-written program.Themicrocontroller sequences through
a predictable fetch-decode-execute sequence. Each unique assembly language program instruc-
tion issues a series of signals to control the microcontroller hardware to accomplish instruction
related operations.

The speed at which a microcontroller sequences through these actions is controlled by a
precise time base called the clock. The clock source is routed throughout the microcontroller to
provide a time base for all peripheral subsystems. The ATmega328 may be clocked internally
using a user-selectable resistor capacitor (RC) time base or it may be clocked externally. The
RC internal time base is selected using programmable fuse bits. You may choose from several
different internal fixed clock operating frequencies.

To provide for a wider range of frequency selections an external time source may be used.
The external time sources, in order of increasing accuracy and stability, are an external RC net-

2.3. ADVANCED: ARDUINOUNOR3HOSTPROCESSOR –THEATMEGA328 39

Port x Data Register - PORTx

7

Port x Data Direction Register - DDRx

7

Port x Input Pins Address - PINx

7

0

0

0

DDxn PORTxn I/O Comment

0

0

1

1

0

1

0

1

input

input

output

output

Tri-state (Hi-Z)

Source Current if Externally Pulled Low

Output Low (Sink)

Output High (Source)

(a) Port Associated Registers

(b) Port Pin Configuration

x: Port Designator (B, C, D)

n: Pin Designator (0 – 7)

Pullup

No

Yes

No

No

Figure 2.5: ATmega328 port configuration registers.

work, a ceramic resonator, or a crystal oscillator. The system designer chooses the time base
frequency and clock source device appropriate for the application at hand. Generally speaking,
if the microcontroller will be interfaced to external peripheral devices either a ceramic resonator
or a crystal oscillator should be used as a time base.

2.3.4.2 ATmega328 Timing Subsystem
The ATmega328 is equipped with a complement of timers which allows the user to generate a
precision output signal, measure the characteristics (period, duty cycle, frequency) of an incom-
ing digital signal, or count external events. Specifically, the ATmega328 is equipped with two
8-bit timer/counters and one 16-bit counter.

40 2. ARDUINOPLATFORMS
2.3.4.3 PulseWidthModulation Channels
A pulse width modulated (PWM) signal is characterized by a fixed frequency and a varying
duty cycle. Duty cycle is the percentage of time a repetitive signal is logic high during the signal
period. It may be formally expressed as:

dutycycleŒ%� D .on time=period/ � .100%/:

The ATmega328 is equipped with four PWM channels. The PWM channels coupled
with the flexibility of dividing the time base down to different PWM subsystem clock source
frequencies allows the user to generate a wide variety of PWM signals: from relatively high-
frequency low-duty cycle signals to relatively low-frequency high-duty cycle signals.

PWM signals are used in a wide variety of applications including controlling the position
of a servo motor and controlling the speed of a DC motor.

2.3.4.4 ATmega328 Serial Communications
The ATmega328 is equipped with a variety of different serial communication subsystems includ-
ing the Universal Synchronous and Asynchronous Serial Receiver and Transmitter (USART),
the serial peripheral interface (SPI), and the Two-wire Serial Interface. What these systems have
in common is the serial transmission of data. In a serial communications transmission, serial data
is sent a single bit at a time from transmitter to receiver.

ATmega328 Serial USART The serial USART may be used for full duplex (two-way) com-
munication between a receiver and transmitter. This is accomplished by equipping the AT-
mega328 with independent hardware for the transmitter and receiver. The USART is typically
used for asynchronous communication. That is, there is not a common clock between the trans-
mitter and receiver to keep them synchronized with one another. To maintain synchronization
between the transmitter and receiver, framing start and stop bits are used at the beginning and
end of each data byte in a transmission sequence.

The ATmega328 USART is quite flexible. It has the capability to be set to different data
transmission rates known as the Baud (bits per second) rate. The USART may also be set for
data bit widths of 5–9 bits with one or two stop bits. Furthermore, the ATmega328 is equipped
with a hardware generated parity bit (even or odd) and parity check hardware at the receiver. A
single parity bit allows for the detection of a single bit error within a byte of data. The USART
may also be configured to operate in a synchronous mode.

ATmega328 Serial Peripheral Interface – SPI The ATmega328 Serial Peripheral Interface
(SPI) can also be used for two-way serial communication between a transmitter and a receiver.
In the SPI system, the transmitter and receiver share a common clock source. This requires an
additional clock line between the transmitter and receiver but allows for higher data transmission
rates as compared to the USART.

2.4. ARDUINOUNOR3OPENSOURCE SCHEMATIC 41
The SPI may be viewed as a synchronous 16-bit shift register with an 8-bit half residing

in the transmitter and the other 8-bit half residing in the receiver. The transmitter is designated
the master since it is providing the synchronizing clock source between the transmitter and the
receiver. The receiver is designated as the slave.

ATmega328 Two-Wire Serial Interface – TWI The TWI subsystem allows the system de-
signer to network related devices (microcontrollers, transducers, displays, memory storage, etc.)
together into a system using a two-wire interconnecting scheme. The TWI allows a maximum of
128 devices to be interconnected. Each device has its own unique address and may both transmit
and receive over the two-wire bus at frequencies up to 400 kHz. This allows the device to freely
exchange information with other devices in the network within a small area.

2.3.4.5 ATmega328 Analog to Digital Converter – ADC
The ATmega328 is equipped with an eight-channel ADC subsystem. The ADC converts an
analog signal from the outside world into a binary representation suitable for use by the mi-
crocontroller. The ATmega328 ADC has 10-bit resolution. This means that an analog voltage
between 0 and 5 V will be encoded into one of 1024 binary representations between .000/16 and
.3FF /16. This provides the ATmega328 with a voltage resolution of approximately 4.88 mV.

2.3.4.6 ATmega328 Interrupts
The normal execution of a program follows a designated sequence of instructions. However,
sometimes this normal sequence of events must be interrupted to respond to high priority faults
and status both inside and outside the microcontroller. When these higher priority events occur,
the microcontroller suspends normal operation and executes event specific actions contained
within an interrupt service routine (ISR). Once the higher priority event has been serviced by
the ISR, the microcontroller returns and continues processing the normal program.

The ATmega328 is equipped with a complement of 26 interrupt sources. Two of the in-
terrupts are provided for external interrupt sources while the remaining interrupts support the
efficient operation of peripheral subsystems aboard the microcontroller.

2.4 ARDUINOUNOR3OPENSOURCE SCHEMATIC

The entire line of Arduino products is based on the visionary concept of open-source hardware
and software. That is, hardware and software developments are openly shared among users to
stimulate new ideas and advance the Arduino concept. In keeping with the Arduino concept,
the Arduino team openly shares the schematic of the Arduino UNO R3 processing board; see
Figure 2.6.

42 2. ARDUINOPLATFORMS

Figure 2.6: ArduinoUNOR3 open-source schematic. (Figure adapted and used with permission
of the Arduino Team (CC BY-NC-SA) www.arduino.cc.)

www.arduino.cc

2.5. ARDUINOMEGA 2560 R3 PROCESSINGBOARD 43

USB

Connector

(to PC)

Timebase

Power Supply

Connector

(7-12 VDC)

Power Supply

Terminals
Analog Inputs

Digital

Input/output

Serial

Communicationspulse width modulation (PWM)

ISP Programming

Connector
USB-to-Serial

Converter

Figure 2.7: Arduino Mega2560 layout. (Figure adapted and used with permission of Arduino
Team (CC BY-NC-SA) www.arduino.cc.)

2.5 ARDUINOMEGA 2560 R3 PROCESSINGBOARD
The Arduino Mega 2560 REV3 (R3) processing board is illustrated in Figure 2.7. Working
clockwise from the left, the board is equipped with a USB connector to allow programming the
processor from a host PC. The board may also be programmed using In System Programming
(ISP) techniques. A 6-pin ISP programming connector is on the opposite side of the board from
the USB connector.

The board is equipped with a USB-to-serial converter to allow compatibility between
the host PC and the serial communications systems aboard the ATmega2560 processor. The
Mega 2560 R3 is also equipped with several small surface-mount LEDs to indicate TX and RX
and an extra LED for project use. The header strip at the top of the board provides access to
PWM signals and serial communications. The header strip at the right side of the board provides
access to multiple digital input/output pins. The bottom of the board provides analog inputs for
the ADC system and power supply terminals. Finally, the external power supply connector is
provided at the bottom left corner of the board. The header strips conveniently mate with an
Arduino shield (to be discussed shortly) to extend the features of the host processor.

2.6 ADVANCED: ARDUINOMEGA 2560HOST
PROCESSOR –THEATMEGA2560

The host processor for the Arduino Mega 2560 is the Microchip Atmega2560. The “2560”
is a 100 pin, surface-mount 8-bit microcontroller. The architecture is based on the Reduced
Instruction Set Computer (RISC) concept which allows the processor to complete 16 million

www.arduino.cc

44 2. ARDUINOPLATFORMS

Arduino Mega 2560

Hosted on the

ATmega2560

Memory System

- 256K byte, ISP

Programmable Flash

- 4K byte, byte

Addressable EEPROM

- 8K byte RAM

Timer System

- Two 8-bit Timer/Counter

- Four 16-bit Timer/Counter

- Twelve PWM Channels

Analog-to-Digital Converter

- 16 Channel 10-bit ADC

Serial Communications

- 4 Channel Serial USART

- Serial Peripheral Interface

- Two Wire Interface (TWI)

Port System

- 11 Each 8-bit digital I/O

 Ports on ATmega2560

- On Arduino Mega 2560

 -- 54 digital I/O pins

 -- 14 can be used as PWM

Interrupt System

- 57 Total Interrupts

- 8 External Pin Interrupts

- 3 Pin Change Interrupts

Figure 2.8: Arduino mega 2560 systems.

instructions per second (MIPS) when operating at 16 MHz. The “2560” is equipped with a wide
variety of features as shown in Figure 2.8. The features may be conveniently categorized into the
following systems:

• memory system,

• port system,

• timer system,

• analog-to-digital converter (ADC),

• interrupt system, and

• serial communications.

2.6.1 ARDUINOMEGA 2560 /ATMEGA2560HARDWAREFEATURES
The Arduino Mega 2560’s processing power is provided by the ATmega2560. The pin out dia-
gram and block diagram for this processor are provided in Figures 2.9 and 2.10. In this section,
we provide a brief overview of the systems onboard the processor.

2.6. ADVANCED: ARDUINOMEGA 2560HOSTPROCESSOR –THEATMEGA2560 45

Figure 2.9: ATmega2560 pin out. (Figure used with permission of Microchip, Incorporated.)

2.6.2 ATMEGA2560MEMORY
The ATmega2560 is equipped with three main memory sections: flash electrically erasable pro-
grammable read only memory (EEPROM), static random access memory (SRAM), and byte-
addressable EEPROM for data storage.

46 2. ARDUINOPLATFORMS

Figure 2.10: ATmega2560 block diagram. (Figure used with permission of Microchip, Incor-
porated.)

2.6.2.1 ATmega2560 In-System Programmable Flash EEPROM
Bulk programmable flash EEPROM is used to store programs. It can be erased and programmed
as a single unit. Also, should a program require a large table of constants, it may be included as a
global variable within a program and programmed into flash EEPROM with the rest of the pro-
gram. Flash EEPROM is nonvolatile meaning memory contents are retained when microcon-
troller power is lost. The ATmega2560 is equipped with 256K bytes of onboard reprogrammable
flash memory.

2.6. ADVANCED: ARDUINOMEGA 2560HOSTPROCESSOR –THEATMEGA2560 47
2.6.2.2 ATmega2560 Byte-Addressable EEPROM
Byte-addressable EEPROM memory is used to permanently store and recall variables during
program execution. It too is nonvolatile. It is especially useful for logging system malfunctions
and fault data during program execution. It is also useful for storing data that must be retained
during a power failure but might need to be changed periodically. Examples where this type of
memory is used are found in applications to store system parameters, electronic lock combina-
tions, and automatic garage door electronic unlock sequences. The ATmega2560 is equipped
with 4096 bytes of byte-addressable EEPROM.

2.6.2.3 ATmega2560 Static RandomAccessMemory (SRAM)
Static RAM memory is volatile. That is, if the microcontroller loses power, the contents of
SRAM memory are lost. It can be written to and read from during program execution. The
ATmega2560 is equipped with 8 K bytes of SRAM.A small portion of the SRAM is set aside for
the general-purpose registers used by the processor and also for the input/output and peripheral
subsystems aboard the microcontroller. During program execution, RAM is used to store global
variables, support dynamic memory allocation of variables, and to provide a location for the
stack.

2.6.3 ATMEGA2560 PORT SYSTEM
The Microchip ATmega2560 is equipped with eleven, 8-bit general purpose, digital in-
put/output (I/O) ports designated:

• PORTA (8 bits, PORTA[7:0])

• PORTB (8 bits, PORTB[7:0])

• PORTC (7 bits, PORTC[7:0])

• PORTD (8 bits, PORTD[7:0])

• PORTE (8 bits, PORTE[7:0])

• PORTF (8 bits, PORTF[7:0])

• PORTG (7 bits, PORTG[7:0])

• PORTH (8 bits, PORTH[7:0])

• PORTJ (8 bits, PORTJ[7:0])

• PORTK (8 bits, PORTK[7:0])

• PORTL (7 bits, PORTL[7:0])

48 2. ARDUINOPLATFORMS

Port x Data Register - PORTx

7

Port x Data Direction Register - DDRx

7

Port x Input Pins Address - PINx

7

0

0

0

DDxn PORTxn I/O Comment

0

0

1

1

0

1

0

1

input

input

output

output

Tri-state (Hi-Z)

Source Current if Externally Pulled Low

Output Low (Sink)

Output High (Source)

(a) Port Associated Registers

(b) Port Pin Configuration

x: Port Designator (B, C, D)

n: Pin Designator (0 – 7)

Pullup

No

Yes

No

No

Figure 2.11: ATmega2560 port configuration registers.

All of the ports also have alternate functions which will be described later. In this section, we
concentrate on the basic digital I/O port features.

As shown in Figure 2.11, each port has three registers associated with it:
• Data Register PORTx—used to write output data to the port,

• Data Direction Register DDRx—used to set a specific port pin to either output (1) or
input (0), and

• Input Pin Address PINx—used to read input data from the port.
Figure 2.11b describes the settings required to configure a specific port pin to either input

or output. If selected for input, the pin may be selected for either an input pin or to operate in

2.6. ADVANCED: ARDUINOMEGA 2560HOSTPROCESSOR –THEATMEGA2560 49
the high impedance (Hi-Z) mode. If selected for output, the pin may be further configured for
either logic low or logic high.

Port pins are usually configured at the beginning of a program for either input or out-
put and their initial values are then set. Usually all eight pins for a given port are configured
simultaneously.

2.6.4 ATMEGA2560 INTERNAL SYSTEMS
In this section, we provide a brief overview of the internal features of the ATmega2560. It should
be emphasized that these features are the internal systems contained within the confines of
the microcontroller chip. These built-in features allow complex and sophisticated tasks to be
accomplished by the microcontroller.

2.6.4.1 ATmega2560 Time Base
The microcontroller is a complex synchronous state machine. It responds to program steps in a
sequential manner as dictated by a user-written program.Themicrocontroller sequences through
a predictable fetch-decode-execute sequence. Each unique assembly language program instruc-
tion issues a series of signals to control the microcontroller hardware to accomplish instruction-
related operations.

The speed at which a microcontroller sequences through these actions is controlled by a
precise time base called the clock. The clock source is routed throughout the microcontroller to
provide a time base for all peripheral subsystems. The ATmega2560 may be clocked internally
using a user-selectable resistor capacitor (RC) time base or it may be clocked externally. The RC
internal time base is selected using programmable fuse bits. You may choose an internal fixed
clock operating frequency of 128 kHz or 8 MHz. The clock frequency may be prescaled by a
number of different clock division factors (1, 2, 4, etc.).

To provide for a wider range of frequency selections an external time source may be used.
The external time sources, in order of increasing accuracy and stability, are an external RC net-
work, ceramic resonator, or crystal oscillator. The system designer chooses the time base fre-
quency and clock source device appropriate for the application at hand. Generally speaking, if
the microcontroller will be interfaced to external peripheral devices either a ceramic resonator
or a crystal oscillator should be used as a time base.

2.6.4.2 ATmega2560 Timing Subsystem
The ATmega2560 is equipped with a complement of timers which allows the user to generate a
precision output signal, measure the characteristics (period, duty cycle, frequency) of an incom-
ing digital signal or count external events. Specifically, the ATmega2560 is equipped with two
8-bit timer/counters and four 16-bit timer/counters.

50 2. ARDUINOPLATFORMS
2.6.4.3 PulseWidthModulation Channels
A PWM signal is characterized by a fixed frequency and a varying duty cycle. Duty cycle is the
percentage of time a repetitive signal is logic high during the signal period. It may be formally
expressed as:

dutycycleŒ%� D .on time=period/ � .100%/:

The ATmega2560 is equipped with four 8-bit PWM channels and 12 PWM channels
with programmable resolution. The PWM channels coupled with the flexibility of dividing the
time base down to different PWM subsystem clock source frequencies allow the user to gen-
erate a wide variety of PWM signals: from relatively high-frequency low-duty cycle signals to
relatively low-frequency high-duty cycle signals.

PWM signals are used in a wide variety of applications including controlling the position
of a servo motor and controlling the speed of a DC motor.

2.6.4.4 ATmega2560 Serial Communications
The ATmega2560 is equipped with a host of different serial communication subsystems includ-
ing the Universal Synchronous and Asynchronous Serial Receiver and Transmitter (USART),
the serial peripheral interface (SPI), and the Two-wire Serial Interface. What all of these sys-
tems have in common is the serial transmission of data. In a serial communications transmission,
serial data is sent a single bit at a time from transmitter to receiver.

ATmega2560 Serial USART The serial USART may be used for full duplex (two-way) com-
munication between a receiver and transmitter. This is accomplished by equipping the AT-
mega2560 with independent hardware for the transmitter and receiver. The USART is typically
used for asynchronous communication. That is, there is not a common clock between the trans-
mitter and receiver to keep them synchronized with one another. To maintain synchronization
between the transmitter and receiver, framing start and stop bits are used at the beginning and
end of each data byte in a transmission sequence.

The ATmega2560 USART is quite flexible. It has the capability to be set to a variety of
data transmission rates known as the Baud (bits per second) rate. The USART may also be
set for data bit widths of 5–9 bits with one or two stop bits. Furthermore, the ATmega2560 is
equipped with a hardware generated parity bit (even or odd) and parity check hardware at the
receiver. A single parity bit allows for the detection of a single bit error within a byte of data.
The USART may also be configured to operate in a synchronous mode.

ATmega2560 Serial Peripheral Interface-SPI The ATmega2560 Serial Peripheral Interface
(SPI) can also be used for two-way serial communication between a transmitter and a receiver.
In the SPI system, the transmitter and receiver share a common clock source. This requires an
additional clock line between the transmitter and receiver but allows for higher data transmission
rates as compared to the USART.

2.7. ARDUINOMEGA 2560OPEN SOURCE SCHEMATIC 51
The SPI may be viewed as a synchronous 16-bit shift register with an 8-bit half residing

in the transmitter and the other 8-bit half residing in the receiver. The transmitter is designated
the master since it is providing the synchronizing clock source between the transmitter and the
receiver. The receiver is designated as the slave.

ATmega2560 Two-Wire Serial Interface-TWI The TWI subsystem allows the system de-
signer to network-related devices (microcontrollers, transducers, displays, memory storage, etc.)
together into a system using a two-wire interconnecting scheme. The TWI allows a maximum
of 128 devices to be interconnected together. Each device has its own unique address and may
both transmit and receive over the two-wire bus at frequencies up to 400 kHz. This allows the
device to freely exchange information with other devices in the network within a small area.

2.6.4.5 ATmega2560 Analog to Digital Converter-ADC
The ATmega2560 is equipped with a 16-channel analog to digital converter (ADC) subsystem.
The ADC converts an analog signal from the outside world into a binary representation suit-
able for use by the microcontroller. The ATmega2560 ADC has 10-bit resolution. This means
that an analog voltage between 0 and 5 V will be encoded into one of 1024 binary representa-
tions between .000/16 and .3FF /16. This provides the ATmega2560 with a voltage resolution
of approximately 4.88 mV.

2.6.4.6 ATmega2560 Interrupts
The normal execution of a program follows a designated sequence of instructions. However,
sometimes this normal sequence of events must be interrupted to respond to high-priority faults
and status both inside and outside the microcontroller. When these higher-priority events occur,
the microcontroller suspends normal operation and executes event-specific actions contained
within an ISR.Once the higher-priority event has been serviced via the ISR, themicrocontroller
returns and continues processing the normal program.

The ATmega2560 is equipped with a complement of 57 interrupt sources. Eight inter-
rupts are provided for external interrupt sources. Also, the ATmega2560 is equipped with three
pin change interrupts. The remaining interrupts support the efficient operation of peripheral
subsystems aboard the microcontroller.

2.7 ARDUINOMEGA 2560OPEN SOURCE SCHEMATIC
The entire line of Arduino products is based on the visionary concept of open-source hardware
and software. That is, hardware and software developments are openly shared among users to
stimulate new ideas and advance the Arduino concept. In keeping with the Arduino concept,
the Arduino team openly shares the schematic of the Arduino Mega 2560 processing board. It
is available for download at www.arduino.cc.

www.arduino.cc

52 2. ARDUINOPLATFORMS

Ground

Ground

Vcc

TXD

RXD

RTS

USB

to Host

Figure 2.12: LilyPad Arduino with USB 2 serial converter. (Figure adapted and used with per-
mission of Arduino Team (CC BY-NC-SA) www.arduino.cc.)

2.8 LILYPADARDUINO

The LilyPad Arduino was developed by Dr. Leah Buechley, Ph.D. for use in wearable elec-
tronic fashions (e-textiles). The LilyPad may be sewn into clothing. Its complement of support
hardware such as a power supply and input and output devices are connected to the LilyPad via
conductive thread. Dr. Buechley has written several books about this fascinating synergy be-
tween electronics and the fashion world. Sew Electric—A Collection of DIY Projects that Combine
Fabric, Electronics, and Programming co-written by Buechley, Kanjun Qiu, and Sonja de Boer
provide a number of LilyPad based do it yourself (DIY) projects.

2.8.1 ADVANCED: LILYPADPROCESSOR
A wearable LilyPad processor is available in several different configurations. The LilyPad Ar-
duino Main Board featured here hosts an Microchip ATmega328 processor shown in Fig-
ure 2.12. Note the use of a USB 2 serial converter and an USB 2 cable (Type A male to mini
Type B female) to connect to the host PC. This is the same processor onboard the UNO R3. The
LilyPad mainboard operates at 8 MHz and is equipped with 14 general purpose input/output
pins, six PWM pins, and six analog input/output pins. The LilyPad pinout and schematic are
shown in Figure 2.13.

www.arduino.cc

2.8. LILYPADARDUINO 53

ground

5 VDC

30/PD0/RXD

28/PC5/ADC5/SCL

27/PC4/ADC4/SDA

26/PC3/ADC3

25/PC2/ADC2

24/PC1/ADC1

23/PC0/ADC0

17/PB5/SCK

16/PB4/MISO

15/PB3/MOSI/OC2

14/PB2/OC1B

13/PB1/OC1A

31/PD1/TXD

32/PD2/INT0

1/PD3/INT1/OC2B

2/PD4/T0/XCK

9/PD5/T1/OC02

10/PD6/AIN0/OC0A

11/PD7/AIN1

12/PB0/CLK0/ICP1

(a) LilyPad Arduino Pinout

ily

(b) LilyPad Arduino Schematic

Figure 2.13: LilyPad Arduino schematic. (Figure adapted and used with permission of Arduino
Team (CC BY-NC-SA) (www.arduino.cc).)

www.arduino.cc

54 2. ARDUINOPLATFORMS

Figure 2.14: Arduino shield. (Used with permission from SparkFun Electronics (CC BY-NC-
SA).)

2.9 OTHERARDUINO-BASEDPLATFORMS
There is a wide variety of Arduino-based platforms. They are categorized by function and feature
into:

• entry level,

• enhanced features,

• internet of Things,

• education, and

• wearable.
Information on specific products within each category are available at www.ardunio.cc.

2.10 EXTENDINGTHEHARDWAREFEATURESOFTHE
ARDUINOPLATFORMS

Additional features and external hardware may be added to selected Arduino platforms by using
a daughter card concept. The daughter card is called an Arduino Shield, as shown in Figure 2.14.

www.ardunio.cc
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01001ED1V01Y202003DCS058&iName=master.img-5272.jpg&w=277&h=243

2.11. APPLICATION: ARDUINOHARDWARE STUDIO 55

Figure 2.15: Arduino hardware studio.

The shield mates with the header pins on the Arduino board. The shield provides a small fab-
rication area, a processor reset button, and a general use pushbutton and two LEDs. A large
number of shields have been developed to provide extended specific features (e.g., motor con-
trol, communications, etc.) for the Arduino boards. We discuss specific shields in Chapter 3.

56 2. ARDUINOPLATFORMS

2.11 APPLICATION: ARDUINOHARDWARE STUDIO
Much like an artist uses a sketch box, we will use an Arduino Hardware Studio throughout
the book to develop projects. In keeping with the DIY spirit of Arduino, we have constructed
the Studio using readily available off-the-shelf products as shown in Figure 2.15. The Studio
includes the following:

• a yellow Pelican Micro Case #1040,

• an Arduino UNO R3 evaluation board,

• two Jameco JE21 3.3 x 2.1 inch solderless breadboards, and

• one piece of black plexiglass.

We purposely have not provided any construction details. Instead, we encourage you to
use your own imagination to develop and construct your own Arduino Hardware Studio.

2.12 APPLICATION: AUTONOMOUSMAZENAVIGATING
ROBOT

An autonomous, maze-navigating robot is equipped with sensors to detect the presence of maze
walls and navigate about the maze. The robot has no prior knowledge about the maze config-
uration. It uses the sensors and an onboard algorithm to determine the robot’s next move. The
overall goal is to navigate from the starting point of the maze to the end point as quickly as pos-
sible without bumping into maze walls, as shown in Figure 2.16. Maze walls are usually painted
white to provide a good, light-reflective surface, whereas, the maze floor is painted matte black
to minimize light reflections.

It would be helpful to review the fundamentals of robot steering and motor control. Fig-
ure 2.17 illustrates the fundamental concepts. Robot steering is dependent upon the number of
powered wheels and whether the wheels are equipped with unidirectional or bidirectional con-
trol. Additional robot steering configurations are possible. An H-bridge is typically required for
bidirectional control of a DC motor. We discuss the H-bridge in the next chapter.

We equip the Adafruit Mini Round Robot (#3216) with an Arduino UNO R3 for maze
navigation; see Figure 2.18. The robot is controlled by two 6 VDC motors which independently
drive a left and right wheel. A third non-powered drag ball provides tripod stability for the
robot. We also equip the platform with three Sharp GP2Y0A21YKOF IR sensors, as shown
in Figure 2.19. The sensors are available from SparkFun Electronics (www.sparkfun.com). We
mount the sensors on a bracket constructed from thin aluminum. Dimensions for the bracket
are provided in the figure. Alternatively, the IR sensors may be mounted to the robot platform
using “L” brackets available from a local hardware store. The characteristics of the sensor are
provided in Figure 2.20.

www.sparkfun.com

2.12. APPLICATION: AUTONOMOUSMAZENAVIGATINGROBOT 57

Start

Finish

Figure 2.16: Autonomous robot within maze.

2.12.1 REQUIREMENTS
The requirements for this project are simple, the robot must autonomously navigate through the
maze without touching maze walls.

2.12.2 CIRCUITDIAGRAM
The circuit diagram for the robot is provided in Figure 2.21. The three IR sensors (left, middle,
and right) are mounted on the leading edge of the robot to detect maze walls. The output from
the sensors is fed to three Arduino UNO R3 ADC channels (ANALOG IN 0–2). The robot
motors will be driven by PWM channels (PWM: DIGITAL 11 and PWM: DIGITAL 10).

The Arduino UNO R3 is interfaced to the motors via a Darlington NPN transistor
(TIP120) with enough drive capability to handle the maximum current requirements of the mo-
tor (1.5 A hard stall current). The robot is powered by a 9 VDC power supply. Three 1N4001
diodes are placed in series with the motor to reduce the motor supply voltage to approximately
6.9 VDC. The 9 VDC supply is also fed to a 5 VDC voltage regulator to power the Arduino
UNO R3. To save on battery expense, it is recommended to use a 9 VDC, 2A rated inexpensive,
wall-mount power supply to provide power to the onboard 5 VDC voltage regulator. A power
umbilical of braided wire may be used to provide power to the robot while navigating about the
maze.

Structure Chart. The structure chart for the robot project is provided in Figure 2.22.

58 2. ARDUINOPLATFORMS

Pivot

Point
Pivot

Point

Pivot

Point

Pivot

Point

Pivot

Point

(a) Two-wheel, forward

motor control

(b) Two-wheel, bi-directional

motor control

(c) Two-wheel, forward

motor control, front-wheel drive

(e) Four-wheel, bi-directional motor control

(d) Two-wheel, forward

motor control, rear-wheel drive

Figure 2.17: Robot control configurations.

2.12. APPLICATION: AUTONOMOUSMAZENAVIGATINGROBOT 59

Figure 2.18: Adafruit mini round robot.

60 2. ARDUINOPLATFORMS

1/2˝

1/2˝
1/2˝

2˝

1-7/16˝

6˝

(a) Top view of robot platform

(b) Construction details for sensor bracket

Sharp GP12D
IR Sensor

Figure 2.19: Mini round robot platform modified with three IR sensors.

2.12. APPLICATION: AUTONOMOUSMAZENAVIGATINGROBOT 61

5 cm

3 V

Limit IR Sensor Response
to 1.5 VDC Maximum with
1 Mohm Trimmer Potentiometer

S
en

so
r

O
ut

p
ut

 V
ol

ta
ge

 [
V

]

Range [cm]

Figure 2.20: Sharp GP2Y0A21YKOF IR sensor profile.

UML Activity Diagrams. The UML activity diagram for the robot is provided in Fig-
ure 2.23.

2.12.3 MINI ROUNDROBOTCONTROLALGORITHM
In this section, we provide the basic framework for the robot control algorithm. The control
algorithm will read the IR sensors attached to the Arduino UNO R3 ANALOG IN (pins 0–
2). In response to the wall placement detected, it will render signals to turn the robot to avoid
the maze walls. Provided in Figure 2.24 is a truth table that shows all possibilities of maze
placement that the robot might encounter. A detected wall is represented with a logic one. An
asserted motor action is also represented with a logic one.

The robot motors may only be moved in the forward direction. We review techniques to
provide bi-directional motor control in Chapter 3. To render a left turn, the left motor is stopped
and the right motor is asserted until the robot completes the turn. To render a right turn, the
opposite action is required.

The task in writing the control algorithm is to take the UML activity diagram provided in
Figure 2.23 and the actions specified in the robot action truth table (Figure 2.24) and transform
both into an Arduino sketch. This may seem formidable but we take it a step at a time.

The control algorithm begins with Arduino UNO R3 pin definitions. Variables are then
declared for the readings from the three IR sensors. The two required Arduino functions follow:
setup() and loop(). In the setup() function, Arduino UNO R3 pins are declared as output. The
loop() begins by reading the current value of the three IR sensors. The 512 value corresponds to
a particular IR sensor range. This value may be adjusted to change the range at which the maze
wall is detected. The read of the IR sensors is followed by an eight-part if-else if statement. The

62 2. ARDUINOPLATFORMS

M+ -

3
3
0

1
N

4
0
0

1

1
N

4
0

0
1 L
ef

t
M

o
to

r/
W

h
ee

l

In
te

rf
ac

e

R
ig

h
t

M
o
to

r/
W

h
ee

l

In
te

rf
ac

e

M
o

to
r

C
u
rr

en
t

T
IP

1
2

0

N
P

N

D
ar

li
n

g
to

n

T
IP

1
2
0

N
P

N

D
ar

li
n

g
to

n

6
 V

D
C

M

6
 V

D
C

+ -

9
 V

D
C

1
N

4
0
0
1

1
N

4
0
0
1

1
N

4
0
0
1

3
3
0

1
N

4
0

0
1

9
 V

D
C

5
 V

D
C

2
2
0

2
N

2
2
2
2

1
0
 K

1
0
 K

1
0
 K

1
0
 K

1
0
 K

D
2

L
ef

t
T

u
rn

S
ig

n
al

5
 V

D
C

2
2
0

2
N

2
2
2
2

D
3

W
al

l

L
ef

t

5
 V

D
C

2
2
0

2
N

2
2
2
2

D
4

D
1
1

D
1
0

W
al

l

C
en

te
r

5
 V

D
C

2
2
0

2
N

2
2
2
2

D
5

W
al

l

R
ig

h
t

5
 V

D
C

2
2
0

2
N

2
2
2
2

D
6

R
ig

h
t

T
u
rn

S
ig

n
al

1
N

4
0

0
1

1
N

4
0
0
1

5
V

D
C

A
0

IR
 S

en
so

r
L

ef
t

5
V

D
C

A
1

IR
 S

en
so

r
M

id
d

le

5
V

D
C

A
2

IR
 S

en
so

r
R

ig
h

t

M
al

e
H

ea
d

er
P

in
s

V
ol

ta
ge

D
ro

p
p

in
g

D
io

d
es

P
ro

te
ct

io
n

D
io

d
e

S
en

so
r

C
on

n
ec

ti
on

”
-

 R
ed

: 5
 V

D
C

-
 Y

el
lo

w
: S

ig
n

al
 O

ut
p

ut
-

 B
la

ck
: G

ro
un

d

Figure 2.21: Robot circuit diagram. (UNO R3 illustration used with permission of the Arduino
Team (CC BY-NC-SA) (www.arduino.cc).)

www.arduino.cc

2.12. APPLICATION: AUTONOMOUSMAZENAVIGATINGROBOT 63

ADC

ADC

Initialize
ReadADC

determine_robot

_action

PWM_left PWM_right

Desired

Motor

Action

Ch for

Conv

Conv

Data

motor_control
Digital

Input/Output

Left
Turn

Signal

Left
Motor

Left
IR Sensor

Middle
IR Sensor

Right
IR Sensor

Right
Motor

Right
Turn

Signal

Wall
Detect
LEDS

Robot

Action

Senosr

Data

Figure 2.22: Robot structure diagram.

statement contains a part for each row of the truth table provided in Figure 2.24. For a given
configuration of sensed walls, the appropriate wall detection LEDs are illuminated followed by
commands to activate the motors (analogWrite) and illuminate the appropriate turn signals. The
analogWrite command issues a signal from 0–5 VDC by sending a constant from 0–255 using
PWM techniques. The turn signal commands provide to actions: the appropriate turns signals
are flashed and a 1.5 s total delay is provided. This provides the robot 1.5 s to render a turn. This
delay may need to be adjusted during the testing phase.

//***
//analog input pins

#define left_IR_sensor A0 //analog pin - left IR sensor

#define center_IR_sensor A1 //analog pin - center IR sensor
#define right_IR_sensor A2 //analog pin - right IR sensor

//digital output pins
//LED indicators - wall detectors

#define wall_left 3 //digital pin - wall_left
#define wall_center 4 //digital pin - wall_center
#define wall_right 5 //digital pin - wall_right

64 2. ARDUINOPLATFORMS

Issue Motor
Control Signals

Illuminate LEDs
- Wall Detected

Determine Robot
Action

Read Sensor Outputs
(left, middle, right)

Initialize Ports
Initialize ADC
Initialize PWM

Setup()
- Configure Pins for Output
- Define Global Variables

Illuminate LEDs
- Turn Signals
- Delay

Include Files
Global Variables

Function Prototypes

Issue Motor
Control Signals

Illuminate LEDs
- Wall Detected

Determine Robot
Action

Read Sensor Outputs
(left, middle, right)

Illuminate LEDs
- Turn Signals

Delay

While(1)

Loop()

(a) UML for C Programming (b) UML for Arduino Programming

Figure 2.23: Robot UML activity diagram.

2.12. APPLICATION: AUTONOMOUSMAZENAVIGATINGROBOT 65

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

0

1

1

1

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

1

Forward

Forward

Right

Left

Forward

Forward

Right

Right

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

2

3

4

5

6

7

Left

Sensor

Wall

Left

Wall

Middle

Wall

Right

Middle

Sensor

Right

Sensor

Right

Motor

Left

Motor

Right

Signal Comments

Left

Signal

Figure 2.24: Truth table for robot action.

//LED indicators - turn signals
#define left_turn_signal 2 //digital pin - left_turn_signal
#define right_turn_signal 6 //digital pin - right_turn_signal

//motor outputs
#define left_motor 11 //digital pin - left_motor
#define right_motor 10 //digital pin - right_motor

int left_IR_sensor_value; //declare
variable for left IR sensor
int center_IR_sensor_value; //declare
variable for center IR sensor
int right_IR_sensor_value; //declare
variable for right IR sensor

void setup()
{

//LED indicators - wall detectors
pinMode(wall_left, OUTPUT); //configure pin 1 for digital output
pinMode(wall_center, OUTPUT); //configure pin 2 for digital output
pinMode(wall_right, OUTPUT); //configure pin 3 for digital output

//LED indicators - turn signals
pinMode(left_turn_signal,OUTPUT); //configure pin 0 for digital output
pinMode(right_turn_signal,OUTPUT); //configure pin 4 for digital output

66 2. ARDUINOPLATFORMS

//motor outputs - PWM
pinMode(left_motor, OUTPUT); //configure pin 11 for digital output
pinMode(right_motor, OUTPUT); //configure pin 10 for digital output
}

void loop()
{

//read analog output from IR sensors
left_IR_sensor_value = analogRead(left_IR_sensor);
center_IR_sensor_value = analogRead(center_IR_sensor);
right_IR_sensor_value = analogRead(right_IR_sensor);

//robot action table row 0
if((left_IR_sensor_value < 512)&&(center_IR_sensor_value < 512)&&

(right_IR_sensor_value < 512))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(left_motor, 128);

//0 (off) to 255 (full speed)
analogWrite(right_motor, 128);

//0 (off) to 255 (full speed)
//turn signals

digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off

2.12. APPLICATION: AUTONOMOUSMAZENAVIGATINGROBOT 67
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 1
else if((left_IR_sensor_value < 512)&&(center_IR_sensor_value < 512)&&

(right_IR_sensor_value > 512))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(left_motor, 128);

//0 (off) to 255 (full speed)
analogWrite(right_motor, 128);

//0 (off) to 255 (full speed)
//turn signals

digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 2
else if((left_IR_sensor_value < 512)&&(center_IR_sensor_value > 512)&&

(right_IR_sensor_value < 512))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, HIGH); //turn LED on

68 2. ARDUINOPLATFORMS
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(left_motor, 128);

//0 (off) to 255 (full speed)
analogWrite(right_motor, 0);

//0 (off) to 255 (full speed)
//turn signals

digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 3
else if((left_IR_sensor_value < 512)&&(center_IR_sensor_value > 512)&&

(right_IR_sensor_value > 512))
{

//wall detection LEDs
digitalWrite(wall_left, LOW); //turn LED off
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(left_motor, 0);

//0 (off) to 255 (full speed)
analogWrite(right_motor, 128);

//0 (off) to 255 (full speed)
//turn signals

digitalWrite(left_turn_signal, HIGH); //turn LED on
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms

2.12. APPLICATION: AUTONOMOUSMAZENAVIGATINGROBOT 69
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, HIGH); //turn LED on
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 4
else if((left_IR_sensor_value > 512)&&(center_IR_sensor_value < 512)&&

(right_IR_sensor_value < 512))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, LOW); //turn LED off

//motor control
analogWrite(left_motor, 128);

//0 (off) to 255 (full speed)
analogWrite(right_motor, 128);

//0 (off) to 255 (full speed)
//turn signals

digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off

70 2. ARDUINOPLATFORMS
}

//robot action table row 5
else if((left_IR_sensor_value > 512)&&(center_IR_sensor_value < 512)&&

(right_IR_sensor_value > 512))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, LOW); //turn LED off
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(left_motor, 128);

//0 (off) to 255 (full speed)
analogWrite(right_motor, 128);

//0 (off) to 255 (full speed)
//turn signals

digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 6
else if((left_IR_sensor_value > 512)&&(center_IR_sensor_value > 512)&&

(right_IR_sensor_value < 512))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, LOW); //turn LED off

2.12. APPLICATION: AUTONOMOUSMAZENAVIGATINGROBOT 71
//motor control

analogWrite(left_motor, 128);
//0 (off) to 255 (full speed)

analogWrite(right_motor, 0);
//0 (off) to 255 (full speed)

//turn signals
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED OFF
digitalWrite(right_turn_signal, LOW); //turn LED OFF
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

//robot action table row 7
else if((left_IR_sensor_value > 512)&&(center_IR_sensor_value > 512)&&

(right_IR_sensor_value > 512))
{

//wall detection LEDs
digitalWrite(wall_left, HIGH); //turn LED on
digitalWrite(wall_center, HIGH); //turn LED on
digitalWrite(wall_right, HIGH); //turn LED on

//motor control
analogWrite(left_motor, 128);

//0 (off) to 255 (full speed)
analogWrite(right_motor, 0);

//0 (off) to 255 (full speed)
//turn signals

digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off

72 2. ARDUINOPLATFORMS
digitalWrite(right_turn_signal, LOW); //turn LED off
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, HIGH); //turn LED on
delay(500); //delay 500 ms
digitalWrite(left_turn_signal, LOW); //turn LED off
digitalWrite(right_turn_signal, LOW); //turn LED off
analogWrite(left_motor, 0); //turn motor off
analogWrite(right_motor,0); //turn motor off
}

}
//***

Testing the Control Algorithm. It is recommended that the algorithm be first tested
without the entire robot platform. This may be accomplished by connecting the three IR sensors
and LEDS to the appropriate pins on the Arduino UNO R3 as specified in Figure 2.21. In place
of the two motors and their interface circuits, two LEDs with the required interface circuitry
may be used. The LEDs will illuminate to indicate the motors would be on during different
test scenarios. Once this algorithm is fully tested in this fashion, the Arduino UNO R3 may be
mounted to the robot platform and connected to the motors. Full-up testing in the maze may
commence. Enjoy!

2.13 SUMMARY
In this chapter, we have provided an overview of the Arduino concept of open-source hardware.
This was followed by a description of the Arduino UNO R3 processor board powered by the
ATmega328. An overview of ATmega328 systems followed. This was followed by a description
of the Arduino Mega 2560 R3 processor board powered by the ATmega2560 and its systems.
We also reviewed the layout and features of the LilyPad Arduino. We then concluded with brief
guidelines on how to download and run the Arduino software environment.

2.14 REFERENCES
[1] SparkFun Electronics, 6175 Longbow Drive, Suite 200, Boulder, CO 80301,

www.sparkfun.com.

[2] Arduino homepage, www.arduino.cc.

[3] Microchip 8-bit AVRMicrocontroller with 4/8/16/32K Bytes In-System Programmable Flash,
ATmega48PA, 88PA, 168PA, 328P data sheet: 8171D-AVR-05/11, Microchip Corpora-
tion, 2325 Orchard Parkway, San Jose, CA 95131.

www.sparkfun.com
www.arduino.cc

2.15. CHAPTERPROBLEMS 73
[4] Microchip 8-bit AVR Microcontroller with 64/128/256K Bytes In-System Programmable

Flash, ATmega640/V, ATmega1280/V, 2560/V data sheet: 2549P-AVR-10/2012, Mi-
crochip Corporation, 2325 Orchard Parkway, San Jose, CA 95131.

2.15 CHAPTERPROBLEMS
2.1. Describe in your own words the Arduino open-source concept.

2.2. Sketch a block diagram of the ATmega328 or the ATmega2560 and its associated sys-
tems. Describe the function of each system.

2.3. Describe the different types of memory components within the ATmega328 or the AT-
mega2560. Describe applications for each memory type.

2.4. Describe the three different register types associated with each port.

2.5. How may the features of the Arduino UNO R3 be extended? The Mega 2560?

2.6. Prepare a table of features for different Arduino products.

2.7. Discuss different options for the ATmega328 or the ATmega2560 time base. What are
the advantages and disadvantages of each type?

2.8. Summarize the differences between the Arduino UNO R3 and Mega 2560. How would
you choose between the two in a given application?

2.9. Design and fabricate your own Arduino hardware studio.

75

C H A P T E R 3

Arduino Power and Interfacing
Objectives: After reading this chapter, the reader should be able to:

• specify a power supply system for an Arduino-based system;

• describe the voltage and current input/output parameters for the Arduino UNO R3, the
Arduino Mega 2560, and the Microchip AVR HC CMOS type microcontroller;

• apply the voltage and current input/output parameters toward properly interfacing input
and output devices to an Arduino processing board;

• interface a wide variety of input and output devices to an Arduino processing board;

• discuss the requirement for an optical-based interface;

• describe how to control the speed and direction of a DC motor; and

• describe how to control several types of AC loads.

3.1 OVERVIEW
We begin this chapter with exploring the power source requirements for an Arduino-based
board. We examine how to probably provide power from a variety of DC and AC power sources.
The remainder of the chapter provides information on how to interface input, output, high-
power DC, high-power AC, and a variety of other devices to the Arduino processor.

Some of the information for this chapter is originally from Morgan & Claypool Publish-
ers (M&C) book: Microcontrollers Fundamentals for Engineers and Scientists. With M&C per-
mission, portions of the chapter have been provided and updated here for your convenience. We
have also customized the information to the Arduino UNO R3, the Arduino Mega 2560, and
Arduino LilyPad.

3.2 ARDUINOPOWERREQUIREMENTS
The Arduino processing boards may be powered from the USB port during project develop-
ment. However, it is highly recommended that an external power supply be employed any time
a peripheral component is connected. This will allow developing projects beyond the limited
current capability of the USB port.

76 3. ARDUINOPOWERAND INTERFACING
For the UNO and the MEGA platforms, Arduino (www.arduino.cc) recommends a

power supply from 7–12 VDC with a 2.1-mm center positive plug. A power supply of this type
is readily available from a number of electronic parts supply companies. For example, the Jameco
#133891 power supply is a 9 VDC model rated at 300 mA and equipped with a 2.1-mm center
positive plug. It is available for under US$10. Both the UNO and MEGA have onboard voltage
regulators that maintain the incoming power supply voltage to a steady 5 VDC for the onboard
processor.

An external power supply may be connected to the Arduino LilyPad via the designated
“C” and “�” pads. The power supply should be a regulated 5 VDC source.

3.3 PROJECTREQUIREMENTS
An Arduino board is typically used in a wide variety of projects to control external peripheral
devices.These devicesmay require a variety ofDC and/or ACpower sources. To provide a proper
power source for an Ardunio-based system, the following information must be determined.

• What is the voltage and current requirements of each device in the system?

• Will the system have any current surge requirements (e.g., a motor starting current)?

• Will the system be operated where an AC source is present or will it be a remote system
requiring a DC supply?

• How long must the system operate before the batteries can be replaced or recharged?

• Is an alternate power source possible (e.g., solar panel)?

Once these questions are answered, a system power supply may be assembled. In the
remainder of this section, we discuss these different power alternatives.

3.3.1 ACOPERATION
If a source of AC power is readily available, an AC-to-DC converter may be used. These range
from a single voltage supply (described above) to a multiple DC voltage power supply with
different current specifications for each voltage. When selecting a source it is important to insure
it is regulated and fused. A regulator maintains the source voltage at the same value even under
different current loads. A fuse provides protection against a surge current the power supply
cannot handle. When the current requirements for each voltage are determined, a power supply
may be selected. Choose a power supply with at least double the current specification as required
by the maximum demands of the project. Jameco Electronics provides a wide variety of power
supplies (www.jameco.com).

www.arduino.cc
www.jameco.com

3.3. PROJECTREQUIREMENTS 77

3.3.2 DCOPERATION
For a remote or portable application a DC battery source of power may be used. To select a
battery the following requirements must be known: voltage, current, polarity, capacity, and if
rechargeable batteries are appropriate for the project.

• Voltage: The unit for voltage is Volts. The voltage for a battery is specified for when it is
new or fully charged (for a rechargeable type) battery. Typical battery voltages for AAA,
AA, C, and D cells are 1.5 VDC. The batteries may be placed in series to achieve higher
voltages. Plastic battery packs are available for battery series stacking to increase the overall
voltage rating of the power pack. Another common battery type is the 9 VDC rectangular
battery with the plus and minus terminals on the same end of the battery.

• Current: The unit for current is amperes or amps. The current drain of the battery is de-
termined by the load connected to it. For many Arduino based projects the current drain
may be specified in mA.

• Polarity: In most projects, a positive voltage referenced to ground is required. Some cir-
cuits, for example operational amplifier based instrumentation circuits, may require both
a positive and negative supply for proper operation.

• Capacity:The battery capacity specification is provide inmAHorAH (amp-hours). It pro-
vides an estimate of how long a battery will last under a particular current drain. Common
battery capacities are: AAA-1,000 mAH, AA-2,250 mAH, C-7,000 mAH, D-15,000
mAH, and 9 VDC-550 mAH. These values are only estimates. The exact battery capacity
is determined by battery technology and manufacturer.

• Rechargeable: Rechargeable batteries are available in a wide range of voltages and capaci-
ties. Capacity is typically provided within the manufacturer’s specification for a battery.

To properly match a battery to an embedded system, the battery voltage and capacity must
be specified. Battery capacity is typically specified as a mAH rating. For example, a typical
9 VDC non-rechargeable alkaline battery has a capacity of 550 mAH. If the embedded
system has amaximumoperating current of 50mA, it will operate for approximately eleven
hours before battery replacement is required.

A battery is typically used with a voltage regulator to maintain the voltage at a prescribed
level. Voltage regulators are available in a variety of voltage andmaximum current specifica-
tion. Figure 3.1 provides sample circuits to provide a +5 VDC and a ˙5 VDCportable bat-
tery source. Additional information on battery capacity and characteristics may be found
in Barrett and Pack [2].

78 3. ARDUINOPOWERAND INTERFACING

7805

9 VDC

+5 VDC

0.33 uF 0.1 uF

I

C

O

9 VDC

7805 +5 VDC

9 VDC 0.33 uF 0.1 uF

I

C

O

(a) +5 VDC Battery Supply

0.33 uF 0.1 uF

C

I
-5 VDCO7905

(b) +/-5 VDC Battery Supply

5 VDC
Voltage Regulator

5 VDC
Voltage Regulator

Figure 3.1: Battery supply circuits employing a 9 VDC battery with a 5 VDC regulators.

3.3.3 POWERINGTHEARDUINOFROMBATTERIES
As previously mentioned, for the UNO and the MEGA platforms, Arduino recommends a
power supply from 7–12 VDC with a 2.1-mm center positive plug (www.arduino.cc). For
low-power applications a single 9 VDC battery and clip may be used, as shown in Figure 3.2.
For higher-power applications, a AA battery pack may be used. It is important to note the UNO
R3 and Mega R3 Arduino boards have an onboard 5 VDC regulator.

3.3.4 SOLARPOWER
For some remote applications such as a weather or data collection station solar powermay be em-
ployed. A solar power system consists of a solar panel, a solar power manager, and a rechargeable

www.arduino.cc

3.4. ADVANCED:OPERATINGPARAMETERS 79

(a) 9 VDC Battery Clip (c) 9 VDC Battery Pack (b) 9 VDC Battery Pack with Lid

Figure 3.2: Arduino 9 VDC battery power.

Weize, 12 V, 5 Amp

Lead Acid Rechargeable Battery

DFRobot

Solar Power Manager

ALLPOWERS,

100 W, 18 V Solar Panel

Arduino-based System

Figure 3.3: Solar power system. Images courtesy of AllPowers, DFRobot, Weize, and Arduino.

battery. DFRobot provides a series of solar power managers for a wide range of project voltages
and capacities from very low power (3.3 VDC at 90 mA) to medium power. The DFR0580
Solar Power Manager for a 12 VDC lead-acid battery is highlighted here. With an 18 VDC,
100 W solar panel and a 12 VDC lead-acid battery; the DFR0580 can provide regulated output
voltages of 5 VDC at 5 amps and 12 VDC at 8 amps, as shown in Figure 3.3. We use this solar
power system in the next chapter to provide power to a remote weather station.

3.4 ADVANCED:OPERATINGPARAMETERS

Wenow introduce the extremely important concepts of the operating envelope for themicrocon-
troller. We begin by reviewing the voltage and current electrical parameters for the HC CMOS
based Microchip AVR line of microcontrollers. These parameters define the safe operating en-
velope of the microcontroller. We then show how to apply this information to properly interface
input and output devices to the Arduino UNO R3, the Arduino Mega 2560, and the Arduino

80 3. ARDUINOPOWERAND INTERFACING
LilyPad. We then discuss the special considerations for controlling a high-power DC or AC
load such as a motor and introduce the concept of an optical interface.

The importance of this interfacing information cannot be over emphasized. Any time an
input or an output device is connected to a microcontroller, the interface between the device and
themicrocontroller must be carefully analyzed and designed.This will ensure themicrocontroller
will continue to operate within specified parameters. Should the microcontroller be operated
outside its operational envelope, erratic, unpredictable, and an unreliable system may result.

3.4.1 ADVANCED:HCCMOSPARAMETERS
Most microcontrollers are members of the “HC,” or high-speed CMOS family of integrated
circuits (chips). As long as all components in a system are also of the “HC” family, as is the
case for the Arduino UNO R3, the Arduino Mega 2560, and the LilyPad; electrical interface
issues are minimal. If the microcontroller is connected to some component not in the “HC” fam-
ily, electrical interface analysis must be completed. Manufacturers readily provide the electrical
characteristic data necessary to complete this analysis in their support documentation.

To perform the interface analysis, there are eight different electrical specifications required
for electrical interface analysis. The electrical parameters are:

• VOH: the lowest guaranteed output voltage for a logic high,

• VOL: the highest guaranteed output voltage for a logic low,

• IOH: the output current for a VOH logic high,

• IOL: the output current for a VOL logic low,

• VIH: the lowest input voltage guaranteed to be recognized as a logic high,

• VIL: the highest input voltage guaranteed to be recognized as a logic low,

• IIH: the input current for a VIH logic high, and

• IIL: the input current for a VIL logic low.

These electrical characteristics are required for both the microcontroller and the external
components. Typical values for a microcontroller in the HC CMOS family assuming VDD = 5.0
volts and VSS = 0 volts are provided below. The first letter indicates the parameter (voltage (V) or
current (I)). The second letter indicates an output (O) or an input (I) parameter. The final letter
indicates whether the parameter is specified for a logic high (H) or low (L) levels. The minus sign
on several of the currents indicates a current flow out of the device: A positive current indicates
current flow into the device.

• VOH = 4.2 volts,

3.4. ADVANCED:OPERATINGPARAMETERS 81
• VOL = 0.4 volts,

• IOH = -0.8 milliamps,

• IOL = 1.6 milliamps,

• VIH = 3.5 volts,

• VIL = 1.0 volt,

• IIH = 10 microamps, and

• IIL = -10 microamps.

It is important to realize that these are static values taken under very specific operating
conditions. If external circuitry is connected such that themicrocontroller acts as a current source
(current leaving the microcontroller) or current sink (current entering the microcontroller), the
voltage parameters listed above will also be affected.

In the current source case, an output voltage VOH is provided at the output pin of the
microcontroller when the load connected to this pin draws a current of IOH. If a load draws
more current from the output pin than the IOH specification, the value of VOH is reduced. If the
load current becomes too high, the value of VOH falls below the value of VIH for the subsequent
logic circuit stage and not be recognized as an acceptable logic high signal. When this situation
occurs, erratic and unpredictable circuit behavior results. This is an unacceptable condition for a
logic circuit.

In the sink case, an output voltage VOL is provided at the output pin of the microcontroller
when the load connected to this pin delivers a current of IOL to this logic pin. If a load delivers
more current to the output pin of the microcontroller than the IOL specification, the value of VOL

increases. If the load current becomes too high, the value of VOL rises above the value of VIL for
the subsequent logic circuit stage. When this occurs the input signal will not be recognized as
an acceptable logic low signal. As before, when this situation occurs, erratic and unpredictable
circuit behavior results. This is an unacceptable condition for a logic circuit.

For convenience this information is illustrated in Figure 3.4. In (a), we provided an illus-
tration of the direction of current flow from the HC device and also a comparison of voltage
levels. As a reminder, current flowing out of a device is considered a negative current (source
case) while current flowing into the device is considered positive current (sink case). The mag-
nitude of the voltage and current for HC CMOS devices are shown in (b). As more current
is sinked or sourced from a microcontroller pin, the voltage will be pulled up or pulled down,
respectively, as shown in (c). If input and output devices are improperly interfaced to the mi-
crocontroller, these loading conditions may become excessive, and voltages will not be properly
interpreted as the correct logic levels.

You must also ensure that total current limits for an entire microcontroller port and the
overall bulk port specifications are met. For planning purposes the sum of current sourced or

82 3. ARDUINOPOWERAND INTERFACING

Output Gate
Parameters

Output Parameters

VOH = 4.2 V

VOL = 0.4 V

IOH = -0.8 mA

IOL = 1.6 mA

Input Parameters

VIH = 3.5 V

VIL = 1.0 V

IIH = 10 μA

IIL = -10 μA

Input Gate
Parameters

VDD = 5 VDC
safe

VDD = 5 VDC

 safe

safe
VSS = 0 VDC

 safe
VSS = 0 VDC

Stay out of
this region

Stay out of
this region

VOH IOH

IOL

IIH

IIL

VIH

VILVOL

(a) Voltage and Current Electrical Parameters

(b) HC CMOS Voltage and Current Parameters

(c) CMOS Loading Curves. (left) Sink current, (right) Source Current [ATmega328]

Figure 3.4: Electrical voltage and current parameters. Loading curves used with permission of
Microchip Technology (www.microchip.com).

www.microchip.com

3.5. INPUTDEVICES 83
sinked from a port should not exceed 100 mA. Furthermore, the sum of currents for all ports
should not exceed 200mA.As before, if these guidelines are not followed, erraticmicrocontroller
behavior may result. This is an unacceptable condition for a logic circuit.

The procedures presented in the following sections, when followed carefully, will ensure
the microcontroller will operate within its designed envelope.

3.5 INPUTDEVICES
In this section we describe how to interface a wide variety of input devices to the Arduino
microcontroller. In several examples we use components from the Kuman K4 Arduino Starter
Kit (www.kumantech.com).

3.5.1 SWITCHES
Switches come in a variety of types. As a system designer it is up to you to choose the appropriate
switch for a specific application. Switch varieties commonly used in microcontroller applications
are illustrated in Figure 3.5a. Here is a brief summary of the different types.

• SlideSwitch.A slide switch has two different positions: on and off. The switch is manually
moved to one position or the other. For microcontroller applications, slide switches are
available that fit in the profile of a common integrated circuit size dual inline package
(DIP). A bank of four or eight DIP switches in a single package is commonly available.
Slide switches are used to select specific parameters at system startup.

• Momentary Contact Pushbutton Switch. A momentary contact pushbutton switch
comes in two varieties: normally closed (NC) and normally open (NO). A normally open
switch, as its name implies, does not normally provide an electrical connection between
its contacts. When the pushbutton portion of the switch is depressed, the connection be-
tween the two switch contacts is made. The connection is held as long as the switch is
depressed. When the switch is released the connection is opened. The converse is true
for a normally closed switch. For microcontroller applications, pushbutton switches are
available in a small tact type switch configuration.

• Push On/Push Off Switches. These type of switches are also available in a normally
open or normally closed configuration. For the normally open configuration, the switch is
depressed to make connection between the two switch contacts. The pushbutton must be
depressed again to release the connection.

• Hexadecimal Rotary Switches. Small profile rotary switches are available for microcon-
troller applications. These switches commonly have sixteen rotary switch positions. As the
switch is rotated to each position, a unique four-bit binary code is provided at the switch
contacts.

www.kumantech.com

84 3. ARDUINOPOWERAND INTERFACING

DIP Switch Tact Switch PB Switch Hexadecimal

Rotary Switch

(a) Switch Varieties

(b) Switch Interface

(c) Switch Interface Equipped with Debouncing Circuitry

To Microcontroller Input

- Logic One When Switch Open

- Logic Zero When Switch Is Closed

Microcontroller

Pullup Resistor

Activated

VDD

4.7 k ohm

4.7 k ohm
74HC14

0.1 μF

470 k ohm

VDD

VDD

Figure 3.5: Switch interface.

A common switch interface is shown in Figure 3.5b. This interface allows a logic one or
zero to be properly introduced to a microcontroller input port pin. The basic interface consists
of the switch in series with a current limiting resistor. The node between the switch and the
resistor is provided to the microcontroller input pin. In the configuration shown, the resistor
pulls the microcontroller input up to the supply voltage VDD. When the switch is closed, the
node is grounded and a logic zero is provided to the microcontroller input pin. To reverse the
logic of the switch configuration, the position of the resistor and the switch is simply reversed.

3.5. INPUTDEVICES 85
3.5.1.1 Pullup Resistors in Switch Interface Circuitry
Many microcontrollers are equipped with pullup resistors at the input pins. The pullup resistors
are asserted with the appropriate register setting. The pullup resistor replaces the external resistor
in the switch configuration, as shown in Figure 3.5b right. The Arduino IDE provides support
for pullup resistor activation using the pinmode function. To activate the pullup input resistor,
the argument “INPUT_PULLUP” is used. An example is provided in the Arduino IDE under
Examples – Digital – DigitalInputPullup.

3.5.1.2 Switch Debouncing
Mechanical switches do not make a clean transition from one position (on) to another (off).
When a switch is moved from one position to another, it makes and breaks contact multiple
times. This activity may go on for tens of milliseconds. A microcontroller is relatively fast as
compared to the action of the switch. Therefore, the microcontroller is able to recognize each
switch bounce as a separate and erroneous transition.

To correct the switch bounce phenomena additional external hardware components may
be used or software techniques may be employed. A hardware debounce circuit is illustrated in
Figure 3.5c. The node between the switch and the limiting resistor of the basic switch circuit
is fed to a low-pass filter (LPF) formed by the 470-k ohm resistor and the capacitor. The LPF
prevents abrupt changes (bounces) in the input signal from the microcontroller. The LPF is
followed by a 74HC14 Schmitt Trigger, which is simply an inverter equipped with hysteresis.
This further limits the switch bouncing.

Switches may also be debounced using software techniques. This is accomplished by in-
serting a 30–50-ms lockout delay in the function responding to port pin changes. The delay pre-
vents themicrocontroller from responding to themultiple switch transitions related to bouncing.

You must carefully analyze a given design to determine if hardware or software switch
debouncing techniques will be used. It is important to remember that all switches exhibit bounce
phenomena and, therefore, must be debounced. An example is provided in the Arduino IDE
under Examples – Digital – Debounce.

3.5.2 KEYPADS
A keypad is an extension of the simple switch configuration. A typical keypad configuration and
interface are shown in Figure 3.6. As you can see, the keypad contains multiple switches in a
two-dimensional array configuration. The switches in the array share common row and column
connections. The common column connections are pulled up to Vcc by external 10-k resistors
or by pullup resistors within the Arduino. In the example, pullup internal pullup resistors are
asserted.

To determine if a switch has been depressed, a single row of keypad switches is first as-
serted by the microcontroller, followed by a reading of the host keypad column inputs. If a switch
has been depressed, the keypad pin corresponding to the column the switch is in will also be

86 3. ARDUINOPOWERAND INTERFACING

30 1 2

4 5 6 7

B8 9 A

M:row 1

L:row 2

K:row 3

J:row 4

E F G H
Vcc

Vcc

Vcc

Vcc

H:column 4

G:column 3

F:column 2

E:column 1

4 5 6 7

Grayhill 88BB2

0 1 2 3

8 9 A B

C D E F

Row 1

Row 2

Row 3

Row 4

C
ol

1
C
ol

2
C
ol

3
C
ol

4
EFGH J KLM

R
ow

1

R
ow

2

R
ow

3

R
ow

4

C
ol

4
C
ol

3
C
ol

2
C
ol

1

ReverseView

(a) Keypad

C D E F

(2)

(3)

(4)

(5)

(8)

(9)

(10)

(11)

In
te

rn
al

 P
u
ll

u
p
 R

es
is

to
rs

 A
ss

er
te

d

(b) Keypad Schematic

Figure 3.6: Keypad interface.

3.5. INPUTDEVICES 87
asserted. The combination of a row and a column assertion can be decoded to determine which
key has been pressed. The keypad rows are sequentially asserted. Since the keypad is a collection
of switches, debounce techniques must also be employed. In the example code provided, a 200-
ms delay is provided to mitigate switch bounce. In the keypad shown, the rows are sequentially
asserted active low (0).

The keypad is typically used to capture user requests to a microcontroller. A standard key-
pad with alphanumeric characters may be used to provide alphanumeric values to the microcon-
troller such as providing your personal identification number (PIN) for a financial transaction.
However, some keypads are equipped with removable switch covers such that any activity can
be associated with a key press.

Example: Keypad. In this example a Grayhill 88BB2 4-by-4 matrix keypad is interfaced to the
Arduino UNO R3. The example shows how a specific switch depression can be associated with
different activities by using a “switch” statement.
//***
//keypad_4X4
//Specified pins are for the Arduino UNO R3
//This code is in the public domain.
//***

#define row1 2
#define row2 3
#define row3 4
#define row4 5

#define col1 8
#define col2 9
#define col3 10
#define col4 11

unsigned char key_depressed = '*';

void setup()
{
//start serial connection to monitor
Serial.begin(9600);

//configure row pins as ouput
pinMode(row1, OUTPUT);
pinMode(row2, OUTPUT);

88 3. ARDUINOPOWERAND INTERFACING
pinMode(row3, OUTPUT);
pinMode(row4, OUTPUT);

//configure column pins as input and assert pullup resistors
pinMode(col1, INPUT_PULLUP);
pinMode(col2, INPUT_PULLUP);
pinMode(col3, INPUT_PULLUP);
pinMode(col4, INPUT_PULLUP);
}

void loop()
{
//Assert row1, deassert row 2,3,4
digitalWrite(row1, LOW); digitalWrite(row2, HIGH);
digitalWrite(row3, HIGH); digitalWrite(row4, HIGH);

//Read columns
if (digitalRead(col1) == LOW)

key_depressed = '0';
else if (digitalRead(col2) == LOW)

key_depressed = '1';
else if (digitalRead(col3) == LOW)

key_depressed = '2';
else if (digitalRead(col4) == LOW)

key_depressed = '3';
else

key_depressed = '*';

if (key_depressed == '*')
{
//Assert row2, deassert row 1,3,4
digitalWrite(row1, HIGH); digitalWrite(row2, LOW);
digitalWrite(row3, HIGH); digitalWrite(row4, HIGH);

//Read columns
if (digitalRead(col1) == LOW)

key_depressed = '4';
else if (digitalRead(col2) == LOW)

3.5. INPUTDEVICES 89
key_depressed = '5';

else if (digitalRead(col3) == LOW)
key_depressed = '6';

else if (digitalRead(col4) == LOW)
key_depressed = '7';

else
key_depressed = '*';

}

if (key_depressed == '*')
{
//Assert row3, deassert row 1,2,4
digitalWrite(row1, HIGH); digitalWrite(row2, HIGH);
digitalWrite(row3, LOW); digitalWrite(row4, HIGH);

//Read columns
if (digitalRead(col1) == LOW)

key_depressed = '8';
else if (digitalRead(col2) == LOW)

key_depressed = '9';
else if (digitalRead(col3) == LOW)

key_depressed = 'A';
else if (digitalRead(col4) == LOW)

key_depressed = 'B';
else

key_depressed = '*';
}

if (key_depressed == '*')
{
//Assert row4, deassert row 1,2,3
digitalWrite(row1, HIGH); digitalWrite(row2, HIGH);
digitalWrite(row3, HIGH); digitalWrite(row4, LOW);

//Read columns
if (digitalRead(col1) == LOW)

key_depressed = 'C';
else if (digitalRead(col2) == LOW)

key_depressed = 'D';

90 3. ARDUINOPOWERAND INTERFACING
else if (digitalRead(col3) == LOW)

key_depressed = 'E';
else if (digitalRead(col4) == LOW)

key_depressed = 'F';
else

key_depressed = '*';
}

if(key_depressed != '*')
{
Serial.write(key_depressed);
Serial.write(' ');

switch(key_depressed)
{
case '0': Serial.println("Do case 0") break;
case '1': Serial.println("Do case 1"); break;
case '2': Serial.println("Do case 2"); break;
case '3': Serial.println("Do case 3"); break;
case '4': Serial.println("Do case 4"); break;
case '5': Serial.println("Do case 5"); break;
case '6': Serial.println("Do case 6"); break;
case '7': Serial.println("Do case 7"); break;
case '8': Serial.println("Do case 8"); break;
case '9': Serial.println("Do case 9"); break;
case 'A': Serial.println("Do case A"); break;
case 'B': Serial.println("Do case B"); break;
case 'C': Serial.println("Do case C"); break;
case 'D': Serial.println("Do case D"); break;
case 'E': Serial.println("Do case E"); break;
case 'F': Serial.println("Do case F"); break;
}

}
//limit switch bounce
delay(200);
}

//***

3.5. INPUTDEVICES 91

IR Remote

DP838 IR Receiver

Figure 3.7: IR remote control with receiver (www.kumantech.com).

3.5.3 REMOTECONTROL
For some Arduino-based projects a remote infrared (IR) remote control might be useful. The
Kuman K4 Arduino Starter Kit (www.kumantech.com) contains an IR remote control and a
DP838 IR receiver module as shown in Figure 3.7. When a remote control key is depressed a
unique code is sent from the remote to the receiver. The received signal is decoded and linked
to the specific key that was depressed. Example code is provided in the K4 kit documentation.

3.5.4 SENSORS
A microcontroller is typically used in applications where data is collected by input sensors, the
data is assimilated and processed by the host algorithm, and a control decision and accompanying
signals are provided by the microcontroller to output peripheral devices. The sensors may be
digital or analog in nature.

3.5.4.1 Digital Sensors
Digital sensors provide a series of digital logic pulses with sensor data encoded. The sensor data
may be encoded in any of the parameters associated with the digital pulse train such as duty cycle,
frequency, period, or pulse rate. The input portion of the timing system may be configured to
measure these parameters.

An example of a digital sensor is the optical encoder. An optical encoder consists of a
small plastic transparent disk with opaque lines etched into the disk surface. A stationary optical
emitter and detector pair is placed on either side of the disk. As the disk rotates, the opaque lines
break the continuity between the optical source and detector.The signal from the optical detector
is monitored to determine disk rotation, as shown in Figure 3.8.

Optical encoders are available in a variety of types depending on the information desired.
There are two major types of optical encoders: incremental encoders and absolute encoders.
An absolute encoder is used when it is required to retain position information when power is
lost. For example, if you were using an optical encoder in a security gate control system, an

www.kumantech.com
www.kumantech.com

92 3. ARDUINOPOWERAND INTERFACING

S

D
Rotating

Disk

Stationary Optical

Source and Detector

Pair

(a) Incremental Tachometer Encoder

Detector Output

(b) Incremental Quadrature Encoder

Ch B

Ch A

Figure 3.8: Optical encoder.

absolute encoder would be used to monitor the gate position. An incremental encoder is used
in applications where a velocity or a velocity and direction information is required.

The incremental encoder typesmay be further subdivided into tachometers and quadrature
encoders. An incremental tachometer encoder consists of a single track of etched opaque lines,
as shown in Figure 3.8a. It is used when the velocity of a rotating device is required. To calculate
velocity, the number of detector pulses are counted in a fixed amount of time. Since the number
of pulses per encoder revolution is known, velocity may be calculated.

The quadrature encoder contains two tracks shifted in relationship to one another by 90ı.
This allows the calculation of both velocity and direction. To determine direction, one would
monitor the phase relationship between Channel A and Channel B, as shown in Figure 3.8b.
The absolute encoder is equipped with multiple data tracks to determine the precise location of
the encoder disk (Sick/Stegmann [4]).

3.5. INPUTDEVICES 93

4.5 in (11.43 cm)

0.25 in (0.635 cm)

(a) Flec Sensor Physical Dimensions

(b) Flex Action

VDD = 5 VDC

10 K Fixed

Resistor

Flex Sensor:

-- 0˚ flex, 10 K

-- 90˚ flex, 30–40 K

(c) Equivalent Circuit

Figure 3.9: Flex sensor.

3.5.4.2 Analog Sensors
Analog sensors provide a DC voltage that is proportional to the physical parameter being mea-
sured. As discussed in the analog to digital conversion chapter, the analog signal may be first
preprocessed by external analog hardware such that it falls within the voltage references of the
conversion subsystem. The analog voltage is then converted to a corresponding binary represen-
tation.

Example: Flex Sensor. An example of an analog sensor is the flex sensor shown in Figure 3.9a.
The flex sensor provides a change in resistance for a change in sensor flexure. At 0ı flex, the sensor
provides 10-k ohms of resistance. For 90ı flex, the sensor provides 30–40-k ohms of resistance.
Since the processor cannot measure resistance directly, the change in flex sensor resistance must
be converted to a change in a DC voltage. This is accomplished using the voltage divider net-
work shown in Figure 3.9c. For increased flex, the DC voltage will increase. The voltage can be
measured using the analog-to-digital converter subsystem.

The flex sensor may be used in applications such as virtual reality data gloves, robotic
sensors, biometric sensors, and in science and engineering experiments (Images Company [5]).
The author used the circuit provided in Figure 3.9 to help a colleague in zoology monitor the
movement of a newt salamander during a scientific experiment.

94 3. ARDUINOPOWERAND INTERFACING
Example: Ultrasonic Sensor. The ultrasonic sensor pictured in Figure 3.10 is an example of
an analog-based sensor. The sensor is based on the concept of ultrasound or sound waves that
are at a frequency above the human range of hearing (20 Hz–20 kHz). The ultrasonic sensor
pictured in Figure 3.10c emits a sound wave at 42 kHz. The sound wave reflects from a solid
surface and returns back to the sensor. The amount of time for the sound wave to transit from
the surface and back to the sensor may be used to determine the range from the sensor to the
wall. Pictured in Figures 3.10c,d is an ultrasonic sensor manufactured by Maxbotix (LV-EZ3).
The sensor provides an output that is linearly related to range in three different formats: (a) a
serial RS-232 compatible output at 9600 bits per second, (b) a PWM output at a 147 us/inch
duty cycle, and (c) an analog output at a resolution of 10 mV/inch. The sensor is powered from
a 2.5–5.5 VDC source (www.sparkfun.com).

Example: LM34 and LM35 Temperature Sensor Example. Temperature may be sensed us-
ing an LM34 (Fahrenheit) or LM35 (Centigrade) temperature transducer. The LM34 provides
an output voltage that is linearly related to temperature. For example, the LM34D operates
from 32ı–212ıF providing C10 mV/ıF resolution with a typical accuracy of ˙0.5ıF (National
Semiconductor [10]). The output from the sensor is typically connected to the ADC input of
the microcontroller. Example code for the LM35 sensor is provided in the Kuman K4 kit doc-
umentation (www.kumantech.com).

3.5.5 JOYSTICK
The thumb joystick is used to select a desired direction in an X–Y plane as shown in Figure 3.11.
The thumb joystick contains two built-in potentiometers (horizontal and vertical). A reference
voltage of 5 VDC is applied to the VCC input of the joystick. As the joystick is moved, the
horizontal (HORZ) and vertical (VERT) analog output voltages will change to indicate the
joystick position. The joystick is also equipped with a digital select (SEL) button. We use the
joystick to control an underwater ROV in Chapter 4.

3.5.6 LEVEL SENSOR
Milone Technologies manufacture a line of continuous fluid level sensors. The sensor resembles
a ruler and provides a near linear response, as shown in Figure 3.12. The sensor reports a change
in resistance to indicate the distance from sensor top to the fluid surface. A wide resistance
change occurs from 700 ohms at a one inch fluid level to 50 ohms at a 12.5-inch fluid level
(www.milonetech.com). To covert the resistance change to a voltage change measurable by the
Arduino, a voltage divider circuit as shown in Figure 3.12 may be used. With a supply voltage
(VDD) of 5 VDC, a VTAPE voltage of 1.3 VDC results for a 1-inch fluid level, whereas a fluid of
12.5 inches provides a VTAPE voltage level of 0.12 VDC.

www.sparkfun.com
www.kumantech.com
www.milonetech.com

3.5. INPUTDEVICES 95

20 Hz
Bass Midrange

(a) Sound Spectrum

(b) Ultrasonic Range Finding

(c) Ultrasonic Range Finder Maxbotix LV-EZ3
(SparkFun SEN-08501)

(d) Pinout

O1: leave open
O2: PW
O3: analog output
O4: RX
O5: TX
O6: V + (3.3–5.0 V)
O7: gnd

Ultrasonic
Transducer

Ultrasonic
20 kHz
Treble

42 kHz Frequency [Hertz]

Figure 3.10: Ultrasonic sensor. Sensor image used courtesy of SparkFun, Electronics (CC BY-
NC-SA) (www.sparkfun.com).

www.sparkfun.com

96 3. ARDUINOPOWERAND INTERFACING

Select
(push)

Y-Vertical
(analog)
0 VDC

Y-Vertical
(analog)
5 VDC

Vcc

5 VDC

HORZ
to UNO R3

VERT
to UNO R3

5 VDC

10 K

SEL

sel

GND

(a) Joystick Operation

(c) !umb Joystick Circuit

(b) Sparkfun Joystick (COM-09032) and
Breakout Board (BOB-09110)

X-Horizontal
(analog)
0 VDC

X-Horizontal
(analog)
5 VDC

Figure 3.11: Thumb joystick. Joystick image used courtesy of SparkFun, Electronics (CC BY-
NC-SA; www.sparkfun.com).

www.sparkfun.com

3.5. INPUTDEVICES 97

R
es

is
ta

n
ce

 [
o
h
m

s]

700

600

500

400

300

200

100

0
1 2 3 4 5 6 7 8 9 10 11 120

Distance from Sensor Top to Fluid Level [inches]

(a) Characteristics for Milone Technologies eTapeTM Fluid Level Sensor

Max

e
T

a
p

e

12

1

(b) eTape Sensor

VDD = 5 VDC

2 k ohm Fixed

Resistor

 eTape Sensor:

-- 700 ohms at 1 inch Fluid

-- 50 ohms at 12.5 inch Fluid

(c) Equivalent Circuit

Sensor Lead

Connections

Connection

Area

Figure 3.12: Milone Technologies fluid level sensor (www.milonetech.com).

www.milonetech.com

98 3. ARDUINOPOWERAND INTERFACING

R

+

7404

I R2

+

I

R1

220

+

I

4.7 K
From

Micro

From

Micro

From

Micro

Vcc = 5 VDC Vcc = 5 VDC Vcc = 9 VDC

Figure 3.13: LED display devices.

3.6 OUTPUTDEVICES
As previously mentioned, an external device should not be connected to a microcontroller with-
out first performing careful interface analysis to ensure the voltage, current, and timing require-
ments of the microcontroller and the external device. In this section, we describe interface con-
siderations for a wide variety of external devices. We begin with the interface for a single LED.

3.6.1 LIGHT-EMITTINGDIODES (LEDS)
An LED is typically used as a logic indicator to inform the presence of a logic one or a logic
zero at a specific pin of a microcontroller. An LED has two leads: the anode or positive lead and
the cathode or negative lead. To properly bias an LED, the anode lead must be biased at a level
approximately 1.7–2.2 volts higher than the cathode lead. This specification is known as the
forward voltage (Vf) of the LED. The LED current must also be limited to a safe level known
as the forward current (If). The diode voltage and current specifications are usually provided by
the manufacturer.

An example of an LED biasing circuit is provided in Figure 3.13. A logic one is provided
by the microcontroller to the input of the inverter. The inverter provides a logic zero at its output
which provides a virtual ground at the cathode of the LED. Therefore, the proper voltage biasing
for the LED is provided. The resistor (R) limits the current through the LED. A proper resistor
value can be calculated using R D .VDD � VDIODE/=IDIODE. It is important to note that a 7404
inverter must be used due to its capability to safely sink 16 mA of current. Alternately, an NPN
transistor such as a 2N2222 (PN2222 or MPQ2222) may be used in place of the inverter as
shown in the figure. InChapter 1, we used large (10mm) red LEDs in theKNH instrumentation
project. These LEDs have Vf of 6–12 VDC and If of 20 mA at 1.85 VDC. This requires the
interface circuit shown in Figure 3.13c right.

3.6. OUTPUTDEVICES 99

3.6.2 SEVEN-SEGMENTLEDDISPLAYS – SMALL
To display numeric data, seven-segment LED displays are available, as shown in Figure 3.14a.
Different numerals can be displayed by asserting the proper LED segments. For example, to
display the number five, segments a, c, d, f, and g would be illuminated. Seven-segment dis-
plays are available in common cathode (CC) and common anode (CA) configurations. As the
CC designation implies, all seven individual LED cathodes on the display are tied together. A
limiting resistor is required for each segment to limit the current to a safe value for the LED.
Conveniently, resistors are available in DIP packages of eight for this type of application.

Seven-segment displays are available in multi-character panels. In this case, separate mi-
crocontroller pins are not used to provide data to each seven-segment character. Instead, a group
of seven pins are used to provide character data. Another group of four pins are used to se-
quence through each of the characters as shown in Figure 3.14b. As the common anode of each
seven-segment numeral is sequentially asserted, the specific character is illuminated. If the mi-
crocontroller sequences through the display characters at a rate greater than 30 Hz, the display
will have steady illumination. The Kuman K4 kit documentation provides examples for seven-
segment displays.

3.6.3 SEVEN-SEGMENTLEDDISPLAYS – LARGE
Large seven-segments displays with character heights of 6.5 inches are available from SparkFun
Electronics (www.sparkfun.com). Multiple display characters may be daisy chained together to
form a display panel of desired character length. Only four lines from the Arduino are required
to control the display panel (ground, latch, clock, and serial data). Each character is controlled by
a Large Digit Driver Board (#WIG-13279) equipped with the Texas Instrument TPIC6C596
IC Program Logic 8-bit Shifter Register. The shift register requires a 5 VDC supply and has a
VIH value of 4.25 VDC.

The Arduino’s Serial Peripheral Interface (SPI) system is used to send numerical data
to Sparkfun’s 6.5-inch seven-segment displays (COM-08530). Two of the large digit displays
are serially linked together via Sparkfun’s Large Digit Driver (WIG-13279). The Large Digit
Drivers are soldered to the back of the 6.5-inch seven-segment displays. The hardware config-
uration is shown in Figure 3.15.

Numerical data is shifted out of the Arduino UNO R3 to the TPIC6C696 shift regis-
ter within the Large Digit Driver (WIG-13279). In the code example, LED_big_digit2, two
displays are sent an incrementing value from 00–99.

www.sparkfun.com

100 3. ARDUINOPOWERAND INTERFACING

a

b

c

d

e

f

g

a

b

c

d

e

f

g

Common Cathode

Seven-Segment Display
DIP

Resistor

(a) Seven-Segment Display Interface

M
ic

ro
co

n
tr

o
ll

er
 P

in
s

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

Numeral Select

Quad Common Anode

Seven-Segment Display

(b) Quad Seven-Segment Display Interface

a

b

c

d

e

f

g

1

2

3

4

Figure 3.14: Seven-segment LED display devices.

3.6. OUTPUTDEVICES 101

Sparkfun COM-08530

PRT-10366

Sparkfun WIG-13279
(mounted to reverse side of

COM-08530)

Sparkfun WIG-13279
(mounted to reverse side of

COM-08530)

Ground
Latch (pin 10)
Clock (pin 13)

MOSI (pin 11)
12 VDC

PRT-10366

Sparkfun COM-08530

Figure 3.15: Arduino UNO R3 interface to Sparkfun’s 6.5-inch seven-segment displays (COM-
08530). Illustration used with permission of Sparkfun Electronics (www.sparkfun.com).

//***
//LED_big_digit2: Demonstrates use of the Arduino SPI system to
//illuminate different numbers on Sparkfun's 6.5" 7-segment display
//(COM-08530). Numerals are sent from the Arduino UNO R3 to Sparkfun's
//Large Digit Driver (WIG-13279).
//
//WIG-13279 pin connections:
// - External 12 VDC supply - red
// - External 5 VDC supply - orange
// - Power supply grounds should be connected to common ground
// - Serial Data Out - MOSI pin 11 - yellow
// - CLK - SCK pin 13 - green
// - Latch - pin 10 - blue
// - Ground - black

www.sparkfun.com

102 3. ARDUINOPOWERAND INTERFACING
//Notes:
// - SPI must be configured for least significant bit (LSB) first
// - The numerals 0 to 9 require the following data words as required
// by the interface between the Spakfun Large Digit Driver (WIG-13279)
// and the Sparkfun 6.5" 7-segment display (COM-08530).
//
// Numeral Data representation of numeral
// 0 0xDE
// 1 0x06
// 2 0xBA
// 3 0xAE
// 4 0x66
// 5 0xEC
// 6 0xFC
// 7 0x86
// 8 0xFE
// 9 0xE6
//
//This example code is in the public domain.
//**

#include <SPI.h>

//Seven-segment numeral code
#define seven_seg_zero 0xDE
#define seven_seg_one 0x06
#define seven_seg_two 0xBA
#define seven_seg_three 0xAE
#define seven_seg_four 0x66
#define seven_seg_five 0xEC
#define seven_seg_six 0xFC
#define seven_seg_seven 0x86
#define seven_seg_eight 0xFE
#define seven_seg_nine 0xE6

#define LATCH 10 //Arduino UNO R3 pin 10

const byte strip_length = 1; //number of 7-segment LEDs
unsigned char troubleshooting = 0; //allows printouts to serial

3.6. OUTPUTDEVICES 103
unsigned int numeral, first_digit, second_digit;
unsigned char segment_data_return;

void setup()
{
pinMode(LATCH, OUTPUT);
SPI.begin(); //SPI support functions
SPI.setBitOrder(LSBFIRST); //SPI bit order - LSB first
SPI.setDataMode(SPI_MODE3); //SPI mode
SPI.setClockDivider(SPI_CLOCK_DIV32);//SPI data clock rate
Serial.begin(9600); //serial comm at 9600 bps
}

void loop()
{
digitalWrite(LATCH, LOW); //initialize LATCH signal
SPI.transfer(seven_seg_zero); //reset to zero
assert_latch();

for(numeral = 0; numeral<=99; numeral++)
{
if(numeral <= 9)
{
segment_data_return = determine_segments(numeral);
SPI.transfer(segment_data_return); //transmit data via SPI
SPI.transfer(seven_seg_zero);
assert_latch();
delay(1000); //1s delay
} //end if

else //numeral >=10 - two digit analysis
{
first_digit = numeral
second_digit = (int)((numeral-first_digit)/10);
segment_data_return = determine_segments(first_digit);
SPI.transfer(segment_data_return); //transmit data via SPI
segment_data_return = determine_segments(second_digit);
SPI.transfer(segment_data_return); //transmit data via SPI
assert_latch();
delay(1000); //1s delay

104 3. ARDUINOPOWERAND INTERFACING
}//end else

} //end for
} //end void

//**

void assert_latch()
{
digitalWrite(LATCH, HIGH); //transmit latch pulse
delay(50);
digitalWrite(LATCH, LOW); //initialize LATCH signal
}

//**

unsigned char determine_segments(unsigned int segment_number)
{

unsigned char segment_data;

switch(segment_number) //convert numeral to
{ //7-segment code
case 0: segment_data = seven_seg_zero; break;
case 1: segment_data = seven_seg_one; break;
case 2: segment_data = seven_seg_two; break;
case 3: segment_data = seven_seg_three; break;
case 4: segment_data = seven_seg_four; break;
case 5: segment_data = seven_seg_five; break;
case 6: segment_data = seven_seg_six; break;
case 7: segment_data = seven_seg_seven; break;
case 8: segment_data = seven_seg_eight; break;
case 9: segment_data = seven_seg_nine; break;
default: break;
}

return segment_data;

}

3.6. OUTPUTDEVICES 105

X0 X1

Y0

Y7

(a) 8 × 8 Dot Matrix

(b) 8 × 8 Dot Matrix Details

Figure 3.16: Dot matrix display.

//**

3.6.4 DOTMATRIXDISPLAY
The dot matrix display consists of a large number of LEDs configured in a single package. A
typical 8 � 8 LED arrangement is a matrix of eight columns of LEDs with eight LEDs per row,
as shown in Figure 3.16. Each LED is individually addressable by its corresponding X and Y
lines. If the microcontroller sequences through each column fast enough (greater than 30 Hz),
the matrix display appears to be stationary to a human viewer. The dot matrix display may be
used to display alphanumeric data as well as graphics data. The Kuman K4 kit contains an 8 �

8 dot matrix display and sample code (www.kuman.com).

www.kuman.com

106 3. ARDUINOPOWERAND INTERFACING

3.6.5 SERIAL LIQUIDCRYSTALDISPLAY (LCD)
An LCD is an output device to display text information. LCDs come in a wide variety of config-
urations including multi-character, multi-line format. A 16 � 2 LCD format is common. That
is, it has the capability of displaying 2 lines of 16 characters each. Each display character and
line has a specific associated address. The characters are sent to the LCD via American Standard
Code for Information Interchange (ASCII) format a single character at a time.

For a parallel configured LCD, an eight-bit data path and two lines are required between
the microcontroller and the LCD. Many parallel configured LCDs may also be configured for
a four-bit data path thus saving several precious microcontroller pins. A small microcontroller
mounted to the back panel of the LCD translates the ASCII data characters and control signals
to properly display the characters.

To conserve precious, limited microcontroller input/output pins, a serial configured LCD
may be used. A serial LCD reduces the number of required microcontroller pins for interface,
from ten down to one, as shown in Figure 3.17. Display data and control information is sent
to the LCD via an asynchronous UART serial communication link (8 data bits, 1 stop bit, no
parity, 9600 Baud). A serial configured LCD costs slightly more than a similarly configured
parallel LCD.

Example: In this example, a Sparkfun LCD-09395, 5.0 VDC, serial, 16 by 2 character, black on
white LCD display is connected to the Arduino UNO R3. Communication between the UNO
R3 and the LCD is accomplished by a single 9600 bits per second (BAUD) connection.

Rather than use the onboard Universal Asynchronous Receiver Transmitter (UART), the
Arduino Software Serial Library is used. The library provides functions to mimic UART activi-
ties on a digital pin. Details on the Library are provided at the Arduino website www.arduino.
cc.

//***
//Example uses the Arduino Software Serial Library with the
//Sparkfun LCD-09395.
// - provides software-based serial port
//***

#include <SoftwareSerial.h>

//Specify Arduino pins for Serial connection:
// SoftwareSerial LCD(RX_pin, TX_pin);
SoftwareSerial LCD(10, 11);

void setup()
{

www.arduino.cc
www.arduino.cc

3.6. OUTPUTDEVICES 107

5 VDC

RX

Command Code Command
0x01 Clear Display

0x14 Cursor One Space Right

0x10 Cursor One Space Left

0x80 + n Cursor to Position

Note: Precede command with 0xFE (25410)

Line Character Position (n)

1

2

3

4

0-15

64-79

16-31

80-95

Note: Character position is specifed as 0X80 + n

Sparkfun LCD-09395

Figure 3.17: LCD serial display. (UNO R3 illustration used with permission of the Arduino
Team (CC BY-NC-SA); www.arduino.cc.)

LCD.begin(9600); //Baud rate: 9600 Baud
delay(500); //Delay for display
}

void loop()
{
//Cursor to line one, character one
LCD.write(254); //Command prefix
LCD.write(128); //Command

//clear display
LCD.write(" ");
LCD.write(" ");

//Cursor to line one, character one
LCD.write(254); //Command prefix

www.arduino.cc

108 3. ARDUINOPOWERAND INTERFACING
LCD.write(128); //Command

LCD.write("SerLCD Test");

//Cursor to line two, character one
LCD.write(254); //Command prefix
LCD.write(192); //Command

LCD.write("LCD-09395");

while(1); //pause here
}

//***

3.6.6 TEXT-TO-SPEECHMODULE
To give a project a voice, a Text-to-Speech (TTS) module may be used. Parallax manufac-
tures the Emic 2 TTS module. The module was developed in partnership with Grand Idea
Studio (www.grandideastudio.com). The module is based on early TTS techniques devel-
oped at Digital Equipment Corporation (DEC) in the early 1980s. The Emic 2 provides for
a variety of voices, languages, speech rates, and volume, as shown in Figure 3.18. The differ-
ent voice features are selected using commands sent from the host processor via a 9,600 bits
per second asynchronous serial (8 data bits, no parity, one stop bit) bit stream (Emic 2 [13]).
The Emic 2 TTS module is available from Adafruit (#924) (www.adafruit.com) or Sparkfun
(www.sparkfun.com).

The Arduino UNO R3 is equipped with a serial USART channel used for full duplex (two
way) communication (pin 0: RX, pin 1: TX). Alternatively, the Arduino SoftwareSerial Library
may be used to emulate a USART channel. In the example, the library is used to provideUSART
communication on pin 2 (RX) and pin 3 TX). In the example, note the two way communication
between the Emic 2 TTS module and the Arduino UNO R3.

//**
//Emic 2 Text-to-Speech Module: Basic Demonstration
//
//Author: Joe Grand [www.grandideastudio.com]
//Contact: support@parallax.com
//
//Program Description: This program provides a simple demonstration
//of the Emic 2 Text-to-Speech Module. Please refer to the product
//manual for full details of system functionality and capabilities.

www.grandideastudio.com
www.adafruit.com
www.sparkfun.com

3.6. OUTPUTDEVICES 109

Emic 2 Text-to-Speech Module

5V 2 3

3.5 mm Plug

8 ohm

Headphones

or

8 ohm

Speaker

 Common Commands

Sx: Convert text-to-speech

Dx: Play demo

 - 0: speaking

 - 1: singing

 - 2: Spanish

Nx: Select Voice (0 to 8)

Vx: Set Volume (-48 to 18)

Wx: Set Rate in Words/min (75 to 600)

Lx: Set Language

 - 0: English

 - 1: Castilian Spanish

 - 2: Latin Spanish

Figure 3.18: Emic 2 text-to-speech (TTS) module. Emic 2 illustration used courtesy of Adafruit
(www.adafruit.com).

//
//Revisions: 1.0 (February 13, 2012): Initial release
//**

//Include SoftwareSerial library for two-way communication
//with Emic 2 module
#include <SoftwareSerial.h>

#define rxPin 2 //Serial input (connects to Emic 2 SOUT)
#define txPin 3 //Serial output (connects to Emic 2 SIN)
#define ledPin 13 //Arduino on-board LED

www.adafruit.com

110 3. ARDUINOPOWERAND INTERFACING
//set up a new serial port

SoftwareSerial emicSerial = SoftwareSerial(rxPin, txPin);

void setup()
{
pinMode(ledPin, OUTPUT); //define pin modes
pinMode(rxPin, INPUT);
pinMode(txPin, OUTPUT);

emicSerial.begin(9600); //set SoftwareSerial data rate
digitalWrite(ledPin, LOW); //turn LED off

//Note: When the Emic 2 TTS module powers on, it takes
//about 3 seconds for it to successfully initialize.
//The Emic 2 then sends a ":" character to indicate
//it's ready to accept commands. If the Emic 2 is already
//initialized, a CR will also cause it to send a ":"

emicSerial.print('\n'); //send CR in case Emic 2 is already up
//When the Emic 2 has initialized
//and is ready, it will send a single
//':' character, wait until received

while (emicSerial.read() != ':');
delay(10); //short delay
emicSerial.flush(); //flush the receive buffer
}

void loop()
{
emicSerial.print('S'); //Command: speak some text
emicSerial.print("Hello. My name is the Emic 2 Text-to-Speech module.

I would like to sing you a song.");
//Send string to convert to speech

emicSerial.print('\n');
digitalWrite(ledPin, HIGH); //turn on LED while Emic 2 is

//outputting audio
//Wait here until the Emic 2

3.7. EXTERNALMEMORY-SDCARD 111
//responds with a ":" indicating it's
//ready to accept the next command

while (emicSerial.read() != ':');
digitalWrite(ledPin, LOW); //turn off LED
delay(500); //500 ms delay

emicSerial.print("D1\n"); //sing demo song D1
digitalWrite(ledPin, HIGH); //turn on LED while Emic 2 is

//outputting audio
//Wait here until the Emic 2
//responds with a ":" indicating it's
//ready to accept the next command

while (emicSerial.read() != ':');
digitalWrite(ledPin, LOW); //turn off LED

while(1) //demonstration complete!
{
delay(500); //flash LED
digitalWrite(ledPin, HIGH);
delay(500);
digitalWrite(ledPin, LOW);
}

}

//**

3.7 EXTERNALMEMORY-SDCARD
A MultiMediaCard/SanDisk (MMC/SD) card provides a handy method of providing a low
power, non-volatile, and a small form factor (32 mm � 24 mm � 1.4 mm) bulk memory storage
for a microcontroller. The microSD card has an even smaller form factor at 15 mm � 11 mm �

1 mm. The SD card is a smart peripheral device. It contains an onboard controller to manage
SD operations. The SD card is useful for data logging applications in remote locations.

If our goal is to measure wind resources at remote locations as potential windfarm sites,
an Arduino-based data logging system equipped with an SD card could be used. Data could be
logged over a long period of time and retrieved for later analysis on a PC.

Adafruit manufacturers a data logger shield (Adafruit #1141) for the Arduino UNO R3
as shown in Figure 3.19. The shield provides multiple Gigabits of additional storage for the
UNO R3. It features a Real Time Clock (RTC) with battery backup to timestamp collected
data. Microcontrollers keep time based on elapsed clock ticks. They do not “understand” the

112 3. ARDUINOPOWERAND INTERFACING

Figure 3.19: Adafruit data logger shield (www.adafruit.com). Illustration used with permis-
sion.

concepts of elapsed time in seconds, hours, etc. RTC features provide the microcontroller the
ability to track calendar time based on seconds, minutes, hours, etc. We employ the Adafruit
data logger in a weather station application in Chapter 4.

3.7.1 MUSICALTONEGENERATOR
The Kuman K4 Arduino Starter Kit contains a tone generator that may be used to generate
music. Some basicmusic theory is provided in Figure 3.20. At a fundamental level, music consists
of a series ofmusical tones (frequencies), held for a specific length of time (beats), with occasional
pauses (rests) in the music. With this basic information, many songs can be played by the tone
generator.

www.adafruit.com

3.7. EXTERNALMEMORY-SDCARD 113

C4
D4

E4
F4

G4
A4

B4 C5
D5

E5
F5

G5

Note Frequency

C4 262 Hz

D4 294 Hz

E4 330 Hz

F4 349 Hz

G4 392 Hz

A4 440 Hz

B4 494 Hz

C5 523 Hz

D5 587 Hz

E5 659 Hz

F5 698 Hz

G5 784 Hz

Note Lengt h Beats Length (s)*

whole

half

quarter

eighth

4 beats

2 beats

1 beat

1/2 beat

4 s (4,000 ms)

2 s (2,000 ms)

1 s (1,000 ms)

0.5 s (500 ms)

* At 60 beats per minute (BPM)

Rest Length Beats Length (s)*

whole

half

quarter

eighth

4 beats

2 beats

1 beat

1/2 beat

4 s (4,000 ms)

2 s (2,000 ms)

1 s (1,000 ms)

0.5 s (500 ms)

* At 60 beats per minute (BPM)

Figure 3.20: Music theory.

//***
//plays a scale of whole notes and repeats
//***

int tone_gen = 9;

void setup()
{
pinMode(tone_gen, OUTPUT);
}
void loop()
{
long freq_C4 = 262, freq_D4 = 294, freq_E4 = 300, freq_F4 = 349;
long freq_G4 = 392, freq_A4 = 440, freq_B4 = 494, freq_C5 = 784;

tone(tone_gen, freq_C4); delay(4000);
tone(tone_gen, freq_D4); delay(4000);

114 3. ARDUINOPOWERAND INTERFACING
tone(tone_gen, freq_E4); delay(4000);
tone(tone_gen, freq_F4); delay(4000);
tone(tone_gen, freq_G4); delay(4000);
tone(tone_gen, freq_A4); delay(4000);
tone(tone_gen, freq_B4); delay(4000);
tone(tone_gen, freq_C5); delay(4000);

noTone(tone_gen);
delay(1000);
}

//***

3.8 HIGH-POWERDCDEVICES

In this section we describe how to interface a control a variety of high power direct current (DC)
supplied devices to the Arduino.

3.8.1 DCLOADCONTROL
A number of direct current devices may be controlled with an electronic switching device such as
a MOSFET. Specifically, an N-channel enhancement MOSFET (metal oxide semiconductor
field effect transistor) may be used to switch a high current load on and off (such as amotor) using
a low-voltage, low-current control signal from a microcontroller as shown in Figure 3.21a. The
low-current control signal from the microcontroller is connected to the gate of the MOSFET.
The MOSFET switches the high-current load on and off consistent with the control signal. The
high-current load is connected between the load supply and the MOSFET drain. It is important
to note that the load supply voltage and the microcontroller supply voltage do not have to be at
the same value. When the control signal on the MOSFET gate is logic high, the load current
flows from drain to source. When the control signal applied to the gate is logic low, no load
current flows. Thus, the high-power load is turned on and off by the low power control signal
from the microcontroller.

Often the MOSFET is used to control a high-power motor load. A motor is a notorious
source of noise. To isolate the microcontroller from the motor noise an optical isolator may
be used as an interface as shown in Figure 3.21b. The link between the control signal from the
microcontroller to the high power load is via an optical link contained within a Solid State Relay
(SSR). The SSR is properly biased using techniques previously discussed.

3.8. HIGH-POWERDCDEVICES 115

(b) Solid State Relay with Optical Interface

Gate

Drain

Source

(a) N-channel Enhance MOSFET

From

Micro

Load

VDD

Iload

Figure 3.21: MOSFET circuits.

3.8.2 DC SOLENOIDCONTROL
The interface circuit for a DC solenoid is provided in Figure 3.22. A solenoid provides a mechan-
ical insertion (or extraction) when asserted. In the interface, an optical isolator is used between
the microcontroller and the MOSFET used to activate the solenoid. A reverse biased diode is
placed across the solenoid. Both the solenoid power supply and the MOSFET must have the
appropriate voltage and current rating to support the solenoid requirements.

Example: Water Valve Control. Solenoid controlled water valves are available from Adafruit
(www.adafruit.com). There are plastic (#997) and brass (#996) valves available. The plastic
valve activates from 6 VDC at 160 mA–12 VDC at 320 mA while the brass valve activates
from 6 VDC at 1.6 A–12 VDC at 3A. An interface circuit for the plastic water solenoid valve
is provided in Figure 3.23.

3.8.3 DCMOTORSPEEDANDDIRECTIONCONTROL
Often, a microcontroller is used to control a high power motor load. To properly interface the
motor to the microcontroller, we must be familiar with the different types of motor technologies.
Motor types are illustrated in Figure 3.24.

• DCmotor: A DC motor has a positive and negative terminal. When a DC power supply
of suitable current rating is applied to the motor it will rotate. If the polarity of the supply
is switched with reference to the motor terminals, the motor will rotate in the opposite
direction. The speed of the motor is roughly proportional to the applied voltage up to the
rated voltage of the motor.

• Servo motor: A servo motor provides a precision angular rotation for an applied pulse
width modulation duty cycle. As the duty cycle of the applied signal is varied, the angular

www.adafruit.com

116 3. ARDUINOPOWERAND INTERFACING

DC Solenoid

Supply voltage

Solid State Relay

MOSFET

Protection

Diode

RC
I

G

D

S

Iload

RG
From

Micro

RB

Vcc = 5 VDC

Figure 3.22: Solenoid interface circuit.

DC Solenoid

Supply Voltage,

12 VDC at 1A

1N4001

G

D

S

From

Micro

10 k ohm

IRF 520

Power MOSFET

Adafruit 997,

Water Valve,

9 VDC at 240 mA

Water Flow

 (a) Adafruit, 997, Plastic Water

Solenoid Valve

(b) Adafruit, 997, Brass Water

Solenoid Valve

Figure 3.23: Water valve interface circuit (www.adafruit.com). Illustration used with permis-
sion.

www.adafruit.com
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01001ED1V01Y202003DCS058&iName=master.img-6154.jpg&w=119&h=91
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01001ED1V01Y202003DCS058&iName=master.img-6154.jpg&w=119&h=91
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01001ED1V01Y202003DCS058&iName=master.img-6156.jpg&w=116&h=88
https://www.morganclaypool.com/action/showImage?doi=10.2200/S01001ED1V01Y202003DCS058&iName=master.img-6156.jpg&w=116&h=88

3.8. HIGH-POWERDCDEVICES 117

Vmotor

4 Control
 Signals

Interface
Circuitry

Power
Ground

Veff = Vmotor × Duty Cycle [%]

(a) DC Motor

(b) Servo Motor
1 Step

(c) Stepper Motor

Veff

Figure 3.24: Motor types.

displacement of the motor also varies. This type of motor is used to change mechanical
positions such as the steering angle of a wheel.

• Stepper motor: A stepper motor as its name implies provides an incremental step change
in rotation (typically 2.5ı per step) for a step change in control signal sequence. The motor
is typically controlled by a two- or four-wire interface. For the four-wire stepper motor,
the microcontroller provides a four-bit control sequence to rotate the motor clockwise. To
turn the motor counterclockwise, the control sequence is reversed. The low-power control
signals are interfaced to the motor via MOSFETs or power transistors to provide for the
proper voltage and current requirements of the pulse sequence.

3.8.4 DCMOTOROPERATINGPARAMETERS
Space does not allow a full discussion of all motor types. We will concentrate on the DC motor.
As previously mentioned, the motor speed may be varied by changing the applied voltage. This
is difficult to do with a digital control signal. However, PWM control signal techniques may be

118 3. ARDUINOPOWERAND INTERFACING

M

DC Motor

Supply Voltage

Solid State Relay

MOSFET

Protection

Diode

VDD

R
I

7404
From

Micro

G

D

S

ILOAD

RG

Figure 3.25: DC motor interface.

combined with a MOSFET interface to precisely control the motor speed. The duty cycle of the
PWM signal will also be the percentage of the motor supply voltage applied to the motor, and
hence the percentage of rated full speed at which the motor will rotate. The interface circuit to
accomplish this type of control is shown in Figure 3.25. Various portions of this interface circuit
have been previously discussed. The resistor RG , typically 10 k ohm, is used to discharge the
MOSFET gate when no voltage is applied to the gate. For an inductive load, a reversed biased
protection diode must be across the load. The interface circuit shown allows the motor to rotate
in a given direction.

3.8.5 H-BRIDGEDIRECTIONCONTROL
For a DC motor to operate in both the clockwise and counter clockwise direction, the polarity
of the DC motor supplied must be changed. To operate the motor in the forward direction, the
positive battery terminal must be connected to the positive motor terminal while the negative
battery terminal must be provided to the negative motor terminal. To reverse the motor direc-
tion the motor supply polarity must be reversed. An H-bridge is a circuit employed to perform
this polarity switch. The H-bridge circuit consists of four electronic switches, as shown in Fig-
ure 3.26. For forward motor direction switches 1 and 4 are closed; whereas, for reverse direction
switches 2 and 3 are closed.

Low-powerH-bridges (500mA) come in a convenient dual in line package (e.g., 754110).
For higher power motors, a H-bridge may be constructed from discrete components, as shown
in Figure 3.26. The ZTX451 and ZTX551 are NPN and PNP transistors with similar character-

3.8. HIGH-POWERDCDEVICES 119

M+

-

12 VDC

200

ZTX451

470

200

ZTX451

ZTX551 470

To Pin 2 To Pin 3
ZTX551

11DQ06

1000uF

11DQ06

Motor

Supply

+ -

sw1 sw2

sw3 sw4

M

Motor

Supply

+ -

sw1 sw2

sw3 sw4

M

Figure 3.26: H-bridge control circuit.

istics. The 11DQ06 are Schottky diodes. For driving higher power loads, the switching devices
are sized appropriately.

If PWM signals are used to drive the base of the transistors (from microcontroller pins
pin 2 and pin 3), both motor speed and direction may be controlled by the circuit. The transistors
used in the circuit must have a current rating sufficient to handle the current requirements of
the motor during start and stall conditions.

Example: A linear actuator is a specially designed motor that converts rotary to linear motion.
The linear actuator is equipped with a mechanical rod that is extended when asserted in one
direction and retracted when the polarity of assertion is reversed. An H-bridge may be used to
control a linear actuator as shown in Figure 3.27. In this circuit an enable signal is used to assert
the H-bridge while the two PWM channels are used to extend or retract the H-bridge.

Texas Instruments provides a self-contained H-bridge motor controller integrated circuit,
the DRV 8829. Within the DRV 8829 package is a single H-bridge driver. The driver may
control DC loads with supply voltages from 8–45 VDC with a peak current rating of 5 amps.
The single H-bridge driver may be used to control a DC motor or one winding of a bipolar
stepper motor DRV 8829 [14]).

120 3. ARDUINOPOWERAND INTERFACING

G

D

S

G

D

S

G 10

10

10

D

S

G

D

S

Linear Actator

Motor

Mounting
Bracket

1N4001

1N5819

1N5819

IR2104

IR2104

Half-bridge
Driver

Half-bridge
Driver

Forward

Enable

Reverse

Rev
er

se

For
war

d

Ena
bl

e

12 VDC, 2A

IRF3205ZPBF-ND
IRF3205ZPBF-ND

4.7 K 4.7 K

1: Vcc
2: IN
3: SD
4: COM

VB:8
HO:7
VS:6
LO:5

1: Vcc
2: IN
3: SD
4: COM

VB:8
HO:7
VS:6
LO:5

7805

10/50
10

10/50

Voltage
Regulator

Linear
Actuator

5 VDC

13.6 VDC
Battery

100μF 0.1μF 100μF 0.1μF

Figure 3.27: Linear actuator control circuit [O’Berto]. (UNO R3 illustration used with permis-
sion of the Arduino Team (CC BY-NC-SA); www.arduino.cc.)

www.arduino.cc

3.8. HIGH-POWERDCDEVICES 121

5 VDC

5 VDC
5 VDC

E
x
te

rn
al

 S
u
p
p
ly

,

5
 V

D
C

 a
t

3
 A

PWM
(from UNO R3

pin 2)(from UNO pin 6) SL1

(from UNO pin7) SL2

4.7 K
forward/reverse

(to UNO R3 pin 5)

to UNO R3
Pin A0

(b) Speed Control

Mini Round

Robot Motor

5 VDC

Motor Ratings:

- Voltage: 3–6 VDC

- Current: 200–400 mA

- Hard Stall: 1.5 A

Set for External

Power Supply

SL1
SL2
F/R

Speed

Control

PWM

(a) Forward/Reverse

Control

(c) Arduino UNO R3 Interface to MIKROE-1526 DC MOTOR Click

Figure 3.28: MIKROE-1526 DC MOTOR click. UNO R3 illustration used with permission
of the Arduino Team (CC BY-NC-SA); www.arduino.cc. MIKROE illustration used with
permission (www.mikroe.com).

Example: MIKROE-1526 DCMOTORClick. MikroElectronica (www.mikroe.com) man-
ufactures a number of motor interface products including the MIKROE-1526 DC MOTOR
click motor driver board. The board features the T.I. DRV 8833RTY H-bridge motor driver. A
test circuit to control a DC motor’s speed and direction is provided in Figure 3.28. We use one
of the motors from the Mini Round Autonomous Maze Navigating Robot.

In the test circuit, a tact switch is used to determine motor direction and a potentiometer
for motor speed control. These two inputs are read by the Arduino program and proper control
signals are issued to the MIKROE-1526 (SL1, SL2, and PWM) for motor speed and direction.
The nSLP pin on the MIKROE-1526 must be logic high to enable the device. For the test
circuit, the nSLP pin is tied to Vcc (5 VDC) (www.mikroe.com).

www.arduino.cc
www.mikroe.com
www.mikroe.com
www.mikroe.com

122 3. ARDUINOPOWERAND INTERFACING
//**
//MIKROE-1526 DC Motor click
//Sketch demonstrates operation of the MIKROE-1526 DC Motor click
//
//The circuit:
// - Motor speed control potentiometer.
// Potentiometer connected to analog pin A0. The center wiper
// pin of the potentiometer goes to the analog pin. The side
// pins of the potentiometer go to 5 VDC and ground.
// - Motor forward/reverse control.
// Tact switch connected to UNO R3 pin 5.
// - MIKROE-1526 connections:
// -- Select 1 (SL1) to UNO R3 pin 6
// -- Select 2 (SL2) to UNO R3 pin 7
// -- PWM to UNO R3 pin 2
// -- nSLEEP to Vcc (5 VDC) to enable device
//
//This example code is in the public domain.
//**

int analog_in = A0; //analog input (0 to 1023)
int analog_out = 2; //analog output (0 to 255)
int forward_reverse = 5; //direction control
int select1 = 6; //motor direction control
int select2 = 7; //SL1, SL2
int speed_value; //potentiometer input value
int switch_value;
int output_value;

void setup()
{
pinMode(forward_reverse, INPUT);
pinMode(select1, OUTPUT);
pinMode(select2, OUTPUT);
}

void loop()
{
//Deteremine motor direction

3.8. HIGH-POWERDCDEVICES 123
switch_value = digitalRead(forward_reverse);
if(switch_value == HIGH) //forward direction
{
digitalWrite(select1, LOW);
digitalWrite(select2, LOW);
}

else //reverse direction
{
digitalWrite(select1, LOW);
digitalWrite(select2, HIGH);
}

//read analog in value
speed_value = analogRead(analog_in);

//map to analog out range
output_value = map(speed_value, 0, 1023, 0, 255);

//update analog out value
analogWrite(analog_out, output_value);

delay(50);
}

//**

3.8.6 SERVOMOTOR INTERFACE
The servo motor is used for a precise angular displacement. The displacement is related to the
duty cycle of the applied control signal.

Example: Inexpensive Laser Light Show. An inexpensive laser light show may be constructed
from two servos. In this example we use two Futaba 180ı range servos (Parallax 900-00005,
available from Jameco #283021) mounted, as shown in Figure 3.29. The X and Y control signals
are provided by an Arduino processing board. The X and Y control signals are interfaced to the
servos via LM324 operational amplifiers. The laser source is provided by an inexpensive laser
pointer.

Sample code to drive the servos from an Arduino are provided on the Jameco website
(www.jameco.com; Jameco #283021).

www.jameco.com

124 3. ARDUINOPOWERAND INTERFACING

Vcc = 5 VDC

(4)

(11)

(1)

(2)

(3)

LM324

White

Red
Vcc = 5 VDC

Black

Mirror

Mirror
Servo

Servo

Vcc = 5 VDC

(4)

(11)

(7)

(6)

(5)

LM324
White

X

Y

Red

Vcc = 5 VDC

Black

Y Control

Arduino (10)

X Control

Arduino (9)

Laser Source

Figure 3.29: Inexpensive laser light show.

//***
//X-Y ramp
//***

#include <Servo.h> // Use Servo library, included with IDE

Servo myServo_x; // Create Servo object to control the servo
Servo myServo_y;

void setup() {
myServo_x.attach(9); // Servo is connected to digital pin 9

3.8. HIGH-POWERDCDEVICES 125
myServo_y.attach(10); // Servo is connected to digital pin 10

}

void loop() {
int i = 0;
for(i=0; i<=180; i++)

{
myServo_x.write(i); // Rotate servo counter clockwise
myServo_y.write(i); // Rotate servo counter clockwise
delay(20); // Wait 2 seconds
if(i==180)

delay(5000);
}

}
//***

3.8.7 STEPPERMOTORCONTROL
Stepper motors are used to provide a discrete angular displacement in response to a control
signal step. There are a wide variety of stepper motors including bipolar and unipolar types
with different configurations of motor coil wiring. Due to space limitations we only discuss the
unipolar, five-wire stepper motor. The internal coil configuration for this motor is shown in
Figure 3.30b.

Often, a wiring diagram is not available for the stepper motor. Based on the wiring con-
figuration (see Figure 3.30b), one can find out the common line for both coils. It has a resistance
that is one-half of all of the other coils. Once the common connection is found, one can con-
nect the stepper motor into the interface circuit. By changing the other connections, one can
determine the correct connections for the step sequence. To rotate the motor either clockwise
or counterclockwise, a specific step sequence must be sent to the motor control wires, as shown
in Figure 3.30b.

The microcontroller does not have sufficient capability to drive the motor directly. There-
fore, an interface circuit is required, as shown in Figure 3.31. The speed of motor rotation is
determined by how fast the control sequence is completed.

126 3. ARDUINOPOWERAND INTERFACING

(a) A Stepper Motor Rotates a Fixed Angle Per Step

Step

1

2

3

4

(b) Coil Configuration and Step Sequence

12 VDC

TIP130

TIP130

TIP130

TIP130

10 K

10 K

10 K

10 K

Arduino

Digital I/O Pins

(c) Stepper Motor Interface Circuit

Figure 3.30: Unipolar stepper motor. (UNO R3 illustration used with permission of the Arduino
Team (CC BY-NC-SA); www.arduino.cc.)

www.arduino.cc

3.8. HIGH-POWERDCDEVICES 127

Pin 5: stepper_ch1

Pin 6: stepper_ch2

Pin 7: stepper_ch3

Pin 8: stepper_ch4

12 VDC

TIP120

TIP120

TIP120

TIP120

10 K

10 K

10 K

10 K

1N4001

TIP
120

BCE

Red YellowBrown Green

Orange

42BYG016, 4 Phase Unipolar, 1.8°/step, 12 VDC, 160 mA

4.7 K

5 VDC

External Switch 1

(Clockwise)

4.7 K

5 VDC

External Switch 2

(clockwise)

9

stepper ch 1
stepper ch 2
stepper ch 3

stepper ch 4
cw
ccw

10

Figure 3.31: Unipolar stepper motor interface circuit. Illustration courtesy of Adafruit www.
adafruit.com. UNO R3 illustration used with permission of the Arduino Team (CC BY-
NC-SA; www.arduino.cc).

www.adafruit.com
www.adafruit.com
www.arduino.cc

128 3. ARDUINOPOWERAND INTERFACING
//**
//stepper
//
//This example code is in the public domain.
//**

//external switches
#define ext_sw1 9
#define ext_sw2 10

//stepper channels
#define stepper_ch1 5
#define stepper_ch2 6
#define stepper_ch3 7
#define stepper_ch4 8

int switch_value1, switch_value2;
int motor_speed = 1000; //motor increment time in ms
int last_step = 1;
int next_step;

void setup()
{
//Screen
Serial.begin(9600);

//external switches
pinMode(ext_sw1, INPUT);
pinMode(ext_sw2, INPUT);

//stepper channel
pinMode(stepper_ch1, OUTPUT);
pinMode(stepper_ch2, OUTPUT);
pinMode(stepper_ch3, OUTPUT);
pinMode(stepper_ch4, OUTPUT);

}

void loop()

3.8. HIGH-POWERDCDEVICES 129
{
switch_value1 = digitalRead(ext_sw1);
switch_value2 = digitalRead(ext_sw2);

if(switch_value1 == LOW) //switch1 asserted
{
while(switch_value1 == LOW) //clockwise

{
if(last_step == 1)

{
Serial.println("Switch 1: low, step 1");
digitalWrite(stepper_ch1, HIGH);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, LOW);
next_step = 2;
}

else if(last_step == 2)
{
Serial.println("Switch 1: low, step 2");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, HIGH);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, LOW);
next_step = 3;
}

else if(last_step == 3)
{
Serial.println("Switch 1: low, step 3");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, HIGH);
digitalWrite(stepper_ch4, LOW);
next_step = 4;
}

else if(last_step == 4)
{
Serial.println("Switch 1: low, step 4");
digitalWrite(stepper_ch1, LOW);

130 3. ARDUINOPOWERAND INTERFACING
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, HIGH);
next_step = 1;
}

else
{
;
}

last_step = next_step;
delay(motor_speed);
switch_value1 = digitalRead(ext_sw1);
}//end while

}//end if

else if(switch_value2 == LOW) //switch2 asserted
{
while(switch_value2 == LOW) //counter clockwise

{
if(last_step == 1)

{
Serial.println("Switch 2: low, step 1");
digitalWrite(stepper_ch1, HIGH);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, LOW);
next_step = 4;
}

else if(last_step == 2)
{
Serial.println("Switch 2: low, step 2");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, HIGH);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, LOW);
next_step = 1;
}

else if(last_step == 3)
{

3.8. HIGH-POWERDCDEVICES 131
Serial.println("Switch 2: low, step 3");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, HIGH);
digitalWrite(stepper_ch4, LOW);
next_step = 2;
}

else if(last_step == 4)
{
Serial.println("Switch 2: low, step 4");
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, HIGH);
next_step = 3;
}

else
{
;
}

last_step = next_step;
delay(motor_speed);
switch_value2 = digitalRead(ext_sw2);
}//end while

}//end if

else
{
digitalWrite(stepper_ch1, LOW);
digitalWrite(stepper_ch2, LOW);
digitalWrite(stepper_ch3, LOW);
digitalWrite(stepper_ch4, LOW);
}

}
//**

Example. Adafruit (www.adafruit.com) manufactures a DC stepper motor breakout board
(#3297) based on the Texas Instruments DRV 8833RTY H-bridge motor driver. The board can
provide up to 1.2A per channel for motors from 2.7–10.8 VDC. In this example, we use the
board to drive a Jameco (www.jameco.com) #238538 unipolar stepper motor rated at 12 VDC,

www.adafruit.com
www.jameco.com

132 3. ARDUINOPOWERAND INTERFACING
0.4 A. We power the motor at 10 VDC. The interface between the Arduino UNO R3, the
breakout board, and the stepper motor is shown in Figure 3.32. Two external switches are used
to select motor direction.

The code used in the previous stepper motor example may be modified with the step
sequence required by the driver/motor combination.

3.9 ACDEVICES
A high-power AC load may be switched on and off using a low-power control signal from the
microcontroller. In this case, a Solid State Relay is used as the switching device. Solid-state relays
are available to switch a high power DC or AC load (Crydom Corporation [3]). For example,
the Crydom 558-CX240D5R is a printed circuit board mounted, air cooled, single-pole single-
throw (SPST), normally open (NO) solid-state relay. It requires a DC control voltage of 3–15
VDC at 15 mA. This microcontroller compatible DC control signal is used to switch 12–280
VAC loads rated from 0.06–5 amps [Crydom].

To vary the direction of an AC motor, you must use a bi-directional AC motor. A bi-
directional motor is equipped with three terminals: common, clockwise, and counterclockwise.
To turn themotor clockwise, an AC source is applied to the common and clockwise connections.
In like manner, to turn the motor counterclockwise, an AC source is applied to the common and
counterclockwise connections. This may be accomplished using two of the Crydom SSRs.

PowerSwitch manufacturers an easy-to-use AC interface the PowerSwitch Tail II. The
device consists of a control module with attached AC connections rated at 120 VAC, 15 A for
resistive loads. The device to be controlled is simply plugged in line with the PowerSwitch Tail
II. A digital control signal 3 VDC at 3 mA to 12 VDC at 30 mA from the microcontroller serves
as the on/off control signal for the controlled AC device. The controlled signal is connected to
the PowerSwitch Tail II via a terminal block connection. The PowerSwitch II may be configured
as either normally closed (NC) or normally open (NO) (www.powerswitchtail.com).

Example: PowerSwitch Tail II. In this example, we use an IR sensor to detect someone’s pres-
ence. If the IR sensor’s output reaches a predetermined threshold level, an AC desk lamp is
illuminated, as shown in Figure 3.33.

www.powerswitchtail.com

3.9. ACDEVICES 133

Blk Yel Grn

Red

Wht

Blu

10 VDC
+

5
V

D
C

5
V

D
C

5 6 7 8

Step Sequence

Step

1

2

3

4

Aout1

1

0

0

1

Aout2

0

1

1

0

Bout2

1

1

0

0

Bout1

0

0

1

1

C
W

C
C

W

4.7 K

5 VDC

External Switch 1
(clockwise)

4.7 K

5 VDC

External switch 2
(clockwise)

9
10

stepper ch 1
stepper ch 2
stepper ch 3

stepper ch 4
cw
ccw

Figure 3.32: Unipolar stepper motor with DRV 8833 breakout board. (UNO R3 illustration
used with permission of the Arduino Team (CC BY-NC-SA); www.arduino.cc.)

www.arduino.cc

134 3. ARDUINOPOWERAND INTERFACING

Desk Lamp

To AC

Wall Outlet

PowerSwitch Tail II
1
:

+
in

2
:

-i
n

3
:

G
n
d

5 VDC

5
A0

R Y B

IR Sensor

Figure 3.33: PowerSwitch Tail II.

//**
//switch_tail
//
//The circuit:
// - The IR sensor signal pin is connected to analog pin A0.
// The sensor power and ground pins are connected to 5 VDC and
// ground respectively.
// - The analog output is designated as the onboard red LED.
// - The switch tail control signal is connected to pin 5.
//
//Adapted for code originally written by Tom Igoe

3.9. ACDEVICES 135
//Created: Dec 29, 2008
//Modified: Aug 15, 2019
//Author: Tom Igoe
//
//This example code is in the public domain.
//**

const int analogInPin = A0; //Arduino analog input pin 5
const int analogOutPin = 13; //Arduino onboard red LED pin
const int switch_tail_control =5; //Switch Tail control signal

int sensorValue = 0; //value read from the OR sensor
int outputValue = 0; //value output to the PWM (red LED)

void setup()
{
//initialize serial communications at 9600 bps:
Serial.begin(9600);

//configure Switch Tail control pin
pinMode(switch_tail_control, OUTPUT);
}

void loop()
{
//read the analog in value:
sensorValue = analogRead(analogInPin);

//map it to the range of the analog out:
outputValue = map(sensorValue, 0, 1023, 0, 255);

//change the analog out value:
analogWrite(analogOutPin, outputValue);

//Switch Tail control signal
if(outputValue >= 128)
{
digitalWrite(switch_tail_control, HIGH);
Serial.print("Light on");

136 3. ARDUINOPOWERAND INTERFACING
}

else
{
digitalWrite(switch_tail_control, LOW);
Serial.print("Light off");
}

// print the results to the serial monitor:
Serial.print("sensor = ");
Serial.print(sensorValue);
Serial.print("\t output = ");
Serial.println(outputValue);

// wait 10 milliseconds before the next loop
// for the analog-to-digital converter to settle
// after the last reading:
delay(10);

}

//**

3.10 INTERFACINGTOMISCELLANEOUSDEVICES
In this section, we provide a potpourri of interface circuits to connect a microcontroller to a wide
variety of peripheral devices.

3.10.1 SONALERTS, BEEPERS, BUZZERS
In Figure 3.34, we provide several circuits used to interface a microcontroller to a buzzer, beeper,
or other types of annunciator devices such as a sonalert. It is important that the interface tran-
sistor and the supply voltage are matched to the requirements of the sound-producing device.

3.10.2 VIBRATINGMOTOR
A vibrating motor is often used to gain one’s attention as in a cell phone. These motors are typ-
ically rated at 3 VDC and a high current. The interface circuit shown in Figure 3.35 is used to
drive the low-voltage motor. Note that the control signal provided to the transistor base is 5
VDC. To step the motor supply voltage down to the motor voltage of 3 VDC, two 1N4001 sili-
con rectifier diodes are used in series. These diodes provide approximately 1.4–1.6 VDC voltage
drop. Another 1N4001 diode is reversed biased across the motor and the series diode string.
The motor may be turned on and off with a 5 VDC control signal from the microcontroller or

3.10. INTERFACINGTOMISCELLANEOUSDEVICES 137

Buzzer, 3850 Hz

5 VDC, 3-14 mA

Vcc = 5 VDC

220

2N2222
From

Micro

From

Micro

(a) 5 VDC Buzzer Interface

10 K

Annunciator

12 VDC, 8 mA

Vcc = 12 VDC

220

2N2222

(b) 12 VDC Annunciator

10 K

Figure 3.34: Sonalert, beepers, buzzers.

M 3 VDC

+

-

240

5 VDC

1N4001

1N4001

1N4001

TIP 130

Darlington

Transistor

Figure 3.35: Controlling a low-voltage motor.

138 3. ARDUINOPOWERAND INTERFACING
a PWM signal may be used to control motor speed. It is recommended that a Darlington NPN
transistor (TIP 120) be employed in this application.

3.11 APPLICATION: SPECIALEFFECTS LEDCUBE
To illustrate some of the fundamentals of microcontroller interfacing, we construct a three-
dimensional LED cube. This design was inspired by an LED cube kit available from Jameco
(www.jameco.com). The LED cube consists of 4-layers of LEDs with 16 layers per LED. Only
a single LED is illuminated at a specific time.

Only a single LED is illuminated at a given time. However, different effects may be
achieved by how long a specific LED is left illuminated. A specific LED layer is asserted using
the layer select pins on the microcontroller using a one-hot-code (a single line asserted while the
others are de-asserted). The asserted line is fed through a 74HC244 (three state, octal buffer,
line driver) which provides an IOH=IOL current of ˙ 35 mA, as shown in Figure 3.36. A given
output from the 74HC244 is fed to a common anode connections for all 16 LEDs in a layer. All
four LEDs in a specific LED position share a common cathode connection. That is, an LED in
a specific location within a layer shares a common cathode connection with three other LEDs
that share the same position in the other three layers. The common cathode connection from
each LED location is fed to a specific output of the 74HC154 4-to-16 decoder. The decoder
has a one-cold-code output. To illuminate a specific LED, the appropriate layer select and LED
select lines are asserted using the layer_sel[3:0] and led_sel[3:0] lines, respectively. This basic
design may be easily expanded to a larger LED cube.

3.11.1 CONSTRUCTIONHINTS
To limit project costs, low-cost red LEDs (Jameco #333973) were used. The project requires a
total of 64 LEDs (4 layers of 16 LEDs each). A LED template pattern was constructed from
a 5-inch by 5-inch piece of pine wood. A 4-by-4 pattern of holes were drilled into the wood.
Holes were spaced 3/4-inch apart. The hole diameter was slightly smaller than the diameter of
the LEDs to allow for a snug LED fit.

The LED array was constructed a layer at a time using the wood template. Each LED
was tested before inclusion in the array. A 5 VDC power supply with a series 220 ohm resistor
was used to insure each LED was fully operational. The LED anodes in a given LED row were
then soldered together. A fine-tip soldering iron and a small bit of solder were used for each
interconnect, as shown in Figure 3.37. Cross wires were then used to connect the cathodes of
adjacent rows. A 22-gauge bare wire was used. Again, a small bit of solder was used for the
interconnect points. Four separate LED layers (4 by 4 array of LEDs) were completed.

To assemble the individual layers into a cube, cocktail straw segments were used as spacers
between the layers. The straw segments provided spacing between the layers and also offered
improved structural stability. The anodes for a given LED position were soldered together. For
example, all LEDs in position 0 for all four layers shared a common anode connection.

www.jameco.com

3.11. APPLICATION: SPECIALEFFECTS LEDCUBE 139

+-

+-

+-

+-

0 1 2

4 5 6

8 9 10 11

12 13 14

+
_

+
_

+
_

+
_ +

LED horizontal layer 0
top view

74HC154
4-to-16 decoder

74ALS244

1 2 3 4 5 6 7 8 9 10 1113141516 17

/E0-18
/E1-19

Idiode =

IOL = +/- 25 mA

D C B A
20 21 22 23

24

12

Vcc = 5 VDC

7

3+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+

_
15

220

LED
LED0

side
view

Idiode

20

10

Vcc = 5 VDC

/OEa-1
/OEb-19

2 4 6 8

18 16 14 12

11 13 15 17

3579

LED horizontal layer 1

LED horizontal layer 2

LED horizontal layer 3

Idiode

A
rd

u
in

o
 P

ro
ce

ss
o
r

L
E

D
 S

el
ec

t
L

ay
er

 S
el

ec
t

led_sel0

led_sel1

led_sel2

led_sel3

layer_sel0

layer_sel1

layer_sel2

layer_sel3

5(22)

6(23)

7(24)

8(25)

9(26)
10(27)

11(28)

12(29)

Cocktail
Straw
Spacer

Notes:

1. LED cube consists of 4 layers of 16 LEDs each.

2. Each LED is individually addressed by asserting the appropriate cathode signal (0–15) and

 asserting a specific LED layer.

3. All LEDs in a given layer share a common anode connection.

4. All LEDs in a given position (0–15) share a common cathode connection.

Figure 3.36: LED special effects cube.

140 3. ARDUINOPOWERAND INTERFACING

0 1 2

4 5 6

8 9 10

12 13 14

+
_

+
_

+
_

+
_

7

3+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

LED

11

15

Solder Connection

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

+-

Connect LED Anodes Together
in an LED Row

Anode Crossbar between LED Rows

(a) LED Soldering Diagram

(b) 3D LED Array Mounted within Plexiglass Cube

Figure 3.37: LED cube construction.

3.11. APPLICATION: SPECIALEFFECTS LEDCUBE 141
The completed LED cube was mounted on a perforated printed circuit board (perfboard)

to provide a stable base. LED sockets for the 74LS244 and the 74HC154 were also mounted to
the perfboard. Connections were routed to a 16-pin ribbon cable connector. The other end of the
ribbon cable was interfaced to the appropriate pins of the Arduino processor. The entire LED
cube was mounted within a 4-inch plexiglass cube. The cube is available from the Container
Store (www.containerstore.com). A construction diagram is provided in Figure 3.37.

3.11.2 LEDCUBEARDUINOSKETCHCODE
Provided below is the basic code template to illuminate a single LED (LED 0, layer 0). This
basic template may be used to generate a number of special effects (e.g., tornado, black hole,
etc.). Pin numbers are provided for the Arduino UNO R3. Pin numbers for the Arduino Mega
2560 are provided in the comments.

//***
//led select pins

#define led_sel0 5 //Mega2560: pin 22
#define led_sel1 6 //Mega2560: pin 23
#define led_sel2 7 //Mega2560: pin 24
#define led_sel3 8 //Mega2560: pin 25

//layer select pins
#define layer_sel0 9 //Mega2560: pin 26
#define layer_sel1 10 //Mega2560: pin 27
#define layer_sel2 11 //Mega2560: pin 28
#define layer_sel3 12 //Mega2560: pin 29

void setup()
{
pinMode(led_sel0, OUTPUT);
pinMode(led_sel1, OUTPUT);
pinMode(led_sel2, OUTPUT);
pinMode(led_sel3, OUTPUT);

pinMode(layer_sel0, OUTPUT);
pinMode(layer_sel1, OUTPUT);
pinMode(layer_sel2, OUTPUT);
pinMode(layer_sel3, OUTPUT);
}

void loop()

www.containerstore.com

142 3. ARDUINOPOWERAND INTERFACING
{

//illuminate LED 0, layer 0
//led select

digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);

//layer select
digitalWrite(layer_sel0, HIGH);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, LOW);

delay(500); //delay specified in ms
}

//***

In the next example, a function “illuminate_LED” has been added. To illuminate a specific
LED, the LED position (0–15), the LED layer (0–3), and the length of time to illuminate the
LED in milliseconds is specified. In this short example, LED 0 is sequentially illuminated in
each layer. An LED grid map is provided in Figure 3.38. It is useful for planning special effects.

//***
//led select pins

#define led_sel0 5 //Mega2560: pin 22
#define led_sel1 6 //Mega2560: pin 23
#define led_sel2 7 //Mega2560: pin 24
#define led_sel3 8 //Mega2560: pin 25

//layer select pins
#define layer_sel0 9 //Mega2560: pin 26
#define layer_sel1 10 //Mega2560: pin 27
#define layer_sel2 11 //Mega2560: pin 28
#define layer_sel3 12 //Mega2560: pin 29

void setup()
{
pinMode(led_sel0, OUTPUT);
pinMode(led_sel1, OUTPUT);
pinMode(led_sel2, OUTPUT);

3.11. APPLICATION: SPECIALEFFECTS LEDCUBE 143

0 1 2 3

4 5 6 7

7

7

7

8 9 10

9 10

9 10

9 10

11

12 13 14 15

0 1 2 3

4 5 6

8 11

12 13 14 15

0 1 2 3

4 5 6

8 11

12 13 14 15

0 1 2 3

4 5 6

8 11

12 13 14 15

Layer 3

Layer 2

Layer 1

Layer 0

Figure 3.38: LED grid map.

144 3. ARDUINOPOWERAND INTERFACING
pinMode(led_sel3, OUTPUT);

pinMode(layer_sel0, OUTPUT);
pinMode(layer_sel1, OUTPUT);
pinMode(layer_sel2, OUTPUT);
pinMode(layer_sel3, OUTPUT);
}

void loop()
{
illuminate_LED(0, 0, 500);
illuminate_LED(0, 1, 500);
illuminate_LED(0, 2, 500);
illuminate_LED(0, 3, 500);
}

//***

void illuminate_LED(int led, int layer, int delay_time)
{
if(led==0)

{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==1)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==2)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);

3.11. APPLICATION: SPECIALEFFECTS LEDCUBE 145
digitalWrite(led_sel3, LOW);
}

else if(led==3)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, LOW);
}

else if(led==4)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

else if(led==5)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

else if(led==6)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

else if(led==7)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, LOW);
}

if(led==8)
{

146 3. ARDUINOPOWERAND INTERFACING
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==9)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==10)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==11)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, LOW);
digitalWrite(led_sel3, HIGH);
}

else if(led==12)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

else if(led==13)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, LOW);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);

3.11. APPLICATION: SPECIALEFFECTS LEDCUBE 147
}

else if(led==14)
{
digitalWrite(led_sel0, LOW);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

else if(led==15)
{
digitalWrite(led_sel0, HIGH);
digitalWrite(led_sel1, HIGH);
digitalWrite(led_sel2, HIGH);
digitalWrite(led_sel3, HIGH);
}

if(layer==0)
{
digitalWrite(layer_sel0, HIGH);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, LOW);
}

else if(layer==1)
{
digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, HIGH);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, LOW);
}

else if(layer==2)
{
digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, HIGH);
digitalWrite(layer_sel3, LOW);
}

else if(layer==3)
{

148 3. ARDUINOPOWERAND INTERFACING
digitalWrite(layer_sel0, LOW);
digitalWrite(layer_sel1, LOW);
digitalWrite(layer_sel2, LOW);
digitalWrite(layer_sel3, HIGH);
}

delay(delay_time);
}

//***

In the next example, a “fireworks” special effect is produced. The firework goes up, splits
into four pieces, and then falls back down, as shown in Figure 3.39. It is useful for planning
special effects.

//***
//led select pins

#define led_sel0 5 //Mega2560: pin 22
#define led_sel1 6 //Mega2560: pin 23
#define led_sel2 7 //Mega2560: pin 24
#define led_sel3 8 //Mega2560: pin 25

//layer select pins
#define layer_sel0 9 //Mega2560: pin 26
#define layer_sel1 10 //Mega2560: pin 27
#define layer_sel2 11 //Mega2560: pin 28
#define layer_sel3 12 //Mega2560: pin 29

void setup()
{
pinMode(led_sel0, OUTPUT);
pinMode(led_sel1, OUTPUT);
pinMode(led_sel2, OUTPUT);
pinMode(led_sel3, OUTPUT);

pinMode(layer_sel0, OUTPUT);
pinMode(layer_sel1, OUTPUT);
pinMode(layer_sel2, OUTPUT);
pinMode(layer_sel3, OUTPUT);
}

3.11. APPLICATION: SPECIALEFFECTS LEDCUBE 149

0 1 2 3

4 5

8 9 10

9 10

9 10

9 10

11

12 13 14 15

0 1 2 3

4 5 6 7

6 7

6 7

6 7

8 11

12 13 14 15

0 1 2 3

4 5

8 11

12 13 14 15

0 1 2 3

4 5

8 11

12 13 14 15

Layer 0

Layer 1

Layer 2

Layer 3

Figure 3.39: LED grid map for a fire work.

150 3. ARDUINOPOWERAND INTERFACING
void loop()
{
int i;

//firework going up
illuminate_LED(5, 0, 100);
illuminate_LED(5, 1, 100);
illuminate_LED(5, 2, 100);
illuminate_LED(5, 3, 100);

//firework exploding into four pieces
//at each cube corner
for(i=0;i<=10;i++)

{
illuminate_LED(0, 3, 10);
illuminate_LED(3, 3, 10);
illuminate_LED(12, 3, 10);
illuminate_LED(15, 3, 10);
delay(10);
}

delay(200);

//firework pieces falling to layer 2
for(i=0;i<=10;i++)

{
illuminate_LED(0, 2, 10);
illuminate_LED(3, 2, 10);
illuminate_LED(12, 2, 10);
illuminate_LED(15, 2, 10);
delay(10);
}

delay(200);

//firework pieces falling to layer 1
for(i=0;i<=10;i++)

{
illuminate_LED(0, 1, 10);

3.12. SUMMARY 151
illuminate_LED(3, 1, 10);
illuminate_LED(12, 1, 10);
illuminate_LED(15, 1, 10);
delay(10);
}

delay(200);

//firework pieces falling to layer 0
for(i=0;i<=10;i++)
{
illuminate_LED(0, 0, 10);
illuminate_LED(3, 0, 10);
illuminate_LED(12, 0, 10);
illuminate_LED(15, 0, 10);
delay(10);
}

delay(10);
}

//***

void illuminate_LED(int led, int layer, int delay_time)
{
if(led==0)
{
:
: //code provided for this function in the previous example.

}
}

//***

3.12 SUMMARY
In this chapter, we discussed the voltage and current operating parameters for the Arduino UNO
R3 and Mega 2560 processing board and the Microchip ATmega328 microcontroller. We dis-
cussed how this information may be applied to properly design an interface for common input

152 3. ARDUINOPOWERAND INTERFACING
and output circuits. It must be emphasized a properly designed interface allows the microcon-
troller to operate properly within its parameter envelope. If due to a poor interface design, a
microcontroller is used outside its prescribed operating parameter values, spurious and incorrect
logic values will result. We provided interface information for a wide range of input and output
devices. We also discussed the concept of interfacing a motor to a microcontroller using PWM
techniques coupled with high power MOSFET or SSR switching devices.

3.13 REFERENCES
[1] Pack, D. and Barrett, S. (2002). 68HC12Microcontroller: Theory and Applications. Prentice

Hall Incorporated, Upper Saddle River, NJ.

[2] Barrett, S. and Pack, D. (2004). Embedded Systems Design with the 68HC12 and HCS12.
Prentice Hall Incorporated, Upper Saddle River, NJ. 77

[3] Crydom Corporation, 2320 Paseo de las Americas, Suite 201, San Diego, CA, www.
crydom.com. 132

[4] Sick/Stegmann Incorporated, Dayton, OH, www.stegmann.com. 92

[5] Images Company, 39 Seneca Loop, Staten Island, NY 10314. 93

[6] Microchip 8-bit AVRMicrocontroller with 4/8/16/32K Bytes In-System Programmable Flash,
ATmega48PA, ATmega88PA, ATmega168PA, ATmega328P data sheet: Rev. 8161D-AVR-
10/09, Microchip Corporation, 2325 Orchard Parkway, San Jose, CA 95131.

[7] Barrett, S. and Pack, D. (2006). Microcontrollers Fundamentals for Engineers and Scientists.
Morgan & Claypool Publishers. DOI: 10.2200/S00025ED1V01Y200605DCS001

[8] Barrett, S. and Pack, D. (2008). Atmel AVR Microcontroller Primer Programming and In-
terfacing. Morgan & Claypool Publishers.
DOI: 10.2200/S00100ED1V01Y200712DCS015

[9] Barrett, S. (2010). Embedded Systems Design with the Atmel AVR Microcontroller. Morgan
& Claypool Publishers. DOI: 10.2200/S00225ED1V01Y200910DCS025

[10] National Semiconductor, LM34/LM34A/LM34C/LM34CA/LM34D Precision Fahrenheit
Temperature Sensor, 1995. 94

[11] SparkFun, www.sparkfun.com.

[12] Pack, D. and Barrett, S. (2011). Microcontroller Programming and Interfacing Texas Instru-
ments MSP430. Morgan & Claypool Publishers.

[13] Emic 2 Text-to-Speech Module (#30016), Parallax Corporation, www.parallax.com, 2015.
108

www.crydom.com
www.crydom.com
www.stegmann.com
http://dx.doi.org/10.2200/S00025ED1V01Y200605DCS001
http://dx.doi.org/10.2200/S00100ED1V01Y200712DCS015
http://dx.doi.org/10.2200/S00225ED1V01Y200910DCS025
www.sparkfun.com
www.parallax.com
http://www.morganclaypool.com/action/showLinks?system=10.2200%2FS00100ED1V01Y200712DCS015&citationId=p_42
http://www.morganclaypool.com/action/showLinks?system=10.2200%2FS00100ED1V01Y200712DCS015&citationId=p_42
http://www.morganclaypool.com/action/showLinks?system=10.2200%2FS00225ED1V01Y200910DCS025&citationId=p_43
http://www.morganclaypool.com/action/showLinks?system=10.2200%2FS00025ED1V01Y200605DCS001&citationId=p_41

3.14. CHAPTERPROBLEMS 153
[14] DRV 8829, 5-A 45-V Single H-Bridge Motor Driver, SLVSA74E, Texas Instruments,

Sep. 2015. 119

3.14 CHAPTERPROBLEMS
3.1. What will happen if a microcontroller is used outside of its prescribed operating enve-

lope?

3.2. Discuss the difference between the terms “sink” and “source” as related to current loading
of a microcontroller.

3.3. Can an LED with a series limiting resistor be directly driven by the microchip micro-
controller? Explain.

3.4. In your own words, provide a brief description of each of the microcontroller electrical
parameters.

3.5. What is switch bounce? Describe two techniques to minimize switch bounce.

3.6. Describe a method of debouncing a keypad.

3.7. What is the difference between an incremental encoder and an absolute encoder? De-
scribe applications for each type.

3.8. What must be the current rating of the 2N2222 and 2N2907 transistors used in the
tri-state LED circuit? Support your answer.

3.9. Draw the circuit for a six character seven-segment display. Fully specify all components.
Write a program to display “ATmega328.”

3.10. Repeat the question above for a dot matrix display.

3.11. Repeat the question above for a LCD display.

3.12. What is the difference between a unipolar and bipolar stepper motor?

3.13. What controls the speed of rotation of a stepper motor?

3.14. A stepper motor provides and angular displacement of 1.8ı per step. How can this
resolution be improved?

3.15. Write a function to convert an ASCII numeral representation (0–9) to a seven-segment
display.

3.16. Why is an interface required between a microcontroller and a stepper motor?

3.17. How must the LED cube design be modified to incorporate 8 layers of LEDs with 16
LEDs per layer?

154 3. ARDUINOPOWERAND INTERFACING
3.18. In the LED cube design, what is the maximum amount of forward current that can be

safely delivered to a given LED?

155

C H A P T E R 4

Arduino System Examples
Objectives: After reading this chapter, the reader should be able to:

• provide a detailed design for a remote weather station and

• provide a detailed design for a submersible robot.

4.1 OVERVIEW
In Chapters 1 and 2, we provided an overview of the Arduino Development Environment and
hardware to get you quickly up and operating with this user friendly processor. Chapter 3 pro-
vided information on how to properly connect a wide variety of devices to the Arduino. In this
chapter we provide several examples of Arduino-based systems.

4.2 WEATHER STATION
In this project we design a weather station with the following requirements:

• design a weather station to sense wind direction and speed, ambient temperature, and
accumulated rainfall;

• wind direction should be displayed on LEDs arranged in a circular pattern; and

• collected weather data should be displayed on a two line LCD and transmitted serially and
time stamped to a microSD card for storage.

4.2.1 STRUCTURECHART
To begin, the design process, a structure chart is used to provide an overall system picture and
partition the system into definable pieces. The structure chart for the weather station is provided
in Figure 4.1. We employ a top-down design/bottom-up implementation approach. The system
is partitioned until the lowest level of the structure chart contains “doable” pieces of hardware
components or software functions. Data flow is shown on the structure chart as directed arrows.

The main microcontroller subsystems needed for this project are the UART (serial port)
for the LCD display, the ADC system for wind direction and temperature sensing, the I2C sys-
tem to communicate with the Real Time Clock (RTC) module, the Serial Peripheral Interface
(SPI) for the SD card data logger, and the interrupt system for the wind speed and the rain gage.

156 4. ARDUINOSYSTEMEXAMPLES

Weather Station

Solar Power System

with Battery Backup

Analog-to-Digital

Conversion (ADC)

Serial Peripheral

Interface

Interrupt

System

ADC

Initialize

Weather

Vane

74154

4:16 Decoder

LED

Interface

LM34

Temp Sensor

UART

Solar

Panel

4 Line

LCD

SD

Card

Wind

Speed

Rain

Gauge
Control Battery

ReadADC

RTC

12 C

ch for

conv

conv

data

wind

direction

wind

direction

temp

data

display

data

wind

speed

accumulated

rainfall
time wx data

Figure 4.1: Weather station structure chart.

4.2.2 CIRCUITDIAGRAM
The circuit diagram for the weather station and subsystems is provided in Figure 4.2. We discuss
each subsystem in turn.

Liquid Crystal Display. We use the Sparkfun LCD-09535 serial enabled, 16 character,
two line LCD to display weather data. To display four lines of weather data we toggle between
two line displays. This LCD was discussed in Chapter 3.

Temperature Sensor. The weather station is equipped with an LM34 Precision Fahren-
heit Temperature Sensor. The LM34 provides 10 mV output per degree Fahrenheit. The output
from the sensor is provided to Arduino analog input pin A1 (SNIS161D [4]).

Weather Vane. The Sparkfun Weather Meters kit (# SEN-08942) is equipped with a
weather vane, an anemometer (wind speed), and a rain gauge. The weather vane provides a
voltage output from 0–5 VDC for different wind directions, as shown in Figure 4.2. The weather
vane must be oriented to a known direction with the output voltage at this direction noted. The
output voltage is provided to an RJ11 connector. Pins 1 and 4 of the RJ11 connector provide
access to the vane’s resistance. A 10-k ohm resistor is placed in series with the vane’s resistance
to provide a voltage divider circuit (www.sparkfun.com).

www.sparkfun.com

4.2. WEATHER STATION 157

5 V

8

LCD-09535

RX

Vcc = 5 V

10K

weather vane

(to pin A0)

4

1
41

Degrees Ohms Vout[V] (ADC out)
N: 0 33k 3.84 (785)

NNE:22.5 6.57k 1.98 (406)

NE: 45 8.2k 2.25 (461)

ENE: 67.5 891 0.41 (84)

E: 90 1k 0.45 (93)

ESE: 112.5 688 0.32 (66)

SE: 135 2.2k 0.90 (184)

SSE: 157.5 1.41k 0.62 (126)

S: 180 3.9k 1.40 (287)

SSW: 202.5 3.14k 1.19 (244)

SW: 225 16k 3.08 (630)

WSW: 247.5 14.12k 2.93 (599)

W: 270 120k 4.62 (944)

WNW: 292.5 42.12k 4.04 (827)

NW: 315 64.9k 4.33 (886)

NNW: 337.5 21.88k 3.43 (702)

Weather Vane

Vcc = 5 V

10K

anemometer

wind speed

(to interrupt pin 2)

32
2

3

rain gauge

(to interrupt pin 3)

Vcc = 5 V

10K

32
2

3

LM34

5 V

Temperature Sensor

75

1uF

A1

+

220
Vcc = 5 VDC

A(23)

B(22)

C(21)

D(20)

Vcc = 5 VDC
(24)

(12)

+

220

LED15

LED0
LED1
LED2

G1(18)

G2(19) (17)Y15

Vcc = 5 VDC4
5

6
7

SD Card Data Logger

with Real Time Clock

(www.adafruit.com)

SD Card

RTC

MOSI:11

MISO: 12

SCK: 13

CS: 10

SDA: A4

SCL: A5

DFRobot

Solar Power Manager

5
 V

D
C

G
n

d

V
o

u
t

LM34

MSB

NNE

NE

ENE

SSE

SE

ESE

SSW

SW

WSW

NNW

NW

WNW

ALLPOWERS,

100 W 18 V Solar Panel

Sparkfun Weather

Meters (SEN-08942)

Weize, 12 V 5 Amp

Lead Acid Rechargeable Battery

(1)Y0

(2)Y1

(3)Y2

N

LED0

LED0

S

W

 LED12

E

 LED4

74HC154

4:16

Decoder

Figure 4.2: Circuit diagram for weather station. Illustrations used with permission of Spark-
fun Electronics (www.sparkfun.com) andAdafruit (www.adafruit.com). UNOR3 illustration
used with permission of the Arduino Team (CC BY-NC-SA) (www.arduino.cc).

www.sparkfun.com
www.adafruit.com
www.arduino.cc

158 4. ARDUINOSYSTEMEXAMPLES
RainGauge. The rain gauge contains an enclosed rain tipping bucket. When the bucket

is full, it tips, tripping a magnetic read switch. The switch closure is routed via an RJ11 connector
to Arduino interrupt pin 3. Each tip represents 0.011 inch (0.2794 mm) of rainfall.

Anemometer-Wind Speed. The anemometer is equipped with three cups to catch the
wind. With each rotation of the anemometer, a reed switch is tripped. Switch closures one
second apart equates to 1.492 miles per hour (2.4 km/h) of wind speed. The switch closure is
routed via an RJ11 connector to Arduino interrupt pin 2.

WindDirectionDisplay.The internal circuitry of the weather vane consists of 2magnetic
switches and 16 different resistor values to indicate wind direction. As the weather vane is turned
by the wind, 1 of the 16 resistors is selected. The selected resistor is in series with a 10-k ohm
resistor to provide a voltage divider circuit. The voltage across the selected resistor is provided
to Arduino UNO R3 analog input pin A1. The sensed voltage is converted to a corresponding
ADC output, as shown in Figure 4.2. The ADC output is converted to wind direction and
displayed on the LCD.

The wind direction display also has 16 different LEDs to indicate wind direction. To
conserve Arduino pins, a 74HC154 4:16 decoder is used. When a binary value is provided to
inputs A-D of the 74HC154, the corresponding decoder output goes to logic low while the
remaining outputs remain at logic high. The LED at the logic low pin illuminates. An interface
circuit is required for each LED, as shown in Figure 4.2.

SD Card with Real Time Clock. We use the Adafruit Data Logger Shield (Adafruit
#1141). The shield provides multiple gigabits of additional storage for the UNO R3. It features a
Real Time Clock (RTC) with battery backup to timestamp collected data. RTC features provide
the microcontroller the ability to track calendar time based on seconds, minutes, hours, etc.
(www.adafruit.com).

Solar Power System.The solar power system consists of a solar panel, a solar power man-
ager, a rechargeable battery, and fuses for circuit protection. In this project we use the DFRobot
DFR0580 Solar Power Manager for a 12 VDC lead-acid battery. With an 18 VDC, 100 W so-
lar panel and a 12 VDC lead-acid battery; the DFR0580 can provide regulated output voltages
of 5 VDC at 5 amps and 12 VDC at 8 amps. This is more than required for the weather station;
however, we expand upon this project in future volumes of this text (www.DFRobot.com).

4.2.3 BOTTOM-UP IMPLEMENTATION
A sound implementation approach is to build up a complex system a subsystem at a time. We
use this approach to assemble the weather station. We start with the LCD and then develop
small test programs to assemble and test each weather station subsystem.

Liquid Crystal Display. We use Sparkfun LCD-09395 to display temperature, wind
speed, wind direction, and accumulated rainfall. The following sketch may be used to display
these weather parameters.

www.adafruit.com
www.DFRobot.com

4.2. WEATHER STATION 159
//***
//Example uses the Arduino Software Serial Library
// - provides software-based serial port
//Sparkfun LCD-09395: 2 line, 16 character LCD,
// - toggles between weather readings every 2 seconds
//***

#include <SoftwareSerial.h>

//Arduino pins for Serial connection:
// format: SoftwareSerial LCD(RX_pin, TX_pin);

SoftwareSerial LCD(8, 9);

void setup()
{
LCD.begin(9600); //Baud rate: 9600 Baud
delay(500); //Delay for display
}

void loop()
{
//Cursor to line one, character one
LCD.write(254);
LCD.write(128);

//clear display
LCD.write(" ");
LCD.write(" ");

//Cursor to line one, character one
LCD.write(254);
LCD.write(128);
LCD.write("Temp:");

//Cursor to line two, character one
LCD.write(254);
LCD.write(192);
LCD.write("Speed:");

160 4. ARDUINOSYSTEMEXAMPLES

delay(2000); //delay 2s

//Cursor to line one, character one
LCD.write(254);
LCD.write(128);

//clear display
LCD.write(" ");
LCD.write(" ");

//Cursor to line one, character one
LCD.write(254);
LCD.write(128);
LCD.write("Dir:");

//Cursor to line two, character one
LCD.write(254);
LCD.write(192);
LCD.write("Rain:");

delay(2000); //delay 2s

}

//***

Temperature Sensor. The weather station uses an LM34 Precision Fahrenheit Temper-
ature Sensor manufactured by Texas Instruments. The LM34 provides 10 mV of output per
degree Fahrenheit. The output (center) pin of the LM34 is provided to analog input pin A0
on the Arduino UNO R3. Provided below is test code to measure the output from the LM34,
convert the LM34 output to temperature, and display the result on the LCD.

//***
//Example uses the Arduino Software Serial Library
// - provides software-based serial port
//***

#include <SoftwareSerial.h>

//Specify Arduino pins for Serial connection:

4.2. WEATHER STATION 161
// SoftwareSerial LCD(RX_pin, TX_pin);
SoftwareSerial LCD(8, 9);

//analog input pins
#define LM34_sensor A0 //LM34 temp sensor at A0

int analog_temp;
int int_temp;
int troubleshoot = 1; //1: serial monitor prints
char tempstring[10]; //create string array for LCD

void setup()
{
if (troubleshoot == 1) Serial.begin(9600);
LCD.begin(9600); //Baud rate: 9600 Baud
delay(500); //Delay for display
analogReference(DEFAULT); //Reference voltage for ADC
}

void loop()
{ //Read temp from LM34 at A0
analog_temp = analogRead(LM34_sensor);
if (troubleshoot == 1) Serial.println (analog_temp);

//LM34 10mV/degree
int_temp = (int)(((analog_temp/1023.0) * 5.0)/.010);
if (troubleshoot == 1) Serial.println (int_temp);
sprintf(tempstring, "

//Cursor to line one, character one
LCD.write(254);
LCD.write(128);

//clear display
LCD.write(" ");
LCD.write(" ");

//Cursor to line one, character one
LCD.write(254);

162 4. ARDUINOSYSTEMEXAMPLES
LCD.write(128);

LCD.write("Temp [F]:");

//Cursor to line one, character ten
LCD.write(254);
LCD.write(137);
LCD.write(tempstring); //write temp string

delay(2000);
}

//***

Wind Direction Display. Provided below is an Arduino sketch to measure the output
voltage from the weather vane, convert the voltage to a correspondingwind direction, and display
the result to the LCD and the appropriate LED on the wind direction display described earlier.

//***
//Example uses the Arduino Software Serial Library
// - provides software-based serial port
//***

#include <SoftwareSerial.h>

//Specify Arduino pins for Serial connection:
// SoftwareSerial LCD(RX_pin, TX_pin);

SoftwareSerial LCD(8, 9);

//analog input pins
#define wind_vane_sensor A1 //wind vane sensor
#define p74HC154A 4 //LSB input to 74HC154 (1)
#define p74HC154B 5 //input to 74HC154 (2)
#define p74HC154C 6 //input to 74HC154 (4)
#define p74HC154D 7 //MSB input to 74HC154 (8)
#define LOW 0
#define HIGH 1

int analog_dir;
int int_dir;

4.2. WEATHER STATION 163
int troubleshoot = 1; //1: serial monitor prints
char dirstring[4]; //create string array for LCD

void setup()
{
if (troubleshoot == 1) Serial.begin(9600);

LCD.begin(9600); //Baud rate: 9600 Baud
delay(500); //Delay for display
analogReference(DEFAULT); //Reference voltage for ADC
pinMode(p74HC154A, OUTPUT); //LSB input to 74HC154 (1)
pinMode(p74HC154B, OUTPUT); //input to 74HC154 (2)
pinMode(p74HC154C, OUTPUT); //input to 74HC154 (4)
pinMode(p74HC154D, OUTPUT); //MSB input to 74HC154 (8)
}

void loop()
{ //Read dir from vane at A1
analog_dir = analogRead(wind_vane_sensor);
if (troubleshoot == 1) Serial.println (analog_dir);

//Cursor to line two, character one
LCD.write(254);
LCD.write(192);

//clear display
LCD.write(" ");
LCD.write(" ");

//Cursor to line two, character one
LCD.write(254);
LCD.write(192);

LCD.write("Dir:");

//Cursor to line two, character ten
LCD.write(254);
LCD.write(202);

164 4. ARDUINOSYSTEMEXAMPLES
//Determine wind direction - vane 0 degree aligned with North
//North - ADC output 785
if((analog_dir >= 744) && (analog_dir <= 806))

{
LCD.write("N ");
digitalWrite(p74HC154D, 0); digitalWrite(p74HC154C, 0);
digitalWrite(p74HC154B, 0); digitalWrite(p74HC154A, 0);
}

//NNE - ADC output 406
else if((analog_dir >= 347) && (analog_dir <= 433))

{
LCD.write("NNE");
digitalWrite(p74HC154D, 0); digitalWrite(p74HC154C, 0);
digitalWrite(p74HC154B, 0); digitalWrite(p74HC154A, 1);
}

//NE - ADC output 461
else if((analog_dir >= 434) && (analog_dir <= 530))

{
LCD.write("NE ");
digitalWrite(p74HC154D, 0); digitalWrite(p74HC154C, 0);
digitalWrite(p74HC154B, 1); digitalWrite(p74HC154A, 0);
}

//ENE - ADC output 84
else if((analog_dir >= 76) && (analog_dir <= 88))

{
LCD.write("ENE");
digitalWrite(p74HC154D, 0); digitalWrite(p74HC154C, 0);
digitalWrite(p74HC154B, 1); digitalWrite(p74HC154A, 1);
}

//E - ADC output 93
else if((analog_dir >= 89) && (analog_dir <= 109))

{
LCD.write("E ");
digitalWrite(p74HC154D, 0); digitalWrite(p74HC154C, 1);
digitalWrite(p74HC154B, 0); digitalWrite(p74HC154A, 0);
}

//ESE - ADC output 66
else if((analog_dir >= 62) && (analog_dir <= 68))

{

4.2. WEATHER STATION 165
LCD.write("ESE");
digitalWrite(p74HC154D, 0); digitalWrite(p74HC154C, 1);
digitalWrite(p74HC154B, 0); digitalWrite(p74HC154A, 1);
}

//SE - ADC output 184
else if((analog_dir >= 181) && (analog_dir <= 187))
{
LCD.write("SE ");
digitalWrite(p74HC154D, 0); digitalWrite(p74HC154C, 1);
digitalWrite(p74HC154B, 1); digitalWrite(p74HC154A, 0);
}

//SSE - ADC output 126
else if((analog_dir >= 110) && (analog_dir <= 155))
{
LCD.write("SSE");
digitalWrite(p74HC154D, 0); digitalWrite(p74HC154C, 1);
digitalWrite(p74HC154B, 1); digitalWrite(p74HC154A, 1);
}

//S - ADC output 287
else if((analog_dir >= 266) && (analog_dir <= 346))
{
LCD.write("S ");
digitalWrite(p74HC154D, 1); digitalWrite(p74HC154C, 0);
digitalWrite(p74HC154B, 0); digitalWrite(p74HC154A, 0);
}

//SSW - ADC output 244
else if((analog_dir >= 214) && (analog_dir <= 265))
{
LCD.write("SSW");
digitalWrite(p74HC154D, 1); digitalWrite(p74HC154C, 0);
digitalWrite(p74HC154B, 0); digitalWrite(p74HC154A, 1);
}

//SW - ADC output 630
else if((analog_dir >= 615) && (analog_dir <= 665))
{
LCD.write("SW ");
digitalWrite(p74HC154D, 1); digitalWrite(p74HC154C, 0);
digitalWrite(p74HC154B, 1); digitalWrite(p74HC154A, 0);
}

166 4. ARDUINOSYSTEMEXAMPLES
//WSW - ADC output 599
else if((analog_dir >= 531) && (analog_dir <= 614))

{
LCD.write("WSW");
digitalWrite(p74HC154D, 1); digitalWrite(p74HC154C, 0);
digitalWrite(p74HC154B, 1); digitalWrite(p74HC154A, 1);
}

//W - ADC output 944
else if((analog_dir >= 916) && (analog_dir <= 1023))

{
LCD.write("W ");
digitalWrite(p74HC154D, 1); digitalWrite(p74HC154C, 1);
digitalWrite(p74HC154B, 0); digitalWrite(p74HC154A, 0);
}

//WNW - ADC output 827
else if((analog_dir >= 807) && (analog_dir <= 856))

{
LCD.write("WNW");
digitalWrite(p74HC154D, 1); digitalWrite(p74HC154C, 1);
digitalWrite(p74HC154B, 0); digitalWrite(p74HC154A, 1);
}

//NW - ADC output 886
else if((analog_dir >= 857) && (analog_dir <= 915))

{
LCD.write("NW ");
digitalWrite(p74HC154D, 1); digitalWrite(p74HC154C, 1);
digitalWrite(p74HC154B, 1); digitalWrite(p74HC154A, 0);
}

//NNW - ADC output 702
else if((analog_dir >= 667) && (analog_dir <= 743))

{
LCD.write("NNW");
digitalWrite(p74HC154D, 1); digitalWrite(p74HC154C, 1);
digitalWrite(p74HC154B, 1); digitalWrite(p74HC154A, 1);
}

else
{
LCD.write("<-->");
}

4.2. WEATHER STATION 167
delay(100);
}

//***

RainGauge.The rain gauge portion of the Sparkfun Weather Meters (SEN-08942) pro-
vides a switch closure for each tip of the rain bucket. When the bucket is full, it tips, tripping a
magnetic read switch. The switch closure is routed via an RJ11 connector to Arduino interrupt
pin 3. Each tip represents 0.011 inch (0.2794 mm) of rainfall. In the Arduino sketch provided
below, the interrupt increments a switch closure counter and converts the result to accumulated
rainfall.

//**
//Program measures the accumulated rainfall since the last reset.
//The rain gauge switch is in series with a 10K resistor pulled up
//to 5 VDC. The switch is provided to INT1 (pin 3) of the UNO R3.
//**

unsigned long rain_sw_closures = 0;
float rainfall;

void setup()
{
Serial.begin(9600);
pinMode(3, INPUT);
attachInterrupt(1, int1_ISR, FALLING);
}

void loop()
{

//wait for interrupts

}

//**
//int_ISR: interrupt service routine for INT1
//**

void int1_ISR(void)
{

168 4. ARDUINOSYSTEMEXAMPLES
rain_sw_closures++; //increment rainfall count

//switch closures to inches
rainfall = ((float)(rain_sw_closures) * 0.011);
Serial.print(rainfall);
Serial.println(" inches");
Serial.println();
}

//***

Anemometer-Wind Speed. The anemometer portion of the Sparkfun Weather Meters
(SEN-08942) is equipped with a three cups to catch the wind. With each rotation of the
anemometer, a reed switch is tripped. Switch closures one second apart equates to 1.492 miles
per hour (2.4 km/h) of wind speed. The switch closure is routed via an RJ11 connector to Ar-
duino interrupt pin 2. In the Arduino sketch provided below, the time between two switch
closures is measured and converted to wind speed in MPH.

//**
//Program measures the elapsed time in ms between two switch
//closures of the anemometer. The anemometer switch is in series
//with a 10K resistor pulled up to 5 VDC. The switch is provided
//to INT0 (pin 2) of the UNO R3.
//**

unsigned long first, second, elapsed_time; //milliseconds
unsigned int first_time_hack = 1, wind_speed;

void setup()
{
Serial.begin(9600);
pinMode(2, INPUT);
attachInterrupt(0, int0_ISR, FALLING);
}

void loop()
{

//wait for interrupts

}

4.2. WEATHER STATION 169
//**
//int0_ISR: interrupt service routine for INT0
//**

void int0_ISR(void)
{
if(first_time_hack ==1)
{
first = millis(); //milliseconds
first_time_hack = 0;
}

else
{
second = millis(); //milliseconds
first_time_hack = 1;
elapsed_time = second-first; //milliseconds

//ms to MPH
wind_speed = (unsigned int)((1000.0/(float)(elapsed_time)) * 1.492);
Serial.print(wind_speed);
Serial.println(" MPH");
Serial.println();
}

}

//***

SD Card with Real Time Clock. We use the Adafruit data logger shield (Adafruit
#1141). It is equipped with an RTC and battery backup to timestamp collected data. Adafruit
provides step-by-step instructions to connect header pins and program the SD Card shield in
“Adafruit Data Logger Shield (www.adafruit.com).”

Solar Power System. The solar power system for the remote weather station is shown
in Figure 4.3. The system is managed by the DFRobot DFR0590 Solar Power Management
Module. This module was designed for use with an 18 V, 100 W solar panel and provides trickle
charging for a 12 V lead-acid battery. The solar panel chosen for the system is an All Powers 18
V, 100 W solar panel (#AP-SP-016-SIL). It has a working voltage of 18 V and working current
of 5.8 A. The solar panel is connected to the DFR0590 Solar Power Management Module
via 10 AWG insulated power cables equipped with MC4 connectors. The battery chosen for
the system is the Weize FP1250 12 V, 5AH sealed lead-acid rechargeable battery. The power
cable from the solar panel to the power management module is fused at 7.5 A. The power cable
between the power management module and the battery is fused at 5 A. The solar power system

www.adafruit.com

170 4. ARDUINOSYSTEMEXAMPLES

DF Robot DFR0580 Solar Power Management Module.
Illustration courtesy of DF Robot [www.dfrobot.com].

7.5A inline

fuse

 5A inline

fuse

All Powers 18 V, 100 W

solar panel

Weize FP1250 12 V, 5 AH

Sealed Lead Acid Rechargeable Battery

(b) Wiring Diagram Solar Power

Management System

(a) DF Robot DFR0580

Solar Power Management Module.

Illustration courtesy of

DF Robot

(www.dfrobot.com).

Figure 4.3: Solar power system for the remote weather station. Illustrations courtesy ofDFRobot
(www.DFRobot.com), All Powers (www.allpowers.com), and Weize (www.weize.com).

www.DFRobot.com
www.allpowers.com
www.weize.com

4.3. SUBMERSIBLEROBOT 171
is more than adequate to meet the needs of the remote weather station. We add to the project in
future volumes of the textbook series. Due to the wide range of applicable codes and standards
and permitting requirements for photovoltaic systems, the solar panel and associated equipment
should be installed by a licensed electrician.

4.2.4 UMLACTIVITYDIAGRAM
The UML activity diagram for the main program is provided in Figure 4.4. After initializing
the subsystems, the program enters a continuous loop where temperature and wind direction is
sensed and displayed on the LCD and the LED display. Interrupts are used to capture data on
wind speed and rainfall. The sensed values are then transmitted via the SPI to the MMC/SD
card. The system then enters a delay to set how often the temperature and wind direction pa-
rameters are updated. We have you construct the individual UML activity diagrams for each
function as an end of chapter exercise.

4.2.5 MICROCONTROLLERCODE
We leave the final weather station code as a homework assignment at the end of the chapter. The
final code may be assembled from all of the individual code sketches provided in this section.

4.2.6 FINALASSEMBLY
The weather station may be assembled into a small package by using an Adafruit Wing Shield
(#196). The Wing Shield couples to the Arduino UNO R3 with onboard stacking headers. The
Adafruit data logger shield (#1141) is then stacked upon the Wing Shield. The Wing Shield is
equippedwith screw terminals to connect the weather station peripherals to the stackedmodules,
as shown in Figure 4.5.

4.3 SUBMERSIBLEROBOT
The area of submersible robots is fascinating and challenging. To design a robot is quite com-
plex (yet fun). To add the additional requirement of waterproofing key components provides
an additional level of challenge. (Water and electricity do not mix!) In this section we provide
the construction details and a control system for a remotely operated vehicle, an ROV. Specif-
ically, we develop the structure and control system for the SeaPerch style ROV. By definition,
an ROV is equipped with a tether umbilical cable that provides power and control signals from
a surface support platform. An Autonomous Underwater Vehicle (AUV) carries its own power
and control equipment and does not require surface support (SeaPerch [3]).

Details on the construction andwaterproofing of anROV are provided in the excellent and
fascinating Build Your OwnUnderwater Robot and Other Wet Projects by Harry Bohm and Vickie
Jensen. For an advanced treatment, please see The ROV Manual—A User Guide for Remotely
Operated Vehicles by Robert Crist and Robert Wernli, Sr. There is a national—level competition

172 4. ARDUINOSYSTEMEXAMPLES

Log Weather Data and
Time Stamp to SD Card

Display wx Date to LCD
Wind Direction on LED Display

AnalogRead wx Vane
Convert Wind Direction

AnalogRead LM34
Convert Reading to Temp

Setup
Set Analog Reference

Initialize Baud Rate LCD
Set Pinmodes

Initiate Interrupts
Initialize SD Card and RTC

Capture 2nd Time
Set First Time Flag to One
Convert Elapsed Time to

Wind Speed

Include SoftwareSerial Files
#Define Assigned Arduino Pins

Global Variables

Capture Bucket Tip
Conver to Rain Fall

Capture 1st Time
Set First Time Flag to Zero

Delay (desired_update_time)

While(1)

Anemometer
Interrupt

Rain Gauge
Interrupt

Figure 4.4: Weather station UML activity diagram.

4.3. SUBMERSIBLEROBOT 173

To Rain Gauge
To anemometer

To Weather Vane

To LM34To LCD-09535

To 74HC154

Decoder

To SD Card

(via stacked

boards)

To Real Time Clock

(via board stacking)

To Solar Power

Management System

Figure 4.5: Assembled weather station.

for students based on the SeaPerch ROV. The goal of the program is to stimulate interest in the
next generation of marine related engineering specialties (SeaPerch [3]).

4.3.1 APPROACH
This is a challenging project; however, we take a methodical, step-by-step approach to success-
fully design and construct the ROV. We complete the design tasks in the following order:

• determine requirements;

• design and construct ROV structure;

• design and fabricate control electronics;

• design and implement control software using the Arduino Development Environment;

• construct and assemble a prototype; and

• test the prototype.

174 4. ARDUINOSYSTEMEXAMPLES

4.3.2 REQUIREMENTS
The requirements for the ROV system include:

• develop a control system to allow a three-thruster (motor or bilge pump) ROV to move
forward, left (port), and right (starboard);

• the ROV will be pushed down to a shallow depth via a vertical thruster and return to
surface based on its own, slightly positive buoyancy;

• ROV movement will be under joystick control;

• LEDs are used to indicate thruster assertion;

• all power and control circuitry will be maintained in a surface support platform, as shown
in Figure 4.6; and

• an umbilical cable connects the support platform to the ROV.

4.3.3 ROV STRUCTURE
The ROV structure is shown in Figure 4.7. The structure is constructed with 0.75 inch PVC
piping. The structure is assembled quickly using “T” and corner connectors. The pieces are con-
nected using PVC glue or machine screws. The PVC pipe and connectors are readily available
in hardware and home improvement stores.

The fore or bow portion of the structure is equipped with plexiglass panels to serve as
mounting bulkheads for the thrusters. The panels are mounted to the PVC structure using ring
clamps. Either waterproofed electric motors or submersible bilge pumps are used as thrusters. A
bilge pump is a pump specifically designed to remove water from the inside of a boat. The pumps
are powered from a 12VDC source and have typical flow rates from 360 to over 3,500 gallons per
minute. They range in price from U.S. $20–$80 (www.shorelinemarinedevelopment.com).
Details on waterproofing electric motors are provided in Build Your Own Underwater Robot and
OtherWet Projects.We use three Shoreline Bilge Pumps rated at 600 gallons per minute (GPM).
They are available online from www.walmart.com.

The aft or stern portion of the structure is designed to hold the flexible umbilical cable.The
cable provides a link between theArduinoUNOR3 based control system and the thrusters. Each
thruster may require up to 1–2 amps of current. Therefore, a 4-conductor, 16 AWG, braided (for
flexibility) conductor cable is recommended.The cable is interfaced to the bilge pump leads using
soldered connections or Butt connectors. The interface should be thoroughly waterproofed using
caulk. For this design the interface was placed within a section of PVC pipe equipped with end
caps. The resulting container is filled with waterproof caulk.

Once the ROV structure is complete its buoyancy is tested. This is accomplished by plac-
ing the ROV structure in water. The goal is to achieve a slightly positive buoyancy. With positive

www.shorelinemarine development.com
www.walmart.com

4.3. SUBMERSIBLEROBOT 175

L C R

Battery

Figure 4.6: Power and control are provided remotely to the SeaPerch ROV. (Adapted and used
with permission of Bohm and Jensen, West Coast Words Publishing.)

buoyancy the structure floats. With neutral buoyancy the structures hovers beneath the surface.
With negative buoyancy the structure sinks. A more positive buoyancy way be achieved by at-
taching floats or foam to the structure tubing. A more negative buoyancy may be achieved by
adding weights to the structure [Bohm and Jensen].

4.3.4 STRUCTURECHART
The SeaPerch structure chart is provided in Figure 4.8. The SeaPerch control system will accept
input from the five position joystick (left, right, select, up and down). We use the Sparkfun
thumb joystick (SparkfunCOM-09032).The joystick schematic and connections to theArduino
UNO R3 are provided in Figures 4.9 and 4.10.

176 4. ARDUINOSYSTEMEXAMPLES

w
aterp

ro
o
f

in
terface

Top View

Per Side:
2 each - 4-1/2˝
3 each - 4-1/2˝
2 each - 7˝

Side View

Ring

Clamp

Ring

Clamp

Ring

Clamp

Ring

Clamp

Ring

Clamp

Ring

Clamp

Ring

Clamp

Ring

Clamp

Ring

Clamp

Ring

Clamp

Shoreline
Bilge
Pump

S
h

o
relin

e
B

ilg
e

P
u

m
p

S
h

o
relin

e
B

ilg
e

P
u

m
p

Shoreline
Bilge
Pump

Shoreline
Bilge
Pump

Up/Down
Thruster

3/4˝ Diameter PVC

Umbilical Cable

Stern Bow

Figure 4.7: SeaPerch ROV structure.

4.3. SUBMERSIBLEROBOT 177

SeaPerch
Control System

Direction
ROV
Direction

Motor
Assertion

LED
Assertion

Motor
Control

Motor
Interface

Left
!ruster

Vertical
!ruster

Right
!ruster

Left
LED

Vertical
LED

Right
LED

Light Emitting Diodes
(LEDs) Interface

Five-Position
Joystick

Figure 4.8: SeaPerch ROV structure chart.

178 4. ARDUINOSYSTEMEXAMPLES

+

12 VDC

12 VDC

5 VDC

0.1μF

0.33μF

12 VDC

Rechargeable

Battery

Battery

Charger

5 VDC
Thumb Joystick

10 K

SEL (5)

GND

Vcc

Vert
(A1)

Horz
(A0)

12 VDC

12 VDC

1N4001

1N4001

TIP 120

TIP 120

TIP 120

1N4001

Left

220 Ω 220 Ω 220 Ω

470 Ω

470 Ω470 Ω

10 KΩ 10 KΩ 10 KΩ

+

Vertical
+

5.0 VDC 5.0 VDC 5.0 VDC

Right

MRight

Thruster
MLeft

Thruster

MVertical

Thruster

sel
Select
(push)

V
C

C

V
E

R
T

H
O

R
Z

S
E

L

G
N

D

6

5A

5A

On/Off
7805

7

LED Thruster Indicators

8

4

Figure 4.9: SeaPerch ROV interface control. UNO R3 illustration used with permission of the
Arduino Team (CC BY-NC-SA; www.arduino.cc).

www.arduino.cc

4.3. SUBMERSIBLEROBOT 179

b
e

c

2
2
0

1
0

K

1
N

4
0
0
1

1
N

4
0
0
1

1
N

4
0
0
1

To Vertical
Thruster

To Right
Thruster

To Left
Thruster

Ground

12 V

5 V

12 V

Ground

Battery

Charger

12 VDC

Battery

LM317

ad
j

o
u
t

in
p

7805

I C O

0
.3

3

0
.1

1
0

1
0 1
0

6
4
0

3
9
0

1.0

to ROV

4
 C

o
n
d
u
ct

o
r

Jo
n
es

 C
o
n
n
ec

to
r

pcb
Mounting
Hole for
Spacer
Hardware

12 V

b
e

c

2
2
0

1
0

K

b
e

c

2
2
0

1
0

K

TIP
120

B C E

TIP
120

B C E

TIP
120

B C E

5
V, t

o
jo

ys
tic

k
V

cc
 (P

)

gr
ou

nd
, t

o
U

N
O

 R
3

gr
ou

nd
 (B

k)

le
ft

th
ru

st
er

 in
pu

t,
to

 p
in

 2
 (Y

)

rig
ht

 th
ru

st
er

 in
pu

t,
pi

n
3

(B
r)

ve
rt

th
ru

st
er

 in
pu

t,
pi

n
4

(W
)

le
ft

LED
 in

pu
t,

to
 p

in
 6

(G
)

rig
ht

 L
ED

 in
pu

t,
pi

n
8

(O
)

ve
rt

LED
 in

pu
t,

to
 p

in
 7

 (B
l)5A

5A Fuse
On/Off

Figure 4.10: SeaPerch ROV printed circuit board interface.

In response to user joystick input, the SeaPerch control algorithm will issue a control
command indicating desired ROV direction. In response to this desired direction command,
the motor control algorithm will issue control signals to assert the appropriate thrusters and
LEDs.

4.3.5 CIRCUITDIAGRAM
The circuit diagram for the SeaPerch control system is provided in Figure 4.9.The thumb joystick
is used to select desired ROV direction.The thumb joystick contains two built-in potentiometers
(horizontal and vertical). A reference voltage of 5 VDC is applied to the VCC input of the joystick.
As the joystick is moved, the horizontal (HORZ) and vertical (VERT) analog output voltages
will change to indicate the joystick position. The joystick is also equipped with a digital select
(SEL) button. The SEL button is used to activate an ROV dive. The joystick is interfaced to
Arduino UNO R3, as shown in Figure 4.9.

180 4. ARDUINOSYSTEMEXAMPLES
There are three LED interface circuits connected to the Arduino UNO R3 header pins

6, 7, and 8. The LEDs illuminate to indicate the left, vertical, and right thrusters have been
asserted. As previously mentioned, the prime mover for the ROV are three bilge pumps. The
left and right bilge pumps are driven by pulse width modulation channels (pins 2 and 3) via
power NPN Darlington transistors (TIP 120), as shown in Figure 4.9. The vertical thrust is
under digital pin control 4 equipped with NPN Darlington transistor (TIP 120) interface.

The interface circuitry between the Arduino UNO R3 and the bilge pumps is mounted
on a printed circuit board (PCB) within the control housing. The interface between Arduino,
the PCB, and the umbilical cable is provided in Figure 4.10.

4.3.6 UMLACTIVITYDIAGRAM
The SeaPerch control system UML activity diagram is provided in Figure 4.11. After initializing
the UNO R3 pins the control algorithm is placed in a continuous loop awaiting user input. In
response to user input, the algorithm determines desired direction of ROV travel and asserts
appropriate control signals for the LED and motors.

4.3.7 ARDUINOUNOR3 SKETCH
In this example we use the thumb joystick to control the left and right thruster (motor or bilge
pump). The joystick provides a separate voltage from 0–5 VDC for the horizontal (HORZ)
and vertical (VERT) position of the joystick. We use this voltage to set the duty cycle of the
pulse width modulated (PWM) signals sent to the left and right thrusters. The select push-
button (SEL) on the joystick is used to assert the vertical thruster. The analog read function
(analogRead) is used to read the X and Y position of the joystick. A value from 0–1023 is re-
ported from the analog read function corresponding to 0–5 VDC. After the voltage readings are
taken they are scaled to 5 VDC for further processing. Joystick activity is divided into multiple
zones (0–8), as shown in Figure 4.12. The joystick signal is further processed consistent with the
joystick zone selected.

4.3. SUBMERSIBLEROBOT 181

Initialize Ports

Assert Left, Right !ruster
Assert Left, Right LED

Include Files
Global Variables

Function Prototypes

Read Joystick Position
(bow, stern, starboard,

port, dive)

While(1)

Bow? While Bow
Asserted?

Dive?

Joystick
Asserted

•
•
•

No

No No

No Stern

.

.

Starboard

.

.

Port

No

Yes

Yes Yes

Assert Vertical !ruster
Assert Vertical LED

While Dive
Asserted?

Yes Yes

Bow

Stern

Port

Dive

Starboard

Figure 4.11: SeaPerch ROV UML activity diagram.

182 4. ARDUINOSYSTEMEXAMPLES

Y-Vertical
(analog)
0 VDC

Forward
(bow)

Reverse
(stern)

Y-Vertical
(analog)
5 VDC

Right
(starboard)
X-Horizontal

(analog)
5 VDC

Left
(port)

X-Horizontal
(analog)
0 VDC

Select
(push)

2.42 V (496)

2
.4

2
 V

 (
4
9
6
)

2.54 V (527)

2
.5

4
 V

 (
5
2
7
)

VIIV

VIIIII

I

V

III VII

Y-Vertical

(analog)

0 VDC

X-Horizontal

(analog)

0 VDC

X-Horizontal

(analog)

5 VDC

Y-Vertical

(analog)

5 VDC

Forward

(bow)

Right

(starboard)

Left

(port)

Reverse

(stern)

Select

(push)

Figure 4.12: Joystick position as related to thruster activity.

//***
//ROV
//In response to joystick input, the SeaPerch control algorithm issues
//a control command indicating desired ROV direction. In response to
//desired direction command, the motor control algorithm issues
//control signals to assert the appropriate thrusters and LEDs.
//***

//analog input pins

4.3. SUBMERSIBLEROBOT 183
#define joystick_hor A0 //analog pin - joystick horizontal in
#define joystick_ver A1 //analog pin - joystick vertical in

//digital input pin
#define joystick_sel 5 //digital pin - joystick select in

//digital output pins - LED indicators
#define left_LED 6 //digital pin - left LED out
#define vertical_LED 7 //digital pin - vertical LED out
#define right_LED 8 //digital pin - right LED out

//thruster outputs
#define left_thruster 2 //digital pin - left thruster
#define right_thruster 3 //digital pin - right thruster
#define vertical_thruster 4 //digital pin - vertical thruster

int joystick_hor_value; //horizontal joystick value
int joystick_ver_value; //vertical joystick value
int joystick_sel_value; //joystick select value
int joystick_thrust_on; //1: thrust on; 0: off
int troubleshoot = 1; //1: serial monitor prints

void setup()
{
//LED indicators
pinMode(left_LED, OUTPUT); //config pin for digital out -
// left LED
pinMode(vertical_LED, OUTPUT); //config pin for digital out -
// vertical LED
pinMode(right_LED, OUTPUT); //config pin for digital out -
// right LED

//joystick select input
pinMode(joystick_sel, INPUT); //config pin for digital in -
// joystick sel

//thruster outputs
pinMode(left_thruster, OUTPUT); //config digital out -
// left thruster

184 4. ARDUINOSYSTEMEXAMPLES
pinMode(vertical_thruster, OUTPUT); //config digital out -
// vertical thruster
pinMode(right_thruster, OUTPUT); //config digital out -
// right thruster

//Serial monitor - open serial communications
if(troubleshoot == 1) Serial.begin(9600);
}

void loop()
{
//set update interval
delay(1000);

//turn off LEDs
digitalWrite(left_LED, LOW); //left LED - off
digitalWrite(vertical_LED, LOW); //vertical LED - off
digitalWrite(right_LED, LOW); //right LED - off

//read hor and vert joystick position
//analog read returns value between 0 and 1023
joystick_hor_value = analogRead(joystick_hor);
joystick_ver_value = analogRead(joystick_ver);

if(troubleshoot == 1) Serial.println(joystick_hor_value);
if(troubleshoot == 1) Serial.println(joystick_ver_value);

//Convert 0 to 1023 to 0 to 5 VDC value
joystick_hor_value = ((joystick_hor_value/1023.0) * 5.0);
if(troubleshoot == 1) Serial.println(joystick_hor_value);

joystick_ver_value = ((joystick_ver_value/1023.0) * 5.0);
if(troubleshoot == 1) Serial.println(joystick_ver_value);

//Read vertical thrust
joystick_thrust_on = digitalRead(joystick_sel); //vertical thrust?

//**
//vertical thrust - active low pushbutton on joystick

4.3. SUBMERSIBLEROBOT 185
//**
if(joystick_thrust_on == 0)
{
digitalWrite(vertical_thruster, HIGH);
digitalWrite(vertical_LED, HIGH);
if(troubleshoot == 1) Serial.println("Thrust is on!");
}

else
{
digitalWrite(vertical_thruster, LOW);
digitalWrite(vertical_LED, LOW);
if(troubleshoot == 1) Serial.println("Thrust is off!");
}

//***
//***
//process different joystick zones
//***
//Case 0: Joystick in null position
//Inputs:
// X channel between 2.42 to 2.54 VDC - null zone
// Y channel between 2.42 to 2.54 VDC - null zone
//Output:
// Shut off thrusters
//***

if((joystick_hor_value > 2.42)&&(joystick_hor_value < 2.54)&&
(joystick_ver_value > 2.42)&&(joystick_ver_value < 2.54))

{
if(troubleshoot == 1) Serial.println("Zone 0");

if(troubleshoot == 1)
{
if(troubleshoot == 1) Serial.println(joystick_hor_value);
if(troubleshoot == 1) Serial.println(joystick_ver_value);
if(troubleshoot == 1) Serial.println(joystick_thrust_on);
}

186 4. ARDUINOSYSTEMEXAMPLES
//assert thrusters to move forward
analogWrite(left_thruster, 0);
analogWrite(right_thruster, 0);

//assert LEDs
digitalWrite(left_LED, LOW); //de-assert left LED
digitalWrite(right_LED, LOW); //de-assert right LED
}

//***
//***
//process different joystick zones
//***
//Case 1:
//Inputs:
// X channel between 2.42 to 2.54 VDC - null zone
// Y channel <= 2.42 VDC
//Output:
// Move forward - provide same voltage to left and right thrusters
//***

if((joystick_hor_value > 2.42)&&(joystick_hor_value < 2.54)&&
(joystick_ver_value <= 2.42))

{
if(troubleshoot == 1) Serial.println("Zone 1");

//scale joystick vertical to value from 0 to 1
joystick_ver_value = 2.42 - joystick_ver_value;
if(troubleshoot == 1) Serial.println(joystick_hor_value);
if(troubleshoot == 1) Serial.println(joystick_ver_value);
if(troubleshoot == 1) Serial.println(joystick_thrust_on);

//assert thrusters to move forward
analogWrite(left_thruster, joystick_ver_value);
analogWrite(right_thruster, joystick_ver_value);

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED,HIGH); //assert right LED

4.3. SUBMERSIBLEROBOT 187
}

//**
//**
//Case 2:
//Inputs:
// X channel <= 2.42 VDC
// Y channel <= 2.42 VDC
//Output:
// Move forward and bare left
// - Which joystick direction is asserted more?
// - Scale PWM voltage to left and right thruster accordingly
//**

if((joystick_hor_value <= 2.42)&&(joystick_ver_value <= 2.42))
{
if(troubleshoot == 1) Serial.println("Zone 2");

//scale joystick horizontal and vertical to value from 0 to 1
joystick_hor_value = 2.42 - joystick_hor_value;
joystick_ver_value = 2.42 - joystick_ver_value;

if(troubleshoot == 1) Serial.println(joystick_hor_value);
if(troubleshoot == 1) Serial.println(joystick_ver_value);
if(troubleshoot == 1) Serial.println(joystick_thrust_on);

//assert thrusters and LEDs
if(joystick_hor_value > joystick_ver_value)

{
analogWrite(left_thruster, (joystick_hor_value - joystick_ver_value));
analogWrite(right_thruster, joystick_hor_value);

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

else
{
analogWrite(left_thruster, joystick_ver_value);

188 4. ARDUINOSYSTEMEXAMPLES
analogWrite(right_thruster, (joystick_ver_value - joystick_hor_value));

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

}

//**
//**
//Case 3:
//Inputs:
// X channel <= 2.42 VDC
// Y channel between 2.42 to 2.54 VDC - null zone
//Output:
// Bare left
//**

if((joystick_hor_value <= 2.42)&&(joystick_ver_value > 2.42)&&
(joystick_ver_value < 2.54))

{
if(troubleshoot == 1) Serial.println("Zone 3");

//scale joystick vertical to value from 0 to 1
joystick_hor_value = 2.42 - joystick_hor_value;

if(troubleshoot == 1) Serial.println(joystick_hor_value);
if(troubleshoot == 1) Serial.println(joystick_ver_value);
if(troubleshoot == 1) Serial.println(joystick_thrust_on);

//assert thrusters
analogWrite(left_thruster, 0);
analogWrite(right_thruster, joystick_hor_value);

//assert LEDs
digitalWrite(left_LED, LOW); //de-assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

4.3. SUBMERSIBLEROBOT 189
//**
//**
//Case 4:
//Inputs:
// X channel <= 2.42 VDC
// Y channel >= 2.54 VDC
//Output:
// Bare left to turn around
//**

if((joystick_hor_value <= 2.42)&&(joystick_ver_value >= 2.54))
{
if(troubleshoot == 1) Serial.println("Zone 4");

//scale joystick horizontal and vertical to value from 0 to 1
joystick_hor_value = 2.42 - joystick_hor_value;
joystick_ver_value = joystick_ver_value - 2.54;

if(troubleshoot == 1) Serial.println(joystick_hor_value);
if(troubleshoot == 1) Serial.println(joystick_ver_value);
if(troubleshoot == 1) Serial.println(joystick_thrust_on);

//assert thrusters and LEDs
if(joystick_hor_value > joystick_ver_value)

{
analogWrite(left_thruster, 0);
analogWrite(right_thruster, (joystick_hor_value-joystick_ver_value));

//assert LEDs
digitalWrite(left_LED, LOW); //de-assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

else
{
analogWrite(left_thruster, 0);
analogWrite(right_thruster, (joystick_ver_value-joystick_hor_value));

//assert LEDs
digitalWrite(left_LED, LOW); //de-assert left LED

190 4. ARDUINOSYSTEMEXAMPLES
digitalWrite(right_LED, HIGH); //assert right LED
}

}

//**
//**
//Case 5:
//Inputs:
// X channel between 2.42 to 2.54 VDC - null zone
// Y channel >= 2.54 VDC
//Output:
// Move backward - provide same voltage to left and right thrusters
//**

if((joystick_hor_value > 2.42)&&(joystick_hor_value < 2.54)&&
(joystick_ver_value >= 2.54))

{
if(troubleshoot ==1) Serial.println("Zone 5");

//scale joystick vertical to value from 0 to 1
joystick_ver_value = joystick_ver_value - 2.54;

if(troubleshoot == 1) Serial.println(joystick_hor_value);
if(troubleshoot == 1) Serial.println(joystick_ver_value);
if(troubleshoot == 1) Serial.println(joystick_thrust_on);

//assert thrusters
analogWrite(left_thruster, 0);
analogWrite(right_thruster, joystick_ver_value);

//assert LEDs
digitalWrite(left_LED, LOW); //de-assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

//***
//***
//Case 6:
//Inputs:

4.3. SUBMERSIBLEROBOT 191
// X channel >= 2.54 VDC
// Y channel >= 2.54 VDC
//Output:
// Bare left to turn around
//***

if((joystick_hor_value >= 2.54)&&(joystick_ver_value >= 2.54))
{
if(troubleshoot == 1) Serial.println("Zone 6");

//scale joystick horizontal and vertical to value from 0 to 1
joystick_hor_value = joystick_hor_value - 2.54;
joystick_ver_value = joystick_ver_value - 2.54;

if(troubleshoot == 1) Serial.println(joystick_hor_value);
if(troubleshoot == 1) Serial.println(joystick_ver_value);
if(troubleshoot == 1) Serial.println(joystick_thrust_on);

//assert thrusters and LEDs
if(joystick_hor_value > joystick_ver_value)

{
analogWrite(left_thruster, (joystick_hor_value-joystick_ver_value));
analogWrite(right_thruster, 0);

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, LOW); //de-assert right LED
}

else
{
analogWrite(left_thruster, (joystick_ver_value-joystick_hor_value));
analogWrite(right_thruster, 0);

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, LOW); //de-assert right LED
}

}

192 4. ARDUINOSYSTEMEXAMPLES
//**
//**
//Case 7:
//Inputs:
// X channel >= 2.54 VDC
// Y channel between 2.42 to 2.54 VDC - null zone
//Output:
// Bare right
//**

if((joystick_hor_value >= 2.54)&&(joystick_ver_value > 2.42)&&
(joystick_ver_value < 2.54))

{
if(troubleshoot == 1) Serial.println("Zone 7");

//scale joystick vertical to value from 0 to 1
joystick_hor_value = joystick_hor_value - 2.54;

if(troubleshoot == 1) Serial.println(joystick_hor_value);
if(troubleshoot == 1) Serial.println(joystick_ver_value);
if(troubleshoot == 1) Serial.println(joystick_thrust_on);

//assert thrusters
analogWrite(left_thruster, joystick_hor_value);
analogWrite(right_thruster, 0);

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, LOW); //de-assert right LED
}

//**
//**
//Case 8:
//Inputs:
// X channel >= 2.54 VDC
// Y channel <= 2.42 VDC
//Output:
// Move forward and bare right

4.3. SUBMERSIBLEROBOT 193
// - Which joystick direction is asserted more?
// - Scale PWM voltage to left and right thruster accordingly
//**

if((joystick_hor_value >= 2.54)&&(joystick_ver_value <= 2.42))
{
if(troubleshoot == 1) Serial.println("Zone 8");

//scale joystick horizontal and vertical to value from 0 to 1
joystick_hor_value = joystick_hor_value - 2.54;
joystick_ver_value = 2.42 - joystick_ver_value;

if(troubleshoot == 1) Serial.println(joystick_hor_value);
if(troubleshoot == 1) Serial.println(joystick_ver_value);
if(troubleshoot == 1) Serial.println(joystick_thrust_on);

//assert thrusters and LEDs
if(joystick_hor_value > joystick_ver_value)

{
analogWrite(left_thruster, joystick_hor_value);
analogWrite(right_thruster, (joystick_hor_value-joystick_ver_value));

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

else
{
analogWrite(left_thruster, (joystick_ver_value-joystick_hor_value));
analogWrite(right_thruster, joystick_ver_value);

//assert LEDs
digitalWrite(left_LED, HIGH); //assert left LED
digitalWrite(right_LED, HIGH); //assert right LED
}

}
}

//**

194 4. ARDUINOSYSTEMEXAMPLES

4.3.8 CONTROLHOUSINGLAYOUT
A Plano Model 1312-00 water-resistant field box is used to house the control circuitry and
rechargeable battery. The battery is a rechargeable, sealed, lead-acid battery, 12 VDC, with
an 8.5 amp-hour capacity. It is available from McMaster-Carr (#7448K82). A battery charger
(12 VDC, 4–8 amp-hour rating) is also available (#7448K67). The layout for the ROV control
housing is provided in Figure 4.13.

The control circuitry consists of two connected plastic panels, as shown in Figure 4.13. The
top panel has the on/off switch, the LED thruster indicators (left, dive, and right), an access hole
for the joystick, and a 1/4-inch jack for the battery recharge cable.

The lower panel is connected to the top panel using aluminum spacers, screws, and corre-
sponding washers, lock washers, and nuts. The lower panel contains Arduino UNO R3 equipped
with the thumb joystick on a DIY Adafruit Proto Shield (#2077). The UNO R3 is connected
to the lower panel using a Jameco standoff kit (#106551). The UNO R3 is interfaced to the
thrusters via interface circuitry described in Figures 4.9 and 4.10. The interface printed circuit
board is connected to the four-conductor thruster cable via a four-conductor Jones connector.

4.3.9 FINALASSEMBLYTESTING
The final system is tested a subassembly at a time. The following sequence is suggested.

• Recheck all waterproofed connections. Reapply waterproof caulk as necessary.

• With the thumb joystick on the breakout board disconnected from UNO R3, test each
LED indicator (left, dive, and right). This is accomplished by applying a 5 VDC signal in
turn to the base resistor of each LED drive transistor.

• In a similar manner each thruster (left, right, and vertical) may be tested. If available,
a signal generator may be used to generate a pulse width modulated signal to test each
thruster.

• With power applied, the voltage regulators aboard the printed circuit board should be
tested for proper voltages.

• The output voltages from the thumb joystick may be verified at the appropriate header
pins.

• With the software fully functional, the thumb joystick on the breakout board may be
connected to UNO R3 for end-to-end testing.

4.3.10 FINALASSEMBLY
The fully assembled ROV is shown in Figure 4.14.

4.3. SUBMERSIBLEROBOT 195

Joystick

L Bracket L Bracket

L Bracket

LEFT

LED

DIVE

LED

RIGHT

LED

On/Off
Switch

12 VDC
For Recharger

Joystick

L
ef

t
T

h
ru

st
er

R
ig

h
t

T
h
ru

st
er

C
en

te
r

T
h
ru

st
er

1
3
.6

 V
D

C

Inline Fuse
Battery
Access
Hole

Arduino with Joystick
Shield

Interface Printed
Circuit Board

To ROV

Structure

Figure 4.13: ROV control housing layout.

196 4. ARDUINOSYSTEMEXAMPLES

Figure 4.14: ROV fully assembled (photo courtesy of J. Barrett).

4.4. SUMMARY 197

4.4 SUMMARY
In this chapter, we have provided design details for two Arduino-based systems: a remote
weather station and an ROV.

4.5 REFERENCES
[1] Earl, B. (2018). Adafruit Data Logger Shield.

[2] Bohm, H. and Jensen, V. (1997). Build Your OwnUnderwater Robot and OtherWet Projects.
Westcoast Words.

[3] SeaPerch, www.seaperch.org. 171, 173

[4] LM34Precision Fahrenheit Temperature Sensors,(SNIS161D).Texas Instruments: 2016. 156

4.6 CHAPTERPROBLEMS
4.1. Provide the complete sketch for the remote weather station.

4.2. It is desired to updated weather parameters every 15 minutes. Write a function to pro-
vide a 15-minute delay.

4.3. Add one of the following sensors to the weather station:

• barometer
• hygrometer

You will need to investigate background information on the selected sensor, develop an
interface circuit for the sensor, and modify the weather station code.

4.4. For the SeaPerch ROV provide a powered dive and surface thruster. To provide for a
powered dive and surface capability, the ROV must be equipped with a vertical thruster
equipped with an H-bridge to allow for motor forward and reversal.

4.5. For the SeaPerch ROV provide left and right thruster reverse. Currently, the left and
right thrusters may only be powered in one direction. To provide additional maneu-
verability, the left and right thrusters could be equipped with an H-bridge to allow
bi-directional motor control.

4.6. For the SeaPerch ROV provide proportional speed control with bi-directional motor
control. Both of these advanced featuresmay be provided by driving theH-bridge circuit
with PWM signals.

www.seaperch.org

198 4. ARDUINOSYSTEMEXAMPLES
4.7. Develop an embedded system controlled dirigible/blimp (www.microflight.com,

www.rctoys.com).

4.8. Develop a trip odometer for your bicycle (Hint: use a Hall Effect sensor to detect tire
rotation).

4.9. Develop a timing system for a four-lane pinewood derby track.

4.10. Develop a playing board and control system for your favorite game (Yahtzee, Connect
Four, Battleship, etc.).

4.11. You have a very enthusiastic dog that loves to chase balls. Develop a system to launch
balls for the dog.

www.microflight.com
www.rctoys.com

199

Author’s Biography

STEVENF. BARRETT
Steven F. Barrett, Ph.D., P.E., received a B.S. in Electronic Engineering Technology from
the University of Nebraska at Omaha in 1979, an M.E.E.E. from the University of Idaho at
Moscow in 1986, and a Ph.D. from The University of Texas at Austin in 1993. He was formally
an active duty faculty member at the United States Air Force Academy, Colorado and is now
the Associate Dean of Academic Programs at the University of Wyoming. He is a member of
IEEE (senior) and Tau Beta Pi (chief faculty advisor). His research interests include digital and
analog image processing, computer-assisted laser surgery, and embedded controller systems. He
is a registered Professional Engineer in Wyoming and Colorado. He co-wrote with Dr. Daniel
Pack several textbooks on microcontrollers and embedded systems. In 2004, Barrett was named
“Wyoming Professor of the Year” by the Carnegie Foundation for the Advancement of Teaching
and in 2008 was the recipient of the National Society of Professional Engineers (NSPE) in
Higher Education, Engineering Education Excellence Award.

201

Index

AC device control, 132
AC interfacing, 132
analog sensor, 93
annunciator, 136
Arduino Development Environment, 1
Arduino Mega 2560, 43
Arduino schematic, 41, 51
Arduino shield, 54
Arduino team, 1
Arduino UNO R3, 33
Arduino-based platforms, 54

battery capacity, 77
byte-addressable EEPROM, 36, 47

current sink, 81
current source, 81

DC motor, 115
DC motor control, 115
digital sensor, 91
dot matrix display, 105

e-textiles, 52
electrical specifications, 80

Flash EEPROM, 36, 46
flex sensor, 93
friend or foe signal, 20

H-bridge, 118, 119
HC CMOS, 80

IR sensors, 56
ISR, 27

joystick, 94, 175, 179, 180

keypad, 85

laser light show, 123
LCD, serial, 106
LED biasing, 98
LED special effects cube, 138
light emitting diode (LED), 98
liquid crystal display (LCD), 106

memory, ATmega2560, 45
memory, ATmega328, 35
Microchip ATmega2560, 43
Microchip ATmega328, 34
MMC/SD, 111
MOSFET, 114
motor operating parameters, 117

operating parameters, 79
optical encoder, 91
output device, 98

port system, 38, 47
power supply, 3, 76
PowerSwitch Tail II, 132
pullup resistors, 85

RAM, 36, 47
robot IR sensors, 56
robot platform, 56

202 INDEX
robot steering, 56
robot, submersible, 171
ROV, 171
ROV buoyancy, 174
ROV control housing, 194
ROV structure, 174

SeaPerch, 180
SeaPerch control system, 180
SeaPerch ROV, 173
sensor, level, 94
sensors, 91
servo motor, 115
seven segment displays, 99
sketch, 5
sketchbook, 5
solenoid, 115

solid state relay (SSR), 114
sonalert, 136
stepper motor, 117, 125
strip LED, 21
switch debouncing, 85
switch interface, 84
switches, 83

time base, 38, 49

ultrasonic sensor, 94
USB-to-serial converter, 34, 43

vibrating motor, 136
volatile, 36, 47

weather station, 155

	Preface
	Acknowledgments
	Getting Started
	Overview
	The Big Picture
	Arduino Quickstart
	Quick Start Guide
	Arduino Development Environment Overview
	Sketchbook Concept
	Arduino Software, Libraries, and Language References
	Writing an Arduino Sketch

	Application: Robot IR Sensor
	Application: Blink LED Fiber
	Application: LilyPad with LED Fibers
	Application: Friend or Foe Signal
	Application: LED Strip
	Application: External Interrupts
	Summary
	References
	Chapter Problems

	Arduino Platforms
	Overview
	Arduino UNO R3 Processing Board
	Advanced: Arduino UNO R3 Host Processor – The ATmega328
	Arduino UNO R3/ATmega328 Hardware Features
	ATmega328 Memory
	ATmega328 Port System
	ATmega328 Internal Systems

	Arduino UNO R3 Open Source Schematic
	Arduino Mega 2560 R3 Processing Board
	Advanced: Arduino Mega 2560 Host Processor – The ATmega2560
	Arduino Mega 2560 /ATmega2560 Hardware Features
	ATmega2560 Memory
	ATmega2560 Port System
	ATmega2560 Internal Systems

	Arduino Mega 2560 Open Source Schematic
	LilyPad Arduino
	Advanced: LilyPad Processor

	Other Arduino-Based Platforms
	Extending the Hardware Features of the Arduino Platforms
	Application: Arduino Hardware Studio
	Application: Autonomous Maze Navigating Robot
	Requirements
	Circuit Diagram
	Mini Round Robot Control Algorithm

	Summary
	References
	Chapter Problems

	Arduino Power and Interfacing
	Overview
	Arduino Power Requirements
	Project Requirements
	AC Operation
	DC Operation
	Powering the Arduino from Batteries
	Solar Power

	Advanced: Operating Parameters
	Advanced: HC CMOS Parameters

	Input Devices
	Switches
	Keypads
	Remote Control
	Sensors
	Joystick
	Level Sensor

	Output Devices
	Light-Emitting Diodes (LEDs)
	Seven-Segment LED Displays – Small
	Seven-Segment LED Displays – Large
	Dot Matrix Display
	Serial Liquid Crystal Display (LCD)
	Text-to-Speech Module

	External Memory-SD Card
	Musical Tone Generator

	High-Power DC Devices
	DC Load Control
	DC Solenoid Control
	DC Motor Speed and Direction Control
	DC Motor Operating Parameters
	H-Bridge Direction Control
	Servo Motor Interface
	Stepper Motor Control

	AC Devices
	Interfacing to Miscellaneous Devices
	Sonalerts, Beepers, Buzzers
	Vibrating Motor

	Application: Special Effects LED Cube
	Construction Hints
	LED Cube Arduino Sketch Code

	Summary
	References
	Chapter Problems

	Arduino System Examples
	Overview
	Weather Station
	Structure Chart
	Circuit Diagram
	Bottom-Up Implementation
	UML Activity Diagram
	Microcontroller Code
	Final Assembly

	Submersible Robot
	Approach
	Requirements
	ROV Structure
	Structure Chart
	Circuit Diagram
	UML Activity Diagram
	Arduino UNO R3 Sketch
	Control Housing Layout
	Final Assembly Testing
	Final Assembly

	Summary
	References
	Chapter Problems

	Author's Biography
	Index

