
Javascript fundamentals

ASYNCHRONOUS
PROGRAMMING PATTERNS
IN JAVASCRIPT

How to Use Async/Await and Promises
to Solve Programming Problems

Tamás Sallai

Table of contents

1 / 138

Table of contents
Introduction ... 4

Structure .. 5
Getting started with async/await ..7

Async functions ... 7
How to use the Promise ... 8
The benefits of Promises ... 9
The await keyword .. 10
Async function examples .. 12
Chaining Promises ...13

Promises .. 16
Callbacks ... 16
The Promise constructor ..17
Promise states .. 19
Result value ... 19

Error handling ..20
Error callback in the Promise constructor ... 22

Rejecting a Promise ...23
Detecting errors ... 24

Error propagation in Promise chains ... 25
Parallel and sequential processing ... 29

Parallel processing with Promise.all ... 29
Results ... 31
Errors in Promise.all .. 32

Early init .. 34
Returning multiple values ..39
Convert between Promises and callbacks ..41

Callback styles ... 41
Node-style callbacks ... 42

Convert callbacks to Promises .. 43
Promise constructor ... 43

Promisified functions .. 44
util.promisify ... 46
Usual problems .. 47

Table of contents

2 / 138

Handle this .. 47
function.length .. 49

Convert Promises to callbacks .. 49
Promise timeouts ... 52

Promise.race .. 52
Timeout implementation ... 54

Clear timeout ... 55
Error object .. 56

The async serializer pattern ... 58
Why await is not a solution ... 59
A general-purpose solution ... 60

The async disposer pattern .. 63
Disposer pattern ... 64

Retrying async operations ... 67
Backoff algorithm .. 67

Exponential backoff .. 68
Javascript implementation ... 69

Rejection-based retrying ... 69
Progress-based retrying ... 71

Paginating with async generators .. 74
Pagination .. 74
A solution with async generators .. 75

Breaking it down ... 76
Making it generic ...77

Using async functions with postMessage .. 80
Request-response communication ... 81

Response identification ... 82
MessageChannel ... 83

Error handling ... 84
Using Promises .. 85

Collection processing with async functions .. 88
Async for iteration ... 91
Async functions with reduce ... 92

Asynchronous reduce .. 93
Timing ... 94

await memo last ...95
await memo first .. 95

Table of contents

3 / 138

When parallelism matters .. 96
Async functions with map ... 97

Concurrency .. 99
Batch processing ... 99
Parallel processing .. 102
Sequential processing .. 104

Async functions with forEach ... 105
Controlling the timing ... 107

Waiting for finish .. 107
Sequential processing .. 108

Async functions with filter .. 109
Async filter with map .. 110

Concurrency .. 112
Async filter with reduce .. 112

Sequential processing .. 114
Async functions with some/every ..115

Using an async filter .. 115
Short-circuiting ..116

Async some ... 117
Async every ... 118
Parallel processing ... 119

Common errors .. 120
Not propagating errors ...120
Missing await in try..catch ... 120
Not checking the return value ... 121
Not closing resources in case of a rejection .. 122
Using both the rejection and resolve handlers in one then
function 124
Not waiting for an async forEach .. 125

Glossary ... 127
About the author .. 137

Introduction

4 / 138

Introduction
Asynchronous programming is everywhere in Javascript. This is the result of
the fundamental choices that define how it works. In other languages, you can
use multiple threads and that allows synchronous waiting, a crucial feature
missing from Javascript. It is by design single-threaded and a wait operation
stops everything, just think of the case where a long calculation freezes the UI.

Without a way to wait for a later result synchronously, Javascript needs to use
callbacks. Even simple things like waiting for a given duration requires a
function that will be run when the time is up:

setTimeout(() => {
 console.log("1 second passed!");
}, 1000);

You can find this pattern everywhere, as most of the things are asynchronous in
nature. Using fetch to make an HTTP call to a server is an async operation.
Just like getting information about the available cameras and microphones with
the getUserMedia call, as it needs to get permission from the user. Same with
reading and writing files. While these have synchronous versions for now, they
are terrible for performance. Or want to do some web scraping with Puppeteer?
Every single instruction is asynchronous as all of them communicate with a
remote process. Or for backend applications, reading or writing data to a
database is also inherently async.

And not only that some functions are async but all the other functions that call
them need to be async too. A piece of functionality that requires making a
network call, for example, is asynchronous, no matter how insignificant that call
is compared to what other things the function is doing. Because of this, almost
all Javascript applications consist of mostly asynchronous operations.

Structure

5 / 138

Over the years, the language got a lot of features that make writing async code
easier. Gone are the days of the so-called callback hell where a series of
callback-based async calls made the program's structure very hard to understand
and easy to inadvertently silence errors.

First, Promises gained widespread support, flattening the structure of callbacks.
Then async/await became the mainstream way of async programming, hiding a
lot of the complexities of asynchronicity behind only two keywords: async and
await .

This improved readability and made it a lot easier for new programmers to write
asynchronous code. Modern Javascript is still using the same single-threaded
no-sync-wait event loop, but the program structure reflects that of a modern
language.

But asynchronous programming is inherently hard. While the language helps
with the syntax to make understanding and writing code easier, asynchronicity
introduces a lot of potential errors, most of them so subtle they only occur in
special circumstances.

Even though I've been working for many years with asynchronous code, some
of the problems in this book took me a week to reach a solution I'm happy with.
My goal with this book is that you'll have an easier time when you encounter
similar problems by knowing what are the hard parts. This way you won't need
to start from zero but you'll have a good idea of what are the roadblocks and the
best practices.

You'll notice that error handling is a recurring topic in this book. This is because
it is an often overlooked concept and that leads to code that easily breaks. By
knowing how errors in async functions and Promises work you'll write safer
programs.

Structure

This book is divided into two parts.

Structure

6 / 138

The first chapter, Getting started with async/await, is an introduction to
async/await and Promises and how each piece of the async puzzle fit together.
The primary focus is async functions as they are the mainstream way to
program asynchronously in Javascript. But async/await is a kind of magic
without knowing about Promises, so you'll learn about them too.

By the end of the first chapter, you'll have a good understanding of how to use
async functions and how they work under the hood.

The second part of the book consists of several common programming tasks and
problems. You'll learn when that particular problem is important, how to solve
it, and what are the edge cases. This gives you a complete picture so that when
you encounter a similar problem you'll know how to approach it.

This book is not meant to be read from cover to cover but to be used as a
reference guide. With the patterns described in this book, my hope is that you'll
see the underlying difficulty with async programming so when you work on
your own solutions you'll know the pitfalls and best practices so you'll end up
with more reliable code.

Async functions

7 / 138

Getting started with async/await
In this chapter, we start with an introduction to asynchronous programming in
Javascript. The main focus is async functions, as you'll likely use them more
often, but you'll also learn how Promises work.

Async functions

Normal functions return a result with the return keyword:

const fn = () => {
 return 5;
}

fn();
// 5

Async functions, in contrast, return a Promise :

const asyncFn = async () => {
 return 5;
}

asyncFn();
// Promise

You can make any function async with the async keyword, and there are a lot
of functions that return a Promise instead of a result.

For example, to read a file from the filesystem, you can use fs.promises , a
variant of the fs functions returning Promises:

const fs = require("fs");

fs.promises.readFile("test.js");
// Promise

Async functions

8 / 138

Or convert an image to jpeg with the sharp library, which also returns a
Promise:

const sharp = require("sharp");

sharp("image.png")
 .jpeg()
 .toFile("image.jpg");
// Promise

Or make a network request with fetch :

fetch("https://advancedweb.hu");
// Promise

How to use the Promise

An async function still has a return value, and the Promise holds this result. To
get access to the value, attach a callback using the then() function. This
callback will be called with the result of the function.

To get the file contents after the readFile :

const fs = require("fs");

fs.promises.readFile("test.js").then((result) => {
 console.log(result);
 // Buffer
});

Similarly, to get the result of our simple async function, use then() :

const asyncFn = async () => {
 return 5;
}

asyncFn().then((res) => {
 console.log(res);
 // 5
});

https://www.npmjs.com/package/sharp

Async functions

9 / 138

The benefits of Promises

But why complicate a function call with Promises? A normal function just
returns a value that can be used on the next line, without the need for any
callbacks.

The benefit of returning a Promise instead of a value is that the result might
not be ready by the time the function returns. The callback can be called
much later, but the function must return immediately. This extends what a
function can do.

// sync
fn();
// result is ready

// async
asyncFn().then(() => {
 // result is ready
})
// result is pending

In many cases, a synchronous result is not possible. For example, making a
network request takes forever compared to a function call. With Promises, it
does not matter if something takes a lot of time or produces a result
immediately. In both cases, the then() function will be called when the result
is ready.

js async function

fn()

Promise

then(result)

use result

An async function returns a Promise

Async functions

10 / 138

Using standardized Promises also allows other constructs to build on it. As
we've seen, the async keyword makes a function return a Promise instead of a
value.

Recap

Async functions return Promises which are values that are available
sometime in the future.

The await keyword

Using Promises with callbacks requires changes to the code structure and it
makes the code harder to read.

Instead of a flat structure of synchronous function calls:

const user = getUser();
const permissions = getPermissions();
const hasAccess = checkPermissions(user, permissions);
if (hasAccess) {
 // handle request
}

Promises need callbacks:

getUser().then((user) => {
 getPermissions().then((permissions) => {
 const hasAccess = checkPermissions(user, permissions);
 if (hasAccess) {
 // handle request
 }
 });
});

Async functions

11 / 138

Note

Promises support a flat structure when they are invoked sequentially, this
is their main selling point over traditional callbacks. For example, a series
of async calls can process an object:

getUser()
 .then(getPermissionsForUser)
 .then(checkPermission)
 .then((allowed) => {
 // handle allowed or not
 });

This is an almost flat structure which we'll detail in the Chaining Promises
chapter, but a callback is still needed at the end. The await keyword
eliminates the need for that.

To solve this without losing the advantages of Promises, async functions can use
the await keyword. It stops the function until the Promise is ready and
returns the result value.

const asyncFn = async () => {
 return 5;
}

await asyncFn();
// 5

The above code that uses callbacks can use await instead which leads to a
more familiar structure:

const user = await getUser();
const permissions = await getPermissions();
const hasAccess = checkPermissions(user, permissions);
if (hasAccess) {
 // handle request
}

Async functions

12 / 138

The await keyword that waits for async results makes the code look almost
like it's synchronous, but with all the benefits of Promises.

Note that await stops the execution of the function, which seems like
something that can not happen in Javascript. But under the hood, it still uses the
then() callbacks and since async functions return Promises they don't need to

provide a result immediately. This allows halting the function without major
changes to how the language works.

Async function examples

Async functions with await are powerful. They make a complicated and
asynchronous workflow seem easy and familiar, hiding all the complexities of
results arriving later.

Browser automation is a prime example. The Puppeteer project allows starting
Chromium and driving it with the DevTools protocol.

Taking a screenshot of a webpage is only a few lines:

const browser = await puppeteer.launch(options);
const page = await browser.newPage();
const response = await page.goto(url);
const img = await page.screenshot();
await browser.close();

This code hides a lot of complexity. It starts a browser, then sends commands to
it, all asynchronous since the browser is a separate process. But the end result is
an image buffer containing the screenshot.

Note

The above code leaves the browser running if there is an error during
execution. You'll learn how to handle closing resources in the The async
disposer pattern chapter.

https://www.npmjs.com/package/puppeteer

Async functions

13 / 138

Another example is to interface with databases. A remote service always
requires network calls and that means asynchronous results.

This code, used in an AWS Lambda function, updates a user's avatar image:

// move object out of the pending directory
await s3.copyObject({/*...*/}).promise();
await s3.deleteObject({/*...*/}).promise();

// get the current avatar image
const oldAvatar = (await dynamodb.getItem({/*...*/}).promise())
 .Item.Avatar.S;

// update the user's avatar
await dynamodb.updateItem({/*...*/}).promise();
// delete the old image
await s3.deleteObject({/*...*/}).promise();

return {
 statusCode: 200,
};

It makes calls to the AWS S3 service to move objects, and to the DynamoDB
database to read and modify data. Both of these are remote services, but all the
complexities are hidden behind the await s.

Recap

The await keyword stops the function until the future result becomes
available.

Chaining Promises

We've seen that when an async function returns a value it will be wrapped in a
Promise and the await keyword extracts the value from it. But what happens
when an async function returns a Promise? Would that mean you need to use
two await s?

Consider this code:

Async functions

14 / 138

const f1 = async () => {
 return 2;
};

const f2 = async () => {
 return f1();
}

const result = await f2();

Strictly following the process described in the previous chapters, f1() returns
Promise<2> , and f2() returns Promise<Promise<2>> , so the value of
result will be Promise<2> instead of 2 .

But this is not what happens. When an async function returns a Promise, it
returns it without adding another layer. It does not matter if it returns a value or
a Promise, it will always be a Promise and it will always resolve with the final
value and not another Promise.

This works the same for Promise chains too. The .then() callback is also
wrapped in a Promise if it's not one already so you can chain them easily:

getUser()
 .then(async function getPermissionsForUser(user) {
 const permissions = await // ...;
 return permissions;
 })
 .then(async function checkPermission(permissions) {
 const allowed = await // ...;
 return allowed;
 })
 .then((allowed) => {
 // handle allowed or not
 });

The getUser function returns a Promise<User> , then the
getPermissionsForUser gets the user object (the resolved value), then returns

the permission set. The next call, checkPermission gets the permissions, and
so on.

Async functions

15 / 138

A useful analog is how the flatMap function for an array works. It does not
matter if it returns a value or an array, the end result will always be an array
with values. It is a map , followed by a flat .

[1].flatMap((a) => 5) // [5]
[1].flatMap((a) => [5]) // [5]

[1].flat() // [1]
[[1]].flat() // [1]

When I'm not sure what a Promise chain returns, I mentally translate Promises
to arrays where every async function return a flattened array with its result and
an await is getting the first element:

const f1 = () => {
 return [2].flat();
};

const f2 = () => {
 return [f1()].flat();
}

const result = f2()[0]; // 2

A Promise chain then becomes a series of flatMap s:

const getUser = () => ["user"];

getUser()
 .flatMap(function getPermissionsForUser(user) {
 // user = "user"
 const permissions = "permissions";
 return permissions;
 })
 .flatMap(function checkPermission(permissions) {
 // permissions = "permissions"
 const allowed = true;
 return allowed;
 })
 .flatMap((allowed) => {
 // allowed = true
 // handle allowed or not
 });

Promises

16 / 138

This eliminates most of the complexities of asynchronicity and is a lot easier to
reason about.

Promises

So far we've discussed how to write Promise-producing async functions and
how to wait for a Promise to have a value. But how to create Promises in cases
where there are no existing Promises to build on?

To know this, we need to discuss how asynchronicity works in Javascript and
how to construct Promises from callbacks.

Callbacks

Async results come in the form of callbacks. These are like the parameter of the
then() function in Promises but are called when a particular event happens.

For example, the simplest callback is the setTimeout call that waits a given
number of milliseconds then invokes the argument function:

setTimeout(() => {
 // 1s later
}, 1000);

This pattern of using callbacks is everywhere in Javascript.

The gapi, the library to use Google services, needs a callback when it loads a
client library:

gapi.load("client:auth2", () => {
 // auth2 client loaded
});

Similarly, event listeners, such as a click handler, calls a function when the
event happened:

https://github.com/google/google-api-javascript-client/blob/master/docs/reference.md#----gapiloadlibraries-callbackorconfig------

Promises

17 / 138

const button = document.querySelector("#button");

button.addEventListener("click", () => {
 // button is clicked
}, {once: true})

The problem with callbacks is that we are back to square one as instead of
having a flat structure we have nesting again.

Fortunately, there is a simple way to convert callbacks to Promises and then use
them with await .

Event listeners and Promises

Eagle-eyed readers might have spotted the {once: true} part in the last
example. Event listeners are inherently different than async functions as
they represent multiple events instead of a single result value. Because of
this, you can not replace them with Promises.

The exception is when there is exactly one event, as in the above example.
In a sense, it works similarly to the timeout or the gapi load function, as
the callback is invoked when the event happens.

The Promise constructor

Async functions return Promises but you can only use await to wait for other
Promises and not for callbacks. To make a Promise, you need to use its
constructor:

new Promise((res) => {
 // call res when the Promise is ready
});

Calling the res callback signals the Promise that the result is ready. This is the
same as when an async function returns.

Promises

18 / 138

To convert the setTimeout to a Promise, wrap it in the constructor and use
res as the callback:

await new Promise((res) => {
 setTimeout(res, 1000);
});
// 1s later

// same as
await new Promise((res) => {
 setTimeout(() => {
 res();
 }, 1000);
});

Now that it is a Promise, await works just like for other async functions.

Similarly, the two other examples are also easy to promisify:

await new Promise((res) => {
 gapi.load("client:auth2", res);
});
// auth2 client loaded

const button = document.querySelector("#button");

await new Promise((res) => {
 button.addEventListener("click", res, {once: true});
});
// button is clicked

With Promises instead of callbacks it's easy to use await and make a sequence
of async operations. To load the auth2 client when the button is clicked:

await new Promise((res) => {
 button.addEventListener("click", res, {once: true});
});
// the button is clicked
await new Promise((res) => {
 gapi.load("client:auth2", res);
});
// the gapi library is loaded

Promises

19 / 138

Converting between callbacks and Promises

You'll learn more about this in the Convert between Promises and
callbacks chapter.

Promise states

As a Promise holds a future value it can be in several states.

When you create a Promise, it starts in the Pending state. It is before the
resolve/reject callback is called or the async function finished.

When there is a value, the Promise transitions into the Resolved state. It is when
the await in unblocked and the async function continues to run.

If there is an error, the Promise goes into the Rejected state. It is when the
await throws an exception.

The Resolved and the Rejected states are collectively called Fulfilled (or
Settled). When a Promise is in this state it's already finished and produced a
value or an error.

Fulfilled

Resolved

value

Rejected

er ror

Pending

Promise states

Result value

Error handling

20 / 138

The examples above all used the Promise res function to signal when an async
operation is ready and did not produce any value. To also return a value, pass it
to the res call.

const value = new Promise((res) => {
 res(5);
});
// 5

A more complicated example, the next Promise shows the Google Drive file
picker and resolves with the selected file. This seems complicated, but the
underlying idea is the same: create a new Promise, then call the res method
when the result is ready.

const folder = await new Promise((res) => {
 const picker = new google.picker.PickerBuilder()
 // ... configuration ...
 .setCallback((data) => {
 if (/* selected action*/) {
 // a folder is selected
 const selectedFolder = ...

 // resolve the Promise
 res(selectedFolder);
 }
 })
 .build();
 picker.setVisible(true);
});
// folder is the selected folder

Note

You can return only one value with the res() call. You'll learn about
ways to return multiple in the Returning multiple values chapter.

Error handling

Error handling

21 / 138

So far we've been discussing async functions when everything is going fine. No
database timeout, no validation errors, no sudden loss of network. But these
things happen, so we need to prepare for them too. Without proper error
propagation, failures stall Promises and async functions, stopping them forever.

With synchronous functions, errors happen when something throw s them, and
they bubble up until there is a try-catch :

const fn = () => {
 throw new Error("Something bad happened");
}

try {
 fn();
}catch(e) {
 // handle error
}

Async functions work similarly so that when there is an error thrown it will go
up until a try-catch . When there is an asynchronous error (we'll look into
how they work in the next chapter), you can handle it with the same familiar
structure:

const fn = async () => {
 throw new Error("Something bad happened");
}

try {
 await fn();
}catch(e) {
 // handle error
}

Error handling

22 / 138

Note

Errors are thrown during the await and not when the function is called:

const asyncFn = async () => {
 throw new Error("Something bad happened");
}

const res = asyncFn(); // no error here

try {
 await res; // error
}catch(e) {
 // handle error
}

Error callback in the Promise constructor

But when you use the Promise constructor, you need to pay attention to
propagate the errors.

Let's revisit our previous examples! The gapi.load loads a client library that
can be used with Google services and it needs a callback to notify when it's
finished. This is easy to turn into a Promise with the Promise constructor:

await new Promise((res) => {
 gapi.load("client:auth2", res);
});
// auth2 loaded

But what happens when there is an error? Maybe the network is down and the
client library can not be loaded. In this case, the callback function is never
called and the Promise is never finished. An await waiting for it will wait
forever.

await new Promise((res) => {
 gapi.load("client:auth2", res); // error
});
// never happens

Error handling

23 / 138

To implement proper error propagation, we need two things. First, a way to
signal the Promise that an error happened, and second, a way to detect that error.

Rejecting a Promise

The Promise constructor provides a second callback that can signal that an error
happened:

new Promise((res, rej) => {
 // call res() when everything is fine
 // call rej() when there is an error
});

When the rej function is called it behaves similarly to an async function
throwing an error:

try {
 await new Promise((res, rej) => {
 rej(); // signal error
 });
}catch(e) {
 // handle error
}

Similar to the res function, you can pass the error object which will be the
rejection reason:

try {
 await new Promise((res, rej) => {
 rej(new Error("Something bad happened"));
 });
}catch(e) {
 console.log(e.message) // Something bad happened
}

Error handling

24 / 138

What is an error

What constitutes an error is up to the implementation. For example,
fetch throws an error when the connection can not be established, but it

does not when the response code is outside the 2xx range.

try {
 const response = await fetch(options);
 if (response.ok) {
 // request successful
 }else {
 // error response
 }
} catch (e) {
 // error while sending the request
}

Exceptions thrown in the constructor also reject the Promise:

new Promise(() => {
 throw Error("something bad happened");
});
// rejected with error

This behavior makes most programming errors to propagate correctly. But
unlike the reject callback, this only handles synchronous errors.

Detecting errors

Now that we have a way to signal an error to the Promise, let's see how to adapt
the gapi example to take advantage of this construct!

In this specific case, the callback can also be an object with callback and
onerror handlers:

await new Promise((res, rej) => {
 gapi.load("client:auth2", {callback: res, onerror: rej});
});

https://github.com/google/google-api-javascript-client/blob/master/docs/reference.md#----gapiloadlibraries-callbackorconfig------

Error handling

25 / 138

Now if there is an error during the load process the rej function is called and
the await throws an error.

Note

How the underlying function signals results and errors can vary from
library-to-library. You'll learn more about it in the Callback styles chapter.

Error propagation in Promise chains

While async functions use the same try..catch structure as normal functions,
Promise chains work differently. The then callback gets an additional callback,
one that is called when a previous Promise is rejected:

const rejectedPromise = new Promise((res, rej) => {
 rej(new Error("rejected"));
});

rejectedPromise.then(undefined, (error) => {
 // error = "rejected"
 // handle error
});

Errors in Promise chains move to the next error handler, skipping all previous
steps. This makes it easy to collect errors from multiple steps and handle them
in a single place:

getUser()
 .then(getPermissionsForUser)
 .then(checkPermission)
 .then((allowed) => {
 // handle allowed or not
 }).then(undefined, (error) => {
 // there was an error in one of the previous steps
 });

A useful way to think about error propagation through the chain is to think
about it as 2 parallel railway tracks with stations. A station is a then callback,
and its result determines which track the train continues.

Error handling

26 / 138

Tip

Instead of .then(undefined, (error) => {...}) , you can use the
shorthand .catch((error) => {...}) .

ok error

getUser

getPermissionForUser

checkPermission

allowed handler

Error handler in a Promise chain

This way of thinking allows untangling way more complicated chains. Let's
dissect what's happening here:

getPromise()
 .then(handler1)
 .then(handler2, catch1)
 .then(handler3)
 .then(undefined, catch2)
 .then(handler4)

This yields the following diagram:

Error handling

27 / 138

ok

error

getPromise

handler1

handler2

handler3

handler4

catch1

catch2

success error error

Diagram of the promise chain

It looks complicated, but there are simple rules:

Each function, no matter which track it is, can move the execution to the
OK as well as the error tracks
When a handler is missing (the diamonds in the above diagram) the
execution stays on the same track

For example, if getPromise() is rejected, the next function will be catch1 . If
it resolves, then handler3 is the next one. If it resolves, handler4 is called,
and it will be the result of the whole chain, no matter if it resolves or rejects.

Error handling

28 / 138

Error handlers

Notice this line:

.then(handler2, catch1)

A common source of errors is that if there is an error in handler2 then
catch1 won't run. Each error handler handles errors from previous steps.

Parallel processing with Promise.all

29 / 138

Parallel and sequential processing
When you use await in an async function, it stops the execution until the
Promise is resolved. This makes each line wait for the previous, which yields a
code that looks almost like a synchronous one:

await s3.copyObject({/*...*/}).promise();
await s3.deleteObject({/*...*/}).promise();

The above code copies an object, then it deletes one. In case you wanted to
move the object, it is the desirable chain of events as you want the copy
operation to finish before deleting the original.

Parallel processing with Promise.all

But what if there is an unrelated call, such as an update to a database?

await s3.copyObject({/*...*/}).promise();
await s3.deleteObject({/*...*/}).promise();

await dynamodb.updateItem({/*...*/}).promise();

While the dynamodb.updateItem has nothing to do with the S3 object, it still
waits for the move operation (copy + delete) to finish. This makes the overall
process longer than necessary.

Parallel processing with Promise.all

30 / 138

Total
t ime

async function
copyObject deleteObject updateItem

Total
t ime

Serial execution

In this case, a better implementation is to run the two parts in parallel. To make
it easier to see, let's group the two operations with async functions:

const moveObject = async () => {
 await s3.copyObject({/*...*/}).promise();
 await s3.deleteObject({/*...*/}).promise();
};

const updateDatabase = async () => {
 await dynamodb.updateItem({/*...*/}).promise();
};

Javascript has a built-in convenience method to run things in parallel. This is the
Promise.all , that gets a collection of Promises and returns a Promise with all

the results. Whenever you want to run multiple things concurrently, this is the
tool to use.

To use it to run the two operations in parallel, use:

await Promise.all([moveObject(), updateDatabase()]);

Parallel processing with Promise.all

31 / 138

moveObject upda teDa tabase

Total
t ime

async function
copyObject deleteObject updateItem

Total
t ime

Parallel execution

There are multiple things to notice here. First, Promise.all gets Promises.
Remember that calling an async function returns a Promise, so don't forget to
call the functions you want to run.

Second, it needs a collection of Promises, which is usually an array. Notice the
([...]) structure for the call to Promise.all .

And third, await is only used for the Promise.all and not for the individual
async function calls. This is because you want to wait for all of them to finish
before moving on.

Tip

await stops the async function execution. In the case of Promise.all
you want to stop only once, to wait for all the input Promises to settle.
That's why you only need one await .

Results

In the above example none of the operations returned a value. Let's see how to
handle values returned from Promise.all !

Parallel processing with Promise.all

32 / 138

For the sake of illustration, let's say there are two unrelated piece of data an
async function needs: a user object and a list of groups. Both of these are stored
in a database and thus they are available via async functions.

const getUser = async () => {
 // gets the user object
 return user;
}
const getGroups = async () => {
 // gets the groups
 return groups;
}

Notice in this example that the getGroups function does not need the user
object. This makes them able to run in parallel.

A serial implementation calls these functions separately and stores their results
in variables:

const user = await getUser();
const groups = await getGroups();

// user and groups are available

There are two await s here, so the function will stop twice. No matter which
you put first, the total execution time will be the sum of the calls. As we've seen
previously, the Promise.all runs the Promises returned by the async function
in parallel. It also returns a Promise with an array of the results.

To run the two calls in parallel and extract the results, use the array
destructuring operator:

const [user, groups] = await Promise.all([
 getUser(),
 getGroups(),
]);

// user and groups are available

Errors in Promise.all

Parallel processing with Promise.all

33 / 138

When any of the input Promises are rejected then the resulting Promise will be
rejected as well. This behavior allows errors to propagate seamlessly.

try {
 const [user, groups] = await Promise.all([
 getUser(), // getUser returns a value
 getGroups(), // getGroups throws an exception
]);
} catch(e) {
 // handle error thrown by either of calls
}

Even when async functions are independent in a sense that one does not use the
result of the other, you might not want to run them in parallel in some cases. In
the example above with the moveObject and updateDatabase async
functions, you might not want to run the latter if the former is failed.

await Promise.all([moveObject(), updateDatabase()]);

When this code is run, it can produce the following results:

Object is moved Database is updated

✓ ✓

✓ ‐

‐ ✓

‐ ‐

By using serial execution, you can make sure that the later operations won't run
unless the earlier ones are finished:

await moveObject();
await updateDatabase();

When this code is run, the database is guaranteed to be unchanged if the move
object failed:

Early init

34 / 138

Object is moved Database is updated

✓ ✓

✓ ‐

‐ ‐

Early init

When you create a Promise, it starts executing. But the async function only
stops when it encounters an await . This allows a structure that starts the async
processing early but only stops for it when the result is needed.

For example, consider this code, which waits for the function to finish before
moving on:

const wait = (ms) => new Promise((res) => setTimeout(res, ms));

const fn = async () => {
 console.log("starting");
 await wait(100);
 console.log("end");
}

await fn();
console.log("after");

// starting
// end
// after

Early init

35 / 138

js
fn

starting

await

end

after

Eager await

But when the await is later, the order of execution changes:

const fnProm = fn();
console.log("after");
await fnProm;

// starting
// after
// end

This allows an easy way to run things "in the background" while also getting the
results when they are needed.

js
fn

starting

after

await

end

Deferred await

Early init

36 / 138

For example, a web server might do several things when a request arrives, one
of them to fetch the user session from a cookie and a session store.

const http = require("http");

const getUserSession = async (req) => {
 // extract the session cookie
 // fetch the session from Redis
 // return the user object
};

const server = http.createServer(async (req, res) => {
 // validate request
 // fetch configuration
 const session = await getUserSession(req);
 // handle request
});

server.listen(8080);

In the above example, everything happens sequentially. The server processes the
request and then fetches the user session.

To start getting the user session right after the request comes, you can separate
calling the async function and the await :

const server = http.createServer(async (req, res) => {
 const sessionProm = getUserSession(req);
 // validate request
 // fetch configuration
 const session = await sessionProm;
 // handle request
});

In this case, the session is still available when it's needed, but the process starts
sooner. This reduces the total time the user experiences.

There is catch though. As we've discussed in the Error handling chapter, if the
async function throws an error it will be propagated through the await . This
means if the execution reaches no await s for that Promise, the error won't be
handled.

This is a problem.

Early init

37 / 138

Consider this code:

const wait = (ms) => new Promise((res) => setTimeout(res, ms));

const fn = async () => {
 await wait(100);
 throw new Error("Something bad happened");
}

try{
 const p = fn();
 throw new Error("There was an error");
 await p;
}catch(e) {
 console.log(e.message);
}

This prints:

There was an error
(node:170) UnhandledPromiseRejectionWarning: Error: Something
bad happened
(node:170) UnhandledPromiseRejectionWarning: Unhandled promise
rejection. This error originated either by throwing inside of an
async function without a catch block, or by rejecting a promise
which was not handled with .catch(). To terminate the node
process on unhandled promise rejection, use the CLI flag
`--unhandled-rejections=strict` (see
https://nodejs.org/api/cli.html#cli_unhandled_rejections_mode).
(rejection id: 1)
(node:170) [DEP0018] DeprecationWarning: Unhandled promise
rejections are deprecated. In the future, promise rejections that
are not handled will terminate the Node.js process with a
non-zero exit code.

An unhandled rejection is bad. There is a catch-all unhandledRejection event
that allows handling it, but that leads to unmaintainable code. A proper solution
is to make sure that the Promise is always await ed upon. This usually leads to
more complicated code.

There are valid cases where the early init pattern is useful, especially when any
exception is catastrophic. But when you have a backend server that multiple
clients can call, it is better to avoid.

Early init

38 / 138

Multiple awaits

What happens if there are mutliple await s for a Promise? This does not
result in calling the function multiple times. When a Promise is settled
(resolved or rejected), await just returns the result (or throws an
exception).

Consider the following code:

const fn = async () => {
 console.log("called");
 await wait(100);
 return "result";
}

(async () => {
 const p = fn();
 console.log(await p);
 console.log(await p);
})();

// called
// result
// result

Returning multiple values

39 / 138

Returning multiple values
As we've discussed in the The Promise constructor chapter, just like normal
functions, a Promise can have a single return value. But oftentimes you'll want
to return multiple things.

Fortunately, Javascript supports the object and the array destructuring operators
that makes it easy to use a single variable to hold multiple things.

For example, a Promise can resolve with an array of values:

const getValues = () => new Promise((res) => {
 const user = "user";
 const group = "group";
 res([user, group]);
});

const [user, group] = await getValues();
// user, group

Or an object with known fields:

const getValues = () => new Promise((res) => {
 const user = "user";
 const group = "group";
 res({user, group});
});

const {user, group} = await getValues();
// user, group

Of course, it's the same pattern that you'd use for synchronous functions:

const getValues = () => {
 const user = "user";
 const group = "group";
 return {user, group};
};

const {user, group} = getValues();
// user, group

Returning multiple values

40 / 138

And works the same with async functions too:

const getValues = async () => {
 const user = "user";
 const group = "group";
 return {user, group};
};

const {user, group} = await getValues();
// user, group

Callback styles

41 / 138

Convert between Promises and
callbacks
While Promises and async/await are increasingly the primary way to write
asynchronous code in Javascript, callbacks are still used in many places. Several
libraries that adopted that style are slow to migrate to the more modern
alternative, and browser (and Node) APIs are also slow to change.

For example, marked, a markdown compiler needs a callback when it's used in
asynchronous mode:

marked(text, options, (err, result) => {
 // result is the compiled markdown
});

Similarly, setTimeout invokes a function when the time is up:

setTimeout(callback, 100);

Not to mention a ton of web APIs, such as Indexed DB, FileReader, and others.
Callbacks are still everywhere, and it's a good practice to convert them to
Promises especially if your code is already using async/await.

Callback styles

Callbacks implement the continuation-passing style programming where a
function instead of returning a value calls a continuation, in this case, an
argument function. It is especially prevalent in Javascript as it does not support
synchronous waiting. Everything that involves some future events, such as
network calls, an asynchronous API, or a simple timeout is only possible by
using a callback mechanism.

There are several ways callbacks can work. For example, setTimeout uses a
callback-first pattern:

https://www.npmjs.com/package/marked
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/FileReader

Callback styles

42 / 138

setTimeout(callback, ms);

Or functions can get multiple functions and call them when appropriate:

const checkAdmin = (id, isAdmin, notAdmin) => {
 if (/* admin logic */) {
 isAdmin();
 }else {
 notAdmin();
 }
};

How the callback is invoked can also vary. For example, it might get multiple
arguments:

const getUserData = (id, cb) => {
 const user = /* get user */
 cb(user.id, user.profile, user.avatar);
};

Also, asynchronicity might be implemented as an object that emits events:

const reader = new FileReader();
reader.onload = (event) => {
 // event.target.result
}
reader.onerror = (error) => {
 // handle error
};
reader.readAsDataURL(blob);

Node-style callbacks

As there are multiple equally reasonable ways to implement callbacks, it was a
mess at first. A de-facto standard emerged, which is now called Node-style or
error-first callbacks. It is used almost everywhere in Javascript whenever a
callback is needed.

A Node-style callback has three characteristics:

The callback function is the last argument

Convert callbacks to Promises

43 / 138

It is called with an error object first, then a result ((error, result))
It returns only one result

As an illustration, this function implements a Node-style callback:

const getUser = (id, cb) => {
 const user = /* get user */;
 if (user) {
 // success
 cb(null, user);
 }else {
 // error
 cb(new Error("Failed to get user"));
 }
};

Notice that when there is no error, the first argument is null . This allows the
caller to easily check whether the execution failed or succeeded:

getUser(15, (error, result) => {
 if (error) {
 // handle error
 } else {
 // handle result
 }
});

With a callback structure that is used almost exclusively, it is possible to convert
between Promises and callbacks more easily.

Convert callbacks to Promises

This is the more prominent direction as it's a common task to integrate a
callback-based function into an async/await flow. Let's see how to do it!

Promise constructor

The Promise constructor is the low-level but universally applicable way to
convert callbacks to Promises. It works for every callback style and it needs
only a few lines of code.

Convert callbacks to Promises

44 / 138

The Promise constructor gets a function with two arguments: a resolve and a
reject function. When one of them is called, the Promise will settle with

either a result passed to the resolve function, or an error, passed to the
reject .

new Promise((res, rej) => {

 // resolve with a value
 // res(value)

 // reject with error:
 // rej(error)
})

This makes it easy to call a callback-based function and convert it to a Promise
which then can be await -ed:

// Node-style
new Promise((res, rej) => getUser(15, (err, result) => {
 if (err) {
 rej(err);
 }else {
 res(result);
 }
}))

// setTimeout
new Promise((res) => setTimeout(res, 100));

// event-based
new Promise((res, rej) => {
 const reader = new FileReader();
 reader.onload = (event) => {
 // resolve the Promise
 res(event.target.result);
 }
 reader.onerror = (error) => {
 // reject the Promise
 rej(error)
 };
 reader.readAsDataURL(blob);
});

Promisified functions

Convert callbacks to Promises

45 / 138

The above examples show how to call a callback-based function and get back a
Promise, but it requires wrapping every call with the Promise boilerplate. It
would be better to have a function that mimics the original one but without the
callback. Such a function would get the same arguments minus the callback and
return the Promise.

To make promisified versions of functions, it is only a matter of wrapping the
Promise constructor in a function that gets the arguments before the callback:

// setTimeout
const promisifiedSetTimeout = (ms) =>
 new Promise((res) => setTimeout(res, ms));

// FileReader
const promisifiedFileReader = (blob) =>
 new Promise((res, rej) => {
 const reader = new FileReader();
 reader.onload = (event) => {
 res(event.target.result);
 }
 reader.onerror = (error) => {
 rej(error)
 };
 reader.readAsDataURL(blob);
 });

// checkAdmin
const promisifiedCheckAdmin = (id) => new Promise((res) => {
 if (/* admin logic */) {
 res(true);
 }else {
 res(false);
 }
};

These functions are direct replacements to the callback-based originals and can
be directly used in an async/await workflow:

Convert callbacks to Promises

46 / 138

// timeout
setTimeout(() => {
 console.log("Timeout reached");
}, 100);

await promisifiedSetTimeout(100);
console.log("Timeout reached");

// checkAdmin
const checkAdmin = (id, isAdmin, notAdmin) => {
 if (/* admin logic */) {
 isAdmin();
 }else {
 notAdmin();
 }
};

checkAdmin(15, () => {
 console.log("User is an admin");
}, () => {
 console.log("User is not an admin");
});

const admin = await promisifiedCheckAdmin(15);
console.log(`User is admin: ${admin}`);

// FileReader
const dataURI = await promisifiedFileReader(blob);

util.promisify

While the Promise constructor offers a universal way to transform callbacks to
Promises, when the callback pattern follows the Node-style there is an easier
way. The util.promisify gets the callback-based function and returns a
promisified version.

import util from "util";

const promisifiedGetUser = util.promisify(getUser);

const user = await promisifiedGetUser(15);
// user is the result object

Convert callbacks to Promises

47 / 138

When the promisified function is called, the callback argument is added
automatically and it also converts the result (or error) to the return value of the
Promise.

How it works is no magic though. It uses the Promise constructor pattern we've
discussed above, and uses the spread syntax to allow arbitrary amount of
arguments. A simplified implementation looks like this:

const promisify = (fn) => (...args) =>
 new Promise((res, rej) => {
 fn(...args, (err, result) => {
 if (err) {
 rej(err);
 }else {
 res(result);
 }
 });
 });

Usual problems

Handle this

The value of this is complicated in Javascript. It can get different values
depending on how you call a function.

For example, classes can have instance variables, attached to this :

class C {
 constructor() {
 this.var = "var";
 }
 fn() {
 console.log(this.var);
 }
}

But when you have an object of this class, whether you call this function
directly on the object or extract it to another variable makes a difference in the
value of this :

Convert callbacks to Promises

48 / 138

new C().fn(); // var

let fn = new C().fn;
fn(); // TypeError: Cannot read property 'var' of undefined

This affects how to promisify the methods of this object as the
util.promisify requires just the function and not the whole object. Which, in

turn, breaks this .

For example, let's say there is a Database object that creates a connection in its
constructor then it offers methods to send queries:

class Database {
 constructor() {
 this.connection = "database connection";
 }
 getUser(id, cb) {
 if (!this.connection) {
 throw new Error("No connection");
 }
 setTimeout(() => {
 if (id >= 0) {
 cb(null, `user: ${id}`);
 }else {
 cb(new Error("id must be positive"));
 }
 }, 100);
 }
}

const database = new Database();
database.getUser(15, (error, user) => {
 // handle error or user
})

Using util.promisify would break the getUser function as it changes the
value of this :

const promisifiedDatabaseGetUser =
 util.promisify(database.getUser);
await promisifiedDatabaseGetUser(15);
// Error: Cannot read property 'connection' of undefined

Convert Promises to callbacks

49 / 138

To solve this, you can bind the object to the function, forcing the value of
this :

const promisifiedDatabaseGetUser =
 util.promisify(database.getUser.bind(database));
const user = await promisifiedDatabaseGetUser(15);

function.length

The length of a function is how many arguments it needs. Don't confuse this
with the Array's length , as that is how many elements in the array.

For example, this function needs 2 arguments, so its length is 2:

const fn = (a, cb) => {};

console.log(fn.length); // 2

It is rarely used, but some libraries depend on it having the correct value, such
as memoizee, which determines how to cache the function call or marked, a
Markdown compiler, to decide whether its configuration is called async or sync.

While the length of the function is rarely used, it can cause problems.
util.promisify does not change it, so the resulting function will have the

same length as the original one, even though it needs fewer arguments.

console.log(fn.length); // 2

const promisified = util.promisify(fn);

console.log(promisified.length); // 2

Convert Promises to callbacks

The other direction is to have a Promise-returning function (usually an async
function) and you need to convert it to a callback-based one. It is much rarer
than the other way around, but there are cases when it's needed, usually when a
library expects an asynchronous function and it supports only callbacks.

https://www.npmjs.com/package/memoizee#user-content-arguments-length
https://www.npmjs.com/package/marked
https://github.com/markedjs/marked/blob/127ac84da0c4d0a651e00bbd4eebef65d95aed75/src/marked.js#L67

Convert Promises to callbacks

50 / 138

For example, the marked library supports a highlight option that gets the
code block and returns a formatted version. The highlighter gets the code, the
language, and a callback argument, and it is expected to call the last one with
the result.

import marked from "marked";
import util from "util";

const promisifiedMarked = util.promisify(marked);

const res = await promisifiedMarked(md, {
 // highlight gets a callback
 highlight: (code, lang, cb) => {
 const result = "Code block";
 cb(null, result);
 }
});

As with the promisification, there is a universal and a Node-callback-specific
way to convert an async function to use callbacks. The universal way is to use
an async IIFE (Immediately-Invoked Function Expression) and add use then
to interface with the callback when there is a result or an error:

highlight: (code, lang, cb) => {
 (async () => {
 const result = "Code block";
 return result;
 })().then((res) => cb(null, res), (err) => cb(err));
}

This structure allows all callback styles as you control how a result or an error is
communicated with the callback function.

For Node-style callbacks, you can use the util.callbackify function that
gets an async function and returns a callbackified version:

highlight: util.callbackify(async (code, lang) => {
 const result = "Code block";

 return result;
})

Convert Promises to callbacks

51 / 138

This yields a convenient structure and it is suitable in most cases.

Also, it changes the resulting function's length by one, as it needs a callback
as well as all the original arguments:

console.log(fn.length) // 2
console.log(util.callbackify(fn).length) // 3

Promise.race

52 / 138

Promise timeouts
Promises in Javascript have no concept of time. When you use await or
attach a function with .then() , it will wait until the Promise is either
resolved or rejected. This is usually not a problem as most async tasks finish
within a reasonable time and their result is needed.

But when a client is waiting for a response of, let's say, an HTTP server, it's
better to return early with an error giving the caller a chance to retry rather than
to wait for a potentially long time.

Fortunately, there is a built-in Promise helper function that can be used to add
timeout functionality to any Promise-based construct.

Promise.race

The Promise.race is a global property of the Promise object. It gets an array of
Promises and waits for the first one to finish. Whether the race is resolved or
rejected depends on the winning member.

p 1 p 2

Promise.race

Finished

resolved with p2

p2 finishes first

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/race

Promise.race

53 / 138

For example, the following code races two Promises. The second one resolves
sooner, and the result of the other one is discarded:

const p1 =
 new Promise((res) => setTimeout(() => res("p1"), 1000));
const p2 =
 new Promise((res) => setTimeout(() => res("p2"), 500));

const result = await Promise.race([p1, p2]);
// result = p2

Similarly, it works for rejections also. If the winning Promise is rejected, the
race is rejected:

const p1 =
 new Promise((res) => setTimeout(() => res("p1"), 1000));
const p2 =
 new Promise((_r, rej) => setTimeout(() => rej("p2"), 500));

try {
 const result = await Promise.race([p1, p2]);
} catch(e) {
 // e = p2
}

The arguments of the Promise.race function are Promises. This makes it work
with async functions too:

const fn = async (time, label) => {
 await new Promise((res) => setTimeout(res, time));
 return label;
}

const result =
 await Promise.race([fn(1000, "p1"), fn(500, "p2")])
// result = p2

Just don't forget to call the async functions so that the race gets Promises. This
can be a problem with anonymous functions and those need to be wrapped IIFE-
style:

Timeout implementation

54 / 138

const result = await Promise.race([
 fn(1000, "p1"),
 (async () => {
 await new Promise((res) => setTimeout(res, 500));
 return "p2";
 })(),
]);
// result = p2

Timeout implementation

With Promise.race , it's easy to implement a timeout that supports any
Promises. Along with the async task, start another Promise that rejects when
the timeout is reached. Whichever finishes first (the original Promise or the
timeout) will be the result.

Promise timeout

Promise.race

Finished

resolved

The Promise finishes before the timeout

const timeout = (prom, time) =>
 Promise.race([
 prom,
 new Promise((_r, rej) => setTimeout(rej, time))
]);

With this helper function, wrap any Promise and it will reject if it does not
produce a result in the specified time.

Timeout implementation

55 / 138

// resolves in 500 ms
const fn = async () => {
 await new Promise((res) => setTimeout(res, 500));
 return "p2";
}

// finishes before the timeout
const result = await timeout(fn(), 1000);
// result = p2

// timeouts in 100 ms
await timeout(fn(), 100);
// error

Promise timeout

Promise.race

Finished

rejected

The timeout finishes before the Promise

It's important to note that it does not terminate the Promise if the timeout is
reached, just discard its result. If it consists of multiple steps, they will still run
to completion eventually.

Clear timeout

The above solution uses a setTimeout call to schedule the rejection. Just as the
original Promise does not terminate when the timeout is reached, the timeout
Promise won't cancel this timer when the race is finished.

Timeout implementation

56 / 138

While this does not change how the resulting Promise works, it can cause side-
effects. The event loop needs to check whether the timer is finished, and some
environments might work differently if there are unfinished ones.

Let's make the wrapper function use Promise.finally to clear the timeout!

const timeout = (prom, time) => {
 let timer;
 return Promise.race([
 prom,
 new Promise((_r, rej) => timer = setTimeout(rej, time))
]).finally(() => clearTimeout(timer));
}

The above implementation saves the setTimeout 's result as timer and clears
it when the race is over.

Error object

The race is over and there is a rejection. Was it because of the timeout or there
was an error thrown from the Promise?

The above implementation does not distinguish between errors and this makes it
hard to handle timeouts specifically.

const fn = async () => {
 throw new Error();
};

try {
 const result = await timeout(fn(), 1000);
}catch(e) {
 // error or timeout?
}

The solution is to add a third argument that is the timeout rejection value. This
way there is an option to differentiate between errors:

Timeout implementation

57 / 138

const timeout = (prom, time, exception) => {
 let timer;
 return Promise.race([
 prom,
 new Promise((_r, rej) =>
 timer = setTimeout(rej, time, exception)
)
]).finally(() => clearTimeout(timer));
}

What should be a timeout error object?

Symbols in Javascript are unique objects that are only equal to themselves. This
makes them perfect for this use-case. Pass a Symbol as the timeout error
argument then check if the rejection is that Symbol.

const timeoutError = Symbol();
try {
 const result = await timeout(prom, 1000, timeoutError);
 // handle result
}catch (e) {
 if (e === timeoutError) {
 // handle timeout
 }else {
 // other error
 throw e;
 }
}

This construct allows handling the timeout error specifically.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol

The async serializer pattern

58 / 138

The async serializer pattern
Let's say you have a function that does some calculation but only if it hasn't
been done recently, effectively caching the result for a short amount of time. In
this case, subsequent calls to the function affect each other, as when there is
a refresh all of them need to wait for it. An implementation that does not take
concurrency into account can potentially run the refresh several times in parallel
when the cache expires.

This implementation is broken:

// returns a function that caches its result for 2 seconds
// broken, don't use it
const badCachingFunction = (() => {
 const cacheTime = 2000;
 let lastRefreshed = undefined;
 let lastResult = undefined;
 return async () => {
 const currentTime = new Date().getTime();
 // check if cache is fresh enough
 if (lastResult === undefined ||
 lastRefreshed + cacheTime < currentTime) {
 // refresh the value
 lastResult = await refresh();
 lastRefreshed = currentTime;
 }
 return lastResult;
 }
})();

When two concurrent calls come when the function needs to refresh the value,
the refresh function is called twice:

Why await is not a solution

59 / 138

const wait = (ms) => new Promise((res) => setTimeout(res, ms));

const refresh = async () => {
 console.log("refreshing")
 await wait(1000);
};

const badCachingFunction = ...;

badCachingFunction();
badCachingFunction();
// refreshing
// refreshing

The correct way to handle this is to make the second function wait for the
refresh process without starting a separate one.

One way to do this is to serialize the calls to the caching function. This makes
every function to wait for all the previous ones to finish, so multiple calls only
trigger a single refresh process.

This can be done in a variety of ways, but the easiest one is to make the
functions run one after the other. In this case, when one needs to refresh the
value, the other ones will wait for it to finish and won't start their own jobs.

Another use-case I needed a solution like this is when backend calls needed a
token and that token expired after some time. When a call hit an Unauthorized
error, it refreshed the token and used the new one to retry. Other backend calls
needed to wait for the new token before they could be run. In this case, it wasn't
just performance-related as a new token invalidated all the old ones.

Why await is not a solution

The trivial solution is to use await that achieves serialization easily. After all,
that's what that keyword is for.

await badCachingFunction();
badCachingFunction();
// refreshing

A general-purpose solution

60 / 138

But that requires collaboration between the calls, and that is not always
possible. For example, when the function is called in response to multiple types
of events, await is not possible to coordinate between them:

document.querySelector("#btn").addEventListener("click", () => {
 fn();
})

window.addEventListener("message", => {
 fn();
});

In this case, the function call must do the coordination.

A general-purpose solution

The solution is to keep a queue of Promises that chains them one after the other.
It is just a few lines of code and it is general purpose, allowing any function be
serialized:

const serialize = (fn) => {
 let queue = Promise.resolve();
 return (...args) => {
 const res = queue.then(() => fn(...args));
 queue = res.catch(() => {});
 return res;
 };
};

A general-purpose solution

61 / 138

Call 1 (...args)

Call 2 (...args)

fn(...args)

() = > { }

fn(...args)

() = > { }

Promise.resolve()

.catch

result

.catch

result

.then

.then

Queue structure

The Promise.resolve() is the start of the queue. Every other call is appended
to this Promise.

The queue.then(() => fn(...args)) adds the function call to the queue and
it saves its result in res . It will be resolved when the current and all the
previous calls are resolved.

The queue = res.catch(() => {}) part makes sure that the queue won't get
stuck in rejection when one part of it is rejected.

Wrapping the caching function with this serializer makes sure that a single
refresh is run even for multiple calls:

A general-purpose solution

62 / 138

const fn = serialize((() => {
 const cacheTime = 2000;
 let lastRefreshed = undefined;
 let lastResult = undefined;
 return async () => {
 const currentTime = new Date().getTime();
 // check if cache is fresh enough
 if (lastResult === undefined ||
 lastRefreshed + cacheTime < currentTime) {
 // refresh the value
 lastResult = await refresh();
 lastRefreshed = currentTime;
 }
 return lastResult;
 }
})());

fn();
fn();
// refreshing

The async disposer pattern

63 / 138

The async disposer pattern
A recurring pattern is to run some initialization code to set up some resource
or configuration, then use the thing, and finally do some cleanup. It can be a
global property, such as freezing the time with timekeeper, starting a Chrome
browser with Puppeteer, or creating a temp directory. In all these cases, you
need to make sure the modifications/resources are properly disposed of,
otherwise, they might spill out to other parts of the codebase.

For example, this code creates a temp directory in the system tmpdir then when
it's not needed it deletes it. This can be useful when, for example, you want to
use ffmpeg to extract some frames from a video and need a directory to tell the
ffmpeg command to output the images to.

// create the temp directory
const dir = await fs.mkdtemp(
 await fs.realpath(os.tmpdir()) + path.sep
);
try {

 // use the temp directory

} finally {
 // remove the directory
 fs.rmdir(dir, {recursive: true});
}

A similar construct is console.time that needs a console.timeEnd to output
the time it took for a segment of the code to run:

console.time("name");
try {
 // ...
} finally {
 console.timeEnd("name");
}

Or when you launch a browser, you want to make sure it's closed when it's not
needed:

https://www.npmjs.com/package/timekeeper

Disposer pattern

64 / 138

const browser = await puppeteer.launch({/* ... */});
try {
 // use browser
} finally {
 await browser.close();
}

All these cases share the try..finally structure. Without it, an error can
jump over the cleanup logic, leaving the resource initialized (or the console
timing still ticking):

const browser = await puppeteer.launch({/* ... */});

// if there is an error here the browser won't close!

await browser.close();

In other languages, such as Java, this is known as try-with-resources and it is
built into the language. For example, the BufferedReader is closed after the
block:

try (BufferedReader br =
 new BufferedReader(new FileReader(path))
) {
 return br.readLine();
}

This builds on the AutoCloseable interface's close method so it's easy to adapt
to custom resource types.

But there is no such structure in Javascript. Let's see how to implement one!

Disposer pattern

One problem with the try..finally structure we've seen above is how to
return a value from inside the try block. Let's say you want to take a
screenshot of a website and want to use the resulting image later.

https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://docs.oracle.com/javase/8/docs/api/java/lang/AutoCloseable.html

Disposer pattern

65 / 138

const browser = await puppeteer.launch({/* ... */});
try {
 const page = await browser.newPage();
 // ...
 const screenshot = await page.screenshot({/* ... */});

 // the browser can be closed
 // but how to use the screenshot outside the try..finally?
} finally {
 await browser.close();
}

A suboptimal solution is to declare a variable outside the block and use it to
store the image:

let screenshot;

const browser = await puppeteer.launch({/* ... */});
try {
 const page = await browser.newPage();
 // ...
 screenshot = await page.screenshot({/* ... */});
} finally {
 await browser.close();
}

// use screenshot

A better solution is to use a function:

const makeScreenshot = async () => {
 const browser = await puppeteer.launch({/* ... */});
 try {
 const page = await browser.newPage();
 // ...
 return await page.screenshot({/* ... */});
 } finally {
 await browser.close();
 }
}

const screenshot = await makeScreenshot();

Disposer pattern

66 / 138

This is the basis of the disposer pattern. The difference is that instead of
hardcoding the logic inside the try..finally block, it gets a function that
implements that part:

const withBrowser = async (fn) => {
 const browser = await puppeteer.launch({/* ... */});
 try {
 return await fn(browser);
 } finally {
 await browser.close();
 }
}

const screenshot = await withBrowser(async (browser) => {
 const page = await browser.newPage();
 // ...
 return await page.screenshot({/* ... */});
});

The withBrowser function contains the logic to launch and close the browser,
and the fn function gets and uses the browser instance. Whenever the
argument function returns, the browser is automatically closed, no additional
cleanup logic is needed. This structure provides an elegant way to prevent non-
closed resources hanging around.

An interesting aspect of this pattern is that it is one of the few cases where there
is a difference between return fn() and return await fn() . Usually, it
does not matter if an async function returns a Promise or the result of the
Promise. But in this case, without the await the finally block runs before
the fn() call is finished.

A potential problem is when there is some task is running in the argument
function when it returns. This can happen when it starts an asynchronous task
and does not wait for it to finish. In this case, the cleanup logic runs and closes
the browser instance that can cause an error. It is usually the sign that an await
is missing.

Backoff algorithm

67 / 138

Retrying async operations
Backoff algorithm

A Javascript application made a fetch call to a remote server and it failed.
How should it retry the request so that it eventually succeeds while also
minimizing the calls made?

A backoff algorithm makes sure that when a target system can not serve a
request it is not flooded with subsequent retries. It achieves this by
introducing a waiting period between the retries to give the target a chance to
recover.

The need for a backoff builds on the observation that a service is unavailable
when it is overloaded and sending more requests only exacerbates the problem.
When all callers temporarily cease adding more load to the already overloaded
service usually smooths the traffic spikes with only a slight delay.

JS Backend

Failed call

wait

Failed call

wait

Success

Waiting between retries

The backoff algorithm used determines how much to wait between the
retries. The best configuration is actively researched in the case of network
congestion, such as when a mobile network is saturated. It's fascinating to see
that different implementations yield drastically different effective bandwidth.

Backoff algorithm

68 / 138

Retrying a failed call to a remote server is a much easier problem and doing it
right does not require years of research. In this article, you'll learn how to
implement a backoff solution in Javascript that is good enough for all practical
purposes.

Exponential backoff

But let's first revisit the problem of choosing the backoff strategy, i.e. how
much to wait between the retries! Sending requests too soon puts more load
on the potentially struggling server, while waiting too long introduces too much
lag.

The exponential backoff became the standard algorithm to use. It waits
exponentially longer for subsequent retries, which makes the first few tries
happen with only a slight delay while it reaches longer periods quickly.

It has two parameters: the delay of the first period and the growth factor. For
example, when the first retry waits 10ms and the subsequent ones double the
previous values, the waiting times are: 10, 20, 40, 80, 160, 320, 640, 1280, ...

Notice that the sum of the first 3 attempts is less than 100 ms, which is barely
noticeable. But it reaches >1 second in just 8 tries.

Javascript implementation

69 / 138

JS Backend

Failed call

wait 10 ms

Failed call

wait 20 ms

Failed call

wait 40 ms

Failed call

wait 80 ms

Failed call

wait 160 ms

Success

Exponential backoff

Javascript implementation

There are two pitfalls when implementing a backoff algorithm.

First, make sure to wait only before retries and not the first request. Waiting
first and sending a request then introduces a delay even for successful requests.

And second, make sure to put a limit to the number of retries so that the code
eventually gives up and throws an error. Even if the call eventually succeeds,
something upstream timeouts in the meantime, and the user likely gets an error.
Returning an error in a timely manner and letting the user retry the operation is
a good UX practice.

There are two types of operation in terms of retrying: rejection-based and
progress-based. Let's discuss each of them!

Rejection-based retrying

Javascript implementation

70 / 138

This type of call either succeeds or fails and it is usually implemented as a
Promise resolving or rejecting. A canonical example is a "Save" button that may
fail and in that case, retrying means sending the request again.

JS Backend

Call

Failed

Call

Failed

Call

Success

Rejection-based retrying

For illustration, this operation emulates a network call that fails 90% of the
time:

const wait = (ms) => new Promise((res) => setTimeout(res, ms));
const maybeFail = (successProbability, result, error) =>
 new Promise((res, rej) => Math.random() < successProbability
 ? res(result)
 : rej()
);

const maybeFailingOperation = async () => {
 await wait(10);
 return maybeFail(0.1, "result", "error");
}

Calling this function without a retry mechanism is bad UX. The user would
need to click the button repeatedly until it succeeds.

A general-purpose solution that can take any async function and retry it for a
few times before giving up:

Javascript implementation

71 / 138

const callWithRetry = async (fn, depth = 0) => {
 try {
 return await fn();
 }catch(e) {
 if (depth > 7) {
 throw e;
 }
 await wait(2 ** depth * 10);

 return callWithRetry(fn, depth + 1);
 }
}

And to use it with the operation defined above:

const result = await callWithRetry(maybeFailingOperation);

In the retry implementation, the depth argument indicates the number of calls
made to the service so far. It determines how much to wait
(await wait(2 ** depth * 10)) and when to give up
(if (depth > 7) {...}). When the function calls itself it increments this
value.

Interestingly, this is a scenario where using return await makes a difference.
Usually, it does not matter if an async function returns a Promise or its resolved
value. But not in this case, as the try..catch needs to wait for the fn() call
to finish to handle exceptions thrown from it.

Note that this implementation retries for any error, even if it is a non-retriable
one, such as sending invalid data.

Progress-based retrying

Another class of retriable operations is when each call might make some
progress towards completion but might not reach it.

A great example of this is how DynamoDB's batchWriteItem call works. You
define the items to store, and the call tries to save all of them. It then returns a
list in the response indicating which elements failed. The retry operation only

Javascript implementation

72 / 138

needs to include these missed items and not the whole request.

JS Backend

[1, 2, 3, 4, 5]

Failed: [2, 3, 5]

[2, 3, 5]

Failed: [5]

[5]

Failed: []

Success

Progress-based retrying

As an illustration, this function emulates a progressing call to a remote server. It
returns a progress field that goes from 0 to 1, and a result when the call is
fully finished. It also needs to know the current progress, which is a parameter
for the call:

const progressingOperation = async (startProgress = 0) => {
 await wait(10);
 const progress = Math.round(
 Math.min(startProgress + Math.random() / 3, 1) * 10
) / 10;
 return {
 progress,
 result: progress === 1 ? "result" : undefined,
 };
}

In this case, not reaching completion still resolves the Promise, which mimics
the DynamoDB API. But a different API might reject it. Fortunately, it's easy to
convert a rejected Promise to a resolved one: .catch() .

In the DynamoDB batchWriteItem example, the progress return field is the
list of the unprocessed items, and the startProgress parameter is the items to
save.

Javascript implementation

73 / 138

To retry the above call until it reaches completion:

const callWithProgress = async (fn, status, depth = 0) => {
 const result = await fn(status);

 // check completion
 if (result.progress === 1) {
 // finished
 return result.result;
 }else {
 // unfinished
 if (depth > 7) {
 throw result;
 }
 await wait(2 ** depth * 10);

 return callWithProgress(fn, result.progress, depth + 1);
 }
}

To use this retrying call, use:

const result = await callWithProgress(progressingOperation);

Note that this implementation is not general-purpose as it builds on how the call
returns progress.

Pagination

74 / 138

Paginating with async generators
Many APIs limit how many results they return for a single call. For example,
the functions of the AWS SDK that return lists are paginated operations. That
means that you get a limited number of elements in one call along with a token
to get the next batch. This can be a problem if you are not aware of it, as you
might get all the elements during development but your function might break in
the future.

But while getting the first batch is just
await lambda.listFunctions().promise() , paginating until all the pages

are retrieved requires more work.

Let's see how to make an await -able structure that reliable gets all the
elements from an AWS API!

Pagination

In the case of Lambda functions, the lambda.listFunctions call returns a
structure with a list of all your lambdas if you don't have too many of them (at
most 50):

const functions = await lambda.listFunctions().promise();

{
 Functions: [...]
}

To simulate a paginated case, you can set the MaxItems parameter:

const functions = await lambda.listFunctions({
 MaxItems: 1
}).promise();

This time a NextMarker is also returned, indicating there are more items:

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Lambda.html#listFunctions-property

A solution with async generators

75 / 138

{
 Functions: [...],
 NextMarker: ...
}

To get the next batch, provide the last marker:

const functions = await lambda.listFunctions({
 MaxItems: 1,
 Marker: functions.NextMarker,
}).promise();

Then do so until no NextMarker is returned.

A solution with async generators

Async generators are a relatively new feature of Javascript. They are like
traditional generator functions, but they are async, meaning you can await
inside them.

To collect all the Lambda functions no matter how many calls are needed, use:

const getAllLambdas = async () => {
 const EMPTY = Symbol("empty");

 const res = [];
 for await (const lf of (async function*() {
 let NextMarker = EMPTY;
 while (NextMarker || NextMarker === EMPTY) {
 const functions = await lambda.listFunctions({
 Marker: NextMarker !== EMPTY ? NextMarker : undefined,
 }).promise();
 yield* functions.Functions;
 NextMarker = functions.NextMarker;
 }
 })()) {
 res.push(lf);
 }

 return res;
}

// use it
const functions = await getAllLambdas();

A solution with async generators

76 / 138

Async generator functions

A generator function that can use await . When it encounters a yield or
a yield* the execution stops until a subsequent element is requested.

const wait = (ms) =>
 new Promise((res) => setTimeout(res, ms));

const gen = async function*() {
 console.log("start");
 await wait(100);
 yield 1;
 await wait(100);
 console.log("next");
 yield 2;
 await wait(100);
 console.log("end");
};

const it = gen();
console.log(await it.next());
console.log(await it.next());
console.log(await it.next());

// start
// { value: 1, done: false }
// next
// { value: 2, done: false }
// end
// { value: undefined, done: true }

Breaking it down

The most important thing is to keep track of the NextMarker returned by the
last call and use that for making the next one. For the first call, Marker should
be undefined , and to differentiate between the first and the last one (the one
that returns no NextMarker), a Symbol is a safe option as it cannot be returned
by the API.

Making it generic

77 / 138

const EMPTY = Symbol("empty");
let NextMarker = EMPTY;
while (NextMarker || NextMarker === EMPTY) {
 // Marker: NextMarker !== EMPTY ? NextMarker : undefined

 NextMarker = functions.NextMarker;
}

After the call, we need to yield the functions returned:

yield* functions.Functions;

The yield* makes sure that each element is returned as a separate value by the
generator.

Finally, a for await..of loop collects the results and returns them as an
Array:

const res = [];
for await (const lf of (async function*() {
 ...
})()) {
 res.push(lf);
}
return res;

To use it, just call the function and wait for the resulting Promise to resolve:

const functions = await getAllLambdas();

Making it generic

The same Marker / NextMarker pattern appears throughout the AWS SDK. But
unfortunately, the naming is different for different services. For example, getting
the CloudWatch Logs log groups you need to provide a nextToken parameter.
This makes it impossible to support all the listing functions with a generic
wrapper.

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatchLogs.html#describeLogGroups-property

Making it generic

78 / 138

Luckily, as the pattern is the same, we can make a wrapper function that handles
everything but the naming:

const getPaginatedResults = async (fn) => {
 const EMPTY = Symbol("empty");
 const res = [];
 for await (const lf of (async function*() {
 let NextMarker = EMPTY;
 while (NextMarker || NextMarker === EMPTY) {
 const {marker, results} = await fn(
 NextMarker !== EMPTY ? NextMarker : undefined
);

 yield* results;
 NextMarker = marker;
 }
 })()) {
 res.push(lf);
 }

 return res;
};

It follows the same structure as before, but it gets an fn parameter that does the
actual API call and returns the list and the marker.

To get all the Lambda functions with this wrapper:

const lambdas = await getPaginatedResults(async (NextMarker) => {
 const functions = await lambda.listFunctions(
 {Marker: NextMarker}
).promise();
 return {
 marker: functions.NextMarker,
 results: functions.Functions,
 };
});

Adapted to the log groups:

Making it generic

79 / 138

const logGroups =
 await getPaginatedResults(async (NextMarker) => {
 const logGroups = await logs.describeLogGroups(
 {nextToken: NextMarker}
).promise();
 return {
 marker: logGroups.nextToken,
 results: logGroups.logGroups,
 };
 });

Using async functions with postMessage

80 / 138

Using async functions with
postMessage
The postMessage call allows an asynchronous communication channel
between different browsing contexts, such as with IFrames and web workers,
where direct function calls don't work. It works by sending a message to the
other side, then the receiving end can listen to message events.

For example, the page can communicate with an IFrame via postMessage and
send events to each others' windows. The
iframe.contentWindow.postMessage() call sends a message to the IFrame,

while the window.parent.postMessage() sends a message back to the main
page. The two ends can listen to messages from the other using
window.addEventListener("message", (event) => {...}) .

// index.html
const iframe = document.querySelector("iframe");

window.addEventListener("message", ({data}) => {
 // 3: receive response
 console.log("Message from iframe: " + data);
});

// 1: send request
iframe.contentWindow.postMessage([5, 2]);

// iframe.html
window.addEventListener("message", ({data}) => {
 // 2: send response
 window.parent.postMessage(event.data[0] + event.data[1]);
});

Request-response communication

81 / 138

page

IFrame

window.addEventListener(
"message",
(event) => {
...
})

js

window.addEventListener(
"message",
(event) => {
...
})

js

iframe.contentWindow.postMessage() window.parent.postMessage()

page-IFrame communication

For web workers, each worker has a separate message handler. The page can
send a message to a specific worker using the worker.postMessage() call and
listen for events from that worker using
worker.addEventListener("message", (event) => {...}) . On the other

side, the worker sends and receives events using the global functions
postMessage() and addEventListener() :

// index.html
const worker = new Worker("worker.js");
worker.addEventListener("message", ({data}) => {
 console.log("Message from worker: " + data); // 3
});

worker.postMessage([5, 5]); // 1

// worker.js
addEventListener("message", (event) => {
 postMessage(event.data[0] + event.data[1]); // 2
}, false)

Request-response communication

Request-response communication

82 / 138

Both communicating with an IFrame and with a worker has problems. First,
sending the request and handling the response is separated. The receiving side
uses a global (or a per-worker) event listener, which is shared between the
calls.

This is good for "notification-style" messages where one end wants to notify the
other that something happened but not expecting a response. But notification-
style messaging is rare. What is usually needed is a "request-response-style"
messaging.

For example, one end uses an access token that the other one can refresh. The
communication consists of a request to refresh and a response to that with the
refreshed token. Or even when a user clicks on a button and the other side needs
to handle this. This example seems like a "notification-style" message, but when
the button needs to be disabled while the operation takes place (such as a save
button) or there is a possibility of an error that the sender needs to know about,
it's now a request-response.

The global (or per-worker) message handler is not suited for pairing responses
to requests. The ideal solution would be to hide all these complications behind
an async function call and use await to wait for the result:

const result = await add(10, 5);

Let's see how to make such a function!

Response identification

The first task is to know which request triggered a given response. The problem
with using the global event handler is that it's all too easy to rely on only one
communication happening at a time. When you test your webapp, you test one
thing at a time but users won't be that considerate. You can't assume only one
request-response will happen at any one time.

Request-response communication

83 / 138

page code IFrame code

msg1

msg2

OK

ERROR

Which operation failed?

Non-multiplexed channel

One solution is to use request identifiers to pair the responses to the requests.

page code IFrame code

{id: 1, ...}

{ id: 2, ...}

{id: 2, result: "OK"}

{id: 1, result: "ERROR"}

Request 1 failed

Request ids

This works, and even though it requires some coding, this is a good solution.

MessageChannel

Fortunately, there is a better solution built into the language. MessageChannel
allows a dedicated communication channel attached to the postMessage call.
The sending end can listen for messages on that channel which is separated
from all other calls, and the receiving end can send its responses through the
MessagePort it got.

A MessageChannel creates two MessagePorts, one for each end of the
communication. Each port supports both the onmessage and the
postMessage , similar to the basic cross-context communication channels.

Request-response communication

84 / 138

// index.html
const worker = new Worker("worker.js");
// create a channel
const channel = new MessageChannel();

// listen on one end
channel.port1.onmessage = ({data}) => {
 console.log("Message from channel: " + data); // 3
};

// send the other end
worker.postMessage([15, 2], [channel.port2]); // 1

// worker.js
addEventListener("message", (event) => {
 // respond on the received port
 event.ports[0].postMessage(event.data[0] + event.data[1]); // 2
}, false)

To attach a message handler to a port, use
port.onmessage = (event) => {...} . If you use addEventListener then

you need to start the channel too:

port.addEventListener("message", (event) => {...});
port.start();

To attach a port to the postMessage call, use the second argument:
postMessage(data, [channel.port2]) . To use this port on the other end, use
event.ports[0].postMessage() .

By creating a new MessageChannel for each request, pairing the response is
solved as whatever comes through that channel is the response to this particular
request.

Error handling

An often overlooked aspect of request-response communication is error
handling. When the receiving end has a problem and throws an Error, it should
be propagated to the sender so that it can handle it appropriately.

Using Promises

85 / 138

The problem with postMessage is that it can only send one type of message,
there is no postError call. How to signal an error then?

A possible solution is similar to how Node-style callbacks propagate errors
using only a single function. These callbacks use an error and a result value
together, and only one of them is defined:

(err, result) => {
 if (err) {
 // error
 } else {
 // result
 }
}

To implement the same with messages, use an object with error and result
properties. When the former is non-null that indicates that an error happened.

// worker.js
try{
 event.ports[0].postMessage(
 {result: event.data[0] + event.data[1]}
);
}catch(e) {
 event.ports[0].postMessage({error: e});
}

// index.html
channel.port1.onmessage = ({data}) => {
 if (data.error) {
 // error
 }else {
 // data.result
 }
};

Don't forget to wrap the receiving end in a try-catch to propagate runtime errors.

Using Promises

With a separated response channel and error propagation, it's easy to wrap the
call in a Promise constructor.

Using Promises

86 / 138

const worker = new Worker("worker.js");

const add = (a, b) => new Promise((res, rej) => {
 const channel = new MessageChannel();

 channel.port1.onmessage = ({data}) => {
 channel.port1.close();
 if (data.error) {
 rej(data.error);
 }else {
 res(data.result);
 }
 };

 worker.postMessage([a, b], [channel.port2]);
});

console.log(await add(3, 5)); // 8

With a Promise hiding all the complexities of the remote call, everything that
works with async/await works with these calls too:

// parallel execution
console.log(await Promise.all([
 add(1, 1),
 add(5, 5),
])); // [2, 10]

// async reduce
console.log(await [1, 2, 3, 4].reduce(async (memo, i) => {
 return add(await memo, i);
}), 0); // 10

And the Promise rejects when it should, allowing proper error handling on the
sending end:

Using Promises

87 / 138

// worker.js
addEventListener("message", (event) => {
 try{
 if (
 typeof event.data[0] !== "number" ||
 typeof event.data[1] !== "number"
) {
 throw new Error("both arguments must be numbers");
 }
 event.ports[0].postMessage(
 {result: event.data[0] + event.data[1]}
);
 }catch(e) {
 event.ports[0].postMessage({error: e});
 }
}, false)

// index.html
try {
 await add(undefined, "b");
}catch(e) {
 console.log("Error: " + e.message); // error
}

One restriction is what can be sent through the postMessage call. It uses the
structured clone algorithm which supports complex objects but not everything.

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Structured_clone_algorithm

Collection processing with async functions

88 / 138

Collection processing with async
functions
While async/await is great to make async commands look like synchronous
ones, collection processing is not that simple. It's not just adding an async
before the function passed to Array.reduce and it will magically work
correctly. But without async functions, you can not use await and provide a
result later which is required for things like reading a database, making network
connections, reading files, and a whole bunch of other things.

Let's see some examples!

When all the functions you need to use are synchronous, it's easy. For example,
a string can be doubled without any asynchronicity involved:

const double = (str) => {
 return str + str;
};

double("abc");
// abcabc

If the function is async, it's also easy for a single item using await . For
example, to calculate the SHA-256 hash, Javascript provides a digest() async
function:

Collection processing with async functions

89 / 138

// https://developer.mozilla.org/docs/Web/API/SubtleCrypto/digest
const digestMessage = async (message) => {
 const msgUint8 = new TextEncoder().encode(message);
 const hashBuffer =
 await crypto.subtle.digest("SHA-256", msgUint8);
 const hashArray = Array.from(new Uint8Array(hashBuffer));
 const hashHex = hashArray
 .map(b => b.toString(16).padStart(2, "0"))
 .join('');
 return hashHex;
};

await digestMessage("msg");
// e46b320165eec91e6344fa1034...

This looks almost identical to the previous call, the only difference is an
await .

But for collections, handling asynchronicity becomes different.

To calculate the double for each element in a collection of strings is simple
with a map :

const strings = ["msg1", "msg2", "msg3"];

strings.map(double);
// ["msg1msg1", "msg2msg2", "msg3msg3"]

But to calculate the hash of each string in a collection, it does not work:

const strings = ["msg1", "msg2", "msg3"];

await strings.map(digestMessage);
// [object Promise],[object Promise],[object Promise]

This is an everyday problem as async functions make a bigger category than
synchronous ones. A sync function can work in an async environment, but an
async one can not be converted to work in a synchronous way.

For a more realistic scenario, querying a database is inherently async as it needs
to make network connections. To get the score for a single userId from a
hypothetical database is simple:

Collection processing with async functions

90 / 138

const getUserObject = async (id) => {
 // get user by id
};

const userId = 15;
const userObject = await getUserObject(userId);
const userScore = userObject.score;

But how to query the database for a collection of userId s?

const userIds = [15, 16, 21];
// const userObjects = ???

And it's not just about using map to transform one value to another. Is the user's
score above 3?

const userObject = await getUserObject(userId);
const above3 = userObject.score > 3;

But is any of the users' score above 3?

// userIds.some(???)

Or what is the average score?

// userIds.reduce(???)

To make things more interesting, adding an async to a map at least gives some
indication what is changed:

// synchronous
[1, 2, 3].map((i) => {
 return i + 1;
});
// [2, 3, 4]

// asynchronous
[1, 2, 3].map(async (i) => {
 return i + 1;
});
// [object Promise],[object Promise],[object Promise]

Async for iteration

91 / 138

But a filter just does something entirely wrong:

// synchronous
[1, 2, 3, 4, 5].filter((i) => {
 return i % 2 === 0;
});
// [2, 4]

// asynchronous
[1, 2, 3, 4, 5].filter(async (i) => {
 return i % 2 === 0;
});
// [1, 2, 3, 4, 5]

Because of this, async collection processing requires some effort, and it's
different depending on what kind of function you want to use. An async map
works markedly differently than an async filter or and async reduce .

In this chapter, you'll learn how each of them works and how to efficiently use
them.

Async for iteration

But first, let's talk about for loops!

I don't like for loops as they tend to promote bad coding practices, like nested
loops that do a lot of things at once or continue / break statements scattered
around that quickly descend into an unmaintainable mess.

Also, a more functional approach with functions like map / filter / reduce
promote a style where one function does only one thing and everything inside it
is scoped and stateless. And the functional approach is not only possible 99% of
the time but it comes with no perceivable performance drop and it also yields
simpler code (well, at least when you know the functions involved).

But async/await is in the remaining 1%.

For loops have a distinctive feature, as they don't rely on calling a function. In
effect, you can use await inside the loop and it will just work.

Async functions with reduce

92 / 138

// synchronous
{
 const res = [];
 for (let i of [1, 2, 3]){
 res.push(i + 1);
 }
 // res: [2, 3, 4]
}

// asynchronous
{
 const res = [];
 for (let i of [1, 2, 3]){
 await sleep(10);
 res.push(i + 1);
 }
 // res: [2, 3, 4]
}

As for loops are a generic tool, they can be used for all kinds of requirements
when working with collections.

But their downside is still present, and while it's not trivial to adapt the
functional approach to async/await, once you start seeing the general pattern it's
not that hard either.

Async functions with reduce

The reduce function iteratively constructs a value and returns it, which is not
necessarily a collection. That's where the name comes from, as it reduces a
collection to a value.

The iteratee function gets the previous result, called memo in the examples
below, and the current value, e .

The following function sums the elements, starting with 0 (the second argument
of reduce):

Async functions with reduce

93 / 138

const arr = [1, 2, 3];

const syncRes = arr.reduce((memo, e) => {
 return memo + e;
}, 0);

console.log(syncRes);
// 6

memo e result

0 (initial) 1 1

1 2 3

3 3 (end result) 6

0

0 + 1

1 + 2

3 + 3

0

1

2

3

6

The reduce function

Asynchronous reduce

An async version is almost the same, but it returns a Promise on each iteration,
so memo will be the Promise of the previous result. The iteratee function needs
to await it in order to calculate the next result:

Async functions with reduce

94 / 138

// utility function for sleeping
const sleep = (n) => new Promise((res) => setTimeout(res, n));

const arr = [1, 2, 3];

const asyncRes = await arr.reduce(async (memo, e) => {
 await sleep(10);
 return (await memo) + e;
}, 0);

console.log(asyncRes);
// 6

memo e result

0 (initial) 1 Promise(1)

Promise(1) 2 Promise(3)

Promise(3) 3 (end result) Promise(6)

0

(await 0) + 1

(await Promise(1)) + 2

(await Promise(3)) + 3

0

1

2

3

Promise(6)

Async reduce function

With the structure of async (memo, e) => await memo , the reduce can
handle any async functions and it can be await ed.

Timing

Async functions with reduce

95 / 138

Concurrency has an interesting property when it comes to reduce . In the
synchronous version, elements are processed one-by-one, which is not
surprising as they rely on the previous result. But when an async reduce is run,
all the iteratee functions start running in parallel and wait for the previous result
(await memo) only when needed.

await memo last

In the example above, all the sleep s happen in parallel, as the await memo ,
which makes the function to wait for the previous one to finish, comes later.

const arr = [1, 2, 3];

const startTime = new Date().getTime();

const asyncRes = await arr.reduce(async (memo, e) => {
 await sleep(10);
 return (await memo) + e;
}, 0);

console.log(`Took ${new Date().getTime() - startTime} ms`);
// Took 11-13 ms

reduce
e 1 e 2 e 3

sleep(10)

await

await

1

3

6

Async reduce with "await memo" last

await memo first

Async functions with reduce

96 / 138

But when the await memo comes first, the functions run sequentially:

const arr = [1, 2, 3];

const startTime = new Date().getTime();

const asyncRes = await arr.reduce(async (memo, e) => {
 await memo;
 await sleep(10);
 return (await memo) + e;
}, 0);

console.log(`Took ${new Date().getTime() - startTime} ms`);
// Took 36-38 ms

reduce
e 1 e 2 e 3

await

await

sleep(10)

1

sleep(10)

3

sleep(10)

6

Async reduce with "await memo" first

This behavior is usually not a problem as it naturally means everything that is
not dependent on the previous result will be calculated immediately, and only
the dependent parts are waiting for the previous value.

When parallelism matters

But in some cases, it might be unfeasible to do something ahead of time.

Async functions with map

97 / 138

For example, I had a piece of code that prints different PDFs and concatenates
them into one single file using the pdf-lib library.

This implementation runs the resource-intensive printPDF function in parallel:

const result = await printingPages.reduce(async (memo, page) => {
 const pdf = await PDFDocument.load(await printPDF(page));

 const pdfDoc = await memo;

 (await pdfDoc.copyPages(pdf, pdf.getPageIndices()))
 .forEach((page) => pdfDoc.addPage(page));

 return pdfDoc;

}, PDFDocument.create());

I noticed that when I have many pages to print, it would consume too much
memory and slow down the overall process.

A simple change made the printPDF calls wait for the previous one to finish:

const result = await printingPages.reduce(async (memo, page) => {
 const pdfDoc = await memo;

 const pdf = await PDFDocument.load(await printPDF(page));

 (await pdfDoc.copyPages(pdf, pdf.getPageIndices()))
 .forEach((page) => pdfDoc.addPage(page));

 return pdfDoc;

}, PDFDocument.create());

Async functions with map

The map is the easiest and most common collection function. It runs each
element through an iteratee function and returns an array with the results.

The synchronous version that adds one to each element:

https://www.npmjs.com/package/pdf-lib

Async functions with map

98 / 138

const arr = [1, 2, 3];

const syncRes = arr.map((i) => {
 return i + 1;
});

console.log(syncRes);
// 2,3,4

An async version needs to do two things. First, it needs to map every item to a
Promise with the new value, which is what adding async before the function
does.

And second, it needs to wait for all the Promises then collect the results in an
Array. Fortunately, the Promise.all built-in call is exactly what we need for
step 2.

This makes the general pattern of an async map to be
Promise.all(arr.map(async (...) => ...)) .

An async implementation doing the same as the sync one:

const arr = [1, 2, 3];

const asyncRes = await Promise.all(arr.map(async (i) => {
 await sleep(10);
 return i + 1;
}));

console.log(asyncRes);
// 2,3,4

Async functions with map

99 / 138

map
e 1 e 2 e 3

1

2

3

2

3

4

Async map

Concurrency

The above implementation runs the iteratee function in parallel for each element
of the array. This is usually fine, but in some cases, it might consume too much
resources. This can happen when the async function hits an API or consumes
too much RAM that it's not feasible to run too many at once.

While an async map is easy to write, adding concurrency controls is more
involved. In the next few examples, we'll look into different solutions.

Batch processing

The easiest way is to group elements and process the groups one by one. This
gives you control of the maximum amount of parallel tasks that can run at once.
But since one group has to finish before the next one starts, the slowest element
in each group becomes the limiting factor.

Async functions with map

100 / 138

Group 1 Group 2 Group 3

map
e 1 e 2 e 3 e 4 e 5

Mapping in groups

To make groups, the example below uses the groupBy implementation from
Underscore.js. Many libraries provide an implementation and they are mostly
interchangeable. The exception is Lodash, as its groupBy does not pass the
index of the item.

If you are not familiar with groupBy , it runs each element through an iteratee
function and returns an object with the keys as the results and the values as lists
of the elements that produced that value.

To make groups of at most n elements, an iteratee Math.floor(i / n) where
i is the index of the element will do. As an example, a group of size 3 will map

the elements like this:

0 => 0
1 => 0
2 => 0
3 => 1
4 => 1
5 => 1
6 => 2
...

In Javascript:

https://underscorejs.org/#groupBy
https://lodash.com/docs/#groupBy

Async functions with map

101 / 138

const arr = [30, 10, 20, 20, 15, 20, 10];

console.log(
 _.groupBy(arr, (_v, i) => Math.floor(i / 3))
);
// {
// 0: [30, 10, 20],
// 1: [20, 15, 20],
// 2: [10]
// }

The last group might be smaller than the others, but all groups are guaranteed
not to exceed the maximum group size.

To map one group, the usual Promise.all(group.map(...)) construct is fine.

To map the groups sequentially, we need a reduce that concatenates the previous
results (memo) with the results of the current group:

return Object.values(groups)
 .reduce(async (memo, group) => [
 ...(await memo),
 ...(await Promise.all(group.map(iteratee)))
], []);

This implementation is based on the fact that the await memo , which waits for
the previous result, will be completed before moving on to the next line.

The full implementation that implements batching:

Async functions with map

102 / 138

const arr = [30, 10, 20, 20, 15, 20, 10];

const mapInGroups = (arr, iteratee, groupSize) => {
 const groups = _.groupBy(arr, (_v, i) =>
 Math.floor(i / groupSize));

 return Object.values(groups)
 .reduce(async (memo, group) => [
 ...(await memo),
 ...(await Promise.all(group.map(iteratee)))
], []);
};

const res = await mapInGroups(arr, async (v) => {
 console.log(`S ${v}`);
 await sleep(v);
 console.log(`F ${v}`);
 return v + 1;
}, 3);

// -- first batch --
// S 30
// S 10
// S 20
// F 10
// F 20
// F 30
// -- second batch --
// S 20
// S 15
// S 20
// F 15
// F 20
// F 20
// -- third batch --
// S 10
// F 10

console.log(res);
// 31,11,21,21,16,21,11

Parallel processing

Another type of concurrency control is to run at most n tasks in parallel, and
start a new one whenever one is finished.

Async functions with map

103 / 138

map
e 1 e 2 e 3 e 4

Controlled concurrency

I couldn't come up with a simple implementation for this, but fortunately, the
Bluebird library provides one out of the box. This makes it straightforward, just
import the library and use the Promise.map function that has support for the
concurrency option.

In the example below the concurrency is limited to 2 , which means 2 tasks are
started immediately, then whenever one is finished, a new one is started until
there are none left:

http://bluebirdjs.com/docs/api/promise.map.html#map-option-concurrency

Async functions with map

104 / 138

const arr = [30, 10, 20, 20, 15, 20, 10];

// Bluebird promise
const res = await Promise.map(arr, async (v) => {
 console.log(`S ${v}`)
 await sleep(v);
 console.log(`F ${v}`);
 return v + 1;
}, {concurrency: 2});

// S 30
// S 10
// F 10
// S 10
// F 30
// S 20
// F 10
// S 15
// F 20
// S 20
// F 15
// S 20
// F 20
// F 20

console.log(res);
// 31,11,21,21,16,21,11

Sequential processing

Sometimes any concurrency is too much and the elements should be processed
one after the other.

Async functions with forEach

105 / 138

reduce
e 1 e 2 e 3 e 4

Mapping sequentially

A trivial implementation is to use Bluebird's Promise with a concurrency of 1.
But for this case, it does not warrant including a library as a simple reduce
would do the job:

const arr = [1, 2, 3];

const res = await arr.reduce(async (memo, v) => {
 const results = await memo;
 console.log(`S ${v}`)
 await sleep(10);
 console.log(`F ${v}`);
 return [...results, v + 1];
}, []);

// S 1
// F 1
// S 2
// F 2
// S 3
// F 3

console.log(res);
// 2,3,4

Make sure to await the memo before await -ing anything else, as without that
it will still run concurrently!

Async functions with forEach

Async functions with forEach

106 / 138

The forEach function is similar to the map , but instead of transforming the
values and using the results, it runs the function for each element and discards
the result. Effectively, the important part is the side effects of calling the
function.

For example, printing each element to the console, synchronously:

const arr = [1, 2, 3];

arr.forEach((i) => {
 console.log(i);
});

// 1
// 2
// 3

console.log("Finished sync");
// Finished sync

As the result is not important, using an async function as the iteratee would
work:

const arr = [1, 2, 3];

arr.forEach(async (i) => {
 // each element takes a different amount of time to complete
 await sleep(10 - i);
 console.log(i);
});

console.log("Finished async");
// Finished async

// 3
// 2
// 1

Async functions with forEach

107 / 138

js
forEach

e 1 e 2 e 3

Finished
async

3

2

1

Async forEach

Controlling the timing

Waiting for finish

But, not unsurprisingly, the function is called asynchronously, and the program
execution goes past the call. This is an important difference from the sync
version, as, by the time the next line is executed, the synchronous forEach is
already done, while the async version is not. That's why the "Finished async"
log appears before the elements.

To wait for all the function calls to finish before moving on, use a map with a
Promise.all and discard the results:

Async functions with forEach

108 / 138

const arr = [1, 2, 3];

await Promise.all(arr.map(async (i) => {
 await sleep(10 - i);
 console.log(i);
}));

// 3
// 2
// 1

console.log("Finished async");
// Finished async

js
map

e 1 e 2 e 3

3

2

1

Finished
async

Async forEach, waiting for the results

With this change, the "Finished async" comes last.

Sequential processing

But notice that the iteratee functions are called in parallel. To faithfully follow
the synchronous forEach , use a reduce with an await memo first:

Async functions with filter

109 / 138

const arr = [1, 2, 3];

await arr.reduce(async (memo, i) => {
 await memo;
 await sleep(10 - i);
 console.log(i);
}, undefined);

// 1
// 2
// 3

console.log("Finished async");
// Finished async

js
reduce

e 1 e 2 e 3

1

2

3

Finished
async

Async forEach, sequential processing

This way the elements are processed in-order, one after the other, and the
program execution waits for the whole array to finish before moving on.

Async functions with filter

The filter function keeps only the elements that pass a condition. It gets a
function, this time it's called a predicate, and this function returns true/false
(truthy and falsy, to be more precise) values. The resulting collection only

Async functions with filter

110 / 138

contains the elements where the predicate returned true.

const arr = [1, 2, 3, 4, 5];

const syncRes = arr.filter((i) => {
 return i % 2 === 0;
});

console.log(syncRes);
// 2,4

Async filter with map

The async version is a bit more complicated this time and it works in two
phases. The first one maps the array through the predicate function
asynchronously, producing true/false values. Then the second step is a
synchronous filter that uses the results from the first step.

async

results

[F, T, F, T, F]

arr

[1, 2, 3, 4, 5]

result

[2 , 4]

(map) i % 2 === 0

(filter) results[index]

Async filter

Async functions with filter

111 / 138

const arr = [1, 2, 3, 4, 5];

const asyncFilter = async (arr, predicate) => {
 const results = await Promise.all(arr.map(predicate));

 return arr.filter((_v, index) => results[index]);
}

const asyncRes = await asyncFilter(arr, async (i) => {
 await sleep(10);
 return i % 2 === 0;
});

console.log(asyncRes);
// 2,4

Or a one-liner implementation:

const asyncFilter = async (arr, predicate) =>
 Promise.all(arr.map(predicate))
 .then((results) => arr.filter((_v, index) => results[index]));

Async functions with filter

112 / 138

m a p

asyncFilter asyncMap
e 1 e 2 e 3

filter

Step 1

[1, 2, 3]

false

true

false

[F, T, F]

Step 2

[1, 2, 3]
[F, T, F]

[2]

Async filter with map

Concurrency

The above implementation runs all of the predicate functions concurrently. This
is usually fine, but, as with all other functions, it might strain some resources
too hard. Fortunately, since the above implementation relies on map , the same
concurrency controls can be used.

Async filter with reduce

Instead of using an async map with a sync filter , an async reduce could
also do the job. Since it's just one function, the structure is even easier though it
does not provide the same level of control.

First, start with an empty array ([]). Then run the next element through the
predicate function and if it passes, append it to the array. If not, skip it.

Async functions with filter

113 / 138

[]

[...[], ...[]]predicate(1) =>
fa lse

[...[], ...[2]]predicate(2) =>
t r u e

[...[2], ...[]]predicate(3) =>
fa lse

[]

1

2

3

Promise([2])

Async filter with reduce

// concurrently
const asyncFilter = async (arr, predicate) =>
 arr.reduce(async (memo, e) =>
 await predicate(e) ? [...await memo, e] : memo
 , []);

asyncFilter
reduce

i % 2 === 0
e 1 e 2 e 3

[1, 2, 3]

await predicate(e)

await memo

await memo

[]

[2]

[2]

[2]

Async filter with reduce

Async functions with filter

114 / 138

Notice that the await predicate(e) comes before the await memo , which
means those will be called in parallel.

Sequential processing

To wait for a predicate function to finish before calling the next one, change the
order of the await s:

// sequentially
const asyncFilter = async (arr, predicate) =>
 arr.reduce(async (memo, e) =>
 [...await memo, ...await predicate(e) ? [e] : []]
 , []);

This implementation waits for the previous element then conditionally append
an element depending on the result of the predicate (...[e] or ...[]).

asyncFilter
reduce

i % 2 === 0
e 1 e 2 e 3

[1, 2, 3]

await memo

await memo

await predicate(1)

[]

await predicate(2)

[2]

await predicate(3)

[2]

[2]

Async filter with reduce running sequentially

Async functions with some/every

115 / 138

Async functions with some/every

These functions get an iteratee function, just like the filter , but they return a
single true/false, depending on whether the predicate returned a specific value.
In the case of the some , if any of the predicates returned true, the result will be
true. For the every function, if any returned false, the result will be false.

const arr = [1, 2, 3];

const someRes = arr.some((i) => {
 return i % 2 === 0;
});

console.log(someRes);
// true

const everyRes = arr.every((i) => {
 return i < 2;
});

console.log(everyRes);
// false

Using an async filter

Considering only the result, these functions can be emulated with an async
filter , which is already covered in a previous article how to convert to async.

// sync
const some = (arr, predicate) =>
 arr.filter(predicate).length > 0;
const every = (arr, predicate) =>
 arr.filter(predicate).length === arr.length;

// async
const asyncSome = async (arr, predicate) =>
 (await asyncFilter(arr, predicate)).length > 0;
const asyncEvery = async (arr, predicate) =>
 (await asyncFilter(arr, predicate)).length === arr.length;

Async functions with some/every

116 / 138

asyncSome
filter

i % 2 === 0
e 1 e 2 e 3

[1, 2, 3]

false

true

false

[2]

true

Filter-based async some

Short-circuiting

But there is an important difference between the built-in some / every
functions and the filter -based implementations. When there is an element
that returns true for a some , it short-circuits and does not process the
remaining elements:

const arr = [1, 2, 3];

const res = arr.some((i) => {
 console.log(`Checking ${i}`);
 return i % 2 === 0;
});

// Checking 1
// Checking 2

console.log(res);
// true

Async functions with some/every

117 / 138

some
e 1 e 2 e 3

false

true

Does not
check

true

Synchronous some

Similarly, every stops after the first false result:

const arr = [1, 2, 3];

const res = arr.every((i) => {
 console.log(`Checking ${i}`);
 return i < 2;
});

// Checking 1
// Checking 2

console.log(res);
// false

Let's see how to code an async version that works in a similar way and does the
least amount of work!

Async some

The best solution is to use an async for iteration that returns as soon as it finds
a truthy result:

Async functions with some/every

118 / 138

const arr = [1, 2, 3];

const asyncSome = async (arr, predicate) => {
 for (let e of arr) {
 if (await predicate(e)) return true;
 }
 return false;
};
const res = await asyncSome(arr, async (i) => {
 console.log(`Checking ${i}`);
 await sleep(10);
 return i % 2 === 0;
});

// Checking 1
// Checking 2

console.log(res);
// true

asyncSome
e 1 e 2 e 3

false

true

Does not
check

true

For-based async some

For the first element predicate(e) returns true, it concludes the for-loop.

Async every

The similar structure works for every , it's just a matter of negating the
conditions:

Async functions with some/every

119 / 138

const arr = [1, 2, 3];

const asyncEvery = async (arr, predicate) => {
 for (let e of arr) {
 if (!await predicate(e)) return false;
 }
 return true;
};
const res = await asyncEvery(arr, async (i) => {
 console.log(`Checking ${i}`);
 await sleep(10);
 return i < 2;
});

// Checking 1
// Checking 2

console.log(res);
// false

Whenever there is a false value returned by predicate(e) , the function is
ended without checking the other elements.

Parallel processing

The short-circuiting implementation processes the elements sequentially, which
is efficient in terms of resource usage, but it might result in longer execution.

For example, if the iteratee sends requests via a network, it might take some
time to send them one at a time. On the other hand, while it might result in more
requests sent, sending all of them at the same time would be faster.

Not propagating errors

120 / 138

Common errors
Not propagating errors

When you convert a callback to a Promise, make sure that you also handle the
error case. Without that, the Promise is never resolved and an await waits
forever.

For example, the gapi.load provides separate callbacks for results and errors:

await new Promise((res, rej) => {
 gapi.load("client:auth2", {callback: res, onerror: rej});
});

If you don't attach the rej callback to the onerror handler, errors won't
propagate through the chain. This leads to hard-to-debug problems and
components that "just stops".

Missing await in try..catch

When you use try..catch or try..finally in an async function, make sure
that you use await too. For example, this code works fine when the inner
Promise resolves:

const fn = async () => {
 return "result";
}

const outer = async () => {
 try {
 return fn(); // <= missing await!
 }catch(e) {
 console.log(e.message);
 }
}

await outer(); // result

Not checking the return value

121 / 138

But the try..catch won't handle exceptions:

const fn = async () => {
 throw new Error("error");
}

const outer = async () => {
 try {
 return fn(); // <= missing await!
 }catch(e) {
 console.log(e.message);
 }
}

await outer();
// exception is thrown!

This is because exceptions are thrown from the await and while returning a
Promise from an async function flattens the result, it will be returned without
waiting for it. And without waiting, an exception is not thrown for the
try..catch but when the caller uses await .

const fn = async () => {
 throw new Error("error");
}

const outer = async () => {
 try {
 return await fn();
 }catch(e) {
 console.log(e.message); // error
 }
}

await outer();
// no exception here

Not checking the return value

When a Promise is resolved it does not necessarily mean that everything is
alright. For example, the fetch rejects when there is a problem with the
connection but it resolves even if the response status returns an error.

Not closing resources in case of a rejection

122 / 138

When the call can not establish a connection, the Promise rejects:

try {
 await fetch("htp://example.com");
}catch(e) {
 console.log(e.message); // Failed to fetch
}

But when the response status code indicates an error (500), the Promise still
resolves:

try {
 await fetch("https://httpbin.org/status/500");

 // no error
}catch(e) {
 console.log(e.message);
}

Because of this, you need to check the result for error responses. The fetch
result provides the ok field to do this:

const response = await fetch("https://httpbin.org/status/500");

if (!response.ok) {
 throw new Error("Error response");
}

Not closing resources in case of a rejection

It's common to open some resource, then close it after it's not needed. For
example, this code creates a temporary directory then deletes it later:

Not closing resources in case of a rejection

123 / 138

const fs = require("fs").promises;
const os = require("os");
const path = require("path");

const dir = await fs.mkdtemp(
 await fs.realpath(os.tmpdir()) + path.sep
);

// use dir to store temporary things

await fs.rmdir(dir, {recursive: true});

This works unless there is an exception that jumps over the cleanup code.

const dir = await fs.mkdtemp(
 await fs.realpath(os.tmpdir()) + path.sep
);

throw Error("error");

await fs.rmdir(dir, {recursive: true});
// the cleanup won't run!

Use try..finally to implement reliable cleanup:

const dir = await fs.mkdtemp(
 await fs.realpath(os.tmpdir()) + path.sep
);
try {
 // use dir to store temporary things
}finally {
 await fs.rmdir(dir, {recursive: true});
}

Even better, you can move the resource lifecycle to a dedicated function, as
discussed in the The async disposer pattern chapter:

Using both the rejection and resolve handlers in one then function

124 / 138

const withTempDir = async (fn) => {
 const dir = await fs.mkdtemp(
 await fs.realpath(os.tmpdir()) + path.sep
);
 try {
 return await fn(dir);
 }finally {
 fs.rmdir(dir, {recursive: true});
 }
};

await withTempDir((dir) => {
 // use dir to store temporary things
})

Using both the rejection and resolve handlers in
one then function

A common source of problems is to write error handling like this:

getPromise()
 .then(process, handleError);

As we've discussed in the Error propagation in Promise chains chapter, the
second handler of the then() is called for errors but only from the previous
steps.

ok

error

getPromise

process handleError

success error error

Diagram of the promise chain

Not waiting for an async forEach

125 / 138

Notice that the handleError function only gets errors from the getPromise .
If the result of the process function is rejected, it won't be handled.

A better solution is to use .catch to be explicit about errors:

getPromise()
 .then(process)
 .catch(handleError);

This way it's clear that both steps are covered by the error handlers.

Not waiting for an async forEach

The forEach function iterates over a collection and calls an iteratee function.
A typical problem is not waiting for the iteration to complete:

[1, 2, 3].forEach(async (e) => {
 console.log(e);
 return makePromise(e);
});
console.log("finished");
// finished
// 1
// 2
// 3

It is a best practice to wait until the whole collection is processed, which can be
achived with a Promise.all and a map :

await Promise.all([1, 2, 3].map(async (e) => {
 console.log(e);
 return makePromsie(e);
}));
console.log("finished");
// 1
// 2
// 3
// finished

Not waiting for an async forEach

126 / 138

More info

This topic is covered in more detail in the Async functions with forEach
chapter.

Glossary

127 / 138

Glossary
Async function

A function that returns a Promise. The await keyword is only usable in an
async function.

const wait = (ms) => new Promise((res) => setTimeout(res, ms));

const fn = async () => {
 await wait(100);
 return "result";
}

fn(); // Promise

Async generator function

A generator function that can use await . When it encounters a yield or a
yield* the execution stops until a subsequent element is requested.

Glossary

128 / 138

const wait = (ms) => new Promise((res) => setTimeout(res, ms));

const gen = async function*() {
 console.log("start");
 await wait(100);
 yield 1;
 await wait(100);
 console.log("next");
 yield 2;
 await wait(100);
 console.log("end");
};

const it = gen();
console.log(await it.next());
console.log(await it.next());
console.log(await it.next());

// start
// { value: 1, done: false }
// next
// { value: 2, done: false }
// end
// { value: undefined, done: true }

See Generator function.

await keyword

Usable in async functions, it stops the execution until the argument Promise
becomes fulfilled. It then returns the value or throws an exception. See Async
function.

Callback

A function passed as an argument that is called with the return value. It allows
asynchronous results, as the callback can be invoked later.

For example, the setTimeout function needs a callback that it calls when the
time is up:

setTimeout(() => {
 // 1 second later
}, 1000);

Glossary

129 / 138

See Continuation-passing style.

Collection processing

A series of functions that work on a collection of elements (usually, an array),
such as transforming (map), filtering (filter), and reducing to a value
(reduce).

Continuation-passing style

A programming construct that uses callback functions (continuations) for
function results instead of returning them directly. This allows asynchronous
results as these callbacks can be invoked later.

// direct style
const directFn = () => {
 return "result";
};

// CPS
const cpsFn = (callback) => {
 callback("result");
};

See Callback.

Error propagation

When there is an error, it moves up in context until there is a piece of code that
can handle it.

For example, an unhandled exception gets thrown to the caller:

Glossary

130 / 138

const fn = () => {
 // the error is thrown here
 throw new Error("error");
}

try {
 fn();
}catch(e) {
 // and handled here
}

With Promises, errors propagate to the next handlers:

getUser() // returns a Promise
 .then(() => {
 // the error is thrown here
 throw new Error("error");
 })
 .catch((e) => {
 // and handled here
 });

Error-first callbacks

A callback style where the first argument is an error object. The receiving end
needs to check if this value is non-null (or non-undefined).

const fn = (callback) => {
 try {
 const result = "result";
 // error is null
 callback(null, result);
 }catch(e) {
 // signal error
 callback(e);
 }
}

fn((err, result) => {
 if (err) {
 // handle error
 }else {
 // handle result
 }
});

Glossary

131 / 138

See Node-style callbacks.

Fulfilled Promise

A state of a Promise that is either resolved or rejected. See Promise states.

Generator function

A function that returns an iterable structure. It can be frozen with a yield
statement and only resumes if more elements are requested.

const gen = function*() {
 console.log("start");
 yield 1;
 console.log("next");
 yield 2;
 console.log("end");
}

const it = gen();
console.log(it.next());
console.log(it.next());
console.log(it.next());

// start
// { value: 1, done: false }
// next
// { value: 2, done: false }
// end
// { value: undefined, done: true }

Node-style callbacks

A callback style where:

The callback function is the last argument
It is called with an error object first, then a result ((error, result))
It returns only one result

Glossary

132 / 138

const getUser = (id, cb) => {
 const user = /* get user */;
 if (user) {
 // success
 cb(null, user);
 }else {
 // error
 cb(new Error("Failed to get user"));
 }
};

Pagination

When a method (usually an API) does not return all results for a request and it
requires multiple calls to get all items.

Pending Promise

A Promise state where the asynchronous result is not yet available. See Promise
states.

postMessage

An API to communicate cross-context, such as with IFrames and Web Workers.
It is an event-based communication where one end listens for message events
and the other uses the postMessage function to send messages.

Promise

A value that holds an asynchronous result. You can use the then callback to
handle when the Promise becomes fulfilled, or use await in an async function.

Promise chain

A series of then() callbacks, each getting the previous state of the Promise
and returns the next one.

Glossary

133 / 138

getUser() // returns a Promise
 .then(async function getPermissionsForUser(user) {
 const permissions = await // ...;
 return permissions;
 })
 .then(async function checkPermission(permissions) {
 const allowed = await // ...;
 return allowed;
 })
 .then((allowed) => {
 // handle allowed or not
 });

Promise states

A Promise can be in one of multiple states:

Pending: The value is not yet available
Resolved: The value is available
Rejected: There was an error

When the Promise is either resolved or rejected then it's fulfilled or settled.

Fulfilled

Resolved

value

Rejected

er ror

Pending

Promise states

Promise.all

Glossary

134 / 138

A utility function that gets multiple Promises and resolves when all of them are
resolved and returns an array with the results. It rejects if any of the input
Promises rejects.

console.log(
 await Promise.all([
 Promise.resolve("a"),
 Promise.resolve("b"),
])
);

// ["a", "b"]

Promise.allSettled

A utility function that gets multiple Promises and resolves when all of them are
settled. It resolves even if some input Promises reject.

console.log(
 await Promise.allSettled([
 Promise.resolve("a"),
 Promise.reject("b"),
])
);

// [
// { status: 'fulfilled', value: 'a' },
// { status: 'rejected', reason: 'b' }
//]

Promise.catch

A utility function that attaches a rejection handler to a Promise. It's equivalent to
then(undefined, handler) .

Promise.reject(new Error("error"))
 .catch((e) => {
 console.log(e.message); // error
 });

Promise.finally

Glossary

135 / 138

A utility function that is called when the Promise settles, either if it's resolved or
rejected. It brings the try..finally construct to Promises.

getUser() // returns a Promise
 .finally(() => {
 // called both even if the Promise is rejected
 console.log("finished");
 });
// does not change the result value

Promise.race

A utility function that gets multiple Promises and resolves (or rejects) when the
first one settles.

const wait = (ms) => new Promise((res) => setTimeout(res, ms));

const fn = async (ms, result) => {
 await wait(ms);

 return result;
}
console.log(
 await Promise.race([
 fn(100, "a"),
 fn(50, "b"),
])
);
// b

Promise.reject

A utility function that rejects with the value provided.

Promise.reject(new Error("error"))
 .catch((v) => {
 console.log(v.message); // error
 })

Promise.resolve

A utility function that returns a Promise that is resolved with the value provided.
Useful to start a Promise chain.

Glossary

136 / 138

Promise.resolve("value")
 .then((v) => {
 console.log(v); // value
 })

Promise.then

A function of a Promise object that attaches a function that will be called when
the Promise is settled. See Promise chain.

Promisification

The process of converting callbacks to Promises.

Rejected Promise

A Promise state that indicates an error. See Promise states.

Resolved Promise

A Promise state where the asynchronous value is available. See Promise states.

Settled Promise

An alternative name for the fulfilled state. See Promise states.

Synchronous function

A function that returns a value when it's run. See Continuation-passing style.

About the author

137 / 138

About the author

Tamás Sallai

Hey, I'm Tamás! I'm a software developer
specializing in web technologies and cloud
computing. I'm especially interested in exploring
edge cases and "what ifs" in order to write
dependable software.

I co-author the https://advancedweb.hu blog
where I've published more than 200 articles in
various technology topics. You can always find

what I'm currently working on there.

https://advancedweb.hu/

Asynchronous Programming Patterns in Javascript

138 / 138

Copyright © 2021 by Tamás Sallai

All rights reserved. No part of this book may be reproduced or used in any
manner without written permission of the copyright owner except for the use of
quotations in a book review.

The information is provided "as-is", without warranty of any kind, express or
implied. In no event shall the the authors or copyright holders be liable for any
claim, damages or other liability.

	Introduction
	Structure

	Getting started with async/await
	Async functions
	How to use the Promise
	The benefits of Promises
	The await keyword
	Async function examples
	Chaining Promises

	Promises
	Callbacks
	The Promise constructor
	Promise states
	Result value

	Error handling
	Error callback in the Promise constructor
	Rejecting a Promise
	Detecting errors

	Error propagation in Promise chains

	Parallel and sequential processing
	Parallel processing with Promise.all
	Results
	Errors in Promise.all

	Early init

	Returning multiple values
	Convert between Promises and callbacks
	Callback styles
	Node-style callbacks

	Convert callbacks to Promises
	Promise constructor
	Promisified functions

	util.promisify
	Usual problems
	Handle this
	function.length

	Convert Promises to callbacks

	Promise timeouts
	Promise.race
	Timeout implementation
	Clear timeout
	Error object

	The async serializer pattern
	Why await is not a solution
	A general-purpose solution

	The async disposer pattern
	Disposer pattern

	Retrying async operations
	Backoff algorithm
	Exponential backoff

	Javascript implementation
	Rejection-based retrying
	Progress-based retrying

	Paginating with async generators
	Pagination
	A solution with async generators
	Breaking it down

	Making it generic

	Using async functions with postMessage
	Request-response communication
	Response identification
	MessageChannel

	Error handling

	Using Promises

	Collection processing with async functions
	Async for iteration
	Async functions with reduce
	Asynchronous reduce
	Timing
	await memo last
	await memo first
	When parallelism matters

	Async functions with map
	Concurrency
	Batch processing
	Parallel processing
	Sequential processing

	Async functions with forEach
	Controlling the timing
	Waiting for finish
	Sequential processing

	Async functions with filter
	Async filter with map
	Concurrency

	Async filter with reduce
	Sequential processing

	Async functions with some/every
	Using an async filter
	Short-circuiting

	Async some
	Async every
	Parallel processing

	Common errors
	Not propagating errors
	Missing await in try..catch
	Not checking the return value
	Not closing resources in case of a rejection
	Using both the rejection and resolve handlers in one then function
	Not waiting for an async forEach

	Glossary
	About the author

