
Arnaud Lauret

ISBN-13: 978-1-61729-510-2
ISBN-10: 1-61729-510-8

A
n API frees developers to integrate with an application 
without knowing its code-level details. Whether you’re 
using established standards like REST and OpenAPI 

or more recent approaches like GraphQL or gRPC, master-
ing API design is a superskill. It will make your web-facing 
services easier to consume and your clients—internal and 
external—happier.

Drawing on author Arnaud Lauret’s many years of API design 
experience, this book teaches you how to gather requirements, 
how to balance business and technical goals, and how to adopt 
a consumer-fi rst mindset. It teaches effective practices using 
numerous interesting examples. 

What’s Inside
●  Characteristics of a well-designed API
●  User-oriented and real-world APIs
●  Secure APIs by design
●  Evolving, documenting, and reviewing API designs

Written for developers with minimal experience building and 
consuming APIs.

A software architect with extensive experience in the banking 
industry, Arnaud Lauret has spent 10 years using, designing, 
and building APIs. He blogs under the name of API Handy-
man and has created the API Stylebook website.

To download their free eBook in PDF, ePub, and Kindle formats, 
owners of this book should visit 

www.manning.com/books/the-design-of-web-apis

$44.99 / Can $59.99  [INCLUDING eBOOK]

The Design of Web APIs

WEB DEVELOPMENT/API
Lauret

M A N N I N G

The Design of W
eb APIs

MANN I N G

“Assembles the fundamental 
building blocks of API design 
in an easy-to-access way, and 
walks you through the vast 
landscape in a friendly and 

comfortable manner.” 
—From the Foreword by Kin Lane

“Answers nagging and 
complicated questions with 

a simple philosophy, but 
never tries to hide anything 

from you. A fantastic 
  introduction to the fi eld.”—Bridger Howell, SoFi.com

“An excellent guidebook 
for establishing a path to 

RESTful APIs.”—Shawn Smith
Penn State University

“Combines real-world 
examples with diffi cult 

 abstract ideas.”—Shayn Cornwell
XeroOne Systems

M A N N I N G

See first page

Arnaud Lauret
Foreword by Kin Lane



Save 35% at manning.com
Use the code humble35 at checkout to save on your 
first purchase.

Early access
Don’t wait to start learning! In MEAP, the Manning Early Access 
Program, you read books while they’re being written.

Access anywhere with liveBook
The Manning liveBook platform provides instant browser-based 
access to our content.

Beyond books
Cutting edge liveProjects, liveAudio, and liveVideo courses give 
you new ways to learn. Only available at manning.com

Impeccable quality
We believe in excellence. Our customers tell us we produce 
the highest quality content you can buy.

Exclusive eBooks
Manning eBooks are only available from manning.com. 
You won’t find them anywhere else.

Email

shop at manning.com

https://bit.ly/3h13ZcH
https://bit.ly/3h13ZcH
https://bit.ly/2J2R9OK
https://bit.ly/37r08lZ
https://www.linkedin.com/company/manning-publications-co/
https://www.facebook.com/ManningBooks?ref=nf
https://www.instagram.com/manning_publications/
https://twitter.com/manningbooks
https://www.youtube.com/channel/UCDia_lkNYKLJVLRLQl_-pFw
https://www.twitch.tv/manningpublications
https://bit.ly/2Wmabm6
https://bit.ly/37r08lZ
https://bit.ly/37r08lZ


API design topics inside the book

Topic Page number Section

What is a Web API? 4 1.1.1

What is a private or public API? 6 1.1.2

What is developer experience (DX)? 9 1.2.1

What is an implementation? 21 2.2.1

What is a REST API? 45 3.1.1

What is the HTTP protocol? 47 3.1.2

What is the REST architectural style? 72 3.5.1

79 4.1.1

What is JSON Schema? 91 4.3

What is API security? 185 8.1

What is API versioning? 229 9.2

What is a breaking change? 213 9

What are common web API network concerns? 247 10.1

What are the different types of APIs? 277, 299 11.1, 11.3

What are the different types of API documentation? 306 12

What do API designers do on API projects? 335 13.1

How to identify functional API goals 24, 41, 176, 207, 343 2.3, 2.4.5, 7.2.2, 8.4.2, 13.3.1

How to design data 62, 112, 139, 164, 175, 
203, 240

3.3.1, 5.1, 6.1.1, 7.1.1, 7.2.1, 8.4.1, 9.3.1

How to design goal parameters 66, 119, 141, 203, 211 3.3.3, 5.2.1, 6.1.2, 8.4.1, 8.4.4

How to design goal success responses 65, 128, 141, 156, 157, 
167, 203, 211

3.3.2, 5.2.5, 6.1.2, 6.3.1, 6.3.2, 7.1.2, 
8.4.1, 10.3

How to design goal error responses 122, 126, 167, 209, 243 5.2.3, 5.2.4, 7.1.2, 8.4.3, 9.3.2

How to optimize goals 129, 147, 175, 244, 264 5.3, 6.2, 7.2.1, 9.3.3, 10.3.3

34, 277, 292 2.4, 11.1, 11.2

How to modify an existing API 215 9.1

How to choose resource paths 54, 139, 201, 211 3.2.3, 6.1.1, 8.3.2, 8.4.4

How to choose HTTP methods to represent actions on 
resources

56, 160 3.2.4, 6.3.3

How to choose HTTP status codes 122, 167, 209 5.2.3, 7.1.2, 8.4.3

How to optimize network communication with HTTP 254 10.2

How to describe API goals with the OpenAPI 85, 168, 313 4.2, 7.1.3, 12.1.2

How to describe data with JSON Schema and OAS 94, 310 4.3.2, 12.1.1

How to reuse components in an OAS document 102 4.4

How to describe API security with OAS 198, 320 8.2.4, 12.1.3



MANN I NG
Shelter ISland

The Design of Web APIs

ARNAUD LAURET

Foreword by Kin Lane



For online information and ordering of this and other Manning books, please visit www.manning.com. 
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form 
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the 
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed 
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a 
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books 
we publish printed on acid- free paper, and we exert our best efforts to that end. Recognizing also our 
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at 
least 15 percent recycled and processed without the use of elemental chlorine.

∞

 Manning Publications Co. 
20 Baldwin Road
PO Box 761 
Shelter Island, NY 11964

ISBN 9781617295102
Printed in the United States of America

 Development editor: Jenny Stout
 Technical development editor: Michael Lund
 Review editor: Ivan Martinović
 Production editor: Deirdre Hiam
 Copy editor: Frances Buran
 Proofreader: Melody Dolab
 Technical proofreader: Paul Grebenc
 Typesetter: Happenstance Type-O-Rama
 Cover designer: Marija Tudor



iii

brief contents

Part 1 Fundamentals of API design ....................................... 1
1 ■	 What is API design? 3
2 ■	 Designing an API for its users 17
3 ■	 Designing a programming interface 43
4 ■	 Describing an API with an API description format 77

Part 2 Usable API design .....................................................109
5 ■	 Designing a straightforward API 111
6 ■	 Designing a predictable API 137
7 ■	 Designing a concise and well-organized API 162

Part 3 Contextual API design ............................................181
8 ■	 Designing a secure API 183
9 ■	 Evolving an API design 213

10 ■	 Designing a network-efficient API 246
11 ■	 Designing an API in context 275
12 ■	 Documenting an API 306
13 ■	 Growing APIs 334





v

contents
foreword xi
preface xiii
acknowledgments xv
about this book xvii
about the author xxi
about the cover illustration xxii

Part 1 Fundamentals of API design ........................1

 1 What is API design? 3
 1.1 What is an API? 4

An API is a web interface for software 4 ■ APIs turn software into 
LEGO® bricks 6

 1.2 Why API design matters 9
A public or private API is an interface for other developers 9 ■ An 
API is made to hide the implementation 10 ■ The terrible 
consequences of poorly designed APIs 11

 1.3 The elements of API design 14
Learning the principles beyond programming interface 
design 14 ■ Exploring all facets of API design 15



vi contentsvi

 2 Designing an API for its users 17
 2.1 The right perspective for designing everyday user 

interfaces 18
Focusing on how things work leads to complicated 
interfaces 18 ■ Focusing on what users can do leads to simple 
interfaces 20

 2.2 Designing software’s interfaces 21
Viewing an API as software’s control panel 21 ■ Focusing on the 
consumer’s perspective to create simple APIs 22

 2.3 Identifying an API’s goals 24
Identifying the whats and the hows 25 ■ Identifying inputs and 
outputs 27 ■ Identifying missing goals 28 ■ Identifying all 
users 31 ■ Using the API goals canvas 32

 2.4 Avoiding the provider’s perspective when 
designing APIs 34
Avoiding data influences 35 ■ Avoiding code and 
business logic influences 36 ■ Avoiding software 
architecture influences 38 ■ Avoiding human organization 
influences 40 ■ Detecting the provider’s perspective in the API 
goals canvas 41

 3 Designing a programming interface 43
 3.1 Introducing REST APIs 45

Analyzing a REST API call 45 ■ Basic principles of 
HTTP 47 ■ Basic principles of REST APIs 48

 3.2 Transposing API goals into a REST API 49
Identifying resources and their relationships with the API goals 
canvas 49 ■ Identifying actions and their parameters and returns 
with the API goals canvas 52 ■ Representing resources with 
paths 54 ■ Representing actions with HTTP 56 ■ REST API 
and HTTP cheat sheet 60

 3.3 Designing the API’s data 62
Designing concepts 62 ■ Designing responses from 
concepts 65 ■ Designing parameters from concepts or 
responses 66 ■ Checking parameter data sources 67 ■ Designing 
other parameters 68

 3.4 Striking a balance when facing design challenges 69
REST trade-off examples 69 ■ Balancing user-friendliness and 
compliance 71



 viicontents  vii

 3.5 Understanding why REST matters for the design 
of any API 71
Introducing the REST architectural style 72 ■ The impact of REST 
constraints on API design 74

 4 Describing an API with an API description format 77
 4.1 What is an API description format? 78

Introducing the OpenAPI Specification (OAS) 79 ■ Why use an 
API description format? 81 ■ When to use an API description 
format 84

 4.2 Describing API resources and actions with OAS 85
Creating an OAS document 85 ■ Describing a 
resource 86 ■ Describing operations on a resource 87

 4.3 Describing API data with OpenAPI and JSON Schema 91
Describing query parameters 92 ■ Describing data with JSON 
Schema 94 ■ Describing responses 97 ■ Describing body 
parameters 100

 4.4 Describing an API efficiently with OAS 102
Reusing components 102 ■ Describing path parameters 105

Part 2 Usable API design ..................................... 109

 5 Designing a straightforward API 111
 5.1 Designing straightforward representations 112

Choosing crystal-clear names 113 ■ Choosing easy-to-use data 
types and formats 115 ■ Choosing ready-to-use data 116

 5.2 Designing straightforward interactions 118
Requesting straightforward inputs 119 ■ Identifying 
all possible error feedbacks 121 ■ Returning informative 
error feedback 122 ■ Returning exhaustive error 
feedback 126 ■ Returning informative success feedback 128

 5.3 Designing straightforward flows 129
Building a straightforward goal chain 131 ■ Preventing 
errors 132 ■ Aggregating goals 134 ■ Designing stateless 
flows 135



viii contentsviii

 6 Designing a predictable API 137
 6.1 Being consistent 138

Designing consistent data 139 ■ Designing consistent 
goals 141 ■ The four levels of consistency 142 ■ Copying others: 
Following common practices and meeting standards 143 ■ Being 
consistent is hard and must be done wisely 146

 6.2 Being adaptable 147
Providing and accepting different formats 147 
Internationalizing and localizing 151 ■ Filtering, paginating, 
and sorting 153

 6.3 Being discoverable 155
Providing metadata 156 ■ Creating hypermedia APIs 157 
Taking advantage of the HTTP protocol 160

 7 Designing a concise and well-organized API 162
 7.1 Organizing an API 163

Organizing data 164 ■ Organizing feedback 167 ■ Organizing 
goals 168

 7.2 Sizing an API 174
Choosing data granularity 175 ■ Choosing goal 
granularity 176 ■ Choosing API granularity 178

Part 3 Contextual API design ............................. 181

 8 Designing a secure API 183
 8.1 An overview of API security 185

Registering a consumer 185 ■ Getting credentials to consume the 
API 186 ■ Making an API call 188 ■ Envisioning API design 
from the perspective of security 189

 8.2 Partitioning an API to facilitate access control 191
Defining flexible but complex fine-grained scopes 192 ■ Defining 
simple but less flexible coarse-grained scopes 195 ■ Choosing 
scope strategies 197 ■ Defining scopes with the API description 
format 198

 8.3 Designing with access control in mind 200
Knowing what data is needed to control access 200 ■ Adapting the 
design when necessary 201



 ixcontents  ix

 8.4 Handling sensitive material 203
Handling sensitive data 203 ■ Handling sensitive 
goals 207 ■ Designing secure error feedback 209 ■ Identifying 
architecture and protocol issues 211

 9 Evolving an API design 213
 9.1 Designing API evolutions 215

Avoiding breaking changes in output data 215 ■ Avoiding 
breaking changes to input data and parameters 220 ■ Avoiding 
breaking changes in success and error feedback 223 ■ Avoiding 
breaking changes to goals and flows 225 ■ Avoiding security 
breaches and breaking changes 226 ■ Being aware of the invisible 
interface contract 228 ■ Introducing a breaking change is not 
always a problem 229

 9.2 Versioning an API 229
Contrasting API and implementation versioning 230 ■ Choosing 
an API versioning representation from the consumer’s 
perspective 232 ■ Choosing API versioning granularity 234 
Understanding the impact of API versioning beyond design 238

 9.3 Designing APIs with extensibility in mind 239
Designing extensible data 240 ■ Designing extensible 
interactions 243 ■ Designing extensible flows 244 ■ Designing 
extensible APIs 245

 10 Designing a network-efficient API 246
 10.1 Overview of network communication concerns 247

Setting the scene 248 ■ Analyzing the problems 250

 10.2 Ensuring network communication efficiency at the 
protocol level 254
Activating compression and persistent connections 254 ■ Enabling 
caching and conditional requests 255 ■ Choosing cache 
policies 258

 10.3 Ensuring network communication efficiency at the design 
level 259
Enabling filtering 260 ■ Choosing relevant data for list 
representations 262 ■ Aggregating data 264 ■ Proposing 
different representations 266 ■ Enabling expansion 268 ■  
Enabling querying 269 ■ Providing more relevant data and 
goals 271 ■ Creating different API layers 273



x contentsx

 11 Designing an API in context 275
 11.1 Adapting communication to the goals and nature of the 

data 277
Managing long processes 277 ■ Notifying consumers of 
events 279 ■ Streaming event flows 281 ■ Processing multiple 
elements 286

 11.2 Observing the full context 292
Being aware of consumers' existing practices and limitations 292 
Carefully considering the provider’s limitations 296

 11.3 Choosing an API style according to the context 299
Contrasting resource-, data-, and function-based APIs 300 
Thinking beyond request/response- and HTTP-based APIs 305

 12 Documenting an API 306
 12.1 Creating reference documentation 308

Documenting data models 310 ■ Documenting goals 313 
Documenting security 320 ■ Providing an overview of the 
API 321 ■ Generating documentation from the implementation: 
pros and cons 322

 12.2 Creating a user guide 323
Documenting use cases 324 ■ Documenting security 326 
Providing an overview of common behaviors and principles 327 
Thinking beyond static documentation 327

 12.3 Providing adequate information to implementers 327

 12.4 Documenting evolutions and retirement 330

 13 Growing APIs 334
 13.1 The API lifecycle 335

 13.2 Building API design guidelines 336
What to put in API design guidelines 337 ■ Continuously 
building guidelines 340

 13.3 Reviewing APIs 342
Challenging and analyzing needs 343 ■ Linting the 
design 346 ■ Reviewing the design from the provider’s 
perspective 348 ■ Reviewing the design from the consumer’s 
perspective 350 ■ Verifying the implementation 350

 13.4 Communicating and sharing 353

   index 355



xi

foreword
For over a decade, API design has always meant REST to most developers. This real-
ity has been constructed through regular waves of books and API-centered blogs that 
push RESTful design belief systems, leaving the discipline very focused and often times 
dogmatic. The Design of Web APIs by Arnaud Lauret is the beginning wave of the next 
generation of API design guidance, which will help us transcend this reality that has 
held us back for over a decade. His pragmatic approach to API design is still rooted in 
REST, but he has worked hard to bring real world API design knowledge to the table—
minus the usual dogma.

Lauret takes us through the fundamentals of API design that you can easily find in 
other industry books, but he assembles the fundamental building blocks of this disci-
pline in a very easy-to-access way and walks you through the vast landscape in a friendly 
and comfortable manner. I have known Arnaud personally for several years and consider 
him among a handful of top tier API talent that don’t just understand how you do APIs 
technically, but also understand the human-centered challenges of delivering APIs and 
how APIs can positively or negatively impact your API experience among developers. 
Arnaud focuses his knowledge on not just the act of designing an API, but also the act of 
providing a well-designed API for your intended audience in a thoughtful way.

I have personally watched Arnaud sit in the front row of hundreds of API talks 
around the globe, absorbing the best-of-breed API wisdom. One just needs to visit his 
Twitter timeline or to follow the hashtag for a popular API event to understand what 
I am talking about. He has a unique approach to listening to API industry speakers, 
processing the API information they are sharing, while also live-tweeting the most 
important points of the talk as a steady stream of API insights. It makes me happy to see 
Arnaud take this accumulated knowledge and put it down in book form, continuing his 



xii forewordxii

approach to not just sharpening his own skills, but also making sure he is sharing what 
he knows and his unique approach to API design with the world. Arnaud is a rare breed 
of API analyst that listens, cares, understands, and distills API knowledge down into 
usable building blocks you can actually put to work in your business world.

After the API design world began to pick up momentum after 2012 and the OpenAPI 
(FKA Swagger) began to grow in dominance, Arnaud was one of just a handful of API 
experts who worked hard to understand the potential of this specification, while also 
developing innovative tooling and visualizations around the open source API specifi-
cation standard. Doing the hard work to understand not just the specification, but how 
it can embody, represent, and even govern many of the API design principles you need 
to be successful in the space. It takes a lot of work to reach the point where you realize 
OpenAPI isn't just about documentation, a journey that most API developers end up 
not taking. Arnaud understands that OpenAPI isn't just about API documentation, but 
is the fundamental underpinning of API design for any platform—something that will 
help define every other stop along your API lifecycle. The Design of Web APIs is the first 
API design book I have seen that merges API design and OpenAPI together in such a 
thoughtful and pragmatic way, which is sure to help many developers along in their API 
journey.

Spend the time to understand what Arnaud is sharing with you here. This isn't a 
skimming book. This isn't a one-read book. This is a handbook. This is your guide to 
taking the design of your APIs to the next level. It brings that loose bucket of API con-
cepts you are familiar with and provides you with the blueprints to build the Millen-
nium Falcon or even the Death Star (if you so choose) from your bucket of API Lego 
building blocks. I recommend reading this book, then putting it down for a month. 
Then get to work building an API and moving it from design to actually being deployed 
and publicly available—sharing it with a handful of developers. Then while you wait for 
feedback, sit down and read the book again. You will begin to understand the depth of 
what you hold in your hands and the value of the knowledge Arnaud is sharing with you. 
Then repeat this process until you are satisfied with your ability to design not a perfect 
API, but exactly the API you need to reach the consumers you are looking to make an 
impact upon.

—Kin Lane, The API Evangelist



xiii

preface
For most of my career, I have worked on connecting software bricks together using vari-
ous software interface technologies, from simple files and databases to remote software 
interfaces based on RPC, Corba, Java RMI, SOAP web services, and web APIs. Through-
out these years, I have been fortunate to work on motley distributed systems, mixing 
very old mainframe technology with state-of-the art cloud systems and everything in 
between. I also have been fortunate to work on both sides of software interfaces in 
various contexts. I worked on IVR (Interactive Voice Response), websites, and mobile 
applications built on top of huge service-oriented architecture systems. I’ve built both 
private and public web services and web APIs for frontend and backend applications. 
During all these years, I complained a lot about the terrible software interfaces, and I 
fell into many traps and created terrible software interfaces too.

As years passed, and technology evolved from RPC to SOAP web services and web 
APIs, connecting software together became more and more simple from a technical 
point of view. But whatever the technology used, I have learned that a software interface 
is far more than technical plumbing or a by-product of a software project.

After attending my first API conferences in 2014, “API Days” in Paris, I realized that 
many other people were struggling with APIs just like me. That is why in 2015 I started 
my API Handyman blog and also started to participate in API conferences. I wanted to 
share my experiences with others and help them to avoid falling in the same traps I had 
fallen into. Writing and speaking about web APIs not only allowed me to help others, it 
also allowed me to learn even more about them.

After two years of blogging and speaking at conferences, the idea of writing a book 
came. I wanted to write a book for my old self who fell into so many traps. As luck 
would have it, Manning Publications was looking for someone willing to write a book 



xiv prefacexiv

about the OpenAPI Specification, an API description format (we’ll talk about it in 
chapter 4, by the way). I took a chance and proposed my Design of Everyday APIs book, 
and it was accepted. This title was inspired by Don Norman’s Design of Everyday Things 
(MIT Press, 1998), which is a book about design (you definitely should read it). My 
idea was later replaced by the more straightforward The Design of Web APIs. I have to 
admit that I am more comfortable with this title; I don’t feel I’m borrowing from the 
fame of Don Norman anymore.

In the beginning, the book’s content included the design of everyday things + API 
+ REST vs. gRPC vs. GraphQL. It would have been quite indigestible, but I wanted to 
make a book whose principles could be used for any type of API. Month after month, 
the content was refined and enhanced to what is now The Design of Web APIs. I chose to 
focus on REST APIs and use those as a support example for you to learn web/remote 
API design principles, which would go beyond merely designing APIs. I think my old 
self would have been quite happy to read this book; I hope you like it too!



xv

acknowledgments
Two years. It took me two years to finish this book. That’s a very long time, but that is 
what helped me to make it a great book that I hope you will like. I was not alone while 
working on it. There are a few people I’d like to thank for helping me during this jour-
ney, and I also want to thank the people who made this journey possible.

First and foremost, I want to thank my wife, Cinzia, and my daughter, Elisabetta. 
Thank you so much for your support and your patience while I was spending my eve-
nings and weekends on “the book.” I love you so much.

Next, I would like to thank everyone at Manning Publications. You can’t imagine 
how many people work on a book when you haven’t written one yet, and every one of 
one them has done a wonderful job. I would like to especially thank my editor, Mike 
Stephens, who believed in the book. Very special thanks also to my two development 
editors, Kevin Harreld and Jennifer Stout, and my technical development editor, 
Michael Lund. You really helped me a lot! This book wouldn’t have been the same 
without the three of you. And very special merci beaucoup to my ESL copyeditor, Rachel 
Head, who really, really, really has done an awesome job fixing my frenglish. Thank 
you to my production editor Deirdre Hiam, my copyeditor Frances Buran, proofreader 
Melody Dolab, and technical proofreader Paul Grebenc. I would also like to thank 
all the reviewers: Andrew Gwozdziewycz, Andy Kirsch, Bridger Howell, Edwin Kwok, 
Enrico Mazzarella, Mohammad Ali Bazzi, Narayanan Jayaratchagan, Peter Paul Sel-
lars, Raveesh Sharma, Sanjeev Kumar Jaiswal, Sergio Pacheco, Shaun Hickson, Shawn 
Smith, Shayn Cornwell, Vincent Theron, and William Rudenmalm.

A special thanks to Ivan Goncharov, who on March 15, 2017, forwarded me an email 
from Manning Publications, looking for someone to write a book that later became The 
Design of Web APIs. As luck would have it, I’m glad we met at REST Fest 2015.



xvi acknowledgmentsxvi

Thank you to all the people who took time to read the manuscript at various stages 
and provided invaluable encouragement and feedback. Special thanks to Isabelle Reusa 
and Mehdi Medjaoui for field-testing the book’s content and providing their feedback. 
And thanks to all the API practitioners I have met and worked with over the years; I have 
put everything I have learned from you in this book.

And finally, a very big thanks to Mike Amundsen, Kin Lane, and Mehdi Medjaoui 
(again) for their encouragement and help when I started the API Handyman blog in 
2015. This book wouldn’t have existed without you.



xvii

about this book
The Design of Web APIs was written to help you design web APIs that do more than just cover 
expressed needs. This book will help you design outstanding web APIs that are usable 
by anyone in many different contexts, and those that are also secure, durable, evolvable, 
efficient, and implementable. It uncovers all aspects of web API design and gives a full 
overview of the web APIs ecosystem and how API designers can contribute to it.

Who should read this book
The Design of Web APIs is, obviously, for anyone who needs to design web APIs. They can 
be developers working on a backend for mobile applications or websites or needing 
to connect microservices together, or they can be product owners working on an API 
as a product, and everything in between. Actually, this book can be read by all people 
working on a project involving the creation of an API.

How this book is organized: a roadmap
This book has three parts that cover 13 chapters.

Part 1 teaches the most fundamental concepts and skills needed to design APIs.
Chapter 1 discusses what an API is, why its design matters, and what the elements of 

API design are.
Chapter 2 explains how to accurately determine an API’s purpose— its real goals— by 

focusing on the point of view of API users and the software consuming the API, and by 
avoiding the point of view of the organization and software exposing the API.

Chapter 3 introduces the HTTP protocol, REST APIs, and the REST architectural 
style. It teaches how to design a web programming interface (comprising resources, 
actions on resources, data, parameters, and responses) based on the identified goals.



xviii about this bookxviii

Chapter 4 introduces the OpenAPI Specification and demonstrates how to describe 
an API in a structured and standard way using such an API description format.

Part 2 focuses on how to design don’t make me think APIs that will be easy to under-
stand and easy to use.

Chapter 5 explains how to design straightforward data representations, error and 
success feedback, and flows of API calls that people will understand instantly and use 
easily.

Chapter 6 teaches how to design even more easy-to-understand and easy-to-use APIs, 
whose users (humans or machines) will be able to guess how APIs work, by making 
them consistent, adaptable, and discoverable.

Chapter 7 shows how to organize and size all aspects of APIs in order to keep them 
easy to understand and easy to use.

Part 3 shows that API designers must take into account the whole context surround-
ing an API and the whole context surrounding the API design process itself.

Chapter 8 describes API security and how to design secure APIs.
Chapter 9 teaches how to modify an API without unduly impacting its users, and 

when and how to version it. It also demonstrates how to design APIs that will be easy to 
evolve from the ground up.

Chapter 10 focuses on how to design network-efficient web APIs.
Chapter 11 exposes the whole context that API designers must take into account 

when designing APIs. It comprises adapting communication mechanisms (request/
responses, asynchronous, events, and batch or bulk processing), evaluating and 
adapting to consumers' or providers' limitations, and choosing an adequate API style 
(resource-, function- or data-based).

Chapter 12 explains how API designers participate in the creation of different types 
of API documentation, taking advantage of an API description format like the OpenAPI 
Specification.

Chapter 13 shows how API designers can participate in the growing of many APIs by 
participating along the whole API lifecycle and across many APIs. It especially focuses 
on API design guidelines and API reviews.

This book should be read from cover to cover, each chapter in order. Each new chap-
ter expands what has been learned in previous ones. That being said, once you have fin-
ished chapters 1, 2, and 3, you can jump to any chapter covering a topic that you need 
to investigate urgently.

About the code 
This book contains many examples of source code both in numbered listings and in 
line with normal text. In both cases, source code is formatted in a fixed-width font 
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new 
feature adds to an existing line of code.



 xixabout this book  xix

In many cases, the original source code has been reformatted; we’ve added line 
breaks and reworked indentation to accommodate the available page space in the 
book. In rare cases, even this was not enough, and listings include line-continuation 
markers (➥). Additionally, comments in the source code have often been removed 
from the listings when the code is described in the text. Code annotations accompany 
many of the listings, highlighting important concepts.

Source code for the examples in this book is available for download from the pub-
lisher’s website at https://www.manning.com/books/the-design-of-web-apis.

liveBook discussion forum
Purchase of The Design of Web APIs includes free access to a private web forum run by 
Manning Publications where you can make comments about the book, ask technical 
questions, and receive help from the author and from other users. To access the forum, 
go to https://livebook.manning.com/book/the-design-of-everyday-apis/welcome/v-11/
discussion. You can also learn more about Manning's forums and the rules of conduct at 
https://livebook.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place. It 
is not a commitment to any specific amount of participation on the part of the author, 
whose contribution to the forum remains voluntary (and unpaid). We suggest you try 
asking the author some challenging questions lest his interest stray! The forum and the 
archives of previous discussions will be accessible from the publisher’s website as long as 
the book is in print.

Other online resources
There are so many online resources about APIs, but here are my two favorite ones:

¡	The API Developer Weekly Newsletter (https://apideveloperweekly.com/) is the best 
way to know what happens in the API world and to discover new sources of infor-
mation about APIs.

¡	The Web API Events website (https://webapi.events/) will keep you updated 
about upcoming API conferences.

https://www.manning.com/books/the-design-of-web-apis
https://livebook.manning.com/book/the-design-of-everyday-apis/welcome/v-11/discussion
https://livebook.manning.com/book/the-design-of-everyday-apis/welcome/v-11/discussion
https://livebook.manning.com/#!/discussion
https://apideveloperweekly.com/
https://webapi.events/




xxi

about the author
ARNAUD LAURET is a French software architect with 
17 years of experience. He spent most of these years in 
the finance sector working on interconnecting systems in 
various ways, especially using web services and APIs. He 
runs the API Handyman blog and the API Stylebook web 
site and is a guest lecturer at multiple API conferences 
around the world. He is passionate about human-cen-
tered software design and loves to build and help to 
build systems that will provide a wonderful experience 
for all users, from developers and operations teams to 
end users.



xxii

about the cover illustration
The figure on the cover of The Design of Web APIs is captioned “Girl from Drniš, Dalma-
tia, Croatia.” The illustration is taken from a reproduction of an album of Croatian tra-
ditional costumes from the mid-nineteenth century by Nikola Arsenovic, published by 
the Ethnographic Museum in Split, Croatia, in 2003. The illustrations were obtained 
from a helpful librarian at the Ethnographic Museum in Split, itself situated in the 
Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s 
retirement palace from around AD 304. The book includes finely colored illustrations 
of figures from different regions of Croatia, accompanied by descriptions of the cos-
tumes and of everyday life.

Dress codes and lifestyles have changed over the last 200 years, and the diversity by 
region, so rich at the time, has faded away. It’s now hard to tell apart the inhabitants 
of different continents, let alone of different hamlets or towns separated by only a 
few miles. Perhaps we have traded cultural diversity for a more varied personal life—
certainly for a more varied and fast-paced technological life. Manning celebrates the 
inventiveness and initiative of the computer business with book covers based on the 
rich diversity of regional life of two centuries ago, brought back to life by illustrations 
from old books and collections like this one.



Part 1

Fundamentals of API design

Every journey starts with a first step, and the API design journey is no excep-
tion. API designers need many skills and need to take many topics into account 
when creating APIs, but without a solid foundation, all advanced skills and topics 
are worth nothing. That is what you’ll learn in this first part.

We will first set the scene by explaining what an API is, why it actually must be 
designed, and what learning to design an API actually means. You will discover that 
although these actually are programming interfaces, APIs are more than “techni-
cal plumbing” and that you must learn fundamental principles to design any type 
of API.

Even before thinking about the programming side, you will see that an API 
has to be thought of from its users' perspectives. An API is supposed to let your 
users easily achieve their goals, not the ones of the system exposing the API. Only 
once these goals are known and accurately described can the actual program-
ming interface, such as a REST API, be designed. And like any programming, 
describing a programming interface should be done with an adapted tool like the 
OpenAPI Specification for REST APIs.





3

1What is API design?

This chapter covers
¡	What an API is

¡	Why API design matters

¡	What designing an API means

Web application programming interfaces (APIs) are an essential pillar of our con-
nected world. Software uses these interfaces to communicate— from applications 
on smartphones to deeply hidden backend servers, APIs are absolutely everywhere. 
Whether these are seen as simple technical interfaces or products in their own right, 
whole systems, whatever their size and purpose, rely on them. So do entire compa-
nies and organizations from tech startups and internet giants to non-tech small and 
medium-sized enterprises, big corporations, and government entities.

If APIs are an essential pillar of our connected world, API design is its foundation. 
When building and evolving an API-based system, whether it is visible to anyone or 
deeply hidden, whether it creates a single or many APIs, design must always be a 
major concern. The success or failure of such a system depends directly on the qual-
ity of the design of all its APIs.



4 chapter 1 What is API design?

But what does designing APIs really mean? And what do you have to learn to design 
APIs? To answer these questions, we need to consider what an API is and for whom it’s 
designed, and we also need to realize that designing an API is more than just designing 
a programming interface for applications.

1.1 What is an API?
Billions of people own smartphones and use them to share photos on social networks. 
This wouldn’t be possible without APIs. Sharing photos using a mobile social network-
ing application involves the use of different types of APIs, as shown in figure 1.1.

First, to take a photo, the social networking mobile application uses the smartphone’s 
camera via its API. Then, through its API, it can use some image library embedded in 
the application to invert the photo’s colors. And, eventually, it shares the modified 
photo by sending it to a server application hosted on the social network server using 
a remote API accessible via a network, usually the internet. So, in this scenario, three 
different types of API are involved: respectively, a hardware API, a library, and a remote 
API. This book is about the latter.

APIs, whatever their types, simplify the creation of software, but remote APIs, and 
especially web ones, have revolutionized the way we create software. Nowadays, anyone 
can easily create anything by assembling remote pieces of software. But before we talk 
about the infinite possibilities offered by such APIs, let’s clarify what the term API actu-
ally means in this book.

1.1.1 An API is a web interface for software

In this book, an API is a remote API and, more precisely, a web API —a web interface for 
software. An API, whatever its type, is first and foremost an interface: a point where two 
systems, subjects, organizations, and so forth meet and interact. The concept of an API might 
not be easy to grasp at first, but figure 1.2 makes it more tangible by comparing it to an 
application’s user interface (UI).

Internet Server
application

share (
  message,
  photo
)

Mobile application

Share

Hello!

share(
  "Hello!",

)

Camera API
to take a photo

Remote API
to share the

photo

Smartphone Social network server
1

3

\ (•-•) /

\ (•-•) /\ (•-•) /

Image library API
to invert colors 2

Network

About the arrows in figures
I am a legend
I am a relation

Figure 1.1  Three different types of APIs

Uses API
function to share

a message
and a photo

Mobile
application

Mobile
application‛s UI

Server
application‛s API

User
Uses UI controls
to take a photo,
type a “Hello!”
message, and
share them

Share
Hello!

\ (•-•) / share (
  message,
  photo
)

Both are
interfaces.

Figure 1.2  Comparing an application’s user interface (UI) to an application programming interface (API)



 5What is an API?

As a user of a mobile application, you interact with it by touching your smartphone’s 
screen, which displays the application’s UI. A mobile application’s UI can provide ele-
ments like buttons, text fields, or labels on the screen. These elements let users inter-
act with the application to see or provide information, or to trigger actions such as 
sharing a message and a photo.

Just as we (human beings) use an application’s UI to interact with it, that application 
can use another application through its programming interface. Whereas a UI provides 
input fields, labels, and buttons to provide some feedback that can evolve as you use 
them, an API provides functions that may need input data or that may return output 
data as feedback. These functions allow other applications to interact with the applica-
tion providing the API to retrieve or send information or to trigger actions.

Strictly speaking, an API is only an interface exposed by some software. It’s an abstrac-
tion of the underlying implementation (the underlying code—what actually happens 
inside the software product when the API is used). But note that the term API is often 
used to name the whole software product, including the API and its implementation. 
So APIs are interfaces for software, but the APIs we talk about in this book are more 
than just APIs: they are web APIs, as shown in figure 1.3.

Network

Server
application

share (
  message,
  photo
)

Mobile application

Share
Hello!

Consumer uses or
consumes provider’s API

Provider exposes or
provides API to consumers

\ (•-•) /

Consumer communicates with provider
over a network using HTTP,

the same protocol used by web browsers

https://apihandyman.io

Home API Handyman blog
Sharing is learning

Posts

Figure 1.3  Web APIs are remote APIs that can be used with the HTTP protocol.

But what does designing APIs really mean? And what do you have to learn to design 
APIs? To answer these questions, we need to consider what an API is and for whom it’s 
designed, and we also need to realize that designing an API is more than just designing 
a programming interface for applications.

1.1 What is an API?
Billions of people own smartphones and use them to share photos on social networks. 
This wouldn’t be possible without APIs. Sharing photos using a mobile social network-
ing application involves the use of different types of APIs, as shown in figure 1.1.

First, to take a photo, the social networking mobile application uses the smartphone’s 
camera via its API. Then, through its API, it can use some image library embedded in 
the application to invert the photo’s colors. And, eventually, it shares the modified 
photo by sending it to a server application hosted on the social network server using 
a remote API accessible via a network, usually the internet. So, in this scenario, three 
different types of API are involved: respectively, a hardware API, a library, and a remote 
API. This book is about the latter.

APIs, whatever their types, simplify the creation of software, but remote APIs, and 
especially web ones, have revolutionized the way we create software. Nowadays, anyone 
can easily create anything by assembling remote pieces of software. But before we talk 
about the infinite possibilities offered by such APIs, let’s clarify what the term API actu-
ally means in this book.

1.1.1 An API is a web interface for software

In this book, an API is a remote API and, more precisely, a web API —a web interface for 
software. An API, whatever its type, is first and foremost an interface: a point where two 
systems, subjects, organizations, and so forth meet and interact. The concept of an API might 
not be easy to grasp at first, but figure 1.2 makes it more tangible by comparing it to an 
application’s user interface (UI).

Internet Server
application

share (
  message,
  photo
)

Mobile application

Share

Hello!

share(
  "Hello!",

)

Camera API
to take a photo

Remote API
to share the

photo

Smartphone Social network server
1

3

\ (•-•) /

\ (•-•) /\ (•-•) /

Image library API
to invert colors 2

Network

About the arrows in figures
I am a legend
I am a relation

Figure 1.1  Three different types of APIs

Uses API
function to share

a message
and a photo

Mobile
application

Mobile
application‛s UI

Server
application‛s API

User
Uses UI controls
to take a photo,
type a “Hello!”
message, and
share them

Share
Hello!

\ (•-•) / share (
  message,
  photo
)

Both are
interfaces.

Figure 1.2  Comparing an application’s user interface (UI) to an application programming interface (API)



6 chapter 1 What is API design?

The mobile application running on a smartphone uses or consumes the API exposed 
or provided by the server application (often called a backend application or simply back-
end) that’s hosted on a remote server. The mobile application is therefore called a 
consumer, and the backend is called a provider. These terms also apply respectively to the 
companies and the people creating the applications, or consuming or providing APIs. 
Here that means the developers of the mobile application are consumers and the ones 
developing the backend are providers.

To communicate with its backend, the mobile application usually uses a famous 
network: the internet. The interesting thing here is not the internet itself— such com-
munication can also be done over a local network— but how these two applications com-
municate over the network. When a mobile application sends a photo and message to 
the backend application, it does so using the Hypertext Transfer Protocol (HTTP). If 
you’ve ever opened a web browser on a computer or a smartphone, you have used HTTP 
(indirectly). This is the protocol that is used by any website. When you type a website’s 
address, like http://apihandyman.io or its secured version, https://apihandyman.io, 
into the address bar and press Enter or click a link in a browser, the browser uses HTTP 
to communicate with the remote server hosting the website in order to show you the 
site’s content. Remote APIs, or at least the ones we’re talking about in this book, rely on 
this protocol just like websites; that’s why these are called web APIs.

So, in this book, APIs are web APIs. They are web interfaces for software. But why are 
such APIs so interesting?

1.1.2 APIs turn software into LEGO® bricks

Thousands, even millions, of mobile applications and their backends have been cre-
ated thanks to web APIs, but there’s more to the story. Indeed, web APIs unleash 
creativity and innovation by turning software into reusable bricks that can be easily 
assembled. Let’s go back to our example and see what might happen when sharing a 
photo on a social network.

When a social network backend receives a photo and message, it might store the 
photo on the server’s filesystem and store the message and the photo identifier (to 
retrieve the actual file later) in a database. It could also process the photo using some 
homemade facial recognition algorithm to detect if it contains any friends of yours 
before storing the photo. That’s one possibility— a single application handling every-
thing for another solitary application. Let’s consider something different, as shown in 
figure 1.4.

The backend API could be used by both a social network mobile application and a 
website, and its implementation could be totally different. When the backend receives 
a photo and message to share (whichever application sent it), it could delegate the 
photo’s storage as a service company through its API. It could also delegate the storage 
of the message and photo identifier to an in-house timeline software module through 
its API. How could the facial recognition be handled? Well, that could be delegated to 
some expert in facial recognition offering their services via …  you guessed it …  an API.

Facial
Recognition

Detect

Internet

Social
Network
Timeline

Add

Private
network

Social Network Backend

Share

InternetSocial
Network
Mobile

Application

Photo
Storage

Store

provided by others
for many others

API

APIsPublic

Private provided

Private API

APIs

exposed on the internet and used by multiple consumers of the Social Network company�

Small application brick:
easy to create, connect,

scale and evolve

Take advantage of
others‛ expertise and

avoid reinventing 
the wheel.

https://socialnetwork.com

Social Network website

Internet

Backend also consumes�
by the Social Network 
company only for itself

Figure 1.4   A system composed of public and private software LEGO® bricks connected via APIs.

http://apihandyman.io
https://apihandyman.io


 7What is an API?

Note that in figure 1.4, each API only exposes one function. This keeps the figure 
as simple as possible: a single API can expose many functions. The backend can, for 
example, expose functions such as Add Friend, List Friends, or Get Timeline.

This looks like a software version of the LEGO bricks system; you know, those plastic 
blocks that you can put together to create new things. (Aristotle was probably playing 
with some of these when he had the realization that “the whole is greater than the sum 
of its parts.”) The possibilities are endless; the only limit is your imagination.

When I was a child, I used to play with LEGO bricks for endless hours— creating 
buildings, cars, planes, spaceships, or whatever I wanted. When I was bored with of one 
of my creations, I could destroy it completely and start something new from scratch, 
or I could transform it by replacing some parts. I could even put existing structures 
together to create a massive spaceship, for example. It’s the same in the API world: you 
can decompose huge systems of software bricks that can be easily assembled and even 
replaced thanks to APIs, but there are some minor differences.

Each software brick can be used at the same time by many others. In our example, 
the backend API can be used by a mobile application and a web site. An API is usually 
not made to be consumed by a single consumer but by many. That way, you don’t have 
to redevelop everything all the time.

Each software brick can run anywhere on its own as long as it’s connected to a net-
work in order to be accessible via its API. That offers a good way to manage perfor-
mance and scalability; indeed, a software brick like the Facial Recognition one in figure 
1.4 will probably need far more processing resources than the Social Network Timeline 

The mobile application running on a smartphone uses or consumes the API exposed 
or provided by the server application (often called a backend application or simply back-
end) that’s hosted on a remote server. The mobile application is therefore called a 
consumer, and the backend is called a provider. These terms also apply respectively to the 
companies and the people creating the applications, or consuming or providing APIs. 
Here that means the developers of the mobile application are consumers and the ones 
developing the backend are providers.

To communicate with its backend, the mobile application usually uses a famous 
network: the internet. The interesting thing here is not the internet itself— such com-
munication can also be done over a local network— but how these two applications com-
municate over the network. When a mobile application sends a photo and message to 
the backend application, it does so using the Hypertext Transfer Protocol (HTTP). If 
you’ve ever opened a web browser on a computer or a smartphone, you have used HTTP 
(indirectly). This is the protocol that is used by any website. When you type a website’s 
address, like http://apihandyman.io or its secured version, https://apihandyman.io, 
into the address bar and press Enter or click a link in a browser, the browser uses HTTP 
to communicate with the remote server hosting the website in order to show you the 
site’s content. Remote APIs, or at least the ones we’re talking about in this book, rely on 
this protocol just like websites; that’s why these are called web APIs.

So, in this book, APIs are web APIs. They are web interfaces for software. But why are 
such APIs so interesting?

1.1.2 APIs turn software into LEGO® bricks

Thousands, even millions, of mobile applications and their backends have been cre-
ated thanks to web APIs, but there’s more to the story. Indeed, web APIs unleash 
creativity and innovation by turning software into reusable bricks that can be easily 
assembled. Let’s go back to our example and see what might happen when sharing a 
photo on a social network.

When a social network backend receives a photo and message, it might store the 
photo on the server’s filesystem and store the message and the photo identifier (to 
retrieve the actual file later) in a database. It could also process the photo using some 
homemade facial recognition algorithm to detect if it contains any friends of yours 
before storing the photo. That’s one possibility— a single application handling every-
thing for another solitary application. Let’s consider something different, as shown in 
figure 1.4.

The backend API could be used by both a social network mobile application and a 
website, and its implementation could be totally different. When the backend receives 
a photo and message to share (whichever application sent it), it could delegate the 
photo’s storage as a service company through its API. It could also delegate the storage 
of the message and photo identifier to an in-house timeline software module through 
its API. How could the facial recognition be handled? Well, that could be delegated to 
some expert in facial recognition offering their services via …  you guessed it …  an API.

Facial
Recognition

Detect

Internet

Social
Network
Timeline

Add

Private
network

Social Network Backend

Share

InternetSocial
Network
Mobile

Application

Photo
Storage

Store

provided by others
for many others

API

APIsPublic

Private provided

Private API

APIs

exposed on the internet and used by multiple consumers of the Social Network company�

Small application brick:
easy to create, connect,

scale and evolve

Take advantage of
others‛ expertise and

avoid reinventing 
the wheel.

https://socialnetwork.com

Social Network website

Internet

Backend also consumes�
by the Social Network 
company only for itself

Figure 1.4   A system composed of public and private software LEGO® bricks connected via APIs.

http://apihandyman.io
https://apihandyman.io


8 chapter 1 What is API design?

one. If the former is run by the Social Network company, it could be installed on a dif-
ferent, dedicated, and more powerful server, while the Social Network Timeline runs 
on a smaller one. And being accessible via a simple network connection allows any API 
provided by anyone to be used by anyone.

In the API world, there are two types of bricks exposing two types of APIs: public APIs 
and private APIs. The Facial Recognition and Photo Storage software bricks are not built 
and not even run by the Social Network company but by third parties. The APIs they 
provide are public ones.

Public APIs are proposed as a service or as a product by others; you don’t build them, 
you don’t install them, you don’t run them— you only use them. Public APIs are pro-
vided to anyone who needs them and is willing to accept the terms and conditions of the 
third-party supplier. Depending on the business model of the API providers, such APIs 
can be free or paid for, just like any other software product. Such public APIs unleash 
creativity and innovation and can also greatly accelerate the creation of anything you 
can dream of. To paraphrase Steve Jobs, there’s an API for that. Why lose time trying 
to reinvent a wheel that will, irremediably, not be round enough? In our example, the 
Social Network company chose to focus on its core expertise, connecting people, and 
delegated facial recognition to a third party.

But public APIs are only the tip of the API iceberg. The Social Network Backend and 
Social Network Timeline bricks were created by the Social Network company for its 
own use. The timeline API is only consumed by applications created by the Social Net-
work company: the mobile Social Network Backend in figure 1.4. The same goes for the 
mobile backend, which is consumed by the Social Network Mobile Application. These 
APIs are private APIs, and there are billions of them out there. A private API is one you 
build for yourself: only applications created by you or people inside your team, depart-
ment, or company use it. In this case, you are your own API provider and API consumer.

NOTE   The public/private question is not a matter of how an API is exposed, 
but to whom. Even if it’s exposed on the internet, the mobile backend API is still 
a private one.

There can be various kinds of interactions among true private APIs and public ones. 
For example, you can install commercial off-the-shelf software like a content manage-
ment system (CMS) or a customer relationship management system (CRM) on your 
own servers (such an installation is often call on premise), and these applications can 
(even must!) provide APIs. These APIs are private ones, but you do not build those 
yourself. Still, you can use them as you wish and, especially, to connect more bricks to 
your bricks. As another example, you can expose some of your APIs to customers or 
selected partners. Such almost public APIs are often called partner APIs.

But whatever the situation, APIs basically turn software into reusable software bricks 
that can be easily assembled by you or by others to create modular systems that can do 
absolutely anything. That’s why APIs are so interesting. But why should their design 
matter?



 9Why API design matters

1.2 Why API design matters
Even if it is useful, an API seems to be only a technical interface for software. So why 
should the design of such an interface be important?

APIs are used by software, it’s true. But who builds the software that uses them? Devel-
opers. People. These people expect these programming interfaces to be helpful and 
simple, just like any other (well-designed) interface. Think about how you react when  
faced with a poorly designed website or mobile application UI. How do you feel 
when faced with a poorly designed everyday thing, such as a remote control or even a 
door? You may be annoyed, even become angry or rant, and probably want to never use 
it again. And, in some cases, a poorly designed interface can even be dangerous. That’s 
why the design of any interface matters, and APIs are no exception.

1.2.1 A public or private API is an interface for other developers

You learned in section 1.1.1 that the API consumer can be either the software using the 
API or the company or individuals developing that software. All these consumers are 
important, but the first consumer to take into consideration is the developer.

As you’ve seen, different APIs are involved in the example social networking use 
case. There is the timeline module that handles data storage and exposes a private API. 
And there are the public (provided by other companies) facial recognition and photo 
storage APIs. The backend that calls these three APIs does not pop into the air by itself; 
it’s developed by the Social Network company.

To use the facial recognition API, for example, developers write code in the Social 
Network software in order to send the photos to have faces detected and to handle the 
result of the photo processing, just like when using a software library. These develop-
ers are not the ones who created the facial recognition API, and they probably don’t 
know each other because they are from different companies. We can also imagine that 
the mobile application, website, backend, and the data storage module are developed 
by different teams within the company. Depending on the company’s organization, 
those teams might know each other well or not at all. And even if every developer in 
the company knows every little secret of every API it has developed, new developers 
will inevitably arrive.

So, whether public or private, whatever the reason an API is created and whatever 
the company’s organization, it will sooner or later be used by other developers— people 
who have not participated in the creation of the software exposing the API. That is why 
everything must be done in order to facilitate these newcomers when writing code to 
use the API. Developers expect APIs to be helpful and simple, just like any interface 
they have to interact with. That is why API design matters.

Developer experience
An API’s developer experience (DX) is the experience developers have when they use 
an API. It encompasses many different topics such as registration (to use the API), doc-
umentation (to know what the API does and how to use it), or support (to get help when 
having trouble). But all effort put into any DX topic is worth nothing if the most important 
one is not properly handled— API design.

 



10 chapter 1 What is API design?

1.2.2 An API is made to hide the implementation

API design matters because when people use an API, they want to use it without being 
bothered by petty details that have absolutely nothing to do with them. And, to do so, 
the design of an API must conceal implementation details (what actually happens). 
Let me use a real-life analogy to explain this.

Say you decide to go to a restaurant. What about a French one? When you go to a 
restaurant, you become a customer. As a restaurant’s customer, you read its menu to find 
out what kinds of food you can order. You decide to try the Bordeaux-style lamprey 
(it’s a famous French fish dish from the Gascony region). To order the meal you have 
chosen, you talk to a (usually very kind and friendly) person called a waiter or waitress. 
A while later, the waiter comes back and gives you the meal you have ordered— the 
Bordeaux- style lamprey— that has been prepared in the kitchen. While you eat this deli-
cious meal, may I ask you two questions?

First, do you know how to cook Bordeaux-style lamprey? Probably not, and that may be 
the reason why you go to a restaurant. And even if you do know how to cook this recipe, 
you may not want to cook it because it’s complex and requires hard-to-find ingredients. 
You go to a restaurant to eat food you don’t know how to cook or don’t want to cook.

Second, do you know what happened between the point in time when the waiter 
took your order and when they brought it back to you? You might guess that the waiter 
has been to the kitchen to give your order to a cook, who works alone. This cook pre-
pares your meal and notifies the waiter when it is done by ringing a small bell and yell-
ing, “Order for table number 2 is ready.” But this scenario could be slightly different.

The waiter might use a smartphone to take your order, which is instantly shown on a 
touchscreen in the kitchen. In the kitchen, there’s not a lonely cook, but a whole kitchen 
brigade. Once the kitchen brigade prepares your meal, one of them marks your order as 
Done on the kitchen’s touchscreen, and the waiter is notified on the smartphone. What-
ever the number of cooks, you are unaware of the recipe and ingredients used to cook 
your meal. Regardless of the scenario, the meal you’ve ordered by talking to the waiter 
has been cooked in the kitchen, and the waiter has delivered it to you. At a restaurant, 
you only speak to the waiter (or waitress), and you don’t need to know what happens in 
the kitchen. What does all this have to do with APIs? Everything, as shown in figure 1.5.

From the social networking mobile application developer team’s perspective, sharing 
a photo using the backend API is exactly the same, however the backend is implemented. 
The developers don’t need to know the recipe and its ingredients; they only provide the 
photo and a message. They don’t care if the photo is passed through image recognition 
before or after being added to the timeline. They also don’t care if the backend is a single 
application written in Go or Java that handles everything, or relies on other APIs written 
in NodeJS, Python, or whatever language. When a developer creates a consumer application 
(the customer) that uses a provider application (the restaurant) through its API (the waiter 
or waitress) to do something (like ordering a meal), the developer and the application 
are only aware of the API; they don’t need to know how to do something themselves or how 
the provider software (the kitchen) will actually do it. But hiding the implementation 
isn’t enough. It’s important, but it’s not what people using APIs really seek.

Restaurant

Customers Waiter Kitchen

order
meal

asks for meal�
preparation

serves
meal

gives meal

cooks
meal

Don‛t know how to
or don‛t want to cook a meal

Only interact
�with waiter

Provider application

Consumer
applications API Implementation

asks to do
something

returns
result

returns
result

do

Don‛t know how to or�
don‛t want to code a feature

in their applications
Only interact

with API

Developers

ask to do
something

code

What happens behind
the scenes is hidden.

Only the interface
is visible.

Figure 1.5   The parallels between dining at a restaurant and using an API



 11Why API design matters

1.2.3 The terrible consequences of poorly designed APIs

What do you do when you use an everyday thing you’ve never used before? You take a 
close look at its interface to determine its purpose and how to use it based on what you 
can see and your past experience. And this is where design matters.

Let’s consider a hypothetical example: a device called the UDRC 1138. What could 
this device be? What might be its purpose? Well, its name does not really help us to 
guess it. Maybe its interface can give us more clues. Take a look at figure 1.6.

On the right, there are six unlabeled, triangular and rectangular buttons. Could they 
mean something like start and stop? You know, like media player buttons. The four 
other buttons have unfamiliar shapes that do not give any hint about their purpose. 
The LCD display screen shows unlabeled numbers with units such as ft, NM, rad, and 
km/h. We might guess that ft is a distance in feet, and km/h is a speed in kilometers per 
hour, but what might rad and NM mean? And, at the bottom of the LCD screen, there’s 
also a troublesome warning message telling us that we can input out-of-range values 
without a safety control.

UDRC 1138

Operates up to 50m max.
Use out-of-range values at your own risk

32.8 ft 3.14 rad
0.027 NM 0.9 km/h

What could these
numbers be?

I don’t even know what
the rad and NM units are!

I’ve never seen such
buttons before.
What could their purpose be?

What?
I could input incorrect
values without a safety

control?!
What does that mean?

Figure 1.6   The cryptic interface of the UDRC 1138 device

1.2.2 An API is made to hide the implementation

API design matters because when people use an API, they want to use it without being 
bothered by petty details that have absolutely nothing to do with them. And, to do so, 
the design of an API must conceal implementation details (what actually happens). 
Let me use a real-life analogy to explain this.

Say you decide to go to a restaurant. What about a French one? When you go to a 
restaurant, you become a customer. As a restaurant’s customer, you read its menu to find 
out what kinds of food you can order. You decide to try the Bordeaux-style lamprey 
(it’s a famous French fish dish from the Gascony region). To order the meal you have 
chosen, you talk to a (usually very kind and friendly) person called a waiter or waitress. 
A while later, the waiter comes back and gives you the meal you have ordered— the 
Bordeaux- style lamprey— that has been prepared in the kitchen. While you eat this deli-
cious meal, may I ask you two questions?

First, do you know how to cook Bordeaux-style lamprey? Probably not, and that may be 
the reason why you go to a restaurant. And even if you do know how to cook this recipe, 
you may not want to cook it because it’s complex and requires hard-to-find ingredients. 
You go to a restaurant to eat food you don’t know how to cook or don’t want to cook.

Second, do you know what happened between the point in time when the waiter 
took your order and when they brought it back to you? You might guess that the waiter 
has been to the kitchen to give your order to a cook, who works alone. This cook pre-
pares your meal and notifies the waiter when it is done by ringing a small bell and yell-
ing, “Order for table number 2 is ready.” But this scenario could be slightly different.

The waiter might use a smartphone to take your order, which is instantly shown on a 
touchscreen in the kitchen. In the kitchen, there’s not a lonely cook, but a whole kitchen 
brigade. Once the kitchen brigade prepares your meal, one of them marks your order as 
Done on the kitchen’s touchscreen, and the waiter is notified on the smartphone. What-
ever the number of cooks, you are unaware of the recipe and ingredients used to cook 
your meal. Regardless of the scenario, the meal you’ve ordered by talking to the waiter 
has been cooked in the kitchen, and the waiter has delivered it to you. At a restaurant, 
you only speak to the waiter (or waitress), and you don’t need to know what happens in 
the kitchen. What does all this have to do with APIs? Everything, as shown in figure 1.5.

From the social networking mobile application developer team’s perspective, sharing 
a photo using the backend API is exactly the same, however the backend is implemented. 
The developers don’t need to know the recipe and its ingredients; they only provide the 
photo and a message. They don’t care if the photo is passed through image recognition 
before or after being added to the timeline. They also don’t care if the backend is a single 
application written in Go or Java that handles everything, or relies on other APIs written 
in NodeJS, Python, or whatever language. When a developer creates a consumer application 
(the customer) that uses a provider application (the restaurant) through its API (the waiter 
or waitress) to do something (like ordering a meal), the developer and the application 
are only aware of the API; they don’t need to know how to do something themselves or how 
the provider software (the kitchen) will actually do it. But hiding the implementation 
isn’t enough. It’s important, but it’s not what people using APIs really seek.

Restaurant

Customers Waiter Kitchen

order
meal

asks for meal�
preparation

serves
meal

gives meal

cooks
meal

Don‛t know how to
or don‛t want to cook a meal

Only interact
�with waiter

Provider application

Consumer
applications API Implementation

asks to do
something

returns
result

returns
result

do

Don‛t know how to or�
don‛t want to code a feature

in their applications
Only interact

with API

Developers

ask to do
something

code

What happens behind
the scenes is hidden.

Only the interface
is visible.

Figure 1.5   The parallels between dining at a restaurant and using an API



12 chapter 1 What is API design?

This interface is definitely hard to decipher and not very intuitive. Let’s take a look at 
the documentation, shown in figure 1.7, to see what it tells us about the device.

According to the description, this device is a universal drone remote controller— 
hence the UDRC 1138 name, I suppose— that can be used to control any drone. Well, 
it sounds interesting. The page on the right gives a few explanations of the LCD screen, 
the buttons, and the warning message.

The description of the LCD screen is quite puzzling. Ground distance is in feet, 
height in nautical miles, drone orientation is provided with radians, and speed is in kilo-
meters per hour. I’m not familiar with aeronautical units of measurement, but I sense 
there’s something wrong with the chosen ones. They seem inconsistent. Mixing feet and 
meters? And in all the movies I’ve seen about airplanes, feet measure height and nautical 
miles measure distance, not the inverse. This interface is definitely not intuitive.

Looking at the button’s descriptions, we can see that to increase elevation we use the 
triangular button at the top right, and to decrease it we use the diamond-shaped button 
in the second row. The connection isn’t obvious—why aren’t these related controls next 
to each other? The other controls also use shapes that mean absolutely nothing and 
seem to be placed randomly. This is insane! How is a user supposed to use the device  
easily? Why not use good old joysticks or directional pads instead of buttons?

And last, but not least, the explanation of the warning message. It seems that the 
drone can only be operated withing a 50 meter range— the range being calculated 
based on the ground distance and height provided by the LCD screen. Wait, what? We 
have to calculate the distance between the remote controller and the drone using the 
Pythagorean theorem?! This is total nonsense; the device should do that for us.

English Page 10 EnglishPage 11

The UDRC 1138 is a universal drone remote controller.

It allows you to control the speed, elevation, and orientation
of any drone using the 6 buttons.

WARNING: It works only if the drone is within a 50-meter
(164 feet) range. LCD screen shows ground distance and
height.

UDRC 1138
INSTRUCTION MANUAL

UDRC 1138

Increase speed

Decrease elevation

Turn right

Increase elevation

Turn left

Decrease speed

B
ut

to
ns

UDRC 1138

Drone

Ground distance

H
eight

50 meters maximum

Operates up to 50m max.
Use out-of-range values
at your own risk!

W
ar

ni
ng

Ground distance
(feet)

Height
(nautical miles)

32.8 ft 3.14 rad

0.027 NM 0.9 km/h

Rotation (radians)

Speed
(kilometers/hour)

LC
D

Figure 1.7   The UDRC 1138’s documentation



 13Why API design matters

Would you buy or even try to use such a device? Probably not. But what if you have no 
other option than to use this terrible device? Well, I wish you the best of luck; you’ll 
need it to achieve anything with such a poorly designed interface!

You’re probably thinking that such a disastrous interface couldn’t actually exist in real 
life. Surely designers couldn’t create such a terrible device. And even if they did, surely 
the quality assurance department would never let it go into production! But let’s face the 
truth. Poorly designed devices— everyday things with poorly designed interfaces—do go 
into production all the time.

Think about how many times you have been puzzled or have grumbled when using a 
device, a website, or an application because its design was flawed. How many times have 
you chosen not to buy or not to use something because of its design? How many times 
were you unable to use something, or to use it correctly or how you wanted to, because 
its interface was incomprehensible?

A poorly designed product can be misused, underused, or not used at all. It can 
even be dangerous for its users and for the organization that created it, whose reputa-
tion is on the line. And if it’s a physical device, once it has gone into production, it’s too 
late to fix it.

Terrible design flaws are not reserved to the interfaces of everyday things. Unfor-
tunately, APIs can also suffer from the disease of poor design. Recall that an API is an 
interface that developers are supposed to use within their software. Design matters, 
whatever the type of interface, and APIs are no exception. Poorly designed APIs can be 
just as frustrating as a device like the UDRC 1138. A poorly designed API can be a real 
pain to understand and use, and this can have terrible consequences.

How do people choose a public API, an API as a product? Like with an everyday 
thing, they look at its interface and documentation. They go to the API’s developer por-
tal, read the documentation, and analyze the API to understand what it allows them to 
do and how to use it. They evaluate whether it will let them achieve their purpose effec-
tively and simply. Even the best documentation will not be able to hide design flaws that 
make an API hard or even dangerous to use. And if they spot such flaws, these potential 
users, these potential customers, will not choose the API. No customers, no revenue. 
This could lead to a company going bankrupt.

What if some people decide to use the flawed API anyway? Sometimes, users may 
simply not detect flaws at first sight. Sometimes, users may have no other choice than 
using such terrible APIs. This can happen, for example, inside an organization. Most of 
the time people have no other choice but to use terrible private APIs or terrible APIs 
provided by commercial off-the-shelf applications.

Whatever the context, design flaws increase the time, effort, and money needed to 
build software using the API. The API can be misused or underused. The users may 
need extensive support from the API provider, raising costs on the provider side. These 
are potentially grave consequences for both private and public APIs. What’s more, with 
public APIs, users can complain publicly or simply stop using them, resulting in fewer 
customers and less revenue for the API providers.



14 chapter 1 What is API design?

Flawed API design can also lead to security vulnerabilities in the API, such as expos-
ing sensitive data inadvertently, neglecting access rights and group privileges, or placing 
too much trust in consumers. What if some people decided to exploit such vulnerabili-
ties? Again, the consequences could be disastrous for the API consumers and providers.

In the API world, it’s often possible to fix a poor design after the API goes into pro-
duction. But there is a cost: it will take time and money for the provider to fix the mess, 
and it might also seriously bother the API’s consumers.

These are only a few examples of harmful impacts. Poorly designed APIs are doomed 
to fail. What can be done to avoid such a fate? It’s simple: learn how to design APIs properly.

1.3 The elements of API design
Learning to design APIs is about far more than just learning to design programming 
interfaces. Learning to design APIs requires learning principles, and not only technol-
ogies, but also requires knowing all facets of API design. Designing APIs requires one 
to not only focus on the interfaces themselves, but to also know the whole context sur-
rounding those and to show empathy for all users and the software involved. Designing 
APIs without principles, totally out of context, and without taking into consideration 
both sides of the interface— the consumer’s side and also the provider’s— is the best 
way to ensure a total failure.

1.3.1 Learning the principles beyond programming interface design

When (good) designers put a button in a specific spot, choose a specific form, or 
decide to add a red LED on an object, there is a reason. Knowing these reasons helps 
designers to create good interfaces for everyday items that will let people achieve their 
goals as simply as possible— whether these items are doors, washing machines, mobile 
applications, or anything else. It’s the same for APIs.

The purpose of an API is to let people achieve their goals as simply as possible, what-
ever the programming part. Fashions come and go in software. There have been and there 
will be many different ways of exposing data and capabilities through software. There 
have been and there will be many different ways of enabling software communication 
over a network. You may have heard about RPC, SOAP, REST, gRPC, or GraphQL. You 
can create APIs with all of these technologies: some are architectural styles, others are 
protocols or query languages. To make it simpler, let’s call them API styles.

Each API style can come with some (more or less) common practices that you can 
follow, but they will not stop you from making mistakes. Without knowing fundamental 
principles, you can be a bit lost when choosing a so-called common practice; you can 
struggle to find solutions when facing unusual use cases or contexts not covered by com-
mon practices. And if you switch to a new API style, you will have to relearn everything.

Knowing the fundamental principles of API design gives you a solid foundation with 
which to design APIs of any style and to face any design challenge. But knowing such 
design principles is only one facet of API design.



 15The elements of API design

1.3.2 Exploring all facets of API design

Designing an interface is about far more than placing buttons on the surface of an 
object. Designing an object such as a drone remote controller requires designers to 
know what its purpose is and what users want to achieve using it. Such a device is sup-
posed to control the speed, elevation, and direction of a flying object. This is what users 
want to do, and they don’t care if it is done using radio waves or any other technology.

All these actions must be represented by a user interface with buttons, joysticks, slid-
ers, or some other type of control. The purpose of these controls and their represen-
tations must make sense, they must be easily usable by users, and most importantly, 
they must be totally secure. The UDRC 1138’s interface is a perfect example of a totally 
unusable and unsecure interface with its perplexing LCD or buttons and its absence of 
a safety control.

The design of such a remote control must also take into consideration the whole 
context. How will it be used? For example, if it is to be used in extreme cold, it would be 
wise to use controls that can be operated with bulky gloves. Also, the underlying tech-
nology may add some constraints on the interface. For example, transmitting an order 
to the drone cannot be done more than X times per second.

Finally, how could such a terrible design be put into production? Maybe the design-
ers involved were not trained sufficiently and did not get enough guidance. Maybe the 
design never was validated. If only some people, maybe potential users, had reviewed 
this design, its blatant flaws probably could have been fixed. Maybe the designers cre-
ated a good model but, in the end, their plan was not respected at all.

Whatever its quality, once people get used to an object and its interface, changes 
must be made with extreme caution. If a new version of this remote controller were to 
come out with a totally different button organization, users might not be willing to buy 
the new version because they would have to relearn how to operate the controller.

As you can see, designing an object’s interface requires focusing on more than just 
buttons. It’s the same with API design.

Designing an API is about far more than just designing an easy-to-understand and 
easy-to-use interface on your own. We must design a totally secure interface— not unduly 
exposing sensitive data or actions to consumers. We must take the whole context into 
consideration— what the constraints are, how the API will be used and by whom, how 
the API is built, and how it could evolve. We have to participate in the whole API lifecy-
cle, from early discussions to development, documentation, evolution, or retirement, 
and everything in between. And as organizations usually build many APIs, we should 
work together with all other API designers to ensure that all of the organization’s APIs 
have a similar look and feel in order to build individual APIs that are as consistent as 
possible, thus ensuring that the sum of all the APIs is as easy to understand and easy to 
use as each individual one.



16 chapter 1 What is API design?

Summary
¡	Web APIs turn software into reusable bricks that can be used over a network with 

the HTTP protocol.
¡	APIs are interfaces for developers who build the applications consuming them.
¡	API design matters for all APIs— public or private.
¡	Poorly designed APIs can be underused, misused, or not used at all, and even 

unsecure.
¡	Designing a good API requires that you take the whole context of the application 

into consideration, not only the interface itself.



17

2Designing an API 
for its users

This chapter covers
¡	Which perspective to focus on when  

designing APIs

¡	Approaching API design like designing a  
user interface

¡	How to accurately determine an API’s real goals

If you were eager to jump right into the programming interface design battlefield, 
I’m deeply sorry, but you will have to wait for the next chapter. In this chapter, we 
look at the API’s users’ needs.

When you want to build or create something, you need a plan. You need to deter-
mine what you want to do before actually doing it. API design is no exception.

An API is not made to blindly expose data and capabilities. An API, like any every-
day user interface, is made for its users in order to help them achieve their goals. For a 
social networking API, some of these goals could be to share a photo, to add a friend, 
or to list friends. These goals form the functional blueprint required to design an 
effective API, and that’s why identifying goals is a crucial step in the API design pro-
cess. These goals— what users can achieve using your API— must make sense for the 
users, and none should be missed.



18 chapter 2 Designing an API for its users

Determining a relevant and comprehensive list of goals demands a focus on the con-
sumer’s perspective: the point of view of the API’s users and the software consuming the 
API. This perspective is the cornerstone of API design, and it is what must guide the API 
designer throughout the design process. Sticking to this perspective not only requires 
you to understand it, but you must also be aware of another perspective that can hinder 
API design— the provider’s perspective (the organization’s point of view and the software 
exposing the API).

2.1 The right perspective for designing everyday user 
interfaces
API designers have much to learn from the design of everyday user interfaces, whether 
they are interfaces of physical or virtual objects. From everyday physical interfaces 
(doors, kitchen appliances, or TV remote controls) to everyday virtual interfaces (web-
sites or mobile applications), all share common design principles that must be applied 
to the design of APIs too. Choosing the right point of view, the right perspective, is one 
of the most crucial aspects of design for all of these interfaces and for APIs.

NOTE   Focus on what happens under the hood and it will end in a total disas-
ter. Focus on what users can do and everything will go smoothly.

When designing APIs, separating these two perspectives and understanding them isn’t 
always easy at first. But transposed into the real world, all this becomes blatantly obvi-
ous, and how these two perspectives can affect API design becomes easier to grasp.

2.1.1 Focusing on how things work leads to complicated interfaces

Let me introduce, with fanfare, the Kitchen Radar 3000 (shown in figure 2.1). Accord-
ing to the advertisement, this kitchen appliance brings “state-of-the-art military-grade 
components into your kitchen so you will never ruin any recipe and will become the 
fastest cook in town.” Whoa, totally thrilling, isn’t it? Well, not really.

What on earth is a Kitchen Radar 3000? Its name does not help us to decipher its pur-
pose. Maybe its control panel can give us some clues … or maybe not.

Kitchen
Radar
3000

Magnetron
On

3 year w
arra

nty!
Military-grade magnetron!

Read user manual before first use!

Glass
door

Stickers What does this
push button do?

Door handle

Control panel

What does
that mean?

Figure 2.1   The Kitchen Radar 3000



 19The right perspective for designing everyday user interfaces

As you can see in figure 2.1, there’s a single Magnetron On button. What is a magne-
tron? What happens when it’s turned on? This device is a total mystery.

But look, there’s a sticker on the glass door that invites us to read the user manual 
(figure 2.2). Maybe we will find some useful information there to help us understand 
this strange kitchen appliance’s purpose and how to use it.

OK, according to the user manual, the Kitchen Radar 3000 seems to be a new type of 
oven that uses radio microwaves, or simply microwaves, to heat food. It was invented by 
someone who was working on radars, hence the name. What a terrible idea: naming 
something based on its history and totally hiding its real purpose!

So how does it work? When users push and hold the Magnetron On button, it turns a 
component called the magnetron on. This component’s job is to generate radio micro-
waves. These microwaves generate heat when they pass through the food put inside the 
Kitchen Radar 3000’s cavity. Once the food is cooked, users can release the button to 
turn the magnetron off.

This control panel is not really convenient— users have to time themselves while 
pressing the button! And that’s when users want to use the full heating power of the 
oven. What happens if they want to use only a fraction of that power? They have to press 
and release the Magnetron On button at a certain pace, corresponding to the desired 
heating power. Doing so turns the magnetron on and off, generating fewer microwaves 
and, therefore, less heat than holding the button down continuously. This is totally 
insane! Who would use such a device willingly? Probably nobody.

Frankly, this device has not really been designed. It’s only exposing its inner work-
ings (the magnetron) and history (the radar) to its users. The device’s purpose is hard 
to decipher. Not only do users have to be aware of how a magnetron operates, but the 
provided control panel is just a nightmare to use. This appears to be a case where the 
designer, focusing on how things work, created a device that’s not only hard to under-
stand but also hard to use. Was this inevitable? Of course not! Let’s see how we can fix 
this design disaster.

E
ng

lis
h

Page 2

KITCHEN RADAR 3000
USER MANUAL

Kitchen
Radar
3000

Magnetron
OnPut food in the cavity.

Push the Magnetron On button to generate microwaves
and start heating your food. Turning the magnetron on
and off modulates heating power (see cheat sheet
for timing).

Enjoy your food when it’s cooked enough.

Full Hold

Heating power
cheat sheet

Medium 7s

Low 11s

Thaw 13s

1

2

3

In the 1940s, as he was working
near an active radar, Percy Spencer
realized that a chocolate candy bar
had melted in his pocket. He
discovered that the radio
microwaves generated by the
radar’s magnetron could heat
matter. After a few experiments he
created a new type of oven that
heats food faster than gas or
electric ovens.

The Kitchen Radar’s History!

Figure 2.2   The Kitchen Radar 3000’s (insane) user manual



20 chapter 2 Designing an API for its users

2.1.2 Focusing on what users can do leads to simple interfaces

How could we improve the Kitchen Radar 3000 to make it easier to understand and 
easier to use? Well, if this device was designed by focusing on how it works, what about 
trying to redesign it by thinking the opposite way? Let’s focus on the users' needs and 
redesign the device’s control panel accordingly.

This kitchen appliance is basically an oven, sort of. And what do users want to do 
when they use an oven regardless of the technology it uses? They want to heat or cook 
food. We could simply rebrand the Kitchen Radar 3000 as a microwave oven and replace 
the Magnetron On button label with Heat or Cook, as shown in figure 2.3.

Well, that’s better. By simply changing some labels, we’ve made it easier for users to 
understand what this device is for: an oven is obviously made to heat things, and the 
button obviously starts the heating process.

But this microwave oven still provides a terrible user experience, especially when it 
comes to heating food at a fraction of the full heating power. Users still have to master 
the button push/release pace to heat something more slowly. Figure 2.4 shows how we 
could simplify that.

How do people usually heat food using an oven or other cooking device? They heat it 
for a given duration at a given power. We could replace the Heat push button with some 
controls that allow users to provide a duration in seconds and minutes and also specify 
a low, medium, or high heating power. Some circuitry behind the control panel will 
handle the magnetron and turn it on and off according to the user’s inputs.

Kitchen
Radar
3000

Magnetron
On

Microwave
Oven

Heat

Before After

New labels give�a
better idea of what

a user can do with this
device.

These labels do
not give any clue

about what a user
can do with this

device.

The user experience is
still terrible thanks to
the push button, which

is still not user-friendly.

Figure 2.3   Rebranding the Kitchen Radar 3000 as a microwave oven

Kitchen
Radar
3000

Magnetron
On

Invisible circuitry
turns magnetron

on and off according
to power and duration

User turns
magnetron
on and off

Hard-to-understand and
hard-to-use reflection

of inner workings

Easy-to-understand and
easy-to-use representation

of what user can do

...at a given
power...

...for a given
duration.

User can heat
food...

Before After

Microwave
Oven

Time

Power
Low High

30s 30m

Figure 2.4   Simplifying use by redesigning the control panel



 21Designing software’s interfaces

This is perfect! This kitchen appliance is now easy to understand and easy to use 
thanks to this brand-new control panel. This new interface is no longer a cryptic direct 
access to the device’s inner workings. It does not give any hint about what’s really hap-
pening inside the box; it only focuses on the user’s needs. It is a user-friendly repre-
sentation of what can be achieved with the oven. The details of the inner workings stay 
hidden inside the circuitry behind the control panel and won’t bother the user.

We’ve just redesigned a kitchen appliance’s control panel— so what? What does all 
this have to do with API design? Everything! We have created an interface that is an 
easy-to-understand and easy-to-use representation of what users can do with a device, 
without bothering them with irrelevant inner-working concerns. If you keep this mind-
set when designing APIs, you will be a great API designer! Why? Because an API is basi-
cally a control panel for software and must obey the same rules as any everyday interface.

2.2 Designing software’s interfaces
An API is the labels and buttons of software— its control panel. It can be understood at 
first sight or stay a total mystery, even after days of investigation. It can be a real plea-
sure to use or a total misery, just like some real-world objects.

Creating an API that is an easy-to-use and easy-to-understand interface requires us 
to design it while being focused on the good point of view, the right perspective: what 
users can do. Focus on how the software operates and it will end in a total disaster. Focus 
on what users can do with it and everything will go smoothly— just like when designing 
a real-world object.

2.2.1 Viewing an API as software’s control panel

When you use a microwave oven, or any other everyday object, you interact with it 
through its control panel, its interface. You read labels, push buttons, or turn knobs. 
It’s exactly the same when you want to interact programmatically with software: you 
use its API. As mentioned, an API is software’s control panel. But what does this mean, 
exactly? Let’s turn our redesigned Kitchen Radar 3000, our microwave oven, into soft-
ware (as shown in figure 2.5) to answer this question.

Turn
magnetron
on and off
according

power

durationfor

to

Microwave
Oven

Time

Power
Low High

30s 30m

Microwave oven

Circuitry
and magnetron

Control panel

Users� can heat food at a given power for a given duration microwave oven turns a magnetron on and off at the right pace.using a that

Visible

Invisible

Software

Implementation
(how it is really done)

API
(what users can do)

Microwave
Oven API

power

duration

Heat food

for

at

An API goal (and its inputs)

Figure 2.5   Comparing a microwave oven to software



22 chapter 2 Designing an API for its users

The whole microwave oven becomes the software, the control panel becomes the soft-
ware’s API, and the circuitry behind the control panel becomes the implementation.

The API is what users see; it is a representation of what they can do. The implemen-
tation is the code running behind the API. It’s how things are really done, but it stays 
invisible to the user.

An API provides a representation of goals that can be achieved by using it. The 
microwave oven’s API allows its users to heat food. To be achieved, a goal may need 
some information (inputs). Users have to provide a power setting and a duration to 
heat their food. The goal’s implementation uses the information provided through the 
API to operate. In this case, the implementation turns the magnetron on and off at a 
given pace according to the provided power for the provided duration. And when the 
goal is achieved, it can return some information.

So, an API is a control panel made to interact programmatically with software to 
achieve goals. But just like with everyday interfaces, those goals might be expressed 
from the provider’s perspective (turn magnetron on) rather than the consumer’s (heat 
food). Is this as big a problem for APIs as it is for everyday interfaces?

2.2.2 Focusing on the consumer’s perspective to create simple APIs

To understand the consequences of designing an API from the provider’s perspective 
(unduly exposing inner workings), let’s compare the pseudocode needed to use the 
Kitchen Radar 3000 API and the Microwave Oven API.

The Kitchen Radar 3000 API proposes two goals: turn magnetron on and turn mag-
netron off. The following listing shows how to use these controls to heat food.

Listing 2.1  Using the Kitchen Radar 3000 API

if <power> is high                               
  turn magnetron on
  wait for <duration>
  turn magnetron off
else
  if <power> is medium                           
    cycle = 7s
  else if <power> is low
    cycle = 11s
  else if <power> is thaw
    cycle = 13s
  end if
  for <duration>                                 
    turn magnetron on
    wait for <cycle>
    turn magnetron off
  end for
end if

No on/off cycle if power is high

Calculate on/off cycle waiting 
time based on power

Alternating on/off cycle



 23Designing software’s interfaces

If developers want to create a program to heat food using this API, they will have to 
turn the magnetron on, wait for a given time (duration), then turn the magnetron off. 
But that’s the simple use case when they want to use the full heating power. If they want 
to heat something at a fraction of full power, they will have to turn the magnetron on 
and off at a pace that will achieve the desired heating magnitude.

Just like its real-world equivalent, the Kitchen Radar 3000 API is a nightmare to use. 
Developers need to write complex code in their software in order to use it. They can even 
make mistakes. There’s a bug in the pseudocode, by the way. Did you spot it? The next 
listing shows how to fix it.

Listing 2.2  Fixing the bug

  // alternating on/off cycle
  for <duration>
    turn magnetron on
    wait for <cycle>
    turn magnetron off
    wait for <cycle>                             
  end for

The alternating on/off cycle for loop misses a wait for <cycle>, which is definitely 
not the best code, but it works. Let’s now see how to do the same thing using the Micro-
wave Oven API, which provides a single heat food goal. Heating food with this is sim-
ple, as shown in the following listing.

Listing 2.3  Using the Microwave Oven API

heat food at <power> for <duration>

Developers only need to write a single line of pseudocode; it can’t be simpler than that. 
As a developer who wants to provide software to heat food, which API would you prefer 
to use: the one that needs complicated, error-prone code, or the one that needs a sin-
gle error-proof line of code? This is, of course, a rhetorical question.

Just like a control panel, the complexity or simplicity of an API depends above all 
on the perspective you focus on when designing it. Did you know anything about mag-
netrons and the microwave oven’s invention before reading this book? Probably not. 
Why? Because a microwave oven’s control panel is designed from its users' perspective. 
It does not expose irrelevant inner workings. It does not require the user to be a mag-
netron or radar expert to use it. It can be used by anyone who wants to heat food. And 
did this lack of knowledge interfere with your use of a microwave oven? Absolutely not. 
Why? Because when you use it, you just want to heat food. You don’t care about exactly 
how it will be done.

This line was missing.



24 chapter 2 Designing an API for its users

This is how any API must be designed. An API must be designed from its consumer’s 
perspective and not its provider’s. Figure 2.6 contrasts these two perspectives.

An API designed from the provider’s perspective is only a window showing inner work-
ings and, therefore, presenting goals that make sense only for the provider. As you saw 
with the Kitchen Radar 3000 API, such an API will unavoidably be complicated to use, 
and consumers will not be able to do what they want to do simply. In contrast, an API 
designed from the consumer’s perspective is a display screen hiding inner workings. 
It only shows goals that make sense for any consumer and lets them achieve what they 
want to do simply. Focusing on this perspective will put an API on the right path to 
ensure its usability.

OK, when designing an API, we need to think about the consumer first. And, by 
doing so, it seems important to clearly identify the goals that consumers can achieve 
when using an API in order to ensure the creation of an easy-to-understand and easy-to-
use API. But how do we do that accurately and exhaustively?

2.3 Identifying an API’s goals
Based on our microwave oven experiment, I hope you are now convinced that the very 
first step in the API design process is to determine what its users can achieve by using 
it— to identify the API’s real goals. For our Microwave Oven API, it was simply heat 
food; but, for a social networking API, it could be goals like share a photo, add a friend, 
or list friends. But such simple descriptions are not precise enough. How does a user 
add a friend, exactly? What is needed to do that? What does the user get in return? It is 
fundamental in designing an API to have a deep, accurate, and precise knowledge of

¡	Who can use the API
¡	What they can do
¡	How they do it
¡	What they need to do it
¡	What they get in return

Kitchen Radar 3000 API

Microwave Oven API

power durationHeat food at for

Consumer’s perspectiveProvider’s perspective

Inner workings are hidden by API

API gives direct access to
inner workings

API makes sense
only for provider

API makes sense for
any consumer

Turn
magnetron on

Turn
magnetron off

Figure 2.6   The consumer’s versus provider’s perspective



 25Identifying an API’s goals

These pieces of information are the foundations of your API, and you need those to be 
able to design an accurate programming interface. The method and the API goals can-
vas described in this chapter are simple but powerful tools that will help you acquire all 
the information you need.

The goal of designing software (or anything else) that fulfills users' needs is not 
something new. It has been a goal as long as software has existed. Numerous methods 
have been and are still being invented in order to collect users' needs, to get a deep and 
accurate understanding of them, and finally to create some software that fulfills their 
goals more or less efficiently and accurately. These methods can all be used to identify 
an API’s goals. Feel free to use the one you are familiar with or adapt the method pre-
sented in this book as you see fit, as long as you know who your users are, what they can 
do, and how they can do it. The following sections describe these principles.

2.3.1 Identifying the whats and the hows

When we redesigned the Kitchen Radar 3000 into a microwave oven, we answered two 
questions, as shown in figure 2.7. The first question was, “What do people want to do 
when they use an oven?” The answer was, “They want to heat food.” This answer led 
to a second question: “How do people heat food?” The answer was, “They heat food 
at a given power for a given duration.” This simple questioning helped us identify the 
information we needed to design a simple and user-friendly heat food goal for the 
Microwave Oven API— the whats and the hows. This example shows two of the funda-
mental questions to ask when determining an API goals list:

¡	What can users do?
¡	How do they do it?

Whats Hows Goals

Heat food
at power

for duration

They want to
heat food!

They heat food
at�a given power

for a given duration.

Investigate what is done and how it is done... ...to identify goals

What do people
want to do when they

use an oven?
How do people

heat food?

Figure 2.7   How we redesigned the Kitchen Radar 3000’s control panel



26 chapter 2 Designing an API for its users

With these questions, we roughly describe what can be done with the API (the whats) 
and decompose them into steps (the hows), with each step becoming a goal of the API.

But, in this example, the whats and the hows are basically the same thing, so do we 
really need to do this decomposition? Definitely. Unfortunately, the microwave oven 
example is too simplistic to illustrate that. We need a more complex use case, so let’s 
work on an API for an online shopping website or mobile application. What would be 
the whats and the hows of a Shopping API? Figure 2.8 shows these.

What do people do when they shop online? Well, they buy products. And how do they 
buy these products? They add them to their shopping cart and then check out.

So, buying products is a two-step process that can be represented by these goals: add 
product to cart and check out cart. Without doing the decomposition, we could have 
wrongly listed a single buy product goal. That’s why we must decompose the whats into 
hows: if we don’t do that, we might miss some goals.

Great, we’re done! To identify an API’s goals, we just need to roughly list what users 
can do and decompose these actions into steps by examining how they do them. Each 
step corresponds to a goal. So, let’s take the next step and design the programming 
interface corresponding to these goals. But wait … I think we missed something.

When we redesigned the microwave oven, we did more than just identify a heat food 
goal. We implicitly identified the power and duration as the user’s inputs. That helped 
us to redesign the Kitchen Radar 3000’s control panel, so it could be interesting to iden-
tify goal inputs and outputs.

Whats Hows Goals

Add product
to cartBuy products They add products

to the cart.

Investigate what is done and how it is done... ...to identify goals.

What can users do? How do they do it?

Check out cartThen they
check out.

A “what” can be�decomposed into�multiple “hows” (or steps), each one corresponding to a goal.

Figure 2.8   The Shopping API whats and hows



 27Identifying an API’s goals

2.3.2 Identifying inputs and outputs

A goal might need some inputs to be achieved. For our Microwave Oven API, the heat 
food inputs were the power and duration. These inputs helped us to design the micro-
wave’s control panel and API. A goal can even return some outputs when achieved. 
These outputs also impact the API design. So, let’s identify these goals for our Shop-
ping API, as shown in figure 2.9.

What do people do when they shop online? Well, they buy some products. And how do 
they buy these products? They add them to their shopping cart and then check out. 
Nothing new for these two first questions. Let’s now dig into each step to determine its 
inputs and outputs.

We’ll start with the add products to the cart goal. What do people need to add a prod-
uct to a cart? They obviously need a product and a cart. Good, and do they get some-
thing in return when they add a product to their cart? No. Well, these new questions do 
not seem to give us any really useful information; the answers are quite obvious. Maybe 
we will get something more interesting for the check out step

Do people need something to check out a cart? Clearly, a cart. Still an obvious answer. 
And do they get something in return? Yes, an order confirmation. (This one was not so 
obvious.)

Could we have guessed that the API would manipulate some orders by just looking 
at the check out cart goal? Maybe with such a simple API, but maybe not with a more 
complex one.

Whats Hows Goals

Buy products They add products
to the cart.

Investigate what is done, how it is done, what is needed, and what is returned... ...to identify goals.

Inputs

They need a product
and a shopping cart,

obviously!

What can users do? How do they do it? What do they need
for each step?

Add product
to cart

Then they
check out.

They need a
shopping�cart,
undoubtedly!

Outputs

They get nothing.

It‛s not obvious,
but they get

an order.

What do they get
for each step?

Check out cart
to get an order

Each goal is now
precisely described.

Who could have guessed an “order” was involved here ... without investigating this step‛s outputs?

Figure 2.9   The whats, the hows, and their inputs and outputs



28 chapter 2 Designing an API for its users

To design an accurate software control panel comprising all the needed buttons and 
labels, we need to have an accurate vision not only of the goals, but also of what we need 
to achieve them and what we get in return. Identifying an API’s goals isn’t only about 
what can be done with it, but also what data can be manipulated through it. This is why 
we need to add two more questions to our list:

¡	What can users do?
¡	How do they do it?
¡	New question to identify inputs: What do they need to do it?
¡	New question to identify outputs: What do they get in return?

Great, now we really are done! Let’s go to the next step and design the programming 
interface corresponding to these goals. But wait … we missed something again! How 
does a user get a product to add to the shopping cart? It seems that this obvious ques-
tion can be of interest when detecting some missing goals after all.

2.3.3 Identifying missing goals

How does a user get a product to add to the shopping cart? This is a mystery. It seems we 
missed one goal, and maybe more. How could we avoid that? There is no silver bullet, 
but by examining the sources of the inputs and usage of the outputs, we might be able to 
detect some missing whats or hows and, therefore, some missing or unidentified goals.

So how do users get a product to add to the shopping cart? They probably search for 
it by its name or description before adding it to the cart. So, we can add a new search for 
products step in the buy products what. We must not forget to apply our questioning to 
this new step, as shown in figure 2.10.

Buy products
Users search for
products�before

adding them to cart!

They use a
free query (name
or description).

They get products
matching the query.

Missing steps/hows can be
spotted by examining�input
sources and output usage ...

Search
using

products
free query

New goal added!
And where does
this free query

come from?

It‛s provided
by the API user.

How is this product
list used?

Users pick one of
them�to add it

to the cart.

Whats Hows GoalsInputs Outputs

...until they lead us to an already
identified goal or�to the API‛s users.

No missed
steps/hows here!

Figure 2.10   Adding a missing how



 29Identifying an API’s goals

What do users need to search for a product? Well, it’s a free text query; it can be a 
name or a description, for example. What does this search return? A list of products 
matching the query. How do users get the search query? They provide the search 
query themselves. How is the list of products used? Users pick one of them to add to 
the cart.

We’ve now dug into all the inputs and outputs until the answers led us to the API’s 
users or an already identified goal. This way, we’re sure there are no more missing steps 
on this path. Great. One problem solved. Let’s investigate the next step, check out cart, 
as shown in figure 2.11.

It needs a cart and returns an order. We will not investigate where the cart comes 
from (you can do that as an exercise), but what is done with the order? Why do we 
return it to the user? Maybe so the user can check the order’s status? Interesting, but 
I sense there’s more. Users will probably need to manage their orders. I think we have 
just spotted a missing what! So, let’s add a new manage orders answer to our “What can 
users do?” question and start our investigation.

Buy products
They�check out
(after�adding

products).

They need�a
shopping cart. They get an order.

Missing whats can
be spotted by

examining�input sources
and output usage.

Whats GoalsHows Inputs Outputs

Users manage
their orders.

Users may need
to�manage

their orders!

to get an order
Check out cart

What is done
with this order?

Figure 2.11   Adding a missing what



30 chapter 2 Designing an API for its users

How do users manage their orders? They should be able to list their orders in chrono-
logical order to check their status. So we have two steps to investigate. The resulting 
Shopping API goals list is shown in figure 2.12.

Users buy products.

They add a product
to the cart.

They need a product
and a shopping cart.

Add product
to cart

They check out
their cart.

They need a
shopping�cart.

They get nothing.

They get
an order.

Check out cart
to get an order

They search
for products.

They use a
free query (name
or description).

They get products
matching the query.

Search for products
using free query

Users manage
their orders.

They check
an order‛s status. They need an order.

Check order
to get its�status

They get the
order‛s status.

They list
their orders.� They need nothing. They get their

orders list. List orders

Investigate what is done, how it is done, what is needed and
where it comes from, what is returned and how it is used ...

...to identify accurately and
exhaustively the API‛s goals.

Figure 2.12   Shopping API goals list with the new user’s manage their orders what

First, list orders: What input is needed to list orders? Nothing. What is returned? A list 
of orders. Where do the inputs come from? We don’t need any input to list orders, so 
we don’t need to think about where the inputs come from. What is done with the out-
puts? Users can pick one of the orders in the list to check its status. Now we’re done 
with the first step of managing orders.

The second step, check order status: What input is needed to check an order’s status? 
An order. What is returned? An order status. Where does the order come from? From 
the check out cart or the list orders step. What is done with the order’s status? We want 
to provide this data to inform users, nothing more.

Fantastic. A new what, two more hows, and goals identified. So let’s enhance our 
questioning with two more questions to identify inputs sources and outputs uses:

¡	What can users do?
¡	How do they do it?
¡	What do they need to do it?
¡	What do they get in return?
¡	New question to identify missing goals: Where do the inputs come from?
¡	New question to identify missing goals: How are the outputs used?



 31Identifying an API’s goals

Investigating input sources and output uses definitely helps to spot missing API goals. 
But we are still not ready to design the programming interface. The goals list is still 
incomplete because I intentionally made yet another mistake. Do you know what it is? 
If you apply our questioning to our latest goals list, you should be able to find it. To 
tell the truth, there are many missing goals; we have only scratched the surface of the 
Shopping API’s goals. But the one I have in mind concerns the products returned by 
the search for products goal. The next section addresses that answer.

2.3.4 Identifying all users

We’ve said that users can search for products and add them to their carts, but where do 
those products come from? They come from the products catalog, of course! But these 
products don’t magically appear by themselves in this catalog. Someone must have put 
them there. As a customer, you don’t add products to the catalog yourself; some admin 
user does that. You see?

By simply applying our usual line of questioning, we’ve again spotted a hole in our 
Shopping API goals list. This is great! But instead of waiting to discover these users by 
investigating inputs and outputs, we could be more efficient by adding a new dimen-
sion in our questioning, as shown in figure 2.13.

Identifying the different types of users is mandatory when building an exhaustive API 
goals list. So we must add another inquiry to our line of questioning in order to explic-
itly identify them all:

¡	New question to identify all users and avoid missing whats: Who are the users?
¡	What can they do?
¡	How do they do it?
¡	What do they need to do it?
¡	What do they get in return?
¡	Where do the inputs come from?
¡	How are the outputs used?

Investigate who the users are, what they can do, how it is done,
what is needed and where it comes from, what is returned and

how it is used...
...to identify accurately and
exhaustively the API’s goals

Whats Hows Inputs Outputs GoalsWhos

Examine input sources and output
uses to spot missing whos, whats,

or hows

Figure 2.13   Investigating the whos, whats, hows, inputs, and outputs to identify goals



32 chapter 2 Designing an API for its users

If we first identify the different types of users of our API, we can build a comprehen-
sive goals list more easily. Note that the term user is used in a broad sense here; it can 
be an end user using the application consuming the API, the consumer application 
itself, or end user’s or consumer application’s roles or profiles. And remember, we 
can still rely on examining inputs and outputs to make sure we spot all users.

That makes a lot of questions to handle. Let’s see how we can make this questioning 
easier with an API goals canvas.

2.3.5 Using the API goals canvas

Now that we know which questions to ask and why we must ask them in order to iden-
tify an API’s comprehensive and precise list of goals, let’s see how we can handle this 
investigative process with an API goals canvas, as shown in figure 2.14.

The API goals canvas is nothing more than a table composed of six columns, match-
ing the process we have discovered through the previous sections:

¡	Whos —Where you list the API’s users (or profiles)
¡	Whats —Where you list what these users can do
¡	Hows —Where you decompose each of the what’s into steps
¡	Inputs (source) —Where you list what is needed for each step and where it comes 

from (to spot missing whos, whats, or hows)
¡	Output (usage) —Where you list what is returned by each step and how it is used 

(to spot missing whos, whats, or hows)
¡	Goals —Where you explicitly and concisely reformulate each how + inputs + 

outputs

Whats Hows Inputs (source) Outputs (usage)Whos Goals

Who are
the users?

What can
they do?

How do they
do it?

What do
they need?

Where
does it come

from?

What do
they get?

How is
it used?

Reformulate
how + inputs

+ outputs

Start
here

Examine input
sources and output
uses to spot missing

whos, whats, or
hows.

on a�whiteboard, flipchart, sheet of paper, or spreadsheet�and start thetableDraw this� questioning.

Figure 2.14   The API goals canvas



 33Identifying an API’s goals

Figure 2.15 shows a partial view of the API goals canvas for our Shopping API. The 
API goals canvas and its underlying questioning method help you envision who uses 
the API, what they can do with it, how they do it, what they need, and what they get in 
return. These are the fundamental pieces of information you need to design the pro-
gramming interface representing the identified goals.

You might have noticed that we did not talk about fine-grained data and errors. We 
will talk about those later in chapter 3 (section 3.3) for fine-grained data and in chapter 
5 (section 5.2) for errors. The API goals canvas is only a high-level view; you should not 
dive too much into details at this stage.

Be warned that even without diving too much into such details, filling an API’s goals 
can be quite difficult in some complex contexts. There can be many users/profiles 
or too many whats use cases to deal with. This isn’t specific to API design; this hap-
pens when designing any software solution. Do not try to cover all use cases in one 
shot. Instead, focus on a small set of use cases. If a what contains many steps or many 
branches, focus on the main path and, after that, check if there are variations leading 
to new goals in other paths. The same goes for users: trying to explore all whats for all 
users or profiles can be difficult. Focus on the main user or profile, and after that check 
if there are variations for others.

Listing an API’s goals is an iterative process. You have to proceed step by step— not 
trying to do everything at once. And you will also have to refine and modify this list 
based on some considerations or constraints like usability, performance, or security. 
You will discover those throughout the rest of this book.

NOTE   Feel free to adapt this method and tool, or use any other one you are 
familiar with, as long as it enables you to get the information listed in the API 
goals canvas.

Whats Hows Inputs (source) Outputs (usage)Whos Goals

Customers Buy products Search for
products

Catalog (manage catalog),
free query (provided by

user)

Products (add
product to cart)

Search for products
in catalog using

free query

Add product
to cart

Product (search for
products), cart
(owned by user)

Add product to cart

Admin Manage catalog Add product
to catalog

Catalog (owned by user),
product (provided by

user)

Add product
to catalog

Figure 2.15   The Shopping API goals canvas (partial view)



34 chapter 2 Designing an API for its users

Unfortunately, this method does not guarantee that your API goals list will be defined 
from the consumer’s perspective. Yes, the first question (“Who are the users?”) doesn’t 
prevent the provider’s perspective from surfacing in your API’s goals. To be sure you 
don’t fall into one of its traps while building your API goals list, we need to investigate 
the various facets of the treacherous provider’s perspective.

2.4 Avoiding the provider’s perspective when 
designing APIs
Whether you’re designing your API from scratch or basing it upon existing systems, 
the provider’s perspective will inevitably show up in every stage of its design. Being 
aware of its various facets is fundamental for any API designer who hopes to stay on the 
consumer’s perspective path and design easy-to-understand and easy-to-use APIs.

Do you remember our Kitchen Radar 3000 API? Its name laden with history, and 
its user-unfriendly Turn magnetron on/off goals. Exposing the inner workings was a 
blatant example of API design heavily influenced by the provider’s perspective. Unfor-
tunately, this perspective is not always so obvious, but there’s an adage popular among 
people working in software design that brings into the light the dark corners of the 
provider’s perspective. It is known as Conway’s law, and it is often quoted to explain how 
a system’s design can be influenced by its inner workings. It states that

“Any organization that designs a system (defined broadly) will produce a design whose 
structure is a copy of the organization’s communication structure.”

Mel Conway 
"How Do Committees Invent?" 

Datamation, April 1968

This adage can be applied to a wide range of systems, from human organizations to soft-
ware systems and, of course, APIs. It means that an API’s design can be influenced by 
the communication structure of the organization providing it, as shown in figure 2.16.

API design may be influenced by different facets of the provider’s perspective.

Human organizationCode Software architectureData

Figure 2.16   The different facets of the provider’s perspective



 35Avoiding the provider’s perspective when designing APIs

Data, code and business logic, software architecture, and human organization shape 
the communication structure of a company and, therefore, can influence the design 
of its APIs.

2.4.1 Avoiding data influences

An API is fundamentally a way to exchange data between two pieces of software— a 
consumer and a provider. Therefore, it is unfortunately common to see API designs 
that mirror the underlying data organization. How data is structured or named can 
influence the design of the API, as shown in figure 2.17.

Let’s say our Shopping API implementation handles customer information in two tables 
called CUSA and CUSB (don’t ask me why!). An API design influenced by such a data 
structure could bluntly expose two goals: read CUSA and read CUSB. Such an API is 
hard to understand. What do CUSA and CUSB mean exactly? (I’ll also let you imagine 
the tables' cryptic column names that might be directly exposed to the consumer.) It is 
also hard to use! Consumers have to use two goals to retrieve all customer data.

WARNING   If your API’s goals list and data match your database too closely, 
whether in structure or name, you might be designing your API from the pro-
vider’s perspective. In that case, don’t hesitate to double check if it’s really rele-
vant for the API’s users to have access to such details.

Frankly, exposing your database model is more often than not a terrible idea and can 
lead to an unappealing user experience. Hopefully, figure 2.18 shows how we could fix 
such a problem.

Implementation

data

CUSA CUSB

API

Database

API’s goalsis stored in two tables that are exposed by the�

Will consumers
understand easily
what CUSA and
CUSB mean?

The customers’

Read CUSA Read CUSB

Figure 2.17   Exposing the data organization through the API



36 chapter 2 Designing an API for its users

API

API

API

Sometimes a simple
renaming may fix

the problem ...

...but you will usually need to
replace fine-grained
data-oriented goals
with a higher-level
consumer-oriented

abstraction.

Provider‛s
perspective

Consumer‛s
perspective

Read CUSA Read CUSB

Read customer
information A

Read customer
information B

Get customer‛s
information

Figure 2.18   Fixing data organization exposure

Renaming the read CUSA and read CUSB goals as read customer information A and 
read customer information B is one idea, but that doesn’t really improve the user expe-
rience. Such goals, even if their meaning is easier to understand, are still exposing 
the provider’s perspective. It would be better to replace these two fine-grained, data- 
oriented goals with a single, higher-level get customer’s information goal that is more 
consumer-oriented and both easy to understand and use.

Mapping data organization and names to API goals and data can make the API hard 
to understand and use. Using the API goals canvas and focusing on what users can do 
should allow you to easily avoid such design problems, but they still can happen. So, 
while you are identifying the API’s goals, you should always check that you are not both-
ering the consumers by unnecessarily exposing your data model through whats, hows, 
inputs, or outputs.

Exposing the data model is the most obvious sign of the provider’s perspective, but 
this is not the only way it can manifest. How we manipulate the data can also be exposed 
through an API, and this too is a terrible idea.

2.4.2 Avoiding code and business logic influences

The code that manipulates data— the implementation’s business logic— can influence 
API design. Exposing such logic through the API can bother not only the consumer 
but also the provider. Figure 2.19 shows such an example.



 37Avoiding the provider’s perspective when designing APIs

Implementation

address 2

address 1

active

inactive

Customer's addresses
A customer has only
one (active) address.

Addresses are not
deleted but marked

as inactive.

Adds an address in
customer’s address

list

Retrieves all
customer’s
addresses

Sets address to
active or inactive

Consumers may understand
the meaning of each goal

but may not understand easily
how to use them�separately

or together.

API

List customer’s
addressesAdd address Update address

status

Figure 2.19   Exposing business logic through the API

Let’s say that for our Shopping API’s implementation, each customer has a single 
active address. But addresses in the system are never deleted; instead, their status is set 
to inactive when the customer moves. An API design influenced by this business logic 
could provide these provider-oriented goals:

¡	List customer’s addresses (active and inactive)
¡	Add an address for customer
¡	Update an address status (to active or inactive)

The words used to describe these goals are understandable, but the overall purpose of 
the goals might not be obvious to a consumer who doesn’t know exactly how the system 
handles addresses. These goals expose how the data is processed internally; figure 2.20 
shows how they have to be used.

Consumer

API

Update address
status Add address

new
address active

address 2 active

The consumer
retrieves all
the customer‛s
addresses ...

...selects the
active one ...

...updates its status
to inactive ...

address 2 inactive ...and finally
adds a new
active�address.

API

Update customer‛s
address

Consumer

new
address

The consumer
simply provides

the new address.

Provider‛s perspective, delegating business
logic to the consumer. The API is unsecure

and hard to understand and use.

Consumer‛s perspective, hiding business
logic from the consumer. The API is secure

and easy to understand and use.

1

2

4

address 2

address 1

active

inactive

Customer's addresses

3

List customer‛s
addresses

Figure 2.20   Fixing business logic exposure



38 chapter 2 Designing an API for its users

The left side of figure 2.20 shows how to change a customer’s address using this API. 
Consumers have to list the existing addresses to spot the active one, update it to set its 
status to inactive, and then add a new active address. Quite simple, no? Not at all! It is 
awfully complex and such a process could easily go wrong. What if consumers do not 
set the previous address to inactive? This could be terrible for data integrity— the pro-
vider is at risk here.

Thankfully, there is a simple solution shown on the right side of figure 2.20. This 
whole complex and dangerous mess could be replaced by a simple update customer’s 
address goal. The implementation could do the rest, just like when we let the underly-
ing circuitry handle the magnetron on/off cycle for our Kitchen Radar 3000 API.

Exposing internal business logic can make the API hard for the consumer to use and 
understand, and can be dangerous for the provider. Again, using the API goals canvas 
and focusing on what users can do should let you easily avoid such design problems, but 
they still can happen.

TIP   While you are identifying the API’s goals, you should always check that 
you are not inadvertently exposing internal business logic that is not the con-
sumer’s business and that could be dangerous for the provider.

We were only dealing with a single software component here. How might things go if 
we want to build APIs based upon a more complex system involving multiple applica-
tions interacting with each other? The provider’s perspective is a problem here too.

2.4.3 Avoiding software architecture influences

Partly thanks to APIs, it’s very common to build systems based on different pieces of 
software that communicate with each other (remember section 1.1.2 in chapter 1). 
Such a software architecture can influence API design in the same ways as internal 
business logic. Figure 2.21 shows such an example.

Implementation

Shopping
API

Search for
products Get product’s price

Catalog Description API

Search for
products

Catalog Pricing API

Get product’s
price

The API totally mirrors the
underlying�software architecture.

The Shopping API implementation
actually does nothing.

Only retrieve
product descriptions

Only retrieve
a product’s price

Two underlying systems
handle product information.

Figure 2.21   Exposing software architecture through the API



 39Avoiding the provider’s perspective when designing APIs

Let’s say that, for our shopping system, we’ve decided to handle product descriptions 
and product pricing in two different backend applications. There are many good (and 
bad) reasons to do that, but that’s not the issue here. Whatever the reasons, it means 
that product information is hosted in two different systems: Catalog Description and 
Catalog Pricing. A Shopping API designed from the provider’s perspective can bluntly 
expose those two systems with a search for products goal that only retrieves product 
descriptions and a get product’s price goal that returns a product’s price. What does 
this mean for the consumers? Nothing good. Let’s look at that in figure 2.22.

Consumer

Product 1 Price 1

Product 2 Price 2

Shopping
API

Search for
products

Product 1

Product 2

Products Product 1

Products

Product 2

Price 1
Price 2

Consumer
retrieves
product
descriptions...

...and then retrieves
price for each

product.

Provider’s perspective, exposing underlying
architecture to the consumer. The API is

hard to understand and use.

Search for
products

Consumer

Product 1 Price 1

Product 2 Price 2

Products

Consumer retrieves all products
information in one call

Consumer’s perspective, hiding underlying
architecture from the consumer. The API is

easy to understand and use.

1
2

Shopping
API

Get product’s
price

Figure 2.22   Fixing software architecture exposure

The left side shows that in order to search for products and show relevant informa-
tion to a customer (like description and price), a consumer might first have to use the 
search for products goal to get the descriptions, and then retrieve each found prod-
uct’s price using the get product’s price goal to gather all the relevant information. 
That’s not really consumer-friendly.

Consumers don’t care about your software architecture choices. What they care 
about is seeing all the information they need about products when they search for 
them. It would be better to provide a single search for products goal and let the imple-
mentation gather the necessary information from the underlying Catalog Description 
and Catalog Pricing systems, as shown on the right side of the figure.

Mapping the API design to the underlying software architecture can make the API 
hard for consumers to understand and use. Once again, using the API goals canvas and 
focusing on what users can do should allow you to easily avoid such design problems, but 
they still can happen. So while you are identifying the API’s goals, you should always check 
that your whats and hows are not the result of your underlying software architecture.



40 chapter 2 Designing an API for its users

We’re almost done with our exploration of the different facets of the provider’s per-
spective. After data, code and business logic, and software architecture, there’s only one 
left. It’s the most treacherous one: human organization.

2.4.4 Avoiding human organization influences

As long as there is more than one person in an organization providing APIs, you will 
be confronted with the human organization aspect of the provider’s perspective. This 
is the fundamental source of Conway’s law, mentioned earlier. People are grouped in 
departments or teams. All these different groups interact and communicate in various 
ways, using various processes that will inevitably shape all the different systems inside 
the organization, including APIs.

Let’s say our organization that provides the Shopping API is split into three differ-
ent departments: the Order department that handles customer orders, the Warehouse 
department that handles the product warehouse and packaging, and the Shipment 
department that handles the shipment of packages to customers. Figure 2.23 shows the 
resulting Shopping API designed from provider’s and consumer’s perspectives.

Shopping
API

Orders
department

Warehouse
department

Shipment
department

Check out cart Prepare order Ship orderAdd product
to cart

Provider’s
perspective

Provider’s
perspective

Shopping
API Check out cartAdd product

to cart

Orders
department

Warehouse
department

Shipment
department

Prepare order Ship order

After adding products to
the cart, the consumer

can check it out.

But there’s no need to bother�the
consumer with the order’s
preparation and shipment.

Consumers see only what
they really need.

The rest of the process
is handled internally.

Figure 2.23   Avoiding human organization exposure

If designed from the provider’s perspective, our API can expose goals matching this 
human organization. The problem with these API goals is that they will expose the 
organization’s inner workings in a way that is totally irrelevant to people outside the 
organization.

If consumers want to order goods for customers, they will have to use the add prod-
uct to cart, check out cart, prepare order, and ship order goals. We are again exposing 



 41Avoiding the provider’s perspective when designing APIs

things that are not the consumer’s business. What reason is there for a consumer to use 
the goals prepare order and ship order? Absolutely none. From a consumer’s point 
of view, everything should stop at the check out cart goal. When a consumer uses the 
check out cart goal, the implementation should deal with the Warehouse department 
to trigger the order’s preparation, and the Warehouse department should deal with the 
Shipment department to trigger the order’s shipping. The rest of the process should be 
handled internally.

Mapping API design to the underlying human organization can make the API hard 
to understand, hard to use, and even totally irrelevant. Using the API goals canvas 
and focusing on what users can do should, as before, let you easily avoid such design 
problems— but they still can happen. So, while you are identifying the API’s goals, you 
should always check if your whats and hows are really the consumer’s business.

In the end, all the different aspects of the provider’s perspective relate to exposing 
aspects that are not the consumer’s business through the API. Let’s see how we can 
include this matter in our API goals canvas.

2.4.5 Detecting the provider’s perspective in the API goals canvas

You have learned that to identify an API’s goals, you need to dig into the whos, whats, 
hows, inputs and their sources, and, finally, outputs and their usage. With this method, 
you should be able to avoid the most obvious intrusions of the provider’s perspective 
without thinking too much about it. But you also saw that the provider’s perspective 
can be treacherous and not so obvious. Fortunately, our investigations into the provid-
er’s perspective showed us its different facets and how it can be spotted by simply con-
sidering if what we have identified is really the consumer’s business. Figure 2.24 shows 
a final update to our API goals canvas in order to be fully ready to build a comprehen-
sive and consumer-oriented API goals list.

Whats Hows Inputs (source) Outputs (usage)Whos Goals

Who are
the users?

What can
they do?

How do they
do it?

What do
they need?

Where
does it come

from?

What do
they get?

How is
it used?

Reformulate
how + inputs

+ outputs

Start
here

Examine input sources
and output uses to
spot missing whos,

whats, or hows.
Is all this really

consumer’s
business?

Check that you are not exposing inner-working
concerns (data, code and business logic, software

architecture, human organization).

on a�whiteboard, flipchart, sheet of paper, or�spreadsheet�and start thetableDraw this questioning

Figure 2.24   The updated API goals canvas



42 chapter 2 Designing an API for its users

As you can see, all we need to do is add the final question: “Is all this really the consum-
er’s business?” With this question, as you have seen, we will check if any element comes 
from the provider’s perspective (data, code and business logic, software architecture, 
or human organization). An API goals list established with this canvas will be a strong 
foundation for the design of the programming interface. In the next chapter, you’ll 
discover how to design such a programming interface based on an API goals list.

Summary
¡	To be easy for consumers to understand and use, an API must be designed from 

the consumer’s perspective.
¡	Designing an API from the provider’s perspective by bluntly exposing inner 

workings (data, code and business logic, software architecture, and human orga-
nization) inevitably leads to hard-to-understand and hard-to-use APIs.

¡	A comprehensive and consumer-oriented API goals list is the strongest founda-
tion for an API.

¡	Identifying users, what they can do, how they do it, what they need to do it, and 
what they get in return is the key to building a comprehensive API goals list.



43

3Designing a 
programming interface

This chapter covers
¡	Transposing API goals into a programming 

interface

¡	Identifying and mapping REST resources and 
actions

¡	Designing API data from concepts

¡	Differentiating between REST APIs and the 
REST architectural style

¡	Why the REST architectural style matters for API 
design

In the previous chapter, you learned how to identify an API’s goals— what users can 
achieve using it. For a Shopping API, some of these goals could be search for prod-
ucts, get product, add product to cart, check out cart, or list orders. These goals 
form the API’s functional blueprint that we will use to design the actual program-
ming interface that is consumed by its users (developers) and their software. To 



44 chapter 3 Designing a programming interface

design this programming interface, we will transpose these goals and their inputs and 
outputs according to an API style, as shown in figure 3.1.

Shopping API
server

No problem,
here it is!

Consumer

Hi, can I have the
information on the product

whose id is P123?

GET /products/P123

200 OK

{
  "reference": "P123",
  "name": "The Design of Web APIs",
  "price": 44.99 
}

REST
API

Request

Response

Get product

Goal API style

Output data

Input data

Figure 3.1   REST programming interface for the get product goal

REST stands for Representational State Transfer. Here, the REST API style transposes 
the get product goal into a programming interface. It is represented by a GET /prod-
ucts/{productId} request, where productId is an input parameter (here its value is 
P123), and a 200 OK is a response with some output data consisting of the reference, 
name, and price properties. How do we design such a programming interface?

Representing goals using REST or any other type of programming interface requires 
that you first understand how it works. Indeed, what do these GET, /products/{pro-
ductId}, or 200 OK mean, for example? Without knowing that, you will be unable to 
actually design such a programming interface. Once you have some basic knowledge, 
you can analyze the goals and represent them according to the chosen API style. You 
also have to design data exchanged through the API more accurately than what we 
did when filling in the API goals canvas. The process is similar to what you do when 
programming.

That sounds quite straightforward, doesn’t it? But things are not always that simple. 
After learning how to transpose basic goals to a programming interface, you might real-
ize that some of your goals cannot be represented easily. In such cases, you have to find 
a path between user-friendliness and compliance with the chosen API style in order to 
come up with the best possible representation.

After all this, you may wonder what Representational State Transfer actually means 
and why it has been chosen as the main example programming interface for this 
book. To teach API design, why use REST APIs? Why are these APIs better than oth-
ers? Although they are widely adopted, there’s a far more important reason behind this 
choice: REST APIs are based on the REST architectural style, which relies on solid foun-
dations that are useful to know when designing any type of API. We’ll get to that soon, 
but first things first. Let’s talk about some basic REST API principles.



 45Introducing REST APIs

3.1 Introducing REST APIs
To gain sufficient knowledge about REST APIs in order to actually design one, we will 
analyze the REST API call made by a consumer of the Shopping API to get a product’s 
information, as seen in this chapter’s introduction (figure 3.1). We’ll take for granted 
that the REST representation of this goal is GET /products/{productId}, and we will 
work on the GET /products/P123 example. If you remember section 1.1.1, you should 
guess that this request has something to do with the HTTP protocol. This analysis will 
show us how HTTP is actually used by this call. After that, we will be able to dive into 
the HTTP protocol and the basic principles of REST APIs.

3.1.1 Analyzing a REST API call

What happens when a consumer wants to complete the goal get product? Or, more spe-
cifically, what happens when they want to get detailed information about a product 
with the ID P123 from the products catalog using the REST Shopping API? Consumers 
have to communicate with the server hosting the API using the HTTP protocol, as 
shown in figure 3.2.

Shopping API
server

No problem, here’s the
requested resource’s

content.
Consumer

Hi, can I have the
information on the product
whose reference is P123?

GET /products/P123

200 OK

{
  "reference": "P123",
  "name": "The Design of Web APIs",
  "price": 44.99 
}

HTTP request

HTTP response

Response body
(JSON data)

HTTP method Path (representing the P123 product)

HTTP status code
and reason phrase

Figure 3.2   A REST API call using the HTTP protocol

Because this goal is represented by GET /products/{productId}, the consumer has 
to send a GET /products/P123 HTTP request to the Shopping API server. In reply, 
the server returns an HTTP response containing 200 OK, followed by the requested 
product’s information. (Note that this HTTP exchange has been simplified in order to 
focus only on the elements that matter to us.)

The request is composed of the GET HTTP method and the /products/P123 path. 
The path is an address identifying a resource on the server; in this case, the P123 prod-
uct in products. The HTTP method indicates what the consumer wants to do with this 



46 chapter 3 Designing a programming interface

resource: GET means that they want to retrieve the resource. From a functional perspec-
tive, such a request means something like, “Hi, can I have the information on the prod-
uct whose ID is P123?” But from the HTTP protocol’s perspective, it means, “Hi, can I 
have the resource identified by the /products/P123 path?”

The first part of the response is composed of the 200 HTTP status code and its OK 
reason phrase. The HTTP status code tells us how the processing of the request went. 
Thanks to the reason phrase, we can guess that the 200 HTTP status code means that 
everything went OK. The second part of the response is called the response body. It con-
tains the content of the resource identified by the path in the request, which, in this 
case, is the P123 product’s information represented as JSON data.

From a functional perspective, the response returned by the API server basically 
means, “Sure, here’s the requested product’s information.” From the HTTP perspec-
tive, it means, “No problem, here’s the requested resource’s content.”

The JSON data format
JSON is a text data format based on how the JavaScript programming language describes 
data but is, despite its name, completely language-independent (see https://www.json 
.org/). Using JSON, you can describe objects containing unordered name/value pairs 
and also arrays or lists containing ordered values, as shown in this figure.

{
  "aString": "a string value",
  "aNumber": 1.23,
  "aBoolean": true,
  "aNullValue": null
  "anObject": {
    "name": "value"
  }
}

[
  { "aString": "one",
    "aNumber": 1 },
  { "aString": "two",
    "aNumber": 2 },
  { "aString": "three",
    "aNumber": 3 }
]

A JSON object A JSON array

Example of JSON documents

An object is delimited by curly braces ({}). A name is a quoted string ("name") and is sep-
arated from its value by a colon (:). A value can be a string like "value", a number like 
1.23, a Boolean (true or false), the null value null, an object, or an array. An array is 
delimited by brackets ([]), and its values are separated by commas (,).

The JSON format is easily parsed using any programming language. It is also relatively 
easy to read and write. It is widely adopted for many uses such as databases, configura-
tion files, and, of course, APIs.

 

Now you know how consumers can call the Shopping API to achieve the get product 
goal. But the HTTP protocol is not made just to retrieve JSON documents.

https://www.json.org/
https://www.json.org/


 47Introducing REST APIs

3.1.2 Basic principles of HTTP

HTTP is the foundation of communication for the World Wide Web. It is a program-
ming language-agnostic protocol that is designed to allow the exchange of documents 
(also called resources) between applications over the internet. HTTP is used by a wide 
range of applications, the best known of which are web browsers.

A web browser uses HTTP to communicate with a web server hosting a website. When 
you type a URL (such as http://apihandyman.io/about) in the browser’s address bar, it 
sends a GET /about HTTP request to the server hosting apihandyman.io, just like when 
an API consumer sends a request to a REST API server. The response sent by the server 
contains a 200 OK HTTP status followed by the HTML page corresponding to the URL.

Browsers use the protocol to retrieve any type of resource (document): HTML 
pages, CSS files, JavaScript files, images, and any other documents that are needed by 
the website. But that’s not its only use. When you upload a photo to a social networking 
website, for example, the browser uses the HTTP protocol, but this time to send a doc-
ument to a server. In this case, the browser sends a POST /photos request with a body 
containing the image file. The HTTP protocol can therefore also be used to send the 
content of a resource.

HTTP requests and responses always look the same regardless of what is requested 
and what is the result of the processing of the request (figure 3.3).

HTTP responseHTTP request

the caller wants to do with this resource dataWhat and this

<HTTP method> <Resource's URL>

<Optional body>

<HTTP status code> <Reason phrase>

<Optional body>

How the request’s processing went and the resource’s content

Figure 3.3   The basic structure of an HTTP request and response

Whatever its purpose, a basic HTTP request contains an HTTP method and a resource’s 
path. The HTTP method indicates what is to be done with the resource identified by the 
path. You have already seen two HTTP methods—GET to retrieve a resource and POST 
to send one— and you will discover more later in this chapter.

This first part of the request can be followed by a body containing the content 
of the resource that needs to be sent to the server to create, update, or replace a 
resource, for example. This content can be of any type: a JSON document, a text file, 
or a photo, for example.

As mentioned previously, the HTTP response returned by the server always contains 
a status code and explanatory reason phrase. This indicates how the processing of the 
request went— if it was a success or not. You have so far seen only one HTTP status code, 
200 OK, but you’ll discover more later in this book (like the well-known 404 NOT FOUND 

http://apihandyman.io/about


48 chapter 3 Designing a programming interface

that will be explained in section 5.2.3). This first part of the response can be followed 
by a body containing the content of the resource that was manipulated by the request. 
Like the request’s body, this content can be of any type.

The HTTP protocol seems quite simple. But are REST APIs that use this protocol 
that simple?

3.1.3 Basic principles of REST APIs

You have seen that using the REST Shopping API for the get product goal, consumers 
have to send an HTTP request to the server hosting the API. This request uses the 
GET HTTP method on the /products/{productId} path that identifies the product. If 
everything is all right, the server returns a response that contains an HTTP status indi-
cating that, along with the product’s data. You also saw that if a web browser wants to 
retrieve a page from my apihandyman.io blog, it sends an HTTP request. This request 
uses the GET HTTP method on the page’s path (/about, for example). If everything is 
all right, the web server also returns a response containing a 200 OK HTTP status and 
the page’s content. Exactly the same thing happens!

Both the web server and the Shopping API server expose an HTTP interface that 
respects the HTTP protocol’s expected behavior. A basic REST API not only uses the 
HTTP protocol, it totally relies on it, as shown in figure 3.4.

Get product GET /products/{product's reference]

HTTP method

Goal
REST
representation

Resource path

Action Functional concept
(REST resource)

Figure 3.4   Mapping a goal to an HTTP request

To let its consumers achieve their goals, a REST API allows them to manipulate 
resources identified by paths using standardized HTTP methods. A resource is a func-
tional concept. For example, /products/{productId} identifies a specific product in 
the products catalog. This path identifies a product resource. The GET HTTP method 
represents the retrieve action that can be applied to this resource to actually get the 
product.

A REST API call is nothing more than an HTTP call. Let’s see now how we get from 
the get product goal to GET /products/{product’s reference}—how we transform 
goals to HTTP method and path pairs.



 49Transposing API goals into a REST API

3.2 Transposing API goals into a REST API
You have discovered that a REST API represents its goals using the HTTP protocol. 
Goals are transposed into resource and action pairs. Resources are identified by 
paths, and actions are represented by HTTP methods. But how do we identify these 
resources and actions? And how do we represent them using paths and HTTP methods?

We do what has always been done in software design. We analyze our functional 
needs to identify resources and what happens to them before transposing them into a 
programmatic representation. There are many software design methods that you could 
use to identify resources and what you can do with them based on some specifications, 
like the API goals canvas from the previous chapter. This book, however, shows a very 
simple method in four steps (see figure 3.5).

Represent actions with HTTP.Design resource paths.
Identify actions,

parameters, and returns.
Identify resources

and relations.

Resource

Another
resource

1 2 3 4

Action

Parameters
Returns

Resource

POST

Parameters
in body Content of

/resources/{resourceId}

/resources/resources

/resources/{resourceId}

Figure 3.5   From goals to REST API

First, we have to identify resources (functional concepts) and their relationships (how 
they are organized). Then we have to identify for each resource the available actions 
and their parameters and returns. Once this is done, we can proceed to the actual 
HTTP programming interface design by creating resources paths and choosing HTTP 
methods to represent actions.

In the following sections, we’ll walk through this process in more detail. Here, we 
only talk about the nominal case, when everything is 200 OK. We will talk about error 
handling in section 5.2.

NOTE  Once you’re familiar with the process of mapping goals to resource 
paths and HTTP methods using this method, feel free to adapt it or use your 
preferred software design method as long as you achieve the same result.

3.2.1 Identifying resources and their relationships with the API goals 
canvas

The API goals canvas you discovered in chapter 2 describes who the users are, what they 
can do, how they do it, what they need to do it, and what they can get in return. We can 
use this information to identify the API goals that we will transpose into a REST API. To 



50 chapter 3 Designing a programming interface

practice on a basic but complete example, I have enhanced the manage catalog part of 
the Shopping API goals canvas we began working with in chapter 2 (figure 3.6).

Whats Hows Inputs (source) Outputs (usage)Whos Goals

Admin
users Manage catalog Add product

Get product’s
information

Update product’s
information

Replace product

Delete product

Search for products

Catalog (API),
product info (user)

Catalog (API),
free query (user)

Product (search, add)

Product (get, search,
add), updated
info (user)  

Product (get, search,
add), new product

info (user) 

Product
(get, search, add)

Add product to catalog
Added product (get,

update, delete, replace)

Product info (user) Get product

Update product

Replace product

Delete product

Products matching
query (get, update,

delete, replace)

Search for products in
catalog using
a free query

We will transpose these goals into a REST API.This table is an API goals canvas (see chapter 2).

Figure 3.6   The API goals canvas for the manage catalog what

As you can see in this figure, when managing the product catalog, admin users can add 
a product to the catalog. They can also retrieve a product’s information and update, 
replace, or delete it. Finally, it’s possible to search for products using a free query. Fig-
ure 3.7 shows how we simply analyze the API goals and list all the nouns to which the 
goals' main verbs apply for identifying resources.

using a free query

applies to identify

Delete product

catalog

product

nouns resourcesList

Free query is not a resource;
“using” is not the main verb
in this goal.

Update product

Get product

Replace product

main verbto which

Goals from
the API

goals canvas

toproduct catalogAdd

inproducts catalogSearch for

Figure 3.7   Identifying resources



 51Transposing API goals into a REST API

When we add a product to the catalog, the main verb is add, and it is applied to both 
the product and catalog resources. When we get a product, the main verb is get, and it 
is applied to the product only. But when we search for products in the catalog using a 
free query, free query is a noun, not a resource, because the search verb does not apply to 
it directly. Therefore, we can identify two resources: catalog and product.

Now let’s see how these resources are related. To discover the resources' organiza-
tion, we list goals mentioning more than one resource (see figure 3.8).

 to identify 

Get product

Update product

Replace product

Delete product

catalog

product

resourceCheck goals with more than one relations

contains many

Add product to catalog

These goals
don’t mention

more than
one resource.

This is a collection. Same type
of resource

contains many

Collection
of resource

Same type
of resourceSame type

of resource

Resource

Resource

has a

Resource
with no relation Resources

relationsSearch for products in catalog using a free query

Figure 3.8   Identifying resource relationships

We have two goals dealing with more than one resource. In the first one, we add a 
product to the catalog. In the second one, we search for products in the catalog.

Resources may or may not have relationships to other resources, and a resource can 
contain some other resources of the same type. Such a resource is called a collection 
resource or simply collection. In our case, the catalog resource is a collection: it contains 
product resources. If we were designing an API related to city planning, a city could be a 
collection resource containing many building resources. A resource can also be linked 
to other resources; for example, a building resource could be linked to an address 
resource.

We have identified our catalog and product resources and how they are related. 
What can we do with them?



52 chapter 3 Designing a programming interface

3.2.2 Identifying actions and their parameters and returns with the API 
goals canvas

A REST API represents its goals through actions on resources. To identify an action, 
we take the goal’s main verb and link it to the resource to which it applies, as shown in 
figure 3.9.

using a free queryAdd 

Get Update

Replace
Delete product

Search for  products to catalog

productproduct

product

in catalog

update

replace delete

catalog

product

contains many

add
search

get

actionAn is  a goal’s main verb and applies to the goal’s main resource

product products

Figure 3.9   Identifying actions

This is straightforward for goals with a single resource, such as get product, where the 
verb get applies to the product resource. But what about the goals add product to cata-
log and search for products in catalog using a free query? Do we link add and search to 
product or catalog? We add a product to the catalog and we search for products in the 
catalog; in this use case, add and search are linked to the catalog resource. That means 
we link the verb to the main resource (catalog) that is used or modified— the other 
one (product) is only a parameter or a return.

These actions might need some additional parameters and can return some infor-
mation. Fortunately, we’ve already identified these parameters and returns; the API 
goals canvas comes with a complete list of inputs (parameters) and outputs (returns), as 
shown in figure 3.10.



 53Transposing API goals into a REST API

Inputs Outputs Goals

Catalog,
product info

Add product to catalogAdded product

catalog

add

product
info

Inputs Outputs Goals

Catalog, 
free query

Search for products in
catalog using
a free query

Products matching
query

search

free
query

Inputs and outputs simply come
from the API goals canvas.

Inputs are filtered to remove the
resource to which the action applies.

added
product

matching
products

Figure 3.10   Identifying action parameters and returns

We just need to filter the inputs because some of them can be resources to which the 
action is applied. When we apply add to the catalog resource, we need some product 
information as an input; and, in return, we get the newly created product resource. We 
provide a free query to the search action that is applied to the catalog resource, and this 
action returns the matching product resources. We then do exactly the same thing for 
actions applied to the product resource, and we’re done! We have identified all the 
resources and their actions, including parameters and returns, by analyzing the API 
canvas and its goals (figure 3.11).

catalog

add

search

product
info

free
query

product
contains

get

update

product
info

replace

product
info

delete

added
product

matching
products

product

Figure 3.11   All the identified resources and actions



54 chapter 3 Designing a programming interface

As you can see, this process is not really different from what you do when you design 
the implementation of software. It takes a long time to describe how to do this in a 
book, but actually doing it takes only a couple of minutes with the API canvas. Let’s 
now see how we represent all of this with the HTTP protocol. We will start by represent-
ing resources with paths.

3.2.3 Representing resources with paths

By analyzing the API goals canvas, we have identified two resources: catalog and 
product. We also have discovered that the catalog resource is a collection of product 
resources. How can we design these resources' paths? Figure 3.12 shows how to do so.

catalog

product

contains
many

A path may contain
variables such as

technical identifiers.

/c

/{productId}

contains
many

A REST resource path
is unique.

I am the only
/P123

P123

C

Looks ridiculous
in the real world

Being explicit
is more user-friendly.

Product P123

Catalog
I am an explicit
user-friendly

interface

/catalog

/product-{productId}

A URL should be
explicit.

contains
many

I am
/product-P123

I am the
catalog

Looks better
in the real world

I am a
non-user- friendly

interface

The only REST requirement Uniqueness must not be achieved at the expense of user-friendliness.

Figure 3.12   A REST resource’s path. The only requirement is that it must be unique, but it should also 
be explicit.

A REST resource’s path only needs to be unique. To identify the catalog, we could use 
a /c path. For products, we could use the product reference or technical ID and build 
a /{productId} path with it (/P123, for example). Such variables in paths are called 
path parameters. The /c and /{productId} paths are perfectly valid REST paths because 
they are unique.

But let’s be frank. What would you think about such an interface in the real world? 
This is not really consumer-friendly; and, remember from chapter 2, we should always 
design an API for its users. It would be better to choose paths that indicate explicitly 
what they represent. Why not simply use /catalog for the catalog resource and /prod-
uct-{productId} for the product resource? That sounds good, but these paths are not 
the only possibilities, as figure 3.13 shows.



 55Transposing API goals into a REST API

rectangle

/products/{productId}

/products

contains
many

contains
many

A URL should also reflect
the resource‛s type.

rectangle

/catalog/{productId}

/catalog

contains
many

A URL should reflect the
resource's relationships. I am an item

in the catalog.

I am a collection
of products.

rectangle

product

catalog

Figure 3.13   A REST resource’s path should expose hierarchy and type.

To improve user-friendliness, the relationship between the catalog and product 
resources could be reflected in the paths like in the folder hierarchy you find on a 
filesystem. Each product resource is an item in the catalog collection identified by 
/catalog, so we could choose the path /catalog/{productId} to represent a product. 
We could also explicitly indicate that a catalog is a collection of product resources by 
using a /products path, with a product from this collection being represented by the  
/products/{productId} path. That’s a lot of options! Figure 3.14 shows them all.

catalog

product

contains
many

/catalog

/product-{productId}

/catalog

/catalog/{productId}

/products

/products/{productId}

A path should be
explicit.

contains
many

contains
many

contains
many

A path should reflect the
resources‛ relationships.

A path may contain
variables such as

technical identifiers.

A path should reflect
the resource‛s type.

All these representations are valid from the REST perspective.

I'm an item
of /catalog

I am
/product-P123.

I am a
collection of

products.

Each resource is represented by a path. There are many possibilities.

I am the
catalog.

/c

/{productId}

contains
many

A path is unique.

I am the only
/P123

This format is the most widely adopted.

Figure 3.14   Choosing your resource path format

From a pure REST perspective, all of these representations are valid. Even if we’ve 
already discarded cryptic paths such as /c and /{productId} because they are obviously 
not consumer-friendly, we still have many possibilities. A catalog resource could be rep-
resented by /catalog or /products and a product resource by /product-{productId},  
/catalog/{productId}, or /products/{productId}.



56 chapter 3 Designing a programming interface

NOTE   You can choose whichever representation you prefer, but keep in mind 
that your resource paths must be user-friendly. API users must be able to deci-
pher them easily, so the more information you provide in your paths, the better.

Although there are no official REST rules regarding resource path design (apart from 
uniqueness), the most widely adopted format is /{plural name reflecting collec-
tion’s item type}/{item id}. Using resource paths exposing resource hierarchy 
and using plural names for collections to show the collection’s item type has become a 
de facto REST standard.

In our example, a catalog should therefore be identified by /products and a prod-
uct by /products/{productId}. This structure can be extended to multiple levels as in 
/resources/{resourceId}/sub-resources/{subResourceId}.

We’re almost done! We have identified resources and their actions, and we have 
designed our resource paths. Here comes the final step, representing actions with the 
HTTP protocol.

3.2.4 Representing actions with HTTP

Let’s start with the catalog resource and its add action, as shown in figure 3.15.

catalog

add

product
info

/products

POST

product info
in body

POST /productsAdd product to catalog

POST corresponds to
a resource creation.

POST parameters
are located in body

A POST request should return
the newly created resource‛s content.

We chose to represent
the catalog as a collection
of products.

added
product

Content of
/products/{addedProductId}

Figure 3.15   Add product to catalog as an HTTP request

The HTTP representation of the goal add product to catalog is POST /products. When 
we add a product to the catalog resource identified by /products, we actually create a 
product resource using the provided product information. The HTTP method corre-
sponding to the creation of a resource is POST. A POST request’s parameters are usually 



 57Transposing API goals into a REST API

passed in the request body, so the product information parameter goes there. Once 
the product resource is created, the action should return the newly created resource 
identified by its path: /products/{addedProductId}.

Now, what is the HTTP representation of the search action of the catalog resource? 
The HTTP representation of search for products in catalog using a free query is GET /
products?free-query={free query}, as shown in figure 3.16.

catalog

search

free
query

/products

GET

free-query
query parameter

GET /products?free-query={freeQuery}Search for products in catalog
using a free query

GET corresponds to
a resource retrieval.

GET parameters are
located in path after “?”

and provided as name=value.

A GET request returns the resouce(s) 
matching the path.

We chose to represent
the catalog as a collection
of products.

Here‛s an example: GET /products?free-query=something

matching
products

Content of
/products/{foundProductId1}
...
/products/{foundProductIdN}

Figure 3.16   Search for products in catalog using a free query as an HTTP request

When we search for products, we want to retrieve them, so we have to use the GET HTTP 
method on the /products path. To only retrieve products matching some query, like 
a product name or partial description, we need to pass a parameter to this request. A 
GET HTTP request’s parameters are usually provided as query parameters in the path, 
as demonstrated in the following listing.

Listing 3.1  Query parameter examples

GET /example?param1=value1&param2=value2
GET /products?free-query=something

The parameters are located after the ? at the end of the path and provided in 
name=value format (param1=value1, for example). Multiple query parameters are sep-
arated by &. Once the search is done, the GET request returns the resources matching 
the path (which includes the free-query parameter).



58 chapter 3 Designing a programming interface

We have represented all of the catalog resource’s actions, so let’s work on the prod-
uct resource. We start with get product, which is relatively easy to represent as an HTTP 
request, as illustrated in figure 3.17.

product

get

/products/{productId}

GET

GET /products/{productId}Get product

GET corresponds to
a resource retrieval.

No parameters
needed!

A GET request returns the resouce(s) 
matching the path.

We chose to represent
a product as an item in
a collection of products.

product Content of
/products/{productId}

Figure 3.17   Get product as an HTTP request

We want to retrieve the product resource identified by /products/{productId}, so we 
again use the GET HTTP method. The HTTP representation is therefore GET /prod-
ucts/{productId}. A GET resource always returns the resource corresponding to the 
provided path, so this action returns the content of this resource.

Now it’s time to discover new HTTP methods! How do we represent delete product 
with the HTTP protocol? The HTTP representation of this goal is simply DELETE /
products/{productId}, as shown in figure 3.18.

product

delete

/products/{productId}

DELETE

DELETE /products/{productId}Delete product

DELETE deletes
resource(s) identified

by the path.

No parameters
needed!

No return for
this use case

We chose to represent
a product as an item
in a collection of products.

Figure 3.18   Delete product as an HTTP request



 59Transposing API goals into a REST API

The DELETE HTTP method’s purpose is obviously to delete the resource matching the 
provided path. In our use case, this action does not return any information.

Deleting a product was easy. Now can you guess what HTTP method we will use to 
update a product? There’s a trap here— the HTTP representation of update product 
is PATCH /products/{productId}, not UPDATE /products/{productId}, as shown in 
figure 3.19.

catalog

update

product
info

/products/{productId}

PATCH

product info
in body

PATCH /products/{productId}Update product

PATCH corresponds to
a partial update of a resource.

PATCH parameters
are located in body.

We chose to represent
the catalog as a collection
of products.

Figure 3.19   Update product as an HTTP request

The PATCH HTTP method can be used to partially update a resource. Like POST, the 
request parameters are passed in the request’s body. For example, if you want to update 
a product’s price, you can use PATCH on the product resource and pass the updated 
price in the body. In our use case, this action does not return any information.

Our last example illustrates an HTTP method that has two purposes. The HTTP repre-
sentation of replace product is PUT /products/{productId}, as illustrated in figure 3.20.

catalog

replace

product
info

/products/{productId}

PUT

product info
in body

PUT /products/{productId}Replace product

PUT totally replaces 
the resource.

PUT parameters
are located in body.

We chose to represent
the catalog as a collection
of products.

Content of
/products/{created productId}

Optional: The resource can be created
if it does not already exist. In this case the action

should return it.

Figure 3.20   Replace product as an HTTP request



60 chapter 3 Designing a programming interface

The PUT HTTP method can be used to totally replace an existing resource or to 
create a nonexisting one and provide its identifier. In the latter case, it has the 
same effect as the add product to catalog action. Like POST, the request parameters 
are passed in the request’s body. In our use case, this action does not return infor-
mation, but if you use PUT for creating a resource, the created resource should be 
returned.

So, the POST, GET, PUT, PATCH, and DELETE HTTP methods essentially map the basic 
CRUD functions (create, read, update, delete). Do not forget that these actions are 
made from the consumer’s perspective; for example, if you DELETE /orders/O123, it 
does not mean that the order O123 will actually be deleted from the database contain-
ing the orders. Such actions might simply update this order status to CANCELED.

These CRUD HTTP methods also have to be used to represent more than or not so 
CRUD actions. It can sometimes be difficult for beginning REST API designers (and 
sometimes even seasoned ones) to choose which HTTP method matches an action that 
doesn’t obviously map to a CRUD function. Table 5.3 shows some examples of actions 
that can help you see beyond CRUD.

Table 3.1  HTTP methods beyond CRUD

HTTP method Action

POST (and PUT 
in creation)

Create a customer, add a meal to a menu, order goods, start a timer, save a blog post, 
send a message to customer service, subscribe to a service, sign a contract, open a bank 
account, upload a photo, share a status on a social network, and so on

GET Read a customer, search for a French restaurant, find new friends, retrieve opened 
accounts for the last 3 months, download a signed contract, filter best selling books, 
select black-and-white photos, list friends, and so forth

PATCH/PUT Update a customer, replace goods in an order, switch plane seat, edit an order’s delivery 
method, change an order’s currency, modify a debit card limit, temporarily block a credit 
card, and so on

DELETE Delete a customer, cancel an order, close a case, terminate a process, stop a timer, and 
so on

If you really cannot find a resource and HTTP method pair to represent your action, 
you can use the default POST HTTP method as a last resort. We will talk more about this 
in section 3.4.

3.2.5 REST API and HTTP cheat sheet

Congratulations! You have learned to transpose API goals into REST resources and 
actions, and represent them using the HTTP protocol. You should now have a good 
overall view of REST API resources and actions. Let’s sum up everything you’ve learned 
thus far with a cheat sheet, shown in figure 3.21. That makes a lot of things easier to 
remember!

Remember, at the beginning of this chapter, you saw that the result of GET /products/ 
P123 was some data. We now have to design that data!



 61Transposing API goals into a REST API

HTTP methods matching action types

HTTP representation of resource and action

Actions on resource

Resources and relations

resource

action

parameters

/resource
/resources
/resources/id

METHOD

request or body
parameters

Depending on HTTP method,
parameters are located in
path (request parameter)
or body (body parameter)

Resource's path is
- unique
- explicit
- may contain an ID
- should reflect hierarchy
- should reflect collection
resource's item type

An action may return the
resource created  or

modified (POST, PATCH,
PUT) or matching the

path (GET).

There are five HTTP methods
to represent action's goals:
GET, POST, PATCH, PUT, DELETE.

Inputs (source) Outputs (usage) Goals

resource

collection
resource

resource
linked

resource

After building the API goals canvas
(see chapter 2)

mentioningAction
(verb) resources

(common names)

resource

contains
many

has a

parameters returns

Identify resources and
their relations using goals.Identify actions on each resource

and their parameters and return
using inputs, ouputs, and goals.

Design resource
paths and choose

HTTP method ParametersAction

GET

POST

PUT

PATCH

DELETE

Before request After request

Create, add to Body

METHOD /resource

parameters

Body parameters

METHOD /resource?param1=value&param2=value

Query parameters

Read, retrieve, search

Remove, delete

Modify, update
partially

Replace

Create with
predefined 
identifier

PUT

New

Query

a:1
b:2

a:1
b:3

Body

a:1
b:2

a:2
b:3

Body

Body New
ID

Query

No modifications

HTTP methods
matching actions

1

2
3

4

returns

resource created
or matching path

Figure 3.21   REST API and HTTP cheat sheet



62 chapter 3 Designing a programming interface

3.3 Designing the API’s data
You now know how to transpose API goals into REST resources and actions and give 
them a programmable representation with paths and methods using the HTTP pro-
tocol. You have also identified the actions' parameters and returns. But the resources, 
parameters, and returns you have identified are only vaguely described. How do we 
design these data items? The design process is outlined in figure 3.22.

Concept’s
design

Response’s
design

Parameter’s
design

Do users need to
provide them all?

Parameter’s
control

Where do they
come from?

What are the
concept’s

properties?
Do we need to

return them all?

Figure 3.22   Designing API data

Whatever the type of API, we start designing the data just like any programmable rep-
resentation of a concept— just like a database table, a structure, or an object. We simply 
list the properties and stay consumer-oriented. Consumers must be able to under-
stand the data, and we must not expose inner workings through its design. Once we’ve 
designed the core concepts, we can design the parameters and responses by adapting 
them. And finally, we must ensure that consumers will be able to provide all the data 
required to use the API.

NOTE   Some parameters like the free query one used by the search for prod-
ucts in the catalog action may need a simpler design process.

As before, the simplest method shown here is intended to expose the basic concepts. 
Feel free to adapt it or use a different software design method that you’re familiar with, 
as long as you keep the spirit alive and achieve the same results.

3.3.1 Designing concepts

The concepts that we have identified and turned into REST resources will be 
exchanged through parameters and responses between the consumer and provider. 
Whatever its purpose, we must take care in the design of such a data structure to offer a 
consumer-oriented API, just as we did when designing the API goals. Figure 3.23 illus-
trates how to design a concept such as a product.

We start by listing the data structure’s properties and giving each a name. A product 
can have reference, name, and price properties, for example. It could also be use-
ful to tell the customer when the product was added to the catalog (dateAdded) and 
let them know whether it’s in stock or not (unavailable). And what about listing the 

reference
name
price
dateAdded
unavailable
warehouses
description
supplier

reference
name

...with consumer‛s perspective
in mind in order to...List properties... ...easily to understand

and hide inner workings

reference
name
price
dateAdded
unavailable
definitelyOutOfStock
warehouses
description
supplier

reference
name

Are all
these properties
the consumer's

business?

Are they all
really needed?

Can the consumer
understand them?

What defines a
product?

Rename!
Remove!
Rework!

Figure 3.23   Designing a consumer-oriented concept



 63Designing the API’s data

warehouses where this product can be found and its suppliers? Finally, we might want to 
return a fuller description of the product.

While listing these properties, you must remember what you learned in chapter 2 
about the consumer’s and provider’s perspectives. We must analyze each one to ensure 
that our design is focused on the consumer’s perspective and does not reflect the pro-
vider’s. We can do this by asking ourselves if each property can be understood, is really 
the consumer’s business, and is actually useful, as shown in figure 3.23. In our example, 
the property names seem understandable; we have avoided obviously cryptic names 
such as r and p for reference and price, for example. But on second thought, the ware-
houses list isn’t really relevant for users, so we’ll remove that. We’ll also rename the 
unavailable property to definitelyOutOfStock to be more explicit.

The most important information about a property is its name. The more self- 
explanatory the name is, the better. But defining a property only by its name isn’t 
enough when it comes to describing a programming interface, as shown in figure 3.24.

Name Type Required Description

reference string yes Unique ID identifying the product

The more
self-explanatory

the better!

Portable types
(string, number,
boolean, date,
array, object)

Essential
property
or not

Optional additional
information not shown

by name or type

Mandatory characteristics

Figure 3.24   Property characteristics

3.3 Designing the API’s data
You now know how to transpose API goals into REST resources and actions and give 
them a programmable representation with paths and methods using the HTTP pro-
tocol. You have also identified the actions' parameters and returns. But the resources, 
parameters, and returns you have identified are only vaguely described. How do we 
design these data items? The design process is outlined in figure 3.22.

Concept’s
design

Response’s
design

Parameter’s
design

Do users need to
provide them all?

Parameter’s
control

Where do they
come from?

What are the
concept’s

properties?
Do we need to

return them all?

Figure 3.22   Designing API data

Whatever the type of API, we start designing the data just like any programmable rep-
resentation of a concept— just like a database table, a structure, or an object. We simply 
list the properties and stay consumer-oriented. Consumers must be able to under-
stand the data, and we must not expose inner workings through its design. Once we’ve 
designed the core concepts, we can design the parameters and responses by adapting 
them. And finally, we must ensure that consumers will be able to provide all the data 
required to use the API.

NOTE   Some parameters like the free query one used by the search for prod-
ucts in the catalog action may need a simpler design process.

As before, the simplest method shown here is intended to expose the basic concepts. 
Feel free to adapt it or use a different software design method that you’re familiar with, 
as long as you keep the spirit alive and achieve the same results.

3.3.1 Designing concepts

The concepts that we have identified and turned into REST resources will be 
exchanged through parameters and responses between the consumer and provider. 
Whatever its purpose, we must take care in the design of such a data structure to offer a 
consumer-oriented API, just as we did when designing the API goals. Figure 3.23 illus-
trates how to design a concept such as a product.

We start by listing the data structure’s properties and giving each a name. A product 
can have reference, name, and price properties, for example. It could also be use-
ful to tell the customer when the product was added to the catalog (dateAdded) and 
let them know whether it’s in stock or not (unavailable). And what about listing the 

reference
name
price
dateAdded
unavailable
warehouses
description
supplier

reference
name

...with consumer‛s perspective
in mind in order to...List properties... ...easily to understand

and hide inner workings

reference
name
price
dateAdded
unavailable
definitelyOutOfStock
warehouses
description
supplier

reference
name

Are all
these properties
the consumer's

business?

Are they all
really needed?

Can the consumer
understand them?

What defines a
product?

Rename!
Remove!
Rework!

Figure 3.23   Designing a consumer-oriented concept



64 chapter 3 Designing a programming interface

We also need to be clear about each property’s type. For example, what is the type of 
the reference property? Is it a number or a string? In this use case, it’s a string. Is it 
an essential property that must always requested or returned? That is the case for this 
one. And a final question: What exactly is a reference? Its description indicates that it is 
a unique ID identifying the product.

As figure 3.24 illustrates, for each property, the characteristics we need to gather are

¡	Its name
¡	Its type
¡	If it’s required
¡	An optional description when necessary

Figure 3.25 shows a detailed list of the possible properties of the product resource. It 
also shows on the right of the properties list an example of a product’s JSON document.

supplier object yes The product's supplier

description string no

definitelyOutOfStock boolean no Definitely out of stock when true

price number yes Price in USD

dateAdded date yes When the product was added
to the catalog

reference string yes Unique ID identifying the product

name string yes

reference string yes Unique ID identifying the supplier

name string yes

Name Type Required Description

Name Type Required Description

{
  "reference": "R123-456",
  "name": "a product",
  "price": 9.99,
  "dateAdded": "2018-01-02",
  "definitelyOutOfStock": false,
  "supplier": {
    "reference": "S789",
    "name": "a supplier"
  }
}

Product exampleProduct resource’s
properties

Properties can be objects.

Figure 3.25   The product’s resource properties

So, a product is composed of required and optional properties. Some of them (such 
as reference, price, definitelyOutOfStock, and dateAdded) are of basic types (such 
as string, number, boolean, or date). There can also be complex properties, such as 
supplier, which is an object. (A property can also be an object containing properties 
or an array.)



 65Designing the API’s data

A name and a type are the most obvious information to gather about a property 
when designing a programming interface. An API can be consumed by software written 
in many different languages.

TIP   When choosing a property’s type, use only portable basic data types 
shared by programming languages, such as string, number, date, or boolean.

In addition to knowing a property’s name and type, we must also know if this property 
should always be present. Indicating whether a property is required or optional is an 
often-forgotten aspect of API design, but this information is crucial in both the param-
eter and response contexts for API designers, consumers, and implementers. Note that 
the required or optional status of a property can vary depending on the context. For 
now, we’ll set this status to required only if it is an essential property of the concept.

Sometimes, name and type are not sufficient to accurately describe a property. To 
provide additional information that cannot be obviously reflected by the property’s 
name and type, adding a description can be valuable in such cases. Once we know what 
our concepts are made of, we can use them as responses or parameters to our goals.

3.3.2 Designing responses from concepts

The same concept can appear in different contexts, as shown in figure 3.26.

catalog

AddSearch

product
contains

Get

added
product

matching
products

product

reference
name
price
dateAdded
definitelyOutOfStock
description
supplier

reference
name

Product concept
(resource)

Figure 3.26   Different representations of the same concept in different response contexts

For example, the catalog resource actions add product and search for products both 
return a product (or, in the latter case, potentially more than one). The product 
resource action get product returns a product too. These different product representa-
tions might not be exactly the same as shown in figure 3.27.



66 chapter 3 Designing a programming interface

reference
name
price
dateAdded
definitelyOutOfStock
description
supplier

reference

reference
name
price
dateAdded
definitelyOutOfStock
description
supplier

reference
name

It may be adapted to
the action's context... ...or simply to stay as it is.

Are all
these properties
the consumer’s

business?

Are they all
really needed?

Can the consumer
understand them?

Rename!
Remove!
Rework!

supplierName

This resource is
returned by an action.

Concept
(resource)

Search for product
action response

(a product
representation)

reference
name
price
dateAdded
definitelyOutOfStock
description
supplier

reference
name

...to keep only what is
necessary (but stay
consumer oriented)...

Perfect!
Do not touch!

Add product or
get product

actions response
(another product
representation)

Two representations of the same concept
as response in three different contexts

name

Figure 3.27   Designing different responses from a single concept

While add product and get product should return the complete product, search 
for products can only return a reference, name, price, and the supplier’s name as 
supplierName.

When we design responses, we should not blindly map the manipulated resource. 
We must adapt them to the context by removing or renaming properties and also adjust 
the data structure. But do we design the parameters the same way?

3.3.3 Designing parameters from concepts or responses

When we add, update, or replace a product, we pass some product information as a 
parameter (figure 3.28).

catalog

Add

product
info

product
contains

Update Replace

product
info product

info

reference
name
price
dateAdded
definitelyOutOfStock
description
supplier

reference
name

Product concept
(resource)

Figure 3.28   Different representations of the same concept in different parameter contexts

But what does this parameter consist of? Or, more precisely, these parameters as shown 
in figure 3.29. The product information parameter passed in these three cases might 



 67Designing the API’s data

not be the same; they may not look like the responses we just designed, and they may 
not exactly reflect our product concept.

reference
name
price
dateAdded
definitelyOutOfStock
description
supplier

name

reference
name
price
dateAdded
definitelyOutOfStock
description
supplier

reference
name

...adapt to the context
(like with response). But more importantly, remove properties

handled by the backend.

When designing a
concept-based parameter...

Concept
(resource)

Add product parameter
(a product representation)

reference (in URL)
name
price
dateAdded
definitelyOutOfStock
description
supplier

reference
name

Update and replace
product parameter
(another product
representation)

Two representations of the same concept
as a parameter in three different contexts

supplierReference

Rename!
Remove!
Rework!

Are all
these properties
the consumer’s

business?

Are they all
really needed?

Can the consumer
understand them?

supplierReference

reference

Figure 3.29   Designing different parameters from a single concept

When a product is created, its reference is generated by the backend, so there’s no 
need for the consumer to provide it when adding a product. But we need this refer-
ence to update or replace a product (note that the reference will be passed in the path 
as a path parameter: /products/{reference}). In all these use cases, the consumer 
does not need to provide the supplier.name property; only its reference is needed; 
the backend has a way to find a supplier’s name based on its reference. To simplify the 
data organization, we can therefore remove the supplier object and replace it with 
supplierReference. dateAdded is also generated by the backend when the product is 
added to the catalog, so we don’t need that either. As with responses, the same concept 
can have different representations in an API’s parameters, depending on the context 
(creation versus updating, for example).

NOTE   A parameter must provide the needed data, but nothing more. It should 
not include data that is exclusively handled by the backend.

By proceeding this way, we ensure that the product information parameter contains 
only the data that’s absolutely necessary in each context. But are we sure the consumer 
can provide all this data?

3.3.4 Checking parameter data sources

When adding a product to the catalog, consumers should be able to easily provide 
data such as name, price, and description. But what about the supplierReference? 
How can consumers know such a reference? This kind of questioning probably sounds 
familiar. That’s because when identifying the API goals, we verified that consumers 
could provide all the necessary inputs, either because they already know the informa-
tion or because they are able to retrieve it from another API goal. But now we are deal-
ing with a more detailed view of these input parameters.



68 chapter 3 Designing a programming interface

Consumers must be able to provide all of a parameter’s data, either because they 
know the information themselves or because they can retrieve it from the API. If data 
cannot be provided, it might be a sign of a missing goal or the provider’s perspective. 
Therefore, we must verify again that all the needed data can be provided by the con-
sumer. This verification process, illustrated in figure 3.30, ensures that consumers will 
always be able to provide parameter data, and that there are no gaps in the API.

name
price (in USD)
description
supplierReference

Add product parameter.

Where does each
property come

from?

From the
consumer?

Everything is OK!

From an 
identified

goal?

name
price (in USD)
description
supplierReference

Update identified
goal's response to add

this information

Do we really
need it?

Add missing goal
to provide this

information

Remove
property

no no no no

yes yes yesyes

From an 
identified
response?

Figure 3.30   Verifying that consumers can provide all the parameter’s data

In this case, consumers might already know the supplierReference because it is pro-
vided on the product’s label, or it may come from a response we have already designed. 
It could also come from another goal; in which case, we just need to update its response 
to add this information in order to provide it to the consumer. We may also simply have 
missed a goal. In that case, we will have to add it to the API goals canvas and process 
it like any other goal, identifying who can use it, defining its inputs and outputs, and 
designing its programmable representation. Or we might simply realize that we don’t 
really need it.

We will not solve this mystery here— its purpose is to show that parameters must be 
closely verified and that you can discover some missing features when you get into the 
details of an API’s design. This is totally normal; designing an API is a process of con-
tinuing improvement. Step-by-step, the design will be refined to become more accu-
rate, complete, and efficient.

3.3.5 Designing other parameters

What about the free-query parameter of the search for products goal? It is a string 
that can contain a partial description, a name, or a reference. This is an optional query 
parameter; if it is not provided, all available products are returned.

Whatever the parameter is— a query parameter like free-query or even a body 
parameter not based on an identified concept— we do the same thing. We choose a 
consumer-oriented representation and check that the consumer is able to provide any 
requested data.



 69Striking a balance when facing design challenges

With what you’ve learned so far, you should be able to design any basic REST API. 
But sometimes you might encounter challenging design problems and sticking to the 
chosen API type representation might be hard. Perfection is not always possible in the 
API design world.

3.4 Striking a balance when facing design challenges
When you choose to use a specific API type, it is important to know that sometimes 
you can encounter limitations. You might struggle to find a representation of a goal 
that conforms to the chosen API model. You might also end up with a representation 
that conforms to the model but is not as user-friendly as you expected. Sometimes the 
perfect representation does not exist, and therefore, as an API designer, you will have 
to make some trade-offs.

3.4.1 REST trade-off examples

Mapping actions on resources to HTTP methods and paths is not always straight-
forward. There are common techniques to circumvent such problems, and often by 
exploring various solutions, you can finally find one that works with your chosen API 
model. But sometimes this API style-compliant solution might not be user-friendly.

You might have noticed that I carefully avoided transposing goals that were related 
to a user buying products and focused on the catalog-related goals. Goals related to 
catalog management are perfect to show the basics of HTTP and REST APIs. The 
resources are relatively simple to identify, and goals with actions such as add, get or 
search, update, and delete (who said CRUD?) are easily mapped to HTTP methods. But 
things aren’t always so simple.

When users buy products, they have the check out cart goal at the end of the process. 
How can we represent such a goal when it’s not obvious how to transpose it into a path 
and HTTP method couple? When a designer fails to map an action on a REST resource 
to any HTTP method, a first option is often to create an action resource (figure 3.31).

check out cart

cart.checkout()
or

checkoutCart()

trigger

/cart/check-out
or

/check-out-cart

POST

Action resource

Goal

HTTP representation

Figure 3.31   Using an action resource

An action resource is not a thing represented by a noun, but an action represented by 
a verb. It is simply a function. An action resource can be seen as a method of a class 
and, therefore, can be represented as a sub-resource of a resource. If we choose to 
represent the cart resource by the /cart path, the cart.checkout() method could 



70 chapter 3 Designing a programming interface

be represented by the path /cart/check-out. But we could also consider it as a stand-
alone checkoutCart() function and create a /check-out-cart action resource accord-
ingly. In both cases, we use the HTTP method POST to trigger the action resource.

NOTE   The HTTP method POST is the default method to use when no other 
method fits the use case.

An action resource absolutely does not conform to the REST model, but it works and is 
totally understandable by consumers. Let’s see if we can find a solution that’s closer to 
the REST model. We could, for example, consider that checking out the cart changes 
some status (figure 3.32).

check out cart

/cart

PATCH

Action resource

Goal

HTTP representation

cart

Update Status status = CHECKING_OUT

Figure 3.32   Updating a status

The cart resource might contain a status property. To check out the cart, we can 
update it with PATCH to set its value to CHECKING_OUT. This solution is closer to the 
REST model but less user-friendly than the action resource: the check out cart goal is 
hidden within an update of the cart resource. If we keep on brainstorming, I’m sure we 
can find a solution that totally fits the REST API model.

Let’s get back to the basics. We must ask ourselves a few questions:

¡	What are we trying to represent?
¡	What happens in this use case?
¡	What happens when we check out a cart?

Well, an order is created that contains all the cart’s products. And after that the cart 
is emptied. That’s it! We are creating an order. Therefore, we can use a POST /orders 
request to create an order and check out cart, as shown in figure 3.33.

order

create

/orders

POST

Action resource

Goal

HTTP representation

Revised goal

create
order

check out
cart

Figure 3.33   Conforming to the REST API model



 71Understanding why REST matters for the design of any API

This solution totally conforms to the REST API model, but is it really user-friendly? The 
purpose of this REST representation might not be obvious to all users.

3.4.2 Balancing user-friendliness and compliance

So which option wins? The totally non-REST but so user-friendly POST /cart/check-out 
or POST /check-out-cart action resources? The more REST but a little bit awkward 
PATCH /cart? Or the totally REST but not so user-friendly POST /orders? It will be up to 
you to choose (figure 3.34) or to find a better solution.

User-friendliness

API type compliance

Perfect API goal
representation

Favoring user-friendliness
over compliance to API type

Favoring compliance to
API type over
user-friendliness

check out cart

POST /orders

POST /cart/check-out

PATCH /cart

Figure 3.34   A balance between user-friendliness and API type compliance

Sometimes you might not find the perfect API goal representation, even after intense 
brainstorming and with the help of the entire team. Sometimes you might not be really 
satisfied or even be a bit disappointed by an API design you are working on. Unfortu-
nately, this is totally normal.

It is important to master the fundamentals behind the chosen programming inter-
face model or API style to be able to find solutions that are as close as possible to the 
chosen model. But it is also important to be able to make some reasonable trade-offs to 
keep the API consumer-friendly and not diverge too much from the API model. Skill at 
this comes through practicing, observing other APIs, and, most importantly, talking to 
your consumers and other API designers.

Congratulations! You should now be able to transpose any API goal to a REST API. 
But now that we have covered what a REST API is and how to create one based on an 
API goals canvas, we should explore REST beyond mapping goals to HTTP method and 
path pairs. This is important because REST matters for the design of any type of API.

3.5 Understanding why REST matters for the design 
of any API
As T.S. Eliot said, “The journey, Not the destination matters….” I could have explained 
all the API design principles presented in this book using the totally outdated Xerox 
Courier RPC model that was created in the 1970s, the despised SOAP model created at 
the end of the 20th century, the now widely adopted REST, or the more recent gRPC 



72 chapter 3 Designing a programming interface

or GraphQL. And these are only a few examples among many. As explained in chapter 
1 (section 1.3), there have been, there are now, and there always will be different styles 
of programming interfaces allowing software to communicate remotely. Each of them 
had, has, or will have its own specificities, pros, and cons, and will obviously produce 
an API with a specific look and feel. But whatever its type, designing an API requires 
basically the same mindset.

Up to this point, we’ve been considering REST APIs as APIs that map goals to paths 
and HTTP methods. But REST is far more than that. REST is a widely adopted API style; 
but, more importantly, it is based on the solid foundations of the REST architectural style, 
which is crucial to know when creating any type of API. That’s why I chose REST as the 
main example programming interface for this book. Let’s see what this REST style is, 
and what it means not only for API designers but also for API providers.

3.5.1 Introducing the REST architectural style

When you type a URL such as http://apihandyman.io/about in a web browser’s 
address bar, it sends a GET /about request to the apihandyman.io web server. It’s easy 
to imagine that the web server will return some static HTML document stored in its 
filesystem, but that might not be the case. The /about resource’s content could be 
stored in a database. And what happens when a social media web server receives a POST 
/photos request? Does the server actually store the provided file as a document in a  
/photos location on the server’s filesystem? Maybe. Maybe not. It could also store this 
image in a database.

Browsers interacting with web servers are left totally unaware of such implementa-
tion details. They only see the HTTP interface, which is only an abstraction of what it 
can do and not an indication of how it is done by the server. And how is it that a web 
browser can interact with any web server implementing an HTTP interface? It’s because 
all web servers use exactly the same interface.

This is a part of the magic of HTTP. This is a part of the magic of REST.
The REST architectural style was introduced by Roy Fielding in 2000 in his PhD 

dissertation “Architectural Styles and the Design of Network-based Software Architec-
tures.” Fielding developed this architectural style while he was working on version 1.1 
of the HTTP protocol. During the HTTP 1.1 standardization process, he had to explain 
everything— from abstract web notions to HTTP syntax details— to hundreds of devel-
opers. That work led to the creation of the REST model.

The aim of the REST architectural style is to facilitate building distributed systems 
that are efficient, scalable, and reliable. A distributed system is composed of pieces of soft-
ware located on different computers that work together and communicate through a 
network, like the one shown in figure 3.35.

http://apihandyman.io/about


 73Understanding why REST matters for the design of any API

Facial
recognition

Detect

Internet

Social
Network
timeline

Add

Private
network

Social Network
backend

Share

Internet
Social

Network
Mobile

Application

Photo
storage

Store

https://socialnetwork.com

Social Network website

Internet

A distributed system

Applications hosted on
different “computers”

Social Network
web server

HTML

Figure 3.35   A distributed system

This should sound familiar to you because, from the beginning of this book, we have 
talked about distributed systems. A web browser and a web server comprise such a sys-
tem, as do a consumer (like a mobile application) and API servers. Such systems must 
provide for fast network communication and request processing (efficiency), be capable 
of handling more and more requests (scalability), and be resistant to failure (reliability). 
The REST architectural style also aims to facilitate portability of components (reusabil-
ity), simplicity, and modifiability. To achieve all this— to be RESTful— a software archi-
tecture needs to conform to the six following constraints:

¡	Client/server separation —There must be a clear separation of concerns when 
components like a mobile application and its API server work and communicate 
together.

¡	Statelessness —All information needed to execute a request is contained within 
the request itself. No client context is stored on the server in a session between 
requests.

¡	Cacheability —A response to a request must indicate if it can be stored (so a client 
can reuse it instead of making the same call again), and for how long.

¡	Layered system —When a client interacts with a server, it is only aware of the server 
and not of the infrastructure that hides behind it. The client only sees one layer 
of the system.

¡	Code on demand —A server can transfer executable code to the client (JavaScript, 
for example). This constraint is optional.



74 chapter 3 Designing a programming interface

¡	Uniform interface —All interactions must be guided by the concept of identified 
resources that are manipulated through representations of resource states and 
standard methods. Interactions must also provide all metadata required to under-
stand the representations and know what can be done with those resources. This 
is the most fundamental constraint of REST, and it is the origin of the Represen-
tational State Transfer name. Indeed, using a REST interface consists of transfer-
ring representations of a resource’s states.

That might sound terribly scary and far from API design concerns, but these con-
straints should be understood by any API provider, in general, and any API designer, 
in particular.

3.5.2 The impact of REST constraints on API design

The REST architectural style was primarily created as a support to describe the World 
Wide Web and the HTTP protocol, but it can be applied to any other software architec-
ture design with the same needs. A REST API, or RESTful API, is an API (which, in a 
broad sense, comprises both the interface and its implementation) that conforms (or 
at least tries to conform) to the REST architectural style constraints. These constraints 
obviously have a lot of implications for REST APIs but also for any type of API. Some of 
them can be a little hard to grasp at this time, but we will explore them throughout the 
book while digging into the various aspects of API design. What if I were to tell you that 
we’ve already started to explore three of them, perhaps without you realizing it?

Do you remember the consumer’s perspective we talked about in the previous chap-
ter? As shown in figure 3.36, there are two REST constraints underneath this design 
principle.

When exploring the consumer’s perspective, we saw that an API provider must not 
delegate its job to the API consumer— like turning the magneton on and off on the 
Kitchen Radar 3000 (see section 2.1). This is an example of the client/server constraint.

Consumer API

I want to
do something.

I‛ll do it for you
without bothering
you with details.

Client/server = Separation of concerns between consumer and provider

And you don‛t know
what‛s really

happening.

Layered system: Consumer sees only the provider‛s API

Provider

Figure 3.36   REST constraints and the consumer perspective



 75Understanding why REST matters for the design of any API

We also saw that an API consumer is only aware of the provider’s API and does not 
know what’s happening beyond this interface— like in the restaurant example where 
customers order meals without having a clue about what is really happening in the 
kitchen (see section 1.2.2). This is what the layered system constraint means. These two 
constraints, and focusing on the consumer’s perspective in general, will help you build 
APIs that are easy to understand, use, reuse, and evolve.

We also have started to uncover the uniform interface constraint in section 3.2.3 and 
section 3.2.4 as illustrated by figure 3.37.

Library API Cooking API

GET /books POST /books GET /recipes POST /recipes

Same standardized HTTP method
with same meaning  inside a single API...

GET /users

...and also across APIs

These resources are identified by unique paths.

Figure 3.37   Creating APIs with uniform interfaces using HTTP

Each resource is identified by a unique path. Inside a single API and across APIs, POST 
/resource-A and POST /resource-B have the same meaning: create something. By 
representing goals with HTTP using unique paths and, most importantly, standardized 
HTTP methods, we are creating a uniform interface, which is consistent with itself 
and also with other interfaces. In chapter 6, we will get deeper into the other aspects 
of the uniform interface. We will talk more about REST representation and discover 
the other constraints (statelessness, cacheability, and code on demand, for example) 
while learning to design APIs in the next chapters. Table 3.2 gives a recap of all sections 
describing the REST architectural style constraints.

Table 3.2  REST constraints in The Design of Web APIs

REST constraint Insights in the book

Client/server separation constraint Chapter 2, section 2.1

Statelessness constraint Chapter 5, section 5.3.4

Cacheability constraint Chapter 10, section 10.2.2

Layered system constraint Chapter 1, section 1.2.2

Code on demand constraint Chapter 5, section 5.3.2

Uniform interface constraint This chapter, section 3.2.3 and section 3.2.4, and chapter 6



76 chapter 3 Designing a programming interface

Digging into REST beyond this book
This book should give you enough information about all these concepts for the pur-
poses of API design, but if you want to dig more deeply into the REST architectural style, 
there are two documents that you might want to read. The first is Fielding’s dissertation, 
“Architectural Styles and the Design of Network-based Software Architectures,” which 
is publicly available on the University of California, Irvine (UCI) website, https://www.ics 
.uci.edu/~fielding/pubs/dissertation/top.htm. The first time you read it, you can jump 
directly to chapter 5, “Representational State Transfer (REST).”

The world has evolved since 2000, however, and REST has been used, misused, and 
abused since. You might therefore also be interested in reading “Reflections on the REST 
Architectural Style and 'Principled Design of the Modern Web Architecture,'” by Fielding 
et al., https://research.google.com/pubs/pub46310.html, which describes the history, 
evolution, and shortcomings of REST as well as several architectural styles derived from it.

Be forewarned: these documents do not give any specific guidelines regarding API design.

 

In the next chapter, you will discover a structured way of describing programming inter-
faces, much like the one we have designed, by discovering why and how to describe an 
API using an API description format.

Summary
¡	A REST API represents its goals with actions (HTTP methods) on resources (paths).
¡	You must use portable data such as object, array, string, number, date, or 

boolean types when designing data.
¡	A single API concept can have multiple data representations in different contexts.
¡	If a parameter contains data that cannot be provided by consumers, you missed 

something.
¡	Sometimes you will be frustrated or disappointed when designing APIs and hav-

ing to strike a balance while facing design challenges— this is totally normal.

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://research.google.com/pubs/pub46310.html


77

4Describing an API with 
an API description format

This chapter covers
¡	What an API description format is

¡	How to describe a REST API with the OpenAPI 
Specification (OAS)

In the previous chapters, we explored how to design a basic programming interface 
using the information collected in the API goals canvas. We identified the resources, 
actions, parameters, and responses for our example Shopping API. We also designed 
the API’s data. But we did all of this using box-and-arrow diagrams and some tables.

Such figures and tables are always useful for brainstorming and getting an overall 
idea of how the API’s goals can be transposed into a programming interface. But 
when it comes to describing precisely a programming interface, and especially its 
data, it is simpler and more efficient to use a structured tool like an API description 
format. Being code-like and a standardized description of an API, this offers many 
advantages:

¡	It notably facilitates the sharing of your design with anyone involved in your 
project.

¡	It can be easily understood by people knowing this format and by any API doc-
umentation tools (among many others).



78 chapter 4 Describing an API with an API description format

The OpenAPI Specification (OAS) is a popular REST API description format. In this 
chapter, we will walk through its basics in order to uncover the benefits of using such a 
format.

4.1 What is an API description format?
An API description format is a data format whose purpose is to describe an API. Fig-
ure 4.1 shows how the programming interface for the add product to catalog goal can 
be described in a simple text file using such a format.

This text file uses data to tell the same story as our tables and hand-drawn box-
and- arrow diagrams. According to the description at the top of the document, the  
/products resource represents the catalog. It contains a POST HTTP method that we 
can use to add a product to catalog. This POST operation needs a requestBody con-
taining a name and a price. The description even provides additional information, 

Add product to catalog /products:
    description: Catalog
    post:
      description: Add product to catalog
      requestBody:
        description: Product
        content:
          application/json:
            schema:
              properties:
                name:
                  type: string
                  example: The Design of Web APIs
                price:
                  type: number
                  example: 44.99

POST
Add

Catalog
/products

Name Type
name string
price number

Product

It’s a text file.

It’s written using
an API description

format.

A programming interface can be described with an API description file.

It’s a
machine-readable

data format.

request body

It can be used in numerous ways,
like for generating reference documentation.

Shopping API Reference Documentation

POST /products Add product to catalog

Model Example

{
  "name": "The Design Of Web APIs",
  "price": 44.99
}

Name Type
name string
price number

Product

Request body parameter

Figure 4.1   Describing a programming interface with an API description format



 79What is an API description format?

such as example values for the properties. Such a file can be written quickly using 
a simple text editor. But, most importantly, because this file contains structured 
data, programs can read it and easily transform it into something else. A basic use 
is to generate reference documentation that describes all of an API’s goals. You can 
share this with all the people involved in the project so they have a good overview of 
the design being created.

That sounds interesting, and it’s only the tip of the iceberg. This simple text  
file uses the OAS. Let’s take a closer look at this popular REST API description 
format before discussing the usefulness of such a format and when to use it while 
designing APIs.

4.1.1 Introducing the OpenAPI Specification (OAS)

The OpenAPI Specification (OAS) is a programming language-agnostic REST API 
description format. This format is promoted by the OpenAPI Initiative (OAI), which 
“…was created by a consortium of forward-looking industry experts who recognize the 
immense value of standardizing on how REST APIs are described. As an open gover-
nance structure under the Linux Foundation, the OAI is focused on creating, evolving 
and promoting a vendor neutral description format.” The OAS (https://www.openapis 
.org) is a community-driven format; anyone can contribute to it through its GitHub 
repository (https://github.com/OAI/OpenAPI-Specification).

The OAS versus Swagger
Formerly known as the Swagger Specification, this format was donated to the OAI in 
November 2015 and renamed the OpenAPI Specification in January 2016. The latest 
version (2.0) of the Swagger Specification became the OpenAPI Specification 2.0. It has 
evolved since and is, at the time of this book’s writing, in version 3.0.

The Swagger Specification was originally created by Tony Tam to facilitate automation of 
API documentation and SDK (Software Development Kit) generation while working on 
Wordnik’s products.1 This specification was only a part of a whole framework called the 
Swagger API, comprising tools like code annotations, a code generator, or documenta-
tion user interface, all of those taking advantage of the Swagger Specification. The Swag-
ger brand still exists and provides API tools using the OAS, but be aware that you might 
encounter both names when searching for information about this format.

 

Figure 4.2 shows a very basic OAS 3.0 document. This OAS document is written using 
the YAML data format.

1 Wordnik (https://www.wordnik.com/) is a nonprofit organization providing an online English dictionary.

https://www.openapis.org
https://www.openapis.org
https://github.com/OAI/OpenAPI-Specification
https://www.wordnik.com/


80 chapter 4 Describing an API with an API description format

openapi: "3.0.0"OpenAPI specification document

API’s general information

Resources (URLs)

      parameters: 
        - name: free-query
          description: free query
          in: query
          schema:
            type: string

paths:
  /products:
    description: The products catalog

    get:
      summary: Search for products

      responses:
        "200":
          description: products matching free query
          content:
            application/json:
              schema:
                type: array
                items:
                  properties:
                    name:
                      type: string
                    price:
                      type: number

Operations (HTTP methods)

Operation’s parameters

Operation’s responses

Catalog
/products

Search
GET

Free query
query parameter

info:
  title: Shopping API
  version: "1.0"

List of matching products
Name Type
name string
price number

Figure 4.2   An OAS document describing the search for products goal of the Shopping API

YAML
YAML (YAML Ain’t Markup Language) is a human-friendly, data serialization format. Like 
JSON, YAML (http://yaml.org) is a key/value data format. The figure shows a comparison 
of the two.

simple-property: a simple value

object-property:
  a-property: a value
  another-property: another value

array-property:
  - item-1-property-1: one
    item-1-property-2: 2
  - item-2-property-1: three
    item-2-property-2: 4

# no comment in JSON    

{
  "simple-property": "a simple value",

  "object-property": {
    "a-property": "a value",
    "another-property": "another value"
  },

  "array-of-objects": [
    { "item-1-property-1": "one",
      "item-1-property-2": 2 },
    { "item-2-property-1": "three",
      "item-2-property-2": 4 }
  ]
}

YAML JSON

No comments in JSON

YAML versus JSON

http://yaml.org


 81What is an API description format?

Note the following points:

¡	There are no double quotes (" ") around property names and values in YAML.
¡	JSON’s structural curly braces ({}) and commas (,) are replaced by newlines and 

indentation in YAML.
¡	Array brackets ([]) and commas (,) are replaced by dashes (-) and newlines in 

YAML.
¡	Unlike JSON, YAML allows comments beginning with a hash mark (#).

It is relatively easy to convert one of those formats into the other. Be forewarned though, 
you will lose comments when converting a YAML document to JSON.

 

Such a basic OAS document provides general information about the API, such as its 
name and version. It describes the available resources (identified by their paths) and 
each resource’s operations (or actions, as you saw in the previous chapter) identified 
by HTTP methods, including their parameters and responses.

An OAS document can be written in YAML or JSON, so which one should you use? 
As you will be writing the documents yourself, I recommend using the YAML format, 
which is, in my opinion, easier to read and write.

Though this book focuses on OAS, other REST API description formats exist; the 
most notable OAS competitors are RAML and Blueprint. I choose to focus on OAS, not 
only because I use it everyday, but also because it is community-driven and widely used. 
Note, however, that this book is not called OpenAPI Specification in Action.

OAS and its ecosystem offer many features and, while we will discover some of them 
throughout this book, it won’t be possible to cover them all. Once you are familiar 
with what is presented in this book, I recommend you read the OAS documentation 
(https://github.com/OAI/OpenAPI-Specification/tree/master/versions) and use 
the OpenAPI Map (https://openapi-map.apihandyman.io), a tool I created to help you 
find your way through the specification.

You’ve seen that an API description format such as the OAS lets you describe an API 
using a text file containing some kind of structured data. But you could also use a word 
processor or spreadsheet document to do the same thing. I urge you to avoid doing so; 
let’s see why.

4.1.2 Why use an API description format?

Indeed, you could describe a programming interface using a word processor or spread-
sheet document. You could also easily share such a document with others. But can you 
version it easily? Can you generate documentation from it? Can you generate code 
from it? Can you configure API-related tools with it? Can you … ? I could probably 
cover an entire page with such questions. Using an API description format has benefits 
throughout the API lifecycle, and especially during the design phase. It benefits not 
only the API providers but also API consumers.

https://github.com/OAI/OpenAPI-Specification/tree/master/versions
https://openapi-map.apihandyman.io


82 chapter 4 Describing an API with an API description format

describing apis efficiently is like writing code

An OAS document is a simple text file that can be easily stored in a version control 
system such as Git, just like code. It is therefore simple to version it and track modifica-
tions while iterating on the API design.

An OAS document has a structure that helps to describe a programming interface 
more efficiently. You have to describe resources, operations, parameters, and responses. 
You can define reusable components (such as a data model, for example), avoiding the 
painful and risky art of maintaining copy/pasted pieces of API descriptions.

Speaking of writing an OAS document, you can use your favorite text editor, but I 
recommend using an editor that specifically handles this format. You can use the online 
Swagger Editor (http://editor.swagger.io) shown in figure 4.3.

Because OAS is a machine-readable format, this editor offers features like autocomple-
tion and document validation, and the right-hand panel shows a useful rendering of 
the edited OAS document. To see a human-friendly representation of the data struc-
tures used as parameters or responses, the Model and Example Value views are espe-
cially useful. This editor is an open source project, and its source code is available on 
GitHub (https://github.com/swagger-api/swagger-editor).

This online editor is great because you only need a browser to run it, but it can be 
cumbersome to constantly download or copy and paste the edited file to actually save 
or open it. I personally use the Microsoft Visual Studio Code editor along with the Swag-
ger Viewer extension (https://marketplace.visualstudio.com/items?itemName=Arjun 
.swagger-viewer), which supplies a SwaggerUI-based preview panel, and the openapi-lint 

Figure 4.3   The Swagger Editor, an online OAS editor

http://editor.swagger.io
https://github.com/swagger-api/swagger-editor
https://marketplace.visualstudio.com/items?itemName=Arjun.swagger-viewer
https://marketplace.visualstudio.com/items?itemName=Arjun.swagger-viewer


 83What is an API description format?

extension (https://marketplace.visualstudio.com/items?itemName=mermade.openapi- 
lint), which provides autocompletion and validation. This configuration provides the 
same experience as the online editor, and you work directly with your files.

Note that there are API design tools that let you describe a programming interface 
without writing any code. Some of them propose interesting features like collabora-
tive working. If you want to use such a tool, that’s fine; just check that your work can 
be exported to a known and used API description format. But even though such tools 
exist, it’s still worthwhile to know how to write an OAS document. You need almost 
nothing to use such a format, and one day you might want to build your own tooling 
around this format.

sharing api descriptions and documenting apis easily

An OAS document can be easily shared with others even outside your team or company 
to get feedback on your design. Unlike a specific internal format known only by a few, 
the OAS format is widely adopted. People can import the document into the online 
Swagger Editor or many other API tools. Alternatively, to avoid bothering them with 
the OAS document itself, you can provide access to a ready-to-use, human-friendly ren-
dering. An OAS document can be used to generate API reference documentation that 
shows all the available resources and operations. You can use the Swagger UI (https://
github.com/swagger-api/swagger-ui) for this, which shows the OAS document as in 
the right-hand pane of the Swagger Editor.

There are non-Swagger OpenAPI tools, too. For example, as an alternative to Swag-
ger UI, you can use a tool such as ReDoc (https://github.com/Rebilly/ReDoc), which 
is also open source. Figure 4.4 shows the ReDoc OpenAPI tool.

And one final note: to create API documentation, you will discover advanced uses of 
OAS in chapter 12.

Figure 4.4   An OAS document rendered in ReDoc

https://marketplace.visualstudio.com/items?itemName=mermade.openapi-lint
https://marketplace.visualstudio.com/items?itemName=mermade.openapi-lint
https://github.com/swagger-api/swagger-ui
https://github.com/swagger-api/swagger-ui
https://github.com/Rebilly/ReDoc


84 chapter 4 Describing an API with an API description format

generating code and beyond

Once an API is described with an API description format, the implementation code 
can be partially generated from it. You will get an empty skeleton of source code that 
you can also use to generate a working mockup. Consumers can also take advantage 
of such machine-readable API descriptions to generate code to consume the API. And 
such a format can also be used by API testing or security tools, and many other API- 
related tools. For example, most API gateway solutions (proxies made to expose and 
secure APIs) can be configured using an API description file such as an OAS document.

TIP   Check the https://openapi.tools/ website that lists a selection of OAS-
based tools to get a glimpse of the OAS ecosystem.

These examples alone show how an API description format is more efficient than a 
word processor or spreadsheet document. And OAS documents can be used in many 
other ways.

4.1.3 When to use an API description format

Before starting to describe an API using an API description format, however, you must 
be sure you’re doing so at the right time, as shown in figure 4.5.

An API description format is made to describe a programming interface. Therefore, it 
must not be used while identifying the API’s goals. As you learned in chapter 3, design-
ing the programming interface first without having a clear view of what the API is sup-
posed to do is a terrible idea! And an API description format must not be used while 
identifying the concepts behind the goals; that’s still a little bit too early. Sure, it’s the 
first step of designing the programming interface, but during this phase you are still 
not dealing with a real programming interface. An API description format definitely 
must be used, however, when designing the programmable representation of goals and 
concepts, and the data.

Identifying goals Designing programmable representation and dataIdentifying concepts

Search for products
in catalog

using a free query
Name Type Required Description

price number yes Product’s price in USD

Goals

Catalog

Search

Free query

reference
name
price
dateAdded
definitelyOutOfStock
description
supplier

reference
name

/products

GET

free-query
query

parameter

When is it relevant to use an
API description format?

Certainly not
now...

Not yet...

Now!

Matching
products

Array of
products

Figure 4.5   When to use an API description format

https://openapi.tools/


 85Describing API resources and actions with OAS

When you design a REST API, you can start to use the OAS when you design the 
resource paths and choose the HTTP methods describing actions. It is possible to cre-
ate a minimal file containing only these elements. Once that is done, you can complete 
the document by describing the API’s data. As you will discover in the following section, 
describing all of this will be far simpler and more efficient using an API description for-
mat than drawing tables, arrows, and boxes. But do not forget that all people involved 
in the project and who need to actually see the API design might not be familiar with a 
code-like format such as the OAS, so always provide a way to get a human-friendly repre-
sentation of the file you are working on. With that in mind, let’s see how we can describe 
REST API resources and actions using the OAS.

4.2 Describing API resources and actions with OAS
As shown in figure 4.6, when we transposed API goals into a programming interface in 
chapter 3, we identified resources and actions and represented them with paths and 
HTTP methods.

We used boxes and arrows to describe this programming interface, but this can also 
be done in a more structured way using the OAS. The resulting document will contain 
exactly the same information as the corresponding figure, but this time the informa-
tion will be presented as data in a structured document. Let’s get started now on our 
document describing the Shopping API.

4.2.1 Creating an OAS document

The following listing shows a minimal but valid OAS document. This document is writ-
ten using OAS version 3.0.0. It describes an API named Shopping API in its 1.0 version.

OpenAPI
document

Product info

Free query

Add
POST

Catalog
/products

Search
GET

Standardized
and structured
API description

Resources and actions, URLs and HTTP methods

Goals

Add product

Search for products
in catalog with
a free query

API goals

Added
product

Matching
products

Figure 4.6   From figure to OAS document



86 chapter 4 Describing an API with an API description format

Listing 4.1  A minimal but valid OAS document

openapi: "3.0.0"                         
info:                                    
  title: Shopping API
  version: "1.0"
paths: {}                                

The structure of OAS documents can evolve from one version to another, so parsers 
use the openapi version to adapt their parsing accordingly. Note that both the speci-
fication (openapi) and API (info.version) version numbers must be surrounded by 
quotes. Otherwise, OAS parsers will consider these as numbers and document valida-
tion will fail because these two properties are supposed to be strings.

The listing shows the paths property only to make the document valid. (If it’s not 
present, the parser reports an error.) The paths property contains the resources avail-
able to this API. We can set its value to {} for now— this is how you describe an empty 
object in YAML. A nonempty object (like info) does not need the curly braces. Next, we 
will start to fill the paths property by adding a resource.

4.2.2 Describing a resource

As shown in figure 4.7, while working on the goals search for products and add prod-
uct to catalog, we identified a catalog resource. We chose to represent it with the  
/products path.

In order to describe this resource in the OAS document, we must add the /products 
path into the paths property as shown in figure 4.7 (don’t forget to remove the empty 
curly braces!). We’ll also describe what this resource is (The products catalog) using 
the description property of the resource, as shown in the following listing.

OAS version

API’s general information
Empty paths

openapi: "3.0.0"
info:
  title: Shopping API
  version: "1.0"
paths:
  /products:

Product info

Free query

Add
POST

Catalog
/products

Search
GET

Added
product

Matching
products

Figure 4.7   Adding a resource to the OAS document



 87Describing API resources and actions with OAS

Listing 4.2  Describing a resource

openapi: "3.0.0"
info:
  title: Shopping API
  version: "1.0"
paths:                                           
  /products:                                     
    description: The products catalog            

The description is not mandatory, but providing descriptions of your API’s resources 
will be useful throughout the API lifecycle. It’s like when you code: the code can be 
understandable on its own, but comments or JavaDoc, PHPDoc, JSDoc, or <your favor-
ite language>Doc annotations about its use will always be welcomed by other people 
who read your code or the documentation generated from it.

Because an API by definition will be used by others, it is really important to take advan-
tage of the documentation possibilities of API description formats. During this design 
phase it is especially useful to keep a link between your earlier work, like the API goals 
canvas or concept identification, and the programmable representation. It might also 
help people with whom you share this design to understand it more easily (/products 
being a catalog might not be obvious to everyone).

A resource described within an OAS document must contain some operations. Oth-
erwise, the document is not valid. The catalog resource is used by two goals: search for 
products and add product. Let’s see how we can describe them as operations in the OAS 
document.

4.2.3 Describing operations on a resource

We can add to our document in order to provide all the information for each goal we 
identified by the end of section 3.2. For each one, we know which HTTP method it 
uses, and we have a textual description of its inputs and outputs, as shown on the left 
side of figure 4.8.

API’s resources Resource’s path

Resource’s description

openapi: "3.0.0"
info:
  title: Shopping API
  version: "1.0"
paths:
  /products:
    description: The products catalog
    get:

Add
POST

Catalog
/products

Search
GET

Product info

Free query

Added
product

Matching
products

Figure 4.8   Adding an action to a resource



88 chapter 4 Describing an API with an API description format

To represent search for products, we chose to use the GET HTTP method on the cat-
alog resource represented by the /products path. This action uses a free query param-
eter and returns products matching the query. To add this action to the /products 
resource, we use a get property. We can also use documentation features to provide 
more information about this GET /products operation. We’ll set the summary property 
to Search for products and the description to Search for products in catalog 
using a free query parameter, as shown in the following listing.

Listing 4.3  Describing an action on a resource

openapi: "3.0.0"
info:
  title: Shopping API
  version: "1.0"
paths:
  /products:                                     
    description: The products catalog
    get:                                         
      summary: Search for products               
      description: |                             
        Search for products in catalog
        using a free query parameter

The summary property is a short description of the action, without details. The goal 
defined in the API goals canvas is usually perfect to use here. There is also a descrip-
tion property, which can be used to provide a more detailed description of the action. 
Here we use it to indicate that this action is using a free query parameter. Note 
that the description property is multiline. This is a YAML feature: to be multiline, a 
string property must start with a pipe (|) character.

In an OAS document, an operation must describe at least one response in its 
responses property, as shown in listing 4.4. For now, we will use this mandatory response 
to provide an informal description of the output of the search for products action. We’ll 
add a responses property containing a "200" response (for HTTP status code 200 OK), 
whose description is Products matching free query parameter.

Listing 4.4  Describing an action’s responses

openapi: "3.0.0"
info:
  title: Shopping API
  version: "1.0"
paths:
  /products:
    description: The products catalog
    get:
      summary: Search for products
      description: |
        Search for products in catalog
        using a free query parameter
      responses:                                      

Resource

Action’s HTTP method

Action’s short description

Action’s long description

Action’s response list



 89Describing API resources and actions with OAS

        "200":                                        
          description: |                              
            Products matching free query parameter

As mentioned, an action’s possible responses are described in its responses property. 
Each response is identified by its HTTP status code and must contain a description 
property. The "200" property stands for the 200 OK HTTP status, which tells the con-
sumer that everything went fine. (Did you notice the quotes around the status code? 
They are needed because YAML property names must be strings and 200 is a number.) 
The response’s description property states that if everything went OK, the Products 
matching free query parameter are returned. We will explore the possible responses 
and HTTP status codes returned by an action in more depth in chapter 5.

Now that we have added this action to the /products resource, our OAS document 
is valid. But we’re not done yet. There is a second action on this resource: add product. 
We chose the HTTP method POST to represent the add product action on the catalog 
resource. It takes some product information and returns the product added to the cat-
alog (see figure 4.9).

To add this action, we proceed exactly like we did previously. The following listing 
shows how to do this.

Listing 4.5  Describing another action

openapi: "3.0.0"
info:
  title: Shopping API
  version: "1.0"
paths:
  /products:                                       
    description: The products catalog

200 OK HTTP status response

Response’s description

openapi: "3.0.0"
info:
  title: Shopping API
  version: "1.0"
paths:
  /products:
    description: The products catalog
    get:
      [...]
    post:

Add
POST

Catalog
/products

Search
GET

Product info

Free query

Added
product

Matching
products

Figure 4.9   Adding another action to a resource

Resource



90 chapter 4 Describing an API with an API description format

    get:
      summary: Search for products
      description: |
        Search for products in catalog
        using a free query parameter
      responses:
        "200":
          description: |
            Products matching free query parameter
    post:                                          
      summary: Add product                         
      description: |                               
        Add product (described in product info
        parameter) to catalog
      responses:                                   
        "200":                                     
          description: |                           
            Product added to catalog

We add a post property inside the object describing the catalog resource identified by 
the /products path. We set its summary property to Add product and its description to 
Add product (described in product info parameter) to catalog. We add a "200" 
property inside responses and set its description to Product added to catalog.

The /products resource’s post operation is now described within the OAS docu-
ment. Anyone looking at this document can tell what this operation does by reading 
its summary, description, and response description. As shown in figure 4.10, this docu-
ment contains the same information we identified in section 3.2.

Action’s HTTP method

Action’s short description

Action’s long description

Action’s response list

200 OK response

200 OK response’s description

openapi: "3.0.0"
info:
  title: Shopping API
  version: "1.0"
paths:
  /products:
    description: The products catalog
    get:
      summary: Search for products
      description: |
        Search for products in catalog
        using a free query parameter
      responses:
        "200":
          description: |
            Products matching
            free query parameter
    post:
      summary: Add product
      description: |
        Add product (described in
        product info parameter) to catalog
      responses:
        "200":
          description: |
            Product added
            to catalog

Add
POST

Search
GET

Catalog
/products

Matching products

Free query

Product info

Added product

Add
POST

Catalog
/products

GET
Search

Resources and actions, URLs and HTTP methods OAS document, standardized and structured API descritption

Product info

Free query

Added
product

Matching
products

Figure 4.10   OAS document corresponding to the initial figure



 91Describing API data with OpenAPI and JSON Schema

Congratulations! You now know the basics of how to describe a resource and its actions 
using the OAS. Even if it is not yet complete, such a description already provides inter-
esting information about the API. We have a formal and structured description of the 
resource’s path and HTTP methods, and we are able to determine which goal corre-
sponds to which action and how they work, thanks to the description properties.

But this document only provides a vague description of each operation’s inputs and 
outputs. In the previous chapter, we designed these inputs and outputs in detail. Let’s 
see now how to complete this document by describing those.

4.3 Describing API data with OpenAPI and JSON Schema
In the previous chapter, when we designed the programming interface matching the 
identified goals, we did not stop after designing the resource paths and choosing the 
HTTP methods. In section 3.3, we fully described the actions' parameters and responses, 
including descriptions of the data organization and properties (figure 4.11).

The OAS relies on the JSON Schema specification (http://json-schema.org) to describe 
all data— query parameters, body parameters, or response bodies, for example. JSON 
Schema aims to describe data formats in a clear human-readable and machine- readable 
way. It can also be used to validate JSON documents against a JSON schema, a data 
description made with JSON Schema. This format can be used independently from 
OAS to describe and validate any type of JSON data.

NOTE   OAS uses an adapted subset of JSON Schema. It does not use all JSON 
Schema features, and some specific OAS features have been added to this 
subset.

Name Type Required Description

price number yes Product’s price in USD

reference
name
price
dateAdded
definitelyOutOfStock
description
supplier

reference
name

/products

GET

free-query
query

parameter OpenAPI
document

Fully detailed
API description

Parameters, responses, and data descriptions

Array of
products

JSON
schemasJSON
schemasJSON
schemas

Data description relies on the
JSON schema specification

Figure 4.11   From figures and tables to a detailed OAS document

http://json-schema.org


92 chapter 4 Describing an API with an API description format

In this chapter, JSON Schema refers to the JSON Schema specification, whereas a JSON 
schema is an actual schema, a description of data. Note the difference in capitalization. 
Let’s see how we can describe API data using the OAS and JSON Schema. We’ll start 
with the search for products query parameter.

4.3.1 Describing query parameters

To search for products, API users have to provide a free query parameter to indicate 
what they are looking for (figure 4.12). In the previous chapter, we decided that this 
parameter would be a query parameter named free-query. To search for products 
using the API, a consumer would issue a GET /products?free-query={free query} 
request (for example, GET /products?free-query=book).

To describe this parameter, we add a parameters property inside the get operation of 
the /products resource, as shown in the following listing.

Listing 4.6  Describing parameters

openapi: "3.0.0"
info:
  title: Shopping API
  version: "1.0"
paths:
  /products:                                     
      get:                                       
        summary: Search for products
        description: |
          Search for products in catalog
          using a free query parameter
        parameters:                              
         [...]

Add
POST

Product info
Body parameter

GET
Search

Free query
free-query

Query parameter

openapi: "3.0.0"
info:
  title: Shopping API
  version: "1.0"
paths:
  /products:
    description: The products catalog
    get:
      summary: Search for products
      description: |
        Search for products in catalog
        using a free query parameter
      parameters:
        [...]  
      responses:
        "200":
          description: |
            Products matching
            free query parameter

Catalog
/products

Added product
Product

Matching products
Array of Products

Figure 4.12   The search for products free query parameter

Resource
Action

Action’s parameters list (except body)



 93Describing API data with OpenAPI and JSON Schema

        responses:
          "200":
            description: |
              Products matching free query parameter

When an action on a resource needs parameters other than body parameters, they are 
described in the action’s parameters property. In this case, to describe the parameter, 
we set its name to free-query, as shown in the following listing.

Listing 4.7  Describing a query parameter

parameters:
  - name: free-query                             
    description: |                               
      A product's name, reference, or
      partial description
    in: query                                    
    required: false                              
    schema:                                      
      type: string                               

We indicate that the parameter is located in the query but is not required, and that its 
data structure is described in schema. This schema simply indicates that this parame-
ter’s type is string. We also provide some additional information in its description to 
tell that its value could be A product’s name, reference, or partial description.

The parameters property is a list or array. In YAML, each element of a list or array 
starts with a dash (-). To describe a parameter, we need at least three properties: name, 
in, and schema. This parameter’s description also contains two optional properties: 
required and description.

The parameter’s name is the name that will be shown in the path (/products? 
free-query={free query}). The in property indicates the location of the parameter. 
Here, it’s a query parameter, so it’s located after a ? in the path.

The required property, which indicates if the parameter must be provided, is not 
mandatory. If required is not set, its default value is false, indicating that the param-
eter is optional. You are under no obligation to set it unless you need to define a 
parameter as required. But even though the parameter is optional, it’s always better 
to explicitly specify required: false. This way, you are sure that you’ve considered 
whether each parameter is mandatory or not.

TIP   Even though description is optional, I recommend that you always pro-
vide one. The parameter’s name alone is more often than not insufficient to 
describe what is expected.

The parameter’s data structure described in the schema property is a JSON schema. As 
mentioned earlier, JSON Schema is used in an OAS document to describe the API’s 
data— from a simple string query parameters to more complex structures used as 
body parameters and responses. Using JSON Schema, let’s see how we can describe a 
product, such as the one designed in section 3.3.1.

Parameter’s name Parameter’s description

Parameter’s location

Whether a parameter is mandatory

Parameter’s data structure description

Parameter’s type (string)



94 chapter 4 Describing an API with an API description format

4.3.2 Describing data with JSON Schema

We’ll start with a very basic version of the product, as shown in figure 4.13. It’s com-
posed of a reference, a name, and a price. The reference and name properties are of 
type string and price is a number.

Earlier, to describe a simple string query parameter with JSON Schema, we used type: 
string. Now, to describe such a product object, we have to use the type object and list its 
properties. Each property is identified by its name and type, as seen in the following listing.

Listing 4.8  Describing a very basic product with JSON Schema

type: object                                     
properties:                                      
  reference:                                     
    type: string                                 
  name:                                          
    type: string                                 
  price:                                         
    type: number                                 

But when we discussed designing the API’s data in the previous chapter, you learned 
that we must also identify which properties are required. Because the reference, name, 
and price properties are all mandatory, we’ll add an optional description for the 
sake of example (see figure 4.14).

Name Type

reference string

name string

{
  "reference": "ISBN-9781617295102",
  "name": "The Design of Web APIs",
  "price": 44.99
}

price number

An example of productProduct’s description

Figure 4.13   A basic product description

This schema describes an object. It contains properties.Property’s name

Property’s type

yes

yes

yes

no

Name Type

reference string

name string

{
  "reference": "ISBN-9781617295102",
  "name": "The Design of Web APIs",
  "price": 44.99,
  "description": "A book about web API design"
}

price number

An example of productProduct’s description

Required

description string

Figure 4.14   A product description with required flags



 95Describing API data with OpenAPI and JSON Schema

Now the product is composed of mandatory reference, name, and price properties 
and an optional description. To indicate that in the corresponding JSON Schema, we 
add reference, name, and price entries into the object’s required properties list, as 
shown in the following listing.

Listing 4.9  Required and optional properties for product

type: object
required:                                        
  - reference
  - name
  - price
properties:
  reference:                                     
    type: string
  name:                                          
    type: string
  price:                                         
    type: number
  description:                                   
    type: string

The JSON Schema allows us to indicate which properties are required in an object with 
its required list. Any property whose name is included in this list is mandatory. Any 
property whose name is not in this list is considered optional. In this case, description 
is the only optional property.

Our schema is getting pretty accurate, but when we designed the product resource, 
we found that we sometimes needed to add some descriptions because the property 
names were not sufficient to explain their nature. Let’s add a description to the object 
to show that it describes A product. We can also add a description to explain what a 
reference is. We can even add an example to show what a product’s reference looks 
like. The next listing shows this.

Listing 4.10  Documenting a JSON schema

type: object
description: A product                           
required:
  - reference
  - name
  - price
properties:
  reference:
    type: string
    description: Product's unique identifier     
    example: ISBN-9781617295102                  
  name:
    type: string
    example: The Design of Web APIs              
  price:
    type: number
    example: 44.99                               

Required properties list

Required properties

Optional property

Object’s description

Property’s description

Property’s value example



96 chapter 4 Describing an API with an API description format

  description:
    type: string
    example: A book about API design             

Just like the OAS, the JSON Schema comes with useful documentation features. An 
object and all of its properties can be described, and an example value can be provided 
for each property.

We’re still missing something, though. The product resource we designed in the previ-
ous chapter didn’t only have literal properties (strings or numbers), as shown in figure 4.15.

Indeed, it also had a complex supplier property, which is mandatory. A supplier is 
defined by its reference and its name, which are both required. The following listing 
shows the updated JSON schema.

Listing 4.11  Describing a complex property with the JSON Schema

type: object
description: A product
required:
  - reference
  - name
  - price
  - supplier                                     
properties:
  reference:
    type: string
    description: Product's unique identifier
    example: ISBN-9781617295102

Property’s value example

Name Type

reference string

name string

{
  "reference": "ISBN-9781617295102",
  "name": "The Design of Web APIs",
  "price": 44.99,
  "description": "A book about web API design",
  "supplier": {
    "reference": "MANPUB",
    "name: "Manning Publications" 
  }
}

price number

An example of productProduct’s description

Required

yes

yes

yes

description string no

Description

Product’s unique identifier

supplier object yes

Name Type

reference string

name string

Required

yes

yes

Description

Supplier’s unique identifier

Figure 4.15   A product with supplier description

The supplier is required.



 97Describing API data with OpenAPI and JSON Schema

  name:
    type: string
    example: The Design of Web APIs
  price:
    type: number
    example: 44.99
  description:
    type: string
    example: A book about API design
  supplier:                                      
    type: object
    description: Product's supplier
    required:                                    
      - reference
      - name
    properties:                                  
      reference:
        type: string
        description: Supplier's unique identifier
        example: MANPUB
      name:
        type: string
        example: Manning Publications

To add the supplier property to the product JSON schema, we add it to the proper-
ties list and set its type to object. We supply a description for the property and a list 
of its required properties (reference and name); then we describe those properties. 
For the reference property, we supply a type, description, and example. For the 
name property, we only set a type and example. Finally, we add the supplier property 
to the product’s required list.

As you can see, describing data using the JSON Schema is simple; you can describe 
any data structure using this format. Unfortunately, this book does not cover all of its fea-
tures. To learn more, I recommend you read the Schema Object description in the OAS 
(https://github.com/OAI/OpenAPI-Specification/tree/master/versions), and then 
the JSON Schema specification (http://json-schema.org/specification.html). Now that 
you know how to describe data structures using the JSON Schema, let’s describe the 
search for products response.

4.3.3 Describing responses

When users search for products, they are supposed to get the products matching the 
provided free query (figure 4.16). The corresponding GET /products?free-query= 
{free query} API request returns a 200 OK HTTP response whose body will contain 
an array of products.

The supplier object property

The supplier’s required properties

The supplier property descriptions

https://github.com/OAI/OpenAPI-Specification/tree/master/versions
http://json-schema.org/specification.html


98 chapter 4 Describing an API with an API description format

POST
Add

Product info

Catalog
/products

GET
Search

Free query
free-query

Query parameter

Body parameter

openapi: "3.0.0"
info:
  title: Shopping API
  version: "1.0"
paths:
  /products:
    description: The products catalog
    get:
      [...]
      parameters:
        [...]  
      responses:
        "200":
          description: |
            Products matching
            free query parameter
          content:
            [...]

Added product
Product

Matching products
Array of products

Figure 4.16   Describing the search for products response

In an OAS document, the data returned by an operation in the body of an HTTP response 
is defined in its content property, as shown in listing 4.12. When describing the content 
of a response, you have to indicate the media type of the document contained in the 
response’s body. The media type is provided in the HTTP response. For now, as stated 
earlier, we’ll take it for granted that our API returns JSON documents, so we indicate 
application/json in the response. (We talk about this HTTP feature later in chapter 6.)

Listing 4.12  Describing the response’s data

openapi: "3.0.0"
info:
  title: Shopping API
  version: "1.0"
paths:
  /products:
      get:
        summary: Search for products
        description: |
          Search using a free query (query parameter)
        parameters:
         [...]
        responses:
          "200":
            description: Products matching free query
            content:                              
              application/json:                   
                schema:                           
                  [...]

Once that is done, we can describe the schema of the returned JSON doc ument using 
the JSON Schema, as shown in listing 4.13. The GET /products action returns an array 
of products. We already know how to describe a product using the JSON Schema, but 
how do we describe an array of products? As you can see in the next listing, an array is 
described using the array type. The items property contains the schema of the array’s 
elements. This array contains some products; you should recognize the product JSON 
Schema we created earlier.

Response body’s 
definition Response body’s 

media type

Response body’s JSON schema



 99Describing API data with OpenAPI and JSON Schema

Listing 4.13  Describing an array of products

responses:
  "200":
    description: Products matching free query
    content:
      application/json:                          
        schema:                                  
          type: array                            
          description: Array of products
          items:                                 
            type: object
            description: A product
            required:
              - reference
              - name
              - price
              - supplier
            properties:
              reference:
                description: Unique ID identifying a product
                type: string
              name:
                type: string
              price:
                description: Price in USD
                type: number
              description:
                type: string
              supplier:
                type: object
                description: Product's supplier
                required:
                  - reference
                  - name
                properties:
                  reference:
                    type: string
                  name:
                    type: string

The next listing contains an example of a JSON document returned in the response’s 
body corresponding to the JSON Schema.

Listing 4.14  Array of products JSON example

[
  {
    "reference": "123-456",
    "name": "a product",
    "price": 9.99,
    "supplier": {
      "reference": "S789",
      "name": "a supplier"

Response body’s 
media type

Response body’s 
JSON schema

Response type 
is an array

Array’s items schema



100 chapter 4 Describing an API with an API description format

    }
  },
  {
    "reference": "234-567",
    "name": "another product",
    "price": 19.99,
    "supplier": {
      "reference": "S456",
      "name": "another supplier"
    }
  }
]

As you can see, describing the response’s data is pretty simple. And you know what? 
Describing body parameters is just as easy.

4.3.4 Describing body parameters

Let’s take a look at the add product action. To add a product to the catalog, the API 
user has to provide some product information in the body of their request, as illus-
trated in figure 4.17.

Describing the body parameter of add product is done almost the same way as describ-
ing the response of search for products, as you can see in the following listing.

Listing 4.15  Describing an action’s body parameter

openapi: "3.0.0"
info:
  title: Shopping API
  version: "1.0"
paths:
  /products:

POST
Add

Product info

Catalog
/products

GET
Search

Body parameter

openapi: "3.0.0"
info:
  title: Shopping API
  version: "1.0"
paths:
  /products:
    description: The products catalog
    [...]
    post:
      summary: Add product
      description: |
        Add product (described in product
        info parameter) to catalog
      requestBody:
        [...]
      responses:
        [...]

Free query
free-query

Query parameter

Added product
Product

Matching products
Array of products

Figure 4.17   Describing the add product body parameter



 101Describing API data with OpenAPI and JSON Schema

    description: The products catalog
    [...]
    post:
      summary: Add product
      description: Add product to catalog
      requestBody:                               
        description: Product's information       
        application/json:                        
          schema:                                
            [...]
      responses:
        "200":
          description: Product added to catalog

The body parameter of an HTTP request is described in its requestBody property. 
Like a response’s body, a body parameter has a media type (application/json), and 
its content is described with a JSON Schema. The complete description of this parame-
ter is shown in the following listing.

Listing 4.16  Body parameter’s complete description

requestBody:
  description: Product's information
  content:
    application/json:
      schema:                                    
        required:
          - name
          - price
          - supplierReference
        properties:
          name:
            type: string
          price:
            type: number
          description:
            type: string
          supplierReference:
            type: string

The body parameter’s schema (or request body’s schema) is described like any other 
data in OAS using the JSON Schema. As previously designed, the mandatory informa-
tion needed to add a product to the catalog is its name, price, and supplierReference. 
The description is optional. The following listing shows what the JSON document 
might look like.

Listing 4.17  Product information JSON example

{
  "name": "a product",
  "price": 9.99,
  "supplierReference": "S789"
}

Body parameter’s definitionBody 
parameter’s 
description Body parameter’s 

media type

Body parameter’s schema

Body parameter’s 
schema



102 chapter 4 Describing an API with an API description format

See? It was as easy as anticipated. Why? Because describing the request’s and response’s 
body is done the same way. Providing a common way of doing different things is a basic 
principle of design. This approach can be used when creating anything, from a door 
to an API description format, to make it user-friendly. We will investigate this from the 
API design perspective later in chapter 6.

We only need to describe add product’s response to finish the catalog resource’s 
description. We have learned all we need to do that. We know how to describe an 
action’s response and its data. And, fortunately, search for products and add product 
return the same type of data, a product, so we already have the JSON Schema describing 
the response’s data. But if we do that as we have learned, we will duplicate the product 
JSON Schema in the OAS document. Let’s see how we can handle this more efficiently.

4.4 Describing an API efficiently with OAS
It’s always useful to dig into an API description format’s documentation to learn all its 
tips and tricks, just like you would do when learning a programming language. There 
are two basic things that you need to know when writing OAS documents:

¡	How to reuse components such as JSON schemas, parameters, or responses
¡	How to define path parameters efficiently

4.4.1 Reusing components

Both search for products and add product return product resources. It would be a 
pity to describe the same thing twice. Fortunately, OAS allows us to describe reusable 
components such as schemas, parameters, responses, and many others, and use them 
where needed using a reference (figure 4.18).

openapi: "3.0.0"
info:
  title: Shopping API
  version: "1.0"
components:
  schemas:
    product:
      type: object
      properties:
        [...]
paths:
  /products:
    [...]
    get:
      parameters:
        [...]
      responses:
        "200":
          content:
            application/json:
              schema:
                $ref: #/components/schemas/product

Reusable definition

Reference to
reusable
definition

Figure 4.18   Reusable components in the OAS document



 103Describing an API efficiently with OAS

All we have to do to avoid describing a product JSON Schema twice is to declare it as 
a reusable schema. Reusable components are described in the components section that’s 
at the root of the OAS document. Within this section, reusable schemas are defined 
in schemas; each reusable schema’s name is defined as a property of schemas. This 
property contains the reusable component, a JSON Schema. In the following listing, 
product contains the product JSON Schema we created earlier.

Listing 4.18  Declaring a reusable schema

openapi: "3.0.0"
[...]
components:                                      
  schemas:                                       
    product:                                     
      type: object                               
      description: A product
      required:
        - reference
        - name
        - price
        - supplier
      properties:
        reference:
          description: |
              Unique ID identifying
              a product
          type: string
        name:
          type: string
        price:
          description: Price in USD
          type: number
        description:
          type: string
        supplier:
          type: object
          description: Product's supplier
          required:
            - reference
            - name
          properties:
            reference:
              type: string
            name:
              type: string

Now, instead of redefining the product JSON Schema, we can use a JSON reference 
to access this predefined schema when we need it. A JSON reference is a property whose 
name is $ref and whose content is a URL. This URL can point to any component 
inside the document, or even in other documents. Because we are only referencing 
local components, we use a local URL containing only a fragment describing the path 
to the needed element, as shown in figure 4.19. Here, product is located in schemas, 
which is located in components at the root of the document.

Reusable components

Reusable schemas
Reusable schema’s name

JSON Schema



104 chapter 4 Describing an API with an API description format

components:

  schemas:

    product:
      type: object
      properties:
        [...]

$ref: #/components

$ref: #/components/schemas

$ref: #/components/schemas/products

Figure 4.19   JSON references to local components

The following listing shows how we can use a reference for the POST /products response.

Listing 4.19  Using a predefined component with its reference

post:
  summary: Add product
  description: Add product to catalog
  [...]
  responses:
    "200":
      description: Product added to catalog
      content:
        application/json:
          schema:                                
            $ref: "#/components/schemas/product" 

When users add a product to the catalog, they get the created product in return. So 
when defining the response schema, instead of redescribing the product JSON Schema, 
we can just use a $ref property whose value is a reference to the predefined schema. We 
can do the same for search for product, which returns an array of products, as shown in 
the next listing.

Listing 4.20  Using a predefined component in an array with its reference

get:
  summary: Search for products
  description: |
    Search using a free query (query parameter)
  parameters:
    [...]
  responses:
    "200":
      description: Products matching free query
      content:
        application/json:
          schema:                              
            type: array                        
            items:                             
              $ref: "#/components/schemas/product" 

The schema we have predefined only describes a product, not an array of products, so 
here we use the predefined schema to describe the array’s items schema. To do that, 
as before, we simply replace the schema with a reference ($ref) to the predefined 

Response’s schema

Reference to predefined schema

Response’s 
schema An array

Array’s items schema
Reference to 

predefined schema



 105Describing an API efficiently with OAS

schema. This means that we can combine inline and predefined definitions. Note that 
we can also use multiple predefined definitions when needed.

We’re now done with the catalog resource identified by the /products path and its two 
actions, get and post. These elements are fully and efficiently described thanks to the 
OAS and JSON Schema. There is one last thing to investigate with the OAS in order to be 
able to fully describe a basic REST API— how to describe a resource with a variable path.

4.4.2 Describing path parameters

The product resource, which can be deleted, updated, or replaced, is identified by a 
variable path (figure 4.20). Note that the get, update, and replace actions return the 
same product and also that the update and replace actions use the same parameter. 
Note also the /products/{productId} path contains a productId variable, which is 
called a path parameter.

Get
GET PATCH

Update

PUT
Replace

DELETE
Delete

Product
/products/{product_id}

Product info
Body parameter

Product info
Body parameter

Product
Product

Product
Product

Product
Product

Identical parameters1

1

1

2

2

2

1 Identical responses

Figure 4.20   The product resource and its actions

You already learned how to define parameters on the action level with GET /prod-
ucts?free-query={free query}, so let’s do this again with DELETE /products/{pro-
ductId}. The following listing shows how we can define this in our OAS document for 
the delete action.

Listing 4.21  Deleting a product

paths:
  /products:
  [...]
  /products/{productId}:                         
    description: A product
    delete:                                      
      summary: Delete a product
      parameters:                                
        - name: productId                        
          in: path                               
          required: true                         
          description: Product's reference
          schema:
            type: string

Product resource path with parameter

Delete product 
action

Delete product action’s parametersPath 
parameter’s 

name Parameter is located in path

Parameter is required



106 chapter 4 Describing an API with an API description format

First we add a new /products/{productId} path to define the product resource. As 
you can see, the path parameter is identified with curly braces ({productId}) in paths. 
Then, we define this path parameter in the delete action’s parameters list. It is defined 
almost like any other parameter that goes in the parameters section: we need to set its 
name, location, and schema. The name must match the name inside the curly braces in 
the path, so we set it to productId. The location (in) is obviously path, and this param-
eter’s type, defined in its schema, is string.

We’re almost done, but there is one last thing we must not forget to do: because it is a 
path parameter, we also have to make this parameter mandatory by setting required to 
true. If we don’t do that, the parser throws an error.

That wasn’t so different from defining a query parameter. Now, what if we wanted to 
describe the product’s update and replace actions? We could describe the path param-
eter the same way, but that would mean duplicating this description in each new action. 
How can we do that more efficiently?

Earlier, we discovered the components section of the OAS document. This section 
allows us to define reusable components such as schemas and responses, and we can 
also describe reusable parameters here. The following listing illustrates how we do this.

Listing 4.22  Describing a reusable parameter

components:                                      
  parameters:                                    
    productId:                                   
      name: productId
      in: path
      required: true
      description: Product's reference
      schema:
        type: string

To define a reusable parameter, we do exactly what we did for our reusable schema. 
In the components section at the root of the OAS document, each reusable parameter 
is defined as a property of parameters and identified by name. The productId prop-
erty contains the definition of the productId path parameter as we have defined it for 
DELETE /products/{productId}.

Pretty simple, isn’t it? Like the JSON Schema, we use this predefined parameter with 
a JSON reference, as shown in the following listing.

Listing 4.23  Using a predefined parameter

components:
    parameters:
      productId:                                   
        [...]
paths:
  /products:
  [...]
  /products/{productId}:                           

Reusable 
componentsReusable 

parameters
Reusable parameter’s 
name

Path parameter definition

Product resource’s path with parameter



 107Describing an API efficiently with OAS

    delete:
      parameters:
        - $ref: #/components/parameters/productId  
      [...]
    put:
      parameters:
        - $ref: #/components/parameters/productId  
      [...]
    patch:
      parameters:
        - $ref: #/components/parameters/productId  
      [...]

Instead of defining the same parameter three times, we simply use a $ref property 
pointing to the unique and reusable productId definition.

That’s much better! The productId parameter is defined once and used in three 
different places. But do you know what? We can do even better. Strictly speaking, the 
productId parameter is not an action’s parameter; it’s a resource’s parameter.

In an OAS document, parameters can be defined not only at the action level but 
also at the resource level, again in a parameters section. The structure of this section is 
exactly the same as at the action level. All parameters defined on the resource level are 
applied to all actions on the resource. Therefore, as the next listing demonstrates, to 
simplify our document even more, we can simply define the productId path parameter 
in the parameters section of the /products/{productId} path.

Listing 4.24  Resource-level parameters

components:
    parameters:
      productId:                                 
        [...]
paths:
  /products:
  [...]
  /products/{productId}:                         
    parameters:                                  
      - $ref: #/components/parameters/productId  
    delete:                                      
      [...]
    put:                                         
      [...]
    patch:                                       
      [...]

Congratulations! With all that you have now discovered about OAS, you should be able to 
finish the descriptions of the product resource’s actions. But more importantly, you will 
now be able to create a formal description of any basic REST API using OAS and share  
it with all the people involved in your project. Don’t hesitate to dig into the OAS docu-
mentation (https://github.com/OAI/OpenAPI-Specification/tree/master/versions), use 
my OpenAPI Map (https://openapi-map.apihandyman.io), and experiment to discover 
other features.

Reference to 
predefined parameter

Path parameter definition

Product resource’s path with parameter

Resource-level parameters

Reference to 
predefined 
parameter No more path 

parameter definitions

https://github.com/OAI/OpenAPI-Specification/tree/master/versions
https://openapi-map.apihandyman.io


108 chapter 4 Describing an API with an API description format

This chapter concludes the first part of this book. You have acquired a basic set of 
API design skills, and you now know

¡	What an API really is
¡	How to identify its goals from the consumer’s perspective
¡	How to transpose them into a programmable representation
¡	How to formally describe this programmable representation using OAS

In the next part, we will improve on these skills so you can create APIs that anybody 
can use easily, without even thinking about it. In the next chapter, we dig into the API’s 
usability by investigating how to design straightforward APIs.

Summary
¡	An API description format is a simple and structured way to describe and share a 

programming interface.
¡	An API description document is a machine-readable document that can be used 

in numerous ways, including to generate API reference documentation.
¡	You use an API description format only when designing the API’s programmable 

representation and data, and not before.
¡	Always take advantage of an API description format’s documentation features. 

Explore the API description format’s documentation in depth so you can use it 
efficiently and, especially, to define reusable components where possible.



Part 2

Usable API design

Now that you have finished the first part of this book, you are able to iden-
tify an API’s real goals and represent them as a programming interface, all while 
having the consumer’s perspective in mind and avoiding the provider’s. This is a 
solid basis for designing an API that does the job— but people expect more from 
APIs than just doing the job. An API is worth nothing if it is not usable. The more 
usable an API is, the less effort is required to work with it, and the more people 
may choose to use it. They even may love to use it. Usability is what distinguishes 
awesome APIs from mediocre or passable ones.

Usability is vital for any API, as for any everyday object. Do you remember the 
Kitchen Radar 3000? Its interface was terrible because it simply exposed inner 
workings. Unfortunately, such a terrible design can be achieved when creating 
APIs, even when avoiding the dreaded provider’s perspective! Fortunately, funda-
mental principles of usability can be learned by observing everyday things.

When people use an everyday object, they want to achieve their goals without 
being overwhelmed by an abundant but fuzzy set of functions. And they love to 
think that they are smart because they can discover everything about an object by 
themselves. It is the same for APIs.

Consumers don’t want to have to think when they use APIs; they want APIs with 
a straightforward design that lets them achieve their objectives instantly, without 
having to lose time understanding data, goals, or error feedback. They also want 
concise and organized sets of goals, not an overwhelming, gigantic, motley API. 
And, most importantly, they want to feel at home when they use an API; they want 
to have a feeling of déjà-vu because the API tells them everything, and its design 
also conforms to standards or common practices.





111

5Designing a 
straightforward API

This chapter covers
¡	Crafting straightforward representations of 

concepts

¡	Identifying relevant error and success feedback

¡	Designing efficient usage flows

Now that you have learned to design APIs that actually let consumers achieve their 
goals, you have a solid foundation in API design. Unfortunately, only relying on the 
basics does not mean that consumers will actually be able to use the “APIs that do 
the job.” Remember the UDRC 1138 shown in figure 5.1? It is possible to design a 
terrible interface that does the job.

Terrible data

Terrible error
feedback

UDRC 1138

Operates up to 50m max.
Use out-of-range values at your own risk

32.8 ft 3.14 rad
0.027 NM 0.9 km/h Terrible buttons

Terrible name

Figure 5.1   A terrible interface that does the job



112 chapter 5 Designing a straightforward API

When faced with an unfamiliar everyday object, what do you do? You observe it. You 
analyze its form, labels, icons, buttons, or other controls in order to get an understand-
ing of its purpose, its current status, and how to operate it. To achieve your goal using 
this object, you might need to chain various interactions, providing inputs and receiv-
ing feedback. When you do all that, you don’t want uncertainties; everything must be 
crystal-clear. You don’t want to waste time, so everything must go swiftly and efficiently. 
You want your experience using any everyday object to be as straightforward as possi-
ble. You definitely don’t want to face another interface like the UDRC 1138. That is the 
basis of usability. And it’s exactly the same with APIs.

People expect APIs to be usable. They expect straightforward representations, 
straightforward interactions, and straightforward flows. We will uncover some funda-
mental principles of usability by observing everyday things in various situations, then 
transpose those principles to API design. We will work for now, and for the rest of this 
book, on an imaginary retail Banking API provided by the fictitious Banking Company. 
This API could be the one used, for example, by a mobile banking application to get 
information about current accounts, such as balance and transactions, and transfer 
money from one account to another. Let’s start by learning to craft representations that 
fit this bill.

5.1 Designing straightforward representations
How a designer chooses to represent concepts and information can greatly enhance or 
undermine usability. Avoiding the provider’s perspective and focusing on the consum-
er’s, as you learned to do in chapter 2, is the obvious first step toward usability— but we 
also need to take care of a few other aspects to ensure that we design straightforward 
representations. Let’s work on a simple alarm clock to discover these aspects.

Figure 5.2 shows how we can modify an alarm clock’s appearance. It shows how we 
can modify the representations used in order to make it the least usable possible.

64980
Increm.

WUM 3000

Def
Noi. Mmt

Def
Moment

Countdown: 43020

Decrem.
18:03

+

24h Alarm Clock

–

Set
Time

Alarm: 06:00 Set
Alarm

Non-user-friendly
data format

Crystal-clear namesReady-to-use data

Ready-to-use
data format

Cryptic namesIrrelevant data

Figure 5.2   Transforming an alarm clock into a less usable device



 113Designing straightforward representations

First, we can use more cryptic labels. The 24h Alarm Clock becomes the WUM 3000 
(Wake Up Machine 3000). The Set Time, Set Alarm, and + and – buttons are replaced 
by Def Moment (Define Moment), Def Noi. Mmt (Define Noise Moment), Increm. 
(Increment), and Decrem. (Decrement). We can also use a less user-friendly format 
for the current time and replace it with the number of seconds elapsed since midnight, 
so 18:03 becomes 64,980. And finally, we can replace the alarm time with closely related 
but less useful information: a countdown to the alarm time in seconds, for example. If 
the current time is 18:03, the 06:00 alarm time then becomes 43,020 (and counting).

Just like the 24h Alarm Clock, the WUM 3000 does not expose inner complexity. 
Both are made to show time and, more importantly, make some awful noise at a given 
moment. But the representations used are slightly different, and this affects usability. 
The 24h Alarm Clock is usable because a user can understand what this device is, what 
its current status is, and how to use it by just reading the labels, buttons, and display 
screen. On the other hand, the WUM 3000 is far less usable because these elements are 
quite cryptic and confusing.

It’s exactly the same with APIs. The choices you make with regard to names, data for-
mats, and data can greatly enhance or undermine an API’s usability. You already know 
how to design these things; you just have to consider whether the chosen representa-
tions make sense and are easily understandable for the consumer, focusing on the con-
sumer’s perspective and designing with the user in mind. Let’s explore these topics a 
bit more closely, though, to fully uncover how to craft straightforward representations.

5.1.1 Choosing crystal-clear names

It’s impossible to determine what a WUM 3000 is and how to use it based solely on its 
name or its Def Moment and Def Noi. Mmt buttons, while a 24h Alarm Clock is obvi-
ously … an alarm clock. Code names, awkward vocabulary, and cryptic abbreviations 
can make an everyday object totally confusing. The same goes for APIs.

When you analyze needs with the API goals canvas, you have to name inputs and 
outputs. These inputs and outputs have to be represented as resources, responses, or 
parameters, all of which have names. These elements can contain properties, which 
have names too. When representing these with a tool such as the OpenAPI Specifica-
tion (OAS), you might have to choose names for reusable JSON schemas. Depending 
on the chosen API style, goals can be represented as functions, which also have names. 
Names are everywhere. So how do you choose those?

In section 2.2.2, you discovered the consumer’s and provider’s perspectives. We 
already know that we must choose names that mean something for the consumers. But 
even knowing that, we must be careful when crafting those names.

Let’s say the Banking Company’s current accounts come with an optional overdraft 
protection feature. If the overdraft protection is active, the bank will not apply any fees 
in the event of the customer’s withdrawal exceeding the available balance. It could be 
interesting to know if this option is active or not when retrieving information about a 



114 chapter 5 Designing a straightforward API

bank account with the Banking API provided by this company. Figure 5.3 shows how it 
could be represented in the API.

bankAccountOverdraftProtectionFeatureActive

bankAccountOverdraftProtectionFeature

bankAccountOverdraftProtection

overdraftProtection

openapi: "3.0.0"
info:
  title: Banking API
  version: "1.0"
components:
  schema:
    Account:
      properties:

          type: boolean
          description: |
            overdraft protection
            feature status

bankAccountOverdraftProtectionFeatureActiveBln

bkAccOverProtFtActBln

Bln is an
unnecessary

suffix. 

Active is
redundant
with type.

Feature does not
bring any value.

bankAccount prefix
is redundant

with schema name.

Avoid
abbreviations.

Figure 5.3   Choosing a property name

The first idea is to use a boolean property named bkAccOverProtFtActBln, which is 
true when the feature is activated and false otherwise. But while using the Boolean 
type totally makes sense, this bkAccOverProtFtActBln property name is not totally user-
friendly, to say the least. Using abbreviations is usually not a good idea because it makes 
them harder to understand. (Note that abbreviations like max or min are acceptable 
because they are commonly used; we’ll talk more about that in section 6.1.3.)

With fewer abbreviations, this property name becomes bankAccountOverdraft-
ProtectionFeatureActiveBln; that’s a descriptive and readable name. But while it’s 
clear, it’s awfully long. Let’s see how we can find a better but still easily understandable 
alternative.

The Bln suffix states that this property is a Boolean. Some coding conventions can 
promote the use of prefixes or suffixes like bln, dto, sz, o, m_, and so on to explain the 
technical nature of a property, class, or structure. Because you are aware of the provid-
er’s perspective, you’ve probably already guessed that exposing internal coding conven-
tions in this way might not be wise. But even if we set aside the provider’s perspective, do 
such technical details matter to consumers? Not at all.

Consumers will have access to the API’s documentation, which describes this 
property as a Boolean. And when testing the API, developers will see that the prop-
erty is a Boolean because its value is true or false. So, we can shorten the name to 
bankAccountOverdraftProtectionFeatureActive.

Because the API’s consumers can see that this property is a Boolean, we can also 
get rid of the Active suffix. This word is redundant with the Boolean type and, 
therefore, has absolutely no informative value. So, we can shorten the name to 
bankAccountOverdraftProtectionFeature.

Speaking of informative value, does the word Feature have any interest? Not really. 
From a functional point of view, it simply states that this is a property/service of the bank 
account. This could be explained in the property’s documentation. So, we can also get 
rid of this word and shorten the property’s name to bankAccountOverdraftProtection.



 115Designing straightforward representations

And finally, this property belongs to a bank account, so there’s no need to state the obvi-
ous in its name. Therefore, the property can simply be named overdraftProtection. 
We have gone from seven words to two.

TIP  I recommend that you try to use no more than three words to craft names 
(whatever their purpose).

Basically, what we did in crafting this name is to use words that consumers can under-
stand easily, and we took advantage of the context surrounding what we are naming to 
find a short but still clearly understandable name. We also have avoided abbreviations 
and exposing internal code conventions. This is all you have to do if you want to find 
crystal-clear names for resources, parameters, properties, JSON schemas, or anything 
else that needs a name.

Some of the names we choose when designing APIs are meant to identify data. And 
as we saw with the overdraftProtection Boolean property, choosing adequate data 
types can greatly facilitate understanding.

5.1.2 Choosing easy-to-use data types and formats

The WUM 3000 showed us that inadequate data representation can ruin usability. 
A value such as 64,980 is not obviously a time, and even if users know it is, they still 
have to do some calculations to decipher its true meaning: 18:03. Lacking context, the 
wrong data type or format can hinder understanding and usage.

But that’s for an everyday object used by human beings. With APIs, data is simply 
processed by the software consuming the API, and it can perfectly interpret complex 
formats. It can even transform the data before showing it to an end user if necessary. So 
why should we care about data types and formats when designing an API?

We must never lose sight of the fact that an API is a user interface. Developers rely not 
only on names to understand and use the API, but also on its data. It’s common for 
developers to analyze sample requests and responses, call the API manually, or analyze 
returned data in their code for learning, testing, or debugging purposes. They might 
also need to manipulate specific values in their code. To do all that, they need to be able 
to understand the data. If the API only uses complex or cryptic data formats, such an 
exercise will be quite difficult. So just like names that must be understood at first sight, 
the meaning of an API’s raw data must always be crystal-clear for developers.

TIP  Choosing appropriate data formats when designing an API is as important 
as choosing appropriate names in order to provide a straightforward represen-
tation in your API.

As seen in section 3.3.1, APIs typically use basic portable data types such as string, 
number, or boolean. It can be relatively straightforward to choose a type for a property. 
If we go on designing the bank account concept we started in the previous section, 
adding the account’s name and balance is quite simple. Indeed, a bank account’s 
name should obviously be a string and its balance a number. But, in some cases, you 
have to be careful when choosing data types and formats to ensure that what you 



116 chapter 5 Designing a straightforward API

are designing is understandable by a human being, as shown in figure 5.4. The figure 
shows examples of a bank account’s data in two different versions: on the left side, the 
data is not easy-to-use; it is the opposite on the right side.

{
  "number": 123457,
  "balanceDate": 1534960860,
  "creationDate": 1423267200,
  "type": 1,
  ...
}

{
  "number": "00012345678",
  "balanceDate": "2018-08-22T18:01:00z",
  "creationDate": "2015-02-07",
  "type": "checking",
  ...
}

Easy-to-use dataNot easy-to-use data

Some data
of a bank
account

Figure 5.4   Impacts of data types and format on usability

Thanks to the Date suffix and the 1534960860 value, seasoned developers should be 
able to understand that balanceDate is a UNIX timestamp. But will they be able to 
decipher this value just by reading it? Probably not. Its ISO 8601 string counterpart, 
"2018-08-22T18:01:00z", is far more user-friendly and can be understood by anyone 
without any context and without effort (well, almost without effort, once you know that 
it’s "YEAR-MONTH-DAY" and not "YEAR-DAY-MONTH").

The same goes for the creationDate, whose left-side value is 1423267200. But note 
that its ISO 8601 value shows only the date without a time: "2015-02-07". To lessen the 
risk of time zone mishandling, I recommend not providing a time value when it’s not 
needed.

The type property is supposed to tell if an account is a checking or savings account. 
While on the not easy-to-use side, its value is a cryptic number, 1; its easy-to-use one is a 
more explicit string value, checking. Using numerical codes is usually a bad idea; they 
are not people-friendly, so developers will have to constantly refer to the documenta-
tion or learn your nomenclature to be able to understand such data. Therefore, if you 
can, it is better to use data types or formats that can be understood by just reading them.

And finally, a tricky case: if the account number is provided as a number (1234567), 
consumers have to be careful and may have to add missing leading zeros themselves. 
The string value "00012345678" is easier to use and is not corrupted.

So when choosing data types and format, you must be human-friendly and, most 
importantly, always provide accurate representation. When using a complex format, try 
to provide just enough information. And, if possible, try to stay understandable without 
context.

OK, we know now how to choose names and data types or formats. But the usability 
of a representation also depends on which data we choose to use.

5.1.3 Choosing ready-to-use data

The WUM 3000 showed us how providing the wrong data can affect usability. When 
we design APIs, we must take care to provide relevant and helpful data, going beyond 
just the basic data that we learned to identify in section 3.3. The more an API is able 
to provide data that will aid understanding and avoid work on the consumer side, 



 117Designing straightforward representations

the better. Figure 5.5 shows some ways to achieve that when designing the REST API 
representation of the read account goal.

GET /accounts/473e3283-a3b3-4941-aa48-d8163ead9ffc

Adding data to
clarify cryptic value

Providing added-value data
to ensure consumers have
nothing to do on their side

{
  "type": 2,

  "balance": 500,

  "overdraftLimit": 100,

  "creationDate": "2015-02-07"
}

GET /accounts/0001234567

{
  "type": 2,
  "typeName": "checking",

  "balance": 500,
  "currency": "USD",
  "overdraftLimit": 100,
  "safeToSpend": 600,

  "yearsOpen": 3
}

Replacing opaque data with
meaningful data

Replacing data with more
relevant added-value data

Ready-to-use dataNot ready-to-use data

Figure 5.5   Simplify consumers work with ready-to-use data

In the previous section, you saw that it would be a better idea to provide a human- 
readable type like checking. But what if, for some reason, we have to use a numerical 
nomenclature? In that case, a savings account’s type is 1 and a checking account’s is 2. 
To clarify such numerical values, we can provide an additional typeName property. Its 
content could be savings or checking. That way the consumers will have all the infor-
mation they need to understand what kind of bank account they are working with, 
without having to learn a nomenclature or refer to the API’s documentation. Provid-
ing additional information definitely helps to clarify cryptic data.

The overdraft protection feature has some limits. If the bank account’s balance goes 
into a negative value beyond a certain limit ($100, for example), fees will be applied. 
This means that if the balance is $500, the account’s owner can spend $600. We can 
provide a ready-to-use safeToSpend property in order to avoid the consumer having to 
do this calculation. We can also provide information about the account’s currency so 
consumers know that balance, overdraftLimit, and safeToSpend amounts are in US 
dollars. Providing static or precalculated added value data ensures that consumers have 
almost nothing to do or guess on their side.

It’s also a good idea to replace basic data with related but more relevant data. For 
example, the account’s creationDate might not really be of interest because the con-
sumer will likely only want to know how many years the account has been open. In that 
case, we could provide this information directly instead of the account’s creation date. 
This way the consumer only gets relevant and ready-to-use data.

When we design REST APIs, each resource must be identified by a unique 
path (see section 3.2.3). Such URLs are usually built around resource collection 
names and resource identifiers. To identify a bank account, we could use the URL  
/accounts/{accountId}. A bank account is an item identified by an accountId in a col-
lection named accounts. But what could this accountId be? It could be a technical ID 
such as 473e3283-a3b3-4941-aa48-d8163ead9ffc. This is known as a universal unique 
identifier (UUID). These IDs are randomly generated, and the probability of generating 



118 chapter 5 Designing a straightforward API

the same ID twice is close to zero. This way we’re sure that the /accounts/473e3283-
a3b3-4941-aa48-d8163ead9ffc path is unique, but we cannot identify which bank 
account this URL represents by just reading it!

Maybe we could use a more user-friendly value such as the bank account number, 
which is also unique. That way, the URL to identify a bank account becomes /accounts/
{accountNumber}. The /accounts/0001234567 path is still unique and now has a 
clearer meaning. Doing so is not reserved to the path parameter— providing meaning-
ful data eases use and understanding for any value.

As you can see, once you know which aspects you must take care of, designing straight-
forward representations is relatively straightforward. But APIs are not only about static 
data: people interact with them to achieve their goals. And each one of these interac-
tions must be straightforward too.

5.2 Designing straightforward interactions
To interact with an object or an API, users have to provide inputs to explain what they 
want to do. In return, they get some feedback telling them how it went. Depending on 
how the designer took care of the design of an interaction, these users can be com-
pletely frustrated or totally delighted. Washing machines are a perfect example of 
both cases.

Let’s say that you’ve just gotten back from a vacation and it’s laundry time. If you are 
lucky enough to have a straightforward washing machine, like the one shown on the left 
in figure 5.6, your task is quite simple.

You open the door, put your laundry in, add some soap, and then choose the washing 
program. To do that, you turn a big knob— obviously named Program— to select the 
type of laundry using labels with obvious names like Wool, Silk, Cotton, Jeans, Shirts, 
or Synthetic. The machine will choose the appropriate clean/rinse cycles, water tem-
perature, and spin speed according to the laundry type. It will also choose the water 
level according to the laundry weight given by a weight sensor. If desired, you can 
adjust parameters such as temperature and spin speed yourself, using the obviously 
named Temperature and Spin Speed buttons or knobs. But this is usually not necessary 
because the automatically selected parameters are accurate in 95% of all cases.

Cotton
Wool

Jeans

Synthetic

Shirts

Silk
Error/Status

Temperature

60°C 1500 rpm

Regular

Gent.
Mot.

Perm.
Press

Spin Speed
Hot

Very
Hot

Cool
1000

1500 500

Tmp RPM

Half loadError
Start

Start

PrgProgram

Straightforward interaction Tricky interaction

One simple input
Informative feedback

Many complex inputsAbsent or minimalist
feedback

Figure 5.6   Straightforward versus tricky washing machine



 119Designing straightforward interactions

When everything is OK, you push the start button. Unfortunately, the machine does 
not start. It makes some alerting beeps, and the LCD screen displays a “Door still open” 
message. You close the door, but the machine still refuses to start; it beeps again and the 
LCD screen now displays a “No water” message. You forgot that you shut off the water 
before going on vacation! After reopening your home’s main water valve, you push the 
start button again. The machine now starts, and the LCD screen displays the remain-
ing time in hours and minutes. We can even imagine that this straightforward washing 
machine reports the two problems in one shot to let you solve both problems at once.

Unfortunately, doing laundry is not always that simple. As shown on the right in fig-
ure 5.6, some washing machines are trickier to use.

With a not-so-straightforward washing machine, you might have to provide more 
information in a less user-friendly way. The programs available via the Prg knob have 
quite mysterious names such as Regular, Perm. Press (for permanent press), or Gent. 
Mot. (for gentler motion). There might be no weight sensor, and you might have to 
push a Half load button to indicate that the machine is not full of laundry. You might 
have to select the temperature and spin speed yourself using the Tmp and RPM knobs. 
And good luck choosing the correct temperature— from Cool to Very Hot. Once you’ve 
provided all the inputs, the error and success feedback might not be as informative as 
with the more user-friendly machine. In case of a problem such as “Door still open” 
or “No water,” the washing machine might simply not start. If you’re lucky, a red LED 
might light up, but without further explanation. And if you succeed in determining and 
solving all the problems, the machine might eventually start without telling you how 
long the wash cycle will take.

So, which type of interaction do you prefer? The straightforward one requiring min-
imal, understandable, and easy-to-provide inputs and showing helpful error feedback 
and informative success feedback? Or the tricky one requiring multiple obscure inputs 
and giving absolutely no clue about what is happening? This is, of course, a purely rhe-
torical question. Let’s see how we can transpose this idea of straightforward interactions 
to the design of a money transfer’s inputs and feedback for our Banking API.

Remember that in chapters 2 and 3, you learned how to design goals, parameters, 
and responses from the consumer’s perspective, avoiding the provider’s one. We will 
not discuss that matter again here.

5.2.1 Requesting straightforward inputs

The first step of an interaction belongs to the users. It’s up to them to provide some 
inputs to say what they want to do. As API designers, we can give them a hand by design-
ing straightforward inputs like those on the easy-to-use washing machine, using what 
we learned earlier in this chapter.

In our Banking API, a money transfer consists of sending an amount of money from 
a source account to a destination account. The transfer can be immediate, delayed, or 
recurring. An immediate transfer is obviously executed immediately, while a delayed one 
is executed at a future date. A recurring transfer is executed multiple times, from a start 
date to an end date, at a set frequency (say, weekly or monthly). Figure 5.7 shows how 



120 chapter 5 Designing a straightforward API

we can apply what we have learned so far to design straightforward inputs for a money 
transfer. The names should be clear, avoiding obscure abbreviations; the data types and 
formats, easy to understand; and the data, easy to provide.

The first of our rules for designing straightforward representations is to use crystal-clear 
names. The transfer money goal is therefore represented by a POST /transfers REST 
operation (which creates a transfer resource) instead of POST /trf (an abbreviation). 
We also use obvious property names like source and destination instead of src or 
dst, for example.

The next rule is to use easy-to-understand data formats. We will avoid the use of 
UNIX timestamps (1528502400, for example) and use ISO 8601 dates (2018-06-09, for 
example) for all date properties, such as the date that represents the delayed execution 
date or the first occurrence date of a recurring transfer. We also avoid using numerical 
codes for properties such as frequency and type, preferring instead human-readable 
values such as weekly or monthly and immediate, delayed, or recurring.

We can make this input even more straightforward by following the third rule and 
requesting easy-to-provide data. It’s better to use meaningful values such as account 
numbers for source and destination instead of obscure UUIDs. It also might be sim-
pler to provide the number of money transfer occurrences instead of calculating an 
endDate for a recurring transfer. And finally, we can get rid of the type property that 
tells us if the transfer is immediate, delayed, or recurring because the backend receiv-
ing the request can guess its value based on the other properties.

This way, we end up with inputs that are totally straightforward. The user should find 
everything easy to understand when reading the documentation or looking at an exam-
ple. And, most importantly, this API goal is dead simple to trigger. But what happens 

POST /trf

{
  "src": "9a8fb91b-5b6d-4f37-8cf9-90b11f52e414",
  "dst": "98eb03ed-ce1f-4ae7-812a-cc6353dd680f",
  "amt": 342.7,
  "dte": 1907193600,
  "typ": 3,
  "edt": 1938729600,
  "frq": 2
}

POST /transfers

{
  "source": "9a8fb91b-5b6d-4f37-8cf9-90b11f52e414",
  "destination": "98eb03ed-ce1f-4ae7-812a-cc6353dd680f",
  "amount": 342.7,
  "date": "2030-06-09",
  "type": "recurring",
  "endDate": "2031-06-09",
  "frequency": "monthly"
}

POST /transfers

{
  "source": "0001234567",
  "destination": "0045678910",
  "amount": 342.7,
  "date": "2030-06-09",
  "occurrences": 12,
  "frequency": "monthly"
}

Crystal-clear names and
easy-to-understand data formats

Minimal and
easy-to-provide

data

Figure 5.7   Designing straightforward inputs



 121Designing straightforward interactions

once the user has provided these straightforward inputs? Let’s explore the second part 
of the interaction: the feedback.

5.2.2 Identifying all possible error feedbacks

The first response we got when using the washing machine was an error feedback. 
What does that mean for API design? Unlike what we have seen in previous chapters, 
an API interaction is not always successful, and we must identify all possible errors for 
each goal. The transfer money goal can also trigger such error feedback, shown in 
figure 5.8.

Consumers can get error feedback if they do not provide a mandatory property such as 
amount. They can also get an error if they provide the wrong data type or format, such 
as using a UNIX timestamp instead of an ISO 8601 string for the date property. Such 
errors are known as malformed request errors.

But even if the server is able to interpret the request, that does not guarantee the 
response will be a successful one. The money transfer’s amount might exceed the safe-to-
spend value or the maximum amount the user is allowed to transfer in one day, or it might 
be forbidden to transfer money to an external account from certain internal accounts. 
Such errors are functional errors, triggered by the implementation’s business rules.

These malformed request and functional errors are caused by the consumers, but 
the provider can also trigger some even if the request is completely valid. Indeed, a 
down database server or a bug in the implementation can cause a server error.

That’s three different types of error— malformed, function, and server. You must 
identify, for each goal, all possible errors for each error type. Note that we will explore 
other types of errors in chapters 8 and 10.

POST /transfers

{
  "source": "0001234567",
  "destination": "0045678910"
}

Surface
controls

Business
controls

Missing
mandatory
amount

Not enough
money in

source account

Malformed
request error

Functional
error

Server
error

Inner controls
and unexpected

errors

Bug in
implementation 

POST /transfers

{
  "source": "0001234567",
  "destination": "0045678910",
  "amount": 100
}

POST /transfers

{
  "source": "0001234567",
  "destination": "0045678910",
  "amount": 100000
}

Consumer errors

Provider errors

Tr
an

sf
er

 g
oa

l

Figure 5.8   Malformed request and functional errors



122 chapter 5 Designing a straightforward API

Malformed request errors can occur when the server is unable to interpret a request. 
Because consumers must send requests to use the API, such errors can happen in any 
interaction. These errors can usually be identified just after designing the program-
ming interface. At that point, we have a detailed view of the request that a consumer 
needs to send and every part of the request that might be the cause of such an error.

Functional errors mostly occur when consumers try to create, update, or delete data or 
trigger actions. They can typically be identified once the API goals canvas is filled in because 
each goal is fully described from a functional point of view. There’s no magic method to 
identify these potential errors; it’s up to you, helped by people who know the business rules 
at work behind a goal, to anticipate them. And server errors can happen on each goal. From 
the consumer’s perspective, identifying a single server error is usually sufficient.

When listing the errors, remember that you must always focus on the consumer’s 
perspective. For each of them, as discussed in section 2.4, you must check if it is the con-
sumer’s business or not. For example, on server errors, consumers just need to know 
that their request could not be processed and that it is not their fault. That’s why a sin-
gle generic server error is sufficient. But identifying possible errors is not enough; we 
must design an informative representation for each of them.

5.2.3 Returning informative error feedback

The problems encountered with the two washing machines were more or less easily 
solved, depending on how each error was represented. An API’s error feedback must 
be as informative as possible. It must explicitly tell consumers what the problem is and, 
if possible, provide information that consumers can use to solve it using a straightfor-
ward representation.

You saw in section 3.3.1 that a REST API that relies on the HTTP protocol uses an HTTP 
status code to signify if the request was a success or not, as shown in figure 5.9.

POST /transfers

{
  "source": "0001234567",
  "destination": "0045678910"
}

Surface
controls

Business
controls

Missing
mandatory
amount

Not enough
money in

source account

400 Bad Request

403 Forbidden

500 Internal
Server Error

Inner controls
and unexpected

errors

Unexpected
server error

POST /transfers

{
  "source": "0001234567",
  "destination": "0045678910",
  "amount": 100
}

POST /transfers

{
  "source": "0001234567",
  "destination": "0045678910",
  "amount": 100000
}

Consumer errors 4XX HTTP status codes

Provider errors 5XX HTTP status codesPOST /transfers

{
  "source": "0001234567",
  "destination": "0045678910",
  "amount": 100
}

200 OK

Everything went well.

Tr
an

sf
er

 g
oa

l

Figure 5.9   Choosing accurate HTTP status codes



 123Designing straightforward interactions

You already saw that a 200 OK HTTP status obviously means that the processing of 
the request went well. If the mandatory amount is missing in the request, a 400 Bad 
Request status code is returned. If the amount is too high, that’s a 403 Forbidden. And 
if the server miserably crashed, a 500 Internal Server Error is returned.

The 200 OK set aside, how did the three other HTTP status codes come about? 
According to RFC 7231, which describes the “Hypertext Transfer Protocol (HTTP/1.1): 
Semantics and Content,” (https://tools.ietf.org/html/rfc7231#section-6), we must use 
4XX-class HTTP status codes for errors caused by the consumers and 5XX-class for errors 
caused by the provider.

RFC  An RFC (Request For Comments) is a type of publication from the tech-
nology community used to describe internet standards, but it can also convey 
simple information and even experimental new concepts (which can become 
standard).

Each class of codes contains a basic X00 code; for example, the 500 Internal Server 
Error is the main status of the 5XX class and is perfect to signify any type of server error 
in a generic way. We could use a 400 Bad Request status for all the identified errors 
caused by the consumers. But in that case, consumers will only know that their request 
is invalid without any other hint about the problem. Being able to differentiate between 
a “Missing mandatory amount” and “Not enough money in source account” would be 
quite interesting. Fortunately, the HTTP protocol comes with many 4XX codes that can 
be more accurate than a basic 400 Bad Request one.

We can keep the basic 400 Bad Request when there’s a missing mandatory property 
or an incorrect data type. To notify the user that we’re refusing to execute a transfer 
that exceeds the amount that’s safe to spend, or that they’ve requested a transfer they 
aren’t authorized to execute, we can use the 403 Forbidden status. This code means 
that the request is formally valid but cannot be executed.

There is another 4XX status code that you will use a lot: it is the well-known 404 Not 
Found, which can be used to signify that a resource is not found. For example, it could 
be returned on a GET /accounts/123 request if the account 123 does not exist.

There are many different HTTP status codes. You should always check which one is most 
accurate when designing error feedback. Table 5.1 shows how some of these can be used.

Table 5.1   Malformed request and functional error HTTP status codes

Use case Example HTTP status code

Wrong path parameter Reading a non-existing account with a 
GET /accounts/123 request

404 Not Found

Missing mandatory property amount not provided 400 Bad Request

Wrong data type "startDate":1423332060 400 Bad Request

Functional error amount exceeds safe to spend limit 403 Forbidden

Functional error Transfer from source to destina-
tion is forbidden

403 Forbidden

https://tools.ietf.org/html/rfc7231#section-6


124 chapter 5 Designing a straightforward API

Use case Example HTTP status code

Functional error An identical money transfer has 
already been executed in the last 5 
minutes

409 Conflict

Unexpected server error Bug in implementation 500 Internal Server Error

When consumers get one of these HTTP status codes as error feedback, they will know 
that the problem is on their side if the status code is a 4XX one, but they will have a better 
idea about the source of the problem. If the error is a 404, they will know that the pro-
vided URL does not match any existing resource and probably contains an invalid path 
parameter. If they get a 403, they will know that their request is formally valid but has 
been rejected due to some business rules. If they get a 409, they will know their request 
is in conflict with a previous one. And if they get a 400, they will know that their request 
contains invalid data or is missing a mandatory property.

That’s a good start, but an HTTP status code— even an accurate one— is not enough. 
The HTTP status alone does not provide enough information to help solve the prob-
lem. We should therefore also provide an explicit error message in the response body, 
as demonstrated in the following listing.

Listing 5.1  A basic error response body

{
  "message": "Amount is mandatory"
}

A consumer who receives a 400 Bad Request status code along with an object con-
taining an Amount is mandatory message will be able to fix the problem easily. Well, a 
human consumer will be able to interpret this message easily, but what about a machine?

Let’s say our Banking API is used in a mobile application. Obviously, bluntly show-
ing an Amount is mandatory message to an end user is better than just showing a Bad 
Request message. But wouldn’t it be preferable to highlight the amount field to help 
the end user fix the problem? How can the mobile application know which value has 
caused the problem? It might parse the error message string, but that would be pretty 
dirty. It would be better to provide a way to programmatically identify the property caus-
ing the error, as shown in the next listing.

Listing 5.2  A detailed error response

{
  "source": "amount",
  "type": "AMOUNT_OVER_SAFE",
  "message": "Amount exceeds safe to spend"
}

Table 5.1   Malformed request and functional error HTTP status codes (continued)



 125Designing straightforward interactions

Along with the error message, we could provide a source property that contains the 
path to the property causing the problem. In this case, its value would be amount. This 
would enable the program to determine which value is causing the problem in the case 
of a malformed request. But in the event of a functional error, the mobile application 
still won’t know the exact type of error. Therefore, we could also add a type property 
containing some code. Its value for an amount exceeding what is safe for the customer 
to spend, for example, could be AMOUNT_OVER_SAFE. The corresponding message for 
the customer could be Amount exceeds safe to spend. Proceeding in this way would 
enable both humans and programs consuming the API to be able to accurately inter-
pret any errors that arise.

As you can see, we have again applied the principles of straightforward representation 
to design these errors. Note that you don’t have to define a specific type for each error; 
you can define generic types as shown in the next listing. For example, the MISSING_
MANDATORY_PROPERTY type can be used in any error for any missing mandatory property.

Listing 5.3  A detailed error response using a generic type

{
  "source": "amount",
  "type": "MISSING_MANDATORY_PROPERTY",
  "message": "Amount is mandatory"
}

These are only a few examples of information you can provide for errors. You are 
free to provide as much data as necessary in order to help consumers solve the prob-
lems themselves. You could, for instance, provide a regular expression describing the 
expected data format in case of a BAD_FORMAT error.

More complex error handling
Note that if the input is more complex, a simple source might not be enough. For exam-
ple, if we wanted to create a bank account with multiple owners, the input parameters 
might contain an owners list. This listing shows how we could handle an error in one of 
this list’s items.

Listing 5.4  A detailed error response indicating an error source

{
  "source": "firstname",
  "path": "$.owners[0].firstname",
  "type": "MISSING_MANDATORY_PROPERTY",
  "message": "Firstname is mandatory"
}

We could add a path property containing a JSON path to be more accurate. A JSON path 
(https://goessner.net/articles/JsonPath/) lets you represent a node’s address in a JSON 
document. If a mandatory firstname is missing on the first owner in the list, the path 
value would be $.owners[0].firstname.

 

https://goessner.net/articles/JsonPath/


126 chapter 5 Designing a straightforward API

Providing informative and efficient feedback requires us to describe the problem and 
provide all needed information in both human- and machine-readable format in order 
to help the consumer solve the problem themselves (if they can). When designing a 
REST API, this can be done by using the appropriate HTTP status code and a straight-
forward response body. That works for reporting only one error at a time. But what if 
there are multiple problems?

5.2.4 Returning exhaustive error feedback

In the best possible scenario, the straightforward washing machine reports the two 
problems (door open and no water) together. This is definitely a must-have feature 
if you want to build usable APIs. For example, a transfer money request can present 
multiple malformed request errors. Suppose a customer submits a request that is miss-
ing values for the source and destination. They will first get error feedback telling 
them that the mandatory source property is missing. After fixing this error, they’ll do 
another call and get another error telling them that the destination property is miss-
ing. This is a great way to frustrate consumers. All this information could have been 
given in the initial error feedback!

To avoid too many request/error cycles, and the wrath of consumers, it’s best to 
return error feedback that is as exhaustive as possible, as shown in the next listing.

Listing 5.5  Returning multiple errors

{
  "message": "Invalid request",
  "errors": [
    {
      "source": "source",
      "type": "MISSING_MANDATORY_PROPERTY",
      "message": "Source is mandatory"},
    {
      "source": "destination",
      "type": "MISSING_MANDATORY_PROPERTY"},
      "message": "Destination is mandatory"}
  ]
}

We should therefore return in one shot a list of errors containing the two malformed 
request errors. Each error can be described as you saw previously in listing 5.3. The 
same also applies if the request is not malformed but contains multiple functional 
errors.

What happens if there are both types of errors? Figure 5.10 shows what might hap-
pen in that case.



 127Designing straightforward interactions

POST /transfers

{
  "source": "0001234567",
  "amount": 342000.5
}

400 Bad Request
{
  "message": "Invalid request",
  "errors": [
    {
      "source": "destination",
      "type": "MISSING_MANDATORY_PROPERTY",
      "message": "Destination is mandatory"
    }
  ]
} 403 Forbidden

{
  "message": "Invalid request",
  "errors": [
    {
      "source": "amount",
      "type": "AMOUNT_OVER_SAFE",
      "message": "Amount exceeds safe to spend"
    }
  ]
}

POST /transfers

{
  "source": "0001234567",
  "amount": 342000.5
}

400 Bad Request
{
  "message": "Invalid request",
  "errors": [
    {
      "source": "destination",
      "type": "MISSING_MANDATORY_PROPERTY",
      "message": "Destination is mandatory"
    },
        {
      "source": "amount",
      "type": "AMOUNT_OVER_SAFE",
      "message": "Amount exceeds safe to spend"
    }
  ]
}

POST /transfers

{
  "source": "0001234567",
  "destination": "0045678910",
  "amount": 342000.5
}

Two steps (one for
each type of error)

A single step to
show both types

of errors

Figure 5.10   Handling different types of errors

In this example, the request contains a valid source account but is missing the desti-
nation account and includes an amount exceeding what is safe for the user to spend. 
When designing single errors, we chose to use 400 Bad Request for this type of mal-
formed request error and 403 Forbidden for the functional ones. We could choose 
to keep these two types of errors separated, and return error feedback to report the 
missing destination first, followed by a second message to report the functional error 
("Amount exceeds safe to spend"). But does that make sense for consumers? Do they 
really care about the distinction? Probably not, at least in the specific use case where we 
provide all the necessary information to determine the kind of error.

I would recommend returning a generic 400 Bad Request containing all malformed 
request and functional errors. Note that this solution might not be the silver bullet, 
however. You will have to analyze your particular situation in order to make the best 
choice when it comes to keeping error categories separated or not.



128 chapter 5 Designing a straightforward API

Grouping multiple errors in one feedback message simplifies an interaction by 
reducing the number of request/error cycles. But if you are designing a REST API, it 
means using a generic HTTP status and relying on the response data to provide detailed 
information about each error. Once all problems are solved, the interaction should end 
with a success feedback.

5.2.5 Returning informative success feedback

With the washing machine use case, we saw that providing informative success feed-
back can be really helpful for users. It is, indeed, really helpful to known when the 
washing will end. Similarly, an API’s success feedback must provide useful information 
to the consumers beyond a simple acknowledgment. How do we achieve this? By apply-
ing what we have learned in this chapter so far!

When using the REST API style, informative success feedback can rely on the same 
things as error feedback: an accurate HTTP status code and a straightforward response 
body, as shown in figure 5.11.

POST /transfers

{
  "source": "0001234567",
  "destination": "0045678910"
  "amount": 342.5
}

201 Created

{
  "id": "8c7aaf6748c9",
  "source": "0001234567",
  "destination": "0045678910"
  "amount": 342.5,
  "date": "2018-08-24",
  "type": "immediate", 
  "status": "executed"
}

POST /transfers

{
  "source": "0001234567",
  "destination": "0045678910"
  "amount": 342.5,
  "date": "2030-09-18"
}

202 Accepted

{
  "id": "8c7aaf6748c9",
  "source": "0001234567",
  "destination": "0045678910"
  "amount": 342.5,
  "date": "2030-09-18",
  "type": "delayed",
  "status": "pending"
}

An immediate transfer

A delayed transfer

It has been executed immediately.

It has been accepted but will be executed later.

200 OK

The id can be used to cancel this pending transfer.

It has been accepted, but what if it
needs to be canceled?

Figure 5.11   Fully informative success feedback



 129Designing straightforward flows

As stated by RFC 7231 (https://tools.ietf.org/html/rfc7231#section-6.3), “…the 2xx 
(Successful) class of status code indicates that the client’s request was successfully 
received, understood, and accepted.” Therefore, we could return a 200 OK for all suc-
cesses. But as with the 4XX class, there are many 2XX codes that can more accurately 
describe what has happened in some use cases.

If the money transfer is an immediate one, we could return a 201 Created HTTP 
status code, which means that the transfer has been created. For a delayed transfer, we 
could return a 202 Accepted response, indicating that the money transfer request has 
been accepted but not yet executed. In this case, it is implied that it will be executed at 
the requested date. The same goes for a recurring transfer: we could use 202 Accepted 
to tell the consumers that the transfers will be executed when they should. But again, an 
HTTP status is not enough; a straightforward and informative feedback message is far 
more useful.

Such a response should contain every piece of the created resource’s information, 
as you have learned in previous chapters. Returning properties calculated by the server 
(like the transfer type or its status) is interesting, just like the time at which the wash-
ing is supposed to end on the washing machine. The ID is especially interesting for 
consumers that might need to cancel a specific delayed transfer they have just created. 
Without it, they simply won’t be able to do so.

So basically, informative success feedbacks provide information about what has hap-
pened and also give information that can help during the next steps. Let’s summarize 
the rules we’ve identified for designing straightforward interactions:

¡	Inputs and outputs must be straightforward.
¡	All possible errors must be identified.
¡	Error feedback must explain what the problem is and should help the consumers 

to solve it themselves.
¡	Reporting multiple errors one by one should be avoided.
¡	Success feedback should provide information about what was done and give 

information to help for the next steps.

We are now able to design individual interactions that are straightforward. But will 
these straightforward interactions form a simple flow when used together?

5.3 Designing straightforward flows
To use an object or an API, a user might have to chain multiple interactions. Usability 
heavily depends on the simplicity of this flow of interactions.

If you are on the 5th floor of a building and you want to go to the 16th, you might 
want to use one of the four elevator cabins. Figure 5.12 shows different possible versions 
of your elevator journey.

https://tools.ietf.org/html/rfc7231#section-6.3


130 chapter 5 Designing a straightforward API

Call elevator

Wait for an elevator

Walk in the elevator

Select 16th floor

Unexpected trip to
ground floor

Go to the 16th floor

Wait for an elevator
going up

Call elevator

Walk in the elevator

Select 16th floor

Go to the 16th floor

Wait for an elevator
going up

Call elevator
to go up

Walk in the elevator

Select 16th floor

Go to the 16th floor

Elevator going down
stopped for nothing

Wait for the
indicated elevator

Call elevator to
go to the 16th floor

Walk in the elevator

Go to the 16th floor

Simple call button Adding elevator
direction indicator

Replacing call button
with up and down

buttons

Moving floor buttons
outside elevator

Figure 5.12   Improving elevator usage flows

If the system is basic, there’s a single call button on the wall for all cabins. It lights up 
when you push it. Then you wait, not knowing which one of the elevator cabins will 
come. A bell rings when one of them has arrived. You walk in and push the button for 
the 16th floor. Unfortunately, this elevator was going down to ground floor. So you go 
down to the ground floor and, after that, go up to the 16th.

Walking into an elevator cabin without knowing its direction of travel can be annoy-
ing. Fortunately, elevator manufacturers have enhanced their systems to avoid such a 
situation by adding some light signal or an LCD screen outside each elevator cabin to 
show if it’s going up or down. That’s better, but why stop an elevator that’s going down 
for someone who wants to go up? It’s really frustrating for users who are waiting for an 
elevator cabin, and also for the ones who are inside the cabin. This pain point can be 
removed by replacing the single call button with two buttons: up and down. You can 
now call an elevator to go up or down, and only cabins going in that direction will stop 
on your floor.

But when you walk into the elevator cabin, you still have to push a second button to 
tell it which floor you want to go to. In some systems, the up and down buttons have 
been replaced by the floor buttons you encounter inside the elevator cabin. Now when 



 131Designing straightforward flows

you want to call an elevator to go to the 16th floor, you simply push the button for that 
floor, and an LCD screen tells you which elevator cabin to use.

As you can see, the interaction flow to go to the 16th floor has been simplified by 
improving feedback, improving inputs, preventing errors, and even aggregating 
actions. This interaction flow has become totally straightforward. Let’s see how we can 
apply these principles to create a straightforward API interaction flow when transfer-
ring money with the Banking API.

5.3.1 Building a straightforward goal chain

We’ve seen how improving inputs and feedback by adding a direction indicator and 
replacing the call button with up and down buttons helped to improve the chain of 
actions needed to go to a building’s 16th floor. By taking care of inputs and feedback 
in a similar way in our API, we can build a straightforward goal chain.

A chain exists only if its links are connected. When consumers use an API for a spe-
cific goal, they must have all the data needed to execute it. Such data may be known by 
the consumers themselves or can be provided by previous goal outputs. This is what you 
learned in section 2.3. The partial API goals canvas shown in figure 5.13 provides such 
information.

This canvas tells us that to make an immediate money transfer, consumers need to 
provide an amount, a source account, and a destination account. Consumers obvi-
ously know how much money they want to transfer. The source account must be one 
of the accounts consumers can retrieve with the list accounts goal. If the API is used 
by a mobile banking application, these accounts are the ones belonging to the person 
using the application. The destination account must be one of these accounts (for 
example, to transfer money from a current account to a savings account) or a pre- 
registered external beneficiary (for example, to send money to a friend or pay the 
apartment rent).

If you wonder why the Banking Company forces its customers to pre-register benefi-
ciaries, it is for both security and usability purposes. A two-factor authentication using a 
regular password and a confirmation SMS, email, or security token generating random 

Whats Hows Inputs (source) Outputs (usage)Whos Goals

Transfer money from
an account to

an owned
or external account

Consumers List accounts Accounts list
(money transfer) List accounts

List pre-registered
beneficiaries

Pre-registered
beneficiaries list
(money transfer)

List beneficiaries

Transfer money Source (list accounts),
destination

(list accounts,
list beneficiaries),
amount (consumer)

Transfer report Transfer money

Figure 5.13   The Banking API goals canvas



132 chapter 5 Designing a straightforward API

passwords is required to register an external beneficiary, thereby ensuring that only the 
actual customer can do so. And once the beneficiary is registered, the money transfer is 
quite simple: no need to remember and carefully type the destination account number 
and no need for two-factor authentication. Consumers can use the list account and list 
beneficiaries goals in order to get possible sources and destinations before they transfer 
money to one. So, we have a chain.

But a chain is only as strong as its weakest link. Each interaction participating in a 
flow must be a straightforward one. This is what you learned earlier in section 5.2. Fig-
ure 5.14 shows the transfer money flow.

The list accounts and list beneficiaries goals are pretty straightforward because they 
do not need inputs and return no errors. The inputs to the transfer money goal are 
straightforward, but this goal can return many different errors. If we were to only 
return a 400 Bad Request error message, consumers might have a hard time success-
fully executing a money transfer. But thanks to what you have learned in this chapter, 
you know now that you must provide informative and exhaustive error feedback in 
order to help consumers solve the problems they encounter. This will greatly reduce 
the number of request/error cycles and avoid artificially extending the API call chain 
length.

So the first step toward a straightforward API goal chain is to request simple inputs 
that can be provided by consumers or another goal in the chain, and return exhaustive 
and informative error feedback to limit request/error cycles. With what we’ve learned, 
we should be able to a build a straightforward goal chain. But couldn’t we make it 
shorter and more fluid by preventing errors?

5.3.2 Preventing errors

In the elevator example, adding a direction indicator helped to prevent an unex-
pected trip to the ground floor. Preventing errors is a good way to smooth and shorten 

Informative error
feedback helping
to solve problems

List
accounts

List
beneficiaries

Request/error cycle

source

destination

amount

Transfer
money

Consumer

Inputs provided by�
consumer or previous call

Figure 5.14   The transfer money flow



 133Designing straightforward flows

the API goals flow. But how can we prevent errors? By applying one of the principles 
of straightforward representations— providing ready-to-use data. We have to analyze 
each error in order to determine if it can be prevented by providing some data prior 
to this goal.

The money transfer goal can trigger various functional errors:

¡	Amount exceeds safe to spend limit
¡	Amount exceeds cumulative daily transfer limit
¡	Source account cannot be used as source for transfer
¡	This destination cannot be used with this source

Let’s try to prevent the Source account cannot be used as source for transfer 
error. We could add a forbiddenTransfer Boolean property to each account retrieved 
by the list accounts goal. That way the consumer will only be able to provide a source 
account with this property set to false when requesting a money transfer. But it means 
that the consumer will have to do some filtering on its side. Figure 5.15 shows a better 
alternative.

Here, a new list sources goal returning only accounts that can be used as a source for 
a money transfer has been added. This goal could also return with each account the 
maximum allowable amount for a transfer, based on the safe-to-spend and cumulative 
daily transfer limits, in order to prevent the corresponding errors. The consumer can 
use these ready-to-use values to implement surface controls on its side.

That’s quite good. With this new goal, we can prevent three of the four errors! But 
note that whatever error is prevented must still be handled by the transfer money goal. 
Some consumers cannot implement surface controls or directly call this goal without 
providing the proper parameters.

Informative error
feedback helping
to solve problems

Request/error cycle

source

destination

amount

Transfer
money

Inputs provided by�
consumer or previous call

New goal to
prevent some

errors

The prevented errors
should not occur anymore
but must still be handled.List

accounts

List
beneficiaries

List
sources

Consumer

Figure 5.15   Preventing errors in the money transfer flow



134 chapter 5 Designing a straightforward API

As you can see, preventing errors can make the goal flow more fluid. Remember that 
you can do this by

¡	Analyzing possible errors to determine added value data that could prevent them
¡	Enhancing the success feedback of existing goals to provide such data
¡	Creating new goals to provide such data

REST constraints: Code on demand
On a website, the code-on-demand constraint is fulfilled when a web server provides 
JavaScript files that contain code that is executed in the browser. You could try to do that 
with APIs too, but that would mean that you provide code that can be understood by all 
consumers whatever the programming language these are built with. Such a scenario 
seems quite unrealistic, but you can achieve a “sort-of code on demand” by providing 
adequate data through dedicated helper goals or regular goals as we have just done for 
the money transfer. Many business rules can be represented with more or less complex 
data that consumers will be able to use like code.

 

Indeed, the goal flow has been improved. But is it efficient and consumer-oriented to 
have to call list accounts and list beneficiaries to know all the possible destination values?

5.3.3 Aggregating goals

Putting the floor buttons outside the elevator cabin permitted replacing the call an ele-
vator and select 16th floor actions with a single one: call an elevator to go to the 16th 
floor. Such aggregations can be useful for optimizing the API goals flow.

It might have bothered you that the destination value could come from either the list 
accounts or the list beneficiaries goal. Such a design could be considered as evidence of 
the provider’s perspective because it requires consumers to do some work on their side. 
And if we take into account that some source/destination associations are forbidden, it 
becomes clear that this is a perfect example of the provider’s perspective. As shown in 
figure 5.16, we can fix that problem by creating a list destinations for source goal that 
replaces list accounts and list beneficiaries as the source for the destination property.

Informative error
feedback helping
to solve problems

List
destinations
for source

Request/error cycle

source

destination

amount

Transfer
money

Consumer

Inputs provided by�
consumer or previous call

List
sources

Destinations
are now easily

retrieved
with a single

call.

Figure 5.16   A single call is needed to list destinations from the selected source.



 135Designing straightforward flows

This new aggregated goal returns only the destinations possible for a given source, with 
the source being retrieved with list sources. This new goal will simplify the goal flow, 
and there’s a bonus! It also prevents the This destination cannot be used with 
this source error. Now consumers have fewer goals to use, and they have access to 
everything they need to avoid error feedback from the transfer money goal.

Is that all we can do? Figure 5.17 shows one last optimization.

Because the number of possible source/destination combinations is relatively limited, 
we can provide all the possible source/destination associations with a single list sources 
and destinations goal that aggregates list sources and list destinations for source. It’s 
not mandatory, but it’s a possibility.

Be warned that such aggregations must only be done if the resulting goals really 
make sense for the consumer from a functional perspective. Also be warned that such 
aggregations can give rise to performance issues; we will talk about this subject in chap-
ters 10 and 11. For now, there is one last thing we have to talk about to create fully 
straightforward flows.

5.3.4 Designing stateless flows

This topic is not present in the elevator real life example; it comes from the REST con-
straints you saw in section 3.5.2.

Let’s imagine, the following workflow to trigger a money transfer:

1 List source.

2 List destination for a selected source (the source is stored in session on the server 
side).

3 Transfer $USD to destination (the source used is the one stored in session on the 
server).

Informative error
feedback helping
to solve problems

Request/error cycle

source

destination

amount

Transfer
money

Inputs provided by�
consumer or previous call

Consumer

List
sources and�
destinations

Everything is now
retrieved

in a single call.

Figure 5.17   A single call provides all the data needed to select the source and destination.



136 chapter 5 Designing a straightforward API

Such flow is stateful and this is definitely not a good idea; it must never be designed nor 
implemented. Indeed, the transfer goal cannot be used alone as it relies on data stored 
in session thanks to previous calls. Some consumers might perfectly be able to choose 
source and destination on their own without using the list destination goal. Each goal 
must be usable without the others and all needed inputs must be explicitly declared.

REST constraints: Statelessness
Statelessness is achieved by storing no context on the server between requests (using a 
session) and only relying on the information provided along with a request to process it. 
That ensures that any request can be processed by any instance of an API implementa-
tion instead of a specific one holding the session data. And that also favors the use of the 
API goals independently and, therefore, facilitates their reuse in different contexts.

 

So, in order to design totally straightforward flows, you must follow these rules:

¡	Ensure that each goal provides a straightforward interaction.
¡	Ensure that outputs and inputs are consistent between goal calls.
¡	When possible, prevent errors by adding data to existing goals to create new 

goals.
¡	When possible, aggregate goals but only if it make sense for the consumer from a 

functional perspective.
¡	Each goal of the chain must be stateless.

And that’s all for straightforward API design! In the next chapter, we will continue dig-
ging into usability to learn how to design predictable APIs that can be used instinctively.

Summary
¡	Any representation must be easily understandable by people and programs.
¡	Any representation must be as informative as possible.
¡	Error feedback must provide enough elements to understand and maybe fix the 

problem.
¡	Success feedback must describe what has been done.
¡	Goal flows can be optimized by adding data or goals to prevent errors.
¡	Goal flows can be simplified by aggregating goals, but only if that makes sense 

from a functional perspective.



137

6Designing a 
predictable API

This chapter covers
¡	Being consistent to create intuitive APIs

¡	Adding features to simplify use and adapt to 
users

¡	Adding metadata and metagoals to guide users

In the previous chapter, we started our journey to learn how to build usable APIs 
and discovered fundamental principles we can use to create straightforward APIs 
that are easy to understand and easy to use. This is good— we now know how to 
design a decent API. But we can do better. What about designing an awesome API? 
What about designing an API that users will be able to use instinctively without 
thinking about it, even if it is the very first time they’re using it? How can we do that?

Have you ever felt tremendous pleasure when using an unfamiliar object or appli-
cation for the first time? You know, when everything is so intuitive and easy that you 
feel outrageously smart as you discover on your own all of its possibilities? This is pos-
sible not only because you are actually outrageously smart, but also because the thing 
you are using has been designed to make it totally predictable. Of course, not every-
thing is capable of providing such a tremendous feeling, but every day you might 
encounter situations where predictability gives you a hand without you realizing it. 



138 chapter 6 Designing a predictable API

Why do you know how to open a door in a building you’ve never been to? Because it 
looks like the doors you have encountered before. How can you use an ATM in a coun-
try using a language you don’t understand? Because it adapts its interface to you. How 
can you find your way in a huge and labyrinthine subway station? Because there are 
signs telling you where to go.

Can we really design such intuitive APIs? Yes, we can! Just like any object, an API can 
be predictable because it shares similarities that other users have encountered before, 
because it can adapt to the users’ will, or because it provides information to guide them.

6.1 Being consistent
If you encounter a washing machine like the one shown in figure 6.1, with a button 
showing a triangle icon oriented from left to right, you can guess this button’s purpose 
easily. Why? Because you’ve already seen this icon on various media players.

Since the mid-1960s, all media players have used such an icon. From obscure DCC 
(Digital Compact Cassette) players to compact disc players and software media players, 
each one of these devices uses the same triangle icon for the Start Play button. There-
fore, you can guess that this button starts the washing machine.

NOTE  A consistent design is free from variation or contradiction; it helps to 
make an interface intuitive by taking advantage of users’ previous experiences.

I’m sure you know what the standard Pause button looks like too. What if a media player 
does not use this standard icon for its Pause button? Users will be puzzled and will have 
to make an effort to understand how to pause the audio or video that’s playing.

NOTE  An inconsistent design introduces variations or contradictions that make 
an interface harder to understand and use.

Again, what is true for real-world human interfaces is also true for APIs. It is essential 
to keep the design of an API consistent— to make it predictable. This can be done with 
a little bit of discipline by ensuring consistency of data and goals inside and across all 

Cotton

Wool

Jeans

Synthetic

Shirts

Silk

Error/Status

60°C 1500 rpm

Spin Speed

Program

Awesome API mix #1

Same icon on totally different devices

Temperature

Figure 6.1   A washing machine and cassette player sharing the same icon



 139Being consistent

APIs, using and meeting prescribed standards, and by shamelessly copying others. But 
if consistency can lead to an awesome API design, it must never be used at the expense 
of usability.

6.1.1 Designing consistent data

Data is at the core of APIs— resources, parameters, responses, and their properties 
shape an API. And all of their meanings, names, types, formats, and organization must 
be consistent in order to help consumers understand these easily. So, designing consis-
tent APIs starts with choosing consistent names, as shown in figure 6.2.

In a poorly designed Banking API, an account number could be represented as an 
accountNumber property for the get accounts goal’s result, as a number property for get 
account, and as a source property for the money transfer goal’s input. Here, the same 
piece of information in three different contexts is represented with totally different 
names. Users will not make the connection between them easily.

Once users have seen an account number represented as accountNumber, they 
expect to see that piece of information always represented by accountNumber. People 
are used to uniformity in design. So, whether this property is part of a fully detailed 
account listing, a summary of the account list, or used as a path parameter, an account 
number must be called an accountNumber.

When choosing names for various representations of the same concept, take care to 
use similar ones. When used for a money transfer to identify the source account, the 
original name should remain recognizable but can be altered in order to provide more 
information about the nature of the property; we might call it sourceAccountNumber, 
for example. Now consumers are able to make a connection between these properties 
and guess that they represent the same concept.

That also works for unrelated data of a similar type or for representing similar con-
cepts. For example, balanceDate, dateOfCreation, and executionDay all represent 
a date, but the first one uses the suffix Date; the second one, the prefix dateOf; and 
the third, the suffix Day. Using a generic suffix or prefix in a name to provide additional 
information about the nature of what is named is a good practice, as long as it is done 
consistently. Here (figure 6.2), the good design uses the same Date suffix for all dates, 
but you can choose another solution as long as you remain consistent. But even cor-
rectly named, a property, for example, can still be subject to inconsistency, as shown in 
figure 6.3.

number

accountNumber

source

get accounts

get account

transfer money

accountNumber

accountNumber

sourceAccountNumber

Same data in different contexts

Consistent
naming

Inconsistent
naming

get accounts

get account

transfer money

balanceDate

dateOfCreation

executionDay

balanceDate

creationDate

executionDate

Consistent
naming

Inconsistent
naming

Different data of similar type

Figure 6.2   Inconsistent and consistent naming



140 chapter 6 Designing a predictable API

Same data in different contexts Different data of similar type

get accounts

get accounts

list transactions

balanceDate

creationDate

executionDate

"2018-03-23"

1423267200

"2018-23-03"

"2018-03-23"

"2015-02-07"

"2018-03-23"

get accounts

get account

transfer money

accountNumber

accountNumber

sourceAccountNumber

"0001234567""0001234567"

"01234567"

1234567

"0001234567"

"0001234567"

Consistent naming

Inconsistent
type/format

Inconsistent
type/format

Consistent naming

Consistent
type/format

Consistent
type/format

These examples are not exactly the
same as in figure 6.2. Such inconsistency

can be confusing!

Figure 6.3   Inconsistent and consistent data types and formats

An account number could be represented as the string "0001234567" in the get 
accounts result, as the string "01234567" for get account, and as the number 1234567 
for the money transfer goal’s input. Such variations will inevitably cause bugs on the 
consumer side. To fix them, consumers must standardize these different representa-
tions and know when to convert one type or format to another to use it in a given 
context.

People and software don’t like to be surprised with such inconsistencies. Once con-
sumers have seen the first accountNumber property as a string with a specific format, 
they expect all other account number representations to be strings with the same for-
mat. Even if they have different names, different representations of the same concept 
should use the same type and format.

Choosing a data type or format can also have an overall impact on the API. How do 
you think consumers will react if they see the balanceDate of a bank account as an ISO 
8601 string (such as 2018-03-23), the creationDate of an account represented by a 
UNIX timestamp (such as 1423267200), and the executionDate of a transfer as YYYY-
DD-MM date (such as 2018-23-03)? They won’t like it because it’s inconsistent.

People seek global uniformity in design. Once consumers have seen one date and 
time property represented by an ISO 8601 string, they expect all date and time proper-
ties be ISO 8601 strings. Once a data format has been chosen for a type of data, it should 
be used for all representations of the same data type.

Consumers seek global uniformity in all aspects of the API, however, not just data 
types and formats. What is the problem with a URL’s /accounts/{accountNumber}, 
which represents an account, or /transfer/{transferId}, which represents a money 
transfer? It’s /accounts versus /transfer—plural versus singular. Once consumers are 
familiar with the use of plural names for collections, they expect to see all collections 
with plural names. You can use a singular for collections if you want, but whatever your 
choice, stick to it! And this doesn’t only apply to URLs: it concerns every single name 
and value you choose.

NOTE   Naming conventions can be defined for property names, query param-
eter names, codes, JSON Schema models in an OpenAPI file, and more. Once 
you choose a naming convention, strictly follow it.



 141Being consistent

Now, what’s the problem with the two URLs and the two data structures shown in fig-
ure 6.4? Their data organizations are inconsistent.

The /accounts/{accountNumber} and /transfers/delayed/{transferId} URLs 
don’t have the same organization. The /transfers/delayed/{transferId} URL 
introduces an unexpected level between the collection name and resource ID, mak-
ing the URL harder to understand. We could use /delayed-transfers/{transferId} 
instead, for example.

Each level of a URL should always have the same meaning. Once consumers are 
used to a data organizational pattern, they expect to see it used everywhere. Again, 
this doesn’t only apply to URLs; data organization in inputs and outputs can present 
patterns too. In the bottom part of figure 6.4, the elements of two collections are rep-
resented in two different ways. If every collection resource you have designed so far is 
represented by an object containing a property called items, which is an array, do not 
dare to design one as a simple array. Why? Because consumers will be surprised by this 
variation.

Once data organization conventions have been chosen, follow those strictly. Basi-
cally, every bit of an API’s data must be consistent. But APIs are not only made of static 
data; they are made to do things, and all of an API’s behaviors must be consistent too.

6.1.2 Designing consistent goals

An API behavior is determined by its goals: these await inputs and return success or 
error feedbacks, and all these goals can be used to form various flows. Obviously, all of 
this must be consistent.

What’s the problem with the read account and get user information goals? These two 
goal names are inconsistent— they represent the same type of action but use different 
verbs. It would be wiser to name them read account and read user information, especially 
if they have to be represented as functions in code, like readAccount() and readUser-
Information(). Hopefully, for REST APIs, the programmatic representation of these 

/accounts/{accountNumber}

/transfers/delayed/{transferId}

collection resource ID

collection what is that? resource ID

/

/ /

GET /accounts
{
  "items": [
    { "accountNumber": "0001234567"}
  ]
}

GET /transfers
[
  { "id": "123-567"}
]

Collection‛s elements
in an object‛s property

Collection‛s elements
at root level

Inconsistent
data

organization

Inconsistent
URL structure

Figure 6.4   Inconsistent organization



142 chapter 6 Designing a predictable API

goals will magically be consistent, thanks to the use of the HTTP protocol. Indeed, both 
of these goals will be represented by a GET /resource-path request using the same 
HTTP method (on different paths).

As you saw in section 6.1.1, data must be consistent, and so must a goal’s inputs. 
For example, it could be helpful when listing an account’s transactions with a GET  
/accounts/{accountId}/transactions request to be able to retrieve only the ones 
that occurred between two dates. Query parameters such as fromDate=1423267200 and 
untilDay=2015-03-17 can do the job but are obviously inconsistent. It would be better 
to use fromDate=2015-02-07 and toDate=2015-03-17. You must use consistent names, 
data types, formats, and organization when designing a goal’s inputs.

The same goes for the feedback returned in case of success or error. If all goals lead-
ing to the creation of something return a 200 OK status code without taking advantage 
of codes such as 201 Created or 202 Accepted, it would be wise to avoid introducing 
new goals returning different success HTTP status codes instead of the usual 200 OK. 
Indeed, you are free to use only a small subset of all existing HTTP status codes; that 
can make sense in some contexts. But even if consumers are supposed to treat any unex-
pected 2XX status as a 200 OK, such inconsistency might surprise some of them.

Consistency matters for error messages too. You must obviously return consistent 
HTTP status codes to signify errors, but the informative data returned must also be con-
sistent. You learned to design such data in section 5.2, and if you have defined generic 
codes like MISSING_MANDATORY_PROPERTY to signify that a mandatory property is miss-
ing, always use this code across your API.

Finally, consistency concerns not only how the API looks, but also how it behaves. 
If all previously designed sensitive actions (like a money transfer) consist of a control 
<action> and a do <action> goal— the first one doing all possible verifications without 
executing the action, and the second one actually executing the action— any new sensi-
tive actions must be represented with goals having the same behavior. When designing 
APIs, you must also take care to create consistent goal flows.

So every single aspect of the interface contract, every behavior of an API, must be 
consistent. But we only talked about being consistent within an API; indeed, this is only 
the first level of consistency in API design.

6.1.3 The four levels of consistency

When you look at the buttons of a TV remote, you can see that these are consistent; the 
number buttons, for example, all have the same shape. If you look at a TV remote and 
a Blu-Ray or a DVD player from the same manufacturer, these may have little differ-
ences, but they are mostly consistent as they usually share common features (the same 
number buttons, for example). If you look at any media device or media player, these 
too are consistent, presenting the same controls, especially the play button. There may 
be some little differences again, but you still feel comfortable switching from one to 
the other. And finally, if you encounter a play button on a washing machine, you know 
what its purpose is because you probably have seen it before, perhaps on different 



 143Being consistent

media players. These examples show four levels of consistency that can be applied to 
the design of APIs:

¡	Level 1 —Consistency within an API
¡	Level 2 —Consistency across an organization/company/team’s APIs
¡	Level 3 —Consistency with the domain(s) of an API
¡	Level 4 —Consistency with the rest of the world

We have just seen the first level, how an API must be consistent with itself— proposing 
consistent data, goals, and behaviors. Every time you make a design choice, you must 
ensure that it will not introduce a variation in the API, or worse, a contradiction. When 
looking at the API as a whole, consumers must see a regular interface. When they jump 
from one part to another, they must have the feeling that this new part is familiar. They 
must be able to guess how this new part works even if they have never used it before.

Just as consistency is important within an API, it is also important across the APIs that 
an organization provides. This is the second level of consistency. An organization might 
have one team with a single API designer or multiple teams with many designers, and 
everything in between. The consumers of an organization’s APIs do not care if these 
APIs were designed by one or many designers. What they care about is that the APIs 
share common features so they can understand and use any part of the API easily, once 
they have learned to work with one.

Just as different goals within an API must share common features, different APIs within 
an organization must also share common features. Sharing common features (such as 
data organization, data types, or formats) enhance interoperability between APIs. It’s 
easier to take data from an API and feed it to another if the features are consistent.

The third level is about being consistent with the domain(s) of or used by an API. 
For example, representing an address is not done in the same way if you just want to get 
some customers’ addresses compared to if you want to provide formatted addresses to 
be printed on envelopes. If you have to calculate distances in an API for marine naviga-
tion, you will use nautical miles and not miles or kilometers. There usually are standard 
or at least common practices that you must follow when working on a specific domain.

And the fourth and last level: APIs have to be consistent with the rest of the world. 
There are common practices—standards, if you will—that you can use. Not only does 
following these make your APIs predictable for people who have never used any of your 
APIs before, thereby enhancing your APIs interoperability with the rest of the world, 
but it also makes your API designer’s job easier. Let’s see how this is possible.

6.1.4 Copying others: Following common practices and meeting 
standards

Why reinvent the wheel when someone has already done that? There are thousands 
of standards that you can use in your API; there are thousands of APIs whose design-
ers design using common practices, and there are some reference APIs that you can 
shamelessly copy. You know the meaning of the play and pause symbols shown in fig-
ure 6.5 because you have seen them on various devices.



144 chapter 6 Designing a predictable API

5107B 5111B

Play Pause

ISO 7000 references
Figure 6.5   Play and pause symbols 
defined by the ISO 7000 standard

You might have learned their meaning by reading the user manual of the first device 
using them that you encountered, but after that, every time you saw these symbols, you 
were able to guess what they meant. On each device using these symbols, their purpose 
is the same.

The look and meaning of the play and pause symbols are defined by the ISO 7000 
standard (https://www.iso.org/obp/ui/#iso:pub:PUB400008:en). Once users have 
encountered these symbols on one device, they are able to guess their purpose on any 
other device. They are able to use a new device without prior experience with it because 
they have experience with other devices using the same standards. Any designer willing 
to create a start/pause-something button will probably use these symbols instead of 
reinventing new ones. Like any real-world device, an API can take advantage of stan-
dards (in a broad sense) to be easier to understand.

Our Banking API might have to provide information about amounts in various 
currencies. Creating our own currency classification and always using it in all of our 
banking-related APIs is a good thing. That way, we are at least consistent within our orga-
nization. But it would be better to use the ISO 4217 international standard (https://
www.iso.org/iso-4217-currency-codes.html), which lets you represent currencies by a 
three-letter code (USD, EUR) or a three-digit code (840, 978). Using such a standard, 
we can be consistent with the entire world! Anyone who has ever used the ISO 4217 
standard elsewhere will understand the meaning of the ISO 4217 currency codes with-
out having to learn a nonstandard classification. Similarly, the ISO 8601 standard we 
saw earlier to represent date and time values is not only a human-friendly format, but is 
also widely adopted in the software industry.

NOTE   Using standards facilitates understanding because consumers might 
already be familiar with the meanings. It also enhances your API’s interop-
erability because its data will be easily usable by other APIs using the same 
standards.

There are standards for data formats, data naming and organization, and even pro-
cesses. And not all of them are defined by the ISO; there are many other organizations 
defining standards and recommendations that you could use in your API design. Use 
your favorite search engine and look for something like “<some data> standard” or 
“<some data> format,” and you will probably find a format that you can use to repre-
sent “<some data>.” Try to find out how to represent phone numbers, for example.1

1 You should find the E.164 format, which is recommended by the ITU-T (the ITU Telecommunication 
Standardization Sector).

https://www.iso.org/obp/ui/#iso:pub:PUB400008:en
https://www.iso.org/iso-4217-currency-codes.html
https://www.iso.org/iso-4217-currency-codes.html


 145Being consistent

But being standard does not always mean following ISO’s or another organization’s 
specifications. If our Banking API represents a delayed transfer with /delayed-trans-
fers/{transferId} URL, you might guess that using the HTTP method DELETE would 
cancel a delayed transfer. If you get a 410 Gone response, you might guess that the 
delayed transfer was executed or canceled before you tried to delete it. How can you 
guess that? Because you expect the Banking API, which claims to be a REST API, to 
strictly follow the HTTP protocol, which is defined by RFC 7231 ([https://tools.ietf 
.org/html/rfc7231).

The DELETE HTTP method can be used on a resource to delete, undo, or cancel the 
concept represented by a URL. The 410 Gone response is quite explicit; according to 
the standard, it “… indicates that the resource requested is no longer available and will 
not be available again.” And further, it “… should be used when a resource has been 
intentionally removed and the resource should be purged.”

So, REST APIs can be consistent by simply applying the HTTP protocol’s rules to the 
letter. That way, anyone can quickly get started using any REST API.

REST constraints: Uniform interface
The REST architectural style states that “… all interactions must be guided by the con-
cept of identified resources which are manipulated through representations of resource 
states and standard methods.” The standard method part is indeed a powerful concept 
that helps to ensure consistency. Basically, the whole HTTP protocol (especially HTTP 
methods, but also HTTP status codes) provide a consistent framework for REST APIs, 
making them totally predictable.

 

In the API design world, there are common practices that can be followed, such as the 
one shown in figure 6.6.

As you saw in section 3.2.3, while there are no standard rules for the URL structure of 
REST APIs, many of these use the /resources/{resourceId} pattern. Here, resources 
is a collection identified by a plural noun. It contains elements of type resource.

Even if not everything is standardized in the API design world, there are common 
practices that are very close to being standards. It is wise to follow them in order to 
ensure that your API will be easily understood by consumers based on their experience 
with other popular APIs.

/resources/{resourceId}

/resources

contains many

A collection
of resources
(plural name)

A single resource
in the collection

Figure 6.6   A common URL pattern

https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231


146 chapter 6 Designing a predictable API

And finally, in many cases, you can simply copy what others have done. Why bother 
rethinking pagination parameters from the ground up when this problem has been 
dealt with by so many other API designers? You can look at some well-known APIs and 
reuse the design you prefer. Doing this will simplify your life as an API designer, and if 
your users have used those APIs, they will feel at home when using yours for the first 
time. Everybody wins.

Here’s a scenario to practice this topic. Let’s say you have to design an API that pro-
cesses images to create a matching color palette for web developers. Free-tier users can 
request up to 10 palettes per month; if they want more they have to purchase a subscrip-
tion. Both free and paid users can send a maximum of one request per second. Sent 
images cannot be larger than 10 MB. Consider the following questions:

¡	How would you represent colors in a standard way that fits web developers’ needs?
¡	Which explicit HTTP status codes could you use to tell

– Free-tier users they have to pay to get more?

– Any users they have exceeded their requests-per-second quota?

– Any users that an image is too large?
¡	Which RFC (Request For Comments) could you use to provide straightforward 

error feedback?
¡	Bonus: fully design and describe this API using the OpenAPI Specification.

As this section has demonstrated, being consistent within and across APIs is a good 
thing. It lessens the need for practicing with our APIs to use them effectively— all we 
need to do is follow commonly used standards or practices and even (shamelessly or 
not) copy others. It also makes our APIs interoperable, especially when using conven-
tional standards. And as icing on the cake, it makes our job as API designers easier so 
that we don’t lose time reinventing the wheel. Consistency seems to simplify everything; 
but unfortunately, that’s not always true.

6.1.5 Being consistent is hard and must be done wisely

You must be aware of two things about consistency: it’s hard to be consistent, and con-
sistency must not be applied blindly. Being consistent across APIs simply requires fol-
lowing the same conventions when designing different APIs. It also requires knowing 
which APIs actually exist. That is surprisingly hard and requires discipline.

You must formally define your design with rules in a document called the “API Design 
Guidelines” or the “API Design Style Guide.” Even if you are the only API designer in 
your organization, such guidelines are important because over time we tend to forget 
what we have done previously (even in a single API). Defining such guidelines not only 
facilitates standardizing the overall organization’s API surface, it also facilitates the API 
designer’s job. You will learn in chapter 13 how to create such guidelines.

You’ll also need access to existing API designs in order to stay consistent with your 
organization’s APIs. Once you have your API design cheat sheet and your API directory, 



 147Being adaptable

you can concentrate on solving real problems and not waste your time reinventing the 
wheel you created a few months ago.

Consistency is good but not at the cost of usability or common sense. Sometimes you 
will realize that if you push consistency too far it will ruin flexibility and make the pro-
cess of design outrageously complicated, leading to consistent but totally unusable 
APIs. The important thing is to understand that sometimes you can be inconsistent 
because of a given context for the sake of usability (as we saw in section 3.4 when talking 
about design trade-offs). You will discover also in chapter 11 that there is not a single 
way of creating APIs: designing APIs requires us to adapt to the context.

So being consistent is a great way of being predictable, and doing so helps consumers 
intuitively use your API. But you can also cheat and let people choose what they want to 
get out of using your API, which makes it even more predictable.

6.2 Being adaptable
When you buy a book from an online retailer, you can often buy it in different versions. 
It might be sold as a printed book, an e-book, or an audio book. It can also be pre-
sented in various languages, like the French translation of this book, Le Design des APIs 
Web, that I hope to do one day. All these versions are different representations of the 
same book; it’s up to you to indicate which version you want when you add the book to 
your shopping cart.

And when you read the ordered book, you usually do not read it all at once. You 
read it page by page, and when you stop, you mark the last page you read. When you 
continue reading, you jump directly to the last page read without rereading the book 
from the beginning. When you read some kinds of books, especially technical ones, you 
might jump directly to a specific chapter or section and, hence, a specific page, so you 
might not read the chapters in their natural order. You might also only read the parts 
concerning a specific topic.

Managing different representations of the same concept and providing a partial, 
selected, or adapted representation of some content is not reserved for books; we can 
do that with APIs too. We can create such an adaptable API design that helps to make the 
API predictable and also satisfy different types of users. If consumers can specify what 
they want, they can predict what they will get.

Here we discuss three common ways of making an API design adaptable: providing 
and accepting different formats; internationalizing and localizing; and providing filter-
ing, pagination, and sorting features. This is not an exhaustive list of options— you can 
find others and even create your own when needed.

6.2.1 Providing and accepting different formats

JSON is the obvious way of representing an account’s transactions list in our Banking 
API. As shown on the left side of figure 6.7, a list of transactions could be an array of 
JSON objects, each composed of three properties: a date, a label, and an amount.



148 chapter 6 Designing a predictable API

[
  {
    "date": "2018-07-01",
    "label": "Air France",
    "amount": "1045.2"
  },
  {
    "date": "2018-07-01",
    "label": "Nashville hotel",
    "amount": "334.6"
  }
]

date, label, amount
2018-07-01,Air France,1045.2
2018-07-01,Nashville hotel,334.6

The same data as JSON and CSV

Figure 6.7   A list of transactions as JSON and CSV

But JSON is not the only option. The right side of the figure shows the same data rep-
resented in a comma-separated values (CSV) format. In this case, a list of transactions is 
represented by lines of text. Each line representing a transaction is composed of three 
values separated by commas (,): the first one is the date, the second one the label, and 
the third one the amount. This transactions list could also be represented by a PDF 
file. You can also allow consumers to choose among different formats, depending on 
their needs. The only limit is your imagination.

REST constraints: Uniform interfaces
The REST architectural style states that all interactions must be guided by the concept 
of identified resources that are manipulated through representations of resource states 
and standard methods and provide all metadata required to understand the represen-
tations and know what can be done with those resources.a A single resource can be pro-
vided by a consumer and returned by a provider in many different formats using different 
representations like JSON or CSV, for example. This provides a powerful mechanism 
that allows the REST API to adapt to their consumers and, therefore, to be predictable. 
The headers returned also provide information about the actual format of the returned 
representation.

 

But if the get account’s transactions goal can return a list in various formats, how can 
consumers tell which format is needed? Figure 6.8 shows two different ways to do so.

As shown on the left in figure 6.8, we could add a format parameter to this goal in 
order to let consumers specify if they want the transactions list in JSON, CSV, or PDF 
format. To get the list as a CSV document, for example, consumers could send a GET 
request that specifies format=CSV like so:

GET /accounts/{accountId}/transactions?format=CSV

That’s a possibility, but because the Banking API is a REST API, we could also  
take advantage of the HTTP protocol and use content negotiation. When sending the 

2 Roy Thomas Fielding, “Architectural Styles and the Design of Network-based Software Architectures,” 
2000 (https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2).

GET /accounts/1234567/transactions?format=csv

200 OK
Content: text/csv

date, label, amount
2018-07-01,Air France,1045.2
2018-07-01,Nashville hotel,334.6

GET /accounts/1234567/transactions
Accept: text/csv

Custom query parameter Standard HTTP content negotiation

Figure 6.8   Two options to request the transactions list as a CSV document

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2


 149Being adaptable

GET /accounts/{accountId}/transactions request to the API server, consumers can 
add an Accept: text/csv HTTP header after the HTTP method and URL to indicate 
that they want this transactions list as CSV data. (This approach is shown on the right 
in figure 6.8.) If everything is OK, the API server responds with a 200 OK HTTP status 
code followed by a Content-type: text/csv header and the list of transactions as a 
CSV document.

Consumers can also send Accept: application/json or Accept: application/pdf 
to get JSON data or a PDF file, respectively, with the server returning a response with a 
Content-type: application/json or Content-type: application/pdf header fol-
lowed by the document in the appropriate format. This example has introduced two 
new features of the HTTP protocol: HTTP headers and content negotiation. Let’s take 
a closer look at these.

HTTP headers are colon-separated name/value pairs. They can be used in both 
requests and responses to provide some additional information. In a request, these 
headers are located after the request line containing the HTTP method and URL. In 
a response, they are located after the status line containing the HTTP status code and 
reason phrase. There are around 200 different standard HTTP headers, and you can 
even create your own if needed. They are used for various purposes, one of which is 
content negotiation.

Content negotiation is an HTTP mechanism that allows the exchange of different rep-
resentations of a single resource. When an HTTP server (hence a REST API server) 
responds to a request, it must indicate the media type of the returned document. This is 
done in the Content-type response header. Most REST APIs use the application/json 
media type because the documents these return are JSON documents. But consumers 

[
  {
    "date": "2018-07-01",
    "label": "Air France",
    "amount": "1045.2"
  },
  {
    "date": "2018-07-01",
    "label": "Nashville hotel",
    "amount": "334.6"
  }
]

date, label, amount
2018-07-01,Air France,1045.2
2018-07-01,Nashville hotel,334.6

The same data as JSON and CSV

Figure 6.7   A list of transactions as JSON and CSV

But JSON is not the only option. The right side of the figure shows the same data rep-
resented in a comma-separated values (CSV) format. In this case, a list of transactions is 
represented by lines of text. Each line representing a transaction is composed of three 
values separated by commas (,): the first one is the date, the second one the label, and 
the third one the amount. This transactions list could also be represented by a PDF 
file. You can also allow consumers to choose among different formats, depending on 
their needs. The only limit is your imagination.

REST constraints: Uniform interfaces
The REST architectural style states that all interactions must be guided by the concept 
of identified resources that are manipulated through representations of resource states 
and standard methods and provide all metadata required to understand the represen-
tations and know what can be done with those resources.a A single resource can be pro-
vided by a consumer and returned by a provider in many different formats using different 
representations like JSON or CSV, for example. This provides a powerful mechanism 
that allows the REST API to adapt to their consumers and, therefore, to be predictable. 
The headers returned also provide information about the actual format of the returned 
representation.

 

But if the get account’s transactions goal can return a list in various formats, how can 
consumers tell which format is needed? Figure 6.8 shows two different ways to do so.

As shown on the left in figure 6.8, we could add a format parameter to this goal in 
order to let consumers specify if they want the transactions list in JSON, CSV, or PDF 
format. To get the list as a CSV document, for example, consumers could send a GET 
request that specifies format=CSV like so:

GET /accounts/{accountId}/transactions?format=CSV

That’s a possibility, but because the Banking API is a REST API, we could also  
take advantage of the HTTP protocol and use content negotiation. When sending the 

2 Roy Thomas Fielding, “Architectural Styles and the Design of Network-based Software Architectures,” 
2000 (https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2).

GET /accounts/1234567/transactions?format=csv

200 OK
Content: text/csv

date, label, amount
2018-07-01,Air France,1045.2
2018-07-01,Nashville hotel,334.6

GET /accounts/1234567/transactions
Accept: text/csv

Custom query parameter Standard HTTP content negotiation

Figure 6.8   Two options to request the transactions list as a CSV document

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2


150 chapter 6 Designing a predictable API

can provide an Accept request header containing the media type they want to get. As 
shown in figure 6.9, in the Banking API, the three possible media types for the account’s 
transactions list are application/json, application/pdf, and text/csv.

If the consumer requests a media type like audio/mp3 that the provider does not han-
dle, the server will respond with a 406 Not Acceptable error. Note that a request with-
out an Accept header implies that the consumer will accept any media type. In that 
case, the server will return a default representation—JSON data, for example.

That also works when the consumer has to provide data in the body of the request. 
In section 5.2.1 in the last chapter, you saw that to create a transfer, consumers have to 
send a POST /transfers request, whose body contains a source account, a destination 
account, and an amount. This body was expected to be a JSON document, but it could 
also be of another media type. For example, a consumer might send an XML document 
containing the information needed to create a transfer.2 To do that, they must provide 
the Content-type: application/xml header. If the API server is unable to understand 
XML, it returns a 415 Unsupported Media Type error. If the consumers also want to get 
the result as an XML document instead of a JSON one, they must provide the Accept: 
application/xml header along with the Content-type header. This tells the server, “I 
am sending you XML and I would like you to respond using XML too.”

GET /accounts/1234567/transactions
Accept: application/json

200 OK
Content-Type: application/json

{
  "items": [
    {
      "date": "2018-07-01",
      "label": "Air France",
      "amount": "1045.2"
    },
    {
      "date": "2018-07-01",
      "label": "Nashville hotel",
      "amount": "334.6"
    }
  ]
}

200 OK
Content-Type: text/csv

date, label, amount
2018-07-01,Air France,1045.2
2018-07-01,Nashville hotel,334.6

406 Not Acceptable
Content-Type: application/json

{
  "code": "UNSUPPORTED_MEDIA_TYPE"
  "message": "unsupported media type"
}

GET /accounts/1234567/transactions
Accept: text/csv

GET /accounts/1234567/transactions
Accept: audio/mp3

The server responds with
requested content type.

Requesting different representations of the same resource

The resource is not available
as audio/mp3.

Figure 6.9   Requesting three different representations of an account’s transactions list

2 XML (eXtensible Markup Language) is a markup language that is supposed to be both human- and 
machine-readable. This was the de facto standard for API and web services before JSON. In XML, a 
property such as the amount would be represented as <amount>123.4</amount>.



 151Being adaptable

That’s great— content negotiation, whether provided by the protocol used or han-
dled manually, lets consumers choose the format they want to use when communicat-
ing with an API, as long as it is supported. But we can do more than that.

6.2.2 Internationalizing and localizing

Even translated into French, the Le Design des APIs Web e-book is only another represen-
tation of the same book. How can we apply this concept to the Banking API example?

Back in section 5.2.3, you learned to design straightforward error feedback. When 
the customer attempts a money transfer, for example, the API can return an error with 
the message Amount exceeds safe to spend. Such a message could be shown to all 
end users— but what if they do not understand English? The developers building the 
application or website using the Banking API will have to manage translation of this 
message on their side. From a technical point of view, this is possible because the error 
is identified with a clearly identifiable AMOUNT_OVER_SAFE type. But maybe we, the API 
designers, can give a hand to developers using our API and propose a way to get error 
messages in languages other than English.

We could add a language parameter to all the Banking API goals, with its value being 
an ISO 639 language code (http://www.loc.gov/standards/iso639-2/php/code_list.php). 
For example, the ISO 639 code fr stands for French, and en stands for English. In section 
6.1.4, you learned that using standards is good in order to ensure that a value will be easily 
understandable and interoperable. But wait—en simply means English. UK English and US 
English can be considered different languages, just like French and French Canadian. So, 
ISO 639 isn’t a good idea; it would be better to use a more accurate standard to identify the 
language.

RFC 5646 (https://tools.ietf.org/html/rfc5646), which defines language tags, is the 
standard we’re looking for. This format uses ISO 639 language codes and ISO 3166 
country codes: US English is en-US, UK English is en-UK, French is fr-FR, and French 
Canadian is fr-CA.

As you can see, choosing a standard might not be straightforward. You have to be 
careful when choosing one and be sure that it really fulfills your needs.

Now that we’ve found the right standard, we can create translations of all our error 
messages in all the languages we want to support. For example, when using the trans-
fer money goal with the language parameter set to fr-FR, the AMOUNT_OVER_SAFE 
human-readable error message might be Le montant dépasse le seuil autorisé. 
Note that any text returned by the API, not only error messages, can be returned in the 
language indicated in the language parameter. It can also be represented as a query 
parameter, but because the Banking API is a REST API, we can take advantage of the 
HTTP protocol to provide it instead.

WARNING   I do not recommend using automatic translations; the result can 
be far from accurate and totally ruin your attempt of being consumer and end-
user friendly.

http://www.loc.gov/standards/iso639-2/php/code_list.php
https://tools.ietf.org/html/rfc5646


152 chapter 6 Designing a predictable API

Content negotiation not only applies to data formats, but also to languages. Just as 
consumers can use the Accept and Content-type HTTP headers to specify a media 
type, they can also use the Accept-Language and Content-Language headers to indi-
cate which language they are speaking, as shown in figure 6.10.

When using POST /transfers to transfer money, if consumers provide no headers, 
the API server can return a response with a Content-Language: en-US header to 
indicate that any textual content is in US English. If, however, consumers provide an 
Accept-Language: fr-FR HTTP header with their requests to indicate that they want 
to get textual content in French, the API server responds with a Content-Language: 
fr-FR header, and any textual data will be translated into French. If the requested lan-
guage—Italian (it-IT), for example—is not supported, the server returns a 406 Not 
Acceptable HTTP status code. Because this status code can also be returned when the 
consumer requests a media type that is not supported, it’s also a good idea to provide 
straightforward error feedback with a clear error code like UNSUPPORTED_LANGUAGE 
and a message like Requested language not supported.

Adapting data values to developers, their applications, and their end users isn’t only 
about language translation, though. In the US, for example, people use the imperial 
system of measurement, while in France they use the metric system. People in the US 
and France do not use the same units, the same date and number formats, or the same 
paper sizes. Being able to adapt to all these variations is possible if your API supports 
internationalization and localization (often called i18n and l10n, with the numbers 
indicating the number of characters between the first and last letter of the word).

POST /transfers
Accept-Language: en-US

{
  "source": "1234567",
  "destination": "7654321",
  "amount": 10000
}

POST /transfers
Accept-Language: fr-FR

{
  "source": "1234567",
  "destination": "7654321",
  "amount": 10000
}

400 Bad Request
Content-Type: application/json
Content-Language: en-US

{
  "code": "AMOUNT_OVER_SAFE",
  "message": "Amount exceeds
safe to spend"
}

400 Bad Request
Content-Type: application/json
Content-Language: fr-FR

{
  "code": "AMOUNT_OVER_SAFE",
  "message": "Le montant dépasse
le seuil autorisé"
}

POST /transfers
Accept-Language: it-IT

{
  "source": "1234567",
  "destination": "7654321",
  "amount": 10000
}

406 Not Acceptable
Content-Type: application/json
Content-Language: en-US

{
  "code": "UNSUPPORTED_LANGUAGE",
  "message": "Requested language
not supported"
}

Server responds using the requested language
Server responds it does not speak Italian

I speak US English! Je parle français! Parlo italiano!

Figure 6.10   Negotiating content language with an API



 153Being adaptable

For our REST Banking API, internationalization means being able to understand 
that an Accept-Language: fr-FR header means that the consumer wants a localized 
response using French language and conventions. On the server side, it means that if 
the requested localization is supported, the content will be returned localized along 
with a Content-Language: fr-FR header. If it’s not supported, the server returns a 406 
Not Acceptable status code.

For the Banking API, localization means being actually able to handle the fr-FR 
locale. The data returned should be in French, using the metric system, and a PDF 
should be generated using the A4 size and not the US letter size, for example. This topic 
is not specific to APIs; these issues apply to all areas of software development.

NOTE   Internationalization (i18n) is the mechanism that allows software, an 
application, or an API to do localization. Localization (l10n) is about being 
able to handle the adaptations to a locale, which is basically composed of a lan-
guage and a region or country.

But as API designers and providers, should we really care about internationalization 
and localization? This is a totally legitimate question that must be answered sooner or 
later when designing an API. It depends on the nature of your API and the targeted 
consumers and/or their end users. If you’re lucky, the data exchanged through your 
API might not be impacted at all by localization concerns, so you might be able to 
bypass it. If you do not target people in different locales, you might not need to handle 
internationalization. Be cautious, though, because sometimes people can use different 
locales in the same country (the en-US or es-US locales in the US, for example).

If you don’t think you need them, you can start without internationalization features 
and update your API later if needed. But be aware that while adding internationalization 
features to an existing API can be done easily and transparently from the consumer’s 
point of view, modifying an implementation that was not built with internationalization 
in mind might be trickier.

Note that there are other aspects of content negotiation, like priorities when request-
ing multiple variants of a resource and content encoding, that we will not explore in this 
book. You can read more about this in RFC 7231 (https://tools.ietf.org/html/rfc7231).

We’ve seen that consumers can specify not only the data format they want to use but 
also the language and units, for example. Is it possible to provide an even more custom-
izable API in order to be even more predictable? Yes, it is!

6.2.3 Filtering, paginating, and sorting

A bank account that has been open for many years can have thousands of transactions 
in its history. A customer who wants to get an account’s transactions using the Banking 
API probably does not want to see all of these transactions at once and would prefer 
to get a subset. Maybe they want to see the 10 most recent ones and then possibly 
go deeper into the list. As shown in figure 6.11, this could be done by adding some 
optional parameters to this goal, such as pageSize and page.

https://tools.ietf.org/html/rfc7231


154 chapter 6 Designing a predictable API

/transactions

GET /transactions?pageSize=10&page=1First page of
10 transactions

Second page of
10 transactions

...

GET /transactions?pageSize=10&page=2

Figure 6.11   Simple pagination

On the server, the transactions list is split virtually into pages, with each page contain-
ing pageSize transactions. If pageSize is not provided, the server uses a default value, 
and if page is not provided, the server returns the first page by default. To get the first 
page of 10 transactions, consumers would have to provide pageSize=10 and page=1. To 
get the second page of 10 transactions, they would provide pageSize=10 and page=2.

In our REST Banking API, these pagination parameters could be passed as query 
parameters, as in GET /accounts/1234567/transactions?pageSize=10&page=1. But 
we could also take advantage of the HTTP protocol and use the Range HTTP header. To 
get the first page of 10 transactions, this header would be Range: items=0-9. To get the 
next page, the header is Range: items=10-19.

The Range header was created to allow a web browser to retrieve a portion of a binary 
file. The value of a request’s Range header is <unit>=<first>-<last>. A standard unit 
is bytes, so bytes=0-500 would return the first 500 bytes of a binary file.

We can use a custom unit like items. Sending a Range header with the items=10-19 
value tells the server, “I want the collection’s items from indexes 10 to 19.” I could have 
chosen another unit name, such as transactions, but that would mean that if we wanted 
to paginate the /accounts collection resource, the unit would be accounts. The unit 
name used to paginate can be guessed from the collection name, but I prefer to favor the 
generic name items. That way, there’s no need to guess the unit for paginating collec-
tions: it is always the same.

If consumers want a subset of transactions, however, they might like to have more 
control over this subset. Maybe they only want to see transactions that have been catego-
rized as restaurant transactions. To get these specific transactions, the consumer might 
send a GET /accounts/1234567/transactions?category=restaurant request. The 
category query parameter is used here to filter the transactions and only return the 
ones categorized as restaurant.



 155Being discoverable

This filtering example is a really basic one. If you want to practice, here’s a problem 
you will have to solve sooner or later as an API designer: filtering a collection on numeri-
cal values. Let’s say you’re designing an API dealing with secondhand cars. Users should 
be able to list available cars having a mileage between two values using a GET /cars 
request and one or more query parameters. Using a natural language, such a query 
would be something like, “List cars with mileage between 15,000 and 30,000 miles.” Try 
the following exercises:

¡	Find a way of designing such a filter.
¡	Find at least two other ways of doing the same thing by searching through existing 

APIs (or API design guidelines).
¡	Decide which one you prefer.
¡	Bonus: for all these different ways, describe the request and its parameter(s) 

using the OpenAPI Specification.

By default, transactions are ordered from latest to oldest; when consumers request 
transactions, they get the latest first. Consumers might also want to get the transac-
tions sorted by descending amounts (higher amounts first) and in chronological order 
(from oldest to latest). To get such a list, they might send a request like this:

GET /accounts/1234567/transactions?sort=-amount,+date

The sort query parameter defines how the transactions list should be sorted. It con-
tains a list of direction and property couples. The direction + is for ascending and - is 
for descending. The -amount and +date values tell the server to sort the transactions by 
amount in descending order and by date in ascending order. Note that this is only one 
way of providing sorting parameters; it can be done in other ways too.

These pagination, filtering, and sorting features can be used together. Using the 
category=restaurant&sort=-amount,+date&page=3 query parameters in a GET  
/accounts/1234567/transactions request returns the third page of the restaurant 
transactions, ordered by descending amount and ascending date.

As this section has demonstrated, besides making our API look familiar, a good way 
of making it predictable is to let consumers say what they want and give it to them. A 
third way of making an API predictable is by giving consumers some clues about what 
they can do with it.

6.3 Being discoverable
In most books, you know which page you are reading because its number is printed on 
it. Sometimes, the current chapter or section is also indicated at the top or bottom of 
the page. Earlier, we saw that when you read some books, you can jump directly to a 
specific chapter or section. This is possible because the book comes with a handy table 
of contents (TOC) listing the chapters and sections and on which pages they start. 
When you read a book, therefore, you read its content, but you also have access to 
additional information about the content itself. You could read the book without using 
this extra information; if all of it were removed, the content would be unaffected. But 
reading the book would be far less convenient.



156 chapter 6 Designing a predictable API

If the book is a novel, not having a TOC (or even page numbers) isn’t really a prob-
lem. A novel is more interesting read page after page, without being spoiled by a too- 
explicit preview of the contents (like “Chapter XI: The character you have become so 
attached to dies”). But if the book is a practical one, like the one you are reading now, 
you might want to scan the TOC before you begin reading to get a better idea of what 
the book is about in order to be sure it is relevant for you. You might also want to jump 
to a specific section because you have a specific problem to solve. Without a TOC and 
page numbers, it would not be easy to find what you are looking for. This additional 
information makes a book discoverable. It’s not mandatory, but it greatly improves the 
reading experience.

Like books, APIs can be designed in order to be discoverable. This is done by provid-
ing additional data in various ways, but discoverability can also be improved by taking 
advantage of the protocol used. REST APIs have the discoverable feature in their genes 
because they use URLs and the HTTP protocol.

6.3.1 Providing metadata

In section 6.2.3, you discovered the pagination feature. When accessing an account’s 
transactions list, consumers of the Banking API can indicate which page of transac-
tions they want. But how do they know that there are multiple pages available?

For now, the server’s response when consumers request an account’s transactions 
list consists only of an object containing an items property, which is an array of trans-
actions. Sounds like a book without page numbers and a TOC. This response could be 
improved by adding some data about pagination, as shown in figure 6.12.

{
  "pagination" : {
    "page": 1,
    "totalPages: 9
  },

  "items": [
    {
      "date": "2018-07-01",
      "label": "Air France",
      "amount": "1045.2"
    },
    {
      "date": "2018-07-01",
      "label": "Nashville hotel",
      "amount": "334.6"
    }
    ...
  ]
}

{
  "pagination" : {
    "page": 2,
    "totalPages: 3
  },

  "items": [
    {
      "id": "000001",
      "date": "2135-07-01",
      "source": "1234567",
      "destination": "7654321",
      "amount": "1045.2",
      "actions": ["cancel"]
    },
    {
      "id": "000002",
      "date": "2018-01-01",
      "source": "1234567",
      "destination": "7654321",
      "amount": "189.2"
    }
    ...
  ]
}

Account‛s transactions list Money transfers list

Metadata

Figure 6.12   Providing metadata to explain “Where am I and what can I do”



 157Being discoverable

If a first call to the get account’s transactions goal is made without pagination param-
eters, the server could return the items array along with the current page’s number 
(page, whose value is 1) and the total number of pages (totalPages, whose value could 
be 9). This will tell consumers that there are eight more pages of transactions ahead.

Thanks to the additional data, the transactions list is now discoverable. In computer 
science such data is called metadata; it’s data about data. Metadata can be used to tell 
consumers where they are and what they can do.

Let’s look at another example, just to show that metadata is not limited to pagination. 
Using the Banking API, consumers can transfer money from one account to another 
immediately or on a predefined date. When listing past transfer requests, the server can 
return both executed and postponed requests. An already executed request cannot be 
canceled, but a postponed one that has not yet been executed can be. As shown in fig-
ure 6.12, we could add some metadata describing the possible actions on each transfer 
request. For an already executed money transfer, the actions list would be empty. For a 
postponed one, it could contain a cancel element. This will tell consumers which ones 
they can use the cancel money transfer goal on.

As you can see, an API can return metadata along with data in order to help con-
sumers discover where they are and what they can do. The API can be used without this 
extra information, but metadata greatly facilitates its use. By adding metadata, we are 
basically applying what we learned in section 5.1—we are providing ready-to-use data. 
This can be done with any type of API. Depending on the API in question, you can rely 
on other mechanisms to provide such information, especially by taking advantage of 
some of your chosen protocol’s features.

6.3.2 Creating hypermedia APIs

Using the REST Banking API, consumers can retrieve a list of accounts by calling GET /
accounts. Each account comes with a unique id that can be used to build its URL  
(/accounts/{accountId}) and to retrieve detailed information about it using the GET 
HTTP method. This id can also be used to retrieve an account’s transactions with GET /
accounts/{accountId}/transactions. Thanks to the pagination metadata we have 
just added, consumers will know if there are more transactions than the ones returned 
by their first call. In that case, they can use GET /accounts/{accountId}/transac-
tions?page=2 to get the next page of transactions. They can even jump directly to the 
last page of transactions. They just have to take the lastPage value and use it to GET /
accounts/{accountId}/transactions?page={lastPage value}.

Sounds like a well-designed API with crystal-clear URLs and even metadata that helps 
consumers, right? Now, let’s imagine a situation where you’re browsing a bank’s website 
and all the hypermedia links have been removed. Would you be happy as a customer to 
have to read a user’s manual to learn what all the available URLs are? If you wanted to 
see detailed information about one of your accounts, would you be happy about having 
to construct the page’s URL yourself by copying and pasting the account number? The 
World Wide Web without its hypermedia links would be quite terrible to use.



158 chapter 6 Designing a predictable API

Fortunately, this isn’t how it works. Once on a website, you can discover its content 
simply by clicking links and going from one page to another. REST APIs rely on World 
Wide Web principles, so why not take advantage of these? As shown in figure 6.13, a 
hypermedia Banking API would provide an href property for each account returned by 
GET /accounts.

For the 1234567 account, its value would be /accounts/1234567. Consumers wanting 
to get access to this account’s detailed information would then just have to GET this 
ready-to-use relative URL without needing to construct it themselves. And the response 
to this request would have a transactions property, whose value could be an object 
containing an href property with a value of /accounts/1234567/transactions.

Again, consumers would just have to GET this href value to get the account’s trans-
actions list. And of course, the pagination metadata would provide URLs like next 
and last using properties whose values could be /accounts/1234567/transac-
tions?page=2 and /accounts/1234567/transactions?page=9, respectively. Consum-
ers would then be able to browse the API without the need to know its available URLs 
and their structures.

REST APIs provide links just like web pages. This facilitates API discovery and, as 
you will see later in this book, API updating. There is no standard way to provide this 
hypermedia metadata, but there are common practices, mostly based on how links are 
represented in HTML pages and the HTTP protocol.

Hypermedia metadata usually uses names such as href, links, or _links. Although 
there is no standard, several hypermedia formats have been defined. The best-known 
ones are HAL, Collection+JSON, JSON API, JSON-LD, Hydra, and Siren. These for-
mats come with differing constraints regarding the data structure.

{
  "items": [
    {
      "id": "1234567",
      "href": "/accounts/1234567",
      "type": "CURRENT"    },
    {
      "id": "7654321",
      "href": "/accounts/7654321",
      "type": "SAVINGS"
    },
  ]
} {

  "id": "1234567",
  "href": "/accounts/1234567",
  "type": "CURRENT",
  "balance": 10345.4
  "balanceDate": "2018-07-01",
  "transactions": {
    "href": "/accounts/1234567/transactions"
  }
}

{
  "pagination" : {
    "page": 1,
    "totalPages: 9,
    "next": "/accounts/1234567/transactions?page=2"
    "last": "/accounts/1234567/transactions?page=9"
  },

  "items": [
    {
      "id": "000001",
      "date": "2135-07-01",
      "source": "1234567",
      "destination": "7654321",
      "amount": "1045.2",
      "actions": ["cancel"]
    },
    {
      "id": "000002",
      "date": "2018-01-01",
      "source": "1234567",
      "destination": "7654321",
      "amount": "189.2"
    }
    ...
  ]
}

Next
page

Last
page

GET

GET

GET

GET /accounts

Figure 6.13   Hypermedia Banking API



 159Being discoverable

HAL (http://stateless.co/hal_specification.html) is relatively simple. A basic HAL 
document has a links property containing the available links. Each link is an object 
identified by its relationship (or _rel) with the current resource. The self relationship 
is used for the resource’s link. The link object contains at least an href property with 
the full URL or relative URL. For a bank account resource, the link to its transactions 
would be located there as transactions as the following listing shows.

Listing 6.1  A bank account as a HAL document

{
  "_links" : {
    "self": {
      "href": "/accounts/1234567"                
    },
    "transactions": {
      "href":"/accounts/1234567/transactions"    
    }
  }
  "id": "1234567",
  "type": "CURRENT",
  "balance": 10345.4
  "balanceDate": "2018-07-01"
}

The concept of link relationship is not specific to HAL; it is defined by RFC 5988 
(https://tools.ietf.org/html/rfc5988). Hypermedia APIs do not only provide avail-
able URLs; they can also provide available HTTP methods. For example, with the 
Siren hypermedia format (https://github.com/kevinswiber/siren), we can describe 
the cancel action on a postponed money transfer. Siren also comes with constraints 
regarding the data structure: the properties are grouped in properties, links to other 
resources are located in links, and actions are in actions. The next listing shows an 
example of a Siren document.

Listing 6.2  A money transfer as a Siren document

{
  "properties" : {                      
    "id": "000001",
    "date": "2135-07-01",
    "source": "1234567",
    "destination": "7654321",
    "amount": "1045.2"
  },
  links: [                              
    { "rel": ["self"],
      "href": "/transfers/000001" }
  ],
  actions: [                            
    { "name": "cancel",
      "href": "/transfers/000001",
      "method": "DELETE" }
  ],
}

Link to the bank account resource itself

Link to the bank 
account’s transactions

Groups a resource’s properties 
under properties

Equivalent to HAL’s _links

Describes an action with a 
name, URL, and HTTP method

http://stateless.co/hal_specification.html
https://tools.ietf.org/html/rfc5988
https://github.com/kevinswiber/siren


160 chapter 6 Designing a predictable API

REST constraints: Uniform interface
The REST architectural style states that all interactions must be guided by the concept 
of identified resources that are manipulated through representations of resource states 
and standard methods and provides all metadata required to understand the represen-
tations and know what can be done with those resources.a REST APIs are hypermedia 
APIs that provide all the metadata needed to help consumers navigate through them like 
a website to facilitate their discovery. Metadata can be used to describe not only link rela-
tionships between resources but also among available operations. This part of the REST 
architectural style uniform interface constraint is called hypermedia as the engine of the 
application state (often worded as the unpronounceable HATEOAS).

 

Providing hypermedia metadata is the most common way of taking advantage of the 
web roots of REST APIs to create predictable APIs, but the HTTP protocol provides 
features that can be used to make REST APIs even more predictable.

6.3.3 Taking advantage of the HTTP protocol

So far, we have used GET, POST, PUT, DELETE, and PATCH HTTP methods. The following 
listing shows that an OPTIONS /transfers/000001 request can be used to identify the 
available HTTP methods on a resource.

Listing 6.3  Using the OPTIONS HTTP method

OPTIONS /transfers/000001
 
200 OK
Allow: GET, DELETE

If the API server supports this HTTP method and the resource exists, it can return 
a 200 OK response along with an Allow: GET, DELETE header. The response clearly 
states that GET and DELETE HTTP methods can be used on /transfers/000001. Like 
metadata that can provide information about the data (section 6.3.1), such metagoals 
can provide information about API goals.

Earlier in this chapter, you saw that an account’s transactions list could be returned 
as a JSON, CSV, or PDF document. The following listing shows that when responding 
to a GET /accounts/1234567/transactions request, an API server can indicate other 
available formats with a Link header.

Listing 6.4  A response indicating other available formats with the Link header

200 OK
Allow: GET
Content-type: application/json                   
Link: </accounts/1234567/transactions>;          
           type=application/pdf,                 
      </accounts/1234567/transactions>;          
           type=text/csv                         

a Roy Thomas Fielding, Architectural Styles and the Design of Network-based Software Architectures, 
2000 (https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2).

The transactions list returns 
as a JSON document.

It is also available in PDF 
and CSV formats. (Note that 
it is actually a single line.)

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2


 161Summary

 
{
 "items" : [
   ...
 ]
}

Note that such use of the HTTP protocol by REST APIs cannot be widespread. Like 
choosing a standard, you should check if such features are really useful to consumers. 
If so, you might have to explain them in detail in your documentation for people who 
are not HTTP protocol experts.

TIP  Always check the possibilities of the protocol used by your API, but be 
careful not to confuse users with sparsely used features. You can use such fea-
tures, but they will have to be carefully documented.

If you want to practice the lessons from this section, you can try updating the Shopping 
API we were working with in chapters 3 and 4, using the OpenAPI Specification as 
follows:

¡	Add hypermedia features using HAL (or Siren) to represent links between 
resources.

¡	Add pagination, filtering, and sorting features with relevant metadata and hyper-
media controls.

¡	Add a content negotiation feature to support the CSV format.
¡	Add the OPTIONS HTTP method where necessary.

In the next and final chapter about usability, you will learn to organize and size your 
APIs in order to keep them usable.

Summary
¡	To create APIs whose operations can be guessed, consistently define conventions 

and follow common practices and standards.
¡	Being consistent in your design not only makes your API easier to use, but also 

makes its design simpler.
¡	Always check if your API needs to provide different representation and/or local-

ization and internationalization features.
¡	For each goal dealing with lists, consider whether paging, filtering, and sorting 

features will facilitate its use.
¡	In order to guide consumers, provide as much as metadata as possible (like 

hypermedia links, for example).
¡	Always check the underlying protocol and use its available features to make your 

API predictable, while taking care not to confuse users with complex or totally 
unused features.



162

7Designing a concise and 
well-organized API

This chapter covers
¡	Organizing an API’s data, feedback, and goals

¡	Managing the granularity of data, goals, and 
the API

Now that you know how to design straightforward and predictable APIs, we have 
one last thing to cover in order to be sure we’re designing usable APIs. TV remote 
controls sometimes look intimidating with their numerous and not always well- 
organized buttons. Some microwave ovens or washing machines offer far too many 
functions for mere mortals. Overwhelming, disorganized, indistinct, or motley 
everyday interfaces, at best, puzzle their users and, at worst, frighten them.

“Less is more” and “a place for everything and everything in its place” are two 
adages that every API designer should apply. Organizing and sizing an API’s data, 
feedback, and goals is important in order to provide an API that can be easily under-
stood and will not overwhelm users. If this is not done, all that we have learned about 
creating straightforward and predictable APIs is worth nothing.



 163Organizing an API

7
7.1 Organizing an API

If you have ever used a TV remote control, you should be able to understand the mean-
ing of any button on the four examples shown in figure 7.1. All of them propose exactly 
the same functions, using 15 buttons; but, depending on the buttons' organization, the 
usability goes from terrible to perfect.

Sorted groups
of sorted buttons

Randomly placed
groups of randomly

placed buttons
Totally randomly
placed buttons

Finding any
button is

a nightmare.

Usability
scale

Finding a button
is less complicated,
but it‛s still hard.

Buttons are easy to
find and are well-placed

for the user‛s hand.

Organization
scale

Randomly placed
groups of

sorted buttons

Buttons are easy to
find, but power may be
pressed inadvertently.

1 7

4 8

2 0

5

3

9

6

CH+

CH-

VOL
+

VOL 1 7 2

0 5 9

3 6 4

8

-

+

+

-
CH

1 2 3

4 5 6

7 8 9

0

+

-

+

-
VOL

1 2 3

4 5 6

7 8 9

0

+

-

+

-
CH

VOL

VOL

CH

-

Figure 7.1   The organization of a TV remote control’s buttons affects its usability.

On the first remote control (on the left), the buttons are randomly placed, making it 
difficult to find any given one. On the second remote control, buttons are grouped by 
type, making those easier to find. If users are looking for the 7 button, for example, 
they know they can find it in the group of number buttons. The channel (CH) + and 
- buttons and volume (VOL) + and - buttons are also grouped together.

But just grouping buttons is not sufficient. On the third remote control, the buttons 
in each group have been sorted. The 7 button is now easier to find thanks to the ascend-
ing sorting in the numbers group. Putting the volume + button on top of its group is 
also better for two reasons:

¡	+/- are usually placed that way to mimic what they represent: up/down.
¡	The channel + button is on top of its group, so this change means the two groups 

are consistent.



164 chapter 7 Designing a concise and well-organized API

Finally, the fourth remote control’s button groups are rearranged to make it even eas-
ier to use. The power button is placed at the top to prevent it from being pressed inad-
vertently while the user is holding the remote control. The channel and volume button 
groups are also switched to match common practice on remote controls. Now that the 
buttons are placed intuitively, you can easily use the remote control— maybe even in 
the dark while watching a movie.

As this example shows, it’s easier to find a specific element in a set and understand 
its purpose if elements are logically grouped and sorted. It’s the same for APIs— organi-
zation matters. Just like an everyday object, an API can be either unusable or perfectly 
intuitive, depending on the organization of its data, feedback, and goals.

7.1.1 Organizing data

Designing a well-organized API starts with the data, so let’s look at a concrete  
example. The initial bank account representation shown in figure 7.2 (a) contains 

{
  "overdraftProtection": true,
  "age": 3,
  "type": 2,
  "safeToSpend": 600,
  "typeName": "checking",
  "balance": 500,
  "limit": 100
}

Grouped using position

{
  "overdraftProtection": true,
  "limit": 100,
  "age": 3,
  "type": 2,
  "safeToSpend": 600,
  "typeName": "checking",
  "balance": 500,
}

{
  "overdraftProtection": true,
  "age": 3,
  "type": 2,
  "safeToSpend": 600,
  "typeName": "checking",
  "balance": 500,
  "overdraftLimit": 100
}

{
  "overdraftProtection": {
    "active": true,
    "limit": 100
  },
  "age": 3,
  "type": 2,
  "safeToSpend": 600,
  "typeName": "checking",
  "balance": 500
}

Grouped using name

Grouped using substructure

{
  "overdraftProtection": true,
  "overdraftLimit": 100,
  "age": 3,
  "type": 2,
  "safeToSpend": 600,
  "typeName": "checking",
  "balance": 500,
}

Grouped using position and name

Two related properties with
no obvious connection

a b c

d e

Figure 7.2   Grouping data in the bank account’s representation



 165Organizing an API

two highlighted properties: overdraftProtection and limit. The overdraft-
Protection property indicates whether overdraft protection is active on the account, 
and limit tells how much overdraft protection is available. Here its value is 100, 
meaning that any transaction that causes the account to go more than $100 over 
its balance will be blocked. These two properties are related, but nothing explicitly 
tells us that in the design.

We can make some changes to make this relationship more obvious. A first idea 
would be to move the two properties closer to each other (b), but it’s still not clear 
that they’re related. Renaming limit to overdraftLimit gives a better result (c), but 
combining these two techniques is better still (d). This way, we create a virtual boundary 
around those. We could also create a more solid boundary by putting these two proper-
ties into an overdraftProtection substructure (e).

Grouping data is the first step, but it’s not enough. Having to constantly scroll up and 
down through the API’s response to find the most important data can be terribly annoy-
ing. Sorting data can enhance readability for human beings (programs do not care at all 
about this).

As shown in figure 7.3, two other groups can be created by moving type and 
typeName and also safeToSpend and balance closer together. In each group, properties 
are sorted from more important (on top) to less important (on the bottom). All the 
groups are also sorted by importance.

This organization will also be visible in the documentation or code generated from the 
specification of your API. Grouping properties in a dedicated structure can also help 
to provide a better vision of what is required or not, as shown in figure 7.4.

{
  "typeName": "checking",
  "type": 2,
  "safeToSpend": 600,
  "balance": 500,
  "overdraftProtection": {
    "active": true,
    "limit": 100
  }

  "age": 3,
}

{
  "age": 3,
  "type": 2,
  "overdraftProtection": {
    "limit": 100,
    "active": true
  }
  "safeToSpend": 600,
  "typeName": "checking",
  "balance": 500
}

“Randomly” ordered properties Ordered properties

Grouped data

Less important

More important

Figure 7.3   Sorting data in the bank account’s representation



166 chapter 7 Designing a concise and well-organized API

Account:
  required:
    - balance
  properties:
    overdraftProtection:
      required:
        - active
        - limit
      properties:
        active:
          type: boolean
        limit:
          type: number
    balance:
      type: number

Account:
  required:
    - balance
  properties:
    overdraftProtection:
      type: boolean
    overdraftLimit:
      type: number
    balance:
      type: number

{
  "overdraftProtection": {
    "active": true,
    "limit": 100
  },
  "balance": 500}

{
  "overdraftProtection": true,
  "overdraftLimit": 100
  "balance": 500
}

{
  "overdraftProtection": true,
  "balance": 500
}

{
  "overdraftLimit": 100,
  "balance": 500
}

Account’s
JSON Schema

Conforms to JSON Schema but invalid
from a functional point of view

Impossible to get a functionally
invalid JSON document

Figure 7.4   Grouping data to manage an optional group of required properties

In this example, according to the JSON Schema on the left, both overdraft Protection 
and overdraftLimit are optional. But from a functional point of view, if overdraft-
Protection is true, then overdraftLimit is mandatory. Grouping these two proper-
ties in an optional overdraftProtection object containing two mandatory active 
and limit properties solves this problem.

Not that such a strategy is basically exposing the provider’s perspective— here, a 
JSON Schema limitation that does not allow one to describe the required/optional 
properties' combinations. But it is always good to know this trick; sometimes it can be of 
great help in order to provide a highly accurate JSON Schema.

To design usable data, you must organize it by creating data groups— moving related 
properties closer together, using common prefixes, or creating substructures— and 
sorting the data in those groups and the groups themselves from more important to less 
important.



 167Organizing an API

7.1.2 Organizing feedback

A well-organized API provides well-organized feedback. In section 5.2, you learned 
how we can use HTTP status codes to provide informative feedback. As a reminder, 
table 7.1 shows some of the use cases you’ve seen.

Table 7.1   HTTP status code examples

Use case HTTP status code Class Meaning

Creating a money transfer 201 Created 2XX Immediate money transfer 
created

Creating a money transfer 202 Accepted 2XX Delayed money transfer created

Creating a money transfer 400 Bad Request 4XX Missing mandatory property or 
wrong data type

Getting a bank account 200 OK 2XX Requested bank account 
returned

Getting a bank account 404 Not Found 4XX Requested bank account does 
not exist

HTTP status codes are grouped into classes. A response in the 2XX class means that 
everything went OK, while a 4XX response means that there’s a problem with the 
request and the consumer should fix it. Grouping HTTP status codes this way makes 
these easier to understand.

If an API returns a 413 status code to your request, you know that the problem is on 
your side, even if you’ve never seen this status code before.1 Why? Because it’s a 4XX-
class code. This unknown 4XX should be treated the same way as a 400 status code (see 
section 5.2.3).2

Organizing feedback isn’t just about status codes, though. You can also organize 
more specific or custom feedback. In section 5.2.4, you saw that when returning multi-
ple errors it can be helpful to categorize them. Figure 7.5 shows a response to a delayed 
money transfer creation request that specifies an amount exceeding the safe-to-spend 
limit, that’s missing the destination account, and that provides the execution date as 
a UNIX timestamp.

1 This code actually means that your request is larger than the server is willing or able to process (https://
tools.ietf.org/html/rfc7231#section-6.5.11).

2 RFC7231 states that, “… a client MUST understand the class of any status code, as indicated by the first 
digit, and treat an unrecognized status code as being equivalent to the x00 status code of that class …” 
(https://tools.ietf.org/html/rfc7231#section-6).

https://tools.ietf.org/html/rfc7231#section-6.5.11
https://tools.ietf.org/html/rfc7231#section-6.5.11
https://tools.ietf.org/html/rfc7231#section-6


168 chapter 7 Designing a concise and well-organized API

{
  "message": "Invalid request",
  "errors": [
    {
      "source": "amount",
      "type": "BUSINESS_RULE",
      "message": "Amount exceeds safe to spend"
    },
    {
      "source": "destination",
      "type": "MISSING_MANDATORY_PARAMETER",
      "message": "Destination is mandatory"
    },
    {
      "source": "date",
      "type": "BAD_FORMAT_OR_TYPE",
      "message": "Date must use ISO 8601 YYY-MM-DD format"
    }
  ]
} Less important

More important

Errors
are categorized

using a type.

Figure 7.5   Grouped and sorted errors

As you can see, each error has a type, which gives us a clue about the source of the 
problem. The first error from the BUSINESS_RULE group has obviously triggered a busi-
ness control. The MISSING_MANDATORY_PARAMETER error obviously concerns a missing 
mandatory parameter. And the obvious BAD_FORMAT_OR_TYPE error tells us that the 
property’s value does not conform to the expected type or format. The errors are also 
sorted from most- to least-critical: the Amount exceeds safe to spend error is the 
most serious one, followed by Destination is mandatory, and the less-critical Date 
must use ISO 8601 YYY-MM-DD format.

When designing an API, you must organize feedback to facilitate its interpretation 
by taking advantage of the organization of the underlying protocol’s feedback, creating 
your own feedback organization, and sorting multiple errors from most-to-least critical.

7.1.3 Organizing goals

Last but not least, goals also deserve to be well-organized. If you are familiar with 
object-oriented programming, you can compare this to organizing methods in classes. 
An API’s goals can be organized both virtually and physically. As shown in figure 7.6, 
the OpenAPI Specification you discovered in chapter 4 can be used to organize an 
API’s goals virtually.

On the left in figure 7.6 is a totally disorganized Banking API definition. On the 
right, the goals have been grouped into two categories, Account and Transfer, by add-
ing a tags property on each operation.



 169Organizing an API

/beneficiaries/{id}DELETE Deletes a beneficiary

/beneficiariesGET Gets beneficiaries list

/beneficiariesPOST Creates a beneficiary

/accounts/{id}GET Gets an account

/transfersGET Gets transfers list

/transfersPOST Transfers money

/beneficiaries/{id}GET Gets a beneficiary

/accountsGET Gets accounts list

/transfers/{id}GET Gets a transfer

/transfers/{id}DELETE Deletes a transfer

default

/beneficiaries/{id}DELETE Deletes a beneficiary

/beneficiariesGET Gets beneficiaries list

/beneficiariesPOST Creates a beneficiary

/accounts/{id}GET Gets an account

/transfersGET Gets transfers list

/transfersPOST Transfers money

/beneficiaries/{id}GET Gets a beneficiary

/accountsGET Gets accounts list

/transfers/{id}GET Gets a transfer

/transfers/{id}DELETE Deletes a transfer

Account

openapi: "3.0.0"
[...]
paths:
  /beneficiaries:
    post:
[...]
  /accounts/{id}:
    get:
[...]

Transfer

openapi: "3.0.0"
[...]
paths:
  /beneficiaries:
    post:
      tags:
        - Transfer
[...]
  /accounts/{id}:
    get:
      tags:
        - Account
[...]

Adding tags on each operation

Disorganized goals Grouped goals

Figure 7.6   Grouping goals with tags in an OpenAPI Specification document

NOTE   An operation can belong to multiple categories if necessary.

But how did we choose each goal’s group? There’s no magic recipe, but the idea is to 
group together goals that are related from a functional point of view. If you’re design-
ing a REST API, you must not be fooled by the paths when doing that; you must focus 
on the functionality of the goals and not their representations, as shown in figure 7.7.



170 chapter 7 Designing a concise and well-organized API

/beneficiaries/{id}DELETE Deletes a beneficiary

/beneficiariesGET Gets beneficiaries list

/beneficiariesPOST Creates a beneficiary

/accounts/{id}GET Gets an account

/transfersGET Gets transfers list

/transfersPOST Transfers money

/beneficiaries/{id}GET Gets a beneficiary

/accountsGET Gets accounts list

/transfers/{id}GET Gets a transfer

/transfers/{id}DELETE Deletes a transfer

Account

Beneficiary

Wrong goal organization based on URL representation

Transfer /beneficiaries/{id}DELETE Deletes a beneficiary

/beneficiariesGET Gets beneficiaries list

/beneficiariesPOST Creates a beneficiary

/accounts/{id}GET Gets an account

/transfersGET Gets transfers list

/transfersPOST Transfers money

/beneficiaries/{id}GET Gets a beneficiary

/accountsGET Gets accounts list

/transfers/{id}GET Gets a transfer

/transfers/{id}DELETE Deletes a transfer

Account

Transfer

Right goal organization based on functional point of view

Figure 7.7   Grouping goals with tags based on functionality versus URL representation

As you can see on the left of this figure, if we were to focus on paths, we might end 
up with three categories: Beneficiary (for the /beneficiaries paths), Transfer (for 
the /transfers paths), and Account (for the /accounts paths). But it doesn’t make 
sense to separate the goals represented by the /transfers and /beneficiaries paths 
because they cannot exist without each other.

On the right, we’ve organized the goals into two categories. This is better, but having 
the Transfer category before Account does not really reflect how people will use the 
API. Users are likely to first be interested in operations related to the account domain 
before trying to use the API to transfer money. As shown in figure 7.8, we can sort the 
categories by adding a tags definition on the root level. The tags property is a list in 
which each item contains a tag’s name and its description.



 171Organizing an API

/beneficiaries/{id}DELETE Deletes a beneficiary

/beneficiariesGET Gets beneficiaries list

/beneficiariesPOST Creates a beneficiary

/accounts/{id}GET Gets an account

/transfersGET Gets transfers list

/transfersPOST Transfers money

/beneficiaries/{id}GET Gets a beneficiary

/accountsGET Gets accounts list

/transfers/{id}GET Gets a transfer

/transfers/{id}DELETE Deletes a transfer

Account

openapi: "3.0.0"
[...]
paths:
[...]

Transfer

Adding sorted tag
definitions

DELETE Deletes a beneficiary

GET Gets beneficiaries list

POST Creates a beneficiary

/accounts/{id}GET Gets an account

GET Gets transfers list

POST Transfers money

GET Gets a beneficiary

/accountsGET Gets accounts list

GET Gets a transfer

/beneficiaries/{id}

/beneficiaries

/beneficiaries

/transfers

/transfers

/beneficiaries/{id}

/transfers/{id}

/transfers/{id}DELETE Deletes a transfer

Account Everything you need to visualize
accounts

Transfer Everything you need to transfer
money

openapi: "3.0.0"
[...]
tags:
  - name: Account
    description: Everything you ...
  - name: Transfer
    description: Everything you ...
[...]

Sorted groupsUnsorted groups

Figure 7.8   Sorting goal groups by adding sorted tags definitions

All we need to do to sort our Account and Transfer tags as we want is to sort the tag 
definitions in this tags list. Then we can add a description for each tag (or each cat-
egory). Now that the groups are sorted, we should also sort the operations within the 
groups, as shown in figure 7.9.



172 chapter 7 Designing a concise and well-organized API

Sorting resources
and methods in document

/beneficiaries/{id}DELETE Deletes a beneficiary

/beneficiariesGET Gets beneficiaries list

/beneficiariesPOST Creates a beneficiary

/accounts/GET Gets accounts list

/transfersGET Gets transfers list

/transfersPOST Transfers money

/beneficiaries/{id}GET Gets a beneficiary

/accounts/{id}GET Gets an account

/transfers/{id}GET Gets a transfer

/transfers/{id}DELETE Deletes a transfer

Account Everything you need to visualize
accounts

Transfer Everything you need to transfer
money

/beneficiaries/{id}DELETE Deletes a beneficiary

/beneficiariesGET Gets beneficiaries list

/beneficiariesPOST Creates a beneficiary

/accounts/{id}GET Gets an account

/transfersGET Gets transfers list

/transfersPOST Transfers money

/beneficiaries/{id}GET Gets a beneficiary

/accountsGET Gets accounts list

/transfers/{id}GET Gets a transfer

/transfers/{id}DELETE Deletes a transfer

Account Everything you need to visualize
accounts

Transfer Everything you need to transfer
money

openapi: "3.0.0"
[...]
paths:
  /accounts/{accountId}:
[...]
  /accounts:
[...]
  /beneficiaries:
    post:
[...]
    get:
[...]

openapi: "3.0.0"
[...]
paths:
  /accounts:
[...]
  /accounts/{accountId}:
[...]
  /beneficiaries:
    get:
[...]
    post:
[...]

Sorted operationsUnsorted operations

Figure 7.9   Sorting goals in the OpenAPI Specification document

This can only be done by sorting the goals by order of importance in the specification 
document itself (this is how it should have been done from the beginning, by the way). 
Here GET /accounts is more important than GET /accounts/{id} because consumers 
will usually list accounts before accessing an account’s detailed information. Note also 
that the order of the HTTP methods is the same for all resources: GET, POST, DELETE; 
POST and GET in /beneficiaries have been swapped. Remember what you learned 
about consistency in section 6.1? Choose one way to sort the HTTP methods and stick 
to it for all resources! But this is only a virtual organization that is not exposed in the 
API design itself. We could add /account and /transfer root paths to the resource 
paths to actually group those as shown in figure 7.10.



 173Organizing an API

/accounts/
/accounts/{id}
/beneficiaries/
/beneficiaries/{id}
/transfers/
/transfers/{id}

/account/accounts/
/account/accounts/{id}

/transfer/beneficiaries/
/transfer/beneficiaries/{id}
/transfer/transfers/
/transfer/transfers/{id}

Group
or domain Resource’s path

Ungrouped resources Grouped resources

Figure 7.10   Grouping resources by paths

Users would then be able to make connections between resources by just looking at 
their paths. Be warned, however, that this could make the paths less simple to guess in 
some cases.

Now it’s your turn. Suppose the goals shown in figure 7.11 belong to the API of a 
famous image-sharing social network called Imagebook. How would you organize those 
using what you’ve learned so far?

/images/{imageId}DELETE
Removes an image

from current user’s feed

/imagesGET Gets current user’s feed

/imagesPOST Adds image to current user’s feed

/users/{userId}/imagesGET
Gets another

user’s feed

/users/{userId}GET
Gets another

user’s information

/meGET Gets current user's information

default

Disorganized Imagebook API goals

Figure 7.11   How would you organize these goals?

Organizing an API’s goals virtually or physically facilitates understanding. This can be 
done by sorting goals in the definition document and taking advantage of the API 
specification format. And you can possibly add an organization level when designing 
the programming interface (add a level in the path for the REST HTTP method, for 
example).



174 chapter 7 Designing a concise and well-organized API

We now know how to design a well-organized API. But as API designers, we must 
ensure that our APIs are concise too.

7.2 Sizing an API
In Joe Dante’s 1984 movie, Gremlins, Randall Peltzer, the main protagonist’s father, 
tries to sell the “invention of the century”: the Bathroom Buddy (shown in figure 7.12).

Approx. 1.5 inches

Approx. 2 inches

Approx. 5 inches

ToothpickToothbrush
Razor

Nail clipper

Comb

Those 3 together?
Disgusting!

It’s too big to fit
well in the hand!

And there are (too)
many other features
on the other sides

Figure 7.12   The not-so-handy (and kind of gross) Bathroom Buddy, which does too many things

It’s an all-in-one device for travelers. Imagine a huge Swiss Army knife-like thing includ-
ing a razor, a shaving cream dispenser, a shaving mirror, a toothbrush, a toothpaste dis-
penser, a toothpick, a dental mirror, a comb, a nail clipper, and probably some other 
more or less useful features.

The problem with the Bathroom Buddy is not simply that each demonstration fails 
miserably, ending with the inventor covered with toothpaste or shaving cream. The real 
problem is that it wants to do too many things, and it doesn’t really look that handy. It’s 
too big to fit well in hand, and using each function seems to be quite a challenge. Find-
ing where the comb is hidden might not be easy the first few times, and the idea of using 
the same device to brush my teeth and clip my toenails is quite disgusting, to say the least. 
A separate toothbrush and nail clipper are far more convenient (and appealing) to use!

NOTE   Objects providing too many functions, too many controls, or too much 
information are usually not really usable. These tend to be bulky, inconvenient, 
and intimidating.



 175Sizing an API

And sizing doesn’t only matter for everyday objects. What is the right size for a database 
table? A class? A method? A function? An application? These are questions that come 
up constantly when you’re working with software— and APIs are no exception. Each 
aspect of an API, including its data and its goals, should be sized wisely. Sometimes 
you’ll find that what you’d considered as a single API can be worth splitting into differ-
ent ones, just like the the Bathroom Buddy’s toothbrush and nail clipper.

7.2.1 Choosing data granularity

The bank account’s JSON representation in figure 7.13 contains 32 properties and has 
a maximum depth of 4.

{
  "balance": 123.78,
  "type": {
    "code": "CURRENT",
    "label": "Current Account"
  },
  "holders": [
    { "firstName": "John",
      "lastName": "Doe",
      "birthDate": "1975-05-25",
      "addresses": [
      { "type": "main",
        "street": "123",
        "zip": "",
        "city": "",
        "country": ""}
      ]}
    ],
    "cards": [
      { "type": "DEBIT",
        "number": "XXXXXXXXX5412",
        "holder": {
        "firstName": "John",
        "lastName": "Doe",
        "birthDate": "1975-05-25",
        "addresses": [
            { "type": "main",
              "street": "123",
              "zip": "",
              "city": "",
              "country": ""}
          ]}
      }
    ],
    "transactions": [
      { "date": "2019-09-15",
        "amount": "45.2",
        "label": "Restaurant API Food",
        "category": "restaurant"}
    ]
}

32 properties

Maximum depth 4

Figure 7.13   Number of properties and maximum depth of a bank account representation

Holding 32 properties seems reasonable; but, depending on the context, it can be too 
much. What if this representation is used in a list? In that case, it might not be rele-
vant to provide all of an account’s information when users might need only a sum-
mary. Also, if we take a closer look, we can see at least one potential problem: this 
bank account contains a transactions list. This representation might be trying to do too 



176 chapter 7 Designing a concise and well-organized API

many things at once, and it might not be easy to manipulate the transactions list from 
within the bank account. These representations should be separated.

And regarding the maximum depth of 4, it is also quite reasonable, if slightly above 
the recommended level. This depth is a direct result of grouping using substructures to 
keep the data readable. As shown in figure 7.14, data granularity has two dimensions: 
the number of properties and the depth.

{
  "property_1": {
    "property_2": {
      "property_3": [
        {"property_4": "value"}
      ],

    }
  }
  "property_5": "value"
}

Number of
properties

Maximum depth

Number of
properties

Maximum
DepthContext

Least
possible

Shallow
(recommended: 3)Input

Functionally
relevant

Functionally�relevant
(recommended: 3)

Output

Figure 7.14   Choosing the number of properties and maximum depth

The number of properties that’s reasonable for an API to return in a data structure is a 
matter of functional relevance; the provided properties must all be functionally appro-
priate in the context in which they are used. The more data an API returns, however, 
the more the designer must be careful about its organization (remember section 7.1.1) 
and relevance because, even though these are all pertinent, having a high number of 
properties does not facilitate usage.

In my experience, I would say that above 20 properties, you should definitely think 
about organizing those and possibly challenge each one. But this is not a silver bullet; 
there are fields where it could make sense to have so many properties. Try to define 
your own rules based on your domain. Recall also that, as we saw in section 5.2.1, we 
must request the minimum data possible to ensure usability. The number of properties 
is quite critical in this context.

Regarding the depth, we also have the same input/output duality; but for both con-
texts, it is recommended to try not to go beyond three levels of depth. Having more than 
three levels of depth makes manipulating the raw data, coding, and reading the docu-
mentation more complicated. Again, this rule might need to be adapted to your context.

Organizing data also helps to make your API easier to understand, so you will have to 
find a balance. Keep an eye on data granularity, but remember that it is mainly a matter 
of functional context and not a matter of numbers. But granularity doesn’t only matter 
for data— it also matters for goals.

7.2.2 Choosing goal granularity

Take another look at figure 7.15. Is it a good idea to have the transactions included in 
the bank account representation? Probably not.



 177Sizing an API

200 OK

{
  "balance": 123.78,
  "type": {
    "code": "CURRENT",
    "label": "Current Account"
  },
  "holders": [
    {
      "self": "/persons/5678",
      "firstName": "John",
      "lastName": "Doe",
      "birthDate": "1975-05-25",
      "addresses": [
        {
          "self": "/persons/5678/addresses/main",
          "type": "main",
          "street": "1 N Main Street",
          "zip": "29601",
          "city": "Greenville, SC",
          "country": "USA"}
      ]
  ],
  ...
}

PATCH /accounts/1234567

{
  "holders": [
    {
      "addresses": [
        {
          "street": "201 Fifth Avenue South",
          "zip": "37203",
          "city": "Nashville, TN"}
      ]
  ]
}

PATCH /persons/5678/addresses/main

{
  "street": "201 Fifth Avenue South",
  "zip": "37203",
  "city": "Nashville, TN"
}

GET /accounts/1234567

Bank account’s representation including
account holder’s information may make sense...

...but updating the bank account to update an account
holder’s address is not really natural.

Being able to update the address
separately seems simpler.

Figure 7.15   Different goal granularity when reading and modifying data

If the get bank account goal returns the account and its transactions list, we’ll have 
to deal with managing a potentially large number of transactions. Always returning 
all the transactions can be cumbersome, and managing transaction pagination can 
be complex (as you learned in chapter 6). A GET /accounts/{id}?page=2 or GET /
accounts/{id}?transactionPage=2 REST API request seems quite awkward. It is bet-
ter to provide a separate goal to get a bank account’s transactions (GET /accounts/
{id}/transactions).

Choosing the right granularity for your goals is about ensuring that a goal is not 
doing two (or more) quite different things. Note also that the granularity of goals is not 
always consistent. As shown in figure 7.15, it can differ when reading or modifying data, 
for example.

The Banking API currently allows us to modify an account holder’s addresses by 
updating the bank account resource. While it might be useful for this resource to pro-
vide information about the account holder, including their addresses, updating an 
address by updating the bank account resource is not really natural. Doing the update 
that way hides the update address goal within another one.

There are two issues here. First, it might not be obvious at first sight that you can 
update an address by updating a bank account. Second, the account holder’s data is 
independent of a specific bank account. The same account holder might own multiple 
accounts, so updating the address through an account seems quite awkward. And what 



178 chapter 7 Designing a concise and well-organized API

if there are other properties of the bank account that can be updated through this 
resource, such as the overdraft feature?

Requesting minimal inputs and managing errors for the update bank account goal 
could become quite complex for both designers and consumers because this goal 
would encompass several subgoals. It would be wiser to provide an independent update 
address goal as seen at the bottom right in figure 7.15, but it is totally acceptable to give 
access to the address information through the bank account if it makes sense from a 
functional point of view.

Remember that a goal’s granularity should be determined by context and usability. 
We’ll talk more about goal granularity in chapter 8, but first, if granularity matters for 
data and goals, it matters, of course, for APIs as well.

7.2.3 Choosing API granularity

When we organized the Banking API goals in section 7.1.3, borders appeared around 
the goals. As shown in figure 7.16, we have grouped the goals into Account and Transfer 
categories.

/beneficiaries/{id}DELETE Deletes a beneficiary

/beneficiariesGET Gets beneficiaries list

/beneficiariesPOST Creates a beneficiary

/accounts/GET Gets accounts list

/transfersGET Gets transfers list

/transfersPOST Transfers money

/beneficiaries/{id}GET Gets a beneficiary

/accounts/{id}GET Gets an account

/transfers/{id}GET Gets a transfer

/transfers/{id}DELETE Deletes a transfer

Account Everything you need to visualize
accounts

Transfer Everything you need to transfer
money

Banking API

/accounts/GET Gets accounts list

/accounts/{id}GET Gets an account

Account Everything you need to visualize
accounts

Bank Account API

/beneficiaries/{id}DELETE Deletes a beneficiary

/beneficiariesGET Gets beneficiaries list

/beneficiariesPOST Creates a beneficiary

/transfersGET Gets transfers list

/transfersPOST Transfers money

/beneficiaries/{id}GET Gets a beneficiary

/transfers/{id}GET Gets a transfer

/transfers/{id}DELETE Deletes a transfer

Transfer Everything you need to transfer
money

Money Transfer API

Beneficiary Everything you need to manage
transfer beneficiaries

Figure 7.16   From one Banking API to separate Bank Account and Money Transfer APIs



 179Sizing an API

But these are more than just simple categories. Each group of goals could be totally 
independent. Therefore, why don’t we split the Banking API into two smaller but func-
tionally useful APIs? These smaller Money Transfer Bank Account APIs will be easier 
to manage and can be reused independently in different contexts. Note that in the 
Money Transfer API, goals have been grouped in the initial Transfer and Beneficiary 
categories. It now makes sense to organize them into smaller groups.

We have been working with the programming interface representation, but organiz-
ing and splitting an API’s goals can be done during the first design steps when identify-
ing goals. Try to apply what you have learned here to the Shopping API we designed in 
chapters 3 and 4. How would you organize and split the goals list shown in table 7.2 into 
independent, smaller APIs? It’s up to you to fill in the Category and API columns; try 
to come up with at least two different versions. (Hint: thinking about who the users are 
can help you to find one version.)

Table 7.2   How would you organize and split this Shopping API goals list?

Goal Category API

Create user

Search for products

Get product’s information

Add product to shopping cart

Remove product from cart

Check out cart

Get cart detail

List orders

Add product to catalog

Update a product

Replace a product

Delete a product

Get an order’s status

Update user

Delete user

Remember that once an API is organized into groups of goals while identifying goals 
or designing the programming interface, it can be split into smaller but functionally 
significant APIs that can be used independently.

This concludes part 2 of this book; you now know how to design usable APIs. That is 
already great, but we won’t stop here: there is still a lot of ground to cover. In the third 
part of this book, you will learn to design APIs while taking care of the whole context 
around them.



180 chapter 7 Designing a concise and well-organized API

Summary
¡	Organize data properties by sorting them, naming them using patterns, or group-

ing them in data structures.
¡	Categorize feedback and sort it by its importance.
¡	Group goals by focusing on functionality and not representations; you can use 

API description format features or naming patterns (OpenAPI tags and URL 
prefixes for REST APIs).

¡	Keep the number of properties and depth levels as low as possible in data 
structures.

¡	Avoid creating does-it-all goals.
¡	Split data structures, goals, and even APIs into smaller but functionally signifi-

cant elements when possible.



Part 3

Contextual API design

Reading the first two parts of this book, you have learned to design APIs 
that make sense for consumers—ones that are easy to understand and easy to use 
without even thinking about it. Is that all you need to design APIs? Absolutely 
not. Thinking that an API designer’s job ends here would even be a terrible mis-
take. Stopping here would inevitably result in the creation of unfit and even dan-
gerous APIs. Indeed, we designed APIs without much consideration to the whole 
context surrounding them:

¡	Is our design totally secure given the intended functions of the API and 
how it will be exposed to users?

¡	Will it actually be usable by, let’s say, a mobile application on a poor quality 
3G network?

¡	Is our design actually the best one for our targeted consumers?
¡	Is it actually implementable upon our existing systems?
¡	Is our design so good that it does not need any documentation?
¡	Is our design totally consistent with all our other APIs?
¡	What if we want to update it once it has been pushed into production—can 

that be easily done?

All these questions must be answered. As API designers, we must take the whole 
context surrounding an API into account when designing it. Hopefully, you will 
learn to do so in the following chapters.

We’ll talk about security first. API security is not an afterthought delegated to 
someone else after design. An API must be secure by design to ensure that con-
sumers, end users, and anyone or anything between them cannot do or see more 
than they are supposed to. This requires API designers to understand API secu-
rity mechanisms, to know how to partition an API to facilitate access control, to 
include security concerns when designing from the consumers perspective, and, 
most importantly, to know how to handle sensitive material.



182

Then we’ll see that an API is a living thing; it will irremediably evolve. Designing API 
modifications requires extra care in order to avoid introducing breaking changes that 
will force all consumers to update their code to be able to use the updated API. Know-
ing how to do so is a key skill for API designers, but knowing how to design APIs that are 
evolvable from the ground up and lessening the risk of breaking changes when modi-
fied is even more important.

After that, we’ll talk about network constraints. A mobile application running on 
a smartphone over a 3G network doesn’t have the same constraints as an application 
running on a server on a local network. API designers must ensure that their design 
will actually be usable for the targeted consumers in their environment. They also must 
ensure that the design is actually efficient for all use cases, including edge cases which 
can, for example, imply more data or more calls.

We’ll also see that if network efficiency is a major constraint, it is only one among 
many. Designing APIs requires us to be aware of all constraints from both the consum-
er’s and also the provider’s side in order to create APIs that are totally usable and actu-
ally implementable.

In the last two chapters, you will discover that API designers have more to do than just 
designing APIs. We’ll talk about documentation. No matter how good a design, it must 
be documented in order to help not only consumers but also stakeholders understand 
it. An API must also be documented so the people in charge of its implementation can 
build it accurately. Just like security, API documentation should not be an afterthought. 
It is not something that can be completely delegated to someone else after the design; 
API designers must participate in it.

And finally, we’ll see how API designers can contribute to the growth of the organiza-
tion’s API surface. By reviewing API design at various stages from various perspectives, 
the whole team can ensure that the resulting API will actually be what is expected. API 
designers have to participate in these reviews, even for APIs they are not working on. It 
is also fairly common to have many API designers working on many APIs in the same 
organization. This requires that all of them share what they do and how they do it— by 
creating design guidelines and building a community— in order to ensure a certain 
consistency and avoid everyone losing time reinventing the wheel.



183

8Designing a secure API

This chapter covers
¡	The intersection between API security and API 

design

¡	Defining user-friendly scopes for access control

¡	Adapting API design to meet access control 
needs

¡	Adapting API design to handle sensitive 
material

Designing APIs that make sense for their users and are usable is definitely import-
ant, but this must not be done without considering security. API security is not an 
afterthought that you can assume will be handled later (whenever that is) by the 
security people (whoever they are). Indeed, design and security are inextricably 
linked when creating an API or anything else.

Regularly, there is some news about a company having been “hacked” through 
their APIs, especially private ones used for mobile applications. I put quotation marks 
around hacked because sometimes such hacking is at a kindergarten level. Indeed, 
in some cases, hackers simply inspect the API responses and discover sensitive data 



184 chapter 8 Designing a secure API

that should have never left the depth of the provider’s systems. There is also the classic 
“What happens if I change the user ID in a request?” … “I get other users’ data!”

This is not because an API is private or for partners and only used by trusted consum-
ers, so it can expose anything without us giving thought to security. Public API security 
is usually treated more seriously as long as the people involved actually know what API 
security means. Security matters for all types of APIs; and, as an API designer, you have a 
part to play in API security.

You must at least have a basic understanding of API security in order to design secure 
APIs and communicate efficiently with the people involved in their creation. An entire 
book, if not several, could be written about this topic; the aim of this chapter is only 
to give an overview without providing details about the actual implementation of API 
security. Books such as OAuth 2 in Action, written by Justin Richer and Antonio Sanso, 
or API Security in Action, written by Neil Madden, both published by Manning (https://
www.manning.com/books/oauth-2-in-action and https://www.manning.com/books/
api-security-in-action, respectively), provide more detailed information about this 
topic. While this discussion will obviously be far from complete, it should be sufficient 
to help you understand how API designers can create APIs that are secure by design. Fig-
ure 8.1 zooms in on an API call from a security perspective to illustrate where API secu-
rity and API design collide.

When the Banking API’s provider receives API calls, it must do some high-level access 
control in order to be sure that the consumers are known and allowed to use the 
requested API goal. Then the provider proceeds with some lower-level access control 
measures to ensure, for example, that the end users only see their own accounts.

In certain cases, the request and response can contain sensitive personal data that 
should be handled carefully. The goal itself could also be a sensitive one, such as trans-
ferring money, and require extra care. Access control and sensitive material are the primary 

Returning data
according to API contract

Known consumer?
Can use goal?

Secured channelConsumer Provider

Requests
some data

or to
execute
an action

Filtering data or
action for end user

Only registered consumers can use an API,
and they may not be allowed to use all goals.

Some data may be more
sensitive than others.

What can be seen and
done is based on end
users’ or consumers’

permissions.

Access control Sensitive material

Access control

Sensitive material

Some goals may be more
sensitive than others.

Figure 8.1   Zooming in on an API call from the security perspective

https://www.manning.com/books/oauth-2-in-action
https://www.manning.com/books/oauth-2-in-action
https://www.manning.com/books/api-security-in-action
https://www.manning.com/books/api-security-in-action


 185An overview of API security

areas where API security and API design intersect. We will dive into both of these, but 
first, we need to dig a little deeper into API security.

8.1 An overview of API security
In order to design secure APIs, you must know some basic API security principles. It is 
important to also understand what these principles mean, not only for the developers 
of both API consumers and providers, but also for the end users. We will explore all 
of this by walking through the three steps of a first API call: registering a consumer, 
getting credentials allowing consumption of the API, and making the API call. Besides 
providing a glimpse of an API ecosystem, what follows gives a very simplified and par-
tial vision of the OAuth 2.0 authorization framework defined by RFC 6749 (https://
tools.ietf.org/html/rfc6749). Although it is not the only option, it is commonly used 
to secure web APIs.

8.1.1 Registering a consumer

Secure APIs only allow known consumers to use them. When developers want to use 
an API in their consumer applications, whether they are mobile applications or back-
end ones, they must first register them. To do so, they can use the API provider’s 
developer portal.

An ideal developer portal is a website offering documentation, tutorials, FAQs, 
forums, support, and any other useful resources and tools that developers can take 
advantage of to understand what the API does and how to use it. It also provides infor-
mation about API consumption; developers can check how their consumers use the API 
and can also have access to logs of the API calls. Developers have to register themselves 
(and perhaps provide payment information if the API is not a free one). Once that is 
done, they can register their consumers. Figure 8.2 shows a basic consumer application 
registration process for the Banking API.

x Read accounts and transactions

x Transfer money

x Manage beneficiaries

Name: Awesome Banking Application

Scopes:

Save Cancel

x Read accounts and
transactions

Transfer money

Manage beneficiaries

Name: Boring Financial Dashboard

Scopes:

Save Cancel

Name: Awesome Banking Application

Client ID: XTF129DHDJDNQLK

A scope gives access to
one or more goals.

Once the application is created,
developers get its ID

to use in the next step.

Corresponds to “list accounts,” “read account,”
and “list transactions” goals.

Figure 8.2   Registering a consumer to select which part of the API will be used and to get credentials



186 chapter 8 Designing a secure API

Each consumer is given a name. Here we have an Awesome Banking Application and 
a Boring Financial Dashboard. Then developers have to select which scopes of the API 
their consumers will use. A scope corresponds to one or more goals of the API. The 
Boring Financial Dashboard uses only the read accounts and transactions scope, which 
corresponds to the list accounts, read account, and list transactions goals. Therefore, 
this consumer will only be allowed to use these three goals. The Awesome Banking 
Application uses all scopes and will, therefore, be allowed to use all of the API’s goals. 
Once this configuration is done, developers can retrieve a client ID for their applica-
tions, which will be used in the next step.

Not all APIs, especially private ones, come with a developer portal. The same con-
figuration can be done by storing (securely, of course) the application name, scopes, 
and credentials in a database, for example. Whatever the means, once the consumers 
are registered, the developers can proceed to the next step: getting the credentials that 
allow consumers to use the API. Let’s see what this means for the Awesome Banking 
Application.

8.1.2 Getting credentials to consume the API

If you’ve ever used a Sign Up with Google/Twitter/GitHub/Facebook button, what 
you’ll see now should look familiar. The Awesome Banking Application is a third-party 
application created by the Awesome Company. Its end users are customers of the Bank-
ing Company that provides the Banking API. The Awesome Banking Application and 
its end users must be authenticated in order to get a token, which contains the creden-
tials allowing the application to consume the Banking API.

Figure 8.3 shows the roles played by the different parties involved. (This is a simpli-
fied and partial view of the OAuth 2.0 implicit flow, which is one way, among others, of 
getting credentials to allow consumption of an API. Its intent is only to be a support 
example; it is not a prescription. Security measures must be chosen by security experts. 
Do not use this specific method without knowing what you are doing.)

Awesome Company Banking Company

End user
(resource

owner)

Awesome Banking
Application

(client)

Banking AS
(authorization server)

Banking API
(resource server)

The end user is a Banking Company customer.

Uses

Consumes

Authenticates

Authenticates

A third-party application An API provider

Figure 8.3   Roles involved in the OAuth 2.0 implicit flow



 187An overview of API security

The resource server is the application providing the Banking API. The client is the third-
party Awesome Banking Application that consumes the Banking API. The resource 
owner is the end user using the Awesome Banking Application. And last but not least, 
the authorization server is the application that verifies the identity of the consumer and 
the end user. Figure 8.4 shows how these parties work together.

Authorize
“Awesome Banking Application”
to use your Banking Company

accounts and services?

Login: apiroxx34

Password: ***********

Authorize Cancel

End user
(resource

owner)

Awesome Banking Application
(client)

Banking AS
(authorization server)

Banking API
(resource server)

Awesome Banking Application
(Client)

Returns the
access token and

the granted scopes

Uses

Opens a web browser calling the URL
https://auth.banking.com?client_id=XTF129DHDJDNQLK

to request end user authentication�

Checks provided client ID
and retrieved application

name and the scopes
it requests

Checks end user‛s credentials,
generates an access token,

and stores it along with
end user‛s ID, client ID, and

granted scopes
Provides the
access token
when making

API calls

Provides
login and
password

Checks
requested

scopes

Web page
shown to
end user

Returns a login
web page

Validates

All communication between consumer
and provider is over a secured channel.

- Read accounts and transactions
- Transfer money
- Manage beneficiaries

This application wishes to

Checks client ID
and requested scopes

Figure 8.4   Authenticating the Awesome Banking Application and its end users, which provides an 
access token allowing them to consume the Banking API

To retrieve the credentials, the Awesome Banking Application first contacts the Bank-
ing Company’s authorization server to request the end user’s authentication. This is 
usually done by opening a web browser window pointing to the authorization server’s 
URL and including the client ID in a query parameter (https://auth.banking.com?cli-
ent_id=XTF129DHDJDNQLK, for example).

When the authorization server receives this request, it checks that the provided client 
ID corresponds to a known consumer. If so, it retrieves the consumer’s name (Awesome 



188 chapter 8 Designing a secure API

Banking Application) and the scopes it requests (read accounts and transactions, trans-
fer money, and manage beneficiaries), according to the configuration in figure 8.2. 
Then it returns a login web page including this information. End users have to check 
that what the application wants to do (the requested scopes) is appropriate. If so, they 
provide their login and password and then click the Authorize button.

Clicking this button sends the user’s login and password, along with the list of 
scopes, to the authorization server. It checks that the requested scopes match the 
ones defined in the client’s (the Awesome Banking Application) configuration. And 
it checks that the end user’s login and password are valid. If everything is in order, it 
generates an access token, the credential that allows the Awesome Banking Application 
to consume the Banking API. The authorization server stores this token along with the 
end user’s ID, the client ID, and the granted scopes; and, finally, it returns the access 
token to the application.

Note that any communication between consumer and provider takes place over a 
secured channel, ensuring that nobody can intercept the exchanged data. When using 
the HTTP protocol, this is done using Transport Layer Security (TLS) encryption (for-
merly known as the Secure Sockets Layer, or SSL). If you’ve ever used a URL of the form 
https://example.com, you have used TLS.

OAuth 2.0 and OpenID Connect
According to RFC 6749 (https://tools.ietf.org/html/rfc6749), “The OAuth 2.0 authori-
zation framework enables a third-party application to obtain limited access to an HTTP 
service, either on behalf of a resource owner by orchestrating an approval interaction 
between the resource owner and the HTTP service, or by allowing the third-party applica-
tion to obtain access on its own behalf.”

This framework provides various flows in order to obtain access to an API on behalf of a 
resource owner. Each flow has its pros and cons and must be used in the right context. 
It is only an authorization framework; OAuth 2.0 does not provide any information about 
how users are authenticated (identified). OpenID Connect (https://openid.net/connect/)
is an authentication protocol based on OAuth 2.0, which provides these features.

 

Now that the Awesome Banking Application has its access token, it can start to con-
sume the Banking API. We look at that in the next section.

8.1.3 Making an API call

As a first call to the Banking API, the Awesome Banking Application can request to list 
the user’s accounts, as shown in figure 8.5.

https://tools.ietf.org/html/rfc6749
https://openid.net/connect/


 189An overview of API security

Awesome Banking Application
(client)

Sends a “list accounts”
request along

with access token

Returns scopes,
client ID,
and end user ID

Returns end user‛s
accounts

Sends
access
token

Banking AS
(authorization server)

The consumer acts on its own
or based on end user‛s actions

Loads data associated
with access token

Requests
access token
verification

Checks if
“list accounts”
belongs to a

granted scope

Retrieves
accounts linked
to end user ID

Banking API
(resource server)

Reminder: any communication between consumer
and provider takes place over a secured channel

Figure 8.5   The Awesome Banking Application requests to list accounts.

To do so, it sends a list accounts request to the Banking API (over a secured channel, 
of course). This request also contains the access token retrieved previously. When the 
Banking API receives this request, it contacts the authorization server to check if the 
access token is valid. If it is a valid token, the authorization server can return the data 
attached to it, such as the end user’s ID, the client ID, and the granted scopes.

The Banking API’s implementation first checks that the list accounts goal belongs 
to one of the scopes granted to the Awesome Banking Application. Because the read 
accounts and transactions scope was granted to the end user, as described in the previ-
ous section, the implementation proceeds to the next step.

The consumer requests the list accounts goal without further explanation. Should 
the implementation return all the available accounts? Certainly not! The consumer’s 
request is made in the context defined by the data attached to the access token. The 
end user’s ID is attached to the access token, and the implementation uses it to filter 
the accounts. That way, it returns only the accounts that should be returned to the user 
making the request.

We’ve now been through all the steps of our first API call. We understand the mechan-
ics, but let’s see what all this means from the API designer’s perspective.

8.1.4 Envisioning API design from the perspective of security

Figure 8.6 sums up the basic security principles you have seen so far and which of these 
have an impact on API design.



190 chapter 8 Designing a secure API

Returning data
according to API

contract

Known consumer?
Can use goal?

Secured channelConsumer Provider

Requests
some data

or to
execute
an action

Filtering data or
action for end

user

Defining
scopes

Avoiding exposing
sensitive data,

or at least doing
so in a secure way

Adapting behavior
to scopes and

end user (if any)

Access control Sensitive material

Access control

Sensitive material

Avoiding exposing sensitive
goals, or at least doing so

in a secure way
a d

b

c

Figure 8.6   How API security and API collide

You have seen that all communication between consumer and provider should take 
place over a secured channel, ensuring that no data can be intercepted. This has noth-
ing to do with API design, but it’s always good to know that the communications are 
secure. You have also seen that only registered consumers should be allowed to con-
sume an API. These consumers should only be allowed to use the parts of the API they 
really need and to which end users have requested access.

On the other side, the implementation needs to know which consumer is requesting 
a goal in order to verify that it is actually allowed to use this goal. Defining scopes (a), 
partitioning the API in order to grant access to only selected goals, cannot be done 
without input from the API designers because these groups of goals must make sense 
for developers as well as end users. Besides knowing if a consumer is allowed to use a 
goal, the implementation (b) also needs to know on whose behalf a request is being 
made in order to adapt its behavior to the specific end user’s rights. If end users are 
actually involved, that is not always the case. That matter is the implementation’s job, 
but API designers should keep this in mind because it can impact the design of the API.

Is that all? Do API designers just have to think about access control to design secure 
APIs? No. There is another, far less obvious aspect of API security that matters for API 
designers.

The Awesome Banking Application can list accounts over a secure connection only 
if it provides a valid access token, and the scopes attached to that token encompass this 
goal. The returned accounts are only the ones owned by the end user attached to the 
access token. That sounds totally secure, doesn’t it? But what if for each account, the data 
returned contains a list of all the debit cards attached to it? And what if for each card, 
the provided data includes its number, security code, expiration date, and the account 
holder’s full name? That would be a huge problem because this data is highly sensitive.



 191Partitioning an API to facilitate access control

Should the Banking API provide such data? Probably not. Thinking about API design 
from the perspective of security is not only a matter of access control; it also involves 
asking the question, “Should we really expose this data (c) through our API?” And this 
question matters not only for data but also for goals (d).

So, to create APIs that are secure by design, API designers must take care of applica-
tion access control, end user access control, and sensitive material. Let’s see how we can 
do that.

8.2 Partitioning an API to facilitate access control
Let’s start with one of the most obvious aspects of secure API design: how to partition 
an API to facilitate access control. But first, let’s talk about why we must group goals in 
scopes in order to grant consumers access to only selected goals, and why we must take 
care with the design of these groups.

In the real world, a hotel is often seen as a whole entity (especially by its guests). Besides 
rooms, hotels can provide services such as a swimming pool, fitness center, sauna, or spa. 
These services are usually offered to all guests; they are included in the room price. But 
sometimes, some of these services are optional. Guests have to tell the hotel staff they 
want to use them and pay for them in addition to their room price. Some of the services 
can even be accessible to people who are not staying at the hotel. These customers pay 
to use only these services without using the rest of the hotel’s features. This means that, 
from the hotel guest and non-guest customer’s perspectives, the hotel is but a business 
providing multiple services that can be accessed independently. At the hotel’s reception 
desk, customers can request access to all or some of these services. The customers then 
will only be able to use the services they have been granted access to.

This can, even must, happen in the API world too. As we saw in section 8.1.1, two 
different consumers might not use the same goals. Figure 8.7 shows the different goals 
used by the Awesome Banking Application and the Boring Financial Dashboard.

...

Boring Financial
DashboardRead account

List accounts

List transactions

List transfer
sources and
destinations

This consumer does not use
all of the API’s goals.

Awesome Banking
Application

Transfer money

The Banking API’s goals

This consumer uses
all of the API’s goals.

Figure 8.7   Different consumers with different needs do not use the same goals.



192 chapter 8 Designing a secure API

The Awesome Banking Application uses all the available goals, while the Boring Finan-
cial Dashboard only uses the list accounts, read account, and list transactions goals 
without ever needing to use the others. But does that mean that this consumer should 
not be allowed to use those other goals? Why would we implement such access con-
trols on an API? The Open Web Application Security Project (OWASP; https://www 
.owasp.org), a worldwide not-for-profit charitable organization focused on improving 
the security of software, states that

“Every feature that is added to an application adds a certain amount of risk to the overall 
application. The aim for secure development is to reduce the overall risk by reducing the 
attack surface area.”

OWASP

By limiting consumers' access to only the goals they really need, you reduce the like-
lihood of an attack. This is the principle of least privilege, which can also be applied to 
data. Because web APIs can be exposed on the internet, the fewer open doors there 
are, the better. And as with hotels, some of your API’s features can require different 
paid subscriptions, so you would not want to see consumers who haven’t paid the fee 
using those freely. Enabling access controls eases the process of granting access to 
different areas of your API to selected consumers only. That’s two good reasons for 
designing scopes. But we must also take care in how we design these in order to provide 
the best developer and end user experiences possible.

When developers register their consumers to use an API, they have to select the 
appropriate scopes. The same goes for end users: when they allow a third-party appli-
cation to access an API on their behalf, they have to check the requested scopes and 
possibly select these by themselves. So an API’s goals should be partitioned into various 
groups, called scopes, in order to enable access control mechanisms, and these scopes 
should be carefully designed. Let’s see how we can do that.

8.2.1 Defining flexible but complex fine-grained scopes

A first, a simple way of defining scopes is to bluntly define a scope for each goal. While 
configuring their consumers via the Banking API’s developer portal, developers might 
see configuration screens such as those shown in figure 8.8, allowing them to select the 
scopes (or goals, in this case) they need for each consumer.

Configuring the Awesome Banking Application, which provides full access to all of 
the Banking API’s services, requires selecting all of the scopes. Only the list accounts, 
read account, and list transactions scopes are selected for the Boring Financial Dash-
board, which focuses on account activity analysis. Configuring the PayFriend App, 

A scope is defined
for each goal.

The PayFriend App
cannot list accounts...

...but it can
transfer money.

Awesome Banking Application

x List accounts

x Read account

x List transactions

x List beneficiaries

x Create a beneficiary

x Delete a beneficiary

x List transfer sources
and destinations

x List transfers

x Transfer money

x Update a transfer

x Validate an uncommon
transfer

x Delete a transfer

Boring Financial Dashboard

x List accounts

x Read account

x List transactions

List beneficiaries

Create a beneficiary

Delete a beneficiary

List transfer sources
and destinations
List transfers

Transfer money

Update a transfer

Validate an uncommon
transfer

Delete a transfer

PayFriend App

List accounts

Read account

List transactions

List beneficiaries

x Create a beneficiary

x Delete a beneficiary

x List transfer sources
and destinations

x List transfers

x Transfer money

x Update a transfer

Validate an uncommon
transfer

x Delete a transfer

Selecting goals may
be tricky sometimes.

That’s quite
a long list!

End users may
also have to deal
with such
configuration.

Figure 8.8   Controlling access with fine-grained, goal-based scopes

https://www.owasp.org
https://www.owasp.org


 193Partitioning an API to facilitate access control

which proposes to allow its users to easily send money to friends, is trickier. The money 
transfer-related goals have to be selected carefully. The validate an uncommon transfer 
scope is unselected for this application because it is meant to be used only by bank advi-
sors to validate certain money transfers that are judged to be unusual, based on their 
destination or amount. Once the configuration is done, each of these consumers will 
only be able to use the goals corresponding to the scopes selected for them. For exam-
ple, the PayFriend App cannot list accounts but can trigger a money transfer.

With 12 scopes corresponding to the 12 goals of the Banking API, the access control 
configuration is quite flexible, but it can be considered complex. Each scope has to be 
carefully selected. What if there are more goals and, therefore, more scopes to deal 
with? The complexity increases. And what if we allow third-party applications to use the 
API on the behalf of their end users? Those end users will have to deal with this complex 
configuration too. Both developers and end users can feel overwhelmed or annoyed by 
the process of carefully selecting a few scopes from a lengthy list.

Maybe we can define less fine-grained and more user-friendly scopes by basing these on 
concepts and actions. If you have been designing your API using the method described in 
section 3.2, this should be quite simple because you’ve already done something like that. 
Figure 8.9 shows how to define such scopes for our Banking API.

The Awesome Banking Application uses all the available goals, while the Boring Finan-
cial Dashboard only uses the list accounts, read account, and list transactions goals 
without ever needing to use the others. But does that mean that this consumer should 
not be allowed to use those other goals? Why would we implement such access con-
trols on an API? The Open Web Application Security Project (OWASP; https://www 
.owasp.org), a worldwide not-for-profit charitable organization focused on improving 
the security of software, states that

“Every feature that is added to an application adds a certain amount of risk to the overall 
application. The aim for secure development is to reduce the overall risk by reducing the 
attack surface area.”

OWASP

By limiting consumers' access to only the goals they really need, you reduce the like-
lihood of an attack. This is the principle of least privilege, which can also be applied to 
data. Because web APIs can be exposed on the internet, the fewer open doors there 
are, the better. And as with hotels, some of your API’s features can require different 
paid subscriptions, so you would not want to see consumers who haven’t paid the fee 
using those freely. Enabling access controls eases the process of granting access to 
different areas of your API to selected consumers only. That’s two good reasons for 
designing scopes. But we must also take care in how we design these in order to provide 
the best developer and end user experiences possible.

When developers register their consumers to use an API, they have to select the 
appropriate scopes. The same goes for end users: when they allow a third-party appli-
cation to access an API on their behalf, they have to check the requested scopes and 
possibly select these by themselves. So an API’s goals should be partitioned into various 
groups, called scopes, in order to enable access control mechanisms, and these scopes 
should be carefully designed. Let’s see how we can do that.

8.2.1 Defining flexible but complex fine-grained scopes

A first, a simple way of defining scopes is to bluntly define a scope for each goal. While 
configuring their consumers via the Banking API’s developer portal, developers might 
see configuration screens such as those shown in figure 8.8, allowing them to select the 
scopes (or goals, in this case) they need for each consumer.

Configuring the Awesome Banking Application, which provides full access to all of 
the Banking API’s services, requires selecting all of the scopes. Only the list accounts, 
read account, and list transactions scopes are selected for the Boring Financial Dash-
board, which focuses on account activity analysis. Configuring the PayFriend App, 

A scope is defined
for each goal.

The PayFriend App
cannot list accounts...

...but it can
transfer money.

Awesome Banking Application

x List accounts

x Read account

x List transactions

x List beneficiaries

x Create a beneficiary

x Delete a beneficiary

x List transfer sources
and destinations

x List transfers

x Transfer money

x Update a transfer

x Validate an uncommon
transfer

x Delete a transfer

Boring Financial Dashboard

x List accounts

x Read account

x List transactions

List beneficiaries

Create a beneficiary

Delete a beneficiary

List transfer sources
and destinations
List transfers

Transfer money

Update a transfer

Validate an uncommon
transfer

Delete a transfer

PayFriend App

List accounts

Read account

List transactions

List beneficiaries

x Create a beneficiary

x Delete a beneficiary

x List transfer sources
and destinations

x List transfers

x Transfer money

x Update a transfer

Validate an uncommon
transfer

x Delete a transfer

Selecting goals may
be tricky sometimes.

That’s quite
a long list!

End users may
also have to deal
with such
configuration.

Figure 8.8   Controlling access with fine-grained, goal-based scopes

https://www.owasp.org
https://www.owasp.org


194 chapter 8 Designing a secure API

{concept}:{CRUD}
scopesBanking API goals

Delete a beneficiary

List transfer sources
and destinations

List transfers

List accounts

List beneficiaries

Create a beneficiary

Read account

List transactions

Transfer money

account:read

transaction:read

transfer source:read

transfer:create

transfer:update

{concept}:{action}
scopes

transfer:create

transfer:update

Concepts

account

transfer

As fine-grained scopes
as the goal-based
approach

Identifying goal’s
main concept

Adding CRUD
actions to define scopes

Less fine-grained scopes
than the goal-based
approach

CRUD action replaced
by functional one
to ensure secured
scopes

transaction

beneficiary

Update a transfer

account:read

transaction:read

beneficiary:read

beneficiary:create

beneficiary:delete

beneficiary:read

beneficiary:create

beneficiary:delete

Validate an
uncommon transfer

Delete a transfer transfer:delete

transfer:validate

transfer:delete

transfer source

transfer:read

transfer source:read

transfer:read

Refining to ensure
secured scopes

Figure 8.9   Defining fine-grained scopes based on concepts and actions

The first step consists of identifying the main concept (or resource) for each goal. You 
begin by identifying the main noun in the goal. For example, both the list accounts 
and read account goals deal with the concept of an account. Then you identify the 
CRUD (Create, Read, Update, Delete) action that best represents the goal’s main verb. 
For these two goals, it is Read; therefore, these fall under the account:read scope. 
Note that the scope-naming convention {concept}:{action} is quite common but 
might not be too user-friendly. Such scope names are usually accompanied by a helpful 
description, such as

"account:read": list accounts and access detailed information about those

Unfortunately, this technique does not always reduce the number of scopes. For the 
beneficiary-related goals, we still end up with three scopes matching the list beneficia-
ries, create a beneficiary, and delete a beneficiary goals. In some cases, this can even 
cause problems.

The update a transfer and validate an uncommon transfer goals both update a 
money transfer and, therefore, could be grouped under the transfer:update scope. 
But that would not be very secure! By allowing a consumer to update a money transfer, 
we would also allow them to use the far more critical validate an uncommon transfer 
goal. In this case, it would be wiser to keep this goal under a specific transfer:vali-
date scope that uses a custom action instead of a CRUD one.



 195Partitioning an API to facilitate access control

Partitioning based on concepts and actions can produce scopes that are still flexible, 
but a little less fine-grained and complex. This must be done carefully, however, to avoid 
inadvertently granting undue access to critical goals, and the improvement is fairly min-
imal. Let’s think back to what we learned in chapter 7 about designing a concise and 
well-organized API. Can we use those concepts to try to organize the goals into coarser 
scopes and provide a more usable solution?

8.2.2 Defining simple but less flexible coarse-grained scopes

In section 7.1.3, you learned how to organize goals into categories. Why not use them 
as scopes? Figure 8.10 shows what these category-based scopes would look like for the 
Banking API.

Too coarse-grained
scope granting
undue access

Possibly acceptable
scope

Banking API goals

Delete a
beneficiary

List transfer sources
and destinations

List transfers

List accounts

List beneficiaries

Create a
beneficiary

Read account

List transactions

Transfer money

Category-based
scopes

Account

Transfer

Update a transfer

Validate an
uncommon transfer

Delete a transfer
Figure 8.10   Defining category-
based scopes is usually not a 
good idea.

The account scope seems acceptable, but the transfer one is too broad; it might grant 
undue access to beneficiary-related goals and the critical validate an uncommon trans-
fer. Categories, therefore, are usually not fit to be taken as a basis for scopes because 
they have different purposes:

¡	Categories —Organize goals from a functional perspective and help consumers 
understand how to use the API

¡	Scopes —Ensure that consumers are only granted access to the goals they really need



196 chapter 8 Designing a secure API

If categories do not work well, how are we supposed to organize our goals into mean-
ingful but secure groups? We can try to base them on what the users can achieve using 
the API. Such scopes correspond more or less to the whats we identified when filling in 
the API goals canvas (see section 2.3). Figure 8.11 shows a partial API goals canvas for 
the Banking API focusing on transfers.

WhatsWhos Goals

Access account
information

Transfer money

List accounts

Read account

List transactions

List transfer source
and destinationss

Transfer money

Account
owners

Bank
advisors

Validate uncommon
money transfers

List transfers
Validate an

uncommon money
transfer

Role- and
functionality-based
security partitioning

Accessing accounts
information

Transferring money

Some columns were removed from the API goals canvas to simplify reading.

Scope comprising
two whats

Manage transfers

List transfers

Update a transfer

Delete a transfer

Validating
transfers

Scope matching
a what

Scope matching
a what

Figure 8.11   Defining role- and functionality-based scopes

This canvas tells us that to access account information, account owners list accounts, 
read an account, and list its transactions. Therefore, we could create an accessing 
account information scope matching this what and comprising these three goals. The 
same goes for bank advisors, who are responsible for validating uncommon trans-
fers. The corresponding goals can be grouped under a validating transfers scope. We 
could proceed the same way for the transfer money and manage transfers whats, but 
it might not really make sense to separate these. For example, after creating recurring 
transfers, consumers might want to be able to delete those once they aren’t needed 
anymore. Therefore, maybe we should create a transferring money scope comprising 
these two what’s.

To practice, I’ll let you complete the API goals canvas with the other goals and define 
the scopes accordingly. As you can see, this way we end up with fewer, less flexible, but 
more user-friendly scopes. Such coarse-grained scopes can be seen as a kind of shortcut 
to grant consumers access to several goals at once.



 197Partitioning an API to facilitate access control

NOTE   Such a role- and functionality-based scope definition strategy should 
help you avoid inadvertently granting access to critical goals, but you should 
always double-check this just in case.

You can also create totally arbitrary scopes. In some use cases, this might make 
sense. For example, you could define administrator-level scopes on each resource: a  
beneficiary:admin scope granting access to all goals related to beneficiaries, and so 
on. You’ll have to be careful when defining such scopes, however, because they could 
allow undue access if granted to applications without the appropriate care.

You’ve now seen a few different ways of defining scopes. Which one should you use?

8.2.3 Choosing scope strategies

Which strategy is the best when it comes to defining scopes to enable access control on 
an API? The flexible but complex fine-grained strategy or the less flexible but more 
user-friendly coarse-grained one? And within each strategy, which approach should 
you adopt? Unfortunately, there is no one right answer. Depending on the API’s con-
sumers, developers, and end users, the most suitable approach can vary. But there’s 
good news: you might not have to choose a single one!

Beyond creating coarse-grained and user-friendly scopes, the whats-based strategy 
shows something interesting about scopes. In figure 8.12, you can see the goals covered 
by two of the scopes we just defined.

Same goal belongs
to different scopes

List transfer sources
and destinations

Transfer money

Validate an uncommon
money transfer

List transfers

Update a transfer

Delete a transfer

Transferring money
scope

Validating transfers
scope

Figure 8.12   The same goals can belong to different scopes.

The list transfers goal belongs to two scopes! This is the good news: it means that there 
can be some overlap between scopes. This allows us to define different levels of scopes.

We could, for example, use a concepts- and actions-based approach, having scopes 
such as beneficiary:read and beneficiary:delete along with an arbitrary one, 
where all goals covered by these scopes would also be covered by a beneficiary:admin 
scope. We could even add a more user-friendly third level of scope using the whats-
based strategy for third-party integrations involving end users. We are under no obli-
gation to show or allow all of our API scopes to all of our consumers; we can provide 
different views of the available scopes when necessary. And, as we’ve done before, we 
can take advantage of the API description format to define these scopes.



198 chapter 8 Designing a secure API

8.2.4 Defining scopes with the API description format

If the API you’re designing is associated with an API description format, be sure to 
check if it allows you to describe scopes. As illustrated in the following listing, the 
OpenAPI Specification 3.0 allows this.

Listing 8.1  Describing scopes

components:
  securitySchemes:
    BankingAPIScopes:                            
      type: oauth2
      flows:
        implicit:
          authorizationUrl:                      
            "https://auth.bankingcompany.com/authorize"
          scopes:                                
            "beneficiary:create": Create beneficiaries
            "beneficiary:read": List beneficiaries
            "beneficiary:delete": Delete beneficiaries
            "beneficiary:manage": Create, list, and delete beneficiaries

The scope definition is done in the components.securitySchemes section of the 
OpenAPI document. The BankingAPIScopes scheme defines all the flows and scopes 
that can be used in the Banking API when using the oauth2 security type. For now, only 
the implicit flow is available, and when this flow is used, only the scopes related to the 
beneficiaries are allowed.

There are four scopes defined in this listing. Each scope definition comes with a 
description. The first three are goal-based ones: beneficiary:create, beneficiary 
:read, and beneficiary:delete. The fourth one, beneficiary:manage, is an arbitrary 
scope encompassing the three beneficiary-related goals. Defining these scopes is not 
enough, though. They must be linked to goals, as shown in the next listing.

Listing 8.2  Linking a goal to scopes

paths:
  /beneficiaries:
    get:
      tags:
        - Transfer
      description: Gets beneficiaries list
      security:                               
        - BankingAPIScopes:                   
          - "beneficiary:read"
          - "beneficiary:manage"
      responses:
        "200":
          description: The beneficiaries list

The list beneficiaries goal is represented by GET /beneficiaries. It is covered by the 
beneficiary:read and beneficiary:manage scopes of the BankingAPIScopes secu-
rity scheme we defined in listing 8.1. This means that only consumers that have been 
granted access to at least one of these two scopes can use this goal.

Reusable scopes are defined in 
components.securitySchemes.

You can put in a dummy URL during the 
design phase if needed. (Note: URL 
should be on the same line.)

A security scheme 
can contain more 

than one scope.

Lists the security 
schemes used References a security scheme from 

components.securityScheme and lists 
scopes needed to use this goal



 199Partitioning an API to facilitate access control

If an API uses two types of scopes, it can be useful to make a distinction between them 
in the API description. This could be done simply to provide clearer documentation or 
to enable showing only specific types of scopes, depending on who is using the API, for 
example. The following listing shows how to organize scopes in different groups.

Listing 8.3  Grouping scopes

components:
  securitySchemes:
    ConceptActionBasedSecurity:                  
      type: oauth2
      flows:
        implicit:
          authorizationUrl: "https://auth.bankingcompany.com/authorize"
          scopes:
            "beneficiary:create": Create beneficiaries
            "beneficiary:read": List beneficiaries
            "beneficiary:delete": Delete beneficiaries
    ArbitraryBasedSecurity:                      
      type: oauth2
      flows:
        implicit:
          authorizationUrl: "https://auth.bankingcompany.com/authorize"
          scopes:
            "beneficiary:manage": Create, list, and delete beneficiaries

Again, we apply what you discovered in chapter 7: in designing a concise and well- 
organized API, we organize the API components to ease understanding and use. The 
BankingAPIScopes security scheme has been split into two new security schemes, each 
containing a given type of scope. The following listing shows how to use these new 
security schemes.

Listing 8.4  Linking a goal to scopes from different groups

paths:
  /beneficiaries:
    get:
      tags:
        - Transfer
      description: Gets beneficiaries list
      security:                                 
        - ConceptActionBasedSecurity:
          - "beneficiary:read"
        - ArbitraryBasedSecurity:
          - "beneficiary:manage"
      responses:
        "200":
          description: The beneficiaries list

The security section now contains references to the ConceptActionBasedSecurity 
and ArbitraryBasedSecurity security schemes, each of which lists the scope that’s 
used, just like in listing 8.2.

Contains only 
goal-based scopes

Contains the 
higher-level scope

The security section can contain 
references to different security schemes.



200 chapter 8 Designing a secure API

To practice, you can expand this example by adding the other Banking API goals 
and three levels of scopes (goal-based, arbitrary, and action-based). You could also add 
another type of OAuth flow, such as the client credential one (hint: look for the “OAuth 
Flows Object” description in the OpenAPI Specification documentation at https://
github.com/OAI/OpenAPI-Specification).

Now that you’ve seen how to define scopes, let’s look at how the API’s interface con-
tract can be impacted by lower-level access control matters.

8.3 Designing with access control in mind
These days, hotel guests are usually given access cards instead of good old keys. They 
can use these cards in elevators to gain access to the floors where their rooms are 
located; and, of course, they can use them to open the doors to their rooms. And, obvi-
ously, they cannot use their cards to open the doors of other guests' rooms.

The hotel staff members also have cards, which they can use to access staff-reserved 
floors or guests' rooms. Different staff members can have access to all of the hotel’s 
rooms, or only the ones located on a given floor. Both guests and staff members have 
access to the hotel’s floors and rooms, but they don’t all have the same level of access.

In the API world, low-level, fine-grained access control of this sort exists too. It is 
mostly handled by the implementation, but API designers also have a role to play here. 
To ensure that everything goes smoothly, API designers must know what data is needed 
to actually implement the access controls and adapt their designs if necessary.

8.3.1 Knowing what data is needed to control access

Just because the Awesome Banking Application is allowed to list accounts doesn’t mean 
it should be allowed to list all accounts. It can only retrieve the ones belonging to its end 
users, the Banking Company’s customers. Now, what if the Banking Company creates a 
Bank Advisors App using the Banking API for its bank advisors managing the customers' 
accounts? What should the list accounts goal return for this consumer? Should it return 
all the customers' accounts or only the ones related to customers managed by the bank 
advisors? Whatever the answer, list accounts will not have the same behavior when it is 
triggered for a customer or for an advisor. As shown in figure 8.13, each consumer has a 
different view of the bank accounts accessible via the list accounts goal.

GET /accounts

{
  "items": [
    { "id": "acc_01", ... },
    { "id": "acc_02", ... }
  ]
}

GET /accounts

{
  "items": [
    { "id": "acc_01", ... },
    { "id": "acc_02", ... },
    { "id": "acc_05", ... }
  ]
}

Data attached
to access token

id: C1
role: customer

id: A1
role: advisor

Account Customer Advisor

acc_01 C1 A1

acc_02 C1 A1

acc_03 C2 A2

acc_04 C3 A2

acc_05 C4 A1

Available accounts

Accounts filtered for each user
Seemingly identical

“list accounts” requests

Figure 8.13   Two seemingly identical requests giving different results

https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification


 201Designing with access control in mind

In this example, the design of the API does not seem to be affected. In both cases, 
the representation of the list accounts goal is the same: as a REST API, it would be 
something like GET /accounts—without any parameters. Its behavior will be modified 
according to the identity of the end user; but there is no endUserId parameter in the 
GET /accounts request, so how do we know who this end user is? Actually, this parame-
ter does exist, but it is somewhat hidden.

As you saw in section 8.1.3, consumers must send an access token with their request to 
make an API call, just like hotel guests have to use their access card to open doors. When 
this token has been created, it is stored somewhere, along with some minimal security 
data. This data is a hidden part of the API interface contract. As an API designer, you 
must know about it in order to be sure that what you design actually works and is secure.

Such data is relatively standard; it usually consists of the consumer ID, the granted 
scopes, the end user’s ID, and possibly the end user’s role (the type of user) or permis-
sions (what this specific user is allowed to do). When the implementation receives the 
request along with the token, it can retrieve the security data and do all necessary access 
control directly, based on the request’s data or based on some other retrieved data.

For example, if the Awesome Banking Application sends a GET /accounts/1234567 
request, the implementation must check that the end user whose ID is attached to the 
access token sent along with the request is referenced as one of the 1234567 account’s 
holders. To be sure about this, however, you’ll need to check with those in charge of imple-
mentation or, more precisely, those in charge of the security layer. In our case, it’s quite 
simple, but be warned that the access control mechanism is not always so transparent. Also, 
a goal might need slightly different representations for different end users or roles.

8.3.2 Adapting the design when necessary

In section 5.2, we focused on the transfer money goal, which transfers a sum of money 
from a source account to a destination account. A money transfer is always initiated by 
a customer’s request. The source account belongs to this customer. The destination 
account is an account also belonging to this customer or to a beneficiary registered 
beforehand by the customer. The REST representation of this goal consists of a POST 
/transfers request, whose body contains the three properties amount, source, and 
destination.

If this goal is used by the Awesome Banking App, which is used by Banking Company 
customers, a customer’s ID is attached to the token sent along with the request. There-
fore, the implementation can easily check that everything is in order. It checks that the 
source account belongs to the customer and also that the destination account belongs 
to the same customer or a beneficiary registered by this customer.

But what if this transfer money goal is used by the Bank Advisor App? This applica-
tion is not used by customers, only by bank advisors. Customers, however, can call their 
bank advisors to request a money transfer. In this case, the user ID attached to the token 
is the advisor’s ID and not the customer’s.



202 chapter 8 Designing a secure API

The controls in the implementation are less simple but still feasible. The implemen-
tation checks that the source account belongs to a customer managed by the advisor. 
The destination account should belong to the customer owning the account or a bene-
ficiary registered by the same customer. Everything seems to be OK, but there’s a prob-
lem. The system needs to trace which customer requested the money transfer.

If the bank account belongs to a single customer, it is easy to find the customer’s ID 
because it’s the one attached to the bank account, and only the owner of the account 
can request a transfer. But if the account is a joint one belonging to more than one cus-
tomer, this doesn’t work. The goal needs to be modified in order to convey the correct 
customer ID to the implementation.

We could add an optional customerId property into the POST /transfers request’s 
body. We could also create a new representation of the transfer resource and use the 
POST method on it like this:

POST /customers/{customerId}/transfers

The second option seems to make more sense if we step back and look at the API from 
a higher level. A bank advisor might need to list a customer’s transfers, so a

GET /customers/{customerId}/transfers

using the same resource path could be useful. Whatever the chosen solution, the 
implementation will now be able to check that, when the transfer money goal is made 
on the behalf of advisors, it can only do that for customers for whom they have the 
rights to do so.

Actually, if you use the API goals canvas and the method described in section 2.3, 
which was to identify all users, what they do, how they do it, and especially what they 
need to do it, you should be able to deal easily and almost seamlessly with API design 
versus API security questions. As a reminder, this method is shown again in figure 8.14.

Whats Hows Inputs (source) Outputs (usage)Whos Goals

Who are
the users?

What can
they do?

How do they
do it?

What do
they need?

Where
does it come

from?

What do
they get?

How is
it used?

Reformulate
how + inputs

+ outputs

Start
here

Examine input
sources and output
uses to spot missing

whos, whats, or
hows.

on a�whiteboard, flipchart, sheet of paper, or spreadsheet�and start thetableDraw this� questioning.

Figure 8.14   The API goals canvas



 203Handling sensitive material

Working with scopes has shown that even though API designers should avoid the pro-
vider’s perspective in their designs, they sometimes need to know what’s happening in 
the implementation after all.

There is one last API security topic to work on, and this is probably the most import-
ant one from the API designer’s point of view. An API exposes data or capabilities. It’s 
therefore up to the API designer to check if these are sensitive, if they should really be 
exposed, and, if so, to choose the most secure way to include them in the API.

8.4 Handling sensitive material
When people stay in a hotel, they usually do not bring all of their belongings with 
them. It would not make sense to bring valuable or sensitive items like one’s income 
tax return, a great-great-great-grandmother’s jewelry, or a precious and rare Samba 
de Amigo Maracas set (needed to play the Sega Dreamcast video game of the same 
name). They probably won’t be needed, and they could be either lost or stolen. But 
there are other valuable items (ID cards, passports, phones, or cameras, for example) 
that people do need to bring. If these belongings have to be left in the hotel room, 
they can be secured in the room’s safety deposit box. Cash and credit cards can also be 
secured the same way.

In the API world, as in the software world in general, we must always check whether 
what can be requested, provided, or done through an API involves sensitive material. 
If so, we must ensure that it is really needed and then create the most secure design 
possible. This can be done either by tuning how sensitive material is represented or by 
choosing adapted access control mechanisms. This matter primarily concerns the API’s 
data, goals, and feedback, but we must also take care with the underlying protocol and 
architecture used by the API.

8.4.1 Handling sensitive data

When consumers use the read account goal, they get detailed information about an 
account. This can consist of the account’s number, its balance, and the list of debit 
cards linked to it. In the Banking Company’s systems, the basic information linked 
to a card consists of its holder’s name, its number (also called the Primary Account 
Number, or PAN), its expiration date, and its CVV (Card Verification Value, located 
on the card’s back). Cards provided by the Banking Company can be blocked (useful 
when you think your card might be lost or stolen). And if customers want to, they can 
also define a monthly ceiling (they receive an alert by SMS, email, or via a notification 
when their total monthly payments exceed this level). The data returned might look 
like what is shown on the left in figure 8.15. But even if this data is sent over a secured 
connection (see section 8.1.3), is it really wise to return all the available data?



204 chapter 8 Designing a secure API

{
  "number": "00012345678",
  "balance": 4563.45,
  "cards": [
    {
      "number": "1234",
      "expirationDate": "2020-01-02",
      "holderName": "MOTOKO KUSANAGI",

      "blocked": false,
      "monthlyCeiling": "400",
      "monthlyPayments": "56.6"
    }
  ]
}

{
  "number": "00012345678",
  "balance": 4563.45,
  "cards": [
    {
      "number": "1234123412341234" ,
      "expirationDate": "2020-01-02",
      "holderName": "MOTOKO KUSANAGI",
      "cvv": "123" ,
      "blocked": false,
      "monthlyCeiling": "400",
      "monthlyPayments": "56.6"
    }
  ]
}

Identify
sensitive

data.

Remove
unneeded

data.

Adapt
needed data

representation

Unsecured card representation Secured card representation

Figure 8.15   Designing a secure representation of a banking card

The monthly ceiling, monthly payments to date, and blocked flag are non-sensitive 
data; no harm can be done with them. On the other hand, the card’s number, CVV, 
holder’s name, and expiration date are quite sensitive; this information can be used to 
make payments online or by phone. Maybe we should think twice before returning all 
this information.

The CVV is only used for online payments, and it is written on the card itself, so we 
can remove it. The card number is useful to identify a card, but we could keep only the 
last four digits; these are sufficient to identify a card in the context of a bank account. 
We can keep the expiration date and the card holder’s name because this is relevant 
information. Now that we have removed the CVV and chosen a secured representation 
of the card number, nobody can take advantage of this data to do harm. As you can see, 
by identifying sensitive data items and choosing to remove some and adapt the repre-
sentation of others, we’re able to design a secure representation of a debit card that 
remains meaningful and relevant.

So the first step of secure API design is to identify the sensitive data that will be 
requested and provided via the API. The problem is that the term sensitive data covers a 
wide range of data and can be different, depending on your domain or industry. Iden-
tifying sensitive data is sometimes quite simple, as in the debit card example, because 
what should be considered sensitive is pretty obvious. Similarly, nobody would expose 
sensitive data such as customers' usernames and passwords. But sometimes, it’s not that 
obvious.

There are many country-specific, domain-specific, and international regulations, 
standards, or best practices that affect whether and how you can manipulate data. 
When any system deals with bank cards, it has to comply with the global Payment Card 
Industry Data Security Standard (PCI DSS). In the US, the Health Insurance Portability 
and Accountability Act (HIPAA) is a set of standards created to secure protected health 
information (PHI) by regulating healthcare providers. The General Data Protection 
Regulation (GDPR) is a European Union regulation impacting any company dealing 
with European citizens' data.



 205Handling sensitive material

Whatever the reason why such regulations or standards exist, they can impact the 
data manipulated through your API. And this is not only a functional matter; there 
are best practices on the technical side as well, which API designers and implementers 
should follow. For example, usually it is not recommended to return sequential data-
base keys that would give hints about critical data like how many customers your com-
pany has; such sequential data could be used to try to access data belonging to others 
(although, if your implementation handles access control perfectly, that shouldn’t be a 
problem).

NOTE   Always check with your CISO (Chief Information Security Officer), 
DPO (Data Protection Officer), CDO (Chief Data Officer), or legal depart-
ment to be sure about which data should be considered sensitive.

Once you know which data is sensitive, the second step consists of choosing appropri-
ate representations for that data. As a reminder, doing such adaptations is designing 
the API. Therefore, it requires us to focus on what the consumers can do using the API 
and not on the data itself.

How the representations will be adapted highly depends on how the data will be 
used. In the debit card use case, the goal was only to provide detailed information about 
an account and its linked cards, not to allow users to execute a payment. In that case, it 
makes sense to not provide the full card number and its CVV. Having this goal-oriented 
mindset will simplify the adaptation. Figure 8.16 shows four techniques that you can use 
to create secure representations.

{
  "number": "1234123412345678",
  "type": "PREMIER",
  "expirationDate": "2015-02"
}

{

  "type": "PREMIER",
  "expirationDate": "2015-02"
}

Sensitive
Sensitive if card

number is provided

No longer
sensitive

1Removing sensitive data1

{

  "number": "1234123412345678",
  "type": "PREMIER",
  "expirationDate": "2015-02",
  "averageMonthlyBill": 7896.3
}

{
  "id": "c4ca76a1",
  "number": "5678",
  "type": "PREMIER",
  "expirationDate": "2015-02",
  "vip": true
}

Replacing sensitive value or data2

Sensitive No longer
sensitive

{
  "merchant": "SENSITIVE NAME,
  "address": "1 RANDOM DRIVE ...",

  "amount": 345.9
}

{

  "type": "food",
  "amount": 345.9
}

Replacing multiple pieces of sensitive data3

Sensitive No longer
sensitive

{
  "number": "1234123412345678",
}

{
  "number": "Ed3hZ9ylz1mYlq",
}

Encrypting value4

Figure 8.16   Adapting representations of sensitive data to make it non-sensitive



206 chapter 8 Designing a secure API

The first technique is simple: you remove any sensitive data that is not required (1). 
This can have a nice side effect: some sensitive data related to the data that’s removed 
can become non-sensitive. In figure 8.16, for example, removing the sensitive number 
property (a card number) makes the expirationDate property non-sensitive.

If sensitive data cannot be removed, you might be able to replace it with a non- 
sensitive adaptation, as we did with the card number (2). Here, the value of number is 
truncated to make it non-sensitive. Also, the sensitive averageMonthlyBill is replaced 
by a non-sensitive vip flag, whose value is the result of someFunction(averageMonthly-
Bill). In this case, a goal-oriented design process would probably have solved this 
problem from the start.

Sometimes it can be useful to combine value and data replacement. For example, if 
the sensitive data is used as an identifier, it might be more practical to simply create a 
new non-meaningful identifier to identify a resource instead of using a meaningful but 
sensitive one. The truncated number, such as 5678, can be useful to show to end users 
but not to use as a resource identifier. A /cards/5678 resource path will probably be 
unique in the context of a customer, but perhaps not in the wider context of an advisor. 
Therefore, the card representation might benefit from a totally new id containing an 
opaque ID such as c4ca76a1. The resulting /cards/c4ca76a1 resource path would be 
unique in both contexts; and, depending on your needs, this new ID could be a replace-
ment of number or an addition to the card representation. Note that like removing sen-
sitive data, replacing sensitive data can make other sensitive data non-sensitive. Here, 
the sensitive expirationDate becomes non-sensitive once number is replaced.

Data replacement can be applied to multiple properties (3). Replacing a set of pre-
cise and sensitive values by a more fuzzy but still meaningful one can also do the trick. In 
the technique illustrated in figure 8.16, the sensitive merchant and address properties 
of a card transaction are combined in a new non-sensitive type property, whose value is 
the result of someFunction(merchant, address).

As a last resort, if sensitive data is really needed as is and if the communication 
channel’s encryption is not enough, the sensitive values can be encrypted (4). In the 
example in figure 8.16, the value of number, which is 1234123412345678, is encrypted 
as Ed3hZ9ylz1mYlq. But this technique has some downsides. Notably, consumers will 
have to decrypt the encrypted data to use it. When it comes down to this, it might be 
simpler and more effective to encrypt the entire messages exchanged over a secured 
connection established between the consumer and provider. The safest option would 
be to encrypt the data specifically for each consumer and provide each with the correct 
key to decrypt the data.

All of this is the job of the people managing the security layer and implementing 
the API. But as an API designer, you must ensure that all this security stuff is consumer- 
friendly. By talking to the security people and using the techniques you have learned 
about how to design APIs, you should be able to design secure representations. But the 
data exchanged via an API is not the API’s only sensitive material— some API goals can 
be sensitive too.



 207Handling sensitive material

8.4.2 Handling sensitive goals

There are two kind of sensitive goals: those that manipulate sensitive data and those 
that trigger actions with sensitive consequences. As with sensitive data, whatever the 
reason a goal is considered sensitive, the first question you ask yourself must be, “Is this 
goal really needed?” If not, to keep the API design secure, not including it in the API is 
the simplest way to deal with it. But that is not always possible.

Let’s say that, for a very good reason, the Banking API must provide a card’s sensi-
tive information (such as number, CVV, expiration date, and holder’s name) to some 
consumers or end users. It would be wise to ensure that the access to this data is tightly 
controlled. As shown in figure 8.17, this matter could be handled in four different ways.

Accessing non-sensitive card data Accessing sensitive card data

“Read card” scope is needed to access card
sensitive data through a dedicated goal

Sensitive card data returned if called with
the “show sensitive card data” scope

Sensitive data returned if called on behalf
of an end user who has the

“show sensitive card data” permission

No sensitive card data on account

No sensitive card data returned if called
without the “show sensitive card data” scope

No sensitive data returned if called on behalf
of an end user who does not have the
“show sensitive card data” permission

{
  "number": "00012345678",
  "balance": 4563.45,
  "cards": [
    {
      "id": "c4ca76a1",
      "number": "5678" ,
      "expirationDate": "2020-01-02",
      "blocked": false,
      "monthlyCeiling": "400",
      "monthlyPayments": "56.6"
    }
  ]
}

read account
{
  "id": "c4ca76a1",
  "number": "1234123412345678",
  "cvv": "123",
  "holder": "MOTOKO KUSANAGI",
  "expirationDate": "2015-02",
  "blocked": false,
  "monthlyCeiling": "400",
  "monthlyPayments": "56.6"
}

read card

{
  "number": "00012345678",
  "balance": 4563.45,
  "cards": [
    {
      "id": "c4ca76a1",
      "number": "5678" ,
      "expirationDate": "2020-01-02",
      "blocked": false,
      "monthlyCeiling": "400",
      "monthlyPayments": "56.6"
    }
  ]
}

read account {
  "number": "00012345678",
  "balance": 4563.45,
  "cards": [
    {
      "id": "c4ca76a1",
      "number": "1234123412345678",
      "cvv": "123",
      "holder": "MOTOKO KUSANAGI",
      "expirationDate": "2015-02",
      "blocked": false,
      "monthlyCeiling": "400",
      "monthlyPayments": "56.6"
    }
  ]
}

read account

1
Access via

a dedicated goal

2
Scope-based

access

3
Permission-based

access

4 Combining
No sensitive card data returned if called

without the “show sensitive card data” scope
and “show sensitive card data” permission

Sensitive card data returned if called
with the “show sensitive card data” scope
and “show sensitive card data” permission

2 3

Same goal can be used
to access

sensitive and
non-sensitive data

and

Figure 8.17   Controlling access to goals exposing sensitive data



208 chapter 8 Designing a secure API

A first option (1) could be to create a dedicated read card goal providing access to the 
card’s sensitive data. This new goal could be protected by a specific read card scope 
granted only to the consumers that really need it. The read account goal could stay as it 
is and still provide the non-sensitive version of the card data.

A second option (2) could be to use a scope to trigger the return of sensitive data. 
The read account goal would return non-sensitive representations of the card data by 
default, except for consumers who have been granted the show sensitive card data scope. 
The implementation of these goals would return the raw sensitive card data instead of 
the adapted non-sensitive data.

In the first two options, if end users are involved, they will be able to see the sensi-
tive data when using a consumer with the right scope. That might not fit some security 
requirements. Therefore, a third option (3) would be to do the same thing, but handle 
the choice of returning the sensitive or non-sensitive representation based on the per-
missions or roles of the end user attached to the access token.

But using end user permissions only would mean that any consumer that has been 
authorized to use the API on the users' behalf would have access to the sensitive data. 
If that is a problem, a fourth option (4) could be to combine consumer and end user 
access control to ensure that access to sensitive data is possible only when an end user 
with the adequate permissions uses a consumer with the required scope.

The choice of options and which is appropriate to use depends on security con-
straints and also developer experience. As with designing secure data representations, 
you will have to talk to the security people in your organization in order to know which 
options are possible. Also, from a consumer experience perspective, if there’s a wide 
gap between the sensitive and non-sensitive versions of the data, it would be better 
to provide dedicated goals to access sensitive data instead of modulating the version 
returned, based on scopes or permissions.

But goals can be sensitive even if they do not manipulate sensitive data. Let’s take it 
for granted that in our Banking API, we’re working on a secure representation of the 
card data and none of its properties are considered sensitive. Besides the basic card 
data, this representation contains the blocked flag and the monthlyCeiling amount. 
These two properties could be updated by end users or, more precisely, by consumers 
on their behalf. We could add an update card goal allowing this data to be updated. But 
even if updating the threshold of payments above which an alert is sent is not a sensitive 
action, blocking the card is quite a sensitive one. Therefore, it would be wise to ensure 
that blocking a card is done only by end users or consumers allowed to to so.

We can use exactly the same options for this that we used with the goal dealing with 
sensitive data. We could rely on the end users' permissions and check the implemen-
tation to see if the user is allowed to update the blocked flag when using the update 
card goal. We could also rely on a block card scope that would allow a consumer to do 
the same thing when using this update card goal. And obviously, we could mix these 
two options. All this would work, but mingling sensitive and non-sensitive data updates 
in the same goal can make the API complex, especially if the update of sensitive data 



 209Handling sensitive material

requires additional security measures like multifactor authentication of end users. In 
that case, the monthlyCeiling property can be updated at once, but the blocked prop-
erty only when the user validates it. It would probably be better to create a dedicated 
block card goal to handle this update. If we step back and think more about what the 
API can do and less about the data itself, such a goal makes sense.

So handling sensitive goals requires us to identify whether these manipulate sensitive 
data or trigger sensitive actions. Once that’s done, and we’re really sure we need these, 
we can rely on scopes or permissions to ensure that only authorized consumers and 
end users can access those goals. But using only scopes or permissions might not be 
sufficient.

It is sometimes better to adapt the interface contract to provide dedicated, clearly 
identified, and fine-grained goals handling the sensitive parts (data or actions). Such 
design adaptation facilitates access control and keeps the API easy to understand and 
use. But what happens when consumers try to do something they are not allowed to do? 
What kind of feedback do they get? And should API designers also be concerned about 
security when designing other kinds of feedback?

8.4.3 Designing secure error feedback

In section 5.2, you learned how to design exhaustive and informative error feedback 
that helps consumers to solve problems themselves. There we identified two types of 
errors: those due to a malformed request and those caused by contravening a business 
rule. Here we need a new security error type to clearly signify security-related errors. 
The feedback for these errors could use the same kind of representation— a message 
and a code. What might happen when a consumer triggers a security-related error 
when calling the Banking API, say, by sending a GET /cards/c4ca76a1 request?

If a consumer sends a request without providing a token or provides an invalid one, 
the Banking API server can return a 401 Unauthorized response. This response might 
contain a body with a message such as Missing or invalid token. If the same con-
sumer retries its request with a valid token but that consumer has not been granted 
access to the read card scope, the server can return a 403 Forbidden response accom-
panied by a Consumer has not been granted the "read card" scope message 
and a SCOPE code. And if the consumer tries again after the developer has updated the 
configuration to add the missing scope, the server can return another 403 Forbid-
den response with an End user is not allowed to access this card message and a 
PERMISSIONS code. This last response obviously means that the end user does not have 
permission to read this specific card.

In some circumstances, this last error could be considered an information leak. 
Indeed, explicitly mentioning that the user is not allowed to access the c4ca76a1 card 
implicitly confirms that this card actually exists. To avoid such a leak, the Banking API 
server can instead say that the card does not exist in the context of the end user. It can 
do that by returning a 404 Not Found response with a Card does not exist message, 
just like it would do when a consumer requests a card that actually does not exist.



210 chapter 8 Designing a secure API

You should also keep the risk of information leaks in mind when designing mal-
formed request or functional error feedback. For example, a consumer might try to 
update a card with a PATCH /cards/c4ca76a1 request that uses a secure card ID. If the 
consumer provides an invalid monthlyCeiling value to update this card, it would be a 
terrible idea to return a message containing sensitive information, such as the full card 
number, as in Impossible to update the 123412341234124 card.

And there is another type of error that we did not discuss yet and that is prone to a crit-
ical information leak: the unexpected ones; for example, a good old java.lang.Null-
PointerException (trying to something.do() when something is null in Java) or the 
quite annoying Unable to extend table in tablespace (when there’s not enough 
disk space to extend an on-premise database table to add some data). Obviously such 
errors never happen because everything is fully tested, monitored, and automated … 
until they happen, usually at the worst possible moment.

When using the HTTP protocol, such errors are represented by a 5XX class status 
code, usually the 500 Internal Server Error. While a 4XX status means it’s the con-
sumer’s fault, a 5XX means it’s the provider’s. When such unexpected server errors 
occur, the implementation must never provide detailed information about the tech-
nical stack behind the API. You can provide an error ID for further investigation, but 
be careful not to provide any information that can give a hint about what is actually 
running behind the interface. So no stack trace and detailed error-describing software 
versions, server addresses, or the like can appear in such errors. Table 8.1 sums up the 
various error types you have seen so far.

Table 8.1   Error feedback use cases

Error type Use case HTTP status code

Security Missing or invalid credentials 401 Unauthorized

Security Invalid scopes 403 Forbidden

Security Invalid permissions 403 Forbidden or 404 Not 
Found

Malformed request Unknown resource (wrong path parameter) 404 Not Found

Malformed request Missing mandatory parameter or invalid 
parameter

400 Bad Request

Functional Infringing business rule 400 Bad Request or 403 
Forbidden

Technical Unexpected server error 500 Internal Server

As you can see, security error feedback resembles the feedback for other types of errors. 
When designing a REST API, you just have to use the appropriate HTTP status for these 
errors, such as 401 or 403. But don’t forget that you must be careful about what kind of 
information you provide with security or technical error feedback (and any other type 
of feedback) to avoid inadvertently providing access to sensitive information. We’re 



 211Handling sensitive material

almost done, but there’s one last topic to be aware of to be sure that your API handles 
sensitive material appropriately.

8.4.4 Identifying architecture and protocol issues

How much should we trust the architecture and protocol that will support the APIs 
we’re designing? Not much if we don’t know much about them. Figure 8.18 shows a 
basic (and flawed) API architecture that might be used for the REST Banking API. 
This example highlights that the secure connection between consumer and provider 
might not always be as secure as we think.

Consumer Internet access
proxy

Load balancer
proxy

Banking API
Instance #1

Banking API
Instance #2

HTTP
TLS

HTTP
TLS HTTP

TLS

Monitoring
dashboard

GET /accounts?customerLastName=Smith 200 80ms
GET /accounts?customerLastName=Doe 200 80ms

Monitoring
dashboard

GET /accounts?customerLastName=Smith 200 80ms
GET /accounts?customerLastName=Doe 200 80ms

GET /accounts?customerLastName=Smith 200 80ms
GET /accounts?customerLastName=Doe 200 80ms

GET /accounts?customerLastName=XXX 200 80ms
GET /accounts?customerLastName=XXX 200 80ms

The API calls transit between
each node using HTTP

over a TLS secured connection.

Proxies may log
every HTTP call

(including sensitive data).

Raw logs containing
sensitive data are shown

in a monitoring tool.

Here logs are stripped of
sensitive data.

Figure 8.18   A not-so-secure connection between consumer and provider

In this basic architecture, the consumer passes through a proxy to access the internet 
and make HTTP calls to the Banking API. The Banking API is not exposed directly 
on the internet; there is another proxy, an HTTP load balancer, that distributes the 
requests to various instances of the Banking API server application. The communica-
tion between nodes is secured using TLS.

Everything seems to be totally secure, but if we take a closer look, we can see that the 
load balancer logs some data (the HTTP method; URL, including query parameters; 
an HTTP status code; and response time). The content of these log files is sent to a 
monitoring tool that can be used to create shiny, useful dashboards showing how the 
Banking API is used and behaves. That means that anyone who has access to the load 



212 chapter 8 Designing a secure API

balancer’s logs or the monitoring tool can see the data contained in a resource path 
and its query parameters.

Of course, the Banking Company is very strict when it comes to security. All these 
logs are stripped of sensitive data. The Banking Company, however, does not control 
what happens on the proxy used by the consumer, which can also log the HTTP calls. 
Obviously, it is up to the consumer to secure that. But the Banking API can be designed 
to ensure that if URLs are logged, they do not contain any sensitive information.

For example, if the list of accounts can be filtered by customer name using a request 
like GET /accounts?customerLastName=Smith, that’s a problem. A name is sensitive 
information, and the customerLastName query parameter will be traced in every HTTP 
log on the wire between the consumer and the provider. To avoid this potential data 
leak, it would be safest to propose a POST /accounts/search request, whose body con-
tains the search parameters.

If you are designing a REST HTTP API, take care not to put any sensitive information 
in path parameters or query parameters because they can be logged. And, for the pro-
tocol used to communicate and the architecture built for the API, always check if there 
are any possible data leaks. If there are potential leaks that could expose sensitive data, 
you must adapt the API’s design accordingly to prevent this.

In the next chapter, you will learn how designing an API’s evolution requires extra 
care to avoid provoking errors on the consumer side and how to minimize this risk from 
the ground up when designing an API.

Summary
¡	API designers contribute heavily to API security by minimizing the attack surface.
¡	An API should only expose and request what is really needed.
¡	Consumers should only be allowed to use what they really need.
¡	To ensure security, the design of an API must be done from the user’s perspec-

tive, keeping in mind what data is needed to control access.
¡	Sensitive data and goals cover a wide range; exactly what should be considered 

sensitive might not be obvious and should be identified with the help of techni-
cal, security, business, and legal experts.

¡	API designers must be aware of potential leaks due to the underlying protocol or 
architecture in order to fully secure the API design.



213

9Evolving an API design

This chapter covers
¡	Designing evolutions to avoid breaking changes

¡	Versioning APIs to manage breaking changes

¡	Designing extensible APIs to limit breaking 
changes

In the previous chapters, you learned how to design APIs that provide features or 
goals that make sense for their users. You also learned how to design user-friendly 
and secure representations of these goals. Once all that work is done, is that the end 
of the API designer’s job? Not at all! It’s a new beginning.

An API is a living thing that will inevitably evolve, perhaps to provide new fea-
tures or enhancements to existing ones. To design for such evolutions, you can reuse 
the same skills you have learned up to this point— but designing evolutions requires 
some extra care.

Over the years, I’ve bought several Ikea Billy bookcases to store books, comic 
books, CDs, LPs, and many other things. A standard Billy bookcase comes with four 
movable shelves that you can place as you want, thanks to the many holes drilled on 
both of the internal sides. You just have to place four pegs at the desired height, place 



214 chapter 9 Evolving an API design

the shelf on them, and you’re done. If a bookcase is used to store small items like CDs or 
paperback books, using only four movable shelves can leave a lot of empty space. Fortu-
nately, additional shelves can be bought independently, allowing you to use the empty 
space to store more small items. But the last time I bought extra shelves for a Billy I’d 
owned for quite a long time, I had an unpleasant surprise— the pegs were too small to 
fit well in the holes of my good old Billy.

The 2.0 Billy system uses pegs with a smaller diameter, which are incompatible with 
the holes of the previous version. I wasn’t aware of this until I tried to use these new 
pegs; it wasn’t indicated anywhere when I bought my extra shelves. This was a real bum-
mer. Such breaking changes can happen when evolving an API too.

What might happen if the Banking API’s provider decided that the balance’s cur-
rency must now be returned with the bank account’s information in order to support 
various currencies? Figure 9.1 shows how evolving the Banking API in this way could 
lead to a scenario equivalent to the Billy’s peg diameter modification.

In this scenario, the balance property, which was a number, is now an object contain-
ing a value (the former balance) and its currency (an ISO 4217 currency code string). 
Although using an ISO 4217 currency code is clever (as you learned in section 6.1.4), 
modifying the balance this way is definitely not a good idea. Indeed, the Awesome 
Banking App crashes when parsing the returned data because it expects the balance to 
be a number, not an object. The developers in charge of coding this consumer would 
usually catch such errors, avoiding crashes like this, but the errors will still prevent 

Awesome Banking App Logs
...
11:34 - FATAL - Expected a number but got an object

GET /accounts/12345

{
  "balance": 2034.67
}

{
  "balance": {
    "value": 2034.67,
    "currency": "USD"
  }
}

GET /accounts/12345

Account 12345
$2,034.67

Awesome
Banking App
unexpectedly

crashes!
Send report?

Updated
Banking API

Banking API

Yes No

Figure 9.1   A consumer encountering a breaking change after updating the Banking API



 215Designing API evolutions

the consumer application from functioning properly. To fix this problem, the mobile 
application needs to be updated.

A breaking change is a change that will cause problems for consumers if they do not 
update their code. Most of the time you cannot synchronize an API update with all of 
its consumers' updates, so trying to avoid such breaking changes or at least being aware 
of them when designing an API’s evolutions is definitely important. We can carefully 
design our evolutions in order to avoid introducing some problematic changes. We can 
even design APIs from the ground up in order to prevent them. But regardless of how 
carefully we design our APIs and their evolutions, sooner or later, a breaking change is 
inevitable.

As API designers, we must also be aware of the invisible side of the API contract— all 
observable behaviors that are not explicitly described in the interface contract that can 
silently evolve and provoke totally unexpected breaking changes.

To deal with these situations when they come up, it is wise to know how to version 
our APIs. We’ll explore all of these topics in this chapter. We’ll start by learning how to 
(carefully) design evolutions.

9.1 Designing API evolutions
The Banking API evolution described in this chapter’s introduction illustrated a possi-
ble way of introducing a breaking change. The consumer crashed because of a modi-
fied data structure that became impossible to parse (a number became an object). But 
that’s not the only way of introducing a breaking change. Although some are pretty 
obvious, like this data structure modification, others are more insidious, like modify-
ing the possible values of a property. Also, the consequences might not always be that 
obvious because the changes might not cause a visible error on the consumer’s side. A 
breaking change could even have impacts on the provider’s side. I’ll let you imagine 
what the consequences could be for both consumers and the provider if amount values 
in dollars were replaced by values in cents in the Banking API, especially for the trans-
fer money goal.

Any modification of the interface contract of an API that can be described formally 
using an API description format or via textual API documentation can introduce a 
breaking change. This applies to output data, input data, parameters, response sta-
tuses or errors, goals and flows, and security. Knowing how to avoid breaking changes 
when possible and handling them gracefully when not is, therefore, critical for an API 
designer.

9.1.1 Avoiding breaking changes in output data

The Banking API proposes a list transactions goal that returns a list of transactions 
for an account number. The left part of figure 9.2 shows the data returned for each 
transaction. The right part shows a redesigned version that illustrates various ways of 
introducing breaking changes that will cause problems to consumers when retrieving 
an account’s transactions list.



216 chapter 9 Evolving an API design

required:
  - amt
  - date
  - label
  - category
  - aboveAverageAmount
properties:
  amt:
    type: number
    description: Transaction's amount in cents
  date:
    type: string
    description: A Unix timestamp as a string
  label:
    type: string
    maxLength: 25
  type:
    type: number
    description: |
      1 for card, 2 for transfer, 3 for check
    enum:
      - 1
      - 2
      - 3
  categorizationStatus:
    type: number
    description: |
      1 for automatic, 2 for manual 
  category:
    type: string
    description: |
      Transaction's category ("tech" or "library" 
      or "uncategorized" for example)
  aboveAverageAmount:
    type: boolean
    description: |
      Tells if this transaction is above the average
  merchantName:
    type: string
  merchantZip:
    type: string

required:
  - amount
  - date
  - label

properties:
  amount:
    type: number
    description: Transaction's amount in dollars
  date:
    type: string
    description: An ISO 8601 date (YYYY-MM-DD)
  label:
    type: string
    maxLength: 150
  type:
    type: string
    description: |
     Transaction's type
    enum:
      - card
      - transfer
      - check
  categorizationStatus:
    type: number
    description: |
      1 for automatic, 2 for manual, 3 for community 
  category:
    type: string
    description: |
      Transaction's category ("tech" or "library" 
      for example, not provided when uncategorized)

  merchant:
    properties:
      merchantName: 
        type: string
      merchantZip:
        type: string
      city:
        type: string

Changing
meaning

Modifying format

Renaming a property

Making mandatory property (category) optional

Removing mandatory property (aboveAverageAmount)

Initial transaction schema Modified transaction schema

Moving a property into an object

Changing type

Adding value to
enum

Modifying (increasing) characteristics

Figure 9.2   How to introduce breaking changes in the list transactions goal’s output

The new designer has renamed the amt property amount, to make its meaning clearer. 
Based on what you have learned, this is good design, but this change can have a sig-
nificant impact on the consumer side. The Android version of the Awesome Banking 
App, which is not as well coded, can crash with the famous java.lang.NullPointer-
Exception. The iOS version might just show the transactions without amounts, leaving 
its end users quite annoyed. A more complex Financial Statistics consumer that does 
some calculations based on the transaction amounts might consider that each trans-
action’s amount is 0, and this could corrupt its data. Also, moving the merchantName 
and merchantZip properties into a new merchant structure (because a property for the 
merchant city has been added, and the designer has presumably read section 7.1.1 of 
this book) are also examples of breaking changes causing a parsing exception.



 217Designing API evolutions

What about the aboveAverageAmount property that was removed, perhaps because 
this information was not considered important? Is this a problem too? Definitely, 
because this property is mandatory. In the initial version of this transaction, it was sup-
posed to always be provided, so removing it could cause the same sorts of problems as 
renaming amt or moving merchantName.

Another issue is with the transaction’s type, which was a number, indicating if it 
was a card (1), transfer (2), or check transaction (3). It is now a string (because the 
new designer knows that human-readable codes are usually better than cryptic ones). 
Although benevolent, such a change will probably cause a parsing error on the 
consumer side; and even if it doesn’t, interpretation of the new values will likely be 
impossible.

Renaming, moving, or removing properties and changing their types are obvious 
ways of introducing breaking changes in output data. But some other modifications are 
more insidious.

The category property was mandatory, but it has been made optional. Consum-
ers used to always get it, and now, if they don’t, they could face the same problems 
described in the amt renaming case. The date property was a string, and it still is, but its 
format has changed. It was a UNIX timestamp with a string format. While it was usually 
represented by a number, now it’s an ISO 8601 date (the new designer decided to fix 
this awkward design). Again, this change is benevolent, but it will cause parsing errors 
on the consumer side.

The modification to the label property can also be a breaking change. Its maximum 
length has been changed from 25 to 150, perhaps because the core banking system 
behind the Banking API has been updated in order to manage full labels and to stop 
truncating these. If, on the consumer side, this value is stored in a good old relational 
database, where its column’s size is defined as 25, it will be impossible to store the lon-
ger values. These are insidious breaking changes, but there are even less obvious ones.

Look more closely at the descriptions. In the original version, the amt description 
states that the transaction’s amount is in cents; but, in the new one, the value is in dol-
lars. When receiving an amt value such as 3034 (cents), consumers understood it to be 
$30.34. Now, they will receive an amount value of 30.34 in dollars and will understand it 
as $0.3034. This might provoke some panic on the consumer side.

Less critically, the categorizationStatus was a numerical code indicating how the 
transaction has been categorized: 1 for automatic and 2 for manual. In the new version, 
a new code value has been added. The consumers will not be able to interpret the value 
3 without being updated. And even if this code had been a human-readable one, such 
a modification might have been a problem because the application consuming the API 
might not have been able to interpret it.

That’s a lot of different ways of introducing breaking changes. Table 9.1 sums up the 
various types of modifications and their consequences.



218 chapter 9 Evolving an API design

Table 9.1   Breaking changes to output data and their consequences

Modification Consequences

Renaming a property Varies, depending on implementation (missing data 
in UI, data corruption, crash, and so forth)

Moving a property Varies, depending on implementation (missing data 
in UI, data corruption, crash, and so forth)

Removing a mandatory property Varies, depending on implementation (missing data 
in UI, data corruption, crash, and so forth

Making a mandatory property optional Varies, depending on implementation (missing data 
in UI, data corruption, crash, and so forth)

Modifying a property’s type Parsing error

Modifying a property’s format Parsing error

Modifying a property’s characteristics (increasing 
string length, number range, or array items count)

Varies, depending on implementation (database 
errors, and so forth)

Modifying a property’s meaning Expect the worst

Adding values to enums Varies, depending on implementation (missing data 
in UI, data corruption, crash, and so forth)

This list might not be 100% complete, but you get the idea. As you can see, modifying 
existing elements in the output data can cause more or less obvious breaking changes 
with more or less significant consequences.

Now that we know how to introduce breaking changes in output data, let’s see what 
kinds of modifications can be done safely. Figure 9.3 shows a backward-compatible evo-
lution of the transaction’s schema.

The merchant city information has simply been added as merchantCity without 
modifying the existing merchant properties. The new categorization status, which was 
supposed to indicate that the categorization was automatic, although based on other 
customers' data, is handled with the new communityCategorization Boolean flag. And 
replacing the transaction type code numbers with human-readable ones is handled 
by adding a new typeLabel property. Consumers will not be bothered by these new 
elements.

Another change is to the type property, which was optional and now has become 
mandatory. Instead of sometimes getting this property, consumers will always get it. 
Unlike making a mandatory property optional, this is a nonbreaking change. Is it neces-
sary to make such a change? Probably not. It’s not really critical. Consumers can go on 
using the API without being notified of the transaction type.

The label’s format has also been changed in a backward-compatible way (purely for 
the purposes of illustration): its maximum length is now 25 instead of 100. As another 
example of a nonbreaking change, the optional categorizationStatus property 
could be removed. Depending on how the data is serialized (not all APIs use JSON), 
that could cause some problems, so it would be better to keep it and always return a 
null value instead.

required:
  - amt
  - date
  - label
  - category
  - type
  - aboveAverageAmount
properties:
  amt:
    type: number
    description: Transaction's amount in cents
  date:
    type: string
    description: A Unix timestamp as a string
  label:
    type: string
    maxLength: 25
  type:
    type: number
    description: |
      1 for card, 2 for transfer, 3 for check
    enum:
      - 1
      - 2
      - 3

  category:
    type: string
    description: |
      Transaction's category ("tech" or "library" 
      or "uncategorized" for example)
  aboveAverageAmount:
    type: boolean
    description: |
      Tells if this transaction is above the average
  merchantName:
    type: string
  merchantZip:
    type: string

  merchantCity:
    type: String
  communityCategorization:
    type: boolean
  typeLabel:
    type: string
    description: human-readable type
    enum:
      - card
      - transfer
      - check

  extendedCategorizationStatus:
    type: number
    description: |
      1 for automatic, 2 for manual, 3 for community

Backward-compatible modifications avoiding breaking changes

Adding elements
is the safest type
of modification.

Making an optional property mandatory

required:
  - amt
  - date
  - label
  - category
  - aboveAverageAmount

properties:
  amt:
    type: number
    description: Transaction's amount in cents
  date:
    type: string
    description: A Unix timestamp as a string
  label:
    type: string
    maxLength: 100
  type:
    type: number
    description: |
      1 for card, 2 for transfer, 3 for check
    enum:
      - 1
      - 2
      - 3
  categorizationStatus:
    type: number
    description: |
      1 for automatic, 2 for manual 
  category:
    type: string
    description: |
      Transaction's category ("tech" or "library" 
      or "uncategorized" for example)
  aboveAverageAmount:
    type: boolean
    description: |
      Tells if this transaction is above the average
  merchantName:
    type: string
  merchantZip:
    type: string

Initial transaction schema

Modifying (decreasing) characteristics

Removing an optional property (categorizationStatus)
is sometimes possible but definitely not recommended.

Possible but not recommended
modifications

But it may make the API
hard to understand in�

the long run when duplicating data.

Figure 9.3   Designing backward-compatible modifications to the output data



 219Designing API evolutions

Notice that some of the modifications that were supposed to fix bad design, like chang-
ing the amt property’s name, couldn’t be made. This is something that API designers 
have to live with. Once consumers start to use a poorly designed API, it is impossible to 
fix it completely most of the time without introducing breaking changes.

The final result might not be the best design, but at least it lets the new designer 
introduce new features and partially fix some early design mistakes without breaking 
consumers’ code. To be frank, the safest way to modify output data is purely and simply 
to add new elements. For new features (like merchantCity), that’s quite simple: just 

Table 9.1   Breaking changes to output data and their consequences

Modification Consequences

Renaming a property Varies, depending on implementation (missing data 
in UI, data corruption, crash, and so forth)

Moving a property Varies, depending on implementation (missing data 
in UI, data corruption, crash, and so forth)

Removing a mandatory property Varies, depending on implementation (missing data 
in UI, data corruption, crash, and so forth

Making a mandatory property optional Varies, depending on implementation (missing data 
in UI, data corruption, crash, and so forth)

Modifying a property’s type Parsing error

Modifying a property’s format Parsing error

Modifying a property’s characteristics (increasing 
string length, number range, or array items count)

Varies, depending on implementation (database 
errors, and so forth)

Modifying a property’s meaning Expect the worst

Adding values to enums Varies, depending on implementation (missing data 
in UI, data corruption, crash, and so forth)

This list might not be 100% complete, but you get the idea. As you can see, modifying 
existing elements in the output data can cause more or less obvious breaking changes 
with more or less significant consequences.

Now that we know how to introduce breaking changes in output data, let’s see what 
kinds of modifications can be done safely. Figure 9.3 shows a backward-compatible evo-
lution of the transaction’s schema.

The merchant city information has simply been added as merchantCity without 
modifying the existing merchant properties. The new categorization status, which was 
supposed to indicate that the categorization was automatic, although based on other 
customers' data, is handled with the new communityCategorization Boolean flag. And 
replacing the transaction type code numbers with human-readable ones is handled 
by adding a new typeLabel property. Consumers will not be bothered by these new 
elements.

Another change is to the type property, which was optional and now has become 
mandatory. Instead of sometimes getting this property, consumers will always get it. 
Unlike making a mandatory property optional, this is a nonbreaking change. Is it neces-
sary to make such a change? Probably not. It’s not really critical. Consumers can go on 
using the API without being notified of the transaction type.

The label’s format has also been changed in a backward-compatible way (purely for 
the purposes of illustration): its maximum length is now 25 instead of 100. As another 
example of a nonbreaking change, the optional categorizationStatus property 
could be removed. Depending on how the data is serialized (not all APIs use JSON), 
that could cause some problems, so it would be better to keep it and always return a 
null value instead.

required:
  - amt
  - date
  - label
  - category
  - type
  - aboveAverageAmount
properties:
  amt:
    type: number
    description: Transaction's amount in cents
  date:
    type: string
    description: A Unix timestamp as a string
  label:
    type: string
    maxLength: 25
  type:
    type: number
    description: |
      1 for card, 2 for transfer, 3 for check
    enum:
      - 1
      - 2
      - 3

  category:
    type: string
    description: |
      Transaction's category ("tech" or "library" 
      or "uncategorized" for example)
  aboveAverageAmount:
    type: boolean
    description: |
      Tells if this transaction is above the average
  merchantName:
    type: string
  merchantZip:
    type: string

  merchantCity:
    type: String
  communityCategorization:
    type: boolean
  typeLabel:
    type: string
    description: human-readable type
    enum:
      - card
      - transfer
      - check

  extendedCategorizationStatus:
    type: number
    description: |
      1 for automatic, 2 for manual, 3 for community

Backward-compatible modifications avoiding breaking changes

Adding elements
is the safest type
of modification.

Making an optional property mandatory

required:
  - amt
  - date
  - label
  - category
  - aboveAverageAmount

properties:
  amt:
    type: number
    description: Transaction's amount in cents
  date:
    type: string
    description: A Unix timestamp as a string
  label:
    type: string
    maxLength: 100
  type:
    type: number
    description: |
      1 for card, 2 for transfer, 3 for check
    enum:
      - 1
      - 2
      - 3
  categorizationStatus:
    type: number
    description: |
      1 for automatic, 2 for manual 
  category:
    type: string
    description: |
      Transaction's category ("tech" or "library" 
      or "uncategorized" for example)
  aboveAverageAmount:
    type: boolean
    description: |
      Tells if this transaction is above the average
  merchantName:
    type: string
  merchantZip:
    type: string

Initial transaction schema

Modifying (decreasing) characteristics

Removing an optional property (categorizationStatus)
is sometimes possible but definitely not recommended.

Possible but not recommended
modifications

But it may make the API
hard to understand in�

the long run when duplicating data.

Figure 9.3   Designing backward-compatible modifications to the output data



220 chapter 9 Evolving an API design

add the new required data. But when it comes to slightly modifying existing ones (like 
the categorization status value), it is trickier to find a solution. There’s no magic recipe, 
but you can try two approaches, as shown in figure 9.3.

First, you can treat this new value as a flag, as was done in figure 9.3 by adding 
the communityCategorization Boolean. Second, you can add a new property (say, 
extended CategoryStatus) that shows the same data as categorizationStatus plus 
the new status. If this were done multiple times, however, the resulting design, compris-
ing duplication of data, could be awkward and make the API difficult to understand.

Now, what about when modifying input data and parameters? Does it work the same 
way? Almost. And this subtle difference is important to know. Let’s introduce some 
breaking changes in the transfer money goal’s input data to contrast this with what 
you’ve learned about output data modifications.

9.1.2 Avoiding breaking changes to input data and parameters

The input shown on the left in figure 9.4 has been slightly modified from what we 
worked with in previous chapters to illustrate different (possible) breaking changes. 
The right part of the figure shows various ways a new designer evolving the API might 
introduce breaking changes in the input data.

required:
  - amt
  - source
  - destination
  - type
properties:
  amt:
    type: number
    description: Transfer's amount in cents
    minValue: 0
    maxValue: 1000000
  currency:
    type: string
    description: Transfer's currency
    enum:
      - USD
      - EUR
      - GBP
      - JPY
  date:
    type: string
    description: A Unix timestamp as a string
  type:
    type: number
    description: |
      1 for immediate, 2 for delayed
    enum:
      - 1
      - 2
  source:
    type: number
  destination:
    type: string

required:
  - amount
  - source
  - currency
  - target
  - description
properties:
  amount:
    type: number
    description: Transfer's amount in dollars
    minValue: 0
    maxValue: 9000
  currency:
    type: string
    description: Transfer's currency
    enum:
      - USD
      - EUR
      - GBP

  date:
    type: string
    description: An ISO 8601 date (YYYY-MM-DD)

  source:
    type: string
  target:
    required:
      - destination
    destination:
      type: string
    bank:
      type: string  
  description:
    type: string

Initial transfer money input schema Modified transfer money input schema

Removing property (type)

Modifying format

Removing value from enum (JPY)

Changing
meaning

Moving a property into an object

Changing type

Making optional property mandatory

Adding a mandatory property

Renaming a property

Modifying (decreasing)
characteristics

Figure 9.4   How to introduce breaking changes in the transfer money goal’s input data



 221Designing API evolutions

If the designer renames amt to amount, a non-updated consumer sending a transfer 
money request using amt will get an error. Depending on how the implementation is 
done, this error could be because amt is now an unexpected property or because the new 
amount property is mandatory. For a REST API that would mean that it would return a 
400 Bad Request response status.

The same goes for moving a property (here, moving destination inside target), 
modifying a property’s type (changing source from a number to a string), and modify-
ing formats in general (changing the format of date and the range of amount).

As with the output use case, modifying a property’s meaning is a silent breaking 
change. The amount was previously in cents and is now in dollars; therefore, a con-
sumer sending a money transfer of 8,000 cents will instead trigger a transfer of 8,000 
dollars. That’s a terrible side effect, and it will be up to the bank providing the API to get 
the money back because the error is on its side.

These breaking changes have a similar effect in both the input and output data use 
cases, but this is not the case for removing a mandatory property, making a mandatory 
property optional, or adding values to enums. Removing the mandatory type property 
is a breaking change that will cause an unexpected property error. It would be exactly 
the same if type were optional. Making a mandatory property optional has absolutely 
no consequences for the provider or consumers, but making an optional one (such as 
currency) mandatory will cause missing mandatory property errors. Adding values to 
enums also has no consequences, but removing values will cause invalid value errors.

So does this mean that, like in the output data case, adding data is the safest way of 
modifying input data? Not quite. Adding a mandatory property has the same conse-
quences as turning an optional one into a mandatory one: the API will return a missing 
mandatory property error.

Breaking changes are slightly different when it comes to inputs and outputs. 
Table 9.2 sums up the possible types of breaking changes to input data and their effects, 
and compares them to the effects of the same or similar changes to output data.

Table 9.2   Breaking changes to input data and their consequences

Modification Consequences Effects on input vs. output

Renaming a property API error Identical

Moving a property API error Identical

Removing a mandatory or optional property API error Identical

Making an optional property mandatory API error Opposite (same as making a 
mandatory property optional)

Modifying a property’s type API error Identical

Modifying a property’s format API error Identical

Modifying a property’s characteristics 
(decreasing string length, number range, or 
array items count)

API error Opposite (same as increasing)



222 chapter 9 Evolving an API design

Modification Consequences Effects on input vs. output

Modifying a property’s meaning Expect the worst 
(impacts mostly 
provider)

Opposite (impacts mostly 
consumer)

Removing values from enums API error Opposite (same as adding values)

Adding a mandatory property API error No error (not a breaking change)

So how can we modify input data in a backward-compatible way? Let’s analyze fig-
ure 9.5 to find out.

You might have already guessed that the safest way is to only add optional properties. 
The destinationBank property is optional, so if consumers don’t provide it in their 
requests, it will not cause an error. But note that the name property inside destination-
Bank is mandatory. Indeed, if the added properties are objects, it doesn’t matter if their 
properties are mandatory or optional.

required:
  - amt
  - source
  - destination
  - type
properties:
  amt:
    type: number
    description: Transfer's amount in cents
    minValue: 0
    maxValue: 1000000
  currency:
    type: string
    description: Transfer's currency
    enum:
      - USD
      - EUR
      - GBP

  date:
    type: string
    description: A Unix timestamp as a string
  type:
    type: number
    description: |
      1 for immediate, 2 for delayed
    enum:
      - 1
      - 2
  source:
    type: number
  destination:
    type: string

required:
  - amt
  - source
  - destination

properties:
  amt:
    type: number
    description: Transfer's amount in cents
    minValue: 0
    maxValue: 1500000
  currency:
    type: string
    description: Transfer's currency
    enum:
      - USD
      - EUR
      - GBP
      - JPY
  date:
    type: string
    description: A Unix timestamp as a string
  type:
    type: number
    description: |
      1 for immediate, 2 for delayed
    enum:
      - 1
      - 2
  source:
    type: number
  destination:
    type: string
  destinationBank:
    required:
      - name
    properties:
      name:
        type: string
      country:
        type: string

Initial transfer money input schema Modified transfer money input schema

Making mandatory property optional

Modifying (increasing)
characteristics

Adding values to enum

...that may contain required ones

Adding optional properties...

Figure 9.5   Designing backward-compatible modifications to the input data

Table 9.2   Breaking changes to input data and their consequences (continued)



 223Designing API evolutions

We can also do two other types of modifications safely: a preexisting mandatory prop-
erty like type can be turned into an optional one, and we can slightly modify a proper-
ty’s characteristics. For example, the range of amt (in cents) could be modified from 0 
to 1000000 to a broader 0 to 1500000. It is also possible to increase a requested string’s 
maximum length or the number of items in an array. Note that for REST APIs, all of this 
also applies to query parameters and HTTP request headers.

We have seen that carelessly modifying a goal’s input parameters or data can cause 
errors. These can be subject to breaking changes too. From a broader perspective, mod-
ifying how an API provides feedback, whether on success or error, is prone to introduce 
breaking changes.

9.1.3 Avoiding breaking changes in success and error feedback

Depending on the protocol used, feedback about how the processing of a request went 
can vary, but it is usually based on a combination of the data returned as a response to a 
request and some of the protocol’s features. We’ll talk about the data first.

For both success and error feedback, the data returned can be safely modified based 
on what you learned in section 9.1.1. There, you saw how to modify success feedback, so 
let’s try to modify an existing error response.

As shown in figure 9.6, we could change the error feedback of the transfer money 
goal in order to introduce some breaking changes. In the modified version, the items 
property has been renamed errors. Consumers will not be able to get the detailed 
error information required to fix a problem now because they expect to find it in items. 
The same goes for the type property’s values MISSING_SOURCE and MISSING_DESTINA-
TION, which have been replaced by a generic MISSING_MANDATORY. The consumers will 
not be able to interpret the new error type.

From a pure data perspective, this means that error and success feedback data 
should be treated equally when it comes to modifying them in order to avoid breaking 
changes. From a functional perspective, the second breaking change means that we 
cannot introduce new types of errors into existing goals or change existing ones.

This example shows us an interesting thing about breaking changes, and, more spe-
cifically, about the scope of their consequences. Modifying the type value has an impact 
that is local to the goal itself, but renaming items to errors has a more global impact. 

An error occurred when processing a
“transfer money” request.

{
  "message": "Invalid request",
  "items": [
    {
      "type": "MISSING_SOURCE",
      "message": "source is mandatory"},
    {
      "type": "MISSING_DESTINATION"},
      "message": "destination is mandatory"}
    ]
}

Introducing breaking changes

{
  "message": "Invalid request",
  "errors": [
    {
      "source": "source",
      "type": "MISSING_MANDATORY",
      "message": "source is mandatory"},
    {
      "source": "destination",
      "type": "MISSING_MANDATORY"},
      "message": "destination is mandatory"}
    ]
}

Local breaking
change

Global breaking
change

Figure 9.6   Introducing breaking changes in error feedback



224 chapter 9 Evolving an API design

Indeed, because the error message data structure is probably the same across the whole 
API, this renaming might have been done not only for the transfer money goal but for 
all goals. That means that not a single consumer will be able to interpret the error feed-
back of any goal without updating its code. That’s quite a breaking change.

Breaking changes with such wide impact are not limited to errors, but can hap-
pen when modifying any common feature of an API. For example, changing naming 
conventions for resource IDs to comply with better guidelines is a global breaking 
change affecting inputs and outputs. So it’s better to look twice at such modifica-
tions and apply what you learn in this chapter about avoiding breaking changes. And 
regarding protocol features, let’s see what could happen if we modify HTTP status 
codes (figure 9.7).

201 OK
429 Too many requests

400 Bad Request

201 Created

400 Bad Request

500 Internal Server Error

403 Forbidden

202 Accepted

According to RFC 7231, adding same class
status codes should not cause problems.*

201 Created

202 Accepted

202 Accepted

400 Bad Request

400 Bad Request

According to RFC 7231, consumers must be
ready to handle any class of HTTP status code.*

Transfer request is valid

Immediate transfer executed

Delayed transfer scheduled

Transfer request is invalid

Not allowed to do any transfers

Too many transfers done

Other errors

Immediate transfer executed

Delayed transfer scheduled

Transfer request is valid

Replacing HTTP status codes with the same class status code should not be a problem either.*

429 Too many requests

400 Bad Request

Too many transfers done

Other errors

400 Bad Request

All errors

All errors

All provider errors

All consumer errors

1

2

3

*Well, only in an ideal world. Such changes will cause bugs for most consumers because they do not strictly follow RFC 7231.
Bugs may also appear depending on how strict their implementation is regarding the functional interface contract.

Figure 9.7   Modifying HTTP status codes



 225Designing API evolutions

The RFC 7231, which describes the HTTP 1.1 protocol, states

“HTTP clients are not required to understand the meaning of all registered status codes, 
though such understanding is obviously desirable. However, a client MUST understand 
the class of any status code, as indicated by the first digit, and treat an unrecognized status 
code as being equivalent to the x00 status code of that class….”

RFC 7231

That means that adding new status codes should not be a problem at all. Indeed, a 
HTTP client must treat an unrecognized status code as being equivalent to the x00 
status code of that class. So when using the transfer money goal, a consumer receiving 
an unknown (until now) 201 Created must treat it like they would treat a 200 OK. The 
same goes when receiving a new 429 Too many requests; consumers should treat it as 
a basic 400 Bad Request.

It also means that returning a new class like 5XX on errors should not be a problem 
at all. Indeed, “a client MUST understand the class of any status code.” Therefore, even 
if the transfer money goal was not known to return a 500 Internal Server Error 
according to its documentation, consumers must be ready to handle it. And replacing 
status codes with codes of the same class should not cause too many problems either: a 
201 Created is a success, just like a 202 Accepted. Indeed, the same class code means 
the same type of error. And, obviously, replacing a 429 Too many requests by a more 
generic 400 Bad Request makes the feedback less accurate.

This is all well and good, but that’s true only if we live in an ideal world— and we do 
not. Some consumers can only be implemented based on what the documentation says 
and not strictly following RFC 7231. So an unexpected 500 Internal Server Error 
will likely cause an unexpected consumer error. Some consumers might follow too 
strictly your functional interface contract. If a delayed money transfer is acknowledged 
with a 201 Created status, returning a 202 Accepted will likely cause bugs on some 
of them, even if you provide generic and self-descriptive feedback, because consum-
ers only expect a 201 Created and nothing else. So you have to hope that consumers 
strictly implement RFC 7231 and do not follow your functional interface contract too 
rigidly. That is quite tricky if you do not work closely with them.

The only nonbreaking change that could be done safely would be to remove an 
HTTP status code because the underlying error will never happen due to some modifi-
cations in the implementation. All other modifications, even if they are supposed to be 
accepted according to RFC 7231, should not be done without extreme caution. Never 
trust consumers if you don’t know how they are actually coded. Of course, this is for the 
HTTP protocol. If your API relies on another protocol, you will have to check how that 
protocol works to determine how best to handle feedback modifications based on what 
you have learned here.

9.1.4 Avoiding breaking changes to goals and flows

Breaking changes can also occur at a higher level when modifying goals and flows. 
Regarding goals, we already know that modifying inputs, outputs, or feedback is likely 
to cause breaking changes, but that’s not all.



226 chapter 9 Evolving an API design

There are two other obvious ways to introduce breaking changes: by renaming or 
removing goals. For example, the Banking API proposes the goals transfer money 
and list transfers. These goals are represented by POST /transfers and GET /trans-
fers, respectively. If we decided to rename the transfer resource as money-transfers, 
consumers using these two goals would get a 404 Not Found response. You could take 
advantage of the 301 Moved Permanently HTTP status code to redirect all calls on  
/transfers to /money-transfers. But that works only if consumers understand and 
actually follow the redirection, as shown in the next listing.

Listing 9.1  Activating a redirects flag on a Java HttpUrlConnection

URL obj = new URL("https://api.bankingcompany.com/transfers");
HttpURLConnection conn = (HttpURLConnection) obj.openConnection();
conn.setInstanceFollowRedirects(true);
HttpURLConnection.setFollowRedirects(true);      

Such a configuration might simply be unknown (not all people are HTTP experts), 
and it can also be deactivated purposely for security reasons. Some consumers might 
not want to get their request sent to somewhere else without their approval and, more 
than likely, would prefer to get an error in their code.

Another obvious breaking change would be to remove a goal. Indeed, if we decided 
to remove the GET method on the transfer resource, consumers using the list transfers 
goal would get a 405 Method Not Allowed response. Clearly it’s better not to remove or 
rename goals, but does that mean that we can add goals as we please?

Let’s say that, for security reasons, the Banking API’s designers decide that every 
money transfer must be validated by the source account owner using a one-time pass-
word (OTP) received by SMS. One way to handle this modification would be to add a 
new validate transfer goal, which must be called after transfer money. It could expect a 
transfer ID and this OTP, which is sent upon receipt of the transfer money request. The 
transfer money goal’s interface is not changed at all, but because non-updated consum-
ers will never call the new validate transfer goal, they will not be able to trigger money 
transfers anymore. Even worse, because there is no error, they won’t be aware of the 
problem— it’s a silent breaking change.

Adding a new transfer money securely goal would not break anything, but it would 
not secure anything either because consumers would still be able to call the original 
nonsecure transfer money goal. Introducing a new mandatory step in the existing flow 
is a breaking change, as is modifying the behavior of existing goals. All you can do at the 
goal/flow level is add entirely new goals that consumers do not need to use for existing 
flows. But when doing that, you must pay attention to security.

9.1.5 Avoiding security breaches and breaking changes

Modifying an API can introduce breaking changes that affect security and open up 
the risk of security breaches; therefore, all API modifications must be made with 
security in mind. Basically, you must apply everything you learned in chapter 8 when 

No redirection will be made 
without setting a flag explicitly.



 227Designing API evolutions

modifying an API in any way. For example, for any data added to existing goals' 
responses, you must ensure that this data will not be provided to consumers that are 
not supposed to get it.

You must also be careful when modifying scopes. Some modifications could lead to 
security breaches or breaking changes, as shown in figure 9.8.

Banking API goals

List accounts

Read account

List transactions

Scopes

Account

Banking API goals

List accounts

Read account

List transactions

Scopes

Delete account

Account

Safe goals

Possible security breach

Safe scope

Banking API goals

List accounts

Read account

List transactions

Nonsense-based
scopes

List transfers

Account
information

Adding unsafe goal
to safe scope

Banking API goals

List accounts

Read account

List transactions

Nonsense-based
scopes

List transfers

Account
information

Transfer

Breaking change

Removing a goal
from a scope

1

2

3 Renaming scope to Awesome Information would also be a breaking change.

Figure 9.8   Introducing security breaches and breaking changes when modifying scopes

First, depending on the chosen security partitioning strategy (see section 8.2), intro-
ducing a delete account goal represented by a DELETE /accounts/{accountId} 
request, for example, could be problematic. If the partitioning is resource-based, any 
consumer with access to the /accounts resource would get access to this quite sensi-
ble but dangerous goal.

Second, if adding a new goal to an existing scope is subject to caution, what about 
removing one? Let’s say the access account information scope comprises the list accounts, 
read account, list transactions, and list transfers goals. Based on what you learned in sec-
tion 8.2, we know that such a security partitioning, covering different topics, is quite awk-
ward. Maybe we should remove the list transfers goal from this scope to make it more 
understandable. But that would mean existing consumers with the access account infor-
mation scope will not be able to use it anymore. So removing a goal from a scope intro-
duces a breaking change. And finally, renaming or removing a scope will have the same 
effect: consumers will lose access to all goals that were covered by it.

It’s not usually up to the API designers to decide how an API is actually secured, but you 
should know that modifying security aspects of an API can introduce breaking changes. 
Before reading what follows, think about what you learned in chapter 8 and try to figure 



228 chapter 9 Evolving an API design

out other ways security modifications could introduce breaking changes or security 
breaches. I’ll be back in a minute. When you are done, you can read what follows.

Based on what you have learned so far, you should understand that changing how 
tokens are acquired (replacing an OAuth 2.0 flow by another, for example) will irre-
mediably cause breaking changes on the consumer’s side. Modifying how they should 
be passed in a request (changing data) is also a breaking change. And last, but not 
least, as the application/system handling identification can be independent from the 
API, it could be modified without the knowledge of the people in charge of the API’s 
implementation. Modifying the security data attached to tokens in this way could have 
terrible consequences on the implementation.

For example, removing the end user ID from the data attached to the access token 
will, at best, cause unexpected server errors and, at worst, security breaches; the imple-
mentation thinking that, as there is no end user involved, the consumer is of an admin 
type. It is always good to be aware of this, and to remind other people working on the 
API about the impacts of such modifications.

9.1.6 Being aware of the invisible interface contract

So far, what you have seen concerns the visible part of the interface contract: every-
thing that can be described using an API description format or documentation. But 
some consumers might also rely on the invisible parts of the API’s interface contract.

For example, an account owner might have different addresses. These addresses are 
returned in a list, and each one has a type property indicating if it is a home, office, or 
temporary address. Let’s say some shrewd developers have spotted that the addresses 
are always ordered home, then office, then temporary. So when they want to get the 
home address, they use its index (0) instead of scanning the list seeking an address with 
a type of home. We all agree that this is total nonsense; consumers must not do that. But 
if they do, and if this order changes, these consumers will break in a silent way and show 
the wrong address.

Another example of this invisible interface contract is that consumers might decide 
that a transaction label, which is just described as a string without any other details, 
cannot be longer than 50 characters based on the data they have retrieved so far. We 
already know what can happen if the length of these labels is extended: probably some 
database errors. As you can see, consumers can rely on parts of the API that are not 
explicitly described. Indeed, Hyrum’s law states that

“With a sufficient number of users of an API, it does not matter what you promise in the 
contract: all observable behaviors of your system will be depended on by somebody.”

Hyrum's law (Hyrum Wright)

What could happen if the transfer money goal was modified from a purely internal per-
spective (without introducing any modification in the visible interface contract) to add 
new controls that slightly extend the goal’s response time? Some consumers that have 
tuned their timeouts according to the actual response time can break because the new 
version of the goal takes longer than their timeout value. These considerations might 
not be obvious, but any API designer (or anyone working on APIs) must be aware of 



 229Versioning an API

the invisible parts of the interface contract in order to properly evaluate the impor-
tance of any change made to an API.

We have covered many different ways of introducing the dreaded breaking changes. 
But should we always be afraid of them?

9.1.7 Introducing a breaking change is not always a problem

A breaking change is a change that will cause problems for consumers if they do not 
update their code. As you’ve seen, these problems can also have repercussions on the 
provider’s side. If the Banking API’s consumers are third-party applications developed 
by other companies, introducing breaking changes to the API is definitely not an 
option. The consumers will break, and their developers will get upset, lose confidence 
in the Banking API, and possibly choose to use a competing API instead. Therefore, 
the Banking Company can lose money— if not worse.

But not all APIs are public ones, consumed by thousands of third-party consumers. If 
the Banking API were a private one, acting as a simple backend for a single-page applica-
tion (SPA) as well as a mobile application built by the Banking Company itself, introduc-
ing breaking changes would be practicable. All that is required in this case is to update 
the SPA on the Banking Company’s web server hosting the SPA files and force an update 
of the mobile application, provided that this application includes a force update feature.

As you can see, depending on the context, introducing a breaking change might not 
be a problem as long as all consumers can be updated synchronously with the API. But 
to be frank, doing so might not be an easy task. The most secure option if a breaking 
change is inevitable is to version the API.

9.2 Versioning an API
The day has arrived! The Banking Company has decided to launch version 2 of its 
famous Banking API. Figure 9.9 shows a possible scenario, among many others, to 
handle such a change.

The new version of the Banking API is available at apiv2.bankingcompany.com. 
Consumers switching to this new version get awesome new features, such as the ability 

Banking Company

API
v2

Banking Engine
v3.0.0

Banking Engine
v1.2.0

API
v1

https://api.bankingcompany.com

https://apiv2.bankingcompany.com

Awesome Banking
App

Updated
Awesome Banking

App

New API version
is not backward-
compatible

Consumers need
to know�what has
changed.

Old version will
run for 12 months

Figure 9.9   The Banking Company has updated its Banking API to version 2.



230 chapter 9 Evolving an API design

to make international money transfers in any currency, thanks to the brand-new 3.0.0 
banking engine written in Go that has replaced the good old 1.2.0 COBOL one. But, 
unfortunately, it is not fully backward-compatible.

When switching to this new version, consumers will also need to update their code 
because some goals, such as the list transactions goal, have been modified in a non- 
backward-compatible way to make them consistent with the new features. The Banking 
Company has also announced that it will support version 1 (exposed at api.banking-
company.com) for 12 months. This means consumers have 12 months to upgrade, even 
if they do not use the modified features or intend to use the new ones. It also means that 
the Banking Company will have to run two versions of its backend for 12 months.

In this case, from the API designer’s perspective, the versioning work lies in the 
non-backward-compatible design— introducing breaking changes and changing the 
domain name to differentiate the two versions of the API. But API versioning is a sub-
ject that goes beyond just API design, and API designers, like any other person working 
on an API, must be aware of all of its implications.

Besides design, API versioning has impacts on implementation and product man-
agement. Indeed, choosing a versioning strategy affects not only how you design an API 
but also how you implement it (the Banking Company provides the two versions of the 
API using two separate backends). Also, just because you provide a new version of your 
product (your API) doesn’t mean consumers will be willing to switch to it; many of them 
might prefer to stick with the previous version. Before we explore the various ways of 
representing API versioning and its impacts, however, let’s clarify what API versioning is 
and differentiate it from implementation versioning.

9.2.1 Contrasting API and implementation versioning

The initial version of the Banking API only provided access to account information, 
but it quickly evolved to offer more features. Figure 9.10 shows the evolution of this 
API and its implementation.

Right after its launch, the API was updated to provide the capability of making money 
transfers. The implementation obviously had to be updated to provide the new transfer- 
related goals. After this update, the API and the implementation shared the same 1.1 ver-
sion number. Unfortunately, the first version of the transfer implementation was not really 
effective. Each money transfer was processed synchronously on each API call. This resulted 
in long response times, especially when there were more than 100 transfer requests per 
second. It was then decided to modify the implementation in order to put money transfer 
requests in a message queue and process them asynchronously without impacting the API.

The new 1.2 implementation was far more effective, while still exposing the same 1.1 
API. After that, the Banking Company’s CTO became fond of Go and decided to get rid 
of COBOL. The first attempt was to automatically convert the COBOL code into Go code. 
Although the Banking API used a completely different programming language, version 
2.0 of the implementation was able to expose version 1.1, so consumers did not notice 
this change at all. Unfortunately, before going live in production, the generated code was 
revealed to be inefficient and poorly written. So a full manual rewrite was done, and long-
awaited new features were also added. But the most important change was that the oldest 

Cobol
Banking Engine

v1.0.0

Go
Banking Engine

v3.0.0

Cobol
Banking Engine

v1.1.0

Go
Banking Engine

v2.0.0

Account information

Account information
Transfer

Cobol
Banking Engine

v1.2.0

Added new transfer features

Replaced synchronous transfer
processing with asynchronous

message-based processing

Converted automatically
from Cobol to Go

Rewritten manually in Go,
added new features, and
updated older goals to

be consistent

API version is not correlated to implementation version

API
v1.0

API
v1.1

Account information
Transfer

API
v1.1

Account information
Transfer

API
v1.1

Account information v2
Tranfer

International transfers

API
v2.0

Backward-compatible
modification

No modification

No modification

Non-backward-compatible
modification

(breaking change)

API v1

API v2

What consumers see
are only “major” versions.

Figure 9.10   The evolution of the Banking API and its implementation



 231Versioning an API

goals of the API, the account-information-related ones, were modified to match the API 
design rules introduced with the transfer features in version 1.1. This breaking change 
forced the Banking Company to update the API to a non- backward- compatible 2.0 version.

As you can see, an API has a version, like any software component, but it is not 
correlated to the version of its implementation. The version of an API evolves based 
on the changes made to the interface contract (the changes that are visible from the 
consumers' perspective) and not on how the implementation evolves. Two completely 
different implementations can expose exactly the same version of an API. In this 
example, the API and implementation version names, like v1.1 or v3.0.0, are based on 
a well-known and clever system of using numbers to name a software component ver-
sion—semantic versioning (https://semver.org/). It consists of using three digits in this 
format: MAJOR.MINOR.PATCH. Each is incremented in specific situations:

¡	The MAJOR digit is incremented only on breaking changes, such as adding a 
new mandatory parameter (see section 9.1).

¡	The MINOR digit is incremented when new features are added in a backward- 
compatible manner, like adding new HTTP methods or resource paths in a 
REST API.

¡	The PATCH digit is incremented when the modifications made involve backward- 
compatible bug fixes.

This makes sense for an implementation, but not for an API. Semantic versioning 
applied to APIs consist of just two digits: BREAKING.NONBREAKING. This two-level 
versioning is interesting from the provider’s perspective; it helps to keep track of all 
the different backward-compatible and non-backward-compatible versions of an API. 
But consumers don’t really care about all those details.

to make international money transfers in any currency, thanks to the brand-new 3.0.0 
banking engine written in Go that has replaced the good old 1.2.0 COBOL one. But, 
unfortunately, it is not fully backward-compatible.

When switching to this new version, consumers will also need to update their code 
because some goals, such as the list transactions goal, have been modified in a non- 
backward-compatible way to make them consistent with the new features. The Banking 
Company has also announced that it will support version 1 (exposed at api.banking-
company.com) for 12 months. This means consumers have 12 months to upgrade, even 
if they do not use the modified features or intend to use the new ones. It also means that 
the Banking Company will have to run two versions of its backend for 12 months.

In this case, from the API designer’s perspective, the versioning work lies in the 
non-backward-compatible design— introducing breaking changes and changing the 
domain name to differentiate the two versions of the API. But API versioning is a sub-
ject that goes beyond just API design, and API designers, like any other person working 
on an API, must be aware of all of its implications.

Besides design, API versioning has impacts on implementation and product man-
agement. Indeed, choosing a versioning strategy affects not only how you design an API 
but also how you implement it (the Banking Company provides the two versions of the 
API using two separate backends). Also, just because you provide a new version of your 
product (your API) doesn’t mean consumers will be willing to switch to it; many of them 
might prefer to stick with the previous version. Before we explore the various ways of 
representing API versioning and its impacts, however, let’s clarify what API versioning is 
and differentiate it from implementation versioning.

9.2.1 Contrasting API and implementation versioning

The initial version of the Banking API only provided access to account information, 
but it quickly evolved to offer more features. Figure 9.10 shows the evolution of this 
API and its implementation.

Right after its launch, the API was updated to provide the capability of making money 
transfers. The implementation obviously had to be updated to provide the new transfer- 
related goals. After this update, the API and the implementation shared the same 1.1 ver-
sion number. Unfortunately, the first version of the transfer implementation was not really 
effective. Each money transfer was processed synchronously on each API call. This resulted 
in long response times, especially when there were more than 100 transfer requests per 
second. It was then decided to modify the implementation in order to put money transfer 
requests in a message queue and process them asynchronously without impacting the API.

The new 1.2 implementation was far more effective, while still exposing the same 1.1 
API. After that, the Banking Company’s CTO became fond of Go and decided to get rid 
of COBOL. The first attempt was to automatically convert the COBOL code into Go code. 
Although the Banking API used a completely different programming language, version 
2.0 of the implementation was able to expose version 1.1, so consumers did not notice 
this change at all. Unfortunately, before going live in production, the generated code was 
revealed to be inefficient and poorly written. So a full manual rewrite was done, and long-
awaited new features were also added. But the most important change was that the oldest 

Cobol
Banking Engine

v1.0.0

Go
Banking Engine

v3.0.0

Cobol
Banking Engine

v1.1.0

Go
Banking Engine

v2.0.0

Account information

Account information
Transfer

Cobol
Banking Engine

v1.2.0

Added new transfer features

Replaced synchronous transfer
processing with asynchronous

message-based processing

Converted automatically
from Cobol to Go

Rewritten manually in Go,
added new features, and
updated older goals to

be consistent

API version is not correlated to implementation version

API
v1.0

API
v1.1

Account information
Transfer

API
v1.1

Account information
Transfer

API
v1.1

Account information v2
Tranfer

International transfers

API
v2.0

Backward-compatible
modification

No modification

No modification

Non-backward-compatible
modification

(breaking change)

API v1

API v2

What consumers see
are only “major” versions.

Figure 9.10   The evolution of the Banking API and its implementation

https://semver.org/


232 chapter 9 Evolving an API design

Consumers who were using the account-information-related goals of version 1.0 
of the API can seamlessly switch to version 1.1 (NONBREAKING) as if nothing has 
changed. And even if they decide to use the new transfer features added to v1.1, they’re 
still simply using “the Banking API” without really caring (or knowing) about its exact 
version number.

Consumers will only really notice changes in the API when the Banking Company 
introduces version 2.0. Indeed, they will have to actually modify some parts of their 
code to use it. From the API consumers' perspective, they simply use version 1 or ver-
sion 2. They don’t care about the second level of versioning (NONBREAKING); they 
only need the BREAKING digit.

NOTE   Remember that a breaking change is a non-backward-compatible 
change. It could be an obvious modification of the interface contract or a more 
insidious modification of the invisible contract.

If removing or renaming a goal leads to a major version bump, it might not be that 
obvious to do the same thing thing for the invisible modification we discussed in sec-
tion 9.1.6. It will have to be discussed for each case, and we must evaluate its true impact 
on consumers in order to determine if releasing a new version is necessary in such cases.

If only a single level of versioning matters for consumers, we can use anything as ver-
sion names. We could use ISO 8601 dates, such as 2017-10-19 for version 1 and 2018-22-
12 for version 2. If we wanted, we could even use famous anime soundtrack composers' 
names, such as Yoko Kanno and Kenji Kawai for versions 1 and 2, respectively.

API and implementation versioning are different, and consumers (mostly) only care 
about the version changes announcing breaking changes. But how do consumers actu-
ally tell which version of an API they want to use?

9.2.2 Choosing an API versioning representation from the consumer’s 
perspective

The Banking Company has rolled out its brand-new Banking API v2.0, which is not 
completely backward-compatible. Hopefully, the transfer-related goals are backward- 
compatible, so consumers using those in the previous version of the API will only have 
to tweak their requests a little to switch to this new version. Figure 9.11 shows the differ-
ent possibilities the Banking Company might choose to actually expose the different 
versions of the API.

The Banking API could use the resource’s path to handle the API’s version. Consum-
ers wanting to list transfers might send a GET /v1/transfers or GET /v2/transfers 
request on the same api.bankingcompany.com domain to use version 1 or 2, respec-
tively, of the API. A similar approach would be to use different domains or subdomains 
for each version of the API: here, api.bankingcompany.com for version 1 and apiv2 
.bankingcompany.com for version 2.

The version of the API used can also be indicated via a query parameter (GET /
transfers?version=2) or a custom header (Version: 2). Or the Banking API could 
propose to indicate the version of the API desired using content negotiation, as you 

API v1

GET /v2/transfers
Host: api.bankingcompany.com

GET /v1/transfers
Host: api.bankingcompany.com

GET /transfers
Host: api.bankingcompany.com

GET /transfers
Host: api.bankingcompany.com
Version: 1

GET /transfers?version=1
Host: api.bankingcompany.com

GET /transfers
Host: api.bankingcompany.com
Accept: application/vnd.bank.1+json

API v2

GET /transfers
Host: apiv2.bankingcompany.com

GET /transfers
Host: api.bankingcompany.com
Version: 2

GET /transfers?version=2
Host: api.bankingcompany.com

GET /transfers
Host: api.bankingcompany.com
Accept: application/vnd.bank.2+json

Exposition- based
version

Parameter-based
version

Path

Domain

Query
parameter

Custom
header

Content
negotiation

GET /transfers
Host: api.bankingcompany.com
Authorization: Bearer 4R57TD78

GET /transfers
Host: api.bankingcompany.com
Authorization: Bearer 4R57TED78

Consumer’s
configuration-based

version
Consumer

configuration

CONSUMER VERSION
cnsmr_1 1

CONSUMER TOKEN
cnsmr_1 4R57TD78

CONSUMERS_CONFTOKENS
CONSUMER VERSION
cnsmr_1 2

CONSUMER TOKEN
cnsmr_1 4R57TD78

CONSUMERS_CONFTOKENS

Figure 9.11   Various ways of indicating the version of an API in a request



 233Versioning an API

learned in section 6.2.1. For this, consumers indicate a custom media type in the stan-
dard Content-type header, such as application/vnd.bank.2 to indicate that they 
want to use version 2 of the API.

And last but not least, the version of the API used can be indirectly indicated in the 
request. Because the API is secure, consumers have to send some credentials with each 
request; with this approach, the request contains an Authorization header with a token 
(here, 4R57TD78). According to the data stored by the provider in the TOKENS table, 
this token has been generated for the cnsmr_1 consumer (obviously in the real world, 
nobody would ever store such sensitive data without encryption). The version of the API 
used by this consumer is indicated in the VERSION column of the CONSUMERS_CONF table.

That’s six different ways of indicating the version for an HTTP-based API. Which 
one should you choose? Obviously, this choice must be made from the consumer’s 
perspective.

The simplest options are path and domain versioning. Changing a domain name or 
path in a URL is quite straightforward, especially if the API is tested with a browser or a 
curl command line. Consumers can see what version is being used by looking at the URL 
they use. These are probably the most used options; and, based on what you learned in 

Consumers who were using the account-information-related goals of version 1.0 
of the API can seamlessly switch to version 1.1 (NONBREAKING) as if nothing has 
changed. And even if they decide to use the new transfer features added to v1.1, they’re 
still simply using “the Banking API” without really caring (or knowing) about its exact 
version number.

Consumers will only really notice changes in the API when the Banking Company 
introduces version 2.0. Indeed, they will have to actually modify some parts of their 
code to use it. From the API consumers' perspective, they simply use version 1 or ver-
sion 2. They don’t care about the second level of versioning (NONBREAKING); they 
only need the BREAKING digit.

NOTE   Remember that a breaking change is a non-backward-compatible 
change. It could be an obvious modification of the interface contract or a more 
insidious modification of the invisible contract.

If removing or renaming a goal leads to a major version bump, it might not be that 
obvious to do the same thing thing for the invisible modification we discussed in sec-
tion 9.1.6. It will have to be discussed for each case, and we must evaluate its true impact 
on consumers in order to determine if releasing a new version is necessary in such cases.

If only a single level of versioning matters for consumers, we can use anything as ver-
sion names. We could use ISO 8601 dates, such as 2017-10-19 for version 1 and 2018-22-
12 for version 2. If we wanted, we could even use famous anime soundtrack composers' 
names, such as Yoko Kanno and Kenji Kawai for versions 1 and 2, respectively.

API and implementation versioning are different, and consumers (mostly) only care 
about the version changes announcing breaking changes. But how do consumers actu-
ally tell which version of an API they want to use?

9.2.2 Choosing an API versioning representation from the consumer’s 
perspective

The Banking Company has rolled out its brand-new Banking API v2.0, which is not 
completely backward-compatible. Hopefully, the transfer-related goals are backward- 
compatible, so consumers using those in the previous version of the API will only have 
to tweak their requests a little to switch to this new version. Figure 9.11 shows the differ-
ent possibilities the Banking Company might choose to actually expose the different 
versions of the API.

The Banking API could use the resource’s path to handle the API’s version. Consum-
ers wanting to list transfers might send a GET /v1/transfers or GET /v2/transfers 
request on the same api.bankingcompany.com domain to use version 1 or 2, respec-
tively, of the API. A similar approach would be to use different domains or subdomains 
for each version of the API: here, api.bankingcompany.com for version 1 and apiv2 
.bankingcompany.com for version 2.

The version of the API used can also be indicated via a query parameter (GET /
transfers?version=2) or a custom header (Version: 2). Or the Banking API could 
propose to indicate the version of the API desired using content negotiation, as you 

API v1

GET /v2/transfers
Host: api.bankingcompany.com

GET /v1/transfers
Host: api.bankingcompany.com

GET /transfers
Host: api.bankingcompany.com

GET /transfers
Host: api.bankingcompany.com
Version: 1

GET /transfers?version=1
Host: api.bankingcompany.com

GET /transfers
Host: api.bankingcompany.com
Accept: application/vnd.bank.1+json

API v2

GET /transfers
Host: apiv2.bankingcompany.com

GET /transfers
Host: api.bankingcompany.com
Version: 2

GET /transfers?version=2
Host: api.bankingcompany.com

GET /transfers
Host: api.bankingcompany.com
Accept: application/vnd.bank.2+json

Exposition- based
version

Parameter-based
version

Path

Domain

Query
parameter

Custom
header

Content
negotiation

GET /transfers
Host: api.bankingcompany.com
Authorization: Bearer 4R57TD78

GET /transfers
Host: api.bankingcompany.com
Authorization: Bearer 4R57TED78

Consumer’s
configuration-based

version
Consumer

configuration

CONSUMER VERSION
cnsmr_1 1

CONSUMER TOKEN
cnsmr_1 4R57TD78

CONSUMERS_CONFTOKENS
CONSUMER VERSION
cnsmr_1 2

CONSUMER TOKEN
cnsmr_1 4R57TD78

CONSUMERS_CONFTOKENS

Figure 9.11   Various ways of indicating the version of an API in a request



234 chapter 9 Evolving an API design

section 6.1.4, it’s worth taking those into consideration. Your consumers, who are proba-
bly already familiar with these mechanisms, will find them easy to use.

Query parameter versioning is also a quite simple option; but, from an API design-
er’s perspective, I don’t recommend it because it is not really clean. For example, if we 
add a currency filter as in GET /transfers?currency=eur&version=2, the query mixes 
a purely technical parameter with a functional one.

Content-type versioning is interesting from an HTTP expert’s perspective, but 
many people are reluctant to use HTTP headers despite the fact that it is not compli-
cated at all. This problem is exacerbated with the custom HTTP header option because 
it’s not part of the HTTP standard.

The consumer configuration option is totally consumer-friendly in that there’s no 
need for consumers to modify their code. One small drawback is that it requires updat-
ing the configuration to switch from one version to another, which can be cumbersome 
when testing different versions of the API.

What would your preferred choice(s) be? Personally, I prefer path and consumer 
configuration versioning, but let’s step back and look beyond REST, HTTP, and per-
sonal preferences.

We can see that there are three ways to expose different versions of an API. The first 
one is simply to consider the new version as a new API and create a new exposition end-
point. The second one is to keep a single endpoint for the various versions but to pass 
a parameter in requests, using some protocol features or metadata in the request data, 
which indicates the version of the API used. The third one also uses a single endpoint, 
but stores the version used by each consumer on the provider side. Whatever the tech-
nical solution adopted, the choice of how to indicate the version of the API used must 
take into consideration standards and usability in order to ensure that consumers will 
be able to understand it and use it easily.

So far, we’ve talked about API versioning. But is versioning an entire API the only 
option?

9.2.3 Choosing API versioning granularity

Versioning an API as a whole is the most common practice, but not the only one. 
Depending on the use case and type of API, other options can be more effective.

For REST APIs, besides at the API level, versioning can be done at the resource level, 
the goal/operation level, and the data/message level. Figure 9.12 compares API ver-
sioning and resource versioning when breaking changes are introduced. Note that the 
breaking changes in this example could be avoided based on what you have learned in 
section 9.1.

To keep the example simple, the Banking API is reduced to three goals: transfer 
money, list transfers, and delete transfer. The left side shows what happens when version-
ing the API as a whole, and the right side, what happens when versioning each resource 
identified by its path. On both sides, the version number is located on the first path level. 
Take a look at the top of this figure. On the left, the API version is v1. On the right, the 
version of the two transfer resources (/v1/transfers and /v1/transfers/{id}) is v1.

Breaking change!
Transfer money goal now requires mandatory currency.

API version

POST   /v3/transfers
GET    /v3/transfers
DELETE /v3/transfers/{id}
GET    /v3/sources
GET    /v3/sources/{id}/destinations

Resource version

Breaking change!
Transfer money goal’s source and destination are now IDs from list sources and list destinations.

Initial version provides transfer money, list transfers, and delete transfer goals.

POST   /v1/transfers
GET    /v1/transfers
DELETE /v1/transfers/{id}

A new API
for a single
modification
giving no clue
about changes

POST   /v1/transfers
GET    /v1/transfers
DELETE /v1/transfers/{id}

POST   /v2/transfers
GET    /v2/transfers
DELETE /v2/transfers/{id}

POST   /v1/transfers
GET    /v1/transfers

DELETE /v1/transfers/{id}

POST   /v1/transfers
GET    /v1/transfers

DELETE /v1/transfers/{id}

POST   /v2/transfers
GET    /v2/transfers

POST   /v1/transfers
GET    /v1/transfers
DELETE /v1/transfers/{id}

POST   /v2/transfers
GET    /v2/transfers
DELETE /v2/transfers/{id}

A single API
with resources

in different versions
giving hints

about changes

POST   /v1/transfers
GET    /v1/transfers

DELETE /v1/transfers/{id}

POST   /v2/transfers
GET    /v2/transfers

POST   /v3/transfers
GET    /v3/transfers

GET    /v1/sources
GET    /v1/sources/{id}/destinations

No need to think
when using

each version

A single API
with resources

in different versions,
making it hard
to understand

Impossible to
guess that these

new goals cannot be
used with transfers

v1 and v2

New version
of transfers
resource
to manage a
single goal
modification

Figure 9.12   API versioning versus resource versioning



 235Versioning an API

The transfer money goal expects a source and a destination account number, and 
an amount of money. A first breaking change is introduced by adding a new mandatory 
currency property to the input of this goal. On the API versioning side, this single 
breaking change forces us to create a new v2 of the API. If consumers compare the 
goals of the two versions, they will have absolutely no clue about what has changed 
without reading the API’s release notes.

On the resource versioning side, no new API is created, but a new /v2/transfers 
resource is added in order to manage the modification of the POST /v2/transfers 
operation. That gives consumers a hint, but it is impossible to know which operation on 
the transfer resource has been modified without reading the release notes.

NOTE   Even if there must always be release notes, these are not always available 
when needed, and some people don’t read them at all! Being able to detect 
changes could be beneficial for consumers or people involved in the project.

Two new goals are also introduced, and the transfer money goal is modified in order to 
facilitate money transfers and manage transfers to external accounts. The list sources 

section 6.1.4, it’s worth taking those into consideration. Your consumers, who are proba-
bly already familiar with these mechanisms, will find them easy to use.

Query parameter versioning is also a quite simple option; but, from an API design-
er’s perspective, I don’t recommend it because it is not really clean. For example, if we 
add a currency filter as in GET /transfers?currency=eur&version=2, the query mixes 
a purely technical parameter with a functional one.

Content-type versioning is interesting from an HTTP expert’s perspective, but 
many people are reluctant to use HTTP headers despite the fact that it is not compli-
cated at all. This problem is exacerbated with the custom HTTP header option because 
it’s not part of the HTTP standard.

The consumer configuration option is totally consumer-friendly in that there’s no 
need for consumers to modify their code. One small drawback is that it requires updat-
ing the configuration to switch from one version to another, which can be cumbersome 
when testing different versions of the API.

What would your preferred choice(s) be? Personally, I prefer path and consumer 
configuration versioning, but let’s step back and look beyond REST, HTTP, and per-
sonal preferences.

We can see that there are three ways to expose different versions of an API. The first 
one is simply to consider the new version as a new API and create a new exposition end-
point. The second one is to keep a single endpoint for the various versions but to pass 
a parameter in requests, using some protocol features or metadata in the request data, 
which indicates the version of the API used. The third one also uses a single endpoint, 
but stores the version used by each consumer on the provider side. Whatever the tech-
nical solution adopted, the choice of how to indicate the version of the API used must 
take into consideration standards and usability in order to ensure that consumers will 
be able to understand it and use it easily.

So far, we’ve talked about API versioning. But is versioning an entire API the only 
option?

9.2.3 Choosing API versioning granularity

Versioning an API as a whole is the most common practice, but not the only one. 
Depending on the use case and type of API, other options can be more effective.

For REST APIs, besides at the API level, versioning can be done at the resource level, 
the goal/operation level, and the data/message level. Figure 9.12 compares API ver-
sioning and resource versioning when breaking changes are introduced. Note that the 
breaking changes in this example could be avoided based on what you have learned in 
section 9.1.

To keep the example simple, the Banking API is reduced to three goals: transfer 
money, list transfers, and delete transfer. The left side shows what happens when version-
ing the API as a whole, and the right side, what happens when versioning each resource 
identified by its path. On both sides, the version number is located on the first path level. 
Take a look at the top of this figure. On the left, the API version is v1. On the right, the 
version of the two transfer resources (/v1/transfers and /v1/transfers/{id}) is v1.

Breaking change!
Transfer money goal now requires mandatory currency.

API version

POST   /v3/transfers
GET    /v3/transfers
DELETE /v3/transfers/{id}
GET    /v3/sources
GET    /v3/sources/{id}/destinations

Resource version

Breaking change!
Transfer money goal’s source and destination are now IDs from list sources and list destinations.

Initial version provides transfer money, list transfers, and delete transfer goals.

POST   /v1/transfers
GET    /v1/transfers
DELETE /v1/transfers/{id}

A new API
for a single
modification
giving no clue
about changes

POST   /v1/transfers
GET    /v1/transfers
DELETE /v1/transfers/{id}

POST   /v2/transfers
GET    /v2/transfers
DELETE /v2/transfers/{id}

POST   /v1/transfers
GET    /v1/transfers

DELETE /v1/transfers/{id}

POST   /v1/transfers
GET    /v1/transfers

DELETE /v1/transfers/{id}

POST   /v2/transfers
GET    /v2/transfers

POST   /v1/transfers
GET    /v1/transfers
DELETE /v1/transfers/{id}

POST   /v2/transfers
GET    /v2/transfers
DELETE /v2/transfers/{id}

A single API
with resources

in different versions
giving hints

about changes

POST   /v1/transfers
GET    /v1/transfers

DELETE /v1/transfers/{id}

POST   /v2/transfers
GET    /v2/transfers

POST   /v3/transfers
GET    /v3/transfers

GET    /v1/sources
GET    /v1/sources/{id}/destinations

No need to think
when using

each version

A single API
with resources

in different versions,
making it hard
to understand

Impossible to
guess that these

new goals cannot be
used with transfers

v1 and v2

New version
of transfers
resource
to manage a
single goal
modification

Figure 9.12   API versioning versus resource versioning



236 chapter 9 Evolving an API design

goal allows a consumer to list all possible sources for a money transfer, and list destina-
tions gives possible destinations for a selected source. Introducing these two new goals 
is not a breaking change. But unfortunately, the sources and destinations are each iden-
tified by a number, which is different from the string account numbers expected by the 
transfer money goal. Its input data is modified, thereby introducing a breaking change.

On the resource versioning side, a new v3 transfer resource is added with the  
/v3/transfers path, along with GET /v1/sources and GET /v1/sources/{id}/ 
destination operations. The API now comprises three different versions of the trans-
fer resource, and the new source and destination resources can only be used with ver-
sion 3. That’s not easy for consumers to guess.

On the API versioning side, a new v3 API is again created, but there’s no need to 
think about which versions can be used together. Each independent API version con-
tains a set of compatible resources.

Let’s go now to a deeper level of versioning— at the goal or operation level. Fig-
ure 9.13 compares API versioning and goal/operation versioning when the same break-
ing changes are introduced.

Breaking change!
Transfer money goal now requires mandatory currency.

API version

POST   /v3/transfers
GET    /v3/transfers
DELETE /v3/transfers/{id}
GET    /v3/sources
GET    /v3/sources/{id}/destinations

Goal/Operation version

Breaking change!
Transfer money goal's source and destination are now IDs from list sources and list destinations.

Initial version provides transfer money, list transfers, and delete transfer goals.

POST   /v1/transfers
GET    /v1/transfers
DELETE /v1/transfers/{id}

A new API
for a single
modification
giving no clue
about changes

POST   /v1/transfers
GET    /v1/transfers
DELETE /v1/transfers/{id}

POST   /v2/transfers
GET    /v2/transfers
DELETE /v2/transfers/{id}

DELETE /v1/transfers/{id}

DELETE /v1/transfers/{id}

POST   /v1/transfers
GET    /v1/transfers
DELETE /v1/transfers/{id}

POST   /v2/transfers
GET    /v2/transfers
DELETE /v2/transfers/{id}

A single API
with goals

in different
versions clearly

indicating
changes

DELETE /v1/transfers/{id}

No need to
think

when using
each version

Which goal
versions can be
used together
is impossible

to guess.

GET    /v1/transfers

POST    /v1/transfers

GET    /v1/transfers

POST    /v2/transfers

POST    /v1/transfers

GET    /v1/transfers

POST    /v2/transfers

POST    /v1/transfers

POST    /v3/transfers

GET    /v1/sources

GET    /v1/sources/{id}/destinations

Figure 9.13   API versioning versus goal (or operation) versioning



 237Versioning an API

The API versioning side is exactly the same; but on the other side, each operation is 
now versioned independently, still using the vX in the path. On each breaking change 
to the transfer money goal, a new request is added to the API (POST /v2/transfers 
then POST /v3/transfers). That’s useful because it clearly indicates which goal has 
been modified. But as with the resource versioning use case, the API ends up with 
three different versions of the transfer money goal, and consumers have absolutely no 
clue that GET /v1/sources and GET /v1/sources/{id}/destinations can only be 
used with POST /v3/transfers. That is definitely not consumer-friendly.

Now let’s look at the last level of versioning: the data/message level. Figure 9.14 
shows what could happen to the transfer money goal using this versioning strategy. 
Note that this strategy only works on the data that is located in request and response 
bodies; headers and query parameters are out of its scope.

Because the Banking API uses the HTTP protocol, we can take advantage of the con-
tent negotiation feature to version the requests and responses for each goal. In the 
API’s initial version, POST /transfers requests and responses use the application/
vnd.transfer.request.v1+json custom media type. When the transfer money goal’s 
input is modified, its media type’s version bumps to v2 (application/vnd.transfer 
.request.v2+json), then v3 (application/vnd.transfer.request.v3+json). The 
response version is modified only on the second breaking change to v2.

Breaking change!
Transfer money goal now requires mandatory currency.

Breaking change!
Transfer money goal’s source and destination are now IDs from list sources and list destinations.

Initial version of transfer money goal

POST /transfers
Content: application/vnd.transfer.request.v1+json

200 OK
Content: application/vnd.transfer.response.v1+json

POST /transfers
Content: application/vnd.transfer.request.v1+json

POST /transfers
Content: application/vnd.transfer.request.v2+json

200 OK
Content: application/vnd.transfer.response.v1+json

POST /transfers
Content: application/vnd.transfer.request.v1+json

200 OK
Content: application/vnd.transfer.response.v1+json

POST /transfers
Content: application/vnd.transfer.request.v2+json

200 OK
Content: application/vnd.transfer.response.v2+json

POST /transfers
Content: application/vnd.transfer.request.v3+json

Request data/message version Response data/message version

It’s not obvious that response v2 is returned for request v3.

With HTTP, it works only for data in request or response body

Only the request message version changes,
as the response is not modified.

Figure 9.14   Data (or message) versioning with content negotiation



238 chapter 9 Evolving an API design

In both cases, the versions of requests and responses are not correlated anymore, and 
with the second update, it becomes unclear which versions of requests and responses 
work together. Note that we could perfectly correlate request and response message 
versions by simply bumping request’s and response’s versions together no matter which 
one is modified. In that case, this strategy is close to the goal/operation versioning strat-
egy. Table 9.3 sums up the pros and cons of each level of granularity.

Table 9.3   Choosing a versioning granularity for REST APIs

Granularity Pros Cons Recommended?

API No need to think about 
which versions of operations 
or resources work together

API version change on single 
breaking change, no clue 
about the changes

By default for REST APIs 
(common practice)

Resource Gives hints about changes Impossible to guess which 
versions work together

Not recommended for 
REST APIs; use only 
when resources are 
completely independent

Goal/operation Indicates which goals have 
changed

Impossible to guess which 
versions work together

Not recommended for 
REST APIs; use only 
when operations are 
completely independent

Data/message Indicates which data/mes-
sages have changed

Impossible to guess which 
versions work together; 
limited to request/response 
bodies when using HTTP

Not recommended for 
REST APIs; can be used 
in conjunction with API-
level granularity

Each level of granularity has its pros and cons, but at least in REST API world, the most 
commonly used strategy is API-level versioning. Choosing any other granularity must 
not be done lightly because most consumers are not used to these versioning strate-
gies. But that does not mean that they must never be used, especially if the API you are 
designing is not a REST one.

You might sometimes need to mix different versioning granularities. For example, 
if you work in the banking industry, you might have to work with the ISO 20022 stan-
dard that defines XML (and soon, at the time of writing of this book, JSON) messages. 
Messages come in versioned request/response pairs. If you were to design an API using 
these messages, you would have to deal with the versioning of both your API and the 
ISO 20022 messages.

API versioning should hold few secrets for you now. But as an API designer, you must 
be aware of its impact beyond API design.

9.2.4 Understanding the impact of API versioning beyond design

What is discussed here is mostly the concern of API product managers, tech leads, and 
architects; but as API designers, it’s good to be aware of these matters too (plus, some-
times APIs designers have more than one role). Even if the changes introduced in the 



 239Designing APIs with extensibility in mind

API are not breaking ones, each of them must be carefully recorded so that you are 
able to communicate the list of changes to consumers.

You should understand by now that changing the version of an API— or more pre-
cisely, introducing a breaking change— has consequences on the consumer side, and 
that consumers might not be happy with that. Creating new versions of an API means 
that multiple versions of the API will run at the same time, and consumers might not be 
willing to make the effort to switch to a newer version if the older one they are using is 
still running. Therefore, the breaking changes that are introduced in the API have to 
be carefully chosen.

For example, introducing a breaking change that does not bring any value to the 
consumers, such as switching from an OAuth 1 to 2 security framework, is definitely not 
a good idea. To make the switch less inconvenient, it would be better to introduce new 
features that consumers want along with such boring breaking changes.

Regarding implementation, having to expose multiple versions of the API might 
require extra work and, therefore, choosing how many versions will be supported and 
for how long is important. This depends on your context. Some API companies provid-
ing their services only as an API might choose to indefinitely support all versions. On 
the other hand, for a private API, some companies might only support two versions. 
There is no silver bullet; it’s up to you to choose an adapted solution.

On the technical level, there are broadly two options to manage versioning in the 
implementation. The first option is for each version to be handled by a specific imple-
mentation. This means development of each older version of the implementation will 
go on (at least to fix bugs and security issues, for example) for as long as those versions 
remain in use. The infrastructure supporting each older version must also be main-
tained. Depending on the context of your company, this may or may not be a problem. 
This context will definitely have an impact on how long you let consumers use older 
versions of an API. The second option is for all versions to be handled by a single imple-
mentation. Again, depending on the context, having one implementation manage all 
possible versions of your APIs may or may not be a problem.

As you can see, versioning can be challenging. Are there ways to lessen the risk of 
breaking changes that necessitate a change of API version?

9.3 Designing APIs with extensibility in mind
We know how to avoid introducing breaking changes when possible and how to ver-
sion APIs when such changes are unavoidable. That’s good, but we must not forget one 
of the fundamental principles of software design: extensibility.

“Extensibility is a software engineering and systems design principle where the implementation 
takes future growth into consideration. The term extensibility can also be seen as a systemic 
measure of the ability to extend a system and the level of effort required to implement the 
extension. Extensions can be through the addition of new functionality or through 
modification of existing functionality. The central theme is to provide for change— typically 
enhancements— while minimizing impact to existing system functions.”

Wikipedia



240 chapter 9 Evolving an API design

By carefully designing data, interactions, and flows, and choosing the appropriate level 
of granularity for versioning, we can design extensible APIs that facilitate evolutions 
and, more importantly, lessen the risk of breaking changes.

9.3.1 Designing extensible data

Figure 9.15 shows how to design data envelopes in order to make an API extensible.

T7756880964

[
  {"id": "T7756880964",
   "amount": 456.67, ...},
  {"id": "T7756840863",
   "amount": 33.8, ...},
   ...
]

{
  "id": "T7756880964"
}

{
  "items": [
    {"id": "T7756880964",
     "amount": 456.67, ...},
    {"id": "T7756840863",
     "amount": 33.8, ...},
    ...
  ]
}

{
  "id": "T7756880964",
  "amount": 456.67, ...
}

{
  "items": [
    {"id": "T7756880964",
     "amount": 456.67, ...},
    {"id": "T7756840863",
     "amount": 33.8, ...},
    ...
  ],
  "totalItems": 123
}

Atomic data and array are
nonextensible data envelopes.

Objects are extensible
data envelopes.

Response to
“transfer money”

[
  "T7756880964",
  "T7756840863",
  ...
]

[
  {"id": "T7756880964"},
  {"id": "T7756840863"},
  ...
]

[
  {"id": "T7756880964",
   "amount": 456.67, ...},
  {"id": "T7756840863",
   "amount": 33.8, ...},
   ...
]

Response to
“list transfers”

Returning full resource instead of ID

Adding pagination metadata

Figure 9.15   Choosing extensible data envelopes

What do you think will happen if the transfer money goal just returns the money transfer’s 
ID, such as "T775688964", as a raw string? At first, consumers might be puzzled because 
they get a response whose Content-type is text/plain instead of the usual application/ 
json or application/xml used in all the other goals. That’s awkward, but they might 
get used to it … until the Banking Company decides to return the entire resource that 
was created in order to avoid many subsequent calls to the list transfers goal. Instead 
of a text/plain response containing a raw string, they now get an application/json 
response containing an object. That’s a breaking change. If the response had been an 
object containing an id property from the start, adding the other transfer properties 
wouldn’t be a problem at all. The same goes for the list transfers goal returning a list of 
transfer IDs as strings.

Speaking of lists, returning one of those is not a good idea either. What would hap-
pen if metadata had to be added in order to provide information about pagination, 



 241Designing APIs with extensibility in mind

such as the total number of items? It’s a breaking change, again. The way to avoid that is 
by encapsulating the list in an items property inside an object.

So, as you can see, all high-level data (the resources in a REST API) must be envel-
oped inside an object to ensure extensibility and lessen the risk of breaking changes. 
But what about the data inside this envelope? As figure 9.16 shows, you should beware 
of Booleans and provide self-descriptive data.

"status": "EXECUTED"

"status": {
  "code": "EXECUTED",
  "label": "executed",
}

"status": "EXECUTED"

"status": "VALIDATED"

"executed": true,
"validated": true"executed": true

"status": {
  "code": "VALIDATED",
  "label": "validated",
}

"status": {
  "code": "POSTPONED",
  "label": "postponed"
}

"executed": true,
"validated": true,
"postponed": true

A string (or number) is extensible.

Better to provide self-descriptive data

A Boolean is not extensible.

Figure 9.16   Choosing types wisely and using self-descriptive data

When a money transfer is created using the transfer money goal, it is not executed imme-
diately. In order to provide information about this transaction, there’s an executed Bool-
ean property that is true when the money transfer is executed and false otherwise. 
What happens if a new state is introduced?

Let’s say that some money transfers need to be validated before execution for some 
reason. How do we handle this? We can add a validated Boolean property to signify 
this. But then what happens if a third postponed state is introduced? Should we add 
another Boolean property? Adding these new properties in a response does not intro-
duce a breaking change, but consumers won’t be aware of these new states if they don’t 
update their code.

To avoid adding multiple Boolean status properties, we can instead add a single  
status property. This allows us to add new statuses as needed without adding new prop-
erties. This status could be a number or a string. Note that a Boolean is less extensible 
than a number, which is less extensible than a string. But as you saw in section 9.1, adding 
values to an enum could provoke a breaking change. Making the status a self-descriptive 
object with a code and an easily interpretable label might lessen this risk.

So choose your property types carefully in order to ensure extensibility, and always 
think about providing self-descriptive data in order to lessen the risk of breaking 
changes. All this works only if a single property is sufficient to replace multiple ones. 
Figure 9.17 shows what to do when it is not.



242 chapter 9 Evolving an API design

"events": [
  { "date": "2018-12-22",
    "status": "EXECUTED"},
  { "date": "2018-12-21",
    "status": "VALIDATED"},
  { "date": "2018-12-21",
    "status": "CREATED"}
]

"creationDate": "2018-12-20",
"executionDate": "2018-12-22",

"creationDate": "2018-12-20",
"executionDate": "2018-12-22",
"validationDate": "2018-12-22"

"events": [
  { "date": "2018-12-22",
    "status": "EXECUTED"},
  { "date": "2018-12-21",
    "status": "CREATED"}
]

Grouping similar data into
a list is more extensible.

Potential
breaking change

New type of event
added seamlessly

Figure 9.17   Grouping similar data in a list

A money transfer has creationDate and executionDate properties, corresponding to 
the dates when it was created and then executed. To provide information about the 
new validation state you have just seen, a validationDate property could be added. 
But then the same problems we have just seen would arise. These different dates could 
be replaced by an events list property, its elements each consisting of a date and a 
status (EXECUTED for the execution date, for example). Adding new dates to the list is 
quite simple; and, of course, the status could be provided in a self-descriptive format.

If the properties are similar, always consider whether you can put them into a list, 
possibly using self-descriptive data, which will facilitate the addition of elements and 
lessen the risk of breaking changes. Speaking of self-descriptive formats that lessen the 
risk of introducing breaking changes, figure 9.18 shows how we can use standards to 
design extensible APIs.

recurringPeriod:
  type: string
  enum:
    - MONTHLY
    - QUARTERLY

recurringPeriod:
  type: string
  description: |
    ISO 8601 duration
    examples:
     - P1M (monthly)
     - P3M (quarterly)
     - P1W (weekly)

recurringPeriod:
  type: string
  enum:
    - MONTHLY
    - QUARTERLY
    - WEEKLY

Breaking change due to
proprietary nomenclature

Standard natively handling a
wide range of self-descriptive values

Figure 9.18   Using standards and a wider range of self-descriptive values

A proprietary nomenclature could be used to describe a recurring money transfer 
period. The values could be ready-to-use ones like MONTHLY or QUARTERLY, but adding a 
new value such as WEEKLY would inevitably introduce a breaking change. This approach 
is also quite rigid. What if a customer wanted to trigger a money transfer every 10 days? 
You’d have to add a new value. Using the ISO 8601 duration format might solve the 
problem. It can describe any duration using a simple format; for example, P1M corre-
sponds to MONTHLY and P10D corresponds to 10 days.



 243Designing APIs with extensibility in mind

In a similar manner, you’ve already seen the benefits of using ISO 4217 currency 
codes to facilitate not only understanding but also extensibility. If the Banking API 
needs to manage new currencies, consumers will be able to understand these eas-
ily because they understand ISO 4217. So using standards and a wider range of self- 
descriptive values instead of a finished list facilitates extensibility and lessens the risk of 
breaking changes.

9.3.2 Designing extensible interactions

Postel’s law states

“Be conservative in what you do, be liberal in what you accept from others.”1

Postel's law (Robustness principle)

Applied to API design, the robustness principle could be understood as “Be consistent 
in what you return and try to avoid errors.” You saw how to be consistent and ensure 
extensibility regarding the data returned by an API in section 9.3.1, so let’s focus on 
errors.

Concerning error data and being consistent in what we return, we can apply what we 
have learned in order to be as generic as possible. You saw in section 5.2.3 that to pro-
vide informative feedback, we can type errors as shown in the following listing.

Listing 9.2  An informative error message

{
  "errors": [
    { "source": "amount",
      "type": "MISSING_MANDATORY_ATTRIBUTE",
      "message": "Missing mandatory amount" }
  ]
}

Because this type is generic, we can reuse it for another property that becomes man-
datory. If the type were MISSING_AMOUNT, we would not be able to reuse it and would 
instead be forced to introduce a new type of error that consumers would not be able 
to interpret without updating their code. In general, the more generic the type values 
are, the more extensive the error feedback is.

As for trying to avoid errors, what would happen if a consumer provided an unknown 
test=2 parameter when requesting to list transfers? The API could be strict and return 
an error saying, “Sorry, we do not understand the test parameter.” Providing infor-
mative error feedback is consumer-friendly, but the API could also simply not take this 
unknown parameter into account, process the request, and return a result. That is still a 
consumer-friendly design, but also an extensible one. Indeed, if this test parameter had 
actually existed in a previous version, non-updated consumers might still send it, and 
it would bother them that their queries now trigger some unexpected error. Note that 
works only if ignoring test actually has no negative side effect on the consumer side.

1 This is often reworded as “Be conservative in what you send, be liberal in what you accept.”



244 chapter 9 Evolving an API design

Let’s consider some other types of errors. What should the Banking API do if a con-
sumer sends a pageSize=150 parameter with a list transfers request, but the maximum 
size of a page is 100? For the same reasons, the API should not return an error but a page 
of 100 elements. Then, if one day (perhaps for performance reasons) the maximum 
size is reduced to 50, no consumers will be bothered. The pagination metadata should 
provide all needed information in order to let consumers seamlessly use the modified 
goal; but if necessary, some warning metadata could be added along with the response 
using the same format as errors to signify the modifications made to the requests.

And what should the Banking API do if a consumer sends an amount of 15000, which 
is above the maximum transfer amount of $10,000 (regardless of source account bal-
ance and owner privileges)? Should we trigger a $10,000 money transfer instead of a 
$15,000 one? Obviously not! As API designers (and implementers), we should try to 
avoid returning errors, but not at all costs.

As you can see, this is the implementation’s business. But as an API designer, you’ll have 
to define a policy regarding errors and unknown or invalid parameters (query parame-
ters, headers, or properties in bodies). Will you not take the issue into account and use a 
default value to lessen the risk of breaking changes? Or will you be strict and return errors 
to be more secure and favor consumer accuracy (if they break, they will update)? Your 
approach will depend on the context of the API and the context of each goal.

9.3.3 Designing extensible flows

How you design each goal in a flow and the flows themselves will impact the extensi-
bility of your API. The Banking API was initially created for the Banking Company’s 
mobile application. With this application, end users making a money transfer have to 
select a source account, then a destination, and then provide an amount.

From the API’s perspective, this means using the list sources goal to list possible 
sources of a money transfer. After that, list destinations can be used to get the accounts 
and registered beneficiaries that can be used as the destination for a money transfer 
using a specific source’s ID. Finally, the transfer money goal can be used to make the 
transfer with a provided amount and source and destination IDs.

Now suppose some people within the Banking Company decided to build a money 
transfer tool for the back office. They were quite happy when they discovered that there 
already was a money transfer API. In their implementation, they already had the source 
and destination account numbers, so they simply called the transfer money goal using 
these values. Unfortunately, all their calls ended with an “Unknown source account” 
error.

After some investigation, they realized that the transfer money goal expected source 
and destination IDs, which were not regular account numbers. They had to call list 
sources to find the ID corresponding to their source account number and then follow 
the same flow as in the mobile application. What a pity. If the flow had not been so 
focused on the mobile application use case, and if the various goals involved in the 
money transfer flow had used regular account numbers, it would have been far simpler.



 245Summary

As you can see, extensibility in design is not only about ensuring that modifications 
can be done with a low risk of breaking changes. Extensibility is also about ensuring 
that the API can be used in a wide range of use cases, not only the one it was originally 
created for.

Always try to see beyond the specific use case you are working with and ensure that 
the flows you design, especially UI flows, are not correlated to a specific process. Also, 
try to design each step so it can be used in a standalone way. Choosing widely adopted 
inputs and outputs, especially IDs, helps to achieve that.

9.3.4 Designing extensible APIs

Last but not least, how can we ensure extensibility at the API level? What will happen 
if the Banking API grows to provide several dozen goals covering various topics such 
as account information, banking services subscriptions, money transfers, and personal 
finance management, among others? Obviously, breaking changes will occur, even if 
all the design principles we have seen so far are applied. Why? Simply, because it is big!

The bigger an API gets, the higher the number of evolutions, and therefore, the 
higher the risk of breaking changes. That’s quite simple to understand, and the solu-
tion is obvious: instead of building big APIs, we should build smaller ones.

It’s not always that simple to define relevant groups of goals that can be combined 
easily, however. This is not specific to API design; it’s a common challenge in software 
design. Hopefully, if you remember section 7.2.3, you already have the basics that can 
help you to organize goals and split an API into smaller parts. You will also have to ana-
lyze each goal you add to an existing API in order to evaluate whether the goal you are 
adding should instead be part of a different API using the same principles.

Summary
¡	Each API evolution must be carefully designed in order to avoid breaking 

changes, which can cause problems not only on the consumer’s but also the pro-
vider’s side.

¡	API designers might have to live with previous poor design choices in order to 
avoid introducing benevolent but breaking changes.

¡	Depending on the context, breaking changes might be acceptable (for example, 
private APIs with consumers under the organization’s control).

¡	API versioning is a design + implementation + product management matter.
¡	Designing APIs with extensibility in mind eases the design of evolutions, lessens 

the risk of breaking changes, and favors API reusability.



246

10Designing a 
network-efficient API

This chapter covers
¡	Web API network communication concerns

¡	Using compression, caching, and conditional 
requests

¡	Optimizing API design to make fewer calls and 
exchange less data

So far, we’ve focused on designing APIs that provide usable, secure, and evolvable 
representations of goals that make sense for consumers and hide internal concerns. 
But in reality, we’ve learned to design ideal laboratory APIs, ignoring most of the 
context in which they are used— especially the network context.

Network communication efficiency is an important topic that any API designer 
must be aware of. Indeed, communication efficiency is important in our day-to-day 
lives. When you have a conversation with someone, either by speaking or by instant 
message or email, sometimes you want the full story to get all the possible back-
ground information, and sometimes you want the person you communicate with 
to get straight to the point and tell you only the bit you need to know. If you get the 
full story, but you wanted just a specific bit of it, you will have to waste time listening 



 247Overview of network communication concerns

10
to or reading all of it to get what you want. This can be frustrating, and it can even have 
serious consequences, like missing out on an opportunity.

Choosing the wrong way of communicating information can have negative impacts 
in our daily lives. The same is true for APIs that provide inefficient network communica-
tions, as shown in figure 10.1.

On mobile phones, network-inefficient APIs can have a significant impact on the devel-
oper experience, making it hard or even impossible to consume these without slowing 
the user interface and draining the device’s battery, which also negatively impacts the 
user experience. Even with modern devices and networks, this is less of a concern than 
it once was for server consumers. Such inefficient APIs can have a significant impact on 
network bandwidth usage. This can be problematic for on-premise infrastructures with 
limited capacity. There can be impacts on the provider side too. Providers can face 
network congestion on on-premise infrastructures or excessively large bills on cloud 
infrastructures.

Network communication efficiency can be a major concern, and as an API designer, 
you contribute to it. API designers must have some basic knowledge about network 
communication concerns. This includes an understanding of how to avoid or solve net-
work problems by taking advantage of the API’s underlying protocol or by creating APIs 
that are network-efficient by design.

10.1 Overview of network communication concerns
This book is about remote APIs and web APIs, in particular. In section 1.1, you saw that 
such APIs allow consumers to interact with a provider over a network. We may forget 
it, but if network capabilities keep growing and growing, network communication effi-
ciency can still be an important matter on both sides of the wire in certain contexts. 

Startup
mobile

application

3G network
Wired network Financial company

server
application

Banking API

Battery drain
Slow UI

On-premises network
congestion

On-premises network
congestion

Cloud network costs

Figure 10.1   Network concerns influence API design



248 chapter 10 Designing a network-efficient API

As an API designer, you must be aware of network communication concerns because 
they can have an impact on your designs. To investigate this topic, we will analyze from 
a network perspective how the Awesome Banking App, a mobile application running 
on a mobile phone connected to a not-so-good 3G network, uses a slightly modified 
version of the Banking API.

10.1.1 Setting the scene

Let’s set the scene to begin. Figure 10.2 shows the goals provided by the Banking API, 
and figures 10.3 and 10.4 show how the three different screens of the Awesome Bank-
ing App use all of these.

GET List owners

Banking API

/owners

Lists account owners the end user has access to. One of them corresponds to the user; the others
may be family members or associates. Returns summarized information for each one.

GET Read owner/owners/{ownerId}

Gets owner’s detailed information.

GET List owner’s accounts/owners/{ownerId}/accounts

Lists owner’s accounts the end user has access to. Returns summarized information for each one.

GET Read account/accounts/{accountId}

Gets account’s detailed information.

GET List account’s transactions/accounts/{accountId}/transactions

Lists account’s last three months of transactions. Returns summarized information for each one.

GET Read transaction/transactions/{transactionId}

Gets transaction’s detailed information.

Figure 10.2   The Banking API

The dashboard screen (figure 10.3) shows all owners whose accounts the user has 
access to and highlights the one corresponding to the user. For each owner, it shows 
their title and name, the combined balances of their checking and savings accounts, 
and the sum of all their account transactions for both types of accounts for the last 
three months (for simplicity’s sake, we’ll assume all transactions are withdrawals).



 249Overview of network communication concerns

Banking API

Awesome Banking App

Captain
J. Kirk
(you)

Transactions $1,203.45

Savings $3,121.05

Dr.
L. McCoy

Savings $2,203.45

Officer
Spock

Savings $2,203.45

Captain James Kirk’s accounts

51 W First Street, Riverside, IA, 52327,
USA, Earth

Balance $1,101.05

Checking A2
Balance $1,102.40

Balance $3,121.05

Checking A1  $1,101.05
Owned by Captain J. Kirk, Dr. L. McCoy,

Officer Spock, and Ensign P. Chekov

Barber Shop
2018-12-23 $20.00

Enterprise Bar
2018-12-23 $50.00

Barbrarian
2018-12-22 $12.00

Uniform Shop
2018-12-21 $40.05

Khan’s Pizza
2018-12-21 $40.00

Dashboard Owner‛s
accounts list

Account information
and transactions

List
owners

Read
owner

List owner‛s
accounts

Read
account

List account‛s
transactions

Transactions $890.05
Checking A1

Savings A3

Read
transaction

List owner‛s
addresses

Checking $2,203.45

Checking $1,802.75

Transactions $903.35

Checking $2,203.45

Transactions $1,203.45

Transactions $113.40

Transactions $200.00

Figure 10.3   The Awesome Banking App consumes the Banking API’s goals.

List
owners

Read
owner

List owner’s
accounts

Read
account

Read
owner

List owner’s
addresses

List owner’s
accounts

List account’s
transactions

Read
account

List account’s
transactions

Read
owner

Read
account

List account’s
transactions

Read
transaction

x3 x9x3 x9

x3 x3

x4 x25

65 API
calls

Dashboard

Owner’s
accounts list

Account
information

and transactions

Figure 10.4   The Awesome Banking App makes too many calls.

To do that, it first lists owners to get their IDs and names and the user flag, which indi-
cates which owner corresponds to the user. For each owner listed, it uses the read owner 
goal to get their title. Then it lists accounts to get the IDs and balances of each owner’s 
accounts. Next, it uses the read account goal to get the account type for each account. 
And finally, it lists transactions for each account to get their amounts and sum them all.

When the user taps an owner line, the application switches to the owner’s accounts 
list screen. This screen shows the selected owner’s title, full name, home address, and 
owned accounts. For each account, it shows its type (checking or savings), ID (A1, for 
example), balance, and transaction sum for the last three months.



250 chapter 10 Designing a network-efficient API

The application begins by using the read owner goal to get the account owner’s title 
and full name. It then lists addresses to get the owner’s home address. Next, it lists 
accounts to get the IDs and balances of each of the owner’s accounts and uses the read 
account goal to get the account type for each account. And finally, it lists transactions 
for each account to get the transaction amounts and sum them.

When the user taps an account line, the application switches to the account’s detailed 
information and transactions screen. This screen shows the account type, ID, balance, 
and owner(s), which the application gets by using the read owner and read account 
goals. It then lists all the recent transactions, precisely, for the last three months, using 
the list transactions goal and retrieving the transaction ID and balance for each. And 
finally, for the last 25 transactions only, it uses the read transaction goal to get the labels 
and dates. It displays the five most recent transactions (more transaction detail infor-
mation will be fetched if users scroll through the list).

That’s many API calls—65 to be precise. Your API designer’s sense is probably already 
telling you that there is something wrong here. Indeed, the Awesome Banking App’s 
users complain that it is too slow, drains their battery, and uses too much of their data 
allowance. And it’s no better on the other side! The Banking Company providing the 
API is quite concerned about its cloud provider’s bills.

10.1.2 Analyzing the problems

Why do the Awesome Banking App’s users complain? Why is this application slow and 
inefficient? And why is the Banking Company concerned about its cloud provider’s 
bills? It all comes down to the number and frequency of network calls and the volume 
of data exchanged. In this section, we’ll analyze these problems.

Please bear in mind that what you see here is not an exact reflection of reality; it’s 
a simplified explanation of a specific use case in which all possible issues have been 
grossly emphasized in order to provide an overview of the network communication con-
cerns that API designers must consider when designing APIs. The mobile application’s 
behavior and the API design are actually pretty dumb, and obviously no one would ever 
create such an abomination— I hope!

Let’s start by decomposing an API network call made over the mobile network. Fig-
ure 10.5 shows what happens when the Awesome Banking App lists an account’s last 
three months of transactions.

The first step is to connect to the server hosting the Banking API. That consists of 
various actions involving the phone’s radio antenna, low-level network communication 

List account’s transactions (520 ms)

300 ms 20 200 ms

Sending
100-byte
request
~0 ms

Processing request
on the server

20 ms

Downloading 32 KB
response at 160 KB/s

200 ms

32 KB

<1 KB

Connecting
to server
300 ms

1

2

3

4

Figure 10.5   Decomposing an API call made over a mobile network



 251Overview of network communication concerns

initiation, and encryption. We will assume that it always takes around 300 ms, but know 
that depending on the type of mobile network, the radio signal quality and what hap-
pened before this call can take up to several seconds. This time is often called the latency.

Once the connection is established, the API request can be sent. Because it is a  
simple GET /accounts/{accountId}/transactions request, its size is only around 100 
bytes, so it takes far less than 1 ms to upload or send it to the API server. When the server 
receives the request, it has to process it, load the transactions from the database, and 
generate a JSON document. We’ll assume that this takes 20 ms, but the actual time 
depends on what is requested and the server’s capabilities.

Finally, the fourth step consists of downloading the server’s response. We’ll assume 
the generated JSON document’s size is around 32 KB, so it takes 200 ms to download 
it at 160 KB/s (which is advertised as 1.3 Mb/s). Like the latency, the download speed 
depends heavily on the type of network and the radio signal quality. The overall request 
takes 520 ms. It’s a bit long, but given the hostile network conditions, we have to live 
with that. This single request alone is not that bad, but let’s see what happens when the 
Awesome Banking App actually uses the API to populate the dashboard screen for the 
simplest use case: a user corresponding to a single owner who has a single account.

Figure 10.6 shows which API calls are made and how. To simplify the explanation, 
we will take it for granted that the network bandwidth is 160 KB/s, the latency is always 
300 ms, sending the request always takes 0 ms, and it always takes 20 ms for the server to 
process a request.

To load the data shown on the dashboard screen, the Awesome Banking App lists the 
owners whose accounts the user is authorized to view; here, it returns a single owner 
corresponding to the user. Then it reads this owner’s detailed information and lists the 

Step 3Step 1 Step 2

List owners Read owner

List owner’s accounts Read account

List account’s transactions 

4 KB

4 KB0.5 KB

Loading dashboard screen: 3 steps / 5 API calls / 1.2s

Sequential calls

Simultaneous calls
share bandwidth

3 ms300 ms 20 ms 73 ms300 ms 20 ms

7 ms300 ms 20 ms 73 ms300 ms 20 ms

248 ms300 ms 20 ms

32 KB
0.5 KB

Response downloadLatency Server processing

258 ms900 ms 60 ms

41 KB

Figure 10.6   A basic use case with a user who has access to a single account owner who owns a single 
account



252 chapter 10 Designing a network-efficient API

owner’s accounts in parallel. Once the application has gotten the list, which consists 
of a single account in this case, it reads that account’s detailed information and lists its 
transactions, also in parallel.

The whole API call chain consists of five API calls, distributed in three steps thanks 
to the parallel calls. Unfortunately, it takes 1.2 s, which is above 500 ms, the top end of 
the acceptable latency range (the time above which a human brain tolerates latency). 
And this is for a simple use case! Now let’s see how it goes with a more complex one. Fig-
ure 10.7 shows what happens for another user who has access to four owners and their 
eight accounts.

Step 2Step 1 Step 4Step 3 Step 6Step 5

List
owners

Read
owner

List owner’s
accounts

Read
account

List account’s
transactions

Step 7

Limited to four
simultaneous
connections

and 160 KB/s
total bandwidth

(40 KB/s per
connection)

2 KB 4x
1 KB

4x
32 KB

4x
4 KB

4x
4 KB

4x
4 KB

4x
32 KB

Loading dashboard screen: 7 steps / 25 API calls / 4.2s

13 100

100

100

100

25

25

25

25

100

100

100

100

100

100

100

100

800

800

800

800

800

800

800

800

More-complex
use case means

more calls,
more latency,

more data,
more time

1938 ms2100 ms 140 ms

310 KB
Response downloadLatency Server processing

x4 x4 x8 x8

Figure 10.7   A complex use case with a user who has access to four owners and their eight accounts

The app starts again by listing owners, but this time there are four of them. Because 
the mobile application is limited by the operating system to four concurrent HTTP 
connections, it reads the detailed information for each of the account owners using 
four parallel requests; after that it lists their accounts, also in parallel. Note that if the 
whole network bandwidth is 160 KB/s, each parallel request is made at a quarter of it, 
or 40 KB/s.

Next, the application reads the detailed information for the owners' eight accounts  
and their transactions in four steps of four parallel requests. So, in this case, there are 
25 API calls done in seven sequential steps, taking 4.2 s and retrieving 310 KB of data. That’s  
20 more calls and ~7.5 times more data than in the previous use case, and the whole 
chain takes 3.5 times longer. This is a very long delay, and even if the application shows 
a spinner, users will definitely get bored before the screen loads.



 253Overview of network communication concerns

Each screen the application displays can have the same kind of problems. I’ll let you 
imagine what happens on the account screen when the application has to make individ-
ual calls to get detailed information for each transaction. And it gets worse. The users 
might navigate through the application to see all of their data, and this can raise some 
other problems, as shown in figure 10.8.

Dashboard
Owner O1
accounts

list

Account
A1

Account
A2

Dashboard

Owner O1
accounts

list

Owner O1
accounts

list

Owner O2
accounts

list

Account
A3

Owner O2
accounts

list

Account
A4

90%

50%

Network calls made regularly
keep the radio up and running

and drain battery.

2 MB of data on each use
may be a problem for

users with small data plans.
No reuse of previous
API call responses

250 API calls
2 MB

Figure 10.8   An average navigation through the Awesome Banking App

The Awesome Banking App team has dug into its analytics data, and it seems that 
an average user has access to two owners and that each owner has, on average, two 
accounts. The team has also determined that these average users typically navigate 
through all their data when using the app. Unfortunately, the app does not reuse pre-
vious API call responses because it does not know if the data can be reused. Therefore, 
new API calls are made on each screen even if the data has already been retrieved. This 
results in many API calls being made (around 250 per session, on average) and a con-
siderable amount of data being exchanged (around 2 MB). Depending on how often 
users check their accounts, the Awesome Banking App could use around 60 to 90 MB 
of data per month.

Nowadays data use isn’t really a problem for most users in most countries, but that’s 
not true for all users everywhere. And for users who are traveling abroad, each KB can 
matter, because data is worth gold in that case. But beyond the data plan, the most 
annoying thing is that all the API calls made on each screen drain the device’s battery 
because they keep the radio up and running for a longer period of time. Clearly, the 
number of calls, their length, and the data volume exchanged can be of concern on the 
consumer’s side, but the same can be true on the provider’s side.

Let’s say the Banking API is hosted on the Barbrarian cloud service (which started life as 
an online book seller, but that’s another story). The API is implemented using the brand 
new serverless service called Functions. Each goal is coded independently as a function, 
and there is no more need to worry about servers, applications, and scaling. The systems 
handle everything; when calls arrive, each corresponding function is run. The pricing of 
the service is based on the number of calls received, the processing time, and the outgoing 



254 chapter 10 Designing a network-efficient API

data volume. This means that the more API calls are made, and the bigger they are, the 
more the Banking Company will have to pay. So, optimizing all that can be important and 
even vital.

These are only two examples. APIs can have different contexts than those we have 
just seen, but the network efficiency dimensions will usually resolve around these fac-
tors: speed, data volume, and number of calls. As API designers, we have to be aware of 
that and try to find a balance between the need for efficiency and an ideal design. Next, 
we will investigate how we can seek this balance and optimize network communication 
at the protocol level.

10.2 Ensuring network communication efficiency at the 
protocol level
Network communication optimization begins at the protocol level. Indeed, by taking 
advantage of the underlying protocol, it’s possible to create a network-efficient API 
without having to tinker too much with your ideal design. For HTTP-based APIs, acti-
vating compression and persistent connections can reduce data volume and latency. 
Enabling caching (letting consumers know if they can save a response to reuse it and for 
how long) and conditional requests (allowing consumers to check if the data they have is 
still fresh enough to avoid retrieving it again) can reduce not only the data volume but 
also the number of calls.

10.2.1 Activating compression and persistent connections

For HTTP-based APIs, there are two fairly common optimizations that can be done 
without impacting design: activating compression and enabling persistent connec-
tions. Once compression is activated on the Banking API server, the 310 KB of data 
retrieved for the four account owners and their eight accounts in our second use case 
can be reduced to less than 2 KB. For the Awesome Banking App running on a mobile 
phone connected to a not-so-good 3G network, this means less data and shorter calls. 
Smaller responses will be downloaded faster, and the app will not use up the end user’s 
data allowance. Most if not all consumers using a standard HTTP library can take 
advantage of this feature without having to modify anything in their code.

This server modification also benefits the consumer side. If the Banking API is 
hosted on an on-premises infrastructure, less data means less risk of network conges-
tion because the overall bandwidth used is lower and network connections will be open 
for less time. For cloud infrastructures, this simply means smaller bills.

Once persistent connections are enabled on the Banking API server, the use case 
that required 25 calls distributed in seven steps taking a total of 4.2 s can be reduced 
to 2.4 s by removing 6 × 300 ms of latency. When persistent HTTP connections are 
enabled, only the first API call will have to suffer the connection latency; the subse-
quent calls are made using the same connection. The connection stays open for a given 
number of calls or a given time, determined by the server’s configuration.

Switching to HTTP/2 can also be an option; out of the box, it offers efficient per-
sistent connections, parallel requests, and binary transport, and the icing on the cake is 
that it is backward-compatible with HTTP/1.1! From an API design perspective, using 



 255Ensuring network communication efficiency at the protocol level

HTTP/2 has roughly the same effect as activating compression and persistent connec-
tions. It is transparent and requires no modifications. In both cases, the idea is to reduce 
the latency and the exchanged data volume and, therefore, the length of the API calls.

NOTE   If API designers are not the tech leads, architects, or developers who 
usually handle these kinds of optimizations, they must be at least aware of the 
possible protocol optimizations (such as persistent connection or compres-
sion, for example) in order to propose solutions to possible network communi-
cation performance problems.

It’s important for API designers to verify with the API team whether such optimizations 
have been considered prior to modifying an existing design because of network com-
munication performance problems. Ideally, such optimizations must be done from the 
start, and optimizing communication for efficiency can have important effects on the 
design. Indeed, depending on the context, it could be wise to use different types of 
APIs and even different ways of communicating.

10.2.2 Enabling caching and conditional requests

A second way to optimize communications is simply to not communicate at all or, at 
least, to communicate less. In section 10.1.1, you saw that the Awesome Banking App 
was making many unnecessary calls because it did not reuse the responses of previous 
calls. In particular, to build the dashboard screen, the Awesome Banking App loaded 
a lot of data that could be reused when showing an owner’s accounts list. Figure 10.9 
shows the API calls made without and with response caching.

in cache for later use

Step 3Step 1 Step 2

Dashboard Owner O1
accounts

list

Cache

Faster mobile application
Data-plan- and battery-friendlier

Cheaper cloud-provider
bills

list owners read owner O1

list owner‛s O1
 accounts

read account A1

read account A2

list account A1‛s
transactions

list account A2‛s
transactions

read owner O1

list owner‛s O1
 accounts

read account A1

read account A2

list account A1‛s
transactions

list account A2‛s
transactions

78 KB

1a

Step 1 Step 2

2b

2a

77 KB

Without cache:
900 ms

6 unnecessary
calls

Not a single API call made!
Loading data from cache.

rectangle

Without cache:
900 ms delay

6 unnecessary calls
77 KB unnecessary data

rectangle

With cache:
0 ms delay

6 calls avoided
77 KB data avoided

1b

Cache

Clicking to get owner O1‛s
accounts list

Owner O1

but responses are stored1aSame calls as in

Figure 10.9   Reducing the number of calls with caching



256 chapter 10 Designing a network-efficient API

The scenario at the top of the figure shows a totally unoptimized Awesome Banking 
App that does not reuse API call responses. In the scenario at the bottom of the fig-
ure, the application caches the responses of all the requests made on the dashboard 
screen. By doing so, it avoids six API calls when showing an owner’s accounts list screen 
because it can get the needed data from the cache. This is good for the Awesome Bank-
ing App and its users: the application reacts faster when going from the dashboard 
to the accounts list screen, and it uses less of the network, the battery, and the data 
plan. It’s also good for the Banking Company that provides the API; by avoiding the six 
unnecessary API calls in this scenario, the traffic to the Banking API is cut by 46% for 
calls and 50% for data volume.

As you can see, caching can be a great help in making network communications 
more efficient. This is what any mobile developer would do without even thinking 
about it. Consumers can choose to cache any of an API’s responses, but the API can 
help them do it correctly and efficiently. The API designer is responsible for determin-
ing what data should be cached and for how long. Figure 10.10 shows how this can be 
done using the HTTP protocol.

GET /accounts/A1
If-None-Match: "z567dff"

GET /accounts/A1
If-None-Match: "z567dff"GET /accounts/A1

200 OK
Cache-Control: max-age=300
ETag: "x098trg"

{"balance": 202.3, ...}

/accounts/A1

2018-12-22 15:05:03

{"balance": 235.6, ...}

z567dff

15:00:03
Use returned data
Store data in cache

Time

200 OK
Cache-Control: max-age=300
ETag: "z567dff"

{"balance": 235.6, ...}

AccountA 1
$235.6

2018-12-22 15:08:33

304 Not Modified
Cache-Control: max-age=60
ETag: "z567dff"

Cache

Account A1
$235.6

Cache

Account A1
$235.6

Cache

Account A1
$202.3

Cache

2018-12-22 15:14:14

{"balance": 202.3, ...}

x098trg

15:02:33
Use cached data

15:07:33
Cache expired

Conditional API call
Use cached data

Refresh expiration date

15:09:14
Cache expired

Conditional API call
Use returned data

Refresh cached data

Modified?Data will expire in
5 minutes

(300 seconds)
No!

Modified?

Yes!

Key

Expiration

Value

ETag

Figure 10.10   Using the HTTP protocol’s caching features



 257Ensuring network communication efficiency at the protocol level

When the Awesome Banking App gets the first account’s information with a GET /
accounts/A1 HTTP request, the API returns a 200 OK response along with the data 
and the Cache-Control and ETag HTTP headers. The Cache-Control header’s value is 
max-age=300, which means that this response can be cached for 300 s (5 min). So if the 
application needs to show this account’s data again in the next five minutes, it will use 
the cached response instead of making a call to the API.

Once the five minutes have passed, the cache has expired; therefore, the applica-
tion will have to make another GET /accounts/A1 HTTP request if it needs the first 
account’s information again. Rather than sending the exact same request as the first 
time, however, it can send a conditional request that basically says, “Give me account 
A1’s data only if it has been modified.” This is done by using the z567dff ETag value 
returned by the first call. An If-None-Match: "z567dff" header is sent along with the 
second request.

When the Banking API server receives the request, it uses the z567dff value to check 
if the account’s data has been modified. This value describes the state of the resource 
that was sent with the first request. It could be a hash of the data, a date or a version 
number, or any other value that allows the server to know which version of the resource 
was provided earlier. Consumers do not need to know what this value actually is.

If the data has not been modified, the server returns a 304 Not Modified response 
without any data and, therefore, avoids loading data unnecessarily. The application 
updates the cache expiration date, which can be different from the first call, thanks 
to the Cache-Control header returned with the 304 response. The ETag header is not 
modified because the data has not changed.

The same request made later might get a 200 OK response, which says, “Yes, the 
data has been updated, here it is.” This response contains the updated data along 
with the Cache-Control and ETag headers. In our example, the Cache-Control value 
is max-age=300, as before, but the ETag value is now x098trg. Its value has changed 
because the data of the resource has changed.

If the application only wants to know if the first account’s data has changed but does 
not actually want to load the new data, it can send a HEAD /accounts/A1 request instead 
of GET /accounts/A1. The HEAD HTTP method is identical to GET except for the fact 
that the server does not return the resource content, only the headers.

REST constraints: Caching
The REST architectural style states that a response to a request must indicate if it can be 
stored (so a client can reuse it instead of making the same call again), and for how long. 
This is definitely a must have for any API to ensure that consumers will not have to make 
unnecessary calls and also to ensure that providers do not send too many resources 
for nothing, but return data that consumers already have. We’ve only seen a few of the 
possibilities of HTTP caching here; if you’d like to learn more, there is a dedicated RFC on 
that subject: RFC 7234 (https://tools.ietf.org/html/rfc7234).

 

https://tools.ietf.org/html/rfc7234


258 chapter 10 Designing a network-efficient API

By returning and accepting some metadata, but also by providing ways of getting only 
that metadata without the data, an API can enable the caching of its responses and 
propose conditional requests that greatly optimize network communications by reduc-
ing the number of calls and the volume of data returned. Caching also guarantees a 
certain freshness and accuracy of the data.

If your chosen protocol/API type provides these features natively, don’t hesitate 
to use them. Be warned, however, that just because a response from the API can be 
cached, this does not mean that consumers will actually cache it. Furthermore, cach-
ing features might not always be available (for example, at the time of this book’s 
writing, the gRPC framework does not provide these features). In such cases, if you 
decide caching is really important, you have two options. The first one is to recon-
sider your choice of protocol and API type; check if it was really the better one accord-
ing to the context. The second is to recreate equivalent features in your API at the risk 
of providing a solution that is so custom or unusual (or inefficient) that consumers 
don’t use it at all.

When designing an HTTP-based REST API, caching seems relatively simple; we 
only need to add the appropriate HTTP method, status code, and headers to the API 
description. But there’s a little more to it than that. Where does the 5-minute cache 
duration come from? Why not 15 minutes or 2 days? Why is caching even allowed? The 
tricky thing about caching is that the caching possibilities must be evaluated for each 
goal and, more precisely, for each property returned by a goal.

10.2.3 Choosing cache policies

The data returned when a consumer requests an account’s information might be its 
creation date, its name, and its balance. The creation date never changes. The name 
could change, but this rarely happens. In contrast, the balance is updated whenever 
a transaction occurs for that bank account. Because balance is the property that will 
change more often than any other, it is its time to live that determines the cache dura-
tion of the bank account data returned by this goal. So, how do we determine the cor-
rect cache duration value? Well, it depends.

How long data can be cached can depend on how often it is updated. In the begin-
ning, the Banking Company only updated an account’s transactions list and, therefore, 
the account balance a few times per day. So, a long caching duration of one hour was 
practicable. But the Banking Company has now improved its system: the transactions 
with other banks are still processed in batches a few times per day, but now all internal 
transactions are processed in real time. Therefore, in order to provide accurate data, 
the appropriate cache duration should be determined not only by how the banking sys-
tem works but also by how people actually use their bank accounts.

The Banking Company has determined that statistically, a five-minute cache offers 
a good balance between accuracy and efficiency when getting account information. 



 259Ensuring network communication efficiency at the design level

In the near future, when all interbank communications will be done in real time and 
people will be used to always getting their banking information that way, caching data 
might not be possible at all. In that case, the Cache-Control header’s value will be "0", 
but at least it will still be possible to make conditional requests using the ETag value in 
order to avoid loading unchanged data.

How data can be cached can also depend on other matters. For example, presenting 
an inaccurate balance, even through a third-party application, can cause some prob-
lems from a legal or security perspective. Therefore, the Banking API’s documentation 
might state that consumers must use fresh data. As with real-time balance information, 
in such a scenario, the API would provide a Cache-Control header with a value of "0" 
but can still make use of conditional requests.

Legal or security considerations might also prevent consumers from storing data, 
or there might be a middle ground where caching is allowed but not storage. In this 
scenario, the Cache-Control value could be "60", no-store", meaning data can 
be cached in a volatile storage for 60 s but cannot be stored in a non-volatile storage 
(no-store).

In a nutshell, as you’ve already seen in section 8.4.1, you might have to get some 
advice from the security people and the legal department when designing your API. 
So, although enabling conditional requests is quite simple, in order to be efficient and 
accurate some work is required to determine whether caching is actually possible and, 
if so, what is the best cache duration to choose.

These kinds of optimizations can be built in from the beginning, but they can also 
be implemented when the API is already being consumed without much impact on the 
interface contract or much work for the API designers. But API designers have far more 
responsibilities than just checking whether compression and persistent connections 
are activated and if consumers are actually using the cache. Indeed, the API design 
itself can be the cause of inefficient network communication between consumers and 
providers.

10.3 Ensuring network communication efficiency at the 
design level
Just because communication between consumers and providers can be optimized at 
the protocol level doesn’t mean we can be careless at the design level. Fundamentally, 
the design of an API dictates the number of calls consumers need to make to achieve 
their goals and the amount of data exchanged between consumers and providers. 
By applying what you learned in previous chapters, you can design APIs that provide 
accurate goals, optimized data granularity and organization, and enough flexibility to 
ensure communication efficiency. As a reminder, we will work on the Banking API, 
whose current state is shown in figure 10.11.



260 chapter 10 Designing a network-efficient API

GET List owners

Banking API

/owners

Lists account owners the end user has access to. One of them corresponds to the user; the others
may be family members or associates. Returns summarized information for each one.

GET Read owner/owners/{ownerId}

Gets owner’s detailed information.

GET List owner’s accounts/owners/{ownerId}/accounts

Lists owner’s accounts the end user has access to. Returns summarized information for each one.

GET Read account/accounts/{accountId}

Gets account’s detailed information.

GET List account’s transactions/accounts/{accountId}/transactions

Lists account’s last three months of transactions. Returns summarized information for each one.

GET Read transaction/transactions/{transactionId}

Gets transaction’s detailed information.

Figure 10.11   The Banking API goals

This design is quite easy to understand and seems, at least on the surface, relevant 
and well organized. But from a network communication efficiency perspective, it’s far 
from perfect. Let’s take a look at some strategies we can use to optimize the number of 
calls and the volume of data exchanged when the Banking API is used by the Awesome 
Banking App or any other consumer.

10.3.1 Enabling filtering

Providing filtering options is a good way to reduce the exchanged data volume because 
it allows consumers to get just what they really need. The list transactions goal always 
returns the last three months' worth of transactions, sorted from the latest (most recent) 
to the earliest (least recent). In the Awesome Banking App context, such data depth 
is needed when showing the cumulative sum of the transaction amounts on the dash-
board and accounts list screens, even if users will probably never scroll through all these 
transactions. Thanks to caching possibilities, we can reuse this huge transactions list on 
the account screen. But unfortunately, when the cache expires, the application has to 
reload all three months' worth of transactions again, even if only one transaction has 
been added. It looks like this goal was tailor-made for the specific needs of the Awesome 
Banking App’s dashboard and accounts list screens, but the result is not really efficient.

You learned in section 6.2.3 that always providing all the data might not be a good 
idea because consumers might not need all the data in all situations. Proposing filtering 
options makes an API more usable and more efficient by allowing consumers to request 
only the data they actually need— and this is what we desperately need here. Every byte 
saved improves communication efficiency in a hostile network context.



 261Ensuring network communication efficiency at the design level

Based on what you have learned, you could add page and size query parameters to 
provide offset-based pagination features, but note that the goal can still return all three 
months' worth of transactions without these parameters to stay backward-compatible if 
the API is already being consumed. It seems that the account screen could make good 
use of this feature. A GET /accounts/A1/transactions?page=1&size=25 request would 
return only the latest 25 transactions for the A1 account. If users scroll down, the applica-
tion can request the next page with GET /accounts/A1/transactions?page=2&size=25. 
But what happens if new transactions occur between these two requests? Some transac-
tions from the first page will shift to the second one, so the second request will return 
already retrieved transactions. It will be up to the consumer to check if it has already got-
ten each transaction and to ignore the duplicate ones.

This might not happen that much, but it can lead to providing inaccurate informa-
tion, which is not tolerable for the Banking Company. This way of paginating transac-
tions does not work well in this use case and context, and it doesn’t solve the problem of 
reloading all three months' worth of transactions on the other screens. So what kinds of 
filters could we provide to solve this problem?

Consumers, whoever they are, basically need to be able to retrieve any transactions 
before or after a selected one to get exactly the data they want. Figure 10.12 shows how 
this could be done using cursor-based pagination.

GET /accounts/A1/transactions HTTP/1.1
host: api.bank.com

GET /accounts/A1/transactions?after=5601 HTTP/1.1
host: api.bank.com

200 OK
Content-Length: 220

{
  "before": "5612",
  "after": "5602",
  "items": [
    {"id": "5612", "amount": 43.4 },
    ...
    {"id": "5602", "amount": 9.99 }
  ],
  "_links": { ... }
}

200 OK
Content-Length: 32768

{
  "before": "1234",
  "after": "5601",
  "items": [
    {"id": "5601", "amount": 12.3 },
    ...
    {"id": "1234", "amount": 101.2 }
  ],
  "_links": {
    "before": {
      "href": "https://api.bank.com/accounts/A1/transactions?before=1234"
    },
    "after": {
      "href": "https://api.bank.com/accounts/A1/transactions?after=5601"
    }
  }
}

Last 3 months
of transactions
from earliest to latest

Only the new transactions
that happen after the ones

retrieved in previous request

Ready-to-use
links

Smaller data volume

Cursors (first and last transactions ids)

First request

Second request

Cache

Transactions
stored

Cache

New transactions
added to

previous ones

Figure 10.12   Cursor-based pagination to retrieve transactions



262 chapter 10 Designing a network-efficient API

The Awesome Banking App still sends an initial request to get the last three months' 
worth of transactions using GET /accounts/{accountsId}/transactions, but now 
the response contains pagination metadata. The before and after properties are cur-
sor values that can be used to retrieve the transactions before or after the retrieved set. 
Their values are the IDs of the first (latest) and last (earliest) transactions of the set, 
respectively. To only retrieve transactions that occurred after the current transaction 
set was retrieved, the application has to send a second request like this:

GET /accounts/{accountId}/transactions?after={latestTransactionId}

The after value is the last known transaction ID, or the previously provided cursor. 
Better yet, consumers can use the ready-to-use before link. Because the response to 
this request contains only the new transactions, its size is far smaller. Such a design 
greatly diminishes the volume of data downloaded by the Awesome Banking App and 
also improves response time, both because there’s less data to download and because 
the requests take less time to process on the server side.

This solution also works on the account’s transactions list screen in the unlikely event 
of users scrolling beyond the three months' worth of cached transactions. In that case, 
this request using the before link

GET /accounts/{accountId}/transactions?before={earliestTransaction Id}&size=25

retrieves the 25 transactions that took place before the one identified by earliest-
TransactionId. Providing filtering options is a good strategy to lessen the volume of 
data exchanged and improve usability. But in order to provide accurate and efficient 
filters, it’s important to consider the nature of the data and the contexts of use.

10.3.2 Choosing relevant data for list representations

Which data you choose to return in lists can have a big impact on communication effi-
ciency. The Banking API is not as efficient as it could be because it does not provide all 
the relevant data in lists. As shown in figure 10.13, the Awesome Mobile Banking App 
shows account owners' titles and names on its dashboard screen.

If the owners' names can only be retrieved using the list owners goal, the summarized 
data does not provide the titles. To get this information, the application has to read 
each owner’s detailed information. This is an indicator of an incorrect balance between 
the summarized representation of resources, usually returned in lists, and the detailed 
one, usually returned when accessing a specific resource. By simply adding the title to 
the summarized version, we can avoid the calls to read owner.

The same goes for the list accounts goal, which does not return the account types 
and, therefore, requires extra calls to the read account goal to get this fundamental 
information. Adding the type property into the summarized representation returned 
by list accounts prevents any additional API calls.

We could modify the list transactions goal the same way, but we’ll go even further. As 
shown in figure 10.14, the account screen needs to call list transactions and then read 
transaction for each one.

Awesome Banking App

Captain
J. Kirk
(you)

Checking $2,203.45

Transactions $1,203.45

Savings $3,121.05

{
  "items": [
    {"id": "O1",
     "firstName": "James",
     "lastName": "Kirk",
     "user": true},
    ...
  ]
}

{
  "id": "O1",
  "firstName": "James",
  "lastName": "Kirk",
  "title": "Captain",
  "birthDate": "2233-03-22",
  "birthPlace": "Riverside, Iowa",
  "birthPlanet": "Earth",
  ...
}

List owners Read owner

{
  "items": [
    {"id": "O1",
     "firstName": "James",
     "lastName": "Kirk",
     "user": true,
     "title": "Captain"},
    ...
  ]
}

List owners

No need to call “read owner” now

Irrelevant summarized representation

Relevant summarized representation

Before
optimization

After
optimization

Figure 10.13   Choosing relevant summarized representations in lists



 263Ensuring network communication efficiency at the design level

The Awesome Banking App still sends an initial request to get the last three months' 
worth of transactions using GET /accounts/{accountsId}/transactions, but now 
the response contains pagination metadata. The before and after properties are cur-
sor values that can be used to retrieve the transactions before or after the retrieved set. 
Their values are the IDs of the first (latest) and last (earliest) transactions of the set, 
respectively. To only retrieve transactions that occurred after the current transaction 
set was retrieved, the application has to send a second request like this:

GET /accounts/{accountId}/transactions?after={latestTransactionId}

The after value is the last known transaction ID, or the previously provided cursor. 
Better yet, consumers can use the ready-to-use before link. Because the response to 
this request contains only the new transactions, its size is far smaller. Such a design 
greatly diminishes the volume of data downloaded by the Awesome Banking App and 
also improves response time, both because there’s less data to download and because 
the requests take less time to process on the server side.

This solution also works on the account’s transactions list screen in the unlikely event 
of users scrolling beyond the three months' worth of cached transactions. In that case, 
this request using the before link

GET /accounts/{accountId}/transactions?before={earliestTransaction Id}&size=25

retrieves the 25 transactions that took place before the one identified by earliest-
TransactionId. Providing filtering options is a good strategy to lessen the volume of 
data exchanged and improve usability. But in order to provide accurate and efficient 
filters, it’s important to consider the nature of the data and the contexts of use.

10.3.2 Choosing relevant data for list representations

Which data you choose to return in lists can have a big impact on communication effi-
ciency. The Banking API is not as efficient as it could be because it does not provide all 
the relevant data in lists. As shown in figure 10.13, the Awesome Mobile Banking App 
shows account owners' titles and names on its dashboard screen.

If the owners' names can only be retrieved using the list owners goal, the summarized 
data does not provide the titles. To get this information, the application has to read 
each owner’s detailed information. This is an indicator of an incorrect balance between 
the summarized representation of resources, usually returned in lists, and the detailed 
one, usually returned when accessing a specific resource. By simply adding the title to 
the summarized version, we can avoid the calls to read owner.

The same goes for the list accounts goal, which does not return the account types 
and, therefore, requires extra calls to the read account goal to get this fundamental 
information. Adding the type property into the summarized representation returned 
by list accounts prevents any additional API calls.

We could modify the list transactions goal the same way, but we’ll go even further. As 
shown in figure 10.14, the account screen needs to call list transactions and then read 
transaction for each one.

Awesome Banking App

Captain
J. Kirk
(you)

Checking $2,203.45

Transactions $1,203.45

Savings $3,121.05

{
  "items": [
    {"id": "O1",
     "firstName": "James",
     "lastName": "Kirk",
     "user": true},
    ...
  ]
}

{
  "id": "O1",
  "firstName": "James",
  "lastName": "Kirk",
  "title": "Captain",
  "birthDate": "2233-03-22",
  "birthPlace": "Riverside, Iowa",
  "birthPlanet": "Earth",
  ...
}

List owners Read owner

{
  "items": [
    {"id": "O1",
     "firstName": "James",
     "lastName": "Kirk",
     "user": true,
     "title": "Captain"},
    ...
  ]
}

List owners

No need to call “read owner” now

Irrelevant summarized representation

Relevant summarized representation

Before
optimization

After
optimization

Figure 10.13   Choosing relevant summarized representations in lists

{
  "items": [
    {"id": "5501",
     "amount": 20 },
    ...
    {"id": "5634",
     "amount": 40 }
  ]
}

List transactions

Barber Shop
2018-12-23

$20.00

Enterprise Bar
2018-12-23

$50.00

Barbrarian
2018-12-22

$12,00

Uniform Shop
2018-12-21

$40,05

Khan's Pizza
2018-12-21

$40,00

{
  "id": "5601",
  "amount": 20,
  "date": "2018-12-23"
  "label": "Barber Shop",
  "type": "card",
  "category": "hairdresser"
}

Read transaction

{
  "id": "5634",
  "amount": 40,
  "date": "2018-12-21"
  "label": "Khan's Pizza",
  "type": "card",
  "category": "food"
}

Read transaction

{
  "items": [
    {"id": "5601",
     "amount": 20,
     "date": "2018-12-23"
     "label": "Barber Shop",
     "type": "card",
     "category": "hairdresser"},
    ...
    {"id": "5634",
     "amount": 40,
     "date": "2018-12-21"
     "label": "Khan's Pizza",
     "type": "card",
     "category": "food"}
  ]
}

List transactions

List returns
full representation

Transactions list on account screen

Before
optimization

After
optimization

Figure 10.14   Using full representations in lists

The summarized transaction representation returned in the list only contains an ID and 
a label; the amount and transaction type are missing. This requires the consumer to 
request detailed information about each transaction. Given the nature of transactions, 
which are usually numerous and reviewed in batches, the list transactions goal should 
return the complete representation of each transaction instead of just a summary.



264 chapter 10 Designing a network-efficient API

Why not do the same modification for other lists, like the owner’s list? The owner 
resource contains much more data, and most of it is not relevant when working with 
a list. But returning all the data in the owner’s list would increase the data volume 
unnecessarily.

Choosing a relevant representation including the most representative and useful 
properties of a resource is the best way not only to create a usable API but also to avoid 
many API calls after getting the list’s data. Although requesting a list of elements usually 
returns a summarized version of each element, this is not an obligation. There are cases 
when returning a complete representation is more efficient.

10.3.3 Aggregating data

Fine-grained resources provide a flexible and precise way to get different subsets of 
data from a concept, but they can lead to many API calls when consumers need to get 
all the data. Without taking into account the previous optimizations we have made, 
figure 10.15 shows how the Awesome Banking App loads an owner’s data.

{
  "id": "O1",
  "firstName": "James",
  "lastName": "Kirk",
  "title": "Captain",
  "birthDate": "2233-03-22",
  "birthPlace": "Riverside, IA",
  "birthPlanet": "Earth",
  ...
}

Read owner

{
  "items": [
    {"id": "AD1",
     "type": "home",
     "street": "51 W First Street",
     ...},
    {"id": "AD2",
     "type": "office",
    ...}
  ]
}

List owner’s addresses

{
  "id": "O1",
  "firstName": "James",
  "lastName": "Kirk",
  "title": "Captain",
  "birthDate": "2233-03-22",
  "birthPlace": "Riverside, IA",
  "birthPlanet": "Earth",
  ...
  "addresses": [
    {"id": "AD1",
     "type": "home",
     "street": "51 W First Street",
     ...},
    {"id": "AD2",
     "type": "office",
     ...}
  ]
}

Read owner

Captain James Kirk’s accounts
51 W First Street, Riverside, IA, 52327,

USA, Earth

Owner’s information on
accounts list screen

Addresses
sub-resource

included in owner
resource

Before
optimization

After
optimization

Figure 10.15   Aggregating subresources and the parent resource



 265Ensuring network communication efficiency at the design level

The owner’s data is split between the owner resource, available via the read owner goal, 
and the addresses resource, available via the list addresses goal. Consumers can get one 
subset or the other, but this means two API calls are needed to get two closely related 
and quite small sets of data. This is cumbersome; and in a hostile network context, we 
can’t afford this additional call. We’ve already seen a similar use case in section 7.2. A 
better design would be to include the list of addresses with the rest of the owner’s data 
so a single call to the read owner goal would return all the required data.

Taking this a step further, why not aggregate accounts and their transactions? This is 
not a good idea, however, for several reasons: there are likely to be many transactions for 
each account, consumers might want to filter transactions by type or date, and most impor-
tantly, the transactions list is regularly updated. Aggregating the list of addresses into the 
owner’s data was OK because the data volume is relatively low and the addresses do not 
change too frequently. Even if consumers need to select a given type of address, they just 
need to filter a list of 10 elements at most. And if the data changes, there won’t be too much 
data to retrieve. For account transactions, however, it’s better to keep dedicated access.

So, we can’t aggregate transactions into the account’s data, but what about trying a 
bigger aggregation on the other side of the tree? Why not get all the data except the 
transactions list with a single call? Figure 10.16 shows the impact of such an aggregation 
for the use case involving a user having access to four owners and their eight accounts.

Step 1Step 2Step 1 Step 5Step 4 Step 6

List
owners

Read
owner

List
accounts

Read
account

2 KB 4x
1 KB

4x
4 KB

4x
4 KB

4x
4 KB

6 steps / 21 API calls / 2258 ms

13 100

100

100

100

25

25

25

25

100

100

100

100

100

100

100

100

338 ms1800 ms 120 ms 58KB Response downloadLatency Server processing

1 step / 1 API call / 700 ms

Text

300 ms300 ms 120 ms

52 KB

List
(aggregated)

owners

Less latency
(-1500 ms)

Less data
( -6 KB)

Longer single call
but shorter overall time ( -1558 ms)

Aggregation + complete
representation in list

Step 3

List
addresses

4x
1 KB

25

25

25

25

Less download
time (-38 ms)

x4 x4 x8x4

Figure 10.16   Extended aggregation has an impact on communication.



266 chapter 10 Designing a network-efficient API

Retrieving all account data except the transactions in one call would mean returning 
full account representations into the accounts list, aggregating all this data into the 
owner resource along with the list of addresses, and returning a complete representa-
tion of each owner in the owners list. What do we gain by replacing these 17 API calls 
(distributed in six steps, taking 2.2 s, and representing 58 KB of data) with a single call?

The latency time is reduced from 1,500 ms to 300 ms because there is a single step 
instead of six. Surprisingly, there is also less data downloaded: 52 KB instead of 58 KB. 
This is because the duplicated data returned in summarized lists is not downloaded any-
more; the data is returned only once with the read owner or read account goal. The server 
processing time is still 120 ms; but in reality, it would probably be reduced too. The overall 
time is reduced from 2.2 s to 700 ms. Now, instead of several short calls, we have one lon-
ger one. That’s quite an impressive result; the response time is cut by almost 70%!

We could keep this new list of the aggregated owners goal and the list transactions 
goal and remove all the other goals in the Banking API. But keep in mind that the dim-
inution mostly concerns the latency time; if persistent connections are enabled on the 
API server, the aggregation might not be quite as effective.

In certain contexts, aggregation can also hinder caching possibilities. The time-to-live 
of the aggregated data is the smallest value of all the individual properties (in this case, 
the account’s balance, which can change quite often). Therefore, when the balance of a 
single account changes, consumers will have to reload a lot of data. Although this might 
not seem like a big deal, in hostile network conditions having one very long call instead 
of several shorter ones can be problematic. The longer a request lasts on a 3G network, 
the higher the risk of losing the connection, and if the connection is lost when 95% of the 
download has been completed, the consumer will have to download all the data again.

Finally, in addition to performance, aggregation can have an impact on usability. It 
might not be easy for consumers to understand how an API works when providing only 
list owners and list transactions goals. So aggregating data can be a valid solution to pos-
sible communication performance problems, but it must be done carefully with a good 
view and understanding of all the implications. When designing resources and goals, 
choose their granularity wisely to ensure the API is not only usable but also efficient.

10.3.4 Proposing different representations

By wisely using aggregation or using more complete representations in lists, we can 
design a more efficient API. But that is quite a rigid solution; all consumers might not 
need all data in all cases. How can we make our API more adaptable and provide con-
sumers with a way to choose the representation that best fits their needs?

You already know the answer to this question: we can use content negotiation, the 
capability of providing different representations of a resource, as you discovered in sec-
tion 6.2.1. As shown in figure 10.17, we could provide three different levels of represen-
tations of our resources: summarized, complete, and extended.



 267Ensuring network communication efficiency at the design level

{
  "id": "O1",
  "firstName": "James",
  "lastName": "Kirk",
  "title": "Captain"
}

{
  "id": "O1",
  "firstName": "James",
  "lastName": "Kirk",
  "title": "Captain",
  "birthDate": "2233-03-22",
  "birthPlace": "Riverside, IA",
  "birthPlanet": "Earth",
  ...
 }

{
  "id": "O1",
  "firstName": "James",
  "lastName": "Kirk",
  "title": "Captain",
  "birthDate": "2233-03-22",
  "birthPlace": "Riverside, IA",
  "birthPlanet": "Earth",
  ...,
  "accounts": [...],
  "addresses": [...]
 }

Summarized Complete Extended

GET /owners HTTP/1.1
Accept: application/vnd.bankingapi.extended+json

Three possible representations for each resource

HTTP/1.1 200 OK
Content-Type: application/vnd.bankingapi.extended+json

{
  "items": [
    {
      "id": "O1",
      "firstName": "James",
      "lastName": "Kirk",
      "title": "Captain",
      "birthDate": "2233-03-22",
      "birthPlace": "Riverside, Iowa",
      "birthPlanet": "Earth",
      ...,
      "accounts": [...],
      "addresses": [...]
    },
    ...
  ]
}

Each one corresponds to an
application/vnd.bankingapi.{representation}+json

media type that consumers can request.

Returns summarized representation
by default; extended one is requested

Extended representation
instead of summarized one

Figure 10.17   Using content negotiation to get an appropriate representation

We are used to getting a complete representation when reading a specific resource, as 
with the read owner goal (GET /owners/{ownersId}). The summarized representa-
tion provides a subset of the complete representation’s data. It’s the one we are used 
to getting in lists using the list owners goal (GET /owners, for example). Finally, the 
extended representation is an aggregation of the resource’s and its subresources' data. 
Here, it provides the complete data for the owner resource along with its subresources' 
data— the complete representations of the accounts and addresses resources.

Now, when the Awesome Banking App requests to read owners on its dashboard 
screen, it can indicate that it wants the extended representation of each owner instead of 
the default summarized one by sending an Accept header whose value is application/ 
vnd.bankingapi.extended+json. This way, it can avoid separate calls to read owners, 
list accounts, and read account.



268 chapter 10 Designing a network-efficient API

The positive and negative impacts on speed, caching, and risk of lost connections are the 
same as those you saw in section 10.3.3; but now other consumers have the option of choos-
ing to get only the summarized representation of each owner if that’s all they need. Also, 
to get an updated account balance, consumers can send a GET /accounts/{account Id} 
request along with an Accept: application/vnd.bankingapi.summarized+json header 
to get only the data required instead of the regular complete representation.

There is no standard way of handling this mechanism. The application/vnd 
.bankingapi.{representation}+json media types shown here are totally custom 
ones. Their names use the standard vnd prefix, which stands for vendor. The +json 
suffix is also standard and states that this custom media type basically is JSON data. 
Providing different representations of a resource can help to provide a more efficient 
and more flexible API, but we can do better.

10.3.5 Enabling expansion

Using content negotiation, we can design a much more flexible API providing, for 
example, three different representations of an owner. But that’s still a bit rigid. What 
if consumers only need to get summarized representations of owners along with 
their accounts but without their addresses? This isn’t possible unless we add a fourth, 
not-so-summarized, representation of an owner. Let’s try something else: a technique 
called resource expansion, illustrated in figure 10.18.

GET /owners?_embed=accountsGET /owners

{
  "id": "O1",
  "firstName": "James",
  "lastName": "Kirk",
  "title": "Captain",
  "_links": {
    "self": {
      "href": "/owners/01"
    },
    "accounts": {
      "href": "/owners/01/accounts"
    },
    "addresses": {
      "href": "/owners/01/addresses"
    }
  }
}

{
  "id": "O1",
  "firstName": "James",
  "lastName": "Kirk",
  "title": "Captain",
  "_links": {
    "self": {
      "href": "/owners/01"
    },
    "accounts": {
      "href": "/owners/01/accounts"
    },
    "addresses": {
      "href": "/owners/01/addresses"
    }
  },
  "_embedded": {
    "accounts": [
     { "id": "A1", ... },
     { "id": "A2", ... ],
     ...
    ]
  }
}

GET /owners/01/accounts
{
  "items": [
    { "id": "A1", ... },
    { "id": "A2", ... ],
    ...
  ]
}

Owner’s accounts list
embedded in owner

Requesting accounts
sub-resource expansion

Figure 10.18   Expanding the owner’s accounts subresource in the owners list



 269Ensuring network communication efficiency at the design level

On the left, we can see a list owners request (GET /owners), which returns a summarized 
representation of owners, and a list accounts request (GET /owners/01/accounts), 
which returns a summarized representation of accounts. Note that in this representa-
tion, we provide HAL links in the _link property (see section 6.3.2).

On the right, the list owners request includes an _embed=accounts query parameter, 
which means “Please embed all owners' accounts lists in the response.” The response actu-
ally includes this information in the _embedded.accounts property.1 If consumers send a 
request with an _embed=accounts, addresses query parameter, the returned owner rep-
resentations include lists for both accounts and addresses under the _embedded property. 
This _embed parameter allows us to trigger subresource expansion or embedding. Again, 
drawbacks can include longer requests, bigger responses, and caching inefficiency.

There is no standard way of proposing such a mechanism; what is presented here is 
totally custom. The query parameter could be named embed, expand, or any other name 
you choose. Depending on how the data is organized and which hypermedia format is 
used (HAL, Siren, custom, and so forth), the way the subresources are included can vary.

Resource expansion is another way of reducing the number of calls consumers might 
have to make to retrieve a data tree. However, further economies are possible through 
querying.

10.3.6 Enabling querying

If every single byte and millisecond really matters, we can make our API even more 
adaptable by letting consumers query the data they want, property by property, in order 
to reduce the data volume and, possibly, the number of API calls. For example, a GET / 
owners?_fields=id request could return a list of owners; but for each owner, the con-
sumer would get only the owner’s ID. There is no standard way of proposing such a mech-
anism with a REST API, but it’s usually done with a query parameter named fields or 
properties (or something similar), whose value is a list of property names (like title), 
or with JSON paths (like $.accounts[*].id, for example, to get all account IDs).

Alternatively, if more complex queries are needed, to reduce the data volume, you 
can consider another option: an existing query language. REST is not the only way of 
doing APIs. We’ve already briefly talked about gRPC, but here’s another style of API 
that might be of interest: GraphQL. Created by Facebook in 2012 and open-sourced in 
2015, GraphQL is

“A query language for APIs and a runtime for fulfilling those queries with your existing data.”

https://graphql.org

This section is not intended to teach you how to build GraphQL APIs; it is only meant 
to provide an example of an existing API query language that you could use to let con-
sumers query the data they want instead of creating your own. The following listing 
shows a basic GraphQL call that queries the owners list. It’s equivalent to a GET /own-
ers?_fields=id request.

1 This representation conforms to the HAL specification (https://tools.ietf.org/html/draft-kelly-
json-hal-06#section-4.1.2).

https://tools.ietf.org/html/draft-kelly-json-hal-06#section-4.1.2
https://tools.ietf.org/html/draft-kelly-json-hal-06#section-4.1.2


270 chapter 10 Designing a network-efficient API

Listing 10.1  A GraphQL API call and its response

POST /graphql
 
{
 "query": "{ owners { id } }"
}
 
HTTP/1.1 200 OK
{
  "owners": [
    {"id": "01"},
    {"id": "02"},
    ...
  ]
}

A GraphQL API call consists of a POST request on a generic graphql path. Its body is a 
JSON document that, when reading data, contains a query string property. This prop-
erty’s value is the actual GraphQL query that will be executed to retrieve data.

Don’t be fooled by the curly braces; this query is not written in JSON! The { owners 
{ id } } query states that we only want each owner’s ID. The following listing shows a 
longer GraphQL query, which goes in the query property, retrieving some additional 
data about owners and their accounts.

Listing 10.2  Retrieving some owner and account data

{
  owners {
    id
    title
    firstName
    lastName
    accounts {
      id
      balance
    }
  }
}

This request returns a list of owners containing the selected data. To do this using the 
REST Banking API (not providing aggregated data), we would need to chain multi-
ple API calls. We would first list owners with GET /owners and then list each owner’s 
accounts with a GET /owners/{ownerId}/accounts request.

Now imagine that the Banking API proposes a goal allowing us to retrieve a list of 
nearby ATMs. With a REST API, we would use a request like

GET /atms?latitude=48&longitude=2&distance=2

to get the ATMs within two miles of the specified location. But as shown in the next list-
ing, we could run two queries using a single GraphQL API call to retrieve the owners 
and their accounts as well as the list of nearby ATMs.



 271Ensuring network communication efficiency at the design level

Listing 10.3  Executing multiple queries

{
  owners {
    id
    title
    firstName
    lastName
    accounts {
      id
      balance
    }
  }
  atms (latitude: 48, longitude: 2, distance: 2) {
    address
    longitude
    latitude
  }
}

Consumers can easily select exactly the data they want and make multiple queries in a 
single call. But because GraphQL only uses the POST HTTP method, requests cannot 
be cached using HTTP’s standard caching mechanism, whereas a GET /atms?lati-
tude=48&longitude=2&distance=2 request can.

At the time of this book’s writing, GraphQL does not propose any caching mech-
anism; it is up to the consumers to guess how long they can cache data. And as with 
data aggregation, caching the response as a whole might not make sense because it 
can contain heterogeneous data with very different time-to-live values. There are other 
implications that must be evaluated before choosing such a solution; we will talk a little 
bit more about these in section 11.3.1.

Enabling data querying might be appropriate in some scenarios, but not all. It can 
reduce the volume of data transferred and the number of API calls, but at the possible 
expense of caching possibilities.

10.3.7 Providing more relevant data and goals

As you’ve just seen, the Awesome Banking App could retrieve all the data needed for 
any of its screens in a single call using an API query language. But before we consider 
changing the Banking API’s type from REST to GraphQL, we should reconsider its 
design. Indeed, inefficient communication can be a symptom of a design that does not 
fulfill consumers' actual needs.

We’ve already seen in sections 10.3.2 and 10.3.3 that our choices about resource 
granularity and what data we include in summarized representations have an impact 
not only on communication efficiency but also, more importantly, on usability. But pro-
viding a design that is both usable and network-efficient requires more than just select-
ing which data to return in lists and how to carve up resources— providing relevant data 
and goals is the key to creating such a design.

When consumers need to get information about an account, they usually need its 
type, name, balance, and transaction history. The Banking API provides all of that, 



272 chapter 10 Designing a network-efficient API

thanks to the read account and list transactions goals. But the balance of an account is 
modified every time a new transaction occurs.

Using the current design, updating this information can be done by requesting the 
latest transactions using cursor-based pagination (see section 10.3.1) or with a condi-
tional request (see section 10.2.2). If there are new transactions, consumers then have 
to read the account again to get the updated balance, even though all the other account 
data has probably not changed at all. Banking API consumers will probably never use 
the transactions list without the account’s balance.

These are definitely closely related data: the balance is based on the transaction 
amounts. As shown in the following listing, adding the updated account balance to 
each transaction could simplify this.

Listing 10.4  Adding an updated balance to transactions

{
  "items": [
    {"id": "5601", "date": "2018-12-23", "amount": 20,   "balance": 202.3,
       ...},
    {"id": "5550", "date": "2018-12-23", "amount": 20,   "balance": 222.3,
      ...},
    {"id": "5548", "date": "2018-12-22", "amount": 23.7, "balance": 246,
      ...},
    ...
  ]
}

When retrieving new transactions, consumers will now automatically get the updated 
account balance each time without having to read the account again. As a bonus, this 
modification provides interesting historical information: consumers can see how the 
balance has changed over time. Note that it is not because the account’s balance has 
been added to transactions that it should be removed from the read account account 
goal; the balance is useful in both places.

Providing relevant data also means not providing all the available data. Indeed, focus-
ing on the consumer’s perspective can help to limit data volumes (remember section 
2.4.1). In our case, the Banking API’s owner and account resources could probably omit 
a few uninteresting properties that only matter for the API provider’s implementation.

NOTE   Adding the right data to the right resources and focusing on the con-
sumer’s perspective to provide only data that’s actually relevant can improve 
both usability and network efficiency.

At the root of the Banking API resources tree organization is the accessible owners 
list; all consumers have to pass by this root to do anything. This seems appropriate for 
the Awesome Banking App, whose screens show the data with the same organization 
as the API. But that means all consumers have to list owners with a GET /accounts/
{ownerId}/accounts call to know which accounts are accessible. That could be 



 273Ensuring network communication efficiency at the design level

annoying for those who don’t really care about the account owners. But when advisors 
want to get an overview of all accounts of all their customers, it could be useful to add a 
GET /accounts to the API, which would return all the accounts that can be accessed by 
current users (whomever they are).

Also, among the owners returned by the list owners goal, one corresponds to the end 
user. With the current design, consumers only wanting to get data about the end user 
have to list owners and search for the one having the endUser flag set to true in the 
returned list. By using a magic resource ID such as me, consumers could directly read 
the end user’s information using the read owner goal with a GET /owners/me request 
without having to list owners first to determine the user’s ID.

As you can see, adding more goals providing different access to the same resources 
or more direct access can also improve usability and efficiency in different contexts. For 
example, the way the Awesome Banking App builds its main dashboard screen could 
lead to the addition of data to existing goals or even the creation of more specific goals. 
The aggregation of transaction amounts and account balances by owner could be done 
by the API’s implementation and added to the owner’s data. The aggregation of trans-
action amounts could also be added to the data returned by read account and list trans-
actions, alongside the account’s balance.

If it makes sense for other consumers, we could also consider adding a read dash-
board goal accessible via a GET /dashboards/me request that would return the data 
needed by the Awesome Banking App’s dashboard screen. If many consumers are likely 
to benefit from such a modification, it should be added to the API.

Also be aware that consumers will probably use your APIs in unexpected ways. 
Whether because of blatant holes in the initial design or because some consumers sim-
ply have ideas you would never have dreamed of, it’s wise to analyze such unexpected 
uses and modify the design as needed in order to provide the most efficient experience. 
Indeed, it’s crucial for API designers to evaluate the efficiency of their API designs.

As you saw in section 10.1.2, depending on the use case, the Banking API’s efficiency 
varies greatly: loading the dashboard data could take 5 API calls completing in 1.2 s or 
25 calls completing in 4.2 s. When evaluating communication efficiency, you must not 
think only about basic use cases. An API’s goals flows can look perfect with a very basic 
hypothetical use case but become nightmares when confronted with reality or edge 
cases. API designers must always test their designs with actual use cases in order to truly 
evaluate their efficiency.

10.3.8 Creating different API layers

Trying to optimize APIs for network communication efficiency is a good thing, but API 
designers must know when to say no. Optimizing an API design in order to provide 
efficient communication must not be done at the expense of usability and reusabil-
ity. Trying to please all consumers by making specific modifications here and there or 
adding multiple highly specific goals will probably lead to a complex API that will not 
be reusable. Fortunately, by using the various techniques described in this chapter, you 



274 chapter 10 Designing a network-efficient API

should be able to design an efficient API, and this should give you the confidence to 
push back when necessary.

If consumers really have specific needs, they should build their own APIs on top 
of the provider’s. In the mobile app and website world, such a component is called a 
BFF (not “best friends forever” but “backend for frontend”). The Awesome Banking 
App’s developer team could, for example, build a GraphQL-based BFF relying upon 
the Banking API. Doing so is quite simple; there are GraphQL libraries that can help 
developers do this without having to code much.

Providers can also provide such APIs themselves, creating a new API layer in their 
systems. Such specialized APIs are sometimes called experience APIs (regardless of their 
type— REST, GraphQL, or whatever), and their design is optimized for a specific con-
text of use from a functional or technical (network, usually) perspective.

Below the experience APIs, you might find original/not specialized APIs. These are APIs 
whose design is consumer-oriented but that are not really confined to a specific context 
of use. And below this layer, you might find system APIs providing access to core systems. 
If you remember the microwave oven example in section 2.1, such an API would give 
access to the magnetron.

In the next chapter, we will fully explore the context surrounding the API from both 
the consumer’s and provider’s sides in order to design APIs that are more fully usable 
and implementable.

Summary
¡	API designers have a role to play in network communication efficiency.
¡	The very first step of network optimization is at the protocol level, not the 

design level.
¡	API granularity and adaptability have impacts on network efficiency.
¡	Network efficiency problems can be a sign of missing or inadequate goals in the API.
¡	API design optimizations must not be done at the expense of usability and reus-

ability; providing different API layers can help to avoid such booby traps.



275

11Designing an API in context

This chapter covers
¡	Adapting communications to goals and data

¡	Considering needs and limitations of 
consumers and provider

¡	Choosing an API style based on context

In the previous chapter, we started to discover that the APIs we were designing were 
created ignoring most of the context in which they exist. We explored the network 
context and how it can impact the design of APIs. But there are other contextual 
elements to consider in order to design APIs that will actually fulfill all your con-
sumers' needs and also be implementable. As we’ve seen, designing APIs requires 
us to focus on the consumers first, but it also requires us to keep an eye on the 
provider’s side.

Do you know how the QWERTY keyboard layout was invented at the end of the 
19th century? The most common story is that it was created to solve a mechanical 
problem. On a typewriter, letters are mounted on metal arms that can clash and 
jam if two neighboring keys are pressed at the same time or in rapid succession. 
To avoid this mechanical problem and allow users to type faster, commonly used 
letter pairs were placed far away from each other. This story, if true, means that the 



276 chapter 11 Designing an API in context

QWERTY design was influenced by internal concerns. But according to Koichi Yasuoka 
and Motoko Yasuoka from Kyoto University1

“The early keyboard of Type-Writer was derived from Hughes-Phelps Printing Telegraph, 
and it was developed for Morse receivers. The keyboard arrangement very often changed 
during the development, and accidentally grew into QWERTY among the different 
requirements. QWERTY was adopted by Teletype in the 1910’s, and Teletype was widely 
used as a computer terminal later.”

Koichi Yasuoka and Motoko Yasuoka

According to this research, the design was in fact influenced by the context in which 
typewriters were used. Regardless of its origin, the funny thing is that this relic of the 
past is still widely used today. I have inspected my smartphone and did not find any 
metal arms behind its touchscreen; but in most countries, Latin or Roman alpha-
betic digital keypads still use the QWERTY layout or their local version, like AZERTY 
in France, for example. Even if does not make sense anymore, people are used to it, 
and the few who dared to try to change their habits were not really successful. So how 
objects are built and how they work, how they are used and what their users are used 
to, can influence their design, and the same goes for APIs, as shown in figure 11.1.

Underlying implementation and process

Startup
mobile

application

3G network
Wired network Financial company

server
application

Banking API

Automatic
controls

Execute
transfer

Manual
controls

Amount below $50,000

POST method
XML and ISO 20022

only!

I’m used to
simple JSON

Network is not the only
contextual element

influencing API design

What the API deals with or
what happens under the hood

may influence API design.

Habits or limitations may
influence API design.

International money transfer

Figure 11.1   Provider and consumer contexts influence API design.

While most developers might be used to consuming JSON-based APIs, taking full 
advantage of the HTTP protocol, there are dark corners of the software industry 
where XML still rules, and POST is the only possible HTTP method. The bank-
ing industry is used to ISO 20022 standard messages, which could be considered 

1 Koichi Yasuoka and Motoko Yasuoka, “On the Prehistory of QWERTY,” Kyoto University, March 2011 
(https://doi.org/10.14989/139379).

https://doi.org/10.14989/139379


 277Adapting communication to the goals and nature of the data

complex and not user-friendly, but trying to provide APIs supporting other simpler 
formats to banking companies can cause more problems than the ones these formats 
are supposed to solve.

Context impacting design is not reserved to consumer contexts, either. The provid-
er’s context can also influence design, even if API designers do everything they can 
to hide the provider’s perspective (see section 2.4). Representing a goal involving 
human controls (such as some cases of international money transfers) with a synchro-
nous request/response mechanism might not be the best option. That is why when we 
design APIs, we must choose the best way to communicate, taking into account both 
consumers’ and providers’ potential limitations and even considering other styles of 
APIs beyond REST. If we do not do that, the APIs we design might not be fully usable or 
implementable.

11.1 Adapting communication to the goals and nature of 
the data
So far, we have been talking about synchronous web APIs that allow consumers to send 
requests to providers and get responses immediately. But depending on the nature of 
an API’s goals and data, a unitary and synchronous request/response-based mecha-
nism might not be the most efficient representation. You might have to deal with long 
processing times, send events to consumers, or process multiple elements in one shot. 
As an API designer, you must have tools other than synchronous request/response in 
your toolbox to deal with such cases.

11.1.1 Managing long processes

A synchronous request/response mechanism is not always the best option to rep-
resent a goal. Sometimes you might have to provide asynchronous goals. For exam-
ple, the Banking API provides a transfer money goal that allows both national and 
international money transfers. But according to banking regulations, depending on 
which country and bank the target account is located in and the transfer amount, 
some documents might have to be provided in order to explain the nature of the 
transaction. Therefore, the consumer (the Awesome Banking App, for example) 
must provide the source and destination for each transfer (see section 5.3). To deter-
mine the valid sources and destinations, it uses the aggregated list sources and desti-
nations goal.

The data returned by this goal not only describes all possible source and destina-
tion combinations and their minimum and maximum amounts, but also indicates in 
which cases documentation justifying the transaction must be provided. If documen-
tation is required, the consumer can use the upload transfer document goal to send 
that and get a reference. Figure 11.2 shows what happens afterwards: validation by a 
human.



278 chapter 11 Designing an API in context

Awesome Banking App

Banking API

transfer money

Document
validated by
human being

Money transfer
actually

executed

read transfer read transferread transfer

Request stored
with document

reference

202 Accepted

{
  "id": "T123",
  "_links": {
    "self": "..."},
  "status": "PENDING",
  ...
}

200 OK

{
  "id": "T123",
  "_links": {
    "self": "..."},
  "status": "PENDING",
  ...
}

200 OK

{
  "id": "T123",
  "_links": {
    "self": "..."},
  "status": "VALIDATED",
  ...
}

200 OK

{
  "id": "T123",
  "_links": {
    "self": "..."},
  "status": "EXECUTED",
  ...
}

Immediate response
but later processing

Money transfer
still pending

Money transfer
has been validated

Money transfer
has been executed

Figure 11.2   A money transfer requiring human validation

Once the document is uploaded, the consumer can use the transfer money goal, 
indicating the source account, the destination account, the amount, and the docu-
ment reference. Unfortunately, the money transfer cannot be triggered immediately 
because the provided document has to be validated by a human being. So in this case, 
the money transfer response status is 202 Accepted (instead of 201 Created, which 
would be the response if no validation was required). This means the money transfer 
request has been accepted but will be processed later.

The returned data indicates the current status of the money transfer (PENDING), the 
transfer’s ID (T123), and the "self" URL in _links. The consumer can later use the 
read transfer goal using the provided ID or self URL to check the transfer’s current 
status. This status can be either PENDING (if no action has yet been performed), VALI-
DATED (if the document has been validated by a human being, but the transfer has not 
yet been performed), or EXECUTED (if the money transfer has been completed). Note 
that when accessing the transfer’s status using a GET /transfers/T123 HTTP request, 
cache directives (see section 10.2.2) can provide some hints about when is it wise to 
retry this call to get updated information.

As you can see, depending on the nature of the goal, what actually happens from a 
functional perspective using a synchronous request/response mechanism might not be 
possible. Here, it would mean consumers waiting for several minutes (or even hours, if 
not days) to get a response, which obviously is unthinkable. In such cases, the API has 
to provide a goal to receive the request, which can take quite a long time to process, 
and then a way to get the status of this request’s processing later. Providing information 
about when to make another request by taking advantage of protocol features or by sim-
ply returning data benefits both consumer and provider by avoiding unnecessary calls.



 279Adapting communication to the goals and nature of the data

11.1.2 Notifying consumers of events

Consumer-to-provider communication is not always the most efficient way of commu-
nicating. Indeed, sometimes it can be useful to let the provider take the initiative.

In the previous section, we saw that consumers might have to make repeated API 
calls to ask, “Is this money transfer done?” Such behavior is called polling, and it can 
be quite annoying for both consumers and providers: many unnecessary calls can be 
made. It would be great if the Banking API could instead tell its consumers when a 
money transfer is actually done.

Reversing the consumer/provider communication can be done using a webhook, 
which is often described as a “reverse API.” Figure 11.3 shows how such a mechanism 
could be used with the Awesome Banking App to notify the consumer of an executed 
money transfer.

As before, the Awesome Banking App calls the Banking API to request a money trans-
fer that requires (human) validation (1). The Banking API again responds with a 202 
Accepted status to indicate that the request has been accepted and will be processed 
later. Now the mobile application does not have to poll (regularly make calls to) the 
Banking API to get the transfer’s status. Instead, once the money transfer has actually 
been executed, the Banking API (or more probably another module managed inside 
the Banking Company’s systems) sends a POST request to the Awesome Banking App’s 
webhook URL, https://awesome-banking.com/events (2). The request’s body con-
tains some data about the event that occurred, like the ID of the user who initiated the 
money transfer, the transfer ID, the event’s status, and the transfer’s "self" link, for 
example.

Awesome
Banking

App

Awesome Banking App
backend

webhook

Banking API

transfer
money

read
transfer

1

2

3

4

POST /events
host: awesome.com

{
  "type": "transfers",
  "id": "T123",
  "user": "U567",
  "status": "EXECUTED",
  "_links": {
    "self": "https://api.bank.com/transfers/T123"
  }
}

An event is sent using a POST to the webhook
once the money transfer is actually executed.

A notification is sent to the mobile
application on user U567’s mobile phone.

Mobile app
reads transfer
(if necessary)

Money transfer
requiring
validation

as user U567

Webhook interface
defined by the Banking

Company

Figure 11.3   Using a webhook to notify the consumer of the execution of a money transfer



280 chapter 11 Designing an API in context

When the Awesome Banking App backend implementing the webhook receives this 
event, it can look for the mobile phone identifier corresponding to the user and send a 
notification using the iOS or Android notification system to the mobile application to 
signify that money transfer T123 has been executed (3). Finally, the mobile application 
can use the read transfer goal to get further information that was not included in the 
event or notification (4).

Such a mechanism is not restricted to an asynchronous communication initiated by 
the consumer. It can also be used to notify consumers of events that are generated with-
out any consumer interaction. For example, events could be sent when new transac-
tions occur on a bank account. The Awesome Banking App could take advantage of this 
for its dashboard, owner, and account screens (see section 10.2). It could also rely on 
cached data as long as no such event is sent.

More specific and custom events could be sent too. For example, the Banking API 
could provide an alerting system that sends events based on transactions or balance 
data. Using such a feature, the Awesome Banking App could allow its users to configure 
alerts like, “Let me know when my account balance is below $200” or “Let me know 
when a card payment above $120 is made.” The Banking API would send these alert 
events through the webhook only for users who have configured those.

This looks great, but how does the Banking Company, the provider of the Banking 
API, know the Awesome Banking App’s webhook URL and its interface? In section 8.1, 
you saw how consumers have to register to be able to consume an API and how they 
are identified when they send a request. When registering the Awesome Banking App 
on the Banking API developer portal, its developer team indicated its webhook URL, 
which can be used to notify the consumer of events.

This webhook is an API that is implemented by the Awesome Banking App team, 
but its interface contract and behavior are defined by the Banking API team in order to 
ensure that all consumers expose the same webhook API. It would obviously be a night-
mare for the Banking Company to let each consumer design its own webhook interface 
contract as it would have to code specifically the webhook calls for each of its consumer.

Like any APIs, you have to design webhook APIs to hide the provider’s perspective 
and make them usable and evolvable. Depending on your needs, a single webhook 
might receive all possible events, or there might be multiple webhooks: one for each 
event type. Each event might provide a little data or a lot. It will be up to you to decide 
what’s appropriate.

Having a single webhook that receives lightweight, generic events is usually a good 
strategy. Such a webhook API is quite simple to implement and to consume, and adding 
new events is easy. You should always decide on what design to use according to your 
context.

There is another important characteristic that must not be overlooked when dealing 
with webhook APIs— security. A webhook can be exposed on the internet, and some 
malicious people might try to send false events in order to hack the provider’s systems. 
That’s one of the reasons why using lightweight, generic events is a good option; con-
sumers have to call the provider to get detailed information.



 281Adapting communication to the goals and nature of the data

It’s crucial that the access to the webhook API be secured in order to ensure that only 
the API provider can actually use it. Securing a webhook can be done using various tech-
niques, such as provider IP address whitelisting (bear in mind that such whitelists might 
be hard to maintain), sending a secret token when posting to the webhook, encrypting 
and signing the request, using mutual TLS, and so on.

As you saw in chapter 8, API designers don’t have much to say about the technical side 
of API security, but they heavily contribute from a functional perspective. You have to 
ensure that events do not contain sensitive data and that the data provided allows consum-
ers to react securely. For example, if an event concerns a specific user, an API’s consumers 
must be able to identify that user through the event’s data. Otherwise, a user can get undue 
access to other users' data. This again promotes the use of lightweight events to limit the 
damage that can be done if this should occur.

WebSub
There is no webhook standard. Although you can design your API as you wish, the W3C 
has issued a WebSub recommendation (https://www.w3.org/TR/websub/) that you can 
take advantage of when building webhook-based systems:

“WebSub provides a common mechanism for communication between publishers of any 
kind of Web content and their subscribers, based on HTTP web hooks. Subscription 
requests are relayed through hubs, which validate and verify the request. Hubs then 
distribute new and updated content to subscribers when it becomes available. WebSub 
was previously known as PubSubHubbub.”

W3C WebSub recommendation

Basically, the WebSub recommendation describes how an API provider (the publisher) 
can expose its event capabilities and let consumers (the subscribers) register for and 
receive events, all in a secure way. Being inspired by this recommendation, the Banking 
API could provide a standard API to let consumers register for events like the alerts mech-
anism discussed earlier in this section.

 

Webhooks basically are APIs implemented by API consumers but defined and used by 
API providers to send notifications of events. These events can be triggered by con-
sumer or provider actions. This is not the only way of implementing notifications, but 
with this model, providers can notify consumers about events when they happen and 
don’t have to wait for the consumers to make API calls themselves.

11.1.3 Streaming event flows

When an API provides data that always changes to consumers using a basic request/
response goal, you can be sure that they will poll it continuously, making repeated 
API calls in order to get new or updated data. Suppose the Banking API provided data 
about stocks for trading account portfolios. There are different options for doing so, as 
shown in figure 11.4.

https://www.w3.org/TR/websub/


282 chapter 11 Designing an API in context

Consumer
(still have to forward events)

Provider

read stock

...

prices webhook

Consumer
calls goal in a loop

(may miss modifications)

Provider

...

Provider streams stock
price modifications

through the opened connection

Consumer requests
stock prices

Polling stock
information1 Notifying about price

modifications4 Streaming price
modifications5

Provider

list prices

...

Consumer
call goal in a loop
(not real time)

Polling stock prices3

2

Stock price too
volatile. Conditional
request and caching

are inefficient.

list prices

Figure 11.4   How the Banking API could provide stock information

The Banking API could offer a read stock goal that provides detailed information 
about a specific stock and its price (1). Consumers wanting to always have the lat-
est stock price might call this goal in a loop (once they get the new data, they trigger 
another call, endlessly).

In section 10.2.2, you discovered caching and conditional requests (2). Could these 
be of any help? Unfortunately, those would be useless, at least when the stock exchanges 
are open, because the stock prices can change every second (if not more frequently). 
The cache’s time-to-live would be so short that caching would be ineffective and condi-
tional requests would always return updated data. This data is so volatile that even using 
polling, consumers might not be aware of all price variations as the price could vary 
between calls.

In section 10.3.7, you saw that sometimes we have to check if a goal really fulfills 
consumers' needs. Maybe this goal is not the right one. What about adapting the API’s 
design and providing a list stock prices goal returning the n latest price variations and 
offering cursor-based pagination (3)? Consumers could indicate the last price ID they 
received and, in that way, be sure to not miss any price variations. That could be an 
interesting option if consumers are willing to get not-quite-real-time data, but consum-
ers would still poll this goal endlessly.

A change in stock price looks like an event that consumers could be notified of. So 
what about a webhook (4)? Because the provider knows when a stock price changes, it 
can post that event to consumers' webhooks as soon as it occurs. But that means always 
sending price variations of all stocks to all consumers.

Using a WebSub system or a custom WebSub–like one, as we discussed briefly in the 
previous section, consumers could subscribe to a few stock price variation feeds instead 
of receiving notifications about all of them. They would still get this data all the time, 
though.

But what about consumers that want to show real-time data for only a small period 
of time, while their end users are looking at their portfolios or at a specific stock, for 



 283Adapting communication to the goals and nature of the data

example? They would have to find a way to forward these event flows. How could an API 
server (like the Banking API’s) send a stream of events requested by a consumer (5)? 
Figure 11.5 contrasts a basic request/response API call and a Server-Sent Events (SSE) 
stream that can be used in such cases.

200 OK
Content-Type: text/event-stream

data: {"id": "887635568", "price": 34.51, "stockId": "APL", "time": "2019-02-01 10:00:01.250"}

data: {"id": "887635569", "price": 34.52, "stockId": "APL", "time": "2019-02-01 10:00:02.120"}

data: {"id": "887635569", "price": 34.49, "stockId": "APL", "time": "2019-02-01 10:00:03.000"}

...

GET /stocks/APL/prices
Accept: text/event-stream

...

Server sends
events as

they arrive

Consumer requests
latest prices

of a stock

Data is the same
as that returned
in the finite list

200 OK
Content-Type: application/json

{
  "after": "887635569",
  "items": [
    {"id": "887635568", "price": 34.51, "stockId": "APL", "time": "2019-02-01 10:00:01.250"},
    {"id": "887635569", "price": 34.52, "stockId": "APL", "time": "2019-02-01 10:00:02.120"},
    ...
    {"id": "887641589", "price": 34.48, "stockId": "APL", "time": "2019-02-01 10:10:02.000"}

  ]
}

“Infinite”
event stream

GET /stocks/APL/prices
Accept: application/json

Finished list:
consumers have
to make a new
request to get

new data

Consumer requests
a stream of prices

Figure 11.5   Streaming events to consumers with HTTP SSE

At the top of the figure, the consumer requests the latest prices of the APL stock as 
an application/json document using a GET /stocks/APL/prices request with the 
appropriate Accept header. By default, the server returns the list of prices for the last 
five minutes. The document has an items attribute containing the list of prices. To get 
more recent data, the consumer will have to make another request using cursor-based 
pagination.

The bottom of the figure shows how all this could be handled with an SSE stream. 
The request is almost the same, but the consumer now indicates that it wants the data as 
a text/event-stream document. The server responds with a 200 OK success status and 
a document whose content type is text/event-stream as requested. Each price event 
is represented by a line starting with data:, and it contains the same data as provided 
previously in the finished list.



284 chapter 11 Designing an API in context

The huge difference in this approach is that now the price events are provided as a 
stream; the returned document is not a static and finished one anymore. The server 
adds a data: line for each new price event occurring for the APL stock. It will go on 
doing this until there are no more events or until the consumer closes the connection. 
Using SSE, a server can send event data to consumers.

Regarding the design of the event data, you’ll recall that in the webhook use case, 
I recommended that you put the least possible amount of data in events and that con-
sumers get additional data with another regular call to the API. But in such a streaming 
use case, regardless of the technology used (SSE or something else), it is usually better 
to provide as much data as possible because consumers will want all the data without 
having to make another independent call to the API. As always, though, this is not man-
datory; it can depend on the context. Everything else you have learned in this book 
applies too: events and their data must make sense for consumers and must be easy to 
understand and use, to evolve, and to secure.

Note that using content negotiation and providing both application/json and 
text/event-stream media types is not required; the Banking API could only pro-
vide the streaming version. It is also not mandatory to use the same path to provide 
these two different representations. The Banking API could use different paths such as  
/stocks/{stockId}/prices and /stocks/{stockId}/price-events. The API could 
also provide a way of getting price events for multiple stocks with a request like GET  
/stock-prices?stockIds=APL,APA,CTA. In the response to this request, each event 
sent via a data: line will concern one of the APL, APA, or CTA stocks; the consumer will 
be able to tell which one by checking the stockId property value.

Although the SSE specification provides more features than just the data: lines, it’s 
quite simple. The following listing shows the various possibilities.

Listing 11.1  The complete SSE specification2

: this is a comment                    
 
data: this is text data                
                                       
data: {"json": "data"}                 
 
data: this is multi-                   
data: line data
 
id: optional event ID                  
event: optional event type
data: event data
 
retry: 10000                           

2  “W3C Working Draft,” April 2009, Eds. Ian Hickson, Google, Inc. (https://www.w3.org/TR/2009/
WD-eventsource-20090421/#event-stream-interpretation).

The stream can be commented with a 
line starting with a colon (:).

Each line starting with data: is an event; 
an event data line basically contains text.

A blank line separates each event.

Because data is text, you can use JSON or XML.

Multiple data: lines can be 
used for multiline data.

Each event can be completed with an 
optional ID and event type.

The retry interval tells the consumer not 
to reconnect before 10000 ms (10 s) 
have passed if the connection is lost.

https://www.w3.org/TR/2009/WD-eventsource-20090421/#event-stream-interpretation
https://www.w3.org/TR/2009/WD-eventsource-20090421/#event-stream-interpretation


 285Adapting communication to the goals and nature of the data

There are a few other things to know about SSE:

¡	It relies on the HTTP protocol but is not part of it; it was created as a standard for 
HTML5 by the W3C.

¡	It is quite simple to use for browser-based consumers because it was designed for 
them, but there are libraries available for almost any language.

¡	The event data can only be text (simple text, JSON, XML, and so on). If you need 
to send binary data, like images, you have to encode that in text.

¡	An SSE stream can take advantage of HTTP compression. It is a unidirectional 
stream, which means that once the connection is established, the consumer can-
not send data to the server using this connection.

Because it relies on the HTTP protocol, no specific infrastructure is required to host 
an API using this technology, but be warned: using SSE means that HTTP connections 
remain open for quite a long time. Therefore, the infrastructure hosting the API has 
to be tuned to support long parallel connections. Even so, it might be useful to use a 
single SSE stream to send different types of events. To do so, you can take advantage of 
the event property.

Now, suppose the Banking Company wants to provide some chat features to allow 
end users to discuss their accounts with humans or bots. In this case, it might be pref-
erable to provide for bidirectional communication, allowing both the consumer and 
provider to send events. Unfortunately, SEE only allows unidirectional communication 
from server to consumer; but thankfully, there are other solutions. Such a need is usu-
ally met using the WebSocket protocol as defined by RFC 6455 (https://tools.ietf.org/
html/rfc6455), which is widely adopted for chats and games. We will not go into detail 
on the infrastructure, but know that this approach requires more work on the infra-
structure side than the HTTP-based SSE stream.

A WebSocket relies on a raw TCP connection, which might not be allowed to pass 
through corporate proxies without modifying their configuration. Regarding the mes-
sages that could be exchanged with this protocol, it is up to you, the API designer, to do 
your job without relying on any standard. But remember that you can copy what others 
have done.

Most WebSocket APIs rely on typed messages as with SSE, except that in this case, 
both the consumer and the provider can send messages. If you need to link an event 
request sent through the WebSocket to its event response, you just need to add some 
unique identifier to the messages.

NOTE   A WebSocket can also be used for unidirectional communication as in 
the SSE use case.

There are different ways of streaming events. The important thing for an API designer 
is to know that a request/response mechanism is not the only option. When dealing 
with high-volatility data and real-time data, streaming events not only from provider to 
consumer but also from consumer to provider is an option that should be considered.

https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455


286 chapter 11 Designing an API in context

11.1.4 Processing multiple elements

The various API examples you have seen so far have provided two ways of reading 
data. Some goals can provide access to single elements and others to multiple ones. 
For instance, the Banking API allows consumers to read a single account with the 
read account goal or multiple ones with the list accounts goal. But when it comes to  
creation-, modification-, or deletion-related goals, we have only seen goals that work on 
a single element. Depending on the elements being manipulated and the context, it 
might be useful to be able to process multiple elements with a single API call instead of 
having to make many API calls, each processing a single element at a time.

To explore this topic, let’s add some more personal financial management features 
to the Banking API. We can let consumers modify transactions to define personalized 
categories, add comments about them, and also check them; checking a transaction is 
similar to marking an email as read. To do so, we’ll add an update transaction goal rep-
resented by a PATCH /transactions/{transactionId} request. The following listing 
shows the JSON schema of the expected body.

Listing 11.2  The JSON schema of the update transaction goal’s body

openapi: "3.0.0"
...
components:
  schemas:
    ...
    UpdateTransactionRequest:
      description: |
        At least one of the comment, customCategory, or checked
        properties must be provided
      properties:                                
        comment:
          type: string
          example: My new Ibanez electric guitar
        customCategory:
          type: string
          example: Music Gear
        checked:
          type: boolean
          description: |
            Checking a transaction is similar to marking an email as read.
            True if the transaction has been checked, false otherwise.

The comment, customCategory, and checked properties are all optional; consumers 
can update one, two, or all of them. The transaction’s ID is also not needed in the body 
because it is provided in the /transactions/{transactionId} resource’s path. No 
other properties of a transaction, like its amount or date, can be updated in this case.

Providing a ‘Mark all as checked’ or a ‘Mark all selected as read’ feature in the Awe-
some Banking App requires us to update each transaction. Depending on the transac-
tion count, having to make an API call to update each transaction might be a problem. 
As we saw when reading data (section 10.3), we could try to aggregate all these unitary 
calls into a single one. That is, we could allow consumers to update multiple transactions 

The body is composed of three 
properties: comment, 
customCategory, and checked.



 287Adapting communication to the goals and nature of the data

in a single API call by proposing an update transactions (with an s) goal. As shown in 
figure 11.6, such a goal could be represented by a PATCH /transactions request. List-
ing 11.3 shows the JSON schema of its body.

PATCH /transactions/T123

{
  "checked": true
}

PATCH /transactions

{
  "items": [
    {
      "id": "T123",
      "checked": true
    },
    ...
    {
      "id": "T135",
      "checked": true
    },
  ]
}

...

PATCH /transactions/T135

{
  "checked": true
}

calls replaced by a single one toupdate transactionMultiple update transactions

Figure 11.6   Checking multiple transactions in one call

Listing 11.3  The JSON schema of the update transactions goal’s body

openapi: "3.0.0"
...
components:
  schemas:
    ...
    UpdateTransactionsRequest:
      properties:
        required:
          - items
        items:
          type: array
          minItems: 1
          maxItems: 100                          
          items:
            allOf:                               
              - required:
                  - id
                properties:
                  id:
                    type: string
                    description: Transaction ID
              - $ref: "#/components/schemas/UpdateTransactionRequest"

The updated data for all transactions is provided as an object containing an items 
property, which is a list of 1 to 100 transactions. This is the same kind of representa-
tion used in the response body of a list something goal, such as list transactions. The 

No more than 100 updates at a time

Same data as unitary call plus the 
transaction ID; allOf aggregates 
provide JSON schemas



288 chapter 11 Designing an API in context

properties provided for each transaction are the same as the ones provided for the 
unitary goal (comment, customCategory, and checked), plus the id because the trans-
action ID cannot be in the resource path. To check multiple transactions in one call, 
consumers need to provide id and checked properties for each checked transaction.

That’s for the request, but what about the response? When updating a single trans-
action, the update transaction goal can signify that the update has been done with a 
200 OK HTTP status, that there was something wrong with the request with a 400 Bad 
Request status, or that the transaction ID is unknown with a 404 Not Found. When 
processing multiple transactions simultaneously, if all the transactions are successfully 
updated, a 200 OK status could be returned.

The same goes in the case of an error: a 400 Bad Request response could be returned 
even if the problem is an invalid transaction ID. A 404 status code can only be returned 
if the resource’s path is unknown, which would not be the case here. This is slightly 
different from the unitary update. And what if some transactions can be updated and 
some cannot? Should the Banking API implementation stop at the first error and return 
a 400 response without processing any valid transaction updates?

If you remember our discussion in section 5.2.4, you know that the answer to this 
question is no because this would make the API less usable. Consumers would have 
to do many calls to fix each error one by one (and an API not processing the valid 
updates could be quite infuriating). The update transactions goal must return all 
errors, process all valid transaction updates, and also indicate which updates were 
successfully done. That means returning multiple statuses; fortunately, there is an 
HTTP code for that:

“The 207 (Multi-Status) status code provides status for multiple independent 
operations….”

WebDAV

The 207 status is defined in RFC 4918, which allows clients to perform remote web 
content authoring operations.3 It provides new methods, headers, media types, and 
statuses to facilitate resource management and especially to manipulate multiple 
resources in one call— thanks to this 207 status. The following listing shows an exam-
ple of what a WebDAV server should return, according to RFC 4918, in a 207 response 
when deleting multiple resources.

Listing 11.4  A 207 Multi-Status response as described in RFC 4918

<?xml version="1.0" encoding="utf-8" ?>
<d:multistatus xmlns:d="DAV:">
  <d:response>
    <d:href>http://www.example.com/container/resource3</d:href>
    <d:status>HTTP/1.1 423 Locked</d:status>
    <d:error><d:lock-token-submitted/></d:error>

3 “HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV),” L. Dusseault, Ed.,  
June 2007 (https://tools.ietf.org/html/rfc4918).

https://tools.ietf.org/html/rfc4918


 289Adapting communication to the goals and nature of the data

  </d:response>
  <d:response>
    <d:href>http://www.example.com/container/resource4</d:href>
    <d:status>HTTP/1.1 200 OK</d:status>
  </d:response>
</d:multistatus>

This is an XML document containing a list, with each element composed of an href 
(the URL of the processed resource), a status (the unitary HTTP status), and an 
optional error message. Note the compression and encoding handled at the upper 
level (the response sent by the API server); each response must use the same encoding 
and compression.

The RFC 4918 describes various 207 responses for specific HTTP methods (such 
as PROPPATCH and PROPFIND), but these are XML-based— too specific to the WebDAV 
context— and cannot be reused in other contexts. That is why I chose to just keep the 
207 status and define my own (JSON) format for request and response bodies for the 
update transactions goal, as shown in figure 11.7.

A 207 Multi-Status response to an update transactions request is an object with 
an items property, which is a list containing as many elements as are in the items list 
provided in the request. The response list is ordered exactly like the request one: the 
response to the third request is in the third position in the response list. For each ele-
ment, consumers get exactly the same information they would have gotten making a 
unitary call. Here, that means a status and a body containing the HTTP status and the 
response body for each transaction update attempt.

200 OK

{
 "id": "T123", 
 ...
}

207 Multi-Status
{
  "items": [
    { 
      "status": "200 OK",
      "body": "{ "id": "T123", ...}
    },
    ...
    {
      "status": "400 Bad Request",
      "body": { "message": "Invalid ... "
    },
    {
      "status": "404 Not Found",
      "body": { "message": "Transaction ..."
    }
  ]
}

...

400 Bad Request
{
  "message": "Invalid request"
  "errors": [
    {
     "type": "INVALID_FORMAT",
     "source": "comment",
     "message": "Comment cannot be longer ..."
  ]
}

would have returned is contained in each item returned byupdate transaction update transactions.What

404 Not Found
{
  "message": "Transaction T135 not found"
}

Figure 11.7   Contrasting multiple responses to the update transaction goal with a single response to 
the update transactions goal



290 chapter 11 Designing an API in context

The first status in the list is a success status (200 OK), and its body contains the updated 
resource. The last two requests were not processed because of a comment that was too 
long and an unknown transaction ID. For each of these, the body contains the error 
data structure (seen in section 5.2.4) that would have been returned for a unitary call. 
If the consumer sends an invalid list in its request (with more than 100 elements, for 
example), the status will be 400 Bad Request. Also, if headers are usually returned for 
unitary calls, we could add a headers map for each element. Listing 11.5 shows the 
complete JSON Schema, and listing 11.6 shows an example.

Listing 11.5  The multi-status response’s JSON Schema

openapi: "3.0.0"
...
components:
  schemas:
    MultipleStatusResponse:
      required:
        - items
      properties:
        items:                                   
          type: array
          minItems: 1
          maxItems: 100
          items:
            required:
              - status
            properties:
              status:                            
                type: string
                description: HTTP status
                example: 404 Not Found
              headers:
                additionalProperties:            
                  type: string
                description: HTTP headers map
                example:
                  My-Custom-Header: CUSTOM_VALUE
                  Another-Custom-Header: ANOTHER_CUSTOM_VALUE
              body:
                description: |
                  Transaction if status is 200 OK, Error otherwise
                oneOf:                           
                 - $ref: "#/components/schemas/Error"
                 - $ref: "#/components/schemas/Transaction"
                example:
                  message: Transaction T135 not found

Contains one element for each 
transaction of the request

The HTTP status

A <string, string> map for the headers 
(it could also be a name, value list).

The body— a Transaction if status is 200 
OK or an Error otherwise (one of the 
provided JSON Schemas)



 291Adapting communication to the goals and nature of the data

Listing 11.6  An example generated using the JSON Schema

{
  "items": [
    {
      "status": "404 Not Found",
      "headers": {
        "My-Custom-Header": "CUSTOM_VALUE",
        "Another-Custom-Header": "ANOTHER_CUSTOM_VALUE"
      },
      "body": {
        "message": "Transaction T135 not found"
      }
    }
  ]
}

Remember that what is shown in figure 11.7 and listings 11.5 and 11.6 is my own inter-
pretation of what the content of a 207 Multi-Status response might look like. We can 
use the same design to replace or delete multiple resources with a PUT /resources or 
a DELETE /resources?ids=1,2,5,6,9 request. To create multiple resources at a time, 
there are a few things to consider.

We could use a POST /resources request, but what if we also want consumers to be 
able to create a single resource at a time? As long as a create resources goal can create 
one or more resources, a consumer could pass a single resource in the list. We could 
also accept a list of resources and a single resource in the request body (you should try 
to describe such an operation, its request body, and the various responses using the 
OpenAPI Specification as described in chapter 4). But what if we want to make a clear 
separation for security concerns, for example, between the create resource and create 
resources goals using different paths?

It is not uncommon to see POST /resources/batch requests to create multiple 
resources in one call; such paths break the /collection/{resourceId} pattern, but 
at least consumers will understand at first sight what they can do. Depending on how 
security is handled, providing two different paths might be unavoidable. In an ideal 
world, however, I would prefer to provide a single POST /resources path, accepting 
a list of resources or a single resource, with consumers having the batch resource cre-
ation scope only being allowed to send requests containing a list of resources.

Be warned that the partial processing strategy (processing valid items even if the 
provided list contains invalid ones) discussed in this section might not be the one to 
choose in all cases. There are some cases where processing only a portion of the pro-
vided items can cause problems. So before introducing such behavior, always check the 
consequences of such partial processing. If partial processing does not make sense, the 
API can return a more classical 200 OK on success and 400 Bad Request, for example, if 
the request is invalid.

As you can see, APIs are under no obligation to provide only ways to process single 
resources; there are contexts in which processing multiple resources in a single call can 



292 chapter 11 Designing an API in context

be useful. Whatever the solution you design, remember that consumers must get the 
same data, including protocol data like headers or status codes for HTTP and errors 
that they would have gotten for unitary requests. They must be able to make the con-
nection between each element of their request and each element of the API’s response. 
And do not forget to handle global controls and errors; for example, limiting the num-
ber of elements that can be provided in the request.

11.2 Observing the full context
You saw in section 10.1 that designing APIs requires us to think about how the APIs 
will actually be used by consumers, mostly for the consumers' sake but also for the 
provider’s. And now we have discovered that it also requires us to care about the true 
nature of goals or data in order to provide efficient, usable, and also implementable 
APIs (see section 11.1). All this means is that designing APIs requires more than just 
focusing on consumer needs and avoiding the provider’s perspective. Designing APIs 
requires us to fully observe the context in which these will be consumed and provided 
in order to ensure that these fulfill all consumers' needs in the best possible way— and 
actually be implementable by providers.

11.2.1 Being aware of consumers' existing practices and limitations

Fulfilling all consumers' needs means designing APIs that provide all the needed goals 
in an easy-to-understand and easy-to-use way; it also means being careful about some 
aspects that could be called nonfunctional requirements. These nonfunctional require-
ments basically concern how the API goals and data will actually be represented. Con-
sumers can be used to certain practices or have some limitations that must be taken 
into account when designing APIs.

You saw in section 5.1 and in sections 6.1.3 and 6.1.4 that APIs designed using simple 
representations and standards, and following common practices, are easier to under-
stand, easier to use, and more interoperable. But this can go far beyond just using crys-
tal-clear names and standard date formats or applying commonly used path patterns. 
Existing practices can have a deeper impact on API design.

For example, suppose the Banking Company wants to provide a bank details verifi-
cation API that confirms if an account number actually exists at any bank and belongs 
to a given person. Such a service could be useful to companies using direct debit for 
payments. To be paid, companies withdraw funds from their customer’s bank account. 
When doing so, companies would be glad to be sure that the provided information 
actually matches an existing bank account belonging to their customer before selling 
them any goods or products.

Such an API seems quite simple to design. It proposes a single verify bank details 
goal. This goal expects an account number in IBAN format and the account owner’s 
first name and last name. It returns a simple OK feedback in the case of success and pro-
vides detailed information in the case of an error; for example, if the account number 
exists but the owner name does not exactly match because of a typo. Based on what you 



 293Observing the full context

have learned, how would you represent such a goal? Figure 11.8 shows three ways of 
doing so.

POST /bank-details-verifications
{
  "firstName": "Spike",
  "lastName": "Spiegel",
  "iban": "JPXX098367887987098"
}

200 OK
{
  "firstName": "Spike",
  "lastName": "Spiegel",
  "iban": "JPXX098367887987098",
  "status": "VERIFIED"
}

POST /bank-details-verifications

<?xml version="1.0" encoding="utf-8"?>
<Document>
  <IdVrfctnReq>
    <Assgnmt>
      <MsgId>MSGID_001</MsgId>
      <CreDtTm>2012-12-13T12:12:12</CreDtTm>
    </Assgnmt>
    <Vrfctn>
      <Id>VRFID_001</Id>
      <PtyAndAcctId>
        <Pty>
          <Nm>Spike Spiegel</Nm>
        </Pty>
        <Acct>
          <IBAN>JPXX098367887987098</IBAN>
        </Acct>
      </PtyAndAcctId>
    </Vrfctn>
  </IdVrfctnReq>
</Document>

200 OK

<?xml version="1.0" encoding="utf-8"?>
<Document>
  <IdVrfctnRpt>
    <Assgnmt>
      <MsgId>MSGID_001</MsgId>
      <CreDtTm>2012-12-13T12:12:12</CreDtTm>
    </Assgnmt>
    <Rpt>
      <OrgnlId>VRFID_001</OrgnlId>
      <Vrfctn>true</Vrfctn>
      <OrgnlPtyAndAcctId>
        <Pty>
          <Nm>Spike Spiegel</Nm>
        </Pty>
        <Acct>
          <IBAN>JPXX098367887987098</IBAN>
        </Acct>
      </OrgnlPtyAndAcctId>
    </Rpt>
  </IdVrfctnRpt>
</Document>

GET /bank-details?
  iban=JPXX098367887987098&
  firstName=Spike&
  lastName=Spiegel 200 OK

{
  "firstName": "Spike",
  "lastName": "Spiegel",
  "iban": "JPXX098367887987098",
  "status": "VERIFIED"
}

1

2

3

Sensitive data in URL.
This is not secure.

Secure, but JSON
is not what

consumers expect

Consumers expect
ISO 20022 XML.

Figure 11.8   Adapting design to what consumers are used to

Based on what you have learned in section 8.4, you know that it is not a good idea to 
represent this bank details verification goal with a GET /bank-details request with 
firstName, lastName and iban query parameters (1). Indeed, IBANs (account num-
bers) and first and last names as sensitive data cannot be passed as query parameters— 
they could be logged anywhere! So you would probably represent this goal with a POST 
/bank-details-verification request (2), its body being a JSON object containing 
iban, firstName, and lastName mandatory properties. If the request is a valid one, 
it can return a 200 OK response with its body containing the status of the verification, 
indicating if the provided bank details are valid or not. If the request is invalid (for 
example, if an IBAN with an invalid format has been provided or a lastName prop-
erty has not been provided), a 400 Bad Request response containing a JSON object 
with an informative message and details about the problem(s) encountered can be 
returned, as you saw in section 5.2.4.

Such an API seems easy to understand and easy to use by anyone. But before design-
ing this API, we did not check the actual consumers' context; and in this case, this is a 
critical mistake. The targeted consumers are the Banking Company’s corporate consum-
ers, who will consume the API using financial COTS (commercial off-the-shelf) software. 
The people working with such financial software (and the software itself) are not used to 
custom JSON data; rather, they are used to standard ISO 20022 financial XML messages 
(3). Let’s take a closer look at this third design option: both request and response are 
based on ISO 20022 financial XML messages as shown in listings 11.7 and 11.8.



294 chapter 11 Designing an API in context

Listing 11.7  An ISO 20022 IdentificationVerificationRequestV02 XML message

<?xml version="1.0" encoding="utf-8"?>
<Document>
  <IdVrfctnReq>
    <Assgnmt>
      <MsgId>MSGID_001</MsgId>
      <CreDtTm>2012-12-13T12:12:12</CreDtTm>
    </Assgnmt>
    <Vrfctn>
      <Id>VRFID_001</Id>
      <PtyAndAcctId>
        <Pty>
          <Nm>Spike Spiegel</Nm>                 
        </Pty>
        <Acct>
          <IBAN>JPXX098367887987098</IBAN>       
        </Acct>
      </PtyAndAcctId>
    </Vrfctn>
  </IdVrfctnReq>
</Document>

Listing 11.8  An ISO 20022 IdentificationVerificationReportV02 XML message

<?xml version="1.0" encoding="utf-8"?>
<Document>
  <IdVrfctnRpt>
    <Assgnmt>
      <MsgId>MSGID_001</MsgId>
      <CreDtTm>2012-12-13T12:12:12</CreDtTm>
    </Assgnmt>
    <Rpt>
      <OrgnlId>VRFID_001</OrgnlId>
      <Vrfctn>true</Vrfctn>                      
      <OrgnlPtyAndAcctId>                        
        <Pty>
          <Nm>Spike Spiegel</Nm>
        </Pty>
        <Acct>
          <IBAN>JPXX098367887987098</IBAN>
        </Acct>
      </OrgnlPtyAndAcctId>
    </Rpt>
  </IdVrfctnRpt>
</Document>

The IdentificationVerificationRequestV02 message shown in listing 11.7 is a stan-
dard bank details verification request. It contains an IBAN in the Document.IdVrfctnReq 
.Vrfctn.PtyAndAcctId.Acct.IBAN property and the owner’s first name and last name 
in Document.Vrfctn.PtyAndAcctId.Pty.Nm. There is also a request ID and date and a 
verification ID.

Account holder’s first 
name and last name

Account’s IBAN

Verification status

Verified information 
(name and IBAN)



 295Observing the full context

The IdentificationVerificationReportV02 message shown in listing 11.8 is the 
standard response to such a request. It contains the original request data and a Boolean 
flag that is true if the verification succeeds and false otherwise (Document.IdVrfctn-
Rpt.Rpt.Vrfctn).

As the ISO 20022 standard only describes messages, not how they are transmitted, we 
can at least keep the spirit of the second version of the API. The verify bank details goal 
could still be represented by a POST /bank-details-verifications request, but now 
its body is an IdentificationVerificationRequestV02 ISO 20022 XML message. The 
response could still be 200 OK if the IdentificationVerificationRequestV02 input 
message is a valid one, but now the response body is an IdentificationVerification-
ReportV02 message. If the request is invalid, a 400 Bad Request response is returned 
along with a custom XML message mapping to the JSON error message that we are used 
to (the ISO 20022 standard does not describe how such errors are to be handled).

The resulting API design is not that bad, but according to what you have learned, 
especially in section 5.1, such ISO 20022 XML messages could be considered complex 
(and we could also consider that XML is not really trendy anymore). But in this context, 
the targeted consumers natively speak using ISO 20022 XML messages; and therefore, 
the API must use them. Consuming the XML API within the financial COTS software 
used by the targeted consumers would be quite easy. If the API used custom JSON mes-
sages, consuming the API might require more work on the consumer side and, in some 
cases, might not be possible. But when in Rome, do as the Romans do.

Choosing a suitable representation is not about choosing what we as API designers 
are used to or what we might consider good design or fashionable; it is about choosing 
what is appropriate in the desired context. Always check if the targeted domain or con-
sumers have specific practices that you should follow in your API design. Such practices 
could be the use of standards or the way they represent data, name things, manage 
errors, or anything else.

That takes care of the existing practices that might influence the design of APIs, but 
what about the limitations? Let’s say that the Banking Company also wants to target 
noncorporate/nonfinancial consumers, who are definitely not used to ISO 20022 XML 
and are more used to simple JSON. A smart API design could take advantage of content 
negotiation (see section 6.2.1) to handle that. Consumers would just have to set the 
Content and Accept headers to application/xml when they want to use the ISO 20022 
standard and application/json to use the simple JSON format. That’s great; the API is 
adaptable enough to fulfill the needs of two different types of consumers.

But unfortunately, after interviewing some of the developers of the financial COTS 
systems used by the targeted customers, it seems that most of them cannot handle con-
tent negotiation easily. It would be wiser, then, to consider the API’s default format to 
be XML, or perhaps to allow consumers to specify which format they want to use when 
registering on the developer portal. Not being able to pass a simple header seems quite 
ridiculous, but that can happen.



296 chapter 11 Designing an API in context

Don’t take it for granted that all consumers can do what you are used to. Consumers 
might have technical limitations, like the COTS software being unable to add headers 
to an HTTP request, but there are many other possibilities. Some consumers might 
not be able to use any HTTP method other than GET or POST. You saw in section 10.1 
how mobile applications can be limited by network capabilities. And in section 11.1, 
we talked about webhooks. Not all consumers can implement those easily.

In order to avoid discovering too late existing practices or limitations that go against 
what you are used to, you will have to show empathy toward your targeted consumers. 
Don’t hesitate to talk to them, question them, discuss your designs with them— you 
won’t regret it.

Of course, as discussed in section 10.3.8, all this must not be done at the expense of 
usability and reusability. Do not try to please a few consumers with highly specific needs 
in a single API. Instead, consider creating different API layers or letting consumers cre-
ate their own backend for frontend APIs.

11.2.2 Carefully considering the provider’s limitations

In section 2.4, you learned to design APIs while avoiding exposing purely internal con-
cerns to consumers. But avoiding exposing the provider’s perspective does not mean 
wearing blinders and totally ignoring it. Indeed, when designing an API, we have to 
take into consideration what is happening behind the API in order to propose a design 
that will actually be not only usable, but also implementable. Figure 11.9 shows some 
examples.

If the Banking Company wants to provide trading-related goals like buy stocks or sell 
stocks, its API designers must be aware that stock exchanges are not always open in 
order to create an adequate design. A consumer trying to buy stocks on a closed stock 

503 Service Unavailable

Functional limitations Technical limitations

Stock exchange
open hours

International
money transfer

verification process

asynchronous
money transferbuy stocks asynchronous bank

details verification

5 seconds
interbank SLA

Beware the “false” limitations that can be
solved by modifying processes or implementation.

undue provider’s
perspective

Processes,
human actions,

...

Response time,
scalability,�

maintenance,
......

Data
complexity

GET /transfers/{accountId}-{transferId}

read transfer needs
composite id

Figure 11.9   Provider’s limitation examples



 297Observing the full context

exchange should get an error telling them that the operation is not possible at the 
moment. Such an error could be represented by a 503 Service Unavailable HTTP 
status code. As you learned in section 5.2.3, the error should be accompanied by some 
data that will help the consumer, such as the stock exchange’s opening time. And as 
discussed in section 5.3.2, it could also be useful to add goals listing the available stock 
exchanges or providing details on a stock exchange’s market calendar and trading 
hours to prevent such errors.

NOTE   If you don’t take care of functional limitations, the resulting API will be 
incomplete and less consumer-friendly.

Stock trading is outside the scope of our Banking API, but we saw an example of a 
functional limitation that impacted the API’s design in section 11.1.1. An international 
money transfer above a given amount must be validated by a human being; and, there-
fore, it cannot be represented by a basic request/response goal: an asynchronous rep-
resentation must be used instead. It might be worth investigating if a solution can be 
found to omit the human-verification step in the international money transfer process. 
This would allow us to provide a real-time and more consumer-friendly synchronous 
goal instead of an asynchronous one.

But provider limitations are not only functional— they can also be technical. The 
bank details-verification service you saw in section 11.2.1 relies not only on the Banking 
Company itself, but also on other banks. To verify that a bank account exists at another 
bank, the Banking Company has to communicate with that bank. This service relies 
on an asynchronous, standardized, interbank messaging service. This interbank bank 
details verification system’s service-level agreement states that a verification must take 
less than five seconds.

Building a synchronous request/response API goal on top of such a system could be 
problematic. It would mean that the consumer might have to wait for up to five seconds 
for a response, which could seem like an eternity (especially for mobile consumers). 
Therefore, instead of a synchronous request/response goal, the API should let con-
sumers send a verification request and then get the result later or even be notified by a 
webhook that a result is available.

Some limitations can be quite trivial, like “Oops, we don’t have an existing unique 
ID to identify transfers.” Don’t panic; in that case, you might want to use composite 
IDs composed of the various IDs or values needed to identify something. In this exam-
ple, an accountId and a transferId could be used in a GET /transfers/{account 
Id}-{transferId} request. Note that if this composite ID is your business only, your 
visible interface contract might be opaque and only show a GET /transfers/{id}, the 
value of id being a composite ID returned by the list transfers goals.

Like functional limitations, technical limitations on the provider’s end must be ques-
tioned— but they must be questioned carefully. Don’t be fooled by the true technical 
limitation example you’ve just seen. Unlike functional limitations, which usually tend 
to be true problems that are not easily solved, technical ones are more often than not 



298 chapter 11 Designing an API in context

false limitations that can be solved with little effort through changes to the implemen-
tation. Such little effort avoids major impacts on the API design and, most importantly, 
the consumers.

I can’t count how many times I’ve heard things like, “We can’t aggregate this data; 
unitary calls already take too much time!” when all that was needed was to activate com-
pression (see section 10.2.1), add missing indexes in the database, or optimize some 
database requests. Such a simple change can often result in awesome performance, 
allowing designers to implement the supposedly impossible feature.

As another example, not so long ago, in big, old companies discovering that the web 
was not only about websites that just used POST and GET HTTP methods, you might have 
heard that using the DELETE HTTP method is impossible; it’s blocked by firewalls. All 
that was needed to solve this problem was to talk to the people in charge of network 
security and explain the new needs so they could modify the firewalls configurations 
to allow the use of an HTTP method other than POST and GET. (Note that this specific 
HTTP method problem shouldn’t exist anywhere anymore; at least, I hope so!)

As an API designer, this means you should be aware of the whole chain between con-
sumers and the point where the API is exposed and its actual implementation, and what 
is happening inside while designing, so that you can spot technical limitations as soon 
as possible and solve these problems either within the implementation or by adapting 
the design.

Technical limitations will usually revolve around response time, the scalability or 
availability of underlying systems, and network restrictions. For example, it is quite 
annoying to discover in production that an API request takes more than two seconds to 
complete, and this problem could have been solved by adding more CPU, optimizing 
the implementation, or, as a last resort, adapting the API’s design. Consumers could be 
unpleasantly surprised to discover that your API is unavailable for 15 minutes every day 
at midnight thanks to a daily reboot or backup procedure. It could also be unnerving to 
realize that each of your carefully crafted 5XX errors is replaced by a generic 500 Server 
Error whose body is an HTML page, thanks to a zealous old-fashioned firewall or a mis-
configured API gateway.

The important thing to remember is that designing an API requires you to have a 
deep understanding of what really happens before and after requests are made so that 
you can spot possible functional or technical limitations. Any potential limitation 
must be questioned because it might be possible to totally or partially resolve the issue 
through the implementation (in a broad sense) without impacting the API’s design. 
Only through careful consideration of the problem will you be able to adapt the API 
design appropriately, should that become necessary.

Functional or technical limitations on the provider’s end can take many forms and 
have as many solutions based on adapted communication or adequate goals, input/
output properties, or error handling. But whatever the solution, you must always con-
ceal the provider’s perspective as much as possible in order to provide easy-to-under-
stand and easy-to-use APIs.



 299Choosing an API style according to the context

11.3 Choosing an API style according to the context
When you’ve mastered or are used to using a tool like a hammer, it’s very tempting to 
treat all problems like nails. This is a cognitive bias called the law of the instrument, 
the law of the hammer, or Maslow’s law (https://en.wikipedia.org/wiki/Law_of_the_
instrument). Such a bias can also have another effect: screwdriver users might think 
that a screwdriver is a better tool than a hammer, while hammer users might think the 
opposite. This could be called the fannish folk law.

But a hammer will not solve all problems, and a screwdriver is not better than a ham-
mer; each tool is as useful as the other, but in different contexts. This book is about 
web API design, not carpentry or woodworking, but the same concerns apply in the 
tech industry too. Choosing which tool(s) you will use to design a remote API must not 
be done based on what you are used to, what is fashionable, or your personal prefer-
ence; it must be done according to the context. And being able to choose the right tool 
requires you to know more than one.

Web APIs can easily be reduced to unitary and synchronous request/response + 
REST + HTTP 1.1 + JSON web APIs, which is nowadays one of the most commonly used 
ways to enable software-to-software communication in order to expose goals fulfilling 
targeted users' needs. Therefore, API designers could be tempted to use this set of tools 
in all situations, in all contexts. In this book, this toolset is only used to expose funda-
mental API design principles that you can use when designing other types of remote 
APIs.

We’ve already discovered some other tools that can be added to our toolboxes to be 
used in the appropriate contexts. In section 6.2.1, for example, you saw that JSON was 
not the only possible data format for APIs; you can use XML, CSV, PDF, or many other 
formats. You also saw in section 11.2.1 that sometimes it might even be counterproduc-
tive to use JSON in a context where consumers are used to an existing standardized 
XML format. In section 10.3.6, you learned that REST APIs are not the only option 
when creating web APIs. Using a query language might bring more flexibility when 
requesting data (but less caching possibilities). In section 11.1, you discovered that a 
synchronous request/response consumer-to-provider mechanism is not the only way 
of enabling communication between two systems. We can create asynchronous goals, 
notify consumers of events, stream data, and even process multiple elements in one 
call. And in section 10.2.1, you learned that HTTP 2 can be used instead of the good old 
HTTP 1.1 protocol.

We already know that context plays an important role in the choice of tools, and we 
already know about several different tools. But as API designers and software and sys-
tems designers, in general, we need to broaden our perspective in order to be sure to 
avoid the law of the instrument. In order to do so, we will explore some alternatives to 
REST APIs and web APIs in this section.

https://en.wikipedia.org/wiki/Law_of_the_instrument
https://en.wikipedia.org/wiki/Law_of_the_instrument


300 chapter 11 Designing an API in context

11.3.1 Contrasting resource-, data-, and function-based APIs

At the time of this book’s writing, there are three main ways of creating web APIs: 
REST, gRPC, and GraphQL. Will they still be there in five or 10 years? Will they still be 
the same? Only time will tell.

Is one of them better than the others? No! It depends on needs and context. The 
approaches shown in figure 11.10 represent three different visions of APIs: REST is 
resource-oriented, gRPC is function-oriented, and GraphQL is data-oriented, and each 
of these has its pros and cons.

You should know by now what a REST API is. As you have seen throughout this book, 
and especially in section 3.5.1, a REST API— or RESTful API— is an API that conforms 
(or at least tries to conform) to the REST architectural style introduced by Roy Field-
ing.4 Such an API is resource-based and takes advantage of the underlying protocol 
(the HTTP protocol, in this case). Its goals are represented by the use of standard 
HTTP methods on resources with the results being represented by standard HTTP 
status codes.

In the Banking API, reading an account’s details could be represented by a GET /
owners/123 request, returning a 200 OK HTTP status along with all the customer’s data 
if this 123 owner exists or a 404 Not Found HTTP status if not. Updating the same own-
er’s VIP status could be done with a PATCH /owners/123 request, whose body would 
contain the new value.

Relying on an existing protocol favors consistency and makes APIs predictable, as 
you saw in section 6.1. Indeed, upon seeing any resource, a consumer might try to use 
the OPTIONS HTTP method to determine what can be done with it, or even try the GET 

/accounts/{id}/transactions
GET

/accounts

/transactions/{id}
PATCH

listAccounts()

searchTransactions()

readAccounts()

categorizeTransaction()

/accounts

ACCOUNT

TRANSACTION

GET

GET

Data-based (GraphQL) Resource-based (REST)

{
  account(id) {
    balance
    transactions {
      id
      amount
      label
    }
  }
}

Function-based (gRPC)

GraphQL is
function-based

when not reading.

Standard
method

Selecting
data

PATCH
checkTransactions()

Data

Resource
Function

Figure 11.10   Contrasting resource-, data- and function-based APIs

4 See his PhD dissertation “Architectural Styles and the Design of Network-Based Software Architec-
tures” at https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf.

https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf


 301Choosing an API style according to the context

method to read it or PUT or PATCH to update it. Even the most obscure 4XX HTTP status 
code will be understood as an error on the consumer’s end by any consumer. Such an 
API can also take advantage of all the existing features of HTTP, such as caching and 
conditional requests; designers do not have to reinvent the wheel. Server-to-consumer 
streaming capabilities can be added too, using SSE (see section 11.1.3). But this does not 
make the design of the API simple.

You have seen throughout this book that even if the HTTP protocol provides some 
kind of framework, it does not magically prevent us from creating terrible REST APIs. It 
is still up to designers to choose resource paths (/owner or /owners?) and to decide how 
to represent data, provide informative feedback on errors or successes beyond HTTP 
statuses, and more.

The gRPC framework was created by Google. The g stands for Google and RPC 
stands for Remote Procedure Call. An RPC API simply exposes functions.

In a function-based API, reading the 123 owner could be done by calling the read-
Owner(123) function, and updating that owner’s VIP status could be done by calling 
updateOwner(123, { "vip": true }). The gRPC framework uses the HTTP 1.1 or 2 
protocol as a transport layer, without using its semantics. It does not provide any stan-
dard caching mechanism. Note that it can take advantage of the HTTP 2 protocol to 
propose bidirectional and streaming communication. It can also use the Protocol Buf-
fer data format, which is less verbose than XML or JSON (you can also use this format 
in a REST API).

Whereas in a resource-based API case, the underlying protocol provides some kind 
of framework, especially to describe what kind of action is being taken and what the 
result is, in a function-based API, it is usually up to the designers to choose their own 
semantics for almost everything. So, how would you represent a goal such as list owners?  
Should it be a listOwners(), readOwners(), or retrieveOwners() function? The 
same goes when it comes to modifying data. Should the API provide a saveOwner() or  
updateOwner() function?

For errors, the gRPC framework provides a standard error model including a few 
standard codes that map to HTTP status codes (https://cloud.google.com/apis/
design/errors). For example, when calling readOwner(123), a NOT_FOUND code (map-
ping to a 404 Not Found HTTP status) can be returned along with an Owner 123 does 
not exist message. The error model can be completed with additional data in order 
to provide more informative feedback. As with a REST API, it is up to the designers to 
choose how to do that (see section 5.2.3) and also how to represent data.

We covered GraphQL briefly in section 10.3.6; it’s a query language for APIs created 
by Facebook. A GraphQL API basically provides access to a data schema allowing con-
sumers to retrieve exactly the data they want. It is protocol-agnostic, meaning that any 
protocol that lets us send requests and get responses could be used; but because the 
HTTP protocol is the most widely adopted, it usually is the chosen one.

Like gRPC, GraphQL does not provide any standard caching mechanism. A POST  
/graphql request with the { "query": "{ owner(id:123) { vip } }" } query in 
its body would only return owner 123’s VIP status. And when it comes to creating or 

https://cloud.google.com/apis/design/errors
https://cloud.google.com/apis/design/errors


302 chapter 11 Designing an API in context

updating data, GraphQL behaves like any RPC API. It uses functions that are called 
mutations. Updating owner 123’s VIP status would require us to call the updateOwner 
mutation, which takes the owner’s ID and an owner object containing the new VIP 
status.

GraphQL also comes with a standard error model that can be extended. Listings 11.9 
and 11.10 show a query and a response with a standard error, respectively.

Listing 11.9  A GraphQL query

{
  owner(id: 123) {
    vip
    accounts {
      id
      balance
      name
    }
  }
}

Listing 11.10  A GraphQL response with an error

{
  "errors": [
    {
      "message": "No balance available for account with ID 1002.",
      "locations": [ { "line": 6, "column": 7 } ], 
      "path": [ "owner", "accounts", 1, "balance" ]
    }
  ],
  "data": {
    "owner": {
      "vip": true,
      "accounts": [
        {
          "id": "1000",
          "balance": 123.4
          "name": "James account"
        },
        {
          "id": "1002",
          "balance": null,                         
          "name": "Enterprise account"
        }
      ]
    }
  }
}

The query shown in listing 11.9 requests owner 123’s VIP status and account IDs, bal-
ances, and names. Unfortunately, as shown in listing 11.10, the balance could not be 
retrieved for the second account. The standard error model contains, for each error, 

Points to 
error in 

query

Indicates the result property 
affected by the error

The actual property 
affected by the error



 303Choosing an API style according to the context

a human-readable message, the possible sources of the error in the GraphQL query 
in locations (balance is on the sixth line and starts at the seventh character of the 
query), and the optional path of the affected property in the returned data (the null 
balance is in data.owner.accounts[1].balance).

Such an error seems to be the provider’s fault and not the consumer’s, but this is not 
indicated. It’s up to the designers to choose how to add information to this standard 
error model in order to provide fully informative feedback. And obviously, like in REST 
and gRPC APIs, it’s up to the designers to choose how to design the data model.

From a design perspective, we can see that these three different ways of creating APIs 
have three different ways of envisioning representations of an API’s goals: resources 
(REST), functions (gRPC and also creations and modifications in GraphQL), and data 
(reads in GraphQL). Fundamentally, representing any read goal is possible in any of 
these API styles. When it comes to create, modify, delete, or do goals, they can be rep-
resented by a resource/method couple or a function. Each approach comes with more 
or less standardized elements favoring consistency and, hence, facilitating usability and 
design.

NOTE  An API strictly following the underlying protocol’s rules is the most con-
sistent one out of the box.

But whatever the provided framework, designers still have a lot of work to do in 
order to design decent APIs. Regardless of the API style they choose, designers still 
have to identify users, goals, inputs, outputs, and errors, and choose the best possible 
consumer- oriented representations while avoiding the provider’s perspective.

From a technical perspective, we have three different API tools or technologies 
that can be used over the HTTP protocol. The use of the HTTP protocol is important 
because it is widely accepted, and you usually do not need many, if any, modifications 
to your infrastructure to host or use an HTTP-based API. There are some differences 
between the three tools, however.

REST APIs rely on the HTTP protocol and can benefit from features such as content 
negotiation, caching, and conditional requests. GraphQL and gRPC do not provide 
such mechanisms but have some other interesting features. Thanks to the use of HTTP 2 
and the ProtoBuf data format, gRPC-based APIs can provide high performance. They 
also provide streaming and bidirectional communication between consumer and pro-
vider. (Note that REST APIs can provide one-way streaming from provider to consumer 
with SSE.) And as seen in section 10.3.6, GraphQL’s querying capabilities let consumers 
get all the data they want, and only the data they want, in a single request, but at the 
expense of caching capabilities.

Concerning the provider’s context and especially the implementation, you obviously 
don’t have much control over the queries that could be made by consumers in a data-
based API. In non-infinitely-scalable systems, too many complex requests could result in 
a load higher than the underlying systems can support and terribly long response times 
if the implementation is not ready to prevent that. With a resource- or function-based 



304 chapter 11 Designing an API in context

API, it is quite easy to avoid such problems. Because each goal’s behavior is usually 
predictable, the solicited systems are known, and rate limiting can be used to protect 
the underlying systems. You can specify that each consumer cannot make more than x 
requests per second on the API, and even specialize this rate limiting by consumer and/
or goal.

For data-based APIs, you could limit the number of queries or their size, but that 
would be pointless because it would not prevent unexpectedly complex queries from 
being made. You could limit the number of nodes in a request (containing one or more 
queries) or accept only preregistered requests, but that would be done at the expense 
of flexibility, making the data-based API choice almost useless. In all cases (REST, gRPC, 
GraphQL), a good practice would be to limit the number of items returned by default 
in lists.

So, which approach should you use? Such a choice cannot be made prior to analyzing 
your context and needs. Once you know who your consumers are and understand their 
contexts, the goals they need, and how they will be used, and you understand the pro-
vider’s context, you can choose what kind of API will be the most appropriate. Although 
each context will be different, nowadays the rule of thumb is to choose REST by default. 
If there are very specific needs that cannot be fulfilled by a well-designed REST API, you 
might want to try GraphQL or gRPC.

Choosing REST by default could be seen as an example of the law of the instrument 
or fannish folk law, but the REST approach is capable of fulfilling most needs. It is the 
most widely adopted way of creating APIs, and most developers are used to it (remem-
ber section 11.2.1). Choose GraphQL for private APIs in mobile environments only if 
a well-designed REST API hosted in a well-configured environment is not possible (see 
section 10.2), and if

¡	You actually need advanced querying capabilities.
¡	You do not plan to make your API public or share it with partners.
¡	You do not care about caching.
¡	You are sure to be able to protect the underlying systems through the implemen-

tation or through infinite scalability.

Finally, choose gRPC APIs for internal-application-to-internal-application communi-
cation only if milliseconds really matter, if you do not care about caching or you are 
willing to handle it without relying on HTTP, and if you do not plan to make the API 
public or share it with partners. Also bear in mind that this choice might not be exclu-
sive. You have already seen in section 10.3.8 that different layers of an API can fulfill 
different needs. Building a mobile BFF exposing a GraphQL API or a more specialized 
REST API is totally legit. An application can also expose a gRPC interface for internal 
consumers and a REST interface for external ones.



 305Summary

11.3.2 Thinking beyond request/response- and HTTP-based APIs

As API designers, we must be aware that request/response HTTP-based APIs are not 
the only way of enabling communication between applications. We talked about events 
and streaming in section 11.1, but mostly from an HTTP perspective. When you build 
an event-based system, a provider can notify consumers about events using a webhook 
or WebSub system, both HTTP-based. But this could also be done using a messaging 
system such as RabbitMQ. If it’s for internal purposes, it might be more effective to 
directly connect providers and consumers to such tools.

When dealing with the Internet of Things (IoT), energy consumption efficiency is 
a key concern, and two-way communication over unreliable networks or with sleeping 
devices is almost a standard. The Message Queuing Telemetry Protocol (MQTP) is a 
message-based protocol designed to deal with such constraints. When streaming events, 
you can use SSE over HTTP for provider-to-consumer communication. But this could 
also be done using the WebSocket protocol, which is not HTTP-based (as seen in sec-
tion 11.1.3). And if you need to process a massive flow of events, Kafka Streams could 
be an option.

An entire book would be needed to talk about the design and architecture of event-
based systems, and that is not this book’s purpose. But you can at least take advantage of 
what you have learned in this book to design the event notifications and streams. The 
point to remember here is that HTTP-based communication is not the only option; 
and, in certain contexts, it should actually be avoided at all costs. In the next chapter, 
you will discover the different types of API documentations and how designers can par-
ticipate in their creations.

Summary
¡	Unitary request/response, consumer-to-provider communication is not the only 

option; you can also design asynchronous goals, notify consumers of events, 
stream data, and process multiple elements in one call.

¡	Designing APIs requires us to be aware of the consumers' contexts, including 
their network environments, habits, and limitations.

¡	Designing APIs requires us to carefully consider the provider’s limitations, to 
spot these earlier, and to solve problems without impacting the design (if possi-
ble) and adapting the design (if not).

¡	Designing APIs requires us to ignore fashion and personal preferences. Just 
because you like or know a certain tool/design/practice doesn’t mean that it will 
be the ideal solution for all API design matters.



306

12Documenting an API

This chapter covers
¡	Reference documentation

¡	User guides

¡	Implementer specifications

¡	Change logs

In previous chapters, you discovered that designing APIs requires more than just 
designing usable APIs doing the job. Indeed, we have to take care of the whole con-
text surrounding the API when designing it. But this context goes beyond that of 
the API itself— its interface contract, its implementation, and how and by whom it is 
used.  API designers have to participate in various aspects of API projects, and a very 
important one is documentation.

The best designs of even the simplest things need documentation. As shown in 
figure 12.1, everyday objects can come with various types of documentation to help 
users understand how to use them, as well as to help the people in charge of building 
those objects to actually build them.



 307 

12 New!
Now shows time in 24h mode

Choose between 3
different alarm sounds!

18:03 +
Alarm Clock

–

Set
Time

Alarm: 06:00 Set
Alarm

ALARM CLOCK USER MANUAL

How to set alarm:
- Push Set Alarm button for five seconds
- Push plus or minus button to set hour
- Push Set Alarm button
- Push plus or minus button to set minutes
- Push Set Alarm button

18:03
+

Alarm Clock

–

Set
Time

Alarm: 06:00 Set
Alarm

Set Time button

Set Alarm button

Plus button

Minus button

LCD screen

Time

Alarm time

How to set alarm sound:
- Push Set Alarm and Set Time buttons
- Push plus or minus button to cycle sounds
- Push Set Alarm button

Page 1

ENGLISH

ENGLISH

Page 2

Change log

Reference documentation

Operating
manual

Time blinks when
Set Time button is

pressed for five seconds

Implementation
specs

Figure 12.1   Different types of documentation

Page 1 of the Alarm Clock User Manual shows an annotated figure of the alarm clock. 
Thanks to that, users know what the components of the user interface are and their 
roles, even if the device’s user-friendly design makes this fairly obvious. But this first 
page of documentation alone is not enough to operate the alarm clock. That’s why 
page 2 shows its various functions, such as how to set the alarm by using the Set Alarm 
and plus and minus buttons.

The user manual’s cover is also a kind of documentation: it advertises, “Now shows 
time in 24h mode” to indicate a new feature that was not present in the previous ver-
sion. (This might not be of interest to new users, but it will be to people who owned the 
earlier version.) Without this documentation, most users, especially if they’ve owned 
one before, would be able to use the alarm clock because of its design. But some users, 
the absolute beginners, might struggle at first to guess how to operate it.

We’ve mentioned three different types of documentation that are user-oriented, but 
there is another kind of documentation. Although this user manual provides all the infor-
mation needed to use the alarm clock, it’s not sufficient to actually build one. For exam-
ple, the user manual does not state that the time on the LCD screen blinks when the Set 
Time button is pressed for five seconds, but it actually does that. The people in charge of 
building the alarm clock got the documentation from its designers in the form of imple-
mentation specifications describing such behavior. Without such documentation, there is 
little chance that a design will be implemented as expected by the designers. Without 
relevant documentation, all the effort that’s put into a design can be worthless.

As API designers, you will have to create or at least participate in the creation of such 
documentation for the APIs you are designing. The best-known API documentation is 
the reference documentation that describes the interface contract of the API. It lists the 
available goals and describes their inputs and outputs. This is what you have to describe 
when designing an API, which can be sufficient for very basic APIs if all use cases ful-
filled by the API can be accomplished using a single goal. But if that’s not the case, only 
supplying reference documentation is like only providing the list of ingredients for a 
recipe without some indication of what to do with those ingredients— an edible result 



308 chapter 12 Documenting an API

might be quite hard to achieve from that. That is why an API must also come with an 
operating manual describing various use cases and how to achieve them.

Additionally, as with any software, when modifying an API, even if no breaking 
changes are introduced, it is wise to provide a change log indicating the features that 
have been changed or added. As the designer who knows what changes you have made, 
it is up to you to list those changes. And last but not least, providing a description of the 
API might not be enough to allow someone to implement it. You might also have to 
provide additional specifications to the people in charge of the API’s implementation 
in order to ensure that the result behaves as expected.

Your involvement in each of these kinds of documentation depends on the type of 
documentation, the size of your company or team, and the type of API (private, part-
ner, or public). In a big company and/or team, technical writers might be available to 
produce high-quality documentation; you only have to provide support and raw inputs. 
Relying on technical writers is especially important for consumer-facing documenta-
tion of public APIs; writing usable and user-friendly documentation requires experts in 
order to ensure a top-quality developer experience. For private APIs, the expectations 
might be lower, and the documentation might be less eye-catching, but the developer 
experience should still be a major concern. Documentation for internal developers 
must at least be readable and exhaustive. Exhaustively documenting APIs has a nice 
side effect— it is testing the design. If you are unable to document how to use the API or 
how to implement it, it can be a sign of improper design.

In this chapter, we will discover what reference documentation, operating manu-
als, implementation specifications, and change logs might contain, and how we as API 
designers can contribute to them by taking advantage of our work during the design of 
the API. What you learn to do here might be sufficient for wholly documenting private 
APIs; for consumer-facing partner or public APIs, your work will be a good input for 
more experienced technical writers.

12.1 Creating reference documentation
API reference documentation like that shown in figure 12.2 is like the annotated alarm 
clock schema in figure 12.1: it lists and describes each available component of the 
interface.

Figure 12.2   Reference documentation generated from an OpenAPI Specification file using the ReDoc 
open source tool



 309Creating reference documentation

For an API the components are, at minimum, the available goals and their inputs and 
outputs for both success and error cases. (In the case of the alarm clock, these compo-
nents were its buttons and LCD screen.) Documentation of the API should also contain 
a simple description of it and provide information about security. All this information 
could be written in any format, from a simple text file to a wiki page. Some people even 
dare to use spreadsheets (please don’t!). Any custom format could do the job, but you 
saw in section 6.1.3 that using standards is better when designing an API, and this is 
also the case when creating API documentation.

You learned about some of these standards in chapter 4. Indeed, API description 
formats such as the OpenAPI Specification are the perfect companion when you want 
to create API reference documentation. These formats are made to describe what is 
needed in such documentation; and, as seen in section 4.1.2, they can be easily stored, 
versioned, and most importantly, used to generate a human-friendly representation. 
The tool used to generate the reference documentation based on the OpenAPI Specifi-
cation file shown in figure 12.2 is called ReDoc.

Running ReDoc CLI
All of this chapter’s API documentation screenshots have been created with the redoc-cli 
command-line utility (https://github.com/Rebilly/ReDoc/tree/master/cli) using the fol-
lowing command line:

redoc-cli serve <path to OpenAPI file> --options.showExtensions

This utility also lets you generate standalone HTML documentation using the following 
command line:

redoc-cli bundle <path to OpenAPI file> --options.showExtensions

These are only a few of the possibilities for ReDoc. Its documentation (https://github.
com/Rebilly/ReDoc) provides all needed information to use it and integrate it into any 
existing web applications.

 

ReDoc is one tool among many. Many API tools, especially API developer portals, 
natively understand the OpenAPI Specification (and others) and so can generate such 
renderings without you having to code anything. But format alone isn’t enough. If the 
description of your API does not contain all the needed information, the generated 
documentation will be incomplete, even if these tools are able to guess a few things by 
themselves.

What follows is illustrated with the OpenAPI Specification and ReDoc, but you can 
use other API description formats and rendering tools. The important things to remem-
ber here are what information is needed in the reference documentation and what you 
should expect from API description formats and renderers. We will start by document-
ing the data model, then the goals (paths and HTTP methods, input, outputs). After 
that, we will deal with security; and finally, we will see how to add some useful informa-
tion about the API itself.

https://github.com/Rebilly/ReDoc/tree/master/cli
https://github.com/Rebilly/ReDoc
https://github.com/Rebilly/ReDoc


310 chapter 12 Documenting an API

12.1.1 Documenting data models

Figures 12.3 and 12.4 show a detailed data model and an example of the request body 
parameter, respectively, needed to create a money transfer.

Figure 12.3   Data model reference documentation

Figure 12.4   Data model reference example



 311Creating reference documentation

The reference documentation in figure 12.3 shows us that this data model is composed 
of source, destination, amount, date, occurrences, and frequency properties. They 
are all of type string except for amount, which is a number, and occurrences, which is 
an integer; additionally, source, destination, and amount are mandatory (required) 
properties. This is the most fundamental information needed in reference documenta-
tion, as it is when describing an API in the design phase (see section 3.3.1).

But this reference documentation does more than just provide the minimum: it 
also provides useful functional and technical descriptions and examples. The doc-
umentation gives detailed information about each property’s format and value. The 
source and destination properties must be 15 characters long and contain only digits, 
according to the /^\d{15}$/ regular expression. The amount is an exclusively positive 
number, and the value of occurrences must be between 2 and 100. The possible values 
of the frequency property are "WEEKLY", "MONTHLY", "QUARTERLY", and "YEARLY". The 
example shown in figure 12.4 helps us to visualize what each property looks like.

Furthermore, the date, occurrences, and frequency descriptions give useful infor-
mation about how these properties can be used for creating delayed or recurring trans-
fers. Note that amount has no description because its name and the context make it 
clear that it specifies the amount of money to transfer from source to destination.

All this information comes from a JSON Schema defined in the underlying OpenAPI 
Specification file (two excerpts are shown in listings 12.1 and 12.2). You already learned 
in section 4.3.2 how to define a property’s name, type, and description; how to state if a 
property is mandatory; and how to provide an example.

Listing 12.1  A very complete description of a property with an example

components:
  schemas:
    TransferRequest:
      description: A money transfer request
      required:
        - source
        - destination
        - amount
      properties:
        source:
          type: string
          description: Source account number
          minLength: 15                          
          maxLength: 15                          
          pattern: ^\d{15}$                      
          example: "000534115776675"             

The source property’s length is 15 because its minLength and maxLength values are 
both 15. Its exact format (a string composed of 15 digits) is defined by pattern, which 
contains the ^\d{15}$ regular expression (000534115776675, for example).

ReDoc is actually able to guess the property’s length based on the regular expres-
sion, but not all tools take advantage of this information. The source’s value shown in 

Minimum length for 
source property

Maximum length for 
source property

Format for source property 
(a regular expression)

An example value



312 chapter 12 Documenting an API

figure 12.4 comes from the example provided in listing 12.1, but documentation tools 
can also guess example values based on descriptions, as show in the following listing.

Listing 12.2  Documentation tools rely on descriptions to generate examples

        [...]
        date:
          type: string
          format: date                           
          description: |
            Execution date for a delayed transfer
            or first execution date for a recurring one
        [...]
        frequency:
          type: string
          description: Frequency of recurring transfer's execution
          enum:                                  
              - WEEKLY
              - MONTHLY
              - QUARTERLY
              - YEARLY

The date property uses the date format, which means the value will be a YYYY-MM-DD 
ISO 8601 full date: 2019-03-23, for example. The frequency property’s possible values 
("WEEKLY", "MONTHLY", "QUARTERLY", and "YEARLY") are defined in the enum list. There 
are no examples set for the date and frequency properties, but the reference documen-
tation still provides some: these have been generated based on the JSON Schema.

For the date property, being a date, ReDoc simply uses today’s date (2019-05-01 in 
figure 12.4), and for frequency, it uses a random value from the enum (WEEKLY in fig-
ure 12.4). I’ll let you find out for yourself how the other properties have been described.

More about the OpenAPI Specification
As mentioned in section 4.1.1, you can easily explore the whole OpenAPI format by using 
my OpenAPI Map and by reading its specification.a Note that there are specific additional 
JSON Schema properties that can be used to make fine descriptions of any atomic types 
and also arrays (for example, how many items can be used in an array).

 

As you can see, basic but valuable reference documentation for an API’s data model 
can be created by just reusing the work done during the API’s design. Simply listing 
properties, their types, and if they are mandatory, without even providing examples or 
extensive descriptions, could be sufficient for simple data models. Consumers might 
not thank you for providing such basic reference documentation, but be sure that they 
will curse you if you do not provide any at all.

The date property is a string using a date 
format (YYYY-MM-DD); today’s date is 
used in the documentation.

Possible values for frequency; a random 
value is shown in the documentation.

a For the OpenAPI Map, see https://openapi-map.apihandyman.io/. For the OpenAPI Specifica-
tion, see https://github.com/OAI/OpenAPI-Specification/tree/master/versions.

https://openapi-map.apihandyman.io/
https://github.com/OAI/OpenAPI-Specification/tree/master/versions


 313Creating reference documentation

If you add examples and, more importantly, detailed and relevant descriptions, 
including both machine-readable (like formats or possible values) and human- readable 
ones, the resulting reference documentation will be of help to anyone using it on either 
the consumer’s or the provider’s side. There is no need for “Captain Obvious” descrip-
tions like “amount: the transfer’s amount” or, even worse, “amount: the amount.”

NOTE   A relevant human-readable description explains the nature of the prop-
erty, including its roles and relationships with others and when it is used.

If stating a property’s name, type and context is sufficient for a user to understand its 
meaning; there is no need to add a description. If the API description format and ren-
dering tool you use support formatted human-readable descriptions (using Markdown, 
for example), do not hesitate to use this feature to make long descriptions easier to read.

12.1.2 Documenting goals

A goal’s reference documentation describes the goal’s purpose, what is needed to use 
it, what kind of feedback consumers get in the event of success or failure, and if it is 
part of a group of goals. For example, figure 12.5 gives an overview of the transfer 
money goal.

As you can see, the goal is represented by a POST /transfers request. According to the 
description, this goal allows users to create immediate, delayed, or recurring money 
transfers. Each type of transfer is explained from a functional point of view, and there 
is also information about the use of the various properties that can be shared by all 
types or those specific to one. All types of transfers need an amount, source account, 
and destination account. We can also see that a delayed transfer is executed on a 
given future date, and that a recurring transfer requires a date as well as a number of 
occurrences and a frequency.

All the information provided in this description could be inferred by analyzing the 
request body data model previously shown in figure 12.3, but it’s better to provide a 

Figure 12.5   An overview of the transfer money goal



314 chapter 12 Documenting an API

more human-readable description instead of simply saying, “Create a money transfer” 
or “Create an immediate, delayed, or recurring money transfer.” Such a description 
makes documentation very user-friendly, but this can be even better. Look at the request 
samples shown in figure 12.6.

Figure 12.6   Multiple goal input examples

There are Immediate transfer, Delayed transfer, and Recurring transfer tabs, the lat-
ter being selected. This reference documentation provides an example of a request 
for each type of money transfer. This is a must-have! Users don’t have to think to get 
almost-ready-to-use examples for various use cases; they just have to tweak the provided 
values. That’s for the inputs, but an API reference documentation must also provide 
detailed information about possible responses, as shown in figure 12.7.

For each response, there is a human-readable description and the response body 
description (using the same format as the request body). The reference documenta-
tion shows that in the case of success, a 201 or 202 HTTP status can be returned. A 201 
Created HTTP status is returned when a transfer is accepted, and no date property has 
been provided (for immediate or recurring transfers with the first occurrence executed 
immediately). A 202 Accepted HTTP status is returned when a transfer is accepted, and 

Figure 12.7   Goal outputs



 315Creating reference documentation

more human-readable description instead of simply saying, “Create a money transfer” 
or “Create an immediate, delayed, or recurring money transfer.” Such a description 
makes documentation very user-friendly, but this can be even better. Look at the request 
samples shown in figure 12.6.

Figure 12.6   Multiple goal input examples

There are Immediate transfer, Delayed transfer, and Recurring transfer tabs, the lat-
ter being selected. This reference documentation provides an example of a request 
for each type of money transfer. This is a must-have! Users don’t have to think to get 
almost-ready-to-use examples for various use cases; they just have to tweak the provided 
values. That’s for the inputs, but an API reference documentation must also provide 
detailed information about possible responses, as shown in figure 12.7.

For each response, there is a human-readable description and the response body 
description (using the same format as the request body). The reference documenta-
tion shows that in the case of success, a 201 or 202 HTTP status can be returned. A 201 
Created HTTP status is returned when a transfer is accepted, and no date property has 
been provided (for immediate or recurring transfers with the first occurrence executed 
immediately). A 202 Accepted HTTP status is returned when a transfer is accepted, and 

Figure 12.7   Goal outputs

a date property has been provided (for delayed or recurring transfers with a delayed 
first occurrence). Note that the response body schemas are not visible; this is to keep 
the screen capture small.

In the case of an error in the transfer request, a 400 Bad Request HTTP status is 
returned. Its response body is partially shown (again to keep the screen capture small). 
The interesting thing here, though, is the description, which provides details about all 
the possible errors and how they are represented.

As for the input, multiple examples can be provided for each response, as shown in 
figure 12.8. Here, 202 is selected. Delayed and recurring transfer samples are available, 
and the latter is selected.



316 chapter 12 Documenting an API

Figure 12.8   Multiple goal output examples

In section 7.1.3, you learned that if an API provides multiple goals, their organization 
is important. Figure 12.9 shows how this can be managed in reference documentation.

Figure 12.9   Goal organization



 317Creating reference documentation

Figure 12.9 shows the reference documentation’s menu (left column in figure 12.2). 
Goals are organized in various categories, with the Transfers category comprising all 
transfer-related goals (“Create a money transfer” or “Cancel a money transfer,” for 
example). As with the data model reference documentation, everything that is shown 
comes from an underlying OpenAPI Specification file. The following listing puts into 
practice what you learned in section 4.2.3 to describe a goal.

Listing 12.3  The transfer money goal’s basic reference documentation

[...]
paths:
  /transfers:                                      
    post:                                          
      summary: Creates a money transfer            
      requestBody:                                 
        content:
          "application/json":
            schema:
              $ref: "#/components/schemas/TransferRequest"
      responses:                                   
        201:
          description: Immediate or recurring transfer executed
          content:
            "application/json":
              schema:
                $ref: "#/components/schemas/TransferResponse"
        [...]
        400:
          description: Transfer rejected           
          content:
            "application/json":
              schema:
                $ref: "#/components/schemas/Error" 
[...]

The goal is described with a brief summary, and all the possible responses and their 
data models are listed without much detail. The various reference documentation 
screenshots you have seen provided more information. That’s because the OpenAPI 
Specification file used obviously contains more information. The next listing shows the 
underlying detailed description of the transfer money goal.

Listing 12.4  The transfer money goal overview’s OpenAPI Specification file

paths:
  /transfers:
    post:
      summary: Transfers money
      description: |            
        This operation allows one to transfer an `amount` of money from a
        `source` account to a `destination` account.
        There are three different types of money transfer:
          - Immediate, they are executed as soon as the request is received

The resource path The HTTP method used on the resource.

A short description of the 
(resource, method) couple

The goal’s input

The goal’s 
possible outputs

A brief description 
of the feedback

A reference to the 
feedback data model

A multiline description 
in Markdown



318 chapter 12 Documenting an API

          - Delayed, they are executed upon a given future `date`
          - Recurring, they are executed a given `occurrences` number of
          times at a given `frequency`, the first occurrence being executed
          immediately or at a given `date`

Here, after the summary (short description), a complete multiline description taking 
advantage of the Markdown format is provided. The next listing shows how to provide 
multiple examples of the transfer money goal’s request body.

Listing 12.5  Multiple examples of the transfer money goal’s request body

[...]
paths:
  /transfers:
    post:
[...]
      requestBody:
        content:
          "application/json":
            schema:
              $ref: "#/components/schemas/TransferRequest"
            examples:                            
              immediate:
                [...]
              delayed:
                [...]
              recurring:                         
                summary: Recurring transfer
                description: |
                  The money transfer is executed at a
                  given date recurringly
                value:
                  source": "000534115776675"
                  destination: "000567689879878"
                  amount: 456.2
                  date: "2019-03-19"
                  occurrences: 1
                  frequency: "MONTHLY"
              [...]
[...]

The Request Samples pane in figure 12.6 showed three tabs: Immediate transfer, 
Delayed transfer, and Recurring transfer. Their content came from the examples prop-
erty after the schema property. Each example has a summary (tab name), description, 
and value (tab value). Unfortunately the description of each example is not shown in 
ReDoc.

NOTE   Be aware that all tools might not support all API description format 
features.

Providing multiple examples can be done for other types of input parameters too 
(query or header parameters, for example), as well as response bodies. Speaking of 
responses, remember that you learned in section 5.2.2 that we should list all possible 

Multiple examples for the request body

An example comes with a summary, 
description, and value



 319Creating reference documentation

errors. These obviously must be documented beyond just listing the possible 4XX or 
5XX status codes in the reference documentation. The next listing shows how to take 
advantage of a complete multiline-formatted description to do so.

Listing 12.6  A detailed error description

[...]
paths:
  /transfers:
    post:
      [...]
      responses
        [...]
        400:
          description: |
            The transfer is rejected due to an error in the request
            properties or an insufficient balance. Each error provides the
            property `source` of the error along with a human-readable
            `message` and its `type`:
 
            - MANDATORY_PROPERTY: The property indicated in `source`
              is missing
            - INVALID_FORMAT: The format of the property indicated in
              `source` is invalid
            - INVALID_VALUE: The value of the property indicated in
              `source` is invalid
            - INSUFFICIENT_BALANCE: The `amount` property is higher than
              the `source` account balance
          [...]
[...]

For the goal groups, there’s nothing new. You learned in section 7.1.3 how to define 
them, as shown in the next listing.

Listing 12.7  Describing tags

[...]
tags:                                            
  - name: Transfers
    description: Everything you need to transfer money
 
paths:
  /transfers:
    post:
      summary: Create a money transfer 
      tags:                                      
        - Transfers
[...]

So good reference documentation for an API goal, like the data model, requires a 
relevant human-readable description and relevant examples (the more, the better). 
A good description of the possible errors is especially important. Besides providing 

Optional tags definition 
and description

Tags to which the goal belongs



320 chapter 12 Documenting an API

multiple examples, this is basically what you have to describe when you design the 
API, so this kind of reference documentation is easy to create once the API has been 
designed.

12.1.3 Documenting security

Reference documentation must also contain information about security, as shown in 
figures 12.10 and 12.11.

Figure 12.10   How the Banking API is secured and what the available scopes are

Figure 12.11   Which scopes are needed to create a money transfer



 321Creating reference documentation

The Authentication section in figure 12.10 shows that the Banking API is secured using 
the OAuth 2.0 implicit flow, and the (visible) available scopes are transfer:create, 
transfer:read, transfer:delete, transfer:admin, and beneficiary:create. On 
the Create a money transfer screen in figure 12.11, the Authorizations section states 
that consumers must have the transfer:create or transfer:admin scope to be 
authorized to use the transfer money goal. There’s nothing new here; you saw how to 
describe API security using the OpenAPI Specification in section 8.2.4. The following 
listing shows an excerpt of the underlying OpenAPI Specification file.

Listing 12.8  Defining API security and attaching scopes to a goal

[...]
components:
  securitySchemes:                               
    BankingAPIScopes:
      type: oauth2
      flows:
        implicit:
          authorizationUrl: "https://auth.bankingcompany.com/authorize"
          scopes:
            "transfer:create": Create transfers
            "transfer:read": List transfers
            [...]
[...]
paths:
  /transfers:
    post:
      summary: Create a money transfer
      security:                                  
        - BankingAPIScopes:
          - "transfer:create"
          - "transfer:admin"
[...]

ReDoc automatically adds an Authentication menu showing everything defined in the 
components.securitySchemes section of the OpenAPI Specification file. If security 
is defined on a goal, ReDoc also shows an AUTHORIZATIONS: entry.

Again, because you have to define how the API is secured when designing it, not 
much effort is needed to provide basic reference documentation describing how the 
API is secured, the available scopes, and which scopes are needed to use each goal.

12.1.4 Providing an overview of the API

Last but not least is the API-level reference documentation. Figure 12.12 shows how 
ReDoc uses the info section of an OpenAPI Specification file (shown in listing 12.9) 
for this.

Security and scope definitions

Scopes needed to use the goal



322 chapter 12 Documenting an API

Figure 12.12   An API’s short description and contact information in the reference documentation

Listing 12.9  The info section of the underlying OpenAPI Specification file

info:
  title: Banking API
  version: "1.0.0"
  description: |
    The Banking API provides access to the
    [Banking Company](http://www.bankingcompany.com) services, which
    include bank account information, beneficiaries, and money transfer
    management.
  contact:
    name: The Banking API team
    email: api@bankingcompany.com
    url: developer.bankingcompany.com

You learned how to define an API’s name (title) and version when describing an 
API using the OpenAPI Specification in section 4.2.1. Here we’ve added a descrip-
tion and some contact information. The description provides an overview of the 
Banking API and takes advantage of the Markdown format to provide a link to the 
Banking Company’s website. The contact information consists of the name of the team 
managing the API, their email address, and the API’s developer website’s url.

Providing a brief description of the API is mandatory in an API’s reference docu-
mentation; it helps consumers understand what can be done using the API if its name 
alone is not enough. The contact information is optional, but you should always pro-
vide users a way of getting more information or help.

12.1.5 Generating documentation from the implementation: pros and 
cons

Documentation can be generated from the implementation code alone or code plus 
annotations; that was the original intent of the Swagger framework (see section 4.1.1). 



 323Creating a user guide

Such a strategy has the advantage of keeping implementation and documentation syn-
chronized, but know that it has a few drawbacks:

¡	I do not recommend only relying on a pure generation based on code, as the 
resulting documentation will be far from complete.

¡	Existing annotation frameworks, at least the one I have been working with, do not 
allow the same flexibility as you get when working directly with an API descrip-
tion format (for example, providing examples adapted to various contexts when 
using generic data structures shared across the API is impossible).

¡	Including documentation in the code implies that you will actually modify the 
code to fix the documentation. That could be a problem depending on who 
works on what (documentation versus code) and your organization and your 
confidence level when modifying the code (yes, not all organizations in the world 
are able to push all applications automatically into production on every single 
commit without fearing anything).

¡	In the early stages, code has to actually be written to generate documentation. 
If you remember the beginning of this book, you know how this can expose the 
provider’s perspective.

Obviously, keeping the documentation outside the code can also have some drawbacks; 
the major one, being able to keep documentation and code synchronized. Know that 
there is no good or bad strategy regarding this matter; you have to choose one that 
works for you and your organization.

So, whatever the means, as an API designer, you can create good API reference doc-
umentation without much effort, especially if you take a little time to provide detailed 
machine- and human-readable descriptions and (multiple) examples. Like design, 
writing good documentation requires practice, and reference documentation is a good 
place to start. Remember that seasoned technical writers might be needed if this docu-
mentation is for a partner or public API.

12.2 Creating a user guide
Complete reference documentation listings and describing every component of an 
API is a must-have, but as mentioned earlier, when following a recipe, if you only have 
the ingredients list, you can struggle to achieve something edible. An API user guide, 
like the example in figure 12.13, is meant to explain how to actually use the API. It 
describes how to use the API as a whole, as well as its principles and how to get access 
to it (registration and getting access tokens). When you’re providing public APIs, this 
documentation can be fairly dynamic.



324 chapter 12 Documenting an API

Figure 12.13   An API user guide

12.2.1 Documenting use cases

In figure 12.13, there is a Use cases menu in the left pane. It contains two items: Trans-
ferring Money to an Account or Preexisting Beneficiary and Canceling a Delayed or 
Recurring Transfer. The first option is selected. Each item is obviously intended to 
describe a use case that exposes how various goals of the API can be combined in order 
to achieve something.

In the right pane, showing the transfer money use case, there is some text explaining 
what a money transfer is, the concept of source and destination accounts, and which 
goals should be used to select appropriate values for these properties. There is also a 
diagram below the text showing how to proceed:

1 Call the list sources goal.

2 Select a source account in the resulting list.

3 Call the list source’s destinations goal for the selected source.

4 Select a destination account in the returned list.

5 Decide on an amount.

6 Call the transfer money goal with the selected source and destination and the 
amount.

Does that not seem familiar? This looks like the information you learned to gather in 
section 2.3 and put in an API goals canvas like the one shown in figure 12.14.



 325Creating a user guide

Whats Hows Inputs (source) Outputs (usage)Whos Goals

Customer Transfer money Select source account Customer ID (security data) Source�accounts usable
for a money transfer

(list source’s destinations,�
transfer money)

List sources

Select a destination
account�or beneficiary Source account (list sources) Valid destination accounts

or pre-registered beneficiaries
for selected source

(transfer money)

List source’s
destinations

Request
money transfer

Source account (list sources),
destination account or

pre-registered beneficiary
(list source’s destinations), and

amount (customer/consumer input)

Money transfer ID Transfer money

Figure 12.14   An excerpt of the API goals canvas made while designing the Banking API.

An API goals canvas describes use cases that can be achieved using various goals. This 
means that, again, the work done during the design of the API can be reused to doc-
ument the API. The API goals canvas can be reused more or less as is for private APIs 
and as a raw input for partner or public APIs.

Describing use cases in an API user guide can be done in many different ways, using 
many different tools. For basic user guides, all you need is to be able to write formatted 
text and, possibly, add some diagrams or images. You can use a simple content man-
agement system (CMS), a developer portal (which usually include CMS features), or 
even build your own custom website. For illustration purposes here, I’ll continue to use 
ReDoc and the OpenAPI Specification file shown in the following listing.

Listing 12.10  How ReDoc takes advantage of the OpenAPI Specification file

[...]
info:
  title: Banking API
  version: "1.0.0"
  description: |                            
    The Banking API provides access to the
    [Banking Company](http://www.bankingcompany.com) services, which
    include bank account information, beneficiaries, and money transfer
    management.
 
    # Use cases                             
 
    ## Transferring money to an account
             or preexisting beneficiary     
 
    The _transfer money_ operation allows one to transfer an `amount` of
    money from a `source` account to a `destination` account or
    beneficiary.
    In order to use an appropriate `source` and `destination`, we recommend
    to use _list sources_ and _list source's destinations_ as shown in the
    figure below (instead of using _list accounts_ and
    _list beneficiaries_).

The description of the API

A Markdown level 1 header

A Markdown level 2 header



326 chapter 12 Documenting an API

                                            
    ![Diagram](http://developer.bankingcompany.com/diagrams/transfer.svg)
 
    ## Canceling a delayed or recurring
                        money transfer      
 
    - List money transfers: To list existing money transfers and select the
      one to delete
    - Cancel a money transfer: To cancel the selected money transfer
[...]

I’ve added some text and included an image in the info.description section of the 
OpenAPI Specification file, taking advantage of the Markdown format. If the descrip-
tion contains level 1 and 2 headers, ReDoc automatically adds them to the left pane as 
menu items and submenus. If it contains an image (![Text](URL)), it is shown as long 
as the URL can be accessed by the browser in which the ReDoc documentation runs. 
Diagrams can definitely be of great help for consumers (as the saying goes, a picture is 
worth a thousand words), but you can also simply use text, as shown in the second use 
case (Canceling a delayed or recurring money transfer).

Code your diagrams
If you want to create diagrams but struggle with drawing tools, note that the diagram 
shown in figure 12.13 was generated using a tool called PlantUML (or sometimes PUML) 
available at http://plantuml.com. This tool lets you create diagrams using code. You can 
find the transfer money diagram code in this book’s source code (https://www.manning.
com/books/the-design-of-web-apis). I’ll let you explore the tool’s website to discover how 
to use this awesome format.

 

Including the user guide in an API description file can be complex to manage in the 
long run for big APIs with many use cases. The people in charge of maintaining the 
API description might not be the ones maintaining the user guide, and the two forms 
of documentation might not have the same lifecycle. If you use a completely different 
tool or system for the API user guide, don’t forget to use info.contact.url or add a 
link in the description pointing to where it is located.

12.2.2 Documenting security

Another topic that is important in an API user guide is what consumers have to do to 
actually make an API call. It would be a pity if consumers knew which API calls to make 
to trigger a money transfer, but couldn’t actually make those calls because they didn’t 
know how to get a security token. An API user guide must include advice about how 
to register as a developer, register a consumer app, and get tokens using the available 
OAuth flows or whatever other security system/framework is in use (see section 8.1).

Unfortunately, there is nothing much to reuse here from the design phase (the 
scopes list is not of great help); but fortunately, such documentation should be almost 
the same for all of your APIs, and there are literally thousands of existing resources that 

This description 
includes an image.

A simple text-based description

http://plantuml.com
https://www.manning.com/books/the-design-of-web-apis
https://www.manning.com/books/the-design-of-web-apis


 327Providing adequate information to implementers

can be used as inspiration to explain how to get an access token using an OAuth flow 
once the consumer application is registered.

12.2.3 Providing an overview of common behaviors and principles

An API user guide can also contain information about all of the API’s common behav-
iors and principles; security is but one of these. Such documentation can explain how 
errors are handled (see section 5.2.3), the available data formats and languages sup-
ported, or how pagination is handled (see section 6.2). In sum, you should include 
everything that is common to your API goals and worth mentioning to consumers in 
order to facilitate the use of the API.

12.2.4 Thinking beyond static documentation

This topic is totally out of the scope of this book, but know that static documentation 
is not the only option. The most-praised (public) APIs usually provide awesome devel-
oper portals, including high-quality reference documentation and user guides— and 
all of this is constructed in a totally dynamic way.

For example, while browsing the reference documentation of such an API, you 
might see a Try It! button that lets you actually call the API using a prefilled request, 
with the developer portal handling all the security business under the hood. Similarly, 
some user guides allow you to test use cases, step-by-step, inside the developer portal.1

12.3 Providing adequate information to implementers
We’ve explored how to document an API for consumers, but before any of them start 
to actually consume the API, it has to be implemented. And what do the people in 
charge of the implementation need? They obviously need a detailed description of the 
interface contract and, possibly, how it is supposed to be used; but that’s not enough. 
They also need a description of what happens under the hood.

NOTE   The events depicted in the story that follows are fictitious. Any similarity 
to any person living or dead or any existing or previous organization is merely 
coincidental.

When the Banking API was implemented, the resulting API was not exactly the 
expected one. For example, the account balances were implemented as objects con-
taining a value as a number and a currency as a string. Unfortunately, for a $123.45 
balance, the value was 12345 (the balance in cents, as it is stored in the banking system) 
and the currency was "C123" (the internal $ currency code). Also, the returned bal-
ances were not the real-time ones, but the daily ones, updated once a day at midnight.

There were also problems with error handling. For example, when a money transfer 
request was missing both a destination account and an amount, the error feedback only 
indicated the first problem. And if the account’s balance was insufficient, the error type 
was the internal error code "0002". More frightening, if a consumer using a security 

1 Look at Twilio (https://www.twilio.com) and Stripe (https://stripe.com) to discover first-class docu-
mentation.

https://www.twilio.com
https://stripe.com


328 chapter 12 Documenting an API

token linked to a given customer requested an existing account with a GET /accounts/
{accountNumber} request, and it did not belong to the consumer, the consumer got 
a 200 OK response with the account instead of a 404 Not Found. It was fortunate that 
someone had the idea of conducting tests that uncovered these issues (we will talk more 
about that in section 13.3.5).

After some investigation, the project team realized that the developers in charge 
of the implementation did not get enough information about the API contract, how 
it should map to the underlying system, and what the expected security controls were. 
More importantly, they lacked knowledge of API security in general. All of the prob-
lems were solved by enhancing the API description (the OpenAPI Specification file) as 
shown in figure 12.15 and listing 12.11, and by providing training and guidance.

Figure 12.15   API description with enhanced description and implementation information

Listing 12.11  Adding custom properties into an OpenAPI Specification file

[...]
properties:
  value:
    description: |
      Balance's value using the number of decimal places as defined
      by ISO 4217
    externalDocs:                                
      description: Decimal places table
      url: https://www.currency-iso.org/en/home/tables/table-a1.html

A link to some documentation



 329Providing adequate information to implementers

    type: number
    x-implementation:                            
      description: The real time balance (not the daily one!)
      source:
        system: Core Banking
        location: ZBAL0.RTBAL
  currency:
    description: An ISO 4217 code
    externalDocs:                                
      url: https://www.iso.org/iso-4217-currency-codes.html
    type: string
    example: USD
    x-implementation:
      source:
        system: Core Banking
        location: ZBAL0.RTCUR
[...]

The data format problems were due to an incomplete description of the amount’s data 
model in the API description file. If the description for the amount’s value property 
had stated that the number of decimal places was the one defined by the ISO 4217 stan-
dard, that would have given a hint about its format. The same goes for the currency 
description, which should have stated that this value was an ISO 4217 three- letter code. 
For both properties, links to external documentation (externalDocs) about ISO 4217 
have been added. Note that the first link to the decimal places table has a description 
that ReDoc uses to render the link.

For the balance information, because the Banking API is used by non-expert con-
sumers, there was no need to state in its description that it is the real-time balance. 
This means that it must be stated in another place only visible on the provider’s side. 
The team (including the designer and developers) chose to define it in the OpenAPI 
Specification file using a custom (or vendor) extension x-implementation, containing 
a detailed description about the source of the data (the system and location).

Standard OpenAPI Specification parsers ignore all properties starting with x-, so the 
x-implementation property’s name and format are totally custom and were defined by 
the team. Tools such as ReDoc might render the data contained in such a property, but 
as you can see in figure 12.15, it is rendered as a JSON object. To get a more human-
friendly rendering, you have to customize the tool. The OpenAPI Specification file also 
has been enhanced to contain information about security controls, as shown in the next 
listing.

Listing 12.12  Security controls information on the get account goal

[...]
paths:
  /accounts/{id}:
    get:
      summary: Get an account
      x-implementation:
        security:

Custom data ignored 
by standard parsers

A link without a description



330 chapter 12 Documenting an API

          description: |
            Only accounts belonging to user referenced in security data;
            return a 404 if this is not the case
          source:
            system: security
            location: jwt.sub
          fail: 404
[...]

The x-implementation property contains a description of the security controls that 
have to be performed, the security data to use, and which HTTP status to return in 
case of failure. Besides this detailed implementation documentation, developers have 
been trained to understand API security concerns, and they also have been provided 
with guidelines (we talk more about this in section 12.2). The error problems were 
fixed by adding more detailed information in the consumer-oriented documentation 
(as seen in section 12.1.1) and by also explaining error-handling principles (as seen 
in section 12.1.2).

NOTE  The consumer-facing documentation must not show the  
x- implementation information; it must be stripped from the OpenAPI 
Specification file before it’s published to the developer portal.

So, the first step in providing relevant documentation to the API implementers is pro-
viding detailed consumer-facing documentation (a reference documentation and user 
guide). This documentation does not have to be flashy and eye-catching, but it must be 
exhaustive. But this is not enough.

The implementers also need provider-facing documentation about what actually hap-
pens under the hood. They need information about the data mapping (which system 
each piece of data comes from), error mapping (how to transform internal errors into 
consumer-facing errors), security data and controls, and expected behaviors based on 
internal business/technical rules.

As you’ve seen, this information can be documented within the API description file, 
but this is only one option. Choosing how to provide this information is up to you, as the 
API designer, and the people you are working with. Besides the actual API documenta-
tion, the implementers' documentation also consists of general guidance and training 
(see section 12.2).

12.4 Documenting evolutions and retirement
You learned in section 9.1 how to handle API design and evolutions in order to limit 
the introduction of breaking changes. But changes, breaking or not, will inevitably 
happen, and they have to be documented.

Such documentation is useful for consumers to keep them aware of new features and 
let them know if they need to modify their code in the event that elements are depre-
cated (or worse, retired). It can be also useful for all the other people involved in the 
project, providing them with an overview of upcoming changes in the next version.



 331Documenting evolutions and retirement

And who is the best person to document or at least list all these changes? You! As 
the person who designed the changes, you know best what you have done. Figure 12.16 
shows a very basic change log describing the latest modifications made to the Banking API.

Figure 12.16   A simple change log listing modifications made in each version

A change log should state which elements (data model properties, parameters, 
responses, security scopes) have been added, modified, deprecated, or retired. Here, 
we simply take advantage of the info.description section of an OpenAPI Specifica-
tion file to add a Change Log level 1 header containing level 2 sections for each ver-
sion, as we did for the use cases. API description formats do not, at least at the time of 
this book’s writing, propose ways of describing such a change log, but they can at least 
provide ways of indicating deprecated elements, as shown in figure 12.17.

Figure 12.17   Indicating deprecated elements using the OpenAPI Specification file

The List money transfers for admins goal in the lefthand menu is struck through, and 
the t query parameter of the List money transfers goal, shown in the right pane, is 
indicated as deprecated; they both have a deprecated flag set to true in the OpenAPI 
Specification file, as shown in listings 12.13 and 12.14.



332 chapter 12 Documenting an API

Listing 12.13  Deprecating the List money transfers for admins goal

  /admin-transfers:
    get:
      summary: List money transfers for admins
      tags:
        - Transfers
      description: Redirects to GET /transfers
      deprecated: true                           
    responses:
      "200":
          description: Transfers list
          content:
            "application/json":
              schema:
                $ref: "#/components/schemas/TransferList"

Listing 12.14  Deprecating the t query parameter

  /transfers:
    get:
      summary: List money transfers
      parameters:
        - name: t
          in: query
          description: replaced by type
          deprecated: true                     
          schema:
            type: string
        - name: type
          in: query
          description: transfer type
          schema:
            type: string

According to the OpenAPI Specification, the deprecated flag can be used on param-
eters, goals, and properties in data models. Here, the descriptions of the deprecated 
elements indicate what to use as replacements. These descriptions could also provide 
an indication about when the deprecated elements will be retired (if they are to be). 
You can also use some x- custom properties to add extra structured information about 
the deprecations instead of using text in the descriptions.

Documenting deprecated elements can sometimes be done in a dynamic way by pro-
viding metadata in API responses. For example, the Sunset header defined by RFC 
8594 (https://tools.ietf.org/html/rfc8594) allows a server to communicate the fact 
that a resource is expected to become unresponsive at a specific point in time. If the 
Banking Company introduces a version 2 of the Banking API on August 4, 2019, and 
lets all consumers take six months to update their code, any call made on any resource 
of version 1 (like a GET /v1/accounts request) can return the response shown in the 
following listing, stating that the resource will not be available after February 4, 2020.

Goal deprecation flag

Parameter deprecation flag

https://tools.ietf.org/html/rfc8594


 333Summary

Listing 12.15  A response with a Sunset header

200 OK
Sunset: Tue, 4 Feb 2020 23:59:59 GMT
 
{ "items": [ ... ] }

In the next and final chapter, we will expand even more the context around API design 
in order to be able to work as API designers on a long-term basis on many APIs, even 
ones we do not actually design.

Summary
¡	API designers must participate in the creation of different types of API 

documentation.
¡	A detailed reference documentation is a good thing, but it is not enough. We 

must also create a user’s guide.
¡	User guides must provide all needed information to use the API as a whole, 

including how to obtain credentials and tokens.
¡	Leveraging an API description language such as the OpenAPI Specification can 

be of great help when creating documentation.
¡	It is important to keep track of modifications in order to inform users of changes.
¡	Creating documentation helps to test the API design.



334

13Growing APIs

This chapter covers
¡	API lifecycle

¡	API design guidelines

¡	API reviews

¡	Communication and community

Throughout this book, we have expanded our vision of API design and APIs in gen-
eral beyond simple application programming interfaces floating in the air. This is 
especially true of the four previous chapters. In chapters 10 and 11, you saw how to 
pay attention to not only the consumer’s but also the provider’s context to design 
realistic APIs that will be implementable and will fulfill consumers' needs in the 
most efficient way. And by thinking beyond an API’s current version, you learned in 
chapter 9 to create API designs that reduce the risk of introducing breaking changes 
when modifying them.

Designing APIs requires us to think beyond the APIs themselves because they are 
just one part of the whole. We started to uncover this whole in chapter 12. Indeed, 
you discovered that API designers can do more than just create APIs by participat-
ing in the making of different types of documentation. In this last chapter, we will 



 335The API lifecycle

13
explore three other API-design-related topics that any API designer must be aware of, 
and sometimes master, in order to grow their APIs in the long run.

We will talk first about the API lifecycle: how APIs are born, live, and are eventu-
ally retired. Then we will explore API guidelines, which are mandatory when designing 
multiple APIs or multiple versions of a single API, whether working alone or with other 
designers. After that, we will take a look at the different ways of reviewing APIs in order 
to ensure that a design conforms to the organization’s API surface, fulfills expectations, 
is implementable, and pleases consumers. We will finish by talking about communica-
tion and sharing your APIs, their evolutions, and your API practices.

13.1 The API lifecycle
Growing APIs requires that we know the API lifecycle and understand that it runs in 
parallel with others, as shown in figure 13.1. As you can see, API design is only a part of 
the API lifecycle: how APIs are born, live, and eventually retire.

Analyze

Design

Implement

Publish

Run

RetireEvolve

Let's create an API
that does this for

some people!

So that's
something like

"GET /this" right?

public This getThis();

Look, everyone, the
"This API" is there!

Now everyone uses v2;
let's retire v1.

What about adding
that feature?

Hey, everyone, do you like our API?
Want new features or improvements?

Guide ReviewDocument Communicate
and share

More than
just API

designer's
tasks

The API lifecycle
How APIs are born, live, and retire

Organizations build
more than one API.

Iterative cycles
inside the lifecycle

Figure 13.1   The API lifecycle

The API lifecycle starts with the analyze phase, where a company/organization/team/
individual thinks providing an API might be of interest for business or technical 



336 chapter 13 Growing APIs

reasons. During this phase, topics are explored, such as the API’s goals, what needs it is 
supposed to fulfill, what consumers it targets, who needs it, and what benefits it offers. 
Then comes the design phase, in which the ideas resulting from the Analyze phase are 
deeply investigated and transcribed into a programming interface contract. After that, 
during the implement phase, an application exposing this contract is built.

The analyze, design, implement journey is actually an iterative process; you might 
have to go back and forth according to new discoveries, new questions, or simply 
because you change your mind on a given design solution. After all this, the API is made 
available to the targeted consumers in the publish phase. The API will run this way until 
it evolves to provide new features. But it can also be retired because a new version intro-
ducing breaking changes is needed, with the previous version being replaced by the 
new one. Unfortunately, APIs can also be retired because they were unsuccessful or are 
simply not needed anymore.

An entire book, if not several, would be necessary to explore the full API lifecycle 
in depth. In the rest of this chapter, we will focus on topics relevant to API design and 
designers, but these topics are not confined to the design phase. More often than not, 
API designers must intervene in various stages of the API lifecycle and do more than 
just design APIs.

To guarantee success, designers must work closely with stakeholders, product owners, 
technical writers, and developers or testers. They also have to work closely with consum-
ers, either directly or through the API’s developer relations team. And when working on 
an API, API designers participate in the creation of different types of documentation (as 
you saw in the previous chapter), take part in various reviews on both the provider’s and 
the consumer’s side, and can also have a hand in communications about the API.

But organizations rarely build a single, never-changing API; instead, they typically 
produce multiple, always-evolving APIs. The API designers have to work together to 
build a consistent API surface for the organization (see section 6.1). API designers must 
share what they do, helping each other by providing guidance when designing and 
reviewing APIs. Even lone API designers have to guide themselves by keeping an eye on 
their past work in order to be consistent in their design.

13.2 Building API design guidelines
Put two API designers in a meeting room and ask them how to handle pagination in a 
REST API. You’ll probably witness a lively discussion with each one proposing different 
methods and assessing the pros and cons of the other’s suggested solutions. And in the 
end, you might be presented with several options, all valid, and some different from 
the one(s) used in your existing organization or team’s APIs, which were created by 
either the same designers or other ones.

You saw in section 6.1 that consistency is a key concern when designing APIs. APIs 
have to be consistent with themselves, with the rest of the organization/team’s APIs, 
and also with the rest of the world in order to be easy to use. Being consistent over 
time when working alone on a single API is easier said than done, but when many API 
designers are working on an organization’s API surface, which is composed of many 
APIs, it’s hard to keep this surface totally smooth. We are humans; we all have our own 



 337Building API design guidelines

preferences and backgrounds, and sometimes we change our minds without even 
noticing.

When new designers arrive, they have to discover how your APIs need to be designed 
in order to be consistent. But without proper guidance, they might not succeed. Simi-
larly, if people who have never designed APIs before want to do so, it would be wise to 
provide them with adequate guidance to avoid API design catastrophes.

Defining guidelines, a set of rules that will be used by all designers, is a must to ensure 
consistency within and across the organization/team’s APIs. It’s also a good way to avoid 
wasting time with endless debates where everyone is right, but a single solution has to 
be chosen, and to focus on what really matters: providing the easiest to understand and 
easiest to use representations of APIs that fulfill consumers' needs. What’s more, guide-
lines are a wonderful tool to help beginning API designers. Let’s see what the contents 
of such guidelines might look like and how to actually create them.

13.2.1 What to put in API design guidelines

API design guidelines can be composed of three different layers: reference guidelines that 
focus on describing the foundations of the API designs, use case guidelines that explain 
how to apply these foundations through various uses cases, and design process guidelines 
that provide guidance about how to design APIs. Such guidelines can also provide 
information that goes beyond the interface contract, such as details about software 
architecture and implementation principles. Let’s take a closer look at each possible 
layer of the design guidelines, what it contains, and why you should think about includ-
ing it in your API’s guidelines.

reference guidelines

Being consistent in API design requires the definition of principles and rules that 
should be applied when designing APIs. Reference guidelines are the minimum API 
design guidelines that you must create: these list and describe all of the principles and 
rules. Figure 13.2 shows an excerpt of the Banking Company’s reference guidelines.

https://wiki.bankingcompany.intranet/api-guidelines/principles/

Principles

Use cases

Welcome

How to design APIs

Implementation
considerations

API Design Principles
Definitions

Authorized HTTP Headers

A collection resource, or collection, is a list, or set, of unitary resources. It must be represented by a
plural name in a path. For example, /beneficiaries is a list of beneficiaries.

Collection resource

A unitary resource, or resource, is an element within a collection.�It is identified by a unique ID inside
the collection; for example, /beneficiaries123456 corresponds to the beneficiary whose ID is 12345.

Unitary resource

The Location header must be returned when creating a resource using the POST HTTP method.
It will contain the created resource's path. For example, for a POST /beneficiaries request, a
Location: /beneficiaries/{beneficiaryId} header must be returned (beneficiaryId being the ID of the
created beneficiary).

Location

Figure 13.2   The Banking Company’s API design principles



338 chapter 13 Growing APIs

The most basic reference guidelines might, for example, describe which HTTP meth-
ods, status codes, or headers can be used and when; the format of the resources' paths; 
what data formats are returned in the case of errors; and how to handle pagination. 
Such guidelines should also provide clear and shared definitions of the vocabulary 
used when designing APIs; for example, what is an API, what is a resource or a collec-
tion, what is a path, and what is a version? If you have heard of domain-driven design, 
this could be compared to the ubiquitous language that has to be used by all people 
involved in the design of APIs.

The reference guidelines can be compared to the API reference documentation: it 
lists and describes all the elements that you need when designing APIs. Like reference 
documentation, these can be quite indigestible alone, and it might not be that easy to 
design APIs that actually respect them. That is why you should also consider adding use 
case guidelines.

use case guidelines

You should know by now that usability and the user’s point of view matter when you 
design anything. You have witnessed that when learning to design APIs, as well as their 
documentation. Obviously, API design guidelines are no exception: you must create 
those with usability and simplicity in mind. If you don’t do this, it’s better not to write 
them at all because at best, some people might read them but not fully follow them; 
and at worst, nobody will want to read them at all! The use case guidelines provide 
ready-to-use “recipes” or solutions as shown in figure 13.3.

The Create an Element page describes a use case using ordinary vocabulary, provid-
ing variants of a typical create, and then explains how to do that in a REST API using a 
shared vocabulary. It describes which parameters are expected, their format, and what 

https://wiki.bankingcompany.intranet/api-guidelines/use-cases/

Design use cases
Create an element

When you need to create, add, start, save, send, register... an element. For example, send an
email to a customer,�register a new beneficiary, or transfer money.

When to use this use case

To do that you will add a unitary resource into a collection using a POST request. For example,
use POST /customers/{customerId}/emails to send an email to a customer or
POST /transfers to transfer money

How to do that in a REST API

Only a body parameter is authorized. The data corresponds to the creation/update/replace
representation (see�Data Models in Principles).

Parameters

Success
A 201 Created�status will be returned if the action is done instantly and a 202 Accepted
if it is done later. A Location header must be returned in both cases.
Errors

Principles

Use cases

Welcome

Implementation
considerations

How to design APIs

Figure 13.3   A use case description in the Banking Company’s API design guidelines



 339Building API design guidelines

kind of feedback should be provided, mentioning only the needed rules or principles 
coming from the reference guidelines.

Such documentation is really important for beginners, but it is also useful to seasoned 
API designers too. Some API designers might only do this work from time to time, and 
they might not be comfortable with technical API designers' vocabulary. Some of them 
might stick to the CRUD actions and find it hard to design a goal that is not something 
like create xyz; they’re usually tempted to use POST /do-this. They might also not know 
which HTTP status to choose if the reference guidelines only provide an inventory of 
authorized HTTP status codes without many details about when exactly to use them. If 
they haven’t read all the principles, they might have missed that a Location header was 
supposed to be returned when creating a resource (even seasoned API designers can 
forget this!).

Both beginners and seasoned designers will be more efficient and happier if they 
can find all the information they need in a single page without having to scan through 
all the principles and rules. But how did the designers know that they had to add a cre-
ate something goal to the API?

design process guidelines

Designing APIs requires methods, tools, and processes. It can be useful to add design 
process guidelines to your API guidelines, as shown in figure 13.4.

The idea is not to copy and paste text from this book or some other software design 
book into your guidelines. Such guidelines can simply provide a design canvas or links 
to existing documents or checklists, or to training sessions provided by seasoned API 
designers. You learned in chapters 10 and 11 that designing an API is not simply a 

https://wiki.bankingcompany.intranet/api-guidelines/how-to-design/

Principles

Use cases

Welcome

How to design APIs

Implementation
considerations

References & materials to help you design APIs

API goals canvas & API checklist

Download PDF file

https://launchany.com/microservice-design-canvas/

- The Design of Everyday Things (Don Norman)
- Domain-Driven Design (Eric Evans)
- The Design of Web APIs (Arnaud Lauret)
- A Practical Approach to API Design (D. Keith Casey Jr. and James Higginbotham)

Microservice canvas

Recommended books

API design training sessions

See here for registration

Figure 13.4   The Banking Company’s How to Design APIs page in the design guidelines



340 chapter 13 Growing APIs

matter of designing an interface contract floating in mid-air. There are many consider-
ations around the creation of APIs that could be included in your guidelines.

more than interface design guidelines

Extended API design guidelines could contain information about security, network 
concerns, or implementation, as shown in figure 13.5. These might include details on 
the standard data attached to security tokens, which OAuth flow to use in a given con-
text, or how to configure frameworks in order to actually get the expected results when 
implementing the API.

https://wiki.bankingcompany.intranet/api-guidelines/how-to-design/

Principles

Use cases

Welcome

How to design APIs

Implementation
considerations

Implementation guidelines

OAuth flow decision canvas

Download PDF file

See here
Standard security data attached to security tokens

Springboot configuration to get HAL _links instead of default links

See here

Figure 13.5   The Banking Company’s Implementation considerations page in the design guidelines

Basically, you can put anything you think is relevant in your API design guidelines to 
ensure consistency and to help people who design and build the APIs. But so far, we’ve 
only talked about what to put in the guidelines, not how to actually build them. We’ll 
turn to that next.

13.2.2 Continuously building guidelines

Building API design guidelines requires us not only to actually write them, but also to 
evolve them and make people aware of them and accept them.

start small and accurate

When writing API design guidelines, don’t try to construct the best possible guidelines 
covering every possibility and every edge case in one shot. You will waste your time 
and end up producing rambling, low-quality documentation. Instead, start by covering 
basic, necessary topics in a simple and straightforward way. Aim for completeness and 
accuracy. This is not the time to start inventing fancy ways of using HTTP!

Web concepts
Designing APIs and building API design guidelines requires a solid understanding of web 
concepts like HTTP headers and status codes. But finding which RFC contains the most 
up-to-date source of truth about a specific header or other concept so you can use it 



 341Building API design guidelines

accurately is not always simple. Fortunately, Erik Wilde has created the Web Concepts 
website (http://webconcepts.info/) to help with this task.

“The Web’s ‘Uniform Interface’ is based on a large and growing set of specifications. 
These specifications establish the shared concepts that providers and consumers of Web 
services can rely on. Web Concepts is providing an overview of these concepts and of the 
specifications defining them.

One example for how this works is HTTP/1.1 Caching, which defines 5 HTTP Header 
Fields, 7 HTTP Warn Codes, and 12 HTTP Cache Directives. Web Concepts provides 
a structured, quick, and interlinked overview of these and many more concepts that 
together establish the ‘Web surface.’”

Erik Wilde

 

As mentioned in section 6.1.4, you can also be inspired by others, especially your favor-
ite APIs. If there are APIs that you really love to use, why not copy their style? Similarly, 
you can take advantage of existing API guidelines that other companies share publicly, 
instead of inventing your own.

The API Stylebook
The API Stylebook (http://apistylebook.com) is a website in which I collect and analyze 
API design guidelines. It aims to help API designers solve API design matters and build 
their own API design guidelines by providing quick and easy access to topics covered 
in the guidelines on the site. Instead of reinventing the wheel or searching the web for 
hours, API designers can browse the API Stylebook to quickly find solutions and take 
inspiration from these existing guidelines.

 

If your API design guidelines start small, that means they will evolve. Indeed, they must 
be allowed to evolve to include new contents related to situations that were not cov-
ered in the beginning.

evolve, adapt, and fix

Rather than progressively adding everything that comes into your head in your API 
design guidelines, the idea is to only add field-proven content that has been used to 
solve an actual design question. Guidelines might also have to be fixed if some rules, 
use cases, or other content is revealed to be a burden to apply or inconvenient in the 
long run. And you might realize that you need different types of guidelines depending 
on the context. You could, for example, choose to use gRPC APIs internally and REST 
ones over the internet.

Evolving API design guidelines obviously means dealing with breaking changes, ver-
sioning, and change logs. The guidelines basically describe APIs, so remember what 
you learned in section 9.1 when modifying existing rules. You need to be aware of 

http://webconcepts.info/
http://apistylebook.com


342 chapter 13 Growing APIs

possible breaking changes and version your guidelines accordingly. Don’t forget to list 
the changes made in each version to avoid having designers keep trying to do things the 
way they were described in the previous version.

build collectively, no dogma

Just because you write guidelines does not mean that all the API designers in your 
team/organization/company will magically be aware of them or accept them. What 
will happen if you write guidelines and just put them on a shelf or in a wiki? Absolutely 
nothing. You will have to communicate; you will have to promote those. You have to tell 
the designers that guidelines exist, and that they are there to help people avoid wast-
ing time reinventing the wheel and to help them solve design problems. You will have 
to explain why consistency matters. You might have to explain why a specific rule has 
been chosen (by the way, it’s a good idea to write down in your rules why they exist!).

But simply saying all this might not be sufficient to make people accept your guide-
lines. After all, we all have our own backgrounds and points of view. You might be 
tempted to bluntly enforce the use of your guidelines and cross over to the dark side of 
governance. Please don’t.

Building API design guidelines is not something that should be done alone by a sin-
gle designer, or worse, by someone who has never put an API into production. The 
guidelines should be built collectively by actual designers for actual designers, without 
dogma, always willing to adjust/add/fix/evolve and even derogate when necessary. API 
design guidelines must not be enforced at all costs by the API police, and they should 
not reflect the ideas and preferences of a single individual. A whole book would be 
needed to thoroughly explain how exactly to proceed, but I think you get the idea.

13.3 Reviewing APIs
What could go possibly wrong when creating APIs? Everything. Even if you’ve read this 
book. Well, it might be less risky if you’ve read it, but things can still go wrong if the 
APIs are not reviewed. Let’s illustrate this with another story.

One day, at the Banking Company, someone decided they needed to be able to send 
emails to customers. So they designed an API to do so. The idea was to later add other 
functions, like sending SMSs or notifications. That sounded like a good plan at first.

The API design was submitted to the company’s API designers’ guild for some advice. 
But before even analyzing the proposed design, someone in the guild asked why this 
send email goal was used and in what context. The answer was that when customers 
modified their personal data via the mobile application or website, such as changing 
their mailing or email address, they needed to receive an email confirming that the 
modification had been made and informing them that if they had not requested the 
change, they should immediately contact the Banking Company. The goal was sup-
posed to be called by the website or mobile app after the update customer goal was 
called. This was considered a problem because it could mean that it was up to consum-
ers to know that an email must be sent when updating the customer’s information. Ana-
lyzing the design revealed other significant problems.



 343Reviewing APIs

The send email goal was represented as a POST /send-email request awaiting an 
email address and a message. Such a request does not respect the company’s API guide-
lines: consumers would need to know the customer’s email address and what message 
should be sent to use it. But all that was nothing compared to the security hole that 
this API would have caused. The API would have exposed on the internet a way to send 
emails with any content to anyone on behalf of the Banking Company!

APIs have to be reviewed (validated, analyzed, scrutinized, checked, tested, and so 
on) at various stages of the API lifecycle to ensure that they work as intended. First and 
foremost, the needs have to be clearly identified and well understood, and it must be 
verified that creating an API is actually the best solution.

Once the API is designed, its interface contract must be linted in order to check that 
it’s free of errors and, in the case of modifications, free of breaking changes. Then it 
must be validated from the provider’s perspective: does it fulfill the identified needs, 
and is it secure, implementable, and evolvable? It must also be validated from the con-
sumer’s perspective: is it understandable and usable in the consumers' contexts? And 
last but not least, once the API is implemented, the implementation has to be tested in 
order to ensure that it actually exposes the expected interface contract.

API designers typically participate actively or at least have a say in all these reviews. 
Designers should obviously participate in reviews of the APIs they are working on, but 
they can also give a hand with reviews of other APIs. Getting feedback from others is 
always rewarding and helps ensure quality. Also, getting feedback from experienced 
API designers helps beginners to improve. Conversely, helping with the design of other 
people’s APIs is rewarding because it’s a good way to broaden one’s perspective and 
discover new design use cases and ideas.

As an API designer, it is your job to question, challenge, investigate, validate, and 
analyze everything regarding the design of your APIs. But you must also keep an eye on 
the overall context— everything around the design— to ensure that the directions taken 
are the right ones. (Remember chapter 11 where you learned how to design an API in 
context?)

The idea is to absolutely not act as a hostile expert who knows everything and impose 
your will on everyone else, but rather to participate in growing the APIs beyond their 
design in the best possible manner, as everyone in the team/organization should be 
seeking to do.

13.3.1 Challenging and analyzing needs

In the send email use case, asking why and in what context this goal was to be used 
revealed that the imagined need was not the actual need and that the proposed solu-
tion was not secured at all. The real need was not to send an email but to notify cus-
tomers of activity in their profiles. And in the end, the implemented solution was not a 
REST web API but a publish/subscribe system (see section 11.3.2).

Indeed, it was eventually decided to create a new Customer Notification server 
application relying on events sent by the Customer application. With this solution, the 



344 chapter 13 Growing APIs

Customer application, which exposes the API with the update customer goal, sends a 
customer updated event when a customer’s data is modified. The Customer Notifica-
tion application subscribes to these events. It holds all knowledge about how to notify 
customers, like their preferred channel (email, mobile app notification, or SMS), 
and the related data, such as their email address and phone number. It only reacts to 
selected events: in this first version, an update of the customer’s data.

Such a decoupled architecture separates concerns, is flexible, and can easily evolve, 
while at the same time being secure and fulfilling the actual need. The implemented 
solution is completely different from what was imagined at first. It’s a good thing the 
Banking Company’s API guild conducted a review before starting to code! The send 
email API was designed for nothing, and this waste of time could have been avoided if 
the review had been carried out earlier.

You learned in chapter 2 that an API must fulfill consumers' needs to avoid creat-
ing terrible Kitchen Radar APIs, or worse, insecure send email goals as we have just 
seen. These perceived consumer needs have to be carefully evaluated and challenged 
in order to spot the real needs and find adequate, implementable, and secure solutions.

So before thinking about which URLs or HTTP methods to use, before even think-
ing about filling in an API goals canvas, you have to challenge and analyze the identified 
needs. And this should be done as early as possible. Once needs have been vaguely iden-
tified, they must be discussed and evaluated prior to anything else. Figure 13.6 shows an 
example of a checklist that can be used to challenge and analyze the needs you identify; 
it is based on this book’s contents, but feel free to adapt it to your own situation.

Analyzing needs is not reserved to APIs. Clearly identifying the needs or problems to 
solve must be done when building anything. There is no single best approach for chal-
lenging and analyzing needs; you can use your favorite method.

Asking questions, such as why something needs to be done, what the context is, and 
how it will be used, usually helps to identify the real need or needs hidden by the first 
demand. The 5 Whys method is also a good way of doing this: you simply ask “why?” and 
get a response, then ask “why?” again about the response to go deeper into the analysis. 
Doing this five times in a row is usually sufficient to find the real root need. All these 
elements impact the design of the solution and the API.

After that, you must also investigate the consumer’s and provider’s contexts (see 
chapters 10 and 11) and think about security (see section 8.1.4). All of this is an iterative 
process that should be undertaken with various participants (those who are involved in 
defining the needs, implementation, security, and so on).

Clearly identifying the needs and investigating the context will ensure that the most 
appropriate solution is designed, whether it involves adding new goals to an existing 
API, creating a new API, or building something that is not an API or where an API is 
only part of the solution. If an API is the solution, having clearly identified needs will 
ensure that the goals the API helps to achieve are actually the right ones.

Challenging and�Analyzing Needs Checklist
(from The Design of Web APIs)

Question/Tool Description

5 Whys method
The 5 Whys is a simple tool that can be used to identify the root cause of a “problem,” need(s) in our
case, and therefore identify the real need(s).�Ask “Why?” and get a response, then ask “Why?” again
about the response to go deeper in the analysis.�Doing this five times in a row is usually sufficient to
find the real root need.

What do you want to do?
What is the context?

These are the very first questions to ask to get an overview of the needs and�start to understand
their context.

How will “it” be used? Do not forget to explicitly ask how the “solution” is supposed to be used; this gives more details
about the context.

Who are the targeted consumers? Knowing who the consumers and end users are will give direction to the design (for example,
using a specific industry standard) and may raise questions about security (see the security section
below).

Analyzing needs

Is there an industry standard?
Is it used by the targeted consumers?

Instead of reinventing a custom wheel nobody will want to use, favor standards if they exist and
are actually used by the targeted consumers. Note that an API can support different formats
(standard and custom), so you can also propose different APIs to different types of customers.

Who are the target consumers? Knowing who the consumers are will give direction to the design (for example, using a specific
industry standard) and may raise questions about security (see the security section below).

Who are the targeted end users? Knowing who the possible end users are (if any) may give direction about the design (for�
example, supporting internationalization and localization) and security (see the security section below).

Do consumers have limitations? Some consumers may only be able to use XML or may not be allowed to use the PATCH HTTP
method, for example.

Question Description

Investigating the�consumer’s(s’)�context(s)

What type(s) of API are needed? Depending on the needs and context,�you have to identify the type(s) of API that�you will need.

Which existing
systems/APIs/teams/partners are needed

under the hood?

Identifying�the dependencies early allows you to avoid discovering�too late that they are unable to
do what they were supposed to do, as well as their limitations. Dependencies could be in-house 
systems, human teams, or partners’ systems.�Also, new needs may be fulfilled by existing APIs as 
they are, or you may need to evolve existing APIs.

Are there technical limitations? Dependencies may have limited capabilities or�specificities�that will impact the design (not run
24/7, only asynchronous, long processing time, long response time, not scalable ...).

What type(s) of communication are needed? Depending on the needs and context,�you have to identify the type(s) of communication that will
be needed (synchronous, asynchronous, streams, events).

Question Description

Investigating the provider’s context

What is their network
environment?

Depending on the network environment, some extra care may be necessary when designing the
API. Experience APIs (or backend-for-frontend components)�may also be needed.

API goals canvas Use the API goals canvas once you have a good overview of the “real” needs.

Is an API the solution? Depending on the needs and context, an API may not be the solution, or it can be only a part of
the solution.

Does the API deal with sensitive material? Depending on the sensitivity of the data and actions,�and who the consumers and end users are,
the design (and also the implementation) may have to be adapted.

Question Description

Investigating security concerns

Are there functional limitations? Dependencies may have existing business rules that are incompatible with the needs.

Are humans involved? If there’s a human process under the hood, it may need to be�automated�or the design may need
to be adapted.

Who are the targeted end users? Knowing who the possible end users are (if any) may give direction about the design (for�
example, supporting internationalization and localization) and security (see the security section below).

Figure 13.6   Challenging needs checklist



 345Reviewing APIs

Customer application, which exposes the API with the update customer goal, sends a 
customer updated event when a customer’s data is modified. The Customer Notifica-
tion application subscribes to these events. It holds all knowledge about how to notify 
customers, like their preferred channel (email, mobile app notification, or SMS), 
and the related data, such as their email address and phone number. It only reacts to 
selected events: in this first version, an update of the customer’s data.

Such a decoupled architecture separates concerns, is flexible, and can easily evolve, 
while at the same time being secure and fulfilling the actual need. The implemented 
solution is completely different from what was imagined at first. It’s a good thing the 
Banking Company’s API guild conducted a review before starting to code! The send 
email API was designed for nothing, and this waste of time could have been avoided if 
the review had been carried out earlier.

You learned in chapter 2 that an API must fulfill consumers' needs to avoid creat-
ing terrible Kitchen Radar APIs, or worse, insecure send email goals as we have just 
seen. These perceived consumer needs have to be carefully evaluated and challenged 
in order to spot the real needs and find adequate, implementable, and secure solutions.

So before thinking about which URLs or HTTP methods to use, before even think-
ing about filling in an API goals canvas, you have to challenge and analyze the identified 
needs. And this should be done as early as possible. Once needs have been vaguely iden-
tified, they must be discussed and evaluated prior to anything else. Figure 13.6 shows an 
example of a checklist that can be used to challenge and analyze the needs you identify; 
it is based on this book’s contents, but feel free to adapt it to your own situation.

Analyzing needs is not reserved to APIs. Clearly identifying the needs or problems to 
solve must be done when building anything. There is no single best approach for chal-
lenging and analyzing needs; you can use your favorite method.

Asking questions, such as why something needs to be done, what the context is, and 
how it will be used, usually helps to identify the real need or needs hidden by the first 
demand. The 5 Whys method is also a good way of doing this: you simply ask “why?” and 
get a response, then ask “why?” again about the response to go deeper into the analysis. 
Doing this five times in a row is usually sufficient to find the real root need. All these 
elements impact the design of the solution and the API.

After that, you must also investigate the consumer’s and provider’s contexts (see 
chapters 10 and 11) and think about security (see section 8.1.4). All of this is an iterative 
process that should be undertaken with various participants (those who are involved in 
defining the needs, implementation, security, and so on).

Clearly identifying the needs and investigating the context will ensure that the most 
appropriate solution is designed, whether it involves adding new goals to an existing 
API, creating a new API, or building something that is not an API or where an API is 
only part of the solution. If an API is the solution, having clearly identified needs will 
ensure that the goals the API helps to achieve are actually the right ones.

Challenging and�Analyzing Needs Checklist
(from The Design of Web APIs)

Question/Tool Description

5 Whys method
The 5 Whys is a simple tool that can be used to identify the root cause of a “problem,” need(s) in our
case, and therefore identify the real need(s).�Ask “Why?” and get a response, then ask “Why?” again
about the response to go deeper in the analysis.�Doing this five times in a row is usually sufficient to
find the real root need.

What do you want to do?
What is the context?

These are the very first questions to ask to get an overview of the needs and�start to understand
their context.

How will “it” be used? Do not forget to explicitly ask how the “solution” is supposed to be used; this gives more details
about the context.

Who are the targeted consumers? Knowing who the consumers and end users are will give direction to the design (for example,
using a specific industry standard) and may raise questions about security (see the security section
below).

Analyzing needs

Is there an industry standard?
Is it used by the targeted consumers?

Instead of reinventing a custom wheel nobody will want to use, favor standards if they exist and
are actually used by the targeted consumers. Note that an API can support different formats
(standard and custom), so you can also propose different APIs to different types of customers.

Who are the target consumers? Knowing who the consumers are will give direction to the design (for example, using a specific
industry standard) and may raise questions about security (see the security section below).

Who are the targeted end users? Knowing who the possible end users are (if any) may give direction about the design (for�
example, supporting internationalization and localization) and security (see the security section below).

Do consumers have limitations? Some consumers may only be able to use XML or may not be allowed to use the PATCH HTTP
method, for example.

Question Description

Investigating the�consumer’s(s’)�context(s)

What type(s) of API are needed? Depending on the needs and context,�you have to identify the type(s) of API that�you will need.

Which existing
systems/APIs/teams/partners are needed

under the hood?

Identifying�the dependencies early allows you to avoid discovering�too late that they are unable to
do what they were supposed to do, as well as their limitations. Dependencies could be in-house 
systems, human teams, or partners’ systems.�Also, new needs may be fulfilled by existing APIs as 
they are, or you may need to evolve existing APIs.

Are there technical limitations? Dependencies may have limited capabilities or�specificities�that will impact the design (not run
24/7, only asynchronous, long processing time, long response time, not scalable ...).

What type(s) of communication are needed? Depending on the needs and context,�you have to identify the type(s) of communication that will
be needed (synchronous, asynchronous, streams, events).

Question Description

Investigating the provider’s context

What is their network
environment?

Depending on the network environment, some extra care may be necessary when designing the
API. Experience APIs (or backend-for-frontend components)�may also be needed.

API goals canvas Use the API goals canvas once you have a good overview of the “real” needs.

Is an API the solution? Depending on the needs and context, an API may not be the solution, or it can be only a part of
the solution.

Does the API deal with sensitive material? Depending on the sensitivity of the data and actions,�and who the consumers and end users are,
the design (and also the implementation) may have to be adapted.

Question Description

Investigating security concerns

Are there functional limitations? Dependencies may have existing business rules that are incompatible with the needs.

Are humans involved? If there’s a human process under the hood, it may need to be�automated�or the design may need
to be adapted.

Who are the targeted end users? Knowing who the possible end users are (if any) may give direction about the design (for�
example, supporting internationalization and localization) and security (see the security section below).

Figure 13.6   Challenging needs checklist



346 chapter 13 Growing APIs

13.3.2 Linting the design

Was the proposed POST /send-email request awaiting an optional email as a string 
and msg as a number a valid one? It uses a resource path that doesn’t look like what 
you learned to use in section 3.2.3, but maybe the Banking Company’s API design 
guidelines say that APIs have to be function-based (see section 11.3). Still, for clarity, 
shouldn’t msg be called message and shouldn’t it be a string? And is it normal to have 
all the expected properties be optional? Linting the proposed design will give answers 
to all these questions:

“Lint, or a linter, is a tool that analyzes source code to flag programming errors, bugs, 
stylistic errors, and suspicious constructs. The term originates from a Unix utility that 
examined C language source code.”

Wikipedia

Just like code, an API design can contain errors (for example, using the wrong type for 
a property) and might have to be written (designed) following conventions like using 
the errorMessage property name instead of err_msg. Linting the API will help detect 
these kinds of errors and others.

API linting consists of checking for bugs in the design, as well as verifying that it 
conforms to the design guidelines and is consistent with any preexisting elements (we 
explore what those are in a moment). While linting an API design, you should also 
check its security and documentation. That is, you basically lint anything that you would 
put in an API description file; indeed, you have to check every aspect of the interface 
contract. Figure 13.7 shows an example of a linting checklist.

Basically, you have to analyze each model and its properties and each goal and its 
parameters and responses. You also have to analyze the goal flows and security defini-
tions. Most of these checks are quite simple and binary, but there are three types of verifi-
cation that you should take particular care with: checking the documentation, checking 
flows, and (most importantly) checking consistency with preexisting elements.

Checking the documentation of the interface contract is important because having 
an exhaustively documented interface contract will facilitate design reviews from both 
the provider’s and the consumer’s perspective. We talk about this in the following sec-
tions (13.3.3 and 13.3.4).

Checking flows is basically what you learned to do in section 2.3 and section 3.3.4. It’s 
quite simple, but critical, to ensure that the API actually works. It would be embarrass-
ing, if not disastrous, if consumers could not use the API because they were unable to 
provide some parameters.

Checking consistency with preexisting elements is perhaps the most difficult check, 
but it’s a very important one. Verifying that a name, data model, or goal’s behavior is 
consistent with preexisting elements requires concentration and detailed knowledge of 
what actually exists inside and beyond the API that is being linted. Otherwise, you can 
end up with, for example, three different address formats, two different standard ways 
of representing countries, too many ways of showing that an amount is invalid, and a 
totally custom way of representing phone numbers.

Check Description

Goal’s responses

Valid HTTP
status

Response’s HTTP status conforms to guidelines and
preexisting elements and is appropriate for the type�of
response (success, consumer failure, provider failure).

Valid body

Response’s body type and format conform to
guidelines and�preexisting elements and are
appropriate for the�HTTP status (for example: standard�
error model for 4XX or 5XX).

Valid
headers

Response’s header names, types, and formats
conform to guidelines and preexisting elements.

Success
valid

description

Response’s and its body’s and headers’ human-�(the
description property) and machine-readable (model
definition) descriptions are valid and accurate,
conform to guidelines, and are consistent with
preexisting elements.

Error
valid

description

Response’s and its body’s and headers’ human-�(the
description property) and machine-readable (model
definition) descriptions are valid and accurate,
conform to guidelines, and are consistent with
preexisting elements. Detailed information about
possible errors should be provided in the human-
and, if possible, machine-readable descriptions.

Is used Data provided in each goal’s response is actually
used.

Check Description

API’s goal flows

Is valid Flow of goals (use case) and its behavior conforms
to guidelines and preexisting elements.

Valid
description

Flow of goals (use case) is accurately described in
the API or goal descriptions.

Check Description

API’s security definitions

Is used Each security definition must be�used. If not, check if it
was�forgotten on a goal. If not, remove it.

Is valid
Relevant machine-readable information must be
provided according to the security�type, and it must
conform to the guidelines.

Valid
description Relevant description of each scope must be provided.

Check Description

Model’s properties

Valid name Property’s name conforms to guidelines and is
consistent with preexisting elements.

Valid
required
status

Property’s optional/required status conforms to
guidelines and is consistent with preexisting
elements. If all properties are optional, this is
probably an error (but it can happen).

Valid type
and format

Property’s data type (atomic or model) and format
(ISO 8601 date, for example) are valid according to
its name, value, or description.�They should also
conform to guidelines and be consistent with
preexisting elements.

Valid
description

Property’s human- (the description property) and
machine-readable (minimum, and so on) descriptions
are valid and accurate, conform to guidelines, and
are consistent with preexisting elements.

Check Description

Is used
Each model definition must be used. If a definition
is not used, it may have been forgotten on a goal. If
not, remove it.

Valid name Model’s name conforms to guidelines and is
consistent with preexisting elements.

Valid data
structure

Model’s data structure/organization and depth
conform to guidelines and are consistent with
preexisting elements.

Valid
description

Model’s human-readable description (the description
property) is present (and accurate) if necessary.

Models

Check Description

Valid name Parameter’s name conforms to guidelines
and is consistent with preexisting�elements.

Valid type
and format

Parameter’s type and format conform to guidelines
and preexisting elements and are valid according to
its location (for example: no objects in query
parameters, no URL forbidden characters in path
ones).

Valid
description

Parameter’s human- (the description property) and
machine-readable (minimum, and so on) descriptions
are valid and accurate, conform to guidelines, and
are consistent with preexisting elements.

Valid
location

Parameter’s location conforms to guidelines, is
consistent with preexisting elements, and
conforms to the HTTP status method (no body
parameter on a delete request, for example).

Valid
required
status

Parameter’s optional/required status conforms to
guidelines and is consistent with preexisting
elements and its location (path parameter must be
required). If all of the body parameter’s properties are
optional on a creation/replacement, it is probably an
error (but it can happen).

Can be�
provided

Consumers must be able to provide each goal’s
parameters (because they know them or they got
them from another goal).

Goal’s parameters

Check Description

Categorized This is not an obligation, but categorizing goals
facilitates�understanding of an API.

Valid
path

Path’s format conforms to guidelines and is
consistent with preexisting elements. It also
conforms to the success response type. If path
parameters are defined, they must be present.

Valid HTTP
method

HTTP method conforms to guidelines and preexisting
elements and is appropriate for what the goal is
supposed to do.

Handles
success and

errors

Goal returns all needed responses to handle
both success and error conditions.

Secured Each goal is covered by a security mechanism.

Goals

API Linting Checklist
(from The Design of Web APIs)

Check Description

Evolution (applies to all topics)

Breaking
change

introduced

If a modification implies a breaking change, check �if
it is really necessary. If so, apply your versioning
policy.

Figure 13.7   An example API linting checklist



 347Reviewing APIs

13.3.2 Linting the design

Was the proposed POST /send-email request awaiting an optional email as a string 
and msg as a number a valid one? It uses a resource path that doesn’t look like what 
you learned to use in section 3.2.3, but maybe the Banking Company’s API design 
guidelines say that APIs have to be function-based (see section 11.3). Still, for clarity, 
shouldn’t msg be called message and shouldn’t it be a string? And is it normal to have 
all the expected properties be optional? Linting the proposed design will give answers 
to all these questions:

“Lint, or a linter, is a tool that analyzes source code to flag programming errors, bugs, 
stylistic errors, and suspicious constructs. The term originates from a Unix utility that 
examined C language source code.”

Wikipedia

Just like code, an API design can contain errors (for example, using the wrong type for 
a property) and might have to be written (designed) following conventions like using 
the errorMessage property name instead of err_msg. Linting the API will help detect 
these kinds of errors and others.

API linting consists of checking for bugs in the design, as well as verifying that it 
conforms to the design guidelines and is consistent with any preexisting elements (we 
explore what those are in a moment). While linting an API design, you should also 
check its security and documentation. That is, you basically lint anything that you would 
put in an API description file; indeed, you have to check every aspect of the interface 
contract. Figure 13.7 shows an example of a linting checklist.

Basically, you have to analyze each model and its properties and each goal and its 
parameters and responses. You also have to analyze the goal flows and security defini-
tions. Most of these checks are quite simple and binary, but there are three types of verifi-
cation that you should take particular care with: checking the documentation, checking 
flows, and (most importantly) checking consistency with preexisting elements.

Checking the documentation of the interface contract is important because having 
an exhaustively documented interface contract will facilitate design reviews from both 
the provider’s and the consumer’s perspective. We talk about this in the following sec-
tions (13.3.3 and 13.3.4).

Checking flows is basically what you learned to do in section 2.3 and section 3.3.4. It’s 
quite simple, but critical, to ensure that the API actually works. It would be embarrass-
ing, if not disastrous, if consumers could not use the API because they were unable to 
provide some parameters.

Checking consistency with preexisting elements is perhaps the most difficult check, 
but it’s a very important one. Verifying that a name, data model, or goal’s behavior is 
consistent with preexisting elements requires concentration and detailed knowledge of 
what actually exists inside and beyond the API that is being linted. Otherwise, you can 
end up with, for example, three different address formats, two different standard ways 
of representing countries, too many ways of showing that an amount is invalid, and a 
totally custom way of representing phone numbers.

Check Description

Goal’s responses

Valid HTTP
status

Response’s HTTP status conforms to guidelines and
preexisting elements and is appropriate for the type�of
response (success, consumer failure, provider failure).

Valid body

Response’s body type and format conform to
guidelines and�preexisting elements and are
appropriate for the�HTTP status (for example: standard�
error model for 4XX or 5XX).

Valid
headers

Response’s header names, types, and formats
conform to guidelines and preexisting elements.

Success
valid

description

Response’s and its body’s and headers’ human-�(the
description property) and machine-readable (model
definition) descriptions are valid and accurate,
conform to guidelines, and are consistent with
preexisting elements.

Error
valid

description

Response’s and its body’s and headers’ human-�(the
description property) and machine-readable (model
definition) descriptions are valid and accurate,
conform to guidelines, and are consistent with
preexisting elements. Detailed information about
possible errors should be provided in the human-
and, if possible, machine-readable descriptions.

Is used Data provided in each goal’s response is actually
used.

Check Description

API’s goal flows

Is valid Flow of goals (use case) and its behavior conforms
to guidelines and preexisting elements.

Valid
description

Flow of goals (use case) is accurately described in
the API or goal descriptions.

Check Description

API’s security definitions

Is used Each security definition must be�used. If not, check if it
was�forgotten on a goal. If not, remove it.

Is valid
Relevant machine-readable information must be
provided according to the security�type, and it must
conform to the guidelines.

Valid
description Relevant description of each scope must be provided.

Check Description

Model’s properties

Valid name Property’s name conforms to guidelines and is
consistent with preexisting elements.

Valid
required
status

Property’s optional/required status conforms to
guidelines and is consistent with preexisting
elements. If all properties are optional, this is
probably an error (but it can happen).

Valid type
and format

Property’s data type (atomic or model) and format
(ISO 8601 date, for example) are valid according to
its name, value, or description.�They should also
conform to guidelines and be consistent with
preexisting elements.

Valid
description

Property’s human- (the description property) and
machine-readable (minimum, and so on) descriptions
are valid and accurate, conform to guidelines, and
are consistent with preexisting elements.

Check Description

Is used
Each model definition must be used. If a definition
is not used, it may have been forgotten on a goal. If
not, remove it.

Valid name Model’s name conforms to guidelines and is
consistent with preexisting elements.

Valid data
structure

Model’s data structure/organization and depth
conform to guidelines and are consistent with
preexisting elements.

Valid
description

Model’s human-readable description (the description
property) is present (and accurate) if necessary.

Models

Check Description

Valid name Parameter’s name conforms to guidelines
and is consistent with preexisting�elements.

Valid type
and format

Parameter’s type and format conform to guidelines
and preexisting elements and are valid according to
its location (for example: no objects in query
parameters, no URL forbidden characters in path
ones).

Valid
description

Parameter’s human- (the description property) and
machine-readable (minimum, and so on) descriptions
are valid and accurate, conform to guidelines, and
are consistent with preexisting elements.

Valid
location

Parameter’s location conforms to guidelines, is
consistent with preexisting elements, and
conforms to the HTTP status method (no body
parameter on a delete request, for example).

Valid
required
status

Parameter’s optional/required status conforms to
guidelines and is consistent with preexisting
elements and its location (path parameter must be
required). If all of the body parameter’s properties are
optional on a creation/replacement, it is probably an
error (but it can happen).

Can be�
provided

Consumers must be able to provide each goal’s
parameters (because they know them or they got
them from another goal).

Goal’s parameters

Check Description

Categorized This is not an obligation, but categorizing goals
facilitates�understanding of an API.

Valid
path

Path’s format conforms to guidelines and is
consistent with preexisting elements. It also
conforms to the success response type. If path
parameters are defined, they must be present.

Valid HTTP
method

HTTP method conforms to guidelines and preexisting
elements and is appropriate for what the goal is
supposed to do.

Handles
success and

errors

Goal returns all needed responses to handle
both success and error conditions.

Secured Each goal is covered by a security mechanism.

Goals

API Linting Checklist
(from The Design of Web APIs)

Check Description

Evolution (applies to all topics)

Breaking
change

introduced

If a modification implies a breaking change, check �if
it is really necessary. If so, apply your versioning
policy.

Figure 13.7   An example API linting checklist



348 chapter 13 Growing APIs

Preexisting elements mostly come from the API itself, other APIs from the organiza-
tion, and standards; they can be names, types, data models, and even behaviors. To 
verify that an API is consistent with preexisting elements in the API itself or other APIs 
from the same organization, you can rely partly on your API designer’s sense. Also, if 
you’ve had the good fortune to participate in reviews of other APIs, you might have a 
few memories of what you have seen. But it’s hard to keep up with everything that can 
be happening across the organization’s API surface, so you should also rely on avail-
able API documentation. It can be helpful to enable a search mechanism across all of 
your APIs' documentation to facilitate such an analysis.

Regarding identifying standards that could be used instead of custom formats, this is 
up to you, your API designer’s sense, and your favorite search engine. There are obvious 
standards you will have heard of, like ISO 8601 for dates and ISO 4217 for currencies, 
but you can’t possibly be aware of all the existing standards. For example, did you know 
there’s a standard for representing phone numbers? It’s the E.164 format, defined by 
the International Telecommunication Union (ITU).

You should always check if a standard exists to represent a given data item. If you find 
one, add it to your guidelines immediately. It might be a burden at the beginning; but 
in the long run, it will make your life easier as you will quickly catalog all the standards 
you need for your APIs. And in case of evolution of an existing API, do not forget to 
check if you are introducing some breaking changes. If they cannot be avoided, you will 
have to apply your versioning policy.

Linting can be partially automated by running some tools on a machine-readable 
API description format, but a human will still need to be involved. It’s fairly simple to 
check path formats or if an HTTP status code is authorized, but it’s quite complex to 
check that a human-readable description is relevant. While it’s not possible to fully auto-
mate the process, taking advantage of automation for linting is highly recommended so 
reviewers can focus on the checks that actually need human beings.

Finally, be aware that linting an API design only validates the form, not the substance. 
It only ensures that the designed interface contract respects certain design rules. It 
absolutely does not validate that the API fulfills all of the provider’s requirements and 
that consumers will actually want and be able to use it. Once linted, an API must there-
fore be reviewed in depth from both the provider’s and consumer’s perspectives.

13.3.3 Reviewing the design from the provider’s perspective

Just because you have identified the real needs and contextual elements required to 
design an API, and its design has been fully linted, doesn’t mean everything is OK 
from the provider’s perspective. Indeed, you have to check with the whole team that 
the resulting API design actually fulfills all of the provider’s requirements. You’ll want 
to confirm that the design satisfies all the identified needs and that it is secure, imple-
mentable, and extensible. Figure 13.8 shows another example of a checklist inspired 
by this book’s content that you can use for this purpose. Again, feel free to adapt it to 
your needs.



 349Reviewing APIs

Check Description

API’s security definitions

Check Description

API’s goal flows

Check Description

Goal’s responses

Check Description

Model’s properties

Check Description

Check Description

Check Description

Valid
purpose Conform to needs.

Secure
path

Do not expose undue sensitive data, and expose
sensitive data with secure representations.

Exhaustive
successes

Conform to needs (all expected success responses are
defined).

Valid type
and format Conform to needs.

Secure
data

Do not require undue sensitive data, and require
sensitive data with secure representations or locations.

Valid
location

Conform to needs and security concerns (see secure
data). URL cannot contain sensitive data.

Exhaustive
errors

Conform to needs (handle all possible surface control
errors, functional errors, security errors, and technical
errors).

Valid
required
status

Conform to needs.

Valid
success data Conform to needs.

Valid
purpose Conform to needs.

Valid
performance

estimates
Match needs (cumulated performance).

Relevant
scopes Defined scopes match the security partitioning needs.

Secured Covered by expected scope(s) and security
mechanism(s), and do not provide undue access.

Valid data
structure

Conform to needs (actually represent the expected
concept).

Valid
required
status

Conform to needs.

Valid type
and format Conform to needs.

Valid
value Conform to needs.

Models

Goal’s parameters

Goals

Provider Review Checklist
(from The Design of Web APIs)

Secure
value

Do not expose undue sensitive data, and expose
sensitive data with secure representations.

Secure
success data

Do not expose undue sensitive data, and expose
sensitive data with secure representations.

Existing
success data

Can actually be provided by the implementation
(directly or via a dependency).

Valid
error data Conform to needs and are exhaustive.

Secure
error data

Do not expose undue sensitive data, and expose
sensitive data with secure representations.

Existing
error data

Can actually be provided by the implementation
(directly or via a dependency).

Existing
value

Can actually be provided by the implementation
(directly or via a dependency) or requested if used
as a parameter.

Can be
implemented

Can actually be implemented (directly or via a
dependency).

Valid
performance

estimates
Match needs (corollary to “can be implemented”).

Extensible Reasonably take future evolutions into consideration.

Extensible Reasonably take future evolutions into consideration.

Extensible Reasonably take future evolutions into consideration.Extensible Reasonably take future evolutions into consideration.

Extensible Reasonably take future evolutions into consideration.

Extensible Reasonably take future evolutions into consideration.

Figure 13.8   Checking the design from the provider’s perspective

If you have used the API goals canvas, created exhaustive documentation, and applied 
what you have learned in this book to design the interface contract, such a review 
should not be a problem at all. The API goals canvas will help to link initial needs and 



350 chapter 13 Growing APIs

API goals. The documentation is important here to facilitate the review for all the peo-
ple involved who don’t have your extensive knowledge of the API.

The various goal flows must match the identified needs, and each goal must behave 
as expected, returning the correct data and triggering the correct errors. Each element 
should be reasonably extensible (remember section 9.3). Also, don’t forget to check 
that each goal, behavior, or returned response can actually be handled by the imple-
mentation and that the performance of each goal and flow matches expectations. But 
this review only concerns the provider’s perspective; we must not forgot to also check 
that everything is OK from the consumer’s perspective.

13.3.4 Reviewing the design from the consumer’s perspective

Last but not least in the design analysis is the review from the consumer’s perspective. 
Is the API easy to use, easy to understand, and efficient? Does it take care not to unduly 
expose the provider’s perspective? If not, all the effort you’ve put into creating the API 
will be worth nothing because nobody will want to use the resulting product (see sec-
tion 1.2.3). Hopefully, all that you have learned in this book should make this review 
a piece of cake. Figure 13.9 shows an example checklist for reviewing an API’s design 
from the consumer’s perspective, based on this book’s content. As usual, feel free to 
adapt it to your needs.

During this review, you have to take the place of a consumer who does not know any-
thing about the API. Check that each goal and its parameters and responses (especially 
the errors) make sense for consumers and are not a vile exposition of what’s happening 
under the hood (the despised provider’s perspective). Verify that each required param-
eter is really required in order to request minimal data. Pay particular attention to the 
names and descriptions: check that they are not provider’s jargon. Check also that the 
goal flows are simple and efficient, without too many steps and with goals that prevent 
errors. And don’t forget to check that the performance estimates (for single goals and 
goal flows) are valid for both basic and complex use cases (see section 10.1).

TIP   Don’t hesitate to submit your design to people outside the team and, if 
possible, potential consumers for review; their feedback will be valuable and 
increase the quality of the design.

Finally, once all the verifications have been done— API linting (see section 13.3.2), 
provider review, and consumer review— the API can at last be implemented. But your 
job does not necessarily stop here. You might have to help verify that the implementa-
tion actually implements the designed interface contract as expected.

13.3.5 Verifying the implementation

I will not explain how to actually test the implementation of an API because that’s out-
side the scope of this book. There are many tools out there for doing so, and some of 
them even allow you to generate tests based on API description files. But these tests are 
usually insufficient to verify that the implementation does everything that is expected, 
so tests will have to be written.

Check Description

API’s security definitions

Check Description

API’s goal flows

Check Description

Model’s properties

Check Description

Prevent
errors

Goals prevent errors (like a goal providing
possible destinations for a source account when
transferring money, for example).

Shortest The number of steps is the shortest possible.

Relevant
scopes Meaningful for consumers.

Valid data
structure

Adequate organization, depth and granularity
favoring understanding and use. Minimal properties
for parameters.

Valid
required
status

Minimal required properties (for parameters).

Valid name Name can easily be understood (“source” instead
of “ts,” for example).

Valid type
and format

Type and format can easily be understood and
used (for example: ISO 8601 dates instead of
Unix timestamps, “checking” instead of “2”).

Models

Consumer Review Checklist
(from The Design of Web APIs)

Valid
value

Values are ready to use (for example: adding age
along with birth date, code with localized labels,
account numbers instead of technical IDs).

Check Description

Goal’s responses

Valid
success data

All needed data is returned along with informative
data (like what has been done and what to do next).

Valid
error data

Exhaustive and informative error feedback that
actually helps to solve all problems is provided.

Check Description

Valid path Path structure and names or parameters used
can easily be understood.

Valid
purpose Meaningful for consumers.

Goals

Valid
performance

estimates
Match consumers’ needs.

Valid
name

Name can easily be understood (“Account”
instead of “aDTO”, for example).

Valid
performance

estimates
Match consumers’ needs.

Valid
purpose Each step (goal) is meaningful for consumers.

Check Description

Valid type
and format

Type and format can easily be understood and
used (for example: ISO 8601 dates instead of
Unix timestamps, “CHECKING” instead of “2”).

Valid name Name can easily be understood (“source” instead
of “ts,” for example).

Valid value Values are ready to use (account numbers
instead of technical IDs, for example).

Valid
required
status

Minimal required properties.

Goal’s parameters

Can be
provided

Consumers must be able to provide each goal’s
parameters (because they know them or they got
them from another goal).

Figure 13.9   Checking the design from the consumer’s perspective



 351Reviewing APIs

The implementers might rely on various levels of testing (usually unit tests and API 
tests) to entirely validate an API. What I want to do here is show you a few things that 
should particularly be taken care of and warn you about a few traps.

never bypass security testing

Security testing for APIs is mandatory. You must ensure that access controls and sensi-
tive data are actually handled in the proper way.

For access control, the first level of testing consists of ensuring that only registered 
consumers can access the API and that they cannot do anything outside of the granted 
scopes. The second level of testing concerns consumer/end user permission controls. 
For example, if a consumer requests a list of accounts on behalf of an end user, only that 
user’s accounts must be returned. And if the same consumer requests account 12345, 
the API must only return it if the end user is actually authorized to get it.

API goals. The documentation is important here to facilitate the review for all the peo-
ple involved who don’t have your extensive knowledge of the API.

The various goal flows must match the identified needs, and each goal must behave 
as expected, returning the correct data and triggering the correct errors. Each element 
should be reasonably extensible (remember section 9.3). Also, don’t forget to check 
that each goal, behavior, or returned response can actually be handled by the imple-
mentation and that the performance of each goal and flow matches expectations. But 
this review only concerns the provider’s perspective; we must not forgot to also check 
that everything is OK from the consumer’s perspective.

13.3.4 Reviewing the design from the consumer’s perspective

Last but not least in the design analysis is the review from the consumer’s perspective. 
Is the API easy to use, easy to understand, and efficient? Does it take care not to unduly 
expose the provider’s perspective? If not, all the effort you’ve put into creating the API 
will be worth nothing because nobody will want to use the resulting product (see sec-
tion 1.2.3). Hopefully, all that you have learned in this book should make this review 
a piece of cake. Figure 13.9 shows an example checklist for reviewing an API’s design 
from the consumer’s perspective, based on this book’s content. As usual, feel free to 
adapt it to your needs.

During this review, you have to take the place of a consumer who does not know any-
thing about the API. Check that each goal and its parameters and responses (especially 
the errors) make sense for consumers and are not a vile exposition of what’s happening 
under the hood (the despised provider’s perspective). Verify that each required param-
eter is really required in order to request minimal data. Pay particular attention to the 
names and descriptions: check that they are not provider’s jargon. Check also that the 
goal flows are simple and efficient, without too many steps and with goals that prevent 
errors. And don’t forget to check that the performance estimates (for single goals and 
goal flows) are valid for both basic and complex use cases (see section 10.1).

TIP   Don’t hesitate to submit your design to people outside the team and, if 
possible, potential consumers for review; their feedback will be valuable and 
increase the quality of the design.

Finally, once all the verifications have been done— API linting (see section 13.3.2), 
provider review, and consumer review— the API can at last be implemented. But your 
job does not necessarily stop here. You might have to help verify that the implementa-
tion actually implements the designed interface contract as expected.

13.3.5 Verifying the implementation

I will not explain how to actually test the implementation of an API because that’s out-
side the scope of this book. There are many tools out there for doing so, and some of 
them even allow you to generate tests based on API description files. But these tests are 
usually insufficient to verify that the implementation does everything that is expected, 
so tests will have to be written.

Check Description

API’s security definitions

Check Description

API’s goal flows

Check Description

Model’s properties

Check Description

Prevent
errors

Goals prevent errors (like a goal providing
possible destinations for a source account when
transferring money, for example).

Shortest The number of steps is the shortest possible.

Relevant
scopes Meaningful for consumers.

Valid data
structure

Adequate organization, depth and granularity
favoring understanding and use. Minimal properties
for parameters.

Valid
required
status

Minimal required properties (for parameters).

Valid name Name can easily be understood (“source” instead
of “ts,” for example).

Valid type
and format

Type and format can easily be understood and
used (for example: ISO 8601 dates instead of
Unix timestamps, “checking” instead of “2”).

Models

Consumer Review Checklist
(from The Design of Web APIs)

Valid
value

Values are ready to use (for example: adding age
along with birth date, code with localized labels,
account numbers instead of technical IDs).

Check Description

Goal’s responses

Valid
success data

All needed data is returned along with informative
data (like what has been done and what to do next).

Valid
error data

Exhaustive and informative error feedback that
actually helps to solve all problems is provided.

Check Description

Valid path Path structure and names or parameters used
can easily be understood.

Valid
purpose Meaningful for consumers.

Goals

Valid
performance

estimates
Match consumers’ needs.

Valid
name

Name can easily be understood (“Account”
instead of “aDTO”, for example).

Valid
performance

estimates
Match consumers’ needs.

Valid
purpose Each step (goal) is meaningful for consumers.

Check Description

Valid type
and format

Type and format can easily be understood and
used (for example: ISO 8601 dates instead of
Unix timestamps, “CHECKING” instead of “2”).

Valid name Name can easily be understood (“source” instead
of “ts,” for example).

Valid value Values are ready to use (account numbers
instead of technical IDs, for example).

Valid
required
status

Minimal required properties.

Goal’s parameters

Can be
provided

Consumers must be able to provide each goal’s
parameters (because they know them or they got
them from another goal).

Figure 13.9   Checking the design from the consumer’s perspective



352 chapter 13 Growing APIs

Regarding sensitive data, you have to ensure that undue sensitive data is not 
returned. If sensitive data has to be requested or returned, you must ensure that it is 
properly secured (using a nonsensitive representation or encryption, for example) as 
discussed in section 8.4.

be careful when using generated documentation to validate the implementation

Some implementation frameworks allow you to generate an API description file from 
the code at runtime or while building the application. This generated file could be 
compared to the original API description file to validate that the interface contract 
exposed by the implementation conforms to the expected one. But such validation 
can only be done on elements that do not come from annotations specifically made to 
generate the API description file.

If, for example, I add in my code an API description-specific annotation to indi-
cate that the possible values for a type attribute are checking and savings, there is no 
guarantee that my code will actually only return these values. This information is only 
declarative.

Some tools can leverage standard annotations that are prescriptive, however. For 
example, if I develop a web application exposing an API with the Java Spring Boot 
framework, I can use a standard annotation to declare that a method maps to the POST / 
transfers request. Such values can be used in a comparison between an original API 
description file and a generated one.

check the interface contract at runtime

Even if you find a magic trick, framework, or tool that allows you to generate the actu-
ally implemented interface contract, you must test the implementation at runtime to 
validate all expected behaviors. Just because the generated and valid interface contract 
states that a 400 Bad Request response is returned in the case of a missing mandatory 
attribute doesn’t mean it’s actually the case.

check properties' characteristics in responses

When the interface contract says that a property is required or mandatory in a returned 
data model, it must always be returned. The same is true if the API description pro-
vides information about minimum and maximum values, number of items in arrays, 
and so on. Do not forget these tests.

check the whole network chain

When testing your API, you must make test calls encompassing the whole network 
chain in front of the implementation. This network chain can include firewalls, prox-
ies, and VIP or API gateways, for example. Firewalls are good purveyors of bugs; mis-
configured ones can, for example, block DELETE HTTP requests or replace HTTP 5XX 
status codes with 500 responses or return an HTML page (no kidding) instead of data 
in case of error.

Also, misconfigured API gateways can implement some controls on behalf of the 
implementation based on the API description file used to expose the API, but not nec-
essarily in the best way. For example, these can return one error at a time or use the 



 353Summary

wrong error format (using the gateway standard error format which happens to be dif-
ferent from the API’s one, or worse, an HTML page— again, no kidding).

13.4 Communicating and sharing
The end is near; this is the last section of the last chapter of the book. I want to take 
this opportunity to talk briefly about communicating and sharing as an API designer. 
As you might have noticed while reading this last chapter, API designers do not work 
alone. An API designer has to work, at the least, with the people who want to create the 
APIs or think that an API could be the solution, the consumers, the people in charge 
of developing the implementation, the people in charge of security, those in charge of 
documentation, and other API designers.

As an API designer, you have to be able to share what you do, your design material. 
To make it easy to do so, you should at least use a standard API description format. You 
might also want to take advantage of a source control system like Git to store your files, 
use wikis for less-structured descriptions, build a custom API catalog, or use an off-the-
shelf developer portal.

To ensure consistency, your company’s guidelines (that you contribute to) should 
be easily accessible and known to all the API designers. All the existing APIs and data 
models should at least be easily findable (hence the source control system, wiki, or API 
catalog) and, if possible, searchable.

To design with confidence, never hesitate to have your designs reviewed by peers. It 
could also be useful and informative to create or participate in an API designer com-
munity (or API guild). And most importantly, make sure your designs are reviewed by 
actual consumers.

Summary
¡	Documentation is vital to designing, building, and validating APIs.
¡	Consistency is impossible without API design guidelines and documentation.
¡	Designing APIs must not be done alone: work with others on reviews and/or 

build a designers community.
¡	API designers participate in the whole API lifecycle.
¡	In order to design effective and useful APIs, API designers must challenge and 

deeply analyze the needs their APIs are intended to fulfill.





355

Symbols
+json suffix, media type 268
$ref JSON reference property 104, 107
2XX class 167
4XX class 123, 129, 167, 210
5XX class 123, 210
200 OK HTTP 44, 47, 48, 89, 123, 142, 167, 283, 

300, 328
201 Created 129, 142, 167, 225, 278, 314
202 Accepted 129, 142, 167, 225, 278
207 Multi-Status—288, 291
301 Moved Permanently 226
304 Not Modified 257
400 Bad Request 123, 127, 132, 167, 210, 225, 288, 

315, 352
401 Unauthorized 209
403 Forbidden 123, 127, 209
404 Not Found 47, 123, 167, 209, 226, 288, 300, 328
405 Method Not Allowed 226
406 Not Acceptable 150, 152
409 Conflict 124
410 Gone 145
413 Payload Too Large 167
415 Unsupported Media Type error 150
429 Too many requests 225
500 Internal Server Error 124, 210, 225, 298
503 Service Unavailable 297

A
access control 184

adapting design for 201–202

overview 200–202
partitioning API to facilitate 191–199

coarse-grained scopes 195–197
defining scopes with API description 

format 198–200
fine-grained scopes 192–194
scope strategies 197–198

access tokens 188
action resources 69
adaptability of design 147–155

content negotiation 148 
filtering 153–155
formats 147–151
internationalizing and localizing 151–153
paginating 153–155
sorting 153–155

aggregating data, network communication 
efficiency 264–267

aggregating goals, for flow of interactions 134–135
analyze phase, API lifecycle 335
API calls

analyzing REST API calls 45–46
security and 188–189

API description format 77–85
defined 78–85
OAS, OpenAPI Specification. (see OAS (OpenAPI 

Specification))
reasons for using 81–85

API design
facets of 15–16
hiding implementation and 10–11
importance of 9–14

index



356 index

learning principles 14–15
overview 3–16
poor, consequences of 11–14
private APIs 9
public APIs 9
software LEGO® bricks 6–8

API gateway solutions 84
apihandyman.io 47
API layers, network communication efficiency 273
API linting 346, 350
APIs 3, 4

defined 4–8
overview 4–6

API Stylebook 341
API styles 14
application/json media type 78, 80, 98–99, 

101–102, 104, 149, 150, 160, 240, 283–284, 
295, 317–318, 332

application/pdf 149, 150, 160
application/xml 150, 240, 295 
arbitrary scopes 197
array OAS type 98
Authorization header 233
authorization server 187

B
backend API 6, 8, 10
backend applications 6
backend for frontend (BFF) 274, 304
before link, pagination 262
before property, pagination 262
BFF (backend for frontend) 274, 304
body parameters 100–102, 290
boolean property 65, 114– 115
breaking changes, avoiding

in output data 215–220
in success and error feedback 223–225
overview 229
security breaches and 226–228
to goals and flows 225–226
to input data and parameters 220–223

C
cacheability 73

Cache-Control header 257, 259
caching

choosing cache policies 258–259
overview 255–258

client ID 186
client/server separation 73
coarse-grained scope 197
code and business logic influences, avoiding 36–37
code on demand 73, 134
collection resources 51
comma-separated values (CSV) 148, 161, 299
commercial off-the-shelf (COTS) software 293, 295
common practices and standards 143–146
components section, OAS document 103, 106
components.securitySchemes section, OpenAPI 

document 198, 321
compression 254–255
conditional requests 254–258
consistency of design 138–147

common practices and standards 143–146
data 139–141
goals 141–142
levels of 142–143
usability and 146–147

consumer application 10
consumers 6

adapting design for 292–296
choosing API versioning representation from 

perspective of 232–234
notifying of events 279–281
reviewing APIs from perspective of 350
software interfaces for 22–24

Content header 295
Content-Language header 152
content negotiation 148
content property, OpenAPI Specification 98
Content-type header 150, 233
Content-type versioning 234
context 275–305

adapting communication to goals and nature of 
data 277–292

long processes 277–278
notifying consumers of events 279–281
processing multiple elements 286–292
streaming event flows 281–285

choosing API style according to 299–305
data-based APIs 300–304

API design (continued)



 357index

event-based systems 305
function-based APIs 300–304
resource-based APIs 300–304

full, observing 292–299
consumers’ existing practices and 

limitations 292–296
provider’s limitations 296–299

Conway’s law 34, 40
COTS (commercial off-the-shelf) software 293, 295
credentials, security 186–188
CRUD functions (create, read, update, delete) 60, 

69, 194
CSV (comma-separated values) 148, 161, 299
custom media type 237, 267, 268

vnd prefix, media type 233, 237, 267, 268 
+json suffix, media type 268 

D
data

aggregating 264–267
consistency of design 139–141
data granularity 175–176
for list representations 262–264
organizing 164–166
security and 203–206

data-based APIs 300–304
data influences, avoiding 36
data types and formats, for representations  

115–116
date property 121, 217, 311
DELETE method 58, 145, 160, 298, 352
deprecated flag, OpenAPI Specification 331
description property, OpenAPI Specification 86, 

88, 91, 93, 95, 101, 322
design guidelines, API 336–342

continuously building 340–342
overview 337–340

designing for users 17–41
avoiding provider’s perspective 34–41

code and business logic influences 36–37
data influences 36
detecting in API goals canvas 41–42
human organization influences 41–42
software architecture influences 38–39

complicated interfaces 18–20
identifying goals 24–33

simple interfaces 20–21
software interfaces 21–24

API as software control panel 21–22
consumer perspective 22–24

design level, network communication 
efficiency 259–274

aggregating data 264–267
choosing relevant data for list 

representations 262–264
creating different API layers 273
enabling expansion 268–269
enabling filtering 260–262
enabling querying 269–271
proposing different representations 266–267
providing more relevant data and goals 271–273

design phase, API lifecycle 336
design process guidelines 337
developer experience (DX) 9
developer portal 185
discoverability 155–161

HTTP 160–161
hypermedia APIs 157–160
providing metadata 156–157

distributed systems 72
documentation 308–333

of evolutions and retirement 330–333
providing adequate information to 

implementers 327–330
reference documentation 308–323

API overview 321–322
data models 310–313
generating from implementation 322–323
goals 313–320
security 320–321

user guide 323–327
dynamic documentation 327
overview of common behaviors and 

principles 327
security 326–327
use cases 324–326

download speed 251
DX (developer experience) 9

E
efficiency 73, 111–136, 246–274
empty objects in YAML 86



358 index

error feedback
avoiding breaking changes in 223–225
exhaustive 126–128
identifying 121–122
informative 122–126
security and 209–211

error message 289
errors, preventing in flow of interactions 132–134
ETag header 257
event-based systems 305
event flows 281–285
event property, SSE 285
evolution of design 213–245

breaking changes, avoiding
in output data 215–220
in success and error feedback 223–225
overview 229
security breaches and 226–228
to goals and flows 225–226
to input data and parameters 220–223

designing API evolutions 215–229
documenting 330–333
extensibility 239–245

extensible APIs 245
extensible data 240–243
extensible flows 244–245
extensible interactions 243–244

invisible interface contract 228–229
versioning APIs 229–239

choosing versioning representation 232–234
granularity 234–238
understanding impact of 238–239
vs. implementation versioning 230–233

exhaustive error feedback, interactions 126–128
expansion, network communication 

efficiency 268–269
experience APIs 274
extensibility 239–245

extensible APIs 245
extensible data 240–243
extensible flows 244–245
extensible interactions 243–244

F
fannish folk law 299
feedback

error feedback
avoiding breaking changes in 223–225
exhaustive 126–128
identifying 121–122
informative 122–126

organizing 167–168
success feedback

avoiding breaking changes in 223–225
interactions 128–129

filtering
adaptabiity of design 153–155
network communication efficiency 260–262

flows
avoiding breaking changes in 225–226
usability and straightforwardness of 129–136

aggregating goals 134–135
goal chain 131–132
preventing errors 132–134
stateless flows 135–136

format parameter 148
formats, adaptabiity of design 147–151
functional errors 121
functional limitations 297
function-based APIs 300–304

G
GDPR (General Data Protection Regulation) 204
generic prefix 139
generic suffix 139
GET method 44–45, 47–48, 57, 88, 92, 98, 158, 160, 

226, 296, 301
get property, OpenAPI Specification 88
goals, API 24–33

aggregating goals for flow of interactions  
134–135

avoiding breaking changes in 225–226
consistency of design 141–142
documenting 313–320
goal chain for flow of interactions 131–132
goal granularity 176–178



 359index

goals canvas
detecting provider’s perspective in 41–42
identifying actions and their parameters and 

returns with 52–54
identifying resources and their relationships 

with 49–51
overview 32–33

network communication efficiency 271–273
organizing 168–174
security and 207–209
transposing into REST APIs 49–60

Goals column, API goals canvas 32
granularity

of APIs 178–180
of data 175–176
of goals 176–178
versioning APIs and 234–238

GraphQL 269–271, 300–304
grouped errors 168
grouping

properties 165
gRPC 258, 300–304

H
HATEOAS (hypermedia as the engine of the 

application state) 160
headers map 290
HIPAA (Health Insurance Portability and 

Accountability Act) 204
How’s column, API goals canvas 32
href property 158, 289
HTTP headers 149

Accept header 267, 283, 295
Accept-Language header 152
Cache-Control header 257, 259
Content header 295
Content-Language header 152
Content-type header 150, 233
ETag header 257
Link header 160
Location header 339

HTTP (HyperText Transfer Protocol) 6, 45, 47, 54, 
72, 74, 122, 145, 225, 237, 285

cheat sheet 60
overview 47–48

HTTP method 47
DELETE method 58, 145, 160, 298, 352
GET method 44–45, 47–48, 57, 88, 92, 98, 158, 

160, 226, 296, 301
OPTIONS HTTP method 161, 300
PATCH method 59, 70, 301
POST method 47, 56, 60, 70, 78, 89–90, 105, 

202, 270, 276, 296
PROPFIND method 289
PROPPATCH method 289
PUT method 60, 301

HTTP status code 46
2XX class 167
4XX class 123, 129, 167, 210
5XX class 123, 210
200 OK HTTP 44, 47, 48, 89, 123, 142, 167, 283, 

300, 328
201 Created 129, 142, 167, 225, 278, 314
202 Accepted 129, 142, 167, 225, 278
207 Multi-Status 288, 291
301 Moved Permanently 226
304 Not Modified 257
400 Bad Request 123, 127, 132, 167, 210, 225, 

288, 315, 352
401 Unauthorized 209
403 Forbidden 123, 127, 209
404 Not Found 47, 123, 167, 209, 226, 288,  

300, 328
405 Method Not Allowed 226
406 Not Acceptable 150, 152
409 Conflict 124
410 Gone 145
413 Payload Too Large 167
415 Unsupported Media Type error 150
429 Too many requests 225
500 Internal Server Error 124, 210, 225, 298
503 Service Unavailable 297

human organization influences, avoiding 41–42
hypermedia APIs 157–160

actions element 157
hypermedia as the engine of the application state 

(HATEOAS) 160
HyperText Transfer Protocol. See HTTP (HyperText 

Transfer Protocol)
Hyrum’s law 228



360 index

I
id property 240, 288
implementation 5

generating reference documentation from  
322–323

versioning 230, 230–233
implementation specifications 307
implement phase, API lifecycle 336
implicit flow 198
info.contact.url, OpenAPI Specification 326
info.description.section, OpenAPI 

Specification 326, 331
information leak 209
informative error feedback, interactions 122–126
info.section, OpenAPI Specification 321
in property, OpenAPI Specification 93, 106
input data

avoiding breaking changes in 220–223
interactions 119–121

Inputs (source) column, API goals canvas 32
interactions, usability and straightforwardness 

of 118–129
error feedback

exhaustive 126–128
identifying 121–122
informative 122–126

input data 119–121
success feedback 128–129

interfaces
complicated 18–20
design challenges 69–71

balancing user-friendliness and 
compliance 71

REST trade-off examples 69–71
REST APIs 45, 48

basic principles of 48
calls, analyzing 45–46
HTTP 47–48
impact of constraints on design 74–76
style overview 72–74
transposing API goals into 49–60

simple 20–21
internationalizing design 151–153
International Telecommunication Union 

(ITU) 348
invalid parameters 244
invisible interface contract 228–229

IoT (Internet of Things) 305
ISO 639 language codes 151
ISO 3166 country codes 151
ISO 4217 currency codes 144
ISO 7000 graphical symbols for use on 

equipment 144
items property, list 141, 156, 223, 240–241, 283, 

287, 289
items property, OpenAPI Specification 98–99, 104
ITU (International Telecommunication 

Union) 348

J
java.lang.NullPointerException 210, 216
JSON reference 103
JSON Schema 91, 94–97, 106, 113

L
language parameter 151
latency 251
layered systems 73
learning principles, design 14–15
least privilege principle 192
lifecycle, API 335–336
Link header 160
links property 159
linting 343–348
localizing design 151–153
Location header 339
long processes, managing 277–278

M
malformed request errors 121
mandatory properties 221
Markdown format 318
Maslow’s law 299
media type 98–99, 101, 149–150, 152, 233, 237, 

267–268, 284, 288
custom 237, 267–268

vnd prefix, media type 233, 237, 267–268
+json suffix, media type 268

media types
application/json media type 78, 80, 98–99, 

101–102, 104, 149–150, 160, 240, 283–284, 
295, 317–318, 332

application/pdf 149–150, 160
application/xml 150, 240, 295



 361index

text/csv 149–150, 160
text/event-stream media type 283–284
text/plain 240 

Message Queuing Telemetry Protocol 
(MQTP) 305

metadata 156–157, 262
Microsoft Visual Studio Code editor 82
MQTP (Message Queuing Telemetry 

Protocol) 305

N
names, choosing 113–115
network communication efficiency 246–274

at design level 259–274
aggregating data 264–267
choosing relevant data for list 

representations 262–264
creating different API layers 273
enabling expansion 268–269
enabling filtering 260–262
enabling querying 269–271
proposing different representations 266–267
providing more relevant data and goals  

271–273
at protocol level 254–259

activating compression and persistent 
connections 254–255

choosing cache policies 258–259
enabling caching and conditional 

requests 255–258
overview 247–254

nonfunctional requirements 292
non-volatile storage 259
number data type 64, 115, 139, 206

O
OAI (OpenAPI Initiative) 79
OAS (OpenAPI Specification) 78, 85–91, 113,  

146, 200
array OAS type 98
API data 91–102

body parameters 100–102
JSON Schema and 94–97
query parameters 92–93
responses 97–100

creating OAS document 85–86
defining scopes with 198–200

describing API resources and actions with 86–87
describing operations on resource 87–91
describing API data 91–102 

body parameters 100–102 
JSON Schema and 94–97 
query parameters 92–93 
responses 97–100
array type 98 

describing path parameters 105–108
describing resources 86–87
documentation 107
overview 79–81
reusing components 102–105
security

defining scopes with 198–200 
oauth2 security type 198 

oauth2 security type, OpenAPI Specification 198
OpenAPI Initiative (OAI) 79
OpenAPI Map 81, 107, 312
OpenAPI Specification (OAS). See OAS (OpenAPI 

Specification)
OpenID Connect 188
Open Web Application Security Project 

(OWASP) 192
OPTIONS HTTP method 161, 300
organizing APIs 163–174

data 164–166
feedback 167–168
goals 168–174

output data, avoiding breaking changes in  
215–220

Output (usage) column, API goals canvas 32
OWASP (Open Web Application Security 

Project) 192

P
page parameter 153, 261
pageSize parameter 153, 244
paginating 153–155

after property 262
before link 262 
before property 262 
page parameter 153, 261 
pageSize parameter 153, 244 
size query parameter 261

parameters, API data
avoiding breaking changes in 220–223



362 index

body parameters 100–102
checking parameter data sources 67–68
designing 68–69
path parameters 105–108
query parameters 92–93

parameters property, OpenAPI Specification 92
partitioning API to facilitate access control  

191–199
partner APIs 8, 308
PATCH method 59, 70, 287, 301
path parameters 54, 105–108
paths property, OpenAPI Specification 86
PCI DSS (Payment Card Industry Data Security 

Standard) 204
persistent connections, network communication 

efficiency 254–255
PlantUML (PUML) 326
portable data types 115
Postel’s law 243
POST method 47, 56, 60, 70, 78, 89–90, 105, 202, 

270, 276, 296
predictability of design 137–161

adaptabiity 147–155
filtering 153–155
formats 147–151
internationalizing and localizing 151–153
paginating 153–155
sorting 153–155

consistency 138–147
common practices and standards 143–146
data 139–141
goals 141–142
levels of 142–143
usability and 146–147

discoverability 155–161
HTTP 160–161
hypermedia APIs 157–160
providing metadata 156–157

prefixes 114
private APIs 8–9, 184, 308
PROPFIND method 289
PROPPATCH method 289
ProtoBuf data format 303
protocol level, network communication 

efficiency 254–259
activating compression and persistent 

connections 254–255

choosing cache policies 258–259
enabling caching and conditional requests  

255–258
provider applications 6, 10
provider-facing documentation 330
provider’s perspective 18, 34–41

adapting design for provider’s limitations  
296–299

code and business logic influences 36–37
data influences 36
detecting in API goals canvas 41–42
human organization influences 41–42
reviewing APIs from 348–350
software architecture influences 38–39

public APIs 8–9, 13, 184, 308, 327
publish phase, API lifecycle 336
PUML (PlantUML) 326
PUT method 60, 301

Q
querying, network communication efficiency  

269–271
query parameters 57, 68, 92–93, 142, 211, 244
query property, GraphQL 270

R
Range header 154
redoc-cli command-line utility 309
ReDoc 83
reference documentation 308–323

API overview 321–322
data models 310–313
generating from implementation 322–323
goals 313–320
security 320–321

reference guidelines 337
reference property 44, 62, 66, 94, 97
registering consumers 185–186
reliability 73
Remote Procedure Call (RPC) 301
Representational State Transfer (REST). See REST 

(Representational State Transfer)
representations

network communication efficiency 266–267
usability and straightforwardness of 112–118

data types and formats 115–116
names 113–115
ready-to-use data 116–118

parameters (continued)



 363index

requestBody property, OpenAPI Specification  
78, 101

Request For Comments (RFC). See RFC (Request 
For Comments)

required property, OpenAPI Specification 93, 95
resource-based APIs 300–304
resource expansion 268
resource owner 187
resources 47
resource server 187
resources type 145
response body 46
responses, API data

describing 97–100
designing from concepts 65–66

responses property 88–89
REST APIs 45–48, 74

analyzing REST API calls 45–46
basic principles of 48
HTTP

cheat sheet 60
overview 47–48

impact of constraints on design 74–76
style overview 72–74
transposing API goals into 49–60

API goals canvas 49–54
cheat sheet 60
representing resources with paths 54–56

REST (Representational State Transfer) 44, 72, 75, 
76, 160, 277, 300, 303

reusability 73
reusable schema, OpenAPI Specification 103
reviewing APIs 342–353

challenging and analyzing needs 343–344
from consumer’s perspective 350
from provider’s perspective 348–350
linting 346–350
verifying implementation 350–353

RFC 5646 Tags for Identifying Languages 151
RFC 5988 Web Linking 159
RFC 6455 The Websocket Protocol 285
RFC 6749 The OAuth 2.0 Authorization 

Framework 188
RFC 7231 Hypertext Transfer Protocol 153
RFC (Request For Comments) 123, 129, 146
RPC (Remote Procedure Call) 301

S
scalability 73
Schema Object description, OpenAPI 

Specification 97
schema property, OpenAPI Specification 93, 318
schemas property, OpenAPI Specification 103
scopes 192, 195, 227

coarse-grained 195–197
defining with API description format 198–200
fine-grained 192–194
strategies 197–198

Secure Sockets Layer (SSL) 188
security 183–211

access control 200–203
adapting design for 201–202
overview 200–202
partitioning API to facilitate 191–199

API calls 188–189
credentials 186–188
documenting 320–321
envisioning API design from perspective of  

189–191
handling sensitive material 203–211

identifying architecture and protocol 
issues 211–212

secure error feedback 209–211
sensitive data 203–206
sensitive goals 207–209

overview 185–191
registering consumers 185–186
security breaches 226, 226–228
user guide 326–327

security, OpenAPI Specification 199
self relationship 159
semantic versioning 231
sensitive data 204
sensitive material 184
server errors 121
Server-Sent Events (SSE) 284, 303, 305
silent breaking change 221, 226
Siren hypermedia format 159
sizing APIs 174–180

API granularity 178–180
data granularity 175–176
goal granularity 176–178

software architecture influences, avoiding 38–39



364 index

software interfaces 21–24
consumer’s perspective 22–24
viewing API as software’s control panel 21–22

software LEGO® bricks 6–8
sorting, adaptability of design and 153–155
sort parameter, pagination 155
source (Inputs) column, API goals canvas 32
SSE (Server-Sent Events) 284, 303, 305
SSL (Secure Sockets Layer) 188. See TLS 

(Transport Layer Security) encryption
standardized HTTP methods 75
standard method 145
stateful flow 136
stateless flows 135–136
statelessness 73
string data type 115
string property 64, 88, 94
success feedback

avoiding breaking changes in 223–225
interactions 128–129

suffixes 114
summary property, OpenAPI Specification 88, 90
Sunset header 332
Swagger Editor 82
Swagger UI 83
Swagger Viewer extension 82

T
tags property, OpenAPI Specification 169
text/csv 149, 150, 160
text/event-stream media type 283–284
text/plain 240
time-to-live values 258, 271
TLS (Transport Layer Security) encryption 188
tokens 186
Transport Layer Security (TLS) encryption 188

U
UI (user interface) 4
uniform interfaces 74, 145, 148, 160
UNIX timestamp 116, 140, 168
usability and straightfowardness 111–136

consistency of design and 146–147
flows 129–136

aggregating goals 134–135
goal chain 131–132
preventing errors 132–134

stateless flows 135–136
interactions 118–129

error feedback 121–128
inputs 119–121
success feedback 128–129

representations 112–118
data types and formats 115–116
names 113–115
ready-to-use data 116–118

usage (Output) column, API goals canvas 32
user-friendly scope 197
user guide 323–327

dynamic documentation 327
overview of common behaviors and 

principles 327
security 326–327
use cases 324–326

user interface (UI) 4
users, designing for 

designing for users 36

V
versioning APIs 229–239

choosing versioning representation 232–234
granularity 234–238
understanding impact of 238–239
vs. implementation versioning 230–233

virtual goals organization 172
vnd prefix, media type 233, 237, 267–268

W
web APIs 4–6
Web Concepts website 341
WebDAV server 288
webhook APIs 280
WebSocket APIs 285
WebSub 281
What’s column, API goals canvas 32
Who’s column, API goals canvas 32

X
x- properties, OpenAPI Specification 330, 332

Y
YAML (YAML Ain’t Markup Language) 80



Arnaud Lauret

ISBN-13: 978-1-61729-510-2
ISBN-10: 1-61729-510-8

A
n API frees developers to integrate with an application 
without knowing its code-level details. Whether you’re 
using established standards like REST and OpenAPI 

or more recent approaches like GraphQL or gRPC, master-
ing API design is a superskill. It will make your web-facing 
services easier to consume and your clients—internal and 
external—happier.

Drawing on author Arnaud Lauret’s many years of API design 
experience, this book teaches you how to gather requirements, 
how to balance business and technical goals, and how to adopt 
a consumer-fi rst mindset. It teaches effective practices using 
numerous interesting examples. 

What’s Inside
●  Characteristics of a well-designed API
●  User-oriented and real-world APIs
●  Secure APIs by design
●  Evolving, documenting, and reviewing API designs

Written for developers with minimal experience building and 
consuming APIs.

A software architect with extensive experience in the banking 
industry, Arnaud Lauret has spent 10 years using, designing, 
and building APIs. He blogs under the name of API Handy-
man and has created the API Stylebook website.

To download their free eBook in PDF, ePub, and Kindle formats, 
owners of this book should visit 

www.manning.com/books/the-design-of-web-apis

$44.99 / Can $59.99  [INCLUDING eBOOK]

The Design of Web APIs

WEB DEVELOPMENT/API
Lauret

M A N N I N G

The Design of W
eb APIs

MANN I N G

“Assembles the fundamental 
building blocks of API design 
in an easy-to-access way, and 
walks you through the vast 
landscape in a friendly and 

comfortable manner.” 
—From the Foreword by Kin Lane

“Answers nagging and 
complicated questions with 

a simple philosophy, but 
never tries to hide anything 

from you. A fantastic 
  introduction to the fi eld.”—Bridger Howell, SoFi.com

“An excellent guidebook 
for establishing a path to 

RESTful APIs.”—Shawn Smith
Penn State University

“Combines real-world 
examples with diffi cult 

 abstract ideas.”—Shayn Cornwell
XeroOne Systems

M A N N I N G

See first page

Arnaud Lauret
Foreword by Kin Lane


	The Design of Web APIs
	contents
	foreword
	preface
	acknowledgments
	about this book
	about the author
	about the cover illustration
	Part 1: Fundamentals of API design
	1 What is API design?
	1.1 What is an API?
	1.1.1 An API is a web interface for software
	1.1.2 APIs turn software into LEGO® bricks

	1.2 Why API design matters
	1.2.1 A public or private API is an interface for other developers
	1.2.2 An API is made to hide the implementation
	1.2.3 The terrible consequences of poorly designed APIs

	1.3 The elements of API design
	1.3.1 Learning the principles beyond programming interface design
	1.3.2 Exploring all facets of API design


	2 Designing an API for its users
	2.1	The right perspective for designing everyday user interfaces
	2.1.1	Focusing on how things work leads to complicated interfaces
	2.1.2	Focusing on what users can do leads to simple interfaces

	2.2	Designing software’s interfaces
	2.2.1	Viewing an API as software’s control panel
	2.2.2	Focusing on the consumer’s perspective to create simple APIs

	2.3	Identifying an API’s goals
	2.3.1	Identifying the whats and the hows
	2.3.2	Identifying inputs and outputs
	2.3.3	Identifying missing goals
	2.3.4	Identifying all users
	2.3.5	Using the API goals canvas

	2.4	Avoiding the provider’s perspective when designing APIs
	2.4.1	Avoiding data influences
	2.4.2	Avoiding code and business logic influences
	2.4.3	Avoiding software architecture influences
	2.4.4	Avoiding human organization influences
	2.4.5	Detecting the provider’s perspective in the API goals canvas


	3 Designing a programming interface
	3.1	Introducing REST APIs
	3.1.1	Analyzing a REST API call
	3.1.2	Basic principles of HTTP
	3.1.3	Basic principles of REST APIs

	3.2	Transposing API goals into a REST API
	3.2.1	Identifying resources and their relationships with the API goals canvas
	3.2.2	Identifying actions and their parameters and returns with the API goals canvas
	3.2.3	Representing resources with paths
	3.2.4	Representing actions with HTTP
	3.2.5	REST API and HTTP cheat sheet

	3.3	Designing the API’s data
	3.3.1	Designing concepts
	3.3.2	Designing responses from concepts
	3.3.3	Designing parameters from concepts or responses
	3.3.4	Checking parameter data sources
	3.3.5	Designing other parameters

	3.4	Striking a balance when facing design challenges
	3.4.1	REST trade-off examples
	3.4.2	Balancing user-friendliness and compliance

	3.5	Understanding why REST matters for the design of any API
	3.5.1	Introducing the REST architectural style
	3.5.2	The impact of REST constraints on API design


	4 Describing an API with an API description format
	4.1	What is an API description format?
	4.1.1	Introducing the OpenAPI Specification (OAS)
	4.1.2	Why use an API description format?
	4.1.3	When to use an API description format

	4.2	Describing API resources and actions with OAS
	4.2.1	Creating an OAS document
	4.2.2	Describing a resource
	4.2.3	Describing operations on a resource

	4.3	Describing API data with OpenAPI and JSON Schema
	4.3.1	Describing query parameters
	4.3.2	Describing data with JSON Schema
	4.3.3	Describing responses
	4.3.4	Describing body parameters

	4.4	Describing an API efficiently with OAS
	4.4.1	Reusing components
	4.4.2	Describing path parameters



	Part 2: Usable API design
	5 Designing a straightforward API
	5.1 Designing straightforward representations
	5.1.1 Choosing crystal-clear names
	5.1.2 Choosing easy-to-use data types and formats
	5.1.3 Choosing ready-to-use data

	5.2 Designing straightforward interactions
	5.2.1 Requesting straightforward inputs
	5.2.2 Identifying all possible error feedbacks
	5.2.3 Returning informative error feedback
	5.2.4 Returning exhaustive error feedback
	5.2.5 Returning informative success feedback

	5.3 Designing straightforward flows
	5.3.1 Building a straightforward goal chain
	5.3.2 Preventing errors
	5.3.3 Aggregating goals
	5.3.4 Designing stateless flows


	6 Designing a predictable API
	6.1	Being consistent
	6.1.1	Designing consistent data
	6.1.2	Designing consistent goals
	6.1.3	The four levels of consistency
	6.1.4	Copying others: Following common practices and meeting standards
	6.1.5	Being consistent is hard and must be done wisely

	6.2	Being adaptable
	6.2.1	Providing and accepting different formats
	6.2.2	Internationalizing and localizing
	6.2.3	Filtering, paginating, and sorting

	6.3	Being discoverable
	6.3.1	Providing metadata
	6.3.2	Creating hypermedia APIs
	6.3.3	Taking advantage of the HTTP protocol


	7 Designing a concise and well-organized API
	7.1	Organizing an API
	7.1.1	Organizing data
	7.1.2	Organizing feedback
	7.1.3	Organizing goals

	7.2	Sizing an API
	7.2.1	Choosing data granularity
	7.2.2	Choosing goal granularity
	7.2.3	Choosing API granularity



	Part 3: Contextual API design
	8 Designing a secure API
	8.1	An overview of API security
	8.1.1	Registering a consumer
	8.1.2	Getting credentials to consume the API
	8.1.3	Making an API call
	8.1.4	Envisioning API design from the perspective of security

	8.2	Partitioning an API to facilitate access control
	8.2.1	Defining flexible but complex fine-grained scopes
	8.2.2	Defining simple but less flexible coarse-grained scopes
	8.2.3	Choosing scope strategies
	8.2.4	Defining scopes with the API description format

	8.3	Designing with access control in mind
	8.3.1	Knowing what data is needed to control access
	8.3.2	Adapting the design when necessary

	8.4	Handling sensitive material
	8.4.1	Handling sensitive data
	8.4.2	Handling sensitive goals
	8.4.3	Designing secure error feedback
	8.4.4	Identifying architecture and protocol issues


	9 Evolving an API design
	9.1	Designing API evolutions
	9.1.1	Avoiding breaking changes in output data
	9.1.2	Avoiding breaking changes to input data and parameters
	9.1.3	Avoiding breaking changes in success and error feedback
	9.1.4	Avoiding breaking changes to goals and flows
	9.1.5	Avoiding security breaches and breaking changes
	9.1.6	Being aware of the invisible interface contract
	9.1.7	Introducing a breaking change is not always a problem

	9.2	Versioning an API
	9.2.1	Contrasting API and implementation versioning
	9.2.2	Choosing an API versioning representation from the consumer’s perspective
	9.2.3	Choosing API versioning granularity
	9.2.4	Understanding the impact of API versioning beyond design

	9.3	Designing APIs with extensibility in mind
	9.3.1	Designing extensible data
	9.3.2	Designing extensible interactions
	9.3.3	Designing extensible flows
	9.3.4	Designing extensible APIs


	10 Designing a network‑efficient API
	10.1	Overview of network communication concerns
	10.1.1	Setting the scene
	10.1.2	Analyzing the problems

	10.2	Ensuring network communication efficiency at the protocol level
	10.2.1	Activating compression and persistent connections
	10.2.2	Enabling caching and conditional requests
	10.2.3	Choosing cache policies

	10.3	Ensuring network communication efficiency at the design level
	10.3.1	Enabling filtering
	10.3.2	Choosing relevant data for list representations
	10.3.3	Aggregating data
	10.3.4	Proposing different representations
	10.3.5	Enabling expansion
	10.3.6	Enabling querying
	10.3.7	Providing more relevant data and goals
	10.3.8	Creating different API layers


	11 Designing an API in context
	11.1 Adapting communication to the goals and nature of the data
	11.1.1 Managing long processes
	11.1.2 Notifying consumers of events
	11.1.3 Streaming event flows
	11.1.4 Processing multiple elements

	11.2 Observing the full context
	11.2.1 Being aware of consumers' existing practices and limitations
	11.2.2 Carefully considering the provider’s limitations

	11.3 Choosing an API style according to the context
	11.3.1 Contrasting resource-, data-, and function-based APIs
	11.3.2 Thinking beyond request/response- and HTTP-based APIs


	12 Documenting an API
	12.1	Creating reference documentation
	12.1.1	Documenting data models
	12.1.2	Documenting goals
	12.1.3	Documenting security
	12.1.4	Providing an overview of the API
	12.1.5	Generating documentation from the implementation: pros and cons

	12.2	Creating a user guide
	12.2.1	Documenting use cases
	12.2.2	Documenting security
	12.2.3	Providing an overview of common behaviors and principles
	12.2.4	Thinking beyond static documentation

	12.3	Providing adequate information to implementers
	12.4	Documenting evolutions and retirement

	13 Growing APIs
	13.1	The API lifecycle
	13.2	Building API design guidelines
	13.2.1	What to put in API design guidelines
	13.2.2	Continuously building guidelines

	13.3	Reviewing APIs
	13.3.1	Challenging and analyzing needs
	13.3.2	Linting the design
	13.3.3	Reviewing the design from the provider’s perspective
	13.3.4	Reviewing the design from the consumer’s perspective
	13.3.5	Verifying the implementation

	13.4	Communicating and sharing


	index



