A user-friendly reference guide

/ll MANNING

/ll MANNING PUBLICATIONS
Quality is many small things done right

Early access
Don't wait to start learning! In MEAP, the Manning Early Access

Program, you read books while they're being written.

Access anywhere with liveBook
The Manning liveBook platform provides instant browser-based

access to our content.

Beyond books
Cutting edge liveProjects, liveAudio, and liveVideo courses give
you new ways to learn. Only available at manning.com

Impeccable quality
We believe in excellence. Our customers tell us we produce
the highest quality content you can buy.

Exclusive eBooks
Manning eBooks are only available from manning.com.
You won't find them anywhere else.

Save 35% at manning.com

Use the code humble35 at checkout to save on your
first purchase.

shop at manning.com

https://bit.ly/3h13ZcH
https://bit.ly/3h13ZcH
https://bit.ly/2J2R9OK
https://bit.ly/37r08lZ
https://www.linkedin.com/company/manning-publications-co/
https://www.facebook.com/ManningBooks?ref=nf
https://www.instagram.com/manning_publications/
https://twitter.com/manningbooks
https://www.youtube.com/channel/UCDia_lkNYKLJVLRLQl_-pFw
https://www.twitch.tv/manningpublications
https://bit.ly/2Wmabm6
https://bit.ly/37r08lZ
https://bit.ly/37r08lZ

Hello! HTMLS & C553

Hello! HTMLS & C553

A user-friendly reference guide

Rob Crowther

MANNING
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 261

Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

User Friendly artwork, characters, and strips used by permission from UserFriendly.Org.
All Rights Reserved.

Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books we publish printed on acid-free paper, and we exert our best efforts to that
end. Recognizing also our responsibility to conserve the resources of our planet, Manning
books are printed on paper that is at least 15 percent recycled and processed without
elemental chlorine.

/l/l Manning Publications Co. Developmenteditor: Cynthia Kane
20 Baldwin Road Copyeditor: Tiffany Taylor
PO Box 261 Technical proofreader: Adam London
Shelter Island, NY 11964 Typesetter: Marija Tudor

Cover designer: Marija Tudor

ISBN: 9781935182894

Printed in the United States of America
12345678910 - MAL - 17 16 15 14 13 12

brief contents

PART1 LEARNING HTMLS 1

Introducing HTMLS markup 3
HTML5S forms 386

Dynamic graphics 73

Audio and video 119
Browser-based APls 153
Network and location APls 191

I\ IR BN ¢ R |\ I

PART 2 LEARNING CSS53 231

7 New CSS language features 233

& Layout with C553 271

9 Motion and color 313
10 Borders and backgrounds with C553 351
11 Text and fonts 392

contents

PART 1

preface xv
acknowledgments xvif
about this book xix

LEARNING HTMLH5 1

Why do we need new elements? 4

New elements for page structure 7
Sectioning content 7 o Headings, headers, and the outlining
algorithm 9 o Common page elements 15

The HTML DOCTYFE 17

New elements for content 15
Time 1& o Images and diagrams with <figure> and
<figcaption> 21 o Emphasizing words and phrases 22
HTMLS s new global attributes 25

Accessibility with ARIA 24 o Extending HTML with custom
attributes 26 o Expressing more than just document
semantics with microdata 28

The HTMLS content model 29

Browser support 32

Supporting Internet Explorer 35 o Enabling HTMLS support
in Internet Explorer with html5.js 26

Summary 36

vii

viii contents

The limitations of HTML4 forms 39
Numebers, ranges, dates, and times 42

Validation 46

The required attribute 47 o The min, max, and pattern
attributes 47 o Taking advantage of validation with
CSS 49 o Turning off validation 50

Email and URLs 57
Email addresses 51 o Web addresses 53

Elements for user feedback 53

The <output> element 525 o The <progress> element 55
The <meter> element 56

Less-common form controls 57

Telephone numbers 57 o Color pickers 58
<keygen> 59

New attributes for the <input> element 59

Placeholdertext 59 o Formautofocus ©1 o Protecting
private information with the autocomplete attribute &1

Extending forms with JavaScript 62

Customizing the validation messages ©2 o Triggering
validation with JavaScript 64 o Responding to any
changes invalue ©4 o Creating combo boxes with
<datalist> ©5 o Easyways to work with form

values in JavaScript 67

Browser support and detecting HTMLS features 68

Browser inconsistencies ©9 o Detecting supported
features ©9 o The htmlb-now library 71

Summary 72

Cetting started with <canvas>: shapes, images, and text 74

Drawing shapes 76 o Flacingimages &2 o Drawing
text &4

Advanced <canvas>: gradients, shadows, and animation 87

Creating gradients 68 o Drawing drop shadows 91
Transformations 92 o Animation 94

contents ix

Getting started with SVG 96

Applying styles to SVYG 98 o Drawing common shapes 99
Images, text, and embedded content 101 o Transforms,
gradients, patterns, and declarative animation 105

SVG ve, <canvas> 112

Browser support 174

Supporting <canvas> in older versions of IE with
explorercanvas 114 o SVGin XML vs. SVG in HTML 115
Embedding SVG as an image 115 o Referencing an SVG
image from CS5 116 o Embedding SVG as an object 116
SYG support in older browsers with SYG Web and Raphaél 116

Summary 118

Audio and video on the modern web 119

The <audio> element 123

Common attributes: controls, autoplay, loop, and preload 124
Codecs and license issues 129 o Using multiple sources 123

The <video> element 154

<video> element attributes 155 o Containers, codecs,
and license issues 158 o Easy encoding with Miro Video
Converter 139 o Advanced encoding with FFmpeg 140
Using multiple sources 142

Controlling audio and video with JavaScript 144
Integrating media with other content 146

Browser support 150

Web server configuration for audio and video 151
Supporting legacy browsers with Flash video 152

Summary 152

Kich-text editing with the contenteditable attribute 154

Basic text editing 155 o The spellcheck attribute 157
Applying formatting to the editable text 160

Natural user interaction with drag-and-drop 164

Basic drag-and-drop 167 o Drag-and-drop in all
browsers 169

contents

PART 2

Managing the Back button with the history AFl 175

Updating page state 175 o Using location.hash 176
Example: Implementing an undo feature 177

Getting semantic with the microdata AFl 179

Using a single microdata format 180 o Using multiple
microdata formats 183

Lag-free interfaces with web workers 185

Browser support 189
Summary 189

Finding yourself with the Geolocation AFl 192

Finding your location 193 o Finding your location more
accurately 194 o Finding your location continuously 195
Practical uses for geolocation 196

Communication in HTMLS 200

Enabling more secure integration with cross-document
messaging 201 o Real-time communication with the
WebSocket APl 205

Offline web applications 208

Setting up a development environment 209
The application cache 211 o Managing network
connectivity in offline apps 215

Storing data for offliine use 222

Local storage 223 o Session storage 227 o Futting
it all together 225

Browser support 229
Summary 229

LEARNING CS53 231

Choosing elements through their relationships 254
Selecting sets of elements with combinators 235
Selecting among a set of elements with
pseudo-classes 240

contents

Choosing elements by their attributes 251
Choosing what isn't 255 o Pseudo-elements 257

Choosing elements based on user interaction 267

Styling form elements based on state 262 o Styling the
page based on the target of the URL 265

Browser support 267
Using jQuery to support older browsers 269

Summary 270

Underused CSS2 layout features 272

Placing elements on a line with inline-block 272 o Grouping
element dimensions with display: table 275

C555 improvements to (552 approaches 279

Mixing different length units with calc 279 o Controlling
the box model 284

Using media queries for flexible layout 285

Resolution detection 287 o Changing layout based on
orientation and aspect ratio 291 o Additional
device-detection features 292

The future of CSS lgyout 295

Using flexible boxes for nested layout 294 o Using the
CSS3 Crid Alignment module 29& o Controlling content
flow with CS53 Regions 303 o Making complex shapes
with C553 Exclusions and Shapes 2305

Browser support 308
inline-block in IEG and IE7 309 o calc in Chrome and
Firefox 310 o box-sizihg in Firefox and Safarib 310
Flexboxes in Chrome, Firefox, |E, and Safari 310
Media queries and old browsers 311 o Regions and
exclusions 311

Summary 317

Colors and opacity 514
Opacity 314 o RGBA 318 o HSL and HSLA 320

Xi

xii contents

CSS transforms 323
2D transforms 324 o 3D transforms 328

C5S transitions 330

Transition timing functions 234 o Transition
property 337 o Transition delay 238 o Triggering
transitions with JavaScript 339

CSS Animation 343
Browser support 346

Opacity inIE& and earlier 346 o Transforms, transitions,
and animations in current browsers 346 o Using
modernizr.js and jQuery for animation in older

browsers 349

Summary 350

Drop shadows with CS555 352
Box shadows 352 o Text shadows 356

Easy rounded corners 355

New features for background images — 367

Background size 361 o Multiple backgrounds 265
Background origin and clipping 269

Selective background scaling with border images 371

Basic border-image 372 o Stretching and repeating
border-image sections 374 o Using border-image to
create common effects 377

Creating gradients with CSS 378

Browser support 554

Cross-browser drop shadows 285 o Cross-browser
CS53 gradients 3866 o Cross-browser backgrounds and
border-image 387 o Supporting old versions of Internet
Explorer 268 o CSS3 FIE for easy IE support 390

Summary 397

Basic web fonts 395

Gaining control of fonts with the @font-face rule 394
Font formats: EOT, TTF/OTF, and WOFF 398
Browser support for downloadable fonts 299

contents

Making your lite easier with font services 400

Downloadable kits: FontSquirrel 400 o Free font services:
Google Web Fonts 403 o Subscription font services:
Fontdeck 405

Advanced web typography 407
font-size-adjust 407 o Advanced font control 409

Text columns 416

Column count and width 416 o Column spans 418
Gaps and rules 419

Wrapping and overflow 420

Word wrap 420 o Text overflow 422
Browser support 425
Summary 423

Appendix A A history of web standards 425
Appendix B HTML basics 441

Appendix C C55 basics 467

Appendix D JavaScript 491

lndex 5B23

xiii

I first saw the web in my final year of university in 1993-94. All the cool

kids (bear in mind, this was a Computer Science department) were play-
ing with a strange bit of software called Mosaic on their Sun 4 work-
stations. | had some fun with it and created my first web page (a guide to
Edinburgh pubs), but it didn’t strike me as anything more than a curios-
ity and it certainly didn’t measure up to “proper” document preparation
formats like LaTeX. It's not the first time I've been completely wrong
about technology —and it won't be the last!

I went back to experimenting with websites in 1997, a full-on blinking,
scrolling plethora of tacky animated gifs which is thankfully long lost. As
I learned more about the web I stopped seeing it as a poor-quality type-
setting system and started seeing it as a great equalizer. Not only was
vistting a web page something anyone could do, making a web page was also
something anyone could do. Since then I've been on a mission, not only to
learn as much as I can about making web pages, but to help others learn
how to make them, and this book is a natural extension of that mission.

HTML5 and CSS3 are fascinating to me not only because of their techni-
cal features, but because they represent growth in the web platform after
several years of stagnation. The more the web can do, the more content
can be shared across the world by ordinary people like you and me.

Xv

acknowledgments

I'd like to thank my Mum for Inspiring my lifelong love of books, my Dad

for inspiring my lifelong love of computers, and my brother for under-
writing my move to London and giving me a chance to get a full-time web
development job. Also sincere thanks to the rest of my family for being
there for me over the years.

A big thank you to Boyd Gilchrist who, while we were both at university,
patiently answered such questions as “What'’s this web browser thing,
then?” and “HTML, what the fudge is that?” among many others I
couldn’t be bothered to research on my own in the pre-Google era. Also,
thanks to my other friends at university, especially Graham Barr who not
only put up with living with me for several years but also managed to
keep in touch long enough to read drafts of several chapters in this book.

I'd like to thank everyone at Net Resources, especially my tutor John
Ayscough; Richard O’Connor for giving me the subsequent placement
which was my first commercial web development experience; and Esther
Kuperjj for talking him into it. My adventures in web standards have been
greatly aided by the vibrant London web developer community, particu-
larly the London Web Standards and London Web Meetup groups.

Troy Mott at Manning is the person who originally got me involved with
this book project, though at times I'm not sure whether to blame him or
thank him for that! But Troy and all the other people I've worked with at
Manning have been massively supportive throughout the writing and
production processes. I'd especially like to thank Katharine Osborne,
Candace Gillhoolley, Cynthia Kane, Bert Bates, Katie Tennant, Tiffany

xvii

xviii

acknowledgments

Taylor, Martin Murtonen, Janet Vail, Mary Piergies, and of course
Marjan Bace, for making this book what it is.

Many people reviewed the manuscript at various stages of its develop-
ment, and | would like to thank all the MEAP readers who provided
comments in the forum as well as the following peer reviewers for their
invaluable feedback: ‘Anil’ Radhakrishna, Braj Panda, Brian R. Bondy,
Curtis Miller, Dave Nicolette, Dave Pawson, David McWhirter, Diane
C. Leeper, Edward Welker, Eric Pascarello, Gary Rasmussen, Greg
Donald, Greg Vaughn, James Hatheway, Jason Jung, Jason Kaczor,
John Griffin, Keith Kim, Kieran Mathieson, Lester Lobo, Lisa Morgan,
Mike Greenhalgh, Nikolaos Kaintantzis, Rudy Pena, Sarah Forst, Stu-
art Caborn, Tijs Rademakers, and Yvonne Adams. Special thanks to
Adam London for his careful technical review of the final manuscript
and for testing the code.

Finally, I'd like to acknowledge J. D. “Illiad” Fraser of Uver Friendly for
letting Manning use the User Friendly cartoon characters in the Hello!
series and for allowing me to put my own words in the characters’
mouths.

about this book

You should read this book if you're interested in learning about the new

features in HTML5 and CSS3 available to web developers and enjoy an
example-driven, visual approach to learning. Readers in any of the fol-
lowing categories should find this book useful:

Experienced web developers

Novice web developers

App developers (iPhone, Android, Windows 8 Metro)
Interactive media designers

Web designers

Different readers will find different parts of the book interesting. Please
see the later section “Book structure and suggested reading order” for
further guidelines on how to navigate the book.

Extra content for beginners

This book focuses on the new features of HTML5 and CSS3; as such it
expects the reader to have a little experience with their predecessors. But
we will take things slowly, especially in the early chapters, and each feature
discussed will come with example code you can try yourself. If you know
what fags are and what a CSS rule looks like, then you should have few
problems. If you're new to web development, then you'll benefit from the
short introduction to HTML and CSS in appendixes B and C.

To use many of the new features in HTMLS5, it is helpful to have some
knowledge of JavaScript. If you are a complete beginner, then you will

Xix

Book

about this book

still find this book useful as it mostly uses small examples which are
easy to experiment with. Appendix D is provided to get you started in
JavaScript.

structure and suggested reading order

This book is split into two sections: part 1 concentrates on HTML5 and
part 2 on CSS3. The HTML5 section has chapters on the new markup
features of HTMLS5, forms and form validation, HTML5’s new dynamic
graphics capabilities, using video and audio, new JavaScript APIs for
client-side development, and new APIs related to networking. As a
rough guideline, the early chapters require little-to-no knowledge of
JavaScript, with each successive chapter building your knowledge
base. The second section starts with a couple of chapters on the nuts
and bolts of CSS3 and selectors, followed by chapters on layout, motion
and color, borders and backgrounds, and fonts and text formatting.

Most of the chapters are self-contained, = —5 RECOMMENDED ORDER

although there are a few dependencies. > OPTIONAL STEP

The following chapter diagrams show a

few suggested reading orders, based on your role and what you expect
to get out of the book. Each diagram consists of chapter numbers in
boxes as well as the recommended and optional steps, which are indi-
cated by two types of arrows as shown in the key above.

If you are a ...

Read chapters in this order

WEB DEVELOPER

If you're a web developer looking to get up to speed,
then you should have no problem reading the chap-
ters in numerical order. The CSS used in chapters 2
through 6 should be easy for you to follow. If you're
interested in the history of HTML and the standards
process, then you can read appendix A before you
dive in. It's likely that appendixes B through D are
not going to tell you anything you don’t already know,
so there’s no need to bother with them.

& -m-m-E-m

=
1
?~n~n~@
el — [

about this book XXi

If you are a ...

Read chapters in this order

NOVICE WEB DEVELOPER

If you're a novice web developer, then a slightly dif-
ferent approach is recommended. Again, read
appendix A only if you're interested in history, but do
read appendixes B, C, and D if you have little-to-no
experience with HTML, CSS, and JavaScript. Read
appendix C and chapter 7 right after chapter 1 to
build your familiarity with CSS so that the limited
amount of CSS used in chapters 2 through 6
doesn’t hold you back.

APP DEVELOPER

If your goal is to be an app developer, either target-
ing mobile devices or Windows 8 Metro style apps,
then the key chapters for you are 1 through 6 which
concentrate on the markup and programming
platform provided by HTML5. Include appendixes B
and D plus chapter 7 if you’re coming to HTML5 from
another platform. Chapter 8 discusses CSS layout,
which will be useful for apps. This diagram assumes
a graphic designer will handle the detailed design
work, so chapters 9 through 11 are not shown.

INTERACTIVE MEDIA DESIGNER

If you're an interactive media designer who is a
heavy user of Flash for media, animation, or
interactive content, then you can safely skip chapters
2, 5, and 6. Chapter 3 deals with dynamic graphics
and 4 with audio and video, and chapters 9 and 10
deal with the more visual-impact aspects of CSS3.
Chapter 8 on layout will be of less interest to you,
but chapter 11 covers using custom fonts, so you
may want to read that section.

WEB DESIGNER

If you're a pure web designer with no interest in
JavaScript, then you can read the book while
avoiding most of the code. Any snippets of
JavaScript you'll come across in chapters 1 and 7
through 11 can be ignored unless you want to try
replicating CSS3 effects in JavaScript for
backwards compatibility.

‘—‘_ m-E
- 2 EJ»T
- 8- 5 -

@@
‘.\.._ﬁ m-E—G

M- [

XXii about this book

Characters and conventions

This book uses many graphic elements and typographical conventions
to guide you and help you learn about HTML5 and CSS3. This section
summarizes what you can expect to see.

CHARACTERS

You'll be helped along by the characters from the popular User Friendly
cartoons. In case you're not familiar with this web comic, let me intro-
duce each of the characters and explain their roles in this book.

A.J. 1s the Columbia Internet Web Developer. He loves com-
puter games, nifty art, and has a big-brother relationship with
the Dust Puppy. He'll be your main guide through HTML5 and
CSS3, pointing out gotchas and giving you extra tips.

The Dust Puppy was born inside of a network server, a result
of the combination of dust, lint, and quantum events. He is
wide-eyed and innocent, with no real grasp of reality, but he’s
pretty cute and people love him. In this book, Dust Puppy’s

main role will be to help you move from one topic to the next,

summarizing what you've just learned and letting you know
what’s coming next.

Erwin is a highly advanced Artificial Intelligence (Al) that
resides somewhere on the network. He was created overnight
by the Dust Puppy, who was feeling kind of bored. Erwin will
help out whenever something needs looking up on the internet
or when you need to think like a computer.

Miranda is a trained Systems Technologist and an experienced
UNIX sysadmin. A.J. is her boyfriend and she’ll be helping him
out throughout the book.

about this book xxiii

Greg is in charge of Technical Support at the company. He has
broad technical knowledge but no expertise in web develop-
ment. A.J. is helping him learn about web development, and
he'll ask questions when A.J. isn’t being clear.

Stef works as the Corporate Sales Manager. He can’t under-
stand the way techies think, so he doesn’t get very far with
them. Although he admires the power of Microsoft’s marketing
muscle, he has a problem with Microsoft salesmen, probably
because they make much more money than he does.

Mike works as a System Administrator, and is responsible for
the smooth running of the network at the office. He will help us
out whenever we need to understand some details of server-side
setup.

Sid is a self-described “lichen of the tech-forest floor,” a long-
lived, deeply experienced and acerbic observer of the geek
gestalt. His history in computing involved vacuum tubes and,
later, punch cards. He carries with him an air of compassion
mixed with disdain for the younger geeks around him.

Pitr works with Mike as a System Administrator. For some rea-
son he always wears dark glasses and has adopted a guttural
Eastern European accent. Pitr will take some time out from his
plans for world domination to keep A.J. in his place and to
demonstrate that attention to minor technical details that makes
geeks so well loved.

Crud Puppy is Dust Puppy’s evil twin and nemesis, born from
the crud in Stef’s keyboard. Whenever we need an antagonist,
Crud Puppy will be happy to oblige.

XXivV about this book

CARTOONS & DIAGRAMS

There are many cartoons and diagrams in this book. The cartoons are
based on the actual User Friendly comic strips. Their intent is humorous
rather than educational as they poke fun at various aspects of web
development. A sample cartoon is shown below.

USER FRIENDLY by Illiad

HEY! WHY ARE YOU ALL JUST
STANDING ABOUT? WHAT
SORT OF EXAMPLE DO YOU
THINK YOU'RE SETTING?/

OH, RIGHT.

HTTP: | [WWW USIRFRIENDLY.ORGS

o
iy
g
E
3

Diagrams are part of the text; they present information that’s easier to
understand in pictorial form. An example diagram follows.

DIAGRAMS WILL OFTEN BE DISCUSSED
/ BY CHARACTERS. LIKE THIS.

e

nw
-t ey,
+ ",
]
b

] | ‘e,
I | - .
s KEY FEATURES WILL BE
HIGHLIGHTED LIKE THIS.

CODE LISTINGS & SNIPPETS
Code listings and snippets and any occurrence of code in the text will
appear in the LucidaMonoEF font. Here is a typical code snippet:
<body>

<p>HTML5 and CSS3</p>
</body>

about this book XXV

Longer listings will look like this:

LISTINGS WILL ALSO BE DISCUSSED BY

@ / CHARACTERS. HERE IS A SIMPLE WEB PAGE.
Z

<!DOCTYPE html>
<html>
| \ <head>
<title>Hello!</title>
</head>
<body>
<p>HTML5 and CSS3</p> <e----.__
</body> S
</html> MORE DETAILED LISTINGS HAVE

ANNOTATIONS JUST LIKE DIAGRAMS. THIS
ONE POINTS OUT THE EARLIER SNIPPET

Code downloads

Up-to-date downloadable code samples and other news about the book
are available from the publisher’s website at www.manning.com/

HelloHTML5andCSS3.

Author Online
Purchase of Hello! HTML5 & CSS5 includes free access to a private web

forum run by Manning Publications where you can make comments
about the book, ask technical questions, and receive help from the
author and from other users. To access the forum and subscribe to it,
go to www.manning.com/HelloHTML5andCSS3. This page provides
information on how to get on the forum once you're registered, what
kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a
meaningful dialogue between individual readers and between readers
and the author can take place. It's not a commitment to any specific
amount of participation on the part of the author, whose contribution to
the book’s forum remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions, lest his interest stray!

The Author Online forum and the archives of previous discussions will
be accessible from the publisher’s website as long as the book is in print.

www.manning.com/HelloHTML5andCSS3
www.manning.com/HelloHTML5andCSS3

XXVi about this book

About the author

Rob Crowther is a web developer and blogger based in London, UK.
Currently he works for a small software company building web appli-
cations for corporate clients such as BNP Paribas, BNY Mellon, Hon-
eywell, and Young & Co.’s Brewery.

Learning HTML5

his part of the book focuses on HTML5. Chapter 1 introduces you to
new and updated markup features in HTML5, chapter 2 discusses
forms and form validation, chapter 3 explores HTML5's new dynamic
graphics capabilities, chapter 4 talks about how to use video and audio
on your web pages, and chapters 5 and 6 look at the new APIs you can
use for client-side development and networking.

Introducing HTMLS markup

This chapter covers

New semantic elements in HTMLS
Updated HTML4 elements

New global attributes

The HTMLS content model

Getting new elements to work in old browsers

USER FRIENDLY by J.D. "llliad” Frazer

LOOKS LIKE HTMLA TS FINALLY N BOME N LERE WY
GOING TO BE REPLACED. AH.'97 EVERYONE FILLING THEIR
GEOCITIES PAGE WITH ANIMATED SINCE THEN. OLD WAN.
GIFS THEY FOUND ON ALTAVISTA

HTMLA WAS ORIGINALLY
PUBLISHED IN 1997 AN
UPDATE IS OVERDUE.

g/

m

/

COPTRIGHT 3008 J.0. Vikad™ Frazer WITP://WWW.USRIRIINOLY.0RG/

This chapter assumes you have some knowledge of previous versions of
HTML. If you're new to HTML, check out appendix B—it should give
you enough information to understand this chapter.

4 CHAFPTER 1 Introducing HTMLS markup

We'll start with some background on how and why the particular set of
new elements in HTML5 was chosen. Then we’ll examine new elements
for the overall structure of web pages before moving on to elements,
both new and redefined, intended for particular bits of content. You'll
then learn about the new attributes in HTML5. Next, we'll spend a few
pages considering the more conceptual issue of the new approach to
element categorization in HTML5. Finally, you'll go back to practicali-
ties and learn how to make sure your new HTML5 content will work in
old browsers.

Why do we need new elements?

This section looks at some of the research that went into understanding
the document structures that web authors were trying to describe
semantically with HTML; this information was used to decide which
new elements should be added in HTML5. We'll then look at each of

the new elements in turn.

What does semantic mean?

At heart, HTML is a way of describing hyperlinked documents: documents that
are linked together as part of a network of knowledge. The elements of HTML
are meant to mean something, and that meaning is what we refer to as the se-
mantics. Because HTML describes documents, the semantics are along the lines
of “this content is a paragraph,” “this content is a level-one heading,” and “this
content is an unordered list.”

Being able to describe the structure of a document this way is valuable because
it lets you keep the details of how to best display content separate from the con-
tent itself. The result is that the same web page, if well structured, can easily be
read on a desktop computer, a mobile phone, and a text-to-speech converter.
Compare this to a document format like PDF, where the layout and content are
deeply interlinked because the fidelity of the eventual printed output is the pri-
mary goal. It’s usually awkward to read an A4 PDF on a mobile device because
there’s no option other than to view it at A4 size.

HTMILA has two built-in methods for extending the semantics of ele-
ments: the id and class attributes. The id attribute is a unique identi-
fier, but, rather than a random string, the identifier can be a meaningful
word —in other words, it can have semantic value. The class i1sn’t

Why do we need new elements? 5

unique, but multiple classes can be applied to a single element like tag-
ging in popular social network tools. Some examples are shown in the

following table.
Markup Suggested meaning
<p> A paragraph
<p id="author"> A paragraph that represents a particular author
<p class="bio"> A paragraph that represents a biography
<p class="author bio"> A paragraph that represents an author biography

No definitive standard sets down which values mean what,! so one site
could use writer for the same thing another site uses author for, or two
sites could use author to mean something completely different. This
isn'’t a huge issue, because HTML isn’t intended to describe real-world
things like authors, so the meaning behind those values is likely to be
site-specific anyway. But id and class attributes can also be used to
describe document features; for instance, a nav class would probably
indicate an element that contains navigation. If you were looking for
ideas for new elements to add to HTML to improve its ability to
describe documents, a survey of the sorts of values used in id and class
attributes would be a good place to start.

With this in mind, in 2005 several studies were done that attempted to
analyze how authors were using id and class values in markup on the
web. Two of these are of particular interest to us:

In November 2005, a study of 1,315 websites counted how often dif-
ferent values for the id attribute were used.

In December 2005, a study of slightly over a billion web pages ana-
lyzed, among other things, how often particular class names
appeared.

! Although some have attempted it. See the discussion of microformats later in this chapter.

(2] CHAFPTER 1 Introducing HTMLS markup

The diagram that follows shows the top 20 results in each category
down each side and the corresponding new HTML5 elements along
with the IDs and classes that inspired them in the middle.

TOP 20 HTMLS ELEMENTS TOP 20
IDs CLASS NAMES

cLstopzzen, - HEADER ™,

. . FOOTER
FOOTER i HEADER pauer ¢ 7 MENU -, MENU
BTAMARKER *. TITLE TOP & : 3 TITLE
HEADER ..., HEADER e, S MENU S SMALL
AREATITLE g EN?ECTION E CONTENT
LAYOUT ;.CON? CONTAINER P ..oceeen., EADER
NOBULLETCONTENT “, TEXT popy MAIN.: NAV
SQBULLETCONTENT T MAIN CONTENT.™ % & COPYRIGHT
SEARCH o,“' ‘..-..- -----..,.‘ JRCTTLLLILTIN MAIN
MAIN § I - w7 INPUT .. SEARCH
BANER ™, LeFT % NAV NV G S TYPESSEARCH % wsonormar
CONTAINER veu.,. . oo e SEARCH DATE
TOP ,.---5"54"q'["l"'ii':;..........--- SMALLTEXT
SIDEBAR ~FOOTER ™. " opymrenr ™ Booy
NAV ..' - SMALL) STYLE!
{ Loco x 3

WRAPPER 1 FOOTER SN, SMALLTEXT ¢ TOP

MANY OF THE TOP IDS, LIKE btamarker AND nobulletcontent, ARE

AUTOMATICALLY GENERATED BY SOFTWARE SUCH AS MICROSOFT

FRONTPAGE AND OTHER OFFICE PRODUCTS. THEIR POPULARITY IS

THEREFORE MORE AN INDICATION OF THE MARKET PENETRATION OF

THE PRODUCTS THAN AUTHOR REQUIREMENTS OR INTENTIONS.
USER FRIENDLY by J.D. "llliad” Frazer

AJ KEEPS GOING ON PROFESSIONAL DEVELOPMENT?
SEPARAT ING OUR AREN'T MOST WEBSITES DONE BY
mu}m ?{-‘?‘m CONCERNS IS A THE BOSS'S TEENAGE NEPHEW?

GOOD THING?

/ IT'S BEST PRACTICLE IN
PROFESSIONAL SOFTWARE
DEVELOPMENT.

/ IT ALL COMES DOWN TO
SEPARATION OF CONCERNS.

COPTRIGHT £:3008 .0, “Tilkad™ Frawer WTTP://WNW XSIRIRIENDLY.0RG)

New elements for page structure 7

In the next section, you'll learn about some of the new elements that
have been added to HTMLS5 as a result of this research.

New elements for page structure

By page structure we mean the top-level items: the header, the footer, the
navigation, the main content, and so on. Let’s join A.J. and Greg, who
are discussing the research results from the previous section.

OK. WE NEED NEW ELEMENTS,
AND THE RESEARCH POINTS AT WHAT
THEY SHOULD BE IN GENERAL. HOW DOES

P, THISFIT INTO REAL WEBSITES?
/ \ WHY DON'T WE PICK
SOME WEBSITES AND TAKE A
LOOK TOGETHER? i
I VISIT THE BBC AND \
WIKIPEDIA EVERY DAY.
AND T'LL ADD
THE WORDPRESS BLOG
TO GIVE US A GOOD
CROSS SECTION.
THAT SEEMS LIKE THREE
O — QUITE DIFFERENT SITES! \
P, > e) AND YET
& 2= YOU'LL SEE
. W @ THATTHEYHAVE
o u o REET MANY COMMON
= ELEMENTS.
: . = n : Just .-'\nulr!e:tl"l\'.'c»rth’mss
Weblog
_“m = = =

— D v L
= ®

Sectioning content

e

It's common for web pages to have many distinct sections. A blog
homepage usually has several blog posts, each a section in itself, and
each blog post may have a comments section or a related-posts section.
HTMILA offers only one type of element for this common need: <div>.
HTML5 adds two new elements: <section> and <articles.

&

CHAPTER 1

Introducing HTMLS markup

CAN'T YOU ALREADY CREATE
SECTIONS IN HTMLA?
HTMLA HAS THE. \ \
<d1v>ELEMENT N
/ WHAT DOES
<div> MEAN?
ITDOESN’TME&\MNYTHIN@
IT'S EXPRESSLY DEFINED AS \
SEMANTICALLY NELITRAL. BUT
HTMLS ADDS THE <section>
AND <article> ELEMENTS. HOW DO THEY FIT
\ INTO A WEB PAGE?
LOOK AT THE PAGE SEGMENT BELOW, N zsee
IT SHOWS NEWS AND SPORTS HEADLINES ~ INHTMLS THE
WITH THREE STORTES UNDER EACH. IN MARKUP BETTER
HTMLA EACH ONE WOULD BE A <div>, DESCRIBES THE
CONTENT.
TOP STORIES
SPORT
[STORY 1 ‘ [STORY 1 ‘
HTMLA / [sroRvz ||| stoRvz | \ HTMLS
o | sTorv3 ||| srorv3 ||| |secTIon
v DIV SECTION GECTION
[= [4RTIAE || ||#RTIAS |
[= [arrzce || |[#rTae |
[= |aRTILEs || |[ARTIE |

The <section> and <article> elements are conceptually similar. Articles
and sections can be interchangeable —articles can exist happily within
sections, but articles can also be broken down into sections, and there’s
been a lot of discussion about whether HTML5 really needs both of
them. For now, though, we have both, and you're probably asking
yourself how to decide which one to use. The key parts of the spec to
focus on when choosing one or the other are as follows:

An article is intended to be independently distributable or reusable.

A vection is a thematic grouping of content.

New elements for page structure 9

ON OUR SAMPLE WEBSITES, WHAT
WOULD BE MARKED UIP AS A SECTION?

LOOK AT THE BBC HOME PAGE. EACH
COMPONENT IS FROM A DIFFERENT PART — A
OF THE SITE: NEWS, SPORTS, AND SO ON.

[
f-\ OK SO EACH OF THOSE IS A SECTION.
IS THERE AN EXAMPLE THAT SHOWS THE
DIFFERENCE BETWEEN A SECTION
AND AN ARTICLE?

| 7 MNews

1

3 LOOK AT THE COMMENTS SECTION ON A

' TYPICAL WORDPRESS BLOG: IT'S A SECTION,
: WITHEACH COMMENT AN ARTICLE.

1

1

;

0T LYY

SECT

\ SECTION !

Headings, headers, and the outlining algorithm

Heading elements provide an implicit structure for documents. A head-
ing indicates the start of a new section and briefly describes the topic of
the text that follows. The level of a heading (levels 1 through 6 in
HTML) indicates an implicit hierarchy. This implicit structure is useful
for the automatic generation of a table of contents. Some websites,
such as Wikipedia, generate a table of contents for each page; screen
readers and other accessibility tools use the table of contents to allow
users to navigate the page more easily. HTML5 formalizes this implicit
structure with the outlining algorithm. In this section, you'll learn
about this algorithm as well as how it interacts with the two new head-
ing elements, <header> and <hgroups.

A <header> element appears near the top of a document, a section, or an
article and usually contains the main heading and often some naviga-
tion and search tools. Here’s an example from the BBC website.

10 CHAPTER 1

Display Options Accesshiity Help | Mobiles

Introducing HTMLS markup

Here’s how that might be marked up in HTML5:

<header>
<h1>BBC</h1>
<nav>

Display Options</1i>
Accessibility Help</11i>
Mobiles</11i>

</nav>
<form target="/search">

<input name="q" type="search">

<input type="submit">
</form>
</header>

YOU'LL LEARN MORE ABOUT
THE <nav> ELEMENT LATER
IN THIS CHAPTER. HTMLS'S
NEW FORM ELEMENTS WILL
BE COVERED IN DEPTH IN
CHAPTER 2.

<hgroup>
<h1>HTML5
(including next generation
additions still in
development)
</h1>
<h2>Draft Standard —
12 May 2010</h2>
</hgroup>

The <hgroup> element should be used
where you want a main heading
with one or more subheadings. For
an example, let’s look at the HTML5
spec:

HTMLS (including next generation
additions still in development)

Draft Standard — 12 May 2010

@

New elements for page structure 1"

The <header> element can contain any content, but the <hgroup> element
can only contain other headers—that is, <h1> to <h6>, plus <hgroup>
itself. The following diagram demonstrates the differences.

HEADER> <HEADER> <HGROUP>» <HGROUP>
CHPHEADING</HI> <HPHEADING</H> <HPHEADING</H HPHEADING</HP>
(P)PARAGRAPH(:‘P) G-i‘2>5UB-I-EAD</H2> <PYPARAGRAPH/ P> <H2)SUB-HEAD</H2>

</HGROUP> % </HGROUP>
ONE OUTLINE LEVEL b ONE OUTLINE LEVEL
TWO OUTLINE LEVELS

The outlining algorithm generates a table of contents for your docu-
ment based on the section and heading markup you've used. In
HTMLA, the overall structure of a document was left up to individual
browsers to decide; in HTMLS5, it’s part of the spec. This benefits you
because any user agents that need an outline, often for accessibility
purposes,? will generate the same outline for any given document. To
help you get the idea, let’s look at several sample documents. Erwin
will generate the document outline according to the HTML5 spec.
You'll see how the outline is impacted both by headings and heading
groups as well as the articles and sections we discussed in the previous

DOWNLOADING HTMLS SPEC ... LOCATING
— N OUTLINING ALGORITHM...PARSING ...
OK, SHOW ME THE MARKUP!

2 The W3C’s User Agent Accessibility Guidelines recommend that browsers generate a document out-
line in guideline 1.10.2: www.w3.org/TR/UAAG20/#gl-alternative-views.

section.

http://www.w3.org/TR/UAAG20/#gl-alternative-views

12 CHAPTER 1 Introducing HTMLS markup

<body>

<h1l>Main heading</h1> 1 MATN HEADING
<p>Some text</p>

<h2>Level 2 heading</h2>

» 1 LEVEL 2 HEADING
% 1 LEVEL 3 HEADING
» Z ANOTHER LEVEL Z HEADING

<p>Some more text</p>

<h3>Level 3 heading</h3>

<p>A bit more text</p>

<h2>Another level 2 heading</h2>

<p>The last bit of text</p>
</body>

In a plain document with no other sectioning con-
tent, the outline will match the heading levels.
This is similar to the way a table of contents in
Wikipedia is generated (right). Headings can also
be grouped using the <hgroup> element. Let’s see
how they affect the document outline:

<hgroup>
<h1>Main heading</h1l>
<h2>
Subheading to main heading

TOO EASY. GIVE ME

< AHARDER ONE/

Contants [rac|
1 Histary
1.1 Origins
1.2 First specifications

1.3 Version history of the standard

1.3.3 XHTML versions
2 Markup
1.1 Elements

2.1.1 Aributes
2.2 Character and entity references
2.3 Data types

2.4 Document type declaration
3 Semantic HTML
4 Defivery

4.1 HTTP

4.2 HTML e-mail

4.3 Naming conventions

4.4 HTML A

10.1 HTML tutorials

</h2>
</hgroup>
<p>Some text</p>

1 MATN HEADING

» 1 LEVEL Z HEADING
»» [LEVEL 3 HEADING
» 2 ANOTHER LEVEL Z HEADING

<h2>Level 2 heading</h2>

<p>Some more text</p>

<h3>Level 3 heading</h3>

<p>A bit more text</p>

<hgroup>
<h2>Another level 2 heading</h2>
<h3>

Subheading to level 2 heading

</h3>

</hgroup>

<p>The last bit of text</p>

INTEE

P

WALT! THAT'S THE SAME
AS THE LAST EXAMPLE.

New elements for page structure

13

The outline will only show the highest level heading from any <hgroups:

you can see the headings “Subheading to main heading” and “Subhead-

ing to level 2 heading” don’t appear in the outline. The <hgroup> ele-

ment can contain any number of subheadings, but it can only contain

other heading elements.

Next, let’s look at how sections affect the outline:

<h1>Sections</h1l>

<section>
<h1>Main heading</h1>
<p>Some text</p>
<h2>Level 2 heading</h2>
<p>Some more text</p>
<h3>Level 3 heading</h3>
<p>A bit more text</p>
<h2>Another level 2 heading</h2>
<p>The last bit of text</p>

</section>

<section>
<h1>Main heading</h1>
<p>Some text</p>
<h2>Level 2 heading</h2>
<p>Some more text</p>
<h3>Level 3 heading</h3>
<p>A bit more text</p>
<h2>Another level 2 heading</h2>
<p>The last bit of text</p>

</section>

1 SECTIONS

*» 1 MATIN HEADING

»%» 1LEVEL ZHEADING

»»» 1LEVEL 3 HEADING

»%» Z ANOTHER LEVEL Z HEADING
» 2 MAIN HEADING

»%» [LEVEL ZHEADING

»»» | LEVEL 3 HEADING

»%» 2Z ANOTHER LEVEL Z HEADING

NOW YOURE GETTING

As you can see, there are now multiple <h1> elements in the document,

but they don’t all sit at the same level of the document outline. In fact,

you can do without any heading element other than <h1>. Let’s look at

another example.

14

CHAFPTER 1 Introducing HTMLS markup

<h1>Main heading</hl>
<p>Some text</p>
<section>
<hl>Level 2 heading</hl>
<p>Some more text</p>
<article>
<hl>Level 3 heading</hl>

1 MAIN HEADING

» 1 LEVEL Z HEADING

»» | LEVEL 3 HEADING

» 2 ANOTHER LEVEL Z HEADING

<p>A bit more text</p>
</article>
</section>
<section>
<h1>Another level 2 heading</hl1l>
<p>The last bit of text</p>
</section>

; THIS AGAIN! THINGS ARE
. STARTING TO GET ABIT
(REPETITIVE.
Co =

We have achieved the exact same outline as the original example but
using only level-one headings. Earlier, we discussed the similarity
between <section> and <article>. If we replace one with the other in the
previous listing, you can see how similar they are:

<h1>Articles</h1>

<article>
<h1>Main heading</hl1>
<p>Some text</p>
<h2>Level 2 heading</h2>
<p>Some more text</p>
<h3>Level 3 heading</h3>
<p>A bit more text</p>
<h2>Another level 2 heading</h2>
<p>The last bit of text</p>

</article>

<article>
<h1>Main heading</h1>
<p>Some text</p>
<h2>Level 2 heading</h2>
<p>Some more text</p>
<h3>Level 3 heading</h3>
<p>A bit more text</p>
<h2>Another level 2 heading</h2>
<p>The last bit of text</p>

</article>

1 ARTICLES
» 1 MAIN HEADING
> | LEVEL 2 HEADING
»»» 1| LEVEL 3 HEADING
»» 2 ANOTHER LEVEL Z HEADING
» 2 MATN HEADING
»» | LEVEL 2 HEADING
»»» | LEVEL 3 HEADING
»» 2 ANOTHER LEVEL Z HEADING

THIS IS IDENTICAL TO THE
/r <section> EXAMPLE.

<section> AND <article> ARE

INTERCHANGEABLE FOR

OUTLINING.

New elements for page structure 15

Now let’s consider the <header> element. It represents the header of a

document, a section, or an article, typically containing headings and

other metadata about the section. You'll frequently have content that

you don’t want to be part of the heading element itself but that doesn’t

fit in with the following content. Examples would be subheadings,

author bylines, and publishing date information:

<h1>Articles</h1>
<article>
<header>
<h1>Main heading</h1>
<p>Some text</p>
</header>
<h2>Level 2 heading</h2>
<p>Some more text</p>
<h3>Level 3 heading</h3>
<p>A bit more text</p>
<h2>Another level 2 heading</h2>
<p>The last bit of text</p>
</article>
<article>
<header>
<h1>Main heading</h1>
<p>Some text</p>
</header>
<h2>Level 2 heading</h2>
<p>Some more text</p>
<h3>Level 3 heading</h3>
<p>A bit more text</p>
<h2>Another level 2 heading</h2>
<p>The last bit of text</p>
</article>

Common page elements

1 ARTICLES

» 1 MAIN HEADING

»» | LEVEL Z HEADING

»»» | LEVEL 3 HEADING

»» 2 ANOTHER LEVEL Z HEADING
#» 2 MATN HEADING

»» | LEVEL Z HEADING

»»» 1| LEVEL 3 HEADING

»» 2 ANOTHER LEVEL 2 HEADING

THE <header> ELEMENT DOES
NOT HAVE ANY IMPACT ON

THE DOCUMENT OUTLINE.
IT'S AS IF IT'S NOT THERE.

There are more new elements than <article>, <section>, <header>, and

<hgroup>. Let’s look at some more pages from our set of typical web-

sites.

16

CHAFPTER 1

Introducing HTMLS markup

WEB PAGES ARE MORE THAN JUST ARTICLES, SECTIONS, AND
HEADINGS. WHAT ABOUT OTHER ELEMENTS? | \
]

WE HAVE <nav> FOR NAVIGATION AND <aside> FOR|

__— NONESSENTIAL CONTENT LIKE SIDEBARS. |

I
<aside>? THAT SOUNDS LIKE A STAGE
DIRECTION FOR A POST MODERN SITCOM. /-\
WHY NOT JUST CALL IT SIDEBAR?

BECAUSE THE ELEMENT IS MORE GENERAL PURPOSE.
ADS. NAVIGATION GROUPS, OR PULLQUOTES couLb

=1 ALSO BE ASIDES.

HMM, IF YOU SAY SO WHAT ABOUT FOOTERS? THERE
MUST BE A <footer> ELEMENT TO GO WITH <header>.

THERE IS ALONG WITHA <small> ELEMENT FOR FINE
PRINT-LEGAL INFORMATION AND DISCLAIMERS.

‘ HANG ON. THERE'S A <nav> ELEMENT IN THAT FOOTER/

YES. THERESNORULE == === === mm == e e =

NAV ASIDE THAT SAYS YOU CAN HAVE FOOTER %I-- .- — .__- """ . _.'”_.':' |

ONLY ONE PER PAGE.
ANYWHERE YOU HAVE
NAVIGATION. YOU CAN
USE THE <nav> ELEMENT.
LINKS IN THE FOOTER SMALL
ARE VERY COMMON.

The <aside> element is intended for content that
isn’t part of the flow of the text in which it
appears but is still related in some way. In many
books, including this one, you'll see sidebars for
things such as terminology definitions and
historical background, like the one that follows —
these would be marked up as <aside> if the

book was HTML5. Sidebars are also common

in website design, although the meaning is
slightly different: often they contain navigation
or related links.

Sidebar

This is an example sidebar. If this were an HTML5 document, it would be marked

up with the <aside> element.

The HTML DOCTYPE 17

The <nav> element is intended for navigation,

both within the page itself, as in the Wikipedia

___J
table of contents, and through the rest of the
website. You can have any number of <nav> ED[
elements on a page. On large sites, it’s common

to have global navigation across the top

(in the <header>) and local navigation in a sidebar
(in an <aside> element).

The <footer> element generally appears at the end

of a document, a section, or an article. As with

the <header> element, its content is generally
metainformation —author details, legal informa-
tion, or links to related information. But it’s valid

to include <section> elements within a footer — for

example, when marking up appendixes.

The <small> element often appears within a
<footer> or <aside> element—it contains copy-

right information, legal disclaimers, and other —
fine print. Note that it’s 7o/ intended to make text T
smaller. You may choose to style 1ts contents

smaller than your main text, but, as with other

elements, its role is to describe its contents, not

prescribe presentation.

The HTML DOCTYPE

The pocTYPE declaration optionally appears at the start of an HTML
document. It comes from the Standard Generalized Markup Language
(SGML) that was used to define previous versions of HTML in terms of
the language syntax. The DOCTYPE serves two practical functions:

It's used by HTML validation services to determine which version
the document uses.

Browsers use the DOCTYPE to determine which rendering mode to use.

18

CHAFPTER 1 Introducing HTMLS markup

The rendering modes are Standards, Almost Standards, and Quirks
mode. These modes represent various stages in the history of browser
development and allow modern browsers to display old web pages the
way they were intended. See appendix C for a discussion of these fac-
tors —the short version is, Standards mode is what you want.

HTMLS5 is defined in terms of its DOM representation after parsing, so
it doesn’t need a DOCTYPE for validation, but we still want legacy brows-
ers to render pages in standards-compliant mode. With this in mind,
the authors of the HTML5 spec worked out the minimal amount of
markup required to trigger Standards mode in browsers:

<!DOCTYPE html>
Compare this with similar declarations for HTML4 and XHTMLI1:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0org/TR/html4/strict.dtd">

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1l/DTD/xhtmll-strict.dtd">

You can see that the HTML5 pocTYPE is much shorter, easier to type,
and easier to remember.

New elements for content

Time

There are several other new or redefined elements in HTMLS5, and in
this section you'll learn about some of them. HTML5 includes dedi-
cated elements for dates as well as figures and captions, all common
elements of modern web pages. It also rehabilitates the and <i> ele-
ments that were deprecated in HTMLA. This section looks at each of
these in turn.

The <time> element allows an unambiguous ISO 8601 date to be
attached to a human-readable version of that date. This is useful if you
want some other website or service to look at your web pages and
extract information. A common use case for this is that you're advertis-
ing an event on your website and you'd like it to appear in search
results for queries such as “events in London next week.” Alternatively,

New elements for content 19

you might decide to write a program to build a timeline of the English
monarchy by crawling Wikipedia; being able to parse all the dates in a
straightforward way would make this much easier. Following are three

examples of these sorts of pages:

Beautiful Design for
Everyone with Ann
McMeekin &
.- <ntonia Hyde~ . .
\ My 240, 2010at630PM = = TIME

-
e mmm=-="

The Melton Mowbray
-
»#TaTielon Mowbray~ 13 = 3
“olborn - ECIN 2LE London - = = = PLACE
~ o Ynited Kingdom _ = *

Tweet This Event

noE BT QN -
"'"‘"-'0 ?nday. 19:45%BBC Radio 4 %
- - -

- ---
A}
, Al
’ Al
TIME PLACE
House House of Plantagenet
Father Henry i
Mother Eleanor of Provence
Born 17/18 june 1239
Palace of Westminster,
London, England -
e o
Died - Uulz 1307 fﬂafj]
» "BUtgh by Sands, =l E5
-~
~ Gughgriand. Englane © ~ PLACE
Burial Westminster Abbey,

London, England

This WordPress blog is advertising an
upcoming event. You can see the key
components are all present here:

An event title
A time
A place

The BBC website has a page for each
program, and this contains information
about when the program will next be
broadcast. Although the title isn’t shown
here, you can see the key components: a
time and a place (although in this case
the “place” is more abstract).

Finally, Wikipedia has events on many
pages —in this example, the “event” is
the death of Edward I. You may not con-
sider this the same sort of thing as the
previous two examples, but it shares the
same basic characteristics. This pattern
is so common that the microformats
movement established a standard way of
marking it up called hCalendar.

In the previous examples, it should have been fairly easy for you to

pick out the key bits of information even without the big dotted circles,

but computers need a more structured form of data. One approach to

this is microformats.

20

CHAFPTER 1 Introducing HTMLS markup

Microformats

Microformats are an effort to extend the expressive power of standard HTML by
using certain attributes, mostly the class attribute, in a standardized way. Pop-
ular microformats include hCard, for describing contact information, adr for ad-
dresses, and hCalendar for describing events. Similar technologies include the
more formal RDFa and HTML5’s own microdata (see section 2.5.3).

The main goal of microformats is to render common information like
events easily parseable by computers without affecting the end-user
presentation.

MICROFORMATS ENABLE A NUMBER OF USEFUL APPLICATIONS: SEARCH
ENGINES THAT CAN TELL YOU ABOUT NEARBY UPCOMING EVENTS AND
BROWSERS THAT CAN AUTOMATICALLY ADD THE EVENTS TO YOUR CALENDAR.

Addresses, being naturally plain text information with some internal
structure (house number, street name, city, and so on) are relatively
easy to deal with, as long as there’s some way to demarcate the compo-
nents. Microformats manage this by adding a class of location to the
containing element, or alternatively using another microformat, adr, to
describe the address in detail. Dates and times are more complicated.
Take the simple example 1/6/2011. If you're reading this in the United
States, you probably interpret that as January 6, whereas in the UK
the date 1s 1st June. Or have another look at the earlier BBC example:
the date is “today.” I took that screenshot some time ago—how useful
is “today” now? You may think this is no more or less ambiguous than
the addresses, but the frustrating thing is that we know that an abso-
lute date and time underlie the more ambiguous human expression that
we see more commonly.

COMPUTERS LIKE DATES AND TIMES IN AN UNAMBIGUOUS FORMAT.
PEOPLE OFTEN FIND THE UNAMBIGUOUS FORMAT HARD TO DIGEST BUT
CAN EASILY UNDERSTAND AMBIGUOUS DATES FROM THE CONTEXT. TO
SERVE BOTH, WEB PAGES NEED TO PROVIDE DATES IN TWO FORMATS.

New elements for content 21

HTMLS5 solves this problem by providing a <time> element. Let’s look
at an example:

<time datetime="2011-06-01">today</time>

We can be more specific:
<time datetime="2011-06-01T18:00:00+01:00">6 o'clock on 1/6/2011</time>

Humans get a readable time that they can disambiguate through the
context in the normal way, and computers can read the ISO 6801 date
and see the date, time, and time zone.

Time and data

Originally the <time> element had a pubdate attribute to allow for its use in
marking up blog posts and other articles. Early in 2012, the entire <time> ele-
ment was removed from the WHATWG version of the spec because it didn’t ap-
pear to be getting used for that purpose. There was something of an uproar
within the community, and the <time> element was reinstated shortly after,
along with a new element, <data>, for more general-purpose association of
human-readable text with data for computers. At the time of writing, this
new element has not yet made it into the W3C version of the spec, so it isn’t
covered here.

Images and diagrams with <figure> and <figcaption>

Putting an image in a web page is easy enough: the <ing> element has
existed since the early days of the web. It was somewhat controversial
at the time, and several alternatives were put forward; but the most
popular browser (Mosaic) implemented it, so it became a de facto stan-
dard. The ability to add images was one of the main things that cata-
pulted the web from being an academic document-sharing network
into a worldwide phenomenon in the mid 1990s, but since that early
take-up not much has changed.

The tag is limited from a semantic standpoint—there’s no visible
way to associate explanatory text with the image. It’s possible to use the
alt and longdesc attributes, but because neither is visible by default, both
have been somewhat ignored or misused in the real world. The <figure>
element offers an alternative —it groups the figure with its caption.

22

CHAPTER1 Introducing HTMLS markup

This is what the markup for the following screenshot looks like:

<figure>

<figcaption>Looking out into the Atlantic Ocean
from south west Ireland</figcaption>
</figure>

Note that <figure> doesn’t have to contain
an element. It might instead contain
an SVG drawing or a <canvas> element, or
even ASCII art in a <pre> element. What-
ever type of graphic it contains, the <figure>

Atlantic Ocean from south west freland

element links the graphic to the caption.

Emphasizing words and phrases

The and <i> elements have a long history in HTML. They were
listed, along with the and elements, in the character-high-
lighting section of the 1993 IETF draft proposal for HTML. The and
<i> elements are listed in the subsection “Physical Styles” (along with
<tt>) —that 1s, their purpose was entirely presentational. Meanwhile,
 and (along with several others) are in the subsection
“Logical Styles” —elements with semantic meaning. This early distinc-
tion highlights the problem and <i> would later run into.

You saw at the start of this chapter that separation of concerns is the
Holy Grail of web authoring—HTML for content, CSS for presenta-
tion, and JavaScript for behavior. Because and <i> are entirely pre-
sentational, their use has long been frowned on, and there have been
several serious proposals to remove them from HTML. Meanwhile,
 and have always had a semantic definition while appear-
ing identical to and <i>, respectively, in most browsers.

EVER PRAGMATIC, THE HTMLS SPEC RECOGNIZES THAT, WITH MILLIONS OF PAGES OF
LEGACY CONTENT OUT THERE, BROWSERS AREN'T GOING TO BE DROPPING SUPPORT
FOR AND <i> ANY TIME SOON. ON THE OTHER HAND, BLINDLY USING INSTEAD
OF <i> AND INSTEAD OF , OR USING A ELEMENT TO APPLY A
BOLD OR ITALIC STYLE TO AWORD ISNT GOOD PRACTICE SEMANTICALLY.

HTMLS’s new global attributes 23

So, instead of removing either or <i>, HTML5 redefines and reha-
bilitates them.

Element

HTML4 definition

HTMLS5 definition (taken from the spec on May 12, 2010)

<i>

Renders as italic
text style

Renders as bold
text style

“The i element represents a span of text in an alternate voice
or mood, or otherwise offset from the normal prose, such as a
taxonomic designation, a technical term, an idiomatic phrase
from another language, a thought, a ship name, or some other
prose whose typical typographic presentation is italicized.”

“The b element represents a span of text to be stylistically offset
from the normal prose without conveying any extra importance,
such as key words in a document abstract, product names in a
review, or other spans of text whose typical typographic presen-
tation is boldened.”

As you can see, the HTMLA definition is entirely presentational,

whereas the HTML5 definition goes to great lengths to give a semantic

meaning while remaining compatible with the purely presentational

uses of the two elements for backward compatibility.

USER FRIENDLY by Illiad

I HEARD ABOUT THAT HTMLS

COPYRIGHT () 2002 ILLIAD HITP:// WWW.USERFRIENDLY.ORG/

ONLY IN THE HEADS OF IT'S TRUE THAT THE HTMLS SPEC
WEB DEVELOPERS -~ DID ANYONE IS5 FOR WEB AUTHORS AS WELL AS
HAVE TO CHANGE A SINGLE BROWSER MANLIFACTURERS.

LINE OF CODE?

HTMLS’s new global attributes
An attribute is global if it can be applied to all elements. The two most

obvious global attributes in HTMLA are id and class, which, as you saw

in the section “Why do we need new elements?” can be used to add

24 CHAFPTER 1 Introducing HTMLS markup

extra semantic information to elements. In this section, you'll learn

about new HTML5 global attributes from three major categories:
Accessibility for Rich Internet Applications (ARIA), for providing
extra data to accessibility tools
Data-* attributes, for providing extra data for scripts on your page

Microdata attributes, for providing extra data to browsers and
scripts on other sites

Accessibility with ARIA

ARIA is a standard developed at the W3C in response to the generally
poor accessibility of early AJAX-based web applications.

THE BENEFITS OF ARIA

WEB PAGE SENT BROWSER SCREEN READER
FROM SERVER PARSES PAGE CONVERTS TO SOUND

® = 3
8:

AJAX LIPDATE . PAGE IS READ
FROM SERVER FROMTOP TO
@ UPDATED CONTENT ., SarTon
HAS ALREADY BEEN ¢
READ TO USER: NOW i
WE NEED ARTA
I inreso

YOU DONT NEED TO BE IMMEDIATELY
GIVEN A MINOR UPDATE.

i ARTA ALLOWS DEVELOPERS TO MAKE o
(~3| __— ASSISTIVE TECHNOLOGIES AWARE OF

) CONTENT UPDATES IN THE BROWSER,

5 AND THEIR IMPORT ANCE. @
) } IF YOURE IN THE MIDDLE OF READING, _— _ @\

i !

Notifying users of AJAX updates isn’t the only benefit ARIA can pro-
vide. ARIA consists of a set of attributes and values that can describe to
assistive technology the roles of various page elements and their status.
In other words, they add semantic value to HTML elements so you can

HTMLD’s new global attributes 25

say “this element is a header,” “this element 1s navigation,” “this ele-
ment is a toolbar,” and so on. Let’s look at an example:

<body role="document">
<div role="note" aria-live="polite"
aria-relevant="additions removals">
An update added by JavaScript
</div>
<div role="banner">
<hl role="heading" aria-level="1">The heading</hl>
</div>
<div role="navigation">
Home Page
Inbox
</div>
<div role="main">
A very 1interesting article goes here.
</div>
<div role="footer">
All rights reserved.
</div>
</body>

This should all sound a little familiar to you. What HTML5 aims to
accomplish through additions such as the <header> and <nav> elements is
similar to what ARIA tries to accomplish in providing better semantics
to assistive technology. But it’s still worth bothering with ARIA
because it has a wider and more far-reaching vocabulary than HTML5
for describing the components of web applications. Plus it already has
wide support among vendors of browsers, operating systems, and
assistive technology.

The HTML5 spec has a long list of elements to which user agents
should automatically assign particular ARIA roles. These elements are
said to have vtrong native semantics, so if you use HTML5 correctly you'll
get a certain amount of accessibility for free compared to what HTMLA
offered once the browsers and assistive technologies implement sup-
port. The HTML5 spec also explicitly lists the allowed ARIA roles for
those elements where there’s a risk the ARIA role will be in conflict
with the HTML5 semantics —these are implied native semantics. Valida-
tion tools can then flag inappropriate combinations.

26 CHAFPTER 1 Introducing HTMLS markup

Using HTML5, you can cut down on the amount of markup required to
provide an accessible user experience. This listing updates the previous
one but takes advantage of the strong and implied native semantics in
place of several of the ARIA attributes:

<body>
<aside aria-live="polite" aria-relevant="additions removals">
An update added by JavaScript
</aside>
<header role="banner">
<h1>The heading</h1>
</header>
<nav>
Home Page
Inbox
</nav>
<article role="main">
A very interesting article goes here.
</article>
<footer>
All rights reserved.
</footer>
</body>

y ALTHOUGH YOU DON'T HAVE TO USE THE IMPLIED ARIA ROLES ON
ELEMENTS WITH STRONG SEMANTICS, SUCH AS <1ink> AND <nav>, AT
PRESENT NO ASSISTIVE TECHNOLOGIES RECOGNIZE THE HTMLS
ELEMENTS. YOU SHOULD SPECIFY BOTH FOR BACKWARD COMPATIBILITY.
S

| |

Extending HTML with custom attributes

Custom data attributes allow authors to add arbitrary data to elements
for their own private use. The idea is that some data isn’t directly rele-
vant to the user but does have meaning to the JavaScript on the page
that can’t be expressed in HTML semantics. It’s a standardization of an
approach taken by several JavaScript widget libraries, such as Dijit
(the Dojo toolkit). These libraries, like HTMLS5, set out to enhance and
extend the application abilities of HTMLA—adding things such as
combo boxes and date pickers, which HTML5 also provides, but also
more complex Ul elements such as tree views, drop-down menus, and

HTMLD’s new global attributes 27

tabbed containers. Using one of these libraries, you declare an element
to be a tab control like this:

<div dojoType="dijit.layout.TabContainer">
<div dojoType="dijit.layout.ContentPane" title="My first tab">
Lorem ipsum and all around...
</div>
<div dojoType="dijit.layout.ContentPane" title="My second tab">
Lorem ipsum and all around - second...
</div>
<div dojoType="dijit.layout.ContentPane" title="My last tab">
Lorem ipsum and all around - last...
</div>
</div>

A browser, as with HTML elements, will parse the attribute, even
though it doesn’t recognize it, and add it to the DOM. The Dyjit library
will run when the page has loaded, search for these attributes, and run
the appropriate JavaScript to enable the advanced control.

It may seem as though everyone has been getting along fine with creat-
ing their own attributes, so why add support for custom attributes to
HTML5? Well, for one thing, creating your own will stop your markup
from validating.

Failing validation may not bother you too much, but if you're looking
for that one unintended mistake, having to sift through many intended
ones should be unnecessary. Plus there’s a risk that the attribute names
chosen by the widget libraries will be used in future versions of HTML —
after all, one of the goals of the spec is to codify existing common uses.

The HTMLS5 solution to both the validation and potential name-clash
issues is the data—* attribute collection. The * is a wildcard —that is, it
can be whatever you want it to be. But anything starting with data- will
be allowed through the validator, and you're guaranteed that no data—*
attributes will be made part of HTML.

THE data—* ATTRIBUTES ALLOW YOU TO ADD INFORMATION TO YOUR PAGE
FOR YOUR OWN PERSONAL USE. IF YOUR GOAL IS TO SHARE INFORMATION N\
WITH OTHER WEBSITES, YOU SHOULD INSTEAD USE MICRODATA.

28

CHAFPTER 1 Introducing HTMLS markup

Expressing more than just document semantics with microdata

Mcrodata extends the expressive power of HTML to cover things that
aren't strictly markup. You can use microdata to designate a portion of
your page as describing contact information, a calendar event, or
licensing information.

USER FRIENDLY by J.D. "llliad” Frazer

HAVE YOU SEEN HTML'S MICRODATA? HEY. THAT'S PRETTY COOL.
YOUR CONTACT DETAILS CAN BE SEMANTIC EXTENSIBILITY WHY DON'T YOU TRY IT .
IMPORTED FROM A WEB PAGE BUILT INTO HTML. I CAN SEE MONYOU:TPOE%N%:EI‘;E-
. LOTS OF USES. ,
WITH A SINGLE CLICK. REMEMBE! OTHLE
/ NO, TLL TAKE A LOOK. \

COPIRICHT i€ 2009 J.D. “1llind™ Frazas WTTP/ /WWW USIRFRIENDLY.ORG/

Microdata uses three global attributes: item, itemtype, and itemprop. All
three can be seen in action in this short example that describes contact
information:

<section id="rob" itemscope
itemtype="http://microformats.org/profile/hcard">
<hl itemprop="fn">Rob Crowther</hl>
<p itemprop="n" itemscope>Full name:
Robert
John
Crowther
</p>
<p itemprop="org" itemscope>
Manning Publications Co.
(Hello! Series)
</p>
</section>

This code, because of the itemtype attribute on the parent element ref-
erencing the hCard vocabulary, describes a person —me! The itemprop
attributes are extracted as a set of name-value pairs into a tree-like data
structure following the markup, like this:

The HTMLDS content model 29

HCARD

s
A

ROB GIVEN- FAMILY- ORGANIZATION- ORGANIZATION-
CROWTHER NAME NAME NAME UNIT
ROBERT CROWTHER MANNING HELLO!
PUBLICATIONS CO. SERIES

This information could then be recovered from the page in a usable for-
mat by a web browser or a search engine. Of course, you may not want
the information to be more easily usable by computers; normal rules of

internet publishing apply.

USER FRIENDLY by Illiad

B
msmaoompsrrsras |8 amwreweommon [
REFRESHING FOR STEF TO TAKE z :
AN INTEREST N TECH WITHOUT 'g PUBLISH THEIR CONTACT INFO IN STEP | TRICK TECH SAVVY PEOPLE
MONEY BEING INVOLVED. £ EASILY PARSEABLE FORM. INTO PUBLTISHING CONTACT INFO.
3 2 HARVEST EMATL ADDRESSES.
é 3 SELL TO HIGHEST BIDDER
s \
-
3
g
&
=
=
5
(&}

YOU'LL LEARN MORE ABOUT MICRODATA IN CHAPTER 5 WHEN
WE LOOK AT THE MICRODATA API, A CONVENIENT METHOD
FOR EXTRACTING THE DATA FROM A DOCUMENT. THE NEXT
SECTION LOOKS AT HOW YOU CAN PRODUCE A VALID HTMLS
DOCUMENT BY LEARNING ABOUT THE CONTENT MODEL.

The HTML5 content model

The content model is somewhat theoretical, but it’s important because
it’s the main way of determining whether it’s valid to use a certain ele-
ment at a particular place in your document. In HTML5, elements are
split into categories. One element can be a member of several catego-
ries; it can also be a member of a category only in particular circum-
stances, such as when an attribute is given a certain value. In this

30

CHAFPTER 1 Introducing HTMLS markup

section, you'll learn where you can find this information in the spec,
what elements fit into which content categories, and what the content
categories are. The categories of which an element is a member are
stated prominently in the HTML5 spec. The following diagram shows
the content categories of the <hgroup> element.

THE <hgroup> ELEMENT IS IN THE
FLOW CONTENT AND HEADING
CONTENT CATEGORIES.

)

A
4.4.7 The = m=.n element :

» Categories e
Flow content. s A
=~ . Heading content. #
= #o= = = Shdidate.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
One or more ki, hz, b3, b4, hs, and/or he elements.
Content attributes:

| | ribu

W3C Working Draft

The spec is good if you have a question about a particular element, but
it's cumbersome if you want a quick overview. Rather than trawl through
the entire spec, the content categories can be summarized in a table.

k= k= k=
c
c k=] 2 ‘E 2
) [c 1 o c
- -
c - c o o - [}
o c <) o € 5 €
Element o 9 o o 2 o =
8 S 2| 5 | = o | £
© o = 7] ° c
° 7 © o =)
1] 3 © = o i) =
- = Q © [%}
[k) <] £ o o)
= i o = w b n
<a>, <button>, <input>, <keygen>, <label>, . . .
<select>, <textarea>
<abbr>, <area>, , <bdo>,
, <cite>, ° °
<code>, <datalist>, , <dfn>, , <i>,
<ins>, <kbd>, <map>, <mark>, <meter>, <out-
put>, <progress>, <g>, <ruby>, <samp>,
<small>, , , <sub>, <sup>,
<time>, <var>, <wbr>
<address>, <blockquote>, <div>, <d1>, °
<fieldset>, <figure>, <footer>, <form>,
<headers>, <hr>, , <p>, <pre>, <table>,
, <Text>
<article>, <aside>, <nav>, <section> . °

The HTMLDS content model 31

c
= E 8|2 g |8
[[c c o c
- =
c - c o o - [}
o c o o o g o
Element o o o [o o o

© c o > (] =
- o c b= T (=] =
© o = o B c S
° ® © @ = .0
[v] 3 © f~ o © =
- = Q © [%}
[k) <] £ o o)
= T o = w I (/2]

<audio>, <embed>, <iframe>, <img*>, . . ° °

<object>, <video>

<base>, <title> °

<canvas>, <math>, <svg> ° ° °

<command>, <link>, <meta>, <noscript>, ° ° .

<script>

<details>, <menu> ° °

<h1>, <h2>, <h3>, <h4>, <h5>, <h6>, <hgroup> ° °

<style> ° °

Now you know which content models apply to which elements, but
that’s only part of the story. You also need to know what content cate-
gories are allowed as children of any given element. The following dia-
gram shows a couple of other excerpts from the HTML5 spec to
illustrate where you can find this information.

4.5.3 The p-- element
Categories
Elow content.
t andidate.
Contexts in which this element can be used:

THE <section> ELEMENT ALLOWS
FLOW CONTENT CHILDREN.

‘W3C Working Draft

.° - e ntent is expected.
’ « "Content model: L
’ A Phrasing content, ¥
’f COmt it b kbt &% 0
Global attributes
’ 4 il | attri
1 4.4.2 The woction element ’
<= I L]
g Categories '
a] 'l Flow content. .
H peReIRD o < THE <pre> ELEMENT ALLOWS ONLY
B 1| Contexts In which this element can be used: PHRASING CONTENT CHILDREN.
3 ‘ = Wiere Bow Gorient is expected
g Tontent model: -
2 Ve Elow content.
COrtentatiribmt &t:

Global aftributes
DOM interface:
Uses i 1

32 CHAFPTER 1 Introducing HTMLS markup

The different content types aren’t applied arbitrarily; each has a dis-
tinct meaning. The following table summarizes the different types.

Most elements are categorized as flow content. It's the default content

Flow content type for elements visible on the page.

Sectioning content defines the scope of headers and footers and feeds

Sect e lngleontont into the document outline.

Heading content | Heading content, as you might expect, is just for headings and <hgroup>.

Phrasing content is mostly used to describe the text of a document. In

RU=Sliojceptent most cases, phrasing content can only contain other phrasing content.

Embedded content is used to put an external resource into the web

Embedded content . .
page—for example, an image or video.

Interactive content is elements that are specifically intended for user inter-
action—mostly form controls. Note that other elements can be made
responsive to user input through the use of JavaScript, but elements cate-
gorized as interactive content have default functionality in the browser.

Interactive content

Metadata content sets up the presentation or behavior of the rest of the
Metadata content | content, or sets up the relationship of the document with other documents,
or conveys other out-of-band information.

Now that you know all about the content model, you'll be able to use
the HTML5 spec to write valid HTML5 documents. That’s more than
enough theory for now. The next section gets back to practicalities and
considers whether your users’ browsers will support HTML5 and what
to do about it if they don't.

Browser support

Do the new elements we've discussed in this chapter work in today’s
browsers? The short answer is, yes (with a couple of exceptions); the

FOR A TEXT ELEMENT LIKE <p>, WHICH ISN'T REQUIRED TO DO MUCH EXCEPT APPEAR ON
THE PAGE. THERE ARE TWO PRINCIPAL REQUIREMENTS:

L _—— o IT SHOWS UP IN THE DOMWITH AT LEAST A STANDARD SET OF ELEMENT PROPERTIES.
\\ @ IT SHOWS UP IN THE USER'S BROWSER WITH SOME SORT OF DEFAULT PRESENTATION.

Browser support 33

long answer is a little more complex. Consider this question: what does
it mean to say that a browser supports the <p> element?

It turns out that the first requirement is easy to satisfy —as long as you
follow simple tag-naming rules, you can put any tags in your HTML, and
all browsers will put the tags in the DOM with a default set of properties.

Where problems arise is with regard to the second requirement: having
a default presentation. Browsers have only recently started providing
any default presentation for the new elements in HTMLS5; for instance,
Firefox 3.6 doesn’t, but Firefox 4.0 does. But this isn’t much of a prob-
lem. As you know, we web authors define our content in HTML and
our presentation in CSS—and browsers work exactly the same way.
The default presentation for the supported elements is defined in CSS.
If you use Firefox, you can even find this file on your hard drive —it’s
called html.css.

USING THESE NEW ELEMENTS IS A MATTER OF TAKING ON THE RESPONSIBILITY
OF PROVIDING SOME DEFAULT €SS RULES FOR THEM. IN MOST CASES YOU'LL
WANT TO WRITE £SS FOR THESE ELEMENTS ANYWAY, SO THIS DOESN'T SEEM

LIKE TOO MUCH EFFORT. LET'S SEE HOW IT WORKS WITH AN EXAMPLE.

Here’s a simple HTML5 document to experiment with:

<header>
<hgroup>
<hl>Hello! HTML 5</hl1>
<h2>An example page by Rob Crowther</h2>
</hgroup>
</header>
<nav>

Link 1</1li>
Link 2</1li>
Link 3</1li>

</nav>
<section>
<article>The first article.</article>
<article>The second article.</article>
</section>

34

CHAFPTER 1 Introducing HTMLS markup

Starting with the following basic I
styles, this screenshot shows what the
page looks like in a browser that

doesn’t have any default HTML5 |[_ .
styles: k2
] 1 iThe first article, | iThe second article.} I

header, nav, section, article

{padding: 4px; margin: 4px;}
header

{ background: #000; color: #999; }
nav

{ border: 4px solid #000; }
section

{ border: 4px dashed #000; }
article

{ border: 2px dotted #000; }

By making a single change to that
CSS, you can make the page work in
most older browsers. See if you can
spot 1t

header, nav, section, article
{ padding: 4px; margin: 4px;
display: block; }

header

{ background: #000; color: #999; }
nav

{ border: 4px solid #000; }
section

{ border: 4px dashed #000; }
article

{ border: 2px dotted #000; }

If you specify that the block-level
HTML5 elements <headers, <navs,
<section>, and <article> should be
display: block, everything works as
you want.

Browser support 35

Most of the major browsers work identically in this regard. Unfortu-
nately, there are two exceptions, one minor and one major. The minor
one is Firefox 2.0; Firefox users tend to upgrade regularly, so this ver-
sion is now used by a very small number of people and we won'’t worry
about it. The larger problem is Internet Explorer 8 and earlier, which is
still one of the most commonly used browsers on the web.

Supporting Internet Explorer

Internet Explorer won'’t apply CSS rules to any elements it doesn't rec-
ognize. Here’s what the sample page looks like in IE7.

i
GO- s
Favekes 8 An HTML 5 Documsnt | |'-| = ED - (% om s Bage= Safely~ Tooke

Hello! HTML 5

An example page by Rob Crowther

But all is not lost. You can trick IE into recognizing elements with a bit
of JavaScript. This code will persuade IE that the <section> element
exists and should have styles applied to it:

document.createElement("section");

il
G = lel B = A
¢ Favortes 8 an HTML S Document I I:l L~ B w0 - Bage v Tafely = Took -

Hello! HTML §

An example page tob Crowther

The first article

The second asticle

36

CHAFPTER 1 Introducing HTMLS markup

Here's the final listing, with each element we want to use enabled in IE:

<script>
document.createElement("header");
document.createElement("nav');
document.createElement("article™);
document.createElement("section™);
</script>

<style>
header, nav, section, article {
padding: 4px; margin: 4px; display: block; }
header { background: #000; color: #999; }
nav { border: 4px solid #000; }
section { border: 4px dashed #000; }
article { border: 2px dotted #000; }
</style>

Enabling HTML5 support in Internet Explorer with html5.js

Rather than work out for yourself what elements you need to fix in
Internet Explorer, you can use one of the freely available compatibility
scripts. A simple one with a good following is html5.js, available at
http://code.google.com/p/html5shiv/.

Of course, the main drawback of these approaches is that they won't
work 1f JavaScript is disabled in the browser or if something blocks
your JavaScript from being downloaded, such as a corporate content
filter or a personal firewall. Although this is likely to be a small per-
centage of users for most sites, you should do some analysis of your
existing site visitors before embarking on an HTML5 redesign.

Summary

In this chapter, _you’ve learned about the new rnarkup elements in
HTML5 and the formal structure provided for them, and the elements
inherited from HTMLA, provided by the outlining algorithm and the
content model. You've looked at several popular websites and seen
how the content they display fits naturally into the new semantic ele-
ments of HTMLS5, reducing the need for content authors to add seman-
tic meaning to neutral <div> and tags through the id and class

Summary 37

attributes. You've also seen how the new global attributes in HTML5

allow you to extend the expressive power and accessibility of HTML
documents.

NOW THAT YOU'VE LEARNED HOW HTMLS IMPROVES MATTERS FOR THOSE
WRITING TRADITIONAL HTML DOCUMENTS, IT'S TIME TO MOVE ON TO THE

.~~~ MAIN FOCUS OF HTMLS: MARKUP FOR APPLICATIONS. WE'LL START IN THE
NEXT CHAPTER WITH A LOOK AT THE ENHANCED SUPPORT FOR FORMS.

HTMLDS forms

This chapter covers

New input types in HTMLS
HTMLS form features for improved user experience

Automatic client-side form validation

Forms are fundamental components of web applications. This chapter
starts with a quick review of the limited options offered in HTMLA4 and
then moves on to the new form controls HTML5 adds. We'll investigate
the built-in validation features offered in HTML5 and then look at more
new field types that take advantage of that functionality. After that, we'll
examine some other new features in HTML5 forms, such as placeholder

USER FRIENDLY by J.D. "liliad"” Frazer

T NEED A FORM ON OUR WEBSITE g IT'S WINWIN. I GET RID OF MY OLD
SO PEOPLE CAN TELL ME THEIR § TPOD, AND THEY GET TO RECEIVE DONT WASTE TIME WITH THAT.
|EMATL ADDRESSES. 2 TARGETED MARKETING EMAILS JUST SLAP IT TOGETHER
3
WHAT MAKES YOU |§ BASED ON THEIR INFO. TIME IS MONEY!
THINK PEOPLE % OK IT'LL TAKE ME A
WILL WANT TO? E DAY TO CODE UP THE
E VALIDATIO
p Ty
p
H

38

The limitations of HTML4 forms 39

text and autofocus, before taking a look at the current state of browser
support and learning how you can take advantage of these new fea-
tures without leaving older browsers behind.

The limitations of HTML4 forms

HTMILA has a paltry selection of input types: three ways of entering
text and three ways of selecting from a predefined list of options. Let’s
review what’s available in HTMLA before you learn about the new fea-
tures available in HTML5:

The text input is the workhorse of

|abc
HTMIA forms:

<input type="text" value="abc">

Usually, when you can't predict what
the user will want to enter but know it
will be fairly short, you have to use an
input of type text. This includes user-
names, dates and times, search terms,
email addresses, URLs, telephone num-
bers, currency, credit card numbers, and
any simple numeric values.

If the user needs to choose from a lim-
ited number of possible values, you can
use a <select> element. A <textarea> ele-
ment is for larger amounts of free text,
when you expect paragraphs rather than
a few words:

<select>
<option selected>Option 1
</option>
<option>Option 2</option>
<option>Option 3</option>
</select>

40 CHAFPTER 2 HTML5 forms

The <select> element allows the user to (Option1 < |

select from predefined options. It’s nor-

mally a drop-down list (top), but you Option 2
. . Option 3

can also use the size attribute so that

more than one option shows (bottom): ‘Option 1 B

<select size="3"> Opt?on 2
<option selected>Option 1 Option 3 (4]
</option>

<option>Option 2</option>

<option>Option 3</option>
</select>
<textarea>abc</textarea>

An alternative to the <select> element 1s Radio 1:
the use of radio buttons. These are

another type of <input> element, but, in

normal circumstances, there’s more than Radio 2:

one in a set. They're linked by having

the same value for their name attribute:) :
Radio3: @

<label for="exradiol">Radio 1: </label>
<input type="radio" id="exradiol"
name="exradio">

<label for="exradio2">Radio 2: </label>
<input type="radio" id="exradio2"
name="exradio">

<label for="exradio3">Radio 3: </label>
<input type="radio" id="exradio3"
name="exradio" selected>

Within a set of radio buttons, only one Checkbox 1:
can be selected at a time. If you want the

user to be able to select multiple items, B
. Checkbox 2: LI
you can use either the <select> element

or a set of check boxes:

<label for="excheckboxl">
Checkbox 1:

</label>

<input type="checkbox"

The limitations of HTML4 forms 41

name="checkbox1" id="excheckbox1">
<label for="excheckbox2">
Checkbox 2:
</label>
<input type="checkbox"
name="checkbox1" id="excheckbox2">

Finally, this example shows the <field-
set> element with its <legends, a file-
upload input, and a submit input:

<fieldset title="Other form elements">
<legend>Example</legend>
<label>
Upload file
<input type="file" name="name">
</label>
</fieldset>
<input type="submit">

UPLOAD FILE

Browse...

Submit Query

The <fieldset> and <legend> elements are useful for grouping sets of

controls together in long forms. When used correctly, they're also good

COLUMBTIA INTERNET CLISTOMER SURVEY

YOUR DETAILS

HNAME EMAIL

ADDRESS | cITY

POSTAL CODE PROVINCE Please select...
TELEPHOMNE.

PERSONAL INFORMAT ION
GENDER:

MALE FEMALE OTHER
DATE OF BIRTH

SURVEY

AVERAGE NLMBER OF HOURS SPENT BROWSING PER
DAY:

WHICH WEB BROWSERS DO YOU USE REGULARLYT:

INTERMNET EXPLORER FIREFOK
SAFARL CHROME
OFERA OTHER

WHAT IS YOUR FAVORITE WEBSITER:

Submit Query

HI, I'M STEF MURKY OF
COLUMBTIA INTERNET.
SIGN UP FOR OUR FREE
NEWSLETTER BY FILLING
IN THIS FORM ALL
COMPLETED SURVEYS
WILL BE ENTERED INTO
A PRIZE DRAW TO WIN

AN IPOD¥ i\

*TERMS AND CONDITIONS
AVAILABLE ON REQUEST

CHAFPTER 2 HTML5 forms

for accessibility. The file control is a way to transfer files to the server,
and the Submit button is the most obvious way for the user to send the
entire form back to the server. This set of controls has existed mostly
unchanged since before forms were first added to the standard in 1996.
You can build Stef’s sign-up form out of these rudimentary controls.

The figure shows Stef’s form implemented using HTMLA form con-
trols. The full source code is available for download from www.manning
.com/crowther/. If you're in the United States and wondering what a
postal code is, it’s similar to a ZIP code —remember that Columbia
Internet is a Canadian ISP.

Ty

&

A LOT OF THE IDEAS FOR HTMLS FORMS WERE TAKEN FROM THE XFORMS 2 PROPOSAL,
| A PARTNER STANDARD IN WHAT WAS TO BE THE XML-BASED FUTURE OF THE WEB WITH

\T‘? ~ XHTMLZ (SEE APPENDIX A FOR MORE DETAILS)

e

But the HTMLA forms solution requires a number of compromises. It
uses text inputs for purposes such as numbers and email addresses. For
the rest of this chapter, you'll learn about the new form controls pro-
vided by HTML5, which are more appropriate for such input.

Numbers, ranges, dates, and times

HTML5 introduces several new form controls that didn’t exist in
HTMULA; they give you more precise control over how you gather user
input. In HTMLA, all text inputs were just that: text. HTML5 signifi-
cantly expands the range of controls available, not least by providing
two ways of entering numbers and multiple controls for dates and
times. We'll look at these new controls for numbers, dates, and times in

this section.

Form submission

For a form to be useful in this scenario, there needs to be some server-side pro-
cessing to deal with the form values the browser sends when the user clicks Sub-
mit Query. We don’t want to get bogged down in backend issues in this book, so

www.manning.com/crowther/
www.manning.com/crowther/

Numbers, ranges, dates, and times 43

(continued)

we assume that one of the techies—Mike, Miranda, or Pitr—will take care of that.
If you want to test your own forms to see what values they’re sending to the serv-
er, you can create a simple PHP file:

<?php

foreach ($_POST as $field_name => $field_value) {
print "Field $field_name : $field_value
\n";

}

7>

At the top of your HTML form you’ll then have some code like this:
<form action="collector.php" method="post">

A prebuilt collector.php is available for download from the book’s website at
www.manning.com/crowther/.

Number | Range | Datetime

§ Cy 5 4 20
S] MOST OF THE SCREENSHOTS
% - N - IN THE FOLLOWING SECTIONS
S WERE TAKEN IN OPERA 160
g AND 12, BECAUSE THAT WAS
5 5 THE FIRST BROWSER TO ADD
s | 0 10 ~ FULL SUPPORT FOR THE NEW
7 CONTROLS. EXCEPTIONS
o ARE MENTIONED IN THE TEXT.
1 EEENE
e
m

@ ° || -

The basic number input provides a spinbox: | 2=

<input type="number" value="4">

Normally the arrows increment or decre-

ment by 1, but you can adjust this by using

the step attribute. This example increments

in steps of 2:

<input type="number" value="4" step="2">

44 CHAFPTER 2 HTML5 forms

If an exact number isn’t necessary, you can =

.

use a range control. In the browser, this
renders as a slider:

<input type="range" min="1"
max="10" value="2">

As you can see, the exact value of the range input isn’t clearly visible.
In practice, you might use it for large numbers where accuracy isn’t
important. As with the number control, you can specify a step value:

<input type="range" min="0" max="1000" value="20" step="20">

/\ |
| =< IF YOU WANT TO USE RANGE FOR A NUMERIC INPUT, THE BEST APPROACH IS TO
(@ | EITHER LABEL THE HIGH AND LOW VALUES IN YOUR HTML OR PROVIDE SOME
B N - _— OTHER USER FEEDBACK WHEN THE CONTROL IS ADJUSTED—-PERHAPS WITH AN
N <output> ELEMENT (SEE THE SECTION “ELEMENTS FOR USER FEEDBACK")
) : } IN THE MEANTIME, LET'S MOVE ON TO DATES AND TIMES.

Create a simple date input like this: :

<input type="date">

: : . Ma »][2010/%
In its unexpanded state (top), it looks '

i . . Week Mon Tue Wed Thu Fri Sat Sun
similar to a <select> element. But if you e arm @ g 9
activate the control, a date picker pops ol Buisie

b 7 18 19 2021 22 23
m). 24 25 26 21 28 2 30
up (bottom) z
The value returned from the date control, Today Yo
and any default value you want to set, are
in the format yyyy-mm-dd. Using this
standard ordering prevents any confu-
sion relating to date formats in different
countries.
WHAT THE DATE PICKER LOOKS LIKE IS
LEFT UP TO THE BROWSER. CURRENTLY
THERE'S NO WAY TO STYLE IT THROUGH CSS.
N

Numbers, ranges, dates, and times 45

Next, the time input:
<input type="time" value="10:30">

Again, styling is determined by the

browser.

If you want the user’s local time, use
datetime-local:

<input type="datetime-local"
value="2010-05-31T21:00">

This looks the same as the datetime control
but without the UTC annotation. In this
example, you can see how to specify a
default value for the datetime and
datetime-local input types:
yyyy-mm—ddThh :mm

As well as full dates, you can have months
or weeks:

<input type="month"
value="2010-05">
<input type="week">

In Opera, these look identical to the full
date picker, but some browsers may

A
¥)

10:30

X
4 May *| 20105
Wesk Mon Tue Wed Thu Fri Sat Sun

(2010-05-31 = J[21:00 %

3 4 5 &8 £l
o1 12 131U 55 I
17 18 18 20 21 22 2

Today None

2010-05

[« May » 120102
Week Mon Tue Wed Thu Fri Sat Sun
17 1 2
18 3 4 3 6 1 &8 9
19 1o 1 12 13 14 13 1f
20 17 18 19 20 21 22 23
21 24 25 26 27 28 29 30
22 31

. Today None
choose to implement a custom UL
USER FRIENDLY by J.D. "llliad" Frazer
INEED TO BE ABLE TOEDIT THE [E| 1 pON'T WANT TO MESS AROUND YOU KNOW A CHILD WHO CAN
WEBSITE. THE CHIEF SATD YOU WITH ALL THAT CODE STUFF/ HELP YOU WITH THE EDITING
HAD TO HELP ME. MAKE IT LIKE WORD. 50 EASY THEN?
EVEN A CHILD COULD USE IT.
OK THAVE A

BOOK ON HTML
I CANLEND YOU

COPYRIGHTE 2003 .0 "Ifliad™ Frazer HTTE:/ (WWW.USERERIENDLY ORG/

46

CHAFPTER 2 HTML5 forms

Validation

Validation is often a crucial issue on the web, both for security and for
general smooth operation of apps, but it's something that content
authors frequently get wrong. HTMLS5 has built-in form-validation fea-
tures. In this section, we'll look at how you can specify that filling in
certain fields is required, delimit numeric inputs with maximum and
minimum values, and define arbitrary format requirements for any
other text field with regular expressions. We'll then examine how these
features interact with CSS and JavaScript to allow you to give useful
feedback to your users.

USER FRIENDLY by J.D. "llliad” Frazer

THINGS ARE BETTER. BUT IM
NOT GETTING MANY SIGNLIPS.

YOU MEAN THE AMAZING
OPPORTUNITY TO RECEIVE
PRODUCT NEWS AND UPDATES
HMM, THEY HIT THE ISN'T ENOUGH TO MAKE THEM
VALIDATION PAGE AND | KEEP TRYING/?
THEN GIVE LP. -

BUT THEY DONT SIGN UP/

COPYRIGHTZ) 2009 A0, Nliad™ Frazor HITP://WHW.USIRIRIENOLY.ORG)

ACCORDING TO THE
STATS, LOTS OF PEOPLE
= ARE FILLING IN THE FORM

Browser support quick check

Required | Min/Max | Pattern If you're accepting input from users

through forms, there should always be

G 5 5 5 validation going on at the server. But
it provides a better experience to let

e. 4 4 4 users know they've made mistakes
immediately rather than to let them fill

A 10 10 10 out the whole form, submit, wait for a

- response, and only then find out they

O 9 9 9 made a mistake.

@ 5 5 5

The required attribute

Validation

47

The simplest form of validation is to mark a field as required. In
HTMLS5 this is done by adding the required attribute. If an input is
marked as required, the browser shouldn’t allow the form to be submit-

ted until the user has provided a value.

This image shows what happens when a
text input is marked as required and the
user tries to submit the form without
entering a value:

<input type="text" required
name="myrequiredfield">

You can add the required attribute to any

type of input:

<input type="date" required
name="myrequireddate">

As the image shows, the results of not

entering a value are the same in both
examples.

This is a required field

__ Thisisarequired field =

NOTE THAT A name ATTRIBUTE IS INCLUDED IN THE EXAMPLE; THIS

WILL LABEL THE FIELD'S VALUE WHEN IT'S SENT TO THE SERVER. THE “
AUTOMATIC VALIDATION OCCURS WHEN THE FORM IS SUBMITTED,

SO YOU NEED A SUBMITTABLE FORM FOR THESE EXAMPLES TO WORK. D)

The min, max, and pattern attributes

l

The only native validation built into HTMLA for the text input is the

maxlength attribute. It allows you to specify the maximum number of

characters the user is allowed to enter. This 1s somewhat useful for
things like dates and phone numbers that have a well-defined length,

but it’s not much use for anything else.

48 CHAFPTER 2 HTML5 forms

’-,/\

(o < | IF YOU WANTED A NUMBER BETWEEN 1 AND 99, YOU COULD SET maxlength

@ TO 2; THIS WOULD STOP PEOPLE FROM ENTERING 100 BUT NOT -1. AND IF
| | N)L — YOU WERE LOOKING TO LIMIT PEOPLE TO A VALUE BETWEEN 1 AND 50,
S maxlength WOULD BE EVEN MORE USELESS.

)

In HTML5, you can use the min and max attributes on the number input

type. You already saw these attributes on the range control, where they
specify the limits of the slider. On the number control, they trigger an
error when the user tries to submit the form:

<input type="number" max="10"
name="exnumber">

-

The min attribute works exactly the same Zl;—'j;fti";gr BOURBSEIEE Ehan OF

way:

<input type="number" min="4"
name="exnumber">

There’s also help if the format you

require is somewhat more exotic. You

. Please use the required format
can use the pattern attribute to supply a = A part number is a digit followed by
_. three uppercase letters.

regular expression that is then used to
validate the field. This example is taken
from the HTML5 spec:
<input type="text" name="partno"
pattern="[0-9] [A-Z]{3}"
title="A part number is a digit

followed by three uppercase
letters.">

If the validation fails, the browser dis-
plays the value of the title attribute, so
you should include some information
there that will help the user in filling
out the form.

Validation 49

Taking advantage of validation with CS5
In addition to the visible support in the browser for validation (the
messages you've seen in the earlier screenshots), HTML5 provides
behind-the-scenes hooks for CSS and JavaScript. These let you pro-
vide immediate visual feedback. CSS has two pseudo-classes that allow
you to provide different styles based on whether they're currently valid

or invalid.

Here’s a simple pair of CSS rules to put a [s, 30y
green outline around valid controls and a o e W

dotted red outline around invalid controls:

input:valid { I 4 :I
outline: 5px solid green;
} N N N N N 8 |
r 3|

L__-__-_u

input:invalid {
outline: 5px dashed red;

}

The images show the result of applying this
CSS to these three number controls:

<input type="nhumber" required>
<input type="humber" min="4"
value="4">
<input type="number" min="4" wvalue="3">

/

IN REAL LIFE, OF COURSE, YOU WOULDN'T SPECIFY SOMETHING |"f >
INVALID AS THE DEFAULT VALUE! NOTE THAT THE VALIDITY) @
STATE APPLIES EVEN IF THE FORM ISN'T SUBMITTABLE. ~ ~ = |

50

CHAFPTER 2 HTML5 forms

The same CSS works equally well with text con-
trols using the pattern attribute. The three images

shown here are based on the example from the

section “The min, max, and pattern attributes”:

<input type="text"
pattern="[0-9][A-Z]1{3}">

<input type="text"
pattern="[0-9] [A-Z]{3}"
value="1labc">

<input type="text"
pattern="[0-9] [A-Z]{3}"
value="1ABC">

There’s also CSS support for styling required
controls differently through pseudo-classes:

input:required {

outline: 5px dashed blue;
}
input:optional {

outline: 5px solid green;

}

The images show the result of this CSS applied to

these two inputs:

<input type="number" required>
<input type="number">

Turning off validation

Eab-c------

S —

J1a8C |

r-------n

L-------u

Sometimes you want the user to be able to submit the form without

triggering validation. For example, if a form is long and has many sec-

tions, you might want to let the user save their progress and come back
and complete the form later. To do this, HTML5 provides two new

attributes: novalidate and formnovalidate.

The novalidate attribute can be applied to the <form> element itself,

whereas the formnovalidate attribute affects the enter form but should

be applied only to a Submit button:

<input type="submit" value="Save for Later" formnovalidate>

Email and URLs

Now that you've seen the validation — PROPABLY HORE FORMS

’ 1 ENTER AN EMAIL
featul.*es, let’'s consider two further ADDRESS THAN FORMS
new input types: email and url. We WHERE YOU DONT.

didn't look at them wuntil now

Email and URLs 51

ON THE WEB, THERE ARE

because, without HTML5’s validation features, they look and behave
identical to HTMLA text inputs.

Browser support quick check

@ O ¢

email

url

-

N

w

P @ 9

10

10

THAT'S A COMMA

1 ROB+CROWTHER@DOMAIN.COM

2 ROB/CROWTHER@DOMAIN.COM

3 ROB@CROWTHER@DOMAIN.COM
r’ 4. ROBLCROWTHER@DOMAIN.COM
5. ROB-CROWTHER@DOMAIN.COM
6 ROB_CROWTHER@DOMAIN.COM
7 ROB CROWTHER@DOMAIN.COM
8 "ROBCROWTHER"@DOMAIN.COM
9.'ROB CROWTHER'‘@DOMAIN.COM
10, 'ROBCROWTHER' @DOMAIN.COM

Email addresses

Having seen the pattern attribute, you're probably
thinking it would be straightforward to either
write your own regular expression or find one on
the web and then implement your own email field.
The problem is, you'd probably get it wrong. Email
had reached the popular consciousness even before
the web was born, and despite some confusion,
most people can recognize an email address. Let’s
have one of our resident experts do a quick test to
see if you really know what an email address looks

like.

PITR'S EMAIL VALIDITY TEST WE WILL
FOR ASPIRING EVIL GENIUSES ‘it ss ot s
Yo

VALID?

HIN

HiNNnEEE.

52

CHAFPTER 2 HTML5 forms

Easy? Half of them are valid and half of them invalid; Pitr will tell you
which ones are which at the end of the section. Note that by valid we
mean they're constructed correctly, not that you'll be able to send email
to them successfully. The reason you'd be almost certainly wrong if you
implemented an email field yourself is that even the experts can’t agree
on what a valid email address looks like. The HTML5 spec itself is
“willfully violating” the standard:

A valid e-mail address s a string that matches the ABNF production 1+(
atext / “.”) “@" ldh-str 1%(“.” ldh-str) where atext ts deftned
(n RFC 5522 section 5.2.5, and \dh-str is defined in RFC 1059 section 53.5.

This requirement s a willful violation of RFC 5522, which defines a
syntax for e-matl addresses that is simultaneously too strict (before the
“@” character), too vagie (after the “@” character), and too lax
(allowing comments, whilespace characters, and quoted otrings in
manners unfamiliar to most users) to be of practical use here.

Here’s the code for this email input:
<input type="email">

Visually it looks the same as a normal
text Input.

If you type in an invalid email address q

and submit the form, you'll get an error

imil h h h Please enter a valid e-mail address
message similar to the one shown here.

IN HTMLS, THE INVALID EMAILS
ADDRESSES ARE BEINK 3,4,7, 8 AND 9.
1.2, S, 6, AND 10 ARE BEINK VALID.

Elements for user feedback 53

Web addresses

Forms in which you enter a URL are also common. Think about the
last time you posted a comment on a blog; it’s likely the form included a
URL field. Like email addresses, valid URLs have some esoteric rules,
but HTML5 means you don’t need to worry about what they are.

Creating a URL control is as easy as
changing the type:

<input type="url">

Again, there’s no visual indication that a "

URL is required. But when you attempt
Please enter a valid web address |

T

to submit an invalid URL, you get a .

similar message.

Elements for user feedback

Sometimes you may want to show the user a result—something calcu-
lated from the values on the rest of the form. Think of a shopping cart
that shows the running total of the user’s expenditures. In HTMLA, you
could use JavaScript to insert the value into a read-only field, or you
might have written the value into the HTML content, but there was no
way to indicate that the field or the value had any sort of relationship to
the form values or even was part of the

Browser support quick check

@CL@®e

Output | Progress | Meter form at all. HTML5 changes all that with
its three built-in form controls for user
13 8 8 feedback: output, progress, and meter.
4 6 6 The <output> element
The <output> element allows you to
10 10 ~ declare a relationship between one or
more <input> elements and its own
9 11 11 value. The value of the <output> element
can be anything you'd have been happy
5 ~ ~ to put in an <input> element in HTML4,
such as text, numbers, and dates.

54

CHAFPTER 2 HTML5 forms

To see <output> in action, first create a couple of numeric form inputs in

a <fieldset>:

<fieldset>

<legend>0Output example</legend>

<label for="one">Number: </label>

<input type="number" name="one">

<label for="two">Range: </label>

<input type="range" name="two" min="0" max="10">
</fieldset>

Now add an <output> element just

Number: 6|5
before the closing </fieldsets: '
<label for="out">Output: </label>
<output id="out" for="one two"> Range: =t
0
</output>
Output: 11

The value goes between the tags
rather than in an attribute as with
an <input> element. The for
attribute indicates the fields

with which the <output> 1s
associated.

Finally, you need some script to update the <output> element when
there is input. You do this on the parent <fieldset> element:

<fieldset oninput="out.value = one.valueAsNumber + two.valueAsNumber;">

THE EXACT RELATIONSHIP BETWEEN THE <input> ELEMENTS LISTED IN THE for
ATTRIBUTE AND THE <output> VALUE HAS TO BE DEFINED IN CODE. HTMLS DOESN'T

/ ATTEMPT TO GUESS WHETHER YOU WANT TO ADD, SUBTRACT. MULTIPLY, OR CALCULATE
INTEREST. WE'LL DISCUSS THE oninput EVENT LATER IN THIS CHAPTER.

L
!

Elements for user feedback 55

The <progress> element
You often see complex processes broken into several steps. Buying a
book at Amazon, for instance, usually proceeds through pages for
entering your personal information, entering your credit card details,
and entering the delivery details, among others, before finally confirm-
ing your purchase. If you make a purchase at Amazon you'll notice, at
the top of the screen, a progress indicator.

(@ Select a shipping Address - Am... | <

amazoncouk -

Choose a delivery address

This follows user interface design best practice: when you're putting a
user through a multistep process, always give them an indication of
how far along they are. This is such a common requirement that
HTMLS5 adds a special element to support it:

<progress value="5" min="0" max="9">5 out of 9</progress>

WebKit has an initial implementa- Progress)
tion 1in its nightly builds.

The max attribute gives the value that represents completion and the
value that indicates how close to completion you are. The <progress>
element can contain phrasing content—text, inline markup, and
images —but no other <progress> elements. You could represent Ama-
zon's progress bar like this:

<progress max="7" value="2">

</progress>

The <progress> element can also be used in applications to give feed-
back on long-running operations like file uploads.

BEING IN THE ARIA progressbar ROLE BY SUPPORTING AGENTS. AS ~~_
WE DISCUSSED IN CHAPTER 1. THIS IMPROVES THE ACCESSIBILITY
OF YOUR WEB APPS WITH NO EXTRA EFFORT ON YOUR PART.

THE <progress> ELEMENT HAS STRONG NATIVE SEMANTICS FOR THE \, =
PURPOSES OF ARIA. IT SHOULD BE REPORTED AUTOMATICALLY AS L/G.“a 5
(
1

56 CHAFPTER 2 HTML5 forms

The <meter> element

The <meter> element is similar to <progress> but more general-purpose
in its semantic value. It should be used to indicate a scalar measure-
ment within known bounds —for example, disk-space usage, progress
through an audio track, or share of a popular vote.

Chrome has support for the <meters Meter —
element in version 6:

<label for="exmeter">Meter</label>
<meter id="exmeter"
value="3" min="1" max="6"
high="5" low="2" optimum="3">
3 out of 6
</meter>

Note the high and 1low attributes —if Meter
the value encroaches into them, it
has a visible effect:
<label for="exmeter">Meter</label>
<meter id="exmeter"

value="5" min="1" max="6"

high="5" low="2" optimum="3">

5 out of 6

</meter>

As with the <progress> element, Meter 5 out of 6
browsers that don’t support the

<meter> element display the fallback

content between the opening and

closing tags. Although we use text

here, you can include an image or

even some SVG that more closely

resembles the rendering of the

browsers that do support <meters.

Less-common form controls 57

Less-common form controls

Numbers, dates, times, email addresses, and URLs —these are all fields
you're likely to need in nearly every form, but HTML5 doesn’t stop
there. There are some additional form controls that you'll need either
less regularly or when you're building particular types of web applica-
tions. These controls so far lack implementations or common use cases,
but they may see more uptake in the future as HTML is used for more
desktop-style (or mobile) applications.

Tel |Color |<keygen> Telephone numbers
You don'’t often need telephone numbers in a
3 G 4 20 ! web app, but they're a common requirement
S] for things like credit card forms, so HTML5
E 4 By .
2 e' 4 - 1 has an input type for them:
T
15 7 <input type="tel">
S | £A| 10 ~ ~
e | & _
o But the format for a telephone number is
5 | o
2 O ° 1 3 unpredictable. Phones tend to deal in strings
3 .. .
@ of digits, but people break them into inter-
@ 4 ~ 1.2 national dialing codes, area codes, and local
numbers with spaces, brackets, and dashes.
WHAT VALUE CAN
THESE FORM FIELDS HAVE? IT'S AN ACCESSIBILITY
THE tel TYPE SEEMS PARTICULARLY WIN-YOU CAN TELL USERS WHAT
USELESS—IT DOESNT EVEN TYPE OF INFORMATION THE FIELD
OFFER VALIDATION. EXPECTS EVEN IF THE PAGE
\ CONTENT DOESN'T MAKE
SURELY IT CLEAR.
THERE'S MORE /
' TO IT THAN
THAT. IT'S ALSO HELPFUL IN FORM
AUTOFILL FUNCTIONALITY. THE
BROWSER CAN OFFER ONLY EMAIL
ADDRESSES YOU'VE PREVIOUSLY
USED FOR EMAIL FIELDS AND
PHONE NUMBERS FOR TELEPHONE
FIELDS. MOBILE BROWSERS CAN
AUTOMATICALLY INSERT YOUR
OWN PHONE NUMBER.
MY BROWSER SEEMS \
TODOPRETTY WELL BUT IT'S BASED ON
WITH THAT ALREADY. GUESSING AND HEURISTICS.

THE EXTRA INFORMATION MAKES
IT MORE ACCURATE.

58 CHAPTER 2 HTML5 forms

The HTML5 spec therefore doesn’t specify a format; the tel type is
basically the same as a text input other than in its semantic content. If
you want to enforce a particular format on the tel field, you'll have to
use the pattern attribute discussed in the section “The min, max, and
pattern attributes.”

Color pickers

Color isn’t widespread in today’s web forms. But because one of the
key focuses of HTMLS5 is to enable HTML applications, color pickers
are likely to be a more common requirement in the future. The first
implementation of the color input type is in Opera 11.

The HTML5 markup for a color picker is]

<input type="color">
The default value 1s #000000. Selected

values are always in #rrggbb hexadecimal
shorthand.

When the user expands the control, a
selection of common colors is presented.
Currently there’s no way to configure this
set of colors, but clicking the Other button
brings up the full color picker.

#00_0000
Other...

- Colour Selection)
Hue: 'O -: Red: [0 |~
L | Saturation: jo__" Green: _0__“
‘ Value: L Blue: [0 |7

Colour name: | #000000

Cancel oK

New attributes for the <input> element 59

<keygen>

THE PURPOSE OF <keygen> IS TO PROVIDE AN API INTO YOUR OPERATING
SYSTEM'S CRYPTOGRAPHY STORE. IT ALLOWS PUBLIC/PRIVATE KEY
EXCHANGE TO TAKE PLACE BETWEEN YOU AND THE SERVER. IF THAT DOESN'T

MAKE ANY SENSE TO YOU, IT'S SAFE TO SKIP AHEAD TO THE NEXT SECTION.

<keygen> originated as a proprietary feature in Netscape Navigator. It
was then reverse-engineered by Opera and WebKit. As long as the ele-
ment is useful, the HTML5 way is to document existing behavior so
that everyone can implement in an interoperable manner. We won't
use <keygen> in this book, because it depends on relatively complex
server-side code to be useful, but it’s mentioned here for completeness.

YOU'VE NOW LEARNED ABOUT THE MANY NEW INPUT TYPES g:\\
AND ELEMENTS AVAILABLE IN HTMLS FORMS, BUT IT DOESNT | (}@ 5
STOP THERE. THE NEXT SECTION INVESTIGATES NEW FORM ~__ ,_»‘,(= |
FEATURES THAT AREN'T TIED TO SPECIFIC ELEMENTS. —

&

New attributes for the <input> element

placeholder |autofocus |autocomplete In a(fl.dltlon to the r?ev.v form con-
trols in HTMLS5, existing HTMLA
X GU 10 6 17 form controls have been
(7] . .
£ extended with new attributes.
S e:. 4 4 4 You've already seen some of
:
< these in the section on validation,
§ A2 10 10 10 “The required attribute,” where
S | .
) we covered attributes such as
§ O 11 11 10 required and pattern, but several
H .
= others can be apphed to most
@ 5 5 5 <input> elements: placeholder,
autofocus, and autocomplete.

Placeholder text

A popular technique in recent years has been to put a suggestion for a

field’s required user input in the field by default. This is called

60 CHAFPTER 2 HTML5 forms

placebolder text. Here are two examples of placeholder text on the
Firefox search bar and on the WordPress login.

IUsemame IPassword I Log In 1

2 N2 8

L AS PLACEHOLDERS DOESN'T TAKE UP ANY EXTRA SPACE, BUT PROVIDES THE
— USER WITH USEFUL INFORMATION ABOUT THE EXPECTED INPUT.IT'S ALSO A

@,5\ | THIS APPROACH IS POPULAR WITH DESIGNERS BECAUSE USING FIELD NAMES
N
COMPACT WAY OF INDICATING THE DESIRED INPUT FORMAT.

s

There are several common approaches to achieving this look with
JavaScript. They mostly boil down to two alternatives:

Make the input transparent, and place the label element behind it.
Hide the label element, but copy the text of the label into the input.
You then have to add JavaScript to remove the placeholder text when

a user clicks the control and put it back if the user leaves the control
without entering a value. But a number of issues can occur:

1 Errors in the JavaScript can stop the placeholder text from being
removed when a user clicks into the element. If users have JavaScript
disabled, the text won’t work properly or at all.

2 The placeholder can interfere with browser form-fill functionality that
remembers values for frequently used forms.

3 Assistive technology has no way of distinguishing between placeholder
text and valid input.

' HTML5 HAS SUPPORT FOR PLACEHOLDERS BUILT IN THANKS TO THE
NEW placeholder ATTRIBUTE. ADD THIS ATTRIBUTE TO THE
_~" <input> ELEMENT WITH THE VALLIE YOL WANT TO USE.
>
I |

New attributes for the <input> element o1

<input type="email" I . |
placeholder="email@example.com"> =

You're protected from JavaScript errors causing issues because the
functionality no longer depends on your (or indeed, any) JavaScript.
Browsers can handle the interaction with native functionality better
because everything is now under their control; and for the same rea-
son, browsers can keep assistive technology better informed of what’s
going on.

Form autofocus
As a convenience, many web forms use JavaScript to put the focus on
the first <input> element when the page loads. For instance, if you visit
the Google homepage and start typing, the text will appear in the
search field in the middle of the page. Rather than have everyone write

their own JavaScript routine to achieve this, HTML5 adds support
directly to HTML:

<input type="text" autofocus>

USER FRIENDLY by J.D. "llliad” Frazer

WHAT IS POINT OF AUTOFOCUS |§ IT WILL BE EASY TO DISABLE A TRAINEE EVIL GENILIS WILL
ATTRIBUTE? NOT MUCH SHORTER |3 WITH A BROWSER PREFERENCE. FIND A SETTING ABIT EASIER.
THAN EQUIVALENT J5.
ALREADY CAN DO THIS. SUPPOSINK SO.
MAKING IT PART OF THE BE DISABLINK IN SOURCE STANDARDS OF EDUCATION

CODE AND RECOMPILINK. DROPPINK ALWAYS.

COPYRIGHTIC 3005 J.0. “Miind™ Frazes HTTP:/ /WWW.USERFRIENDLY.ORG/

Protecting private information with the autocomplete attribute
The autocomplete attribute allows you to provide a hint to the browser
that the values entered into a field shouldn’t be remembered for future
use by the browser’s auto-form-filling functionality. This could be
because the field accepts information that’s supposed to be secret (for

62 CHAPTER 2 HTML5 forms

instance, a PIN number) or because the field expects a one-off value
where past values entered are likely to be irrelevant (such as a pass-
word-reset code):

<label>Account: <input type="text" name="ac" autocomplete="off"></label>
<label>PIN: <input type="password" name="pin" autocomplete="off"></label>

Extending forms with JavaScript

THERE ARE SEVERAL OTHER ENHANCEMENTS TO FORMS IN HTMLS OVER AND ABOVE
THE NEW CONTROLS. THESE INCLUDE WAYS TO ACCESS VALIDITY INFORMATION
THROUGH JAVASCRIPT AS WELL AS CONVENIENCE FEATURES THAT EITHER
COMPLETELY REPLACE THE JAVASCRIPT YOU WOULD COMMONLY WRITE FOR
EVERY FORM TODAY OR MAKE VARIOUS SCRIPTING OPERATIONS MUCH EASIER.

Customizing the validation messages

The default validation messages are a little bland. And although the
pattern attribute allows you to include a custom message in the title
attribute, there’s no attribute you can use to provide a custom message
to the other input types. But you can suppl_y a custom message In
script.

Use the setCustomValidity property of

the <input> element in the DOM:

Nameless ones are not allowed to take
var fldName = — part =
document.getElementById('fullname');)
fldName.oninvalid =

function O {

fldName.setCustomvalidity("");

if (!fldName.validity.valid) {
fldName.setCustomValidity(
"Nameless ones are not " +
"allowed to take part"

)

}
1

Extending forms with JavaScript 63

As you can see, your message is displayed if the field fails the validity
check. Inthis case the required attribute was set on the text field like this:

<input id="fullname" type="text" required>

Also, for the oninvalid event to fire, the form must be submitted; see
more on this in the section “Triggering validation with JavaScript.”

NOTE THAT THE FIRST STEP IN THE FUNCTION IN THE PRECEDING CODE C\
SNIPPET RESETS THE CUSTOM VALIDITY MESSAGE TO AN EMPTY P
STRING. THIS IS BECAUSE SETTING THE CUSTOM VALIDITY MESSAGE @
FORCES THE VALID STATUS TO BE FALSE. IT WILL BE IMPOSSIBLETO —~~ A\ [
SUBMIT THE FORM AFTER THE ERROR IF THE MESSAGE ISNT RESET. &

Overriding the invalid event on the form element in question lets you
take more complete control of the user experience while still taking
advantage of built-in validation.

Check the validity property in the
DOM, and add your own code to
report the validity status:

JavaScript
var fldEmail = @ =focalhgstx
document . getElementById(v emai'l.]) : You can't fool me, that's not a valid email
fldEmail.addEventListener(D) sep escvmg oo cn s pere. (]
'invalid',
function(event) {
alert(
"You can't fool me, " +
"that's not a valid email"
J;
event.preventDefault(Q);
}
,false);

This code assumes you have a submittable form with an input like this:
<input id="email" type="email">

The browser will fire the invalid event when the form is submitted and
there 1s text which is not a valid email address in the field. Note that the

64 CHAPTER 2 HTML5 forms

event handler function cancels the default event processing (with

event.preventDefault()) in order to prevent the message from the

browser from also appearing.

Triggering validation with JavaScript

A browser will only trigger form validation when the form is submit-

ted. This is sensible: having error messages pop up repeatedly while the

user’s trying to fill in the form would be distracting.

THERE MAY BE OCCASIONS WHEN YOU WANT TO TRIGGER VALIDATION WITHOUT
| SUBMITTING THE FORM—POSSIBLY THE ALLOWED VALUES FOR A LATER FIELD
L _~ ON THE FORM DEPEND ON THE USER ALREADY HAVING ENTERED A VALID EMAIL
ADDRESS, OR MAYBE THE INPUT ISN'T PART OF A FORM AT ALL.

Suppose you have an email input in your HTML, like this:
<input id="email" type="email">
You can trigger validation by calling the checkvalidity () method:

document.getElementById('email').checkValidityQ;

IN OPERA THE FIELD WILL BE VALIDATED AS IT WOULD BE WHEN THE FORM IS

SUBMITTED. THUS IF THE EMAIL ADDRESS IS INVALID, THE NORMAL MESSAGE

WILL POP UP, ALTHOUGH THIS ISN'T REQUIRED BY THE SPEC. THE METHOD ALSO

WORKS IN FIREFOX 4 AND RECENT CHROME AND SAFART RELEASES, RETURNING
« false IF THE EMAIL ADDRESS IS INVALID. YOU CAN USE THE RETURN VALUE TO
IMPLEMENT YOUR OWN NOTIFICATIONS.

Responding to any changes in value

Before HTML5, when you had to write your own form-validation code,

it was a common technique to attach the JavaScript validation to the

onchange event handler. But in HTML4, onchange was only a valid attri-

bute on <input>, <select>, and <textarea>, and it was fired only when the

form control that changed lost focus.

AN EVENT HANDLER IS A HOOK HTML PROVIDES TO JAVASCRIPT TO LET YOU RUN
CODE WHEN PARTICULAR THINGS HAPPEN. YOU MIGHT WANT TO KNOW WHEN THE
PAGE FINISHES LOADING (onload). OR WHEN THE USER CLICKS SOMETHING

— (onclick). OR AS IN THIS CASE. WHEN THE USER LEAVES AN INPUT FIELD IN
WHICH THE VALUE HAS CHANGED (onchange). WHEN THE EVENT HAPPENS, IT IS SAID
TO FIRE. CHECK APPENDIX D FOR MORE ON EVENT HANDLERS.

Extending forms with JavaScript 65

HTML5 provides a new event—oninput—which is fired by any form
ekﬂnentvvhen‘duzvahu:change& asthe‘vahuzchange& and allows all
event-handling attributes to be specified on any element. You've
already seen this feature in action when we discussed the <output> ele-
ment. Let’s compare the code that powered the <output> element earlier
(on the left) with a version that relies on attaching to the event handler

of each field (on the right):

<fieldset>
<label for="one">Number: </label>
<input type="number" name="one"
onchange="out.value =
one.valueAsNumber +
two.valueAsNumber">

<fieldset oninput="value =
one.valueAsNumber +
two.valueAsNumber">
<label for="one">Number: </label>
<input type="number" name="one'">

<label for="two">Range: </label>

<input type="range" name="two" <label for="two">Range: </label>

min="0" max="10">

<label for="out">Output: </label>

<output id="out" for="one two">
0

</output>

<input type="range" name="two"

onchange="exoutputl.value =
one.valueAsNumber +
two.valueAsNumber">

<label for="out">Output: </label>

<output id="out"
for="one two">6</output>
</fieldset>

</fieldset>

HAVING TO HANDLE CHANGES ON EACH <input> ELEMENT INDIVIDUALLY CAN LEAD

TO EXTRA CODE, BUT THERE'S A MORE IMPORTANT ADVANTAGE: THE onchange
EVENT ONLY FIRES AFTER THE USER LEAVES THE FIELD BY TABBING OUT OF IT OR \
CLICKING ELSEWHERE ON THE PAGE. THE oninput EVENT FIRES FOR ANY CHANGE. A

L

Creating combo boxes with <datalist>
One type of form control that’s common in desktop applications but
not available in HTMLA is the combo box, so named because it’s a combi-
nation of a text box and a select list—the user can select from a list or
free-type a value that isn’t on the list. When AJAX was becoming pop-
ular, one of the most common features of the early JavaScript libraries
was support for creating combo-box-like features.

66

CHAFPTER 2 HTML5 forms

HTML5 adds support for this directly into the markup with the
<datalist> element. A datalist is a named list of options, similar to the
list of options in a <select> element, which can then be associated with
one or more <input> elements using the list attribute.

In this example, with a screenshot taken in Firefox, the input has been
associated with a <datalist> with the id value "browsers". When a user
selects the input, the list of options pops up. The user can pick one of
the options using the cursor keys or type their own:

<input type="text" name="browser"

list="browsers"> Firefox
<datalist id="browsers"> Internet Explorer
<option ; .
value="Internet Explorer"> Safari
<option value="Firefox"> Chrome
Opera

<option value="Safari">

<option value="Chrome">

<option value="Opera">
</datalist>

At the time of writing, Opera is the only browser to implement the
color input type and allow the <datalist> element to be attached to that.
This sets the default colors available on the initial drop-down:

<input type="color" ——

list="greyscale"> Color: - C_'
[I
#000000
Other...

<datalist id="greyscale">
<option value="#000000">
<option value="#333333">
<option value="#666666">
<option value="#999999">
<option value="#cccccc">

</datalist>
<input type="color" =
list="rainbow"> Colar: -.V
<datalist id="rainbow"> #ff0000
<option value="#FF0000"> Other...

<option value="#FFA500">

Extending forms with JavaScript 67

<option value="#FFFF00">

<option value="#008000">

<option value="#0000FF">

<option value="#4B0082">

<option value="#EE82EE">
</datalist>

Easy ways to work with form values in JavaScript
This is another feature you've already seen in action. When you're
dealing with forms in JavaScript, the value is always a string, even if it
represents a date or a number. Because JavaScript automatically con-
verts the types of any value involved in an expression, this can easily
lead to errors that are hard to spot.

This code looks similar to the code Number: 5
you saw in the section “The <output>
element,” but it doesn’t have the

results you might expect: Barige;

<label for="one">Number: </label>
<input type="nhumber"

Output: 53

value="5" name="one">
<label for="two">Range: </label>
<input type="range" name="two"

min="0" max="10" value="3">
<label for="out">Output: </label>
<output id="out" for="one two"

onforminput="value =

one.value +

two.value">0</output>
Can you spot the difference?
Compare the last two lines with the
code used earlier (on the right):

one.value + one.valueAsNumber +

two.value">0</output> two.valueAsNumber">0</output>

68 CHAFPTER 2 HTML5 forms

YOU MIGHT EXPECT 5+ 3 TO BE 8 BUT BECAUSE THE FORM VALUES ARE STRINGS,
YOU AREN'T PERFORMING ADDITION-YOURE PERFORMING CONCATENATION. IT'S
RELATIVELY STRAIGHTFORWARD TO WORK AROUND THE ISSUE IN HTML4, BUT WHY
SHOULD YOU HAVE TO? HTMLS PROVIDES THE PROPERTIES valueAsDate AND
valueAsNumber SO THAT YOU CAN GET DIRECTLY AT THE VALUES YOU NEED.

Browser support and detecting HTMLS features

Unlike the structural elements we looked at in chapter 1, the new form
elements have more complex associated behavior and APIs. The struc-
tural elements merely had to exist; these form elements have to do
something for you to be able to say a browser supports them. With
these more complex requirements, it’s not surprising that support isn't
yet as far advanced as it might be. The following table shows the level
of support in the current and, where known, upcoming versions of all
the major browsers.

c @ € 0 o

12 14 4 6 8 |9 |10 | 111 1.5 5 5.1

Input types ° . °

Validation API . . . ° . ° ° ° °

Placeholder)) . ° ° ° . ° °

Autofocus ° . .
Input Ul . .

Range ° ° ° . ° °
Meter .) . .
Progress . .) ° .

Output ° ° ° . ° . °

Key:

e Complete or nearly complete support

o Incomplete or alternative support
Little or no support

Browser support and detecting HTMLDS features 69

Browser inconsistencies

WebKit was one of the first browsers to support the new input types,
enabling keyboards tuned to the required input type on the iPhone.
The latest versions support the validation API, but you need to write
your own code to take advantage of it. Support for the <output> element
was only added in recent versions, but you can always access the value
with innerHTML instead.

Firefox 4 has support for HTML5 forms in the beta release, including
<datalist>. Current versions of Firefox support everything but the new
input types that require some Ul (dates and times, numbers). Firefox 4
also added default styling for the :invalid pseudo-class; if you want to
turn that off, use the following in your CSS:

:invalid { box-shadow: none; }

Firefox also has an experimental attribute, x-moz-errormessage, to allow
you to customize the error message:

<input type="email" name="email" x-moz-errormessage="Email please!">

Detecting supported features

As mentioned, if a browser has no support for one of the new form
input types, it will convert it to an input of type text. This makes it easy
to detect whether an input type is supported in JavaScript —just create
an element of the desired type and then immediately look to see if it’s a
text Input:

var el = document.createElement("input");

el.setAttribute("type", "date");

if (el.type == "text") {
implementDateValidation();

THE PREVIOUS SNIPPET CREATES A date INPUT AND THEN CHECKS

TO SEE WHAT TYPE THE BROWSER THINKS IT IS.IF IT'S text, YOU
CALL AFUNCTION implementDateValidation TO DEAL WITH \

BROWSERS THAT DON'T SUPPORT THE date INPUT TYPE.

70 CHAPTER 2 HTML5 forms

For date inputs you have to go one step further. If you remember,
WebKit implements the date input type but doesn’t provide any UI for
it. To detect if a Ul is provided, set a value on the date element that isn’t
a date:

var el = document.createElement("input");
el.setAttribute("type", "date");

el.value = "text";

if (el. value == "text") {
implementDateUI();

}

IF THE BROWSER IMPLEMENTS THE DATE UI COMPONENTS, THEN IT WILL BE
IMPOSSIBLE TO SET THE VALUE OF THE INPUT TO THE STRING "TEXT". THEREFORE,
IF THE ELEMENT REPORTS ITS VALUE AS "TEXT" AFTER YOU'VE SET IT, THE UL ISNT
IMPLEMENTED BY THE BROWSER AND YOU SHOULD PROVIDE YOUR OWN. YOU MIGHT
N\ ALSO CONSIDER SETTING AN APPROPRIATE pattern ATTRIBUTE AT THIS POINT.

You may also want to check whether the user’s browser supports one
of the new form attributes, such as autofocus or placeholder. Here's
some code to do this:

var el = document.createElement("input™);

if (!!'('placeholder' in el)) {
window.alert('Placeholder supported');

} else {
window.alert('Placeholder not supported');

THE EASIEST APPROACH IS TO LOOP THROUGH THE AVAILABLE

PROPERTIES ON AN ELEMENT AND SEE IF ONE OF THEM IS THE ATTRIBUTE

/ YOU'RE LOOKING FOR. THIS SAME APPROACH CAN BE USED FOR ANY OF THE
OTHER NEW HTMLS ATTRIBUTES, NOT JUST FORM ELEMENTS.

The final thing you might want to check is whether the browser
supports a particular event, such as the oninvalid event we discussed
earlier:

var eventName = "oninvalid";
var isSupported = !!(eventName in el);

Browser support and detecting HTMLDS features 7

if (!isSupported && el.setAttribute) {
el.setAttribute(eventName, 'return;');
isSupported = typeof el[eventName] == 'function';

}

if (isSupported) {
window.alert('oninvalid supported');

THE PREVIOUS CODE TRIES TWO DIFFERENT APPROACHES. FIRST IT LOOKS TO SEE IF
THE oninvalid EVENT EXISTS IN THE ELEMENT PROPERTIES. IF THAT FAILS, IT TRIES
TO SET THE EVENT ON THE ELEMENT AND, SIMILAR TO THE EARLIER INPUT-TYPE
DETECTION, LOOKS TO SEE IF THE TYPE OF THE ATTRIBUTE IS AFUNCTION.

YOU DON'T HAVE TO WRITE ALL THIS DETECTION CODE YOURSELF-THERE'S A |
ALREADY A LIBRARY THAT WILL DO THE WORK FOR YOU. CHECK OUT THE [
MODERNIZR LIBRARY AT WWW.MODERNIZRCOM. IF YOU DON'T FANCY WRITING ~— '_;/(
ANY OF YOUR OWN FORM-VALIDATION CODE, YOU CAN TRY A DIFFERENT LIBRARY
THAT ENABLES HTMLS FORMS SUPPORT IN ALL BROWSERS: HTMLS-NOW. /

The htm|5-now library

Html5-now is an open source project started by Dean Edwards. Dean
is famous for writing several drop-in scripts for old versions of Internet
Explorer, which made them behave in a standards-compliant manner.
The aim of html5-now.js is to provide a drop-in solution that patches
the browser’s holes in HTML5 support. It’s currently in alpha, but it
already provides a lot of support for HTML5 form controls. Download
it from http://code.google.com/p/html5-now/, and then include it in
your page like this:

<script src="html5-now/html5-now.js"></script>
The result of adding the script to a form can be seen in the screenshots
that follow. On the left is a screenshot of our HTML5 form in Firefox

3.6; all the HTML5 controls render as text. On the right, after html5-
now.js is added, the number and date controls work.

72 CHAPTER 2 HTML5 forms

COLUMBIA INTERNET CUSTON COLUMBIA INTERNET CUSTOM

YOUR DETAILS YOUR DETAILS
N L] NAME EM
AR cr ADDRESS (e
POSTAL CODE PRI POSTAL ore
TELEPHONE
PERSONAL INFORMAT
e FoN PERSONAL INFORMATION
GENDER:
GENDER:
MALE FEMALE
MALE FEMALE
DATE OF BIRTH
DATE OF BIRTH 1971-09-20
September < | 19715 |
SURVEY SURVEY :
MTWTFS S 1
AVERAGE NUMBER OF HOLRS SPENT BROWSING PER AVERAGE NUIMBER 12 3 a4 5 [INGPER
il w ohy: 6789101112 G W
13141516 17 18 19
WHAT IS YOUR FAVORITE WEBSITE?: WHAT IS YOURFA 21222324 2526 |
T 27 28 29 30
Submit Query Submit Query

HTMLS-NOW IS SMART ENOUGH TO FIGURE OUT WHETHER THE BROWSER
ALREADY HAS SUPPORT FOR PARTICULAR HTMLS FEATURES: IT WON'T INTERFERE
IF THAT'S THE CASE, SO IT'S SAFE TO USE ACROSS ALL BROWSERS. BUT IT'S A
HEAVYWEIGHT SCRIPT, SO IF YOU'RE ONLY INTENDING TO USE A SMALL NUMBER
OF HTMLS FEATURES YOU'LL BE BETTER OFF DETECTING THEM DIRECTLY, AS
DISCUSSED IN THE SECTION “DETECTING SUPPORTED FEATURES.”

Summary
In this chapter you've learned about the following:

How the new form input types available in HTML5 greatly increase
the range of options you had in HTMLA

How you can reduce the amount of JavaScript you have to write to
validate input

Other new features, such as autofocus and placeholder text

Support available in web browsers right now, and how to detect
what support is provided by your users’ browsers

You should now be ready to take your forms to the next level with
HTML5!

IN THE LAST TWO CHAPTERS, YOU'VE LEARNED ABOUT HTMLS FEATURES THAT
ARE EXTENSIONS OF COMMON USAGES OF HTML4 MARKUP. IN THE NEXT FEW
CHAPTERS, YOU'LL LEARN ABOUT SOME OF THE COMPLETELY NEW N\
FUNCTIONALITY IN HTMLS FOR DEALING WITH MEDIA AND DYNAMIC
GRAPHICS. WE'LL START IN CHAPTER 3 WITH A LOOK AT CANVAS AND SVG, THE
TWO HTMLS TECHNOLOGIES FOR DRAWING GRAPHICS IN THE BROWSER.

Dynamic graphics

This chapter covers

Using the <canvas> element to draw shapes, text, and images
Transforming existing images with <canvas>

Using Scalable Vector Graphics (SVG) in your web pages

The strengths and weaknesses of <canvas> and SVG

Cross-browser support

In this chapter, you'll learn about HTML5's facilities for dynamic graph-
ics —graphics that can change in response to user input, data, or simply
time passing. This could include charts representing network activity or
the location of people on a map.

THIS CHAPTER, ESPECIALLY THE PARTS TO DO WITH THE <canvas> ELEMENT,
WILL MAKE A LOT OF USE OF JAVASCRIPT. IF YOU'RE NOT FAMILIAR WITH
JAVASCRIPT, YOU SHOULD CHECK OUT APPENDIX D BEFORE PROCEEDING.

73

74 CHAPTER 3 Dynamic graphics

Getting started with <canvas>: shapes, images, and text

The <canvas> element is an image you can create with JavaScript. The
markup for it is similar to an <image> element in that you can specify a
width and a height; but it has starting and closing tags that can enclose
fallback content, and it doesn’t reference an external source:

<canvas id="mycanvas" width="320" height="240"
style="outline: 1px solid #999;">
Your browser does not support the canvas element.
</canvas>

In a browser that doesn’t support <canvas> the fallback content is dis-
played, as in this screenshot.

{2 Canvas example 1 - Windows Internet Explorer =101 x|
g T

@.) ® [e_ eich03|canvas-1. hitml 'l ¢3 | X} |Gl soogle 2.

Ly Favortes (@ Canvas example 1 | | -0 -2me "

Your browser does not support the canvas element.

Canvas 2D | Canvas
A context text
=]
>
f=
% “ 4.0 4.0
v
S) YOU MIGHT HAVE A STATIC IMAGE AS
_“:’ R 20 35 THE FALLBACK IF IT couLb
) . : ADEQUATELY PRESENT SOME OF THE
= INFORMATION THAT WOULD BE \
= DISPLAYED IN <canvas> IN
S /= 9.0 9.0 SUPPORTING BROWSERS. OR, IF YOU O
‘g \ WERE PARTICULARLY AMBITIOUS, YOU
% COULD USE AN ALTERNATIVE J |
= RENDERING METHOD SUCH AS FLASH.
B O 9.0 10.5
Q
[
3
o
o @ 3.1 4.0

Getting started with <canvas>: shapes, images, and text 75

You may be more interested to see
what the page looks like in a
browser that does support <canvass.

If you're wondering where all the
whizzy graphics promised in the
introduction are, well, they don’t
appear by magic. To create pictures
with <canvas>, there needs to be a
JavaScript program that tells the
browser what to draw.

Before you get to drawing something, you need to understand a couple
of things. You need to know how to geta reference to your canvas object
so you can send it drawing commands; and, because you'll be telling the
<canvas> element to draw shapes on a grid, you need to know how the
grid is defined. First, here’s how to get a reference in JavaScript:

function draw() {
var canvas = document.getElementById('mycanvas');
if (canvas.getContext) {
var ctx = canvas.getContext('2d');
//do stuff

}

window.addEventListener("load", draw, false);

Add this code between <script> tags in the <head> of an HTML docu-
ment containing a <canvas> element like that shown in the first listing in
this section. In the following sections, you'll update the draw() function
to create graphics. If you’re confused about what this document should
look like, please download the code samples from www.manning.com/
crowther/ and look at the file ch03/canvas-1.html.

YOU HAVE TO PASS A PARAMETER, 2d, TO THE getContext METHOD. THIS GIVES
YOU A TWO-DIMENSIONAL DRAWING CONTEXT. CURRENTLY THIS IS THE ONLY
PARAMETER SUPPORTED. SEVERAL BROWSER VENDORS ARE EXPERIMENTING
WITH A THREE-DIMENSIONAL DRAWING CONTEXT WITH DIRECT ACCESS TO
GRAPHICS HARDWARE, WHICH WILL OPEN UP POSSIBILITIES SUCH AS 3D
GAMES, VIRTUAL-REALITY EXPERIENCES, AND MODELING TOOLS.

www.manning.com/crowther/
www.manning.com/crowther/

76

CHAFTER 3 Dynamic graphics

Drawing shapes

To draw on the canvas, you need to get a drawing context. The context
then gives you access to methods that allow the drawing of lines and
shapes.

Basic shapes are easy. If you replace the
previous draw() function, you can draw
a rectangle by using the fillrect
method. The only prerequisite is that
you first set the fill color using the
fillStyle method. You call the fillRect
method with four arguments: the x and
y values of the upper-left corner and the
width and height to fill:

function draw() {

if (canvas.getContext) {
var ctx = canvas.getContext('2d');
ctx.fillStyle = 'rgb(255,0,0)';
ctx.fillRect(50,50,100,100);

}

3

INADDITIONTO fillRect (). THERE ARE ALSO METHODS TO CLEAR AN AREA OF
PIXELS AND TO DRAW AN EMPTY RECTANGLE: clearRect () AND strokeRect(),
RESPECTIVELY. THEY TAKE THE SAME PARAMETERS AS fillRect().

|

Let’s extend the code to draw a line. Lines are a little more complex.
You have to first draw a path, but the path doesn’t appear until you
apply a stroke. If you've ever used graphics software like Photoshop,
this process should be familiar to you.

Getting started with <canvas>: shapes, images, and text 77

The moveTo method moves the “pen” without recording a path, and the
lineTo method moves the pen and records a path:

function draw() {
var canvas = document
.getElementById('mycanvas');

if (canvas.getContext) {
var ctx = canvas.getContext('2d");
ctx.fillStyle = 'rgb(255,0,0)';
ctx.fillRect(50,50,100,100);
ctx.strokeStyle =

'rgb(0,127,127)"';

ctx.moveTo(50,50);
ctx.1lineTo(150,150);
ctx.lineWidth = 5;
ctx.stroke(Q);

}

3

Now for a little experiment. What
happens if the line is drawn first and
then the box?

function draw() {

var canvas = document
.getElementById('mycanvas');

if (canvas.getContext) {

var ctx = canvas.getContext('2d");

ctx.strokeStyle =
'rgb(0,127,127)"';

ctx.moveTo(50,50);

ctx.1lineTo(150,150);

ctx.lineWidth = 5;

ctx.stroke();

ctx.fillStyle = 'rgb(255,0,0)';

ctx.fillRect(50,50,100,100);

78

CHAPTER 3 Dynamic graphics

As you can see, the line is mostly obscured by the rectangle. You might
think that if you could remove the rectangle the line would still be there
underneath; but after you've drawn over it, the line is gone.

THE ONLY WAY TO GET THE LINE BACK IS TO ERASE BOTH THE RECTANGLE
AND THE LINE AND THEN DRAW THE LINE AGAIN. THE <canvas> ELEMENT
DOESN'T STORE THE ELEMENTS DRAWN, ONLY THE RESULTING PIXELS.

«

VVhataboutcﬁhershapes?'Fhepaﬂ}¢henrmrokeapproachisthexvqyto
do it. You can use the arc method to draw a circle and then fill it. The
arc method accepts parameters for the location of the center; the
radius; how far around, in radians, the arc should extend; and whether
that should be clockwise or counterclockwise:

function draw({

var canvas = document
.getElementById('mycanvas');

if (canvas.getContext) {

var ctx = canvas.getContext('2d");
ctx.fillStyle = 'rgb(255,0,0)';
ctx.fillRect(50,50,100,100);
ctx.fillStyle = 'rgb(0,255,0)';
ctx.arc(250, 100,

50, 0,

Math.PI*2,

false);
ctx.fillQ;
ctx.strokeStyle =

'rgb(0,127,127)"';
ctx.moveTo(50,50);
ctx.1lineTo(150,150);
ctx.lineWidth = 5;
ctx.stroke(Q);

Getting started with <canvas>: shapes, images, and text 79

NOTE THAT THE STROKE YOU USE TO DRAW THE LINE AT THE
END ALSO GETS APPLIED TO THE CIRCLE, EVEN THOUGH THE ;
strokeStyle WAS SET AFTER THE ARC WAS CREATED. ~__ q

To ensure that the stroke for the line doesn’t apply to the circle, you need
to explicitly put them on different paths with the beginpath() method:

function draw(){
var canvas = document

.getElementById('mycanvas');
if (canvas.getContext) {
ctx.fillStyle = 'rgb(255,0,0)";
ctx.fillRect(50,50,100,100);
ctx.beginPath();
ctx.fillStyle = 'rgb(0,255,0)';
ctx.arc(250, 100, 50, O,
Math.PI*2, false);
ctx.fillQ;
ctx.beginPath();
ctx.strokeStyle =
'rgb(0,127,127)"';
ctx.moveTo(50,50);
ctx.1lineTo(150,150);
ctx.lineWidth =
ctx.stroke();

Other shapes are just a matter of creating a path and then stroking or
filling, or both. If you move the first two shapes over a little, there’s
room to add a triangle. First draw the square and the circle again

slightly further to the left:

ctx.fillStyle = 'rgb(255,0,0)';
ctx.fillRect(5,50,100,100);
ctx.beginPath();

ctx.fillStyle = 'rgb(0,255,0)';
ctx.arc(165, 100, 50, 0, Math.PI*2, false);

&0

CHAPTER 3 Dynamic graphics

ctx.fillQ;

ctx.beginPath();

ctx.strokeStyle = 'rgb(0,127,127)"';
ctx.moveTo(5,50);
ctx.1lineTo(105,150);

ctx.lineWidth = 5;

ctx.stroke();

Put this code in your draw() function inside the if (canvas.getContext)
{} block, replacing what you had previously, and then add the code for
the triangle to it:

ctx.beginPath(Q);
ctx.moveTo(265,50);
ctx.1lineTo(315,150);
ctx.1lineTo(215,150);
ctx.1lineTo(265,50);

ctx.strokeStyle = 'rgb(51,51,51)";
ctx.fillStyle = 'rgb(204,204,204)";
ctx.stroke();

ctx.fil1lQ;

Notice that, even though the triangle starts
and ends at the same point, there’s a slight

gap at the top.

To prevent this, you need to close the path
using the closePath method; the additional
line required is highlighted bold:

ctx.beginPath();
ctx.moveTo(265,50);
ctx.lineTo(315,150);
ctx.lineTo(215,150);
ctx.lineTo(265,50);
ctx.closePath(Q);

ctx.strokeStyle = 'rgb(51,51,51)";
ctx.fillStyle = 'rgb(204,204,204)";
ctx.stroke();

ctx.fillQ;

Getting started with <canvas>: shapes, images, and text &1

You don’t have to restrict yourself to straight lines in paths. Instead of
lineTo, you can use either of two types of curve: quadratic or Bézier.

Let’s replace the first straight line with a
Bézier curve. Instead of

ctx.moveTo(5,50);
ctx.1lineTo(105,150);

use the lines

ctx.moveTo(5,50);
ctx.bezierCurveTo(0,90, 120,70,
105,150)

The last pair of numbers is the end point.
Preceding that are coordinates for the
two control points.

To simplify things the circle has been removed for now, but the sides of
the triangle have also been made curvy, this time with a quadratic
curve. A quadratic curve is similar, but only needs one control point.
This is the code that drew the triangle, using quadraticCurve instead of
lineTo. Here’s the original triangle drawing code:

ctx.moveTo(265,50);
ctx.lineTo(315,150);
ctx.lineTo(215,150);
ctx.1lineTo(265,50);

Replace it with this:

ctx.moveTo(265,50);
ctx.quadraticCurveTo(315,50, 315,150);
ctx.quadraticCurveTo(265,50, 215,150);
ctx.quadraticCurveTo(215,0, 265,50);

&2

.

CHAFTER 3 Dynamic graphics

In this version of the earlier diagram, the
control points have been drawn along
with lines connecting the control points
to the start and end of the path; this
should help you visualize what’s going
on. The drawn lines are distorted from
their direct path so they approach an
imaginary line drawn between the start
or end point and the control point. Check
out the full listings for these examples in
ch03/canvas-6.html and ch03/canvas-6-
controls.html of the code download at
www.manning.com/crowther/.

AS YOU CAN SEE, IT'S EASY TO CREATE SOME INTERESTING SHAPES. BUT
DRAWING CURVED LINES CAN BE HIT OR MISS, ESPECTIALLY IF YOU'RE
TRYING TO GET THE CURVE TO LINE UP WITH SOME OTHER DRAWN
OBJECT. THE BEST APPROACH IS USUALLY TRIAL AND ERROR.

!

Placing images

One of the great features of <canvas> is that
you can use it to manipulate images and
achieve effects that are otherwise difficult to

do with HTML and CSS. Here's an example
of what can be achieved: a reflection effect.

The <canvas> element can't download
images —you can’t give it a URL and expect
it to fetch the image. Any image you want to
use must already be available in your page
content. There are various ways to do this,
but the easiest is to include the element in
the normal way. In this case, it’s hidden:

<div style="display: none;">

SOMET IMES I LIKETO

JUST SIT AND REFLECT
AM KNOWINK WHAT
YOU MEANINK

</div>

Getting started with <canvas>: shapes, images, and text &3

The next few examples take the image at
right and import it into the <canvas>
element. The simplest example is to
import the image and place it on the <can-

vas>.

You call drawImage with three parameters —
the img element and the x and y coordinates:

function draw({
var canvas = document
.getElementById('mycanvas');
if (canvas.getContext) {
var ctx = canvas.getContext('2d");
var img =
document.getElementById('myimage');
ctx.drawImage(img, 10, 10);
}
}

The example image is too large to fit into the
<canvas> frame. You can easily fix this by
defining a width and height for the placed
1mage:
if (canvas.getContext) {
var ctx = canvas.getContext('2d"');
var img = document
.getElementById('myimage');
ctx.drawImage(
img, 10, 10, 118, 130
);
}

Now you're calling drawImage with five param-
eters. The additional two are the width and
height of the placed image.

WHAT ARE WE DOINK?

TRYING TO

SET A GOOD 1 HATE BEING

EXAMPLE OF/
AL Y

WHAT ARE WE POINK?

TRYING TO
SET A 600D 1 HATE BEING
EXAMPLE. wmADE AN

£/
EMAMP\LE.‘Q. !

'SS ﬁ'%“ﬂ af

&4 CHAPTER 3 Dynamic graphics

You may not even want all of the original N
1mage: \

if (canvas.getContext) {
var ctx = canvas.getContext('2d");
var img =
document.getElementById('myimage');
ctx.drawImage(img,
80, 100, 80, 160,
10, 10, 160, 200);

The previous example calls drawImage with nine parameters. Let’s exam-

ine them in more detail:

THE FIRST PARAMETER IS STILL A

4_/ REFERENCE TO THE img ELEMENT.
drawImage(img,

THE X AND Y OF A POINT
80, 100,# ~——————— INSOURCE IMAGE.
80. 160, # < WIDTHANDHEIGHT
’ ’ FOR SECTION
10, 10, OF SOURCE IMAGE.
160, 200) <—\ 4\ THE X AND Y POINT IN
WIDTH AND HEIGHT FOR THE CANVAS FOR THE
THE PLACED IMAGE PLACED IMAGE.

Drawing text
Let’s now turn our attention to text.
The <canvas> element has a limited
ability to draw single lines of text on
the context. The text-drawing meth-
ods are more suitable for drawing
labels and titles than for rendering
large blocks of text. But the full
graphical-processing ability of the

<canvas> element can be applied to the text that’s drawn, allowing for

effects like this.

THIS EXAMPLE TAKES ADVANTAGE OF THE TRANSFORMATION
AND GRADIENT FILL FEATURES OF THE <canvas> ELEMENT.
MORE DETAILS ABOUT THEM ARE IN THE SECTION "ADVANCED
<canvas>: GRADIENTS, SHADOWS, AND ANIMATION"

Getting started with <canvas>: shapes, images, and text &5

Drawing text on the <canvass> 1s easy with the fillText method:

-FunCt-i-on drqw(){ HAI! IZ IN YR ELEMENT WRITIN YR TXT
var canvas = document
.getElementById('mycanvas');
if (canvas.getContext) {
var ctx = canvas.getContext('2d');
ctx.fillText(
'"HAI! IZ IN YR ELEMENT
WRITIN YR TXT',
10,10);
1
3

The fillText method has three required
parameters: a string that is the text to be
drawn, and x and y coordinates to deter-
mine where it’s to be drawn.

The text is drawn in the current font, which is determined by setting
the font property of the drawing context. The <canvas> element’s font
property behaves like the CSS font property, allowing size and font to
be specified simultaneously:

ctx.font = "10pt serif";

If you set the font size a little larger, you can see an alternative method
for drawing text. As with rectangles, you can draw the fill and the
stroke separately:

function draw(){
HAI' IZ IN YR ELEMENT WRITIN YR TXT

var canvas = document HAI! IZ IN YR ELEMENT WRITIN YR TXT
.getElementById('mycanvas');

if (canvas.getContext) {
var ctx = canvas.getContext('2d");
ctx.font = "12pt sans-serif";
ctx.fillText(
'HAI! IZ IN YR ELEMENT
WRITIN YR TXT',
10,20);
ctx.strokeText(
'HAI! IZ IN YR ELEMENT

&6

CHAFTER 3 Dynamic graphics

WRITIN YR TXT',
10,40);
}
}

You can of course draw both fill and
stroke on a single line of text if you want.

Let’s see what happens if you increase the
font size a bit more. Remember, the exam-
ple <canvas> element is 320 pixels wide:

ctx.font = "20pt sans-serif";
ctx.fillText(
'HAI! IZ IN YR ELEMENT
WRITIN YR TXT',
10,80);
ctx.strokeText(
'HAI! IZ IN YR ELEMENT
WRITIN YR TXT',
10,110);

As you can see, the text that doesn'’t fit
flows off the edge of the element without
wrapping.

To work around this issue, you can use the
fourth, optional, parameter to the fillText
and strokeText methods. This parameter
sets a maximum width for the text; if the
text will be wider than the value passed,
the browser makes the text fit either by
narrowing the spacing between the letters
or scaling down the font:

ctx.fillText(
'"HAI! IZ IN YR ELEMENT
WRITIN YR TXT',
10,150,300);
ctx.strokeText(
'HAI! IZ IN YR ELEMENT
WRITIN YR TXT',
10,180,300);

HAI' I1Z IN YR ELEMENT WRITIN YR TXT
HAI! IZ IN YR ELEMENT WRITIN YR TXT

HAI' IZ IN YR ELEMENT
HAI! IZ IN YR ELEMENT

HAI! IZ IN YR ELEMENT WRITIN YR TXT
HAI! IZ IN YR ELEMENT WRITIN YR TXT

HAI' IZ IN YR ELEMENT
HAIV IZ IN YR ELEMENT

HAI'IZ IN YR ELEMENT WRITIN YR TXT
HAI! IZ IN YR ELEMENT WRITIN YR TXT

Advanced <canvas>: gradients, shadows, and animation 87

If you've added all three of these examples to the original listing, then
you should have something similar to the ch03/canvas-text-4.html file
in the code download.

To further control the text position you can set the baseline of the text,
which will adjust where it’s drawn in relation to the coordinates you
provide. This is useful if you're trying to position labels next to things
on your canvas because it saves you having to work out exactly how
tall the letters will be drawn.

The default value is alphabetic, which means the bottom of an upper-
case letter is placed at the y coordinate you provide in fillText. The
following line sets the baseline to top, which means the top of an upper-
case letter will be placed in line with the provided y coordinate:

ctx.textBaseline = "top";

The following figure shows the previous example alongside a similar
example, except with textBaseline set differently.

textBaseline = "alphabetic"; textBaseline = "top";

_HAL! 1Z IN YR ELEMENT WRITINYR TXTL _ _ _ _ _
HAI! IZ IN YR ELEMENT WRITIN YR TXT 20PX | /AT TZ1R YR ELEMENT WRITIN YRTXT

HAIl IZ IN YR ELEMENT WRITIN YR TXT
_HAILIZIN. YR ELEMENT _____|_ QAT 7 1N YR-ELEMENT
[80PX :
HAILIZ TN YR ELEMENT HAI! IZ IN YR ELEMENT
HAL [ZIN YR ELEMENTWRITIN.YR TXT.

YOUR <canvas> ELEMENT. THE SIMPLE

Baseline are hanging, EXAMPLES WE'VE COVERED HERE MAY NOT
. . . SEEM MUCH MORE EXCITING THAN WHAT
middle, ideographic, and CAN BE ACHIEVED WITH PLAIN HTML AND
bottom €55, BUT WE'VE BARELY SCRATCHED THE
. SURFACE. IN THE NEXT SECTION, YOU'LL

LEARN ABOUT SOME MORE ADVANCED
TECHNIQUES: GRADIENTS, DROP
SHADOWS, AND TRANSFORMAT IONS.

Advanced <canvas>: gradients, shadows, and animation

With the ability to draw a single-pixel shape on any part of the canvas,
it's possible for you to create any effect you want by implementing it

CHAFPTER 3 Dynamic graphics

yourself in JavaScript. But the <canvas> element has some built-in
shortcuts for particular effects. This section covers them.

Creating gradients

The strokeStyle and fillStyle methods you used in “Drawing shapes”
to set the color of lines and shapes can also accept a gradient object
where the color changes smoothly across a defined space. The <canvas>
element can create two types of gradient:

Linear — The gradient follows a straight line.

Radial —The gradient is circular.
In this section, you'ﬂ create one example of each. There are three steps
to creating either gradient type in the <canvas> element:
Create a gradient.
Specify the color stops.
Apply the gradient as a fill to a shape.

Here’s a simple linear gradient in
place of the solid fill from the earlier

examples.

You define the extents of the gradient
with the createlinearGradient() met-
hod. This method takes four parameters that define the upper-left and
lower-right corners. The following diagram contains the code and
indicates what the parameters refer to in the screenshot.

var lineargradient = ctx.createlLinearGradient(

—_——
- - -
-_—

7

Advanced <canvas>: gradients, shadows, and animation &9

Next you need to add color stops to the lineargradient you just created.
A color stop 1s a point on the gradient at which you're setting a specific
color. The browser interpolates between the color stops to create the
gradient. The gradient object has an addColorstop() method for this. It
accepts two parameters: a position and a color. The position is a
number between 0 and 1, where 0 is the start of the gradient and 1 is
the end. The code in the next diagram adds three color stops to your
gradient.

lineargradient
.addColorStop(
'rgb(127,127,127)"
s

lineargradient
.addColorStop(
0.5, = = = = - _ _

lineargradient
.addColorStop(
1 ———————————
'rgb(127,127,127)"'

All that remains is to add the gradient to the context as a fillStyle and
draw a shape. Here’s the complete draw() function from ch03/canvas-

9.html:

function draw(){

var canvas = document.getElementById('mycanvas');

if (canvas.getContext) {
var ctx = canvas.getContext('2d');
var lineargradient = ctx.createLinearGradient(20,20,220,220);
lineargradient.addColorStop(0, 'rgh(127,127,127)"');
lineargradient.addColorStop (0.5, 'rgb(255,255,255)");
lineargradient.addColorStop(1, 'rgh(127,127,127)"');
ctx.fillStyle = lineargradient;
ctx.fillRect(20,20,200,200);
ctx.strokeStyle = 'rgb(0,127,127)"';

20

CHAFPTER 3 Dynamic graphics

ctx.moveTo(20,20);
ctx.1lineTo(220,220);
ctx.lineWidth = 5;
ctx.stroke();

}

Now let’s create a radial gradient.

For a radial gradient, you use the
createRadialGradient() method. Six
values are required: a center point
and a radius for the inner bound,
and a center point and a radius for
the outer bound. This creates two
circles between which the gradient

is drawn. The two circles and their corresponding parameters are
shown here.

var radialgradient = ctx.createRadialGradient(
120,120,50, -""'"---.._.'
120,120,100 — Y

)3 .

-
-
-
-
-
-
*

Y
.0
..
Ll

-
- |
""l-u-..--’

Adding color stops is exactly the same as with the linear gradient,
except that now those stops define circles between the two described in
the createradialGradient method:

radialgradient.addColorStop(0, 'rgb(127,127,127)"');
radialgradient.addColorStop(0.5, 'rgba(127,127,127,0.25)"');
radialgradient.addColorStop(1l, 'rgb(127,127,127)"');

Advanced <canvas>: gradients, shadows, and animation 91

Finally, the gradient is applied as a fillStyle as before:

ctx.fillStyle = radialgradient;
ctx.fillRect(20,20,200,200);

Check out the full listing in the file ch03/canvas-10.html in the code

download.

NOTE THAT YOU DEFINE BOTH LINEAR AND RADIAL GRADIENTS WITH
COORDINATES RELATIVE TO THE ENTIRE CANVAS CONTEXT. NOT THE SHAPE
~~ YOU WANT TO APPLY THEM TO. IF YOU WANT THE GRADIENT TO EXACTLY
FILL THE SHAPE, YOU HAVE TO MAKE SURE YOU CHOOSE THE COORDINATES SO
THAT THE GRADIENT APPEARS IN THE SHAPE YOU WANT TO FILL IT WITH.

THE GRADIENT ISN'T CONFINED TO THE COORDINATES YOU SPECIFY-IT
EXTENDS ACROSS THE CANVAS. THE FOLLOWING EXAMPLES SHOW A LINEAR
GRADIENT CREATED WITH THREE DIFFERENT SETS OF COORDINATES.

createlLinearGradient(createlLinearGradient(createlLinearGradient(
0,0,320,0 0,0,100,100 100,100,150,150
))N)H

Drawing drop shadows
Drop shadows are an effect much loved by designers, and the
<canvas> element has built-in support. To create a shadow, define the
shadowOffsetX, shadowOffsetY, shadowBlur, and shadowColor properties on

922 CHAPTER 3 Dynamic graphics

the context object; the shadow will then be applied to any shape you

draw.

This example shows the earlier square
with a line through it, now with a
shadow in place:

ctx.shadowOffsetX
ctx.shadowOffsetY
ctx.shadowBlur = 8;
ctx.shadowColor =

"rgba(0, 0, 0, 0.75)";

2;
2;

Using shadows, you can create effects

such as cutout text: Hall

ctx.shadowOffsetX = 4;
ctx.shadowOffsetY = 2;
ctx.shadowBlur = 5;
ctx.shadowColor =
"rgba(0, 0, 0, 0.9)";
ctx.fillStyle = 'rgbh(0,0,0)"';
ctx.fillText('HAI!',170,50);
ctx.fillStyle = 'rgb(255,255,255)";
ctx.fillText('IZ IN YR ELEMENT'
,170,70);
ctx.strokeStyle = 'rgb(0,0,0)';
ctx.strokeText('WRITIN YR TXT'
,170,90);

Transformations

@ | THE <canvas> 2D CONTEXT SUPPORTS A NUMBER OF TRANSFORMAT IONS. THESE
)L_ WORK ON THE CONTEXT ITSELF, SO YOU APPLY THE TRANSFORMATION AND
THEN DRAW WHATEVER YOU WANT TO APPEAR SUBJECT TO THAT TRANSFORM.

N
\'..

WRITIN YR TXT

Advanced <canvas>: gradients, shadows, and animation 923

Let’s start with a simple translate transformation. This moves the origin
of the <canvas> element according to the x and y offsets you pass In as

arguments:

var img = document
.getElementById('myimage');
ctx.translate(120,20);
ctx.drawImage(
img, 10, 10, 118, 130

WHAT ARE WE POINK?

TRYING TO
SET 4 6000 1 yare peING|
EHANPLE wapE AN

A EXAVLE OF !

J;

If you compare this example with the similar one in “Placing images”
without the transformation, you'll see you've basically moved the image
down and to the right. Not particularl_y useful when you could have
drawn the image there in the first place, but this technique would be
useful if you wanted to move a collection of objects around while keep-
ing their relative positions the same.

Next, let’s try rotation:

var img =
document.getElementById('myimage');
ctx.rotate(Math.PI/4);
ctx.drawImage(img, 10, 10, 118, 130);

The rotate() method takes a value in radians and rotates the drawing
context by that angle. As with translate, the values you provide to the
drawImage () method are now relative to the transformation.

94 CHAPTER 3 Dynamic graphics

You don’t want the image off the <canvas> like that, so let’s translate it
and then rotate it:

var img =
document.getElementById('myimage');
ctx.translate(120,20);
ctx.rotate(Math.PI/4);
ctx.drawImage(img, 10, 10, 118, 130);

TRANSLATE The transformations affect

the whole context, so the
ROTATE order in which you apply
them is important.

Let’s try the opposite order:

var img =
document.getElementById('myimage');
ctx.rotate(Math.PI/4);
ctx.translate(120,20);
ctx.drawImage(img, 10, 10, 118, 130);

ROTATE
You can see that the rotate

TRANSLATE now changes the direction

the translate goes in.

Animation

ONE POTENTIAL USE OF THE <canvas> ELEMENT THAT HAS MANY DEVELOPERS EXCITED

IS CREATING GAMES. ALREADY, MANY ARCADE CLASSICS OF THE 19805 AND '90S HAVE

BEEN RE-CREATED USING <canvas>. IN ORDER TO CREATE GAMES, YOU NEED TO HAVE
ANIMATION.LET'S LOOK AT HOW YOU CAN ANIMATE YOUR CANVAS DRAWINGS. N

Mon 21 Jun 2010 15:00:03 BST Mon 21 Jun 2010 15:00:24 BST Mon 21 Jun 2010 15:00:47 BST

Advanced <canvas>: gradients, shadows, and animation 95

THE PREVIOUS EXAMPLE IS ONE OF THE WORLD'S LEAST EXCITING
ANIMATIONS IMPLEMENTED WITH THE <canvas> ELEMENT. PAC-MAN IT
ISN'T, BUT THIS SIMPLE DEMO IS ENOUGH TO DEMONSTRATE

R / THE GENERAL PRINCIPLES, HERE'S THE CODE USED TO GENERATE IT:

|
U THE init() FUNCTION WILL
BE CALLED ON PAGE LOAD.
DRAW THE f””CZiZ;Oﬂ.ﬁto { T SETANINTERVALTOCALLTHE
INITIAL STATE — window.setInterval(draw,1000); a&‘w%sgggﬁEON EVERY 1000
TO START. 3 .
function draw(){
var now = new Date();
document.getElementById('timestamp').1innerHTML
= now.tolLocaleStringQ);
var canvas = document.getElementById('mycanvas');
if (canvas.getContext) { AS A SHORTCUT, THE
EXPLICITLY CLEAR THE var ctx = canvas.getContext('2d'); STATE OF THE
CANVAS. THE PREVIOUS / ctx.clearRect(0,0,320,240); ANIMATION IS GIVEN
STEP OF THE DRAWING ctx.fillStyle = 'rgb(255,0,0)'; BY THE CURRENT TIME.
WONT BE REMOVED ctx.fillRect(now.getSeconds() * 4,50,100,100);
AUTOMATICALLY.

ctx.beginPath(Q);
ctx.strokeStyle = 'rgb(0,127,127)';
ctx.moveTo(now.getSeconds() * 4,50);
ctx.lineTo(now.getSeconds() * 4 + 100,150);

ctx.lineWidth = 5;
ctx.stroke(); YOU NEED TO RESET THE PATH SO THE
11 PREVIOUS PATH ISN'T REDRAWN EVERY
ITERATION.

Here’s what happens if you forget to explicitly start a new path.

Sat 11 Dec 2010 16:18:03 GMT Sat 11 Dec 2010 16:18:23 GMT Sat 11 Dec 2010 16:18:42 GMT

If you forget to close any paths you have open, they'll be redrawn as
you iterate through your animation steps along with any additions to
the path. Clearing the pixels on the context doesn’t reset the path.

The <canvas> element allows precise, pixel-level control over what is dis-
played and is already considered a rival to Flash in the browser game
marketplace because it works on iPhones and iPads. Experimental

926

Getting started with SYG

CHAPTER 3

Dynamic graphics

versions of <canvas> have full 3D support, and several first-person shoot-

ers from the 1990s have already been ported to allow play in a browser.

USER FRIENDLY by Illiad

NINET IES GAVES ON THE WEB, NEW
OPPORTLNIT IES FOR OLD GAMERS

SHOLLD BE PLENTY COF
NOOBS OUT THERE
FOR EASY KILLS

hitp:iwww.userfriendly.orgl

Copyright (¢) 2000 Miad

Browser support quick check:
SVG in HTML

c¢‘ 7.0
e

| 4.0
“ A 90
@

O 1.6
® -

ROLND STARTING IN 3.2.L

Let’s create a simple SVG drawing.

YOU JUST GOT OWNED BY
PECPLE WHO WERE NOT EVEN
BORN WHEN QUAKE WAS
RELEASED

NOW THAT YOU'VE LEARNED ABOUT THE <canvas> ELEMENT, IT'S TIME TO LOOK
_~ AT THE SECOND TECHNOLOGY AVAILABLE IN HTMLS FOR DRAWING GRAPHICS: SVG.

Scalable Vector Graphics (SVG) is an XML language
for displaying vector graphics. It has long been possible
to embed SVG within XML-based XHTML documents;
but because HTML5 leads you back to HTML-based
markup, it adds the useful feature that SVG can be
embedded directly.

Getting started with SYG 97

You're probably thinking it looks familiar, and you're right. Many of
the things that can be achieved with <canvas> can also be easily
achieved with SVG. You'll learn more about the relative strengths and
weaknesses of each in the section “SVG vs. <canvas>,” but for now all
you need to understand is that <canvas> and SVG are based on different
conceptual models of how to create images. <canvas> is what program-
mers call imperative; you provide a detailed list of operations to be per-
formed that will produce a particular result. SVG is declarative; you
provide a description of the final result and let the browser get on with
it. Where <canvas> requires JavaScript, SVG requires markup, much
like HTML, and it can be included directly in HTML5:

<!DOCTYPE html>
<html>
<head>
<title>SVG example 2</title>
</head>
<body>
<svg id="mysvg" viewBox="0 0 320 240"
style="outline: 1px solid #999; width: 320px; height:
240px; ">
<rect x="50" y="50" width="100" height="100"
style="fill: rgb(255,0,0)">
</rect>
<line x1="50" y1="50" x2="150" y2="150"
style="stroke: rgb(0,127,127); stroke-width: 5;">
</line>
</svg>
</body>
</html>

There are several interesting things to be seen in this simple example.
First, note that the size of the element on the page is determined by
CSS in the style attribute, but you also define a viewBox with the same
values. Because SVG is a vector format, pixels aren’t as significant; you
can use viewBox to define a mapping between the physical dimensions of
the element, defined in CSS, and the logical coordinates of everything
displayed within.

928

CHAFTER 3 Dynamic graphics

Look what happens if you use these val-

ues: viewBox="0 0 640 480". It's the same .
SVG graphic as before, but rendered into

a larger viewport.

Applying styles to SYG

The previous examples used an inline

style to apply colors and stroke thick-

nesses. Those properties can also be applied directly to the elements in
question, like this:

<rect x="50" y="50" width="100" height="100"
fill="rgb(255,0,0)"></rect>

<line x1="50" y1="50" x2="150" y2="150"
stroke="rgb(0,127,127)" stroke-width="5"></1line>

But you can alternatively leave off the style and inline attributes and
use this in your CSS file, and achieve the same results:

rect { fill: rgb(255,0,0); }
line { stroke: rgb(0,127,127); stroke-width: 5; }

It looks much like any other CSS,
albeit with some unusual properties.
As with regular HTML, CSS can . . .
make life much easier if you have a
lot of similar objects because you can

use a class to apply a set of styles to . - .
several elements.

In this example there are three green

squares (upper left, upper right,

lower left) and three blue squares. Rather than specify inline styles on
each one, you can declare their commonality with the class attribute:

<svg id="mysvg" viewBox="0 0 320 240">
<rect x="50" y="50" width="50" height="50" class="earth"></rect>
<rect x="150" y="50" width="50" height="50" class="water"></rect>
<rect x="250" y="50" width="50" height="50" class="earth"></rect>
<rect x="50" y="150" width="50" height="50" class="earth"></rect>

Getting started with SVG 29

<rect x="150" y="150" width="50" height="50" class="water'"></rect>
<rect x="250" y="150" width="50" height="50" class="water'"></rect>
</svg>

Then you style the common elements with CSS in the <head> of your
document in the usual way:

<style>
rect.earth { fill: rgb(0,127,0); }
rect.water { fill: rgb(0,0,255); }
</style>

Drawing common shapes
Let’s carry on and re-create the rest
of the <canvas> example shapes in
SVG. In addition to the rectangle
and line elements you've seen

already, SVG has elements for circles
and arbitrary polygons.

For a circle, you need to provide the

x and y coordinates of the center and

the radius as appropriate attributes.

A polygon is slightly more complex; it has an attribute points that you
use to supply a space-separated list of x,y coordinates. This code, when
placed inside the <svg> element from the listing in the introduction, gen-
erates the previous image:

<rect x="5" y="50" width="100" height="100"
style="fill: rgb(255,0,0);"></rect>
<line x1="5" y1="50" x2="105" y2="150"
style="stroke: rgb(0,127,127); stroke-width: 5;"></line>
<circle cx="165" cy="100" r="50"
style="fill: rgb(0,255,0);"></circle>
<polygon points="265,50 315,150 215,150"
style="stroke: rgb(51,51,51); fill: rgb(204,204,204);
stroke-width: 5;"></polygon>

With the polygon element you don’t have to provide the starting point a
second time; it assumes the shape is closed, and the path drawn returns
to the first point. If you want to draw an open shape, you can use the

100 CHAFTER 3 Dynamic graphics

<polyline> element instead; it uses an identical points attribute but
doesn’t close the path around the shape.

<polygon <polyline
points="265,50 315,150 215,150" points="265,50 315,150 215,150"
style="stroke: rgb(51,51,51); style="stroke: rgb(51,51,51);
fill: rgb(204,204,204); fill: rgb(204,204,204);
stroke-width: 5;"> stroke-width: 5;">
</polygon> </polyline>

YOU'VE SEEN SEVERAL ELEMENTS
MAKE DIFFERENT SHAPES IN A SINGLE
5VG DRAWING, BUT THERE'S ALSO A
WAY TO DRAW SEVERAL DIFFERENT
SHAPES IN A SINGLE SVG ELEMENT.
« FOR THIS YOU USE THE <path>
\ ELEMENT. LET'S LOOK AT AN EXAMPLE.

ALTHOUGH YOU CAN SEE THREE SHAPES IN THE PREVIOUS IMAGE, THEY'RE A
SINGLE SVG ELEMENT: A PATH. THE <path> ELEMENT IN SVG IS VERY
/ POWERFUL. HERE'S THE CODE:

THE <path> ELEMENT WORKS AS IF IT WAS
AN IMAGINARY PEN. YOU THEN USE THE
A) ATTRIBUTE TO PASS A SERIES OF COMMANDS
<path d="M5,50 TO THE PEN TO TELL IT WHAT TO DRAW.
MOVE TO COORDS 550 10,100 1100,0 10,-100 1-160,0 DRAW A LINE TO 1000
RELATIVE TO THE CURRENT
UPPERCASE LETTERS MEAN —» M215,100 POSITION.
ABSOLUTE COORDINATES.
a50,50 06 1 1 -100,0 50,50 0 1 1 100,0

LOWERCASE LETTERS MEAN
COORDINATES RELATIVE M265,50
TO THE CURRENT PEN g};%;wo ARCS TO MAKE A
POSITION. :

150,160 1-100,0 150,-100

-

CLOSE THE PATH. "/;y»le="stroke: rgb(51,51,51);
fill: rgb(204,204,204);
stroke-width: 5;"/>

Getting started with SVG 101

It seems like a path can do anything, so why bother to use anything
else? The <path> element is difficult to understand and manipulate
because of its reliance on a single attribute value. In addition, any style
will apply to all shapes on the same path, so all your shapes will have
the same border and color. Of course, nothing is stopping you from
using more than one path with a different style applied to each.

Images, text, and embedded content
Images are easy to embed within your SVG drawing. The syntax is sim-
ilar to that of HTML, and the only additional information you need to
provide over and above the <image> element are the coordinates of the
upper-left corner:

<image x="10" y="10"

width="236" height="260" WHAT ARE WE DOINK?
xlink:href="example.png"> TRYING TO
. SET A GOOD
</inage> e

\ EXAMPLE OF !
N
£ e
-k
{ ﬁ
=

You use an xlink:href to link to the image. The xlink is a namespace, a
legacy of SVG’s XML heritage that leaks through to HTML5; more on
that shortly. Text is handled a little differently in SVG compared to
HTML. In HTML, any text within the body is rendered to the screen —
no special wrapping is required. In SVG, text has to be explicitly

wrapped within a containing element:

<text x="10" y="20"> HAI! IZ IN YR ELEMENT WRITIN YR |
HAI! IZ IN YR ELEMENT WRITIN |
HAI CAN HAS STDIO? VISIBLE "HAI
YR TXT
</text>
<text x="10" y="60">
HAI

CAN HAS STDIO?
VISIBLE "HAI WORLD!"
KTHXBYE

</text>

102

CHAFTER 3 Dynamic graphics

The previous example highlights another problem: text that won't fit in
the view isn’t automatically wrapped. Line breaks also have to be

explicitly coded using the <tspan> element:
P y g

<text x="10" y="20">

HAI! IZ IN YR ELEMENT WRITIN

YR TXT
</text>
<text x="10" y="60">
<tspan x="10">HAI</tspan>
<tspan x="10" dy="20">
CAN HAS STDIO?
</tspan>
<tspan x="10" dy="20">
VISIBLE "HAI WORLD!"

</tspan>
<tspan x="10" dy="20">
KTHXBYE
</tspan>
</text>

HAIl IZ IN YR ELEMENT WRITIN YR

HAI

CAN HAS STDIO?
VISIBLE "HAI WORLD!"
KTHXBYE

A nice effect you can achieve on short runs of text is to make the text
follow a path. If you extract the circle part of the path from the earlier
example, you can spread the text along it with the <textpath> element:

<defs>
<path id="myTextPath"
d="M215,100
a50,50 60 1 1
-100,0 50,50 6 1 1
100,0">
</path>
</defs>
<text>
<textPath

xlink:href="#myTextPath">
HAI! IZ IN YR ELEMENT
WRITIN YR TXT
</textPath>
</text>

@‘9'\1- IN ‘1,;9

SMEN 5
e
KLOTER S

i N\‘D

Getting started with SYG 103

The path is created in the <defs> element,
and then you link to it using an xlink:href
like you used for the image earlier. The link
works like other web content, so you could
refer to the path in a separate file if you
wanted to.

You can also apply gradient fills and any .
number of other SVG effects to the text. %

>
We'll cover this in detail in the next section, 5
but this example shows a gradient from Z é.:

. . o "~
tranéparent hght gree.n to solid dark gr‘een ux ™
applied as a fill to a slightly larger version
of the circular text. See ch03/svg-10.html
for the full code for this example.

AS WITH THE <canvas> ELEMENT, LARGE BLOCKS OF TEXT ARE SOMEWHAT

CUMBERSOME 1IN SVG. THE TEXT ELEMENTS ARE ONLY REALLY USEFUL FOR _—
LABELS AND SHORT DESCRIPTIONS. BUT SVG OFFERS AN ALTERNATIVE-YOU

CAN EMBED HTML CONTENT INSIDE ANY ELEMENT WITH <foreignObject>. N

I

<rect x="5" y="5" width="10" height="160"

style="stroke-width: 5; stroke: rgb(102,102,102); fill: none;">
</rect>
<foreignObject x="10" y="10" width="100" height="150">

<body>
<p>
HAI!
 gﬁﬁva
IZ IN YR ELEMENT [E‘{;?I_E-!);EF;’T
WRAPPIN YR TXT YR TXT
</p>
</body>
</foreignObject>

Everything inside the <foreignObject> element is HTML; and unlike the
SVG <text> element, HTML can cope with wrapping text just fine by
itself. It's important to remember that the browser isn’t rendering the
contents of <foreignObject> as if they were HTML; the content is HTML
and can be interacted with in the normal way.

104

CHAFTER 3 Dynamic graphics

A second example will make this clearer.

loali]

- a @-

oo¥yINPNQ

S

On the right is a screenshot of the entire browser window; on the left
it’s zoomed in to just the content of the foreignobject element. The
Duck Duck Go home page has been scaled down and rendered upside
down inside the browser, but it’s still possible to type search terms and
see results returned (even if they're too small to read!). This was
achieved by wrapping an HTML document inside a <foreignObject>
element in SVG and then applying some transforms:

<svg id="mysvg" viewBox="0 0 800 600">
<g transform="rotate(180) translate(-800,-600)">
<foreignObject x="10" y="10" width="800" height="600">
<body>
<iframe src="http://duckduckgo.com/"
style="width:780px;height:580px">

</iframe>
</body>
</foreignObject>
</g>
</svg>

This example shows a few things you've seen before. The viewBox is set
to 800 x 600 pixels, even though the element is 320 x 240 pixels; this
takes care of the scaling. And an <iframe> element is used inside the
<foreignObject> to fetch the Duck Duck Go page. New in this example
are the <g> element for grouping SVG content and the transform attri-
bute, both of which we’ll look at in the next section.

Getting started with SVG 105

USER FRIENDLY by Illiad

-S0 1 MODIFIED THE PROXY g’ YOU NEED TO FIX MY MACHINE, '
SERVER TO ADD AN SVG WRAPPER |2 ALL THE WEB 15 UPSIDE DOWN NO. I DON'T LIKE
TO ALL HIS WEB PAGES & THIS *AUSTRALIAN
g MAYBE YOU SHOLLD CONSIDER INTERNET* TAKE ME
;’ LOOKING AT IT FROM A DOWN MIKE. MIKE?
= DIFFERENT NGLE o . / MIKE/
E = 3

[
=E

Copyright (c) 2000 lliad

NOTE THAT IN REAL LIFE, IT'S POSSIBLE FOR WEBSITES TO BLOCK
EMBEDDING LIKE THIS BY SENDING INFORMATION TO THE BROWSER TO
TURN ON EXTRA SECURITY FEATURES. THIS IS DONE TO PROTECT USERS
FROM MORE NEFARIOUS VERSIONS OF MIKE'S TRICK ON STEF.

Transforms, gradients, patterns, and declarative animation

SVG is a huge topic, worthy of a book by itself, and we've barely
scratched the surface so far. In this section, we'll finish by taking a
quick look at some of the more advanced features.

THE GROUPING ELEMENT, <g>. GROUPING IS ALSO USEFUL FOR OTHER PURPOSES,

2 ._ WHEN YOU WANT TO APPLY AN EFFECT TO A COLLECTION OF ELEMENTS, YOU USE
\
)\' FOR EXAMPLE, IF YOU WANT TO MOVE SEVERAL ELEMENTS AT THE SAME TIME.

You saw a transform in action in the last example of the previous sec-
tion. Here 1t 1s again:

<g transform="rotate(180) translate(-800,-600)">

The transform attribute accepts a space-separated list of commands that
are applied in order. The element is rotated 180 degrees and then,
because the rotation point by default is the upper-left corner, it’s
moved back into view with the translate transform. You could instead
pass a set of coordinates to the rotate transform and achieve the same
result in a single step:

<g transform="rotate(180,400,300)">

106 CHAPTER 3 Dynamic graphics

In addition to rotate and translate, there are several other transforma-
tion commands:

scale() —You've seen examples of scaling already. Earlier examples
scaled the entire viewBox. This command allows you to control it for
specific elements.

matrix() — This is a powerful transformation that allows you to emu-
late all the others in combination, if you understand the mathematics
of matrix transformations. If, like me, you missed that particular part

of the curriculum, it’s easiest to stick to the other transformations.

skewxX() and skewY() —See the following table.

No transform skewX(45)

>y

No transform

Y

skewY(33)

Getting started with SVG 107

THE TRANSFORMATION FUNCTIONS FOR SVG AND <canvas> LOOK SIMILAR,
AND THEY ARE. THE MAIN DIFFERENCE FROM A DEVELOPER PERSPECTIVE IS
THAT SVG TRANSFORMATIONS EXPECT ANGLES IN DEGREES, WHEREAS
<canvas> TRANSFORMATIONS EXPECT ANGLES IN RADIANS.

GRADIENTS

As with <canvas>, an SVG gradient is defined in a separate object. You
can define this object at the top of your SVG file or element inside a
<defs> element, and then reference the gradient object through CSS:

<svg viewBox="0 0 320 240">

<defs>
<linearGradient id="gradl" r
x1="0%" yl="0%" x2="100%"
y2="100%">

<stop offset="0%" style="
stop-color:rgb(127,127,127);
stop-opacity:1"/>
<stop offset="50%" style=" J
stop-color:rgb(255,255,255);
stop-opacity:1"/>
<stop offset="100%" style="
stop-color:rgb(127,127,127);
stop-opacity:1"/>
</1linearGradient>
</defs>
<rect x="20" y="20"
width="200" height="200"
style="fill: url(#gradl)">
</rect>
</svg>

The <rect> element references the gradil gradient through its fill style.
See the full listing in the ch03/svg-15.html file in the code download.

PATTERNS AND MASKS

You might expect that you could create a repeating background by
specifying something like fill="url(example.png)", but that won’t work.
You have to add the image to a <patterns:

108

CHAPTER 3 Dynamic graphics

<defs>
<pattern id="imgl" TG ALMOST FIISHED
patternUnits="userSpaceOnUse" ki) -~
width="315" height="212">
<image xlink:href="uf009705.png"
x="0" y="0"
width="305" height="212">
</pattern>
</defs> Usscfrizndypeg

Then use the pattern to fill:
<path d="M5,50

10,100 1100,0 10,-100 1-100,0 5‘%%.’?’;' ;Y
M215,100 ¥

a50,50 0 1 1 -100, “& P
0 50,50 061 1 100,0

M265,50

150,100 1-100,0 150,-100

-

fill="url(#imgl)">
The full listing is in ch03/svg-16.html.

You can apply the same pattern to a
<text> element, although you should

pick your image carefully to ensure =B ’r ., 2 8 E

that things are readable: (& a” w
- o’ v

<text x="0" y="120" n ‘ E i i r"‘th »

font-family="sans-serif"

font-size="80"

font-weight="bold"

fill="url(#imgl)" >
<tspan>HTML5</tspan>
<tspan x="0" y="180"

font-size="70">
ROCKS!

</tspan>

</text>

This code is taken from the file ch03/
svg-17.html.

Getting started with SYG 109

SVG is a large specification, and there’s more than one way to achieve
this same effect. Instead of applying the image as a background to the
text, the text can be used to clip the image. To create a mask, the main
change 1s that the text should be filled with white:

<mask id="imgl" clipPathUnits="userSpaceOnUse" width="320"
height="200">
<text x="0" y="120" font-family="sans-serif"
font-size="80" font-weight="bold" fill="white">

<tspan>HTML5</tspan>
<tspan x="0" y="180" font-size="70">ROCKS!</tspan>
</text>
</mask>

Then attach the mask to the <image>
element with the mask attribute:

<image xlink:href="uf009705.png" 11 N - P
mask="url(#img1)" = V™ E fe
X=Il_10ll y=||_5|| a ‘ '& f‘% g

width="340" height="220" />

The image is positioned to approxi-
mate the previous example; see the

code in ch03/svg-17-clippath.html.

WE'LL FINISH OUR TOUR OF THE ADVANCED FEATURES OF SVG WITH A
QUICK LOOK AT THE DECLARATIVE ANIMATION CAPABILITIES IT
OFFERS. IN THE FOLLOWING SCREENSHOTS, THE TEXT-PATTERN \

EXAMPLE HAS BEEN ANIMATED TO MOVE DOWN AND THEN BACK UP AGAIN.

[

10 CHAFTER 3 Dynamic graphics

[a- e
LT B RE k&b

Wed 22 Dec 2010 14:45:46 GMT Wed 2‘5 Dec 2010 14:45:50 GMT Wed 22 Dec 2010 14:45:55 GMT

S - m"u?"'d E
]

Let’s look in detail at how this is done in the listing from ch03/svg-
18.html.

UNLIKE THE <canvas> ELEMENT YOU DONT NEED TO RESORT TO
JAVASCRIPT TO GET ANIMATION. ANIMATIONS CAN BE DESCRIBED USING
@ / THE SAME XML MARKUP USED TO DESCRIBE THE SHAPES THEMSELVES.

&

g THIS IS THE SAME <text>
4 ELEMENT USED IN THE
PREVIOUS EXAMPLE.
<text x="0" y="120" font-family="sans-serif" font-size="80"
font-weight="bold" fill="url(#imgl)" >
<tspan>HTML5</tspan>
<tspan x="0" y="180" font-size="70">ROCKS!</tspan>
<animateTransform fill="freeze"
TO ANIMATE. ADD AN /4 YOU'LL ANIMATE THE
EXTRA cnﬂ,ﬁ NODE. THE attributeName="transform" type="translate" B;O?SElq'tRiN?;%%iRTy
ATTRIBUTES DETERMINE)
THE ANIMATION. values="0,0;0,220;0,0"
A SEMICOLON-SEPARATED LIST
begin="0s" dur="10s" OF VALUES FOR translate.
ONCE COMPLETE, REPEAT
INDEFINITELY. —— repeatCount="1indefinite">
</text>
THE ANIMATION WILL BEGIN
IMMEDIATELY AND RUN FOR A
DURATION OF 10 SECONDS.

NOTE THAT, UNLIKE WITH ANIMATIONS ON <canvas>, YOU DONT HAVE TO WRITE
PROGRAMS TO REDRAW THE SCENE EVERY SECOND. YOU JUST DECLARE WHAT THE

—— ANIMATION SHOULD BE AND LET THE BROWSER GET ON WITH IT. THIS IS WHY SVG
ANIMATION WAS EARLIER REFERRED TO AS DECLARATIVE ANIMATION.

Getting started with SYG m

SVG animations aren’t limited to simple attribute manipulations. Just
as you were able to make text follow a path, it’s also possible to make
an animation follow a path. Here’s an animation around a triangle.

|
Qe i" < .
t‘ - T . '..?'\'T i L ' -;‘Nl-'
{8 F a- x
¥ g r l ’
» I BT il ...' ' l MY f.
Wed 22 Dec 2010 17:52:22 GMT Wed 22 Dec 2010 17:52:25 GMT \r\s-(l 22 Dec 70]0 17:52:29 C\!T

You can see the changes for yourself in ch03/svg-19.html. Here are the
key points:

THE ABILITY TO ANIMATE ALONG A PATH ALLOWS YOU TO DEFINE
ANIMATIONS OF ALMOST UNLIMITED COMPLEXITY.

e
<

<text x="0" y="120" font-family="sans-serif" font-size="80"
font-weight="bold" fill="url(#imgl)">

EEE:EABT?S:E)ét> <tspan>HTML5</tspan>
MORE. <tspan x="0" y="180" font-size="70">ROCKS!</tspan>
<animateMotion THE PATH DRAWS THREE
THIS_ TIME THE / LINES (A TRIANGLE)
Ezghg:rtre?g EEOET; path="M0,0 150,100 1-100,0 150,-100 z* ANP CLOSES.
dur="10s" repeatCount="indefinite">
</text>

THE PATH IS RELATIVE TO
THE CURRENT POSITION
OF THE ELEMENT. THE ANIMATION WILL LAST 10 SECONDS

AND REPEAT INDEFINITELY.

12

SYG vs.

CHAPTER 3

Dynamic graphics

<canvas>

I AMLIKINK
THE <canvas> ELEMENT.
CLEAN AND SIMPLE APT
MAKINK HAPPY
DEVELOPER.

SVG HAS AN APT TOO, BUT IT'S
THROUGH THE BROWSER DOM

WHICH DOUBLES AS A PERSISTENT

OBJECT MODEL.

/

WITH <canvas>, YOU HAVE TO
MANAGE YOUR OWN OBJECTS.

AND IT HAS NO INTERNAL

STRUCTURE. AS YOU CAN SEE BY

COMPARING THE FOLLOWING

TWO SCREENSHOTS OF DOM

INSPECTOR.

File Edit Search View Help
Y [file:/{/home/robert/documents/writing/canvas-2.html] Inspect
v Document - DOM Nodes v ~ Object - DOM Node
| nodeName id = Local Name: canvas
(v # dssuiﬂem Namespace URI: http://www.w3.0rg/18
m
i Node Type:
| < HTML YD Element
HEAD nodeName nodeValue o1
! i-#text || height 240
~BoDY width 320
id mycanvas
|

(o &
File Edit Search View Help
[@ #& [file:/homejrobert/documents/writing/svg-2.html | Inspect
~ Document - DOM Nodes v ~ Object - JavaScript Object
nodeName id &5 | || Property Value "B
= #document ~addEventList... function addEve... [~/
| Lhtml ~-animationsP... function animati...
| =HTML appendcChild function append...
»HEAD [attributes [object NamedN. .. g
| - #text baseURI “file:/{fhome/frob...
| ~BODY checkEnclos... function checkE...
- dtext checkinterse... function checkin...
childElemen... 2
} . #text PchildNodes [object NodeList]
L rect P-children [object HTMLCal...
| . #text P-classList
line P className [object SVGAnI...
| - -#text ~clientHeight 0
‘ L #text clientLeft 0 I~

SVG ve. <canvas> 13

IS TRUE. BUT BROWSER DOM WELL, THERE ARE ISSUES
IS BEINK TOO HEAVYWEIGHT. IS GOOD ONCE YOU HIT A CERTAIN THRESHOLD IN

THAT I AM CHOOSING OWN OBJECT THE NUMBER OF OBJECTS, BUT SVG HAS
MODEL IN <canvas> WHEN MAPPINK OTHER ADVANTAGES.
SEVERAL THOUSANDS OF MINIONS.

THE NEXT TWO SCREENSHOTS

SHOW THE EFFECT OF ZOOMING IN
EIGHT TIMES ON A <canvas>
ELEMENT COMPARED TO AN SVG
ELEMENT.

anm A\

YA.NATURAL VECTORS IS BEINK NICE TRUE. BUT WHY

FEATURE. BUT BEINK PRACTICAL, CAN MAKE EXTRA WORK

JUST BE RESIZINK AND REDRAWINK FOR YOLRSELF?

<canvas> ELEMENT TO BE MATCHINK :
PAGE DIMENSIONS. /

/ SVG HAS OTHER ADVANTAGES: FOR

INSTANCE, IT'S EASIER TO INTEGRATE IT
WITH OTHER WEB CONTENT. ALSO, THE.
DECLARATIVE STYLE OF SVG MAY BE MORE
COMFORTABLE FOR WEB AUTHORS WHOSE
STRENGTHS LIE IN HTML AND (S5, A
—_—
)

HAVE BEEN DISCUSSINK THIS BEFORE. AM
NOT BELIEVINK MARKUP MONKEYS IS BEINK
THE SAME THINK AS REAL DEVELOPERS.

NOT ALL WEB AUTHORS NEED TO BE HARD-CORE
DEVELOPERS. THERE ARE OTHER BENEFITS TO THE
OBJECT MODEL AND DECLARATIVE MARKUP—-SVG
WILL BE MUCH EASIER TO MAKE ACCESSIBLE.

IS TRUE. BUT AGAIN BEINK PRACTICAL.NO)
BROWSER IS SUPPORTINK ACCESSIBILITY / '
FEATURES IN SVG YET.

SOUNDS LIKE A GOOD TIME TO LOOK AT
BROWSER SUPPORT FOR <canvas> AND SVG.

14 CHAPTER 3 Dynamic graphics

Browser support

Both <canvas> and SVG have wide support in current browsers, with
prospects for even better support in the respective next releases.
<canvas> support tends to be all or nothing, but the situation with SVG
is a lot more complex.

The SVG spec itself is about as complex as the HTML one, and no
browser fully supports it, so the following table lists the percentage of
the W3C SVG test suite that each browser passes. Figures aren’t avail-
able for all browser versions, so the results for the most recent test in
each browser are shown (thanks to www.codedread.com/svg-
support.php for the figures).

c e €@ 0

12 14 4 6 8 9 [10 | 1.5 12 5 5.1
<canvas> . ° ° ° ° °
<canvas> text . ° ° °
SVG score 89.23% 82.30% - | 59.64% 95.44% 82.48%
SVG as image)))) .)
SVG in CSS ° ° ° ° ° ° ° ° ° °
SVG as object .) . ° ° °
SVG in XHTML)) .) ° °
SVG in HTML . ° ° ° ° ° ° °

Key:

e Complete or nearly complete support

o Incomplete or alternative support
Little or no support

Supporting <canvas> in older versions of IE with explorercanvas

Internet Explorer was the only major browser that had no support for
the <canvas> element, although support has been added in IE9. But
older versions of IE have support for Vector Markup Language

Browser support 15

(VML). VML is a predecessor of SVG, and you've already seen that
SVG and <canvas> can do a lot of similar things. The explorercanvas
library implements <canvas> in 1E8 and earlier using VML. Activating
explorercanvas is as simple as including a <script> element in the head
of your HTML document:

<head>

<!—[1if IE lte 8]><script src="excanvas.js"></script><![endif]-—>
</head>

If you add that to any of the examples i [PY——

you've seen in this chapter, you
should see them rendering in IE8 as
the screenshot at right.

SVYG in XML vs. SYG in HTML

I mentioned earlier that SVG support
isn’t as clear-cut as <canvas> support.
This isn't just because the SVG speci-
fication is more complex but also
because there are more ways to use SVG from within a web page. This

is largely because SVG was originally envisioned as one of a family of
XML-based languages that would be used for web content.

In nearly all the major browsers, it has long been possible to embed
SVG content in the XML version of HTML/XHTML. Unfortunately,
there has been one major obstacle to this happening.

FULLY COMPLTIANT XHTML SHOULD BE DELIVERED FROM THE SERVER AS XML
CONTENT. THE SERVER TELLS THE BROWSER THE CONTENT TYPE OF THE FILE
IN THE HEADER OF THE HTTP RESPONSE. UNFORTUNATELY, IF YOU TRY TO
SEND AN XML WEB PAGE TO A VERSION OF INTERNET EXPLORER EARLIER ™
THAN 9. IT REFUSES TO PARSE THE PAGE. BECAUSE DEPLOYING SVG IN XHTML
REQUIRES BREAKING IE, FEW PEOPLE HAVE CONSIDERED IT PRACTICAL.

Embedding SYG as an image
SVG can be used in the element in the same way as any other

image format:

16 CHAFTER 3 Dynamic graphics

When used this way, SVG still has the advantage of being scalable; you
can set it to take up half the browser window, and it will remain sharp
no matter how high or low your user’s screen resolution. But you lose
the advantage of being able to manipulate the image from the Java-
Script—the elements of the image aren’t present in the DOM.

Referencing an SYG image from CSS
In the same way that it can be used as an image in HTML, SVG can be

referenced as an image in CSS:

div { background: url(svg-2.svg) top right no-repeat; }

™

THIS IS PARTICULARLY USEFUL IN CONCERT WITH (5535 background-size (23 3
PROPERTY. WHICH YOUILL LEARN MORE ABOLIT IN CHAPTER 10. YOU CAN CREATE ~__ Lp a

=
Embedding SYG as an object

BACKGROUND IMAGES THAT SCALE WITH THE SCREEN RESOLUTION BUT STAY SHARP.
The <object> element is a general-purpose method to embed any exter-

nal content in your web page. To embed SVG with <object>, you need
to supply two parameters specifying the filename and the file type:

<object type="image/svg+xml" data="svg-2.svg'></object>

In browsers with native support for SVG, the object-embedding
approach has results similar to including the SVG inline: the SVG ele-
ments are available in the DOM and can be manipulated. This tech-
nique works in every browser that has SVG support; and if you're
using the same SVG image on different pages of your site, it’s cached
the same way a normal image would be, making your site load slightly
faster. The corollary of this, of course, is that if you use the image only
once it will require a second request to the server, making your site
slightly slower to load.

SYG support in older browsers with SYG Web and Raphaé’l

BROWSERS AND IE OFFER A COUPLE OF JAVASCRIPT LIBRARIES THAT

YOU DON'T HAVE TO RELY ON DIRECT BROWSER SUPPORT FOR SVG. OLDER
ENABLE SVG SUPPORT THROUGH ALTERNATIVE MEANS.
S

| |

Browser support 17

SVG Web is a JavaScript library that, if it detects the browser has no
native support for SVG, will replace any SVG graphics it finds with a
Flash movie. The Flash movie will then take care of rendering the SVG
in the browser. You have to make some slight modifications to your
web page in order to enable SVG Web. The first is in the head of the
document, where you reference the SVG Web JavaScript library:

<script src="svg.js"></script>

Then you have to surround each of your SVG graphics with <script>
tags:

<script type="image/svg+xml">
<svg viewBox="0 0 320 240">
<rect x="50" y="50" width="100" height="100"
style="fill: rgb(255,0,0)"></rect>
<line x1="50" y1="50" x2="150" y2="150"
style="stroke: rgb(0,127,127); stroke-width: 5;"></line>
</svg>
</script>

Your SVG graphics will then render as SVG in browsers that support it
and as Flash movies in browsers that don’t support SVG. In the follow-
ing examples, at left you can see that SVG Web allows Internet
Explorer to render inline SVG, although it doesn’t match the native
support offered by browsers such as Firefox (shown on the right).

1é

CHAFTER 3 Dynamic graphics

The Raphaél JavaScript library takes a different approach. Instead of
making existing SVG work in IE, it presents an API for creating graph-
ics. In Firefox, Chrome, Safari, and Opera it creates SVG; in IE, it cre-
ates VML. The interface Raphaél provides looks similar to the <canvas>
API:

var paper = Raphael(10, 50, 320, 200);
var circle = paper.circle(50, 40, 10);
circle.attr("fill", "#f00");
circle.attr("stroke", "#fff");

RAPHAEL LOOKS SIMILAR TO <canvas>, BUT IT'S STILL SV6
UNDERNEATH. THIS MEANS THAT WHEN YOU CALL THE CIRCLE FUNCTION,
IT RETURNS AN OBJECT. THIS OBJECT CAN LATER BE MODIFIED, AND
THE DRAWING WILL UPDATE TO REFLECT THE CHANGES: YOU DON'T HAVE
TO CLEAR EVERYTHING AND REDRAW IT AS YOU DO WITH <canvas>.

Summary

In this chapter you've learned how you can generate graphics in your
web page on the fly using two different HTML5 technologies — <canvas>
and SVG. Because both can be created and updated dynamically, they
don’t need the user to reload the page in order to present new informa-
tion to the user.

You've learned the basic techniques for drawing shapes and lines with
both technologies, as well as how to import images and apply effects
and transformations. With <canvas> you've looked at how to do simple
animation while with SVG you saw how you can import whole web
pages and apply transformations to them.

NOW THAT YOU CAN CREATE YOUR OWN GRAPHICS ON THE FLY, IT'S TIME TO
COMPLETE YOUR EDUCATION ON THE MULTIMEDIA POSSIBILITIES OF HTMLS
WITH A LOOK AT THE NEW AUDIO AND VIDEO ELEMENTS. IN THE NEXT
CHAPTER, YOU'LL SEE THAT HTMLS5 MAKES ADDING AUDIO AND VIDEO TO WEB
PAGES AS EASY AS ADDING IMAGES TO WEB PAGES IS IN HTMLA.

Audio and video

This chapter covers

Why audio and video are important on the web
Addling audio and video to your web pages
Encoding audio and video files for the web

Integrating video with other web platform features and content

Native media support is one of the best known as well as one of the most
controversial HTML5 features. In this chapter, you'll learn why HTML5
media support is great, why it’s frustrating, and the practical factors you

need to consider when using it.

Audio and video on the modern web

Audio and video are key parts of the modern web. For many sites, video
and audio are parts of the content as integral as the text and pictures —
and 1n some cases, they're more important.

19

120 CHAPTER 4 Audio and video

i =

i BBC Playes - Listen live - 88C . | &

Buzz Out Loud 1459 Meat puppets behind the
servers (Podcast)

BBC Introducing with Tom Robinson
100 Msray. ind by e Bty

| &

W Meg & Dia

For sites like BBC Radio 6 and last.fm, audio is the whole point of the
page. And for podcasts like Buzz Out Loud, visitors expect to hear or
see the content.

= VIDEO: Is Your Cat Coafused by the Voting
<> (™ Tube} System Referendum?
Hove i Should Have Ended: Call of Duty Modern Wartare 2

[T BBC News Channel

[T BBC Radio 5 live

News sites like BBC News|often offer video and audio as alternative con-
tent, and sites such as YouTube are all about the video content and are
often used to add video to other sites such as I Can Has Cheezburger.

Despite their rising importance, HTMLA offers no built-in method for
adding audio or video to a web page. This makes embedding audio and

Audio and video on the modern web 121

video relatively complex. Compare the markup required to add an
image to a web page with that typically required to add a video.

Image Video
<img <object
width="320" classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"
height="240" codebase="http://download.macromedia.com/
id="myimage" pub/shockwave/cabs/flash/
src="myimage.png"> swflash.cab#version=6,0,40,0"

width="320" height="240"
id="myvideoname">
<param name="movie"
value="myvideo.swf">
<param name="quality" value="high">
<param name="bgcolor" value=#ffffff>
<embed href="myvideo.swf"
quality="high" bgcolor="#ffffff"
width="320" height="240"
name="myvideoname"
type="application/x-shockwave-flash"
pluginspage="http://www.macromedia.com/
go/getflashplayer">
</embed>
</object>

Because there’s no native support for audio and video, web authors
have had to resort to browser plug—ins. The web has largely settled on
Adobe Flash as a de facto standard, but as the previous code shows,
this is still a good deal more complex than putting an image on a page.
And that’s not all the code that’s required: to add controls such as Play
and Pause, there must be code written inside Flash, and even more
code if the player needs to be integrated into other page content.

ONE OF THE REASONS FOR YOUTUBE'S POPULARITY IS THAT IT REDUCES THE
COMPLEXITY OF DISPLAYING VIDEO ON THE WEB-INSTEAD OF DOING ALL THE
WORK YOURSELF, YOU UPLOAD THE VIDEO TO YOUTUBE AND THEN COPY AND
PASTE SOME CODE. BUT HTML SHOULD MAKE IT THAT SIMPLE WITHOUT THE NEED
FOR A THIRD-PARTY SITE. THIS IS A PROBLEM REMEDIED IN HTMLS WITH THE
INTRODUCTION OF THE <audio> AND <video> ELEMENTS.

122 CHAPTER 4 Audio and video

What is a plug-in?

A plug-in is a generic extension method for HTML that allows the page author to
indicate embedded content that is to be rendered by an external program. The
web browser hands over control of that region of the web page to the external
program. This external program is referred to as a plug-in.

BROWSER
| ——

The content rendered by the plug-in is like a black box to the browser. Browser
features like keyboard shortcuts, cookie preferences, and pop-up blockers don’t
apply.

Following is the HTML5 code for embedding audio and video, which
compares favorably with the element. The screenshots show the
default presentation of the <video> and <audio> elements in Firefox with
the controls visible.

Audio Video

<audio src="myaudio.ogg" controls> <video src="myvideo.ogv" controls>
</audio> </video>

The <audio> element 123

FIREFOX SHOWS THE CONTROLS ON THE <video>
ELEMENT ONLY WHEN THE USER MOUSES OVER AND AT
INITIAL PAGE LOAD, BUT OTHER BROWSERS HAVE THEM
VISIBLE UNTIL THE VIDEO STARTS PLAYING.

Both elements in the previous example have been set to 320 x 240 pix-

els with CSS, although in the case of the <audio> element you can see

this doesn’t achieve much. The <video> element is showing the first
frame of the video. Note that the video is 320 x 180 pixels, but instead
of stretching the video and changing the aspect ratio, the video is made

as wide as possible and centered vertically.

NOW YOU KNOW WHY HTMLS HAS <audio> AND <video> ELEMENTS
AND WHAT THE BASIC CODE LOOKS LIKE. IN THE FOLLOWING
SECTIONS, YOU'LL LEARN ABOUT THE <audio> AND <video>
ELEMENTS IN MORE DETAIL, STARTING WITH THE <audio> ELEMENT.

The <audio> element

Browser support quick check: audio

@CL@®e

Standard

4.0

3.5

9.0

10.5

4.0

Audio on the web gained something of a bad rap in the
1990s as thousands of people happily attached back-
ground music to their GeoCities pages, but there are
plenty of legitimate uses for audio in a web page.
Sometimes, websites are entirely about sound —band
home pages should have samples of the band’s work;
dictionaries should allow you to listen to pronuncia-
tion; games need sound effects. As you've learned, until
the <audio> element, the only available option was a
browser plug-in. In this section, you'll learn about the
<audio> element, its supported attributes, file formats,
and how to convert between them.

124 CHAFPTER 4 Audio and video

Common attributes: controls, autoplay, loop, and preload
The <audio> element has several attributes that control its behavior,
including src and controls, which you saw in the simple example. It’s
possible to add the element with no attributes at all:

<audio src="myaudio.ogg">
</audio>

HEY! WHERE IS IT?!!

)

The screenshot isn’t interesting because there’s nothing to see —with-
out the controls attribute, the element isn’t visible on the page. Having
no visible controls means you have to start the audio playing by other
means —either by using the autoplay attribute (discussed in a moment)
or by providing your own controls (which you'll learn about in the sec-
tion “The <video> element”).

Adding the controls attribute means the <audio> element has visible
properties:

<audio src="myaudio.ogg"

</audio>

The preload attribute lets you hint to the browser whether a file is likely
to be needed, so you can avoid excessive server load:

<audio src="myaudio.ogg" controls preload="metadata">
</audio>

It can take the following values:

none— You don't believe the audio resource is likely to be used.

metadata— You don’t believe the audio is likely to be used, but the
browser should fetch information such as the dimensions, first
frame, and duration.

The <audio> element 125

auto— The server will have no problem with the browser download-
ing the entire video even if the user doesn’t explicitly create it.

The browser is free to ignore the preload attribute —for example, a
mobile browser may choose not to download any media over a limited
cell connection unless the user explicitly requests it.

The autoplay and loop attributes m

specify that the file is to start playing
as soon as the user loads the page and
to continue to play repeatedl_y after
it’s started:

<audio src="myaudio.ogg" controls

autoplay loop>
</audio>

Until recently the 1oop attribute didn’t have any effect in browsers, but
you can simulate the effect in older browsers with a little JavaScript:

<audio src="myaudio.ogg" controls autoplay onended="this.play();">
</audio>

The ended event is fired when the video has finished playing. The code

waits for that event and starts the audio playing again when it happens.

Be careful with autoplay. Remember, your users may be working in a
quiet environment, or listening to music while they’re browsing, or
depending on the audio provided by their screen-reader software, and
they may not appreciate an audible interruption from a website they
were only visiting to find a phone number.

IF YOU'RE WONDERING WHY THE <audio> ELEMENT HAS OPENING AND
CLOSING TAGS, IT'S BECAUSE <audio> IS ALSO A CONTAINER FOR
OTHER CONTENT. THAT CONTENT IS DISPLAYED ONLY IF THE
BROWSER DOESN'T SUPPORT THE <audio> ELEMENT. THIS ALLOWS
YOU TO WORK AROUND A LACK OF BROWSER SUPPORT.

126

CHAPTER 4 Audio and video

The next example shows an <audio> element in IE8. The <audio> ele-
ment itself is ignored, and just the contained content is displayed:

<audio src="myaudio.ogg" controls>
Audio not supported. AUDTIO NOT SUPPORTED.

</audio>

Normally you would want to display something more useful than just
the fact that the <audio> element isn’t supported. At least if you show a
link, the user has the chance to download the audio file and listen to it
in an external player:

<audio src="myaudio.ogg" controls>

Download myaudio.ogg

</audio>

DOWNLOAD MYAUDTIO.0GG

Compare that with a browser like Firefox that does support the <audio>
element, but not the media type specified in the src:

<audio src="myaudio.ogg" controls>
Audio not supported.

</audio>

<audio src="myaudio.mp3" controls>
Audio not supported.

</audio>

> | 00:00 o)

Firefox doesn’t support MP3, so the
user still sees an audio control, but it’s
inactive. In other browsers, you may
see a broken image icon or some
other indication that the media is
invalid.

The <audio> element controls allow for a limited amount of styling with
CSS. Here it’s been set to 200 pixels square in Firefox:

The <audio> element 127

audio {
width: 200px;
height: 200px;
outline: 1px solid #ccc;

}

The outline shows the extent of the element. > — 1 4 |

As you can see, the width is applied to the
controls but the height is ignored. The next
example makes that clearer:

audio {
width: 100px;

height: 50px; m

outline: 1px solid #ccc;

The controls have a minimum intrinsic width. If you try to make them
smaller than that, the width will be ignored, as you can see from the
still-visible outline in this example:

audio {
width: 50px;

height: 25px;

outline: 1px solid #ccc;

Other browsers display slightly differently, as you can see in the next
examples. Chrome (left) behaves similarly to Firefox: the controls
extend out of the defined width and height. But Opera (right) is a little

cleaner-looking at narrow width.

128 CHAFPTER 4 Audio and video

It’s currently impossible to change the colors of the controls in any
browser. CSS like the following sets the background color, but it
doesn’t make any difference to the controls themselves:

audio {
width: 200px;
height: 50px;
outline: 1px solid #ccc;
background-color: #000;
color: #fff;

But it’s possible to use the background in concert with the otherwise-
ignored height property:

audio {
width: 200px;
height: 200px;
outline: 1px solid #ccc;
background:
url(‘dust-puppy.svg’)
no-repeat top center;

background-size: contain; {
) omssssss—— 110)

}

You could use this CSS to provide an image
of the artist or some sort of cover art.

DESIGNERS MAY BE SEVERELY DISAPPOINTED WITH THE LACK OF STYLING OPTIONS
AVAILABLE FOR THE AUDIO CONTROLS, BUT ALL ISNT LOST. IN THE LATER SECTION
“CONTROLLING AUDIO AND VIDEO WITH JAVASCRIPT.” YOU'LL SEE HOW YOU CAN
WRITE “YOUR OWN CONTROLS, WHICH YOU CAN THEN STYLE HOWEVER YOU WISH.

YOU'VE SEEN HOW SIMPLE IT IS TO EMBED AUDIO FILES, BUT UNFORTUNATELY
THAT'S NOT THE END OF THE STORY. IN THE SAME WAY THE HTMLS STANDARD DOESN'T
SPECTIFY WHICH TYPES OF IMAGES A BROWSER SHOULD SUPPORT ON , IT ALSO
DOESN'T SPECIFY WHAT TYPES OF FILE SHOULD BE SUPPORTED BY <audio>: BUT
UNLIKE IMAGES, THERE ARE NO AUDIO FORMATS THAT ALL THE BROWSER MAKERS
HAVE DECIDED TO SUPPORT. THE NEXT SECTION DISCUSSES THESE ISSUES.

The <audio> element 129

Codecs and license issues

Audio files are usually stored in a compressed format. To be stored on a
computer, they must be encoded into that format; to be played back,
they have to be decoded once again. The software that perforrns this
encoding and decoding is called a codec. Music files on your computer
usually have a file extension that identifies which codec is needed to
decode them.

What is a codec?

In principal, it’s possible to describe the raw data of audio and video streams to
an arbitrary accuracy. For audio, you'd store the amplitude of the sound wave
for each moment in time you wanted to play the sound back; for video, you'd
store the color of each pixel for each frame (usually 25-30 per second) as well
as the sound. But this would lead to impossibly large files for anything of a useful
length.

In practice, you want to compress the audio and video data in the same way you
might compress a large file into a zip archive. A codec is what’s used to com-
press audio and video data for storage and later to decompress the same audio
and video to be played through speakers and displayed on screens in real time.

Codecs can be split into two broad categories: lossless and lossy. Think about a
zip archive: when you extract the content from it, you expect to get back the ex-
act same files you put in—it’s a lossless compression. In the same way, some
codecs are capable of compressing audio and video with no loss of information.
But these files are necessarily still large. The more interesting set of codecs for
the web are lossy—each time they’re used to encode a video stream, some infor-
mation is thrown away, never to be seen again. These codecs can achieve far
greater compression at the expense of some loss of audible or visual quality; the
trick is to throw away data that makes as little difference to human perception
as possible.

YOU'VE ALMOST CERTAINLY HEARD OF AT LEAST ONE CODEC: MPEG-1 (OR 2)

AUDIO LEVEL I1ITI, COMMONLY KNOWN AS MP3. MP3 IS A PERFECTLY GOOD

CODEC TECHNICALLY-IT WAS THE FIRST POPULAR CODEC ABLE TO MAKE A

TYPICAL POP SONG SMALL ENOUGH TO BE DOWNLOADABLE WHILE RETAINING
CD QUALITY-BUT THERE ARE ISSUES OTHER THAN THE TECHNICAL ONES. A

The problem with the MP3 codec is that there are several patents on it;
and if you want to distribute software that encodes and decodes MP3,

130

CHAFPTER 4 Audio and video

you need to pay to license those patents. Mozilla, the makers of
Firefox, takes the position that the web should be built out of free and
open standards and so doesn’t support MP3; instead, Firefox supports
the open Ogg Vorbis (OGG) format. Opera agrees. Google also agrees
in principal but for practical reasons distributes Chrome with MP3
support; Google has also released its own video format, WebM (which
will be discussed further in the video section), which can also be used
in audio-only mode. Apple and Microsoft both already have licenses to
distribute MP3 codecs, so Safari and IE do support it; but, crucially,
they don’t support the free and open OGG format out of the box.

The different format support is summarized in the next table. The short
version is this: no one file format works on all browsers. You'll need
multiple files to support them all.

WAV | OGG | MP3 | AAC | WebM
X gg 8 5 5 5 8
[3]
[
=
3} -
o /| 35 | 35 ~ ~ 4
E
5
o
o
8o | A | -~ ~ 9 9 *
Q.-a _,1
235
s
o
8 O 105 | 105 | ~ ~ 11.1
2
m
@ 4 *k 4 4 *k

* IE9 will support WebM if the user downloads an additional
codec.
** Safari will support anything that can be played by Quick-
Time. Users have to download additional codecs.

To encode a file to OGG, you can use the oggenc command-line utility
available from www.rarewares.org. Use it to convert an uncompressed
WAV file like this:

oggenc myaudio.wav

The <audio> element 131

The output is a file called myaudio.ogg. To improve the quality of the
encoding, use the -b flag to set the bitrate. The -o flag allows you to
specify the output filename:

oggenc myaudio.wav -b 256 -o myhighqualityaudio.ogg

For MP3 audio, you can use the lame command-line utility, also avail-
able from www.rarewares.org:

lame myaudio.wav myaudio.mp3

Again, you can set the minimum bitrate with a command-line flag:

lame -b 256 myaudio.wav myhighqualityaudio.mp3

Bitrate

Bitrate is the number of bits (individual units of information) that are conveyed
or processed per unit of time. Higher bitrates mean greater sound fidelity but
also larger file sizes. Typical bitrates for CD-quality audio are in the 100-160
kbit/s range.

OGG AND MP3 BOTH WORK BY THROWING AWAY DATA THAT MAKES LITTLE
AUDIBLE DIFFERENCE TO THE HUMAN EAR, BUT THEY TEND TO THROW AWAY
DIFFERENT PARTS OF THE AUDIO DATA. FOR THIS REASON, YOU SHOULDN'T
CONVERT BETWEEN OGG AND MP3 EXCEPT AS A LAST RESORT—IT'S FAR BETTER
TO CONVERT FROM A LOSSLESS FORMAT (FREE LOSSLESS AUDIO CODEC IFLACI,
WAV, OR AN ORIGINAL CD) TO BOTH OGG AND MP3.

Command-line utilities are handy, media.io

especially if you have a large col- R Gt

lection of audio files, because you ety B o .k W ot chiy 5

can write a script to convert them W =

all in a single batch. If you just
have one or two files to convert,
you may prefer a GUI-driven
approach. For this, there’s a handy
website: http://media.io. Visit the
site, and select the file you want to
encode from your hard drive.

www.rarewares.org

132

CHAPTER 4 Audio and video

After the file is uploaded, you're given a choice of four options for the
codec and, if appropriate, a choice for audio quality.

media.io

Online Audio Converter

Select your e and upload i media io will corvert it immediatety. Supporied Bie lormats and S sires

Upload uploaded Meg & Dia - It's Always Stormy In Tillamook - 02 My Ugly Mouth flac

26 MB uploaded

Select Format MP3 L WA 066 WA

Select Quality Exteme = High -132 Kormal -1 Lowey -3

| g @ Taeasmey G s

media.io Select the options you need,

) , and click Convert; a few sec-
Converting Your Music

Your comvered Fies pliy in a moment this windaw. Onds later’ your enCOded ﬁle
Converied Me & Déa - It's Always Stormy In Tilamook - 02 My Mouth.flac & Will be available to download.
Meg & Dia - It's Always Stormy In Tillamook - 02 My Ugly Mouth.ogg Note that the 192 kbps OGG

encoded file is approximately
20% of the file size of the

lossless original.

You'll have noticed that the file used in this example, despite being
originally encoded with the free FLAC codec, isn’t free content.
Although it’s in the OGG format supported by Firefox, Chrome, or
Opera, I'm not allowed to upload it to my website because I have no
rights to redistribute it. But it will now take up less space on my phone!

Even if I could upload it, the audio wouldn’t play in IE or Safari.
Unless users have installed additional codecs in their operating sys-
tems, Safari and IE won't play the OGG file —they need MP3.

The <audio> element 133

If different browsers require different file types, how can you support
multiple browsers with a single src attribute? HTML5 anticipates this
issue and provides an easy mechanism for providing the correct source
to each browser. Let’s look at that in the next section.

Using multiple sources
As you've just seen, you need to be able to provide different audio files
to different browsers. But each <audio> element only allows you a single
src attribute, so how can you manage that? The design of the <audio>
element has anticipated this requirement. Multiple sources can be pro-
vided for the <audio> element by using the <source> element:

<audio id="myaudio" controls>
<source src="myaudio.mp3" type="audio/mp3">
<source src="myaudio.ogg" type="audio/ogg">
No audio support!

</audio>

The following tables list the common file extensions and MIME types

for audio.
Audio type File extensions MIME types
MP3 .mp3 audio/mpeg
MP4 .m4a, .m4b, .m4p, .m4v, audio/mp4
.mér, .3gp, .mp4, .aac audio/aac

0GG .0gg, .0ga audio/ogg

WebM .webm audio/webm

WAVE .wav audio/wave (preferred)
audio/wav
audio/x-wav
audio/x-pn-wav

Browsers are expected to scan the list of <source> elements from top to
bottom and load the first one the_y believe they can play. By using some

134

CHAPTER 4 Audio and video

JavaScript, you can interrogate the <audio> element and find out which

file 1s loaded.

e e

PLAYING FILE MYAUDPIO.OGG PLA FILE MYAUDIOMP3

Firefox plays the .ogg file. Internet Explorer plays the .mp3 file.

Here’s the snippet of JavaScript used in the previous screenshots. Add
it to the <audio> element as an attribute, and add a <div id="source"s</
div> after the <audio> element to display the output:

onloadeddata="document.getElementById('source')

.innerHTML = 'Playing file ' +
this.currentSrc.slice(this.currentSrc.lastIndex0f('/')+1);"

This code is executed in the loadeddata event, which means after the
browser has loaded identifying information about the file. You'll learn
more about manipulating HTML5 media elements with JavaScript in
the section “The <video> element.”

AUDIO IS FINE, BUT IT LACKS VISUAL IMPACT.LET'S MOVE ON TO
- EMBEDDING VIDEO. IN THE NEXT SECTION, YOU'LL SEE THAT ADDING
~~ VIDEO TO APAGE IN HTMLS IS JUST AS SIMPLE AS ADDING ALIDIO.

The <video> element

For the many people who don’t obsessively read standards groups’
mailing lists, the first time they became aware of HTML5 was when
they found out that Flash video doesn’t work on the iPhone but
HTML5 video does. As you saw in the introduction, the goal of the
HTML5 <video> element is to make embedding video in your pages as
easy as embedding images. This section looks at the details of making it
work. We'll follow a pattern similar to the previous section: first the

USER FRIENDLY by J.D. "liliad” Frazer

The <video> element 135

WHAT DO YOU MEAN, HTMLS
SUPPORTS VIPEO?

IT HAS AN ELEMENT

FOR VIDEQ.LIKE
HTMLY HAS AN ELEMENT
FOR IMAGES.

OOPTRIGHTED) 2007 2.0, “1iliad™ Frazer HTTF:/ IWWW.USear RIENOLY0RG)

BUT I SEE VIDEO ON THE WEB
ALL THE TIME, I EVEN SET UF A
WEBCAM TO MONITOR MY CAT.

IT PROBABLY USES
FLASH. EVER CHECKED
IT ON YOUR IPHONE?

WHERE ARE YOU
TIBBLES?/? WHAT HAVE
YOU DONE WITH MY CAT!

allowed attributes, then the various encoding issues, and finally how to

convert between file formats

Browser support quick check: video

Standard
‘. 4.0
@ -
/= 9.0
-
O 10.5
@ 4.0

The basic <video> element looks like this:

<video src="00092.webm"></video>

A <video> element without controls is a lit-
tle more interesting than the equivalent

The sample video

<video> element attributes

tion on audio.

<audio> element because you at least have
the first frame of the video to look at. This
screenshot was taken in Firefox; Opera

and Chrome should work just as well for

the WebM format.

The sample video used in this section’s examples is of the au-
thor playing American football. Because this video was taken
by the author’s mother, we can neatly sidestep any issues in-
volving media distribution rights.

The <video> element supports the same attributes as the
<audio> element, with similar results. This section
quickly runs through them in the same way as the sec-

136

CHAPTER 4 Audio and video

As with audio, you can enable the
standard controls with an attribute:
<video src="00092.webm"

controls preload="metadata">
</video>

As with the <audio> element, the preload
attribute provides a hint to the browser
about how likely this video is to be
played by the user.

If you add the autoplay attribute, on
desktop browsers, the video will
download and start playing as soon
as possible:

<video src="00092.webm"
controls autoplay loop>
</video>

The controls are available, but they auto-
hide as the video starts playing.

As with the <audio> element, 1oop only works on the most recent browser
versions, but it can be simulated with the same bit of JavaScript:

onended="this.play();"

Also as with the <audio> element, the <video> element can contain fall-
back content. At the end of this chapter, we'll look at using that content
to embed an alternative player for your videos using a plug-in, falling
back to HTMLA technologies for browsers that don’t support HTMLS5.

The <video> element also has its own specific attributes: poster, width,
height, and audio. Let’s look at each of those in turn.

The poster attribute lets you control what’s shown in the <video> ele-
ment when a video isn’t playing. By default, browsers show the first
frame of the video, but you can supply your own image:

<video src="videofile.ogv"
poster="posterimage.jpg">
</video>

The width and height attributes set the
width and height of the <video> element:

<video src="videofile.ogv"
width="400px" height="300px">
</video>

Note that this doesn’t directly set the width
and height of the video itself; the aspect
ratio of the video 1s always preserved. You
can also set the width and height with CSS:
video {

width: 400px;
height: 300px;

If you set width and heignt attributes and
also set the width and height with CSS, the
CSS wins:
<video src="videofile.ogv"

width="400px" height="300px"

style="width: 320px;

height: 180px;">

</video>

The muted attribute sets the default volume
of the video to 0:

<video src="videofile.ogv" muted>
</video>

Unfortunately it doesn'’t yet work in any
browsers, but you can fake it with this bit
of JavaScript:

onloadeddata="this.volume = 0;"

The <video> element

LY

B0iZ kI
Faen.

] I
[PR

b.

LY

137

138 CHAFPTER 4 Audio and video

Containers, codecs, and license issues

The situation with video is even more complex than with audio because
video files need both a visual and an auditory stream, so they need both
video and audio codecs. A format to contain both audio and video also

needs to be defined.

YOU NOW KNOW ABOUT ALL THE ATTRIBUTES AVAILABLE ON THE <video>
ELEMENT. IT'S TIME TO ADDRESS THE THORNY ISSUE OF VIDEO CODECS, WHICH IS
EVEN MORE OF A MESS THAN THE SITUATION WITH AUDIO CODECS. THIS HAS BEEN
ONE OF THE MORE CONTENTIOUS ISSUES IN THE WRITING OF THE HTMLS SPEC,
NOT LEAST BECAUSE VIDEO SUPPORT IS SEEN AS BEING SO IMPORTANT.

UNLIKE AUDIO FILES, WHERE THE FILE EXTENSION IS LINKED DIRECTLY
TO THE CODEC BEING USED, WITH VIDEO THE FILE EXTENSION IS LINKED
TO THE CONTAINER FORMAT. TO BE ABLE TO PLAY THE VIDEO, THE BROWSER
NEEDS TO SUPPORT THE CONTAINER FORMAT, THE VIDEO CODEC, AND THE
AUDIO CODEC. IN PRACTICE, THIS ISN'T TOO MUCH OF A FACTOR BECAUSE
AUDIO CODECS WITHOUT LICENSE FEES ARE ALWAYS PAIRED WITH VIDEO
CODECS THAT DON'T REQUIRE A LICENSE, AND VICE VERSA.

MPEG-4 | Ogg/Theora WebM

X gg 5* 5 8
(3]
()
(=
o -
Sa @ ~ 35 4
o &
s _
%‘; / \ 9 ~ %
g 4
oS
[}
2 O ~ 10.5 11.1
e
m

@ 4 Kk Kk

* Google has announced that Chrome will stop supporting

MP4 in a future release.

** 1E9 will support WebM if the user downloads an addi-

tional codec.

*** Safari will support anything that can be played by Quick-

Time. Users have to download additional codecs

The <video> element 139

Following are the common file extensions and MIME types for video.

Video type File extensions MIME types
MPEG-4 .mp4 video/mp4
0OGG .0gg, .ogv video/ogg
WebM .webm video/webm

MPEG-4 profiles

The MPEG-4 standard contains several different profiles in order to support a va-
riety of different expected use cases, ranging from Blu-ray and HDTV to mobile
phones with low screen resolutions. Mobile devices aren’t expected to support
the same profiles as desktop PCs or dedicated home multimedia equipment, so
when you’re encoding videos for use on iPhones make sure you’re targeting the
Simple Profile.

Easy encoding with Miro Yideo Converter
Rather than mess around with the different codecs and encoding
options yourself, there are tools that make things easy for you. One of
the simplest is the Miro Video Converter, available from www.

mirovideoconverter.com.

Miro Video Converter doesn’t present you with a lot of options —just a
place to drop the file you want to convert; a drop-down list to say what
you want to convert it to; and a button to
start the conversion. After you drop a
video file on the central area, only the out-
put format needs to be selected before
you're ready to go.

The first three options are the main ones s oy sl o O
that interest us:

a
1

Theora is the OGG video format sup-
ported by Opera and Firefox.

140 CHAPTER 4 Audio and video

WebM (VP8) is Google’s new video codec, supported by Chrome and
newer versions of Opera and Firefox.

MPA4 videoi s the format supported by Safari and IE.

Theora

Farmats

VéeoM (vpE)

MPS Video

MPZ {Audio Only)
Davices: Andraid

Baheld 0

Magic / myTouch

Nexus Oree
evices Apple

iPad

iPhone

iPod Crassic

iPod Nano
| iPod Touch
|Devices: Other

o

The additional options are variations of
these main three, except that the output
video is scaled for the particular device.

After you set the option, click Convert and,
depending on how large your video is, wait
a few minutes or a few hours. Repeat the
process for as many encodings as you
require.

The main advantage of this approach is that
it'’s easy and requires little expertise. The
disadvantage is that if you don’t like the
results, you have to take a different
approach—there are no conﬁguration
options for you to tweak.

MIRO VIDEO CONVERTER CAN GIVE YOU A HEAD START IF YOU WANT A MORE FINE-
TUNED APPROACH. NOTE THE FFMPEG OUTPUT BUTTON AT LOWER RIGHT IN THE
=~ FIGURE. FFMPEG IS THE COMMAND-LINE UTILITY THAT MIRO VIDEO CONVERTER
USES TO DO THE ENCODING. IN THE NEXT SECTION, YOU'LL SEE HOW YOU CAN USE
FFMPEG DIRECTLY FOR FINER-GRAINED CONTROL OVER THE ENCODING PROCESS.

Advanced encoding with FFmpeg

FFmpeg is a command-line tool originally written for the Linux operat-

ing system. It’s powerful and has thousands of options that you can set

by passing options on the command line. Rather than get into the

details of how FFmpeg works, which could easily take up a few

The <video> element 141

chapters, let’s use the Miro Video Converter output as a starting point
and look at some easy ways to tweak things.

If you click the FFMPEG Output button while encoding a WebM
video, you'll see that the command being used, on Windows, is some-
thing similar to this:

ffmpeg-bin\ffmpeg.exe -y -i "C:\00092.MTS" -f webm
-vcodec libvpx -acodec libvorbis -ab 160000
—-crf 22 "C:\00092.webmvp8.webm"

You can run this yourself at the command prompt. Here’s a quick run-
down of what the parameters mean (don’t worry too much about the
details —for the most part you won't need to change these):
-y—Opverwrite any existing output without prompting.
~f—Container format.
~acodec — Audio codec to use.
—crf—Set the constant rate factor (crf). This automatically varies the
bitrate to maintain a consistent quality.
~i—Input file.
~vcodec— Video codec to use.

~ab— Audio bitrate to use. Bigger numbers lead to larger files.

One easy change you might want to make is to change the size of the
output video, using the -s parameter. This example sets the output to

320 pixels wide by 180 pixels high:

ffmpeg-bin\ffmpeg.exe -y —-i "C:\00092.MTS" —-f webm
-vcodec libvpx -acodec libvorbis -ab 160000
-s 320x180 -crf 22 "C:\00092.webmvp8.320.high.webm"

It’s also easy to adjust the quality of the output file by specifying a
bitrate. To do SO, use the -b parameter:

ffmpeg-bin\ffmpeg.exe -y —-i "C:\00092.MTS" —-f webm
-vcodec libvpx -b 3600k -acodec libvorbis -ab 160000
-s 320x180 "C:\00092.webmvp8.high.webm"

142

CHAFPTER 4 Audio and video

The same options can be applied to the command for iPhone MP4
encoding, although that has a few extra options specified by default:

ffmpeg-bin\ffmpeg.exe —-i "C:\00092.MTS" —-f mp4
—acodec aac -ac 2 -strict experimental -ab 160k
—s 320x180 -vcodec libx264
-vpre slow -vpre ipod640 -b 1200k
—threads 0 "C:\00092.1iphone.320.mp4"

One thing to watch for when running the Miro version of FFmpeg 1s
the location of the preset files. The slow and ipod640 presets used in the
previous command correspond to the libx264-slow.ffpreset and

libx264-1pod640.ffpreset files. Put these files in C:\usr\local\share\
ffmpeg so that ffmpeg.exe can find them.

Using multiple sources

Now that you have a collection of video files to support all the different
browsers and devices your users may be using, you can add them to the
<video> element using the <source> element, just as with the <audio> ele-

ment earlier:

<video id="myvideo" controls>
<source src="00092.webm" type="video/webm">
<source src="00092.mp4" type="video/mp4">
<source src="00092.1low.mp4" type="video/mp4">
<source src="00092.ogv" type="video/ogg">
No video support!

</video>

IF YOU EXPECT TO HAVE USERS WITH OLDER VERSIONS OF IOS, THEN YOU SHOULD BE
AWARE THAT ALTHOUGH THE <source> ELEMENT IS RECOGNIZED, ONLY THE FIRST ONE
WILL EVER BE USED. IN THE PREVIOUS EXAMPLES, YOU SHOULD PUT THE
O0092LOWMP4 SOURCE FIRST SO OLDER I0SS WILL PLAY IT. OF COURSE, THIS
MEANS USERS OF MODERN DESKTOP BROWSERS THAT SUPPORT MPEG-4 WILL PLAY THIS
LOW-QUALITY VIDEO INSTEAD OF THE HIGHER-QUALITY ONES FURTHER DOWN.

As with the <audio> element, it's possible to find out which file the
browser has chosen by looking at the currentSrc property of the <video>
element in JavaScript. Adding this snippet of code to the <video>

The <video> element 143

element reports the filename to an element with ID 'source’ when the

video has loaded:

onloadeddata=
"document.getElementById('source')

.innerHTML = 'Playing file ' +
this.currentSrc.slice(this.currentSrc.lastIndex0f('/')+1);"

Loading the page in a variety of different browsers shows how the mul-
tiple source elements are picked up.

Playing file 00092.low.mp4

PLAYING FILE OOO9ZWEEM

Android browser uses the low-quality MP4. Firefox 4 uses the WebM video.

PLAYING FILE OO0O92.06V PLAYING FILE OO0O92.06V

Firefox 3.6 uses the Ogg video. Desktop Safari uses the high-quality MP4.

YOU'VE NOW LEARNED HOW TO ADD AUDIO AND VIDEO TO YOUR PAGES, AND HAD A BRIEF
INTRODUCTION TO THE MINEFIELD THAT IS VIDEO ENCODING FOR DESKTOP BROWSERS
AND MOBILE DEVICES. BUT SO FAR, YOU HAVEN'T SEEN MUCH OF THE MAIN ADVANTAGE OF ~_
USING HTMLS VIDEO AND AUDIO: INTEGRATION WITH THE REST OF YOUR PAGE
CONTENT. IN THE NEXT TWO SECTIONS, YOU'LL LEARN ABOUT THE POSSIBILITIES
THIS ALLOWS, STARTING WITH AN EXPLORATION OF THE JAVASCRIPT API.

144

CHAPTER 4 Audio and video

Controlling audio and video with JavaScript

Earlier in this chapter, you saw that, by default, <audio> and <video> ele-
ments don'’t provide controls for the user to interact with them; it’s up
to the web author to explicitly ask for controls to be provided. At the
time, you'd be forgiven for thinking that this is a bit pointless —what
good is a video if you can’t play it? In this section, you'll discover
exactly how useful it can be to have complete control over the video
from JavaScript.

To begin with, let’s look at playing and pausing a video. This is straight-
forward —the <video> element provides play() and pause) methods:

<button
onclick="document.getElementById('myvideo')
.playQ;">

Play
</button>
<button
onclick="document.getElementById('myvideo"')
.pause() ;">

Stop
</button>

Instead of providing controls on the video, buttons are provided on the
page. If your first thought when you saw the default controls was,
“Ugh! I don't like the look of those. How can I style them myself?”
then here is the answer: create your own elements to control the video,
and style them however you wish.

You don’t have to limit yourself to the standard operations of Play and
Pause. This function starts the video play from a point in the middle of
the stream; you pass In the point as a parameter:

function playFrom(secs) {
var v = document
.getElementById('myvideo');
v.currentTime = secs;
v.playO;
}

Play from 4 secs | | Play from 8 secs

PLAYING FILE OOCHZWEBM

Controlling audio and video with JavaScript 145

You can then provide buttons to start
playback from significant points:

<button onclick="playFrom(4);">Play from 4
secs</button>
<button onclick="playFrom(8);">Play from 8
secs</button>

Obviously there aren’t many significant points in a 15-second video
clip, but this would be useful if you had a podcast or longer movie and
wanted to provide bookmarks for when particular topics were being
discussed or for the start of each scene.

In the example, although the buttons claim Play from 4 secs | | Flay from 8 secs
to start the video play at the fourth and
eighth seconds, the user has no way of see-
ing if they really work. When the controls
are hidden, you lose not just Play and Pause
but also the timeline. Fortunately, HTML5
provides a new <meter> element that’s excel-

PLAYING FILE OOCHZWEBM

lent for measuring how much of a video or

audio clip has been played:

<meter id="mymeter" min="0"></meter>

The value of the meter needs to be continually updated as the video is
playing. For this you use the timeupdate event, adding that to the
<video> element alongside the loadeddata event already being used to
capture the filename of the video being played:

<video id="myvideo" ontimeupdate="updateTime(this);"
onloadeddata="datalLoaded(this) ;">

Here’s the dataloaded function. It's been updated to set the max value of
the <meter> element so that it exactly matches the duration of the loaded
video:

function datalLoaded(v) {
document.getElementById('source')

146 CHAPTER 4 Audio and video

.innerHTML = 'Playing file ' +
v.currentSrc.slice(v.currentSrc.lastIndex0f('/')+1);
m = document.getElementById('mymeter');
m.max = v.duration;
m.value = 0;

}

The code to update the meter element is even simpler; it just sets the
value of the <meter> element to the currentTime of the <video> element:

function updateTime(v) {
m = document.getElementById('mymeter');
m.value = v.currentTime;

DIRECT ACCESS TO THE <audio> AND <video> ELEMENTS WITH JAVASCRIPT
ISNT THE ONLY BENEFIT OF HAVING MEDIA BE AN INTEGRAL PART OF YOUR
PAGE CONTENT: OTHER BROWSER TECHNOLOGIES SUCH AS €SS AND SVG CAN
ALSO BE APPLIED. THE NEXT SECTION SHOWS YOU HOW.

Integrating media with other content

The <video> and <audio> elements are just like any other element on the
web page. They can be styled with CSS and used in JavaScript. To
begin, let’s look at applying CSS transforms and transitions. The fol-
lowing three screenshots show the same web page over the course of 10
seconds.

SUN O MAY 201 0C:0844 BST SUN O MAY 201 000849 BST SUN O1 MAY Zon BST

Ry &y & Y

The code for this example, slightly elided, is shown next; see the full list-
ing in ch04/video-css-transitions.html. Don’t worry too much about the
details for now; read the sections “2D transforms” and “CSS transitions”

Integrating media with other content 147

in chapter 9 for a more in-depth discussion. In the meantime, remember
that anything you can do to HTML elements with CSS can be done to the

<video> element:

div video {
transition-duration: 10s;

}

div:hover video:nth-child(1) {
transform-origin: bottom

right;
transform: rotate(16.5deg);

}

div:hover video:nth-child(2) {
transform-origin: top right;
transform: rotate(33deg);

}

div:hover video:nth-child(3) {
transform-origin: top left;
transform: rotate(66deg);

€SS TRANSITIONS ARE COVERED IN DETAIL IN CHAPTER 9; ANY OF THE
EFFECTS DESCRIBED IN THAT CHAPTER CAN BE APPLIED TO THE <video>
ELEMENT. THE PREVIOUS EXAMPLE APPLIES THREE TRANSFORMS TO THREE
IDENTICAL <video> ELEMENTS WITH A 10-SECOND TRANSITION ON :hover.

<div>

<video id="myvideol"

width="160"

autoplay loop>
<source src="00092.webm"
type="video/webm">
<source src="00092.mp4"
type="video/mp4">
<source src="00092.1low.mp4"
type="video/mp4">
<source src="00092.ogv"
type="video/o0gg">
No video!
</video>
<video id="myvideo2" ...
<video id="myvideo3" ...

</div>

In the previous chapter, you learned that the <canvas> element can grab

an image from anywhere on the page and subject it to various transfor-
mations. One of the more exciting features of HTML5 is that those

same canvas manipulation tricks also work with the <video> element.

The next example looks at the basic process of getting a frame from the

video into a <canvas> element by making a frame grabber.

First, let’s get the HTML sorted out. Start with the usual <video> ele-
ment, and add as many sources as required; you can use the code from

“Using multiple resources” as a starting point.

148 CHAPTER 4 Audio and video

<video id="myvideo" controls>
<source src="00092.webm"
media="video/webm">
No video!
</video>

You need something for the user to
click to signal that they want to grab a

frame. A <button> element is easiest:
PLAYING FILE OOO92WEEM

<button onclick="snap(Q);">
Snap
</button>

Place that before the <video> element.
You also need a <canvas> element to
put the frame in later:

<canvas id="mycanvas'"></canvas>

Put the <canvas> element after the div with id 'source'. All the action

happens in the snap () function:

function snap() {

var video = document
.getElementById('myvideo');

var canvas = document
.getElementById('mycanvas');

canvas.width = video.videoWidth;

canvas.height = video.videoHeight;

var ctx = canvas.getContext('2d");

ctx.drawImage(video, 0, 0);

}

Most of this function is plumbing —
grabbing references to the relevant
elements and setting the width and
height of the canvas to match the
video. The code that draws the cur-
rent frame on the canvas is this:

ctx.drawImage(video, 0, 0);

Integrating media with other content 149

It’s that simple! If you want to have
some fun, refer back to the canvas
transformations in chapter 3 and try
them on frames of a video.

The other thing you learned about in the previous chapter was SVG —
in particular applying SVG effects such as transforms, clips, and masks
to HTML content with <foreignobject>. Because the <video> element is
HTML content just like any other, those same effects can be applied.
The following screenshots show a <video> element clipped to appear
inside some text and then animated.

!-!E'Mh_.': vrgi E. g
HTRES RAFKQ'

Sat 30 Apr 2011 23:30:04 BST Sat 30 Apr 2011 23:30:00 BST Sat 30 Apr 2011 23:30:13 BST

X
O
@
A
n

Here's the content of the SVG embedded into the HTML. Note that the
SVG has HTML embedded into it in turn:

<defs> CLIPPATHTO
<clipPath id="1imgl" clipPathUnits="userSpaceOnUse" <— USEONVIDEO
width="320" height="200">

<text x="0" y="70" font-family="sans-serif" ~—_ TEXT USED TO
font-size="80" font-weight="bold"> CLIP VIDEO
<tspan>HTML5</tspan>

<tspan x="5" y="134" font-size="85">VIDEO</tspan>
<tspan x="5" y="186" font-size="70">ROCKS!</tspan>

</text>
</clipPath>
</defs>
<g clip-path="url(#imgl)"> HTML
<foreignObject x="0" y="0" width="320" height="200"> <<h—’/'§ui;zEED
<body>

<video id="myvideo" width="320" height="200"

150 CHAFPTER 4 Audio and video

autoplay loop>
<source src="00092.webm" type="video/webm">
<source src="00092.mp4" type="video/mp4">
<source src="00092.low.mp4" type="video/mp4">
<source src="00092.ogv" type="video/ogg">
No video!
</video>
</body>
</foreignObject> SVG ANIMATION
<animateTransform attributeName="transform" <<—’//
type="translate" values="0,0;0,220;0,0"
begin="0s" dur="10s" fill="freeze"
repeatCount="indefinite">
</g>

Does HTML5 video replace Flash?

The short answer is, no. There are several things for which Flash is the only op-
tion now, and some things for which HTMLS5 video is never likely to be an option.
Flash has support for Real Time Streaming Protocol (RTSP) and the Real Time
Messaging Protocol (RTMP), which provide facilities such as adaptive streaming,
switching the bitrate of the video stream as the available bandwidth varies, and
digital rights management (DRM).

It’s possible that HTML5 video will one day support adaptive streaming, but it’s
extremely unlikely that it will ever support any features for DRM in a cross-
browser fashion. If you want to use DRM on your video and audio content, then
you’ll need to continue using Flash.

AS YOU MAY HAVE GUESSED, BROWSER SUPPORT FOR AUDIO AND VIDEO IS
_~ SOMETHING OF A THORNY SUBJECT. LET'S LOOK AT THE DETAILS.

Browser support

Support for both <video> and <audio> elements is universal across all
current browsers. The problem at this point is finding the minimum
number of different encodings for maximum browser compatibility.

Browser support 151

10 | 115 | 12 5 5.1
<audio> element . . ° .
WAV audio . ° ° .
MP3 audio . °
OGG audio
<video> element
OGG video . . ° .
MP4 video ° °

€e coe

WebM video . . ° °

Key:

e Complete or nearly complete support

o Incomplete or alternative support
Little or no support

Web server configuration for audio and video

The first thing you need to consider when serving video and audio is
that you have to make sure the correct MIME types are sent in the
headers. The MIME type sent by the server should match the value set
in the type attribute. On the common Apache server, this means using
the AddType directive. This can go in the server configuration files or in
an .htaccess file in your website directory. The relevant values for
HTML5 audio and video are as follows:

AddType audio/ogg 0ga ogg
AddType audio/mp4 mda
AddType video/ogg ogv
AddType video/mp4 mp4 mév

AddType video/webm webm

152 CHAFPTER 4 Audio and video

Supporting legacy browsers with Flash video
It’s possible to get the best of both worlds: HTML5 video for browsers
that support it and Flash for browsers that don’t. At its simplest, this is
a matter of wrapping the code for Flash inside the <video> element:
<video id="myvideo" controls>
<source src="myvideo.webm" type="video/webm"> ~-—__ SOURCES FOR
<source src="myvideo.mp4" type="video/mp4"> HTMLS VIDEO

_ . AS NORMAL
<source src="myvideo.low.mp4" type="video/mp4">
<source src="myvideo.ogv" type="video/ogg">

<object
classid="clsid:d27cdb6e-ae6d-11cf-96b8-44455 3540000'\
codebase="http://download.macromedia.com/ ADD FLASH

pub/shockwave/cabs/flash/ copE ™
swflash.cab#version=6,0,40,0" ELEMENT
width="320" height="240"
id="myvideoname"> FLASH MOVIE

<param name="movie" value="player.swf"> <— ISAPLAYER

<param name="quality" value="high">

<param name="bgcolor" value=#ffffff> g%fgo
<param name="flashvars" value="file=myvideo.mp4"> <— TorpLay
</object>
No video support, try downloading!
</video>

Browsers that support the <video> element will ignore the fallback con-
tent, whereas browsers that don’t support the <video> element will
ignore that and only see the <object> element that embeds the Flash
plug-in. Browsers that support neither the <video> element nor the
Flash player will see the link to download the video.

Summary

In this chapter, you've learned about multimedia on the web, playing
audio and video with simple markup. You've seen the benefits of hav-
ing multimedia content integrated with the rest of your web page con-
tent and looked at manipulating that multimedia with JavaScript.

HTMLS OFFERS MANY OTHER OPPORTUNITIES FOR MANIPULATING YOUR
CONTENT IN NEW AND EXCITING WAYS WITH JAVASCRIPT, SUCH AS WYSIWYG

.~~~ EDITING AND DRAG-AND-DROP INTERACTION. THE NEXT CHAPTER LOOKS AT
THEM IN MORE DETAIL.

Browser-based APls

This chapter covers

Directly editing page content with contentEditable

Simulating desktop-like interactions with the drag-and-drop AF/
Convenlent access to semantic metadata with the microdata AF/
How to not break the Back button with the history AF/

Keeping web apps responsive with web workers

This chapter looks at HTML5 application programming interfaces (APIs)
that work “in browser” —that is, APIs that work directly with loaded web

pages rather than accessing the network or web and relying on server
functionality.

TO FOLLOW THE EXAMPLES IN THIS CHAPTER, YOU'LL NEED TO HAVE A BASIC
UNDERSTANDING OF JAVASCRIPT. READ APPENDIX D FIRST IF YOU NEED
MORE HELP. OR, IF YOU'RE MORE OF A DESIGNER THAN A DEVELOPER, SKIP
AHEAD TO CHAPTER 7. WHERE WE START TO LOOK IN DETAIL AT £SS3.

163

154 CHAFPTER B Browser-based AFls

~al
\
Ty

_
©)
NS

What is an HTMLS5 API?

The HTMLS5 spec is ground-breaking in many ways, but one of the key ways is
that it specifies both the syntax of the HTML markup and the APIs you should
use to manipulate the document with JavaScript. Earlier specs kept those sepa-
rate: the Web Hypertext Application Technology Working Group (WHATWG) felt
this was both a source of needless duplication and a recipe for inconsistency.
You’ve already seen several of HTML5’s APIs in action—the form-validation API
in chapter 2, the canvas in chapter 3, and the video and audio APIs in the last
chapter—but there are many more.

The WHATWG produced a very long HTML spec that splits into 11 standards at
the W3C, one of which is the HTML5 spec. In addition, several other specs, such
as the Geolocation API, have never been part of the WHATWG spec but are con-
sidered part of the HTML5 buzzword nevertheless. In this book, we’ll follow the
more liberal definition because that lets you play with more fun stuff!

USER FRIENDLY by J.D. "llliad” Frazer

BUZZWO * FOR
AM WANTINK TO BE USING [E1TE bt N A U

EVERYTHING NEW, LIKE AJAX GOOD. AM WANT INK WORLD
WEB WORKERS FOR WORLD
Desc VERYT P
DOMINATION APP, BUT WEB wprp s peiminEconpupbill by

WITH JAVASCRIPT FIVE YEARS AGO. BUZZWO!
WORKERS NOT IN HTMLS SPEC/ - i AN

COPTRIGHT £/2009 4.0, “Wilad™ Frazer

FIRST.LET'S LOOK AT ONE OF THE APIS THAT'S PART OF THE CORE HTMLS
SPECTIFICATION: contentEditable. IT ALLOWS RICH-TEXT EDITING IN THE

— BROWSER-A WHAT-YOU-SEE-TS-WHAT-YOU-GET (WYSIWYG) ENVIRONMENT SIMILAR
TO THE EXPERIENCE PEOPLE ARE USED TO WITH MODERN WORD PROCESSORS.

Rich-text editing with the contenteditable attribute

The web was originally intended to be a place where people would cre-

ate and share documents. But web browsers are complex to implement

on their own, and existing text editors were good enough for creating

web documents, so the creation and viewing of web content has histor-

ically been kept separate. Various solutions have arisen that enable the

Standard
¥ ‘0 4.0
o
(9]
S
v _\
lo]
&5
5%
P
§5 s) 5.5
+
" c
3o
(]
PO o
e
m
® -

Rich-text editing with the contenteditable attribute 155

creation of content from a web page, but these have
depended mostly on server capabilities rather than
on any built-in support in HTML. This changes in
HTML5 with the advent of the contenteditable and
spellcheck attributes.

USER FRIENDLY by Illiad

OUR WEBSITE: I

I WANT TO MAXIMIZE T WANT TO UPDATE
WANT IT TO DRIVE CUSTOMER EXPERIENCE THE WEBSITE MORE
ENGAGEMENT WITH AND BRING THE BRAND
SOCIAL CLRRENCY. FREGUENTLY.
ALTVE.
3 / £ / LISTENSTEF, JusT / AH! OK. TMSURE
TELL ME WHAT IT AJ.WILL DO
LY WANT
L é}s 15 YOU WANT. ~~— ANYTHING YOU'\

NEED.

Copyright (c) 1999 llizd hitp:iwww.userfriendly.org/

Basic text editing

Making an element editable is as easy as adding an attribute:

<p contenteditable="true">Stef works

I

HineEld

Hilp

| ™ " Content editable 1
Bile Edit Yiew History Bookmarks Ioois

as the Corporate Sales Manager. He o Content etable £ >

much more money than he does.</p>

If the user clicks the element, a
cursor will appear, and they can

start typing.

STEF

STEFAWORKS AS THE CORPORATE SALES MANAGER. HE RLINS MOST OF
THE MARKETING EFFORTS WITHIN THE FIRM AND SELLS THINGS
BEFORE THEY EXTST. HE CANT LINDERSTAND THE WAY TECHIES
THINK. SO DRESNT GET VERY FAR WITH THEM HE SLICKS AT QUAKE.
ALTHOUGH HE ADMIRES THE POWER OF MICROSOFT'S MARKETING
MUSCLE, HE HAS A REAL PROBLEM WITH MICROSOFT SALESMEN,
FROBABLY BECALSE THEY MAKE MUICH MORE MOMEY THAM HE DOES.

156

CHAPTER 5 Browser-based AFls

Any text the user types is added to - e R
the document. This requires no it - '
scripting on your part—the STEF

browser does all the work. STEF (SOMETIMES|WORKS AS THE CORPORATE SALES WANAGER 1

RLINS MOST OF THE MARKETING EFFORTS WITHIN THE FIRM AND
SELLS THINGS BEFORE THEY EXTST. HE CANT UNDERSTAND THE WAY
TELHIES THINK. S50 DOESNT GET VERY FAR WITH THEM HE SUICKS AT
GUAKE. AL THOU®H HE ADMIRES THE POWER OF MICROSOFT'S
MARKETING MUSCLE HE HAS A REAL PFROBLEM WITH MIZROSOFT
SALESMEN, PROBABLY BECALISE THEY MAKE MUICH MORE MONEY THAN
HE DOES,

*

To make multiple elements editable, you can apply the contenteditable

attribute to the parent, and the child elements will inherit the setting:

<section contenteditable="true">) EGRERE eaiaB e 2% AEREd =)
Eie Edt Yiew Higtory Bookmarks Bols Help
<h1>Stef</h1l> 4 Contert aditable 2 -
<p>Stef works. .. EPITABLE: STEF
EDTTABLE: STEF WORKS AS THE CORPORATE SALES MAMAGER HE RLNS {
-+ .than he does '</p> MOST OF THE MARKETTNG EFFORTS WITHIN THE FIRN AND SELLS THINGS ||
. BEFORE THEY EXTST. HE CANT LNDERSTAND THE WAY TECHIES THIMK. 50
<1img DOESHT GET VERY FAR WITH THEM HE SLCKS AT GUAKE. ALTHOUIGH HE

n s en ADMIRES THE POWER OF MICROSOFT'S MARKET TG MUISCLE. HE HAS A REAL |
src="headshots/stef.gif PROBLEM WITH MIZROSOFT SALESMEN PROBABLY BECALISE THEY MAKE
alt="Stef"> MUCH MORE MOKEY THAN HE DOES.

</section>

THE CHIEF

In the previous example, both the <h1> and the <p> elements are edit-
able. So is the element, but your only option is deletion —you
can't edit the image from within the browser with the contenteditable
APIL It may be possible to build your own image editor using the
<canvas> element (see chapter 3), but we don’t have room to get into
that here.

You can override the contenteditable value on a parent element by
explicitly setting contenteditable on a child element:

Rich-text editing with the contenteditable attribute 157

<section contenteditable="true"> TR TERIRVIE =W
. " " Ble Edt Yiew Higtory Bookmarks Tols Help |
<hl contenteditable="false"> S coms sty [t 2
The Chief ‘
</h1> THE CHIEF
<p>The Chief is... mmﬁemumm'fﬁﬁﬁm
. ONLY CALM, CLEAR. THINKING HEAD TN THE COMPANY. HE WOULINT BE IF
.. .meanlngless.</p> HE KNEW WHAT WAS REALLY SGOING ON THE CHIEF IS ALSO A CLOSET

GUITAR PLAYER MAVING SPENT YEARS MASTERING THE ART OF PERFELT
<-i.m TOKE. ONLY TO HAVE COMPUTERS COME ALONG AND RENDER ALL OF HIS
g EFFORT MEANINGLESS,

src="headshots/thechief.gif"
alt="The Chief">

</section>

In this example, the <h1> element isn’t
editable, but every other child ele-
ment of the <section> element is.

NOTE THAT IE8 DOESN'T TREAT contenteditable AS INHERITABLE.
YOU'LL NEED TO SPECIFY contenteditable="true" ON EVERY
ELEMENT YOU WANT TO BE EDITABLE IN IE. \

USER FRIENDLY by Illiad

WHY CONTENTEDITABLE? I CAN THEY SHOLLD TRY IT'S ALL ABOLIT DEMOCRATIC
JUST FIRE UP VIM AND HAVE AT IT. |5l emacs THEN. PUBLICATION
NOT EVERYONE CAN COPE BY "DEMOCRATIC
PUBLICATION' DO YOU MEAN

The spellcheck attribute

A common feature of word processors is inline spell-checking —spell-

ing mistakes are highlighted by a red squiggle. This feature is also

158 CHAPTER 5 Browser-based AFls

available in contenteditable sections. To indicate to the browser that
text should be spell-checked, set the spellcheck attribute to true:

<section
contenteditable="true"
spellcheck="true">
<h1>The Chief</h1>
<p>The Chief is Columbia...
...effort meaningless.</p>

& & (D e o

THE CHEIF

THE CHETF IS COLUMBIA INTERMET'S CEQ. HE IS THE FEARLESS LEADER
FOR THE TEGHIES AP SALESPEQPLE. AS WELL AS THE ONLY CALM, CLEAR-
THINKING HEAD TN THE COMPANY. HE WOLLDNT BE IF HE KNEW WHAT Wis ||
REALLY GOTING ON THE CHIEF IS ALSO A CLOSET GUITAR PLAYER
HAVING SPENT YEARS MAST ERING THE ART OF PERFECT TONE ONLY TO ||
HAVE COMPUTERS COME ALONG AND RENDER ALL OF HIS EFFORT

You can also recommend that browsers not spell-check text by setting
the attribute to false. This might be useful if the user was expected to
enter things like codes or part numbers:

<section
contenteditable="true"
spellcheck="false">
<h1>Stef</h1>
<p>Stef works as the...
...than he does.</p>

Content editable 3

STEFFFFF

STEFFFFFWORKS AS THE CORPORAT E SALES MANAGER. HE RLNS MOST OF
THE MARKET ING EFFORTS WITHIN THE FIRM AND SELLS THINGS BEFORE | |
THEY EXTST. HE CANT LINDERST AND THE WAY TECHIES THINK. SO
DOESNT GET VERY FAR WITH THEM HE SUCKS AT QUAKE ALTHOUGH HE
ADMIRES THE POWER OF MICROSOFT 'S MARKET ING MUISCLE, HE HAS A
REAL FROBLEM WITH MICROSOFT SALESMEM FROBABLY BECALISE THEY
MAKE MUCH MORE MONEY THAN HE DOES.

©

Note that, in both cases, the value of the spellcheck attribute is inher-
ited by the child elements. You can override it by specifying it on par-

ticular elements.

Rich-text editing with the contenteditable attribute 159

The spellcheck attribute is just
a suggestion; user preferences
are allowed to override every-
thing. If you look at the previ-
ous example in Firefox, you'll
see that the spellcheck is
active even though the attri-
bute 1s set to false.

Saving the edited content

| ‘Cantent sditablie 3" Minen|
Flle Edit Yiew Higtory Bookmarks Tools Help

o Content editable 3 = v

STEF

STEF WORKS AS THE CORPORATE SALES MANAGER HE RLNS MOST OF THE |
MARKETING EFFORTS WITHIN THE FIRM AND SELLS THINGS BEFORE THEY
EXIST. HE CANT LNDERST AND THE WAY TECLHIES THINK. SO DOESNT GET
VERY FAR WITH THEM HE SUCKS AT GQUAKE. ALTHOUGH HE ADMIRES THE
POWER OF MICROSOFT'S MARKET ING MUSCLE. HE HAS A REAL PROBLEM
WITH MICROSOFT SALESMEN PROBABLY BECALISE THEY MAKE MLICH MORE
MONEY THAN HE DOES.

The contenteditable attribute only lets you edit the content in the page; it
doesn’t change the file stored on a web server. Although you could save the file
locally to preserve the changes, to make this work as part of a content-manage-
ment system (CMS) you would need to use JavaScript to get the results back to

the server.

USER FRIENDLY by J.D. "llliad” Frazer

INEED TO BE ABLE TO EDIT THE

OK I HAVE A
BOOK ON HTML I

COPTRIGHT £ 2009 J.0. “iiad™ Frazer WTTP./ /WWW.USIRFRIENDLY. ORG/

T DON'T WANT TO MESS AROUND YOU KNOW A CHILD WHO CAN HELP
WEBSITE. THE CHIEF SAID YOU WITH ALL THAT CODE STUFF! MAKE | |YOU WITH THE EDITING, THEN?
HAVE TO HELP ME! 1T LIKE WORD, S0 EASY EVEN A

So far, we've only looked at what's achievable without JavaScript. For

more advanced formatting, like setting text to bold or italic, or adding

links, you have to start taking advantage of the AP, as we’ll discuss in

the next section.

160 CHAFPTER B Browser-based AFls

Applying formatting to the editable text
The HTML5 API provides the execCommand() function for manipulating
text in the contenteditable region. The function has three parameters —

one required, one ignored, and one optional.

AN OPTIONAL STRING VALUE USED

A STRING INDICATING THE AS A PARAMETER FOR THE COMMAND
OPERATION TO PERFORM

execCommand (commandName, showDefaultUI, commandArgument)

A BOOLEAN PARAMETER J
THAT WILL BE IGNORED

FORMATTING TO THE TEXT THEY'RE EDITING. YOU'LL ADD BUTTONS TO THE PAGE THAT

- LET'S EXTEND THE PREVIOUS EXAMPLE BY ALLOWING THE USER TO APPLY
@ EXECUTE COMMANDS ON THE APT WHEN CLICKED.
aZ

)

The commands for applying bold, italic, and underlined text are all
fairly straightforward. Each requires the command name; all the other
parameters can be left in their default state.

Here’s the command for bold:

execCommand (
'bold',false, '’
)N

If you add this code to the onclick attribute of a button, the formatting
will be applied to the currently selected text when the button is clicked.
Here are the equivalent commands for italic and underlined text:

execCommand (
'italic',false, "’

b

execCommand (
'underline’',false, '’

)H

The following screenshots show the process of applying these three dif-
ferent commands to selected text on the example page.

Rich-text editing with the contenteditable attribute 161

= Frau [X o i e Frau
e I Yo gy’ et e I Yo gy it e it Yooy fovinis B ey
o v - Cormet e 4 # - o v * =
o () (i) (o) (i | |
:Zmummummmmmmam e A5 THE CORPORATE SALES MANAGER ML MG MOST OF THE FTEF WORKS AS THE (ORPORATE SALES FANAGER HE RMG MOST OF THE
L L o L
ST, e CAT HORRSTAD TG Wl TEEKGES TIGHK. 50 ORI 06T ST, e CAT HERRSTAD TG Wl TEGKEES TR, 3 BOEMT 26T ST, CANT HORRST A TG WY TEOHEES TR 30 DOEINT 06T
- ne o ne Ay .
PR 0F KLCROSEHT'S WAKE 0 WL N WS AREAL PRCOLEN PR 0F KCROSEHT'S WARKET 20 WL WS AREAL PROB.EN PR 0F KRS TS WARKETAD WLSCLE, HE W A REAL PROBLEN
PROBABLY BELCAUSE THEY MANE MLCH MORE MOMEY PROBABLY BELCAUSE THEY MARE ML MORE MOMEY PROBABLY BELLAUSE THEY AR MU MORE MOMEY
THAM HE DOES. THAN HE DOES. THAN HE DOES.

ALTHOUGH SUPPORT FOR THE execCommand () METHOD IS CONSISTENT
CROSS-BROWSER, THE IMPLEMENTATION OF THE INDIVIDUAL COMMANDS
STILL VARIES CONSIDERABLY. FOLLOWING IS THE MARKUP GENERATED
BY FOLLOWING THE PREVIOUS THREE STEPS IN CHROME AND OPERA ON
THE LEFT, IE ON THE RIGHT, AND FIREFOX IN THE MIDDLE.

Chrome and Operause Firefox inserts span IE inserts strong and
b and i, so your styles elements with styles. em elements.
apply. oo
[—— =) ey
S CU 0 s ieserirawiirei e s (] ETERE e
P . T ""‘T"’“"“"“:;"ﬂ:im
e e | ® T
(?5) <span style="
 font-weight: bold;"> Stef
Stef Stef

<i> <span style=" works
works font-style: italic;"> as the
</i> as the works <u>
<u> as the Corporate Sales
Corporate Sales <span style=" Manager
Manager text-decoration: </u>.
</u>. underline;">
Corporate Sales
Manager

.

162 CHAFPTER B Browser-based AFls

i 7% YOU CAN MAKE FIREFOX USE THE SAME MARKUP AS CHROME AND OPERA WITH THE
0 _ styleWithCSS COMMAND:

execCommand('styleWithCSS', false, false);

Support for more advanced formatting commands tends to be some-
what flaky cross browsers. Nevertheless, these commands can be use-
ful, so we'll look at some of them.

The formatblock command allows A — T T CED
o Contert ecitable S 3 -

you to wrap the current block in a

Boid || ttalic || underiine | [Hegding | | Secton | | unk

new element:

STEF
execCommand (aTer woRks A3 Toe
'formatblock', false, '<hl>"'
CORPORATE SALES MANAGER

) ’
HE RUNS MOST OF THE MARKET ING EFFORTS WITHIN THE FIRM AND SELLS THINGS
BEFORE THEY EXIST. HE CANT LNDERSTAND THE WY TECHIES THINK 50 DOESNT GET

The current block refers to the block- ARG T MPRT A AR W ARG POSANITAILEIORORT |

SALESMEN PROBABLY BECAUSE THEY MAKE MUCH MORE MOKEY THAN HE DOES.

level parent of the current insertion 7@\
point. If you're focused on a

<paragraph> element, that element

will be converted to the type of

element you specify in the argument.

AS EVER. WATCH OUT FOR BROWSER INCONSISTENCIES. FIREFOX REPLACES
THE CURRENT BLOCK ELEMENT. SO A <p> BECOMES AN <h1> IN THE PREVIOUS
EXAMPLE. TE, CHROME, AND OPERA WRAP THE OLD ELEMENT AROUND THE NEW
ONE. SO THE <p> ENDS UP CONTAINING AN <h1>.

Only a limited number of elements can be passed in the argument for
formatblock: IE allows <h1>-6, address, and pre. If you want to have more
control over the exact markup inserted, you can use the inserthtml
command. This means you have to deal with the currentl_y selected text
yourself. Use the HTML5 text-selection API to get the content of the
user’s current selection:

Rich-text editing with the contenteditable attribute 163

var selection = o PO TeR PRI R eTalG CEE
. . Boe Edt Yiew Hgtory Bookmarks Jools Help
window.getSelection(); (9 comtert cdtathe 3 (2] S
Beid || malic || Underiine || Heading secion Link |
var range = e
selection.getRangeAt(0); var STEF
contents = STER WORKS A8 THE
1l
range.extractContents();
CORPORATE SALES MANAGER
We,re not going to cover the text- HE RUNS MOST OF THE NARKET ING EFFORTS WXTHIN THE FIRM AND SELLS THINGS
BEFORE THEY EXTS T T
AL

selection API in detail here. If you

want to find out more, check out | 7
the specs.

Now you can insert the selection

Ble Ect Yiew Higlory Bookmarks Tools Heip
| 6 Conters editabie | -

back into the document inside a

Bokd Al Underire Heading :o(‘:m Link
<section> element. The current
. . . STEF
selection is replaced with the new
STEF WORKS AS THE
content: <
CORPORATE SALES MANAGER
execCommand (
. PE RUNS MOST OF THE MARKET NG EFFORTS WITHIN THE FIRM AND SELLS THINGS
'inserthtml', false, BEFORE THEY EXIST
HE CANT LNDERST A0 THE WY TECHIES THINK 50 DOESHT GET VERY FARWITHTHEM |
'<Sect-i_on>' + HE SUCKS AT GLINKE. ALTHOUGH HE ADMIRES THE POWER OF MICROSOFT'S MARKET ING

MUSCLE. HE HAS A REAL PROBLEM WITHMICROSOFT SALESMEN PROBABLY BECAUSE THEY
MAKE MAZH MORE MOMEY THAN HE DOES.
| —

contents.textContent +
'</section>");

Finally, a common requirement when editing web pages is inserting
links. The command for this is CreateLink, but you also need to provide
the user with a way of entering the link as well as the button to apply it:

if (e Cantent wil T T
Bie Edt Yiew Miglory Bockmeris Rois Help
document) Conters editable 3 £ X
.getElementById('theURL") e e
.checkvalidity(Q STEF
) { STEF WORCS A% THE |
execCommand (
'CreatelLink’, FORERLTES -
HE RS MOST OF THE MARMET ING EFFORTS WITHIN THE FIRM AND SELLS THINGS
false,document BEFORE THEY EXIST.
.getElementById('theURL") VE S0k AT QAN AL THOUGHIE ACKIRES TH POWER OF HICROSFT S IRCETING.
MUSCLE ME HAS A REAL PROBLEM WITHMIZROSOFT SALESMEN PROBABLY BECAUSE THEY
.value IR TN I bows

)H

164

CHAPTER 5 Browser-based AFls

Notice that for this example, rather than writing your own code to val-
idate the email address, you take advantage of the HTML5 form-valida-
tion API (see chapter 2 for more details).

USER FRIENDLY by J.D. "llliad” Frazer

STEF LOOKS EVEN MORE SELF
SATISFIED THAN USUAL. IS THERE
ANYTHING I SHOULD BE WORRIED
ABOUT?

AJ'S FIXED THINGS UP
SO HE CAN EDIT THE

I'VE USED HTMLS TO MAKE IMPRETTY SURE OUR INTERNET

AWYSIWYG EDITOR IT'S SERVICES DONT INVOLVE THAT

REALLY SWEET! MANY SCANTILY CLAD WOMEN.
FOR STEF? ARE

WHY, OH WHY DID YOU
LET HIM SELECT
COMIC SANS!

YOU SURE THAT'S A
GOOD IDEA?

A BIG FEATURE OF DESKTOP APPLICATIONS IS THE ABILITY TO DRAG AND
DROP-BLOCKS OF TEXT, IMAGES, AND FILES. WE'VE BECOME USED TO BEING
ABLE TO SELECT WHAT WE WANT WITH THE MOUSE. DRAG IT WHERE WE WANT
IT TO BE, AND DROP IT. IN THE NEXT SECTION, WE'LL LOOK AT THE HTMLS
API THAT BRINGS DRAG-AND-DROP TO WEB APPLICATIONS.

Natural user interaction with drag-and-drop

Browser support quick check:
drag-and-drop

Standard | Custom
<‘ 2.0 -
e. 35 -
/- 9.0 6.0
4
@ ° | -

Drag-and-drop is a metaphor familiar on
your desktop computers—you've probably
used it for sorting files into folders, adding
attachments to emails, and opening a file in a
particular program. It’s therefore useful when
writing web applications to support this drag-
and-drop metaphor both within your applica-
tion and as an interaction method with other
content on the user’s computer. This function-
ality is provided in HTML5 in the drag-and-
drop API.

Natural user interaction with drag-and-drop 165

THE DRAG-AND-DROP API WAS ORIGINALLY DEVELOPED BY MICROSOFT
IN IES.S. RATHER THAN INVENT AN INCOMPATIBLE API THE WHATWG
DECIDED TO EXHAUSTIVELY DOCUMENT WHAT IE HAD IMPLEMENTED.
THIS HAS THE ADVANTAGE THAT THE STANDARD MOSTLY WORKS IN IE,
BUT THE DISADVANTAGE THAT THE API IS SOMEWHAT MORE
COUNTERINTUITIVE THAN MOST OTHER APIS IN THE HTMLS SPEC.

The drag-and-drop API makes use of a few properties and a lot of
events. The following sequence of diagrams gives you an overview of
which events fire when before we dive into code in the following

section.
TO PERFORM DRAG AND DROP IN AN HTMLS PAGE, YOU NEED AT
LEAST TWO ELEMENTS: ONE TO BE THE ELEMENT TO BE DRAGGED
/ AND ONE TO BE THE DROP TARGET.
draggable=
true
ondragover=
"Return false;"
ELEMENT TO DRAG
NEEDS TO HAVE THE
draggable ATTRIBUTE
SET TO true.
ELEMENT TO ACCEPT DROP
NEEDS TO RETURN false TO
THE ondragover EVENT. .

166 CHAFPTER B Browser-based AFls

WHEN THE USER CLICKS THE ELEMENT AND STARTS DRAGGING IT,
THE dragstart EVENT IS FIRED. AS THE ELEMENT IS DRAGGED
OVER THE TARGET, THE TARGET FIRES SEVERAL EVENTS, AS SHOWN HERE.

V AS THE DRAGGED ELEMENT ENTERS THE TARGET, THE
ondragenter EVENT IS FIRED, ALLOWING YOU TO
PROVIDE USER FEEDBACK OR SET STYLES.

,

THE ondragstart ':
EVENT ALLOWS B
YOUTOSET =~ ~———»ondragstart
PARAMETERS ON H -
THE DRAG OBJECT. ; T

.
,
.

.
.
’

g
PPN

ondragenter
ondragover
ondragover
ondragover

4

AS THE ELEMENT IS DRAGGED OVER
THE TARGET, THE ondragover
EVENT IS FIRED REPEATEDLY.

APPROPRIATE ACTIONS.

FINALLY, WHEN THE USER RELEASES THE MOUSE BUTTON OVER THE
DROP AREA, THE ondrop EVENT IS FIRED, THIS IS YOUR OPPORTUNITY
R - TO READ THE DATA SET IN THE ondragstart EVENT AND PERFORM
-

THE DRAGGED N

ELEMENT REMAINS

IN THE DOM WHILE

BEING DRAGGED.
A COMMON TASK FOR
THE ondrop EVENT
IS TO REMOVE THE
DRAGGED ELEMENT
FROM THE DOM AND
RE-INSERT IT AS A
CHILD OF THE TARGET
ELEMENT.

Now that you have an overview, let’s examine the details.

Natural user interaction with drag-and-drop 167

Basic drag-and-drop
To make an element draggable is simple, with a couple of browser
compatibility caveats that we’'ll get to later: add a draggable attribute
with value true. This first example, ch05/drag-and-drop-1.html, has a
list of locations in the Columbia Internet offices that you'll make

draggable:
<ul id="locations">
. . " o i ahil Brep examiple 1 HIEREl 1 |
<1i drqggqble= true e ey gy eckmares ol el
@ Orag and Drop example 1 = -
id="recpt"
COLUMBIA INTERNET LOCATIONS
ondragstart="drag(event)"> R
Reception Rsuluiio
. = FINANCE OFFICE
</1i> » SUPPORT DESK

On each of the elements, the ondragstart attribute has been set. This
function is used to set the data that will be passed by the drag-and-drop
action. For now, you'll set the text data as the ID of the element:

function drag(event) { e RECEPTION
event.dataTransfer * SERVER ROOM

' . * SID'S OFFICE
.setData('Text"', o FINANCE OFFICE

event.target.id); e SUPPORT DESK
log('drag ' + event.target.id); * SUPRERT PESK
ITEMS SELECTED

}

DRAG SUPPORT

Within the function there’s also a 1og
command so the sequence of events
firing is recorded on the page. As the
element with ID 'support' 1s
dragged, the messages are added at
the bottom of the page.

168

CHAFPTER B Browser-based AFls

The crucial event in the drag-and-drop process is dragover. Any ele-
ment that is to be a target for dropped elements must capture the
dragover event and cancel the default action on it:

function dragOver(event) {
event.preventDefault(Q);
log('dragOver ' + event.target.id);
}

When the element is dropped, the drop event is fired. It’s in this event
that the actual work needs to be done. This example removes the list
item from the source list and adds it to the selected list using the stan-
dard appendChild method:

function drop(event) {
var id = event.dataTransfer.getData('Text');
event.target.appendChild(document.getElementById(id));

log('drop ' + event.target.id);
event.preventDefault();
}
These two events can be bound declara- ITEMS SELECTED
tively to the drop target element: * SUPPORT DESK
" " DRAG SUPPORT
ondragover="dragOver (event) DRAGOVER DROPHERE
 DRAGOVER DROPHERE
<ul id="drophere" mﬁzmm
ondrop="drop(event)"> DRAGOVER DROPHERE
DRAGOVER DROPHERE
. DRAGOVER DROPHERE
As you can see, the dragOver event 1s DRAGOVER DROPHERE
fired repeatedly while the dragged ele- mx,oi R .ecz: momr.l 'C'EE'E
ment is over the drop target. DROP DROPHERE

If you only want drag-and-drop to work in Firefox, Chrome, and
Safari, that’s all the code you need —you're done! If you want it to
work in IE too, read ahead to the next section.

Natural user interaction with drag-and-drop 169

Drag-and-drop in all browsers

M>XO0O MM

Although the HTML5 drag-and-drop API is based on what IE5.5 imple-
mented, it’s not identical. What that means is that although it’s possible
to write cross-browser code for drag-and-drop that works across
Firefox, Chrome/Safari, and IE, doing so isn'’t as straightforward as the
code given in the previous section.

PROBLEM 1

The draggable attribute is an innovation of the HTML5 spec, and 1E8
doesn’t recognize it. By default, nothing in the previous example is

draggable in IE.

SOLUTION 1

Links are draggable by default, so by making everything that should be
draggable a link, IE can be supported.

The initial code was simple —a
draggable attribute and an event

handler:

<li draggable="true"
id="recpt"
ondragstart=
"dragstart(event)">
Reception
</1i>

Instead of making the list items
draggable, add links around the
text content:

<li id="recpt">
<a ondragstart=

"dragstart(event);"
href="#"
onclick="return false;">
Reception

</1i>

The draggable attribute is no lon-
ger required because links are

draggable by default.

AMA™TM>

170

MXO0MMmMmWm

CHAFPTER B Browser-based AFls

The original dragstart event
handler assumed that it was the
, with the id, that was drag-
gable:

function dragstart(ev) {
event.dataTransfer
.setData('Text"',
event.target.id);
log('drag ' +
event.target.id);

}

PROBLEM 2

Now the link element is used as
a proxy. The element you want
to move is the parent of the one

being dragged:

function dragstart(ev) {
event.dataTransfer
.setData('Text"',
event.srcElement
.parentNode.id);
log('drag ' +
event.srcElement
.parentNode.id);

Older versions of IE use srcElement instead of target.

SOLUTION 2

Do the standard IE support bait-and-switch.

The original code uses standard
DOM events, methods, and

properties:

function dragstart(ev) {
event.dataTransfer
.setData('Text"',
event.srcElement
.parentNode.id);
log('drag ' +
event.srcElement
.parentNode.id);

This is a fairly common problem
In writing cross browser Java-
Script. Test for the existence of
event.target:

function dragstart(ev) {
var target =
event.target ?
event.target :
event.srcElement;
event.dataTransfer
.setData('Text"',
target.parentNode.id);
log('drag ' +
target.parentNode.id);

AM-A™T>

M>XO0O MM

Natural user interaction with drag-and-drop 171

PROBLEM 3

The ondragover attribute doesn’t work in 1£8 and before.

SOLUTION 3

There are two possible approaches to solving this problem. The first
approach is to handle the dragenter event, which older versions of 1t
recognize, instead of the dragover event, which they do not.

If you don’t need to support old In older versions of IE the
versions of IE, you don’t need to dragenter event has to be can-
worry about the first approach, celled instead of the dragover:

although it’s simple to fix: <ul id="drophere"

<ul id="drophere" ondrop="drop(event)"
ondrop="drop(event)" ondragover="dragOver(event)"
ondragenter=
ondragover="dragOver(event)"> "dragOver(event)">

AMA™TM>

Also note that IE8 and earlier
need the dragOver event to

return false;.

The second (and better) approach is to attach the event handler in
script rather than declaratively in the HTML markup. The advantage
of this approach is that, while attaching the handler declaratively will
cause the event to fire, canceling that event won’t make the element a
drop target in IE8 and earlier. But if you use the proprietary attach-
Event() method to attach to the dragover event in script, canceling that
will make the element a drop target. Attaching the event this way is
straightforward; the code is shown here:

<!—[if 1te IE 8]>

<script>

document.getElementById(
'drophere’

) .attachEvent(
'ondragover', dragover

);

</script>

<![endif]-—>

172

E

F
(@)
R
E

CHAFPTER B Browser-based AFls

Note that for advanced developers the best practice is to always attach

event handlers in script. For now, this snippet can be copied and

pasted into your own code.

PROBLEM 4

Chrome is now broken!

SOLUTION 4
Find the closest parent ID.

This is a strange one. Now that
the draggable item is an anchor
rather than a list item, Chrome
inserts an extra element —the
parentNode no longer has an ID,
so this code doesn’t work:

target.parentNode. id

Now take every place in the
code where the ID is needed, like
this

event.dataTransfer

.setData('Text',
target.parentNode.id);

The solution is to write a utility

function to recurse up the docu-
ment tree until an element with

an ID is found:

function grabOuterId(el) {

if (el.id) {
return el.id;
} else {
return

grabOuterId(el.parentNode)
}

And replace it with a call to the

new function:

event.dataTransfer
.setData('Text"',
grabOuterId(target)
)3

AMA™TM>

You can avoid this issue altogether if the elements you want to drag are

links or images —add the ID directly to those draggable elements. An

alternative approach for IE support on elements that aren’t draggable

by default is to add the links dynamically with script only in IE.

Managing the Back button with the history AFI 173

DRAG-AND-DROP IS A GREAT WAY FOR USERS TO INTERACT WITH YOUR WEB
APPLICATIONS. BUT THE USABILITY GAINS WILL BE LOST IF, AFTER SPENDING TIME
MOVING THROUGH YOUR APPLICATION, USERS CLICK THE BACK BUTTON EXPECTING N
TO GO BACK A PAGE AND INSTEAD GO BACK TO THEIR START SCREEN. IN THE NEXT
SECTION, YOU'LL LEARN HOW TO USE THE HTMLS HISTORY API TO AVOID THAT FATE.

Managing the Back button with the history API

One major issue with JavaScript-based

popState | hashchange L. .
apphcatlons is that they break the Back

o

<

E <g 5.0 5.0 button. If you update content on the page
2 with JavaScript rather than loading a new
§ e, 4.0 36 page from the server, no entry made is in
E the browser history; so when the user
§ \) . 8.0 clicks Back, expecting to go back to the
£ previous state, they end up at the previous
& O 15 106 site instead.

(]

]

g

° @ 5.0 5.0

o

The problem can be demonstrated simply. All you need is a function
that updates the page in response to user activity

var times = 0;
function doclick() {
times++;
document.getElementById('message').innerHTML =
'Recorded ' + times + ' clicks';

}
and a little markup:

<div onclick="doclick();">Click Me</div>
<div id="message">Recorded 0 clicks</div>

In real life, your web page would be doing something more compli-
cated, like fetching new content from the server via AJAX, but a simple

174 CHAPTER 5 Browser-based AFls

update is enough to demonstrate the concept. Let’s see what happens
when the user visits the page.

The user starts on their home |@ Mozilla Firefox Start Page [+]
page and decides to visit the (@ about:home

amazing Click Me application

they've heard about. N
e: /

The_y type il’l the URL or fol— | [] Location Hash 1 | L |

low a link from an email to get ¢ ([>de/cho6/location-hash-1.htm

to the Click Me page.

CLICK ME
RECORDED O CLICKS

able interaction, the page state ¢ [>de/chos/location-hash-1.htmi

has changed several times.
RECORDED 3 CLICKS

But when the user clicks the |@ Mozilla Firefox Start Page [+]

3 After a few seconds Of enjoy— | [] Location Hash 1 | + |

Back button in the browser, kA 2 |® about:home

they find that instead of going
back to a previous page state, A\
they leap to their home page. Y

The doclick(function can be updated to take advantage of the history

API. Each time the page is updated it will also set the location.hash:

function doclick() {
times++;
location.hash = times;
document.getElementById('message').innerHTML =
'Recorded ' + times + ' clicks';

Managing the Back button with the history AFI 175

The user arrives at the Click
Me page as before.

Notice that now the URL is
updated after every click —
“#3” has appeared at the end
of it.

Clicking the Back button now
takes the location back to #2,
demonstrating that page states
have successfully been added
to the history. But note that
clicking the Back button
doesn’t automatically return
the page to its previous state.

Updating page state

Location Hash 2 | * |

| [»de/chos/location-hash-2.html

CLICK ME
RECORDED O CLICKS

Location Hash 2 | * |

|) /cho6ylocation-hash-2.htmi#3

CLICK
RECORDED 3 CLICKS
Location Hash 2 | * |
N 2 |___ 1/ch06/location-hash-2.html#2
CLICK ME
RECORDED 3 CLICKS

Updating the history is only part of the problem; you also need to be

able to update the state of the page to match the state in the history.

Because you're the one managing the history, it's up to you to manage

the page state. In order to update your page In response to

location.hash being changed, you can listen to the hashchange event:

function doclick() {

}

times++;
location.hash = times;

window.onhashchange = function() {

if (location.hash.length > 0) {

times = 0;

‘} UPDATE TIMES:
CHANGE HASH
HASHCHANGE
EVENT
4} CHECK THAT
HASH EXISTS

times =
parseInt(location.hash.replace('#',''),10); - SET TIMES
} else { VALuEIM

176

CHAFPTER B Browser-based AFls

}
document.getElementById('message').innerHTML = %

'Recorded ' + times + ' clicks'; UPDATE PAGE

STATE
}

The doclick() function @ is now only responsible for updating the
times variable and changing the hash. The hashchange event @ is on the
window object; when it takes place, you check that the hash exists @. In
a real application, you'd also want to check that it had a valid value.
Next, you set the value of times to be the number in the hash @.
Finally, you update the document to reflect the correct page state @.

Let’s look at this new code:

As before, the hash in the | () Location Hash 3 [+
URL is updated as the user ¢ [vchos/iocation-hash-3.htmi#3
clicks.

CLRCK ME

RECORDED 3 CLICKS
But now, when the Back but- | ") Location Hash 3 [+
ton is clicked, the onhashchange QI |_'___l,._rch_05,n’|ocatiun-hash-3.htr-‘n[#z
function is triggered and the
page state is reset to match %::D 2 CLICKS
the URL.

Using location.hash

The location.hash property and the associated hashchange event are use-
ful if you want to tag particular views of your application and allow the
user to navigate between them. Google Mail uses this approach by
allowing you to navigate between your inbox (#inbox), contacts
(#contacts), and other views—if you have a Gmail account, look at

what happens to the URL as you navigate to various different pages
and then click back.

But as far as state information goes, the hash only lets you store a
string. You could encode a more complex object, but the URL would
quickly become long and unwieldy and wouldn’t be memorable for

Managing the Back button with the history AFI 177

your users. If you need more complex information stored as part of the

history, a better approach would be to use the hash as a key to puH fur-

ther state information out of some store. Although you could roll your
own approach to this, HTML5 has provided an API to do it for you
through the history.pushState() method and the popstate event. These
methods allow you to save and reload a complex object.

Example: Implementing an undo feature

The next example extends the content-editable example ch05/content-

editable-5.html from the earlier section to include an undo feature. You

can see the full listing in ch05/history-1.html. Here’s how it works.

1

When the page is first loaded,
an initial state is created and
tagged in the URL with the
hash undoo.

If the user makes a change in
the text and then clicks the
Save button, a new undo
state is created and assigned
to the hash undo1.

Clicking the Undo button or
clicking the Back button in
the browser returns the page
to the previous state.

[s/history-Lhtmi#undoo v [#

Bold Italic Underline Heading
Link || |
Save || Undo

STEF

STEF WORKS AS THE CORPORATE SALES MANAGER
OF THE MARKETING EFFORTS WITHIN THE FIRM A

| [3/history-1.html#undol vlel [§

Bold Italic Underline Heading
Link || |
Sawe || Undo

k

STEF

STEF WORKS AS THE MARKETING MASTER HE RUN:
MARKETING EFFORTS WITHIN THE FIRM AND SELL

| [T 3/history-1.html#undo0 vlel [§

Bold Italic Underline Heading
Link || |
Save Ungo

STEF

STEF WORKS AS THE CORPORATE SALES MANAGER
OF THE MARKETING EFFORTS WITHIN THE FIRM A

178

CHAFPTER B Browser-based AFls

Now let’s look at the implementation.

A. DECLARE A YARIABLE TO HOLD THE STATE
You start by declaring a global variable to hold your state:

var state;

B. CREATE THE INITIAL STATE

Now you need to set initial values of your state object. For this exam-
ple, you need a property to hold a reference you can use in the hash,
and the content of your editable region:

function init() {
state = {
undonum: 0,
content: document.getElementById('content').innerHTML

1
}

C. SAVE THE STATE WITH PUSHSTATE

When the user saves, that state needs to be updated and then pushed
into the history object:

function save() {
state.undonum++;
state.content = document.getElementById('content').innerHTML;

history.pushState(state, , '#undo' + state.undonum);

}

The pushstate function takes three parameters: the object to be stored
as the state, a title for the state, and a hash to reference the state. Note
that the title is advisory only; currently most browsers ignore it. The
hash will be updated automatically by calling pushstate.

D. WRITE A FUNCTION FOR THE POPSTATE EVENT

You also need a function to restore the state: it will be an event handler
for the popstate event. The state object 1s available on the event passed
1n, so you grab that and update the page from the content property:

function popState(event) {
if (event.state) {

Getting semantic with the microdata AFI 179

state = event.state;

document.getElementById('content').innerHTML = state.content;
} else {

history.replaceState(state, '', '#undo' + state.undonum);

}

E. HANDLE THE INITIAL STATE, AND ATTACH THE EVENT HANDLER

If there isn’t a state object on the event, then this is the first load;
replace the current state with your initial state object. Now all that’s
needed is to wire up the events:

window.onload = init;

window.onpopstate popState;
window.onpageshow = popState;

Both onpopstate and onpageshow are required because Firefox, unlike
other browsers, doesn'’t fire popstate on the initial page load when no
state 1s set.

F. SET UP THE MENU BUTTONS
Finally, link the buttons on the menu to appropriate functions:

<button onclick="save();">Save</button>
<button onclick="history.go(-1);">Undo</button>

THE HTMLS HISTORY APT PRESENTS A POWERFUL
TOOL FOR JAVASCRIPT-BASED APPLICATIONS AND
HAS GOOD CROSS-BROWSER SUPPORT. IT'S ALREADY Standard
USED ON MAJOR WEBSITES SUCH AS GOOGLE MATL

AND TWITTER. IN THE NEXT SECTION. WE'LL LOOK
AT HOW YOU CAN USE CONTENT THAT'S BEEN
SEMANTICALLY ENHANCED WITH MICRODATA

a 16
. . . <
Getting semantic with the microdata API s

The microdata APl makes it convenient to -§ -
examine and update content that’s been marked 5

12

up with microdata. Microdata was discussed in

Browser support quick check:

G-

chapter 1; it’s a method of flexibly extending the
semantics of HTML to describe more than just

text content —for example, contact information,

180 CHAFPTER B Browser-based AFls

appointments, and licenses. In this section, we’ll look at how to use the

microdata API and then consider some useful applications.

So far, only Opera has implemented this API, although a Firefox

implementation is in progress.

Using a single microdata format

Here’s a simple example of contact information marked up with micro-

data using the hCard vocabulary. This code, along with the script that

follows, 1s available in ch05/microdata-api-1.html:

<div id="aj" itemscope

itemtype="http://microformats.org/profile/hcard">

<hl itemprop="fn">
<meta itemprop="n" content="AJ]">
A.J.

</h1>

<img itemprop="photo" alt="AJ"

src="http://www.userfriendly.org/cartoons/

cartoons/aj/headshot_aj.gif" >

aj@userfriendly.org

</div>

With a little added CSS, you can make the
item take on a business card-like appear-
ance, as shown at right.

Now let’s look at how the item data can be
extracted with the microdata API. The
first step is to get a list of all the items in
the document:

var md = document.getItems();

r-------------1

AT,

AJ@USERFRIENDLY.ORG

| S U — |

The getItems() method returns a NodeList that represents all the top-

level items in the document. This NodeList has three useful properties:

itemType — Tells you what sort of item has been found. In this case,

you're expecting it to be http://microformats.org/profile/hcard as per

the itemtype attribute in the source.

Getting semantic with the microdata AF| 181

properties—An array that gives you access to values through an
itemValue property on each member.

names — An array of property names.

You can examine all three with a simple loop:

for (var i = 0; 1 < md.length; i++) {
log('Found: " + md[i].itemType);
for (var j = 0; j < md[i].properties.length; j++) {
log(md[i].properties.names[j] + ': '
+ md[i].properties[j].itemValue);

}

The 1og function writes the string parameter out on the page so you can
examine the output. Here are the results of running that code on the
previous example markup:

Found: http://microformats.org/profile/hcard

fn: A.J.

n: AJ

photo: http://www.userfriendly.org/cartoons/cartoons/aj/
headshot_aj.gif

email: mailto:aj@userfriendly.org

Note that the itemvalue property performed a useful service for you
because it understands how to get the value from different types of ele-
ments. For the fn property on the <h1> element, it returned the text con-
tent of the element; for the n property on the <neta> element, it returned
the value of the content attribute; for photo on <imgs, it returned the src
value; and for email on an <a> element, it returned the href.

The email value is incorrect: emails shouldn’t have mailto: appended to
the front of them. You might also want to use the subproperties of n,
such as given-name and family-name. Let’s adjust the markup:

<hl itemprop="fn">

A.
J.

182

CHAFPTER B Browser-based AFls

</h1>
<img itemprop="photo" alt="AJ"
src="http://www.userfriendly.org/cartoons/
cartoons/aj/headshot_aj.gif" >

aj@userfriendly.org

You can see the full code in ch05/microdata-api-la.html. Here are the
results of running the same extraction loop used earlier:

Found: http://microformats.org/profile/hcard

fn: A. J.

n: [object HTMLElement]

photo: http://www.userfriendly.org/cartoons/cartoons/aj/
headshot_aj.gif

email: aj@userfriendly.org

The email is fixed, but now there’s something wrong with the n value.
It’s no longer a simple string, it’s an HTMLELement. This is because if an
item has child properties, itemvalue doesn’t contain a string; instead it
contains another NodeList object. You can loop through that one the

same way as before, but it’s easier to define a recursive function:

function getMDProperties(name, props) {
if (name.length > 0) name += '/';
for (var i = 0; i < props.length; i++) {
if (typeof(props[i].itemValue) == 'object') {
getMDProperties(props.names[i],
props[i].itemValue.properties);
} else {
log(name + props.names[i] +
+ props[i].itemValue);

}

This function is modeled on the loop used before, but it checks to see
whether itemvalue is an object. If it is, then the properties of the child
object are passed recursively to the function. The name of the parent

Getting semantic with the microdata AFI 183

property is passed in as a parameter so the function can list that along-
side its child properties. Now the loop is greatly simplified:
var md = document.getItems();
for (var i = 0; 1 < md.length; i++) {
log('Found: ' + md[i].itemType);
getMDProperties('',md[i].properties);
}

And the output, as you can see for yourself in ch05/microdata-api-
2.html, is more like you want:

Found: http://microformats.org/profile/hcard

fn: A. J.

n/given-name: A

n/family-name: J

photo: http://www.userfriendly.org/cartoons/miranda/headshot_aj.gif
email: aj@userfriendly.org

Using multiple microdata formats
To finish this short exploration of the microdata AP], let’s consider what
you might do with a more complex page that has multiple types of
microdata items available. In ch05/microdata-api-3.html, an additional
hCard has been added as well as an event using the http:/
microformats.org/profile/hcalendar#vevent vocabulary.

ADDRESSES

-
:
&

THE BIG DATE

1
1
1
1
| 31ST AUGUST @® 8PM UNTIL 10PM (OR ALL NIGHT. TF THINGS
1| GO WELL)

1

1

1

LOCAT ION: MACMILLAN OBSERVAT ORY

1864 CHAFPTER B Browser-based AFls

This is what the event markup looks like:

<div itemscope
itemtype="http://microformats.org/profile/hcalendar#vevent">
<h2 itemprop="summary">The Big Date</h2>
<p>
<time itemprop="dtstart" datetime="2011-08-31T20:00:00Z">
31st August @ 8pm
</time>
until
<time itemprop="dtend" datetime="2011-08-31T22:00:00Z">
10pm
</time>
(or all night, if things go well)
</p>
<p>Location:
Macmillan Observatory
</p>
</div>

Keeping the same function as before, all three microdata items are
found and their properties enumerated. But maybe you're writing a
calendar-event application and are only interested in the events; or,
slightly more creepily, you might be writing context-sensitive advertis-
ing into the page with JavaScript and keen to pull out locations and
dates. Rather than grab all the items and discard the ones you're not
interested in, you can tell the getItems() method which sort of items
you want:

document.getItems('http://microformats.org/profile/hcalendar#vevent');

The parameter 1s a space—separated list, so you can specify more than
one type if necessary —for example, if you want to look for items of

THE MICRODATA API LETS YOU ACCESS STRUCTURED DATA WITHIN YOUR PAGE
CONTENT. THIS IS USEFUL WHEN YOU'RE NOT IN CONTROL OF THE
GENERATION OF THE CONTENT AND NEED TO GENERATE AN ALTERNATIVE VIEW
OR INDEX OF THE DATA, OR GIVE THE USER THE OPTION OF CLICKING A LINK
TO A CONTACT IN THEIR ADDRESS BOOK OR AN EVENT IN THEIR CALENDAR.

Lag-free interfaces with web workers 185

type http://schema.org/Event as well as the standard events. You can
look at the type-specific example in ch05/ microdata-api-3a.html.

Lag-free interfaces with web workers

All JavaScript in a browser has traditionally been run in a single exe-
cution context (a thread in operating system terms). That changed with
the release of IE8, which separated the execution of interface code and
web-page code, and then the launch of Google Chrome, which was
built from the ground up to be multithreaded. Other browsers have
since followed suit. This made browsers quicker, more responsive, and
more resilient to bad or malicious code, but all the JavaScript in a sin-
gle page still used the one thread assigned to it. There was no way for a
web author to take advantage of multiple threads to offload expensive
processing to another thread while still responding to user input, as
they could in a desktop application. For this purpose, web workers
were created.

Single-threaded and multithreaded

Single-threaded means the web browser does only one thing at a time. After it
starts executing a single JavaScript function, it carries on until that function is
finished. While it’s executing the function, the browser can’t do anything else:
respond to clicks, animate GIFs, scroll the page, and so on. This isn’t unusual; if
you have an old computer with only a single processor with one core, it can only
do one thing at a time too. One of the primary jobs of an operating system is to
switch between applications so quickly that the computer appears to be doing
more than one thing at a time.

Normally, each JavaScript function also executes so quickly that you don’t no-
tice; but some heavy processing, a simple coding mistake, or even a malicious
script could bring the browser to a halt.

If the browser is multithreaded, it can take advantage of the operating system'’s
abilities to switch between tasks. If one thread starts eating up resources, the
browser can recognize this on another thread and take corrective action. The ad-
vent of multicore processors, which can do more than one thing at a time, also
opens up an opportunity to increase the performance of the entire browser by
splitting execution across multiple cores.

1866

CHAPTER 5 Browser-based AFls

Browser support quick check:

web workers

}

To test the utility of web workers, all you need to do is
Standard . . .
write some bad code. This function runs a loop several
G 4.0 million times and attempts to report progress to the
page every so often:
e' 3.5 function kill_browser() {
log('Starting');
A 100 var j = 0;
\ var n = le9;
) var p = n/10;
O 10.60
for (var i=0;i<n;i++) {
if (G++ > p) { j=0; log(i); }
@~
log('Done');

The page has two buttons: one that calls this function directly and one

that calls it via a web worker. Depending on how fast (or slow) your
machine is, you may need to adjust the n value to get the best effect.

Change the exponent (the number after the ¢) either up or down if you

don’t see the following behavior.

Start by calling kill_browser() directly by
clicking the button. Unfortunately, noth-
ing happens —not even the initial “Start-
ing” message. At this point you may find

that your browser won'’t respond to clicks.

The timestamp claims that only 3 seconds
have passed, but it stopped updating the
moment the button was clicked. Eventu-
ally, the browser recognizes the issue and
asks if you want to stop the script.

FRI 1Z AUG 201 O1:3439 BST

Kill braxse: Start worker

FRI 12 AUG 201 O13442 BST

| Kill bmwr || Start worker

FRI 12 AUG 201 013442 BST
& Kill browser || Start worker
@ Warning: Unresponsive script

. Ascript on this page may be busy, or it may have stopped responding. You can stop
‘) the script now, or you can continue to see if the script will complete.
.

Lag-free interfaces with web workers 187

After you stop the script, the other func-
tions —such as 1log() and the timestamp
updater —get a chance to function. Sud-
denly all the information you were expect-
Ing appears.

All in all, this is a pretty bad user experi-
ence, and it doesn’t even give you the
results you were expecting. Let’s look at
what happens when you use a web worker
instead.

With a worker, the difference i1s immedi-
ately obvious —the “Starting” message
appears straight away:.

The other noticeable differences are that
the timestamp continues updating and the

browser remains responsive.

Meanwhile, the computation updates are
posted regularly.

FRI 1Z AUG 201 O13522 BST

Kill browser || Start worker

STARTING
100000001

FRI 12 AUG 201 O1:3537 BST

Kill browser || Start wor'ier

STARTING
100000001

FRI 12 AUG 201 O13S4H1 BST

Kill browser Start wox'ﬁr

STARTING
100000001
200000003
300000005
HYO0000007

FRI 12 AUG 201 OI13545 BST

Kill browser Start wcu:"ker

To turn the kill_browser() function into a web worker, the first and

most obvious change is that you need to put it in a separate file. You

can then create the worker object from the main page like this:

var worker = new Worker("web-worker-1.js");

Workers don’t have access to the DOM; they can’t update elements on

the page or access any global variables in your script. Data has to be

1868

CHAFPTER B Browser-based AFls

passed to and from the worker by messages. Set up a listener for mes-
sages from the worker that logs the data using the usual function:
worker.onmessage = function(event) {

log(event.data);
}

Similarly, you signal that the worker is to start computing by passing it

a message using postMessage:

<button onclick="worker.postMessage('Starting'); return false;">
Start worker
</button>

In the function, all attempts to access the DOM must be removed. This
means replacing the log function with calls to postMessage O:

function kill_browser() {

var j = 0;
var n = 1le9;
var p = n/10;

for (var i=0;i<n;i++) {

if (G++ > p) { j=0; postMessage(i); }
3
postMessage('Done');

}

Finally, the worker needs to listen to messages so it knows when to
start:

onmessage = function(event) {
postMessage(event.data);
kill_browser(Q);

}

You can try this example for yourself with the files ch05/web-workers-
1.html and ch05/web-worker-1.js.

WORKERS ARE A POWERFUL ADDITION TO THE WEB AUTHOR'S TOOLKIT, ALLOWING
YOU TO WRITE MORE DESKTOP-LIKE APPLICATIONS WITHOUT RESORTING TO
ADVANCED JAVASCRIPT TRICKERY.IN THE NEXT SECTION, WE'LL SUMMARIZE
BROWSER SUPPORT FOR EVERYTHING COVERED IN THIS CHAPTER.

Summary 189

Browser support

With the exception of the microdata API, support for everything in this
chapter is surprisingly complete across all major browsers. As men-
tioned in the relevant sections, there are some inconsistencies in the
implementations of contenttditable and drag-and-drop, particularly in
older versions of IE compared to the other browsers, but these aren’t
insurmountable. The richer web applications enabled by these APIs are
already within your reach.

€ @ 0o

12 14 4 6 8 |9 |10 | 115 12 5 5.1
contentEditable . ° ° . ° ° ° ° ° ° °
Drag-and-drop .) ° . o o ° ° °
hashchange .)) . .)
popState ° ° ° o o
Microdata API °
Web workers) ° ° .
Key:

e Complete or nearly complete support
o Incomplete or alternative support
Little or no support

Summary

This chapter has presented the most interesting HTML5 APIs, focused
on enriching the in-browser experience. We've covered creating word
processor—style WYSIWYG editing interfaces and allowing natural
drag-and-drop interactions. You've learned that managing the
browser’s history allows you make the Back button behave in a more
sensible way in the context of your application, while the microdata
API gives you access to structured semantic information in page con-
tents. Finally, web workers make your app more responsive by running

190 CHAFPTER B Browser-based AFls

any heavy processing in a background thread that doesn’t interfere
with the UL

The best way to learn more is to try coding for yourself. Download the
book’s sample code to get started.

N\ |17 NOW THAT YOU'VE LEARNED ABOUT APIS FOR CREATING RICH
o BROWSER APPS, IN THE NEXT CHAPTER YOU'LL LOOK AT HTMLS
~~ APIS RELATED TO NETWORKING AND COMMLINICATION.

A

Network and location APls

This chapter covers

Finding the user's location and proximity to places and people of interest
Communicating directly with content from other servers
Having the server push information to the user rather than rely on pull

Building websites that work when there's no network connectivity

The previous chapter discussed HTML5 APIs that worked directly with
the content in the browser, but one of the key features of the web is that
it’s not about standalone computers: it’s about a connected network.
HTMLS5 has a number of APIs related to connectivity and communication,
and you'll learn about them in this chapter.

AGAIN, THE EXAMPLES IN THIS CHAPTER RELY ON A BASIC UNDERSTANDING
OF JAVASCRIPT. READ APPENDIX D FIRST IF YOU NEED MORE HELP. OR, IF
YOU'RE MORE OF A DESIGNER THAN A DEVELOPER, SKIP AHEAD TO CHAPTER 7,
WHERE WE START TO LOOK IN DETAIL AT £SS3.

191

192

CHAFPTER &

Network and location APls

Finding yourself with the Geolocation API

Location-aware services and applications are a hot topic at the

moment. Most of us are now familiar with navigation devices in our

cars that constantly update position information using the Global Posi-

tioning System (GPS) network. These days, many mobile phones and

other portable devices come with built-in GPS technology, as well as

other positioning services, and the HTML5 Geolocation API exposes

these to your web pages.

[IL - T Eantent eAatlE L - MIREneld
Fle ESC Yiew Higlory Bookmarks Tooks Heip
8| Contert exitable 1 (£}

STEF

STEFWORKS AS THE CORPORATE SALES MANAGER HE |
THE MARKETING EFFORTS WITHIN THE FIRM AND SELI
BEFORE THEY EXIST. HE CANT UNDERSTAND THE WAY
THINK. S0 DRESNT GET VERY FAR WITH THEM HE SUC
ALTHOUGH HE ADMIRES THE POWER OF MIZROSOFT'S|
MLISCLE. HE HAS A REAL PROBLEM WITH MICROSOFT 5/
PROBABLY BECALISE THEY MAKE MUCH MORE MONEY T

Google already uses the
Geolocation API if you
access its site from your
mobile phone. The screen-
shot at left shows that
Google is aware of my cur-
rent location. One of my
options upon searching is
to choose Local, which
provides search results
that are tailored to my cur-
rent location.

c Standard
.0

fi

o ‘Q 5.0
<)

(7]

o

s e 35
=

o

S

= 2

g_ : 9.0
=

o

L0 -
2 .
("]

@

g

@ -
m

. — n BRI wa AR E 1 M)
B¢ ESt Yiew Higlory Bookmarks Tools felp
& Content editabie 1 =

STEF

STEF (SOMETIMES|WORKS AS THE CORPORATE SALES
RUNS MOST OF THE MARKET ING EFFORTS WITHIN TH
SELLS THINGS BEFORE THEY EXTST, HE CANT UNDERS
TECHIES THINK. S0 DOESNT GET VERY FAR WITH THE
(QUAKE. ALTHOLIGH HE ADMIRES THE POWER OF MICRC
MARKET ING MUSCLE. HE HAS A REAL PROBLEM WITH M
SALESMEN. PROBABLY BECALISE THEY MAKE MUCH MOR
HE DOES.

.

Finding yourself with the Geolocation AFI 193

Finding your location

THE GEOLOCATION API IS FAIRLY STRAIGHTFORWARD. LET'S LOOK AT
SOME CODE THAT QUERIES THE USER'S CURRENT LOCATION.
Q :;
| 3
v /—\ THE getcurrentPosition

FUNCTION GETS THE USER'S
LOCATION.

CHECK THAT THE if (navigator.geolocation) {

BROWSER SUPPORTS

THE GEOLOCATION APL

navigator.geolocation.getCurrentPosition(

function (position)

_/ THE CALLBACK FUNCTION IS
{ PASSED A position OBJECT.
PASS AFUNCTIONTO

getCurrentPosition document.getElementById('location').innerHTML =
¥:2TB;UOI[U:}L$EB§:A%LED WHEN 'Latitude: ' + position.coords.latitude +
DETERMINED THE POSITION. Longitude: + position.coords.longitude;
} USE THE coords OBJECT TO —J
) GET THE LATITUDE AND
} LONGITUDE.

The first thing the user will see when they run this code is the browser
asking permission to share their location. Here are examples in Firefox,

Chrome, and the Android browser.

L:‘ GEQIGEATION 1 - MazIlIA FIrefay BJ
File Edit View History Bookmarks Tooks Help
- Gevlocation 1] >
wwvw, dotrob, com wants to *

{2 knaw your location. Share Location| | Dga't Share [Bermnamber for this site
£m Mare.

Where are you?
WHERE ARE YOU?

. Geolocation 1

& B # | D wwwdotrab.com

) | www.dotrob.com wank to track your physical location Learnmore Allow | Deny

WHERE ARE YOU?

www.dotrob.com wants to know your location

+ Remember preference

Share location Decline

194 CHAFPTER © Network and location APls

After the user accepts, the browser looks up the location. When it finds
the location, the function is called and the coordinates are displayed.

@ K 'Geolocation 1 - Mozilla Firefox HEE|

File Edit View History Bookmarks Tools Help
@] Geolocation 1 | 4

WHERE ARE YOU?

LATITUDE: 5151333 LONGITUDE: -0088947

Done

v

@ PR Aea @ 5

Finding your location more accurately

http://www.dotrob.com/demo/geol... O

Where are you?

Latitude: 51.529110724999995
Longitude: -0.12772145000000001

Notice that the two screenshots at the end of the previous section are
reporting different coordinates —they’re about two miles apart. At the
time when these were taken, my phone and my laptop were lying side
by side on the same table —considerably closer than two miles! This
discrepancy is because the browser on my laptop and the browser on

my phone use different location service providers. There are four com-
mon ways of identifying location.

GEOLOCATION OPTIONS
SATELLITE CELL TOWER
“VERY ACCURATE (1-20M) *ACCLIRACY (20-200M)
IN OPEN SPACE DEPENDS ON CELL
«CAN BE SLOW TO TOWER SPACING
ACGUIRE SATELLITE “NEEDS MOBILE STGNAL
LOCK

(p)

WI-FI
*VERY ACCURATE (10-15M)
IN URBAN AREAS

*NEEDS NETWORK
CONNECTION FOR
LOOKUP

ADDRESS DATABASE
NOT ACCLRATE (1000-40000M)
‘WORKS ON DESKTOPS

*NEEDS NETWORK
CONNECTION

Finding yourself with the Geolocation AFI 195

IT'S NOT POSSIBLE TO FIND OUT EXACTLY WHICH TECHNOLOGY WAS
USED TO PROVIDE THE POSITIONING INFORMATION. BUT YOU CAN
GET AN IDEA HOW ACCURATE THE FIGURE IS LIKELY TO BE, BECAUSE \
THE coords OBJECT ALSO INCLUDES AN accuracy PROPERTY.

Here's a new version of the previous example, this time displaying the

accuracy.
@ CRAIGER BT T A REIE v oD
File Edit yiew History Bookmarks Tools Help hittp://www.dotrob.com/demo/geo... ()
= Geolocation 2 | = >
WHERE ARE YOUP Where are you?
LATITUDE: SLS1333 LONGITLDE: -O0889%7 WITH AN ACCLIRACY OF: MOO00M Latitude: 51.5304878 Longitude: -0.127846
with an accuracy of: 92m
Dane eg

USING THE ACCURACY 1S STRAIGHTFORWARD. THE ONLY CHANGE THAT
NEEDS TO BE MADE TO THE PREVIOUS LISTING IS AN EXTRA LINE IN THE

CODE WHERE YOU WRITE THE RESULTS TO THE PAGE.
Q @ / THE ACCURACY
- IS AVALUE IN
v document.getElementById('location').innerHTML = METERS.
'Latitude: ' + position.coords.latitude +
/-" Longitude: ' + position.coords.longitude +
' with an accuracy of: ' + position.coords.accuracy + 'm'
THESE LINES ARE

UNCHANGED. /
THE coords OBJECT ALSO HAS
AN accuracy PROPERTY.

Finding your location continuously
What if you want to continuously track the user’s position? You could
just call getCurrentPosition() repeatedly, but that’s a waste if the user is
stationary, and it could drain battery life on hand-held devices. A better

196 CHAFPTER © Network and location APls

option is to have the browser tell you when there’s an updated location.
For this, the Geolocation API provides the watchPosition() method.

This screenshot shows my progress

through North London over a couple

of hours one afternoon. All I had to do Where are you?
to get this information was open the Lattude; 316092915 onghude: 016770772

Latitude: 51.58780670000001 Longitude: -
0.16584736666666666 with an accuracy of:
BBm
. W Latitude: 51.58758 Longitude: -
keep the Phone n my POCke'L hen 0.16431636666666666 with an accuracy of:
. . . 57m
Latitude: 51.53834726 Longitude; -
new geOIOcatlon lnformatlon was 0.14397922000000002 with an accuracy of:
. . &0m
avallable) the bI‘OWSCI‘ actlvated the Latitude: 51.536900415999995 Longitude: -
0.14405595 with an accuracy of: 57m
3 Latitude: 51.535605759999996 Longitude: -
CallbaCk funCtlon- 0.14281645999999998 with an accuracy of:
75m
Latitude: 51.53452908999999 Longitude: -
0.13853497 with an accuracy of: 29m
Latitude: $1.5313391 Longitude: -0,13349745
with an accuracy of: 56m
Latitude: 51.53038161999999 Longitude: -
0.13272513 with an accuracy of: 61m
Latitude: 51.529648529999996 Longitude: -
0.12853056000000002 with an accuracy of:
B4m

page in the phone's browser and then

THE CODE IS ALMOST IDENTICAL TO THE PREVIOUS EXAMPLE. THE ONLY
CHANGE IS IN THE METHOD CALLED.

Y ; / watchposition INSTEAD OF

- (— getCurrentPosition.

navigator.geolocation.watchPosition(

function (position) {
document.getElementById('location').innerHTML =

THIS FUNCTION WILL 'Latitude: ' +
NOW BE CALLED position.coords.latitude +
MULTIPLE TIMES. ' Longitude: ' + ~¥— THESE LINES ARE

position.coords.longitude + UNCHANGED.

with an accuracy of: +
position.coords.accuracy + 'm’

1)

Practical uses for geolocation
Now that you've seen the basics of acquiring position information, let’s
consider how you might use the Geolocation API in practice. We'll look
at two simple examples: calculating how far the user is from a given
point, and showing the user on a map.

Finding yourself with the Geolocation AFI 197

The first example calculates how far the user is from the birthplace of
Tim Berners-Lee. Although this example uses a single fixed point for
simplicity, the techniques involved will work just as well for more
advanced scenarios —working out how far apart two users of your

website are, for example.

YOU MAY REMEMBER, FROM SCHOOL, WORKING OUT THE DISTANCE BETWEEN TWO
POINTS ON A PLANE USING THE PYTHAGOREAN THEOREM. CALCULATING THE DISTANCE
BETWEEN TWO LATITUDE/LONGITUDE POINTS ISNT QUITE AS STRAIGHTFORWARD
BECAUSE THESE AREN'T POINTS ON A FLAT SURFACE, BUT POINTS ON A SPHERE.

"
[
Rather than learn all that @ =]a])]
m 4« Gealocation 4 +
math fOI’ yourself‘; you can use - > D || A e hetpuiwww.dotrob.comidemoigesloc-ahitml % v 8- s i)

an. f:)'(cellent set of J avaScript YOU ARE APPROXIMATELY 13.30
utilities from Chris Veness, KILOMETRES FROM THE BIRTHPLACE OF TIM

available at www.movabletype | BERNERS-LEE
.co.uk/scripts/latlong.html. This

B o-9-0- G View (100%) -

library allows you to create

LatLon objects that have several useful methods available. Starting with
a blank HTML5 document, you can create the following page with five
simple steps.

Start with an empty HTML5 page with a link to the LatLon.js
library. All the JavaScript code goes in the empty init

function:

<!DOCTYPE html>

<html>

<head>
<meta charset="utf-8">
<title>Geolocation 4</title>
<script src="LatlLon.js"></script>
<script> function init() { } </script>

</head>

<body onload="1init();">

</body>

</html>

www.movabletype.co.uk/scripts/latlong.html
www.movabletype.co.uk/scripts/latlong.html

196

CHAFPTER © Network and location APls

For convenience, create a LatLon object for Tim Berners-Lee’s

birthplace, East Sheen in London:

var eastSheen = new LatLon(Geo.parseDMS('51727\'49"N"),
Geo.parseDMS('0?715\'49"W"));

As usual, add a template in your HTML to fit the data into:

<h1>

You are

kilometres from the birthplace of Tim Berners-Lee
</hl>

Add a function to update the template:

function writeLoc(message, accuracy) {
document.getElementById('distance').innerHTML = message;
if (accuracy > 100) {
document.getElementById('accuracy').innerHTML =
'approximately';

}

Take the usual geolocation boilerplate code, and adapt it so
that it creates a LatLon object for the user’s current location.
You can then use the distanceTo method of LatLon to get the
distance between the two points:

if (navigator.geolocation) {
navigator.geolocation.getCurrentPosition(function
(position)
{
var you = new LatLon(position.coords.latitude,
position.coords.longitude);
writeLoc(you.distanceTo(eastSheen),
position.coords.accuracy);

;

Finding yourself with the Geolocation AFI 199

Although it’s neat that you can perform calculations on the coordinates
you get from the Geolocation API, most users probably aren’t bothered
by exactly how far they are, as the crow flies, from Tim Berners-Lee’s
birthplace, or any other famous landmark. It’s also likely that, outside
of geocachers, most people aren’t too interested in their exact latitude
and longitude. They're far more likely to want to know where they are
in some sort of sensible context—in other words, on a map.

GOOGLE OFFERS A FREE SERVICE FOR THE BASIC DISPLAY OF A MAP ON A WEB
PAGE. THE NEXT EXAMPLE TAKES THE INFORMATION FROM THE GEOLOCATION
APT AND USES IT TO CALL UP A MAP OF THE USER'S CURRENT LOCATION.

“Gedlacation s - Fiaziiia Firetax ==)

Eile Edt View Higtory Bookmarks

& ;
Tools Help % ‘
e = . http://www.dotrob.com/demo/geol... ()

WHERE ARE You?r Where are you?

Rl Fay [+ ST

Pe—— Snscaset

HT TP/MAPS GOOGLE COM/MAFS/ AP LAST AT LLMAPPCENT ER-S151333 - O 0887 ZOOMLE
SIZEDNHOEMAPT YPEROADMAPG
oL

ApAApUAtOmApToenler=S] 52
w1 28 sirend ApTyTERrEISTA

ORFEPLABELASLITISE O ORFALSE

@ P s @ P D

The Google Maps API requires some parameters as part of a URL. The
URL can be built in the writeLoc() function and then set to be the
source of an image element. For convenience, create an empty image

element in your page where the map is to appear:

200 CHAFPTER © Network and location APls

In the callback function, set the URL of the image to the appropriate
Google Maps API call:

function init(Q) { if (navigator.geolocation) {
navigator.geolocation.getCurrentPosition(function (position){
writeLoc(position.coords); 1D
function writeLoc(coords) {
var 1 = "http://maps.google.com/maps/api/staticmap?center="' +
coords.latitude + ',' + coords.longitude +
'&zoom=12&s1ize=440x440&maptype=roadmap' +
'&markers=color:red|color:red|label:a|" +
coords.latitude + ',' + coords.longitude +
'&sensor=false';
document.getElementById('location').src = 1;
document.getElementById('debug').innerHTML = 1;
}

When the image URL is set, the browser will load the appropriate map
from the Google Maps API.

NOW YOU KNOW WHERE YOU ARE. WHAT ABOUT TELLING SOMEONE ABOUT IT?
COMMUNICATION IS CENTRAL TO THE WEB, BUT WEB PAGES HAVE BEEN
CONSTRAINED IN WHAT THEY'RE ALLOWED TO COMMUNICATE WITH AND HOW
THEY'RE ALLOWED TO DO IT. HTMLS OFFERS NEW COMMUNICATION APIS: FOR
COMMUNICATING IN A SAFE WAY IN BROWSER-BASED APPS, CROSS-DOCUMENT
MESSAGING: AND FOR COMMUNICATING EFFICIENTLY WITH A SERVER IN REAL TIME,
THE WEBSOCKET API. THE NEXT SECTION LOOKS AT THESE APTIS IN MORE DETAIL.

Communication in HTMLDS

The communication model in HTMLA is pretty much the same as it was
in the first version of HTML. The user requests information from a
server, and then the server delivers it. Although innovations like the
XMLHTTPRequest object allow us to do some cunning things, the underly-
ing model is the same. In addition, content loaded from different serv-
ers is usually shielded from other servers—a policy known as vame
origin restriction.

THIS SECTION NECESSARILY INVOLVES SOME INTERACTION WITH A
SERVER: DISCUSSING HOW TO GET EVERYTHING WORKING ON ALL
/ POSSIBLE ARCHITECTURES WILL TAKE TOO MANY PAGES. IF YOU'RE
N NOT COMFORTABLE WITH THE SERVER SIDE OF THINGS, SKIP AHEAD.

Communication in HTMLS 201

Enabling more secure integration with cross-document messaging

In many situations, people like to use widgets from other websites

inside their own pages. Common scenarios where this happens are

Facebook’s Like buttons, external commenting systems such as Dis-

qus, and Google Ads. There are two basic approaches for this:

The <iframe>—An embedded window inside your page into which

another web page is loaded. The page inside the <iframe> is completely

separate from the page containing the <iframe>, and standard browser

security prevents them from communicating with each other.

JavaSeript include — An inline <script> element in the host page, which

1s allowed to create elements and fetch content from the server from

which it came. The script is completely integrated in the host page

and has access to all the information the host page does.

Browser support quick check:
cross-document messaging

Standard
(3
e} 3.0
u) 8.0
O 9.5
@ 4.0

The problem is that there are two extremes. With the
<iframe>, you can guarantee that the widget doesn’t have
access to any private data about your users that you hap—
pen to be manipulating with JavaScript, because it
doesn’t have access to anything in the host page, includ-
ing any information that might be useful for the script.
With the JavaScript include, the opposite is true: the
script has access to everything in the page, including any
cookies that may be set and any forms the user is filling
in. What's needed is a solution that maintains the privacy
and security allowed by <iframe>s but allows a controlled
flow of infor-mation between the two domains. This is
what cross-document messaging provides.

Faking multiple domains

Experimenting with multiple domains requires that you have multiple domains
available. If you don’t happen to be one of those people who collect domain
names, you can fake it on your local machine by editing your hosts file. On Win-
dows, this file is usually located at C:\Windows\System32\Drivers \etc\hosts
(note that the filename doesn’t have an extension) and on Linux and Unix systems
at /etc/hosts. The file format is an IP address followed by a number of aliases:

127 0@l
127 0@l

myfirstfakedomain.com
myotherfakedomain.com

202

CHAFPTER © Network and location APls

(continued)

If these two lines are added to your hosts file, then browsing to either http://
myfirstfakedomain.com or http://myotherfakedomain.com will direct a request
to a web server running on your local machine.

To experiment with cross-domain messaging, you'll need two files. The
first, the parent page, contains an <iframe> element that will load the

second child page:

<iframe width="600px" e e LR
height="200px" src="child-1.html"> e smmemsssy - Il v

</iframe> CROSS-DOCLIMENT MESSAGING - PARENT

<textarea id="message">
This is a message in
the parent frame

</textarea> Gt et

This is a message in the parent frame

CROSS-DOCUMENT MESSAGING - CHILD

This is a message in the child frame

This page also contains a <button>
Updaie child

that will initiate communication

with the child:

<button onclick="update_child()">
Update child
</button>

The update_child() function attempts to directly edit the contents of the

child page:
function update_child() { R T e e T
Dle ESt Yew Higlory Bookmarks Rols Help
var el = document @ cross ocument messageg 1 [S
.getElementsByTagName (CROSS-DOCUMENT MESSAGING - PARENT
"iframe’
)[0]; CROSS-DOCUMENT MESSAGING - CHILD
’ Updated from
var tb = el.contentDocument ol
.getElementById('message'); fpdcs pace
tb.value = 'Updated from parent'; This 15 a message in the parent frame

} Updatyhiid

Communication in HTMLS 203

The child page is similar:
<textarea id="message'>

This is a message in the child frame
</textarea>

But this time, the <button> attempts to communicate with the parent:

<button onclick="update_parent()">Update parent</button>

ST LI [

When both pages are on the same

domain, it,S possible to access the
CROSS-DOCUMENT MESSAGING - PARENT

elements of the child page directly
and do the same in reverse (access CROSS-DOCUMENT MESSAGING - CHILD
the parent from the child): ST R

Upsdate parent

function update_parent() {
var tb = parent.document
.getElementById('message');
tb.value = 'Updated from child';

Updated from child

Update chidd

}

But look what happens if the pages

are served from different domains:

<iframe width="600px"
height="200px"
src="http://www.boogdesign.com/
examples/messaging/child-
2.html"> piate parer
</iframe> This is a message in the parent frame

(CROSS-DOCLIMENT MESSAGING - CHILD

This is a message in the child frame

Upcdate child

The pages are otherwise identical, but now when you click Update
Child, the browser reports an error:

Exception: Permission denied for <http://localhost:8000> to get
property HTMLDocument.getElementById from <http://www.boogdesign.com>.

The cross-document messaging API allows you to work around this
security restriction, but it’s slightly more complex than accessing the

204

CHAFPTER © Network and location APls

documents directly. The first step is to add a listener to the page for the
message event that will call a function when a message is received:
window.addEventListener('message', receiver, false);

function receiver(e) {
document.getElementById('message').value = e.data;

}

This event listener can be added in both the parent and child pages.
The update_child() function then needs to be changed to call the post-
Message () method:

function update_child() { (ST ESE 3 IR e
File Edt View Higtery Bookmarks Tools Help
var el = 3 s counand meassgi 3. i S
document.getElementsByTagName (CROSS-DOCUMENT MESSAGING - PARENT

"iframe') [0];
el.contentWindow
.postMessage(

'Updated from parent', '*' Updtapured

CROSS-DOCUMENT MESSAGING - CHILD

Updated from parent

) ; This is a message in the parent frame

Update child

The same postMessage () method can be called from the child to the parent:

function update_parent() {

T Tr—— T 03 THITENRi” i
parent e B ;
.postMessage(CROSS-DOCUMENT MESSAGING - PARENT
'Updated from child',
Vet CROSS-DOCUMENT MESSAGING - CHILD
) . Updated from parent
} ey

Updated from child

Update child

ALTHOUGH THIS FUNCTIONALITY ALLOWS YOU, THE WEB DEVELOPER, GREAT
POWER, IT ALSO INCREASES YOUR RESPONSIBILITY. NOW THAT THE BROWSER
HAS PROVIDED A WAY AROUND A SECURITY RESTRICTION, YOU NEED TO
PROVIDE YOUR OWN SECURITY CHECKS.

Communication in HTMLS 205

In the following code, the receiver() function has been modified to
check the origin of the onmessage event:

function receiver(e) {

if (e.origin == "http://www.boogdesign.com') {
document.getElementById('message').value = e.data;
} else {
alert('Unauthorized');
3

}

Similarly, the update functions should be modified to send the origin:

function update_parent() {
parent.postMessage('Updated from child', 'http://
www.boogdesign.com');

}

Note that the origin argument here should be the parent’s origin, not

the child’s.

Communicating between documents across domains is just one of the
new communication features in HTMLS5. It also offers new options for
communicating with the server. The next section will look at the most
exciting of these technologies: WebSockets.

Real-time communication with the WebSocket API

WebSockets are a lightweight protocol, new to HTML5, allowing a
server to communicate directly with a web browser without waiting for
a request. You may be thinking that the web has always had a way for
the browser and server to communicate, and that it’s a fairly fundamen-
tal property, but it’s always had a request-response model. This means
that to receive a response from the server, the browser must first make
a request. Although this is fine for web pages, it has limitations as far as
web-based applications are concerned. If an application relies on fre-
quent updates from the server —for instance, if it’s a multiplayer game
or a chat application —the browser could end up not requesting an
update as it becomes available, or wasting bandwidth requesting
updates when none are available.

206

CHAFPTER © Network and location APls

The WebSocket API solves this problem by allowing the server to initi-
ate a response to the browser without the browser asking for it.

Updates can now be delivered as they’re ready and only when they're

ready, as the following diagram shows.

CLIENT

REQUEST
—_

E RESPONSE
-~

REQUEST
—_—

UPDATE 1 o FESPONSE

RECEIVED

REQUEST
—_—

RESPONSE
UPDATES 26 3 +—

RECEIVED

In a traditional AJAX model,
updates from the server are sent
when the client asks for them. If
the client doesn’t request an

SERVER CLIENT
| ol
AVAILABLE =
UPDATE 1
[—— UPDATE2 RECEIVED
AVAILABLE

— UPDATE 3 UPDATE 2
AVAILABLE RECEIVED

UPDATE 3
RECEIVED

TIME

update, it sits on the server.

Browser support quick check:
WebSockets

Standard
‘U 4.0
@ -
& 10.0
-

O
@ -

* The WebSocket API is dis-
abled by default in Firefox
4 and 5 and Opera due to a

security concern. It must

be enab]ed manual]y.

A server for WebSockets: Node.js

REQUEST
—_—
RESPONSE

-—

RESPONSE
-~

RESPONSE
-~

RESPONSE
-~

SERVER

B

TIME

They can be sent to the client
as soon as they're available.

—— UPDATE1

AVAILABLE

—— UPDATE 2

AVAILABLE

[UPDATE 3

AVAILABLE

With WebSockets, the server is

in control of sending updates.

Experimenting with WebSockets requires a server. The fol-
lowing example uses Node.js, a new server written using Ja-
vaScript. Download Node.js from http://nodejs.org, and
follow the instructions for installing it on your operating sys-
tem. The server-side files used for the example are ch06/

messaging/server-1.js and ch06/messaging/server-2.js.

Communication in HTMLS 207

The first step on the client side is to create a new WebSocket instance:

var socket =

new WebSocket (

"ws://localhost:8080/"
)3

Then, assign event handlers to the
socket object. In this first example,
the server will wait 10 seconds and
then close the connection, so you
just need to watch the onopen and
onclose events:
socket.onopen = function () {

log("Socket has been opened!");
}
socket.onclose = function () {
log("Socket has been closed");

}

@ B 2§ [Drghelionmisesseodenotmesagingwetsocket. Lh 7y |

Cosnect
SOCKET HAS BEEN OPENED!
SOCKET HAS BEEN CLOSED

m

a

Now let’s look at what happens when the server sends a message. In

the browser, you have to handle the onmessage event:

socket.onmessage = function(msg) {
log(msg.data) ;
}

The data attribute of the event
handler argument contains the
message from the server; in this
case, the current data and time

every 10 seconds.

You can also control the connection
from the browser with the close
method on the socket object:

socket.close();

L] & 4 | D nghelio-temis-can:) Thiy

Comnect | | Closs

SOCKET HAS BEEN OPENED!

THE TIME NOW IS MON CCT 11 2010 00848 GMT+O100
(BST)

THE TIME NOW IS MON OCT If 2010 O3:08:28 GMT+O100
(BsT)

SOCKET HAS BEEN CLOSED

Ve Sockets 2

A

2086 CHAFPTER © Network and location APls

Finally, you may want to send a message to the server. This is done
with the send() method on the socket object, passing the message as the
parameter:

function send() { =

var msg = document b 0 @ D ngheliormiscuseotecnonmeagingwetsecket Lh Y| [A,

.getElementById('message').value; e P e e

socket.send(msg) ; SOCKET HAS BEEN OPENED!

} THE TIME NOW IS MON OCT Nl ZOI0 030310 GMT+O100
(BST)
. THANKS FOR SENDING: HELLO!

The server is set up to echo back VBTSN ST o0 AR
any message 1t receives. SOCKET HAS BEEN CLOSED

THE WEBSOCKETS COMMUNICATION PROTOCOL HAS CHANGED FREQUENTLY
DURING DEVELOPMENT, SO IF YOU ENCOUNTER DIFFICULTIES, CHECK THAT
BOTH CLIENT AND SERVER ARE USING THE SAME VERSION OF THE PROTOCOL.

Offline web applications

Although in the modern world we sometimes take connectivity for
granted, there are plenty of situations where you might want access to
web applications when you're offline—particularly when, as the
authors of the HTML5 specification hope, more and more of the appli-
cations you use every day are web applications. For a web application
to be available offline, there are two basic requirements:

A mechanism for storing the pages and other files (images, scripts,
and stylesheets) required by the application

A place to store the user’s data as it’s accessed and updated while the
user is offline

In this section, you'll learn about HTML5 technologies for the first of
these requirements: the application cache —a way of placing a copy of
your web app on your user’s machine. In the following section, you'll
learn about the offline storage of data.

Offline web applications 209

Before going into the application cache, you'll set up a development
environment and then get a reminder of how web applications work
when they’re online.

Setting up a development environment

THE EXAMPLES IN THIS SECTION USE A LOCAL WEB SERVER, THE PYTHON MODULE
SimpleHTTPServer, SO YOU CAN SEE BOTH ENDS OF THE COMMUNICATION IN REAL
TIME. IF YOU'RE RUNNING LINUX, THIS MODULE IS PROBABLY ALREADY INSTALLED;

OTHERWISE YOU'LL HAVE TO INSTALL A STANDARD DISTRIBUTION OF PYTHON.

SimpleHTTPServer records a line like this every time a request is made
(it’s been split into three sections so it fits better on a single page):

REQUESTED SERVER NAME

P L L T T TP L g ‘ PROTOCOL AND VERSION
Tsecom "GET Joffline-l-a.html HTTP/1.1" 200 -

REQUEST METHOD REQUESTED FILE RESPONSE STATUS

Browser support quick check:

offline apps

App cache | Local storage The only parts we're interested in are

the request and the status code, so I'll

G 4.0 4.0 elide the extra details in the examples
that follow.

e" 35 35 In order to understand what'’s going on

_ with offline web applications, you first

e - 8.0 need a good understanding of what

normally happens as the browser and

O 106 10.5 the web server communicate in order

to display a web page. Let’s first exam-

@ 5.0 5.0 ine the interaction between the web

browser and the server for a simple

210

CHAFPTER © Network and location APls

two-page website, without enabling any of HTML5's offline features.

Here are the two pages you’ll use.

ch06/offline-example/offline-1-a.html

ch06/offline-example/offline-1-b.html

<!DOCTYPE HTML>
<html>
<head>
<meta charset="utf-8">
<title>
Offline Web Applications 1
— Page A
</title>
<link rel="stylesheet"
href="offline-1.css">

<!DOCTYPE HTML>
<html>
<head>
<meta charset="utf-8">
<title>
Offline Web Applications 1
Page B
</title>
<link rel="stylesheet"
href="offline-1.css">

</head> </head>
<body> <body>
<h1l>Page A</hl> <h1l>Page B</h1>
<p> <p>

Go to page B Go to page A

</p> </p>
</body> <img src="example.png"
</html> alt="An example image">
</body>
</html>
First, start the local web server:
python —-m SimpleHTTPServer
Serving HTTP on 0.0.0.0 port 8000 ...
If you load the page in the browser, [T o =D
the server records the following €& o ES - o
requests: PAGE A

GOTOPAER

"GET /offline-1-a.html HTTP/1.1" 200 -

"GET /offline-1.css HTTP/1.1" 200 -

The page itself is requested, as is any-

thing required to display that particu-

lar page (in this case the stylesheet),

but none of the links within the page

areloaded.

Offline web applications 21

When you click the link, the server e e L PR
records the following two requests: e T
"GET /offline-1-b.html HTTP/1.1" 200 - PA®EB

"GET /example.png HTTP/1.1" 200 -

WHAT ARE WE BOTHIC

TRYING TO

Again, the page itself is requested as
well as the image embedded in the

second page.

Most browsers, in their default config-
urations, cache recently accessed
pages. If you use the Back and For-
ward buttons in your browser at this
point, no new requests will be made to

the server.
Stop the server (press Ctrl-C/Cmd-C T T e e =R
in the terminal): o A

ACTraceback (most recent call last):
4. Unable to connect
£

Firefox can't establish & connection to the server

KeyboardInterrupt ot loealhost:6000

In the browser, try going back and
forward again. You'll see that the

pages are still there in the browser’s
temporary cache. But if you try to
reload the page, the browser tries to
contact the server, finds it’s unavail-
able, and shows an error.

The application cache

The application cache is a service provided by HTML5 web browsers
in which you can store your web apps for offline use. To change the
previous example into an offline application, it requires one small
change and an additional file. At the top of the home page, you need to
add a reference to a manifest file, like this from ch06/offline-example/
example-2-a.html:

<!DOCTYPE HTML>
<html manifest="offline-2.appcache">

212

CHAFPTER © Network and location APls

Then the manifest file itself needs to be created. This 1s a text file that
begins with the words CACHE MANIFEST and then lists all the files in your
web application, one per line:

CACHE MANIFEST
offline-2-a.html
offline-2-b.html
offline-2.css
example-2.png

Note that it’s not necessary to list the file where the reference to the
manifest appears, because the file that references the manifest is auto-
matically added to the cache; but doing so may save you headaches
later if you end up with a large application and you change the file from
which the manifest is referenced. Also, note that paths are relative to
the manifest file, not the file from which the manifest is referenced.

Manifests and MIME types

The file extension used here for the manifest file is .appcache. This is recom-
mended by the HTML5 spec. Initially, manifest files were given a .manifest ex-
tension, but it was found that Microsoft was already using this extension for
another purpose. To avoid collisions, the recommended file extension was
changed. But the file extension isn’t as important to the browser as the MIME
type the server sends along with the file in the headers. The correct MIME type
for manifest files is text/cache-manifest. MIME types were discussed in chapter
4, when we looked at video.

Start SimpleHTTPServer again, and oo
This websit
access the new page. As before, the localhot) s asking _
® "o store data on Allow Ngver for This Site Mot Now
your computer for
browser requests two files from the ofin ue.
server: PAGE A

"GET /offline-2-a.html HTTP/1.1" 200
"GET /offline-2.css HTTP/1.1" 200

But this time there’s a difference in the
browser —it’s asking for permission to
store files for offline use.

Offline web applications 213

If you click Allow, the browser imme-

diately makes several more requests: || offine web Appications 2 -5... [# v
localhost] e ~e

"GET /offline-2.appcache HTTP/1.1" 200 |

"GET /offline-2-b.html HTTP/1.1" 200 PAGE A
"GET /example-2.png HTTP/1.1" 200 60TOPAGER
"GET /offline-2.appcache HTTP/1.1" 200

The entire website is now available *Tofiline Web Applications 2 Page s~ waziile = = X |
. . . | Ble Edit View History Bookmarks Jools Help

offline. You can test this by again stop- | offine web appicatons 2-5... | v

ping SimpleHTTPServer and then, when _ tocathost : xie

no server is running, visiting the sec- PAGE B

ond page. GoTOPASE A

Even though you've never visited that WHAT ARE WE POTNK?

TRYING TO

SET A GOOD 1 yATE BEING|
EXAMPLE. MADE AN

X AMP ¥/
EXMmLELY |

page and the server is unavailable, the

browser can displa_y the page to you.

L b Applications 2 - Page A - Mol
Ele Edit View History Bookmarks Tools L

Let’s try a little experiment. Start your

local web server again, but edit the || offine web Applications 2 -P... [|
offline-2-a.html file: ; o lioeshost
<h1>Edited Page A</hl> PAGE A

SGOTOPASER

Now visit the page in the browser
again. Notice that your edit isn’t visi-
ble. This is because you've told the
browser to store the page locally.
Changes you make to the file on the
server aren’t seen because the browser
doesn’t go back to the server for the
file, even if you reload.

214 CHAFPTER © Network and location APls

If you look in the console, you'll see that the only request the browser
made 1s for the manifest file:

"GET /offline-2.appcache HTTP/1.1" 200 -

In order to make the browser fetch a new version of any cached file,
the manifest needs to be updated. Any change will do. The best
approach is to add a comment with a version number:

CACHE MANIFEST

ons 2 - Fage A - Mol

L eminE

#Vl Eile Ediﬁ ry"":ﬁookmar.k.s-. Iools .l:
offline-2-a.html || [offiine web Applications 2 - P... | *
offline-2-b.html g localhost:
offline-2.css
example-2.png EDITED PAGE A

GO TOPAGER

When you reload, the edited page appears.
If you check the console, you'll see that all
the files in the manifest have been down-
loaded again.

Beware the browser cache

There is a certain amount of caching built into HTTP, and browsers are often con-
figured to minimize network traffic by serving pages out of local cache instead
of downloading them again. This isn’t the same as having them in the applica-
tion cache; there are no guarantees or control for the web author. But the brows-
er cache can interfere with the application cache, because the browser may not
look on the network for new versions of files even if it detects that the manifest
file has been updated. In this case, the application cache is updated with files
from the browser cache. The situation is even worse if the manifest file is loaded
into the browser cache—then the user might never see your application updates.
You can avoid issues by explicitly setting caching values in the headers of your
files in the server configuration. Here’s the required line for Apache:

ExpiresByType text/cache-manifest "access plus 0 seconds"

In case you missed that last part, if you want to update a single file in your
application, all the files in your application will be downloaded again.

Offline web applications 215

THE KEY POINT TO GRASP FROM THIS IS THAT THE APPLICATION CACHE
ISNT A GOOD PLACE TO STORE DATA THAT WILL CHANGE OFTEN: IF
YOU'RE EXPECTING YOUR USER TO EDIT DATA AS PART OF THE
APPLICATION, THEN YOU NEED TO STORE THAT DATA ELSEWHERE.

HTMLS5 provides several options for storing an application’s dynamic
data, as you'll see in the section “Storing data for offline use.” In the
meantime, the next section will cover the other key features of the
application cache that you need to know about.

Managing network connectivity in offline apps
In this section, you'll learn about detecting the status of your offline
application: is it currently online or offline? To understand how to do
this, you'll need to explore some additional features of the manifest file;
but first you'll see why the built-in Offline API isn’t appropriate.

HTML5 provides the Offline API to detect whether the browser is
offline or online. It consists of the ononline and onoffline events and a
Boolean property, navigator.onLine. These would be an excellent way of
managing when to attempt to sync data with the server —if they worked.

That’s a little harsh —the API does work, but not in a way that’s useful
to web authors. The offline state in HTMLS5 is tied to the state of the
browser, not the state of your network connection or the availability of
the server. Here are the basics of the API:

navigator.onLine—This property is true if the browser thinks it’s
online and false if the browser thinks it’s offline.

window.online —This event is fired whenever the browser changes
from an offline state to an online state.

window.offline—This event is fired whenever the browser changes
from an online state to an offline state.

A function can be attached to the events either by declaring an ononline
or onoffline attribute on the body element, or by binding an event listener
to the window object in the standard way, as in the following example.

216 CHAFPTER © Network and location APls

window.setInterval(
function () { log('onLine:
10000

N

window.addEventListener('online’,
function () { log('online event fired'); } ,
false

K

window.addEventListener('offline’,
function () { log('offline event fired'); } ,
false

);

+ navigator.onlLine); 1},

The 1og function writes a message on OFFLINE EVENTS

the screen so you can see what'’s going

S ; ONLINE: TRUE
on. The full listing is in ch06/offline- ONLINE: TRUE
: ONLINE: TRUE
example/offline-events.html. ONLING. TRUE
ONLINE: TRUE
In the screenshot, the local web server ONLINE: TRUE
was started and the page loaded. After ONLINE: TRUE
hort he local web ONLINE: TRUE
a short time, the local web server was ONLINE: TRUE
stopped. As you can see, it made abso-
lutely no difference to the output in the
browser.
The reason is that these events and | Edit View History Bookma
properties aren’t designed to track " ol i
. , . . New Window Ctri+N
what’s going on with the network con- S 00 - Ak
nection or the availability of the Open File... Ctrl+0
Close Tab Ctri+w

)
remote server. Instead, they're Cosviniie CrivENRIw

plumbed directly into a menu item in

A Save Page As... Ctrl+S
the browser Ul: the Work Offline send Link...
entry, which is usually on the File Page Setup...
menu. Print Pre!iew
Print... Ctrl+P
Import...

0

Quit ctri+Q

Offline web applications 217

If the local server is started up again OFFLINE EVENTS

and the page reloaded, you can see the

. : ONLINE: TRUE

effect of selecting and then deselecting ONLINE: TRUE
. OFFLINE EVENT FIRED

Work Offline in the menu. ONLINE: FALSE
.. . ONLINE EVENT FIRED

This is perfectly reasonable behavior ONLINE: TRUE

from the browser if you think about

it —there are so many reasons the
server may not be contactable, that it
can't be tied to a single property in the
browser or the operating system, or
linked to a simple event.

Before you get too disappointed, there’s an alternative approach that
relies on detecting the property that an offline application really cares
about: whether it can connect to the server. To understand this
approach, you need to learn about some further features of the manifest
file: sections introduced with the keywords FALLBACK or NETWORK. A NETWORK
section lists resources that will always be fetched from the network —
they won't be available when offline. The FALLBACK section lists replace-
ments for certain files or directories when the user’s offline. Here’s ch06/
offline-example/offline-3.appcache, which has a FALLBACK section:

CACHE MANIFEST

#vl

offline-3-a.html

offline-3-b.html
offline-3.css

FALLBACK:
example-3.png dust-puppy-3.png

Let’s see what difference that makes in what files are requested when
the browser makes an initial request for offline-3-a.html:

"GET /offline-3-a.html HTTP/1.1" 200 PAGE A
"GET /offline-3.css HTTP/1.1" 200
"GET /offline-3.appcache HTTP/1.1" 200 SOTOPAED

"GET /offline-3-b.html HTTP/1.1" 200
"GET /dust-puppy-3.png HTTP/1.1" 200
"GET /offline-3.appcache HTTP/1.1" 200

218 CHAFPTER © Network and location APls

The file dust-puppy-3.png is fetched from PAGE B

the server even though it isn'’t listed in the s

opening section of the manifest file.

When offline-3-b.html is visited, it looks the

same as before. Because the server is still

WHAT ARE WE DOINK?

SET A GOOD 1 YATE BEING
EXAMPLE. waDE AN

(TRYING TO
EXAMPLE OF /
N e

running, the example-3.png image is loaded

as normal.

But if the web server is stopped and the page
reloaded, then, depending on browser set-
tings, the dust-puppy-3.png fallback image

1s shown instead.

The significant browser settings are the ones
to do with caching outside of the application
cache. The browser may still choose to show
the image out of the browser cache even
when the server’s unavailable —see the side-
bar “Beware the browser cache” for a dis-

cussion of this issue. If the fallback image
isn’t shown when the page is reloaded, try a

hard reload: Ctrl+F5 on Windows or Linux.

Listing ch06/offline-example/offline-4.appcache has a few more new
features:
CACHE MANIFEST

#vl
offline-4.html

FALLBACK:
example-4.png dust-puppy-4.png

CACHE:
offline-4.css

Offline web applications 219

FALLBACK:
headshots/ dust-puppy-4.gif

NETWORK:

*

In addition to multiple FALLBACK sections and a NETWORK section, this list-
ing has two CACHE sections. There are two because CACHE 1s the default
assumption at the start of the manifest file. It's possible to switch
between sections at any point by adding one of the three keywords on a
line by itself. This means the manifest file can be arranged to suit the
application rather than forcing everything to fit into three sections.

The other interesting feature of this manifest file is that it demonstrates
the pattern-matching and wildcard ability of the FALLBACK and NETWORK
sections. The NETWORK section has a star in it, which means “match any-
thing” — anything that isn’t listed is requested from the network. This
is the default behavior, so it’s not necessary to include it here, but if you
were developing real offline applications you'd include URL patterns
for your API in this section.

The second FALLBACK section includes a directory. It’s saying, “For any-
thing in the folder headshots, fall back to dust-puppy-4.gif when offline.”

This screenshot shows ch06/offline-

. : WHAT ARE WE DOINK?
example/offline-4.html when online.

TRYING TO
) .
Here's the markup for this example: SET A GOOD 1 yATE BEING
EXAMPLE. MADE AN
<img src="example-4.png" EXAMPLE OF /

alt="An example image">

<p>Example starring:</p>

<img src="headshots/pitr.gif"
alt="Pitr">

<img src="headshots/mike.gif"
alt="Mike">

<img src="headshots/stef.gif"

alt="Stef"> @ @ .

EXAMPLE ST ARRING:

220

CHAFPTER © Network and location APls

And here’s what the same page looks
like when offline. Each image from the
headshots folder has been replaced by
the fallback image without having to
explicitly list each image.

EXAMPLE ST ARRING:

It's worth noting that in this particular example, the alt text no longer

corresponds to the images displayed, so it might be a good idea to over-
ride the alt text with JavaScript if you can detect that the page is
offline. As discussed at the beginning of the section, it’s possible to do
this now that you know how FALLBACK works.

There are several possible approaches to using a fallback to detect the
application’s online status, but they all boil down to the same thing:
having a pair of files in the FALLBACK section of the manifest that have an
easily detectable difference between the online and fallback versions.
The complete listings for the two files this example uses are shown in

the following table.

ch06/offline-example/online.txt ch06/offline-example/offline.txt

ONLINE OFFLINE

It would certainly be possible to add more complexity; but the
online.txt file will be fetched from the server frequently, so the shorter
the better. In real life, it would be best to stop pandering to human
readability and use values of 1 and 0. Now add these two files in the
FALLBACK section of the manifest file:

CACHE MANIFEST
#vl

Offline web applications 221

offline-5.html
offline-5.css
offline-checker.js

FALLBACK:
online.txt offline.txt

These files can then be used to determine Check Offline Status |
) ; . ONLINE
tbe online status. In this (?Xample its . ONINE
linked to a button: each time the button is ﬁt;i
clicked, the online status is checked and ONLINE
ONLINE

reported.

The full listing 1s in the files ch06/offline-
example/offline-5.html and ch06/offline-
example/offline-checker.js. The key parts
of the code are shown next.

Here’s the function that’s called when the button is clicked. It calls
another function in the external JavaScript file, passing two functions
as parameters. The first function is executed if the server’s available,
the second if the server’s offline:

function display_online_status() {
check_online(
function() { log('online'); 3},
function() { log('offline'); }
J;
return false;

}

In a real application, the functions passed in would do something use-
ful, such as synchronize the application data with the server or queue it
for later delivery. But in this example, all they do is log the state of the
connection to the page.

Finally, here’s the function that does all the real work. Most of this is
standard AJAX boilerplate; using any one of the popular JavaScript
libraries will reduce the function to about four lines of code. The key

222 CHAFPTER © Network and location APls

line is about halfway down, where req.responseText is checked to see if

it contains the string 'OFFLINE':

function check_online(online_fn, offline_fn) {
var currentTime = new Date()
req = window.XMLHttpRequest ?
new XMLHttpRequest()
new ActiveXObject("MSXML2.XMLHTTP.3.0");
var freshUrl = 'online.txt?brk="' + currentTime.getTime();
req.open("GET", freshUrl, true);
req.onreadystatechange = function() {
if (req.readyState == 4) {
if (req.status == 200) {
if (req.responseText.indexOf('OFFLINE') > -1) {
offline_fn();
} else {
online_fn(Q;
}
} else {
offline_fn(Q);

3
req.send(null);

HAVING YOUR APPLICATION AVAILABLE WHEN THERE'S NO CONNECTIVITY IS ONE
THING, BUT MOST APPLICATIONS NEED TO INTERACT WITH DATA TO BE USEFUL.

.~~~ IF ALL THE DATA IS ON THE SERVER, THEN HAVING THE APPLICATION WORK
OFFLINE ISN'T OF MUCH USE IN ITSELF. IN THE NEXT SECTION, YOU'LL LEARN
ABOUT STORING DATA SO IT'S AVAILABLE FOR OFFLINE APPLICATIONS.

Storing data for offline use

In this section, you'll learn about the Web Storage API, a convenient
way to store data in the browser. Although web storage is crucial for
any sort of offline application, it’s also useful for providing quick access
to data in the browser without having to repeatedly request it from the
server. Web storage comes in two flavors: local storage, which is persis-
tent across browser sessions, and session storage, which is lost when
the user ends their browsing session. The storage APIs are also avail-
able to offline apps, making them extremely useful for caching your

Storing data for offline use 223

user’s data for access while they’re offline. The API for each is identical,
so this section concentrates on local storage and then provides a quick
comparison with session storage before finishing with a look at using
web storage in an offline application.

Local storage

For many years, the only option web authors have had for storing data
on the client has been cookies. These are small strings stored in the cli-
ent browser along with an expiry date and a key to reference them by.
They're then passed back by the browser along with any HTTP request
made to the server that set them.

COOKIES ARE WIDELY USED—ANY WEBSITE YOU VISIT THAT ALLOWS YOU
TO LOG IN OR REMEMBERS YOUR PAST ACTIVITY OR PREFERENCES IS USING
COOKIES TO CORRELATE EACH REQUEST YOU MAKE WITH STORED
INFORMATION ON THE SERVER, BUT THEY AREN'T WITHOUT ISSUES.

The local storage APIs create a client-side key-value store so that data
doesn’t have to be repeatedly fetched from the server. Cookies are useful
for tracking things like whether a user is logged on, but they've been
forced into a role where they end up storing a significant amount of data.
This is a problem because each request the browser makes contains the
full set of cookies it has. Local storage replaces cookies by providing a
simple in-browser service for associating keys with values. The data
stays in the browser and doesn’t need to be sent back to the server.

This section builds a simple to-do list application using local storage.
First you need some markup for a text input and a button:

<input type="text" id="new_item"> MY TO-DO LIST

<button onclick="add_item()"> adid
Add

</button>

<ul id="todo_list">

To add an item to the to-do list, the user must type a description into

the text input and click the Add button. When the user clicks Add,

224

CHAFPTER © Network and location APls

three steps are required: add the item to the list element on the page,
add the item to local storage, and finally clear the text input ready for
the next item:

function add_item() { MY TO-PO LIST
var new_item = White simple 1 do st app | Add
document.

getElementById('new_item');
add_listitem(new_item.value);
add_storageitem(new_item.value);

new_item.value = ;

This calls functions to add the item to the list on the page and to add
the same item to local storage. The function that adds an element to the
page is straightforward, using the same DOM scripting techniques that
everyone’s been using for years with HTMLA:

function add_item() {
var new_item = document.getElementById('new_item');
add_listitem(new_item.value);
add_storageitem(new_item.value);

new_item.value = ;

}

The interesting thing is the call to the add_storageitem function:

function add_storageitem(item) { MY TO-DO LIST
VC.II" key = new Date(); — @
window.localStorage.setItem(RLTE SIPLE T 00 LST 67
key.getTime(),item » THINK OF THINGS TO DO

)H
}

The localStorage object 1s available from the window object. In this case,
you call the setItem method that adds the provided key-value pair to
the storage. It doesn’t matter what the key is—it just has to be unique.
If you call setitem with a key that already exists, it will overwrite the
previously stored item, so the current time in milliseconds is used. The

Storing data for offline use 225

value has to be a string, and in this case the value is whatever the user
has typed into the text input. The full code for this first example is in
ch06/offline-example/local-storage-1.html.

Now that your to-do items are in local MY TO-DO LIST
storage, they’ll be there the next time you S
load the page. Restart your browser and
load the page again to check. You should

see something like the screenshot here.

You've not been lied to, your items are in
local storage, but that doesn’t mean they’ll
appear in your page automatically. You
have to write application logic to grab the
contents of localStorage and display it, just
as you had to write code to add the to-do
items to the page in the first place.

TO RESTORE THE APPLICATION STATE,YOU NEED TO RUN A FUNCTION WHEN THE
PAGE LOADS THAT POPULATES THE LIST WITH THE ITEMS IN localStorage.

YOU HAVE A FUNCTION TO ADD AN ITEM TO THE LIST, SO YOU JUST NEED A
/ FUNCTION TO EXTRACT THE ITEMS FROM localStorage.

Q4 HOW MANY TTEMS
ARE STORED?
LOOP THROUGH ALL THE
STORED ITEMS.

var todo_index = window.localStorage.length;
for (var 1 = 0; 1 < todo_index; i++) {

add_listitem(

%FEMTZTE‘ 'I'SEgEL?;R-IE":ﬁ’ window.localStorage.getItem(
INDEX.)]
k_/y window.localStorage.key (i) USE THE KEY TO GET THE
CURRENT ITEM. AND THEN PASS
) THAT TO THE add FUNCTION.

s

226 CHAFPTER © Network and location APls

You can find the complete listing in ch06/offline-example/local-
storage-2.html. Look for the init() function for the previous code.

There are some other functions you'll need MY TO-DO LIST

for a complete application. A to-do list Add

* WRITE A SIMFLE TO-DO LIST APP Delete

. ey .
isn't much use if it’s impossible to remove a
* THINK OF MORE THINGS TO PO Delete

task after completion. To delete a single —
item from localStorage, pass its key to the

removeItem() method:

window.localStorage.removeItem(key);

This depends on knowing which element on the page is associated with
which key in local storage. If a data-—* attribute is used to store that
information, then removal is straightforward. That attribute can be cre-
ated in the add_listitem() function if it’s modified to accept both the
key and the item as parameters:

function add_listitem(key, item) {
var 1i = document.createElement('1i'");
1i.appendChild(document.createTextNode(item));
li.setAttribute("data-key", key);
var but = document.createElement('button');
but.appendChild(document.createTextNode('Delete'));
but.onclick = remove_item;
1i.appendChild(but);
document.getElementById('todo_list').appendChild(11i);

IN A FULLY HTMLS-COMPLIANT BROWSER, THE LINE

li.setAttribute("data-key", key) WOULD BECOME

1i.dataset.key = key. BECAUSE NO BROWSER HAS SO FAR

IMPLEMENTED THE CUSTOM DATA ATTRIBUTE API, THIS
O\ EXAMPLE STICKS WITH THE TRADITIONAL DOM API.

Another change is required to support this. Previously it didn’t matter
what the key was when adding a new item, but now it needs to be

Storing data for offline use 227

added to the list item as entries are created. The key is created in the
add_item() method and passed in to both add_listitem() and
add_storageitem():

function add_item() {
var new_item = document.getElementById('new_item');
var key = new Date();
add_listitem(key.getTime(), new_item.value);
add_storageitem(key.getTime(), new_item.value);

new_item.value = ;

}

Finaﬂy, a user may want to delete everything in local storage rather
than individual items one at a time. This is easy using the clear(
method:

window.localStorage.clear();

You can look at the finished listing in ch06/offline-example/local-
storage-3.html.

Session storage

So far, the example has used local storage, but the section introduction
also mentioned session storage. Local storage and session storage have
exactly the same API: if you go back through the example and replace
every instance of localStorage with sessionStorage, it will still work.
Here's the sessionStorage version of the add and remove functions:

function add_storageitem(key, item) {
window.sessionStorage.setItem(key, item);

}

function remove_storageitem(key) {
window.sessionStorage.removeltem(key) ;

}

There’s a full sessionStorage example in the listing ch06/offline-
example/session-storage-1.html.

The only difference between the two types of storage is the length of
time the items are stored. Session storage is only guaranteed to last as
long as the browser process; if the browser’s closed, then any data

228

CHAFPTER © Network and location APls

stored is lost (unless the session-restore features of the browser are
enabled). Local storage lasts until your application clears it, or until the
user manually deletes the data, no matter how many times the
browser’s closed in the meantime.

One note before we proceed: while the capacity of local and session
storage 1s much larger than that of cookies, it’s still finite, and varies
substantially between browsers. Web storage can be a useful way to
store large amounts of data on the client side but, like all client-side
technologies, you should never rely on it being available all the time.

Putting it all together

Now that the to-do list app is functional, it would be nice to enable it to
work offline. Because the entire thing is self contained —no external
files of any kind, just the single HTML file —you just need an empty
manifest file

CACHE MANIFEST
#vl

and a reference to that manifest in the markup:

<!DOCTYPE HTML>
<html manifest="storage.appcache">

Remember that the file that references the manifest is always cached
and doesn’t need to be listed in the manifest file explicitly. If you have a
set of single-page applications on the same site, then they can all refer-
ence this one manifest file and they’ll be cached the first time the user
visits them. You can try it for yourself on your local web server with
the example file in ch06/offline-example/local-storage-4.html.

: YOU'VE LEARNED ABOUT A LOT OF DIFFERENT HTMLS FEATURES IN
e - THIS CHAPTER, BUT HOW MANY OF THEM CAN YOU USE RIGHT NOW?
BROWSER COMPATIBILITY IS SUMMARIZED IN THE NEXT SECTION.

Summary 229

Browser support

Browser support for most of the APIs discussed in this chapter is very
good. Only Internet Explorer lets things down by not supporting Web-
Sockets or the application cache, but support is being considered for a

€ @ 0e

future release.

12 14 4 6 8 10 | 115 | 12 5 5.1
Geolocation
Cross-document ° ° . . ° .
messaging
WebSockets ° ° ° . ° ° . . °
App cache ° ° ° .
Session . ° ° . ° ° ° . . . °
storage
Local storage ° ° ° ° ° °

Key:

e Complete or nearly complete support
o Incomplete or alternative support
Little or no support

Summary
This chapter has covered a selection of the most interesting HTML5

APIs associated with networking and connectivity. You should now be
able to build apps that
Take advantage of the user’s location, thanks to the Geolocation API
Communicate in a controlled way with pages on other domains

Write real-time chat and game apps with WebSockets

230 CHAFPTER © Network and location APls

Build apps that work even when there’s no internet connection

Store data in the browser with the storage APIs

The best way to learn more is to try coding for yourself. Download the
book’s sample code to get started.

THIS CHAPTER IS THE LAST IN THIS BOOK SPECIFICALLY ABOUT HTMLS. YOU'VE
LEARNED HOW TO BUILD HTMLS WEB PAGES AND SEEN SOME OF THE MANY NEW
POSSIBILITIES FOR WEB APPLICATIONS THAT HTMLS ENABLES. BUT YOU DONT
JUST WANT YOUR APPLICATIONS TO BE FUNCTIONAL: YOU ALSO WANT THEM TO
LOOK BEAUTIFUL. IN THE NEXT CHAPTER, YOU'LL START TO EXPLORE €553 AND
THE NEW OPTIONS IT OFFERS FOR THE VISUAL PRESENTATION OF WEB PAGES.

Learning CS53

he second part of the book begins by exploring the basics of CSS3 and
selectors in chapters 7 and 8. Then, chapter 9 discusses how to use
motion and color, chapter 10 covers borders and backgrounds, and
chapter 11 wraps things up with a look at fonts and text formatting.

New CSS language features

This chapter covers

Selecting elements based on their parents
Selecting elements based on their siblings

Selecting elements dynamically according to user activity

Let’s remind ourselves what a CSS rule looks like.

RULE

v '

p { font-size: 1.4em; }

bt | A

THE PART THAT TELLS THE
SELECTOR DECLARATION ------- BROWSER WHAT TO DO
THE PART THAT TELLS THE
BROWSER WHAT TO DO IT TO

In this chapter we're concerned entirely with the parts of CSS that appear

outside of the curly brackets —the selectors and associated syntax that
makes up a CSS document. After this chapter, we'll concentrate almost

completely on the stuff that appears inside the curly brackets —the prop-
erties and values that define the visual effect to be applied. The stuff that
appears inside the curly brackets is naturally more interesting, because

233

234 CHAPTER 7 New CSS language features

that’s what lets you change the style

THERE'S AN INTRODUCTION TO :

€55 IN APPENDIX C. IF YOU DIDN'T Olfl your F;lages'l But being able lto
KNOW ANY (55 BEFORE PICKING men r

LP THIS BOOK, YOU SHOULDREAD ~ C0OS€ What ‘elements your styles
THAT BEFORE PROCEEDING. affect is crucially important for the

whole thing to work.

What is CSS3?

CSS3 is the third major revision of the W3C CSS specification. Unlike the previous
two revisions, CSS3 is divided into modules—instead of being one, long docu-
ment like CSS1 and CSS2/2.1, there are currently more than 30 individual docu-
ments that are part of CSS3. These are all allowed to progress and mature at their
own rates; depending on the level of interest, some modules will progress to lev-
el 4 before the level-3 work is completed.

Like the term HTML5, the term CSS3 is often given a wider definition than just
the specifications. Many of the features people consider to be CSS3 are actually
in CSS2.1.

€S53 HAS MANY MORE TOOLS FOR SELECTING ELEMENTS, SO YOU'RE BETTER
EQUIPPED TO KEEP YOUR MARKUP FREE FROM ELEMENTS, CLASSES, AND IDS
THAT HAVE NO MEANING AND ARE ONLY THERE TO SUPPORT STYLING. IN THE
NEXT SECTION, YOU'LL SEE SOME COMMON DESIGN PROBLEMS AND LEARN
HOW €553 SELECTORS MAKE SOLVING THESE PROBLEMS EASY.

Choosing elements through their relationships

Here are screenshots of three popular websites, showing three differ-
ent but common design requirements.

Car Hire Reservations »
RACE TIME Oniline Check-In ¥

Special Offers »

#1 Club b
Car Hire Partners. ¥

Customer Support »

Alternating table rows have a Links to the current page or The first and last elements
different style. section have a different style. have a different style.

Choosing elements through their relationships 235

Using traditional approaches, you would have to apply classes to each
element. For the previous three examples, the code would be some-
thing like the following, where the class names don’t add any further
meaning to the markup —they just make explicit relationships that are
already present:

<table>
<tr class="odd"> <1i class="first">
<td></td> <a href="/home" top + right border
</tr> class="current"> </1i>
<tr class="even"> Home
<td></td> right border
</tr> </1i>
</table> Other <1i class="last">
 bottom + right
</1i> border
 </1i>

In CSS3, thanks to all the new selectors available, you can take advan-
tage of those relationships directly with no need to add extra class attri-
butes. In this section, you'll learn about the key ways of selecting
elements with CSS combinators and pseudo-classes.

Selecting sets of elements with combinators
Combinators allow you to chain simple selectors together. They're the
workhorses of CSS. The following diagrams show a simple HTML
fragment as a tree structure and then highlight the elements that the
different rules select using the common CSS2 combinators.

USER FRIENDLY by J.D. "liliad" Frazer

I THOUGHT THIS BOOK WAS AND ANYWAY. CERTAIN OLD | o1 p BUT POPULAR® ARE YOU
ABOUT NEW STANDARDS. WHY ARE BUT POPULAR WEB BROWSERS | 14KING ABOUT YOURSELF OR
WE TALKING ABOUT £S527 DO NOT FULLY SUPPORT CSS52. | 1gg2

£552 IS5 ANEW

/ HEY ! I MAY BE OLD. BUT
IMFULLY COMPATIBLE
WITH MODERN STYLE/

STANDARD. IT ONLY

COPTRICHT £2000 2.0, “Wikad™ Frazer HWYTP://WWW USIRIRIINOLY. 026G/

236 CHAFPTER 7 New C5S language features

@’@’)Q 060 660
® O ® o ® ®

<article> article p {} article > p {3}
:E:;E: A space is the The greater-than
<section> descendant combina- symbol is the child

<p></p> tor, selecting any p combinator, selecting
<p></p> that is a descendant only the p elements
</section>

) of an article element. that are direct chil-
</article>

dren of an article.

FIRST WE'LL LOOK AT THE ADJACENT-SIBLING COMBINATOR. IT WAS INTRODUCED
IN C5S21,BUT IT ISNT SUPPORTED BY IE6 OR 7 AND SO HASN'T BEEN WIDELY USED.
IT SELECTS AN ELEMENT THAT IMMEDIATELY FOLLOWS ANOTHER ELEMENT.

THE ADJACENT-SIBLING COMBINATOR

Rather than use tree diagrams to illustrate the R EnEE TR |
new selectors, we'll use this simple document: ' HEADER !

<header- I \
<hl>Header</h1>

</header>

<article>
<hl>Article</hl>
<p>Paragraph 1</p> .
<p>Paragraph 2</p> | BoDY FOOTER |
<footer>Article footer</footer>

</article>

<footer>
Body footer

</footer>

Choosing elements through their relationships 237

The complete listing is available in ch07/sibling-

combinator-1.html.

This rule selects any paragraph elements that Vot B

immediately follow a level-one heading element: 1 "™ ;
| —

hl + p { background-color: #000; } i 4!
1V GuoTe [

You can see in the screenshot that only the first Vo T T

paragraph is selected. The + is known as the bommmmmmmmmmees -

adjacent-stbling combinator. This example is from

ch07/sibling-combinator-1la.html.

The target element is always listed last. This [!

rule has no effect because there are no para- e E

graph elements immediately after footer ele- Ve | i

ments: Hiisinshatio B 2
I meeeaa 22

footer + p {

background-color: #000;

}

Switch the two simple selectors around, and you =~ 7777777777700 !

can see that there are footers that follow para- e E

graphs: | PaRARAPH 2 :

p + footer {
background-color: #000;
}

See the files sibling-combinator2a.html and sibling-combinator2b.html
in the ch07 folder for these two examples.

THE ADJACENT-SIBLING COMBINATOR IS USEFUL FOR SITUATIONS WHERE YOU MIGHT
WANT TO ALLOW A DIFFERENT AMOUNT OF SPACE DEPENDING ON WHAT THE PREVIOUS
ELEMENT WAS. FOR EXAMPLE, IF YOU HAVE A HEADING DIRECTLY AFTER A PARAGRAPH, YOU
WANT TWO LINES OF SPACE. A HEADING THAT FOLLOWS ANOTHER HEADING NEEDS ONLY
ONE LINE OF SPACE. BUT THE ELEMENTS HAVE TO DIRECTLY FOLLOW ONE ANOTHER.

238

CHAFPTER 7 New C5S language features

THE GENERAL-SIBLING COMBINATOR

Suppose another element is inserted
between the paragraph and the footer, like

this:

<p>Paragraph 2</p>

<img

<footer>Article footer</footer>

The footer is no longer selected by p +
footer because it doesn’t immediately follow
the paragraph.

COMBINATOR
Pesasmsssasmasas .
| HEADER E hi+p {
pIIIIzIizziiiiii; background-color:#000;
| ARTICLE : }
! —
H— | SELECTS <p> ELEMENTS
v Vewre 77T 7+ THAT DIRECTLY FOLLOW
I hccccaccccccaa -
| a3 ' SELECTS ANY <p>
poIIIzIizziiiiii; ELEMENT THAT FOLLOWS "™ 0
| BODY FOOTER ' AN <h1> ELEMENT WITH ',::Z::Z:::::::Z::

GENERAL-SIBLING { A~

src="example.png">

WHAT ARE WE DOTHIF
TRYING TO

FOR SITUATIONS WHERE THE ELEMENTS YOU WANT TO SELECT WILL SHARE
THE SAME PARENT AS ANOTHER ELEMENT, BUT NOT NECESSARILY BE

/ DIRECTLY ADJACENT, CSS3 OFFERS THE GENERAL-SIBLING COMBINATOR.

ADJACENT-SIBLING

_________ 4 THE SAME PARENT

COMBINATOR

“rae
.

Nrp {

hl

"background—color: #000; (R

}

Choosing elements through their relationships 239

For this set of examples, we'll
make a slight modification to the
HTML. Instead of an article
footer, a blockquote element and a
third paragraph have been

added.

+ ~
¥ Cy 1.0 1.0
o
(9]
L
) —
= e 10 | 10
&8
e
S| A| 7 .
ad _ 0 8.0
30 -
”w o
[}]
g O 6.0 95
o
m
@ 1.0 1.0
Ll b
] 1
:MTIGLE :
] 1
1 1
+ I |
I Femmms == T
1V quote (|
L - 1
| . '
1]
Lecee e e e e m== -
| |
1 BODY FOOTER 1
Lecce e e e e = === -
hl ~p {

background-color: #000;
}

Listing: ch07/sibling-combinator-1b.html

<header>
<h1l>Header</hl>

</header>

<article>
<h1>Article</h1>
<p>Paragraph 1</p>
<p>Paragraph 2</p>
<blockquote>Quote</

blockquote>
<p>Paragraph 3</p>

</article>

<footer>
Body footer

</footer>

Elements targeted by the general-
sibling combinator have to occur
after the elements targeted by the
preceding selector in the document.
Compare the results of these two
rules. There are three paragraphs
after the hi, but only one of those is
after the blockquote.

blockquote ~ p {
background-color: #000;

}

Listing ch07/sibling-combinator-1c.html

240

CHAFPTER 7 New C5S language features

THE REASON ONLY THE ELEMENTS AFTER THE blockquote ARE AFFECTED
IS THAT THE BROWSER RECEIVES THE WEB PAGE AS A STREAM, ONE
CHARACTER AT A TIME, AND APPLIES STYLES AS IT GOES ALONG. IT
TRIES TO AVOID GOING BACK AND RESTYLING ALREADY-RENDERED
ELEMENTS, BECAUSE DOING SO IMPACTS PERFORMANCE.

YOU'VE JUST LEARNED ABOUT €S553'S NEW COMBINATORS, BUT €553 ALSO PROVIDES
SEVERAL PSEUDO-CLASSES FOR TARGETING ELEMENTS ACCORDING TO THEIR RELATIVE

"7
X o _~ POSITION IN THE DOM PSELIDO-CLASSES ACT AS MODIFIERS TO SIMPLE SELECTORS-

SO INSTEAD OF SELECTING ALL THE PARAGRAPHS, YOU CAN SELECT JUST THE FIRST
ONE, OR JUST THE LAST ONE, OR EVERY THIRD ONE. IN THE NEXT SECTION, YOU'LL
LEARN HOW TO USE €553 PSEUDO-CLASSES TO SOLVE COMMON DESTIGN PROBLEMS.

Selecting among a set of elements with pseudo-classes

Combinators allow you to select all elements that fit a particular rela-
tionship. But what if you don’t want to select all of the <p> elements
that are descendants of an <article> element for the same styling? Or
all the rows of a table? CSS pseudo-classes allow you to select the first
element, the last element, or a subset of the elements according to a
pattern. They remove the need to add classes to your markup for
purely stylistic purposes. Before you learn about pseudo-classes, let’s
consider what you would need to do if pseudo-classes didn’t exist, and
why that’s not good practice, with a couple of examples.

The IE6 problem

IE6 is the most successful browser of all time in terms of market share, manag-
ing as much as 90% market share in its heyday. Unfortunately, it’s missing sev-
eral key features of CSS2.1.

The ubiquity of IE6 allowed many organizations to get away with shortcuts in
web app development. The result is that they have since been stuck with expen-
sive-to-replace applications that only work on IE6. It’s impossible to upgrade the
web browser without first replacing all those applications—a slow process. The
end result is that several CSS2.1 features couldn’t be used on most websites un-
til recently, one of which is pseudo-classes.

In the old days (you know, around 2005) when IE6 was predominant, the only
way to do this consistently was to add classes all over your HTML that anticipated
the styling you wanted. With CSS2.1 and CSS3 approaching 90% browser sup-
port, you should now be doing this with pseudo-classes.

Choosing elements through their relationships 24

SELECTING THE FIRST AND LAST ELEMENT

Styling the first element of any set
differently is common on the web
today. This blog renders the first
paragraph in a larger font to make
it stand out.

The old way to approach this was
to explicitly add a class to the first
paragraph:
<h1>Heading</h1>
<p class="first">

First paragraph...
</p>

This blog goes even further —the
first post is styled differently than
the other posts previewed on the
home page. The first post takes
up the full width and is divided
into columns; the rest of the posts
are in a single column further
down. Again, the usual approach
to this is to add a class in the
markup:
<div class="post first">

<h1>Post 1</hl>

<p>...
</div>
<div class="post">

<h1>Post 2...

For details on CSS columns,
check out chapter 11.

Iype Reviews, Books, Commentary

Making Geometric Type Work

242 CHAPTER 7 New CSS language features

CLASSES ARE AN HTML ATTRIBUTE, NOT A CSS WE'RE APPROACHING IVORY-TOWER TERRITORY
ONE. ALTHOUGH THEY OFTEN PROVIDE HERE—-MOST OF YOUR USERS WON'T CARE HOW THAT
CONVENIENT HOOKS FOR FIRST ELEMENT IS PICKED OUT.BUT
APPLYING CSS STYLES, THEIR THERE ARE BENEFITS TO NOT LOADING
ROLE SHOULD BE TO GIVE YOUR MARKUP WITH PRESENTATIONAL
ADDITIONAL SEMANTIC CLASSES: SMALLER FILE SIZES; A -\
/ INFORMATION ABOUT CLEANER, MORE EASILY [@ 3
YOUR CONTENT. THAT IS, UNDERSTANDABLE MARKUP; AND ~— '_,l,([
(NS THEY SHOULD DESCRIBE WHAT LESS REWORK WHEN YOU DECIDE = |
YOUR CONTENT I35 NOT WHAT (FOR EXAMPLE) TO REMOVE THE ! A
| \ IT LOOKS LIKE. THIRD ELEMENT OF A LIST YOU WANT ((
TO STYLE IN ALTERNATING COLORS.

For the next few examples, we'll use a markup fragment in a style
that’s commonly used for site navigation—an unordered list of links.
The screenshot shows some default styling, putting a dotted outline
around each major element so you can see where it is.

<nav> | i 1

Item 1
</1i>

Item 2
</1i>

Item 3
</1i>

Item 4
</1i> e -

Item 5
</1i>

Item 6
</1i>

</nav>

To select the first element in the list with-
out adding additional markup, you can use
the : first-child pseudo-class:

Choosing elements through their relationships 243

ul 1i:first-child { F=============== b |
background-color: #000; | Frmmmmmmmmmes T,

: n______ 1
. . | W— »
This selector is saying, “Select the ele- LT e N |
ments that are the first child of their 1 FeSSSSSssss !
. ” Y ITEM3 1 ! !
respective elements. T T a !
Selecting the last element is also straight- V) TSt I
forward with the :last-child pseudo—class: : V esssrsrrsss = :
U mems !

ul 1i:last-child { |V lemrmrsoc S
background-color: #000; : ' :ITE.MS ' :

} 1 : """"" = : 1
) I I L)

This selector is saying, “Select the <1i> ele- : ' EI I I I I I I I I I I k :
. . I T EEmEmEmEmEmm_-— 1

ments that are the last child of their <u1> bomcmmmcmmmmm—— - a

parent elements.”

YOU DON'T HAVE TO APPLY THESE PSEUDO-CLASSES TO A PARTICULAR
ELEMENT. THEY CAN BE USED STANDALONE. SEE IF YOU CAN WORK OUT WHICH
ELEMENTS THIS €SS RULE WILL SELECT. THE ANSWER IS FURTHER DOWN: \

ul :last-child { background-color: #000; }

Pseudo-classes can be used with descen- poTToTToTTeTooos 1
dent or child combinators like any other
simple selector. Compare this with the pre-

) 1
! 1 1 :
' ¥
' b
vious example: e a0
R iias b
li:last-child { I Ty NRRRRPRRE R
background-color: #000; : |1 mmems : . :

T |
} T il [
li:last-child a { I ey R P
background-color: #fff; ' ' ' '
} Hraiioiiioieiioivie a!
heccccccacscscsaaes== . |

The extra rule selects all <a> elements that
descend from an element that is a last

child. This rule has been used to make the
link visible.

244

CHAPTER 7 New CSS language features

SELECTING AN ELEMENT BY ITS ORDERING

What if you don’t want to select just the r T 0
first or last child? With :nth-child you can V! Fo----oo--- v
. . . 1 ITEMI 1 1
easily select specific elements by specify- INCEEEECELEEEE I
Ing a numeric parameter: TN e
- —
li:nth-child(3), li:nth-child(5) { o e ! '
| FEEEEEs===== 1
background-color: #000; Vo mems oy
} 1 : i = : 1
.
. . 1 1
The :first-child pseudo-class is just a S iebr by
. .. . v (Tene a0
more intuitive way of saying :nth- CLL HE
child(1). Lo m e e i
) | OFTEN YOU WANT TO SELECT, NOT INDIVIDUAL ELEMENTS OUT OF ASET, BUT A SUBSET
@ OF THE ELEMENTS ACCORDING TO SOME REPEATING PATTERN. A COMMON EXAMPLE IS
N 4 — LARGE TABLES OF DATA IN WHICH IT'S HELPFUL TO GIVE THE ROWS ALTERNATING
¥

BACKGROUND COLORS TO AID THE EYE AS IT TRACKS ACROSS THE VALLUES.

1 X 181110 341 13 a1
oy X 1711110 84 38 59
% 16/11/10 455 k] 61
= ¥ 151110 a56 20 54
- EncLano 7 s a6 14 % 141110 am a7 55
§efl cannon ® 7 1 TS (% 121V10 A74 22
B soumh armca. o oW oW % 1211110 483 39
® 111110 451 24
2 Ll 0 -
B e L * 101110 420 2 |
& maLarsia 7 oW o N # 091110 276 5
i wono9 @ * 08/11/10 az1 a 52
H Broema nowou o= X 07/11/10 435 k] 75
S s P = * 061110 416 1 43
G . —_— ® 051110 an 18
NEW ZEALAND ~
* 04111/10 482 az &7
B L A #03/1110 an 15 59
=|= NORTHERN IRELAND 3 03 4w Total 7167 a7 1215
B =m0 T 0 1 4
‘UMFS K3 T 10 13
| 5 FLUTEY EE S T |
® eanstan 1z
These examples were taken from <table>
" n
<tr class="odd">...
the 2010 Commonwealth Games

<tr class="even">...

website (left) and the admin pages <tr class="odd"s . ..

of my own blog (right). The <tr class="even">...
markup for the two is remarkably <tr class="odd">...
similar —each gives a specific class <tr class="even">...

to each <tr> element in the table.

27

EBBEERE856

Date | RSSIAlom | Robots Browsers Unknown Total

arz

Choosing elements through their relationships

245

You could use :nth-child(1), :nth-child(2), :nth-child(3), and so on to
apply a style to each row in the table in order, but that would be as

much work as adding a class to each row. Instead of specifying a num-

ber as the parameter to :nth-child, you can specify a pattern. Let’s look

at that next.

To select every second element, use the
pattern 2n:
li:nth-child(2n) {

background-color: #000;
3

If you imagine that all the elements are
numbered in order, this selects all the <1i>
elements with a number that matches the
pattern 2n for whole number values of n.

Selecting the odd-numbered children this
way looks a little more complex but follows
the same pattern:
1li:nth-child(2n-1) {

background-color: #000;
}

The odd-and-even requirements are so
common that there’s a shortcut keyword
for each. This creates a red-and-blue
striped list:

li:nth-child(odd) {

background-color: #f00;

}

1li:nth-child(even) {
background-color: #006;

}

=
e
("]

246

CHAFPTER 7 New C5S language features

SELECTING FROM THE END BACKWARD

You don'’t have to select from the top
down. You can select from the bottom up
with :nth-last-child. It works in the same
way as :nth-child:
1li:nth-last-child(2n) {

background-color: #000;
¥

The hypothetical values for n extend to
negative numbers, as can be seen if you
try this:

li:nth-last-child(2n+2) {

background-color: #000;
3

You'll notice that 2n+2 has results identical
to 2n and to 2n-2.

But if n is negative, different rules apply.
Now n will count backwards from the
elements you see; if there are six elements
it will count six back. So adding a fixed
number to it will move the range of
selected elements so that it selects that
number of visible elements. This selector
will target just the first three elements:
li:nth-child(-n+3) {

background-color: #000;
3

Choosing elements through their relationships 247

The same trick works with :nth-last-child
except, as with last child, the counting is
from the end of the set of elements up. This
selects just the last two odd-numbered

Items:

li:nth-last-child(-2n+4) {
background-color: #000;

}

MORE COMPLEX SELECTION PATTERNS

If you increase the number in front of n, Saiuiaiuiniininiuiniininiis 7
FEe========== A

then the pattern extends over more ele- I P

. . v Vb ITemi L

ments. This rule selects the middle element ! o 2 !

out of each set of three: 'y u V!

g P EmmEm L

li:nth-last-child(3n-1) { I e B

background-color: #000; X : | eTem L X

} | | JSSSSSeS y

BE @ B

Of course, this still targets only one ele- S il b

, bV mens o

ment out of every three. You'd need an i S

. | 1

extra rule if you wanted a pattern ABC bemmmemmeeeee - .

instead of ABA.

Now the answer to the mini-quiz AJ posed posoomoomeommemes 7
3 , i i e kb 1

earlier. Here’s the code again. The result is ! e v

I 1

shown in the screenshot: P lesrrrrrrzza b

1 1

, ! '

ul :last-child { V) s s s s s A o

background-color: #000; : ' : L o :

) 3 beessssied |
[(|

S T P a0 !

Did you guess right? Without specifying VT b

. ! leccccaca== - !

that only <1i> elements that were last chil- ' “ !
1 1

dren should be styled, the rule now selects :] ! :

. . I ============= 1

any element that is a last child. The <a> Lo mmmmmmmmmmeee- a

elements are all the last child of their
respective parent elements.

248

CHAPTER 7 New CSS language features

You may be thinking to yourself that there
are a few situations in which you would
like to select elements that are both first
and last child, like the links in this example.
You can do this by combining the two
pseudo-classes:

ul :first-child:last-child {

background-color: #000;
3

This rule selects elements that are both a
first and a last child and are descendants of
the <u1l> element. It’s a bit of a mouthful,
though, so fortunately there’s an alternative
pseudo-class that has the same effect:

ul :only-child {

background-color: #000;
3

first- :last- :nth/:nth-last
child child child/of type

¥ cg 1.0 1.0 1.0

Q

=

o

= -

28 @ 1.0 1.0 35

=5

g3

o 72 7

2o = .0 9.0 9.0

"o

» O

]

2 O 7.0 95 10.10

<

1]

@ 1.0 1.0 3.0

Choosing elements through their relationships

SELECTING BY TYPE OF ELEMENT

Sometimes, if the structure is likely to
vary, the element you want to select i1sn't
consistently the first or last (or second or
third) child. Here each article has a pic-
ture, but it’s located in a different place in
each one:

<header>
<h1l>Header</h1>
</header>
<article>
<hl>Article 1</hl1>

<p>Paragraph 1</p>
<p>Paragraph 2</p>
</article>
<article>
<hl>Article 2</h1l>
<p>Paragraph 1</p>
<p>Paragraph 2</p>

</article>
<footer>
Body footer
</footer>

How would you write a selector for the
last paragraph of each article? Or could
you select the first article? Let’s try using
:first-child and :last-child:

article:first-child {
background-color: #000;

}

p:last-child {
background-color: #000;

}

As the screenshot shows, these rules have
no effect. The naive solution fails because
neither <article> nor <p> is the first child
of any container.

ARTICLE 2

PARAGRAPH 1
PARAGRAPH 2

249

250

CHAFPTER 7 New C5S language features

The first article is the second element on the page. You could select it
with article:nth-child(2), but that would be a fairly fragile solution —it
would break if someone decided to add an advertising banner between
the header and the first article. Each article starts with an <h1>, but
then one article leads with a picture, and the other leads with a para-
graph. In this case, p:nth-child(2) would only select the last paragraph
in the first article.

It’s for situations exactly like these that
we have the :fi rst-of-type pseudo-
class:

article:first-of-type {

background-color: #000;
}

This selector will always apply to the
first article element on the page, as well
as any other first article elements fur-
ther down the tree. Note that the image
isn’t transparent so you can't see the

background behind it.

The last-of-type pseudo-class works in
the same way, except In reverse:
p:last-of-type {

background-color: #000;
3

If you don’t want the last or the first, or
you want to st_yle according to a pattern,
you can use :nth-first-of-type and
:nth-last-of-type. This work in the

same way as :nth-child except that the

only elements that take part in the count
are those specified by the simple selec- .
tor to which you apply the pseudo-class. | BODY FOOTER ,

Choosing elements by their attributes 251

YOU NOW KNOW ALL THERE IS TO KNOW ABOUT £SS3 SELECTORS BASED ON THE NI
STRUCTURE OF THE DOCUMENT, BUT THERE'S MORE TO €553 THAN THAT. IN THE NEXT :
SECTION YOUILL LEARN ABOUT SELECTING ELEMENTS BASED ON THEIR ATTRIBUTES,

o

e

Choosing elements by their attributes

You should by now be aware that CSS provides convenient shorthand
for selecting elements according to their class and ID. But class and ID
are just two of many attributes that can be applied to HTML elements.
Here are some common scenarios with another common attribute, the
href on links.

29. ~ "PDF Referencem Sixth Edition, version 1.7

table 5.11° | 5.

Different styling for ~ Different styling Different styling for
external links for an element file downloads
based on the URL

If you were using HTMLA and IE6-compatible CSS2, you'd probably
implement these examples by adding an explicit class to the elements

concerned:

<a <a <a

class="external" class="home" class="pdf"
href="http://site.com/ href="/home"> href="doc.pdf">

"> Home Download document
Visit site

In these examples, the class attribute is really just duplicating informa-
tion available in the href attribute. Whenever there’s duplicate informa-
tion, there’s an opportunity for the two sets of information to get out of
sync. For example, what if the document in the third example changes

252

CHAFPTER 7

New CSS language features

Browser support quick check:
attribute selectors

D= | s-

@, 1.0 1.0
e 1.0 2.0

'}
/= 7.0 7.0
@
0 7.0 9.0
@ 1.0 1.0

from a PDF to a Word document, so some-
one updates the link but forgets to update
the class? The link would be styled as a
PDF, but it would actually be a Word doc-
ument. Wouldn't it be handy if there was
some way you could select elements based
on those other attributes rather than rely-
ing on classes and IDs?

CSS3 makes it possible to write selectors
that target these elements based on the
values in the href attribute; these are
called attribute selectors. One excellent
opportunity to use attribute selectors is

microdata. Remember the sample hCard from chapter 2? Here's the

listing again.

<section id="rob" itemscope

THE FOLLOWING EXAMPLE HAS BEEN CHOSEN BECAUSE IT PRESENTS LOTS OF SUITABLE
ATTRIBUTES TO DEMONSTRATE STYLING. BUT, BECAUSE MICRODATA CAN ALSO BE
REPRESENTED ENTIRELY ON INVISIBLE meta ELEMENTS, THIS ISN'T NECESSARILY A
GOOD GENERAL-PURPOSE APPROACH FOR STYLING UNKNOWN MICRODAT A MARKUP.

itemtype="http://microformats.org/profile/hcard">
<hl itemprop="fn">Rob Crowther</hl>

<p itemprop="n" itemscope>Full name:
Robert
John
Crowther

</p>

<p itemprop="org" itemscope>
Manning Publications Co.
(Hello! Series)

</p>
</section>

This is what it looks like with no styling
applied. Although you could apply

ROB CROWTHER

FULL NAME: ROBERT JOHN CROWTHER
MANNING PUBLICAT IONS £O. (HELLO! SERIES)

classes to various elements to attach

styles, you can use the various item*

attributes instead.

Choosing elements by their attributes

The simplest attribute selector is called
the existence selector:
[itemscope] {

outline: 4px dashed black;
}

When you put the attribute name inside
square brackets, the selector will match
any element that has the attribute.

Attribute selectors can be appended to
other simple selectors. To select only
paragraphs that have an itemscope
attribute, use this selector:
p[itemscope] {

outline: 4px dashed black;
3

Although attribute existence can be
useful occasionally, it’s more likely you'll
be interested in selecting between
attributes with values. The syntax for
this is intuitive:

[itemprop="org"] {

outline: 4px dashed black;
}

Note that three elements have an
itemprop attribute that begins with the
letters org, but only the one that exactly
matches has been selected. It’s possible
to select the elements whose attribute
begins with org:
[itempropA="org"] {

outline: 4px dashed black;

display: block;
3

! SERIES) 1

:
g
:
3
%

ROB CROWTHER

| MANNING PUBLICAT IONS CO. (HELLO!
| sERIES)

ROB CROWTHER

FULL MAME: ROBERT JOHM CROWTHER

! MANNING PUBLICAT IONS CO. (HELLO!
| serIES)

ROB CROWTHER

FULL MAME: ROBERT -JOHM CROWTHER

253

254

CHAPTER 7 New CSS language features

Similarly, you can select all the elements
whose itemprop attribute ends with a
particular value:
[itemprop$="name"] {

outline: 4px dashed black;

display: block;
3

In the examples so far, the attribute
value you're trying to match is a
simple string, so quotes are optional.
You could also write this selector as
[itemprop$=name]. If the value you're
matching contains characters other
than letters and numbers, then the
quotes are required.

If the significant part of the attribute
value is in the middle rather than at the
start or the end, there’s also an attribute
selector for that:
[itemprop*="tion"] {

outline: 4px dashed black;

display: block;
3
This rule matches any element which
has an itemprop property with a value
which contains tion somewhere
within it.

ROB CROWTHER

(HELLO! SERIES)

ROB CROWTHER

FULL NAME: ROBERT

YOU CAN NOW WRITE SELECTORS THAT MATCH ALL THREE

EXAMPLES YOU SAW AT THE START OF THIS SECTION:

SPECIFIC URLS: a[href="/home"]

FILE DOWNLOADS: alhref$=".pdf"]

EXTERNAL LINKS: a[hrefA="http://"]

Choosing elements by their attributes 255

The traditional CSS ID selector can now be seen as syntactic sugar for
the attribute selector. These two selectors are equivalent:

#myid [id="myid"]

But the class selector is slightly more difficult. What attribute selector
we've considered so far would be equivalent to .myclass? Let’s consider
some options.

Attribute selector Matches Doesn’t match
[class="myclass"] class="myclass" class="myclass
otherclass"
[classA="myclass"] class="myclass class="otherclass
otherclass” myclass"
[class*="myclass"] class="otherclass
myclass"
class="notmyclass"

It’s clear that there’s a gap in our toolkit. Fortunately, CSS3 fills this
hole: [class~="myclass"] selects an element with a whitespace-separated
list of values, one of which is myclass.

Attribute selector Matches Doesn’t match
[class~="myclass"] class="myclass" class="notmyclass"
class="myclass
otherclass"

Choosing what isn’t

So far, we've concerned ourselves with positive identification. We've
selected the elements that are the first child, and we've selected ele-
ments that have a particular attribute. But CSS3 also gives us the abil-
ity to select elements that aren’t the first child or don’t have particular
attributes, with the :not pseudo-class. To understand how this might be
useful, consider how you might lay out a form:

256

CHAFPTER 7 New C5S language features

<label>Text:

<input type="text">
</label>
<label>Range:

<input type="range">
</label>
<label>Radio:

<input type="radio">
</label>
<label>Checkbox:

<input type="checkbox">
</label>

It looks a little disorganized, so let’s
add some st_yles to make things more

consistent:

input {
margin: lem;
display: block;
width: 12em;

}

RANGE:

RADIO:

CHECKBOX:

Clearly you want to apply different styles to input elements of type

radio and checkbox. By selecting positively, you have two basic options:

select everything and then override (following, left), or explicitly select

only the items you want to style (following, right):

input {
margin: lem;
display: block;
width: 12em;

}

input[type=radio],
input[type=checkbox] {
display: inline;
width: auto;

input { margin: lem; }
input[type=text],
input[type=search],
input[type=tel],
input[type=url],
input[type=email],
input[type=password],
input[type=datetime],
input[type=date],
input[type=month],
input[type=week],
input[type=time],
input[type=datetime-local],

Choosing elements by their attributes 257

input[type=number],
input[type=range],
input[type=color],
input[type=file],
input[type=submit],
input[type=image],
input[type=reset],
input[type=button] {
display: block;
width: 12em;
}

The :not pseudo-class allows you to be more succinct than either of
those two examples:

input { margin: lem; }

! TEXT: !

input:not([type=checkbox]) :not([' ,

type=radio]) { [1

display: block; width: 12em; i :

} | o, :

1 oHECKBOX: !

]]

You can also combine :not with other e o

selectors you've seen in this chapter. Going rooTTTTTs 1
back to the :nth-child examples in the sec- Fzzzzzzzzzzg
| mmemz |

tion “Selecting among a set of elements
with pseudo-classes,” this is how you select
everything except the first two list items:
li:not(:nth-child(-n+2)) {

background-color: #000;
}

Pseudo-elements
Poeudo-elements are CSS selectors that allow you to style certain page
elements as if an element existed in your markup. It sounds more
complicated than it is, so let’s dive into some examples. A common
typographical feature, almost since the beginning of book publishing, is

258

CHAPTER 7 New CSS language features

Browser support quick check:
pseudo-elements

- to style the first line or first letter of a
:no 1:first-letter/ . . .
::first-line section differently than the following
text. Following are some examples both
e 10 1.0 .
from history and the present day.
e 3.0 3.0
(A | 55 55
wr
0 10.0 7.0
@ 1.0 1.0

DROP CAPS SPECIAL FIRST-

LINE FORMATTING

l

NEVER AM REALLY TR MiCTIN wOeT T

A g dagun i“’h cy l‘lllj |

hyngnualm Tusda r}rlnr;ul‘ tﬂd] T e htarin
Fremedons Ope (eyld foepung feeaper %&?u%% MY PERSONS WHO
monesi nueghun medo (eclh i o s rC b i

1 gﬁ’he-pl sym- guere pagh - N EVERY wrTiok Bene: 1 15 it

o e pundon e e foly Lot e g sien

e wndep palenian oo mivndun }u.ln
J'f I\ml -g'vrvlc }qn.l _w;J: {rczen Sy

F s Tiom, paade- hiean oolde gombuurr
ool han Buw o j:‘:‘. Noau _g:’_. =

BEOWULF MANUSCRIPT OPERA LOGICA ARISTOTLE WEB BROWSER
CIRCA AD 1000 CIRCA AD 1300 AD 2012 ABOUT TEA TIME

In order to achieve similar effects, CSS3 has the ::first-line and
::first-letter pseudo-elements. To examine these, we need some suit-
ably weighty prose to live up to our historical antecedents. I've chosen
a selection of quotes from Ada Lovelace all marked up as paragraphs

like this:

<p>I never am really satisfied that I INEVER AM REALLY SATTSFIED THAT I UNDERSTAND
. ANYTHING: BECAUSE, UNDERSTAND IT WELL AS T MAY,
understand anything; because, understand MY COMPREHENSTION CAN ONLY BE AN

INFINITESIMAL FRACTION OF ALL I WANT TO

it well as I may, my comprehension can UNDERST AND ABOLIT THE MANY CORNECTIONS AND
only be an infinitesimal fraction of all

RELATIONS WHICH OCCUR TO ME, HOW THE MATTER
IN QUESTION WAS FIRST THOUGHT OF OR ARRIVED
AT.ETC.ETC.

Choosing elements by their attributes 259

I want to understand about the many

connections and relations which occur to
me, how the matter in question was first
thought of or arrived at, etc., etc.</p>

If you want to style the first line differently, what do you do? One
option is to insert elements to signify the first line:

<p>I never am I NEVER AM REALLY

really satisfied that I SATISFIED THAT I UNDERSTAND ANYTHING: BECALISE,
understand anything; because, ey B e e PRy
understand it well as I may, my R e R T ME.

comprehension can on'l_y be an HOW THE MATTER IN GUEST ION WAS FIRST
. L. . A THOUGHT OF OR ARRIVED AT, ETC. ETC.
infinitesimal fraction of all I want

to understand about the many

connections and relations which

occur to me, how the matter in

question was first thought of or

arrived at, etc., etc.</p>

This looks OK in the example, but what if the user’s screen is wider or
narrower, or their font is larger, as in the following examples?

I NEVER AM REALLY surzsezeo runr « INEVER AM

LMDERST AND ANYTHING: BECALISE, UNDERST AND IT WELL AS T MAY, MY

COMPREHENSTON CAN ONLY BE AN TNFINITESIMAL FRACTION OF ALL T REALLY sirrsezen tier 1

e oo o erdmeptiipirti

WAS FIRST THOUGHT OF OR ARRIVED AT, ETC.ETE. LNPERSTAND IT WELL AS T MAY. MY
COMPREHENSION CAN OMLY BE AN

INFINITESIMAL FRACTION OF ALL T WANT
TO UNDERSTAND ABOUT THE MANY
CONNECTIONS AND RELAT IONS WHICH
OCCUR TO ME. HOW THE MATTER IN
QUESTION WAS FIRST THOUGHT OF CR
ARRIVED AT, ETL.ETC

Pseudo-elements vs. pseudo-classes

Pseudo-elements create virtual elements within your document, as opposed to
pseudo-classes, which rely on properties of the document entered by the author.
In CSS3, pseudo-elements are distinguished by a double colon (: :) rather than
the single colon of a pseudo-class. This differs from CSS2, where both used a
single colon.

260

CHAPTER 7 New CSS language features

The ::first-line pseudo-element
puts the onus of calculating what
constitutes the first line of text on
the browser:

p::first-1line {

background-color: #000;
}

It applies styles as if there were an
element wrapping all the text on the
first line. But unlike a real element,
you can'’t style children of the first
line. The pseudo-element can only
come as the last simple selector in a
selector group.

The ::first-letter pseudo-element
is similar, except that it only selects
the first letter:

p::first-letter {

background-color: #000;
3

Although the background has been
styled in this example because it
stands out in the screenshots, it
would be more common to use a
decorative font for the first letter, or

to Increase its size.

Using both ::first-line and ::first-letter, it’s straightforward to cre-
ate text that looks similar to the examples from the start of this section:

UNDERST AND ANYTHING: BECAUSE, UNDERST AND IT
WELL AS T MAY, MY COMPREHENSTION CAN ONLY BE
AN INFINITESIMAL FRACTION OF ALL T WANT TO
LNDERST AND ABOUIT THE MANY CONNECT IONS AND
RELAT IONS WHICH OCCUR TO ME. HOW THE
MATTER IN GUESTION WAS FIRST THOUGHT OF OR
ARRIVED AT ETC.ETC

I
VARIETY OF ARRANGEMENTS FOR THE SLCCESSION
OF THE PROCESSES TS POSSIBLE, AND VARIOUS
CONSTDERATIONS MUST TNFLLENCE THE
SELECTIONS AMONGST THEM FOR THE PURPOSES
OF A CALCULAT ING ENGINE. ONE ESSENT TAL
OBJECLT IS TO CHOOSE THAT ARRANGEMENT
WHICH SHALL TEND TO REDUCE TO A MINIMUM THE
TIME NECESSARY FOR COMPLETING THE
CALCULATION.

I NEVER AM REALLY SATISFIED THAT I

UNDERST AND ANYTHING: BECAUISE, LNDERST AND IT
WELL AS T MAY. MY COMPREHENSTON CAN ONLY BE
AN INFINITESTIMAL FRACTION OF ALL T WANT TO
LUNDERST AND ABOUT THE MANY CONNELT IONS AND
RELAT IONS WHICH OCCUR TO ME HOW THE
MATTER IN QUEST ION WAS FIRST THOUGHT OF OR
ARRIVED AT, ETL, ETE.

N ALMOST EVERY COMPUT ATION A GREAT
VARIETY OF ARRANGEMENTS FOR THE SUCCESSION
OF THE PROCESSES IS POSSIBLE, AND VARIOUS
CONSIDERAT IONS MUST INFLUENCE THE
SELELTIONS AMONGST THEM FOR THE PURPOSES
OF A CALCULAT ING ENGINE. ONE ESSENT IAL
OBJECT IS TO CHOOSE THAT ARRANGEMENT
WHICH SHALL TEND TO REDUCE TO A MINIMUM THE
TIME NECESSARY FOR COMPLET ING THE
CALLULATION

p {
text-align:
justify;
clear: left;
}

p::first-letter {

S

font-size: 400%;
float: left;

line-height: lem;

padding-right:

.lem;

t:first-1line {

font-size: 150%;

Choosing elements based on user interaction 201

NEVER AM REALLY

SATISFIED THAT I

UNDERSTAND ANYTHING:
BECAUSE. UNDERSTAND IT WELL AS
I MAY. MY COMPREHENSION CAN
ONLY BE AN INFINITESIMAL
FRACTION OF AL I WANT TO
UNDERSTAND ABOUT THE MANY
COMNECTIONS AND RELATIONS
WHICH OCCUR TO ME, HOW THE
MATTER IN GUESTION WAS FIRST
THOUGHT OF OR ARRIVED AT, ETC.
ETC

N ALMOST EVERY
COMFUTATION A GREAT
VARIETY OF
ARRMNGEMENT S FOR THE
SUCCESSION OF THE PROCESSES IS

POSSIBLE. A VARIOUS
COMSIDERAT TOMS MUST TNFLUENCE

THE SELECTIONS AMOMGST THEM
FOR THE PURPOSES OF A
CALCULAT TG ENGIME, OHE
ESSENTIAL OBJELT IS TO CHOOSE
THAT ARRAMGEMENT WHICH SHALL
TEMD TO REDUCE TO A MINIMUM

ITS MUMERICAL QUANTITIES
EXACTLY A5 IF THEY WERE
LETTERS OR Ay OTHER GENERAL
SYMBOLS: AND IN FACT IT MIGHT
BRING OUT ITS RESULTS IN
MGEBRATCAL MOTATION WERE

THE TIME MADE]
COMPLETING THE CALCLLATION.

HE ANALYTICAL

ANY PERSONS WHO ENGINE HAS MO

ARE NOT CONVERSANT

WITH MATHEMAT ICAL
STUDIES IMAGIME THAT BECALSE
THE BUSINESS OF [BABBAGE'S
AMLYTICA ENGINE] IS5 TO GIVE
ITS RESWLTS 1IN MUMERICAL
NOTATION THE MNATURE OF ITS
PROCESSES MUST CONSEGUENTLY
BE ARITHMETICAL AMD NUMERICAL,
RATHER THAN ALGEBRAICAL AND
RALYTICAL, THIS IS5 AN ERROR. THE
ENGINE CAN ARRANGE AND COMBIMNE

Choosing elements based on user interaction

PRETENSIONS WHATEVER

TE ORIGINATE ANYTHING,
IT AN DO WHATEVER WE KNOW
HOW TO ORDER IT TO PERFORM IT
CAN FOLLOW AALYSTS, BUT IT HAS
NO POWER OF ANTICIPATING ANY
ANALYTICAL REVELATIONS OR
TRUTHS. ITS PROVINGE IS TO
ASSIST US IN MAKING AVAILABLE
WHAT WE ARE ALREADY ACGUATNTED
WITH.

Dynamic pseudo-classes allow you to assign different styles to ele-

ments based on user activity. One of the best known of these is the

:hover pseudo-class, introduced in CSS2, which lets you apply a differ-

ent style to an element when the mouse pointer is hovering over it (see

Browser support quick check:
dynamic pseudo-classes

Enabled/ Valid/
disabled/ invalid/ Target
checked required
c‘ 1.0 10.0 1.0
e. 3.0 4.0 35
/= 9.0 10.0 9.0
-
0 9.0 95 10.0
@ 3.0 5.0 3.0

appendix C for some examples).
CSS3 adds several new dynamic
pseudo-classes. In this section,
you'll learn about styling form
elements based on their proper-
ties. This will let you give cues
to your users about the state of
form elements—for example,
whether they’re required or
whether they're currently valid.
After that, you'll learn about the
target selector that lets you style
the page based on the current
URL, which is useful for tabbed
interfaces and slide shows.

262

CHAPTER 7 New CSS language features

Styling form elements based on state

The first dynamic pseudo-classes we’ll
consider are :enabled and :disabled. Here
are two text inputs, one of which is dis-

abled:

<label>Enabled
<input type="text">
</label>
<label>Disabled
<input type="text" disabled>
</label>

Form elements are enabled by default, so
this rule targets the first input:
input:enabled {

outline: 4px solid #000;
3

Most browsers make it fairly obvious
when a form control is disabled, but the
pseudo-classes allow you to add addi-
tional styling:
input:disabled {

outline: 4px solid #000;
3

If your form enables and disables controls
dynamically based on user input, then
tenabled and :disabled allow you to attach
transitions to the changes between the
two states; see chapter 9 for further
details.

YOU SAW SEVERAL OF €553'S NEW DYNAMIC PSEUDO-CLASSES FOR
HTMLS FORMS IN CHAPTER 3 WHEN YOU LEARNED ABOUT HTMLS
FORMS. IN THIS SECTION, YOU'LL SEE THE FULL SET IN ONE PLACE.

]
1
]
DISABLED !
1
]
1

Choosing elements based on user interaction 263

The :checked and :indeterminate pseudo— y T TTTEEETEEEEET I

Not a URL

)
NOT CHECKED 1
classes can only be applied to inputs of X '
e Ly PP P : e :
type checkbox: : - '
<label>Not checked e -
<input type="checkbox">
</label>
<label>Checked
<input type="checkbox" checked>
</label>
A ight t, :checked letsyou @~ ;""" TTTTTs=sssss--]
s you might expect, :checked lets you o !
style all checked check boxes: ' !
. V' cHeckep .
input:checked { : i
outline: 4px solid #000; | o e e e e e e e e e e - 2
}
You might use this to replace the default
check box with a graphic.
The indeterminate state has to be set by a T T T TTTT T m s !
. 1 NOT CHECKED 1
script: ' B !
V' cHeckeD :
input:indeterminate { = i
outline: 4px solid #000; I, A
}
Note that :indeterminate is independent of
:checked —both checked and unchecked
check boxes can be in the indeterminate state.
You can also use CSS3 with the HTML5 P Tttt TETTT TS a
.« 7. | VALID
form features, such as validity. Here are Vi
one valid and one invalid form field: X
]
]

1
1
1
INVALID :
<label>Valid X
<input type="url"
value="http://manning.com">
</label>
<label>Invalid
<input type="url"
value="Not a URL">
</label>

264

CHAPTER 7 New CSS language features

The pseudo-class for valid inputs is,
unsurprisingly, :valid:
input:valid {
outline: 4px solid #000;
}

And the corresponding pseudo-class is
invalid:
input:invalid {
outline: 4px solid #000;
}

It’s also possible to style required inputs.
Here are one required and one optional
input (of course, inputs are optional by

default):

<label>Required
<input type="text" required>
</label>
<label>0ptional
<input type="text">
</label>

This is the CSS to select an input with the
required attribute:
input:required {
outline: 4px solid #000;
3

And this is the CSS to target just the
optional input:
input:optional {
outline: 4px solid #000;
}

VALID

]

1 1
: !
| INVALID 1
1 1
: !

Not a URL

VALID

http:fmanning.com

Not a URL

1
1
1
INVALID !
1
1
1

Choosing elements based on user interaction 265

Styling the page based on the target of the URL

Fragment identifters —a string after a # symbol —are often used to iden-
tify sections within a long document, such as the table of contents at
the top of a Wikipedia article. When the label in the fragment identifier
matches an ID in the document, the browser scrolls the page down to
where that element is displayed.

IN AJAX APPS, THE CURRENT STATE OF THE APPLICATION IS OFTEN
MAINTAINED THROUGH A FRAGMENT IDENTIFIER TO ALLOW EASY
BOOKMARKING. AS IN THE FOLLOWING GMAIL URL. \

FRAGMENT ---
HOSTNAME IDENTIFIER

https://mail.google. com/mail/?shva:l{#inbox:)

PROTOCOL PARAMETERS

If the URL has a fragment identifier, then the element with the 1D
matching it can be given special styling with the :target pseudo-class.
This is useful for slideshows and tab-based interfaces.

This example uses four paragraphs, R ACERTAD I vtk 55 SRRSO
. . OMLY BE AN INFINITESIMAL FRACTION OF ALL I WANT TO
W 1 . LMDERST, ABOUT THE MANY COMMELTIONS RELATIOMS WHICH
each Of‘ hlch has a'n -Ld attrlbute' mTCmW“'EEMTTERmG;TW"SM FIRII;T THOUGHT
OF OR ARRIVED AT.ETC_ETE

<p id="one">I never am really satisfied D ALMOST EVERY COMPUTAT ZON A GREAT VARZETY OF
ARRANGEMENT S FOR THE SUCCESSION OF THE PROCESSES IS

that.. .</p> POSSIBLE. AND VARIOUS CONSIDERAT IONS MUST INFLUENCE THE
SELELTIONS AMONGST THEM FOR THE PLURPOSES OF A CALLULATING

1 A4-"' " 1 ENGINE. ONE ESSENTIAL OBJECT IS TO CHOOSE THAT
<p id="two">In almost every computation RGETEAT erion L TEaD 16 REDLE T A TS THE
TIME NECESSARY FOR COMPLET ING THE CALCULATION
a...</p>
<p id="three">Many persons who are not T LES TN T BE ot TIE BLSESE OF MAMALES
RUALYTICAL ENGINE] IS TO GIVE ITS RESULTS TN MUMERTICAL
conversant.. .</p> NOTATION THE NATURE OF ITS PROCESSES MUST CONSEGUENTLY
- " " 1 1 mﬁ‘rﬂ ;svmﬁm TI’E“‘EII;:;ET:‘;J:RM A e
<p id="four">The Analytical Engine has T T e A e
LETTERS OR ANY OTHER GENERAL SYMBOLS: AND TN FACT IT MIGHT

no pr‘etensions . .</p> BRING OUT ITS RESLLTS TN ALGEBRATCAL NOTAT ION WERE
PROVISIONS MADE ACCORDINGLY.

This is what the page looks like if you THE AULYTICA ENSINE W MO PRETENSIONS WWATEVER TO

ORIGIMATE AMYTHING. IT CAN DO WHATEVER WE KNOW HOW TO
o, . . ORDER IT TO PERFORM, IT AN FOLLOW ANALYSTS, BUT IT HAS MO
load 1t 1Into your brovvser VVlth a bare POWER OF ANTICIPATING ANY ANALYT ICAL REVELAT IONS OR
TRUTHS. ITS PROVINCE IS TO ASSIST LS TH MAKING AVATLASLE
URL: WHAT WE ARE ALREAD'Y ACGUAINTED WITH

http://host/target.html

2606

CHAFPTER 7 New C5S language features

This CSS selector says, “Add a black background to the paragraph ele-

ments that are the target™:

p:target { background: #000; }

Now, if the URL is adjusted to contain a fragment identifier, the
p:target rule is triggered. The following screenshots show the same

page with two different fragment identifiers appended to the URL.

When the fragment is #one, the element with id value one matches the

p:target rule and has a black background.

http://host/target.html#one

IN ALMOST EVERY COMPUTATION A GREAT VARIETY OF
ARRANGEMENT S FOR THE SUCCESSION OF THE PROCESSES IS
POSSTELE. AND VARTOUS CONSIDERAT IONS MUST INFLUENCE THE
SELELTIONS MMONGST THEM FOR THE PURPOSES OF A CALLULATING
ENGINE. ONE ESSENTIAL OBJECT IS5 TO CHOOSE THAT
ARRAMGEMENT WHICH SHALL TEND TO REDUCE TO A MINIMUM THE
TIME NECESSARY FOR COMPLET ING THE CALCULATION

MANY PERSONS WHO ARE NOT CONVERSANT WITH MATHEMATICAL
STUDIES IMAGINE THAT BECALSE THE BUSIMESS OF [BABBAGE'S
MULYTICA. ENGINE] IS TO GIVE ITS RESULTS IN MUMERTCAL
NOTATION THE NATURE OF ITS PROCESSES MUST CONSEGUENTLY
BE ARTTHMETICAL AND MUMERICAL. RATHER THAN ALGEBRATCAL MO
ANALYTICAL. THIS IS AN ERROR THE ENGINE CAN ARRANGE AD
COMEINE ITS MUMERICAL GUANT ITIES EXACTLY AS IF THEY WERE
LETTERS OR ANY OTHER GENERAL SYMBOLS: AND TN FACT IT MIGHT
BRIMNG OUT ITS RESULTS TN ALGEBRAICAL NOTATION WERE
FROVISIONS MADE ACCORDINGLY,

THE ANALYT ICAL ENGIME HAS NO PRETENSIONS WHATEVER TO
ORIGINATE ANYTHING. IT CAN DO WHATEVER WE KNOW HOW TO
ORDER IT TO PERFORM. IT CAN FOLLOW ANALYSTS, BUT IT HAS MO
POWER OF ANTICIPATING ANY ANALYTICAL REVELATIONS OR
TRUTHS, ITS PROVIMNCE I5 TO ASSIST U5 TN MAKING AVATLABLE
WHAT WE ARE ALREADY ACGUAINTED WITH

http://host/target.html#three

IMEVER AM REALLY SATISFIED THAT I LMDERSTAND ANYTHING:
BECAUSE. UNDERSTAND IT WELL AS I MAY. My COMPREHENSTION CAN
OMLY BE AN INFINITESIMAL FRACTION OF ALL I WANT TO
LMDERSTAND ABOUT THE MANY CONMECT TONS AND RELAT TOMS WHICH
OLLUR TO ME. HOW THE MATTER IN QUEST ION WAS FIRST THOUGHT
OF OR ARRIVED AT.ETC ETEC

IN ALMOST EVERY COMPUTATION A GREAT VARIETY OF
ARRANGEMENT S FOR THE SUCCESSION OF THE PROCESSES IS
POSSTELE. AND VARTOUS CONSIDERAT IONS MUST INFLUENCE THE
SELELTIONS MMONGST THEM FOR THE PURPOSES OF A CALLULATING
ENGINE. ONE ESSENTIAL OBJECT IS5 TO CHOOSE THAT
ARRAMGEMENT WHICH SHALL TEND TO REDUCE TO A MINIMUM THE
TIME NECESSARY FOR COMPLET ING THE CALCULATION

THE ANALYT ICAL ENGIME HAS NO PRETENSIONS WHATEVER TO
ORIGINATE ANYTHING. IT CAN DO WHATEVER WE KNOW HOW TO
ORDER IT TO PERFORM IT CAN FOLLOW ANALYSIS, BUT IT HAS NO
POWER OF ANTICIPATING ANY ANALYTICAL REVELATIONS OR
TRUTHS, ITS PROVIMNCE I5 TO ASSIST U5 TN MAKING AVATLABLE
WHAT WE ARE ALREADY ACGUAINTED WITH

CHANGING THE FRAGMENT IDENTIFIER DOESNT RELOAD THE PAGE, SO THE
:target PSEUDO-CLASS MAKES IT EASY TO CREATE TABBED INTERFACES
LIKE THAT IN THE NEXT EXAMPLE.

You can adjust the CSS from the previous example so the paragraphs
are hidden by default but visible when they're the target:

p { display: none; }
p:target { display: block; }

Add a simple menu:

<menu>
Show one
Show two
Show three
Show four
</menu>

Initially all the tabs are hidden, so all
you see is the menu and an empty
space.

Clicking the Show Two link changes

the URL to http://host/target.html#two.

Now #two is the target. Thanks to the
target selector, the element with id
value two becomes display: block
instead.ofdisplay: none.

Clicking Show Four changes the
target again: the element with an id
value of four becomes visible.

NOW THAT YOU'VE SEEN ALL THE NEW FEATURES, LET'S CHECK OUT WHAT
BROWSER SUPPORT THEY HAVE. YOU MAY BE PLEASANTLY SURPRISED. ~_ 3 “

Browser support

Browser support 267

SHOW ONE SHOW TWO SHOW THREE SHOW FOUR

IN ALMOST EVERY COMPUTATION A GREAT VARIETY
OF ARRANGEMENTS FOR THE SUCCESSION OF THE
PROCESSES IS POSSIBLE. AND VARIOUS
CONSIDERAT IONS MUST INFLUENCE THE

SELELT IONS AMONGST THEM FOR THE PURPOSES OF
A CALCULAT ING ENGINE. ONE ESSENT IAL OBJECT
IS TO CHOOSE THAT ARRANGEMENT WHICH SHALL
TEND TO REDUCE TO A MINIMUM THE TIME
NECESSARY FOR COMPLET ING THE CALCLILAT ION

SHOW ONE SHOW TWO SHOW THREE SHOW FOUR

THE ANALYT ICAL ENGINE HAS NO PRETENSIONS
WHATEVER TO ORIGINATE ANYTHING. IT CAN DO
WHATEVER WE KNOW HOW TO ORDER IT TO
PERFORM. IT CAN FOLLOW ANALYSIS, BUT IT HAS NO
POWER OF ANTICIPATING ANY ANALYTICAL
REVELATIONS OR TRUTHS. ITS PROVINCE IS TO
ASSIST US IN MAKING AVAILABLE WHAT WE ARE
ALREADY ACGUAINTED WITH.,

T\

Browser support for CSS3 selectors is excellent across modern brows-

ers. The main issue in browser support is the large numbers of people

still using obsolete versions of Internet Explorer. As you'll see, it’s easy

to add support for these old browsers using jQuery.

268

CHAPTER 7

New CSS language features

o

e Complete or nearly complete support
Incomplete or alternative support
Little or no support

12 14 4 6 9 (10 | 111 | 115 5.1
Adjacent sibling) ° ° .
General sibling ° ° ° ° °
First/last child
nth/last child o o . . °
Only child o ° ° .
Of type o o ° ° °
Attribute ° ° .
= [] [] [] [] [] [) [] [] []
A= ° ° ° .
*= [] [] [] [] [] [) [] [] []
$= ° o o o o . [° °
~= [] [] [] [] [] [) [] [] []
Not ° ° .
First letter . ° ° . ° ° ° ° °
First line ° ° .
Dis-/enabled ° . . °
In-/valid ° ° ° °
Checked ° . . °
Indeterminate)) . .
Optional/required ° ° ° . ° ° ° °
Target) ° ° .

Key:

Browser support 269

Using jQuery to support older browsers
The jQuery JavaScript library uses CSS selectors as a key part of its
normal operation. In order for this to work cross-browser, the authors
of jQuery had to implement CSS selectors in JavaScript. This is handy
if you want to use the latest CSS features but still present more limited
older browsers with your intended design.

Here’s a CSS selector that doesn’t work ONE TWO THREE FOUR FIVE
in IE8 and older: {1 2 3 4 5
1 2 3 4 5

tbody tr:nth-child(2n+1) {

background: #999; ! 2 3 4 S
} 1 2 3 4 5
) 1 2 3 4 5
The screenshot shows that in 1ES, the " 2 3 4 5

odd rows don’t have the gray back-
ground that the rule specifies.

To add IE8 support without messing up your markup, you can add
some jQuery. Start by adding the library itself:

<script src="jquery-1.5.2.min.js">
</script>

In an IE-only code block, use the jQuery selector engine to match the
nodes using the same selector, and add a class to them:

<!—[if 1te IE 8]> ONE TWO THREE FOUR FIVE
<script> 1 2 3 4 5
$(docum§nt).ready(! 2 3 4 =
function() {
$('tbody tr:nth—child(2n+1)") .
.addClass('odd"); 12 3 4 3
1 1 2 3 4 5
) 1 2 3 4 5
</script>
<style>
tr.odd { background: #999; }
</style>

<![endif]-—>

270 CHAPTER 7 New CSS language features

All that’s now required is to replicate the style elements with that class.
In most cases, you can add the selector to your original rule. But the
nth-child syntax will cause 1E8 to treat the whole rule as invalid, so the
style rule also has to be replicated.

USING JQUERY TO SUPPORT OLDER BROWSERS IS A HANDY WORKAROUND IF
THERE ARE SOME CSS3 STYLES THAT ABSOLUTELY MUST BE APPLIED. IN LATER
CHAPTERS, YOU'LL SEE OTHER JAVASCRIPT LIBRARIES THAT CAN ENABLE CSS3
FEATURES IN OLDER BROWSERS. THESE CAN BE MASSIVE TIME-SAVERS. BUT

O\ REMEMBER, THEY DO COME AT A COST—IF YOU RELY ON THEMHEAVILY. THEY CAN
SIGNIFICANTLY INCREASE YOUR PAGE-LOADING TIMES.

Summary

In this chapter, you've learned about many new features available in
CSS3 for selecting elements: combinators for selecting elements based
on relationships with their parents; pseudo-classes for selecting ele-
ments based on their relationships with their siblings; attribute selec-
tors that reduce your dependence on class and id attributes; and
dynamic pseudo-classes for giving immediate feedback to users on the
state of form elements. It’s been a lot to get through, but these features
make up the foundation on which all the rest of CSS is built.

QN AFTER YOU'VE PICKED OUT ELEMENTS WITH SELECTORS, PSEUDO-CLASSES, AND
2 ATTRIBUTE SELECTORS, YOU'LL WANT TO APPLY STYLES TO THEM. 553 OFFERS MANY
: ~~ NEW OPTIONS IN THAT DEPARTMENT, AND IN THE REST OF THE BOOK YOU'LL LEARN
: ABOUT THEM. WE'LL START IN THE NEXT CHAPTER WITH THE NEW OPTIONS FOR LAYOUT.

Layout with CS55

This chapter covers

inline-block and table display values from C552

calc andbox-sizing properties that make CSS5Z2 layout more manageable
Media queries to give different CSS to different devices

New CS55 layout modules: templates, grids, and regions

Many people have complained over the years about the poor tools avail-
able for layout in CSS. This isn’t an unwarranted criticism, because CSS1
had almost no layout tools. No one anticipated that people would start to
do graphic design with web pages until it happened. Several options were
added in CSS2, most of which didn’t see broad browser support until the
release of IE8 in 2009. Given that it’s taken so long for CSS2 layout to be
supported, support for CSS3 layout modules got off to a slow start; but
recently there’s been a lot of activity. This chapter covers both the old fea-
tures of CSS2 that haven'’t seen much use and the new features in CSS3
that browsers are just starting to support.

27

https://bugs.webkit.org/show_bug.cgi?id=60731

272 CHAFTER & Layout with C553

An HTML5 contribution to tables for layout

The W3C HTML working group has acknowledged the incredible persistence of
the layout table and, thanks to HTML5 and ARIA, has recommended a method
for indicating that a particular table is semantically meaningless (that it’s just for
layout):

<table role="presentation">
This doesn’t mean you should ignore all the best practice advice and convert
your CSS layouts to tables, but it does mean you can easily make old pages more

accessible without a major rewrite. See www.w3.org/html/wg/tracker/issues/
130 for further details.

Underused CSS2 layout features

CSS2 had several new features for layout—inline-block and table,
table-row, and table-cell values for the display property —but they've
seen little use in real websites because of the lack of support for them in
the most popular browser of all time (in terms of market share), IE6. In
this section, we'll review these underused features of CSS2.

Placing elements on a line with inline-block

inline-block is a compromise between <block> elements and <inline>
elements. A <block> element can have a defined width, height, padding,
and margin and causes a break in the text. An <inline> element sits on
the line of text but can’t have a width, height, padding, or margin. An
inline-block element combines features of both —it sits on the line of
text, but it can be given a specific width, height, padding, and margin.

This simple markup will be used to dem- ~ <header>

onstrate layout with inline block. If you <h1>Heading</hl>

. </header>
check the code download for this chapter, / .
, - <section>
you'll find an example layout done with <p>I never am...</p>
floats, a method familiar to anyone </section>
who’s done any CSS layouts in the last <aside>Side bar</aside>

ten years. Achieving a similar layout <footer>Footer</footer>

with inline-block requires that you set
the widths of the <section> and <aside>
elements appropriately:

Underused CS5S2 layout features 273

header, section, aside, footer { [el 1
.)]
margin: 2%; :IEADING '
padding: 2%; e e e e m e e m— e —————————— 4
outline: 4px dashed black; FoTTTTTTTTT T ' Vomem |
) . I MEVER AM REALLY SATISFIED THAT | P, -
vertical-align: top; T LADERSTAND ANYTHING: ECASE. |
UNDERSTAND IT WELL AS Tmay, My !
¥ o a7
section, aside { 1 WANT TO LNDERSTAMD ABOUT THE |
1 MANY CONNECTIONS AND RELATIONS 1
display: inline-block; :mm&%&r !
width: 54.5%; :;TWC\ OF OR ARRIVED AT. ETC. !
} ltccc e e e = = a
aside { Veooren T :
margin-right: ¢; T TTTTTTTTTTTTmmTmmTOoT -
width: 28.5%;
}
Xx Full Partial
%]
K]
=
.g ‘. 1.0 -
£
2 s N
S e 3.0 2.0
=
(3]
S
1 F] . .
s | & 8.0 6.0
=
o
e
L0
(]
)
g
(@ ¢ |
o
inline-block solves several issues :‘ """"""""""" :
that afflict floats. The first benefit of ' HEADING !
inline-block over floats is that the piulolulotolulotolulololuly SoooIIoon
y]
elements aren’t removed from the | TNEVERMMREALY STISEIED AT |4 JNALWOST EVERY |
. UNDERSTAND IT WELL AS I MAY. My ! :omwm:swaﬁ !
normal document flow. This means ! COWRERNSIONCAN MY BE AL | | ARRAGEHENTS FOR |
] 1
hat in a basic two-column layout, it | easieem e | | oenssts |
that 1in a basic two-column layout, it P hmivisdlayrbimint L a Rl Bl
» . | WHICH OCCUR TO ME, HOW THE 1 ! varTOUS 1
dOCSI‘l t matter Wthh Of the columns | MATTER INGUESTIONWAS FIRST | | CONSIDERATIONS
. . | THOUGHT OF OR ARRIVED AT_ETC. 1 | MUST INFLUENCE 1
is the longest. Any full-width ele- . 1 it |
. e 17T T 1T T EEEEEEEEEEEE- THE PURPOSES OF A
ment will automatically be pushed :mTM !
. . 1
below both columns —no clearing is le oo e !
. P e ——— -]
requlred. : FOOTER !

274

CHAFTER & Layout with C553

inline-block also makes the behavior
of grids of items more consistent
when there are elements of different
sizes. Elements that are inline-block
are aligned with the normal
character grid, just like lines of

text on a page. In this screenshot,
you can see that the oversize
element forces the entire next

line down.

Being aligned with the normal char-
acter grid does present other issues.
Spacing is no longer entirely con-
trolled by margins. This code is from
ch08/layout-inline-4.html:
div {
margin: 0;
border: 4px dashed black;
display: inline-block;
}
You can see that despite the margin
being set to 0, there’s still a gap
between the elements on each row.

This gap is due to letter and word
spacing. Elements that are
inline-block behave as if they're
letters or words. Setting negative
spacing removes the gap, as in
ch08/layout-inline-4a.html:

body {

letter-spacing: -0.4em;
word-spacing: -0.4em;

|--'||--'||--'||--'||--'|
1tz b 30 4 ¢t 5
F=1F=1L=1L=1L=1
6 1" 7 1V 8 1l 9 ! A
e
B il ¢c it ot el F g
I.__ll.__ll.__ll.__ll.__l

L B i i
L 18 24 38 44 5
|..-h+-..+-h+-..+-..-.|
L 684 748 848 9 A
F—ﬂ-ﬂ*—ﬂ-ﬂ*—ﬂ-ﬂ*—ﬂ-ﬂ*—ﬂﬂ1
I g ¢c A DR EF F
L d o o o d o

Underused CSS2 layout features 275

Other text properties also affect inline-block elements —baseline align-
ment sometimes causes unexpected spaces to appear between rows of

elements.

Inline-block good Inline-block bad

MANY OF THE SAME SSUES WITH
- BENEFITS AS floats, LET%‘ER SPACIING.

.~~~ BUT WITHOUT THE BASELINE
CLEARING ISSLEES. ALIGNMENT CAN
MORE CONTROL OVER TRICK YOU.
HOW THE LAYOUT BREAKS.

Grouping element dimensions with display: table
One question you might well ask yourself: if browsers use CSS for their
layout, what CSS do they use to lay out tables? The simple answer is
that there’s a special CSS display mode for table, as well as display
modes for table-row and table-cell. All of these display modes can be
applied to nontabular elements.

Here's a simple layout created with display: table. The following markup
is taken from ch08/layout-table-1.html. It’s based on the listing in ch08/
layout-table-1-actualtable.html, which implements the same layout
using an HTML table. If you've never done a layout with a table before,
please check out that listing because there’s no room to show it here:

<header> e e e - - - - jm====- 1
. 1 1 -

<h1>Heading</h1> I :, :
<figure> 1 o :

.]]
 . - !
. 1 1
</figure> ' HEADING ! I

1 1
</header> | " !
<div> el [Pl 1
3 1 1
<section> : INEVER AM REALLY SATISFIED THAT I |: SIDEBAR |

LUNDERST AND ANYTHING: BECALISE.

<p>I.never am ...</p> . g e 1, 1
</section> | COMPREHENSTON CAN OMLY BE AN :I :

- . - 1 INFINITESIMAL FRACT ION OF ALL I WANT]
<aside>Side bar</aside> 1 TO LNDERSTAND ABOUT THE MANY 1, i
</div> | CONNECTIONS AND RELAT IONS WHICH 1 1
1 OCLUR TO ME, HOW THE MATTER IN ll 1
<footer> | QUESTIONWAS FIRST THOUGHT OFOR 1, 1
<nav> , ARRIVED AT ETC.ETC. i .
. 1 1
L1nk 1</CI> I_-_-_-_-_-_-_-_-_-_-_-_-_-_-_—_—I l: ==== _—I
Link 2 : LINK LINK 2 ,: FOOTER .
</nav> e o e e e __ s 1

<small>Footer credits</small>
</footer>

276 CHAFPTER & Layout with C553

This listing was created by body {

display: table;
border-collapse: separate;
border-spacing: lem;

replacing each td, tr, and table
element in the original table lay-

out with more semantic con- }

tainer elements. The direct header, div, footer {

replacement means you have display: table-row;
}

suitable elements to attach the

d] section, aside, figure, hl, nav,
table-row an ta.bl.e—cel.l styles to small {
and, because this 1s a simple doc- display: table-cell:
ument, you can set body to be }

display: table rather than add an img { max-width: 100px; }
explicit wrapper in place of the
table element.

Full Partial
¥ ‘0 1.0 -
[3]

(]
o=
Qw _
x oy
ors i 2.0 -
538 e
T+
55
F
§% A 8.0 -
22
[
(] -
0 -
@
(7}
@ 3.1 -

USER FRIENDLY by J.D. "llliad™ Frazer

50 WHAT BENEFITS PO WE

GAIN WITH THIS DISPLAY:
TABLE OVER JUST USING A
LAYOUT TABLE?

NOW THE MARKUP MORE | 50. JUST A WARM, SATISFIED

CORRECTLY DESCRIBES OUR | FEELING INSIDE?
CONTENT AND OUR LAYOUT
15 WHERE IT BELONGS, IN
THE STYLESHEET.

o}

COPTRIGHT £ 2007 J.0. “Wikad™ Frazer WITP://WAW.USIRIRIINOLY.0RG)

I CAN UNPLUG YOU
YOU KNOW.

The naive approach to using dis-
play: table might look something
like this. You have classes for
every element of the table hierar-
chy. The following images show
this applied to two different
markup fragments. (See the full

listing in ch08/layout-table-
4.html.)

r-==Tr r-="Trr-"Trr--rol
1 LI} 11 i I

1z i3 A
| N N e [e |

<div class="grid">
<div class="row">
<div class="cell">1</div>
<div class="cell">2</div>
<div class="cell">3</div>
<div class="cell">4</div>
</div>
</div>

Underused CSS2 layout features 277

.grid {
display: table;
border-collapse: separate;
border-spacing: lem;
}
.row {
display: table-row;
}
.cell {
display: table-cell;
width: 25%;

r=="1rr==T1r=="71r=-=-
1 1 (I [1

S 116 ..7..8,
e ced hccd anad laaad

<div class="grid">
<div class="cell">5</div>
<div class="cell">6</div>
<div class="cell">7</div>
<div class="cell">8</div>
</div>

There’s no difference in rendering between the two versions of the

code. This is because the browser inserts an anonymous table object in

place of the missing table row. You can see more clearly how it works if

you look at an example that doesn’t work in your favor. The next list-
ing is from ch08/layout-table-2.html; markup is on the left and CSS is

on the right:

<body>
<header>
<h1l>Heading</h1>
</header>
<div>
<article>...</article>
<aside>...</aside>
</div>
<footer>Footer</footer>
</body>

body {
display: table;

3

header, footer, div {
display: table-row;

3

article, aside {
display: table-cell;

278

CHAFPTER &

For this code, you might expect the r
header to extend across the entire
width of the page because it’s set to be
display: table-row. But what actually
happens is shown at right. Because
there are no elements in the row with
display: table-cell, header is promoted e e e emmcmcmmm——————
to that role, and an anonymous table

Layout with C553

1
| IMEVER AM REALLY SATISFIED THAT I

1 UNDERST AND ANYTHING: BECALISE, LNDERST AND IT
1 WELL AS I MAY, MY COMPREHENSTON CAN ONLY BE
1 AN INFINITESIMAL FRACTION OF ALL T W#NT TO
| UNDERST AND ABOUT THE MANY COMNECT IONS AND
y RELATIONS WHICH OCCUR TO ME. HOW THE MATTER
y INGUESTION WAS FIRST THOUGHT OF OR

) ARRIVED AT.ETL.ETL.

object assumes the role of the table row.
The result is that the header and footer
both have the same width as the first
table-cell element in the middle row.

display: table good

display: table bad

LIKE TABLES, ELEMENTS'

VISUAL PROPERTIES ARE REspopj/;?[sBOI‘l:g-lT-s

.~ RELATED SO ASET OF FOR LAYOUT
ELEMENTS IN AROW ALL SOME OF THE SAME.

SHARE THE SAME HEIGHT. PERFORMANCE

ISSUES AS TABLES.

USER FRIENDLY by J.D. "llliad" Frazer

WHY DO YOU CARE SO MUCH
ABOUT THE SEPARATION OF
PRESENTATION AND CONTENT?

THE CONTENT IS WHAT

COFTRICHT £ 2059 J.0. “TIkind” Frazer nrl-t.rmwwummv.onﬁr

YOU HAVE NO WAY TO CONTROL DOESNT THAT MAKE YOUR
HOW USERS WILL BE ACCESSING JOB MORE PIFFICULT?
YOUR CONTENT. SO IT'S WP TO NO ONE PROMISED WEB
THE WEB DEVELOPER TO MAKE IT DEVELOPMENT WOULD BE EASY.
AS EASY AS POSSIBLE FOR THEM
NYET/ WEB IS
NOT BEINK REAL (
DEVELOPMENT/
0 i

USEFUL IMPROVEMENTS THAT €S53 OFFERS FOR CS52-COMPATIBLE LAYOUTS.

YOU NOW HAVE A GRASP OF WHAT €SS2 HAS TO OFFER IN TERMS OF LAYOUT. THE GOOD
NEWS IS, SINCE THE LAUNCH OF IE8 IN MARCH 2004, EVERY MAJOR BROWSER SUPPORTS
ALL THESE APPROACHES. IN THE NEXT SECTION, YOU'LL LEARN ABOUT TWO SMALL BUT

CSS53 improvements to C5S2 approaches 279

CSS3 improvements to CsS2 approaches

One of the major pain points that arise with the CSS layout approaches
mentioned in the previous sections is the control of combined width,
particularly when mixing percentage and pixel units as you saw with
inline-block. CSS3 offers two new features that alleviate this pain:

A calcO function

The box-sizing property

The calc function allows the construction of widths from multiple
units: for example, 256% —4px. This is useful if several elements need to
fit exactly in a percentage width, but each needs to have a border or
margin of a certain number of pixels. box-sizing gives the web author
control over the problematic CSS box model. Both are covered in more
detail in this section.

Mixing different length units with calc

Many of the issues with using floats or inline-block for layout are due
to the basic incompatibility of different length measurements —how
many pixels to a percentage point, or how an em varies due to factors
beyond your control such as window size and font rendering. Following
is the example layout from the previous discussion of inline-block.
Earlier, all the widths were specified in percentage values, but now
there’s a mixture of percentages, pixels, and ems:

body { F-- ===~ ---------------- |
. 1 1
width: 90%; :m@ !
margin: 0 5%; e e g
font-family: :' """"""" I .'s;;m:' T
1 1
"Komika Hand", sans-serif; [rreiemibulbtr A I

LMNDERST AND IT WELL AS T MAY, MY 1

} :mmmwmvasm '

. . INFINITESIMAL FRACTIONOFALLT 1

header, section, aside, footer { | WANT TO LNDERSTAND ABOUT THE 1

. 1 MANY CONNECTIONS AND RELATIONS 1

margin: lem; 1 WHIEH OCLUR TO ME. HOW THE 1

. | MATTER IN QUEST ION WAS FIRST
paddlng: lem; | THOUGHT OF OR ARRIVED AT, ETC. :
1

| ETE

outline: 4px dashed black;

vertical-align: top; = oot TTsmssssssssss----- 1
} g g g g
section, aside {

display: inline-block;

280

CHAFTER & Layout with C553

width: 54%;

}

aside {
margin-right: 0;
width: 25%;

}

You can see that the sidebar is poking out to the right of the header and
the footer. The problem is worse than it appears because how much the
sidebar pokes out depends on many factors. The following screenshots
show the alignment of the sidebar with the footer at various browser
window sizes (the gray bar has been added so you can more easily see
the variation, and the sidebar and footer are shown next to each other
for convenience).

640px width 800px width 1024px width 1280px width

These issues are bound to occur when combining CSS lengths of differ-
ent types. The number of pixels taken up by an em or a percentage will
vary depending on font size and window size. On the other hand, it’s
rare that you'll want something like a border to be a different width
depending on the width of the browser window. CSS3 provides the calc
function to allow you to combine different units in a predictable way.

Take the earlier example CSS and, TTTTTTmmmmmmmmmmees---- !
assuming everything else remains E HEADING '
the same, you can change the R e LR TP -
widths to the following:

! IMEVER AM REALLY SATISFIED THAT T
1 LMDERST AND ANYTHING: .
I LMNDERST AND IT WELL AS T MAY, MY

1
1
- . !
section, aside { | COMPREHENSTON CAN ONLY BE AN !
1

width: calc(70% - 4.665em); T O ADERaT A AST THE ey 1

| CONNELTIONS AD RELATIONSWHICH |

} | OCCURTO ME.HOW THE MATTERIN 1
1 GUESTION WAS FIRST THOUGHT OF OR 1

1
1

aside { | ARRIVED AT.ETC.ETC

width: calc(30% - 3.665em); e cemcee e e -

CSS53 improvements to C5S2 approaches 281

This produces a more reliable lay-
out. And, as the following screen-
shots show, everything stays the
same width at different screen

widths.

640px width 800px width 1024px width 1280px width

As always with inline-block, there’s the issue of letter spacing. A cer-

tain amount of trial and error was involved in arriving at those 4.665em

and 3.665em lengths. A more straightforward approach is to remove

the letter spacing as a factor by setting it to a negative value.

body {
letter-spacing: -0.5em;
}
header, section, article, aside,
footer {
letter-spacing: normal;
}

section, aside {
width: calc(70% - 4em);

}
aside {

width: calc(30% - 4em);
}

The negative letter spacing on the
body allows saner width calculations,
but then the letter spacing needs to be
explicitly set on the child elements.

1
| INEVER AMREALLY SATISFIED THAT I
| LMDERST AND ANYTHING: BECALISE.

1 UNDERSTAND IT WELL AS T MAY, MY

| COMPREHENSION CAN ONLY BE AN

| INFIMITESIMAL FRACTION OF ALL I

1 WANT TO UMDERST AND ABOUT THE MANY
| COMNECTIONS AND RELATIONS WHIZH

1 OCLUR TO ME, HOW THE MATTER IN

1 GUEST ION WAS FIRST THOUGHT OF OR
1 ARRIVED AT ETC,ETE.

EVEN WITH calc, IT'S DIFFICULT TO GET
THINGS PERFECT FOR EVERY WIDTH WHEN
USING PERCENTAGES BECAUSE OF
ROUNDING ERRORS—ON A WINDOW 640
PIXELS WIDE, A BOX OF 30% WIDTH IN THIS
LAYOUT WORKS OUT AS 172.8 PIXELS WIDE.
THE BROWSER HAS TO CHOOSE WHETHER TO
RENDER THAT AS 172 OR 173 ACTUAL PIXELS,

2862 CHAFPTER & Layout with C553
Full Partial

v

-

:® - | v

T

(5]

g)

5 e ; 4.0

4

(%]

S

£ A 9.0

t | & . -

S |

Q

=

("]

10 -

(4

3

e

@ - |

There’s more to calc than simple
addition and subtraction. calc
makes it straightforward to do
things that are hard with any
other approach. Imagine that
you have a set of elements of dif-
ferent widths that you want to
display on multiple rows, but
each row should be an identical

width.

AND YOU HAVE TO HOPE IT ALL WORKS OUT.

' 4 & B & ¢ & ¢ #& € & F
R e L
! oo ¢ ol [10 [f 1

Here's the CSS to generate this screenshot:

div {
float: left;
margin: 0O;

padding: lem 0;

border: 4px dashed black;
}
.half_third {

width: calc(50%/3 - 8px);
}
.half_half {

width: calc(50%/2 - 8px);

CSS53 improvements to C5S2 approaches 283

1
.sixth {

width: calc(100%/6 - 8px);
1
.quarters {

width: calc(100%/4 - 8px);
1

And here’s the HTML —assume it fits in a standard HTML5 document;
see ch08/calc-3.html for the full listing:

<div class="half_third">1</div>
<div class="half_half">2</div>
<div class="half_third">3</div>
<div class="half_half">4</div>
<div class="half_third">5</div>
<div class="sixth">A</div>
<div class="sixth">B</div>
<div class="sixth">C</div>
<div class="sixth">D</div>
<div class="sixth">E</div>
<div class="sixth">F</div>
<div class="quarters">00</div>
<div class="quarters">01</div>
<div class="quarters">10</div>
<div class="quarters">11l</div>

Because table cells in a column share a width, this is extremely difficult
to do with a single table. And because of rounding errors, it can be dif-
ficult with any other approach unless you choose carefully for the over-

all width.

calc good calc bad
ALLOWS PRECISE CONTROL

OF LENGTHS SPECIFIED IN REQUIRES AN
ANY COMBINATION UNDERSTANDING OF

HOW PADDING, MARGIN,
AND BORDER COMBINE

264

CHAFPTER & Layout with C553

USER FRIENDLY by J.D. "llliad” Frazer

HOW CAN YOU SAY I DON'T £[we can BuTLD ENTIRE T AM APOLOGTSTNK AM HAVINK
DO REAL DEVELOPMENT? 8| APPLICATIONS IN THE BROWSER | | Mo IDEA LOLCATS PICTURES TS
&
NOT REAL DEVELOPTNK§ WHY SHOLLDNT THEY BE BLILT NEEDINK SUCH ENGINEERINK
WITH AS MUCH ENGINEERING EXCELLENCE.
PROBLEMS. ALWAYS TV 45 ANY OTHER
OBSESSINK OVER IE6.|3

rd
sLAP INTO TALE Anp|E| APPHICATION

COPTRIGHT £:2008 L0, “Viblad™

Controlling the box model

One of the more difficult aspects of layout in the late 1990s was the
incompatible implementation of the CSS box model. Some browsers
behaved as if the width and the height included the border, whereas the
specification excluded the border and padding from width and height

calculations.

box-sizing: content-box; box-sizing: border-box;

Browser support quick check: box-sizing

Full Partial

]] IN SPITE OF IT BEING NONSTANDARD, MANY
0.0 0 PEOPLE FELT THAT THE METHOD OF |77
CALCULATING WIDTH THAT INCLUDED THE ;
BORDER WAS MORE INTUITIVE. SO INCS53
20 YOU CAN SPECIFY THE SIZING CALCULATION 2 3
: YOU WANT WITH THE box—sizing PROPERTY. -' » i

L)

THE TWO ALTERNATIVES ARE SHOWN NEXT.

\

W

©

o
!

5.1 3.1

®@ C 0

Using media queries for flexible layout 285

This CSS creates two boxes that are exactly the
same size visually, despite differing in width and

height by 50 pixels:

#one {
box-sizing: content-box;
width: 150px;
height: 150px;
border: 25px solid black;

}
#two {
box-sizing: border-box;
width: 200px;
height: 200px;
border: 25px solid black;
}

The markup required is

<div id="one"></div>
<div id="two"></div>

This feature isn'’t as obviously useful now that
you have calc, but it might save you some effort

if you want a set of elements to have the same
size but different-width borders.

YOU'VE NOW LEARNED ABOUT ALL THE CURRENTLY VIABLE TECHNIQUES FOR LAYOUT
WITH CSS. BUT EVEN WITH ALL THESE TOOLS, IT'S A CHALLENGE TO DESIGN A SINGLE
LAYOUT THAT WORKS WELL ON POWERFUL DESKTOP PCS, PORTABLE TABLETS, AND
MOBILE PHONES. MEDIA QUERIES ALLOW YOU TO TAILOR YOUR LAYOUTS TO THE
CAPABILITIES OF THE DEVICE, AS YOU'LL LEARN IN THE NEXT SECTION.

Using media queries for flexible layout
CSS has long had the ability to apply different styles based on the out-

put device, whether it’s a PC screen, a handheld device, or a printer.
For instance, a print stylesheet can be applied to an HTML document
in several ways.

Linking from HTML <link rel="stylesheet" media="print" href="print.css">

Embedding in HTML <style media="print"></style>

Inline in CSS @media print { }

2866

CHAFPTER & Layout with C553

Browser support quick check:
CSS3 media queries

CR=NON

Full Partial

2.0 -

3.5 -

9.0 -

9.5 -

4.0 3.1

USER FRIENDLY by J.D. "llliad” Frazer

BROWSER DETECTION IS
BAD? WHY?
IT RELIES ON KEEPING A
DATABASE OF BROWSER
CAPABILITIES UP TO DATE.

These are known as media queries. All three of
the previous examples are constraining the
styles they reference or include to only apply
to print media. In CSS2 you could also restrict
to screen, aural, braille, handheld, or speech,
among others. The default, if you don’t spec-
ify anything, is all—the styles will apply no

matter what the output device is.

iHONMEDCﬁN THAT BE? SURELY

2 WHAT DOES IT MEAN, UPGRADE? I'M
g;;ER'E*SMOMINESEmFOR ON CHROME BETA!

for

g HAVE YOU APPLIED FOR THAT'S WHY BROWSER
g VACATION ON THE DETECTION IS A BAD
E INTRANET RECENTLY? IDEA.
i NS,

i \g QA

da

H

3

13

E

Mobile browser support

CSS3 media queries are especially important for mobile browsers. All the current
major smartphone browsers have support: the iOS and Android standard brows-
ers; mobile Opera and Firefox; and IE in Windows Mobile 7.5.

Media queries avoid browser detection by letting the browser itself

determine what support it has. If a new browser or device comes along

that you hadn’t anticipated, as long as you've used media queries, it
should still select the most appropriate set of CSS rules. CSS3 dramati-

cally extends the number of properties that can be used in media que-

ries. In the following
media queries in use.

sections, you'll see some practical examples of

Using media queries for flexible layout 287

Resolution detection

The most common distinguishing features of different devices are
screen resolution and window size. Most desktop users have a browser
window at least 800 pixels wide, whereas most mobile browsers are
less than 800 pixels wide. Media queries let you choose between the
two situations. The basic syntax for creating a set of rules for a window

800 pixels wide is this:

@media screen and (max-width: 800px) { }
@media screen and (max-device-width: 800px) { }

Any CSS rules placed inside the squiggly brackets will only be applied
if the conditions are met. The first rule selects based on the browser
window size, and the second one selects based on display size —the
browser window doesn’t have to fill the entire width of the display for
this rule to match. In this section, you'll create a layout that adapts to
the size of the browser window. Here’s what the layout looks like in a

window 1024 pixels wide.

. IMEVER AM REALLY SATISFIED THAT I FOR MEDTA GUERTES,
Howe 1 ¥ LNDERSTAND ANYTHING: BECAUSE. LNDERSTAD IT ' .
e mm = = P WELL AS T MAY, MY COMPREHENSTON caN oMLY BE P
Ll I P AN INFINITESIMAL FRACTION OF ALL TWANT TO #
! asour I UNDERST AND ABOLIT THE MANY CONNECTIONS D #
. - ﬂREMTmmmTOMEHONTHE i
=== == I # MATTER IN GUESTION WAS FIRST THOUGHT OF §
1 CONTAST | # ORARRIVED AT,ETC,ETC, F]
|'

Here’s the key markup (see the full listing in ch08/media-queries-
adaptive.html):

<header>
<hl>Adaptive Layout with Media Queries</hl>
</header>
<div>
<nav>

28686 CHAFTER & Layout with C553

Home</11i>
About</11i>
contact</1li>

</nav>
<article>
<p>I never am really satisfied...</p>
</article>
<aside>
This page is a demo for media queries.

</aside>
</div>
<footer>
Viewing 480px or less mode
Viewing 800px or less mode
Viewing 800px or more mode
</footer>

The default three-column layout is for windows greater than 800 pixels

wide:
body { width: 90%; margin: 0 5%;

font-family: "Komika Hand", sans-serif; }
header,

footer { display: block; width: auto; }
nav ul { list-style: none; margin: 0; padding: 0; }

nav a { display: block; margin: lem;
padding: lem; outline: 4px dashed black; }
img { max-width: 100px; display: block;
margin: 0.5em auto; }
div { display: table; outline: none; padding: 0; }
nav,
article,
aside { display: table-cell; }
nav,

aside { width: 25%; }
article { width: 50%; }
#msg480,

#msg800 { display: none; }

If viewed in a window 800 pixels wide or narrower, the page switches
to a two-column layout.

Using media queries for flexible layout 289

[l il e e |
1
| ADAPTIVE LAYOUT WITH MEDIA QUERIES :
| m o e o o e e e e e e e -l
r """""""""""""""" |
I rFre=] r=== === I
1 I Home 1 ! ABOuT 1 ! CONTACT 1 !
1 | A P N O — 1
I 1
T TE s ST TS s EE T |) T ===" A
THIS PAGE IS5 A DEMO
I NEVER AM REALLY SATISFIED THAT T UNDERSTAND FOR MEDIA GUERIES.

1
1 1 1
ANYTHING: BECALUISE. UNDERSTAND IT WELL AS I MAY. MY : ! :
COMPREHENSTION CAN ONLY BE AN INFINITESIMAL !
FRACTION OF ALL I WANT TO UNDERST AND ABOUT THE ! I !
MANY CONNECTIONS AND RELAT IONS WHICH OCCURTO | 1 !
ME. HOW THE MATTER IN QUESTION WAS FIRST I !
THOUGHT OF OR ARRIVED AT,ETC,ETC. 1
1

This layout is implemented with two sets of rules within media queries.
The first provides a set of rules to be applied for any width less than
800 pixels, and the second is a set of rules that’s applied only when the
window 1s between 481 and 800 pixels wide. This approach saves
repeating rules:

@media screen and (max-width: 800px) {
div { display: block; overflow: hidden; margin: 0; }
nav { display: block; width: auto; }
nav ul { display: table; border-collapse: collapse;
margin: 0 auto; }
nav 1i { display: table-cell; }

}

@media screen and (max-width: 800px) and (min-width: 481px) {
hl { font-size: 110%; }
article,

aside { display: block; }

article { width: 60%; float: left; margin-right: 0; }

aside { width: 20%; font-size: 80%; float: right;
margin: 1.2em; margin-left: 0; }

img { max-width: 60px; }

290

CHAFTER & Layout with C553

#msg480,

#msg801 { display:

#msg800 { display:
}

none; }
inherit; }

Finally, at a width of 480 pixels or less,

the layout becomes single column.

The majority of the required rules for
this layout were specified in the less-
than-800 pixels example. These rules
mostly adjust the size of elements to
allow more content to appear on a
mobile screen:

@media screen and (max-width: 480px) {

i el el |

]
y APAPTIVE LAYOUT WITH MEDIA QUERIES .

r---F“{"F"‘-[‘-"P'F"Fl----l
I L Lo T PR

I INEVER AM REALLY SATISFIED THAT I

I UNDERST AND ANYTHING: BECAUSE, UNDERST AND
1 IT WELL AS T MAY, MY COMPREHENSION CAN

1 ONLY BE AN INFINITESIMAL FRACTION OF ALL
1 ITWANT TO UNDERST AND ABOUIT THE MANY

| CONMECTIONS AND RELATIONS WHICH OCCUR
1 TO ME. HOW THE MATTER IN GUEST ION WAS
1

FIRST THOUGHT OF OR ARRIVED AT ETC. ETC.

hl { font-size: 105%; }

nav { padding: 0; } :
nav a { margin: 0; padding: .
0.25em 0.5em; } =
article,

aside { display: block; width: auto; }

#msg800,

#msg801 { display:

#msg480 { display:
}

none; }

inherit; }

Following are screenshots of the same page on an Android phone in

portrait mode (left) and landscape mode (right).

== === == === -

== == = = = = = == === === ===

1 1 1 1
ADAPTIVE LAYOUT WITH 1 1 APAPTIVE LAYOUT WITH MEDIA QUERIES 1
MEDIA QUERIES

1 1 L e e e e e e e e e e e e e e e == = 1

| g | Fm === e e e e e e e m == === - 1

R Riovian. perem sl r==—=a1 r-—=1 r=-=--=--=1

L LHOWL@ECLI-I 1 HOoME | I aBour | 1 CONTACT |

A e 1 Le-d Lol Loo--l

1 1

1 I NEVER AM REALLY 1 EESEoEsE LSS SeESSEEE S S S S e "
| SATISFIED THAT I 1 e | e |
; UNDERSTAND ANYTHING; Y . |1 THISPAGETS A |
. BECAUSE. UNDERSTAND IT : . TNFUFR AM RFAI I Y GATTGETED THAT . » PEMOFOR .

Portrait (480px width)

Landscape (800px width)

Using media queries for flexible layout 291

IN THIS EXAMPLE, THE DEFAULT LAYOUT IS A FULL-SIZED SCREEN DESKTOP
EXPERIENCE. MEDIA QUERIES WERE USED TO ADAPT TO LOWER RESOLUTIONS. FOR
PRACTICAL USES, IT'S OFTEN BETTER TO DO THINGS THE OTHER WAY AROUND— \
WHEN IE9 IS RELEASED ALL THE MAJOR DESKTOP BROWSERS WILL SUPPORT MEDIA
QUERIES. BUT IE ON WINDOWS MOBILE 7 WON'T, AND NEITHER WILL BROWSERS ON D
OLDER FEATURE PHONES. IF YOU EXPECT LOTS OF THESE VISITORS, DESIGN FOR
THE SMALL SCREEN AND USE MEDIA QUERIES TO ADAPT FOR LARGER DEVICES. | [

Changing layout based on orientation and aspect ratio

Maybe you want to do different things on a display that’s 640 pixels
wide and 480 pixels tall compared to one that is 640 pixels wide but
800 pixels tall—you want to know whether the aspect ratio is land-
scape or portrait for a given width. You can specify rules like this:

@media screen and (min-width: 640px and max-height: 480px) { }
@media screen and (min-width: 640px and min-height: 800px) { }

But this is a very fragile solution. For a start, you're missing windows
that are 640 pixels wide but, perhaps thanks to a permanent toolbar,
only 780 pixels tall. You could adjust to that particular case, but what if
some innovative manufacturer came up with a 700 x 500 pixel device?
In general, the idea behind media queries is for you to end up doing
less work —not rewriting chunks of your stylesheet for every possible
combination of width and height.

Fortunately, CSS3 provides an orientation media query for just this
situation:

@media screen and (min-width: 640px and orientation: portrait) { }
@media screen and (min-width: 640px and orientation: landscape) { }

Orientation is a special case of aspect-ratio. The previous two rules are
equivalent to these:

@media screen and (min-width: 640px and max-aspect-ratio: 1/1) { }
@media screen and (min-width: 640px and min-aspect-ratio: 1/1) { }

Using aspect-ratio, it’s possible to distinguish between widescreen dis-
plays and traditional monitor sizes:

@media screen and (min-width: 640px and aspect-ratio: 16/9) { }
@media screen and (min-width: 640px and aspect-ratio: 4/3) { }

292

CHAFTER & Layout with C553

In this case you may want to select based on the monitor size rather
than the window size:

@media screen and (min-width: 640px and device-aspect-ratio: 16/9) { }
@media screen and (min-width: 640px and device-aspect-ratio: 4/3) { }

device-aspect-ratio: always matches the monitor, regardless of the

window size.

Additional device-detection features

Media queries can be used for more than just screen sizes. There are
several other features for detection in the spec, and various browser
vendors are introducing more as they add functionality to their brows-
ers. Here are some of the more Interesting ones:

color —Select rules based on the number of bits available per color
channel, where 8 bits is 255 levels per color. If you can remember the
days of web-safe colors, this feature lets you work around the pixela-
tion issues that web-safe colors avoided. Devices that have limited
color support can be given a more constrained set of background
colors.

resolution—Select rules based on the dots per inch (dpi) of the dis-
play. A display with high dpi renders fonts more readably, so you

can use a smaller font size.

touch-enabled—This 1s currently a Mobile Firefox—only feature.
Select rules based on whether the display is a touch input device,
perhaps to give buttons and links more finger space.

device-pixel-ratio—Currently a Mobile Safari—only feature. Select
rules based on the zoom level, perhaps to provide a higher-resolution
background image as the user zooms in so the image remains crisp
and sharp.

Can you really make a mobile website with just CSS?

Is it possible to make your website deal with a full range of mobile devices and
desktop PCs just by fiddling with CSS? As with most things, the answer is, “it
depends.”

The future of CSS layout 293

(continued)

A brochureware website that is mostly static pages and doesn’t expect much in-
teraction from the user is almost certainly a good candidate for adaptation with
media queries. Similarly, blogs or other text-heavy websites ought to be straight-
forward enough to make work on a wide range of devices. Mobile users, who are
often paying for their connectivity by the megabyte, might appreciate not being
forced to download huge video files, large graphics, and lots of ads; but if the
site in question is relatively lightweight in this department it shouldn’t be a prob-
lem. Also remember from chapter 4 that if you’re using HTMLS5 to serve your vid-
eo files, you have built-in functionality to serve lower-resolution and lower-
quality files to mobile devices.

The more application-like a website is, the more likely it is that you won’t be able
to deliver the same content to all devices and end up with a usable experience
for all users. In this situation, you should consider dynamically loading portions
of your app with JavaScript after you’ve determined the capabilities of the device.

One last thing to bear in mind: studies have shown that many desktop users pre-
fer to use the mobile versions of certain popular websites. The mobile versions
are frequently simpler and more task focused—or, looked at another way, the
desktop websites are too complex and confusing. Media queries and mobile web-
sites don’t absolve web authors from thinking about the needs of their users.

CSS3 PROMISES TO FINALLY EQUIP WEB AUTHORS WITH LAYOUT TOOLS WITH
POWER SIMILAR TO THAT AVAILABLE IN NON-HTML FRAMEWORKS LIKE ADOBE
FLEX, MICROSOFT SILVERLIGHT, AND JAVA SWING. IN THE NEXT SECTION, YOULL
LEARN HOW POWERFUL €SS LAYOUT MAY BECOME IN THE NEXT FEW YEARS.

The future of CSS layout

CSS3 has several proposed standards currently under heavy develop-
ment that could completely alter how layout on the web is done. In this
section, you'll learn about these new approaches, all of which have at
least experimental implementations available. They include flexible
boxes, which are excellent for toolbars and menus; grid-align, which is
great for traditional grid-based designs; and regions, exclusions, and
positioned floats, which are good for multiple-column magazine-style
layouts.

294 CHAFTER & Layout with C553

AT THE TIME OF WRITING NONE OF THE APPROACHES IN THIS SECTION ARE SUITABLE
FOR USE ON A PUBLIC WEBSITE BECAUSE SUPPORT IS JUST TOO SPOTTY. YOU MAY BE
ABLE TO MAKE USE OF THEM IN A TIGHTLY CONTROLLED ENVIRONMENT SUCH AS AN
INTRANET, A WEB VIEW IN AN IOS OR ANDROID APP, OR A WINDOWS 8 METRO APP.

Using flexible boxes for nested layout

Flexible boxes, commonly referred to as flexboxes, are a layout
approached developed in Firefox to be used for laying out various ele-
ments of the user interface. They're primarily aimed at creating menus
and toolbars, particularly toolbars made up of nested elements. Cur-
rently Chrome, Firefox, IE10, and Safari have some support for flex-
boxes; you'll need to add the relevant prefix to get the listings in this
section working.

This section first gives you a quick introduction to flexboxes using this
simple markup fragment, and then looks at practical use cases and

1ssues:

<div>
<div>1l</div>
<div>2</div>
<div>3</div>
<div>4</div>
<div>5</div>
</div>

To produce five equal-size boxes, PO T TTTTTTTTTemmmme e 7
Fesl e Fem == == I

Ty 1tz g 0l3 g lg g 0s !
lemad leca laca laca laaa !
1

1
set the parent element to display: ,
1
box and set equal box-flex values L e e m e mmmmmmmmmmm—— e 2

on the child elements:

div {
width: 90%;
display: box;

}

div div {
box-flex: 1;

The future of CSS layout 295

Setting a larger box-flex value on ;T TTTosESessssessmes a

;
certain elements causes them to LU Tz ads ata 4is
take up an increasing proportion L f oo L______: _L____._ :________. _L____:
of the spare space:
div div:nth-child(2) {

box-flex: 2;

}
div div:nth-child(4) {
box-flex: 3;

Flexboxes allow elements to be y TTTSSSsssssssssssses 1
displayed in a different order than
their position in the markup: Lol Lo !
div div {

box-ordinal-group: 2;
3
div div:nth-child(5) {

box-ordinal-group: 1;

}
Because the fifth child is set to be

ordinal-group: 1,ita{q)ears before
all the elements that are

ordinal-group: 2.

Full Partial

- 10.0

Browser support quick check: flexbox

@cClL@e

296 CHAFTER & Layout with C553

Note that even though element 5 is now the first displayed, it’s still the
fifth element as far as the CSS is concerned. Element 2 and element 4
have larger box-flex values, even though they're now shown as the
third and fifth elements.

Although flexboxes are horizontal by default, they reT
can also be set to be vertical:
div {

width: 5em;

height: 600px;

box-orient: vertical;

By

}

Note that in both horizontal and vertical cases, you

Wy

need to specify a length in that direction in order to

| R——

get the flex to appear. This is because the flex dis-

£
[}

tributed among the elements comes from the left-

over space after the intrinsic size of the elements 1s

L

taken away. This can lead to some counter-intuitive
results when the elements with flex don’t have a
well-defined intrinsic width.

This is easily demonstrated by adding some text —the cell will expand
to contain it. The available space gets used up, so the flex can no longer

be distributed.

e e e e e e e e e e - - - - -

Fr-| re] F==m=m== == =] = |
1's y Ty g 1 IAMNEVERREALLY 1 1 3 3 14 |
lead e L e L !

1

r====

- e e - e,- —.-—--—-—- -
--
5

l'--l '------------l '--I ‘--’
! 1 V11 ! IAMNEVERREALLYSATISFIED 1 ! 3 1 1 4
[P I T T DU T P

1

The future of CSS layout 297

For collections of elements that do have an intrinsic width, flexboxes
offer an ability that can’t be replicated by tables, display: table, floats,
or inline-block: they can create flexible grids that can have a variable
number of elements per row, as with floats and inline-block, but the
individual elements flex so they exactly fill up each row, as with table
rows and display: table. This is thanks to the multiline property. The
following example has a grid of 60 cells, each containing a number.

800px 480px
brooile dis fle dls die I P
R TR |
IMICN rErE Y P o e
e e I e e e BT TTHE T
e i A T s T

At different widths, a different number pomm—— Hi e "
b iiz o 1 soopx

of elements fit on each row. If you zoom O H— :

in on a few cells, you can see that they're (R a pmmm——- "
. . . . H M H 640
also slightly different widths depending S L px

on the size of the container. pmememnn u pmmmmman .
Er Eiz E 480px

Following is a snippet of the markup (left) and the CSS (right)
required for this layout. The key property is box-1lines:

 ul {
1</11i> display: box;
2</1i> box-1lines: multiple;
3</1i> }
4</1i> 1i {
... display: block;

oa box-flex: 1;
 min-width: 3em;

298 CHAFTER & Layout with C553

Flexbox good

Flexbox bad

ORDER WITH CSS.

EXACTLY FILL THE
AVAILABLE SPACE.

CAN MANIPULATE LAYOUT
MULTILINE GRIDS THAT

INTENDED FOR TOOLBARS,
MENUS, AND SO ON RATHER
THAN FULL PAGES.

WEIRD THINGS HAPPEN
WHEN CONTENT HAS NO
FIXED INTRINSIC WIDTH.

Using the CS53 Grid Alignment module

The CSS3 Grid Alignment module
completely separates the layout from
the elements in your markup. You
use CSS to define a grid and then
assign elements to the grid using a
Cur-
rently only IE10 has any support for
this module, although the WebKit

support is under development. Fol-

row and column reference.

lowing is some simple markup that
will be turned into the three-column

layout shown here:

<body>
<header>Header</header>
<aside class="b">Side bar</

aside>

<article>I never am really
satisfied... etc., etc.</

article>

<aside class="d">Side bar</

aside>

<footer>Footer</footer>
</body>

Full Partial

g Cg - 19.0*
o
(1]
=
o _
s @
[T} | - -
Se
oo
ts
83 | A - 10.0
25 | 7
(7]
‘q-) ;
7 - -
: 0O
e
o

®

#* Chrome needs a runtime flag to be set to
enable the experimental support; see
https://bugs.webkit.org/show_bug.cgi?id
=60731 for details of progress.

--..,
-

T MEVER AM REALLY SATTSFIED THAT T
UNDERST AND ANYTHING: BECALISE.
UNDERSTAND TT WELL AS T MAY, MY
COMPREHENSTON CAN ONLY BE AN
TNFTNITESTMAL FRACTTON OF ALL T WANT
TO UNDERSTAND ABOUT THE MANY
CONNECTTONS AND RELATTONS WHTCH
OCLUR TO ME. HOW THE MATTER TH
GUESTTON WAS FTRST THOUGHT OF OR
ARRTVED AT ETC.ETC

,--.-------..--....--.,
T o i i il
v s
pusssssssssssssssssasy
1 i i

,..-,
R

https://bugs.webkit.org/show_bug.cgi?id=60731
https://bugs.webkit.org/show_bug.cgi?id=60731

The future of CSS layout 299

A grid is created by defining a set of rows and (or) columns. In this
example, you'll go ahead and create three columns and three rows on
the <body> element:

body {
display: grid;
grid-columns: auto 1fr auto;
grid-rows: auto 1fr auto;

}

The first and last rows and columns will shrink to fit their content
(auto), and the middle cell of each column will flex so the whole thing
takes up all available space. These declarations create a conceptual grid
into which to fit elements. All that remains is to assign the elements to
the relevant spots of the grid:

header { grid-column: 1; grid-row: 1; grid-column-span: 3; }
aside.b { grid-column: 1; grid-row: 2; }
article { grid-column: 2; grid-row: 2; }
aside.d { grid-column: 3; grid-row: 2; }
footer { grid-column: 1; grid-row: 3; grid-column-span: 3; }

Note that unlike with display: table, it’s possible to have elements span-
ning multiple slots in the layout. This means far less messing around
with wrapper elements to control the styling.

As with template layouts, you can rearrange the content by modifying
the CSS. Here the main content is moved into the top three slots:

r -
" '
1 TMNEVER AMREALLY SATTSFTED THAT T UNDERSTAND ANYTHING: BECALISE, H
1 UNDERSTAND TT WELL AS T MAY. MY COMPREHENSTON CAN ONLY BE AN H
! INFINITESTMAL FRACTTON OF ALL T WANT TO UNDERSTAND ABOUT THE MANY H
H :
' '
" '
= a

header {
grid-column: 1;

grid-row: 2; CONNECTTONS AND RELATTONS WHTCH OCCUIR TO ME.HOW THE MATTER TN

1 GUESTTON WAS FTRST THOUGHT GF OR ARRTVED AT, ETC_ETC.

aside.b { remeee- 3 P 3 pmmmeees .

grid-column: 2; ! HEADER 1 1 STDEBAR ! 1 FOOTER 1

. LT o L e e e T T o e T o
grid-row: 2;

el L]

} ' STDEBAR '

300 CHAPTER & Layout with C553

article {
grid-column: 1;
grid-row: 1;
grid-column-span: 3;

}

aside.d {
grid-column: 1;
grid-row: 3;
grid-column-span: 3;

}

footer {
grid-column: 3;
grid-row: 2;

}

NOTE THAT EVEN THOUGH GRID-ALIGN GIVES YOU THE OPPORTUNITY TO
COMPLETELY SEPARATE YOUR MARKUP FROM THE LAYOUT, THIS DOESN'T MEAN YOU
SHOULD THROW YOUR CONTENT INTO THE HTML WILLY-NILLY. REMEMBER THAT MANY
USERS OF YOUR CONTENT, SUCH AS SCREEN-READER USERS AND SEARCH ENGINES,
DON'T CARE TOO MUCH ABOUT THE LAYOUT YOU'VE ACHIEVED WITH CSS—YOUR
CONTENT SHOULD MAKE SENSE IN THE ORDER IT APPEARS IN YOUR MARKUP.

More complex layouts are possible if you nest elements. Adjust the
body of your example page to contain the following markup; you'll
then use a nested grid to la_y out the content elements:

<header>Header</header>

<aside>Side bar 1</aside>

<div>
<article>Content 1</article>
<article>Content 2</article>
<article>Content 3</article>
<article>Content 4</article>
<article>Content 5</article>
<article>Content 6</article>

</div>

<aside>Side bar 2</aside>

<footer>Footer</footer>

The relevant CSS (excluding some rules to add fonts, borders and pad-
ding) is shown next. The <body> element this time contains a two-column

The future of CSS layout 301

layout with four rows, but you also assign a two-column, three-row lay-
out to the <div> element:

body {
display: grid;
grid-columns: auto 1fr;
grid-rows: auto 1fr 1fr auto;

}

div {
display: grid;
grid-columns: 1fr 1fr;
grid-rows: 1fr 1fr 1fr;

}

Now distribute the elements around the grid, making the <div> span
two rows:

header { grid-column: 1; grid-row: 1; grid-column-span: 2; }
aside:nth-of-type(1) { grid-column: 1; grid-row: 2; }
aside:nth-of-type(2) { grid-column: 1; grid-row: 3; }
footer { grid-column: 1; grid-row: 4; grid-column-span: 2; }
div { grid-column: 2; grid-row: 2; grid-row-span: 2; }

Because the <article> elements are all children of the <div> element, the
row and column references are for the grid defined on the <divs:

article { min-height: 2em; }

article:nth-child(1) { grid-column: 1; grid-row: 1; }
article:nth-child(2) { grid-column: 2; grid-row: 1; }
article:nth-child(3) { grid-column: 1; grid-row: 2; }
article:nth-child(4) { grid-column: 2; grid-row: 2; }
article:nth-child(5) { grid-column: 1; grid-row: 3; }
article:nth-child(6) { grid-column: 2; grid-row: 3; }

See the full listing in ch08/grid-align-3.html.

The ability of the grid-based layouts to rearrange content with only
CSS makes them an ideal complement to media queries. You'll now
adapt the previous example to make it respond to media queries.
Here’s what the layout will look like at lower screen resolutions (see

the full listing in ch08/grid-align-4.html).

302 CHAFTER & Layout with C553

640px width 480px width
i o - pesesseseeseeneeanaeaene -
L
| HEADER : 1| HEADER H
1] L) "
e 4 L e L L e 4
R —— 3 e . Pesmeseememesaeaane——a .
1 STDEBART 1 & CONTENT! ' 1 CONTENT! :
e - o [e ———— 4 e 4
T 4 pEEsssssssssssEssssssssssssssss - :- —————————— 1.

1 " 1
1 STDEBARZ 1 1 CONTENT 3 ' ! CONTENT 3 :
[—— R T R ———— P hessssssscsnssssssssnane s 4
PIIIIIIIIIIIIIIIIIIZIIIIIIIIICN : pRsIIIIIIIIIIIIIIII T
1 CONTENT 5 1 : CONTENT S5 :
L] 1 TR R 3
L T T -

FresssssssssssssssssEsssss e - :' """""" 1.
| CONTENT 2 i 1 STOEBAR| :
T - 4
::::::::::::::::::::::::::Z:::::I bR H
| CONTENT 4 ; 1 STDEBARZ :
s ss e r e . ot =
ottt oot bl et a e e y
I CONTENT & ' b anis !
i v o, . H H
T - -
i e . pRSIIIIIIIIIIIIIIIIIIICC T
i FOOTER : 1 CONTENT 4 :
L . e -
beserssrsr s s s r s s e e e r e e El - - -
E CONTENT 6 E
e o - - - el
b —————— .
L L]
! FOOTER :
T -

To start with, define the single-column, small-screen layout:

body {
display: grid;
grid-rows: auto;
grid-columns: 1fr;
}
header { grid-row: 1; }
#sidebar { grid-row: 3; }
#contentl { grid-row: 2; }
#content2 { grid-row: 4; }
footer { grid-row: 5; }

For windows 600 pixels wide and greater, you'll switch to a two-
column layout. Note that although the grid can be easily redefined on
the body rule, the elements must be explicitly slotted into that grid:

@media screen and (min-width: 600px) {
body {
grid-columns: auto 1fr;
grid-rows: auto 1fr 1fr auto;

The future of CSS layout 303

header { grid-column: 1; grid-row: 1; grid-column-span: 2; }
#sidebar { grid-column: 1; grid-row: 2; grid-rowspan: 2; }
#contentl { grid-column: 2; grid-row: 2; }

#content2 { grid-column: 2; grid-row: 3; }

footer { grid-column: 1; grid-row: 4; grid-column-span: 2; }

}

This CSS defines a three-column grid for windows wider than 760 pix-
els. Again, the slot locations have to be explicitly set:

@media screen and (min-width: 760px) {
body {
grid-columns: auto 1fr 1fr;
grid-rows: auto 1fr auto;
3
header { grid-column: 1; grid-row: 1; grid-column-span: 3; }
#sidebar { grid-column: 1; grid-row: 2; }
#contentl { grid-column: 2; grid-row: 2; }
#content2 { grid-column: 3; grid-row: 2; }
footer { grid-column: 1; grid-row: 3; grid-column-span: 3; }
1
GRIDS OFFER GREAT FLEXIBILITY IN LAYING OUT ELEMENTS ON THE PAGE AND
SOLVE NEARLY ALL THE ISSUES DESIGNERS HAD WITH €SS LAYOUTS COMPARED TO
TABLE-BASED LAYOUTS. BUT THE ELEMENTS BEING LAID OUT ARE STILL
ESSENTIALLY SQUARE BOXES WITH A FIXED AMOUNT OF CONTENT. IN THE NEXT

SECTION, YOU'LL LEARN ABOUT A PROPOSAL THAT LETS YOU FIT YOUR CONTENT
INTO ANY SHAPE AND SPREAD IT ACROSS MULTIPLE ELEMENTS.

Controlling content flow with CS53 Regions

In print-publishing tools such as Adobe - B

InDesign, it's common to create several
text boxes and then link them together - 19.0
so the content added to them automati-
cally overflows from one box to the next.
In this paradigm, text flows automati-
cally from one region of the page to . 10.0
another and from one page to another —
you don’t need to calculate how much

text will fit in each region. You specify

Browser support quick check: regions

@CL @6

some text and a collection of regions,

and the application takes care of the rest.

304

CHAFPTER & Layout with C553

Adobe is a W3C member and has decided to give similar capabilities to
web authors —this fulfills a dual goal of making web layout more pow-
erful for web designers while making it easier for Adobe to generate
content straight to the web from its print-publishing tools. To this end
they have proposed the CSS3 Regions module. Adobe has helped
implement support for their proposal in WebKit, and IE10 also has pre-
liminary support. Here’s an example page layout created with the new
Regions module.

I MEVER AM REALLY
SATISFIED THAT I
UNDERSTAND ANYTHING:
BECAUSE. UNDERSTAND

ONE ESSENTIAL OBJELT IS TO
CHOOSE THAT ARRANGEMENT WHICH
SHALL TEND TO REDUCE TO A
MINIMUM THE TIME NECESSARY FOR

IT WELL AS I MAY. MY COMPLETING THE CALCULATION
COMPREHENSION CAN

ONLY BE AN MANY PERSONS WHO ARE NOT
INFINTTESTMAL CONVERSANT WITH MATHEMATICAL

FRACTION OF ALL T STUDIES IMAGINE THAT BECAUSE

WANT TO UNDERSTAND
ABOUT THE MANY IN ALMOST EVERY COMPUTATION A GREAT
CONNECTIONS AND VARIETY OF ARRANGEMENTS FOR THE
RELATIONS WHICH SUCCESSION OF THE PROCESSES IS POSSIBLE,
OCCUR TO ME, HOW THE AND VARIOUS CONSIDERATIONS — MUST
MATTER IN QUESTION INFLUENCE THE SELECTIONS AMONGST THEM
WAS FIRST THOUGHT OF FOR THE PURPOSES OF A CALCULATING ENGINE.

The previous screenshot st A Dk atat
pulsrmmm:ma, 'SQN.L YI::;'EO‘M Toma
shows three text boxes. The gy L EPPLET NS T e AATIEN
w 1
FOPREEIBION oy
di t right outli h S S e
1agram at right outlines eac PO G s s \ S wee Tt AR
L. . m v munsua 10 ARRIVED AT. ETC. ETC. e
box explicitly. The content in AT T e s e o o oo
the b fl b h o 1o v s ey WD WIS | COBIERTION . R
e boxes rlows between them [PATTER DI GUESTION KDFLUENSE THE SELECTIONS AMOMGST THEM

without having to be assigned
to one box or another as
would normally be required
on a web page.

The HTML contains four <div> <div id="source">
<p>I never am really

satisfied...</p>

<p>In almost every
content: a set of four para- computation. . .</p>

elements. The <div> with id
value source contains all the

graphs. <p>Many persons who...</p>
<p>The Analytical Engine...</p>

The future of CSS layout 305

This is followed by three </div>
empty <div> elements, all with <dl_/ id="regionl” class="region">
. y </div>
a class of region. You'll flow o W s
; <div id="region2" class="region">
the content into these three </div>
empty <div> elements. <div id="region3" class="region">
</div>

<img src="dust-puppy.png"
class="dp">

The magic happens in the #source{
CSS. First the source <div> is :10‘;"_1??0: flo"tv}jc

) ext-align:justify;
assigned to flowl. Then the an:J Y

declaration for elements with a %region {

class of region says to take the flow-from: flowl;
content for these elements }

from the flow that has just

been defined.

The remainder of the CSS
positions the region elements
on the page as shown earlier.

Check out ch08/regions-
1.html file for the full code.

Making complex shapes with C553 Exclusions and Shapes
The CSS3 Exclusions specification allows you to wrap content in and
around complex shapes. This spec was also born out of Adobe’s pro-
posals; initially it was for shaping the regions now in the CSS3 Regions
specification. The following layout can be achieved with a tweak to the

z 15 POSSTELE, AMD VARIOUS

MEVIR LCONGTPERATIONS WUST DNFLUENCE
-~ THE SELECTIONS AMOMGST THEM FOR THE EAZTLY
REALLY PLEPOSES OF A CALOULATING INGINE ONE 5 IF THEY
SATISFIED ESSENTIN. CRIELT 5 TO OO0SE THAT WERE LETTERS
THAT z ARRANGEMENT WMION SHALL TEND TO REDUCE TO 4 OR M8 OTHER
LMDERST D MOIMUM THE TIWE NELESSARY FOR COMPLETING THE GEMERAL STMBOLS:
Y TENG BECASE. CALOUMATION. D DI FACT JT MISHT
LMDERSTAD TT WELL 45 T . SRDMG OUT ITS RESLLTS DI
MAY. MY COMPREHENSION CAM ‘::‘m s'““’ e W Conmmaer "‘_‘:" ALGEBRATCAL NOT AT JON WERE
%;: :f’f'fﬂ‘m REDES OF BARBASES WHALYTIOL ENGDED T TO it i
SOERSTAD ABOLT TR MR GIVE 175 RESLATS DI WUMERZCAL MOTATION THE TE ARITEA DGDE W N0
RTINS R RN Sl LA Orci i WATLSE OF TT3 PROCESSES MUST CONSEGUENTLY BE FRETEITONS WHATEVER TO CRIGDWTE
= 5 T . ARITRMETICAL D MUSERGCAL RATRER THeH MTHDNG, IT CAN DO WHATEVER WE KNOW
70 % 10 ¢ wren 1k s T ey e I I e o
ERROR THE EMGDNE LA ARRANGE MD AALYSTS, BUT T Hasi D POWER OF ST ESTPAT NG
TN ALMOST EVERY COMPUTATION A GREAT VARIETY OF COMBDE ITS NUMERICAL MY AALYTICN REVELATIONS O TRUTE T3

ARRALGEVENTS FOR THE SCCESSTON OF THE PROCESSES GANTITIES FROVDLE. 75 TO ASSTST L5 IH MAKDES AMTLABLE WHAT

306

CHAFTER & Layout with C553

CSS from the last example in the previous section. The key difference
from the previous example is the addition of the wrap-shape-mode and
wrap-shape properties:

.region {
flow-from: flowl;
wrap-shape-mode: content;
wrap-shape: polygon(
Opx,160px 20px,232px 40px,262px
60px,282px 80px,296px 100px,305px 120px,313px
140px,316px 160px,320px 180px,316px 200px,313px
220px,305px 240px,296px 260px,282px 280px,262px
300px,232px 320px,160px 300px,90px 280px,52px
260px, 34px 240px,20px 220px,10px 200px,4px
180px,1px 160px,0px 140px,lpx 120px,4px
100px,10px 80px,20px 60px,34px 40px,52px
20px,90px 0Opx,160px
N
}
#regionl {
wrap-shape: polygon(Opx,320px Opx,0px 320px,320px Opx,320px);
1
#region3 {
wrap-shape: polygon(Opx,320px 320px,0px 320px,320px Opx,320px);
}

The shapes don’t have to contain content —they can also exclude it. This
is what the CSS3 Exclusions module is concerned with. The syntax is
exactly the same as for Regions, but instead of content flowing into the
shapes, the content is flowed around them.

2 HEVER A BEALLY ANTTPZED THAT £ THES: BELILAE WELL 48 T A, M & e

IO OF AL T AT T RICUT THE WY O RELAT T . s THE
WATTER S0 UESTIEN witdl FIRIT TRCLIHT OF OR MRREVES AT ETE. ETE. 20 ASMOST EVERY COMPUTATION & GREAT
L)

In this example, the content

is displaying as normal s i s T e e
. . wm,ﬂl— 'm"a m“f‘-:‘ﬂ‘m‘wwﬂr’ THE TEME MECESSARY
inside the #source element. torCouemnr s etz ety Dione
Then the shapes are abso- T s = s

. - S
lutely positioned over that P, >

<. ST ML D DIPACT 1T REBHT D CUT TENEATS AN ORI UTATSONESE.

content. This is changed by P e Csene T AT om0 e s 13

using the around keyword
instead of content:

wrap-shape-mode: around;

The future of CSS layout 307

The Exclusions spec is still under heavy development, but it represents
some useful additions to the web author’s toolkit. Positioned floats are a
concept created by the IE team at Microsoft; they first appeared n
IE10 Platform Preview 2. They achieve results similar to the exclusions
e} the_y have been folded into the Exclusions spec. To demonstrate,
let’s use a simple page with five paragraphs:

<p>I never am really satisfied...</p>

<p>In almost every computation...</p>

<p>Many persons who are not...</p>

<p>The Analytical Engine has no pretensions...</p>
<p>The Analytical Engine weaves algebraic patterns...</p>

Making the last paragraph a positioned float is as simple as setting the
both value for the wrap-flow property:

p: last-child { T NEVER AM REALLY SATTSFTED THAT T LNDERSTAND ANYTHING: BECALISE. LMDERST AND TT WELL AS T
MAY, MY COMPREHENSTON CAN ONLY BE AN TNFTNITESTMAL FRACTTON OF AL T WANT TO
width: ZOODX ; LNDERST AND ABOUT THE MANY CONNECT TONS AND RELATTONS WHTCH OCCUR TO ME. HOW THE

MATTER TN QUESTION
ETC.ETC

S FTRST THOUGHT OF OR ARRITVED AT.

position: absolute;

TH ALMOST EVERY PUTATTON A GREAT VARTETY OF
— H - ARRANGEMENTS FOR THE TOM OF THE PROCESSES TS
wrap 'FlOW : both ’ POSSTBLE, A0 VARTOUS 15 TDERAT TONS MUST THELUENCE THE
t - 75 . SELECTTONS AMONGST HEM FOR THE PURPOSES OF A CALCLLATTNG
op: pXx; ENGTNE. ONE ESSENTTAL \OBTELT T5 TO CHOOSE THAT ARRANGEMENT
WHTCH SHALL TEND T() RECUCE TO A MINTMUM THE TTME NECESSARY FOR COMPLETTNG THE
left: 250px; CALLULATION

} MANY PERSONS WHO ARE NOT CONVERSANT WITH MATHEMAT TCAL STUDTES TMAGTME THAT BECAUSE
THE BUSTHESS OF BABBAGE'S AMALYTTCAL ENGTME] TS TO GTVE TTS RESULTS TN NUMERTCAL
HOTATION THE NATURE OF TTS PROCESSES MUST CONSEQUENTLY BE ARTTHMETTCAL AND
HNUMERTCAL. RATHER THAN ALGEBRATCAL AND ANALYTTCAL. THTS TS5 AN ERROR. THE ENGTHE CAN
OTHER GENERAL SYMBOLS: AND THFACT TT MIGHT BRIMG OUT TTS RESULTS TH ALGEBRATCAL
HOTATTON WERE PROVISTONS MADE ACCORDTHGLY.

around the pOSItloned ﬂoat' THE AMALYTICAL ENGTME HAS HO PRETENSTONS WHATEVER TO ORTSTHATE ANYTHING. TT LAN DO
. WHATEVER WE KNOW HOW TO ORDER TT TO PERFORM TT CAN FOLLOW ANALYSTS, BUT TT HAS NO

start and end, which allow
the text to flow only past the
start or end of the object,
leaving the other side empty,
and minimum and maximum
which allow flow only into
narrowest or widest sides,
respectively.

308 CHAFPTER & Layout with C553

In the last example, the
floated element looked a bit
cramped. You can apply spac-
ing to positioned floats with
the wrap-margin property:
p:last-child {

width: 200px;

position: absolute;

wrap-flow: both;

wrap-margin: lem;

top: 75px;

left: 250px;

To demonstrate an alternative
effect, let’s arrange the other
paragraphs into four
columns:

p { display: table-cell; }

You can see that the text still
flows around the floated ele-
ment, even though the four
paragraphs are independently
positioned.

T NEVER AM REALLY SATTSFTED THAT T LMDERST AND ANYTHTNG: BECAUSE. LUNDERSTAND TT WELL AS T
MAY. MY COMPREHENSTON CAN OHLY BE AN TNFTMITESTMAL FRACTTON OF ALL T WANT TO

LMDERST AND ABOUT THE MANY COMMELTTOMS AMD RELATIONS
WHTCH OCOLR TO ME. HOW THE MATTER TN GUESTTON WAS
FIRST THOUGHT OF OR ARRIVED AT.ETC.ETC.

TH ALMOST EVERY COMPUTATTON A GREAT VARTETY OF
ARRANGEMENTS FOR THE. SULCESSTON OF THE PROCESSES TS
POSSTELE. AMD VARTOUS CONSTDERATTOMS MUST TMFLUENCE THE
SELECTTONS AMONGST THEM FOR THE PURPOSES OF A
CALCLLAT THG ENGTHE. ONE ESSENTTAL OBJECT T35 TO CHOOSE

THAT ARRANGEMENT WHICH SHALL TEND TOREDUCE TO A
MTNTMUM THE TTME HECESSARY FOR COMPLETTMG THE CALLULATTON

MANY PERSONS WHO ARE MOT CONVERSANT WITH MATHEMAT TCAL STUDTES TMAGTME THAT BECAUSE
THE BUSTNESS OF EABBAGE'S ANALYTTCAL ENGTNE] TS TO GTVE ITS RESULTS TN NUMERTCAL
HOTATTON, THE MATURE OF TTS PROCESSES MUST COMSEGUENTLY BE ARTTHMET TCAL AND
NUMERTCAL. RATHER THAN ALGEBRATCAL AND ANALYTTCAL. THTS TS AN ERROR. THE ENGTHE CAN
ARRANGE AND COMBTNE TTS NUMERTCAL GUANTTTTES EXACTLY AS JF THEY WERE LETTERS OR ANY
OTHER GENERAL SYMBOLS: AND TN FACT IT MIGHT BRTNG OUT TTS RESULTS TH ALGEBRATCAL
HOTATION WERE PROVISTONS MADE ACCORDTMGLY.

THE ANALYTTCAL ENGTNE HAS NO PRETENSTONS WHATEVER TO ORTGTNATE ANYTHING. TT CAN PO
WHATEVER WE KNOW HOW TO ORDER TT TO PERFORM. TT CAN FOLLOW ANALYSTS. BUT TT HAS NO
POWER OF ANTTCIPATING ANY ANALYTTCAL REVELATTONS OR TRUTHS, TS PROVINCE TS TO ASSTST
US TH MAKTNG AVATLABLE WHAT WE ARE ALREADY ACGUATNTED WITH.

THEVER M REALLY TN ALMOST EVERY MANY FERSOMS WHO ARE THE ANALYTTCAL
SATTSFTED THAT T COMPUTATION A GREAT NOT CONVERSANT WITH ENGTNE HAS NO

LNDERST AND VARTETY OF MATHEMATTCAL STUDTES FRETENSTONS

. TMAGTHE THAT WHATEVER TO
LUNDERSTAND TT WELL BECALISE THE ORTSTHATE
AS T MAY. MY BUSTHESS OF ANYTHTNG. TT CAM DO
COMPREHENSTON CAH (BABBAGE'S WHATEVER WE KNOW
oMLY BE A AALYTTEA. How T ORDER IT TO
THFTNITESTMAL ENGTMEITSTO PERFORM JT CAN
FRACTTON OF ALL T GIVE TTS RESULTS FOLLOW ANALYSTS,
WIHT T LNDERST AND TNMUMERTCAL BUT TTHASKNO
ABOUT THE MANY HOTATTON. THE ~ POWER OF
COMNECTIONS AND ARRAMGEMENTS FOR THE MATURE OF TS ANTTCIPATING ANY
RELAT oF THE 5T ALY TICAL
OLLUR TO ME. HOW THE: TS POSSTBLE. LY BE REVELATIONS C8

MATTER TH GUESTTON AND VARTOUS ARTTHMETTEAL AND

WS FIRST THOUGHT MWUMEET NUMERTCAL RATHER THAN PROVINCE TS TO

OF OR ARRTVED AT, THFLLENCE T ALGEBRATCAL MNP

ETCETG mr:msmsr ANALYTICAL THISTS AN MAKTNG AVATLABLE
THEM FOR THE PURFOSES ERROR THE ENGTME CAN WHAT WE ARE

OBJECT 75 TO CHOOSE EXACTLY AS TF THEY WERE
THAT ARRANGEMENT LETTERS OR ANY OTHER
WHICH SHALL TEND TO GENERAL SYMBOLS: AND TH
REDUCE TO AMINTMUM FAZT IT MIGHT BRING OUT
THE TTME MECESSARY FORTTS RESULTS TH
COMPLETTMG THE ALGEBRATCAL MOTATTON.
CALCULATION WERE PROVISTONS MADE
ACCORDINGLY.

Browser support for these new features is still fairly patchy, but they're

worth exploring now so you can be prepared for the future.

Browser support

As discussed in the introduction, browser support for CSS layout has

long been an issue. Everything in the CSS2 spec is now implemented in

all major browsers: that includes everything discussed in the section

“Underused CSS2 layout features.”

Support for the other features

we've discussed is patchier, reflecting the experimental nature of the

specifications. The following table shows the details.

Browser support 309

10 | 11.5 12 5 5.1

€ecoe

inline-block) . ° ° ° .
display: table ° ° . .
calc o o °

box-sizing .) o o . . . o .
Media queries . . . ° ° . ° ° °
Flexboxes o o o o o o o
Multiline flexboxes o

Templates/grids o

Regions

Exclusions o
Key:

e Complete or nearly complete support
o Incomplete or alternative support
Little or no support

inline-block in IE6 and IE7

Although IE didn’t add support for inline-block until version 8, it’s pos-
sible to achieve the same effect by taking advantage of some nonstan-
dard behavior. IE has an internal concept called hasLayout that endows
elements with special properties as far as the layout engine is con-
cerned. For our current purposes, the only thing you need to know is
that an element that 1s display: inline but also hasLayout will behave
like an inline-block element in other browsers.

One of the simplest ways to trigger hasLayout is to use the IE-specific
CSS extension zoom with a value of 1 (which makes no visible differ-
ence), coupled with the star hack:

display: inline-block;

*display: inline;
zoom: 1;

310

CHAFTER & Layout with C553

Most browsers will ignore the second two properties as invalid,
whereas 1E7 and earlier will ignore the first property but process the

second two.

calc in Chrome and Firefox

Firefox requires the -moz- prefix for calc while Chrome requires
~webkit-. For maximum support, you should specify four rules—one
for browsers with no calc support, one for Firefox, and one for stan-
dards-compatible browsers (currently only IE):

width: 23%;

width: -moz-calc(100%/4 - 10px);
width: -webkit-calc(100%/4 - 10px);
width: calc(100%/4 - 10px);

This code sets the element width to 23% in browsers that have no sup-
port for calc and 100%/4—10px for any browser that does support it.

box-sizing in Firefox and Safari 5

Firefox and older versions of Safari require a -moz- prefix for box-sizing:

-moz-box-sizing: border-box;
-webkit-box-sizing: border-box;
box-sizing: border-box;

If you need to support IE8, because of the significant impact the box
model can have on your layout, it’s best to use either IE conditional
comments or modernizr.js to provide alternative rules to that browser.

Flexboxes in Chrome, Firefox, |E, and Safari

Currently, prefixes are required in all browsers that support flexboxes.
To get maximum support, you need to specify each property four times:

div {
display: -moz-box;
display: -webkit-box;
display: -ms-box;
display: box;
-moz-box-orient: vertical;
-webkit-box-orient: vertical;
-ms-box-orient: vertical;

Summary 3

box-orient: vertical;

1

div div {
-moz-box-flex: 1;
—-webkit-box-flex: 1;
-ms—-box-flex: 1;
box-flex: 1;

1

This code sets the parent <div> element to be a flexbox container and
gives any child <div> elements the same amount of flex in all browsers
that have support.

Media queries and old browsers

If a browser doesn’t support media queries, then it won't apply any of
the rules listed in a media query section. Any rules outside of a media
query section will constitute the default state of your site, so you should
always consider the sorts of devices the majority of your users will be
browsing with. If your site is primarily for desktop users, then your
default styles should be aimed at a desktop-style layout—around 1000
pixels wide and (most likely) using an older version of IE. If your site is
more mobile focused, then it would be better to target a small screen by
default and add media queries to improve the experience in modern
desktop browsers.

Regions and exclusions
Although 1E10 and Chrome both have some support for these modules,
there are several limitations. In IE10 the source content for flow-into
must be an iframe. In Chrome 17-20 you must explicitly enable support
for regions in the about:flags page. Neither browser has much support
for shaped exclusions, but IE10 does support rectangular exclusions.

Summary

In this chapter, you've learned about some of the murky past of CSS
layout and how the situation has improved thanks to the gradual
decline of old versions of IE, allowing the use of the full range of CSS2
layout tools. New features like box-model, calc, and media queries
already have wide support and promise to improve the situation even

312

CHAFTER & Layout with C553

further. Finally, you've glimpsed the bright future of CSS layout,
thanks in no small part to the new versions of IE—flexboxes, tem-
plates, grids, and exclusions promise to make web page layout much
easier and more flexible.

TO STAND OUT FROM THE CROWD, WHAT YOUR WEB PAGE NEEDS ISN'T AN
ELEGANTLY CODED THREE-COLUMN LAYOUT-YOU WANT COLOR,
MOVEMENT, AND INTERACTIVITY. IN THE NEXT CHAPTER, YOU'LL START
TO LEARN ABOUT THE FLASHIER ASPECTS OF CSS3 AS WE LOOK AT
COLORS, TRANSFORMATIONS, TRANSITIONS, AND ANIMATIONS.

Motion and color

This chapter covers

Making elements semitransparent with the opacity property

Meaking colors semitransparent with RGBA

A new, more intuitive way to specify color: HSL and HSLA

Natural user interaction with transitions and animation

In this chapter, we'll look at some of the snazzier aspects of CSS3—fea-

tures that are much loved by graphic designers.

USER FRIENDLY by J.D. "llliad” Frazer

IS ALREADY BEINK THREE
WAYS TO SET COLOR IN £S5,
WHY NEEDINK TWO NEW ONES?
MONITOR IS BEINK RED GREEN
BLUE, SENSIBLE KEEPINK £55
THE SAME

|gcss 1SN'T FOR MONITORS, IT'S FOR

§PEOPLE. DESIGNERS MORE OFTEN
ZWANT COLORS WHICH DIFFER ONLY
ZIN LIGHTNESS OR SATURATION

\

COPTRICHT £.2000 LD, “Wiliad™ Frazer NTTP//WHW.

313

CRAZY DESIGNERS! WEB
IS BEINK BETTER IN
BLACK AND WHITE ANYWAY

314

CHAPTER 9 Motion and color

Colors and opacity

In the beginning, the web was black and white, but these days there
aren’t many websites that don’t make extensive use of color. It's
unlikely the web will revert to black and white any time soon, so it’s a
good thing CSS3 includes several new features for colors. Later in this
section, you'll learn about RGBA, HSL, and HSLA. First, though, let’s
investigate how CSS3 allows you to achieve another popular effect in
modern web design: semitransparency with the opacity property.

Opacity

Opacity is a measure of what percentage of light is blocked by an object.
In the case of HTML and CSS, the objects are elements on the page.
They are, by default, fully opaque; no light is allowed through, so you
can see nothing of the elements beneath (that is, earlier in the source
code). If a paragraph has a blue background, it completely obscures
any background on the element that contains the paragraph.

Standard Prefixed
2
)
g G 1.0 -
o
Py
]
2 @ 1.0 0.8
o
4
Q
£ S
b) 9.0 -
o
Q.
g
? O 9.0 ;
>
7
3
& @ 1.2 1.0

* IE has been able to do transformations
with the nonstandard filter attribute

since version 5.5.

Opacity can be used to de-emphasize page elements to let your user
focus on a single important task. This is commonly seen on the web in
the ubiquitous lightbox, shown in action here.

Colors and opacity 315

htbox2 OVERVIEW

EXAMPLE

SINGLE IMAGES

Before: The normal busy page. After: The rest of the page 1s hid-

The user has lots of options. den behind a semitransparent
layer so the user can concentrate
on the picture.

IN THIS CHAPTER THE €SS EXAMPLES OMIT SIZING INFORMATION SO THAT You
CAN FOCUS ON THE RULES FOR APPLYING OPACITY, COLOR, AND MOTION. IF
YOU'RE RE-CREATING THE EXAMPLES FROM THE TEXT YOU'LL USUALLY NEED
TO ADD THE FOLLOWING RULE TO REPLICATE THE SCREENSHOTS:
div {

display: inline-block;

margin: 0.5em;

padding: 0.5em;

}
IN ADDITION TO THE ABOVE, SOME OF THE EXAMPLES USE Awidth: 12em; PROPERTY.

The opacity property is straightfor-
OPACITY :1

ward: you specify a value between 0
and 1. The fully opaque default is 1,

and 0 1s fully transparent: OPACITY:O.8
div {

background-color: #666;

color: #ccc;

border: 4px solid #ccc;

divinth-child(1) { opacity: 1
div:inth-child(2) { opacity: 0
div:inth-child(3) { opacity: 0.
div:nth-child(4) { opacity: 0

316

CHAPTER 9 Motion and color

div:nth-child(5) { opacity: 0.2; }
div:nth-child(6) { opacity: 0; }

When all the elements are sitting
against the same white background,
the effect of decreasing opacity is the
same as using lighter colors. The full
code for this example is in ch09/opac-

ity-1.html.

A common use of opacity is to make a continuous pattern or background
image always be visible without clashing with the main content. Here
the <h1> element lies on top of the <div> that contains it, but opacity is
used to let the background of the <div> be partly visible through the <h1>:

body {

background-color: #666; WHAT ARE.WE POSHI?

3

div ¢ OPACITY

background: url(example.png)
no-repeat 50% 50%;

15 cooL

} —,
hl { —
background-color: #fff;
color: #000
opacity: 0.75;
3

Here'’s the markup. You can see the full listing in ch09/opacity-4.html:

<body>
<div><h1>0pacity is cool</hl></div>
</body>

Although the opacity property isn’t inherited in the CSS sense, the
opacity of the parent element affects that of its child elements. In the
following example, on the right (listing ch09/opacity-2.html), all the
child elements are invisible because they're contained within an
element that isn’t visible, regardless of their individual opacity values.

Colors and opacity 317

This is the same as setting an element to visibility: hidden—the ele-
ment isn’t visible, but it’s still taking up space on the page. On the left
(listing ch09/opacity-3.html), the outer element is fully visible, but

transparent child elements don’t cut holes in their opaque parents.

Descending opacity Ascending opacity

div > div > div > div > div > div div > div > div > div > div > div

{ opacity: 0; } { opacity: 1; }
div > div > div > div > div div > div > div > div > div

{ opacity: 0.2; } { opacity: 0.8; }
div > div > div > div div > div > div > div

{ opacity: 0.4; } { opacity: 0.6; }
div > div > div { opacity: 0.6; } div > div > div { opacity: 0.4; }
div > div { opacity: 0.8; } div > div { opacity: 0.2; }
div { opacity: 1; } div { opacity: 0; }
<div><div><div><div><div><div> <div><div><div><div><div><div>

opacity : 0 opacity : 1
</div> </div>
opacity : 0 . 2 opacity : 0 . 8
</div> </div>
opacity : 0 . 4 opacity : 0 . 6
</div> </div>
opacity : 0 . 6 opacity : 0 . 4
</div> </div>
opacity : 0 . 8 opacity : 0 . 2
</div> </div>
opacity : 1 opacity : 0

</div> </div>

318

RGBA

CHAPTER 9 Motion and color

MIRANDA'S ACRONYM CHEAT SHEET

WE TECHIES LOVE OUR ACRONYMS. LET ME
EXPLAIN THE COMMON ONES IN THIS CHAPTER:
RGB, RGBA HSL, AND HSLA THE SEVEN LETTERS
MEAN THE SAME THING IN ALL FOUR.

R =ReED HUE= H
6 = GREEN SATURATION = S

B=BLUE LUMINOSITY = L
A= ALPHA (OPACITY) = A

Sometimes you don’t want to make an WHAT ARE WE DOINK?
entire element transparent or semi-
transparent. If you refer back to the
example from listing ch09/opacity-
4.html, the text and the background

are semitransparent.

If you want people be able to read 1arge amounts of text like this, then
a semitransparent background would be better combined with fully
opaque text. Rather than make the entire element semitransparent,
CSS3 provides several ways of specifying color values that have a level
of transparency, the first of which is rgba(). You can use rgha() to make
just the background transparent. If you're used to the hexadecimal
shorthand for specifying colors, these two diagrams show how they're
related.

RED COMPONENT.. | .- GREEN COMPONENT RED COMPONENT . .- BLUE COMPONENT
OO-FF v 7 OO-FF 0-255 ; o-255
Y \
background: #666666; background: rgba(102, 102, 102, 0.5);
opacity: 0.5; A A i
A ~- - BLUE COMPONENT GREEN COMPONENT -~ "
OPACITY ---*" OO-FF 0-255 ALPHA TRANSPARENCY
oo-10 oo-o1

50% opacity element witha Element with a background that is
dark gray background both dark gray and 50% opacity

Colors and opacity 319

Full Partial
8 c. 2.0 -
(=)l
1 9 -
I
3
2 e 3.0 :
K9
1o
g‘ [/ Y
%, < 9.0 -
Qo
£y
The primary benefit is that the opacity . O 100 -
is now confined to the background — g
) 2 ;
the rest of the element’s contents and @ @ 3.1 -

attributes can be full opacity.

The difference is even more pro-
nounced for the nested element exam-
ple, where previously setting the outer
element to transparent made the entire
set of elements disappear.

See the full code for this example in
listing ch09/rgba-2.html.

With transparency confined to the
background and not inherited, the text
and borders remain visible on all the

elements: OPACITY :1

. OPACITY: 0.8
div > div > div > div > div > div {

background-color:
rgba(102,102,1602, 1); }
div > div > div > div > div {
background-color:
rgba(102,102,102, 0.8); }
div > div > div > div {
background-color:
rgba(102,102,102, 0.6); }
div > div > div {
background-color:
rgba(102,102,102, 0.4); }

320 CHAPTER 9 Motion and color

div > div {
background-color:
rgba(102,102,102, 0.2); }
div {
background-color:
rgba(102,102,102, 0); }

See listing ch09/rgba-3.html for the full code.

HSL and HSLA

You may have found yourself wanting a Full | Partial
darker shade of a particular color as a
contrasting element in one of your g G 2.0 -
designs. This is easy to manage in simple 2
cases with RGB—just make the num- @_g% e 3.0 .
bers smaller, as in the next example. E—%
For those of you reading this book on %E o) oo -
paper in black and white, the top pair of b _
elements that follow are shades of gray, 2: O 10.0 -
the middle pair are shades of blue, and &
the bottom pair are a sort of purple/pink @ 3.1 -
combination:
.one {

background-color: RGB(204,204,204)

rgb(204,204,204);
color: rgb(102,102,102);
}
.darkone {
background-color:
rgb(102,102,102);
color: rgb(204,204,204);
}
.two {
background-color: rgb(51,102,153);
color: rgb(17,34,51);
}
.darktwo {
background-color: rgb(17,34,51);
color: rgb(51,102,153);
}

RGB(10Z , 102,102)

Colors and opacity 321

.three {
background-color: rgb(232,44,122);
color: rgb(83,9,40);

3

.darkthree {
background-color: rgb(83,9,40);
color: rgb(232,44,122);

3

Although in all three pairs the second color is a darker shade of the first
color, it gets increasingly difficult to see the relationship in the pairs as
the numbers become less regular.

NOTE THAT TO MAKE THE SAME COLOR DARKER, YOU HAVE TO ADJUST THREE (aa
VALUES. THE FACT THAT THESE PAIRS OF COLORS ARE RELATED PROBABLY J @
WOULDN'T BE OBVIOUS IF YOU CAME ACROSS THEM ON DIFFERENT LINESOF A~ ~ ‘?‘j/

€SS FILE, UNLESS YOU'RE NATURALLY THE SORT OF PERSON WHO CAN'T LOOK AT A
HSL stands for hue, vaturation, and luminosity in the same way that RGB

SET OF NUMBERS WITHOUT CALCULATING COMMON FACTORS IN YOUR HEAD.

stands for red, green, and blue. The basic color is provided by the hue,
and the saturation determines the intensity of the color —lower satura-
tion means more grey. The luminosity determines how light or dark the
color is. Here’s the same set of colors using HSL notation:

.one {
background-color: hs1(0,0%,80%); HSL(O, 0% ,.80%)
color: hs1(0,0%,40%) ;
} -7 2,
_darkone { HSL(O , O% ,40%)

background-color: hs1(0,0%,40%) ;

color: hsl(0,e%,80%); _
}
.two {
background-color: _
hs1(210,50%,40%) ;
color: hs1(210,50%,13.3%); _
}
.darktwo {
background-color: _
hs1(210,50%,13.3%) ;

color: hs1(210,50%,40%) ;
3

322

CHAPTER 9 Motion and color

.three {
background-color:
hs1(335,80%, 54%) ;
color: hs1(335,80%,18%);
}
.darkthree {
background-color:
hs1(335,80%,18%) ;
color: hs1(335,80%,54%);
}

In HSL, the luminosity of the color is controlled by one parameter. The

relationship between the colors is therefore far more obvious from the

code, because this is the only parameter that changes.

Here’s what happens when you vary only
the saturation. It's hard to make out the
differences in a black-and-white book, so
I'll describe them: the box at the top is
light blue, and the one at the bottom 1s

gray.

Open the example file to geta better look
at the colors: ch09/colors-hsl-3.html.

If only the hue is varied, you get different
colors with the same saturation and lumi-
nosity. The hue corresponds to a point on
a color wheel, measured in degrees—560
and 0 are the same hue. Using four evenly
spaced points for this example yields a
blue, two shades of green, and a red.

Unfortunately, because the colors have
the same saturation and luminosity, they'll
be even harder to tell apart in black and
white. Open the example file to see for

yourself: ch09/colors-hsl-4.html.

CSS transforms 323

HSL has a semitransparent equivalent: HSLA. Like RGBA, it has a final
parameter that specifies the percentage opacity:

.one {
background-color:
hs1a(210,75%,40%,1) ;

color: hs1(210,75%,13.3%);

}
.two {
background-color:

hs1la(210,75%,40%,0.66) ;
color: hs1(210,75%,13.3%);

3
.three {
background-color:

hsla(210,75%,40%,0.33);
color: hs1(210,75%,13.3%);

}
.four {
background-color:
hs1la(210,75%,40%,0) ;

COLORS AND TRANSPARENCY CAN ADD DEPTH
AND INTEREST TO YOUR DESIGNS, BUT

color: hs1(210,75%,13.3%); EVERYTHING IS STILL BASICALLY A

}

CSS transforms

Full Partial

¥ ‘c - 7.0
[3]
[}
L
(3] _
1@ - -
TG
i

/ *
as| (2 - 9.0
20
(7 -
2 O 105
o
m

@

*

IE has been able to do transformations
with the nonstandard filter attribute

since version 5.5.

COLLECTION OF RECTANGLES. IF YOU WANT
ELEMENTS AT AN ANGLE, OR TEXT THAT RUNS
VERTICALLY, THEN WITH €SS2 YOU HAVE TO
RESORT TO IMAGES. IN
THE NEXT SECTION,)
YOU'LL LEARN ABOUT SN,
€553 TRANSFORMS. THEY :
LET YOU ROTATE, SKEW, “
TRANSLATE, AND SCALE
ELEMENTS TO CREATE AN &

INTERESTING VARIETY d&b

IN YOUR DESIGNS.

e

In chapter 3, you learned about transforms
using the <canvas> element and SVG —these let
you rotate, scale, and skew elements. Similar
functionality is made available as part of
CSS3. Because everything uses the same ren-
dering engine (the browser), this shouldn’t be
too surprising. It’s already implemented —the
browser is just offering different ways to acti-
vate it. Transforms allow your designs to
escape the rectangular world of standard web

pages.

324

CHAPTER 9 Motion and color

2D transforms

To demonstrate CSS 2D transforms, we'll use this simple page with
three similar elements:

<body>
<div>0One</div>
<div>Two</div>
<div>Three</div>
</body>

Here’s the basic CSS: E -
TWO THREE
div {

display: inline-block;
padding: lem;
margin: lem;
background-color: #666;
color: #fff;

This example picks out the second
element and scales it to 1560% of its

initial size:
div:nth-child(2) {
transform: scale(l.5);

=) e

ALL THE EXAMPLES IN THIS SECTION WILL NEED VENDOR PREFIXES APPLIED IF YOU
WANT TO TRY THEM IN CURRENT BROWSERS. ADD —webkit—, -moz—, —o—, OR -ms— TO
THE FRONT OF THE TRANSFORM PROPERTIES (NOT THE VALUES) FOR SUPPORT IN
/ SAFARI/CHROME, FIREFOX, OPERA, AND IE9, RESPECTIVELY. SEE THE SECTION
“BROWSER SUPPORT" AT THE END OF THIS CHAPTER FOR FURTHER DETAILS.

By default, transformed elements
keep their center point in the same

place. If you scale the third element to u ™ THREE
250% of its original size, it partially
covers the second element:

div:inth-child(3) {
transform: scale(2.5);

The static point around which the
transform is applied can be changed
with the transform-o rigin property.
Here we set the third element to
expand from its left outward:

div:nth-child(3) {
transform-origin: left;
transform: scale(2.5);

You can also rotate elements:

div:inth-child(1) {
transform: rotate(16.5deg);

}
div:nth-child(2) {
transform: rotate(33deg);

3

divinth-child(3) {
transform: rotate(66deg);

3

o] =

CSS transforms 325

aod

When the elements are rotated around their centers, the visual spacing

can look a little odd. In this example, transform-origin is set for each

element to bring the elements closer together:

div:nth-child(1) div {

transform-origin: bottom right;

transform: rotate(16.5deg);

}
div:nth-child(2) div {

transform-origin: top right;

transform: rotate(33deg);

}

div:inth-child(3) div {
transform-origin: top left;
transform: rotate(66deg);

}

326

«

CHAPTER 9 Motion and color

In this screenshot, the original posi-

tions of the elements have been

drawn in so you can more easily see ’n
that each element is rotating around a

different reference point.

The skew functions allow you to create perspective-like effects. Hori-

zontal skewing is achieved with skewx and vertical with skewy:

div:nth-child(1) {

transform: skewX(16.5deg);
} E
div:nth-child(2) {

transform: skewY(33deg);

3
div:nth-child(3) {
transform:
skewX(16.5deg) skewY(33deg);

It’s also possible to move elements around on the page with translatex
and translatey:

div:nth-child(1) {
transform: translateX(50px);

} E
div:nth-child(2) {

transform: translateY(50px);
3
div:inth-child(3) {

transform:

translate(-50px, -50px);

3

NOTE THAT TRANSFORMING ELEMENTS DOESN'T AFFECT THE REST OF YOUR
LAYOUT; EVERYTHING ELSE REMAINS IN THE PLACE IT WOULD BE IF THE THERE
WAS NO TRANSFORM. TRANSFORMS CAN BE COMBINED TO CREATE INTERESTING
EFFECTS. IN THE FOLLOWING EXAMPLE, THE THREE EXAMPLE ELEMENTS HAVE BEEN
TRANSFORMED INTO A PSEUDO-3D CUBE USING SKEW, ROTATE, AND TRANSLATE.

CSS transforms 327

For this trick, you need to add an
extra <div> to the markup to pre-
serve the direction of the content
in the top face:
<div class="cube">

<div>

<div>0ne</div>

</div>

<div>Two</div>

<div>Three</div>
</div>

The faces are then skewed by 30
or -30 degrees and positioned so
the edges line up. Colors are set
on each face individually to
enhance the perception of depth.

See the blog post “3D Cube using
2D CSS transformation” by Paul
Hayes for a full explanation of
this technique: www.paulrhayes
.com/2009-04/3d-cube-using-

css-transformations/.

.cube div:nth-child(1) div,

.cube div:nth-child(2),

.cube div:nth-child(3) {
padding: 10px;
width: 180px;
height: 180px;

}

.cube > div {
position: absolute;

}

.cube div:nth-child(2) {
transform: skewY(30deg);
background-color: #444,;

}

.cube div:nth-child(3) {
transform: skewY(-30deg);
background-color: #666;
left: 200px;

}

.cube div:nth-child(1) div {
transform:

skewY(-30deg) scaleY(1.16);
background-color: #888;
font-size: 0.862em;

}

.cube div:nth-child(1) {
transform: rotate(60deg);
top: -158px;
left: 100px;

www.paulrhayes.com/2009-04/3d-cube-using-css-transformations/
www.paulrhayes.com/2009-04/3d-cube-using-css-transformations/
www.paulrhayes.com/2009-04/3d-cube-using-css-transformations/

328 CHAFTER 9

3D transforms

Motion and color

Tricks with transform, translate, and skew are entertaining, but they

)
arent a
example

substitute for real three-dimensional transformations. The
in the previous section is subtly off —it doesn’t represent a

proper perspective rendering of a cube and the sides don’t quite line

up. Fortunately, the CSS Working Group is working on a standard for

transformations in three dimensions.

Browser support quick check:
3D transforms

Full Partial
c. - 12.0*
@ ; 10.0*
e - 10.0
® |-

* Support for 3D transforms requires

the presence of a compatible graphics

card driver.

This time, because you're making an actual cube in a 3D space, you

need six elements to form the sides:

<div class="cube">
<div class="one"><p>0ne</p></div>
<div class="two"><p>Two</p></div>
<div class="three"><p>Three</p></div>
<div class="four"><p>Four</p></div>
<div class="five"><p>Five</p></div>
<div class="six"><p>Six</p></div>
</section>
The first step in 3D transformations is to set a perspective. This defines

the depth of the 3D space within which you'll be positioning the trans-

formed elements:

body { pe

rspective: 1000; }

CSS transforms 329

Next, because you want all six sides of the cube to be transformed
within the same 3D space, you set a transform-style value of preserve-3d
on the parent element:
div.cube {

transform-style: preserve-3d;

position: relative;

}

To start with, all six sides will be stacked on top of each other with
absolute positioning:

div.cube > div
{ position: absolute; color: #fff;
width: 200px; height: 200px; }

Now the individual sides are transformed in 3D. Each side is rotated so
it faces the correct way and then translated along the z-axis by 100 pix-
els (because the sides of the cube are 200 pixels deep). The z-axis is the
third dimension available in the 3D space. Because the rotation occurs
before the translation, each side is pushed away from the center of the
cube in a different direction:

.one {
transform: translateZ(100px);
background: rgba(136,136,136,0.5);

}

.two {
transform: rotateY(90deg) translateZ(100px);
background: rgba(1602,102,102,0.5);

}

.three {
transform: rotateX(-180deg) translateZ(100px);
background: rgba(68,68,68,0.5);

}

.four {
transform: rotateY(-90deg) translateZ(100px);
background: rgba(34,34,34,0.5);

}

.five {

transform: rotateX(90deg) translateZ(100px);
background: rgba(153,153,153,0.5);

330 CHAPTER 9 Motion and color

.six {
transform: rotateX(-90deg) translateZ(100px);
background: rgba(34,34,34,0.5);

}

Finally, the whole cube is rotated in the z- and x-axes for artistic effect:

div.cube {
transform: rotateZ(-45deg) rotateX(45deg);

WRAPPING YOUR WEB PAGE AROUND A CUBE WILL CERTAINLY BE
MEMORABLE FOR VISITORS, BUT BE CAREFUL THAT YOU DON'T LET YOUR
SNAZZY €SS GET IN THE WAY OF THEM ACCESSING YOUR CONTENT.

USER FRIENDLY by J.D. "liliad™ Frazer

OK, NOW IMSTARTING TO
FEEL NALISEATED. HOW DO I
TURN IT OFF?

CHECK IT OUT/ IVE USED
€553 TO PUT EACH PAGE OF
OUR WEBSITE ON THE FACE
OF A SPINNING CUBE

COPTRIGHT €2000 2.0, “Tiliad™ Frazer WITP://WNW USIRIRIENOLY.ORG/

1)

N ' TRANSFORMS COME INTO THEIR OWN WHEN COMBINED WITH
0 e - ANOTHER NEW €S53 FEATURE: TRANSITIONS. YOU'LL LEARN
3 ABOUT TRANSITIONS IN THE NEXT SECTION.

CSS transitions

A tranvition is a short animation between two element states, such as
activating a drop-down menu or closing a pop-up message. Instead of
having the elements immediately appear or disappear, the menu might
slide down, and the pop-up message could fade out. Such effects

CSS transitions 331

improve usability by making interfaces more realistic and can be used
to clarify relationships.

ONE OF THE KEY ATTRACTIONS OF THE JQUERY JAVASCRIPT LIBRARY FOR
DESIGNERS IS THAT IT MAKES IT EASY TO CREATE THESE SMALL ANIMATIONS. €SS
TRANSITIONS ARE INTENDED TO REMOVE THE NEED FOR JAVASCRIPT TO APPLY
SMALL VISUAL EFFECTS, AND IN THIS SECTION YOU'LL LEARN ALL ABOUT THEM.

O‘ne 51mple way.to appl_y tran51tlon§ 18 Full Partial
with a dynamic pseudo-class like
:hover. In the following sets of screen- L e - 7.0
. °
shots, three of the transformation %
examples from the previous section ﬁg e . 4.0
have been applied to the :hover state =
.. . .. t
of a containing <div> with a transition S8 | | . 10.0
lasting 10 seconds. Instead of flipping %g -
from one state to the other, the change 30 0 i 105
happens gradually. If you look care- 5
. @
fully, the 'ﬂy-llke speck‘ on each @) 31
screenshot is the mouse pointer.

This example i1s from ch09/transforms-5.html with a 10-second
transition.

SUN 23 JAN ZOM 160933 6MT SUN 23 JAN ZOM 160936 GMT SUN 23 JAN 201 160942 GMT

DD ooy a@@

This example is from ch09/transforms-6.html with a 10-second
transition.

SUN 23 JAN 20N 162238 GMT & SUN 23 JAN ZOMN 162241 GMT SUN 23 JAN 20N 162247 GMT

DO EmEm |y

332 CHAPTER 9 Motion and color

This example is from ch09/transforms-7.html with a 10-second
transition:

SUN 23 JAN ZON 163125 GMT " SUN 23 JAN 201 163129 GMT SUN 23 JAN ZON 163134 GMT
THREE
B EE Bm = ﬂm-

The transition-duration property div:hover div:nth-child(1) {
transform-origin: bottom right;

is the only thing required to cre-
transform: rotate(16.5deg);

ate the animation: }
div div { div:hover div:nth-child(2) {
transition-duration: 10s; transform-origin: top right;

} transform: rotate(33deg);

3
Although all three elements have 4iy:hover divinth-child(3) {
unique states when the parent transform-origin: top left;
element is hover, all three are transform: rotate(66deg) ;

transitioned according to the pre-
vious rule. Look at ch09/transi-
tions-1.html to see for yourself.

When transition-duration is set on the default state of the element (in
this case, when it isn’t hover), the same duration applies as the transi-
tion runs both forward and backward —as the element enters the hover
state and leaves it, the transition will last 10 seconds as shown in the
results of listing ch09/transitions-3.html.

TUE 12 JuL 201l 202944 BST TUE 12 JuL 201l 202949 BST TUE 12 JUL 201 2029:56 BST
’
¥
*

m ﬂ Two ﬂ *
TWO [}
* L]
L]
L]

L]

TUE 12 JUL 201 Z0:30:10 BST TUE 12 JuL 201 20:30:05 BST TUE 12 JUL 201 2030:02 BST .‘

&
BB E B LS ﬂ

CSS transitions 333

But you can put transition-duration on the hover state. In this case, it
will only apply as the element enters the hover state. When the element

leaves hover, it immediately snaps back to the starting position—a
duration of zero.

WED O& APR 20N 225429 BST WED 06 APR 200 225437 BST WED O6 APR 201 225443 BST
THREE h *
L]
- :
.
L]
L
WED O6 APR 201 225448 BST .‘

*
4
E

This is the critical bit of code from listing ch09/transitions-4.html:
div:hover div { transition-duration: 10s; }
You can also put transition-duration on both states. In the next exam-

ple, the transition lasts 10 seconds as it enters the hover state and 5 sec-
onds as it exits.

WED O6 APR 201 225520 BST

WED O6 APR 201 225526 BST WED O6 APR 201 225533 BST
THREE
TWO THREE ﬂ .
L]
m :
.
L]
L
WED O6 APR 201 225539 BST WED O6 APR 201 225543 BST :

*
4

The duration for exiting the hover state is specified on the rule without
the :hover:

div div { transition-duration: 5s; }
div:hover div { transition-duration: 10s; }

See the complete example in listing ch09/transitions-5.html.

334 CHAPTER 9 Motion and color

Transition timing functions

By default, transitions happen at a constant rate, but you can adjust
that with the transition-timing-function property. The default value is
linear, but several other keywords are available: ease-in-out, ease-in,
ease-out, and ease. The difference is much easier to see than it is to
explain, so the next four screenshots show the values in operation side
by side over a 20-second transition.

The quickest out of the blocks is ease-out, followed by ease. Both ease-
in-out and ease-in are initially slower-moving than linear.

SUN 10 APR 2011 114501 BST

A few seconds later, ease has overtaken ease-out.

SUN 10 APR ZOf 1145:04 BST

LINEAR EASE-IN-OUT

335

CSS transitions

As you go past the halfway point, ease-in-out has accelerated and is

SUN 10 APR ZOM 114S:09 BST

ahead of linear.

Toward the end of the transition, ease-in is starting to catch up with
the rest; remember, all five transitions take 20 seconds to complete.

SUN 10 APR 2011 114S:1S BST

The non-linear transition timings often appear more natural —things
tend to accelerate and decelerate rather than suddenl_y start and stop

moving.

336 CHAPTER 9 Motion and color

You're also not limited to effects on hover; any other dynamic pseudo-
class will work just as well. With a slight modification, the :target
example from chapter 7 can be made to fade smoothly in and out.

FRI OB APR ZON 224601 BST FRI OB APR ZON 224609 BST FRI OB APR 20N 224&15 BST

O O, A TD A0 THREE SO0 FOLE NN O T RO THEEE SO0 FOLE NN O T RO THEEE SO0 FOLE

1. The page loads blank. 2. When you click the 3. After 10 seconds, the
first link, the content transition completes.
starts to fade in.

FRI OB APR 20N 224624 BST FRI OB AFR 20N 224629 BST FRI OB APR 20N 224634 BST

O O, O T A0 THREE SO0 FOLE O O, O T AW THREE SO0 FOLE O O, O T A0 THREE SO0 FOLE

EsseT
| APRARALRENT WILOH SALL TERD TO BESUCE T0 A RIMDRM ToE TIRE
EALLLLAT,

4. Clicking the second 5. ...as the new page 6. After 10 seconds, the
link starts two transi- starts to fade in. new content has
tions. The current text replaced the old.

starts to fade out...

The HTML is similar to that in chapter 7. All that’s been added is a
<section> element to allow the paragraphs to be absolutely positioned:

<menu>
Show one
Show two
Show three
Show four
</menu>
<section>
<p id="one">I never am really satisfied...</p>
<p id="two">In almost every computation...</p>
<p id="three">Many persons who are not conversant...</p>
<p id="four">The Analytical Engine has no pretensions...</p>
</section>

CSS transitions 337

The paragraphs then fade in and out over 10 seconds. The fade-in uses
the timing function ease-in (start slow and finish fast), and the fade-out
uses ease-out so the disappearing paragraph begins to fade out as
quickly as possible, giving immediate feedback to the user:

section { position: relative; }

p {
opacity: 0;
position: absolute;
transition-duration: 10s;
transition-timing-function: ease-out;
}
p:target {
opacity: 1;
transition-timing-function: ease-in;
1

See the full source code in ch09/transitions-6.html.

Transition property
So far, the examples have implicitly chosen which properties they will
apply to by only listing the changed ones in the transition state. Every
property has therefore been subject to the same duration and timing
function. But it’s possible to apply multiple transitions to the same ele-
ment, with each one affecting a different property.

In this section, you'll take advantage of the fact that all the transition
properties accept multiple properties in a comma-separated list. You
can declare two transition durations, one of 10 seconds and one of 20,

like this:

transition-duration: 10s, 20s;

Then, if you declare transition-property like this
transition-property: top, transform;

the transition of the top property will take 10 seconds, and the transi-
tion of the transform property will take 20 seconds. The next example
compares two elements with the same transition duration but different
transition properties.

338 CHAPTER 9 Motion and color

SUN 10 JuL 201 11:37:02 BST SUN 10 JuL 201 n37:07 BST SUN 10 JuL 201 11:37:09 BST

=] [2]
TWO . .
=]

SUN 10 JUL 201 113724 BST SUN 10 JUL 201 13745 BST SUN 10 JUL 201 113742 BST

IIHHHII
TWO
TWO

As you can see, element one drops quickly and expands slowly,
whereas element two expands quickly and drops slowly. The markup is
two <div> elements inside a <section> with this CSS applied to it:

section div {
position: absolute;
top: Opx;
transition-duration: 10s, 20s;
transition-property: top, transform;

1
section div:nth-child(2) {
left: 200px;
transition-property: transform, top;
}
section:hover div {
top: 280px;
transform: scale(1.5);
1

Transition delay
You don'’t have to start a transition immediately after whatever action
initiated it. The transition-delay property allows you to specify a wait
before a transition starts. In the following screenshots, element two

CSS transitions 339

doesn’t begin transitioning until five seconds after element one started,
and element three’s transition begins a further five seconds after that.

THU 21 JUL 20N 223213 BST THU 21 JUL 201 223217 BST THU 21 JUL 20N 223220 BST
\ 8
"
TWO THREE TwWo THREE .'
"
[
1]
THU 21 JUL 20N 223231 BST THU 21 JUL 20N 223227 BST THU 21 JUL 201 223223 BST :
L]
D

L] L L]
-”REE l +
E E H W m .
.

The code, from listing ch09/transition-delay-1.html, is identical to that
from ch09/transitions-3.html except for these two rules:

div div:nth-child(2) { transition-delay: 5s; }
div div:nth-child(3) { transition-delay: 10s; }

The most common use for transition-delay is to chain a number of
transitions together. If you want an element to first move and then
enlarge, you specify two transitions like this:
div {

transition-duration: 10s, 10s;

transition-delay: 0, 10s;

transition-property: top, transform;

}

The element will first transition the top value and then transition the
transform. You can see a full example in the code file ch09/transition-
delay-2.html. With transition-delay, it’s possible to create multiple-step
animations, providing that at each step a different property is transi-
tioned. For a more complete approach to animation with CSS, see the
later section “CSS Animation.”

Triggering transitions with JavaScript

After a transition is defined on an element, any change in the computed
style will trigger the animation. This doesn’t have to be due to a

340 CHAPTER 9 Motion and color

dynamic pseudo-class taking effect; you can also change the styles with

JavaScript.

SAT O9 APR 201 233222 BST

Change left | | Changetop | | Change color | | Reset

ANIMATE ME

Clicking the Change Left but-

ton starts an animation.

SAT O9 APR 2011 233233 BST

Change left Cn‘ng:tw Change color | | Reset

ANIMATE ME

Similarly, clicking Change Top

starts another animation.

Here’s the HTML for the page:

<menu>

SAT O9 APR 201 223228 BST

Change left || Changetop || Change color || Reset

ANIMATE ME

Over 10 seconds, the element moves
to the left.

SAT O9 APR 201 233236 BST

Change left cn‘ngewp Change color || Reset

Over 10 seconds, the element moves
down from the top of the page.

<button onclick="clickme('changeleft')">Change left</button>
<button onclick="clickme('changetop')">Change top</button>
<button onclick="clickme('changecolor')">Change color</button>
<button onclick="reset()">Reset</button>

</menu>

<div id="animateme">Animate Me</div>

CSS transitions 341

The CSS defines the animation and three classes that adjust the rele-
vant properties:
#animateme {

background-color: #666;
position: absolute;

color: #fff;
left: 100px;
top: 100px;

transition-duration: 10s;

}

.changeleft { left: 250px !important; }

.changetop { top: 300px !important; }

.changecolor { background-color: #ffOoff !important; }

Note that you must use !important because otherwise the ID selector
would take precedence. Finally, here’s the JavaScript function to
apply the styles to the element when the buttons are clicked:

function clickme(classname) {
var el = document.getElementById('animateme');
el.className += " " + classname;

}

And here’s a reset function to clear the styles:

function reset() {
var el = document.getElementById('animateme');
el.setAttribute("style","");

IF YOU KNOW EXACTLY WHERE THE ELEMENT NEEDS TO GO, THEN ADDING PREDEFINED

CLASSES IS FINE, BUT IF YOU WANT TO ANIMATE AN ELEMENT BASED ON THE RESULT

OF A CALCULATION OR USER INPUT, YOU CAN SET THE STYLE PROPERTIES OF THE \
ELEMENT DIRECTLY. THE NEXT EXAMPLE DEMONSTRATES THIS APPROACH.

This exarnple switches to Opera so you can take advantage of the color

input type.

Click Me || Reset | LEFT: 100 %) TOP: 100 =) COLOR:

342

CHAPTER 9

SUNDAY APRIL 10, O0:32:46 GMT+OI00 201
ik e | et | LEFT 1 TOR 2 | COLOR N
.

ANIMATE ME

Set the left and top
to 200 and the color
to a light blue.

SUNDAY APRIL 10, O0:34:06 GMT+OI00 201

ik) LT TOR 354 5 COLOR

ANIMATE ME

Set the left to 0, the
top to 300, and the
color to black.

<menu>

Motion and color

SUNDAY APRIL 10, O0:33:35 GMT+O100 201

g | | LEFT 394'5) TORY 390 COLORIN

ANIMATE ME

The element ani-
mates over 10 sec-
onds as before.

SUNDAY APRIL 10, OO:34:4 GMT+OI00 201

G) LEFT TOR 354 4 COLOR

ANIMATE ME

The element ani-
mates from its cur-
rent position.

SUNDAY APRIL 10, O0:33:40 GMT+OI00 201

g | LEFT 39475) TORY 390 COLORN

ANIMATE ME

The animation is
complete.

SUNDAY APRIL 10, OO:34:19 GMT+O100 201

G) LEFT TOR 354 4 COLOR

ANIMATE ME

After 10 seconds, the
new properties are
in effect.

<button onclick="clickme()">Click Me</button>
<button onclick="reset()">Reset</button>
<label for="myleft">left</label>:
<input id="myleft" type="number" value="100">
<label for="mytop">top</label>:
<input id="mytop" type="number" value="100">
<label for="mycolor">color</label>:
<input id="mycolor" type="color" value="#666666">

</menu>

<div id="animateme">Animate Me</div>

function clickme() {

var el = document.getElementById('animateme');

var left =
var top =
var color =

document.getElementById('myleft').value;
document.getElementById('mytop').value;
document.getElementById('mycolor') .value;

el.setAttribute("style","left: " + left + "px; top: " + top +

n

px; background-color:

n

+ color + ";

nwon

CSS Animation 343

SOMETIMES YOU MAY WANT MORE THAN THE SIMPLE LINEAR MOVEMENT
BETWEEN A SET OF PROPERTIES THAT A TRANSITION ALLOWS. FOR EXAMPLE,
YOU MAY WANT AN ELEMENT TO BOUNCE OR CYCLE THROUGH SEVERAL STATES. N
THE NEXT SECTION SHOWS YOU HOW TO CREATE THESE KINDS OF ANIMATIONS.

CSS Animation

CSS Animations are a way of chaining

. .. Full Partial
multiple transitions together on the
same property to be performed one e G ; 40
after the other. Transitions are always 8
. . .. o -
linear —a single transition can move an %< e') 50
. =.2 ‘

element from one location to another, %‘g
but it can’t move it to a third location tg_'g P 10
after that. Although you can chain 2o | &
transitions together using transition- 5°

.)) : O - 12
delay, this technique quickly becomes 5
unwieldy for more than a few steps, @ 0
and you can still transition only one @ '

property at a time. You could, of
course, perform a whole sequence of transitions with JavaScript, but
that would defeat the purpose of transitions —a declarative solution for
simple animations.

This first example makes an element bounce up and down.
SUN 10 JUL 201155434 BST ~ SUN 10 JUL 2011 155438 BST SUN 10 JuUL 201 155442 BST

ANIMATE ME

ANIMATE ME

ANIMATE ME

To declare an animation, use the @keyframes directive. The first word
after the directive is the name of the animation, followed by a list of

344

CHAPTER 9 Motion and color

keyframes in braces. Keyframes are defined by the keywords from or
to, or a percentage value:

@keyframes bounce {
from { top: 50px; }
25% { top: 350px; }
50% { top: 50px; }
75% { top: 350px; }
to { top: 50px; }

}

For each keyframe, you provide a semicolon-separated list of CSS
properties, just as in a normal CSS rule. For best effect, these should be
properties that can be transitioned; then the browser can take care of
the intermediate animation. The previous keyframes set the top of the
element to be alternately 50 and then 350 pixels.

To apply the animation to an element, use the animation-name property:

#animateme {
position: absolute;
left: 100px;
top: 50px;
animation-duration: 20s;
animation-name: bounce;
animation-iteration-count: infinite;

}

This rule also sets an animation-duration—this works the same way as
transition-duration. The animation will run for 20 seconds, so you can
calculate that the element will have a value of 350 pixels for top after 5
seconds: there are four steps after the from state, and 5 is 25% of 20 sec-
onds. You can also specify animation-iteration-count —this can be a fixed
value such as 3 or, as here, infinite, so the element can bounce up and
down forever (or until you get annoyed enough by the bouncing that you
close the tab). See the full source code in ch09/animations-1.html.

In the next example, two properties are animated simultaneously —the
element still bounces up and down, but it also gets bigger as it reaches
the bottom of the bounce.

CSS Animation 345

SUN 10 JuUL 20N 155502 BST SUN 10 JuUL 201 155505 BST SUN 10 JuUL 20N 155508 BST

ANIMATE ME

ANIMATE ME

ANIMATE ME

As mentioned earlier, a keyframe is just like a regular CSS rule: you

can list as many properties as you need (although like transitions, not

all properties are animatable). For this example, all that’s been added

to the previous one is a scale transform; see the full source code in
ch09/animations-2.html:

@keyframes bounce {
from { top: 50px; transform: scale(l); }

}

25% { top:
50% { top:
75% { top:
to { top:

350px; transform: scale(1.25); }
50px; transform: scale(l); }
350px; transform: scale(1.25); }
50px; transform: scale(l); }

Just like transitions, multiple animations can be applied simultane-

ously. Next, you see the element doing the same up-and-down bounce

animation as before, but now it’s also sliding left to right.

SUM 10 JUL 20N ISSSAS BST

ANIMATE ME

SN 10 JUL 200 ISS&0Z BST

AIMATE ME

SN 10 JUL 20N ISSS9T BT SN 10 JUL 20N ISSSSZ BST

L]
ANIMATE ME t
L]
L]
L]
L

SUM 10 JUL 20N ISSSS5T BST SN 10 JUL 20N ISSSSE BST *

346 CHAPTER 9 Motion and color

NOW YOUVE LEARNED How 17 Oee the complete example in listing

ALL WORKS: HOW MUCH OF IT f ations.
R i OF ch09/animations-3.html.

YOU'LL LEARN ABOUT BROWSER
SUPPORT IN THE NEXT
SECTION.

Browser support

10 | 111 | 115 5 5.1

Opacity o . ° ° ° .
RGBA ° ° ° ° ° . . . °
HSL/HSLA . ° ° ° °
2D transforms o o o o o o o o o
3D transforms o o o o o
Transitions o o o o o o o o o o
Animation o o o o o o
Key:

e Complete or nearly complete support
o Incomplete or alternative support
Little or no support
Opacity in IE& and earlier
Although IE8 doesn’t support the CSS3 opacity property, it does sup-

port setting opacity through its nonstandard filter mechanism:

-ms—filter:"progid:DXImageTransform.Microsoft.Alpha(Opacity=50)";

This CSS will make the element it’s applied to have an opacity value
of 0.5.

Transforms, transitions, and animations in current browsers

Allcurrentbrowsersthathavesupportfortransforms, transitions,and ani-
mations require a vendor prefix to make things work. For transforms and

Browser support 347

transitions, this is the normal level of pain for using experimental CSS —
each property hastobelisted five times. Here'sasection of code from ch09/
transition-delay-2.html:

-moz-transition-duration: 10s, 10s;
—-webkit-transition-duration: 10s, 10s;
—-o-transition-duration: 10s, 10s;
-ms—transition-duration: 10s, 10s;
transition-duration: 10s, 10s;
-moz-transition-delay: 0s, 10s;
-webkit-transition-delay: 0, 10s;
—-o-transition-delay: 0, 10s;
-ms—transition-delay: 0, 10s;
transition-delay: 0, 10s;
-moz-transition-property: top, -moz-transform;
-webkit-transition-property: top, -webkit-transform;
—-o-transition-property: top, -o-transform;
-ms—transition-property: top, -ms-transform;
transition-property: top, transform;

For animations, it’s more of a pain. Even if you're only animating stan-
dard properties, you must specify the keyframes for every browser you
want to target, not including the standard declaration:

@-moz-keyframes bounce {
from { top: 50px; }
25% { top: 350px; }
50% { top: 50px; }
75% { top: 350px; }
to { top: 50px; }

}

@-webkit-keyframes bounce {
from { top: 50px; }
25% { top: 350px; }
50% { top: 50px; }
75% { top: 350px; }
to { top: 50px; }

}

@-o-keyframes bounce {
from { top: 50px; }
25% { top: 350px; }
50% { top: 50px; }
75% { top: 350px; }

348 CHAPTER 9 Motion and color

to { top: 50px; }

}

@-ms-keyframes bounce {
from { top: 50px; }
25% { top: 350px; }
50% { top: 50px; }
75% { top: 350px; }
to { top: 50px; }

}

Then the element itself needs all the animation-* properties for each
browser:

#animateme {
-moz—-animation-duration: 20s;
-moz-animation-name: bounce;
—-moz-animation-iteration-count: infinite;
-webkit-animation-duration: 20s;
-webkit-animation-name: bounce;
-webkit-animation-iteration-count: infinite;
—o-animation-duration: 20s;
—o-animation-name: bounce;
—o-animation-iteration-count: infinite;
-ms—animation-duration: 20s;
-ms—animation-name: bounce;
-ms—-animation-iteration-count: infinite;

}

Of course, you should add the standard properties to this listing as
well. This will get really fun when the animation properties are stan-
dardized, but you want to use them to animate prefixed properties. For
example, it’s not yet clear if gradients and animations will be standard-
ized at the same time (or even if gradients will be animatable) but if
animations get standardized first in browsers, you could end up writing

code like this:

@keyframes swipe {
from {
-moz-linear-gradient(to right, #fff, #f00)
-webkit-linear-gradient(left, #fff, #f00)
—-o-linear-gradient(to right, #fff, #f00)
-ms-linear-gradient(to right, #fff, #f00)
—-linear-gradient(to right, #fff, #f00)

}
50% {

Browser support 349

-moz-linear-gradient(to right, #f00, #fff, #f00)
-webkit-linear-gradient(left, #f00, #fff, #f00)
—o-linear-gradient(to right, #f00, #fff, #f00)
-ms-linear-gradient(to right, #f00, #fff, #f00)
-linear-gradient(to right, #f00, #fff, #f00)

3
to {

-moz-linear-gradient(to right, #f00, #fff)
-webkit-linear-gradient(left, #f00, #fff)
—o-linear-gradient(to right, #f00, #fff)
-ms-1linear-gradient(to right, #f00, #fff)
-linear-gradient(to right, #f00, #fff)

THIS IS A POSSIBLE WORST-CASE SCENARIO; NO NEED TO START
PANICKING JUST YET. IT'S TO ILLUSTRATE THAT ANIMATIONS
NECESSARILY MULTIPLY THE BROWSER PREFIX PROBLEM. \

Using modernizr.js and jQuery for animation in older browsers

CSS Animations are intended to replace those implemented in libraries

like jQuery. Using modernizr.js, it’s easy to detect whether a browser

supports CSS Animations and, if it doesn’t, to supply equivalent
jQuery animations instead. The following code is taken from ch09/

animations-modernizr.html; it's based on the earlier example ch09/

animations-1.html:

function bounce(el) {
$(el).animate({top:
.animate({top:
.animate({top:
.animate({top:

}

'350px'}, 5000)
'50px'}, 5000)
'350px'}, 5000)
'50px'}, 5000);

$(document) .ready(function() {
if(!Modernizr.cssanimations) {

var refreshld;
$(function() {

4\ JQUERY EQUIVALENT

TO BOUNCE

TRUE IF ANIMATION

- TSSUPPORTED

350 CHAPTER 9 Motion and color

$("#wrapper') .hover(function() { 4\ HOVER(EQUIVALENT
bounce($('#animateme')); TO HOVER

refreshld = setInterval(function(){
bounce($('#animateme')) 3}, 20000);
}, function({
clearInterval(refreshId);
$('#animateme') .stop(true,false)
.animate({top: '50px'},500);
b
1)
}
b

Summary

You're now fully prepared to produce Web 2.0-style designs with lay-
ers of semitransparent elements thanks to opacity and rgba(). You're
also fully equipped to create sets of complementary colors in your head
thanks to hs1() and hslaQ. Transforms and transitions create lots of
possibilities for making user interfaces smoother and more profes-
sional.

1 IN THE NEXT CHAPTER., YOU'LL LEARN ABOUT EVEN MORE CSS3 EYE CANDY. WE'LL
: - COVER THE NEW FEATURES IN €S53 FOR BACKGROUNDS AND BORDERS,
INCLUDING THE EXTREMELY POPULAR ROUNDED CORNERS AND DROP SHADOWS.

‘o

Borders and backgrounds
with CSS55

This chapter covers

Addling drop shadows and rounded corners
New ways to apply and use background images

Creating gradients with C55

e b e b ©

AN

IN 553 I CAN CREATE
ADROP SHADOW BY
ADDING A FEW RULES
TO MY STYLE SHEET.

BB

HTML (SS

351

3562 CHAPTER 10 Borders and backgrounds with C553

CSS3 makes the traditional background image approaches more flexi-
ble and provides declarative options for drop shadows, rounded cor-
ners, and gradients. Solutions that have involved images, JavaScript,
and extra markup can be replaced with simple HTML and CSS.

Drop shadows with CS53

The pseudo-3D effect provided by drop shadows is a popular design
approach. In the past, designers have gone to great lengths to add this
visual effect, but CSS3 saves a lot of time and resources by having the
functionality built in.

CSS3 defines two types of shadow: box and text. They use a similar
syntax:

text-shadow: rgb(0,0,0) 3px 3px 3px;
box-shadow: rgb(0,0,0) 3px 3px 3px;

A basic shadow, in either case, is defined by four values:

<color> <offset-x> <offset-y> <blur-radius>

THE NEXT SECTION LOOKS AT WHAT EACH OF THE
& _— FOUR VALUES USED TO DEFINE A SHADOW DOES.

Box shadows

color is any valid offset-x is a CSS
CSS color value, such length, such as 3px
as #6699cc, or 0.5em. Negative
rgb(102,153,204), or values are allowed.
rgba(102,153,204,255).
offset-y isalsoa blur-radius is also
CSS length; negative a CSS length. Nega-
values are allowed. tive values aren’t
allowed, but this
value is optional.

Drop shadows with CS553 353

z Standard Prefixed
S

S

<

“ c‘ 10.0 5.0
X

o

Q

s e 4.0 3.5
K=

[E)

S

s | & 9.0 -
€

o

2 | 4

g O 10.5 -
"

o

2

5 @ 5.0 3.0
o

SIMPLE BOX SHADOWS

Without the optional blur-radius, a box
shadow 1sn’t much different from a border.
Here’s an example that only sets an
offset—x:

box-shadow:
rgb(0,0,0) 12px Opx;

And here’s a plain offset-y:

box-shadow:
rgb(0,0,0) Opx 12px;

Adding a blur-radius by itself creates a
more shadow-like effect, even without any
offsets:

box-shadow:
rgb(0,0,0) Opx Opx 12px;

354

CHAPTER 10 Borders and backgrounds with C553

By combining the blur-radius with the off-
sets, you can set the apparent light source:

box-shadow:

rgb(0,0,0) Opx 12px 12px;

COMPLEX BOX SHADOWS

For complex effects, you can add multiple shadows in a comma-
separated list; they can all use different colors and directions. The fol-
lowing example has a red/orange shadow down and to the right and a
purple shadow up and to the left. Whether this is a good idea is up to
youl!

PSYCHEDELIC!

box-shadow: rgb(255,0,8) 3px 3px 3px,
rgb(255,102,0) 6px 6px 6px,
rgb(255,204,0) 9px 9px 9px,
rgb(255,0,204) -3px -3px 6px;

The full box-shadow definition includes two additional, optional

elements:

<inset> <color> <offset-x> <offset-y> <blur-radius> <spread-radius>

inset, if present,
puts the shadow
inside the element
instead of
outside.

spread-radius is a
CSS length; it causes
the shadow to grow
(positive values) or
shrink (negative
values) relative to the
size of the element.

Here the shadow grows by
six pixels on every side:

box-shadow: rgb(0,0,0)
Opx Opx 12px 6px;

This creates a shadow that
extends evenly all around
the element.

This example shows a
spread-radius combined with
an offset-y:

box-shadow: rgb(0,0,0)
Opx 12px 12px 12px;

Using inset, you can achieve

bevel-like effects:

box-shadow: inset rgb(0,0,0)
Opx Opx 12px 6px;

Or you can make an element
appear to drop into the page,
in this case by using the
:hover pseudo-class:

div:hover {
box-shadow:
inset rgb(0,0,0)
3px 3px 5px;
3

Drop shadows with CS553

355

356 CHAPTER 10 Borders and backgrounds with C553

Text shadows

Text shadows work exactly the same as box shadows. They're defined
by the same four values:

<color> <offset-x> <offset-y> <blur-radius>

st | Bl .We won t, look at these values again;
1nstead, let’s look at some examples.

i <u 4.0 -
(5]
(1]
<
o]
.f-, 3 e‘ 3.5 i
3%
t3
o 7 \ .
QL] - 5.5
% 5 -
n P
o :
2 O 10.0 ;
2
[

® » -

* IE can create text-shadow effects using its
proprietary filter property, but only on
elements that have a transparent back-

ground.

Here’s a simple offset-x:

text-shadow:
rgb(51,51,51) 6px Opx;

And here’s an offset-y: ;
text-shadow: TEXESHEQBW

rgb(51,51,51) Opx 6px;

As with box shadows, things ;
become more interesting when you - Text Shadow

2

invoke blur-radius:

text-shadow:
rgb(51,51,51) Opx Opx 6px;

And combining that with an offset
can create a 3D feel to match your
box shadows:

text-shadow:
rgb(51,51,51) Opx 6px 6px;

Multiple shadows work as well:

text-shadow:
rgb(51,0,0) 6px Opx,
rgb(0,0,51) Opx 6px;

But be careful, because it’s easy to
create completely unreadable text:
text-shadow:

rgb(51,0,0) 6px Opx 3px,
rgb(0,0,51) Opx 6px 3px;

In most cases, you'll want to keep
your text shadows small and
subtle.

You can use negative values for
offset-x and offset-y. Doing so
allows for some interesting
pseudo-3D effects if you set the
text color to be the same as the
background color:

color: rgb(255,255,255);

text-shadow:
rgb(51,51,51) -1px -1px;

Drop shadows with

Text Shadow

€S53

AFTER DROP SHADOWS, THE EFFECT MOST BELOVED OF GRAPHIC DESIGNERS
IN THE LAST DECADE IS ROUNDED CORNERS. FOR A LONG TIME WEB

AUTHORS HAVE BEEN USING A NUMBER OF APPROACHES (OR HACKS) TO

CREATE BOXES WITH ROUNDED CORNERS. THEY'RE SUCH A USEFUL EFFECT
THAT €553 PROVIDES A WAY TO MAKE THEM WITHOUT ANY OF THESE HACKS.

357

358

CHAFTER 10

Borders and backgrounds with C553

Easy rounded corners

8O

Perhaps even more common than the drop shadow in modern web

design is the rounded corner. Even otherwise simple website designs

often use rounded corners for visual effect.

THE LENGTHS WEB AUTHORS HAVE TO GO TO GET THE ROUNDED CORNER
LOOK 1IN €552 IS EXTRAORDINARY—ONE POPULAR METHOD INVOLVES
ADDING HUNDREDS OF ELEMENTS TO A PAGE JUST TO GET ROUNDED
CORNERS ON A SINGLE ELEMENT: WE'LL LOOK AT THAT IN THIS SECTION.

Standard

Prefixed

Browser support quick check:
border-radius

@ el @6

7.0

4.0

9.0

10.5

5.0

5.0

35

3.0

Many of the rounded corners you see on the
web aren’t strictly necessary. An engineer
at Yahoo! once created a version of the
company’s home page without any rounded
corners and discovered that it reduced the
amount of data a user had to download by
more than 50%. When he showed the two
different versions of the page to designers,
they didn'’t spot the difference.

CurvyCorners is a JavaScript library for
creating rounded corners on elements. Let’s
see how it compares to the new CSS3 tech-
niques for creating rounded corners.

OK IM GOING

TO CREATE AN ELEMENT
WITH ROUNDED CORNERS MEANWHILE,

USING THE CURVY TLL CREATE AN
CORNERS JAVASCRIPT IDENTICAL-LOOKING
LIBRARY. ELEMENT USING

C€ss3

Curvy corners

SO FAR THE RESULT
DOESNT LOOK ANY
DIFFERENT, WHICHEVER
APPROACH YOU TAKE.

<style>
#myBox {
background-color: #999;
border: 6px solid #000;
}
</style>
<script
src="curvycorners.js'"></script>
<script>
addEvent (window,
'load', initCorners);
function initCorners() {
var settings = {
tl: { radius:
tr: { radius:
bl: { radius: 40 },
br: { radius: 40 },
antiAlias: true
}

</script>

40 1,
40 1,

IT'S STARTING
TO LOOK LIKE THE €35

Easy rounded corners 359

Border radius

I AGREE.LET'S
COMPARE THE CODE
WE HAD TO WRITE TO
GET THE ROUNDED
CORNER EFFECT.

<style>

#myBox {
background-color: #999;
border: 6px solid #000;
border-radius: 40px;

}

</style>

THERE'S TWICE AS MUCH OF IT. BUT I THINK
YOU'VE CHEATED-TO GET THE WIDEST BROWSER

APPROACH IS THE WINNER EVEN _— SUPPORT, YOU NEED TO ADD BROWSER-SPECIFIC

THAT'S TRUE. THERE WOULD BE FOUR

THOUGH THE CURVYCORNERS
CODE ISN'T COMPLEX,
— / EXTRA LINES IN MY €SS IF THIS WAS
PRODUCTION CODE. I THINK ID STILL “~_

BE WINNING. THOUGH!

RULES TO YOUR CODE.

THIS ISN'T A COMPETITION, AJ WERE COLLABO
RATING TO TRY TO FIND THE BEST APPROACH! l ‘
LET'S LOOK AT THE CLIENT-SIDE MARKUP FOR EACH.

360 CHAPTER 10 Borders and backgrounds with C553

35 ~nl0n: -lb»;llu'.l.‘,{.
yosition: absolute; fomts
MAGNIFICATION ; position: absolute; font-size
tpx; position: absolute; font.size: .
n: dpx; position: absolute; font-size: 1,
<h: lpx; position: absolute; fomt-size: lpx;
dth: 1px; position: sbsolute; fomt-size: lpx;
idth: Ipx; position: absolute; fomt-size: lpx; ¢
width: lpx; position: absolute; fent-size: lpx; 1
aidth: lpx; position: sbsolute; fomt-size: lpx; ov
width: 1px; position: absolute; fomt-size: lpx; ow
width: lpx; position: absolute; font-size: lpx; ow
width: lpx; position: absolute; font-size: lpx; o
width: 1px; position: absolute; fomt-size: lpx; ov
gidth: lpx; position: absolute; fomt-size: lpx; o
idth: lpx; position: sbsolute; fomt-size: lpa;
ddth: lpx; position: absolute; font-size
th: 1px; position: absolute; fomt-size:
Wr lpa; position: absolute; fomt.size:
lpx; position: absolute; fomt-size:
Topx; position: absolute; fent-size
position: absolute; fomt.si®
~ition: absolute; for*

ER. OK THERE'S A LITTLE EXTRA MARKUP INVOLVED
WITH CURVYCORNERS, BUT IT'S NOT LIKE I HAD TO
WRITE ALL THAT HTML MYSELF. ALTHOUGH IT WAS
A BIT OF APAIN HAVING TO ATTACH A SCRIPT, IT
WASN'T THAT MUCH EFFORT ON MY PART.

STILL, THERE'LL BE A
PERFORMANCE IMPACT ON THE
BROWSER WHEN SCROLLING @
OR RESIZING, DUE TO HAVING \ 5

THOUSANDS OF EXTRA P
ELEMENTS IN THE DOM.)
\
WITH THE €S53 APPROACH, l
THE BROWSER TAKES CARE OF IT ALL IN
THE BACKGROUND AND MAY EVEN HAND OFF

THE PROCESSING TO GRAPHICS HARDWARE
RATHER THAN RENDER SHADOWS ITSELF.

ON THE OTHER HAND, SUPPORCS'IS%I;[Is[:jl’EVERY
THE CURVYCORNERS APPROACH BROWSER YET. AND WEB
WILL WORK ON NEARLY EVERY AUTHORS WILL BE DEALING
BROWSER OUT THERE, INCLUDING — WITH OLD VERSIONS OF
OLD VERSIONS OF INTERNET SOME BROWSERS
EXPLORER.
FOR YEARS.

— < / THAT'S TRLEE.
BUT YOU CAN EASILY DETECT
SUPPORT FOR BORDER-RADILIS
WITH JAVASCRIPT AND ONLY
RUN THE CLIRVYCORNERS SCRIPT
ON BROWSERS WITHOUT

SUPPORT.
\ BROWSERS

THAT SUPPORT BORDER-RADIUS

WILL GET FASTER AND LIGHTER

WEIGHT PAGES. EVERYONE ELSE
WON'T SEE ANYTHING AMISS.

New features for background images 361

In addition to the single-value
form you saw in the previous
example, you can also use dif- Border radius
ferent values for each corner

of an element.

Like the border, padding, and margin properties, the border-radius prop-
erty can accept up to four values. They apply starting from the upper-
left corner and proceed clockwise around the element:

border-radius: 40px 160px 80px 120px;

LATER IN THIS CHAPTER, YOU'LL LEARN ABOUT SEVERAL FEATURES IN £SS53 THAT
PROVIDE NATIVE SUPPORT FOR EFFECTS WEB AUTHORS HAVE PREVIOUSLY TRIED
TO ACHIEVE WITH BACKGROUND IMAGES. THERE ARE ALSO NEW FEATURES FOR
BACKGROUND IMAGES THEMSELVES. WE'LL LOOK AT THESE IN THE NEXT SECTION.

New features for background images

CSS3 offers four new features for the venerable background image: siz-
ing; multiple backgrounds on a single element; positioning relative to
the border, padding, or content; and clipping according to the border,
padding, or content. In this section, you'll learn about each of these
new features.

Background size

Browser support quick check:
background-size

Standard | Prefixed Background images are intended to be

used purely for decoration, whereas

7.0 5.0 images placed in HTML are supposed to
mean something —this is the same separa-
4.0 36 tion-of-concerns principal that’s been dis-

X

cussed in several previous chapters. But

Ve 9.0) images placed in the markup have certain
e practical advantages that can discourage
0 105 10.10 web authors from doing the right thing.
@ 5.0 3.0

362 CHAPTER 10 Borders and backgrounds with C553

z ONE OF THE ADVANTAGES OF IMAGES IN MARKUP IS THAT IT'S EASY TO MAKE AN INLINE
IMAGE SCALE ACCORDING TO THE SIZE OF ITS CONTAINER: SET THE WIDTH OF THE
IMAGE TO BE 100%. BUT IN €SS2 BACKGROUNDS, THERE'S NO WAY TO MAKE THE IMAGE BE
ANYTHING OTHER THAN ITS INNATE SIZE. THE FOLLOWING EXAMPLE SHOWS THIS ISSUE.
«

)
In this example, an image has been set 3
as a decorative background to a header: 3 @
COLUMBIA INTERNET
hl {

background-image:
url('head-banner.png');
background-repeat: no-repeat;
padding-top: 1.85em;
3

Top padding has been set to allow room
for the background image, and the
image itself is sized to match the width
of the heading.

If the heading was to change at all, the . 3 @ @
background image might look a little B

incongruous. If you translate “Columbia INTERNET-BRITANNTIGUE
Internet” into French, for example, sud-
denly you have an image with some text
sticking out underneath. The visual

relationship is lost.

The new background-size property . 7
allows the image to be stretched in ﬁr 5 g\%'{ g @ @
COLUMBIA INTERNET

proportion to the dimensions of the

element: =
h1 { @ & @ e g @ %
background-image: INTERNET-BRITANNIQUE

url('head-banner.png');
background-repeat: no-repeat;
background-size: 100% 1.85em;
padding-top: 1.85em;

New features for background images 363

display: inline-block;
}

The h1 is set to be inline-block so its
width shrink-wraps its content. Then

the background image is set to be a fixed

height and full width. You can see that
the image becomes distorted as the

width of the element forces it to stretch.
For this reason, this approach is suitable

only to allow for small changes in
expected element width.

If the text will stay the same but will
appear in different font sizes, it’s possi-
ble to avoid the aspect-ratio issue. If you
know how wide the text will be, specify
the width and height in proportion to
the aspect ratio:

hl {

background-image:
url('head-banner.png');

background-repeat: no-repeat;
padding-top: 2.18em;
display: inline-block;
background-size: 11.lem 2.18em;

}

section:nth-of-type(1) hl {
font-size: 200%;

}

section:nth-of-type(2) hl {
font-size: 250%;

}

section:nth-of-type(3) hl {
font-size: 300%;

}

GEL 0D

COLUMBIA INTERNET

GEEC6C9

COLUMBIA INTERNET

GEL 008

COLUMBIA INTERNET

The ability to size backgrounds aligns well with vector graphics. In
chapter 3, you learned that SVG graphics, because they're vectors, are

364 CHAPTER 10 Borders and backgrounds with C553

smooth and sharp no matter how much you stretch them, whereas bit-
map graphics become blocky and blurry. Following are two examples,
one using a bitmap PNG format and the other SVG. The SVG image is
much sharper.

---------------- 1 it il Rl |
] 1 1
] 1 1
AJ X . AJ '
AJ IS THE CREATIVE &UY : : AJ IS THE CREAT IVE &UY :
FOR THE COMPANY. HE'S 1 FOR THE COMPANY. HE'S \
UNCOMFORT ABLY CRAMMED ' LUNCOMFORT ABLY CRAMMED
TN THAT TINY CREVASSE ' ' IN THAT TINY CREVASSE I
BETWEEN THE TECHIES A0 ! 1 BETWEEN THE TECHIES D |
THE MARKET NG PECPLE 1 1 THE MARKET ING PECPLE. !
THIS MEANS HE'S NOT 1 ! THIS MEANS HE'S NOT 1
DISLIKED BY ANYOME, BUT] 1 DISLIKED BY ANYONE, BUT 1
THEY ALL LOOK AT HIM] 1 THEY ALL LOOK AT HIM 1
FUMNY FROMTIME TOTIME 1 FUNNY FROMTIME TOTIME.
HE LOVES MOST COMPUTER 1 1 HE LOVES MOST COMPUTER 1
GAMES, NIFTY ART. AND HAS A 1 I GAMES, NIFTY ART. A HAS A |
BI& BROTHER RELAT IONSHIP f 1 ” BI& BROTHER RELAT IONSHIP 1
WITH THE DUST PUPPY. i \ WITH THE DUST PUPPY. .
...................... 4 T |
div { div {
background-image: background-image:
url('aj.png'); url('aj.svg');
background-repeat: no-repeat; background-repeat: no-repeat;
background-size: 50% 100%; background-size: 50% 100%;
padding-left: 50%; padding-left: 50%;
display: inline-block; display: inline-block;
} 3

ALTHOUGH SVG WORKS WELL WITH BACKGROUND SIZING, IT'S A BAD FIT FOR
PHOTOGRAPHIC-TYPE IMAGES. YOU MAY WANT TO SET A SINGLE PICTURE
BEHIND YOUR CONTENT, SIMILAR TO THE EFFECT ACHIEVED BY SETTING A

— DESKTOP BACKGROUND ON YOUR COMPUTER. IN THIS CASE, THE DETAIL OF THE
IMAGE ISN'T AS IMPORTANT, SO DISTORTION IS LESS OF AN ISSUE.

This example shows the main content
with a semitransparent background over-
laid on a background image set to fill the
entire box. Here’s the markup:

<section>

<div>
<p>In almost every...</p>

New features for background images 365

</div> pmnee=s e g
/div ~¥EA VEADO AES
</section> | 24 AOST EVERY COMPTAT 10N AGREAT VAT OF |
PROCESSES IS POSSIBLE. AD VARTOUS
y S CONSIDERAT IONS MUST TNFLUENCE THE SELECTIONS
And here’s the CSS: ﬁ;‘:‘;;‘"“*“"j:jj:r:““:}m
CALCULAT

1
MANY PERSONS WHO ARE NOT CONVERSANT WITH #

margin: lem; | MATHEMAT 1AL STUDTES ZMAGTNE THAT BECAUSE THE

padding: 5%;

outline: 4px dashed black;

background: url('1lO@years.jpg') top /
100% no-repeat;

display: inline-block;

min-height: 342px;

min-width: 300px;

: || BRING OUT ITS RESULTS TN ALGEBRALLAL NOTATION
WERE ACCORDINGLY.

3
div {

background-color:
rgba(255,255,255,0.66);
3

Unlike the previous examples, it uses
the shorthand syntax. The size appears
with the position separated by a

slash: top / 100%.

NOTE THAT ALTHOUGH SEVERAL BROWSERS HAVE IMPLEMENTED background-size,
ONLY OPERA HAS IMPLEMENTED THE SHORTHAND SYNTAX. FOR OTHER BROWSERS,
/ YOU'LL HAVE TO STICK WITH A SEPARATE background-size DECLARATION.
al
\ SCALING ISNT THE ONLY NEW BACKGROUND FEATURE Wl
| ADDED IN €SS3. YOU CAN ALSO ATTACH MULTIPLE Z
BACKGROUNDS TO A SINGLE ELEMENT. IN THE PREVIOUS ~_ 3 “
EXAMPLE, AN ELEMENT WAS ADDED TO THE MARKUP WHOSE :
ONLY ROLE WAS TO ADD A BACKGROUND TO THE TEXT. IN g
THE NEXT SECTION, YOU'LL SEE HOW CS5S3 ALLOWS YOU e ﬁ .
TO DO THIS WITHOUT ADDITIONAL MARKUP FOR STYLING.

e

Multiple backgrounds

In CSS2, you're only allowed one background image per element, but
there are many situations in which you might want more than one
image:

A header has a background image spanning the width of the page as
well as a company logo.

366

CHAPTER 10 Borders and backgrounds with C553

A decorative pull-quote box has opening and closing quotes on

either side.

Beveled buttons or tabs have images for the left and right sides.

A rough-edged paper scroll effect needs a repeating image down

both sides.

Often, web authors use CSS tricks to size a child element to match its

container so their background images can overlap (this is known as the

sliding doors technique). But they frequently have to introduce an extra

element to support the styling, or even add a decorative image inline in

the markup.

multiple backgrounds

@cCL@e

Browser support quick check:

10.5 -

3.0 -

Let’s revisit the last example from
the previous section, except this time
without the additional <div> element
for wrapping the content:

<section>

<p>In almost every...</p>
</section>

Despite losing the extra element, the
page looks the same, because two

; ALL THESE APPROACHES END UP
Standard | Prefixed ADDING PURELY PRESENTAT IONAL
MARKUP TO THE PAGE OR, DEPENDING
ON THE ELEMENTS, BEING COMBINED
7.0 - IN A PARTICULAR WAY. ALTHOUGH

THIS USUALLY ISN'T A MAJOR ISSUE \
IN THESE ISOLATED INSTANCES, IT

16 INDICATES A LACK OF POWER IN THE

: - PRESENTATION LANGUAGE, CSS5. |

THIS LACK OF POWER IS ADDRESSED
IN £553, AS YOU'LL SEE IN THE
9.0) EXAMPLES THAT FOLLOW.

{ AMOMGST THEM FOR THE PURPOSES OF A CALCLLATING
ENGINE. ONE ESSENTIAL OBJELT IS TO £HOOSE THAT
ARRANGEMENT WHICH SHALL TEND TO REDUCE TO A
MINIMUM THE TIME NECESSARY FOR COMPLETING THE
CALCULATION.

8 MANY PERSOMS WHO ARE NOT CONVERSANT WITH

MATHEMAT ICAL STUDIES IMAGINE THAT BECAUSE THE
OF IBABBAGE'S ANALYT ICAL ENGINE] IS TO

BUSINESS
| GIVE ITS RESULTS INNUMERICAL NOTATION THE
| MATURE OF ITS PROCESSES MUST COMSEGUENTLY BE
 ARITHMETICAL AND NUMERICAL, RATHER THAN

ALGEBRATCAL AND ANALYTICAL. THIS IS AN ERROR. THE
ENGINE CAN ARRANGE AND COMBINE ITS NUMERTICAL
GUANTITIES EXACTLY AS IF THEY WERE LETTERS OR

0 ANY OTHER GENERAL SYMBOLS: AND TN FACT IT MIGHT

BRING OUT ITS RESULTS TN ALGEBRATCAL NOTATION

-

New features for background images 367

backgrounds are applied to the

<section> element:

section {
margin: lem;
padding: 5%;
outline: 4px dashed black;
background:
url('trans-66.png"')
50% 50% no-repeat,
url('1lOyears.jpg') no-repeat;
background-size: 90% 90%,
100%;
display: inline-block;

Adding multiple background images
is a matter of listing them in the back-
ground property, along with any rele-

vant attributes, separated by

commas:

background: top right

url('pitr-head.png') no-repeat,
bottom right

url('aj-head.png') no-repeat,
top left

url('mike-head.png') no-repeat,
bottom left

url('sid-head.png') no-repeat;

See the full example in ch10/back-
grounds-5.html.

All the other background properties also allow a comma-separated list,
so you could write the previous example as follows:

background-image: url('pitr-head.png'), url('pitr-head.png'),
url('mike-head.png'), url('sid-head.png');
background-position: top right, bottom right,
top left, bottom left;
background-repeat: no-repeat, no-repeat,
no-repeat, no-repeat;

365

CHAPTER 10 Borders and backgrounds with C553

The background image you list first
will be the closest to the viewer. If
you put all the images in the same
place, you can see that the first
1mage covers the rest:

background: center

url('pitr-head.png') no-repeat,
center

url('aj-head.png') no-repeat,
center

url('mike-head.png') no-repeat,
center

url('sid-head.png') no-repeat;

See the full example in ch10/back-
grounds-6.html.

You can use this behavior to your
advantage to create interesting
effects. This examples use a
semitransparent PNG image in
between each of the other
background images to create

a progressive fade:

background: top right
url('pitr-head.png') no-repeat,
url('trans-66.png'),
bottom right
url('aj-head.png') no-repeat,
url('trans-66.png'),
top left
url('mike-head.png') no-repeat,
url('trans-66.png'),
bottom left
url('sid-head.png') no-repeat;

See the full example in
ch10/backgrounds-7.html.

New features for background images 369

Background origin and clipping
CSS2 has no control over what part of an element the background
applies to. Because CSS2 doesn’t allow background sizing, most
authors haven’t encountered this limitation; but CSS3 introduces two
new properties to give web authors fine-grained control: background-
origin and background-clip.

THIS SECTION REQUIRES AN UNDERSTANDING OF THE CSS
BOX MODEL TO GET THE MOST OUT OF IT.IF YOU ARENT
SURE., PLEASE REFER TO THE DISCUSSTION IN APPENDIX C OR
THE DIAGRAMS IN CHAPTER 8 BEFORE PROCEEDING.

The default for background-origin is
padding-box. This means the background
applies to the area containing the padding
but not to the area containing the border:

section {
margin: lem;
padding: lem;
border: lem dashed black;
background-origin: padding-box;

}

Remember, this example image is scaled to
fill its container and set to not repeat.

Setting the origin to border-box means the
background now extends out under the

border:

section {
margin: lem;
padding: lem;
border: lem dashed black;
background-origin: border-box;

370

CHAPTER 10 Borders and backgrounds with C553

Finally, content-box limits the background
to the content area, inside the padding:
section {

margin: lem;

padding: lem;

border: 1lem dashed black;

background-origin: content-box;

The default value for background-clip is
border-box:
section {
margin: lem;
padding: lem;
border: 1lem dashed black;
background-clip: border-box;

}

Remember that the example is scaled and
set to not repeat.

When applied to backgrounds that don’t
repeat, this is indistinguishable from pad-
ding-box, because of the default value of
background-origin:
section {

margin: lem;

padding: lem;

border: lem dashed black;

background-clip: padding-box;

But if the background is allowed to
repeat, the difference becomes apparent.
A setting of padding-box clips the image
inside the border, but for border-box you

Selective background scaling with border images 371

can see the repeating image under the e
border: s 1ENYEARS,OF,

YO

section { -
background-clip: border-box;
background-repeat: repeat;

Finally, content-box clips the background
to the content area:

section {
margin: lem;
padding: lem;
border: 1lem dashed black;
background-clip: content-box;
3
Note that even though the background 1s . d

clipped, the image is still sized to the pad-

ding-box.

SCALING BACKGROUNDS UNIFORMLY MAY NOT ALWAYS PRODUCE THE
EFFECT YOU WANT. ALTHOUGH THE SLIDING DOORS TECHNIQUE PROVIDES
A WORKAROUND, THERE'S A MORE STRATIGHTFORWARD CSS3 APPROACHTO ~\\ J
ACHIEVE THE SAME EFFECT: border-image. LET'S LOOK AT THAT NEXT.

Selective background scaling with border images

When you're trying to create flexible layouts, you often want a back-
ground that looks the same for most of its length, but with a certain num-
ber of pixels at either end that are slightly different. This is especially
true when you want to create a rounded element with a beveled effect.

372 CHAPTER 10 Borders and backgrounds with C553

T

UNIQUE START UNIQUE END

REPEATING CENTRAL
SECTION

Here are some examples:

Rounded corners on a beveled

background from bbc.co.uk N

Buttons with rounded corners Loain

Most Emailed Most Viewed Most Recommended

and shading on wordpress.com

Tabs with rounded corners and
shading on yahoo.com

The border-image property allows you to slice up an image and apply
transformations selectively to each slice. It's simpler than it sounds, as
you'll see after a few examples.

THE ABILITY TO ADD AN IMAGE TO A BORDER IS ONE OF THE MORE POWERFUL
FEATURES OF €553; UNFORTUNATELY IT'S ALSO ONE OF THE LEAST INTUITIVE.
DESPITE BEING SUPPORTED BY FIREFOX SINCE VERSION 3.0 IT'S SEEN FAR
LESS UPTAKE THAN SEVERAL OTHER FEATURES IN THIS CHAPTER.

Basic border-image

To start with, let’s use the following example image. It's 240 pixels
square, and it contains five smaller images, each of which is approxi-
mately 80 pixels square.

Selective background scaling with border images

Let’s start with the simplest possible
example and apply the border image
to an element 720 pixels wide and

400 pixels high:

height: 400px;

width: 720px;

border-width: 80px;

border-style: solid;

border-image: url('borderl.png') 80;

As you can see, the center disappears.

If you want to retain the center of the
image, use the fill keyword:
height: 400px;
width: 720px;
border-width: 80px;
border-style: solid;
border-image:
url('borderl.png') 80 fill;

The center of the image is stretched
to fill the space, but the corners stay
where they are.

373
Standard Prefixed

i Gb 4.0 -
o
o
=
o _
x N
0 Y | 3.5 -
e e‘
T e
51
2w |/ A - -
@8
5 .
» -
8 O 10.5
=
7]

@ 30)

£

7 2l

£

'

374 CHAPTER 10 Borders and backgrounds with C553

This diagram shows what'’s going
on. The border-image value of 80
specifies a pixel length, which the
browser uses to slice the image
into nine sections, each of which is

80 pixels square.

The four corner sections aren’t

adjusted: they remain in the corners
of the elements. The center segment
expands to fill the remaining space.

Stretching and repeating border-image sections

: IN THE PREVIOUS EXAMPLE, THE
MIDDLE SEGMENTS ON THE SIDES ARE
ALSO STRETCHED, BUT YOU CAN'T SEE
THAT BECAUSE THEY'RE SOLID WHITE.
«

TO ILLUSTRATE., LET'S LOOK AT AN
EXAMPLE WITH A DIFFERENT IMAGE.

I |

Let’s apply the same rules with this £ —

new image:

height: 400px;
width: 720px;
border-width: 80px;

border-style: solid;

border-image: url('border2.png') 80;
Now the stretching of the middle
segments on the sides is more
apparent.

Selective background scaling with border images 375

The pattern fits neatly inside the
middle segments, each 80 pixels
square. As you saw before, the cor-

ners stay the same but the middle

segments are stretched. This is

because when you omit the third
parameter to border-image, you get

the default. The previous example is
equivalent to this:

border-image:
url('border2.png') 80 stretch;

You can use two other keywords £ OO 2

instead of stretch. The first is repeat:
height: 400px;

width: 720px;

border-width: 80px;
border-style: solid;
border-image:
url('border2.png') 80 repeat;

Q
OOOOOOOOO 2

The image in the middle segment is
repeated across the available width

and height.

The second is round:

DOOOOOOOC

border-image:

1%
url('border2.png') 80 round; g

P
§
It looks like there’s no difference
between repeat and round, but that’s 2
due to a careful choice of element :><><><><><><><><: 3

size to demonstrate the technique.
If the size of the element is reduced
slightly, the difference is apparent.
Look at the following two screen-
shots of the same two rules applied
to a 680 x 360-pixel element.

376

CHAPTER 10 Borders and backgrounds with C553

£ SOOOOOOOO 2 %OOOOOOOOOQ

&
3 3
& S &

;0000000003 £ OO 2

repeat RETAINS THE WIDTH round ADTUSTS THE € S
OF THE CENTER SEGMENT— WIDTH OF THE CENTER |'V ~

£ IF IT DOESNT FIT ACROSS SEGMENT TO FIT A @)
THE WIDTH OF THE BOX, WHOLE NUMBER OF TIMES ~ =
;22%3?&225#50 - ACROSS THE WIDTH. /r 1o,

WHEN YOU HAVE A MIDDLE SEGMENT THAT MAKES A REPEATED PATTERN,

SOLID COLOR OR GRADIENT, LIKE A BEVELED EDGE, USE repeat TO
AVOID ANY DISTORTION FROM THE BROWSER ADJUSTING THE IMAGE.

@ round WILL USUALLY BE WHAT YOU WANT. IF THE MIDDLE SEGMENT IS A
«

|

\

You may be curious about what hap-
pens to the middle segment when you
use repeat or round. This screenshot
shows that the middle behaves in the
same way as the middle segments on

the border:

border-image:
url('border3.png') 80 fill round;

If you ever need to create internet
bank notes, this may be the way to go.

You can also use different approaches

on the horizontal and vertical borders:
border-image:
url('border3.png')

80 fill round stretch

The first keyword applies to the hori- 4
zontal borders, and the second to the .
vertical borders.

Selective background scaling with border images 377

Using border-image to create common effects

NOW YOU KNOW ENOUGH TO IMPLEMENT ALL THREE EXAMPLES FROM THE
BEGINNING OF THIS SECTION. LET'S TAKE A SINGLE, FIXED-SIZE IMAGE AND USE
IT TO MAKE ELEMENTS THAT ADAPT IN SIZE TO THEIR CONTENTS YET RETAIN A
SHARP IMAGE AT THE EDGES FOR ROUNDED-CORNER AND BEVEL EFFECTS.

First, let's make some buttons and tabs. Here’s a generic
image to provide the background for both.

Using this image, you can easily create buttons like these.

Small btton Medium button Large button

The code for the border image on each of these buttons is

border-width: 45px;
border-style: solid;
border-image: url('border4-bevel.png') 45 fill repeat;

Each button’s text size is set individually, and each has a different
amount of text. Notice that the buttons aren’t even the same shape as
the original image, but it has been adapted seamlessly.

Now let’s use the same image to create some tabs.

The Second Tab Tab Three

To achieve tabs, you have to adjust one line of CSS from the previous
example. Set the bottom border width to o:

border-width: 45px 45px Opx 45px;
border-style: solid;
border-image: url('border4-bevel.png') 45 fill repeat;

378 CHAPTER 10 Borders and backgrounds with C553

The border image, as with the buttons, adapts to the size of the content.

You've already seen the direct support for
box shadows in CSS3, but they can also be
achieved with border-image. If you combine
this CSS with the image on the right, you
can achieve the results that follow:
border-image:

url('drop-shadow.png') 70 repeat;
You're not likely to use this technique often,
but on occasion you may want more precise
control over a shadow than box-shadow
allows.

Drop shadow 1 The Second drop shadow | | Shadow Three

= border-image IS HARD TO OVERRIDE SELECTIVELY.IF YOU WANT
TO SCALE AN IMAGE ACROSS A BACKGROUND WITH THE BUILT-IN
/ €SS SUPPORT (IF AVAILABLE) AND border-image IF NOT, YOU'LL
X NEED TO USE SOMETHING LIKE MODERNIZRJS.

I |

Creating gradients with CS55

Gradients —smooth transitions from one color to another —have always
been popular with designers. In CSS2, the only way to implement a
gradient is to create it as an image in a graphics program and attach it
as a background to the element. This has problems and limitations, sev-
eral of which you're already familiar with:

Images don'’t always scale well, which can create problems when you
use an image as a background for content that’s intended to scale.

If you decide to change your color scheme slightly, you may have to
regenerate all your gradient images.

Creating gradients with CS5 379

Every different gradient you want P

to use means an extra download

from the server, increasing page- e (y - 3.0
. [5}

load times for users and your £

bandwidth requirements. x @. . 36

. . Se
If the element color will change in 5
response to user interaction —for 28| A - 10.0*
. 25 | W

example, a menu item on mouse- a

over —you need to make twice as § O - 11.10

many images, doubling all the 2

problems just mentioned. @ - 4.0

* IE has been able to do simple gradients
with the nonstandard filter attribute

since version 5.5.

€SS GRADIENTS ARE ALLOWED ANYWHERE YOU CURRENTLY CAN SPECIFY
AN IMAGE. AT THIS TIME, BROWSERS ONLY HAVE SUPPORT FOR USING
THEM AS BACKGROUNDS, SO THE EXAMPLES CONCENTRATE ON THAT. \

In this section you'll use a snippet of HTML like this:

<div id="gradient">
</div>

You'll also need some basic CSS like this:

#gradient {
outline: 1px solid #999;
min-height: 400px;
max-width: 400px;
background: none;

}

The CSS snippets shown next should be inserted in place of the back-
ground: none; property to achieve the screenshots shown in a support-
ing browser. See the section “Browser support” for details of prefixes
required to access experimental support.

380

CHAPTER 10 Borders and backgrounds with C553

A simple gradient is easy —specify the direction
and two colors. The browser calculates a gradient
across the entire background, treating the first
color as the starting color and the second as the
end color:

background: linear-gradient(
to bottom, #000, #fff
)3

In addition to up and down, gradients can go
from one side to another:
background: linear-gradient(

to right, #000, #fff
N

Maybe you want something other than up and
down or left and right. You can combine the two
to get diagonal gradients:
background: linear-gradient(

to bottom left, #000, #fff
);
The direction can also be specified in degrees.
The above rule is equivalent to this:
background: linear-gradient(

315deg, #000, #fff
s

If you add more colors, the browser treats them
as equally spaced color stops and calculates the
gradient accordingly:

background: linear-gradient(

to bottom, #000, #fff, #000, #fff
)N

Creating gradients with CS5 381

Finally, if you don’t want the color stops to be P
evenly spaced, you can give percentage values
for each color stop:

background: linear-gradient(
to bottom,

#000,

#fff 15%,

#000 85%,

#fff

)H

LINEAR GRADIENTS ARE ALL VERY WELL, BUT SOMETIMES YOU WANT A MORE
CIRCULAR EFFECT—FOR EXAMPLE, A SPOT HIGHLIGHT ON A GLASSY BUTTON.
CSS3 LETS YOU CREATE RADIAL GRADIENTS; WE'LL LOOK AT THEM NOW. \

Radial gradients are as simple as linear gradients.
You supply a start color and an end color:

background: radial-gradient(
#000, #fff
)3

The gradient starts at the center and extends to
the boundary of whatever element it’s applied to.

You can achieve more interesting effects by posi- |
tioning the center of the gradient:
background: radial-gradient(
at top, #000, #fff
);

The at keyword is used to specify the center point.

The gradient center can be positioned anywhere:

background: radial-gradient(
at 25% 25%, #000, #fff
);

3862

CHAPTER 10 Borders and backgrounds with C553

Using the contain keyword means the gradient
stops when it touches the edges of the containing .

element:

background: radial-gradient(
at 25% 25%, contain, #000, #fff
)

have any number of color stops:

As with linear gradients, a radial gradient can .

background: radial-gradient(
at 25% 25%, #6000, #fff, #0600, #fff
)3

BECAUSE GRADIENTS REPLACE BACKGROUND IMAGES, YOU CAN USE
THE SAME BACKGROUND PROPERTIES ON THEM AS YOU USE FOR
BACKGROUND IMAGES. YOU CAN USE THIS TO YOUR ADVANTAGE TO
PRODUCE SOME USEFUL EFFECTS, AS YOU'LL SEE NEXT.

If you want your gradient to only cover part of -
the background, you can use the background-size
property:
background: linear-gradient(
top, #000, #fff
) no-repeat;
background-size: 100% 50%;
This might be most useful when you want to put
a gradient in a fixed part of the background
rather than scale it across the whole thing.

You can also size a radial gradient, although the
effect isn’t as pleasing:

background: radial-gradient(
at 25% 25%, #000, #fff

) no-repeat;
background-size: 100% 50%;

Creating gradients with CS5 383

This does let you see another property of radial
gradients: by default they're ellipsoid rather than
circular. You haven't noticed until now because
you've been applying them to square elements.

You can make the gradient circular using the
circle keyword:

background: radial-gradient(
circle at 25% 25%, #000, #fff
) no-repeat;

background-size: 100% 50%;

NOTE THAT THE SPECIFICATION ALLOWS YOU TO SPECIFY A SIZE FOR THE GRADIENT g:\\
WITHIN THE GRADIENT ITSELF. ONE OF THE REASONS THE to AND at KEYWORDS WERE '_,(3
S | 1
ALONGSIDE THE POSITION. HOWEVER, AS YET NO BROWSER SUPPORTS THIS SYNTAX, ‘?,/
SO CURRENTLY IT'S MORE RELIABLE TO USE background-size. (/ (

ljes
ADDED WAS TO ALLOW LENGTHS FOR SIZING TO BE ADDED LINAMBIGUOUSLY J @

It’s also possible to layer multiple gradients if you
use RGBA colors. Here’s a radial gradient over a
linear gradient to create a highlight effect:

background: radial-gradient(
circle at 25% 25%,
rgba(255,255,255,0.75),
rgba(255,255,255,0)
) no-repeat,
linear-gradient(
to bottom, #000, #fff
) no-repeat;

There’s no reason your gradient can’t have the

same starting and ending colors. This example @
modifies the final example from “Multiple back-
grounds” to use a gradient instead of loading an
extra image from the server:

D

background: top right
url('pitr-head.png') no-repeat,

384 CHAPTER 10 Borders and backgrounds with C553

linear-gradient(top,
rgba(255,255,255,0.5),
rgba(255,255,255,0.5)),

bottom right
url('aj-head.png') no-repeat,
linear-gradient(

top, rghba(255,255,255,0.5),
rgba(255,255,255,0.5)),

top left

url('mike-head.png') no-repeat,

linear-gradient(top,
rgba(255,255,255,0.5),
rgba(255,255,255,0.5)),

bottom left
url('sid-head-bg.png') no-repeat;

This replaces the image used in the multiple-background example in

listing ch10/backgrounds-7.html.

NOW YOU'VE SEEN ALL THE NEW FEATURES. LET'S TAKE A
£~ DETAILED LOOK AT CURRENT BROWSER SUPPORT.

USER FRIENDLY by J.D. "llliad” Frazer

HEY, T'VE BEEN
SNAZZING UP THE WEBSITE WELL, IT WILL LOOK GREAT
WITH £S5 DROP SHADOWS. IN A FEW YEARS...

COOL ~LET'S \ DOESN'T IT WORK IN

HAVE A LOOK!

COPTRIGHT 008 4.0, ilind Frazar NTTPsf W AW SSLRIRIENDLY.0RG]

Browser support

Browser support for CSS3 border, background, and gradient features
is pretty good —all the major browsers have some support, or will soon
have support, for everything but border-image in currently released

Cross-

Browser support 385

versions. A lot of vendor extensions are involved, and 1ES and earlier
take quite a bit of work, as we'll look at next.

e @ 06

12 14 4 6 8 |9 |10 | 111 | 115 5 5.1
text-shadow o o o ° ° ° °
box-shadow . ° . . o . ° . ° o °
border-image o o o o o o o o
border-radius ° ° ° °
Multiple back- . ° . . . ° ° ° ° °
grounds
background-size ° ° ° ° .
Gradients o o o o ° o o o o
Key:

e Complete or nearly complete support
o Incomplete or alternative support
Little or no support

browser drop shadows
Chrome (before 10), Safari (before 5.1), and Firefox (before 4.0) use a

vendor extension for box and text shadows; the vendor extension is the
same for both. Neither of the WebKit browsers initially supported
inset but current versions do; spread-radius support was added in
Chrome 8 and Safari 5 but didn’t work reliably until Chrome 10 and
Safari 6.1. Opera and Microsoft were confident enough in the stability
of the spec to skip the vendor extension stage and implement the box-
shadow rule directly.

To support all browsers, you'll need to issue multiple declarations like
this:

-moz-box-shadow: rgb(0,0,0) 3px 3px 3px 9px;
-webkit-box-shadow: rgb(0,0,0) 3px 3px 3px, rgb(0,0,0) 3px 3px 9px;
box-shadow: rgb(0,0,0) 3px 3px 3px 9px;

366

CHAPTER 10 Borders and backgrounds with C553

Note that, because the old WebKit-based browsers don’t support
spread-radius, an extra shadow has been added in an effort to simulate
the effect. Text shadows are supported, using the standard syntax in
Safari 1.1 and Chrome 2.0, but support for multiple shadows was only
added in the 4.0 versions.

Cross-browser CSS53 gradients

-

LEGACY WEBKIT color-stop(0.5, #fff),

THE GRADIENT SYNTAX CHANGED STIGNIFICANTLY SINCE THE ORIGINAL
WEBKIT PROPOSAL. FIRST MOZILLA PROPOSED A SIMPLER SYNTAX, THEN THE
P W3C ADDED SOME ADDITIONAL KEYWORDS. HERE IS A SUMMARY OF THE

DIFFERENCES.
GRADIENT TYPE
MOVED TO PART OF
PROPERT/_\
-webkit-gradient(linear, -moz-linear-gradient(linear-gradient(
SIMPLER POSITION _
left top, left bottom,_ VALUES ___— [top, | ————— [to bottom,
P P DIRECTION to bottom,
>l » INSTEAD OF #0ae
NO NEED FOR EXPLICIT ’ POSITION :
START AND END STOPS #FFF 50%, #FFF 50%,
color-stop(0.5, #fff), #6c0 50%, #6c0 50%,
color-stop(0.5, #6c0)) SIMPLERCOLOR #FFT) #fff)
STOP SYNTAX
ORIGINAL PROPOSED W3C
WEBKIT MOZILLA SYNTAX
SYNTAX SYNTAX

For older WebKit-based browsers, you should use the original syntax.
Use the Mozilla syntax in older Firefox and newer versions of Safari
and Chrome. Newer Firefox as well as Opera 12 and the IE10 preview
support the standard syntax, Firefox and Opera with a vendor prefix.
To support all browsers that support CSS gradients, your cross-
browser code should look something like this:

FALLBACK FOR BROWSERS
background: #6¢0; <« WITHNO SUPPORT

background: -webkit-gradient(linear, left top, left bottom,
from(#00abeb), to(#fff),

SUPPORT WEBKIT SUPPORT
color-stop(0.5, #66cc00)); <—/
background: -webkit-linear-gradient(
o, o, . LEGACY
top, #0ae, #fff 50%, #6cO 50%, #fff); FIREFOX

background: -moz-linear-gradient(SUPPORT

Browser support 387

top, #0ae, #fff 50%, #6c0O 50%, #fff); FIREFOX
background: -moz-linear-gradient(~<—— SUPPORT

to bottom, #0ae, #fff 50%, #6cO 50%, #fff); OPERA
background: -o-linear-gradient(<«—— SUPPORT

to bottom, #0ae, #fff 50%, #6cO 50%, #fff);
background: linear-gradient(S SUPPORT FOR

to bottom,#0ae, #FFf 50%,#6c0 50%,#FFF); SH cT ol ns

(AT THE TIME OF

WRITING. JUST IEIO)

This will produce a two-tone gradient like E———"

the following in all browsers that support
CSS3 gradients.

You can see this example in ch10/gradient-
15.html. Browsers that don’t support gradi-
ents display a green background; every-
thing else shows the gradient.

Cross-browser backgrounds and border-image

border-image has changed significantly since it was first introduced. All
the original implementations follow the shorthand property from the
September 2008 Working Draft. Following that draft, significant
changes were made that added specific properties for each component,
such as border-image-source, border-image-slice, and the fill keyword.
Before, border-image was like a subproperty of border; now it’s a stand-
alone property with subproperties of its own.

It’s likely that vendors will move toward the new syntax when the spec
reaches the Proposed Recommendation status. In the meantime, you
can use 1t in a cross-browser way while still being compatible with the

current spec:
LEGACY FIREFOX
—-moz-border—image: url('borderl.png') 80; ~<—— SUPPORT

LEGACY WEBKIT
-webkit-border-image: url('borderl.png') 80; ~<—— SUPPORT

LEGACY OPERA
—o-border—image: url('borderl.png') 80; <—— SUPPORT

SUPPORT FOR 2008 DRAFT
border-image: url('borderl.png') 80; ~<—— IMPLEMENTATIONS

SUPPORT FOR CURRENT
border—image: url('borderl.png') 80 fill; —e—— DRAFT IMPLEMENTATIONS

368

8O

CHAPTER 10 Borders and backgrounds with C553

To get border-image to work in current browsers, you need to first spec-
ify the vendor-specific properties for Firefox and Safari/Chrome. Next,
give the September 2008 version of the property for Opera, and finally
the current version of the property with the fill keyword. This will
ensure that future browsers that fully implement the property will
render identically to current browsers, which treat fill as being the
default and ignore the fill keyword.

UNFORTUNATELY, IF YOU DON'T WANT THE BEHAVIOR FROM THE 2008 SPEC
THAT TREATS £111 AS THE DEFAULT, THERE'S NO WAY TO OVERRIDE IT IN
€SS IN OLDER BROWSERS. THE EASIEST WAY TO ACHIEVE THIS IS TO USE
AN IMAGE THAT'S BLANK OR TRANSPARENT IN THE CENTRAL AREA.

USER FRIENDLY by Illiad

NONE OF THIS WORKS IN ‘;’_’ YOU SATD "STANDARD £55°— I KNEW IT! MICROSOFT MAKES A
2
INTERNET EXPLORER! |2 WHAT ARE YOU HIDING. YOU SUPERTOR PRODUCT. THAT'S WHY
g MICROSOFT HATER? IT DOMINATES THE BROWSER
1E9 ADDS SUPPORT FOR A % IE HAS HAD A WAY TO MARKETPLACE.
LOT, BUT IE8 DOESNT 2 DO GRADIENTS SINCE
SUPPORT STANDARD £S5 55 BU p
£
GRADIENTS.

COPYRIGHT (&) 2002 ILLTAD HTTR;,

Supporting old versions of Internet Explorer

Internet Explorer was the first browser to implement a method for
specifying drop shadows in CSS, way back in the version 5.5 release.
Microsoft implemented a method of calling an ActiveX control and
applying it to an element that can be used either from CSS or Java-
Script. ActiveX has a pretty bad reputation in web developer circles
that may partly explain why these techniques weren’t seriously
explored until recently. There are two filters for shadows in IE8: brop-
Shadow and Shadow.

Browser support

DropShadow can accept a color value with alpha
transparency(make sure all this code goes on a
single line in your CSS):

-ms-filter: "progid:

DXImageTransform.Microsoft.DropShadow
(color=#ff000000, offX=4, offY=4)"

3869

The color parameter here uses four hexadecimal
pairs. The last three pairs are equivalent to the
way you specify black in CSS: #000000. The first
hex pair is a value between 0 and 255 for opac-

ity: FF is fully opaque.

Shadow fades the color to transparent, like box-

shadow, but you must specify an opaque color:

-ms-filter: "progid:
DXImageTransform.Microsoft.Shadow(

color=#000000, direction=135,
strength=4)"

The main difference between the two is that Shadow applies a gradient to

the edges, whereas DropShadow is a constant color. The listing for this

example is in ch10/shadow-ie-1.html.

THE EXAMPLE HAS A BACKGROUND COLOR ON THE ELEMENT TO WHICH THE
SHADOW APPLIES SO IT WILL APPLY TO THE ENTIRE ELEMENT RATHER THAN
JUST THE TEXT. IF YOU WANT A SHADOW ON THE TEXT, YOU NEED TO LEAVE \

THE BACKGROUND TRANSPARENT. AS YOU MAY GUESS, THIS MAKES APPLYING A
SHADOW TO BOTH THE TEXT AND THE BOX A BIT MORE INTERESTING.

There’s also an IE filter for gradients. Here are
two examples; the full code is in ch10/gradient-
ie-1.html (the lines have been broken so they fit
on the page; in your CSS make sure they appear
on a single line):

-ms—filter: "progid:DXImageTransform.Microsoft.gradient(

GradientType=1, startColorstr=#CC1C5B9B, endColorstr=#E56CBFFF)";

390

5

|

CHAPTER 10 Borders and backgrounds with C553

-ms—filter: "progid:DXImageTransform.Microsoft.gradient(
GradientType=0, startColorstr=#88FFFFFF, endColorstr=#00FFFFFF)";

Compared to CSS gradients, they're very limited. You can specify only
start and end colors; no additional color stops are available, and they
can only be vertical or horizontal.

Note that if you want to use semitransparent colors in the gradient, you
should also set the background color back to transparent in the rule:

background: transparent;
-ms—filter: "progid:DXImageTransform.Microsoft.gradient(
GradientType=0, startColorstr=#88FFFFFF, endColorstr=#00FFFFFF)";

Otherwise both the background color and the gradient will apply, and
you'll see the gray background through the gradient. The -ms-filter
property doesn’t override an existing background property.

TE9 HAS FULL SUPPORT FOR THE €SS STANDARDS FOR BOX SHADOWS AND
ROUNDED CORNERS. IE1O PREVIEW RELEASES HAVE INCLUDED SUPPORT FOR
CSS3 GRADIENTS. USE CONDITIONAL COMMENTS TO PROVIDE A SPECIFIC
STYLESHEET TO IE8 AND EARLIER IF YOU WANT TO SUPPORT ALL
VERSIONS, OR INVESTIGATE A SOLUTION LIKE CSS3 PIE.

\

CSS3 PIE for easy IE support

CSS3 PIE takes advantage of another proprietary IE CSS extension —
behaviors —to make older versions of IE support standard CSS3 syn-
tax. A bebavior is a script file that executes as the CSS is being applied to
an element. Although there are some performance and security con-
cerns, behaviors offer a convenient way to add CSS3 support in IE8 and

Summary 391

earlier. This element with rounded corners, a
gradient, and a drop shadow was created by
applying a mostly standard CSS rule.

The screenshot was taken in I1E8. Here’s the CSS
(see the page in full in ch10/css-pie.html):

div { \
border: 1px solid #999;
border-radius: 10px;
box-shadow: rgb(0,0,0) 3px 3px 3px 3px;
—-pie-background: linear—gradient(top, #000, #fff);
behavior: url(../1libs/PIE/PIE.htc);

}

There are two nonstandard properties here. Behavior is the proprietary
IE property that allows all the magic to happen; it contains the URL of
the file that implements the behaviors. -pie-background is required
because, unlike border-radius and box-shadow, IE8 already understands
the background property and will discard any values that it considers
invalid.

Summary

In this chapter, you've learned about features of CSS3 for creating drop
shadows, rounded corners, background effects, and gradients. Most of
these effects could be accomplished visually with CSS2, but that would
involve creating images and various bits of additional markup to apply
them to elements. The CSS3 approach removes the need for extra
markup and additional requests to the server and is easily adaptable to
the content—you don’t need to re-create your background image just
because you decide to make an element 20 pixels wider.

€S53 ISN'T JUST FOR VISUAL EFFECTS AND BACKGROUND IMAGES: IT ALSO
INCLUDES SEVERAL NEW FEATURES FOR THE FORMATTING AND DISPLAY OF TEXT. IN
THE NEXT CHAPTER YOU'LL LEARN ABOUT USING CUSTOM FONTS, AUTOMATICALLY
FORMATTING TEXT INTO COLUMNS, AND ADVANCED FONT CONTROL FEATURES.

Text and fonts

This chapter covers

Addling custom fonts to your pages with @font-face

Petailed control of font rendering with font-feature-settings

Improving readability with CSS columns

Controlling text wrapping and overflow

Despite being designed from the start as a way to share text documents,

the web has traditionally had poor typography. In this chapter, you'll

learn how all that is changing as CSS3 brings in many new features for

control of fonts and text.

USER FRIENDLY by J.D. "llliad” Frazer

IVE HEARD THAT WERE ON THE
CUSP OF ANEW AGE IN WEB
TYPOGRAPHY.

THERE ARE PLENTY OF GOOD
EXAMPLES ALREADY. LET'S
HAVE A GOOGLE!

COPTRIGHT £:2008 J.0. “Iiiad™ Frazer HTTP://WWW. USIRIRIENDLY.ORG

392

I CANT BELIEVE ANYONE
WOULD CHOOSE TO SULLY MY
MAC WITH ARIAL/

THERE ARE BAD PEOPLE OUT ON
THE WEB.

Basic web fonts 393

Basic web fonts

Typography, the art of setting and arranging type, is a big part of design;
a particular typeface is often as much a part of a company’s image as its
logo or corporate color scheme. But in CSS2, there’s basically no way
to specify a font that will be used b_y all users across all browsers and
operating systems.

Typography on the web has always been limited because of its client-
server design —the font has to be on the client machine, where the ren-
dering is done, and not on the server. This is what leads to standard
font-family declarations like this:

IF ALL ELSE FAILS, USE THE
DOES THE USER HAVE THIS DEFAULT SANS-SERTF FONT.
FONT? IF 50, USE IT. \V)

font-family: Arial, Helvetica, sans-serif;

OTHERWISE, DOES THE USER HAVE THIS
FONT? IF SO, USE IT INSTEAD.

The idea is that Arial (a Microsoft font), Helvetica (the standard Apple
font), and sans-serif will all look relatively similar —but is that true?
Instead of specif_ying a set of fallbacks, let’s compare what each font b_y
itself looks like in some different browsers. Here’s the standard CSS
rule split into three:

hl { font-size: 32px; font-weight: bold; }
divinth-child(1) { font-family: Arial; }
div:inth-child(2) { font-family: Helvetica; }
divinth-child(3) { font-family: sans-serif; }

To see the results, let’s use this simple bit of markup repeated three times:
<div><hl>Hello! HTML5 and CSS3</hl></div>
Here’s what the three elements look like in Firefox on my laptop. As

you can see, there’s quite a variation in both size and thickness.

™ Hello! Hello! Hello!
}: HTML5 and HTML5 and HTML5 and
CSS3 CSS3 CSS3

394

CHAPTER 11 Text and fonts

But that’s not the only interesting thing going on. Here’s the same page
in Chrome on my laptop. All the fonts look the same!

Hello! Hello! Hello!
. HTML5 and HTML5 and HTML5 and
CSS3 CSS3 CSS3

To add to the confusion, I'll now reveal that my Linux laptop has nei-
ther the Arial nor the Helvetica font installed, which is more obvious in
this screenshot of the same page in Opera.

y Hello! Hello! Hello!
HTML5 and HTML5 and HTML5 and
CSS3 CSS3 CSS3

Opera falls back to Bitstream Vera Sans for Arial but renders the
browser default font—which is serif rather than sans-serif—for
Helvetica. Chrome renders all three the same because it falls back to
Bitstream Vera Sans for Arial and Helvetica and also uses it for the
default sans. Firefox tries to use a font similar to the requested one, so
it replaces Arial with Liberation Sans and Helvetica with Nimbus Sans
L, and it uses Bitstream Vera Sans for the default sans font. You can
try it on your own system with listing ch11/font-comparitor.html. This
shows that web authors have almost no control over what fonts end up
being used in their pages. As you can imagine, that drives some design-
ers nuts! It’'s one reason you've seen so many bad hacks over the years
that replace text with images or Flash movies. But there’s now a practi-
cal standards-based alternative: @font-face.

Gaining control of fonts with the @font-face rule

The @font-face rule allows you to specify a font to be downloaded with
the web page in the same way as markup, images, and script. Here’s a
basic declaration to download the Liberation Sans Bold font:
@font-face {

font-family: "Liberation Sans Bold";
src: url(LiberationSans-Bold.ttf) format("truetype");

Basic web fonts 395

Browser support quick check: @font-face

@CL @

Standard Prefixed

THIS EXAMPLE HAS TWO PROPERTIES:
4.0 _ font-family AND src. font-family
’ IS A NAME; ANY NAME WILL DO,
ALTHOUGH IT WILL MAKE YOUR LIFE
EASIER IF IT'S REPRESENTATIVE OF

35 - THE ACTUAL FONT NAME. src

SPECIFIES A URL TO THE FONT FILE

AND A FILE FORMAT.
4.0 -
10.0 -
3.1 y

Here are the declarations for the other two fonts in the earlier example:

@font-face {
font-family: "Nimbus Sans L Bold";
src: url(NimbusSanL-Bold.ttf) format("truetype");
}
@font-face {
font-family: "Bitstream Vera Sans Bold";
src: url(VeraBd.ttf) format("truetype");
}

Now that the downloadable fonts have been defined, you can reference
them in CSS rules like any other font:

hl { font-size: 32px; font-weight: normal; }
div:inth-child(1) { font-family: "Liberation Sans Bold"; }
div:inth-child(2) { font-family: "Nimbus Sans L Bold"; }
div:nth-child(3) { font-family: "Bitstream Vera Sans Bold"; }

These rules lead to consistent results cross-browser (except, of course,
Internet Explorer 8 and earlier). Try it for yourself with listing ch11/
font-face-1.html.

A\ Hello! Hello! Hello!
/ HTMLS5 and HTML5 and HTMLS5 and
css3 CcSSs3 CSs3

396

S

CHAPTER 11 Text and fonts
Hello! Hello! Hello!
‘ HTML5 and HTML5 and HTML5 and
CSS3 css3 CSS3
Hello! Hello! Hello!
HTML5and HTML5 and HTML5 and
CSS3 CSS3 CSS3

A SUBTLE DIFFERENCE YOU MAY HAVE NOTED IS THAT THE ORIGINAL EXAMPLE USED A
font-weight OF bold, BUT THE SECOND EXAMPLE USED A font-weight OF normal. THIS
IS BECAUSE THE @font-face RULES EXPLICITLY SPECIFIED THE BOLD VERSIONS OF
THE FONTS, BUT IT'S POSSIBLE TO HANDLE THAT DIRECTLY WITH font-face.

!

The browser has two options when bold text is needed: it can either use
a bold version of the font if one is available or scale up the normal font

to make it look bold.

Let’s start with some normal text Hello! HTML5 and (SS3

using the Yanone Kaffeesatz font:

<p>Hello! HTML5 and CSS3</p>

Here’s the CSS:

@font-face {

font-family: "Yanone Kaffeesatz";

src: url(YanoneKaffeesatz-Regular.otf) format("opentype™);
}
p {

font-size: 32px;

font-family: "Yanone Kaffeesatz";

Now add a couple of elements that Hello! HTML5 and CSS3

will render as bold:

<p>Hello! HTML5 and
CSS3</p>

Basic web fonts 397

The browser doesn’t have a bold ver-
sion of Kaffeesatz, so it adjusts the
normal font to be thicker and wider.

Add another @font—face declaration. HE"OI HTM|.5 and CSSB

Notice that it uses the same
font—family name, but it has a differ-
ent URL and specifies a font-weight:

@font-face {
font-family:
"Yanone Kaffeesatz";
src:
url(YanoneKaffeesatz-Bold.otf)
format("opentype");
font-weight: bold;

The browser is now using the bold version of the Yanone Kaffeesatz
font for the bold text. This is more compact and more cleanly rendered
than the standard version of the font automatically adjusted to be bold.
The same approach also works for italics, but using font-style instead
of font-weight. Unfortunately Kaffeesatz doesn’t have an italic variant,
so this example uses the thin variant:

@font-face {
font-family: "Yanone Kaffeesatz";
src: url(YanoneKaffeesatz-Thin.otf) format("opentype');
font-style: italic;

}

With a minor adjustment to the HTML you can see three different
fonts, all from the same family, in one paragraph:

<p>Hello! Hello! HTMLS and (553

HTML5 and
CSS3</p>

3986 CHAPTER 11 Text and fonts

Font formats: EOT, TTF/OTF, and WOFF

The @font-face rule was originally introduced in an early draft of the
CSS2 spec, but it was dropped back in 1998, mostly because of the lack

of fonts with licenses that allowed web distribution.

DEVELOPED THEIR OWN FONT FORMATS SPECIFICALLY FOR THE WEB: NETSCAPE

CAME UP WITH THE PORTABLE FONT RESOURCE FORMAT (PFR), NOW AS DEAD AS THE

NETSCAPE BROWSER: AND MICROSOFT CREATED EMBEDDED OPENTYPE (EOT). WHICH

IS STILL SUPPORTED IN IE TODAY.NEITHER WAS SUCCESSFUL; FEW FONTS WERE
\ EVER MADE AVAILABLE IN EITHER FORMAT.

TO OVERCOME THE RESISTANCE OF THE FOUNDRIES, THE BROWSER MANUFACTURERS
«

Since 1998, several things have changed:

Bandwidth has increased to the point that including a 100-300 KB
font file in your page seems less of a big deal.

Font foundries now have the example of the music industry to learn
from.

The rise of open source operating systems has led to the creation of
several free but professional fonts funded by companies such as Red
Hat, Canonical, and Google.

Tools have improved to the point that it's now feasible for profes-
sional font designers to produce free fonts in their spare time.

In June 1998, Safari 3.1 was released with support for downloading
TrueType/OpenType fonts (TTF/OTF) with @font-face in its desktop
incarnation and SVG Web fonts, a format tied to the SVG specification,
on mobile devices. Firefox added support with the release of 3.5 in
June 2009, and a brave new world of web typography was born.

Although several smaller font foundries jumped on the bandwagon and
started making their fonts available with web-friendly licenses, the
major ones still weren’t keen to get involved. They wanted a font file
format that couldn’t be used as a desktop font. The answer is the new
W3C Web Open Font Format (WOFF), which is being developed col-
laboratively between browsers, vendors, font foundries, and the W3C.

Basic web fonts 399

Browser support for downloadable fonts

The previous section mentioned several different font file formats,
among them EOT, TTF/OTF, WOFE and SVG. The following table
shows which of them are supported in various browsers today.

Browser Support from Support of
‘. 4 TTF, OTF, and SVG
3.5 TTF and OTF only
|
' 3.6 WOFF support added
/) 4.0 Embedded Open Type (EOT) only
\ Y4 9.0 WOFF support added
10.0 TTF, OTF, and SVG
111 WOFF support added
@ 3.1 TTF, OTF, and SVG
5.1 WOFF support added
(desktop)
@ 3.1 SVG
(4.2 TTF and OTF support added
i0S)

For widest support across browsers, you need to provide your font in

four different formats —assuming you can find fonts available in all
four formats, or with a liberal enough license that you can convert the
font between formats yourself. In addition, you have to worry about

400 CHAPTER 11 Text and fonts

various bugs in different browsers’ support of @font-face (see the
browser support section at the end of the chapter for details).

THE PRACTICAL ASPECTS OF SUPPORTING FONTS CROSS-BROWSER AND CROSS-DEVICE
GIVE YOU PLENTY TO WORRY ABOUT. FORTUNATELY, SEVERAL SERVICES HAVE ARISEN
ONLINE TO DO THAT THINKING FOR YOU: THE NEXT SECTION WILL LOOK AT THEM.

Making your life easier with font services

Rather than search through many different web sites to find the exact
fonts you want, and then purchase them from several different web-
sites and figure out how to set up your server to deliver them correctly
to clients and integrate everything into your CSS, it’s much easier to get
someone else to do that for you. Many online services have appeared in
recent years to simplify getting the fonts you want on your website.
These can be broken down into three broad categories:

Font converters and packagers—These services convert fonts you
already have into the formats supported by browsers and provide
you with CSS to incorporate them into your site. You have to deal
with the server-setup side of things yourself.

Free font vervices—The font services deliver the fonts directly from
their own servers, and all you need to do 1s link to a CSS file pro-
vided by the service. Being free, these services only include freely
downloadable and open source fonts.

Paid font services— These services are just like free ones except that,
because you're paying license fees, the range of fonts available is
vastly improved.

This section walks through one example of each type of service listed,
from choosing fonts to getting them on your web page.

Downloadable kits: FontSquirrel
FontSquirrel (www.fontsquirrel.com) is an online tool for building
packages of font files. These packages contain everything you need to
use the fonts on your own website. Here’s how to use FontSquirrel:

Making your life easier with font services 401

Go to the website home page and
click the @font-face Kits link in

. Imveicing For FreelancersTe IR
the main menu. E}‘u’n!‘n.l. Pl ik

hundreds of fonts available for
download. Scroll down to the - .
Serif section, and find the DRI R
Gentium Pro font. Click View
Font to see the detalils.

e A

2 You'll be taken to a page that lists

EB Garamond AsBb Fanwood AaIC Galatia (1. Aadb

On the details page, you can see e Sddiisiarin
what each character looks like R T R

and try out text of your own. Go S e S

to the @font-face Kit tab to select Chosse st subting

which font file types you want to e
use: TTE EOT, WOFE and SVG. Rr Heor Bwor Hoo

Download Genthsm Basic in TrueTyps format:

Gonous Basic Fasmity (A E styles) | © Dwserbasd v |

Gentium Basic Regular AaBbCcDdEeFfGgHhIiTIKKLIMmNnOoPp

‘ I On this page you can also select a Choose a Subset:

subset of the characters —so you

=

only download the English char-

Don't Subset

THTTE M EOT 0 WORF . 0 S

acters if you won't be using any

CHAPTER 11 Text and fonts

other languages, keeping the file

size down.

Click the Download @font-face
Kit button to download a zip file
of everything you'll need.

Look in the zip file you've down-
loaded. It contains the following:

Each font in the formats you
selected

A style-sheet file that you can
include directly in your pages

A web page demonstrating the
font

Here’s a rule from the included stylesheet.css file:

@font-face {
font-family:
src:
src:

=]

35 objects (1.5 MB)

'GentiumBasicRegular';
url('GenBasR-webfont.eot');
url('GenBasR-webfont.eot?iefix') format('eot'),

url('GenBasR-webfont.woff') format('woff'),
url('GenBasR-webfont.ttf') format('truetype'),
url('GenBasR-webfont.svg#webfontLb1Ssz10') format('svg');

font-weight: normal;
font-style: normal;

And here’s a rule from the
HTML file, demonstrating how it
should be used:

p.stylel {
font: 18px/27px

=1 Gentium-Basic-fontfacekit.zip
Archive Edit View Help
| E3open -~ | & Extract E Q»é
Location: |E8/
Name ~ Size
@ demo.htmi 5.2KB
| GenBasB-webfont.eot 42.3 KB
% GenBasB-webfont.svg 63.7KB
& GenBasB-webfont.itf 42.1 KB
GenBasB-weblont.wolf 274 KB
GenBasBl-webfont eat Mis.g ke
;.. GenBasBl-webfont.svg 716 KB
GenBasBl-webfontif 49.5 KB
GenBasBl-webfont.woff 31.4KB
GenBasl-webfont.eot 51.4 KB
B GenBasl-webfont.svg TL1KB
& GenBasl-webfont.ttf 51.2 KB
| GenBasl-webfont.woff 319KB
GenBasR-webfont.eot 41.1 KB

Type

HTML docu...
unknown
SVG image
TrueType font
unknown
unknown
SVG image
TrueType font
unknown
unknown
SVG image
TrueType font
unknown

unknown

Free font services: Google Web Fonts

1

2

'GentiumBasicRegular',
Arial,
sans-serif;

Making your life easier with font services

403

Font-face Demo for the Gentium
Basic Font

Gentium Basic Regular - Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do ebusmod tempor
qua. Ut 4 tation ullameo

incididunt ut lsbore et dolore magna aliqua. Ut veniam, quis

laboris nisi wt aliquip ex ea d . Dus dolor in n

esse cillum dolore eu fugiat ealla pariatur. Excepteur sint eccaecat capidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.

You can see the file in ch11/Gentium-Basic-fontfacekit/demo.html.

Downloading a kit with everything you need takes a lot of the work out

of things, but you still have to deal with serving the files yourself. This

means you have to make sure your server is configured correctly for

the font files. In addition, the users downloading the fonts will be using

up your bandwidth. Wouldn't it be nice if someone else took care of the

server-side stuff for you? Well, Google is offering to do it for free!

The Google Web Fonts service is
available at www.google.com/

webfonts. Click the Start Choos-
ing Fonts button to begin.

Like many Google services, the
interface is search based. Search
for a font called Crimson Text by
typing in the Search box.

& =

Do 152 jwm iepey Goamets Do e
e s Frx .

] g =l o a

Google web lonts

&|a | &% @l e & & &

& Eo&
& Eo&
& —& &

0 fant families in your Collection «

Goc ugic web fonts 7%

= Sevterce Pacagpagn
Showing

Pouview Text: | Grumpy wizards make toxi = Site | 28 =)

font families
iz Grumpy wizards make toxic brew fo
crimson g
Filters: Crimson Text. & Styles ty Sebastian K) 50
All categones

Any thickness

5] Pt ot

www.google.com/webfonts
www.google.com/webfonts

404 CHAPTER 11 Text and fonts

The See All Styles link lets you

see all the different weights and
styles available. Click the Quick
Use link alongside that.

you want to include (weights of
bold and/or italics). To the right

of the selection is a large graphic

‘ ' You can select which font variants

indicator that estimates the
impact of the fonts you've chosen
on page load time.

Instead of a download, you're

5 offered two snippets of code to
copy and paste. Scroll down the
page to find them.

The first bit of code is a <link> ele-
ment to include in your document
head. The second is an example
CSS rule making use of the font.

The exact code is as follows:

<link
href="http://
fonts.googleapis.com/
css?family=Crimson+Text:400,700"'
rel="'stylesheet' type='text/
css'>
font-family: 'Crimson Text',
serif;

Include these two snippets in
your page, adjusting the CSS rule
as necessary, and you're good to

go.

Grumpy wizards make toxic brew for the evil Queen and Jack.
Grumpy wizards make toxic brew for the evil Queen and Jack.
Grumpy wizards make toxic brew for the evil Queen and Jack.

Flessinie advasde whaba bawle hiwis Ge ths sl Phisss and Toab

1. Choose the styles you want:

2 Crimson Text
& Normal 400

0 Normal 400 italic
[Semi-Bold 600

) Semi-Bold 600 italic
| Bold 700

[Bold 700 italic

3, Add this code 1o your wobsite:

<link hrefshtep: /i1

4. Integrate the fants into your £55:

Thr Gtxaghe et Forts ABY wil germaln s agenc i C55 10 the forts, AN you rared

10 14 50 T for oy

Pont-family: 'Crimsen Text', serif;

Hello! HTML5 and CSS3

Many persans who are not conversant with mathematical studies imagine that because the
bisiness of [Babbage's Analytical Engine] is to give its results in sumerical notation, the
mature of its processes must consequently be arithmetical and numerical, rather than
algebraical and analytical, This is an error, The engine can arrange and combine its
mumerical quantities exactly as if they were letters or any other general symbols; and in
fact it might bring out its results in algebraical notation, were provisions made accordingly.

Making your life easier with font services 405

See the full example listing in ch11/fontservices-google.html.

Subscription font services: Fontdeck

The Google service is straightforward and available at an excellent
price —nothing —but this strength is also a weakness. Google can only
offer free fonts for download through its service. If the fonts you want
to use aren’t available, you'll have to look into one of the subscription
services; several such services are now available.

(http://fontdeck.com/) because it
allows you to try the fonts for free

1 This example looks at Fontdeck e MEB— -

and 1 alread_y have an account.

Web Typography

Fabulous Fonts, Easy to Use, Awesome value

[*o

.-.‘- -:- s . o Regime

[l "RADESHIFT g

2 You need to provide an email T

address to register, and then you

set up a website. This is as simple e
as typing in a name and one or Your Account

more domain names.

The first 20 distinct IP addresses
to access your website will be
allowed to download any fonts
you choose free of charge, so you
can use Fontdeck to test fonts and
even demonstrate them to clients
without financial outlay.

need to choose some fonts. These

3 After you've set up a website, you

are arranged by category —serif,
sans-serif, and so on—or you can

406

CHAPTER 11 Text and fonts

search by font name or tag. For
this example, look for Monosten,
which is under Slab Serif >
Monospaced. Either browse to
the font or search for it.

On the page for Monosten, look
for the A (regular) and C (bold)
variants and click the Add to
Website link alongside them.

You should see a banner at the
top of the page with a link that

says Grab the Code for This
Font—go ahead and click it.

You're presented with a page that
has code you can copy and paste
into your pages. The code I got is
shown next; I changed the CSS
slightly to apply to the body and

level-one headings.

Browse Fonts

Ag Ag Ag Ag Ag YA

A—w— A Abo

i

s -

<link rel="stylesheet" href="http://f.fontdeck.com/s/css/
9tuWCgd+qpLZNXRFuo1XneWWjNE/www.dotrob.com/8881.css"

type="text/css" />
<style>
body {

font-family:"Monosten A", Courier, monospace;

font-size-adjust:0.5;
font-weight:normal;
font-style:normal;

hl {

Advanced web typography 407

font-family:"Monosten C", Courier, monospace;

font-size-adjust:0.5;
font-weight:bold;
font-style:normal;

}
</style>

using the previous code. See the

7 Here’s my example page in action

full listing in ch11/fontservices-
fontdeck.html. You'll need to edit
the example file to insert your
own style sheet link to Fontdeck;
otherwise you won't be able to
download the fonts.

Advanced web typography

[——E L LeHalLd

Firefon | s FoncDeck Exaenple

- dotrob.com P a -

Hello! HTML5 and CSS3

Many persans whe ore not conversont with mathesotical studies imagine
thot becouse the business of [Bobbage's Anolytical Engine] is to pive
its results in numericel mototion, the nature of its processes must
consaquently be arithmeticel and numserical, rother than slgebroieal
and onolyticel. This is on error, The engine con arrenge ond combing
its numerical quantities exectly as if they wers letters or any other
general sysbols; ond in foct it might bring out its results in
algebraical notation. were provisions made accordingly.

Even with a working @font-face directive, control over fonts on the
web is still far behind what you might see in a typical desktop-publish-
ing program or design package. CSS3 goes beyond letting web devel-
opers control which fonts appear on their web pages: it also offers

features for controlling the details of how those fonts are rendered.

font-size-adjust
As you saw earlier, one of the issues
with fonts on the web is that, should
the primary font be unusable for
some reason, the fallback font may
have different size characteristics.
Fonts that are nominally of the same
size can have visible differences in
weight; this is the case because the
measure of a font depends on the
height of the letters including any

Standard Prefixed

3.0 -

Browser support quick
check: font-size-adjust

@eCL@e

408

CHAPTER 11 Text and fonts

potential ascenders and descenders, whereas the visual size of the font is
more dependent on the x-height —the size of the lowercase characters.

The font size in all three examples in the section 20px

“Basic web fonts” was set to 32 pixels. But as you 15px
. 10

can see in this magnified view of the Nimbus Sans L 5::

letter M, the characters are only about 24 pixels tall.

Following is a diagram showing how the various
font size metrics are related.

."
..

The font-size-adjust property allows you to specify a ratio between the
x-height and the size of your first-choice font. If the browser has to use
one of the fallback fonts, it will automatically adjust the size so the
x-height remains consistent.

You don’t have to work out the x-height exactly; you can discover an
appropriate value through trial and error instead. If you provide a
“wrong” value for font-size-adjust, the font will be noticeably smaller.

Following is an example that shows the difference that specifying font-
size-adjust can make. To begin, let’s look at what happens without that

property:
p i

font-size: 32px;
padding: 0.5em;
font-family: "Yanone Kaffeesatz", sans-serif;

If the font is available, then every- Hello! HTML5 and (SS3
thing 1s fine.

But if the font isn’t available for Hello! HTML5 and CSS3

some reason, the fallback font
takes up considerably more space.

Advanced web typography 409

Now let’s add a font-size-adjust property:

p {
font-size: 32px;
padding: 0.5em;
font-family: "Yanone Kaffeesatz", sans-serif;
font-size-adjust:0.5;
}
Again, everything is fine if the Hello! HTML5 and (SS3

font is available.

But this time, if the font isn’t Hello! HTML5 and CSS3
avaﬂable, the fallback font takes

up a similar height.

Note that font-size-adjust only impacts the x-height —the width is still
different. The property’s main advantage is that it preserves the verti-
cal rhythm of your blocks of text.

Advanced font control Standard | Prefixed

This section looks at some of the

graphical term for the elements of a

advanced features offered by mod- £ - 16
ern fonts and how they can be con- g
trolled from CSS. We'll start with =P - 4.0
. ==
ligatures: the replacement of L
sequences of separate characters %‘E - 10
. . . c
with a single, joined glyph (the typo- 28
2
3
o
@

font) and then explore some fea-
tures available for numbers before

@@L @

finishing with fancy text options

known as contextual swashes. * (Win/Linux only)

ALL OF THESE FEATURES ARE ATTRIBUTES OF THE FONT BEING USED.
€55 DOESN'T CREATE ADDITIONAL GLYPHS—THEY HAVE TO BE PRESENT
IN THE FONT—BUT IT LETS YOU CONTROL WHEN THEY'RE USED.

410

CHAPTER 11 Text and fonts

Glyphs and ligatures

Glyph is the typographical term for the graphical elements that make up a font.
It differs from a letter—any individual letter can be represented by any one of a
number of glyphs in a font depending on the context in which it’s placed. A com-
mon example in old English was the long ¢ and short ¢ forms that were used at
the start and end of words, respectively—both represented the letter # but use a
different glyph.

A ligature is a glyph that replaces a sequence of letters. In traditional English
printing, this was generally used to increase legibility or to work around limita-
tions of ink or lead type. But in some scripts, the particular ligature used can af-
fect the meaning.

Ligatures are a feature of the font being used. Each font has a replacement table
that maps certain sequences of characters in the text to single glyph.

Following are some example ligatures from the Calluna Regular font.

No ligatures ff f]. ﬂ ffi ff
Ligatures ﬁ‘ ﬁ ﬂ m E

Currently, Firefox and Safari render ligatures automatically, if they're

available in the font, above a certain font size. CSS3 gives you complete
control over them through the font-feature-settings property. The
property requires a single value: a quoted string containing a comma-
separated list of font settings. To turn on ligatures, you use this CSS:

font-feature-settings: "liga";

All the features have a four-character code. If the value is present, it
means the feature is enabled. It’s also possible to add a value to each
feature:

font-feature-settings: "liga" 1;

A value of 1 or on means the feature is enabled, and 0 or off means the
feature is disabled. The complete list of possible features is available in

Advanced web typography 41

the OpenType specification: www.microsoft.com/typography/otspec/
featurelist.htm.In addition to the regular ligatures, a font may also have
a set of more decorative discretionary ligatures. These aren’t enabled
by default but can be enabled through font-feature-settings. Here’s
another example from the Calluna Regular font.

it qu st ct
Discretionary ligatures]’_-t (;_1,1 é-t (f-t

As you can see, the discretionary ligatures are a lot more decorative.

Normal ligatures

You would normally only enable them for headings or other small sec-
tions of text with a decorative as well as informative role. The CSS for
the second line in the previous example is this:

font-feature-settings: "liga" 1, "dlig";
It’s also possible to select only the additional ligatures:

font-feature-settings: "liga" 0, "dlig";

Letters aren’t the only thing that can be 876 21
represented by more than one glyph in a 9075543
font, and you may have good reason for ITITIIIIII
wanting different glyphs in different situ-

ations. This screenshot shows four num- 23232323

bers in the Calluna font with the default 123456789
rendering. Can you quickly tell which

one of the four is the largest value?

The problem with the normal rendering 8 6 21
of numbers is that, like the rest of the 9070543

text, they're proportionally spaced. This ITITIIIIII
1s fine for numbers in text but not so 23232323

good for quick visual comparison in

tables. The Calluna font has several I12 3 4 5 6789

www.microsoft.com/typography/otspec/featurelist.htm
www.microsoft.com/typography/otspec/featurelist.htm

412

CHAPTER 11 Text and fonts

different sets of numerals, and in this
case the tabular set is more useful:

font-feature-settings: "tnum";

Now you can see immediately that the
largest value number is the second one.

The numbers in the previous examples
are designed to look natural when used
in a paragraph of text, with ascenders
and descenders like regular letters. You
may prefer to have the numbers be a
more consistent height; these are known
as /ining numerals:

font-feature-settings: "lnum";

The default that’s being overridden here
is Old Style Numerals, which can be

selected with the short code "onum".

Calluna allows you to combine the tabu-
lar and lining properties:

font-feature-settings:
lltnumll , ||1num|r ;

Calluna also has a special set of ligatures
for fractions:

font-feature-settings: "frac";

The column on the left is the normal ren-
dering of the text; the fractions are t_yped
with a slash as in 1/2. The column on the
right has fractions turned on; the three
letters have been replaced with a single
glyph representing the fraction.

987654321
1111111111
23232323

123456789

987654321
1111111111

23232323

123456789

11/2
21/3
31/4
43/5

1%
213
3 Ya
4 35

It’s often difficult to distinguish an
uppercase letter O from a zero. In fonts
used in things like text editors, the zero
will have a slash through it to make it
more distinctive. Calluna has both a reg-
ular and a slashed zero. The slashed zero
can be enabled with the zero feature:

font-feature-settings: "zero";

Historical forms can give an authentic
old look to your text. For instance, in
days of yore, the current form for s was
only used at the end of words. It was nor-
mal to use a 1ong s at the start and in the
middle of words. You can enable the long
sin Calluna with the hist feature:

font-feature-settings: "hist";

Fonts can also contain stylistic alter-
nates —usually more decorative versions
of certain characters. Calluna has just
one set of stylistic alternates, which con-
tains only two glyphs. Turn on stylistic
alternates by setting salt to on:

font-feature-settings: "salt";

Advanced web typography 413

000000
000000

succession
{fucceflion

& OO {®

The Calluna font used so far for the examples doesn’t have much in the

way of historical forms or stylistic alternatives. Let’s switch to the
MEgalopolis Extra font, which has plenty of both.

Here’s a sample paragraph THE ANALYTICAL ENGINE HAS NO PRETENSIONS WHATEVER
“h N hi to originate anything. It can do whatever
with no special typographic we know how to order it to perform.

formatting. The code fol-

IOWS.

414

CHAPTER 11 Text and fonts

[again rely on Ada Lovelace for the quote:

<p>The Analytical Engine has no pretensions whatever to
originate anything.
It can do whatever we know how to order it to perform.</p>

Here's the CSS to apply the font:

@font-face {
font-family: megalopolis;
src: url(MEgalopolisExtra.woff) format("woff"),
url(MEgalopolisExtra.otf) format("opentype");
}
p {
font-family: megalopolis, sans-serif;
}
p::first-line {
font-variant: small-caps;

}

You can see the additional ligatures in effect on the small-caps combi-
nations ca, re, and at.

Additional ligatures TH ANALYTIGL ENGINE HAS NO PREENSIONS WHREVER TO
originate anything. It can do whatever we
know how to order it to perform.

Additional ligatures plu s THE ANALYTICL ENGINE HAZ NO PRETEN/IONS WHREVER TO
default stvlistic alt a originate anything. It can do whatever we
efault stylisuc alternatives know how to order it to perform.

The default stylistic alternatives adds a more curvy » but also a more
traditional y. The property for the second example is as follows:

font-feature-settings: "salt","dlig";

MEgalopolis has six other style sets, which can be turned on with sso1
to ss06. Here are a couple of examples. If you're following along at
home, I suggest you try ss06 for yourself:

"ss01" THE ANALYTIGL ENGINE HAS NO PRETENSIONS WHREVER TO
originate anything. It can do whatever we
know how to order it to perform.

Advanced web typography 415

"ssO5" Tie ANALYTIGL ENGINE HAS NO PREENSIONS WHREVER TO
originate- anything. It. can. do whatever-
we- know how to- order it. to~ perform.

BROWSER SUPPORT

Recent versions of the major browsers support some parts of CSS3
advanced font control features using vendor-specific extensions. The
following example shows a complete code listing that enables standard
and discretionary ligatures cross-browser:

-moz-font-feature-settings: "liga", "dlig";
-moz-font-feature-settings: "liga=1, dlig=1";
-ms-font-feature-settings: "liga", "dlig";
-webkit-font-feature-settings: "liga", "dlig";
font-feature-settings: "liga", "dlig";

NOTE THAT FIREFOX SUPPORTED AN OLDER VERSION OF THE SPEC FROM
VERSION 4 ONWARDS. IT SUPPORTS THE CURRENT SYNTAX FROM VERSION 14
ONWARDS. IN ORDER TO SUPPORT BOTH OLD AND NEW FIREFOX, YOU MUST PUT
THE OLD SYNTAX SECOND. NEWER VERSIONS WILL IGNORE THE OLD SYNTAX,
BUT THE OLD VERSIONS WILL ATTEMPT TO APPLY THE NEW SYNTAX AND FAIL.

THE font-feature-settings PROPERTY IS INTENDED TO BE
USED ONLY FOR LOW-LEVEL CONTROL. THE FINAL STANDARD WILL
INCLUDE MORE READABLE VERSIONS FOR ALL THE MOST COMMON
OPTIONS. THE FOLLOWING TABLE INDICATES HOW THE PREVIOUS
EXAMPLES MAP ONTO THE PROPERTIES CURRENTLY IN THE SPEC.

font-feature-settings Standard CSS3 properties and values

font-feature-settings:

"liga";

font-feature-settings:

"liga" 0,
dlig";

font-feature-settings:

"tnum";

font-feature-settings:

"thum",
"lnum";

font-variant-ligatures:
common-ligatures;

font-variant-ligatures:
no—common-ligatures
additional-ligatures;

font-variant-numeric:
tabular-nums;

font-variant-numeric:
tabular-nums
lining-nums;

416 CHAPTER 11 Text and fonts

(continued)

font-feature-settings Standard CSS3 properties and values

font-feature-settings:
"frac";

font-feature-settings:
"hist";

font-feature-settings:
"ssQ1";

font-variant-numeric:
diagonal-fractions;

font-variant-alternates:
historical-forms;

font-variant-alternates:
styleset(1);

Text columns

Standard Prefixed

X <‘ - 1.0
[3}
[}
f=
o _
Bo e - 15
2
3
[]
86 £ 100 -
28|
5° |
g O 11.10 -
2
m

® -

Column count and width

Columns in printed media, such as newspa-
pers and magazines, make text easier to read
by keeping the line length to an optimal 10—
15 words. With CSS2, the only way to create
columns of text is to split the content among
multiple elements and then position them on
the page. This causes issues when updating
the content, because you have to make sure
it remains balanced, and when reading it,
because nothing in the markup indicates that
the two elements share a common text
source. CSS3 adds the ability to render any
element across multiple columns, solving
both issues. You'll learn how in this section.

IMEVER AM REALLY SATISFIED THAT I LNDERSTAND ANYTHING:

Here'’s a Simple page with a Couple BECALISE. LNDERST AND TT WELL AS T MAY, MY COMPREHENSTON CAN

of paragraphs of text:

<body>
<p>I never am really
satisfied...</p>
<p>In almost every
computation...</p>
</body>

ONLY BE AN INFINITESIMAL FRACT ION OF ALL T WANT TO
LMNDERST AND ABOUT THE MANY COMMECT IOMS AND RELAT IOMS WHICH
OCEUR TO ME. HOW THE MATTER TN GUEST TON WAS FIRST THOUGHT
OF OR ARRIVED AT, ETC.ETC

TN ALMOST EVERY COMPUTATION A GREAT VARIETY OF
ARRANSGEMENTS FOR THE SUCCESSTON OF THE PROCESSES IS
POSSIBLE. AND VARIOUS CONSIDERAT IONS MUST INFLUENCE THE
SELELT IONS AMONGST THEM FOR THE PURPOSES OF A CALLULAT ING
ENGINE. OME ESSENTIAL OBJELT IS TO CHOOSE THAT ARRANGEMENT
WHICH SHALL TEMD TO REDUCE TO A MINIMUM THE TIME NECESSARY
FOR COMPLET ING THE CALLULAT ION.

Turning that into two columns of
text is straightforward:

body {
column-count: 2;

}

The text flows naturally into two
columns with no markup changes,
as you can see in the screenshot.

An alternative approach is to spec-
ify a column width:
body {

column-width: 260px;
}

With a window 640 pixels wide, as
in this example, and taking into
account page margins and padding,
this has a result that’s identical to
the previous rule.

Text columns

INEVER AM REALLY SAT ISFIED
THAT I UMDERST AND ANYTHIMNG:

FRACTION OF ALL T WANT TO
LUMDERST AND ABOUT THE MANY
CONNECTIONS AND RELAT IONS
WHICH OCCUR TO ME. HOW THE
MATTER IN QUEST ION WAS FIRST
THOUGHT OF OR ARRTVED AT, ETC,
ETC

IN ALMOST EVERY COMPUTATION

I NEVER AM REALLY SATISFIEDR
THAT I UMDERST AND ANYTHING:
BECAUISE, UMDERST AND IT WELL
AS I MAY, MY COMPREHENSTION CAN
ONLY BE AN INFINITESIMAL
FRACTION OF ALL T WANT TO
LMNDERST AND ABOUT THE MANY
COMNECTIONS AND RELATIONS
WHICH OCCUR TO ME. HOW THE
MATTER IN GUESTION WAS FIRST
THOWEHT OF OR ARRIVED AT.ETC.
ETE

IN ALMOST EVERY COMPUTATION

417

A GREAT VARIETY OF
ARRAMGEMENT'S FOR THE
SULCESSION OF THE PROCESSES
IS5 POSSIELE, AND VARIOUS
COMSIDERAT IONS MUST
INFLUENCE THE SELECTIONS
AMONGST THEM FOR THE
PLRPOSES OF A CALCLLAT ING
ENGIMNE. OME ESSENTIAL OBJECT
IS TO CHOOSE THAT
ARRANGEMENT WHICH SHALL TEND
TO REDUCE TO A MINIMUM THE
TIME NECESSARY FOR
COMPLETING THE CALCULATION

A GREAT VARIETY OF
ARRANGEMENT S FOR THE
SUCLESSION OF THE PROCESSES
IS POSSIELE. AND VARIOUS
CONSIDERAT IONS MUST
INFLUENCE THE SELECTIONS

COMPLET ING THE CALEULATION

The difference between the two becomes obvious if the browser win-

dow is wider. Here are the same two pages at 1024-pixel width.

THEVER AN REALLY SATTSFIED THAT TUsDERSTAD
AN THENG: BECAUSE. LMDERST M TT WELL A5 T MAY.

- BE
FRASTION OF ALL T WAT T LMDERST ARD ABOUT THE
MANY COMMECT TONS A0D RELAT 10MS WNECH OCCLR TO
ME. HOW THE MAT TER IN GUEST 10N WAS FIRST

OF OR ARRTVED AT ETE ETE

TN ALMOST EVERY COMPUTAT 108 A GREAT VNRIETY OF

column-count: 2 at 1024px width

NOTE THAT NONE OF THE COLUMNS SHOWN IS EXACTLY 260 PIXELS WIDE.

THE COLUMNS WILL ADJUST THEIR WIDTH SO THEY USE THE ENTIRE
HORIZONTAL SPACE AVAILABLE. IF YOU WANT COLUMNS OF AN EXACT WIDTH, ~_

YOU SHOULD PUT THEM IN AN APPROPRIATELY SIZED CONTAINER ELEMENT.

TMEVER M REALLY SATISFIED

THAT T CMCERST M A0 THING:

BLOALEL, LNDLRST A IT WELL A%
COMPREMENSTON CAN

[

GREAT VARIETY OF

MATTER TM GUEST TON WaS FTRST
THOLGHT OF OR ARRIVED AT ETE,

IHALWCST EVERY COMPUTATIONA paur

FOR THE SLCCESSTON OF THE
PROCESSES 18 POSSIRLE, M
WARIOUS CONELIRAT 100G MusT

THE TIME MECESSARY FOR
COMPLET IMG THE. CALCULAT IOW,

column-width: 260px at 1024px width

CHAPTER 11 Text and fonts

Column spans

You don'’t always want everything to fit neatly into columns. You may

sometimes want an individual element to span multiple columns. For

example, in newspapers it's common for photographs to span multiple

columns of text.

Inserting an element in the text
doesn’t produce useful results:

<p>I never am really satisfied that
I understand anything; because,
understand it well as I may, my comprehension
can

o</ p>

The image is 720 pixels wide, and
the columns are 260 pixels wide.
The result is that the image sticks
out from its column and lies under-
neath the text of the next column.

One useful approach is to limit the
width of any images. When columns
are in use, a width of 100% applies
to the width of the column rather
than the width of the page:
img {

max-width: 100%;
}
But for pictures that are far wider
than they are high, the result may be
that the image is too small. We need
a way for an element to take up
100% of the page width and have
the text columns flow around it.
This is what column-span 1s for.

IMEVER AM REALLY SATISFIED
THAT I UMDERSTAND ANYTHING:
BECAUSE. UNDERST AND IT WELL
AS T MAY. MY COMPREHENSION CAN
ONLY BE AN INFINITESIMAL
FRACTION OF ALL T WANT TO
LMDERST AND ABOUT THE MANY

USER FRIENSALY by 4.0, e Frarer

WHIZH OLELR TO ME, HOW THE
MATTER IN GUEST ION WS FIRST
THOUGHT OF OR ARRIVED AT, ETCE,
ETE

IN ALMOST EVERY COMPUTATION
A GREAT VARIETY OF

I MEVER AM REALLY SATISFIED
THAT I LMDERST AND ANYTHING:
BECALISE, UNDERST AND IT WELL
AS I MAY, MY COMPREHENSTION CAN
ONLY BE AN INFINITESIMAL
FRACTION OF ALL T WANT TO
LNDERST AND ABOUT THE MANY

seLec]1oMs
.

ETE

IN ALMOST EVERY COMPUTATION
AGREAT VARIETY OF

CONMECT IONS D RELATIONS
WHICH OCLUR TO ME. HOW THE

MATTER IN GUEST ION WAS FIRST
THOUGHT OF OR ARRIVED AT ETC.

AMONGST THEM FOR THE
OF A CALLULAT ING
ENGINE. OME ESSENTIAL OBJECT

TO REDUCE TO A MINIMUM THE
TIME NECESSARY FOR
COMPLET ING THE CALCULATION

ELT
END
HE

MEED AITH

JOCESSES
i AsmaecT
ABOUT T?

iy

In the current CSS3 Multi-column
spec, the column-span property can
take one of two values: 1 or al1. The
default is 1: elements span a single
column. A value of a11 makes the
element span every column:
img {

max-width: 100%;

column-span: all;

Gapsandrubs

The column-gap property allows you
to control the spacing between col-

umns:

body {
column-width: 200px;
column—-gap: 100px;

Three properties control the column
rule. This example shows all three of
them:

body {
column-width: 200px;
column—gap: 100px;
column-rule-style: solid;
column-rule-color: #999;
column-rule-width: 20px;

}

Note that these are analogous to the
border properties.

Rather than specify the three prop-

erties individually, you can use a

Text columns 419

IMEVER AM REALLY SATISFIED ONLY BE AN INFINITESIMAL

THAT I UMDERST AND ANY THING: FRACTION OF ALL T WANT TO

BECAUSE, UNDERSTAND IT WELL LINDERSTAND ABOUT THE MANY
LA

MATTER IN GUEST ION WAS FIRST
THOUGHT OF OR ARRIVED AT,
ETC.ETC

IN ALMOST EVERY COMPUTATION
AGREAT VARIETY OF TO REDUCE TO A MINIMUM THE
ARRMNGEMENTS FOR THE TIME NECESSARY FOR
SUCCESSION OF THE PROCESSES cOMPLETING THE CALCULATION
15 POSSTBLE. AND VARTOUS

IHEVER AM REALLY COMPUTATION A GREAT

SATISFIED THAT I VARIETY OF ARRANGEMENT S

LMDERST AND ANY THING: FOR THE SUCCESSTON OF

BECALISE. LMDERST #40 IT THE PROCESSES IS

WELL 45 T MAY, MY POSSIBLE, D VARIOUS

COMPREHENSTON CAH ONLY COMNSIDERAT IONS MUST

BE AN INFINITESIMAL INFLUENCE

FRASTION OF ALL T WANT SELECTIONS AMONGST THEM

TO UMDERST 4D ABOUT THE FOR THE PURFOSES OF A

MANY COMNELTIONS 4D CALCULAT NG ENGIHE. ONE

RELAT IONS WHICH OCOUR ESSENTIAL OBJECT ISTO

TO ME. HOW THE MATTER IN CHOOSE THAT ARRANGEMENT

GUEST ION WAS FIRST WHICH SHALL TEND TO

THOUGHT OF OR ARRIVED AT. REDUCE TO A MINIMUM THE

ETC.ETE TIME NECESSARY FOR
COMPLETING THE

IN ALMOST EVERY CALCULATION

IMEVER AM REALLY COMPUT ATION A GREAT

SATISFIED THAT I VARIETY OF ARRANGEMENTS

LMDERST AMD MY THING: FOR THE SLCCESSTON OF

BECAUSE. UNDERST AND IT THE FROCESSES IS

WELL 45 I MAY. MY POSSIELE. AND VARIOUS

COMPREHENSION CAN OMLY CONSIDERAT IOMS MLIST

BE AN INFINITESIMAL INFLUENCE

FRACTION OF ALL T WANT SELECTIONS AMONGST THEM

TO UNDERST AND ABOUT THE FOR THE FURFOSES OF A

MANY CONNELTIONS AD CALCULATING ENGTHE. ONE

RELATIONS WHICH OCCUR ESSENTIAL OBJECT ISTO

TO ME. HOW THE MATTER TN CHOOSE THAT ARRANGEMENT

GUESTION WAS FIRST WHICH SHALL TEND TO

THOUSHT OF OR ARRIVED AT, REDLICE TO A MINIMUM THE

ETE.ETE TIME NECESSARY FOR
COMPLETING THE

IN ALMOST EVERY CALCLLATION

420 CHAPTER 11 Text and fonts

1 INEVER M REALLY ! COMPUTATION AGREAT
shorthand version to set all three at i dontarias 1 commmouAmRT
UNDERST AND ANY THING: I FOR THE SUCCESSTON OF
once: BEGAUISE, UNDERSTAND IT | THE PROCESSES 15
WELL AS T MAY. MY | POSSIBLE, AND VARTOUS
COMPREHENSTON CAN ONLY | CONSIDERATIONS MUST
body { BE AN INFINITESTMAL | INFLUENCE THE
y FRACTION OF AL T WANT | SELECTIONS AMONGST THEM
. TO LNDERST AND ABOUT THE FOR THE PURPOSES OF A
column-width: ZOODX ’ MANY CONNECT IONS AND ' CALCULATING ENGTNE ONE
RELAT ONS WHICH OCCUR ! TAL OBJECT T5 TO
column—gap: 100px; TO ME HOW THE MATTER IN T CHOOSE THAT ARRANGEMENT
GUESTION WAS FIRST T WHICH SHALL TEND TO
column-rule: 4px dashed #333; THOUGHT OF OR ARRIVED AT, | REDUCE TO AMINIMUM THE
ETC.ETC. I TIMENECESSARY FOR
} | COMPLETING THE
TN ALMOST EVERY | GALEULATION

NOTE THAT THE COLUMN RULE SITS WITHIN THE COLUMN GAP—INCREASING OR
DECREASING THE WIDTH OF THE COLUMN RULE DOESN'T MOVE THE COLUMNS
FARTHER APART OR CLOSER TOGETHER. YOU CAN EVEN HAVE THE COLUMN RULE
EXTEND UNDERNEATH THE COLUMNS, AS IN THE FOLLOWING EXAMPLE.

In this example, the column rule INEVER M REMLY

is wider than the column gap: BECALSE. NDERSTAD 1T

body { BE AN INFINITESIMAL
column-width: 200px; TO LNOERST A ABOLT THE
column-gap: 100px; RELATIONS WHICH OCCLR

TO ME. HOW THE MATTER IN

. 3 GUEST ION WAS FIRST
CO1umn_FUIe' 300px rldge THOUGHT OF OR ARRIVED AT,
#ccc;

ETL ETL
}

IN ALMOST EVERY

Wrapping and overflow

Text wrapping has traditionally been something that, as a web author,
you had to let the browser take care of. In situations where you'd like
more control, CSS3 offers a couple of new properties: word-wrap and
text-overflow. This section looks at each in turn.

Word wrap

CSS3 provides a word-wrap property that controls whether line breaks
are allowed in the middle of words. Normally, text wrapping only
occurs at spaces and punctuation. If a word is too long to fit inside the
containing element without the opportunity for a break, then the ele-
ment expands to contain it.

For regular paragraphs of text, this
isn’t usually a problem. But it can be
an issue for headings and URLs, par-
ticularly if they’re in constrained-
width containers such as sidebars or
text columns. Imagine that you have
a word-of-the-day feature in your

The sidebar has a
width of 15em, which is normally

site’s sidebar.

plenty of room; but one day the
word is a long one:

<div>

Wrapping and overflow 421

Standard Prefixed

1.0 -

3.5 -

5.5 -

10.50 -

Browser support quick check:
word-wrap

@eCL@ee

1.0 -

<h1>Floccinaucinihilipilification</h1>
<p>The act or habit of describing or regarding

something as unimportant.</p>
</div>

Even though the width of the ele-
ment is constrained, the length of
the word forces the entire con-
tainer to be wider:

div { width: 15em; }

Note that the paragraph is still
constrained by the width set.

Here'’s where you can use the
word-wrap property. Setting a value
of break-word allows wrapping to
occur within the long word:

div { width: 15em; }
hl { word-wrap: break-word; }

1 1
\ FLOCCINAUCINIHILIPILIFICATION
]

1
| THE ACT OR HABIT OF .
| DESCRIEBING OR REGARDING A
1 SOMETHING A5

| UNIMPORTANT. :

1 FLOCCINAUCI

+ NIHILIPILIFI
| CATION

I
I
1 THE ACT OR HABIT OF
| PESCRIBING OR REGARDING
| SOMETHING AS
1 UNIMPORT ANT.

I T R i

422 CHAPTER 11 Text and fonts

Text overflow

It may be that you want to keep the word Fesmmmm==- 1
on one line, so break-word isn’t appropri-

i
. . . I

ate. A normal way to do this in CSS2 is to i FLOCCINAUCTM |

set the element to overflow: hidden.hl { | AT ORWEIT OF !

overflow: hidden; } | DESCRIBING ORREGARDING |

| SOMETHING AS |

This works, but it doesn’t look tidy. The I ORTANT. i

word is cut off part way through a letter. bommmmmmm-- -

_ P ——— 1

Tl.le text-overflow property lets you make | !

things look neater: ' FLOCCINAUC.. !

hl { : THE ACT OR HABIT OF !

overflow: hidden; ; DESCRIBING OR REGARDING |

text-overflow: ellipsis; : mgﬁmf :

¥ e —— -

Now the word ends at a letter, and an
ellipsis gives a visual indication that the
word has been truncated. This property is
particularly useful if you're dealing with
user-generated content that appears in
constrained areas —for example, a Twitter
feed in a sidebar.

Standard Prefixed

1.0 -

7.0 -

6.0 -

text-overflow

CH=EON

Browser support quick check:

1.3 -

Summary 423

Browser support

Support for downloadable fonts and WOFF is now available in all
major browsers, but so far, the more advanced font-control features are
available only in Firefox. In terms of other text features, the other
browsers take the lead.

€ e o0

12 14 4 6 8 |9 [10 [11.1 | 115 5 5.1
@font-face ° . . ° o . ° ° ° ° °
WOFF . . ° . ° . ° ° °
font-size- . °
adjust
Font features o o o
CSS columns o o o o ° . ° o o
Column span o o o . o
word-wrap) . . ° . ° °
text-overflow ° . . .)
Key:

e Complete or nearly complete support
o Incomplete or alternative support
Little or no support

Summary

Text has always been a fundamental component of web content, but
until recently control of typography has been somewhat limited. In this
chapter, you've seen how @font-face can finally provide beautiful
(while still accessible) text on the web, and how web font services can
make it easier to get those fonts onto your web pages. You've also had a

tour through the desktop-publishing-like font control capabilities CSS3

424

CHAPTER 11 Text and fonts

will give us In the future through font—feature-settings. And, continu-
ing the publishing theme, you've seen the new features for controlling
columns of text. Finall_y, you saw some CSS3 features for Controlling
text wrapping and overflow, which are useful when you're fitting con-
tent into text columns and other narrow containers.

THAT'S THE END OF THE BOOK, BUT HOPEFULLY JUST THE START OF YOUR JOURNEY
WITHHTMLS AND CSS3. BOTH STANDARDS ARE EVOLVING AT AFASTER RATE THAN EVER
BEFORE, OPENING NEW POSSIBILITIES FOR WEB AUTHORS EVERY MONTH. IT'S AN
EXCITING TIME TO BE INVOLVED WITH THE WEB; ALL OF US HERE AT COLUMBIA
INTERNET (AND OUR FRIENDS AT MANNING PUBLICATIONS) HOPE YOU CAN TAKE THE
KNOWLEDGE YOU'VE GAINED FROM THIS BOOK AND GO OUT AND MAKE A BETTER WEB!

A history of web standards

n this appendix, you'll get a brief overview of how the web was invented

and its subsequent development. You'll also learn how standards are
made by the W3C, why the Web Hypertext Application Technology
Working Group (WHATWG) was formed, and the aims behind HTML5.
To conclude, we'll take a brief look at the process behind the other major
standard that’s covered in this book: CSS3. None of this information is
necessary to use web standards but, like many other human endeavors,

web standards are a product of their history as much as they are rational

technical documents. An appreciation of the history will help you under-

stand why the standards are the way they are.

A short history of the web

In the following sections, you'll learn about the history of the web, from

its beginnings as an easy way to share physics papers to its current incar-
nation as the repository of all the world’s knowledge and possible replace-

ment for traditional operating systems. You'll also learn about the World
Wide Web Consortium (W3C) and its role in providing the standards on

425

426 AFPPENDIX A A history of web standards

which the entire web relies. You'll see how web developers have
pushed the boundaries of what’s possible with HTML4 and CSS2 to
create the need for new standards, and you'll learn about how many of
the common issues that today’s web developers encounter can be
solved easily in HTML5 and CSS3.

In the beginning

In 1989, Tim Berners-Lee was thinking about the difficulties scientists
at CERN encountered when sharing their papers and research results.
Each had tools for writing papers and other documentation on their
own computers, but CERN was mostly populated by researchers visit-
ing from the universities that employed them. They brought their own
computers with them, so there was a wide variety of different comput-
ers, each with unique documents. If you wanted a document from a fel-
low researcher’s computer, then it was likely you’'d either need to learn
to use a different computer or program than you were used to, or you'd
need to transform the output of your colleague’s software to make it
compatible with your own. Berners-Lee had written several of these

DOM LEVEL 1
OCTOBER 1998 s
— 205 MILLION
Wil e JUNE 2004 WEBSITES
1998 :
: DOM LEVEL 2
- NOVEMBER 2000
DECEMBER196 DOM LEVEL 3
ARRIL 2004
7~ XHTML
{ WL 2007
- o wchmeh 130 MILLION
oy |2 i: . DEGEMBER 1999 WESSIRES
OCTOBER3 G- &S
| e
va: e
MAY 1996
| >

A short history of the web 427

conversion utilities but realized that, instead of a succession of small
utilities, he would be better off solving the general problem. He
believed a hypertext system would be ideal, but systems at the time
were too complex and difficult to author for. He set about designing a
simple hypertext system based on Standard Generalized Markup Lan-
guage (SGML) for a distributed client-server architecture.

This culminated in the release, on Christmas Day 1990, of the World-
WideWeb browser and server. It allowed each individual to publish
their documents in a standard format that anyone else could then read
across the network using the browser. The browser didn’t need to be a
particular bit of software; anyone was free to implement a viewer. The
HTML document format was plain text interspersed with special tags
marked by angle brackets, such as <p> for

paragraph or for list item, to mark the 1901943

purpose of the text. These documents could HTML 10 ERA
be easily created on any type of computer. STHPLE HYPERLINKS AND TRAGES

The idea quickly caught on in the academic a a

world, and several more browsers
appeared: libwww, Mosaic, Midas, Erwise,
ViolaWWW, and Arena, among others. The
authors of the various web browsers collab-
orated on the www-talk mailing list, dis- =-
cussing implementation strategies and

arguing about new features. Implementa—

tion usually won out over theory—when sgrver

Marc Andreessen proposed the <ing> tag, it ~ =======spessnnus
CLIENT

was felt by many to be the worst of several

proposals put forward. But Andreessen was v
the first person to implement his proposal,
. . IT'S OK FOR DOCUMENTATION,
so that was the tag everyone used in their BuT I ¢ANT SEE IT cATCHING
ON FOR ANYTHING ELSE.

pages, and it’s the tag we still use today.

The primacy of features over standardiza-
tion threatened to destroy the ideals on
which the web was founded before it even
really got started —the situation was heading

428

AFPPENDIX A A history of web standards

back toward the original state of affairs — documents compatible with
only a single client application.

In an effort to stem the tide, Tim Berners-Lee and Dave Raggett pro-
duced a draft document in April 1993, “Hypertext Markup Language,
Ver 1.0,” and submitted it to the Internet Engineering Task Force
(IETF).

The IETF was the standards body that controlled most of the standards
relevant to the internet: TCP/IP for network communication; DNS for
name resolution, so you can type in an easy-to-remember address like
yahoo.com instead of 67.195.160.76; and SMTP for email, among many
others. The published standards were known as Requests for Com-
ments (RFCs), reflecting the consensual attitude that marked the
growth of the internet over the previous two decades.

The HTML 1.0 draft was overtaken by the rapid development of
browsers. In the time it took to move through the standards process,
the state of the art in web browsers moved on significantly. But the
web was becoming increasingly popular, so the need for some sort of

standard was even more acute: HTML 1.0 was soon to be replaced by
HTML 2.0.

Browser wars

The first commercially successful web browser was Netscape Naviga-
tor. Version 1.0 was released on December 15, 1994 and quickly cap-
tured huge market share. It was based on the Mosaic code originally

developed by Marc Andreessen.

Also in 1994, the World Wide Web Consortium (W3C) was founded by
Tim Berners-Lee. The goal of the W3C was to encourage the adoption
of standards across the internet industry, but initially the HTML stan-
dard efforts remained focused within the IETF.

In August 1995 Microsoft launched Internet Explorer, also based on
the Mosaic code. It was not very competitive with Navigator in fea-
tures and was quickly superseded by version 2.0 in November 1995.

The same year also saw the
launch of Yahoo.com (March
1995), Amazon.com (July 1995),
and eBay.com (September 1995),
along with many other shorter-
lived web brands—or, as they
soon became known, dot-coms.
The internet boom was ready to
happen, and both Netscape and
Microsoft wanted to be in posi-
tion to take advantage of it.

The first official standard for
HTML (HTML 2.0) was published
in April 1994 with revisions in
July 1994 and February 1995; it
was finally accepted as a standard
by the IETF in September 1995.
The goal of the document was to
describe common browser capa-
bilities as of June 1994, so it
reflected most of the functionality
available in the browsers released
that year.

A short history of the web 429

1993-1995

HTML ZO ERA

INTRODUCING THE FORM ELEMENT

SERVER

CLIENT

NOW I CAN SHOP ONLINE-
BOOKS, CLOTHES, UNSHIELDED
TWISTED PAIR CABLES...

<

)43

By the time versions 3.0 of IE and Navigator were released in August

1996, IE was much closer in terms of features, and the browser wars

were on. In an effort to grab market share, both vendors rushed to

implement new features with little regard for compatibility. Initially

this wasn’t a problem, because Netscape had as much as 80% of the

market; but as [E gained ground, thanks to improved features and an

aggressive marketing campaign, developers had to contend with two

browsers with similar features but very different implementations.

430 AFPPENDIX A A history of web standards

1995-1997

HTML 32 ERA

CLIENT-SIDE INTERACTIVITY
WITH JAVASCRIPT

2 =

SERVER

CLIENT

HMM, ANNOYING ANIMATIONS AND
LAYOUT TABLES, NOT SURE THIS
IS PROGRESS.

The W3C attempted to stem the tide by
publishing a draft standard, HTML3. It
wasn’t compatible with either of the major
browsers, so it struggled to gain traction.
A short-term compromise was reached in
HTML 3.2. This more closely reflected the
functionality of contemporary browsers.
Many of the features proposed for
HTML3 were carried forward to the spec
for HTMLA.

1997-2010

HTML 40 ERA

CLIENT-SIDE INTERACTIVITY
WITH JAVASCRIPT

B—2%

SERVER

CLIENT

B—%

I CAN DO EVERYTHING ON THE
WEB. NO NEED FOR DESKTOP APPS/

A short history of the web 431

W3C standards process in 1998

In May 1998, the W3C formalized its standards process with the publication of
the document “World Wide Web Consortium Process.” It listed three stages a
standard had to go through:

& Working Draft (WD)—The proposed standard may go through several
drafts. Once the standard has stabilized, the editor issues a Last Call for
comments, and then the standard can move on to the next stage.

@ Proposed Recommendation (PR)—The Proposed Recommendation stage
lasts at least four weeks. A PR is voted on by W3C members. After the vote,
the standard is either returned to the Working Draft stage or, perhaps with
modifications, advances to be a full recommendation.

@ W3C Recommendation (R)—A Recommendation indicates that consensus
has been reached among W3C Members and the specification is appropriate
for widespread use. After the standard has become a Recommendation, only
minor revisions are allowed to correct minor errors or clarify issues.

From web pages to web applications
As you've just seen, HTML was originally designed for sharing docu-
ments. The only interactive elements in HTML 1.0 were the hyperlinks
between documents. HTML 2.0 introduced forms, which allowed users
to send information back to the server. Shortly after that, Netscape
introduced JavaScript that enabled web pages to respond to user
actions without going back to the server at all. In this section, you'll see
how the addition of client-side interactivity turned out to be a game-

changing move for the web.

Although the early versions of JavaScript were limited, it caught the
imagination of web developers. It was initially developed by Netscape,
but was copied by Microsoft and soon became standardized under the
umbrella of Ecma International as ECMAScript in 1997 (these days,
though, nearly everyone still refers to it as JavaScript).

JavaScript can update browser content through the Document Object
Model (DOM). The DOM represented the HTML document as a tree
of objects, so you'll frequently hear it referred to as a DOM tree. With
the release of Netscape Navigator (now Communicator) 4.0 and IE
4.0, the DOM became a complete interface, and developers were able

432

AFPPENDIX A A history of web standards

to produce highly interactive web pages. This became known as
Dynamic HTML (DHTML).

Unfortunately, the DOMs implemented in Navigator and IE were very
different —far more incompatible than the implementations of Java-
Script in each browser. This meant that coding DHTML in a cross-
browser —compatible manner was something of a challenge; develop-
ers had to produce two versions of their application code, one for IE
and one for Navigator. The extra code made it more likely that devel-
opers would make mistakes. Sites that made heavy use of DHTML
tended to be unreliable and slow in at least one, if not both, major
browsers. As a result, DHTML and JavaScript gained a bad reputa-
tion. On the other hand, JavaScript was often the only way to work
around the incompatibilities between browsers. This is a purpose for
which JavaSecript is still used extensively today. The W3C stepped in
with the DOM Level 1 standard in late 1998, and Microsoft provided
partial support for it in IE5. Netscape planned to add support in its ver-
sion 5.0; but as Netscape struggled to compete with the far greater
resources of Microsoft, that plan never saw the light of day. When
Microsoft released versions 5.5 and 6.0 of IE, version 6.0 claimed “full
DOM Level 1 support,” although inconsistencies in the standard meant
that not everyone agreed. Meanwhile, Netscape faded into the back-
ground, was bought out by AOL, and eventually gave up on browser
development. The code for Navigator was donated to the world as
open source and eventually was reborn as Firefox.

W3C standards process in 1999

In November 1999, an update to the “World Wide Web Consortium Process” doc-
ument added an additional stage to the process: the Candidate Recommenda-
tion. This recognized the need for implementation feedback prior to the
standard being published as a Recommendation:

@ Working Draft (WD)—The initial publication of the standard, used to gather
public feedback. A standard typically has several Working Drafts before
advancing to the next stage.

@ Candidate Recommendation (CR)— After the specification has stabilized, it
becomes a CR. At this point, browser vendors are expected to begin implementing

A short history of the web 433

(continued)

the standard in order to provide feedback about its practicality. Itisn’t unusual
for a standard to revert to a WD several times after becoming a CR.

& Proposed Recommendation (PR)— After some practical implementation
experience has been gained, preferably at least two independent and
interoperable implementations, the standard can advance to the PR status.
This is an opportunity for final review within the W3C. The standard is either
approved by the Advisory Committee and advances to a full Recommenda-
tion, or it returns to WD status for further work.

@ W3C Recommendation (R)— As before, when published as a Recommenda-
tion, the standard is ready for widespread deployment.

After the frantic pace of releases in the second half of the 1990s, things
slowed down for HTML. The DOM Level 2 spec was published in late
2000, followed by DOM Level 3 in 2004. CSS saw a major revision to
2.1 in February 2004, but it didn’t see full support in IE until the ver-
sion 8 release in March 2009.

USER FRIENDLY by J.D. "llliad” Frazer

I NEED A WEBSITE THAT I ALREADY TOLD YOU. BUT WHAT DOES IT
WILL MAKE ME INTO A IT NEEDS TO MAKE ME NEED To DO?
MILLIONAIRE. CAN YOU | INTO A MILLIONARE. —_—

—
LOOK, IF YOURE NOT
A 600D ENOUGH WEB
DEVELOPER TO
HANDLE THIS, |

CODE IT FOR ME?
ge/ SURE, WHAT
DOES IT NEED
TO DO?

COFTRIGHT E3008 2.0 -1iad- Frazor TP/ WAW TSIRIRIINDLY.0RE]

=

Microsoft, no longer under much pressure to advance IE other than to
add features that would be useful within the company’s own products,
drastically reduced the resources devoted to its development. One of
the few features added in this period was the XMLHTTP ActiveX con-
trol (equivalent to a plug-in) as a standard component of 1E5. The
XMLHTTP object allowed JavaScript to make an asynchronous
request back to the server to get new data without the user loading a

434

AFPPENDIX A A history of web standards

new page. This feature was required for Microsoft’s new web-based
client for the Exchange 2000 email server.

The stage was now set for the boom, from 1998 to 2000, and bust, from
then until 2002, of the dot-com bubble. The web exploded, both in
popular awareness and size, taking advantage of all the features of
HTMLA and, somewhat later, CSS2. Where features were lacking in
the standards, developers used JavaScript or third-party plug-ins,
such as Macromedia’s (now Adobe’s) Flash, to fill in the gaps.

Still, many people thought the future of the web was not with HTML
and CSS. This quote from a Dr. Dobbs article in 2002 is typical: “Even
today, HTML offers scant control over design essentials like typogra-
phy and screen layout, and does little to accommodate complex interac-
tions between browsers and servers. Making a trip to the server after
each mouse click is a fairly inefficient way to deliver information. As
Web development increasingly focuses on applications, markup’s limi-
tations are becoming more and more apparent.”

Two events heralded a new approach to web applications. First, the
Firefox browser, which is the open source descendant of Netscape
Navigator, added its equivalent to IE's XMLHTTP: the XmlHttpRequest
(XHR) object. Second, Google launched a web-based email application
that took advantage of this feature: Gmail.

Gmail was unlike contemporary websites: after the interface was
loaded, the page was hardly ever reloaded. Whenever the user clicked
a link, instead of visiting a new page, some JavaScript intercepted it,
sent an XHR request to the server, and then updated the already-
loaded page when the request returned. Gmail worked in both IE and
Firefox, and it was fast to use, comparable to desktop email clients

such as Microsoft Outlook.

Although it was far from the first web application to use XHR or simi-
lar techniques, Gmail captured the imagination of web developers
worldwide and led to a spurt in XHR-based web applications and
renewed interest in JavaScript. The approach was soon given the acro-
nym AJAX (for Asynchronous JavaScript and XML), which helped to

A short history of the web 435

distance it from the tawdry reputation of DHTML despite being mostly
the same thing. Although the web had 10ng been touted as a platform
for applications, the AJAX trend looked like it had a chance of making
that possibility a reality.

The competing standards
You may have wondered what the W3C has been doing in the decade
since HTML 4.01 was released. It has, of course, been working on
plenty of standards other than HTML, but it’'s also working on a
replacement for HTMLA. The W3C decided that the future of HTML
lay in XML. XML is superficially similar to HTML —documents, tags,
and elements all exist in XML, but it has two major differences:

XML parsing ts much otricter than HTML. A few mistakes in an HTML
document will, in many cases, not even be noticed; the browser will
correct the errors as best it can and carry on. A single error in an
XML document causes the parsing to fail and an error message to be
displayed. The stricter approach allows browsers to be more effi-
cient, which is particularly useful on mobile and low-power devices.

XML 1 extensible. 1If you want to add new elements to your XML
page, you can do so. You describe those elements in a separate file
and link to it from your document. Your new elements are then just
as valid as any specified by the W3C.

The first step was to redefine HTML 4.01 as an XML standard.
XHTML 1.0 became a Candidate Recommendation in October 2000. It
contained no new elements or features; all the valid elements were
identical to those in HTML 4.01. The only changes came from it now
being a dialect of XML. The plan was to extend XHTML in a modular
fashion by plugging in new XML dialects. Some of the better-known
XML dialects the W3C expected to be plugged in to XHTML were
Scalable Vector Graphics (SVG), which became a CR in August 2000;
and MathML, an XML language for describing equations, which
became a CR in April 1998. The modular approach allowed different

technologies to be worked on at different paces.

436 AFPPENDIX A

XHTML SOUNDS GREAT!
WHY ISN'T EVERYONE
USING IT?

v~
N

BUT WOULDNT THAT ENFORCE
HIGHER STANDARDS?
IT SURELY CANT BE THAT BAD.

A history of web standards

THE ERROR HANDLING IS
TOO DRACONIAN-HALF
THE WEB WOULD BE NOTHING ™~
BUT ERROR MESSAGES IF WE
SWITCHED TOMORROW.

\ Lo

OK LET ME SHOW YOU AN EXAMPLE,
HERE ARE TWO IDENTICAL PAGES,
EXCEPT ONE IS XHTML AND ONE IS HTML.

. TRHTML Test P

" Fage - Mamoroka. CICICH |- Namoraka’ =]
Bl Edt View istory Bookmarks Tools pelp Die_ Sk Yew Haory Bookmax
| BBl HTML Test Page + [- | BBl hetpfiwww.boog.. es/xht -
This page contains an error XML Parsing Error: not well-formed
Location: http:// boogdesi les/xhtml.xh
There is an error in this page & Line Number 9, Column 40:
«<p=There is an error in this page &-:Iiw
Done Done =
YOU MUST HAVE MADE
A MAJOR MISTAKE IN BOTH DOCUMENTS,
' TO GET SUCH A HORRIBLE I USED A RESERVED CHARACTER.
/ ERROR MESSAGE! THE AMPERSAND,
WITHOUT THE CORRECT
/ ESCAPE SEQUENCE.
f\ ONLY ONE CHARACTER IS WRONG? \ l (
WELL, THAT RESULT DOES SEEM
ALITTLE EXCESSIVE, BT NOW YOU MIGHT WANT TO DISPLAY
YOU KNOW YOUI'VE MADE USER CONTENT, OR PULL IN CONTENT
A MISTAKE AND CAN CORRECT IT.

\

I MIGHT HAVE KNOWN IE WOULD
COME INTO IT SOMEWHERE..

FROM ANOTHER WEBSTITE: THAT HAS
TO BE VALID TOO. AND EVEN IF YOU GET
THINGS RIGHT, IE DOESN'T SUPPORT XHTML
CORRECTLY BEFORE VERSION 4.

The drive toward XML meant that HTML was largely sidelined. The
focus was on building compound documents out of various XML dia-
lects. This included the HTML-like XHTML and the previously men-
tioned SVG, MathML, but also XForms, RDF (Resource Description
Framework), and any number of other proposals. It was envisaged that
you might write web applications without using any XHTML at all.

Step forward WHATWG 437

In 2004, at the W3C Workshop on Web Applications and Compound
Documents, Opera and Mozilla, concerned that the standards process
might become increasingly irrelevant to the web as it existed in the real
world, put forward a position paper outlining an alternative approach.
This paper outlined seven “Design Principles for Web Application
Technologies” and, in the context of these, proposed answers to the
questions the Workshop had set out to answer.

The document was voted down by the rest of the attendees, who
wanted to stick with the current XML, rather than HTML, -based
approach. Two days later, the Web Hypertext Application Technology
Working Group (WHATWG) was formed.

Step forward WHATWG

The WHATWG set out to define the next HTML standard according to
the seven principles set out in Opera’s and Mozilla’s document. They
underpin the entire approach taken by the WHATWG during the
development of HTMLS5, so let’s look at them now:

“Backwards compatibility, clear migration path”—In 2004, 1E6 was the
browser of choice for 80% of web users. The WHATWG felt that
there was little point in specifying new HTML functionality unless it
could at least be emulated in IE6 with JavaScript. If a plug-in was
required to emulate the new features in IE6, then the chances were it
would never see large uptake among web developers.

“Well-defined error handling”— A major point of incompatibility in con-
temporary browsers was not what happened when the page author
got everything correct, but what happened when they made a mis-
take. The next standard should specify error handling and error
recovery.

“Users should not be exposed to authoring errors” — This addressed a major
difference of opinion with the XML-based approach at the W3C.
WHATWG wanted browsers to recover from errors gracefully and,
where recovery was possible, not display an error message to the

user —just like HTML.

438

AFPPENDIX A A history of web standards

“Practical use”—New features should be added based on use cases.
Ideally, these should be based on real issues developers experience in
working around the limits of existing standards.

“Scripting s here to stay” —JavaScript had become something of a sec-
ond-class citizen in XHTML. Although the WHATWG preferred a
declarative markup approach, especially for the initial application
state, it recognized that scripting will always have a significant role.

“Device-apectfic profiling should be avoided”—The W3C produced a cut-
down version of the XHTML spec for mobile devices. The
WHATWG felt that authors shouldn’t have to produce different ver-
sions of their markup for different devices.

“Open process” — Although the W3C has open mailing lists, it also has
private ones. WHATWG activity is conducted entirely under public
scrutiny.

This isn’t to say the principles of the WHATWG were entirely orthogo-
nal to those being followed by the W3C’s XML-focused working
groups, but there was a significant difference in approach. The W3C
continued to work on XHTML2 while the WHATWG worked on
HTML5. XHTML2 had the backing of the recognized standards body,
but it primarily appealed to people who wanted to use other XML-
based technologies. HTML5 garnered far more popular support with
its “evolution rather than revolution” approach and its exhaustive doc-
umenting of browser behavior.

In addition to the seven principles, the HTML5 spec took the step of
combining the separate HTML and DOM specs by the W3C. Experi-
ence had shown that trying to maintain them as two specifications led
to inconsistencies and incompatibilities. In the HTML5 spec, the DOM
became the basis of correct parsing—two implementations would be
interoperable if they produced the same DOM tree from an HTML
document.

Eventually the W3C realized that it risked being made irrelevant by
real-world events. In March 2007, it relaunched the HTML Working
Group. Mozilla, Apple, and Opera proposed that the WHATWG
HTMLS5 specs be taken as the starting point of this new group’s work,

CS92 evolves into C553 439

and the rest of the working group agreed. At this point, XHTML2 was
put on hold and everyone was able to agree that the future of the web
would be HTMLS5.

CSS2 evolves into CS53

While all this was going on in the world of markup, work was continu-
ing on CSS at the W3C in the form of CSS Level 3, or CSS3 for short.
CSS3 also tried to correct a number of past mistakes in drafting specifi-
cations, starting with fixing CSS2.

The CSS2 specification had been through the 1998 standards process
and thus had no implementation feedback before being published as a
Recommendation. As vendors tried to implement it, a number of issues
were found that made it impossible, or impractical, to achieve compli-
ance with the standard.

CSS 2.1 set out to rectify those mistakes and provide a solid, imple-
mentable base on which to build CSS3. The work to set CSS 2.1 right
has taken more than eight years, but was finally completed in June
2011. But the timing of this was unfortunate. IE6 was released in
August 2001, a few years after the CSS2 publication but a year before
the first draft of CSS 2.1. This is significant because 1E6 is the browser
that won the first round of the browser wars. It achieved 83% market
share by 2004 as Netscape collapsed. With no competition, Microsoft
wound up IE development; the web would be stuck on 1E6 for many
years. In comparison to the two—year—or—less gap between most previ-
ous IE releases, it would be nearly five years before IE7 appeared.
Even though 1E6 had good support for CSS2 compared to other brows-
ers available in 2001, it soon fell behind standards.

CSS3 is modular; it’s split into sections such as Backgrounds and Bor-
ders, Values and Units, and Text Layout. This means that instead of
waiting years for a huge, monolithic standard to be finalized, as has
happened with CSS 2.1, less controversial and more useful sections can
be prioritized and pushed through the standards process more quickly.
In the meantime, until a particular module is ready, the corresponding
section of the CSS 2.1 spec is regarded as the current standard.

440 AFPPENDIX A A history of web standards

HEY! IT SEEMS LIKE HALF
OF CSS3 IS REALLY €S5S 21

ﬁ /WHAT'S TAKING SO LONG?

BUT EVEN IE8 SUPPORTS €SS 21

\

AH!/ BECAUSE IT'S NO GOOD JUST
SAYING YOU MEET THE STANDARD:
YOU NEED TO BE ABLE TO PROVE IT/

IT'S ALL THE WORK OF THE SAME
GROUP AT THE W3C.
€SS2 HAD TO BE FIXED BEFORE
THEY COULD MOVE FORWARD. \

\

CSSZ BECAME A STANDARD UNDER
THE OLD PROCESS, NOW TWO
FULLY INTEROPERABLE |
IMPLEMENTATIONS ARE NEEDED. I

\

THE W3C HAD TO WALT FOR A LIBRARY OF TEST
CASES; WE NEED TO BE ABLE TO TEST
WHETHER BROWSERS MEET THE STANDARD.

\

EXACTLY. THE €SS 21 SPECIFICATION
FINALLY BECAME AW3C
RECOMMENDATION IN JUNE 2O

NOW THAT THE HISTORY LESSON IS OUT OF THE WAY, THE REST OF THE
APPENDIXES ARE TARGETED AT TAKING A COMPLETE NOVICE AT WEB

£~ DEVELOPMENT AND GIVING THEM ENOUGH KNOWLEDGE TO APPRECIATE THE REST
OF THIS BOOK. THEY ALSO CONSTITUTE A USEFUL REFRESHER COURSE FOR MORE
EXPERTENCED WEB AUTHORS. FIRST YOU'LL LEARN ABOUT HTML ITSELF.

HTML basics

f you've never created a web page before picking up this book, this
appendix will bring you up to speed on the fundamentals of Hypertext
Markup Language (HTML) so you can fully enjoy the rest of the book. It
covers these areas:

Basic HTML syntax: what it’s made up of

Common HTML elements for text, metadata, links, and images

What makes a particular text file an HTML document

How to learn by example with View Source
This short appendix will be a whirlwind introduction. To get you up to
speed as quickly as possible it’s opinionated about issues that are funda-
mentally a matter of style or preference. I won't waste your time showing
you several slightly different ways of doing the same thing; I'll concen-

trate on the things you need to know to understand the HTML in this
book.

442

AFPPENDIX B HTML basics

The components of hypertext

HTML is a language for describing hypertext documents. Hypertext
documents are made up of headings, paragraphs, bulleted lists, and,
importantly, links to other hypertext documents; it’s the links that con-
stitute the hyper part of hypertext. In this section, we'll look at things
from the bottom up, starting with how an HTML document indicates
the existence of a paragraph or a heading before combining everything
to make a document. The following diagram shows the concepts that
make up HTML, from simple components on the left to complete docu-
ments on the right.

HTML CONCEPT MAP

CONTENT

i \
TEXT
P TAGS
*

ELEMENTS == DOCUMENTS

ATTRIBUTES
SPECTAL /
CHARACTERS

Tags, elements, and attributes

A tag is a bit of text that acts as a point demarcation. To create a tag,
HTML gives certain characters special meaning: the angle brackets

< and >,

Putting characters within angle brack- st END
ets creates a tag. You can see in this T‘“G(—\ ﬂ@
diagram that there are two tags, <h1> <h1>A Heading</h13

and </h1>: a start tag and an end tag. L/I\J‘

An end tag always matches a start tag, CONTENTS
except that it has a slash after the
opening angle bracket.

The combination of a start tag and an AN HTML ELEMENT
end tag defines an element. Everything m
between the two tags is referred to as

<h1>A Heading</h1>

the contents of the element.

The components of hypertext 443

Start tags can also have attributes: a AN ATTRIBUTE

name optionally followed by a value.

An attribute is used to select between <p class="special">
different options of element function A special paragraph
or to provide extra information about </p>

what the element describes.

Some elements need to have at least one attribute to be any use; for
instance, a <link> element has an attribute that contains the address of
the HTML page it links to. Some attributes are specific to certain ele-
ments, and others can be applied to any element. The two most com-
mon attributes you'll see are id, to assign a unique identifier to an
element, and class, to assign a space-separated list of classes (think of
them as categories or tags). You'll see these two attributes a lot in
appendix C when you learn about CSS.

Elements can contain text, but they can o>
A paragraph
with emphasis

{/5)\/‘\}

. ”»
element contains the element. e

also contain other elements. In this
example we would say, “The <p>

PARENT ELEMENT

Any element that contains other ele- @
ments is said to be the parent of those
other elements; those are in turn its chil- P
dren —the idea is that the elements form A PARAGRAPH @
a tree structure, like a family tree.

>
The <p> element has two children: the WITH EMPHASTS

text “A paragraph” and an
element. The element has one
child: the text it contains.

HTML documents
An HTMUL document is a tree of elements descending from an <html> ele-
ment and its two children: <head> for metadata (literally, “data about
data”) and other nonvisible elements, and <body> for the page content.

AFPPENDIX B HTML basics

A minimal HTML document can be created out of the earlier fragment

by adding these three necessary elements and a title:

<html>
<head>

<title>Minimal document</title>
</head>
<body>

<p>A paragraph

with emphasis</p>
</body>
</html>

You can create an HTML document
yourself by opening a text editor,
copying this code into it, and saving
it as a file with the extension .html.
After you've done that, double-
clicking the file will open it in your
browser.

€
© O

o

MINI A PARAGRAPH @
DOCUMENT \

*

¥
WITH EMPHASIS

As you see more complex documents with many more elements, bear in

mind that ultimately the browser turns them into a tree like this. When

you're applying CSS or doing scripting, it’s common to think in terms

of nodes in this tree rather than elements in the document.

Markup, parsing, and rendering

The activity of taking plain text (the content) and turning it into an HTML docu-
ment is called marking up: adding markup to the plain text to indicate which bits
of it are headings, paragraphs, bulleted lists, and links. Note that after a text
document has been marked up into HTML, it’s still also a text document. You
can open it in Notepad or any other text editor, and it’s treated like any other
plain text. Only when the text document is loaded into a browser does it become
a hypertext document. When a string of text like “<p>A paragraph</p>" is de-
scribed as “a paragraph element,” that’s shorthand for “this string of text, when
read by the right piece of software under the right conditions, will create within
that software an entity that is a paragraph element.” The process of taking the
text file containing the markup and turning it into the tree-like representation of
an HTML document is called parsing. The process of taking that tree and show-
ing it to the user is called rendering.

Elements for text 445

Now that you've got the general idea, the next section will go into more
detail about common elements for marking up text content.

Elements for text

This section looks at HTML elements for marking up text —which, for
many web pages, is the majority of the content. Nearly every element
can contain text, but several are specifically dedicated to the task. The
most common of these is the paragraph element, <p></p>, of which
you've already seen several examples, but there are many others for
headings, unordered lists, ordered lists, line breaks, horizontal rules,
and more.

Headings and paragraphs
Paragraphs and headings work in concert to create the bulk of the text
content of a document and its implicit structure. HTML has six heading
elements, which are numbered 1 through 6: <h1>, <h2>, <h3>, <h4>, <h5>,
and <h6>. The most significant is <h1>, which is usually the document
title; the sections should begin with <h2> elements and the subsections
with <h3>, and so on:

html . .
on The main heading
<head>

<title> Main introduction

Headings and
implicit structure

First section

</title> Section introduction
</head> Subsection heading 1.1
<body> Subsection 1.1

<h1>The main heading</hl>
<p>Main introduction</p>
<h2>First section</h2> Section introduction
<p>Section introduction</p> Subsection heading 2.1
<h3>Subsection heading 1.1</h3>
<p>Subsection 1.1</p>
<h2>Second section</h2>
<p>Section introduction</p> Subsection 2.1.1
<h3>Subsection heading 2.1</h3>

<p>Subsection 2.1</p>

<h4>Sub-subsection</h4>

Second section

Subsection 2.1

Sub-subsection

446

AFPPENDIX B HTML basics

<p>Subsection 2.1.1</p>
</body>
</html>

As you can see, the headings get smaller as they decrease in
importance.

Both headings and paragraphs automatically break the flow of text at
the position of their end tag. Although the previous markup shows the
elements on separate lines to match the screenshot, this isn’t necessary.
The markup could be all on a single line, and it wouldn’t change the
results in the browser —all whitespace characters (see sidebar) are col-
lapsed to a single space.

Whitespace

Whitespace is a collective term for any sort of spacing character. To understand
it fully, we need to take a step back and consider what a text file really is. A text
file is a long list of characters, some of which are special control characters to
indicate line feeds, carriage returns, and tab stops. Think of an old-style teletype
or line printer with a print head: these characters are instructions telling the print
head to do something other than print a character but that does take up space.

On modern computers, these characters control the layout you see in a text ed-
itor; you see several lines of text, but only because the text contains several car-
riage returns and line feeds. For HTML purposes, many of the control characters
are considered whitespace. The full list of these characters is as follows: space,
tab, form feed, zero-width space, carriage return, line feed, and combined car-
riage return and line feed.

Here's an example with longer paragraphs. The markup is wrapped at
70 characters, ignoring the position of the tags. The tags are shown in
bold so they're easier to spot:

<h1>A quote from Ada Lovelace</hl><p>The Analytical Engine has no
pretensions whatever to originate anything. It can do whatever we
know how to order it to perform. It can follow analysis, but it has
no power of anticipating any analytical revelations or truths. Its
province is to assist us in making available what we are already
acquainted with.</p><p>The Analytical Engine weaves algebraic
patterns, just as the Jacquard loom weaves flowers and leaves.</p>

Elements for text 447

Viewing this markup in the browser reveals that the line breaks go

wherever the elements and the size of the window dictate:

A quote from Ada
Lovelace

The Analytical Engine has no pretensions
whatever to originate anything. It can do
whatever we know how to order it to perform.
It can follow analysis, but it has no power of
anticipating any analytical revelations or
truths. Its province is to assist us in making
available what we are already acquainted with.

The Analytical Engine weaves algebraic
patterns, just as the Jacquard loom weaves
flowers and leaves.

A quote from Ada
Lovelace

The Analytical Engine has no pretensions
whatever to originate anything. It can do
whatever we know how to order it to perform.
It can follow analysis, but it has no power of
anticipating any analytical revelations or
truths. Its province is to assist us in making
available what we are already acquainted with.

The Analytical Engine weaves algebraic
patterns, just as the Jacquard loom weaves
flowers and leaves.

If there’s a situation where a paragraph requires a line break, such as

an address or a verse of poetry, you can use the
 element:

<p>The Analytical Engine
weaves dalgebraic
patterns,
just as the
Jacquard loom
weaves
flowers
and
1leaves.</p>

The Analytical Engine weaves algebraic
patterns, just as the

Jacquard loom weaves

flowers and

leaves.

The
 element is unique among those covered so far because it con-

sists of a single tag. It can have no children. The
 element and oth-

ers like it are known as velf-closing elements. They're sometimes written

with a closing slash like this:
.

Line breaks aren’t for layout

A common beginner’s mistake is to use line-break elements or empty paragraph
tags to increase vertical spacing between two other elements. There’s no need
to do this in HTML: spacing between elements can be entirely controlled with
Cascading Style Sheets (CSS, covered in appendix C).

HTML is for describing content, not presentation. You’ll benefit in the long run
if you avoid using meaningless, empty elements for layout.

HTML's ability to ignore spacing and line breaks and reflow text to fit

the available space is usually an advantage: text flows automatically

Lists

AFPPENDIX B HTML basics

into the space available to it in the browser window, mobile device, or
web-enabled refrigerator on which it happens to be displayed. But
sometimes the original text formatting is significant: for example, pro-
gram listings or command-prompt output. For preformatted text like
this, HTML has the <pre> element:

<pre>The Analytical Engine weaves
algebraic patterns, just

as the Jacquard loom

weaves flowers and

leaves.</pre>

The Analytical Engine weaves
algebraic patterns, just
as the Jacquard loom
weaves flowers and
leaves.

Notice that the leading space on each line is faithfully reproduced in
the browser output.

Another common textual feature is lists. Bullet points can make a mem-
orable way to highlight key facts. Some documents are nothing but
lists —you may have sat through terrible presentations that were built
on the philosophy that bulleted lists were an appropriate way to show
paragraphs of text that should be read out loud.

This section will introduce the two most common HTML lists:

Unordered
Ordered

Each consists of a parent element and one or more child elements.
Unordered and ordered lists differ only in the parent element.

e List item 1. List item

« List item 2. List item

o List item 3. List item

List item</1i>

List item</1i>

List item</1i>

List item</1i>

List item</1i>

List item</1i>

Elements for text 449

An unordered list, the traditional bulleted list of PowerPoint legend, is
made up of a element and a collection of <1i> child list items, and
an ordered list is made up of a element and a collection of child
 items. The list items can themselves include more list elements

with their own list items, resulting in a nested list.

¢ List item
¢ List item
o Nested item
o Nested item
¢ List item

List item</1li>
List item

Nested item</1i>
Nested item</1i>

</1i>
List item</1li>

1. List item
2. List item
1. Nested item
2. Nested item
3. List item

List item</1li>
List item

Nested item</1i>
Nested item</1i>

</1i>
List item</1li>

It’s perfectly acceptable to nest ordered lists within unordered lists and

unordered lists within ordered lists.

¢ List item
¢ List item
1. Nested item
2. Nested item
¢ List item

List item</1i>
List item

Nested item</1i>
Nested item</1i>

</1i>
List item</1i>

1. List item
2. List item
o Nested item
o Nested item
3. List item

List item</1i>
List item

Nested item</1i>
Nested item</1i>

</1i>
List item</1i>

450 AFPPENDIX B HTML basics

Lists are commonly used to mark up navigation: a list of links. Nested
lists are a good match for the sections and subsections of a website. In
the next section, we'll look at some elements intended to be used inside
the major structural elements we've covered.

Emphasis and typography
Some words and phrases are so important in the context of their para-
graph that they need to be given special emphasis. HTML provides two
elements for this: for emphasis and for strong emphasis.

<p>The Analytical Engine has no
pretensions whatever to
originate anything. It
can do whatever we know how to
order it to perform. It can

The Analytical Engine has no pretensions
whatever to originate anything. It can do
whatever we know how to order it to perform.
It can follow analysis, but it has no power of
anticipating any analytical revelations or
truths. Its province is to assist us in making
available what we are already acquainted with.

follow analysis, but it has
no power of anticipating
any analytical revelations or
truths. Its province is
to assist us in making available
what we are already acquainted
with.</p>

 and are inline elements, intended to appear within a line of
text, whereas <p>, <h1>, and are block elements, intended to create a
new line of text. See the sidebar “Block and inline elements” for further
details.

Block and inline elements

Visible HTML elements can be split into two broad categories: block and inline.
A block element naturally takes up the full width available to it; consecutive
block elements naturally start below the previous block element. Block elements
include paragraphs, all the headings, and all the list elements you’ve seen.

Inline elements fit exactly to their content and sit naturally on the line of text in
which they’re situated. Inline elements include and (covered
here) and others such as , <i>, and <abbr>.

The key thing to remember at this point is that block elements can’t appear in
an HTML document as the children of inline elements.

Elements for text 451

The important consequence is that and are always
descendants of a block-level element like <p>. Block-level elements
should never be children of inline elements, but inline elements can be
children of other inline elements.

<p>A paragraph with
emphasis
</p>

<p>A paragraph with emphasis</p>

<p>A paragraph with

strong
emphasis

</p>

There are several other inline elements, but we don’t have room to go
into them. The final section of this appendix lists resources where you
can look them up yourself; in the meantime, remember the rule dis-
cussed here.

Neutral elements: <div> and

<div class="person"> Rob Crowther
<p class="full_name">

Rob

Crowther

</p>
<p class="hometown">
London
</p>
</div>

London

452

AFPPENDIX B HTML basics

Not everything can be marked up semantically as a paragraph or as
emphasized text. Sometimes an element is needed to group other ele-
ments, or to allow other information to be attached to a part of the doc-
ument. For these situations, HTML provides the two elements <div>

and .

A <div> 1s a block-level element, and a is an inline element. By
themselves, these elements are intentionally semantically neutral; they
don’t “mean” anything—or, looked at another way, they can mean
whatever you want them to mean, with the judicious use of id and class
attributes, as in the previous examples. These elements are useful
when you're applying CSS and creating layouts (more about this in
appendix C).

In this section, you've seen a variety of elements for text: paragraphs,
lists, emphasis, and neutral elements. The web would be a dull place if
this was all web pages were capable of. In the next section, you'll learn
about the elements that make the web interesting: links, images, and
other embedded resources.

Links and embedded resources

Text is all very well, but to make text into hypertext you need to add
links. This section looks at links between documents and links within
documents. It then covers other ways of 1inking external elements to
HTML documents, both images and more general-purpose objects. To
finish, it looks at <iframe> elements, which give you a way to embed an
entire web page inside another one.

Links and anchors

In HTML content, links that are supposed to be interacted with use the
anchor element, <a>. A link ought to go somewhere, so the target loca-
tion is given in the href (hypertext reference) attribute of the <a> ele-
ment. Three categories of link can be used in the href attribute. The
first is a full URL:

<p>Use

the Google
.
</p>

This is normally used to link to a
different website. It works equally
well for linking to pages on the cur-
rent site, but the extra characters
required for a full URL are unnec-
essary, as the next example shows.

<p>Go to

another page
.

</p>

|

JLinks 3 L

Go further down this page

I never am really satisfied that I understand
anything; because, understand it well as I
may, my comprehension can only be an
infinitesimal fraction of all I want to
understand about the many connections and
relations which occur to me, how the matter
in question was first thought of or arrived at,
etc., etc.

In almost every computation a great variety
of arrangements for the succession of the

nroresses i nnesihle and varinus

File Edit View History Bookmarks Tools Help

File Edit View History Bookmarks Tools Help
|)Links 3 L

Links and embedded resources 453

Use the Google.

Go to another page.

Further down

Many persons who are not conversant with
mathematical studies imagine that because
the business of [Babbage’s Analytical Engine]
is to give its results in numerical notation, the
nature of its processes must consequently be H
arithmetical and numerical, rather than
algebraical and analytical. This is an error.

The engine can arrange and combine its
numerical quantities exactly as if they were
letters or any other general symbols; and in

fact it might bring out its results in [~

It's common to annotate long documents in this fashion. Applying an

ID to each of the headings allows a table of contents to be built up, let-

ting a reader quickly access the relevant section. For example, on

Wikipedia, each article has a table of contents made up of links you can

click to take you to the relevant part of the article.

454

AFPPENDIX B HTML basics

Images and other objects

Images are embedded in HTML with the element. The basic syn-
tax is extremely simple; just the element itself and a single attribute are
required:

In this case, the image is much larger than the
available browser window, so only the upper-
left part of it appears on the screen.

A less obvious problem is that if the image is
unavailable for some reason, perhaps due to a

failure on the server, or because the user is
browsing without images, or because the author
misspelled the image name, then there will be
no evidence that the image is there at all.

You can correct both these issues with a couple
of common attributes, width (and/or height) and
alt (alternative text):

<img src="dust-puppy.svg"

width="252px" height="356px"
alt="An image of Dust Puppy">

It’s recommended that you always add an alt
attribute to an element. In cases where
the image is purely decorative or is described
textually in some other way, it’s permissible to

nn

set the alt attribute to an empty string: alt="".

Usually you can do without width and height attributes, either because
the image is sized appropriately to start with or because the size of the
image is controlled with CSS (see appendix C). This lets you determine
how big the image should be depending on what device is used to access
the page. The main benefit of providing dimensions is that browsers
know how much space to allocate when laying out the page, which
improves performance. Notice that the image element is self closing —1t

Links and embedded resources 455

1sn't allowed to have any descen- ppressermrmersm———" 1ol xi
dants. The only widely sup- &) = [ctomtimages 2wl 7] 43| x| [ClGoos
ported possibility of providing . raeres 6| +| «| Brmoo... x| 5| | -

fallback content should the =

| Animage of Dust Puppy
image be unavailable is the alt
attribute. If the image doesn't
load or isn’t in a format sup-
ported by the browser, then the
user sees the alternative text.
This isn't something you're
likely to have noticed unless you
tried viewing the previous exam-
ple in IE8, in which case you saw
something like the image at right.

Many people have long consid-

ered this a failing of the

element. Images appeared in the HTML spec because the most popular
browser had support for them, and with the current syntax. Of course,
it was the most popular browser because, in part, it was the first one
that allowed the viewing of images without launching a separate appli-
cation. Several features common to the early alternative proposals to
the element have ended up as features in the <object> element, a
general-purpose element for embedding content in your page.

The <object> element can link to an arbi-
trary file. The only additional require-
ment 1s that you specify the file type:

<object
data="dust-puppy.svg"
type="image/svg+xml"
width="252px" height="356px">
An image of Dust Puppy
</object>

In browsers that support SVG images, the
visible result is no different than including
the image with the element.

456

AFPPENDIX B HTML basics

But in browsers that don’t support SVG, /2 bjec | Vindows Interoet Exlos -0l
such as IE8 shown in the screenshot ‘;Fﬁ; 5 TTT:;:“fi:l w lf_.J:_ o
here, the content of the <object> element T —

1s shown instead. Unlike , <object>
can have as many descendants as you
need. The descendants are known as the

fallback content.

/7 Object 2 - Windows Internet Explorer =101 x|
=5 | elsobicbiect-zhem =] 4+ % |G

In this case, an obvious option is to

make the fallback content another

» Favorites -_-Iv[,éoh)euz x|»| |"'| -

image, except this time one that IE8
does support:

<object
data="dust-puppy.svg"
type="image/svg+xml"
width="252px" height="356px">
<img
src="dust-puppy.png"
width="252px"
height="356px">
</object>

IE8 users will miss out on some of the

advanced possibilities enabled by SVG,
such as perfect scaling to any resolution,
but they’ll still see appropriate content.

If you have no plans to take advantage of the additional capabilities of
SVG, you're better off sticking to a standard image format in an
element. But outside of simple examples in books, the <object> element
also allows the extension of the browser with plug-ins. A plug-in is an
external program with support for a particular file type or technology. It
registers the types of files it can support with the browser and, when the
browser comes across an object element specifying one of these file

Links and embedded resources 457

types, it hands the data over to the plug-in and lets it control what is dis-
played in the element. This is how the popular Flash plug-in works; it’s
the basis for popular sound and video sites like YouTube and last.fm.

Why href and src and data?

It may seem like the href, src, and data attributes do the same job for different
elements. Why didn’t HTML standardize on one or the other? Usually href indi-
cates somewhere a user can go, and src indicates something a browser should
fetch, but it’s mostly historical accident whether an element uses one or the oth-
er. It may seem that the <object> element has a data attribute just to force you
to remember a third alternative, but the reasons are mostly historical. Back when
the web was young, some browsers implemented new elements with href and
some with src. The elements that survived to become the first HTML specifica-
tion kept their attributes so as not to break backward compatibility.

Inline frames
Another common way of embedding content in your web page is the
inline frame, known as the <iframe> element. This lets you create an
embedded browser window inside the one the page is rendering in:

<p>Here is another page:</p> Here is another page:

<iframe ey
src="http://www.userfriendly.org/" el
width="320" height="240"> '

</iframe> ./

The <iframe> is given dimensions and

an entire other web page has been
loaded into it. The page can be one
from the same site as the parent page, l
specially designed to fit within the

bounds of the <iframe>. This is an

easy way to allow parts of the page to

be updated without reloading the

whole thing.

Copyright (<} 1597:2000 liad

The <iframe> element is used a lot for embedding advertising, display-

ing videos, and Facebook applications.

458

AFPPENDIX B HTML basics

Nonvisible elements

Some HTML elements aren’t intended to be visible in the page. These
usually appear in the head section of the markup, although they can
appear anywhere. You've seen at least one example already: the <title>
element, which is usually visible only in the title bar or tab of the
browser, or in search results. Three other elements are commonly seen
in the head section:

<link> elements — Reference external resources such as style sheets
<script> elements —Specify code to be run in the browser

<meta> elements — Provide key-value pairs of metadata

Style sheets and scripting are covered in the next two appendixes, but
the <meta> element isn’t too important. Just remember when you come
across one that it isn’t expected to be displayed.

In the previous sections, there have been a few statements along the
lines of, “You can’t put a paragraph element inside a heading element”
and, “Inline elements should only contain other inline elements, not
block elements.” But what do those statements really mean? The next
section considers these issues.

Parsing and validation

What will happen to you and your web pages if you ignore the advice
given in the previous sections? If you nest a <div> inside a and

SIR! THIS IS THE MARKUP POLICE. CLOSE THE
TEXT EDITOR AND STEP AWAY FROM THE
_ KEYBOARD!

©2001 1LLIAD

Farsing and validation 459

put it on a website, will the whole thing come crashing down around
your ears? Will you be arrested for crimes against markup?

Well, no.

The less trusting among you may have created a document with a para-
graph inside a heading and noted that the document loaded into the
browser just fine, so it may seem as though you can do what I've been
saying you can't. This is an aspect of a wider debate —1is an HTML doc-
ument what some bloke says it is, or is it anything that works in the
browser? This is a complex issue, and I don’t have room here to go into
every part of it. This section aims to equip you with a basic understand-
ing of the terms involved and highlight some of the consequences of not
following “the rules.”

Is this an HTML document?

There are different ways that markup can be invalid. In this section,
we'll look at several examples of invalid HTML, see what a browser
does with them, and then use the examples to introduce the concepts
and terminology involved. To start with, here’s the valid document
from earlier:

<html>
<head>
<title>Minimal document</title>

</head> A paragraph with emphasis
<body class="simple">
<p>A paragraph

with emphasis</p>
</body>
</html>

A valid document contains only elements listed in the HTML specifica-
tion, and those elements contain each other in ways described in the
specification; there’s a single <html> element with two children, <head>
and <body>; inline elements like are contained within block ele-

ments like <p>; and so on.

460

AFPPENDIX B HTML basics

The document can be made invalid in a number of ways. One is to use
elements that don’t exist in the HTML specification. This invalid docu-
ment replaces all the regular tag names with shortened versions:

<ht>
<he>
<t>Minimal document</t>

</he> Minimal document

<bo c="simple"> A b with hasi

£ aragra wi emphasis
<p>A paragraph paragep P
with emphasis</p>

</bo>
</ht>

The browser copes well with this; the main difference is that the title is
now visible, because the browser has no idea what a <t> element is.

In this document, the closing angle bracket has been left off the end of
each line:

<html
<head
<title>Minimal document</title
</head
<body class="simple"
<p>A paragraph
with emphasis</p Minimal documentA paragraph with emphasis
</body
</html

Again the browser copes fairly well. The <title> element is lost because
now it’s in position to be an attribute of the <head> element; but the con-
tent is all visible, and the one complete element, , is displayed prop-
erly. This demonstrates that web browsers are resilient to badly
constructed HTML markup, but these two documents are broken in
significantly different ways. To highlight this, let’s force the browser to
attempt to render these documents as XML, which is a much stricter
standard, instead of HTML. To do so, you can change the file extension
from .html to .xhtml. The two documents then create very different
results:

Farsing and validation 461

Invalid document 1 Invalid document 2
This XML file does not appear to have any style XML Parsing Error:
information associated with it. The document not well-formed
tree is shown below. Location: malformed.xhtml

Line Number 3, Column 1:

—<ht>
—<he> <head
<t>Minimal document</t> £
</he>
—<bo c="simple">
—-<p>
A paragraph
with emphasis
</p=>
</bo>
</ht>

The first document, even though it has only one valid HTML element,
is structured in a valid way, so the browser still parses it into a tree
structure. Although this document isn’t valid HTML, it’s well formed: the
elements, tags, and attributes follow the basic rules of markup. The
second document doesn’t follow these basic rules, so as well as being
invalid, it’s also not well formed.

There are more subtle ways to make the markup invalid. Consider the

following markup fragment:
<p>A slightly odd looking sentence</p>

This is invalid because the and elements aren’t nested cor-
rectly. The element starts before the element end tag, but
the element end tag is outside the element. Either the two
elements should be entirely separate, or one should be contained within
the other. In keeping with the resiliency demonstrated previously, most

browsers manage to render this fragment similarly.

Firefox Chrome Opera IE

invaiid nestin =] =R [linvalidinesti =))] [~ et st 2 vndema T
| File Edit View History : ||..l' opera |[@ x| . [et nestrg zreed =] | 4
Invalid nestin... | 4 | ~ 3 SO % A r i D '_ Lo Favorkes 8 sk pesteny 2
| file . ~|@ . .

............... A slightly odd A slightly odd 3 :,il:f;‘:i: !:rr::a:m
A slightly odd looking sentence looking sentence
looking sentence

462

AFPPENDIX B HTML basics

You may be thinking that browsers seem to handle the markup
whether it’s invalid or not, so why should you bother with writing valid
markup? The next section answers that question.

Validation and why you should bother

If browsers can cope just fine with invalid and even not-well-formed
markup —and not only that, different browsers manage to do a similar
job of rendering that invalid markup —why should you bother writing
valid markup in the first place? There are at least three good reasons,
as this section summarizes.

First, even though things look the same when they're this simple, dif-
ferences probably exist underneath. The earlier sidebar “Markup,
parsing, and rendering” distinguished between the markup in the text
file, the parsing of that markup into an internal structure by the
browser, and the final rendering of that internal structure on the
screen. In the screenshots at the end of the previous section, you saw
the final result of the invalid markup for this fragment:

<p>A slightly odd looking sentence</p>

Although it looked the same in all four browsers, here are the internal
trees they built.

Firefox and Chrome Opera and IE

Q O
@

ASLIGHTLY ODD @ seNTENCE ASLIGHTLY ,;DD @
¥ ¥
LookINe LOOKING ~ SENTENCE
This example involves only three (or four) elements, and already there
are cross-browser differences. The more complex the page becomes,
the more likely invalid markup is to cause an oddity in rendering that’s
hard to discover. This is especially true when CSS and JavaScript are

involved.

Moving on from this first point, browsers and other web tools are opti-
mized for valid markup. Invalid markup is always dealt with as an

Farsing and validation 463

exception; this means browsers have to do extra work to parse and ren-
der it, which ultimately means invalid pages are slower to render. Also,
unless the particular structure of the invalid markup causes a browser
or tool to crash, bugs in the parsing and rendering of invalid markup
are less likely to be fixed than are those for valid markup. Subtle differ-
ences in parsing and rendering between browsers will eventually lead
to hard-to-discover cross-browser issues in web pages.

Finally, especially when you're learning, it’s likely that you'll at some
point ask for help with something that isn’'t working the way you
expect. In most online communities that specialize in markup, the first
thing you'll be asked to do is fix any invalid markup, or at least explain
its existence. This is true for several reasons:

As discussed in the previous point, invalid markup often leads to
subtle issues.

Error-checking tools are far more useful if they're pointing out one
major error in your markup rather than the major error buried in
hundreds of minor ones.

If you haven'’t bothered to write valid markup, many members of
these online communities will view you as not worth their time and
effort to help.

To summarize, the three reasons why you should write valid markup
are as follows:

Invalid markup leads to subtle differences in parsing and rendering.
Browsers and development tools are optimized for valid markup.

It’s easier to get help with valid markup.

Or, looked at from the perspective of why not to write invalid markup,
these three reasons can be rephrased:

You make things harder for yourself.

You make things harder for your tools.

You make it harder for others to help you.

You want to write valid markup, but how do you tell if your markup is
valid? In the final section, you'll learn about tools you can use to check

464

AFPPENDIX B HTML basics

your markup for errors as well as tools that will help you examine the
results of your markup in the browser. With these tools, you'll be well
equipped to learn more for yourself.

Learning more

In this chapter, you've learned enough to get you started with HTML.
The best way to build on this foundation is to try things for yourself
and see what happens. This section shows you some tools for doing this
and resources for learning more.

Web tools

After you've written some markup, how can you tell if it’s correct?
You've seen in this appendix that even when things look OK in the
browser, there can be hidden problems that will eventually trip you up.
Here are a couple of online tools that can help.

The first tool is from the World Wide
Web Consortium (W3C—the body
that defines many web standards):

http://validator.w3.org. =Tl

Frasuit:

This service checks that your markup

is well formed and follows the rules
described previously, such as no

block-level elements as descendants

of inline elements. You should try to

fix any errors reported.

il

The validator will check that your
markup is technically correct, but it

+ S

e T “

. . Lim!
doesn’t concern itself with matters e

of best practice. For this, you need a @) o i il

linter like HTML Lint: http:// _ &
5= WO GRAB A BADGE AND —
lint.brihten.com/html/. D (e wm..c:ga

Errors reported by a linter are more
. =
concerned with matters of style than — N—

Learning more 465

a validator, so it’s reasonable in some situations to ignore any advice

given if you know what you're doing. But while you're still learning,

it’s all likely to be good advice.

Browser tools

In addition to websites to help you write markup, all major web brows-

ers come with built-in tools for analyzing what's going on with your
markup. These differ in the details but all work in broadly the same

fashion. In this section the screenshots come from Opera but instruc-

tions are given for all major browsers.

The easiest way to activate the tools
in Opera, Chrome, and Safari is to
right-click the area of the page
you're interested in and select
Inspect Element.

In Firefox, look for the Web
Developer menu option, and select
Inspect. You can activate IE'’s tools
by pressing the F12 key or by
selecting Developer Tools from
the Tools menu.

The tools open with a tree view of
the markup, similar to the tree dia-
grams in the opening sections of this
appendix. Use this to highlight ele-
ments you're interested in and check
that the tree structure the browser
has built corresponds to what you
intended.

Rob Crowthas
4= Back

London
4= Rewind
o Reload
Reload every >
+ Bgokmark page... Cctri+D

Copy address
Send link by mail
Print... Ctri+P

Source
Validate

s with L

Rob Crowther

London

0 & < o

e*> Crowther </spans

</body>

htmi body - div.person p.full_name - span.surname

466 AFPPENDIX B HTML basics

Resources and where to go for help

This appendix has been a high-speed introduction to HTML. If your
head is still spinning, here are some alternative resources that take
things ata slightly slower pace:

HTML Dog HTML Beginner Tutorial —www.htmldog.com/guides
/htmlbeginner/
W5C Web Standards Curriculum —www.w3.org/wiki/Web_Standards

_ Curriculum

When you're building pages of your own, you'll run into issues that
aren’t described in introductory material. When you have questions,
these are good resources:

Web Standards Group mailing list —http://webstandardsgroup.org/mail/

WebDesign-L mailing list —www.webdesign-l.com/
Doctype Qe5A webaite—http://doctype.com/

YOU SHOULD NOW KNOW ENOUGH ABOUT MARKUP TO GET STARTED
CREATING YOUR OWN WEB PAGES. BUT EVEN WITH THE ODD IMAGE, THEY'LL
BE A BIT DULL. YOU CAN ADD VISUAL EXCITEMENT TO YOUR WEB PAGES
WITH €SS, WHICH YOU'LL LEARN ABOUT IN THE NEXT APPENDIX.

www.htmldog.com/guides/htmlbeginner/
www.htmldog.com/guides/htmlbeginner/
www.w3.org/wiki/Web_Standards_Curriculum
www.w3.org/wiki/Web_Standards_Curriculum

CSS basics

f you've just read appendix B, you're probably wondering how those
rather dull textual examples end up looking like the beautiful web pages
you see every day. The answer isn’'t some secret extra markup you didn'’t
learn about yet, but Cascading Style Sheets (CSS). This appendix will
introduce the main features of CSS, including

The basic syntax of CSS

Using CSS selectors to apply styles only to certain elements

The most common properties and values

Using CSS for layout

Rules, selectors, properties, and values
A CSS style sheet is made up of rules. Here are three example CSS rules.

A £S5 RULE SELECTOR PROPERTY

L '?'{ w } em {‘Qllg}: teal; }

p { color: blue; }
DECLARATION VALUE

467

468

APPENDIX C CSS basics

A CSS rule is made up of a selector and a semicolon-separated list of
declarations inside brackets. Each declaration has a property and a
value separated by a colon. If an element in an associated HTML docu-
ment matches a selector in the style sheet, then the declarations will be
applied to that element.

To help you get the idea, here’s a full example page with a style sheet.
The style sheet is in the head section of the document in a <style> ele-
ment. There are three rules in the style sheet: a rule for the <body> ele-
ment, a rule for the <p> element, and a rule for the element:

<!DOCTYPE html> i!UI‘. o8 1|
<html> "

<head>

<title>Simple CSS Example</title> A PARAGRAPH WITH
<style> EMPHASIS
body {
font—family: "Komika
Hand";
font-size: 250%;
}
p {
color: blue;
font-size: 1.4em;
}
em {
color: teal;
1
</style>
</head>
<body>
<p>A paragraph
with emphasis
</p>
</body>
</html>

Rules, selectors, properties, and values 469

=i]

If a second paragraph is added, it has the

same style as the first paragraph because
they both match the rule: A PARAGRAPH WITH

<body> EMPHASIS
<p>A paragraph
with emphasis ANOTHER PARAGRAPH
</p>
<p>Another paragraph</p>
</body>

These are called type velectors because they
match any element of the stated type.

In the previous example, the style rules are included directly in the
HTML inside a <style> element. This is just one way of applying CSS to
your web pages; the next section will summarize the alternatives.

Adding a style sheet to your HTML

There are four ways to include CSS in HTML. At the lowest level, you
can apply it directly to individual elements with the style attribute.
This is known as an inline style:

<p style="color: red;">Another paragraph</p>

This rule makes just this one paragraph have red text, but it has no
effect on any other paragraphs in your document. The limited impact
of the style attribute means it’s the least efficient way of applying CSS;
it’s usually only seen on elements unique within a site, when people are
creating copy-and-paste widgets, or to work around a localized cross-
browser issue.

Slightly more useful is the <style> element used earlier. The <style> ele-
ment should appear in the <head> element of the HTML document,
although all popular browsers will use the styles if they're added to the
body instead. Rules in a <style> element apply to everything in that page:

<style> p { color: red; } </style>

The main benefit of this approach over inline styles is that you can con-
trol the styles of multiple elements from a single rule, but they still only

470

APPENDIX C CSS basics

affect the page on which they’re placed. On a multiple-page site, the
rules would have to be included on every page, so it’s far more common
to put all the CSS in a separate file and then link to it from each page.
This <link> element references an external style sheet:

<link href="styles.css" rel="style sheet">

Whitespace in CSS

The <style> element example is a more compact representation than used pre-
viously: everything is on a single line instead of broken out into individual lines.
It doesn’t matter to the browser how the CSS is spaced—whitespace is ignored
just as with HTML, but most human readers find it easier to read if the styles are
broken up across multiple lines.

Like the <style> element, the link should appear in the head of the doc-
ument. The file styles.css would then contain the CSS:

p { color: red; }

This same CSS file can be used with every page on the site that links to
it. Most browsers download style.css only once and then reuse it, sav-

ing bandwidth and page-rendering speed.

The final way to include CSS is to link from within existing CSS. This
requires that some CSS has already been included, via a link or a
<style> element:

<style> @import url('styles.css'); </style>

In this example, the style sheet is imported from a <style> element in
the head section of the document.

Inheritance

One of the key properties of CSS is that styles are inherited down the
document tree. In the simple example in the previous section, it’s already
possible to see this feature in action. The font-family property is speci-
fied only for the <body> element, but the elements in the document are
displayed with the Komika Hand font from that rule. This is because all
the other elements are children of the <body> element, so they inherit the
font-family property.

Selecting elements to style 471

font-family isn’t the only property that’s inherited. Here are the rules
for the <p> and elements:

p { color: blue; font-size: 1.4em; }
em { color: teal; }

I i =]

THE P ELEMENT
is DSBIfE Emem -------------- > APARAGRAPH WITH .. THE ELEMENT
""""" IS ALSO SIZE 14EM.
EMPHASIS THE PROPERTY
A INHERITS FROM
THE <p>RULE.

BUT THE IS TEAL. THE
PROPERTY FOR

OVERRIDES THE INHERITED
VALUE FROM <p>.

Inheritance means you don’t have to write style rules for every element
in the document. Setting a font or a color on the <body> element usually
means that all text in the document will be that font and color. To style
speciﬁc elements, you need to learn how to write selectors; these will be
covered in the next section.

Selecting elements to style

You learned in the previous section that a CSS rule consists of a selec-
tor and a declaration. The declaration is the set of visual effects to be
applied, and the selector determines what elements will be styled by the
declaration. You saw some selectors in the previous section; they were
examples of type selectors, where the selector consists of the element
name and selects a type of element. But there are many other CSS
selectors as well. In this section, you’ll learn about ID and class selec-
tors; using combinators to join selectors together for greater specificity;
using pseudo-classes to select elements in particular states; and using
media queries to target devices such as printers or cell phones.

ID selectors

An ID selector chooses an element based on the id attribute. This attri-
bute should have a unique value in any given document, so an 1D

472

APPENDIX C CSS basics

selector will only ever apply to a single element and its descendants.
An ID selector consists of a hash character followed by the id. In the
following example, an element matching the ID selector will reverse
the normal colors: white text on a black background instead of black
text on white.

#myelement { A PARAGRAPH

color: white;

background-color: black; ANOTHER
! PARAGRAPH

In the markup, only the element with the
matching id attribute 1s selected:

<p id="yourelement">A paragraph</p>
<p id="myelement">Another paragraph</p>

By themselves, ID selectors aren’t very useful. You certainly wouldn’t
want to add an ID to every element you needed to style. They're nor-
mally used to pick out particular landmarks on a page. For a more gen-
eral-purpose approach, it's much better to use the class selector
discussed in the next section.

Class selectors

The class selector chooses elements based on the class attribute. Unlike
the id attribute, values in the class attribute don’t have to be unique
throughout the document, so rules based on class selectors usually
apply to a selection of elements in a document. A class selector consists
of a period (.) followed by the class name and selects any element with
the value myclass in the class attribute:

™ orort A PARAGRAPH |
color: white; A PARAGRAPH

background-color: black;

} ANOTHER

In this example, only one of the paragraphs PARAGRAPH

has the myclass class:

<p class="myclass">A paragraph</p>
<p class="yourclass">Another paragraph</p>

Selecting elements to style 473

The main benefit of a class selector over the

ID selector is that multiple elements can A PARAGRAPH
have the same class. Here, a third para- ANOTHER
graph 1s added: PARAGRAPH

<p class="myclass">A paragraph</p>

<p class="yourclass'">Another paragraph</p> ONE MORE
<p class="myclass">0ne more paragraph</p> PARAGRAPH

It’s also possible to apply multiple classes to
a single element. In the next example, the

middle paragraph has two classes applied:

<p class="myclass">A paragraph</p>
<p class="yourclass myclass">Another
paragraph</p>
<p class="yourclass">0One more paragraph</p> ANOTHER

PARAGRAPH

The .myclass selector selects all the elements

that have.myclass as one of the values in the ONE MORE
class attribute. PARAGRAPH

Although the previous examples use paragraph elements, it isn’t neces-
sary for all elements with a particular class to be of the same type. This
allows you to use the semanticaﬂy correct element for a given bit of
content but style related items uniformly. In the source code for this
appendix, you'll find two additional examples of the class selector that
demonstrate this: class-selectors-4.html and class-selectors-5.html.

Now that you have a basic grasp of simple selectors, the next section
will look at ways of combining them with combinators to make more
complex selectors.

Combinators
Combinators allow simple selectors, like the element, ID, and class selec-
tors in the previous sections, to be combined into more complex rules.
This makes it easy to apply one style to <link> elements in the main con-
tent but different styles to links in the navigation or the page footer.

The most common combinator in CSS is the descendant combinator: a
space between two simple selectors. For the selector to match the

474

APPENDIX C CSS basics

rightmost element, that element must be a descendant of the previous

element. This is easier to understand with an example. Consider this

fragment of HTML.:

<h1l>A heading</h1l>

<p>A paragraph with emphasis</p>

Now look at these two style rules, both of which select elements:

em { color: teal; }
p em { color: darkgreen; }

The second rule selects only those ele-
ments that appear as children of a <p> ele-
ment. In this example, the first (a child of
the <h1> element) is teal, but the second
(a child of the <p> element) is dark green. The
second rule is more specific than the first one,
so it will be preferred whenever both apply.

A HEADING

A PARAGRAPH WITH
EMPHASIS

More on this in the next section. In the meantime, you need to learn

about the child combinator.

The child combinator is a greater-than bracket: >. It allows you to select

elements that are direct children of a parent. Because you can already

select according to ancestor elements, you might be wondering why

you also need a child combinator, so let’s look at an example. Here's a

simple HTML document:

<header>
<h1l>Header</h1>

</header>

<article>
<hl>Article</hl>
<p>Paragraph 1</p>
<p>Paragraph 2</p>
<footer>Article footer</footer>

</article>

<footer>
Body footer

</footer>

Selecting elements to style 475

It has a header, an article, and a footer, but note that the <articles ele-
ment also has its own footer. This lets you see the difference between
the descendant and child combinators.

g R e i DESCENDANT
' p COMBINATOR
\ HEADER ;
]]
s it s e b il
o e e RS SE ! body footer {
| ARTICLE background-color: #000;
: PARAGRAPH | }
k PARAGRAPHZ
. R—— ‘
Vbt e T A S e 1 |
________________ SELECTS EVERY FOOTER ' |
T o T :
T, or BODY i o i A
jE = ™ e e oW |
|
: ARTICLE :
: PARAGRAPH 1 I
'. : PARAGRAPHZ ;
. THE CHILD 1 s roores '
E 1 |
|

s
!
)
1
H
'
'
'
'

> COMBINATOR -l
body -f:%j;—f“déte r{ / """""""""

SELECTS ONLY DIRECT
background-color: #000; CHILDREN OF BODY

}

The child combinator is useful when you have nesting and the same
element appears multiple times at different depths: for example, a menu
made up from unordered lists where each item is itself an unordered
list. With the child combinator, it’s easy to apply different styles to the
top-level and lower-level items.

Cascading and specificity
The cascading part of Cascading Style Sheets refers to the rules that
determine which of a set of competing rules apply to an element. This is
important because multiple rules can have a definition that applies to
the same property of the same element.

476

APPENDIX C CSS basics

In case this isn’t making much sense to you, let’s look at an example.
Here's a basic style sheet:

p {
color: white;
background-color: black;
}
Let’s link to it from the head of a document that also includes a <style>
element:
<head>

<title>CSS Cascade 1</title>
<link href="style-1l.css" rel="stylesheet">
<style>
p {
color: black;
background-color: white;

3
</style>
</head>

Notice that both the linked style sheet and the <style> element include
a declaration for the color of paragraph elements. Which one should
the browser use? The situation can be complicated further by adding a
style attribute to a <p> element:

<p>A paragraph</p>

<p style="color: silver; background-color: gray;">
Another paragraph

</p>

As the screenshot shows, the browser
SRT » List ite
chooses the inline Style on the element that . Lizt :tem

has one, rather than either of the styles in the ° ggzig i:gﬂl
head or the linked style sheet. Inline styles + List item
always override linked style sheets and styles

in the head; other rules are usually used in

reverse order to which they’re encountered.

Try moving the <link> element after the

Selecting elements to style

<style> element in this example, and you'll

see that the rule in that file is then applied.

But there is a complication. The last rule

encountered is used only because the previ-

ous rules used the same selector. If the selec-
tor in the linked style sheet is changed, then

this rule will win:

body p {

color: white;
background-color: black;

1. List item
2. List item

477

1. Nested item
2. Nested item

3. Listitem

This rule wins because it has a higher specificity. The specificity is
based on the selectors used in the rule. You can use this straightfor-

ward process to calculate the specificity of any selector.

Step Action #myelement em |.myclass em | body p em

1 Count the number of ID selectorsin |a =1 a=0 a=0
the rule, and make a note of this
value as a.

2 Count the number of class selectors | b =0 b=1 b=0
in the rule, and make a note of this
value as b.

3 Count the number of type selectors | c =1 c=1 c=3
in the rule, and make a note of this
value as c.

4 Combine a, b, and ¢ into a number 101 011 003

where each letter represents a digit.
The highest number is the most
specific.

Any rule with an ID selector is more specific than any rule with just a

class selector, which in turn is always more specific than any rule made

478 APPENDIX C CSS basics

up of only type selectors. But within each group the number of selec-
tors for each type is the significant factor.

Pseudo-classes

One of the original uses for JavaScript when it was introduced by
Netscape back in 1995 was for rollover effects: changing a background
image when the mouse pointer enters or leaves an element. Rather than
require an entire scripting language for a simple visual effect like this,
the ability to select elements based on user activity has been built into
CSS with pseudo-classes.

This example 1s a page with a para- [® Hover example 0 Mireheid BEE|

Eile Edit View Higtory Bookmarks Tools Help
graph element: @ Hover exarple 0 =

HOVER ME
<p>Hover me</p>

By default, the paragraph is black

text on a white background.

The notation for a pseudo-class is a @ VT A U ARG oEg|

File Edit View Higtory Bookmarks Tools Help

colon followed by a keyword. For © Hoverexampie ‘|
rollover effects, the keyword is hover: I

p:hover { background-color: #000; }

This rule sets the background of the
element to black when the mouse
pointer hovers over the element.

IT'S ALSO POSSIBLE TO USE PSEUDO-CLASSES WITH COMBINATORS,
DEFINING RULES FOR CHILDREN OF AN ELEMENT DEPENDING ON ITS
DYNAMIC STATE. SEVERAL INTERESTING EFFECTS ARE POSSIBLE ONLY
WHEN YOU DO THIS. LET'S LOOK AT A SIMPLE EXAMPLE.

&

| |

Selecting elements to style 479

This snippet of markup might be part of a content management system.
The idea is that the buttons allow the user to enable edit mode or delete
the element:

<article>
<header>
<h1>Article</h1>
<menu>
<button>Edit</button><button>Delete</button>
</menu>
</header>
</article>

Most of the time, the menu needs to @ TSI TR 2E0

Eile Edit View History Bookmarks Tools Help

be hidden so the user can see the end © Hover example 1 S

result more clearly. The menu is there- i 5
. . .]
fore hidden with this CSS: g 1 'y
] 1

header menu { : '
display: none; 15t o s i e a

} X

You'll learn more about the display

property in the next section.

With the menu hidden, there’s no ® Faver eample 1 = Mienuid oE0

Eile Edit View History Bookmarks Tools Help

point adding the hover pseudo-class to o Hoverexampie 1 X

that —the mouse pointer will never be
able to hover over an element that
1sn’t there. But the <headers element 1is

visible, so here’s a rule that makes the
<menu> element visible when the mouse
pointer is hovering over the <header>
element:

header:hover menu {

display: inline;

}

480

APPENDIX C CSS basics

This bit of CSS is the basis of most pop-up and drop-down menus on
the web. The only requirement is that the element to be shown is a
descendant of the element that will be hovered over. It lets you present
extra information only when the user indicates they're interested in it
by putting the mouse pointer in that location.

NOTE THAT THE hover PSEUDO-CLASS ASSUMES USERS ARE ACCESSING
THE PAGE WITH A DESKTOP BROWSER AND USING A MOUSE. FOR MANY
POTENTIAL USERS, THIS ISN'T TRUE, INCLUDING PEOPLE WITH
DISABILITIES AND USERS OF MOBILE OR TABLET DEVICES.

You should now have a good grasp of the basic syntax involved in CSS
and how to write selectors to pick out the required elements for styling.
All that's left to learn is the properties and values needed to create
styles.

Properties and values

The interesting parts of CSS are the properties and values that cause
the visible effects seen on the web page. The sheer variety of properties
and values is such that entire books have been written about them.
This section covers the most common values used in styling web pages.

Colors and lengths

The most common values in CSS are colors and lengths. A number of
different properties accept either colors or lengths, or both, as values.
This section gives a brief overview of them; then, in the following sec-
tion, you'll learn about properties where they can be used.

The previous sections have included several examples of color values.
Mostly the exarnples have used color kewords such as black and red,
because it's obvious what these mean even to people who don’t know
CSS, but there are several other ways to describe colors in CSS. These
approaches are more flexible because they provide separate values for
the amount of red, green, and blue that makes up the color. The follow-
ing table shows the same colors expressed four different ways.

Properties and values 481

Name #rrggbb #rgb rgb(r,g,b)
Black #000000 #000 rgb(0,0,0)
Blue #0000ff #00f rgb(0,0,255)
Red #0000 #f00 rgb(255,0,0)
Yellow #FFFFO0 #1f0 rgb(255,255,0)
Green #008000 - rgb(0,128,0)
Teal #008080 - rgb(0,128,128)
Silver #c0cOcO - rgb(192.192,192)
Gray #808080 - rgb(128,128,128)
White #fEFfff #fff rgb(255,255,255)

The middle two columns use hexadecimal notation. These are numbers

in base 16: after getting to 9, the next number is A, then B, and so on,

up to F. The hexadecimal value FF is equivalent to 255 in decimal. If

the two numerals for each of the red, green, and blue values are the

same, then you can use the shorthand notation in the third column.

Color has its own property. The following example sets the foreground

(text) color of an element and its descendants to blue:

color

T #00f;

Lengths are less complicated than colors: they consist of a number fol-

lowed by a unit. The most common units are shown in the next table.

Unit | Measures by Description

px Pixels Length in pixel units. The actual size is determined by monitor resolution.

pt Points A measure from typography, equivalent to 1/72 of an inch.

cm Centimeters Absolute length in centimeters. If you’re not in a metric country, you can
also use 1in for inches.

em Ems Size of the capital M in the current font.

% Percentage Length as a proportion of the size of the element’s parent.

482 APPENDIX C CSS basics

The next section looks at some common properties where these values
are used.

Borders and backgrounds

Two of the most common things to style are borders and backgrounds.
Each is controlled by several different CSS properties, and each has a
shorthand notation that lets you set all the properties in a single line.
This section looks at both of them, starting with borders.

A border has a width, a type, and a color. All three can be set sepa-
rately using the properties border-width (a length), border-style (a spe-
cial property for borders), and border-color (a color, unsurprisingly):

.one { —
border-width: 5px;
border-style: solid; I
border-color: #999; l
} | |
.two {

border-width: 0.75em;

border-style: dashed;

border-color: #000;
3

The CSS above assumes that some elements
with appropriate classes are defined:

<div class="one"></div> pesessssncany v
<div class="two"></div>
<div class="three"></div> .

<div class="four"></div>

The shorthand notation uses the border prop-
erty. All that’s required is for the same three
values to be listed with a space between:

.three {
border: 5pt dotted #333;
}
.four {
border: 0.25cm double #666;
3

Properties and values 483

Having both separate and shorthand properties is useful when you need
to style a collection of elements similarly. For instance, if a page has a
pop-up alert message that changes the border color according to the
importance of the image, you can set the general style in one rule and
override the border color with specific classes. If you later decide to cre-
ate a thicker border on all message boxes, then only the general style
needs to be updated rather than each rule for every level of importance.

Backgrounds are slightly more complicated than borders because they
allow the use of images, and these images can be positioned.

Property Example values Description
background-color red, #f00, rgb(255,0,0) Any valid color.
background-image url(background.png) A link to an image.
background-repeat repeat, no-repeat, Should the background image

repeat-x, repeat-y tile across the background, or

only appear once?

background-position top left, 100px 200px, Where should the first back-
50% 50% ground image be placed?
background-attachment scroll, fixed Should the background scroll

with the page or remain fixed
behind the page?

As with borders, background properties can be combined into a single
property. The following example places a single copy of back-
ground.png in the center of the element with the rest of the back-
ground red:

background: url(background.png) 50% 50% no-repeat fixed #f00;

Now that you've learned the basics of visual styling, it’s time to move
on to layout. To understand CSS la_yout, you first need to know how
CSS describes the dimensions of elements using the box model.

484 APPENDIX C CSS basics

The box model

The CSS box model defines the dimensions of elements as they're laid
out on the page. In order to do page layout with CSS, as covered in the
next section, it’s important to know how elements are sized.

Elements have a width and
height, padding, a border, and a
margin. The diagram at left
shows how they fit together.

The element’s width is either
WIDTH N defined explicitly or determined

automatically by the browser
based on the content and display mode. Between the content and the
border is the padding; then you have the border (discussed in the pre-
vious section), and finally the margin, which is the space between this
element and the next one.

The padding, border, and margin have associated collections of proper-
ties in CSS. The width of each side can be applied separately, or you can
use shorthand syntax. In the previous section, you saw the border-width:
spx; shorthand. This could also be written in either of these two ways:

border-width: 5px 5px 5px 5px; border-top-width: 5px;
border-right-width: 5px;
border-bottom-width: 5px;
border-left-width: 5px;

There are equivalent properties for the padding and margin:

padding-width: 5px 5px 5px 5px; padding-top-width: 5px;
padding-right-width: 5px;
padding-bottom-width: 5px;
padding-left-width: 5px;

margin-width: 5px 5px 5px 5px; margin-top-width: 5px;
margin-right-width: 5px;
margin-bottom-width: 5px;
margin-left-width: 5px;

The box model 485

The shorthand property lets you specify one to four lengths. The next
diagram shows a practical example:

padding: 20px 30px;

border-width: 10px;

margin: 20px 30px 40px 20px;

If just one length is given, all four top,
left, bottom, and right are set to that
width. Two lengths set the top and bot-
tom widths to the first value and the left
and right to the second value. If three

lengths are given, the first and last val-
ues set the top and bottom, and both left
and right are set to the second value.
Finally, four values are applied in the
order top, right, bottom, left.

Quirks mode and Standards mode

In the late 1990s, there was a lot of confusion about the correct way to
implement CSS. This was particularly apparent in the way different
browsers treated the box model. By the time understanding of the spec
stabilized, several browsers were using incorrect approaches. Worse,
many websites had been created that depended on the incorrect
approach; when the designer is trying to make everything line up
exactly, a difference of a few pixels in width is very visible.

As new browsers were released, they wanted to implement the correct
behavior, but they didn’t want to break the web by making all websites
follow the new rule. To solve the problem, vendors created two render-
ing modes in their new browsers:

Standards mode — The browser displays according to the current stan-
dards, as far as they’re understood and can be implemented by the
vendor.

Quirks mode —The browser displays according to the incorrect rules
implemented by previous versions of that browser.

4866

APPENDIX C CSS basics

There’s only one standard, so the way different browsers implement
Standards mode has (sometimes slowly) converged on the correct
implementation. But there are as many different ways to implement
Quirks mode as there are old versions of browsers, so pages that ren-
der in Quirks mode can vary wildly even among modern browsers.

In order to decide whether to use Quirks mode or Standards mode, the
browser takes various hints from the HTML. This also varies from
browser to browser; but, broadly, documents that follow the stan-
dards —which have correct markup according to the HTMLA4 or
XHTMLI specs—use Standards mode. Pages that don’t follow the
standards, or claim to be following earlier versions of HTML, use
Quirks mode.

Generally this has worked pretty well. Web authors creating new
pages and paying attention to their markup have their pages rendered
as they expect, and old pages or pages created by unskilled authors are
rendered as expected (by users who have the same browser as the
designer, at least).

The situation has added complexity to the task of improving from an
unskilled to a skilled web author. Some errors in your markup won't
trigger Quirks mode, but other errors of apparently similar complexity
will. Authors may make small changes in their code only to have unex-
pectedly large changes in the end results. This inconsistency can be
frustrating and is one of the main reasons cross-browser web authoring
has gained a reputation for being confusing and capricious.

Right now, you need to understand that if you're seeing markedly dif-
ferent results for the same page across several modern browsers, it’s
likely you've accidentally triggered Quirks mode through an error in
markup. The solution is usually to run your markup through one of the
online validators and correct any errors reported.

Display modes: inline, block, and none

Appendix B discussed the difference between block and inline ele-
ments. In addition to being a way to categorize HTML elements, these
also assume a default visual presentation. Inline elements sit in the flow

The box model 487

of text, whereas block elements cause line breaks before and after. This

visual presentation can also be controlled by CSS through the display

property by setting the value to either inline or block.

A simple example will illustrate the key differences. Here are three

<div> elements:

<div>1l</div> <div>2</div> <div>3</div>

The following styles show the elements’ position and shape:

div {
width: 2.5em;
height: 2.5em;
margin: 0.5em;
padding: 0.5em;
border: 5px dashed black;

Setting the display property to block causes all
three elements to sit on a line by themselves,
each with the width, height, padding, and mar-
gin specified:

div { display: block; }

Of course, a <div> element is display: block by
default, so explicitly stating it in CSS isn’t nec-
essary.

Setting the <div> elements to display: inline
has a drastic effect:

div { display: inline; }

Not only are the elements now sitting on the
same line, but they're considerably smaller.
This is because the width and height properties
don’t apply to inline elements, so each <div> is
now the size of its content plus the margin

specified.

PHETH
Ld 12 1.

4868

APPENDIX C CSS basics

Other values are allowed for the display property. Several are covered
in chapter 8, but one you've seen used in this appendix is none. In the
section on pseudo-classes, it was used to hide elements until the user
hovered over a particular area on the screen.

Now that you've learned about the box model and display modes, you
have all the prerequisite knowledge required for page layout.

Positioning and layout

In the last 10 years, most CSS layouts have been built around floated
elements, commonly referred to as floats. A floated element is one that’s
outside of the normal flow of text, like a cutout. The text flows around
these floated elements as long as there’s room, as illustrated by the fol-
lowing diagram.

/
TEXTS,

FLOA>‘ |
FLOAT

LEFT
‘ . RIGHT

Originally, floated elements were intended to be pictures, tables, and

figures sitting in single columns of text, but people soon figured out
that floats could be used to lay out entire pages.

Floats rely on two CSS properties: float and clear. The float property
determines which side the element floats to, whereas the clear property
determines how the element behaves with respect to other floated ele-
ments. Values for float are left, right, and none; values for clear are
left, right, both, and none.

Fositioning and layout 489

If two consecutive elements are floated the same way and not cleared,

then as long as there’s available width, they sit alongside each other.

But if the second has clear set, it drops below the first element.

Let’s create this simple layout with
CSS floats. The sidebar is floated left,

the main content is floated right, and

the footer is set to clear both of them.

Widths are set on the sidebar and the
main content to ensure that there’s
room for them to sit side by side.

The markup and CSS for this layout
follow. Some additional CSS is used,
but not shown, to add borders,
margin, and padding to the elements.
Copy the code from the earlier

examples if you're following along:

<div id="header">

<h1l>Heading</h1>
</div>
<div id="main">
<p>I never am really
satisfied...</p>

</div>

<div id="sidebar">
Side bar

</div>

<div id="footer">
<div id="nav">
Link 1
Link 2
</div>
<div id="smallprint">Credits</div>
</div>

| e A
1 1
'HEADING § :
L e cc e e e e e e e e e e e === -
[Pl Tr-==-sm--m--—- 1
[Ingag 4 1 INEVER AMREALLY SATISFIED THAT I |

UNDERSTAND ANYTHING: BECALISE. !
¥ UNDERSTAND IT WELL AS T MAY. MY 1
1 COMPREHENSTON CAN ONLY BE AN 1
| INFINITESIMAL FRACTION OF ALLT |
1 WANT TO UNDERSTAND ABOUT THE MANY |
1 CONNELTIONS AND RELATIONS WHICH |
1 OLLUR TO ME, HOW THE MATTER IM 1
1 GUESTION WAS FIRST THOUGHT OF OR
1| ARRIVED AT ETC. ETE. 1

#header img {
float: right;

}

#header hl {
margin-right: 150px;

}

#main {
float: right;
width: 60%;

}

#sidebar {
float: left;
width: 25%;

}

#footer {
clear: both;

}

#footer > div {
display: inline;

490

APPENDIX C CSS basics

Note that the <footer> element needs to have clear set even though it’s
not floated. Nonfloated elements must also be cleared if they appear
below any floated elements; otherwise the floated elements will overlap
them. In this case, the footer would appear directly below the previous
nonfloated element, the header.

There’s plenty more to CSS layout than this simple example can dem-
onstrate, but you now know the basics. As you see more complex lay-
outs and advanced approaches, you should be able to use the
knowledge you've gained here to work out what’s going on.

NOW YOU'RE UP TO SPEED WITH €SS, IT'S TIME TO MOVE ON TO THE THIRD KEY
WEB DEVELOPMENT TECHNOLOGY: JAVASCRIPT. WHEREAS HTML AND CSS ARE
NATURALLY FIXED AFTER THEY'RE CREATED AT THE SERVER, JAVASCRIPT
ALLOWS YOU TO MANIPULATE WEB PAGES IN THE BROWSER ITSELF. THE NEXT
APPENDIX WILL GET YOU STARTED CREATING THESE "DYNAMIC" WEB PAGES.

JavaScript

he main focus of this book is HTML5 and CSS3, but to take full advantage
of many of the features of these two technologies you'll end up using
JavaScript quite a lot. The APIs in HTML5 are accessible through
JavaScript, and the techniques you've seen for detecting HTML5 and
CSS3 support depend on JavaScript.

The goal of this appendix isn't to teach you to be a great JavaScript pro-
grammer even if you've never programmed before, but to teach you
enough syntax that you can recognize what the exarnples in the book are
trying to do and enough practical knowledge that you can experiment on
your own to learn more.

Setting up an interactive console

In this appendix, you'll learn by doing. To do that, you need a way to type
JavaScript code into your browser and immediately see the results. Most
modern browsers come with a built-in facility for this as part of their
developer tools.

491

492 APPENDIX D JavaScript

Chrome (and Safari)
Chrome and Safari are both based on the WebKit browsing engine, so

apart from some stylistic differences, their developer tools are identical.

Access the developer tools by right- emphasis
.y Back
clicking any element on the page and -
selecting the Inspect Element option. Reload
Save As...
Print...

Translate to English
View Page Source
View Page Info

ctElement .|

A panel opens at the bottom of the browser window like the one shown

here.
l\&;'m'lq__.lﬂﬁmces @th g scrons @lm &:Pro!m Bm L_/g Consce &
» Computed Style)
¥ :I.I[rqc.-\:n head E.Styles
<heads.</head>
v<body class="simple"> element.style {
Yap>

“A paragraph }

<gm>with emphasis</ess

i, cite, em, var, address { user agent
-l

font-style: italic;
}
» Metrics
» Properties

Look for the Console button in the toolbar
across the top of the panel, and click it. - g s
- — k

~em oy -
&5 | Evors Wamings Logs
i

You should see a command prompt > and a
cursor. You can type in JavaScript and see
it executed immediately.

y = Q8

Setting up an interactive console 493

Here are the key features of the Chrome console. All the examples in
this appendix should work in Chrome.

YOUR INPUT APPEARS CHROME CONSOLE

ALONGSIDE ARROWS . _ _ R
POINTING RIGHT. T 31+ 1 OUTPUT APPEARS
‘.\. 2 e BEEEEE LT ON A LINE BY
-------- o » hello; ITSELF.
@ » ReferenceError: helle is not defined
R
ERRORS ARE INDICATED
BY AN X.
Firefox

Thanks to its extensible nature, Firefox has long relied on add-ons to fill
the developer tool gap, notably Firebug (discussed in a moment). Newer
versions of Firefox (since version 8) have developer tools built in.

Access these tools from the main New Tab »| ookmarks 55 L |
Start Private Browsing History »
menu under Web Developer. For Downloads

»

now, either select Web Console or Find... Add-ons

Preferences »

press Ctrl+Shift+K. Snrm Fage AL, Help :

Send Link...
Print... »

|
|- [DOM Inspector =
Secratchpad Shift+F4
View Page Source crrl+uU
Error Console Cirl+5Shift+)

Full Screen
Set Up Sync..
Quit

The console monitors four things by
default: network requests (Net), CSS,
JavaScript (JS), and console logging

 |ENet ~ BOSS |55 ~ | oweb Developer ~ Position

(Web Developer or Logging in newer
versions). You can turn them on and
off individually by clicking the but-
tons along the top of the console. In
this appendix, you may find it helpful
to turn off everything except Java-
Script and console logging.

494 APPENDIX D JavaScript

The next figure shows the key details of the Firefox console. Most of
the screenshots in the following sections were taken using Firefox.

FIREFOX CONSOLE

YOUR INPUT APPEARS .. .----=""" i e OUTPUT APPEARS
ALONGSIDE ARROWS .. [. . 2 e AFTER AN ARROW
POINTING LEFT. - ; POINTING RIGHT.

ReferenceError: hello is not defined

*«. .. ERRORS ARE INDICATED
BY AN X.

Other browsers

Several other browsers ought to work equally well. Here’s how you get
to the console in them:

Internet Explorer—Press F12, or look for developer tools in the Page
menu.

Opera —Right-click the page, and choose Inspect Element from the

context menu.

Firefox with Firebug—Press F12, or right-click and select Inspect with
Firebug from the context menu.

NOW THAT YOU KNOW HOW TO EXECUTE JAVASCRIPT IN YOUR BROWSER OF CHOICE,
IT'S TIME TO START LEARNING SOME JAVASCRIPT. YOU'LL BEGIN WITH ARITHMETIC
AND STORING THE RESULTS. OVER A FEW SHORT PAGES, THESE SIMPLE OPERATIONS
WILL BUILD UP TO PROGRAMS THAT CAN DO USEFUL THINGS IN YOUR WEB PAGES.

Arithmetic and variables

A computer program is based on math. It boils down to a sequence of
mathematical operations on a collection of numbers. If you've always
been bad at math, don't let this frighten you: programming —the act of
composing a program —has as much in common with writing a story as
it does with solving math problems (albeit a story written with unusu-
ally strict grammar and far more punctuation then you're used to).
Think of it as an obscure subgenre of science fiction. But the simplest

Arithmetic and variables 495

programs that can be written are basic mathematical statements, so
we'll start with them. Open the JavaScript console in your preferred
web browser, and follow along with the examples.

Arithmetic

In this section, you'll learn how basic arithmetic operations are repre-
sented in JavaScript. The examples are all shown in the Firefox Web
Console, but you should see the same results in any other browser.

Basic addition, subtraction, multiplication,

and division are written in much the same ENet Vi‘mcss V|! I5:¥)

8
2]

way as they were in your high school
book. The asterisk (*) is used to indicate
multiplication and the forward slash (/)

'
M

*
r

division. Expressions and their values are
shown in the console output. Try typing a

N OERN DN AN
~
8]

few expressions and pressing Enter.

Programmers refer to numbers as gperands 71 o

and symbols as gperators. The entire com-

bination is called an expresion. A sequence of expressions terminated
by a semicolon is a Jtatement. The following diagram should help you
get the vocabulary straight.

OPERATOR STATEMENT

y P :

2 + 2; 2 + 2 ;

< » I :
OPERAND OPERAND '

EXPRESSION

Any number of operands and operators can be chained together, but
they’re not evaluated left to right. Some operators are more important
than others and are always evaluated first.

496 APPENDIX D JavaScript

In the first example, the multiplica- C e
o ') (BCSS v|]S vi|Web |
tion 1s performed before the addi- TR REEEET
tion, so the result is 8. The 8

. . ST . ((2*2) +2) *2;
terminology is that multiplication 1p

has a higher precedence than addition.

To explicitly control the order of
evaluation, you can use parentheses
to group operations. The second
example shows a forced left-to-right
evaluation.

In addition to adding numbers, the + s Wiy W

operator can add text together. Text “Hellol® + ' HTMLS' + - and” + * C553";
k . “Hello! HTHLS and CSS3°
values in a JavaScript program are Hellol' + * HTMLS® + = and® + * Cs53';
. . “Hello! HTMLS and CS53°
referred to as vtrings. Strings are “Hellol” + * HTML® + 5+ * and" + * CS5" + 3;
. “Hello! HTMLS and CSS3"
always demarcated by either double HTHLS" ¢ *C553";

Nah
or single quotes —it doesn’t matter

which as long they’re used in pairs,
as the first two examples show.

Strings and numbers can be added
to each other in certain circum-
stances, although using any of the
other arithmetic operators with
strings leads to a not-a-number

(NaN) result.

If the string is also a number, it can be used with normal arithmetic
operations, but the results won'’t always be what you expect. Java-
Script makes up its own mind about whether you mean arithmetic or
string addition.

In the first two examples, string addition 1s
used rather than numeric, because addition

Arithmetic and variables 497

can be performed on both numbers and TP
strings and one of the operands is a string. §2+ i
e) =i
The ml}ltlphcatlon operation can only be 5,
used with numbers, so the strings are con- 4
ngn o mpw

verted automaticall_y to numbers.

YOUR JAVASCRIPT PROGRAMS. IN THE SECTION “BRANCHING AND LOOPING.”

THE AUTOMATIC CONVERSION OF NUMBERS TO STRINGS CAN LEAD TO SOME 7
UNEXPECTED AND UNWANTED BEHAVIOR, OR BUGS IN PROGRAMMER PARLANCE, IN
YOU'LL LEARN HOW TO FORCE YOUR OPERAND TO BE A NUMBER. \
)
[

Comparisons

Comparisons are operators that produce a true or false value, otherwise
known as a Boolean value. Comparison operators are crucial when it
comes to branching and looping (see “Branching and looping”). There
are general-purpose comparison operators as well as several operators
that are intended for Boolean values. The three main Boolean opera-
tors are as follows:

&& AND Returns true if both oper- T T
ands are true false
true || false;
. . true
[OR Returns true if either oper- Y
and is true false
Ifalse;
true

! NOT Returns true if its operand
1s false

Experiment with these operators in the
console until you're comfortable with these
meanings.

498

APPENDIX D JavaScript

You can compare two values for equality
with these operators:

== EQUAL Returns true if both
operands are the same

I= NOT Returns true if the

EQUAL operands are different

Note that if you begin comparing things of
different types, you may get unexpected
results.

Because JavaScript helpfully converts
types for you, the equality operators aren’t
always reliable.

=== IDENTICAL Returns true if the
operands are the same
type and have the
same value

Again, if you compare things of different
types, you may get unexpected results. In
the example here, 2 == "2" (comparing an
integer with a string) evaluates to true,
since JavaScript converts the integer 2 to
a string "2" before comparison. But 2 ===
"2" evaluates to false because an integer is
not a string.

true != false;
true

true = !false;
true

I(true == false);
true

I(true && false);
true

(true || false);
false

2 == "2n,
true
— s

false

Arithmetic and variables

You can check whether something is 1<2;
smaller or larger than another thing: :" ‘:92‘
< LESS Returns true if the first false
THAN value is less than the ikl
false
second value "HTML" < "SVG";
true
> GREATER Returns true if the first
THAN value is greater than the
second value
When you compare strings with < and >, e
JavaScript takes the numeric value of the false
characters and compares them. This means "H* < "g%;
H is greater than C, but H is less than ¢, true
because lowercase letters are all larger
than uppercase letters for comparison pur-
poses. As with the arithmetic operations
you saw earlier, bugs can occur if you're
expecting to compare numbers but in real-
1ty are comparing strings. JavaScript
doesn’t complain in either case.
You can also compare smaller and larger e
and equal to: false
2 <=2;
<= IESlSJiLT}‘-II'gN OR " Returns true if the ;n)]i 2;
first value 1s less true
than or equal to the
second value
- (G)EE:(T)E?JI—%N Returns true if the

first value is greater
than or equal to the
second value

499

500

APPENDIX D JavaScript

Now you can perform arithmetic and comparisons, but what can you
do with them? Comparisons are used extensively in branching and
looping, which we'll examine in the section “Branching and looping,”
but if you compare the same fixed values in your program you'll see the
same results every time. You need to store variable factors in the pro-
gram so you can provide different results according to different start-
ing conditions: you need variables.

Variables

A variable is a place to store the result of a calculation. If you remem-
ber any of your high school algebra, the concept of a variable ought to

be somewhat familiar. You may remember algebra problems something

like this:

5=2+x

In math, working out the variable’s value results in the answer. In this
case, it’s clear that x = 3. But in JavaScript, you express it like this:

var x = 5 - 2;

This code is saying “Create a storage space called x; calculate the result
of 5 — 2; store the result in the storage space called x. The var keyword
allocates a variable.”

After you've stored a value in a vari- var x = 5 - 2;
able, you can use it in another calcu- ””de“”eg ,

. . . var y = + i
lation, as shown here. First a value 1s undafined
assigned to x and then to y, and then var z = x *y;

}1 . l)l (1 (1 . undefined
the variables x and y are used in a corisaln.Roglas
calculation that assigns a value to z. 12

fl > undefined
The console.log(z) statement is an

example of calling a method on an
object. For now, you don’t need to
know what that means (you'll learn
more in the section “Functions and

objects”); just be aware that it prints

out the current value of whatever
variable you put in the brackets.

Unlike in algebra, you have to define
all the variables that appear on the
right side of the equals sign before
you use them. The sequence of oper-
ations here shows what happens if
you don't.

When JavaScript can’t understand
your code or is unable to execute it,
an error occurs. Usually this immedi-
ately stops the execution of whatever
program is running. You can see in
this example that the error that c
isn’t defined wasn'’t discovered until
b was defined, because the initial
error stopped execution.

After you create a variable, you can
assign it a new value at any time.
When you use the variable in a cal-
culation that assigns a new value to
itself, remember that the assignment
operator sets the new value, and that
always happens last —the value isn’t
updated until the end of the
calculation.

If you put a number in a variable,
nothing stops you from adding a
string to it. But as with previous situ-
ations where JavaScript is equally
happy with a string or a number, this
can lead to confusing errors.

Arithmetic and variables 501

var a
Refer
var b
undef
var a
Refer

“ var ¢

undef
var a
undef
conso
7

undef

var
unde
a =
8

a =
"HTM
a:
NaN

=b + c;
enceError:
= 3;
ined
=b+c;
enceError:
= 4;
ined
=b +c;
ined
le.log(a);

ined

a=2;
fined
a*¥a#*a;

"HTMLS";
L5"
a*a#*a;

b is not defined

¢ is not defined

502

APPENDIX D JavaScript

YOU'VE GAINED SOME FAMILIARITY WITH VARIABLES, BUT YOU

SHOULD KNOW ABOUT A FEW MORE OPERATORS. THESE OPERATORS
DON'T HAVE ANY ANALOGLIE IN ARITHMETIC: THEY'RE ONLY USEFUL

WHEN YOU HAVE VALUES STORED IN A VARIABLE.

Special operators for variables

Two operators that won'’t be familiar to you
from school arithmetic are the poust-
tncrement (++) and post-decrement (—-) opera-
tors. They increase and decrease, respec-
tively, the value of a number by one. Post
means they perform the change after the
value has been used in an expression.

Study the sequence of operations in this
screenshot. Notice that the values assigned
to a and b are those of i before the incre-
ment or decrement.

You also need to know about the += opera-
tor and its relatives.

The need to store the result of an expres-
sion into a variable when it’s one of the
operands is so common that a shortcut 1s
built into JavaScript. Instead of writing

a=a+ b;
you can write
a += b;

This works for the other arithmetic opera-
tors, as you can see In the screenshot.

var i = 0;
undefined
console.log(i);
0

undefined

var a = 1++;

» undefined

console.log(a);
(i}

» undefined

console.log(i);
1

undefined

var b = i--;
undefined
console.log(b);
1

undefined
console.log(i);
]

undefined

var a=2,b=3;
undefined
+= b;

i U~ LR S VI 1]
'

var s = 'H';
undefined
s += 'el';
"Hel'
s += 'lo';
"Hello"

Branching and looping 503

In this section, you've learned IN PROGRAMMING, WE CALL ;
. CHOOSING BETWEEN A
how to do calculations and com- DIFFERENT ACTIONS q
BRANCHING AND REPEATING ™~

i

parisons and store the results in 2r710NS LOOPING, YOU'LL :
LEARN ABOUT THEM IN THE A

variables. That 1s fundamental to WL ol d&.

writing programs but not very

useful by itself. You need to be able to take different actions depending
on the results, or perform actions repeatedly to make it worth your
while to write a program in the first place.

Branching and looping

If your program did some calculations and always produced the same
output, there wouldn’t be a point to it. A program can’t do much unless
it can make decisions based on the variables being passed into it. When
a program executes one block of code rather than another based on the
value of a variable, that’s what we call branching. Looping is a related
concept: executing a block of code multiple times. In this section, you'll
step back from the console for a few

pages and learn about the various ABLOck SF o '

]] 1 STATEMENTS
branchlnig and loop}ng concepts in AN
JavaScript so that in the following WITHIN BRACES @

LIKE THESE: { }. | [

The term branching, unsurprisingly, comes from an analogy to a tree

sections you can see how they're used.

branch. Imagine you're walking along the branch of a tree: eventually
you come to a point where it divides into two. You can choose to go up
one branch or the other one. That’s all branching is in programming —
choosing to go one way or another. The simplest branching construct is
the if statement.

----------- A CONDITION THAT
DO THIS IF THE el . EVALUATES TO A
CONDITION IS TRUE. ’ BOOLEAN.

: \4
. if (x %2 ==0) {
------ » console.log('Even');

Pt } else {

Q

console.log('0dd"); -
.-' } s
THE else IS OPTIONAL. CONDIToNTo IE THE

REMOVE EVERYTHING AFTER THE BRACKET
IF NO ACTION IS REQUIRED.

APPENDIX D JavaScript

If you need to check for more than one condition, you can nest the

if...else statements.

_________ THE FIRST CONDITION
R IS THE SAME AS BEFORE.

if (y 2 ==0) {
console.log('Even');
} else if (y % 3 == 0) {
',x"' console.log('Divisible by 3");
1 else {

console.log('Not a multiple');

PPTTINN

L}

.

IF THE CONDITION
IS FALSE, CHECK
ANOTHER CONDITION.

An alternative to if...then...else is the switch statement. It lets you
choose from a long list of alternatives based on the value of a variable.
It doesn’t allow the flexibility of if...then...else in comparison opera-
tions but does offer a more easily comprehensible way of presenting
multiple choices.

INSIDE THE BRACKETS THIS IS AN EXAMPLE OF
IS A VARTABLE TO BE] AMETHOD ON AN
TESTED. . R OBJECT. MORE IN
-, " “FUNCTIONS AND OBJECTS.”
- “ '
switch (z.tolLowerCase()) {
THE VARIABLE .y COS€ "eat me':
PASSEDINIS .--~ console.log('Grow');
COMPARED TO __ break: S REET
EACHOFTHE “*~on oo W T
CASES IN TURN. case "drink me": _ EACH CASE
console.log('Shrink'); .- TSENDED
break; IRy BY A break.
default:
1F NONE OF THE .-~ console.log('Why is a' !
CASES MATCH, ~ +' raven like a' o
THE DEFAULT + 'writing desk?');
susep. o EEEE EERRE Sy .
break; -t

Branching and looping 505

That’s all you need to know about branching, so on to looping. Looping
lets you repeat an operation multiple times. The most common loop is

for.
LOOP WHILE THIS
EXPRESSIONISTRUE. INCREMENT THE
STARTING STATE H .- VARIABLE AFTER
' EVERY LOOP.
« v
for (var i = 0; 1 < 10; i++) {
e » console.log('Loop ' + 1i);
/ }
STATEMENT BLOCK TO
REPEAT
This screenshot shows the output ||« for(var i = 0; i <10; i++) { console.log('Loop ' + i}; }
. Loop @
in the console from the for loop. It Loap 1
. . Loop 2
logs 10 lines, counting up from 0 Loop 3
. . Loop 4
to 9. This is the normal program- Loop 5
. . Loop 6
mer way of counting 10 things, Loop 7
. . Loop 8
starting at 0, so get used to 1t! Loop 9

| undefined
It’s also normal to use the loop
index variable, i in this case, to
modify the code’s behavior on each
iteration through the loop.

An alternative to the for loop is the while 1oop. As you can see from the
following diagram, it has all the same features as the for loop, but the
arrangement is slightly different.

STARTING STATE LOOP WHILE THIS

* . .* EXPRESSION IS TRUE.
- var 1 = 0;,‘

while (i < 10) {

STATEMENT BLOCK ------ » console.log('Loop
TO REPEAT

'+ 1)
i+= 2;
} LN INCREMENT THE

== VARIABLE AFTER
EVERY LOOP.

506

APPENDIX D JavaScript

This Screenshot ShOWS the Out_ I var i = @; while (1 < 10) { console.log('Loop ' + i); 1 +=2; }
Loop O
put in the console from the Loop 2
oop
7 1 Loop 6
while loop. Incrementing by o e
two each time through theloop 1" *

means only five iterations.

You would normally use a while loop when you weren’t sure how many
iterations (trips through the loop) were required. Whereas the for loop
always counts from something to something, a while loop does as many
or as few iterations as required. For instance, if you had a collection of
10,000 numbers and wanted to find the first one that was even, you
would use a while loop because you would expect to find an even num-
ber in the first few you looked at.

There’s a variation on the while loop called the do...while loop. As you
can see in the next diagram, it’s similar to the while loop; the main differ-
ence is that the test to see whether the loop should continue is at the end.

STARTING STATE

- var i = 0;

do {
STATEMENT BLOCK ~ ------ #» console.log('Loop ' + 1i);
TO REPEAT .
1 += 2; S IR EEIN .
} while (i < 10) INCREMENT THE
VARIABLE AFTER
» EVERY LOOP.
LOOP WHILE THIS
EXPRESSION IS TRUE.
The previous do...while loop < var 1 =0; do { console.log('Loop ' + 1); 1 +=2; }while (1 <10)
Loop O
produces exactly the same o2
output as the earlier while e
loop. For a large number of I

iterations, this will always be
true. The main difference
comes when the while loop
may not be executed at all.

Functions and objects 507

Following on the left is a while loop; on the right is a do...while loop
with the same code block and test expression. You can see from the
console output that the while loop doesn’t execute its code block
because the test expression is false. But the do...while loop does exe-
cute its code block, because the test expression isn’t checked until the

end of the loop.

while (false) { do {
console.log('Loop'); console.log('Loop');
} } while (false)

while (false) { console.log('Loop'); } |« do { console.log('Loop'); } while (false)
undefined Loop

|| » undefined

The loop never executes if the The loop always executes at least
condition expression evaluatesto once.

false.

YOU NOW KNOW ABOUT ALL THE LOOP TYPES IN JAVASCRIPT BUT ONE.
THE FINAL LOOP TYPE IS for. ..in, BUT IT'S ONLY USEFUL WITH
OBJECTS. YOU'LL LEARN ABOUT OBJECTS IN THE NEXT SECTION.

Functions and objects

So far, we've covered basic arithmetic operations and comparisons,
variables in which to store results of those operations, and structures
that allow you to control program flow based on variables and compar-
isons. Next you need to learn how to structure those components into
complete programs. This is where functions and objects come in.

Functions

A function takes input, transforms it in some way, and produces out-
put. Here’s an example.

508 APPENDIX D JavaScript

A LABEL GIVES THE PLACEHOLDER FOR
THE FUNCTION A THE DATA TO BE PASSED
THE function KEYWORD NAME. .- INTO THE FUNCTION,
INDICATES A FUNCTION ' ,+*" CALLED THE PARAMETER
DECLARATION. -. ' R GOES IN PARENTHESES.
.. * v ’
function db1lMe(n) {
THE return KEYWORD » return 2 * n; ‘
ENDS THE FUNCTION A
AND SENDS A VALLIE H
BACK. ... :
“* THE CODE TO BE EXECUTED (THE
FUNCTION BODY) IS PLACED
BETWEEN BRACES.
This function is short enough that function dblMe(n) { return 2 * n; }
you can experiment with it in the ;;f;;;‘:d
console. To run the code in the 4 '
dblMe(3);

function (or call the function, as a ‘
developer would say), you use the
function name followed by paren-

theses containing the argument

you want to pass. The argument 1s
assigned to the parameter within

the function body.

It's worth explaining that again: the parameter is the placeholder in the
function definition. The argument is the value passed into the function
when it’s called. In practice, people ignore this subtle distinction and
use the two terms interchangeabl_y; we'll try to keep them straight, but
don’t worry about the difference too much.

Real functions generally contain more complex logic, but the examples
here are short so it’s feasible for you to type them into the console.
Here’s a slightly more complex example.

function evenMe(n) { if (n $ 2 = 1) { return n + 1; } else { return n; } }
undefined

evenMe(2);

2

evenMe(3);

4

Functions and objects 509

When you write your own functions, it's more common to put each
operation on a single line, like this:

function evenMe(n) {
if (n%2==1) {
return n + 1;
} else {
return n;

}

But JavaScript, like HTML, doesn’t care about whitespace; that just
makes it easier for humans to read. It works no matter how many lines
it takes up, but for the console you need to get everything onto one line.
Functions can take more than one argument.

function baseMe(n,a) { while (n % a != 0) { n++; }; return n; }
undefined

baseMe(3,3);

3

baseMe(4,3);

6

baseMe(5,3);

6

Here's the previous function written in a more conventional style to
make it easier to read. The function rounds the argument n up to the

next multiple of a:

function baseMe(n,a) {
while (n % a != 0) {
n++;
};
return n;

}

Precedence, which you saw in the simple arithmetic examples earlier,
also applies with functions. This is important when you want to pass
the result of one function as an argument to another.

510

APPENDIX D JavaScript

Functions are evaluated from the
inside out. This probably seems
intuitive; but to confuse the situa-
tion, it’s possible to pass functions
as arguments to other functions.

Here'’s a simple function that
expects a function as a parameter:

function applyMe(f,n)
{return f(n);?}

To pass the function as an argu-
ment, you specify the function
name without adding parentheses.

Passing functions as arguments is a
common pattern in calling HTML5
APIs. It’s also common to declare
simple, single-use functions
directly. This is called an iline
Sfunction: it’s declared and then
thrown away. You can use it only
within the function it’s being
passed to, not elsewhere in your
program, because there’s no label
to refer to it.

db1lMe(evenMe(3));
8
evenMe(dblMe(3));
6

function applyMe(f,n) { return f(n); }
undefined

applyMe(dblMe,3);

6

applyMe(evenMe, 3);

4

applyMe(function (n) { return n * 3; }, 3);
9

That'’s all you need to know about functions—time to move on to

objects.

Objects

Functions let you group your code into convenient units that can then
be called in your program, but you'll also want to group data and func-
tions together. In JavaScript you do this with objects. In loose terms,
an object is a collection of stuff. The stuff can be variables, functions,
and other objects. JavaScript has several built-in objects, HTML

Functions and objects 511

provides another set of objects, and the browser still more. You can
also create your own objects; let’s start with that.

The simplest way to create an var myobject = {};

. undefined
object is with an object literal. An it TG RORTEEE;
empty object is a pair of braces. [object Object]

. . . undefined
The object can contain variables I

and functions, but when they're
part of an object they're referred
to as properties and methods.

In JavaScript, you can access a myObject.myProperty = 2;
. 2
property or method on an ob)ect myObject.myMethod = function(n) { return n * 3; }
i . . (function (n)} {return n * 3;})
by using a PeI‘lOd () fOHOWQd by a myObject.myMethod (myObject.myProperty);

label. You can create properties °

and methods by assigning a value,
as shown here.

This is the same code in an easier-to-read format:

var myObject = {};

myObject.myProperty = 2;

myObject.myMethod = function(n) {
return n * 3;

}

You can then call the method, passing in the property like this:
myObject.myMethod(myObject.myProperty);

Now that you have an object to play with, it’s time to learn about the
final type of loop: for...in. The following screenshot of the console
shows a for...in loop in action on the myobject object just created.

I for (var prop in myObject) { console.log(prop + ':' + myObject[prop]) }
myProperty:2
myMethod: function (n) {
return n * 3;

|+ undefined

512

APPENDIX D JavaScript

For...in loops through the properties and methods of an object. The
variable prop is set to the label associated with the property or method.
You'll see it used most often in scripts that check to see if a browser
supports certain HTML5 features. Note that the syntax myObject
['myProperty'] is an alternative way of accessing the myProperty method.
This alternative approach is handy for use inside for...in loops.

Before we finish with objects, it’s important to know that variables that
refer to objects behave slightly differently than variables that refer to
normal values like numbers. To see the difference, let's do a little
experiment in the console.

1 Create a variable o, and give it the vara =2
value 2 undefined
' var b = a;
2 Create a variable b, and give it the ;"d@:ined
value of a. &£
. console.log(a);
3 Set the variable b to have a value of ; ?
4 instead. I+ undefined

Notice that after you do this, the value
of a is unchanged. Setting b to have a
value of a doesn'’t create any sort of
relationship between them. The value
contained in a is copied into b.

Now try a similar sequence of opera- var myobject = {};
. . . undefined
tions with two variables that refer to ayObject .nyProperty = 2;
objects. Notice that after assigning 2
. : var myOtherObject = myObject;
myObject as the value of myotherobject, i
changing the value of myotherobject myOtherObject.myProperty = 4;
4
.myProperty also changes the value of consiole, iogluyibject avPriperty);

4

myObject.myProperty. This is because _
|| » undefined

assigning the object to another vari-
able creates two variables that refer to
the vame object.

How JavaScript fits into HTML 513

There are several other features of objects, as well as a few different
ways to create them, but you won'’t need to know them for this book.
Just bear in mind that whenever you see periods, you're almost always
looking at objects with properties and methods.

YOU NOW KNOW ENOUGH TO START PUTTING JAVASCRIPT TO THE USE
IT WAS INTENDED FOR—MANIPULATING WEB PAGES. BUT TO DO THAT. ~

YOU NEED TO UNDERSTAND HOW TO LINK JAVASCRIPT TO A WEB PAGE.

a

How JavaScript fits into HTML

The point of learning JavaScript is using it in browsers to do things
with web pages. In this section, you'll learn how to get your JavaScript
into HTML. You can do this three primary ways: inline in a <script>
element, linked in a separate file, and inline in an event handler. Let’s
look at each in turn.

Inline <script> element

The most straightforward way to add JavaScript to your web page 1s
to include it inside a <script> element. Here’s a simple example:

<!DOCTYPE html>
<html>
<head>
<title>Inline script</title>
</head>
<body>
<script>
window.alert("Inline script!");
</script>
</body>
</html>

If you create a web page using this code and load it in your browser,
you should see something like the following screenshot (if you're using
IE, you may need to click the warning bar to allow JavaScript in a

local file).

514 APPENDIX D JavaScript

) inline scrir:l.t “Mozilla Firefox
Firefox | " Inline script | #]

&+ |3 file:/ihomeyrobert/documentsiwr ~ @ | [-g_lv Google @) av

Inline script!

OK I

After the previous section, you should have noticed that window is an
object and alert is a method. This is built-in functionality provided by
the browser.

JavaScript linked in a file
In the same way that CSS can be kept in a separate file so it can be used
in more than one web page, so can JavaScript. When you load the
page in your browser, it looks much the same as the previous example.

] Linked script - Mozilla Firefox
Firefox | € Linked script | #]
&+ |3 files/ihomeyrobert/dac wi_ v ®|[@vcoo: a @y

Linked script!

OK I

For this you need two files. The first is an HTML page:

<!DOCTYPE html>
<html>
<head>
<title>Linked script</title>
</head>

How JavaScript fits into HTML 515

<body>

<script src="myscript.js"></script>
</body>
</html>

Then you need a file called myscript.js containing this line of code:

window.alert('Linked script!');

Inline event handlers
The final way to include JavaScript in a page is through an inline event
handler. Events are things that can happen in a page, such as a user
clicking a button. You'll learn more about them in the section “Events”;
for now, you just need to know that you can create a handler for a click
event by adding an onclick attribute to an element. This is what the
page looks like.

Tline event handler © Mozilla Firefox

Firefox | [} Inline event handier |*
| file:/jhomerabertydocumentsiwr ~ _1 @'_ cogle gl E"

| Click me |

Inline event!

When you click the button, the alert pops up. Here's the code:

<!DOCTYPE html>
<html>
<head>
<title>Inline event handler</title>
</head>
<body>
<button onclick="window.alert('Inline event!');">
Click me
</button>
</body>
</html>

You should notice two things about this code. First, no <script> ele-
ments were required: the JavaScript is directly in the markup. Second,

516

APPENDIX D JavaScript

the quotes around the argument to alert are single quotes, unlike the
double quotes used in the previous example. In JavaScript, you can
use either single or double quotes—it doesn’t make any difference as
long as you start and end a given string with the same type of quote.
But double quotes are used in the HTML for the attribute value, so
using double quotes in the JavaScript would make the HTML invalid.

ALL THREE APPROACHES FOR INCLUDING JAVASCRIPT IN A WEB PAGE THAT YOU'VE SEEN
IN THIS SECTION USE THE DOCUMENT OBJECT MODEL (DOM) TO CAUSE THINGS TO
~ HAPPEN WITHIN THE PAGE. THE NEXT SECTION LOOKS AT THE DOM MORE CLOSELY.

The DOM

The Document Object Model (usually referred to as the DOM) is the
way you access a web page through JavaScript. As the name implies,
it's based on an object called window. You already used the alert method
of the window object in the previous section. The window object contains
properties and methods provided by the browser, the most important
of which is the document object. The document object contains properties
and methods provided by the web page. To experiment with the docu-
ment object, create a simple web page:

<!DOCTYPE html>

<html> oo G rer— ——
<heC|d> P fjhomelrobert/documentsint v - a @~
<meta charset="utf-8"> First div
<title>DOM Example</title> Paragraph in first dv
</head> Second div
<body>

<div id="first">
<h1>First div</h1>
<p>Paragraph in
first div</p>
</div>
<div id="second">
<h1>Second div</h1>
</div>
</body>
</html>

Open the console, and type in this
code:

document.getElementById('first');

As you can see, the getElementById
method returns an object. This
object also has methods and prop-
erties that you can call:

var d =

document.getElementById('first');
console.log(d.innerHTML);

The elements inside the <div> can
also be accessed through methods
and properties of the element.
This code grabs the first child of
the <div>:

var h = d.children[0]

2 undefined

The DOM 517

object HTMLDivElement

_TI;_Eocument‘getElementByldfoiFgfjﬁ;
»

A

var d = document.getElementById('first');

v

A

console.log(d.innerHTML)

<hl>First dive</hl>
<p>Paragraph in first div</p>

undefined

var d = document.getElementById('first');
undefined

var h = d.children[0];

undefined

console.log(h);

[object XrayWrapper [object
HTMLHeadingElement]]

undefined

A Y A VY a

The DOM isn't just a

Firefoxs ||

DOME xample

1*

way to access the docu-

[} file:fffhome/frobert/documents/wr

v @

@ @

ment. You can also use

[lNet ~ |ucss ~ njs v |L.Logging ~| Positionw |

it to modify the page.
Here’s a quick example.

Pl

* undefined
% var p = document.createElesent('p’);
* undefined

* undefined

4 d.appendChild(p);

var d = document.getElesentByld('second’);

var t = document.createTextNode('Paragraph in the second
div');

p.appendChild(t);
lobject Text]

ri

First div

Paragraph in first div

Second div

Paragraph in the second div

518 AFPENDIX D JavaScript

Here's the code in more detail:

CREATE A
PARAGRAPH
ELEMENT.
var d = document.getElementById('second');
var p = document.createElement('p'); ---
var t = document.createTextNode(

?&TE;DE. -------- » 'Paragraph in the second div');
p.appendChild(t); e ADD THE TEXT NODE
d.appendChild(p); < TO THE PARAGRAPH.

“*~.. ADDTHE
PARAGRAPH TO
THE <div>.

THE DOM IS A HUGE SUBJECT, BUT THIS INTRODUCTION HAS GIVEN YOU AN IDEA
ABOUT WHAT IT DOES AS A FOUNDATION FOR LEARNING MORE. CHECK THE FINAL

~ SECTION OF THIS APPENDIX FOR ADDITIONAL RESOURCES. IT'S TIME TO COMPLETE
YOUR UNDERSTANDING OF JAVASCRIPT WITH A QUICK TOUR OF EVENTS.

Events

You saw an event handler in “How JavaScript fits into HTML” —in that
case, an inline event handler. A handler is a function that’s called when
an event happens (when the event fires). In this section, you'll see how
to deal with events in an external JavaScript file. When you're attaching
handlers from an external JavaScript file, you need to use the DOM.

Use the simple page you created for exploring the DOM in the previ-
ous section, but add a reference to an external JavaScript file:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>DOM Example</title>
<script src="events.js"></script>
</head>
<body>
<div id="first">
<h1>First div</h1l>
<p>Paragraph in first div</p>

Events 519

</div>
<div id="second">
<h1>Second div</hl>
</div>
</body>
</html>

Of course, you also need to create the JavaScript file. Start with this
code in it:

var d = document.getElementById('first');
console.log(d.innerHTML);

If you load the page now, you'll see this in the console.

‘ d is null events.js:2

This happens because at the point where the JavaScript executes, no
element has the ID first. The JavaScript is executed as soon as it’s ref-
erenced, in the <head> element. You need the JavaScript to await exe-
cution until after the document is loaded. Fortunately, there’s an event
for just such a scenario.

NOTE THAT EVENT-HANDLING CODE WORKS VERY DIFFERENTLY IN OLDER

VERSIONS OF IE. WE DON'T HAVE ROOM TO GO INTO THE DETAILS HERE:
CHECK THE “FURTHER READING" SECTION FOR MORE ON THE DIFFERENCES. \

4
L

Wrap the code you want to run in a
<hl>First div</hl>

filIl(Iti()IlZ <p>Paragraph in
first dive/p>

function go() { 5
var d = document] m

.getElementById('first');
console.log(d.innerHTML); First div
h

Paragraph in first div
Then use the addEventListener

method to attach your function as a Second div

handler for the window’s 1oad event:

window.addEventListener('load', go);

520

APPENDIX D JavaScript

You can see in the console that the
code now runs as expected. Notice
that a function is being passed as an
argument, as discussed earlier.

Now let’s extend this example to add a button element and then add a
click handler to the element. The following screenshots show the page
before and after clicking the button.

| & Ev PEIE) | & Events Example - Mozilln Firefax HEE
Firefox~ Events Firefox~ Events Example +*
file:/fhome/robert/documentsivg - v g~ Q v file:/iihome/robert/documents/wr - v - Q v
First div First div
Paragraph in first div Paragraph in first div
Second div Second div
Click me Click me
Paragraph in the second div
This is the code to put in the events.js file: CALLED ON
4_/ BUTTON CLICK
function add_element() { SAME CODE YOU USED
var d = document.getElementById('second'); -e——— TOMODIFY THE
var p = document.createElement('p'); DOCUMENT EARLIER
var t = document.createTextNode('Paragraph in the second div');
p.appendChild(t);
d.appendChild(p);
}

function go() {
var b = document.createElement('button');
var t = document.createTextNode('Click me');

. CREATES BUTTON
b.appendChild(t); AND ADDS
b.addEventListener('click', add_element); < EVENT LISTENER
var d = document.getElementById('second');

. d.appendChild(b); LISTENS
TO LOAD
window.addEventListener('load', go); < EVENT

The final thing you need to be aware of is event bubbling. When an
event occurs, such as a click event, it bubbles up the document tree. This

Events 521

means the click event is fired from the element where the event
occurred all the way up to the document root. This example attaches to
the document a click handler that determines what type of element was

clicked.

[TEvents Example - Mozilla Firefox == % | [TEvents Example - Mozilla Firefox == % | [TEvents Example - Mozilla Firefax == |
Firefox |[| Events Example (3 Firefox | [| Events Example L) Firefox |[| Events Example L*
& | flenme ~ & (v sl [l & [flenmo v &) (v 5ol @ & [flemho ~ & [[v @) @
First div

Paragraph
Paragraph in first div
Second div

Returning to the example, edit events.js one more time:

function click_handler(event) { -<~\i’ EVENT OBIECT
TARGET 6» var.' el = event.target; A5 PARAMETER
PROPERTY switch (el.nodeName) {
case "DIV": NODENAME
window.alert('Div'); PROPERTY
break;
case "H1":
window.alert('Heading');
break;
case "P":
window.alert('Paragraph');
break;
}
; . HANDLES
function go() { CLICK
document.addEventListener('click', click_handler); EVENTS
}

window.addEventListener('load', go);

Any function added as an event handler receives the event object as a
parameter @. The target property of the event object @ is the element
where the event originated. The element object has a nodeName property
@ that tells you the type of element clicked. You attach click_handler to
the document to handle all click events 0.

522 APPENDIX D JavaScript

The main benefit of this approach is that it reduces the number of event
listeners required. This can reduce memory and processing require-
ments for large and complex pages. You'll see it used frequently in
large-scale web applications.

YOUR RAPID INTRODUCTION TO JAVASCRIPT IS NOW COMPLETE. DON'T WORRY IF
YOURE STILL CONFUSED—IT'S UNLIKELY THAT YOU'LL PICK IT ALL UP IN A FEW PAGES.
AT LEAST NOTHING YOU SEE IN THE REST OF THE BOOK SHOULD BE UNFAMILIAR TO
YOU. FEEL FREE TO REFER BACK HERE ANY TIME. IF YOU WANT TO GO INTO JAVASCRIPT
IN MORE DEPTH, CHECK OUT THE RESOURCES IN THE NEXT SECTION.

Further reading

For a detailed discussion of the differences between event handling in
IE and all the other browsers, refer to quirksmode.org: www
.quirksmode.org/js/introevents.html.

For a complete reference of all the methods and properties of the
DOM, check out the Mozilla Developer Network: https://developer
.mozilla.org/en/DOM/.

For an alternative introduction to JavaScript, try “Thau’s JavaScript
Tutorial”: www.webmonkey.com/2010/02/javascript_tutorial/.

THAT CONCLUDES THE APPENDIXES FOR HELLO! HTMLS AND €553, AFTER READING THEM
YOU SHOULD HAVE AN UNDERSTANDING OF HOW THE WEB WAS BUILT AND HOW WE
ARRIVED AT THE CURRENT STANDARDS AS WELL AS A WORKING KNOWLEDGE OF THE
TECHNOLOGIES WHICH MAKE UP MODERN WEB PAGES: HTML., CSS, AND JAVASCRIPT.
WELCOME TO THE WORLD OF WEB DEVELOPMENT, I HOPE YOU ENJOY IT!/

www.quirksmode.org/js/introevents.html
www.quirksmode.org/js/introevents.html
https://developer.mozilla.org/en/DOM/
https://developer.mozilla.org/en/DOM/

Symbols
-- 502
1 497
1= 498
limportant 341
.htaccess file 151
@font-face 394-397
browser support for 395
properties 395
@keyframes 343
* 495
/ 495
\:not pseudo-class 255-257
\:nth-child pseudo-
class 244-247
\target pseudo-class 265-267
&& 497
+ 496
++ 502
+= 502
<> 499
== 498
> 474, 499
Il 497

Numerics

2D transform 327
browser support for 323
origin 325
rotation 325
scaling 324

skewing 326
translation 326

3D transform 328-330
browser support for 328

A
<a> element 452
accessibility 24
Accessibility for Rich Inter-
net Applications. See
ARIA
add_storageitem
function 224
addColorStop method 89
addEventListener
method 519
AddType directive 151
adjacent-sibling
combinator 236-238
adr 20
AJAX 434
AND operator 497
Andreessen, Marc 427
animation 343-346
browser support for 343
animation-* properties
348
keyframes 347
using modernizr.js in
older browsers 349
following a path 111

523

in <canvas> 96
animation-duration pro-
perty 344
animation-iteration-count
property 344
animation-name property
344
anonymous table object 277
API
browser-based 153-189
browser support
for 189
introduction to 154
network and
location 191-229
appendChild method 168
Apple, audio codec support
130
application programming
interface (API) 153
arc method 78
Arena 427
argument 508
ARIA 24-26
progressbar role 55
article
in an outline 14
vs. section 8
<article> element 7
vs. <section> element 8
<aside> element 16

524 INDEX

aspect-ratio media
query 291
attribute
custom 26-27
global 23
attribute selector 252
and microdata 252
<audio> element 121,
151-152
attributes 124-128
background 128
browser support for 123
codecs 129-133
in IE8 126
loop attribute 125
multiple sources 133-134
opening and closing
tags 125
preload attribute 124
src attribute 124
styling with CSS 126-128
audio
importance of 120
integrating with other
content 146-150
web server
configuration 151
audio file, encoding 130-132
autocomplete 61
autofocus 61

B
 element 22-23
HTMLA vs. HTML5 23
back button 173-179
background image
in CSS3 371
multiple backgrounds
365-368
origin and clipping 369
scaling 371-378
size 361-365
background property 367
background-attachment
property 483

background-color
property 483
background-image
property 483
background-position
property 483
background-repeat
property 483
background-size
property 361
cross-browser 387
beginPath method 79
behavior property 391
Berners-Lee, Tim
creation of web 426
HTML 1.0 428
W3C 428
Bézier curve, drawing in
<canvas> 81
bezierCurveTo method 81
bitrate 131
blur-radius 352
<body> element 443
border-color property 482
border-image property
browser support for 373
drop shadows 378
repeat keyword 375
round keyword 375
stretch keyword 375
border-image, fill
keyword 387
border-radius property,
browser support for 358
border-style property 482
border-width
property 482, 484
box model 284
box-flex 294
box-lines 297
box-ordinal-group 295
box-orient 296
box-shadow property,
browser support

for 353

box-sizing property 284
browser support for 284
in Firefox and Safari 5

310

 element 447
not for layout 447

branching 503

browser cache vs. applica-

tion cache 214
browser support for
HTML5 32-36
Internet Explorer 35-36
browser support for
HTML5 features 68
detecting 69-71
inconsistencies 69

browser wars 428-430

C
calc function 279-283
browser support for 282
good and bad 283
in Firefox 310
<canvas> element 22,
74-96
animation 94
browser support for 74,
114-118, 123, 130
drop shadows 91-92
fallback content 74
font property 85
games and 94-96
gradients 88-91
IE support for 114
transformations 92-94
canvas
drawing context 76
drawing shapes 76-82
drawing text 84
placing images 82
CERN 426
check boxes 40
checked 263
checkValidity() method 64

Chrome
<audio> element in 127
HTML validation 465
JavaScript interactive
console 492
support for cross-
document messaging
201, 206
support for, download-
able fonts 399
text formatting 161
video codec support 138
WebM support 140
<circle> element 99
circle
drawing in 78
drawing in SVG 99
class attribute 443, 472
class selector, and attribute
selector 255
class, role of 242
clear property 488
clearRect method 76
closePath method 80
codec 129-132
lossless and lossy 129
video 138-142
browser support
for 138
color media query 292
color property 481
color stop 89
color value, for
shadows 352
column-count property 417
column-gap property 419
column-span property 418
column-width
property 417
combinator, browser sup-
port for 239
communication 200
content
elements 18-23

sectioning 7-8

content model 29-32
content types 32
contentEditable
attribute 154-164
contenteditable attribute
edited content, saving 159
n IE8 157
overriding 156
control character, defini-
tion of 446
cookies 223
coords object 195
createLinearGradient
method 88
CreateLink command 163
createRadialGradient
method 90
cross-document
messaging 201-205
browser support for 201
CSS
<audio> element,
styling 126
box model 484—488
cascading 475-478
child combinator 474
display modes 486
floated elements 488
inheritance 470471
inline styles 469
layout 488-490
browser support for
features 308
future of 293-308
making mobile website
with 292
properties 480-483
borders and
backgrounds 482
colors and
lengths 480482
rendering modes 485-486
rules 467469
selectors 471-480
class selectors 472-473

INDEX 525

combinators 473-475
ID selectors 471-472
pseudo-classes 478
specificity 477
style sheet, adding to
HTML 469-470
transitions 330
type selectors 469
whitespace 470

CSS2, layout features,

underused 272-278

CSS3

attribute selector 252-257
and class selector 255
and ID selector 255
appending 253
browser support

for 252
existence selector 253

background images 361

box model 284

combinators 235

drop shadows 352

evolution from
CSS2 439

improvements to CSS2
approaches 279-285

introduction to 234

layout 279-311

modularity 439

new features 233-270

pseudo-classes 240

selecting elements
based on attributes

251-261
based on document
structure 234-251
based on user interac-
tion 261-267
selectors, browser sup-
port for 267
transparency 318
web typography 392-416

CSS3 PIE 390
CurvyCorners 358

526 INDEX

D
data, storing for offline
use 222-228
data-* attributes
collection 27
<datalist> element 65—67
datalist 65
datalLoaded function 145
date input 44
datetime-local input 45
declarative vs.
imperative 97
<defs> element 103, 107
descendant combinator
473
device-aspect-ratio media
query 292
device-pixel-ratio media
query 292
digital rights management
(DRM) 150
Dijit 26
disabled 262
display property 487
display: box 294
display: table 275
browser support for 276
good and bad 278
display: table-cell 278
display: table-row 278
distance from user to a
point, calculating 196
<div> element 7, 452
doclick() 174
DOCTYPE 17-18
document object 516
Document Object Model
(DOM) 431-518
DOM Level 2-3
standards 433
document outline 11
dot-com bubble 434
dot-coms 429
drag-and-drop 164-173
basic 167-168

browser support for 168
sequence of events
165-166
draggable attribute 167
dragOver event 168
drawlmage method 83
transformations and 93
drawing context 75
drop event 168
drop shadow
box shadows 352-355
cross-browser 385
inset value 354
text shadows 356
DropShadow, IE 388
Dynamic HTML
(DHTML) 432
dynamic pseudo-class

261-267

E
Ecma International 431
ECMAScript 431
Edwards, Dean 71
element 59
choosing by attributes
251
choosing through
relationships 234-251
margin 484
new
content 18-23
page structure 7-18
reasons for 4-7
selecting among with
pseudo-classes 240-251
sets, selecting with
combinators 235-240
sizing 484
styling based on state 262
 element 22, 450
email address, validity
of 51-52
embedded content 32
Embedded OpenType
(EOT) 398

emphasis 450

enabled 262

EQUAL operator 498

event handler 64

Exclusions module 306

execCommand function,
browser support for 161

existence selector 253

explorercanvas library 115

F
FFmpeg 140
<fieldset> element 54
<figcaption> element 21-22
<figure> element 21-22
figure 21-22
fillRect method 76
fillStyle method 76
fillText method 85
Firefox
<audio> element in 126
drag-and-drop in 168
HTML validation 465
JavaScript interactive
console 493
microdata, support for
180
Navigator origins 432
support for
box-sizing property 310
downloadable fonts 399
support for HTML5
features 68, 114, 151
text formatting 161
Theora support 139
video controls 123
X-Moz-errormessage
attribute 69
first-child 242
first-letter 260
first-line 258, 260
first-of-type 250
Flash
legacy browsers,
supporting 152
vs. HTML5 video 150

flexbox 294-298
browser support for 295,
310
good and bad 298
multiline property 297
flexible box 294
float 488
float property 307, 488
flow content 32
font service 400407
categories 400
Fontdeck 405
font-family property 470
font-feature-settings pro-
perty 410
mapping to CSS3 pro-
perties 415
font-size-adjust property
407-409
browser support for 407
FontSquirrel 400-403
<footer> element 17
<foreignObject>
element 103-105
form
autocomplete 61
controls
color pickers 58
mput 39
telephone numbers 57
submission 42
formatblock command
162-163
formnovalidate attribute 50
fragment identifier 265

G

<g> element 104-105

general-sibling

combinator 238-240

Geolocation API 192-200
browser support for 192
practical uses for 196

getContext method 75

getCurrentPosition

method 195

getElementByld method
517
getltems() method 180, 184
global attribute 23-29
Global Positioning System
(GPS) 192
glyph 410
Gmail, introduction of 434
Google
audio codec support 130
GPS support 192
map display 199
video codec support 138
Google Mail, navigating
between views 176
Google Maps API 199
Google Web Fonts 403-405
gradient
in Canvas element
applying as fillStyle 89
color stops 89
defining relative to the
entire <canvas>
context 91
extents 88
in CSS 378-384
background-size pro-
perty 382
browser support for 379
contain keyword 382
cross-browser 386
radial 381
in SVG 107
linear 88
radial 90
types 88
GREATER THAN
operator 499
Grid Alignment module 298

H

<hl> element 445
hashchange event 175
hasLayout 309
hCalendar 19-20

INDEX 527

hCard 20, 180

<head> element 443

<header> element 9

heading 9-14

heading content 32

<hgroup> element 10
content categories 30

history

storing complex objects

in 177
updating 174-175
history.pushState method
177
hover 261, 331
href attribute 251, 452
HSL 320-323
hsl() function, browser sup-
port for 320
HSLA 320
hsla() function, browser
support for 320
HTML
basics 442-466
documents 443
elements 442
attributes 443
block 450
emphasis 450451
for text 445-452
headings 445-446
images 454-457
inline 450
inline frames 457
links 452-453
lists 448-450
neutral 451
nonvisible 458
paragraphs 445-448
self-closing 447
markup 444
parsing 444-464
resources 464
browser tools 465
web tools 464

528 INDEX

HTMUL (continued)
tags 442
attributes 443
parents and children
443
start and end 442
validation, reasons for
462
validity 459-462
vs. XML 435
well-formed 461
whitespace 446
<html> element 443
HTML 1.0 428
HTML 2.0 429
HTML 3.2 430
HTML Lint 464
HTML3 430
HTMLA 430
audio and video 120
content, sectioning 7
forms, limitations of
39-42
input types 39
semantics, extending 4
text validation 47
HTML5
accessibility 25
as future of the web 439
browser support for 32
content, sectioning 7
elements, new 6
embedding audio and
video 122
form controls, browser
support for 68
forms, controls 39-72
layout tables 272
principles followed by
WHATWG 437
standards mode 18
video vs. Flash 150
html5-now 71
hue 321

hypertext, components

of 442-445

|
id attribute 4-6, 265, 443,
471
usage analysis 5
ID selector and attribute
selector 255
<iframe> element 104
iframe 201
image 21-22
embedding in SVG 101
embedding SVG as 115
importing 83
placing on a canvas 82
 element 21, 454
width attribute 454
imperative vs. declarative
97
inline-block 272-275
browser support for 273
good and bad 275
in IE6 and IE7 309
issues with measure-
ments 279
letter spacing 281
<input> element
new features in HTML5
59-62
setCustom Validity pro-
perty 62

Input type
email 51-53
number 43
time 45

input types 43-45
inserthtml command 162
inset value, in box shadow
354
interactive content 32
Internet Engineering Task
Force (IETF) 428
Internet Explorer
behaviors 390
drag-and-drop in 169
filter attribute 314
JavaScript interactive

console 494

launch of 428
MP4 support 140
shadow filters 388
support for 114
downloadable
fonts 399
inline-block 309
text formatting 161
video codec support 138
invalid 264
itemValue property 181

J
JavaScript

adding to HTML
513-516
inline event

handlers 515

linked in a file 514

arithmetic 495-497
precedence 495
terminology 495

branching 503-505

comparisons 497-500

controlling audio and
video 144-146

customizing validation
messages with 62

do...while loop 506

DOM 516

events 518-522
event bubbling 520

extending forms
with 62-68

for loop 5056

for...in loop 511

functions 507-510
precedence 509

if statement 503

interactive console, set-
ting up 491-494

introduction of 431

looping 505-507

objects 510-512
object literal 511

Java Script (continued)
onclick attribute 515
quotes 515
responding to value

changes 64-65
strings

adding 496

comparing 499
switch statement 504
triggering validation

with 64
variables 500

special operands 502
while loop 505
working with form

values 67

JavaScript include 201

)Query
supporting older

browsers 269-270
using for animation in

older browsers 349

K
keyframe, defining 344
<keygen>element 59

L
last-child 243
last-of-type 250
LatLon library 197
layout, media queries
285-293
LESS THAN operator 499
 element 449
libwww 427
ligature
discretionary 411
in CSS3 410
lightbox 314
line, drawing in <canvas> 76
lineTo method 77
lining numeral 412
<link> element 458
link, creating 163

linter 464
loadeddata event 134, 145
local storage 223-227
location
accuracy 195
finding 193
accuracy 194
continuously 195
means of identifying 194
location.hash 174
log command 167
looping 503

M
manifest file 212
CACHE section 219
FALLBACK section 217
NETWORK section 217
pattern-matching and
wildcards 219
updating 214
map of user’s location 199
margin-width property 484
marking up, definition
of 444
mask attribute 109
MathML 435
matrix 106
max attribute 48
max-device-width media
query 287
max-width media
query 287
media query
and grid/template-based
layouts 301
browser support for 286,
311
device detection 292
media.io 131
<meta> element 458
metadata 443
metadata content 32
<meter> element 56, 145

INDEX 529

microdata 28-29, 179-185
browser support for 180
global attributes 28

microformats 19

Midas 427

min attribute 48

min-width media query 289

Miro Video Converter

139-140

modernizr.js 349

Mosaic 427

moveTo method 77

Mozilla, audio codec

support 130

MP3 129
browser support for 151

MP4 138
profiles 139
video, browser support

for 140, 151
multiple domains, faking
201
Multipurpose Internet Mail
Extensions
(MIME) 151
myProperty method 512
myscript.js 5156

N

<nav> element 17

navigation, global and
local 17

navigator.onLine
property 215

Netscape Navigator 428

Node.js 206

NodeList 180

NOT EQUAL operator
498

NOT operator 497

novalidate attribute 50

nth-child 245

nth-first-of-type 250

nth-last-child 246

nth-last-of-type 250

530 INDEX

number input 43
max and min attributes

48

o
<object> element 116, 455
fallback content 456
plug-ins 456
Offline API 215-217
offline web
application 208-222
application cache 211-215
browser support for 209
development
environment 209-211
fallback display 217
network
connectivity 215
offset-x 352
offset-y 352
Ogg Vorbis (OGG)
130-151
audio, browser support
for 151
video, browser support
for 151
 element 448-449
ondragstart attribute 167
onhashchange function 176
oninput event handler 65
only-child 248
onmessage event 207
onoffline event 215
ononline event 215
onpageshow event 179
onpopstate event 179
opacity 314-317
browser support for in
[E8 and earlier 346
in lightboxes 314
opacity property, browser
support for 314
Opera
<audio> element in 127
audio codec support 130

HTML validation 465
JavaScript interactive
console 494
microdata, support
for 180
support for downloadable
fonts 399
text formatting 161
Theora support 139
WebM support 140
optional 264
OR operator 497
orientation media query 291
orientation, changing lay-
out based on 291-292
outline, sections in 13
<output> element 53-54

P
padding-width property 484
page

state, updating 175

styling based on URL

target 265-267

page structure

elements 7-18
parameter 508
parsing 458

definition of 444
<path> element 100-101
pattern

applying to text 108

in SVG 107-109
pattern attribute 48
perspective 328
phrasing content 32
placeholder attribute 60
placeholder text 59-61
plug-in 122
polygon element 99
polygon, drawing in

SVG 99

<polyline> element 100
popState event 178
popstate event 177

Portable Font Resource
(PFR) 398
post-decrement
operator 502
post-increment
operator 502
postMessage function 204
<pre> element 22, 448
<progress> element 55
prop variable 512
Proposed Recommenda-
tion (PR) 431
pseudo-class 240-251
first-child 242
:last-child 243
:nth-child 244-247
odd and even 245
patterns 245
:nth-last-child 246
child selectors 243
browser support
for 248
dynamic 261-267
browser support
for 261
[E6 problem 240
standalone 243
pseudo-element 257-261
:first-line 258
browser support for 258
vs. pseudo-class 259
pushState function 178

Q

quadratic curve, drawing
mn 81

quadraticCurve method 81

Quirks mode 485

R

radio buttons 40
Raggett, Dave 428
range control 44

Raphaél JavaScript
library 118

RDFa 20

Real Time Messaging Pro-
tocol (RTMP) 150

Real Time Streaming Pro-
tocol (RTSP) 150

rectangle, drawing in
<canvas> 76

reflection effect 82

Regions module 303

rendering mode 18

rendering, definition of 444

Request for Comments
(RFC) 428

required 264

required attribute 47

resolution media query 292

resolution, detecting
287-291

RGBA 318-320

rgba() function, browser
support for 319

rollover effect 478

rotate 93

rotate method 93

rounded corners

in CSS3 358-361
with CurvyCorners

library 358

S
Safari
audio codec support 130
HTMUL validation 465
MP4 support 140
support for, download-
able fonts 399
video codec support 138
same origin restriction 200
saturation 321
Scalable Vector Graphics
(SVG) 96, 435
scale 106
<script> element 458
inline 513
<section> element 7
in footers 17

section
in an outline 13
vs. article 8
sectioning content 32
select element 39
semantics
defined 4
implied native semantics
25
strong native semantics
25
server
communicating via
WebSockets 205
sesslon storage 227-228
Shadow, IE 388
shadowBlur property 91
shadowColor property 91
shadowOffsetX
property 91
shadowOffsetY
property 91
sidebar 16
SimpleHTTPServer 209
single-threaded vs. multi-
threaded 185
skewX 106
skewX function 326
skewY 106
slider 44
sliding doors technique 366
<small> element 17
socket object 207
<source> element 133, 142
 element 452
spellcheck attribute 155,
157-159
spread-radius value 354
Standards mode 485
standards mode 18
strokeRect method 76
 element 22
<style> element 469
style attribute 469
styleWithCSS

command 162

INDEX 531

SVG 96-111
applying styles to 98-99
browser support for 96,
114
content, grouping 104
drawing shapes 99-101
embedding as an
image 115
embedding as an
object 116
embedding HTML in
elements 103
embedding images in 101
image, referencing from
CSS 116
in XML vs. in HTML
115
support in older
browsers 116
transformations in
105-107
SVG Web 117
SVG Web fonts 398

T
<text> element
applying a pattern to 108
text
baseline 87
bold 160
cutout 92
drawing in 84-87
drawing in SVG 101-103
editing 1565-157
following a path 102
font 85
formatting 160
advanced 162-164
browser implementa-
tions 161
italic 160
maximum width 86
text Input
is the maxlength attri-
bute 47
title attribute 48

532 INDEX

<textarea> element 39
text-overflow property
browser support for 422
<textpath> element 102
text-selection API 162
text-shadow property,
browser support
for 356
Theora, browser support
for 139
<time> element 18-21
time input 45
timeupdate event 145
touch-enabled media
query 292
transform
2D 324
browser support for
vendor prefixes 346
transform attribute 104
transformation
In <canvas>
order of 94
rotate 93
translate 93
in SVG 105-107
matrix 106
scale 106
skewX and skewY 106
translate 105
transform-origin
property 325
transform—style
property 329
transition 330-342
browser support for 331
timing function 334-337
triggering with
JavaScript 339
transition-delay
property 338
transition-duration
property 332
transition-property

property 337-338

translate 93
translate transformation 93
translateX function 326
triangle, drawing in
<canvas> 79
TrueType font (TTF) 398
<tspan> element 102
typography, on the
web 393-394
advanced 407415

U
 element 448
undo feature 177-179
update_child function 202
URL
fragment identifier 265
validity of 53
user feedback 53-56

14
valid 264
validation 46-50
CSS and 49-50
messages, customizing
62—64
min, max, pattern
attributes 47-48
turning off 50
valueAsDate property 68
valueAsNumber property
68
var keyword 500
Vector Markup Language
(VML) 115
Veness, Chris 197
<video> element
attributes 135-138
browser support
for 150-152
controls 136
currentSrc property 142
fallback content 136
loadeddata event 145
loop attribute 136

multiple sources 142-143
pause() method 144
play() method 144
preload attribute 136
transformations 146-150
width and height, setting
with CSS 137
video controls 144
view, navigating between
176
viewBox 97

ViolaWWW 427

w
W3C Recommendation
(R) 431
W3C Web Open Font For-
mat (WOFF) 398
watchPosition method 196
WAV audio, browser sup-
port for 151
web font 393-400
@font-face rule, support
for 398
advanced features
409-416
browser support
for 409
bold 396-397
comparisons 393
downloadable, browser
support for 399
italic 397
long's 413
numbers 411-412
O vs. zero 413
size metrics 408
stylistic alternates 413
text columns 416-420
browser support
for 416
count and width
416417
gaps and rules 419
span 418-419
text wrapping 420

Web Hypertext Application
Technology Working
Group (WHATWG)
154

principles followed in
development of
HTML5 437

web server, configuration
for multimedia 151

web worker 185-188

web, history of 425-437

client-side interactivity
431-435

competing standards
435

WebKit, support for
HTMLS5 features 69

WebM 130

browser support for 140
video, browser support

for 151

WebSocket AP1 205-208
browser support for 206
node.js server 206

What You See Is What You

Get (WYSIWYG) 154

whitespace 446

window object 516

word-wrap property

420421
browser support for 421

Work Offline 216

Working Draft (WD) 431

World Wide Web browser

427
World Wide Web Consor-

tium (W3C) 428

standards process in
1998 431

standards process in
1999 432

validator 464

INDEX 533

World Wide Web Con-
sortium Process 431
wrap-margin property 308
wrap-shape-mode
property 306
writeLoc function 199
www-talk mailing list 427

X

XHTML 435
XHTML2 438

xlink:href 101

XML, vs. HTML 435

XMLHTTP control 433

XmlHTTPRequest 434

Y
YouTube, ease of use 121

Z
zoom 309

WEB DEVELOPMENT/HTML

Rob Crowther

“A fast-paced introduction. Recommended to “Everything you need to know explained
anyone who needs a quick-start resource.” simply and clearly.”

—Jason Kaczor, Microsoft MVP —Mike Greenhalgh, NHS Wales
“It's 2012. You need this book!” “Level up your web skills!”

—Greg Donald, CallProof, LLC —Greg Vaughn, LivingSocial

hether you're building web pages, mobile apps, or desktop apps, you need to learn
HTML5 and CSS3. So why wait? Hello! HTML5 & C€SS3 is a smart, snappy, and fun
way to get started now.

In this example-rich guide to HTML5 and CSS3, you'll start with a user-friendly introduction to
HTML5 markup and then take a quick tour through forms, graphics, drag-and-drop, multimedia,
and more. Next, you'll explore CSS3, including new features like drop shadows, borders, colors,
gradients, and backgrounds. Every step of the way, you'll find hands-on examples, both large
and small, to help you learn by doing.

e Q]
PROFESSIONAL DEVELOPMENT? What’s inside
AREN'T MOST WEBSITES DONE BY

lbeseddbaatbabadd ¢ Easy-to-follow intro to HTML5 and CSS3

/ YOL KNOW IT'S e Fully illustrated and loaded with examples
NOT 1999 ANY MORE.

RIGHT? * Designed for low-stress learning

*No prior experience needed!

Don't worry—you aren’t alone! The cast of characters from User
Friendly is learning HTML5 and CSS3 along with you as you read.

Rob Crowther is a web developer and blogger from London.

. . . ISBN 13: 978-1-935182-89-4
To download their free eBook in PDF, ePub, and Kindle formats, owners ISBN 10: 1-935182-89-7

of this book should visit manning.com/HelloHTML5andCSS3

/ll MANNING

‘ 5‘399“9
oM78193501182894

	Hello!HTML5andCSS3
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Extra content for beginners
	Book structure and suggested reading order
	Characters and conventions
	Code downloads
	Author Online
	About the author

	Part 1 Learning HTML5
	1 Introducing HTML5 markup
	Why do we need new elements?
	New elements for page structure
	Sectioning content
	Headings, headers, and the outlining algorithm
	Common page elements

	The HTML DOCTYPE
	New elements for content
	Time
	Images and diagrams with <figure> and <figcaption>
	Emphasizing words and phrases

	HTML5’s new global attributes
	Accessibility with ARIA
	Extending HTML with custom attributes
	Expressing more than just document semantics with microdata

	The HTML5 content model
	Browser support
	Supporting Internet Explorer
	Enabling HTML5 support in Internet Explorer with html5.js

	Summary

	2 HTML5 forms
	The limitations of HTML4 forms
	Numbers, ranges, dates, and times
	Validation
	The required attribute
	The min, max, and pattern attributes
	Taking advantage of validation with CSS
	Turning off validation

	Email and URLs
	Email addresses
	Web addresses

	Elements for user feedback
	The <output> element
	The <progress> element
	The <meter> element

	Less-common form controls
	Telephone numbers
	Color pickers
	<keygen>

	New attributes for the <input> element
	Placeholder text
	Form autofocus
	Protecting private information with the autocomplete attribute

	Extending forms with JavaScript
	Customizing the validation messages
	Triggering validation with JavaScript
	Responding to any changes in value
	Creating combo boxes with <datalist>
	Easy ways to work with form values in JavaScript

	Browser support and detecting HTML5 features
	Browser inconsistencies
	Detecting supported features
	The html5-now library

	Summary

	3 Dynamic graphics
	Getting started with <canvas>: shapes, images, and text
	Drawing shapes
	Placing images
	Drawing text

	Advanced <canvas>: gradients, shadows, and animation
	Creating gradients
	Drawing drop shadows
	Transformations
	Animation

	Getting started with SVG
	Applying styles to SVG
	Drawing common shapes
	Images, text, and embedded content
	Transforms, gradients, patterns, and declarative animation

	SVG vs. <canvas>
	Browser support
	Supporting <canvas> in older versions of IE with explorercanvas
	SVG in XML vs. SVG in HTML
	Embedding SVG as an image
	Referencing an SVG image from CSS
	Embedding SVG as an object
	SVG support in older browsers with SVG Web and Raphaël

	Summary

	4 Audio and video
	Audio and video on the modern web
	The <audio> element
	Common attributes: controls, autoplay, loop, and preload
	Codecs and license issues
	Using multiple sources

	The <video> element
	<video> element attributes
	Containers, codecs, and license issues
	Easy encoding with Miro Video Converter
	Advanced encoding with FFmpeg
	Using multiple sources

	Controlling audio and video with JavaScript
	Integrating media with other content
	Browser support
	Web server configuration for audio and video
	Supporting legacy browsers with Flash video

	Summary

	5 Browser-based APIs
	Rich-text editing with the contenteditable attribute
	Basic text editing
	The spellcheck attribute
	Applying formatting to the editable text

	Natural user interaction with drag-and-drop
	Basic drag-and-drop
	Drag-and-drop in all browsers

	Managing the Back button with the history API
	Updating page state
	Using location.hash
	Example: Implementing an undo feature

	Getting semantic with the microdata API
	Using a single microdata format
	Using multiple microdata formats

	Lag-free interfaces with web workers
	Browser support
	Summary

	6 Network and location APIs
	Finding yourself with the Geolocation API
	Finding your location
	Finding your location more accurately
	Finding your location continuously
	Practical uses for geolocation

	Communication in HTML5
	Enabling more secure integration with cross-document messaging
	Real-time communication with the WebSocket API

	Offline web applications
	Setting up a development environment
	The application cache
	Managing network connectivity in offline apps

	Storing data for offline use
	Local storage
	Session storage
	Putting it all together

	Browser support
	Summary

	Part 2 Learning CSS3
	7 New CSS language features
	Choosing elements through their relationships
	Selecting sets of elements with combinators
	Selecting among a set of elements with pseudo-classes

	Choosing elements by their attributes
	Choosing what isn’t
	Pseudo-elements

	Choosing elements based on user interaction
	Styling form elements based on state
	Styling the page based on the target of the URL

	Browser support
	Using jQuery to support older browsers

	Summary

	8 Layout with CSS3
	Underused CSS2 layout features
	Placing elements on a line with inline-block
	Grouping element dimensions with display: table

	CSS3 improvements to CSS2 approaches
	Mixing different length units with calc
	Controlling the box model

	Using media queries for flexible layout
	Resolution detection
	Changing layout based on orientation and aspect ratio
	Additional device-detection features

	The future of CSS layout
	Using flexible boxes for nested layout
	Using the CSS3 Grid Alignment module
	Controlling content flow with CSS3 Regions
	Making complex shapes with CSS3 Exclusions and Shapes

	Browser support
	inline-block in IE6 and IE7
	calc in Chrome and Firefox
	box-sizing in Firefox and Safari 5
	Flexboxes in Chrome, Firefox, IE, and Safari
	Media queries and old browsers
	Regions and exclusions

	Summary

	9 Motion and color
	Colors and opacity
	Opacity
	RGBA
	HSL and HSLA

	CSS transforms
	2D transforms
	3D transforms

	CSS transitions
	Transition timing functions
	Transition property
	Transition delay
	Triggering transitions with JavaScript

	CSS Animation
	Browser support
	Opacity in IE8 and earlier
	Transforms, transitions, and animations in current browsers
	Using modernizr.js and jQuery for animation in older browsers

	Summary

	10 Borders and backgrounds with CSS3
	Drop shadows with CSS3
	Box shadows
	Text shadows

	Easy rounded corners
	New features for background images
	Background size
	Multiple backgrounds
	Background origin and clipping

	Selective background scaling with border images
	Basic border-image
	Stretching and repeating border-image sections
	Using border-image to create common effects

	Creating gradients with CSS
	Browser support
	Cross-browser drop shadows
	Cross-browser CSS3 gradients
	Cross-browser backgrounds and border-image
	Supporting old versions of Internet Explorer
	CSS3 PIE for easy IE support

	Summary

	11 Text and fonts
	Basic web fonts
	Gaining control of fonts with the @font-face rule
	Font formats: EOT, TTF/OTF, and WOFF
	Browser support for downloadable fonts

	Making your life easier with font services
	Downloadable kits: FontSquirrel
	Free font services: Google Web Fonts
	Subscription font services: Fontdeck

	Advanced web typography
	font-size-adjust
	Advanced font control

	Text columns
	Column count and width
	Column spans
	Gaps and rules

	Wrapping and overflow
	Word wrap
	Text overflow

	Browser support
	Summary

	Appendix A A history of web standards
	A short history of the web
	In the beginning
	Browser wars
	From web pages to web applications
	The competing standards

	Step forward WHATWG
	CSS2 evolves into CSS3

	Appendix B HTML basics
	The components of hypertext
	Tags, elements, and attributes
	HTML documents

	Elements for text
	Headings and paragraphs
	Lists
	Emphasis and typography
	Neutral elements: <div> and

	Links and embedded resources
	Links and anchors
	Images and other objects
	Inline frames
	Nonvisible elements

	Parsing and validation
	Is this an HTML document?
	Validation and why you should bother

	Learning more
	Web tools
	Browser tools
	Resources and where to go for help

	Appendix C CSS basics
	Rules, selectors, properties, and values
	Adding a style sheet to your HTML
	Inheritance

	Selecting elements to style
	ID selectors
	Class selectors
	Combinators
	Cascading and specificity
	Pseudo-classes

	Properties and values
	Colors and lengths
	Borders and backgrounds

	The box model
	Quirks mode and Standards mode
	Display modes: inline, block, and none

	Positioning and layout

	Appendix D JavaScript
	Setting up an interactive console
	Chrome (and Safari)
	Firefox
	Other browsers

	Arithmetic and variables
	Arithmetic
	Comparisons
	Variables
	Special operators for variables

	Branching and looping
	Functions and objects
	Functions
	Objects

	How JavaScript fits into HTML
	Inline <script> element
	JavaScript linked in a file
	Inline event handlers

	The DOM
	Events
	Further reading

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Hello!HTML5andCSS3-back

