

Save 35% at manning.com
Use the code humble35 at checkout to save on your
first purchase.

Early access
Don’t wait to start learning! In MEAP, the Manning Early Access
Program, you read books while they’re being written.

Access anywhere with liveBook
The Manning liveBook platform provides instant browser-based
access to our content.

Beyond books
Cutting edge liveProjects, liveAudio, and liveVideo courses give
you new ways to learn. Only available at manning.com

Impeccable quality
We believe in excellence. Our customers tell us we produce
the highest quality content you can buy.

Exclusive eBooks
Manning eBooks are only available from manning.com.
You won’t find them anywhere else.

Email

shop at manning.com

https://bit.ly/3h13ZcH
https://bit.ly/3h13ZcH
https://bit.ly/2J2R9OK
https://bit.ly/37r08lZ
https://www.linkedin.com/company/manning-publications-co/
https://www.facebook.com/ManningBooks?ref=nf
https://www.instagram.com/manning_publications/
https://twitter.com/manningbooks
https://www.youtube.com/channel/UCDia_lkNYKLJVLRLQl_-pFw
https://www.twitch.tv/manningpublications
https://bit.ly/2Wmabm6
https://bit.ly/37r08lZ
https://bit.ly/37r08lZ

Good

graphics

No
errors

Easy

to read

Useful

purpose

Quick

response

Simple

to use

1
2

5
7

8
8

8
9

Appendices

5

What goes in a good app

Some of topics covered will help you learn:

This book covers:

Hello Swift!
iOS App Programming for Kids and Other Beginners

Tanmay Bakshi

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books we publish printed on acid-free paper, and we exert our best efforts to that
end. Recognizing also our responsibility to conserve the resources of our planet, Manning
books are printed on paper that is at least 15 percent recycled and processed without
elemental chlorine.

Manning Publications Co. Acquisitions editor: Mike Stephens
20 Baldwin Road Development editor: Helen Stergius
PO Box 761 Technical development editor: Francesco Bianchi
Shelter Island, NY 11964 Review editor: Aleks Dragosavljević

Production editor: Anthony Calcara
Copyeditor: Kathy Simpson

Proofreader: Michelle Melani
Technical proofreader: Doug Warren

Typesetter: Marija Tudor
Cover designer: Leslie Haimes

ISBN: 9781617292620

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

www.manning.com

Brief contents
1 Get ready to build apps with Swift! 1

2 Create your first app 21
3 Your first real Swift code using variables 49

4 I/O laboratory 73

5 Computers make decisions, too! 94

6 Let computers do repetitive work 130
7 Knitting variables into arrays and dictionaries 158

8 Reuse your code: Clean it with function detergent 191

9 Reduce your code: Use less, do more with class
detergent 221

10 Reading and writing files 261
11 Frameworks: Bookshelves of classes 282

12 SpriteKit: Fun animation time 302

13 Time to watch your WatchKit code 315
14 Continuing your journey with Swift 329
iii

Contents
Preface xiii
Acknowledgments xv
About this book xvi
About the author xxii

1 Get ready to build apps with Swift! 1
Your “I can do it!” journey begins 2

What is an app, anyway? 5 ❍ The pieces of a good app 6
What is programming? 6 ❍ From idea to app 8

What is Swift? 9
What’s so special about Swift? 10 ❍ Swift can’t do
everything 10

Prepping your app toolbox 11
Gather hardware 11 ❍ Install Xcode 13 ❍ Set up an optional
developer account 15 ❍ Start Xcode for the first time 16

Write code and see it work in the Swift Playground 17
What is the playground? 17 ❍ Create a playground 18
Play with code in the playground 18

Check your app knowledge 20

2 Create your first app 21
Hello apps! 22
v

vi Contents
Your first app: Hello World! 22
What does this app do? 23 ❍ Set up the project 24
The Xcode interface 28 ❍ Create the UI 30
Run your app 34

Discover the user interface 38
What is a UI? 38 ❍ Develop an app on your own 39
Change text colors 41 ❍ Change the background color of a
control 42 ❍ Change the background color of a view 42
More about controls: Try these for a challenge 42
A few more things you can do with the Attributes
inspector 43 ❍ Segues: Using controls to navigate
screens 43 ❍ Try an extra challenge 44

Designing good UIs 46
Try this app on your own 47
Test your app knowledge 48

3 Your first real Swift code using variables 49
Apps store data in variables 50

What is a variable? 50 ❍ Hands on! 51 ❍ How does
an app use and save variables? 52 ❍ What types of
variables are there? 53 ❍ How to create variables 54
Hands on! 55

Declaring variables and changing values 56
Declaring variables 57 ❍ Changing variable’s values 58
Hands on! Spying on data 59 ❍ Using \ and () to format
text 61

Transforming your data 62
Concatenating data 62 ❍ Hands on! 63 ❍ Test these
rules 63 ❍ Converting data 64

Math Operation Theater 66
What is an operation? 66 ❍ Do basic math with
Swift (+, -, *, /) 67 ❍ Doing math in a print() function 69
Step up in math with Swift (square root, power, modulus) 69
Hands on! 70 ❍ Advanced math in the playground 70

Check your app knowledge 72

Contents vii
4 I/O laboratory 73
How apps and users interact 74
How users get output 75

Start with Hello World! 75 ❍ Add a variable to hold
the label 76 ❍ Connect your label variable to a label in
the view 81 ❍ The Interface Builder 82

Users give apps input 83
Add a text field and button to the app 84 ❍ Add code
to connect the text field to code 85 ❍ Add the function
to change the label text to input text 87

Check your app knowledge 90
App-Activity: Concatenate 90

What does this app do? 90 ❍ Create the UI 91
Code the app 91

App-Exercise: Greeting Generator 91
What does this app do? 92 ❍ Create the UI 92
Code the app 92 ❍ Run the app 93

5 Computers make decisions, too! 94
Conditions with the if statement 95
App: Which Number Is Bigger? 96

What does this app do? 96 ❍ Set up the project 97
Create the UI 98 ❍ Code the app 98 ❍ Connect IBOutlets
to controls and IBActions to buttons 100 ❍ Run the
app 103 ❍ Run the code again 108 ❍ Recapping the if,
else, and else if statements 108

switch statements 110
App: The Mystery of the Entered Number 113

What does this app do? 113 ❍ Create the UI 114
Code the app 115 ❍ Run the app 117

Check your app knowledge 117
App-Exercise: Gold, Silver, Bronze 118

What does this app do? 118 ❍ Set up the project 119
Create the UI 119 ❍ Code the app 120 ❍ Run your app 121

viii Contents
App-Exercise: tTables the Times Tables Bee! 122
What does this app do? 122 ❍ Set up the project and create
the UI 123 ❍ Code the app 124 ❍ Learn how the code
works 126 ❍ Run your app 128

6 Let computers do repetitive work 130
Controlling repetition 131
for-in loop statements 132

Try it yourself 133 ❍ How does it work? 134 ❍ Playground
example 135

 while loop statements 138
Try it yourself 139 ❍ The not equal to (!=) operator 141
Playground example 142 ❍ The repeat while loop 143
Playground exercise: repeat while 144

App: How Many Times? 145
What this app does 145 ❍ Set up the project and
create the UI 146 ❍ Code the app 146
Run your app 148

Check your app knowledge 148
App-Exercise: Hang Your Word Upside-Down 150

What this app does 150 ❍ Explanation, Playground
exercise, and helper code 151 ❍ Set up the
project and create the UI 154 ❍ Code the app 154
Run your app 156

7 Knitting variables into arrays and dictionaries 158
Why do we need arrays and dictionaries? 159
What is an array? 160

Arrays start counting with 0! 161 ❍ Getting to your
data 162 ❍ Altering the array 164 ❍ Looping through
arrays 166

10 Number Sorter app 168
What does this app do? 168 ❍ Set up the project, and
create the UI 169 ❍ Code the app 169 ❍ Learn how the
code works 171 ❍ Run your app 172

Go to the second dimension (rows and columns) 172

Contents ix
What is a dictionary? 173
Turning a dictionary into code 173 ❍ Creating a
dictionary and getting to your data 175 ❍ Modifying
the dictionary 176 ❍ Looping through data in
dictionaries 178

Friend List app 180
What does this app do? 180 ❍ Set up the app, and
create the UI 180 ❍ Code the app 181

Check your app knowledge 183
App-Exercise: Alphabet Unscrambler 185

What does this app do? 185 ❍ Set up the project, and
create a UI 186 ❍ Code the app 187 ❍ Learn how the code
works 189 ❍ Run the app 190

8 Reuse your code: Clean it with function
detergent 191

Reuse and clean your code with functions 192
Simple functions 193

Giving info to your reusable code 195
Getting info from your reusable code 200
Check your app knowledge 203
App-Exercise: Virtual Dice 204

What does this app do? 204 ❍ Set up the project and
create the UI 205 ❍ Code the app 206 ❍ Learn how the
code works 207 ❍ Run your app 207

App-Exercise: Rock Paper Scissors 207
What does this app do? 207 ❍ Set up the project, and
create the UI 208 ❍ Code the app 209 ❍ Connect the
IBOutlets and IBActions 211 ❍ Learn how the code
works 211 ❍ Run your app 212

App-Exercise: Money Denomination 212
What does this app do? 213 ❍ How does this app
work? 213 ❍ Set up the project, and create the UI 215
Code the app 215 ❍ Connect the IBOutlets and
IBActions 219 ❍ Run the app 220

x Contents
9 Reduce your code: Use less, do more with class
detergent 221

Reduce and clean your code with classes 222
What is a class? 222 ❍ Why you should learn to use
classes 223 ❍ Have some fun with classes 223
How do classes reduce code? 226

Create a class 226
Add a variable 227 ❍ Create Instances of your class 227
Change the value of a variable 228 ❍ Adding functionality to
classes 229 ❍ Quick review 231 ❍ Add an initializer that
does something every time you create an instance 231

Like father, like son: Inheritance 235
All about scope 237

What is variable’s scope? 237

Calculator app 239
What does this app do? 239 ❍ Create the UI 240
How does this app work? 240 ❍ Code the app 241
Connect IBOutlets and IBActions 244 ❍ Run the app 245

Check your app knowledge 245
App-Exercise: Metric Conversion 246

What does this app do? 246 ❍ Math: Negative
powers 246 ❍ Creating the UI 247 ❍ Code the
app 248 ❍ Connect IBOutlets and IBActions 252
Run your app! 253

Extra app-exercise: Metric Conversion app, Part 2 253
What does this app do? 253 ❍ Code the app 254
Run the app 260

10 Reading and writing files 261
What’s in a file? 262

What is file content management? 263

File Content Manager app 264
What does this app do? 264 ❍ Set up the project, and
create the UI 265 ❍ Code the app 265 ❍ Learn how
the code works 267 ❍ Run your app 270

Contents xi
Hangman app 271
What does this app do? 271 ❍ Set up the project, and create
the UI 272 ❍ Code the app 273 ❍ Connect the variables,
IBOutlets, and IBActions 277 ❍ Run your app 280

Check your app knowledge 280
App-Activity: Store your name and birth date 281

11 Frameworks: Bookshelves of classes 282
What is a framework? 283
Create a framework 284

What does this app do? 285 ❍ Create the project 285
Code the app 288 ❍ Learn how the code works 291
Build the framework 293 ❍ Use the framework 294

App: Load Save, Part 2, using frameworks 294
What will you do to this app? 295 ❍ Removing the read and
write functions 295 ❍ Creating the framework reference in
Xcode 296 ❍ Coding the framework in the LoadSave
app 299 ❍ Run your app 301

Check your app knowledge 301

12 SpriteKit: Fun animation time 302
Meet SpriteKit 303
How does SpriteKit work? 304

Pixels 304 ❍ Coordinate system 306

Drag the Square (DTS) app 307
What does this app do? 308 ❍ Create the project 308
Code the app 309 ❍ Run the app 313

A Christmas Tree app to try on your own 313
Check your app knowledge 314

13 Time to watch your WatchKit code 315
Number Guessing Game app 316

What does this app do? 316 ❍ Create the UI 318
Coding the application 321 ❍ Run your application 326

Check your app knowledge 328

xii Contents
14 Continuing your journey with Swift 329
Resources 330

liveBook Discussion Forum 330 ❍ Stack Overflow 330
GitHub 332 ❍ YouTube and books 333

What’s next? 334

Appendices Preface 335

Appendix A Check whether I’m prime 337

Appendix B Mean Median Detective 341

Appendix C Factoring factory 347

Appendix D How big is a triangle? 351

Appendix E I’m mixed up; make me improper 358

Appendix F Installation 365

 Index 367

Preface
Writing a book is a journey that, unless you have passion and love for, I’d
say is difficult and unreasonable. My passion and drive were to create a
book for those who don’t know anything, or little, about computers and
programming so that they can understand programming, create meaning-
ful apps, and take off to higher levels. I want the book to be a kick-starter
for those who want to start writing apps but face roadblocks when they
pick up a book or another resource to start learning. Moreover, the useful
knowledge about programming with Swift is scattered in pieces across
the internet, and I wanted it to be accessible as a unified package, in
sequence. This was my motive to write the book, and to the best of my
abilities, I’ll support it through the liveBook Discussion Forum by
answering your questions and solving the problems that you’ll encounter
in your journey of learning.

Objective-C was the first language that took me ahead a great deal. I
started learning it at the age of 8, and I had my first app, tTables (times-
tables practice app), accepted in the App Store when I was 9. The app
helped me in my studies, so I wanted to share it. I also have a goal of
reaching out to and helping at least 100,000 beginners to help them learn
how to code, so I started writing a book on Objective-C as one way to
achieve this goal. The moment that Apple released Swift, a new program-
ming language that lets people write apps for its devices, I immediately
got to it. I found that Swift was easier and faster to learn than Objective-
C, and it had Apple’s full support, so it was a much better choice for the
new learner. Soon, Apple open sourced Swift, making it even more popu-
lar. Apple provided library support for graphics, animations, games, and
xiii

xiv Preface
even CoreML to support developing artificial-intelligence-based apps,
too. Today, Swift is one of the top choices for learners and profession-
als alike. After you learn it, you’re all set to create apps for devices such
as the iPhone, iPad, macOS, Apple TV, and Apple Watch. Because
Swift is open source, you can create apps for Linux, Windows, or
Android as well.

Learning Swift to create apps for your ideas is easy. You can do it!

Acknowledgments
I sincerely thank the entire team at Manning Publications who were
involved in the creation of this book, including (but surely not limited to)
Michael Stephens, Helen Stergius, Doug Warren, Francesco Bianchi,
and Christopher Kaufmann. Special thanks to Michael for giving me a
great start and to Helen for a great relationship as my development edi-
tor; I really learned a lot from you. More special thanks to all the review-
ers who gave their valuable time, intellect, and feedback to remove errors
from the manuscript and for their suggestions for improvement.

I also convey my thanks to family members, friends, and well-wishers
who supported me to create this book so that it can reach those who need
it to learn coding and creating apps.

I dedicate this book to the readers who use this book to learn the basics of
programming and iOS app development.

Finally, I would like to thank my reviewers, whose feedback and help
improving this book were deeply appreciated, including Ahmed Chick-
tay, Becky Huett, Christopher and Sydney Haupt, David Barkol, Diego
Acuña Rozas, Eric Giannini, Essa Hashmi, Georgerobert Freeman,
Harald Kisch, Itai Platnik, Jason Pike, Matt Deimel, Matt Lemke,
Maxim Kisch, Michael Anderson, Mike Jensen, Patrick Tien Lu, Robert
Walsh, Rodney J. Woodruff, Roy Legaard Jr., Tahir Akhtar, Terry
Rickman, and Tidjani Belmansour.
xv

About this book
I always wanted to reach out to 100,000 beginners so that they can learn
programming and take their first few steps into the world of coding com-
puters so that they can give shape to their ideas. I found that whereas more
and more people want to learn programming, there aren’t enough resources
available for them to fulfil their needs, and providing them with the right
kind of resource, a stepping stone, was my intention in creating this book.

Audience

This book is for beginners of any age who want to start learning program-
ming to create apps and to give shape to their own ideas. You may want
to create apps for your children, grandchildren, yourself, your parents, or
for the App Store. You should be able to create something yourself to
make the life of someone around you easier, better, and more productive.

Road map

Thank you for being with me on this journey of learning Swift and iOS
app programming! You’ll complete this journey through 14 milestones
(chapters). I start by making you ready for this journey, helping you set
up your hardware, software, and developer account. You find out how to
create an app for your Apple Watch and even how to take off from there
in terms of resources, references, learning by participating in online
forums, and being future-ready. Before you proceed on this journey,
however, I’d like to let you know where you’re heading.

You’ll be learning the Swift programming language and using it to create
apps. You may be hoping to be able to design and code an amazing game
xvi

About this book xvii
like Temple Run when you’re done with this book. I hate to be the one
to break the news to you, but you’ll have more to learn when you finish.
In this book, you learn fundamental Swift and iOS concepts and some
simple graphics manipulation—a necessary first step, but a first step. So
much information about programming and games is available that it’s
probably hard to figure out where to start. So I’ve created a list of things
you can learn after this book so that you’ll have all the skills you need to
write high-quality games that you could add to the App Store.

I've put these things in the order in which I think it makes the most
logical sense to learn them, first to last. If I wrote a book that had
everything in it you needed to know, I’d choose this order of chapters.
I didn’t list the topics from easiest to hardest, or most in demand by
employers first (are you thinking of that already!?)—only what I think
will work best. You may already know which of these skills you need
most for the type of games you want to develop. If you do, focus on
those skills, and move on to your game development journey!

1 Using Xcode's debugger: solving exceptions and other bugs by using Xcode's built-in
debugger

2 REST APIs and networking: communicating with different services on the internet to
get more information and to interact with websites and other users

3 Asynchronous events: allowing long-running operations to run in the background
using the Grand Central Dispatch (GCD) so that the UI isn’t stuck while things hap-
pen in the background

4 Audio: playing the right sounds at the right time

5 Gyroscope, accelerometer, GPS, camera, and Bluetooth: meshing the real world
with your iOS games

6 Spatial sense: understanding the 3D world and being able to program graphics that
represent it

7 3D geometry: understanding the geometry and dimensions of a 3D world (latitude,
longitude, altitude) and (x, y, z) coordinates

8 Physics of motion, dynamics, and gravity: understanding how things interact with
other things in 2D and 3D environments

xviii About this book
I recommend that you thoroughly study the first ten chapters. Study
the material in chapters 11 to 13 depending on your needs, and read
the appendices only after you’ve gone through all the chapters. Be
patient, learn step by step, and learn well.

You start by getting ready to build apps with Swift in chapter 1. I’m
sure that you know what apps are and how useful they are. You’ve
probably come across well-designed apps and the apps you don’t like
much, but you, as a user, can tell the difference. I briefly go through
the design elements that make a good app your favorite app and why
you don’t like some other apps. I also tell you what goes into making an
app work and how you can go about creating your own apps. I intro-
duce you to the programming language. Also I let you know what
hardware and software you need and how to set up your device to start
your journey of learning Swift and creating apps.

In chapter 2, you get a feel for developing a real app, albeit a basic one.
This chapter familiarizes you with the screens, commands, and options
you’ll be using often to build even complex apps. One of your favorite
topics probably is going to be building an app with segues—that is, an
app with multiple screens.

In chapter 3, you start to know the concepts of programming real apps
by learning about variables: how to create them, their types, and their
use in apps. This chapter takes you to a level where you’ll be able to
start understanding data. You start manipulating data contained in the
variables you create. You also do some basic math that not only helps
you create meaningful apps, but also makes you better at math itself.

In chapter 4, you learn how your app will interact with its users: by
prompting users and getting their responses in the form of text,

9 Animation: understanding how objects move and transition when a user interacts
with them

10 SpriteKit: using Apple’s SpriteKit library to develop 2D games easily

11 SceneKit: using Apple’s SceneKit library to develop 3D games easily

12 ARKit: using Apple’s ARKit library to develop augmented-reality apps easily

About this book xix
numbers, and taps. You also learn how to use text fields, buttons, and
labels on your device’s screen in an app.

In chapter 5, you learn how your apps can make decisions depending
on your actions rather than running on a preset path. Your apps do this
by evaluating conditions and give you responses based on the outcome
of those conditions. I walk you through a few types of checking the
conditions to solve problems through programming, using example
apps. All programming languages provide the constructs for condition
checking, which makes a programmer’s work much easier.

Loops are an equally important set of constructs. Loops let you per-
form a certain task over and over, depending on the outcome of a cer-
tain condition. You learn about loops in chapter 6. I introduce three
types of loops and how loops are used with the help of example apps.

In chapter 7, you revisit variables. I teach you how to bunch variables
together in arrays and to manipulate a lot of them easily by using
arrays. This chapter also introduces you to dictionaries. Again with the
help of example apps, you learn the concept and application of arrays
and dictionaries, as well as how to add, modify, and delete data.

In programming, you often face situations in which you have to run a
set of instructions at numerous places in an app. You do this by using
functions, which you learn about in chapter 8. Using functions makes
your programs and apps compact, easy to maintain, and easy to under-
stand how your apps work, for you and other programmers.

Chapter 9 makes you feel like a mature programmer by teaching you
the concept of classes. You create apps by using classes and learn how
to create object-oriented code that you can maintain and reuse.

Chapter 10 teaches you how to make your apps read, modify, and write
(create) files on your device so that you can access your stored infor-
mation at any time in the future.

Chapter 11 is about frameworks, which are sets of code that can be
compiled to be reused in other apps.

You understand and use SpriteKit in Chapter 12. SpriteKit is a frame-
work built and provided by Apple that lets you animate objects

xx About this book
onscreen without having to worry too much about all the graphics,
physics, and other concepts involved.

Chapter 13 helps you understand WatchKit, which helps you create
applications for the Apple Watch.

Finally, chapter 14 helps you smoothly take off to higher levels in the
field of your choice.

During this journey, if you feel uncomfortable or lose direction, I’ll be
glad to help you out through this book’s liveBook Discussion Forum.
Here’s the link: https://livebook.manning.com/#!/book/hello-swift/
discussion.

Keep your focus, and get going, I wish you a happy journey of learning!

Source-code downloads

At any point, if you don’t feel like typing code but still want to see the
example apps in this book running, you’ll be able to download the
code. Here’s the link: https://github.com/tanmayb123/Hello-Swift-
Code/archive/master.zip. I discourage this practice, though. Coding is
better learned by typing, which gives you time to look at what you’re
typing, understand why you’re typing it, sometimes make mistakes,
find those mistakes, and make corrections.

liveBook discussion forum

Purchase of Hello Swift! iOS App Programming for Kids and Other
Beginners includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask tech-
nical questions, and receive help from the author and from other users.
To access the forum, go to https://livebook.manning.com/#!/book/hello-
swift/discussion. You can also learn more about Manning’s forums and
the rules of conduct at https://livebook.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a
meaningful dialogue between individual readers and between readers
and the author can take place. It is not a commitment to any specific
amount of participation on the part of the author, whose contribution
to the forum remains voluntary (and unpaid). We suggest you try

https://livebook.manning.com/#!/book/hello-swift/discussion
https://livebook.manning.com/#!/book/hello-swift/discussion
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://livebook.manning.com/#!/book/hello-swift/discussion
https://livebook.manning.com/#!/book/hello-swift/discussion
https://livebook.manning.com/#!/discussion

About this book xxi
asking the author some challenging questions lest his interest stray!
The forum and the archives of previous discussions will be accessible
from the publisher’s website as long as the book is in print.

Software and hardware requirements

To learn programming and iOS app development, you need some soft-
ware and hardware or access to them. For the hardware, you should
have any Mac with macOS Mojave 10.14 running on it. The Mac
should have at least 15 GB of free space so that you can store and
retrieve your projects quickly. You also have to download free soft-
ware called Xcode (version 10), which helps you create, debug, and
run your apps. Xcode has software built into it that allows you to simu-
late iDevices so that you can test and run your apps even if you don’t
have access to an actual iDevice. You also need iOS 12. If you want to
run apps on an Apple Watch, you also need an Apple Watch with
watchOS 5 on it. I used these versions of software in the book, but if
newer versions of any software become available, use the latest ver-
sions, because Apple doesn’t support downgrading iOS or watchOS to
older versions.

Online and other resources

Every one of us needs help at some point. Often, the solution is right
there, but you don’t see it. At these times, online resources are great.
You can get help, learn from these resources, and also provide help to
others. Here are a few resources that I recommend:

❂ Stack Overflow: https://stackoverflow.com
❂ GitHub: https://github.com
❂ Hello Swift! liveBook Discussion Forum: https://livebook.manning

.com/#!/book/hello-swift/discussion

You can get deeper by learning from a book called iOS Development
with Swift, by Craig Grummit.

If you want to know more about online and other resources, and how
to take your next step, read chapter 14 of this book.

❂ YouTube channels such as https://www.youtube.com/c/tanmaybakshi
teaches

https://github.com
https://stackoverflow.com
https://livebook.manning.com/#!/book/hello-swift/discussion
https://livebook.manning.com/#!/book/hello-swift/discussion
https://www.youtube.com/c/tanmaybakshiteaches
https://www.youtube.com/c/tanmaybakshiteaches

About the author
Tanmay Bakshi is an AI and Machine Learning Systems Architect. He
supports and contributes extensively to the open source community and
is known for his passion to share what he learns through his YouTube
channel, blogs, and speeches. He is a TED speaker and has keynoted at
numerous conferences around the world for the United Nations, IBM,
Apple, KPMG, SAP, NASSCOM, The Linux Foundation, and Walmart,
just to name a few. His first major keynote address was at IBM Intercon-
nect 2016, where he presented his algorithm “AskTanmay,” which is the
world’s first web-based natural language question answering system to be
powered by IBM Watson.

His passion lies in developing machine learning and AI-based systems,
mainly in the fields of healthcare and education, where he believes that
this next generation technology can make the biggest impact.

He has addressed computer science and technology students globally,
doing countless workshops in universities, colleges, and schools, and has
held seminars for institutions such as Apple Education, HSBC, Citi-
group, and Credit Suisse. His YouTube channel, Tanmay Teaches, is
where he shares his research and knowledge with audiences of all ages.
He loves to interact with, respond to, and help people with their queries
and hence, he has had the honor of being the recipient of the Twilio Doer
Award, Knowledge Ambassador Award, Global Goodwill Ambassador at
LinkedIn, and is an IBM Champion for Cloud.

Bakshi, as a kid, considered computers, laptops, modems, networking,
cables, and electronics as his toys for years. This kid coder’s journey
xxii

About the author xxiii
began at the early age of five, when he developed with DOS batch
files, C, FoxPro, and Visual Basic and then created iOS apps. When he
was nine, his first app, tTables, was published to the iOS App Store.
This news inspired many kids who always wanted to code but never
knew how to take the first step.

Hello Swift! is the outcome of his goal of reaching out to at least
100,000 coders and beginners in their journey of learning how to pro-
gram. Since Tanmay himself is a 15-year-old coder, he wanted to cre-
ate a resource for kids and beginners from around the globe, who
aspire to learn programming and have waited for someone to commu-
nicate with them in their language.

He is a homeschooled tenth grader in Canada, where he lives with his
older sister and parents. He likes biking and playing table tennis with
his friends. Tanmay also contributes his time being a Computational
Thinking Coach at the 4th Industrial Revolution Organization, and an
advisor and lead faculty at Grad Valley Data Science.

xxiv About the author

1
Get ready to build
apps with Swift!

Do you want to build an app but
don’t know where to start?

This chapter covers

• What is an app?
• What is Swift?
• What do you need to use this book?
• How do you install Xcode?
• What is the playground?

Every single day, you use computers. From doing homework to chatting
with friends online, listening to music, and playing games, you spend lots
of your time on computers and mobile devices.

So why can’t you create programs that people will want to use? The only
thing stopping you is taking the time to learn how. Ready to get started?
Let’s go!
1

2 CHAPTER 1 Get ready to build apps with Swift!
Your “I can do it!” journey begins
When I was nine years old, I phoned my dad while he was at work. I
had to tell him my news. I was screaming with joy because my app,
tTables (figure 1.1), an app that helps you learn your multiplication
tables, made it to the App Store!

Figure 1.1 Screenshots from my first app in the App Store

I am playing

my favorite

game!!

Y
Y
A

Y
Y
Y

A
Y
A

I made my own

game and everyone

will play!!!

PRESENTPAST

X
X
X

X
O
X

O
O
O

Your “I can do it!” journey begins 3
This book is about how you can experience this joy yourself. In these
pages, you’ll be going on a journey to the land of app development.
When you start reading this book, as you travel through Xcode tools,
the Swift language, and the iOS platform, you too will want to shout
“Yes, I can do it!”

The journey ahead—and beyond

As I mentioned in the “About the book” section, together, we’ll complete this journey
in 14 milestones and learn a lot about app development. But don’t worry—you don’t
have to wait that long. You’ll start building your own meaningful and productive apps
soon after you begin. You may be hoping to be able to design and code an amazing
game like Temple Run after you’re done with this book. I hate to be the one to break
this news to you, but you’ll have more to learn.

In this book, you’ll learn fundamental Swift and iOS concepts, as well as some sim-
ple graphics manipulation—a necessary first step, but only a first step. So much in-
formation about programming and games is available, it’s probably hard to figure
out where to start. So I’ve created a list of things you can learn after this book so that
you’ll have all the skills you need to write high-quality games that you could add to
the App Store.

I’ve put these skills in the order in which I think it makes the most logical sense to
learn them, first to last. If I wrote a book that had everything in it you needed to know,
I’d choose this order for chapters. I don’t list the skills from easiest to hardest or put
the ones that are most in demand by employers first (are you thinking of that al-
ready!?)—only what I think works best. You may already know which of these skills
you need most for the type of games you want to develop. If you do, focus on them,
and move on in your game development journey!

1 Using Xcode’s debugger: solving exceptions and other bugs by using Xcode’s built-in
debugger.

2 REST APIs and networking: communicating with different services on the internet to
get more information and to interact with websites and with other users.

3 Asynchronous events: allowing long-running operations to run in the background,
using Grand Central Dispatch (GCD), so that the UI isn’t stuck while things happen in
the background.

4 Audio: playing the right sounds at the right time.

5 Gyroscope, accelerometer, GPS, camera, and Bluetooth: meshing the real world
with your iOS games.

4 CHAPTER 1 Get ready to build apps with Swift!
6 Spatial sense: understanding the 3D world and being able to program graphics that
represent it.

7 3D geometry: understanding the geometry and dimensions of a 3D world (latitude,
longitude, altitude; x, y, z coordinates).

8 Physics of motion, dynamics, and gravity: understanding how things interact with
other things in 2D and 3D environments.

9 Animation: understanding how objects move and transition when a user interacts
with them.

10 SpriteKit: using Apple’s SpriteKit library to easily develop 2D games.

11 SceneKit: using Apple’s SceneKit library to easily develop 3D games.

12 ARKit: using Apple’s ARKit library to easily develop augmented-reality apps.

1

3

5

4

6

14

8

7 9

N A Journey

2

12

13

10

11

You’ll see this map for each milestone on your journey. The first one is
Get ready to build apps with Swift! You’ll learn what an app is, what it
means to program and write code, and just a little bit about the Swift
programming language. After that, you’ll install the software you need
and write your very first line of code!.

Your “I can do it!” journey begins 5
App Store

What is an app, anyway?
The word app is short for
application. An app is a pro-
gram that a developer writes for
a purpose. Apps are created
to do lots of things, such
as entertain, educate, inform,
or anything else that the
developers want them to do.

Think of ideas! Apps are for everyone!

When people talk about apps, they often mean programs that run on
mobile devices.

What do you mean by mobile devices?

Many people use their phones mainly for apps, and one rea-
son is that they’re mobile. iPhones, iPads, and iPods (and all
other tablets, phablets, and phones) can be used anywhere on
the go. If you’re walking to the mall or eating at a café, or if
you’re in a classroom, you can use a mobile device. You can’t
use a desktop or laptop computer with that level of ease (fig-
ure 1.2)—and you might drop it!

Figure 1.2 Walking with a
mobile device and walking
with a laptop

6 CHAPTER 1 Get ready to build apps with Swift!
The pieces of a good app
There’s more to understanding what apps
are than knowing that they run on mobile
devices. The best apps need to meet some
basic requirements that make people want
to use them.

Take a look at the pieces that make an app
good (figure 1.3). While you look through
these features, think about your favorite
apps and about how they have all these ele-
ments:

 Good graphics—Good graphics are one
of the prime requirements for an app to
become someone’s favorite. Users are
more attracted to memorable, colorful graphics than black-and-
white graphics (depending on the situation).

 No errors—Your app should have no mistakes or errors, and it
should perform correctly what it promises.

 Easy to read—Always try to present your text in an easy-to-read, leg-
ible font. Also, make sure that your font color contrasts with whatever
is behind the text of your message so that it’s more readable.

 Useful purpose—The app should have a purpose. It could entertain-
you, teach you something, keep you updated, or solve some specific
problem.

 Quick response—Try not to make one button do too much work; the
app can slow down. Users don’t like to wait for responses from apps.

 Simple to use—The app should be simple and easy to use, with a
clean, uncluttered design. At the same time, the screen shouldn’t be
too blank unless it has to be blank for some purpose.

What is programming?
Before you start making apps, you need to understand a little about
programming. When you program, you write a set of instructions on a

Good
graphics No

errors

Easy
to read

Useful
purpose

Quick
response

Simple
to use

Figure 1.3 All these app
pieces are necessary!

Your “I can do it!” journey begins 7
computer that tells the computer to do a particular task. These written
instructions are called code.

When you program, you start by writing a bunch of instructions, like
these:

instruction 1
instruction 2
instruction 3
instruction 4
instruction 5
...
...

To get a computer to do tasks, you need to tell (instruct) it exactly
what you want it to do. Giving a computer step-by-step instructions in
its own language is programming (figure 1.4).

These instructions are similar to the ones you might give your younger
sibling for washing the car (1. Get the soapy water in a bucket, 2. Soak
the sponge in soapy water, and gently rub the outside of the car. 3.
Turn on the hose and rinse the car clean with the jet of water. 4. Take a
dry cloth. . .)

Computers are extremely good at doing calculations. They have the
ability to calculate huge numbers that you throw at them. They can fig-
ure out 29174 × 28039 in a tiny fraction of a second!

Computers are also great at
doing repetitive work that
a human would quickly get
sick and tired of doing. So
we can make programs and
give these tasks to our
devices to free ourselves to
do things we like more.

Programmer enters code Programmer gets
the result

Hello Swift!
print
("Hello Swift!") �

Figure 1.4 The programming process

8 CHAPTER 1 Get ready to build apps with Swift!
From idea to app
The journey from idea to an app that gets into the App Store has many
steps. Here’s a mental map that shows you these steps (figure 1.5):

Figure 1.5 The steps in creating an app

1 You have an idea for an app in your head. It’s time to get started!

2 Make a starter app that does what you want. It may have a few
minor problems, but those problems can be fixed later.

3 Test the app. Try it out, and write down whatever you think may
need to be fixed (such as bugs and glitches).

4 Fix all the bugs and glitches that you encounter. Also use this step to
make your app look nicer.

Bugs and glitches are problems that interfere with your app
such that it doesn’t work the way it’s supposed to.

Think of an
app idea and

get started

Make a
rough app

Fix bugs
and glitches

Submit app to
the App Store

If rejected
by Apple

Repeat until
bug free!

Test it

What is Swift? 9
5 Repeat steps 3 and 4 until you find no more bugs or glitches while
testing your creation.

6 Submit your app to the iOS App Store.

7 If Apple rejects the app, repeat steps 3 and 4 while taking into
account the feedback from Apple.

8 Keep repeating steps 3 and 4, submitting the app until Apple accepts
it. PERSEVERE!

You’ve told us about the pieces of a good app. When do we
work on those?

It’s important to think about those pieces even while you’re on
step 1. Try to use good design when you build the app in step
2. And each time you test and fix the app (steps 3 and 4), you
can continue to improve its look and feel so that your users
find it fun and easy to use.

At this point, you may already have completed step 1: having an idea.
But to get to step 2, you need to start learning Swift. Let’s go.

What is Swift?
Swift is Apple’s new programming language for iOS, watchOS, tvOS,
and macOS. Before Swift, Apple developers wrote programs in
Objective-C, which Apple didn’t create. Apple knew that it needed to
create a new, more efficient, more modern language, so it secretly
began creating Swift in 2010. Swift was announced on June 2, 2014.

We’ll be learning Swift and will start creating apps using Swift soon.

iOS is the software that runs on all iDevices (such as the
iPhone and iPad). iOS is an operating system, much like Win-
dows or macOS.

10 CHAPTER 1 Get ready to build apps with Swift!
What’s so special about Swift?
In this book, you’ll learn how to create your own iOS apps by using the
Swift programming language. Here are some things that I learned
through my own experience as a Swift programmer and how I felt
when I started working with Swift:

1 Programs tend to be short, which means less typing, less code, and
less chance for bugs and glitches.

2 The program grammar is extremely Englishlike and easy to under-
stand, which means less memorizing for you.

3 Apple is the maker of the Swift language, so Apple has complete
control of it. Also, the language is now open source, which means
that programmers themselves can contribute to Swift to make it a
better language. If lots of programmers have trouble with some syn-
tax (programming grammar), the open-source community or Apple
can modify Swift to make it better.

4 A new feature of Swift is called playgrounds. Playgrounds are great
because they allow you to test your code in real time. You can test,
play around with, and learn from a lot of code before you include it
in your app, which makes code testing easy for you.

While I was learning this language and working to make apps in Swift,
I found hardly any resources to help me keep going ahead. This is one
of the reasons why I decided to write this book.

When you write programs in Swift, you use the playground,
but the word playground doesn’t mean that Swift isn’t a profes-
sional language. Both beginners and professional programmers
test their code in the playground.

Swift can’t do everything
Swift is great, but like any programming language, it can’t do every-
thing. Advanced programmers often use features of other languages in
their Swift programs. Later in your programming journey, you may
have to use a little bit of Objective-C (figure 1.6) and cocoa.

Prepping your app toolbox 11
Gather hardware
Install software
Set up optional
developer account

MY

CHECKLIST

Objective-C was the language for
building apps before Swift was
released. Objective-C has been in
use for around three decades now.

Cocoa is a set of frameworks
(lots of code that Apple writes
for your convenience, to make
things like playing music in pro-
gramming much simpler) for
heavy and complex tasks such as
audio and video, graphics and
animation, user applications,
data management, and network-
ing and internet.

Prepping your app toolbox
The time has come to make a checklist and gather the hardware and soft-
ware you need to start creating apps. In this section,
you learn exactly
what hardware you
need, how to install
the software, and
what accounts you
may want to create
with Apple.

Gather hardware
You need to have the following hardware (computer equipment) to
install Xcode 10 and develop your apps in Swift 5 (the screenshots in
this book use Xcode 9, so while your screens may look a little bit differ-
ent, you should still be able to follow along):

 A Mac with at least macOS Mojave (10.14) and at least 6 GB of free
hard disk space; any Mac desktop or laptop that meets these require-
ments will do. You must have access to a Mac to make Swift apps.

Objective-C
code

Swift
code

Cocoa
touch

Figure 1.6 You’ll work mostly with
Swift, but you’ll need a little Objective-C
and Cocoa to make your apps better.

12 CHAPTER 1 Get ready to build apps with Swift!
 (Optional) An iPhone (5c or newer), iPod touch (6 or newer), iPad
(5 or newer), iPad Mini (2, 3, 4, or newer), iPad Air (any genera-
tion), or iPad Pro (any generation). If you don’t have an iDevice
right now, you can use the free simulator that’s included with Xcode.

TIP Regardless of the version of hardware and software mentioned, always
use the latest version of software available for your hardware.

A simulator is a lookalike of a real iDevice that can run on your
Mac. You can use it to do basic app testing. A simulator is
included with Xcode.

Because the iPhone and iPod touch are fairly small, it’s easier to learn
coding by creating iPhone or iPod apps rather than iPad apps. iPad
apps are harder to design and work with because the iPad’s screen is
bigger than the screen of the Xcode display; you have to keep scrolling
the iPad’s view up and down to view other parts of the screen (figure
1.7). The Xcode window doesn’t allow you to see the whole iPad
screen without zooming out.

Figure 1.7 The MacBook Air and Mac mini are a couple of options for developing your
apps (left); the iPad, iPhone, and iPod touch are testing options (right).

Prepping your app toolbox 13
Xcode

Yay! I got my

very own software

to write code

for apps!!!!!

Install Xcode
Before you begin, you need two
things:

 You need the admin username
and password for your Mac and
your Apple ID (or get the help of
someone who has this informa-
tion).

 You also need to know that
Xcode 10 works only in macOS
Mojave (10.14) or later.

In addition to the hardware, to
create apps with Swift 4, you need a
free program called Xcode. To get Xcode, search the Mac App Store
for the app Xcode and then install it. The steps are in table 1.1.

Table 1.1 Get and install Xcode

Step 1: Open the Mac App Store from the
Dock by clicking this icon.

Step 2: Type Xcode in the search box
(located in the top-right corner), and press
the Return key.

Step 3: You see the Xcode icon in the App
Store. To install this app, click the Get button.

14 CHAPTER 1 Get ready to build apps with Swift!
Step 4: You’ll be asked to sign in with your
Apple ID. The Sign In button becomes blue
(enabled). Click it to proceed. With a 20
Mbps internet connection, you’ll have to wait
about half an hour for Xcode to download,
but the timing depends on your internet
speed; the download may take more or less
time.

Step 5: When the app is done downloading,
you’ll see a sparkling Xcode icon in Launch-
pad. Open Launchpad by clicking the silver
rocket icon on the Dock.

Step 6: Read, and then click Agree to accept
the license agreement (if you agree with it).

Step 7: You’ll be asked for the administrator
username and password for your computer.
Enter this information; then press the Return
key or click the OK button.

Table 1.1 Get and install Xcode (continued)

Prepping your app toolbox 15
Set up an optional developer account
Apart from the equipment (Mac) and software (Xcode), you may want
to purchase a developer account. A developer account is optional, but
there’s an important limitation if you don’t purchase a developer
account: you can’t upload your app to the iOS App Store! Don’t
worry, though; you can always get your apps ready, buy an account,
and then submit your app to the App Store.

Step 8: Wait a minute while your computer
installs a few more parts of Xcode. When it’s
finished, you’ll see the Welcome to Xcode
screen. That’s it! You’re done downloading
and installing the software you need to use
Swift to create your own apps.

Table 1.1 Get and install Xcode (continued)

Dad? Can I please

have my own

Apple developer

account?

Umm....

Sure, Sam.

$
$

$

$$ $
$

$$

$$
$

$$ $$

$

$$

$$
$

16 CHAPTER 1 Get ready to build apps with Swift!
A developer account costs $99 per year. I can’t afford to pay that right
now. What should I do?

If you’re creating apps only so you can learn, I don’t recommend buy-
ing a developer account. If you want to submit apps for the whole
world to download for money (or for free), you must buy the $99-per-
year account in a parent’s name (unless you’re older than 18). I recom-
mend that you do this only after you gain experience building apps.
This fee, by the way, includes an iOS, macOS, watchOS, and tvOS
developer subscription.

Start Xcode for the first time
The first time you run Xcode, you need to follow the special steps listed
in table 1.2. You have to perform them only once, though.

Table 1.2 The first time you run Xcode, to work with playgrounds . . .

Step 1: Start Xcode by clicking the Xcode
icon.

Step 2: Click Get Started with a Playground.

Step 3: Accept the blank template on the iOS
platform, and click Next.

Write code and see it work in the Swift Playground 17
Now that you’ve installed Xcode and run it for the first time, you’re
ready to start playing with code in the Swift Playground.

Write code and see it work in the Swift Playground
In this section, you get to know your environment so you can use it eas-
ily in the chapters to come. You also have your first hands-on experi-
ence in writing and running a line of Swift code, using the playground
feature of Xcode.

What is the playground?
The Xcode playground is . . . well, a playground where you, as an iOS
developer, can interactively play around with your Swift code. The
playground lets you type code and get results as your code runs in real
time, line by line.

Step 4: Enter the name of your choice for
your playground and the destination for sav-
ing it, and click Create. (Your screen will have
different contents from this screen.)

You’ve successfully created your playground!
(Leave it open.) But there’s one more thing
you have to do: enable Developer Mode on
your Mac. The good news is that you need to
follow these steps only the first time you open
the Swift Playground. You won’t be asked for
this info every time you open the playground.

Step 5: After clicking Create, you should see
a pop-up window like this one. Be sure to
click Enable!

Step 6: You’ll be asked for your administrator
username and password. (You may need a
parent’s help for this step.)

Leave Xcode open so that you can start put-
ting code in the Swift Playground (up next).

Table 1.2 The first time you run Xcode, to work with playgrounds . . . (continued)

18 CHAPTER 1 Get ready to build apps with Swift!
Playgrounds help you test your code to make sure that it works; they
also help you learn Swift easily and interactively. I won’t say too much
about the playground here; you’ll learn more about it in chapter 3.

Create a playground
If you followed all the steps up to this point correctly, you’re ready to
use the playground you’ve created, which should look like figure 1.8.

Figure 1.8 The default playground

Play with code in the playground
You’re about to write and execute your first lines of Swift code! The
first thing you do is print a message to the screen that says Hello Swift
Apps. You also get to know the Swift Playground a little bit.

First, erase everything in the coding area you see onscreen. You should
have a blank screen.

Next, type print("Hello Swift Apps"), as shown in figure 1.9.

I’ll explain more soon, but print makes Swift print what you want on
your screen.

On the right side of the screen, you should see the text Hello Swift

Apps, which is the result of the first line of code you wrote.

Default code & coding area Sidebar where

results are shown

Write code and see it work in the Swift Playground 19
Figure 1.9 After you’ve typed your first line of code, the screen looks like this.

EXERCISE

Try typing other things inside the quotes, such as this:

print("How are you, Frank?")

You should see whatever you typed in the sidebar, as shown in figure
1.10.

Figure 1.10 See how the text changed in the sidebar?

Congratulations! You wrote and executed your first line of Swift code!
In chapter 2, you learn to create a real iOS app. You also learn quite a
bit about running apps and a little bit about something called a user
interface, which sounds scarier than it is.

You’ve completed your journey to the first milestone!

20 CHAPTER 1 Get ready to build apps with Swift!
Why can’t we type only "Hello Swift Apps" and not the rest?

If you type "Hello Swift Apps", Swift has no idea what you want it to
do. Do you want to print something? Do you want to send an email to
a friend? Or do you want some calculations to be done? When you
type print, you’re telling Swift that you want to print something on the
bottom bar (console log); the result is also shown in the sidebar.

What does print mean?

print is known as a function. (You’ll learn more about functions later,
so don’t worry.) A function tells Swift to do something and how to do
it. In everyday English, function means to perform a task.

The print() function is built into Swift, which means that Apple wrote
that function for you. So the print function tells the Swift compiler to
print whatever you write in its parentheses, and the Swift compiler
does it. You’ll be using this feature a lot to test your code, so get ready!

How do I close the playground?

After you’ve had enough fun trying your code in the playground, you’ll
want to close it. Here’s how: press Command-Q. (Hold down the
Command key, and press the q key at the same time.) This way, you
close the playground window. All other Xcode windows close too. If
you want to close only the playground window, not other Xcode win-
dows, press Command-W.

Check your app knowledge
Try the following:

1 What would you type to display "Good morning Swift" in the playground?
2 What is displayed if you type print("5+4")?
3 What is displayed if you type print(5+4)? Guess and check by run-

ning this command in playground.
4 What qualities should your app have to be a good app, and why?

2
1

3

5

4

6

14

8

7 9

N A Journey

2

12

13

10

11

Create your first app

Are you ready to start building your first
app? Before you start, make sure you’ve
followed the instructions in chapter 1 to
set up your programming environment!

This chapter covers

• Creating a simple app
• Testing your app and seeing it run
• Knowing what a user interface is and why you should care about it
21

22 CHAPTER 2 Create your first app
You’re now all set to cover your second milestone: create your first
app. If you have your own iDevice, you’ll be able to run your app on it.
If you don’t, you’ll still be able to run it by using a simulator. Let’s go
ahead!

Hello apps!
You’ve reached the first stop on your journey. You’ve installed Xcode,
the app-building software, and you’re ready to go.

In this chapter, you travel to your next location and build your first
simple app along the way. You learn how to create a simple app that
can run on an iPhone or iPad. You learn how to try out the apps you
create by using a special program called a simulator. And before you’re
done, you’ll get some design tips for making apps that you and your
users will like even more.

When I say iDevice, I mean an iPhone or an iPad. It’s just a quick way
to say “any Apple device that runs iOS apps.”

Your first app: Hello World!
It’s time for you to build your first app!

There’s a tradition that the first program you learn to write in any pro-
gramming language displays the words Hello World! on the screen.
Your first app does the same thing, displaying Hello World! on the
screen of an iDevice.

NOTE You can find the code for this application in the folder Chapter02
_HelloWorld, inside the folder called Hello-Swift-Code-master that you
downloaded from Github. If you haven’t downloaded the code, go to: https://
github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You should
download the code only once for all chapters.

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

Your first app: Hello World! 23
What does this app do?
Figure 2.1 shows what the Hello World app does when you run it on
an iPhone.

Figure 2.1 Your first app displays the words Hello World! on a
blank screen. You can test your app on a simulator if you don’t
have an iDevice.

Wait! Is that all my app does—displays some words on the
screen? That’s not very interesting. Why not do something
more fun?

It’s true that this app doesn’t do much. But you have to learn
to build simple things before you can create more compli-
cated apps. You’ll learn a lot about the basics of building apps
as you build this one. And it’s kind of cool to see words on the
screen that you put there! Don’t worry—I’ll get to more
interesting apps soon.

Hello World!

Here are the words (Hello World!)

that your program will tell the

app to display.

When you build apps, you can run

them directly on your computer

with a program called a simulator.

I talk about simulators later.

24 CHAPTER 2 Create your first app
Set up the project
You have to do a few simple setup steps before you can create your
app. These steps are kind of boring, but you have to do them only once
for each app you create:

 Create a new project.
 Choose the project options.
 Save the project.

CREATE A NEW PROJECT

Follow the steps in table 2.1 to create a new project. You’ll get some
reminders in later chapters, but this table will be a good reference for
you if you forget a step.

Table 2.1 Creating a new project

Click the Launchpad icon to see all your pro-
grams.

To open Xcode, find and click the Xcode icon.

Click Create a new Xcode project.

Xcode wants you to choose a template for
your new project.

In the top-left corner, click iOS. Below Applica-
tion, click Single View Application. Finally, in
the bottom-right corner, click Next.

Your first app: Hello World! 25
NOTE Make Xcode easier to open. You’ll be using Xcode all through this
book, so you’ll want to be able to open it quickly. After you open Xcode this
time, right click its icon in the Dock. Then choose Options > Keep in Dock.
Now the icon will always show up in your Dock so that you can find and open
it faster next time.

What’s a view? And why did I pick Single View Application?

Think of a view as the screen people see when they use your
app. Your app will have only one view: the one with the
words Hello World! on it. Later in this chapter, you’ll build
an app with two views.

After you click Next, you’ll fill out another form to choose project options. This is the form; don’t
close it!

All the details you need are in table 2.2 later in this chapter.

Keep going; you’re almost done!

Table 2.1 Creating a new project (continued)

26 CHAPTER 2 Create your first app
CHOOSE THE PROJECT OPTIONS

You have two more setup screens to get through. First, you need to tell
Xcode what to call your app and where to save it on your computer—
that is, choose the project options.

Table 2.2 Choosing the project options

This form is the one you’re filling out. It should
already be open if you completed the steps in
table 2.1.

Complete the form with the following details:

Product Name The name of your app. Call this one Hello
World.

Team The name associated with your Apple ID or
developer account. The name you see in the
screenshot, Puneet Bakshi, is the one linked
with my developer account.

Organization Name The name of your company. You can use your
name if you don’t have a company.

Organization Identifier The initials of your company. You can use your
initials if you don’t have a company.

Bundle Identifier This identifier is created for you based on what
you put in the other fields. Apple uses this iden-
tifier when you’re finally ready to submit your
app to the App Store. When you fill out the infor-
mation, the identifier is created this way: Orga-
nizationIdentifier.ProductName. Mine is
TB.Hello-World.

Language Choose whether you want to code your app in
Objective-C or in Swift. Because this book
teaches you the new language Swift, choose
Swift from the menu.

Your first app: Hello World! 27
SAVE THE PROJECT

Finally, you have to tell Xcode where to save your app’s files and set-
tings.

You should see the screen in table 2.3, which asks you where to save
your project. I created a folder called Apps inside my Documents
folder, and I store all my apps in there. You can save yours wherever
you like, but do make sure that you remember the name!

After you fill out the form, click Next. This form
appears so that you can save your project.
Don’t close it! Table 2.3 shows you how to use
this form.

Table 2.3 Saving the project

This form should be on your screen if you fin-
ished the previous step successfully. Here, you
tell Xcode where to save your project.

Navigate to the Documents folder by clicking it
on the left side of the form.

Table 2.2 Choosing the project options (continued)

28 CHAPTER 2 Create your first app
Well done! You’ve done the following things:

 Created a new project
 Chosen your project options
 Saved your project

The good news is that you have to do these steps only once for each
app you create.

The Xcode interface
You’re now on the General tab of your Xcode project (figure 2.2). It’s
important that you know the names of the parts of this screen, because
I’ll be mentioning them as you build your app.

Find these items in figure 2.2:

 Navigator—This section allows you to manage your project’s files,
errors, warnings, and many more things.

 Inspectors—When you select something on the main stage, you’ll be
able to manage the settings for it here.

 Libraries—If you want to add a common element (for example,
some text or a button) to your app, you’ll find it in a library.

Browse to wherever you’d like to store your
apps.

I created a folder on my computer just for my
apps. I called this folder Apps. :)

Click New Folder.

Type the name of your new folder (such as
Apps).

Click Create on this form to create a new
folder.

You should see the form from the first step.
Now click Create again to save your project.
Yay—you’re done!

Table 2.3 Saving the project (continued)

Your first app: Hello World! 29
 Stage—This middle section is where you’ll build your app.
 Toolbar—You’ll use the section at the top of Xcode to run and stop apps.

This screen looks super-complicated! Do I have to learn all
these things?

Lots of things are going on here, and it’s a lot to take in all at
once. Don’t worry about it right now. Later, you’ll want to
learn more parts of this screen. Right now, though, I’ll talk
only about the things you need to know to create your first
app.

You’ll use the Play and Stop

buttons to test your apps. Navigators InspectorsLibraries

Figure 2.2 The General tab of your Xcode project

30 CHAPTER 2 Create your first app
Create the UI
Your app workspace is set up, so you’re ready to start creating Hello
World! First, create the user interface (UI).

Here are the steps that I’ll walk you through:

1 Open the main storyboard.
2 Change the screen size.
3 Drag a label to the view.
4 Change the label to say Hello World!
5 Run your app!

OPEN THE MAIN STORYBOARD

You should have Xcode running, with the Hello World! project open.

On the left side of the Xcode interface, click Main.storyboard (figure
2.3). This step opens a view controller, where you’ll design your app’s
view.

Figure 2.3 The view controller in the main storyboard. The rectangle you see when you
open the storyboard is called your ViewController, which allows you to control what you
see onscreen.

A storyboard is an ordered set of drawings that are used to
plan a movie or TV show. In this case, it’s where you design the
view that your users will see. You have only one view for this
app, so your storyboard contains only one scene.

Click

here!

It’s not a coincidence that this

looks like an iPhone screen. This

is where you’ll build what your

user is going to see. But it’s not

quite the right size for an iPhone.

You fix that problem next.

Your first app: Hello World! 31
Figure 2.3 shows an iPhone 8 display size. For this book, however, I’m
using an iPhone X display. You can keep the display size as iPhone 8 if
you’re using that phone. If you’re using an iPhone X or any other com-
patible iPhone, please follow the next steps to change the size of the
view in the ViewController.

You’ll need to follow these quick steps for every app in this book.

SET THE SCREEN SIZE

To begin, look toward the bottom-
left corner of the storyboard
view. You should see a pane like
the one shown in figure 2.4.

When you’ve identified this area, click View as: iPhone 8. As you click
it, you should see a few screen sizes, as shown in figure 2.5.

If you hover over the devices, you can see the device size that each one
represents. A bit of added complexity is involved, however: if you have
an iPhone 7, you need to choose the iPhone 8 size. You have to do this
because the iPhone 6, 7, and 8 have the same size, but because the
iPhone 8 is the latest model, Apple represents only that size in Xcode.
Table 2.4 is a size chart that you can check for your device.

Table 2.4 Which device do you choose for your screen size?

If your device is an Choose this device in Xcode

iPhone XS Max iPhone XS Max

iPhone XR iPhone XR

iPhone X, iPhone XS iPhone XS

iPhone 6 Plus, 6S Plus, 7 Plus, or 8 Plus iPhone 8 Plus

iPhone 6, 6S, 7, or 8 iPhone 8

iPhone 5S, iPhone SE iPhone SE

Figure 2.4 Click this pane to view
different screen sizes.

Figure 2.5
A selection of screen sizes

32 CHAPTER 2 Create your first app
When you know which device to choose,
tap it, and the ViewController’s size adjusts
accordingly. Because I chose iPhone X, the
ViewController also shows me the notch in
the top-center of the iPhone X’s screen
(figure 2.6).

There you go! You’ve set your View-
Controller and are ready to start the fun
part of the process.

Figure 2.6 The iPhone X in
the ViewController

DRAG A LABEL OBJECT TO THE VIEW

The Libraries panel is in the bottom-
right corner of Xcode (figure 2.7). The
Object Library is where you get objects
and controls for your app. You use the
Object Library to get your controls; spe-
cifically, you need the Label object so
that you can show some text to the user.

Figure 2.7 The Libraries panel stores
objects and controls for your app.

3rd-Gen 12.9-inch iPad Pro iPad Pro 12.9” (3rd Generation)

Any 11-inch iPad Pro iPad Pro 11”

1st-Gen or 2nd-Gen 12.9-inch iPad Pro iPad Pro 12.9”

Any 10.5-inch iPad iPad Pro 10.5”

Any 9.7-inch iPad iPad Pro 9.7”

Table 2.4 Which device do you choose for your screen size? (continued)

If your device is an Choose this device in Xcode

View Controller

Your first app: Hello World! 33
Objects are things in your app that your user can see and interact with.
The text label you’re going to add to your app is an object.

A special type of object that users can interact with is called a control.
Think of the apps you use. They have buttons, sliders, or text input
boxes, all of which are controls.

To add your first object (a label) to the application, follow these steps:

1 Click the little circle with a square inside it to open the Object
Library.

2 You need to find the Label object. You can scroll down in the panel
or search for it. To search, start typing Label in the search box at the
bottom of the panel. A box that has the word Label in it and a brief
description of the object appears.

3 Drag the label to your view, as shown in figure 2.8.

Figure 2.8 Drag a label to your view.

TIP Your users interact with the app by using controls. They can gather input
and give output.

4 Move the label to the center of the view until you see two dotted blue
lines: one top to bottom and the other left to right. I call these lines
guide grids. They help you align controls on the view so that you can

Click and drag this label

to the middle of your view.

34 CHAPTER 2 Create your first app
(for example) center a label onscreen without doing math. When
these lines appear, you’ve centered the label control in the view.

5 Double-click the label, which is now in text-editing mode.

6 Delete the word Label, and type “Hello World!” (without the quotes)
in its place.

Wait—do I have to type Hello World!? Can’t I put something else
there?

Sure, you can type whatever you want. Have fun!

Run your app
Before you can run your app, you have to tell Xcode whether you want
to run your app in the simulator or on a physical iDevice. If you have
an iDevice running iOS 11 or later (iPhone 5S or later), you can use
your iDevice; otherwise, you’ll have to use the simulator.

Do I have to run the app in a simulator? Can’t I run it on my iPhone?

You can! But setting up your account is tricky; you’ll find the steps in
appendix F of this book.

Your first app: Hello World! 35
What’s this simulator thing, anyway?

A simulator is a computer program that lets you run your iOS apps on your Mac, as
if you're running them on your iDevice so you can test them. But because your com-
puter’s screen isn’t a touchscreen, you can’t test touch actions (multigesture ac-
tions). You can use your computer’s mouse to perform simple touch actions.
Features that use iDevice hardware (such as the camera and the microphone)
aren’t available either.

Here are a few more things that you won’t be able to test with the sim-
ulator:

 Accelerometer—Measuring acceleration or changes in speed.
 Gyroscope—Performing gyroscope functions, such as rotation. You

see this feature in games such as Temple Run, in which you have to
tilt the device to move the character to the left or right to collect
coins or points.

 Camera—Taking a picture or making a video.
 Microphone—Recording sounds, such as someone’s voice.
 Proximity sensor—Doing things like detecting whether you’re close

to the iPhone.
 Fingerprint sensor—Matching a fingerprint by tapping the Touch

ID (home) button.

These limitations aren’t going to be problems, as you learn in this book,
but knowing about them will help you understand the simulator better.

RUN YOUR APP ON THE SIMULATOR

In this section, you try out your new app on the simulator.

The simulator lets you choose from a bunch of iDevices. You can
choose one from the list to see what your app will look like when you
run it on, say, an iPad versus an iPhone SE.

To run your app in the simulator, follow these steps:

1 You need to tell the simulator what kind of iDevice you want it to
simulate, so find your project’s name next to the big Play button in

36 CHAPTER 2 Create your first app
the top-left corner of the screen. This area should look something
like figure 2.9.

Figure 2.9 Click the Play button to run your
app on the device you want to simulate.

I’m using the iPhone X, so I can’t simulate with the iPhone 8 Plus!
To change, I click iPhone 8 Plus; when the menu pops up, I choose
iPhone X, as shown in figure 2.10.

2 Click the Play button near the top-left corner of the screen (figure
2.11). If you’re asked for your admin password, enter it. (You have
to enter your password only once: the first time you run your app.)

Figure 2.10 Choose the
device you want to simulate
from the pop-up menu.

Your first app: Hello World! 37
You see your app in the simulator (figure
2.12).

3 To stop your app running in the simulator,
click the square Stop button in the top-left
corner of Xcode, to the right of the Play
button.

(OPTIONAL) RUN YOUR APP ON YOUR iDEVICE

Setting up your account should be
quick. If you’re happy running your
app in the simulator for now, how-
ever, skip these instructions, and
come back later.

To run your app on a real iDevice, you have to
follow a few more steps:

1 Check appendix F to make sure that you have your developer
account set up correctly. (Apple explains the process well, so I pro-
vide links to Apple’s instructions for you.)

2 Connect your iDevice to your Mac with a Lightning cable.

3 As you do when you run your app in a simulator, find your project
name next to the big Play button in the top-left corner of the screen,
and click the simulator name next to it. After you’ve opened the
menu that allows you to choose a new simulator, choose the name of
your device instead. The name will be near the top of the menu.

Click this button to run

your app in the simulator.

Figure 2.11 Click the Play button to run the app in the simulator.

Hello World!

Figure 2.12 The simu-
lator window opens with
your app running in it.

38 CHAPTER 2 Create your first app
4 If you see a prompt mentioning provisioning profiles, click the Fix
Issue button. Then select your Apple ID in the list and click Choose.
This step adds a provisioning profile to your new developer account.
(If you have to perform this step, you do so only once.)
You must be thinking, “I didn’t create a developer account! What’s
happening?” Well, when you set up Xcode with your Apple ID,
Xcode created a developer account for you, so it’s adding a key that
allows Xcode to install the app on your device and nobody else’s.

5 If you see a prompt mentioning codesign and keychain, click the
Always Allow button.

NOTE It’s not co-design, but code-sign.

6 Click the Play button near the top-left corner of the screen. Your app
runs on your iDevice.

Congrats! You’ve successfully run your first app on your iDevice.

Discover the user interface
The UI is how your user interacts with your app. And although there’s
more to an app, its UI is one of the most important parts. Let’s take a
closer look.

Believe it or not, you’ve already created a UI! When you
dragged the label to the view in your Hello World! App, you
created a user interface.

What is a UI?
The user interface is the way users interact with computers—or, in
your case, with iDevices. By interact with apps, I mean that the user
gets info from the app, and also gives responses and commands to the
app. The words, pictures, graphics, buttons, sounds, vibrations, and
everything else together on the screen is the UI (figure 2.13).

Discover the user interface 39
The app you’ve created has a simple
UI; the user sees the words “Hello,
World!” onscreen. Most apps have lots
more going on, however. Angry Birds,
for example, has a much more compli-
cated UI; the user sees birds, pigs,
structures, and much more onscreen.
Also, the user can touch the screen and
make things happen.

Develop an app on your own
First, try to create an app with a button,
a label, and a text field that looks like
figure 2.14.

Figure 2.14 Try to make this app, with
a button, a label, and a text field onscreen.

Hello World!

Toggle button

Image

You’ve seen this one before:

it’s a label.

Stepper

Stepper

When you need your user to type

some words, you can use a text field.

Slider

Segmented control

Figure 2.13 A UI is anything the user sees or can interact
with. This figure is your app’s UI, but I added a bunch of controls
to the UI to make the app silly. These UI elements are only a
few of the ones you could add.

40 CHAPTER 2 Create your first app
Here are some tips to help you:

 To add a control, drag it from the Object Library to the view.
 To move a control anywhere in the view, click it and then drag it

where you want it to be.
 To change the text of a control that can be changed (such as a button

or a label), double-click it and then type the new text you want in its
place. You learn more about this process in chapter 4.

 You’ll find many of the UI elements in the same place in Xcode: in
the Object library (figure 2.15).

You may have to click this

icon and scroll down to find

these UI elements.

Figure 2.15 Many UI interface
elements are in the Object Library.

Discover the user interface 41
Okay, I’m done. Now can I make my UI a little more
interesting?

Good job! Next, give your app some color. I’ll show you how
to change the colors of text and controls and the background
color of the whole view. Again, I’m listing only a few exam-
ples, although sorting can be done in many more ways!

Change text colors
You can change the text colors of labels, buttons, text fields, and other
UI controls that have text. Here’s how:

1 Click a label, text field, but-
ton, or any other control
that has text.

2 Click the Attributes Inspec-
tor button (on the right side
of the Xcode interface).
The Attributes inspector in
figure 2.16 is a panel that
lets you change all kinds of
things about the interface
elements in your app, inclu-
ding font size, color, and
alignment.

3 Click the Color menu below
the Label header to open
the Colors palette.

4 Click the Colors palette and
choose any color you want.

Color

menu

Figure 2.16 The attributes inspector

42 CHAPTER 2 Create your first app
Change the background color of a control
You can change the background color of buttons or other controls that
have background colors by following these steps:

1 Click a button, switch, or any other control that has a background.

2 Click the Attributes inspector button, if it’s not already open.

3 Click the Background Color menu below the View header to open
the Colors palette.

4 Click the Colors palette and choose any color you want.

Change the background color of a view
Changing the color of your entire view is easy, too. Follow these steps:

1 Click a part of your view that doesn’t have any controls in it.

2 Click the Attributes inspector button, if it’s not already open.

3 Click the Background Color menu below the View header to open
the Colors palette.

4 Click the Colors palette and choose the new background color you
want.

More about controls: Try these for a challenge
You’ve seen a button and a label, but you’ll end up using a few other
controls in your apps (figure 2.17). Take a look at the most common
ones:

 Button—Use a button when you want the user to click it to make the
app perform an action (such as ordering a pizza).

 Label—Use a label to display text onscreen to give users some infor-
mation or ask them questions. For example, a label might display,
What is your first name?

 TextField—Use a text field to let the user enter some information. If
you ask your users for a first name, for example, the text field is
where they type it.

 Switch—Use a switch to get an on/off or a true/false value from the
user. You can use it, for example, to get a response to the question Do
you like pizza?

Discover the user interface 43
 TextView—Use a text view to get a
longer text answer from a user. Your
app might prompt your user with,
Tell me about the last time you ate
pizza, for example.

A few more things you can do with the
Attributes inspector

You probably noticed lots of options in
the Attribute inspector. Here are a few
things you can change when you select
a control:

 Font—You can change the font, font
style (such as italic or bold), and
font size.

 Alignment—You can align your text
left, center, or right.

 Shadow and Shadow Offset—These
options let you add a drop shadow
or glow to your control or text label.

Try playing with these options. I talk
about even more options later in the
book.

Segues: Using controls to navigate screens
Let me introduce one essential feature of apps: navigation. Navigating
is also called segueing through views.

You may be wondering what a segue is. (The word is pronounced like
segway, by the way!) In the context of apps, a segue is a move without
interruption between views. It’s often used between songs when the
first song ends and the second starts smoothly, without a break or gap
and without a change in volume.

Here’s an example that you may notice in an app (including tTables, a
times-tables app developed by Tanmay Bakshi!) when you click a

Figure 2.17 Here are
some things you can do
with other controls in your
app. Can you make these?

44 CHAPTER 2 Create your first app
button to bring up a new screen or view. Clicking the Let’s Start but-
ton in tTables, for example, brings up the main Quiz view. This switch-
ing of screens or views in which one screen disappears smoothly and
the other shows up is called segueing.

To make a segue (which is surprisingly simple), follow these steps:

1 Put a button in the view you want to segue from.

2 If you don’t have two views (one to segue from and a second one to
segue to), search for View Controller in the Object Library, and drag
the View Controller to the blank space (not to the existing view itself).

3 Right-click the button in the first view and drag it to the second
view. Release the button when a blue line reaches the second view.
There are many ways to do segueing, but I’m introducing the sim-
plest of all segues: the modal.

4 Choose Modal from the dark menu that appears when you release
the mouse button.
Done! You have a segue! You can do the same thing with the button
in the second view to go (segue) back to the first view.

Try an extra challenge
If you’re up for a challenge, try your best to make the following screen-
shot into an app as you did in your Hello World! app. To get started,
you need to design the UI, and to save you the trouble of doing that, I
created it for you! All you need to do is duplicate the UI in figure 2.18
into your project.

TIP If you need to, you can scroll around and zoom in and out of the story-
board by using the multitouch gestures you already use to control apps such as
Safari and Chrome.

Before I go further, here are some important features:

 The first (nicknamed the Question view) is where you ask the ques-
tion and give possible answers for users to choose.

 The second view (nicknamed the Wrong Answer view) is where you
tell users that they got the answer wrong.

Discover the user interface 45
Figure 2.18 The UI with three screens for the Segues app

 The third view (nicknamed the Correct Answer view) is where you
tell users that they got the answer correct.

 The two answers are represented as buttons, so they can be clicked.
Lunch & Dinner is a button in the initial view, for example. There
are also Back buttons in each of the result screens.

 The question in the initial view and the results in the result views
(Wrong and Correct) are labels.

TIP Notice that every view has an arrow pointing to it on the left side. An
arrow not coming from another view means that the view it’s pointing to shows
up first when the app is run. If the app has two or more views, then these arrows
show some of the possible ways you can move from one view to another.

Now follow these steps to create the segue:

1 Right-click the Popcorn & Hot Sauce button in the Question view
and drag it to the Wrong Answer view.

2 Select Present Modally from the gray list that pops up.

46 CHAPTER 2 Create your first app
3 Right-click the Lunch & Dinner button in the Question view and
drag it to the Correct Answer view.

4 Again, select Present Modally from the list.
5 Right-click the Back button in the Wrong Answer view, drag the

button to the Question view, and select Present Modally.
6 Right-click the Back button in the Correct Answer view, drag the

button to the Question view, and select Present Modally.

You’re done! Run the app, and it should work (figure 2.19).

Figure 2.19 Segues application in action

Designing good UIs
Now that you know what a UI is, here’s a list of best practices that will
help you create apps with good UIs:

 Always use a legible font size for text on your labels, buttons, text
fields, and other controls. Users need to be able to read them!

 To make sure that your controls are legible to users, always use system
fonts unless you’re required to use a different font for a special purpose.

Try this app on your own 47
 Stay consistent with color. Don’t use a different color for each but-
ton, for example. The Notes app is an excellent example: it uses a
consistent yellow color for all its buttons. Games sometimes ignore
this rule, however, if many colors are more appealing to users (as in
the Fruit Ninja game, for example).

 Take advantage of the whole screen! Don’t cram everything into a
little section of your app and leave a big empty area somewhere else.
Because the latest iPhones have bigger screens, you could space
your controls out more to give the user more space; you could even
add more functionality to a single view. But this tip isn’t a hard-and-
fast rule. At times, it may make sense to let users focus on one thing.
In a timer app, for example, you may want the time remaining to be
large and in the center without much else in the view.

 Always pay attention to the needs of at least 80 percent of the users
of your app. Don’t implement a feature that only a few users will use
or that a normal user would rarely use.

Some of these notes are from the iOS Human Interface Guide-
lines. To read more, download this document from iBooks on a
Mac or iDevice.

These five main rules of UI design will help you create apps that your
users will enjoy using.

Good job! With this section, you’ve completed the second milestone,
and you’re a mile closer to completing your journey. In chapter 3, you
learn how to insert data into the computer’s brain.

Try this app on your own
Create the app shown in figure 2.20, which has a button, a label, and a
text field:

1 Add the label My First App! near the top-center of the screen.

2 Add the label Play iSockey! near the center of the screen.

3 Add the label The mixed game of Hockey and Soccer! below Play iSockey!

48 CHAPTER 2 Create your first app
4 Add a black label stretching across
the bottom with a white font that
says Swipe here to start!

5 Add a white label with no text on
the black label to make it look like a
slider.

Test your app knowledge
In this section, I’m going to test your
app knowledge to make sure you’ve
been paying attention. :) Please
answer the following questions (you
may refer to the chapter to make sure
you get them right):

 You create an app that uses the
camera on an iPhone. Why can’t
you test the camera function with
the simulator?

 What’s the purpose of the iOS
Human Interface Guidelines?

 Download the Bad App example from this book’s website, and try
your best to make it follow the rules of a good UI.

NOTE You can find the code for this application in the folder Chapter02
_BadAppEg, inside the folder called Hello-Swift-Code-master that you down-
loaded from Github. If you haven’t downloaded the code, go to: https://
github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You should
download the code only once for all chapters.

 What is a UI?
 Where is the Attributes inspector?

Figure 2.20 Try to create
this app.

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

3
1

3

5

4

6

14

8

7 9

N A Journey

2

12

13

10

11

Your first real Swift code
using variables

Next up: variables! You’re about to take a
close-up look at variables. You’ll learn what
they are, why you need them, and how to
use them in your programs.

This chapter covers

• How to make your program remember something
• What the different types of data are and why they’re required
• How to convert one type of data

to another
• How to do math in a program
49

50 CHAPTER 3 Your first real Swift code using variables
You’re all set to cover your third milestone: writing your first real Swift
code by using variables. By now, you may be thinking that this whole
programming business is a breeze. You’ve used the Swift Playground,
and you’ve used the print() function to output words on the screen.
You’ve created a playground by adding a line or two of code. Things
are about to get not so simple, but they’ll be interesting and a lot of
fun! In this chapter, you learn about using variables and doing math in
your apps.

Apps store data in variables
In programming, you sometimes need to store data. Suppose that you
need to save the names, email addresses, and phone numbers of 50 of
your friends because you can’t easily remember all of them. If you
write an app that can store this information, you can use it to look up
the information. You can even change this data if you need to (if some-
one gets a new phone number, for example).

What is a variable?
Look at this equation:

x = 4

If I asked you what x is, you would (I hope) say 4. Here, x is a variable,
and its value at present is equal to 4.

Think of a variable as a name that’s used to refer to a value that can
change over time. But x isn’t much of a name. You don’t have any idea
what x means, but you know that it equals 4.

In programming, you don’t have to use a single letter like x as a vari-
able name. You can use more descriptive variable names.

Now consider this code:

numberOfPlayers = 4

If I asked you how many players there are, I hope you’d say 4. But
you’d also be able to guess that I’m keeping track of this number for a
specific reason.

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

Apps store data in variables 51
Why do apps need to store variables?

Think about this: when you’re playing a game like Temple
Run, your current score in the game is held in a variable so
that the app can use it later and also display it to you. The
score keeps increasing until your character dies.

Hands on!
In this section, you create and store a variable yourself.

NOTE You can find the code for this application in the Chapter03_Ex1.play-
ground file inside the Hello-Swift-Code-master folder that you downloaded
from GitHub. If you haven’t downloaded the code, go to: https://github.com/
tanmayb123/Hello-Swift-Code/archive/master.zip. You should download the
code only once for all chapters.

Open a Playground, and type

var playerAge = 13

You’ve created a variable named playerAge, and you’ve stored a value of
13 in it.

Now suppose that you want to know, at any later time, what this vari-
able contains. One way is to print the value inside the variable by using
the print() function you learned in chapter 1.

Try typing this:

print(playerAge)

You see the output of this code on the right side of the Playground. It
shows you what you saved in the playerAge variable.

You can use an even easier trick: type the variable name in the Play-
ground, and Swift prints the value at the side of the Xcode window!

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

52 CHAPTER 3 Your first real Swift code using variables
How does an app use and save variables?
When you create a variable in your code, you’re telling your app that
you need it to save a piece of information. The iDevice uses the vari-
able name to create a place in its memory where it can store this impor-
tant data. The reason you want to store data is that you need to use it
again. As an example, take a look at figure 3.1.

Figure 3.1 Two variables stored in the computer’s memory. One variable is named age,
with the value 12 stored in the computer’s memory, and the other variable is called
name, with the value "Frank" saved in the computer’s memory.

Variables are useful. Think of a variable as being like a
place in the computer’s brain that can store data. This data
can be anything, such as a name, an address, your grade,
your age, or how much something costs. One reason why
you need variables is because you may need to keep track
of something that will change. Maybe the data you stored
with the variable age is wrong now because you’re a year

older, for example. You can write a line of code that changes the data that
the variable age points to in memory.

12

Frank

The variable age
stores the value 12.

Computer’s Memory

This is a variable

called age. age

name
This is another

variable called name.

The variable name
stores the value “Frank”.

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

Apps store data in variables 53
Wait a minute—I thought variables were just for storing
numbers. How can I be using one to store a name?

You can create variables to store all kinds of information,
including integers, text, and decimal values. In a few pages,
you’ll learn more about the types of data you can use with
variables.

What types of variables are there?
You’ve seen that you can store more than just numbers in variables.
You probably have many other types of data that you want to keep
track of. In programming, you need to know what type (kind) of data
you want to store.

If you wanted to store which grade a student is in, for example, you’d
use a data type called an Integer to store it. Here, assume that some-
body’s grade will be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12. If you want to
store a student’s name, use something like a String (which you can
think of as being like a string of characters). Use a Double to hold a dec-
imal number, such as how much a pizza costs.

Table 3.1 shows the most common types that Swift uses and the ones
you’ll use most. You’ll see many more variable types later in the book.

Table 3.1 Common types of variables in Swift

Type Swift name How it’s used

Integer Int To store whole numbers and negative numbers, such as 12, 99,
200, 1000000, -32, 0

Double Double To store decimal values, such as 12.54, 8.23, -2.68, 89.99,
3.14159

Boolean Bool To store true/false values such as true and false

String String To store text, such as "yellow" and "Today is Monday"

54 CHAPTER 3 Your first real Swift code using variables
You may wonder why you need to
know what kind of data you have.
You’ll find out that there are lots of
reasons, but here’s one of the main
ones: you can do math with num-
bers (Integers and Doubles) but
not with text. You sometimes need
to add, subtract, multiply, or per-
form some other math operation
on a variable that contains a num-

ber. But if you have a variable that contains text, it doesn’t make any sense to
try to use math with it. To Swift, "four" and 4 aren’t the same!

How to create variables
First, you have to come up with a variable name.

You’ve probably figured out that unlike in math, you usually don’t use
names like x or y for your variables unless you have a specific reason to
do so. But although you can give your variables longer names, you still
need to know some variable naming rules.

Swift provides a lot of features and a lot of flexibility in naming vari-
ables. But a variable name can start only with an alphabetical or under-
score character, and it can’t contain spaces or some special characters
(%, $, &, *, ^).

Table 3.2 lists some examples of variable names you can use and some
that you can’t.

Table 3.2 Correct and incorrect examples of variable names

Correct Incorrect Why?

ageOfUser User'sAge Apostrophe is a special character.

nameOfUser User Name Name isn’t a single word, and
spaces can’t be included.

numberOfLikesOnPost Number-Of-Likes-On-Post Dash is a special character.

Pop quiz

What variable types are these?

1 The number of kids playing a game
2 The height of a tree
3 Total bees in a beehive
4 Somebody’s last name

(Answers: 1. Int; 2. Double; 3. Int; 4. String)

Apps store data in variables 55
In case you’d like to know more about reserved words in Swift, here’s a
partial list:

 class
 import
 struct
 func
 IBOutlet

Hands on!
Try creating variables for each of the different types in the playground
and then use print() to see the data, as in this example:

var playerName = "Anne"
print(playerName)

When you create strings, you have to use quotes
around them.

_fileName Name of File Spaces can’t be included.

fifth_File 5thFile A variable can’t start with a digit.

_import import “import” is a reserved word. It has a
special meaning in the programming
language (e.g. “import UIKit”). These
reserved words can’t be used as
variable names because Swift
doesn’t know if you’re referring to the
special meaning, or your variable
name.

Table 3.2 Correct and incorrect examples of variable names (continued)

Correct Incorrect Why?

56 CHAPTER 3 Your first real Swift code using variables
What’s the big deal? What happens if I do break one of these rules?

Simple: your code won’t work. But the good news is that if you acci-
dentally (or purposely) break one of these rules, Xcode reports the
error to you, and you can fix it. Xcode won’t say that you have a bad
variable name, but it shows you an error message—something like in
figure 3.2.

Figure 3.2 The Playground tells you that you broke a variable-naming rule.

Declaring variables and changing values
You tried creating some variables in the Playground earlier. In this sec-
tion, you take a closer look at what it means when you create a vari-
able. Then you see how to change the value that’s stored in a variable
after it’s been created.

Declaring variables and changing values 57
Declaring variables
In programming, creating a variable is called declaring a variable.

In Swift, if you were to
declare (create) a variable
named someonesAge that con-
tains the value 23 (an inte-
ger), you’d do the following:

var someonesAge: Int = 23
// OR
var myAge = 11

To declare a variable of type String, you’d do the following:

var someonesName: String = "Johnny"
// OR
var name = "Julie"

What are those // marks?

Whenever you see // in the code, what follows it is a com-
ment. You can write whatever you want after // on the same
line; Swift ignores it and doesn’t treat it like code. (Without
the comment, the Swift compiler will give you an error.) If I
type a comment in the code examples in this book, you don’t
need to write it in your code unless I tell you to (but you can
if you want to). The comments here tell you what a particu-
lar line of code is doing or informs you of something.

The difference between the first and second variable declarations is
that the first specifies that the variable should be an Int type with the
number 23 stored in it. The second, however, leaves Swift to decide
which type of variable it is; Swift correctly identifies it as an Int. Even
though you don’t have to, it’s safer to tell Swift what kind of variable it
is, and it’s a good practice.

Sometimes, you need to create a variable, but you don’t know the value
of it yet. You may want to create a variable to hold the age of someone
who uses your app, but before someone uses the app, there’s no value

tells Swift that a variable is going to be created

name of the variable type of the variable

assigns a value to the variable

58 CHAPTER 3 Your first real Swift code using variables
available to store. What do you do? Well, in that case, you need to cre-
ate a variable with no value. Here’s how:

var someonesAge: Int!
//However, the following line will NOT work:
var someonesAge
//It doesn’t work because Swift has no information to figure what
//kind of variable it’s expected to create.

You must put an exclamation mark after the Int because Swift must
know that you won’t initially put anything in this variable. This vari-
able is now a special type of variable called an Optional.

Pop quiz

See whether you can match each line of code with the text that describes it:

1 var someonesAge: Int = 10
2 var someonesGrade: Int!
3 someonesAge = 11
4 someonesGrade = 6

A A variable that didn’t have a value now has one.
B A variable’s value is being changed from one value to a different one.
C A variable is declared as an Int with a value in it.
D A variable is declared as an Int with nothing in it.

In this quiz, the age and grade are declared in different ways. If a variable already has
something in it, it can still be changed; it can also be changed if it has nothing in it.

Changing variable’s values
The important thing about using variables is that you can change the
values they store. Suppose that you’ve created a game in which a
player can go up in levels. When a player starts play, you might store
his level as 1:

playerLevel = 1

When he goes up a level, you need to change his level to 2:

playerLevel = 2

(Answers: 1. C; 2. D; 3. B; 4. A)

Declaring variables and changing values 59
In this section, you learn to store and update someone’s age.

Hands on! Spying on data
NOTE You can find the code for this application in the Chapter03_Ex2.play-
ground file inside the Hello-Swift-Code-master folder that you downloaded
from GitHub. If you haven’t downloaded the code from GitHub, go to: https://
github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You should
download the code only once for all chapters.

Let’s display Amy’s age and grade now, as well as one year later.

Spying on your data means viewing what’s inside your variable while
the app is running on an iDevice or simulator. (In this example, you’re
using a playground, not an app.)

You’re not going to create an app yet, however. You start in the play-
ground because you need to learn how to use it and create code in it
before you create full apps.

Create a playground that displays the following:

Amy is 10 years old!
She is in grade 5!
1 year later...
Amy is now 11 years old!
She is in grade 6!

Type the code in listing 3.1 in the playground.

Listing 3.1 Spying on data

var herAge = 10
var herGrade = 5

print("Amy is \(herAge) years old!")
print("She is in grade \(herGrade)!")

print("1 year later...")

Declare variable herAge
and assign it the value 10.

Declare variable herGrade
and assign it the value 5.

Print Amy’s age and
some text. The
backslash formats
the output, as you
will see soon.

Print Amy’s grade
and some text.

Print text as
given in quotes.

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

60 CHAPTER 3 Your first real Swift code using variables
herAge = 11
herGrade = 6
print("Amy is now \(herAge) years old!")
print("She is in grade \(herGrade)!")

Your output will be kind of long, and not all of it may fit. If this
situation happens to you, try this trick: hold down the Shift and
Command keys at the same time, and then press the Y key.
(Quick tip inside a tip: do the keys trick once more, and the bot-
tom console log disappears!)

Your playground splits horizontally (left to right), and you should see
the output at the bottom of the playground, as shown in figure 3.3.

Figure 3.3 Your playground after you type the code in listing 3.1

Set value of variable
herAge to 11. Set value of variable

herGrade to 6.

Print Amy’s new age
and some text.

Print Amy’s new
grade and some text.

Declaring variables and changing values 61
Using \ and () to format text
In the code you typed in the Playground, I told you to use \, "", and ()
to format output. This code looks complicated, and you may wonder why
you needed to type these things. Typing them allows you to put a vari-
able’s value in a String. If you typed string1+string2 without "\()" cov-
ering it, Swift would print string1+string2. The same rule applies to the
integers. Try entering the following code without "\()":

var string1 = "102"
var string2 = "3"
print("my output is 102+3=string1+string2")

Swift prints

my output is 102+3=string1+string2

This output isn’t what you wanted to print, however. Now see what
happens when you try enclosing string1+string2 in "\()":

var string1 = "102"
var string2 = "3"
print("my output is 102+3=\(string1+string2)")

Swift prints

my output is 102+3=1023

Figure 3.4 shows you how all this code looks in the Playground.

Figure 3.4 When you don’t use \ and () to format your text output, Swift
doesn’t print the values of your variables.

62 CHAPTER 3 Your first real Swift code using variables
That’s it! You’ve learned to change variables after declaring them and
print a variable’s value with print() using \(). If you expected 105,
you’ll read next why you were surprised.

Pop quiz

Look at these variables:

 var number1: Int = 1
 var number2: String = "1"
 var thing1: String = "Robot"
 var thing2: String = "Sponge"

When you use these variables, what output do you get from each of these print()
statements? Make your guess and then try them in the playground. (Hint: not all of
them work.)

 print(number1 + number1)
 print("\(thing1 + thing2)")
 print("\(thing1 + number1)")
 print(thing1 + number1)
 print(thing2 + thing1)
 print(thing2 + number1)
 print("(thing1 + number1)")

What do you conclude from this pop quiz? Make a note of it.

Transforming your data
No, I don’t mean the Robots in Disguise kind of Transformer. In this
section, you learn some ways to transform your data and why you may
need to.

You know that you can change the value of what a variable holds. But
sometimes, you need to use or change the data in other ways. First, you
see how to combine data with concatenation. Then you learn how to
change the data type by converting your data, which is when you
change the data type.

Concatenating data
To help you understand why you may need to transform your data, I’ll
tell you about concatenation. Concatenating is joining two or more
strings of text by putting them one after another. If you add "Spongebob"

Transforming your data 63
and "Squarepants", for example, you get "SpongebobSquarepants". This
format works when you’re using string variables. But what do you
think would happen if you had two string variables that contained
numbers as their values?

You may have heard the joke 1 + 1 = 11. Well, in programming, this is
sometimes true because strings store text, which can be any number of
characters (any letter, symbol, or digit). If you add a string that stores
"1" and another string that also stores "1", you get "11". Similarly, you
add strings together by using a plus sign:

var first: String = "ro"
var second: String = "bot"

print(first + second)

You get the output

robot

Hands on!
Try concatenating data yourself. Go to the playground and type

var first: String = "home"
var second: String = "work"
print (first + second)

You should see the word homework.

Test these rules
Here are a few more things about concatenating strings to try. Using
the playground code for concatenation as a model, change the strings
and the operator in the print line to test these rules:

 You’ve seen that the + operator concatenates two strings but adds two
integers. Try adding "2" to "3" first as strings and then as integers.

 Swift doesn’t allow the use of -, *, or / in strings (but you may use
them freely in integers). Try subtracting "ice" from "icecream".

 You can concatenate strings only with other strings; you can’t mix
strings and numbers in concatenation. Try adding the integer 2 to
"dogs".

64 CHAPTER 3 Your first real Swift code using variables
Converting data
NOTE You can find the code for this application in the Chapter03_Ex2play-
ground file inside the Hello-Swift-Code-master folder that you downloaded
from GitHub. If you haven’t downloaded the code from GitHub, go to: https://
github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You should
download the code only once for all chapters.

Sometimes you’ll be working with data that is a string, but you need to
turn it into an integer.

Suppose that you made an app that asks a user to input two numbers,
and your app adds them together. You get string input from users
(always true by default). You have to convert the strings that the user
gives you as input to integers or decimals, which you can mathemati-
cally add together.

This example is one reason why you may need to convert data. If you
don’t convert to integers and add, you get the literal output (such as "2"
+ "18" = "218") because Swift thinks you’re concatenating two strings.

With the types of variables you’ve learned, here are some conversions
you can do:

 String to Double or Int
Examples: String "42" to Int 42, String "3.50" to Double 3.50

 Int to Double or String
Example: Int 2015 to Double 2015.0, or Int 2015 to "2015"

 Double to Int or String
Example: Double 3.14 to Int 3, or Double 3.14 to String "3.14"

Now look at some code that converts two strings to two integers. This
code has some new keywords that you haven’t seen before, and I
explain them soon. For now, see whether you can figure out how the
keywords in listing 3.2 work.

Listing 3.2 Convert strings to integers

var string1: String = "12"
var string2: String = "34"

Creating the String
values "12" and "34"

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

Transforming your data 65
print("\(string1 + string2)")

var int1: Int = Int(string1)!
var int2: Int = Int(string2)!

print("\(int1 + int2)")

Figure 3.5 shows what you’ll see if you try this code in the playground.

Figure 3.5 Converting strings to integers in the playground

What happens if I try to convert a string like "Fred" to an
integer?

Simple: the app will crash. (Because "Fred" can’t be con-
verted to an integer, it has no numeric value.) For a string to
be converted to an integer, it has to consist of all digits—and
nothing else, such as "123", "-256", or even "23.41". You
learn how to counter this problem in chapter 5.

Printing the two String values
added (concatenated) together

Creating two new Integers int1 and int2, which
get the String values converted to Int type

Adding the two integers
and printing the result

66 CHAPTER 3 Your first real Swift code using variables
What else can I convert, and are there types that I can’t convert?

I’m not going to get into this topic yet, but as an appetizer, here’s a tip:
when you convert something, it has to make sense. Example: you can
convert a decimal to an integer, but Swift chops off the decimal part.
You’ll find other problems, such as memory sizes of different variable
types, but it’s too early in the book for me to describe them in detail.
For example, if you try to convert 3.14 to Int, you will get 3. Swift will
chop off .14 part of it.

Math Operation Theater
In this section, you learn to do some more math (sorry, but you have
to) in Swift.

What is an operation?
NOTE You can find the code for this application in the Chapter03_Ex4.play-
ground file inside the Hello-Swift-Code-master folder that you downloaded
from GitHub. If you haven’t downloaded the code from GitHub, go to: https://
github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You should
download the code only once for all chapters.

An operator (no, not the surgical one, the mathematical one) is some-
thing like +, -, *, or /. Here, * stands for multiplication, and / stands for
division. An operation uses these operators on numbers such as 5 + 2 = 7.

+_^
%

/

*

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

Math Operation Theater 67
The operators can work with numbers or variables. Instead of writing 5
+ 2 to get 7, you can create code that writes a sentence for you.

Figure 3.6 shows code that you’ll type in the playground and its output.

Figure 3.6 Using an operator with numbers in the Playground

Here’s an explanation of that code:

var a: Int = 5
var b: Int = 2
var c: Int = a + b
print("The value of c is \(c)")

Now if you spy on the value of variable c, you get 7, as you’d get from
5 + 2.

Swift has many more operators, and in the next section, I discuss the
most common ones.

Do basic math with Swift (+, -, *, /)
In this section, I teach you how to do basic math in Swift. You’re going
to do a little bit of math in the playground so that you can see how easy
it is. You’ll add, subtract, multiply, and divide some integers and decimals.

Variable a of type Int is declared,
and value 5 is stored in it.

Variable b of type Int
is declared, and value
2 is stored in it.

Variable c of type Int is
declared, and the sum
(=7) of a (=5) and b
(=2) is stored in it.

Finally, print the value of c
and find that it contains 7.

68 CHAPTER 3 Your first real Swift code using variables
First, read the code in figure 3.7 without looking at the output. Can
you predict the output?

Here’s what each line of code was supposed to do. Were you able to
figure out the output?

print("\(5 + 5)")
print("\(5 - 5)")
print("\(5 * 5)")
print("\(5 / 5)")
print("\(10 / 4)")
print("\(10.0 / 4.0)")

The operators +, -, *, and / are known as binary operators
because they work on two numbers. The numbers on which
these operators work are called operands.

You’ve learned basic operations in Swift. Wasn’t that a piece of cake?

Figure 3.7
Doing math in
the Playground

Adding; prints 10

Subtracting; prints 0

Multiplying; prints 25

Dividing; prints 1

Dividing an Int with an Int;
prints 2 (an Int answer)

Dividing a Double with a Double; prints 2.5
(a Double data type answer)

Math Operation Theater 69
Doing math in a print() function
Can you do math only in a print() function? Not really. You can use
math in lots of places in your code. You could use math to give a value
to a variable, for example:

var myAnswer1: Double = 153 * 3

var myAnswer2: Double = myAnswer1 / 2

Why does this example use Double?

Caution! Sometimes you get unexpected results

Think about what 15 divided by 2 equals. Take a look at this code:

print("\(15 / 2)")

This line prints the result 15 / 2, which is 7, not 7.5 as expected. Why?

You get 7 because both 15 and 2 are integers. Swift gives you back only the integer
part of the answer if it finds an integer being divided by an integer. Swift doesn’t do
any rounding, either; it leaves off the decimal part of the answer. To prevent this sit-
uation, make sure that all your variables are the right types.

Back to the point: for any operation, use the number, its symbol, and the
other number to get the result. Slightly more advanced operations may
not work this way, however. You find out more in the next section.

Step up in math with Swift (square root, power, modulus)
You may not know or remember what some of these operators are:
square root, power, and modulus. Table 3.3 explains.

Table 3.3 Some advanced math operators in Swift

Math operator and
how it works Explanation Swift code

Square root

√25 = 5, because 5x5 = 25

√16 = 4, because 4x4 = 16

What number times itself is equal to the
number you’re finding the square root of

sqrt(25.0)
sqrt(16.0)

70 CHAPTER 3 Your first real Swift code using variables
Hands on!
Try these lines in the Playground:

print("Square root of 9 is: \(sqrt(9.0))")
print("3 to the power of 3 is: \(pow(3.0, 3.0))")
print("Without the decimal, 7 / 2 is: \(7 / 2)")
print("The remainder being: \(7 % 2)")
print("With the decimal, 7.0 / 2.0 is: \(7.0 / 2.0)")

The first example gives you the square root of 9, which is equal to 3.
The second example gives you 3 to the power of 3, which is equal to 27.
The third example gives you how many times 2 goes into 7. The next
example gives you the remainder when you divide 7 by 2, using the %
operator called modulus; the result is 1 because you get the remainder
1 when you divide 7 by 2. Finally, you get 3.5 when you divide 7.0 by
2.0, because Swift knows that you’re dividing a Double with a Double.
The result is a Double: 3.5.

Advanced math in the playground
NOTE You can find the code for this application in the Chapter03_Ex6.play-
ground file inside the Hello-Swift-Code-master folder that you downloaded
from GitHub. If you haven’t downloaded the code from GitHub, go to:

Power

53 = 125, because 5x5x5=125

24 = 16, because 2x2x2x2=16

How many times to use the number in
multiplication to get the answer

pow(5.0, 3.0)
pow(2.0, 4.0)

Modulus

25 mod 4 = 1,
because remainder of 25 / 4 is 1

15 mod 3 = 0,
because remainder of 15 / 3 is 0

The remainder of a division problem 25 % 4
15 % 3

Table 3.3 Some advanced math operators in Swift (continued)

Math operator and
how it works Explanation Swift code

Prints Square root of 9 is: 3.0

Prints 3 to the
power of 3 is: 27.0

Prints Without the
 decimal, 7 / 2 is: 3

Prints The
remainder being: 1

Prints With the
decimal,
7.0 / 2.0 is: 3.5

Math Operation Theater 71
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You
should download the code only once for all chapters.

The code in this playground lets you try out these operations, some of
which you’ll use in your apps soon.

Open a new playground, and copy the following lines into it:

var squareRootOf9 = sqrt(9.0)
var power5to3 = pow(5.0, 3.0)
print("5 + 5 = \(5 + 5)")
print("5 - 5 = \(5 - 5)")
print("5 X 5 = \(5 * 5)")
print("5 / 5 = \(5 / 5)")
print("SQUARE ROOT of 9 = \(squareRootOf9)")
print("5 to the POWER of 3 = \(power5to3)")
print("5 MODULUS 3 = \(5 % 3)")

You’ll see a lot of output pop up on the side, as shown in figure 3.8.

Figure 3.8 Advanced math in the playground

With this chapter, you’ve completed your third milestone: learning
about variables and doing math. You’re about to leave the playground
level and move to coding apps.

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

72 CHAPTER 3 Your first real Swift code using variables
Check your app knowledge
Try the following:

1 What are variables?

2 What is putting two strings together called?

3 Why is a variable called a variable?

4 What does data conversion mean?

5 Why might you need to convert data?

6 Write code to declare variables that hold these pieces of data:

"That pizza was so good!"
17
2.23
"15.49"

7 What is the output of the following commands? (Hint: some of them
won’t work. Can you figure out what’s causing the errors?)

print("\("moon" + "light")")
print("\(25 % 4)")
print("\("Squarepants"-"pants")")
print("\(2 + 3 * 4)")
print("\("fifty" + 5)")
print("\("fifty" + "5")")

8 Assume that you have two variables of type String, var1 and var2,
with the values "13" and "25", respectively. Write the code to print
the following, using only the two variables and print(). The sum
should be calculated inside the print().

13+25=38

9 Assume that you have two variables of type String, var3 and var4,
with the values "15" and "4", respectively. Write the code to print the
following, using only the two variables and print(). The remainder
should be calculated inside the print().

If you divide 15 by 4, you get a remainder of 3.

4
1

3

5

4

6

14

8

7 9

N A Journey

2

12

13

10

11

I/O laboratory

Now we’re going to learn how to
make your users and your apps
communicate with each other.

This chapter covers

• Input: how your users communicate with your apps
• Output: how your app communicates with your users
• How to get input from a text field and show it as output
• What to do when things go wrong
73

74 CHAPTER 4 I/O laboratory
You’ve learned how to set up an app. Now that you know the basics,
you can create apps that produce output in response to the input your
users give them. In this chapter, you focus on input and output. And
because you’re going to be adding code to an app, now is a great time
to learn how to fix your apps when you make mistakes and break rules.

When you’re done creating apps in this chapter, you’ll know how to get
input from your user and display that input on the screen. Lots of steps
are involved, so you’ll build your app in chunks. Along the way, I’m
going to show you what errors look like on purpose. Don’t worry—I’ll
show you how to fix these errors. Here’s what your path looks like:

1 Build an app that outputs text.
2 Run the app, and see an error.
3 Fix the error.
4 Add a text field.
5 Add code that lets your user input some text.
6 Display the input as output.

That’s a lot of pieces, but they’re all easy.

How apps and users interact
Every day, computers help us do lots of things, such as browsing the
web, responding to email, reminding us of appointments, interacting
with friends, and playing games. Each of these tasks begins when
someone presses a key, taps a screen, clicks a mouse button, types on
the keyboard, or in some way tells the computer to do something.
These actions are called input.

After getting input, the computer starts processing and then shows you
the result, plays a song, prints a document, or sends an email. The com-
puter’s response to your input is called output. Figure 4.1 describes this
process.

Computers also have some built-in parts, or devices attached to them,
that help them get input from users and give the users output. A mouse,

Warning!
Bumpy Road

Ahead

!

How users get output 75
for example, is an input device; so are keyboards, cameras, and micro-
phones. For output devices, think of printers, monitors, and speakers.
Some devices can be both input and output devices. A touchscreen, for
example, is both an input and an output device.

How users get output
NOTE You can find the code for this application in the Chapter04_Message-
Magic file inside the Hello-Swift-Code-master folder that you downloaded
from GitHub. If you haven’t downloaded the code from GitHub, go to: https://
github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You should
download the code only once for all chapters.

Output is produced by the code in your app. You’re about to start
building apps that give users output, which means that you’ll be chang-
ing and adding code.

In this section, you’re going to build an app that gives the user output,
and you’ll name this app Message Magic.

Start with Hello World!
You’re going to start where you left off with the Hello World! app you
created in chapter 1 and add some code to it.

If you don’t remember how you built Hello World!, take a few minutes
to reread the instructions, and build it again from scratch—only this
time, change the label’s text to Message Magic and the name of the app
to Message Magic.

Input Output
Processing

Figure 4.1 A computer takes input, does
the processing, and gives output.

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

76 CHAPTER 4 I/O laboratory
Why do I have to build Hello World! over again?

Sometimes, the best way to learn a skill is to use it again. Practice
makes perfect! Do you remember all the boring but important steps
you had to go through to set up a new app? You probably remember
more than you think you do. This task is a good chance for you to get
some extra practice going through the setup steps for new apps.
Here’s a little cheat sheet for you, and if you’ve forgotten, all the steps
are in chapter 1.

Here’s a quick reminder of the steps you need to take to get
started:

1 Create a new project.
2 Choose the project options.
3 Save the project.

Add a variable to hold the label
Here’s where you change your Message Magic app by customizing a
few things on the main screen.

Right now, when you start the app, you see the label Message Magic.
You want the screen to display a new message: Hey, Frank! Although
you could change the label to say Hey, Frank!, you want to be able to
change the label in your code.

To make Hey, Frank! show up, you need to add two lines of code to
one of your app’s files.

OPEN THE VIEW CONTROLLER

In Xcode, with your app open, click the file named ViewCon-
troller.swift, as you see in figure 4.2. You’ll see a bunch of code. Don’t
panic! You’re only going to add two lines.

4 Open the main storyboard.
5 Change the screen size.
6 Drag a label to the view.

How users get output 77
ADD CODE FOR THE LABEL

You’ll be adding the following two lines of code. Take a look; then I’ll
tell you where to put them. You’re creating a variable where you can
store the text that you want your label to display:

@IBOutlet var outputLabel: UILabel!

outputLabel.text = “Hey, Frank!”

The first line declares a vari-
able called outputLabel of type
UILabel. Think of UILabel as
meaning user interface label.
The exclamation point (!) tells
Swift that the label’s value
isn’t yet known. @IBOutlet is a
keyword that helps link con-
trols from the interface builder
to the code you’ll write. IBOut-
let stands for interface builder outlet. Figure 4.3 shows the relation-
ship between controls and the code through IBOutlets.

The second line sets the text stored in the new variable outputLabel to
Hey, Frank!

Figure 4.2 This file is listed in the pane
on the left side of Xcode in the Project
Navigator. After you click it, you see
code in the main panel. That panel is
where you’ll add new code.

Declaring the outputLabel
IBOutlet of type UILabel

Storing Hey, Frank! in the text
of the variable outputLabel

Control Code
IBOutlet

Figure 4.3 Controls must be linked to the
code through IBOutlets so you can use
the code to make the label control’s text
change. UILabel is a control. UIButton,
UITextField, and UITextView are also
controls.

78 CHAPTER 4 I/O laboratory
EDIT THE VIEWCONTROLLER.SWIFT FILE

You should see this code:

//
// ViewController.swift
// MessageMagic
//
// Created by Tanmay Bakshi on 2/13/15.
// Copyright (c) 2015 TBSS. All rights reserved.
//
import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically

 ➥ from a nib.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
}

Find this line of code, and put your cursor after the opening curly
brace:

class ViewController: UIViewController {

Press the Return key twice, and type this code on a blank line:

@IBOutlet var outputLabel: UILabel!

You have one more line to add to the code. Find the end of this line:

super.viewDidLoad()

Press the Return key one time and type this line in the blank space you
created:

outputLabel.text = “Hey, Frank!”

Now your code, with the two lines added, should look like that in list-
ing 4.1.

How users get output 79
Listing 4.1 Message Magic code with outputLabel

import UIKit

class ViewController: UIViewController {

 @IBOutlet var outputLabel: UILabel!

 override func viewDidLoad() {
 super.viewDidLoad()
 outputLabel.text = "Hey, Frank!"
 // Do any additional setup after

 ➥ loading the view, typically from a nib.
 }
 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

}

WARNING If you were to run the app at this point, you’d get an exception. An
exception happens when something wrong in your program causes it to break
when it’s running.

What is an exception, and how is it different from an error?

An exception is a crash in your program caused by a mistake
that can be found only during runtime (when your app is
running). If your code has an error, you can’t run your app if
the error is still there. In the case of an exception, you can still
run your app, but it will stop as that line of code is run and the
exception occurs.

An error is some mistake in the code: a misspelled word, a missing
bracket, or some other kind of typographical error. Errors can also be
mistakes, such as declaring variables incorrectly or assigning an integer
value to a variable that’s been declared as being of the String type.

The first line of
code is inserted here.

The second line of
code is inserted here.

80 CHAPTER 4 I/O laboratory
WHEN YOU RUN THIS CODE, YOU’LL GET AN EXCEPTION,
BUT YOU’RE GOING TO FIX IT

That’s it for the code, but you’re not done yet. If you try to run the pro-
gram, you’ll get an exception that looks like figure 4.4. When you get this
exception, your app freezes on the simulator or device, and a green line
appears on a line of code. This green line is where the code stopped, but
the line sometimes doesn’t tell you exactly where the mistake is.

You also see an error message in the bottom-right corner of your
screen: Swift compiler: fatal error: unexpectedly found nil while unwrap-
ping an Optional value (lldb)

The exception happened because you don’t have anything inside the
outputLabel variable and you are trying to set its text to "Hey, Frank!".
You’re trying to tell a label control to change its text, but you haven’t
connected your code with the actual control. You can get rid of this
exception after you connect your label control with your IBOutlet.

What’s a compiler?

A compiler is a behind-the-scenes “miracle” program that translates
the code that you write in English into code called machine language
or binary that your computer understands.

Figure 4.4 The excep-
tion you receive when
you run Message Magic
for the first time

How users get output 81
Connect your label variable to a label in the view
To fix the exception, you must connect the label control to the outlet,
IBOutlet, to give outputLabel a text value.

OPEN THE MAIN STORYBOARD

Open Main.storyboard by clicking it (refer to figure 4.2).

CONNECT THE LABEL AND THE VARIABLE

Right-click and drag from the yellow icon (View Controller) to the
label, as shown in figure 4.5. This step draws a temporary blue line
from the View Controller to the label with the text Message Magic.

Figure 4.5 Connect the UILabel to the IBOutlet. Right-click and drag to
connect your Label to IBOutlet.

Right click and

drag from here...

...to here!

82 CHAPTER 4 I/O laboratory
A dark list pops up, and the blue line disap-
pears when you release the mouse button. This
dark list shows you the outputLabel variable
you created (figure 4.6).

Click outputLabel, which is the first option in
the list.

RUN THE APP; THE EXCEPTION SHOULD BE GONE

Now when you run your app (you shouldn’t get
an error or exception), you see the text you
stored in the variable show up as the label text.
The label text Message Magic is replaced by
the text in your variable, as shown in figure 4.7.

The Interface Builder
When you created this app, you set the text of
the label to say Message Magic. What happened
to it? Why is it showing Hey, Frank!?

Message Magic has been replaced because the
code you added is executed after the Interface
Builder, as shown in figure 4.8.

Figure 4.8 The sequence of the execution
of IB (Interface Builder) and code is controlled
by Xcode priority levels. The IB is executed
first. Your code is executed after the IB loads,
so, if you make a change in your code to a
control that was already in the IB, that
change is overridden by your code.

Figure 4.6 Select outputLabel
as the IBOutlet to connect to.
Remember outputLabel? You
added this variable to the
ViewController.swift file.

Figure 4.7 The main screen

Code (ViewController
and Custom Classes)

2.

1. Interface
Builder

Users give apps input 83
TIP You put your code in a function called viewDidLoad(). When you run the
app and the view loads, whatever code is inside that function will execute.

Now your app is able to change the text of a label to the text you saved
in a variable in the code. This capability is useful if you want to change
the label’s text while the app is running, but it’s not so useful if you
need user input for the label’s text. To solve this problem, change the
app to let your users type words, and then use those entries to change
the label’s text.

Users give apps input
Input is some data or response that the user gives an app so that the
app can perform a task or work on that data. Table 4.1 shows some
examples.

You should be able to think of lots more examples. Look at your favorite
apps, and notice what kind of input they ask you for when you use them.

If you want your users to be able to enter text as input, you need to
give them a place to type (a text box) and a button to click when
they’re done, so you’ll know when to grab their input text.

To see how this process works, you’ll modify Message Magic to create
Catch & Throw: an app that catches the user’s input and throws it back
at him.

Table 4.1 App and input examples

App Input

Calculator Numbers and operators, such as +, -, x, and ÷

Notes Text to store

Greeting Generator Your name

Health Your age and weight

Timer Time to count down from

84 CHAPTER 4 I/O laboratory
NOTE You can find the code for this application in the Chapter04_Catch-
Throw file inside the Hello-Swift-Code-master folder that you downloaded
from GitHub. If you haven’t downloaded the code from GitHub, go to: https://
github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You should
download the code only once for all chapters.

In the next few sections, you learn how to

 Add a text field to an app so that the user can type some text.
 Add a button, that when clicked, tells the app to grab what the user

typed in the text field.
 Link the new text field to the code.
 Add a function to grab the text input from the text field and display

it as the label’s text when the button is clicked.

Add a text field and button to the app
You need to add a text field so that your users can give you input.

OPEN THE MAIN STORYBOARD

Open Main.storyboard by clicking it (refer to figure 4.2).

ADD A TEXT FIELD AND BUTTON

Find and click the Object Library in the
bottom-right pane, as shown in figure 4.9.
Scroll down until you find Text Field;
then click and drag a text field to the view
in the main storyboard.

Find Button, then click and drag a button
to the view in the main storyboard.

Figure 4.9 Getting a text field
from the Object Explorer

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

Users give apps input 85
Add code to connect the text field to code
In this section, you add a line to your code.

CREATE AN IBOUTLET

First, you create a variable (an IBOutlet) that stores what the user types
in the text field. This variable should look familiar:

@IBOutlet var userInput: UITextField!

Edit your ViewController.swift file so that it looks like this:

Listing 4.2 The code to add the userInput text field

import UIKit

@IBOutlet var outputLabel: UILabel! //You added this earlier for
 ➥ your label.
@IBOutlet var userInput: UITextField!
//This is what you'll link to

➥ the text field.

 override func view DidLoad() {
 super.viewDidLoad()
 outputLabel.text = "Hey, Frank!" //added 4.1 -- This is what

➥ the Label will say before you change it to what the user types.
 // Do any additional setup after loading the view, typically

 ➥ from a nib.
 }

override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be re-created.
 }
}

This line declares an IBOutlet called userInput of
type UITextField. Think of UITextField as standing

for user interface text field. The exclamation point
tells Swift that the value isn’t yet known.

class ViewController: UIViewController {

86 CHAPTER 4 I/O laboratory
Don’t I have to add an @IBOutlet line for the button?

Great question. The button doesn’t need to store anything as a vari-
able, so you don’t need to create one for it. You do need to add a func-
tion and connect the button to it, but you’re not there quite yet.

CONNECT THE IBOUTLET TO THE CODE

To finish setting up the text field, you need to connect it to the code
you’ve already added, as follows:

1 Click the Main.storyboard file to open the main storyboard.

2 Control-click the yellow circle (View Controller), drag to the text
field, and then release the mouse button.

3 Choose userInput from the dark menu.

Now the text field has the name userInput
and is connected to your code. Figure 4.10
shows you how this connection will look in
your app and in your code.

Figure 4.10 Connecting the TextField to its IBOutlet

Users give apps input 87
Before you can use the Text Field to grab input from the user, the Text
Field control needs to be linked to the code. To do this, give your con-
trols names that you can use in your code to call them.

Add the function to change the label text to input text
You’re ready for the last bit of code you need to change. Add a function
that says, “When someone clicks the button, change the text of the
label to whatever is in the text field.”

You’ll be adding only the little bit of code that’s shaded gray in listing
4.3. Ready?

Listing 4.3 Implementing the UIButton

import UIKit

 @IBOutlet var outputLabel: UILabel! //added 4.1
 @IBOutlet var userInput: UITextField! //

 override func viewDidLoad() {
 super.viewDidLoad()
 outputLabel.text = "Hey, Frank!"
 // Do any additional setup after loading the view, typically

 ➥ from a nib.
 }

 @IBAction func displayToLabel() {
 outputLabel.text = userInput.text
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

}

In this code, you declared the IBAction with the @IBAction tag and then
the keyword func. @IBAction says you want to create an action for a

This is what you'll

link to the text field.

class ViewController: UIViewController {

88 CHAPTER 4 I/O laboratory
button, and the func part tells Swift that you’re creating a function.
After the opening brace, you’re telling Swift that the code you’ll type in
will be executed by a button click; in other words, this opening brace
indicates the start of the function code. The closing brace tells Swift
that you’re no longer typing code for that button; in other words, this
closing brace is the end of the function code. (You learn more about
functions in chapter 8.) The displayToLabel() part is the name of the
function. This name is what you use to access it in the IB (like the
name of the IBOutlet).

NOTE To connect the IBAction to a button, you right-click and drag from
the button to the View Controller, not the other way around, as you do for
IBOutlets.

To connect your button to the function
you’ve added, do the following:

1 Click the Main.storyboard file to open the
main storyboard.

2 Control-click the button, and drag up to
the yellow circle (View Controller).

3 Choose displayToLabel from the dark
menu, as shown in figure 4.11.

Figure 4.11 Selecting which IBAction
to link the button to

Users give apps input 89
Can I make the button say something other than “Button”?

Sure. Double-click it and then type what you want it to say—
maybe something like Change Text.

When you’re done with all that, you’re
ready to run your app; the results should
look like figure 4.12.

You may wonder how your app knew
when to get the text from the text field.
This is where an IBAction (Interface
Builder Action) kicks in, as shown in fig-
ure 4.13. An IBAction handles Button
Click actions. Button Click actions are
special functions that can be linked to a
button in the IB. The IB recognizes the
IBAction and allows you to link it to a but-
ton so that the button performs the code
in the function whenever it’s clicked.

Figure 4.13 Buttons and other controls must be linked to the code.

Figure 4.12 Running the
Catch & Throw app

Control

Button

Code

IBOutlet

IBAction

IBOutlet

90 CHAPTER 4 I/O laboratory
Check your app knowledge
1 Fill in the blanks in the following sentences:

A A(n) _________ connects controls from the Interface Builder to
the ViewController.

B. A(n) _________ allows the code to receive actions from buttons.

C. A(n) _________ occurs when the code breaks unexpectedly dur-
ing runtime; this couldn’t have been caught during compilation.

2 What’s the difference between input and output? What’s the differ-
ence between input devices and output devices? What are some
devices that can take input and give output?

3 What is an IBOutlet, and what is an IBAction?

4 What’s the difference between linking a button with an IBAction and
linking a control with an IBOutlet?

5 What is an error, and what is an exception?

6 What’s wrong with the following code?

class ViewController: UIViewController {

@IBOutlet var textField: UITextField

override func viewDidLoad() {
super.viewDidLoad()
}

}

7 Why don’t you need IBOutlets for UIButtons?

App-Activity: Concatenate
It’s time for the Concatenate app-activity! You’re going to build an app
dedicated to concatenating and adding user input.

What does this app do?
NOTE You can find the code for this application in the Chapter04_App-
Activity file inside the Hello-Swift-Code-master folder that you downloaded

App-Exercise: Greeting Generator 91
from GitHub. If you haven’t downloaded the code from GitHub, go to: https://
github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You should
download the code only once for all chapters.

This app has two text fields in which the user can enter two words or
two numbers. If the user clicks the Concatenate button, the app should
concatenate the numbers or words and display them in the label Output
Comes Here. For concatenation to happen, the user can input any alpha-
betic characters or numbers. If the user enters 5 and Stars, for example,
the label should display 5Stars. But if the user clicks the Add button,
the app should add the numbers and display the result in the label. For
the Add button to function, the user should input digits only.

Create the UI
In this app-activity, you create an
app with the UI (user interface;
remember?) shown in figure 4.14.

You can customize this UI to look
the way you want.

Code the app
If you’re wondering where the code
is, it isn’t here! This problem is a
challenge for you to complete. Try
your best to create the code. If you
have trouble, you can refer to or
copy the code you just downloaded
for this app.

App-Exercise:
Greeting Generator

Now it’s time for the Greeting Gen-
erator app-exercise! You’re going to
build an app dedicated to greeting
people.

Figure 4.14 The UI you need
to make

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

92 CHAPTER 4 I/O laboratory
What does this app do?
NOTE You can find the code for this application in the Chapter04_Greeting-
Generator file inside the Hello-Swift-Code-master folder that you down-
loaded from GitHub. If you haven’t downloaded the code from GitHub,go
to: https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You
should download it only once for all chapters.

In the Greeting Generator, you type a name
(input), and when you click a button, the
app displays a greeting addressed to the
name you typed. That is, your app takes
input, has a button, and provides output.

Create the UI
Let’s start! Create a new app, and make a
UI that looks like figure 4.15.

Figure 4.15 Greeting Generator UI

Code the app
Now go to your code, and make it look like this:

Listing 4.4 Greeting Generator code

import UIKit

class ViewController: UIViewController {

 @IBOutlet var input: UITextField!

The IBOutlet for the input
text field, in which the
user provides input

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

App-Exercise: Greeting Generator 93
 @IBOutlet var output: UILabel!

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading

 ➥ the view, typically from a nib.
 }

 @IBAction func displayGreeting() {

 output.text = "Hi, \(input.text)”
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be re-created.
 }
}

CONNECT IBOUTLETS AND IBACTIONS

Now go to your Interface Builder and
connect your label to the output IBOutlet
and your text field to the input IBOutlet.
After that, connect your button to the dis-
playGreeting IBAction.

Run the app
Done! Run your app. You should see out-
put similar to figure 4.16 after entering a
name in the text field and clicking the but-
ton.

In chapter 5, the computer decides what
to and what not to do.

Figure 4.16 The Greeting Generator app in action!

The IBOutlet for the output
label, in which the application
provides output to the user

The declaration of the
displayGreeting IBAction—
the code that will be called when
the user clicks the button

This line of code sets the
output label’s text to Hi and
then whatever the user put
in the input textf ield.

5
1

3

5

4

6

14

8

7 9

N A Journey

2

12

13

10

11

Computers make decisions,
too!

This chapter is all about how to
write code that makes decisions.

This chapter covers

• What conditions are
• How to use conditions to make decisions in programming
• How to use a basic if statement in condition checking
• How to use the else and else if

clauses with the if statement
• What the basic conditional

operators are
• What the switch

statement is and how to
use it
94

Conditions with the if statement 95
You’re all set to cover your fifth milestone: Computers make decisions,
too! You make decisions all the time. You decide to do something
depending on some bit of information in life. If it’s raining, for example,
you use an umbrella. You make the decision to carry an umbrella based
on whether or not it’s raining.

Your code needs to make decisions, too. Imagine an app that can tell you
whether you need an umbrella. This app checks to see whether it’s rain-
ing. If so, the app outputs the information that you need an umbrella.

Conditions with the if statement
Think of a condition as a question that can have only a true or false
answer. If the answer, or result, of the condition is true, you do some-
thing. You use conditions all the time without even noticing. Table 5.1
shows some examples of simple conditions.

Pop quiz

Try to come up with some missing conditions and results:

Table 5.1 Examples of simple conditions

Condition Result

If the weather is cold = TRUE Wear a coat.

If I am thirsty = TRUE Drink something.

If I am sick = TRUE Don’t go to school.

Condition Result

If _________________________ = TRUE Put on pajamas.

If my hair is too long = TRUE _____________________.

If ________________________ = TRUE Study all evening.

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

96 CHAPTER 5 Computers make decisions, too!
IF THIS IS TRUE, DO SOMETHING

Your code can also use conditions to figure out whether it needs to do
something. Using an if statement, your code can

 Check whether a user answered correctly in a math game and then
give him a point.

 Check whether a user entered the correct password and then let her
play the game.

Here are a few more examples of conditions you might use in code:

 If your number of coins is greater than 150, you get a powerup.
 If your score is more than 90 percent, your grade is A+.
 If your score is less than 50 percent, you have the option of a retest.

Until now, the conditions you’ve seen in this book are mostly of the
type “if this equals something.” The conditions I’m going to show you
are different. They’re math comparisons, such as > (greater than) and <
(less than).

App: Which Number Is Bigger?
Now that you know how if statements let you make decisions, you’re
ready to learn how apps can use them.

Here’s a quick reminder of the steps you need to take to get
started:

1 Create a new project.
2 Choose the project options.
3 Save the project.

What does this app do?
You’re about to create an app that takes two numbers and tests this
condition: which number is bigger?

NOTE You can find the code for this application in the Chapter05_a1-
_WhichNumberIsBigger file inside the Hello-Swift-Code-master folder that
you downloaded from GitHub. If you haven’t downloaded the code from

4 Open the main storyboard.
5 Change the screen size.
6 Drag a label to the view.

App: Which Number Is Bigger? 97
GitHub, go to: https://github.com/tanmayb123/Hello-Swift-Code/archive/
master.zip. You should download the code only once for all chapters.

The Which Number Is Bigger? app will do the following:

 Get two numbers as input.
 Use an if statement with a condition that compares the numbers.
 Display whichever number is bigger.

The user interface (UI) looks like figure 5.1.

Figure 5.1 Overview of UI for the Which Number Is Bigger? app

Set up the project
To start, create a project:

1 Go to Xcode.

2 Click Create a New Xcode Project.

3 Fill out the info.

The textfield in which the user

enters the first number

The textfield in which the user

enters the second number

The button that the user clicks

to sort the number

The label that gives the sorted

output to the user

Which number is bigger?

Result will be shown here

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

98 CHAPTER 5 Computers make decisions, too!
Create the UI
Next, make a UI that looks like the one in figure 5.2. Drag two text
fields, a label, and a button to the view. (Check out chapter 4 if you’ve
forgotten how.) The details for each control are in figure 5.2.

Code the app
Now you have to create the IBOutlets, which
allow controls such as text fields to have
names your code can use, to access the val-
ues your users will enter in them. You also
have to create the IBActions, which let you
connect controls such as buttons to the code
to be executed when they’re clicked.

Figure 5.3 shows you how your app will look
when it’s done if you use the numbers 8 and
6 as inputs.

Figure 5.3 Your completed app and output
 if you use the numbers 8 and 6 as inputs

Type: TextField, IBOutlet:

number 1, Text: Nothing

Type: TextField, IBOutlet:

number 2, Text: Nothing

Type: Button, IBAction:

btnSortClicked(), Text: As Shown

Type: Label, IBOutlet:

outputLabel, Text: As Shown

Which number is bigger?

Result will be shown here

Figure 5.2 The Which Number is
Bigger? App’s UI elements

Which number is bigger?

8 is greater then 6

App: Which Number Is Bigger? 99
Open the ViewController.swift file, which is where you’ll add your
code. You may remember from chapter 4 where to put the IBOutlets
and IBActions, but in case you don’t, I’ve put them in listing 5.1 so that
you can check your work.

Here’s the code you need to add to create IBOutlets:

@IBOutlet var number1: UITextField!
@IBOutlet var number2: UITextField!
@IBOutlet var outputLabel: UILabel!

And here’s how to create IBActions:

@IBAction func btnSortClicked() {
 if Int(number1.text!)! > Int(number2.text!)! {
 outputLabel.text = "\(number1.text!) is greater than

 ➥ \(number2.text!)"
 }
}

Take a close look at the code. See this?

Int(number1.text!)!

Here’s what’s going on. First, the variable name tells the code that you
want to know what’s in the UITextField you named number1. The .text
part says you want to know what text the user entered into the UIText-
Field. If you were simply displaying the text, you could stop here. But
you’re going to use a math comparison, so you have to turn the text
into an actual number: an integer. That’s what the Int()! part around
number1.text! does.

Check out listing 5.1 to see where you need to put this code. You
should add all the text that’s highlighted. Everything that isn’t high-
lighted is already there when you create a project.

This line creates a variable, number1,
that holds the number your user
enters in the top text field.

This line creates the variable
named number2 that holds the
number in the bottom text field.

Can you guess what this variable
does? You’ll find out soon!

Here’s the condition
“Is number1 greater

than number2?”

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

100 CHAPTER 5 Computers make decisions, too!
Listing 5.1 Which Number Is Bigger? app, version 1

import UIKit

class ViewController: UIViewController {
 @IBOutlet var number1: UITextField!
 @IBOutlet var number2: UITextField!
 @IBOutlet var outputLabel: UILabel!

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view,

 ➥ typically, from a nib.
 }

 @IBAction func btnSortClicked() {
 if Int(number1.text!)! > Int(number2.text!)! {
 outputLabel.text = "\(number1.text!) is greater than
 ➥ \(number2.text!)"
 }
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be re-created.
 }

}

Connect IBOutlets to controls and IBActions to buttons
Before you go any further, you need to connect the TextFields, Label,
and Button to the code you added. You need to make the following con-
nections:

 Connect IBOutlet number1 to your first TextField.
 Connect IBOutlet number2 to the second TextField.
 Connect IBOutlet outputLabel to the Label.
 Connect the button to the btnSortClicked IBAction.

 Add the IBOutlet statements,
one for each UI element. Remember
that these statements give
variable names to the labels and
text fields so that you can access
them in your code.

This IBAction is linked to the Which Number Is
Bigger? button. When that button is clicked, the

code compares the number in the top box with
the number in the bottom box and then displays

the result in the label below the bottom box.

App: Which Number Is Bigger? 101
If you forgot how to connect IBOutlets to controls, here are the steps:

1 Open the Main.storyboard file.

2 Right-click and drag from the View Controller button at the top of
the view to your control.

3 Select the name of the IBOutlet you want to connect it to.

And here’s how to link your buttons to your IBActions:

1 Go to your Main.storyboard file.

2 Right-click and drag from the button you made to the View Control-
ler button.

3 Select the name of the IBAction you want to connect to (in this case,
btnSortClicked).

4 Learn how the code works.

5 Suppose that you try the app by entering the numbers 8 and 6. What
does the code do?

First, take a close look at the if statement in the code (figure 5.4).

Figure 5.4 The parts of an if statement

The if statement is checking whether the first number (number1) is
greater than the second number (number2). If so, the code changes the
output label’s text to 8 is greater than 6. (You entered 8 in the first
TextField and 6 in the second TextField.) The Int(number1.text!)! part
gets text that the user gave you in the TextField (number1.text!) and
converts it to an integer (Int()!).

if statement starting condition block beginning

block end

if Int(number1.text!)! > Int(number2.text!)! {

}

102 CHAPTER 5 Computers make decisions, too!
You do this to compare the numeric value of number1 with the numeric
value of number2. A similar operation is done on the string value the user
entered in the second TextField.

NOTE Notice the opening and closing braces—{ and }—after the condition.
The code inside these braces is called a block of code. This block of code that
follows your condition is like saying “If the condition is true, do the stuff in the
braces.”

This example uses the greater-than operator. Table 5.2 lists some more
conditional operators that you can use in if statements. Many more
conditional operators are available, and you learn them a little later in
your journey of learning Swift.

Table 5.2 Conditional operators

Symbol Used For

== Checks whether values are equal to each other (not to be confused with =, which
means to set a value of a variable)

Example: if num1 == num2

!= Checks whether values aren’t equal to each other (not to be confused with !,
which means to unwrap an Optional; the ! here means not)

Example: if num1 != num2

< Checks whether the first value is less than the other

Example: if num1 < num2

> Checks whether the first value is greater than the other

Example: if num1 > num2

<= Checks whether the first value is less than or equal to the other

Example: if num1 <= num2

>= Checks whether the first value is greater than or equal to the other

Example: if num1 >= num2

Note that there are no spaces between the two operators in ==, <=, and >=.

App: Which Number Is Bigger? 103
Pop quiz

Figure out whether these conditions are true or false:

 23 == 23
 10 >= 11
 2 <= 2
 -9 == 9

Run the app
Right now, if you were to run the app, you’d
see the two TextFields waiting for you to
enter numbers in them, as shown in figure
5.5. Enter 8 in the first and 6 in the second;
then click the Which Number Is Bigger?
button. Did that work?

Yay—it works!

Now, for fun, try to break it. Can you guess
which of these pairs of values entered in
your app will break it and which won’t?
Why?

First number Second number

8 six

10 -10

2+ 8

Dog cat

1000 .10

Which number is bigger?

8 is greater then 6

Figure 5.5 Which Number
Is Bigger? app, trial 1

104 CHAPTER 5 Computers make decisions, too!
What if I put 8 in both the TextFields?

Remember: Don’t enter anything that’s not a number in TextFields.
You shouldn’t enter eight or six, or any other alphabetical character,
because the code isn’t capable of handling anything that’s not a num-
ber except the minus (–) sign for negative numbers. You may enter a
plus sign (+) for positive numbers. Also, take care that you never enter
a space between the – symbol and a negative number. If you want to
enter negative 8, type -8, not - 8. If you do the latter, the app will
crash.

NOTE If the app crashes, you can restart it by going to Xcode, pressing Com-
mand-R, and then pressing Return (or clicking Stop).

OH, NO—A GLITCH!

But wait—what if the second number is equal to the first? Your app
can’t handle that situation yet! At present, if you put 8 in both Text-
Fields, you won’t get any message, Can you guess why? It’s time to
issue a patch for this glitch.

This glitch is frustrating, but that’s good!

Think of the glitches you encounter as being . . . well, your friends. Don’t get bogged
down when you have troubles while programming. Each time you fix a glitch, you’re
learning, and the next time you see the same one, you’ll fix it a lot faster. You’ll be-
come capable of solving more problems this way.

NOTE A patch is something that fixes a glitch in your code or an app.

PATCH THAT GLITCH!

To catch whether the first number is equal to the second, use an else
clause. (If you’re intrigued by what a clause is, it’s part of a statement.)
This else clause executes if the if condition is false.

NOTE You can find the code for this application in the Chapter05_a2
_WhichNumberIsBigger file inside the Hello-Swift-Code-master folder that

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

App: Which Number Is Bigger? 105
you downloaded from GitHub. If you haven’t downloaded the code from
GitHub, go to: https://github.com/tanmayb123/Hello-Swift-Code/archive/
master.zip. You should download the code only once for all chapters.

Here’s what the patch will do:

if number1 > number2
 display – number1 is bigger than number2
else
 display – number1 is equal to number2

After your if statement, type this:

else {
 outputLabel.text = “\(number1.text!) is equal to \(number2.text!)”
}

Done! Your IBAction should look like this:

 @IBAction func btnSortClicked() {
 if Int(number1.text!)! > Int(number2.text!)! {
 outputLabel.text = "\(number1.text!) is greater than

 ➥ \(number2.text!)"
 } else {
 outputLabel.text = "\(number1.text!) is equal to

 ➥ \(number2.text!)"
 }
 }

Here’s what’s going on: if the condition in the if statement (number 1 >
number 2) turns out to be true, the block of code in the first set of curly
braces executes and shows you the message:

8 is bigger than 6

There’s nothing new here, but if the condition is false because the first
number is equal to the second number, the block of code in the else
clause executes. This situation happens if you put 8 in the first Text-
Field and 8 in the second TextField. The else clause puts 8 is equal to 8
in the label called outputLabel.

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

106 CHAPTER 5 Computers make decisions, too!
Run the app again!

Run the app to see whether your patch worked. Good news; it worked!
Now continue testing to make the code better. This time, try putting 6
in the first TextField and 8 in the second one. What happened?

OH, NO—A GLITCH AGAIN!

Another problem: what if the second number is bigger? If you test the
app now by entering 6 in the first TextField and 8 in the second, and
then clicking the button, the app displays 6 is equal to 8. The code
can’t handle this situation because the else statement executes when-
ever the if statement fails to execute for any reason. It’s time to issue
another patch!

PATCH THAT GLITCH!

This time, you use the else if clause. Here’s what you’re going to do in
Englishy code:

if number1 > number2
 display – number1 is bigger than number2
else if number1 < number2
 display – number1 is smaller than number2
else
 display – number1 is equal to number2

NOTE This plain-English code isn’t really called Englishy; it’s known in the
programming world as pseudocode. Pseudocode isn’t actual code; it explains
what the code does.

The else if clause executes if the if statement fails and its own condi-
tion is true.

NOTE You can find code for this application in the Chapter05_a3_Which-
NumberIsBigger file inside the Hello-Swift-Code-master folder that you
downloaded from GitHub. If you haven’t downloaded the code from GitHub,
go to: https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip.
You should download the code only once for all chapters.

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

App: Which Number Is Bigger? 107
Now make your code look like this.

@IBAction func btnSortClicked() {
 if Int(number1.text!)! > Int(number2.text!)! {
 outputLabel.text = "\(number1.text!) is greater than

 ➥ \(number2.text!)"
 } else if Int(number1.text!)! < Int(number2.text!)! {
 outputLabel.text = “\(number1.text!) is smaller than

 ➥ \(number2.text!)”
 } else {
 outputLabel.text = "\(number1.text!) is equal to

 ➥ \(number2.text!)"
 }
}

After your if statement and before your else statement, type

else if Int(number1.text!)! < Int(number2.text!)! {
 outputLabel.text = “\(number1.text!) is smaller than

\(number2.text!)”
}

Your bug-free code should look like this:

Listing 5.2 The code for the Which Number Is Bigger? app, version 2

import UIKit

class ViewController: UIViewController {
 @IBOutlet var number1: UITextField!
 @IBOutlet var number2: UITextField!
 @IBOutlet var outputLabel: UILabel!

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically

 ➥ from a nib.
 }

 @IBAction func btnSortClicked() {
 if Int(number1.text!)! > Int(number2.text!)! {
 outputLabel.text = "\(number1.text!) is greater than

 ➥ \(number2.text!)"

108 CHAPTER 5 Computers make decisions, too!
 } else if Int(number1.text!)! < Int(number2.text!)! {
 outputLabel.text = "\(number1.text!) is smaller than

 ➥ \(number2.text!)"
 } else {
 outputLabel.text = "\(number1.text!) is equal to

 ➥ \(number2.text!)"
 }
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be re-created.
 }

}

This time, you’re also checking whether the first number is smaller
than the second. If so, you’re showing the message 6 is smaller than 8.
If not, the else clause executes and shows the message 8 is equal to 8.

Run the code again
This code is ready to help you do your homework! You can also show
this app to your friends to make sure that your app is capable of com-
paring two integers. The app can compare huge negative and positive
integers.

Recapping the if, else, and else if statements
Now that you have hands-on experience, here’s the simplified syntax of
an if statement:

if <CONDITION> {
} else if <CONDITION> {
}
. . .
. . .
. . .
 else {
}

This block of code executes
when the condition in the if
<CONDITION> line is true.

This code executes when the if statement’s
condition fails and the condition in the else if
<CONDITION> line is true. The ellipses (. . .)
after the closing brace show that there can
be multiple else if conditions.

 If the condition in the if statement and the
condition in the else if statement are both
false, this code executes no matter what.

App: Which Number Is Bigger? 109
Angular brackets (<>) in code show you something you need to
fill to customize your code. <Condition>, for example, means
any condition you need to check, and <INT_VALUE> means any
integer value you want to use.

Here’s what the if / else if / else code does:

 if—This statement is the heart of condition checking and is required
for condition checking in Swift. If the condition is true, it runs the
code inside its opening and closing braces.

 else if—This is another if statement after the initial if block. If the
condition in the initial if clause is false and the condition in the else
if clause is true, only then will the else if statement run the code
inside it.

 else—This statement is part of the if statement that executes code
only if the if clause’s condition and the else if clause’s condition are
both false. It runs no matter what as long as all the earlier conditions
are false.

Enough is enough for the else ifs!

The problem with else if is that it starts making your code hard to read. Imagine if
you needed a bunch of them—which can happen. You can have multiple else if
statements if you need to check a few conditions one after the other. Your code gets
messy fast. Fortunately, the next statement that you’ll learn is easier to code and to
read.

You know the basics of the if statement. Next, you learn the switch
statement.

NOTE If you’re having trouble with any of the code, including IBOutlets, refer
to chapters 3 and 4. If you’re having trouble with any of the UI elements (not
including IBOutlets), refer to chapter 2.

110 CHAPTER 5 Computers make decisions, too!
Exercise

Take a walk through the following code. Pretend that you’re an iDevice running this
app. Walk through the code and figure out the output for each of the four sets of
numbers in the table.

if Int(number1.text!)! > Int(number2.text!)! {
 outputLabel.text = "\(number1.text!) is greater than \(number2.text!)"
} else if Int(number1.text!)! < Int(number2.text!)! {
 outputLabel.text = "\(number1.text!) is smaller than \(number2.text!)"
} else {
 outputLabel.text = "\(number1.text!) is equal to \(number2.text!)"
}

switch statements
The switch statement is available in most programming languages. You
use it when you need to branch out to take an action depending on
which one of numerous conditions is true. You’ve probably made deci-
sions like these in your own life but didn’t realize it.

Suppose that you have an app that can detect the temperature.
Depending on how hot or cold the temperature is, the app prints differ-
ent messages about the weather on the screen.

Depending on the temperature (in degrees Fahrenheit), the app prints
these messages:

 temp < 20 It's too cold. Stay inside!
 temp < 30 It's below freezing. Wear a warm coat, hat,

and gloves.

First number Second number Output

8 1000000

-11 -10

2345 8

-1000 -10

switch statements 111
 temp < 40 It's cold but not freezing. Wear a warm coat.
 temp < 50 It's brisk. You should take a sweater.
 temp < 70 It's about right. Wear long sleeves if you want to.
 temp < 100 Wow, is it hot! Wear short sleeves.

 anything else It's way too hot. Stay inside; there's a heat
warning!

As you notice, your app branches out to display a different message
depending on which of the many conditions turns true first, which is
what branching out means. Imagine trying to perform this task with if/
else statements. Your code would be a mess!

Suppose that you’re working on an app, and you have to create code
that converts the numbers 1 to 4 to words. You create the following
code with an if statement:

let x: Int = 3
if x == 1 {
 print("You entered One, didn't you?")
} else if x == 2 {
 print("You entered Two, didn't you?")
} else if x == 3 {
 print("You entered Three, didn't you?")
} else if x == 4 {
 print("You entered Four, didn't you?")
} else {
 print("Uh-oh, you did not enter the number 1, 2, 3, or 4!")
}

But why does this code use let instead of var?

You have yet another way to store data apart from using var
for the variable. If you use var, the system assumes that the
value will change. (Variable means that the value will vary.)
But in some cases, if you need to store data that will never
change and will be set only once, you can use a constant by
using the let keyword. As the name implies, a constant
means that the computer assumes that the value will never
change.

You’re declaring x because you need
a variable for the if statement to
check. It also enables you to run
this code in the playground.

112 CHAPTER 5 Computers make decisions, too!
Type this code in the playground, and look at the output. Try changing
the value of x from 3 to a different number, and observe how the output
changes. This first line won’t be in the app because you get this number
from the user in one of the TextFields.

But the code looks messy, with too many else if statements. Code like
this becomes difficult for you (or another programmer) to debug and
maintain later. And if you had 20 conditions to check, you’d need to
write at least 40 lines of code.

Another reason why using too many else if statements is a bad idea is
that code like this makes your app slower. You want a cleaner, more
readable way of doing things. How? You can use the switch statement.

The switch statement looks like this:

let x: Int = 3

switch x {
 case 1: print("You entered One, didn't you?")
 case 2: print("You entered Two, didn't you?")
 case 3: print("You entered Three, didn't you?")
 case 4: print("You entered Four, didn't you?")
 default: print("Uh-oh, you did not enter the number 1, 2, 3, or 4!")
}

Try changing the value of x from 3 to other numbers, and observe the
output.

Now take a closer look at this code.

You should recognize the first line of the code from chapter 3, where
you created variables. Here, you’re declaring a variable named x of
type Int with a value of 3. Then you’re doing something called a switch
case. Inside the switch case, you have many conditions to check
whether x is equal to some number:

 case 1: means “Is the variable x equal to 1?”
 case 2: means “Is the variable x equal to 2?”
 case 3: means “Is the variable x equal to 3?”

You’re declaring x because you need a variable for
the switch statement to check. It also enables
you to run this code in the playground.

App: The Mystery of the Entered Number 113
And so on.

But wait—where did the variable x come from? (You should be able to
guess.) When you started the switch case, you typed switch x {. The x
after switch in the statement tells Swift that you’re referring to that
variable.

In the next section, you learn how these statements work by creating
an example.

App: The Mystery of the Entered Number
Get ready, because it’s time to build The Mystery of the Entered Num-
ber app!

What does this app do?
In this section, you create an app that converts the numbers 1 through
4 to words by using a switch statement. When you enter 1, 2, 3, or 4 in
the TextField and click the button, you get the number you entered as a
word as output in the label.

NOTE You can find the code for this application in the Chapter05_Mystery-
OfEnteredNumber file inside the Hello-Swift-Code-master folder that you
downloaded from GitHub. If you haven’t downloaded the code from GitHub,
go to: https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip.
You should download the code only once for all chapters.

If you enter another number in the TextField and click the button, how-
ever, you get "Uh-oh, you did not enter 1, 2, 3, or 4!", as you can see
in listing 5.3. That’s how switch cases make the app work!

The UI for this app is shown in figure 5.6.

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

114 CHAPTER 5 Computers make decisions, too!
Figure 5.6 The Mystery of the Entered Number app

For this app, you use the same switch statement code that you used ear-
lier in this chapter, the only difference being that you change the label’s
text instead of using print() to display it.

Create the UI
It’s time to set up the project and build the UI for the Mystery of the
Entered Number application!

SET UP THE PROJECT

Create a new Xcode project, and name it The Mystery of the Entered
Number.

CREATE THE UI

Go to the Main.storyboard file, and make a UI that looks like figure
5.7.

Check my input

I will be full of output, eventually.

Enter a number: 1-4 Tells user what to do

The label that displays the output

The textfield in which the

user will enter a number

The button that the user clicks

to find out the mystery

App: The Mystery of the Entered Number 115
Figure 5.7 The Mystery of the Entered Number UI

Code the app
When you’ve done that, go to your code, and make the following IBOut-
lets:

@IBOutlet var inputField: UITextField!
@IBOutlet var outputField: UILabel!

Finally, create this IBAction:

@IBAction func btnCheckClicked() {
 var userInput: Int = Int(inputField.text!)!
 switch userInput {
 case 1:
 outputField.text = "You entered One, didn't you?"
 case 2:
 outputField.text = "You entered Two, didn't you?"
 case 3:
 outputField.text = "You entered Three, didn't you?"
 case 4:
 outputField.text = "You entered Four, didn't you?"

Check my input

I will be full of output, eventually.

Type: Label, IBOutlet: None,

Text: As Shown

Type: TextField, IBOutlet: inputField,

Text: Nothing

Type: Button, IBAction:

btnCheckClicked(), Text: As Shown

Type: Label, IBOutlet: outputLabel,

Text: As Shown

Enter a number: 1-4

116 CHAPTER 5 Computers make decisions, too!
 default:
 outputField.text = "Uh-oh, you did not enter 1, 2, 3 or 4!"
 }
}

Your code should look like listing 5.3.

REMINDER The code with gray background is what you need to insert. The
remaining code is already there in your .swift file.

Listing 5.3 The code for The Mystery of the Entered Number app

import UIKit

class ViewController: UIViewController {
 @IBOutlet var inputField: UITextField!
 @IBOutlet var outputField: UILabel!

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically

 ➥ from a nib.
 }

 @IBAction func btnCheckClicked() {
 var userInput: Int = Int(inputField.text!)!
 switch userInput {
 case 1:
 outputField.text = "You entered One, didn't you?"
 case 2:
 outputField.text = "You entered Two, didn't you?"
 case 3:
 outputField.text = "You entered Three, didn't you?"
 case 4:
 outputField.text = "You entered Four, didn't you?"
 default:
 outputField.text = "Uh-oh, you did not enter 1, 2, 3 or 4!"
 }
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()

Check your app knowledge 117
 // Dispose of any resources that can be re-created.
 }

}

CONNECT IBOUTLETS AND IBACTIONS

If your code looks like listing 5.3, connect the IBOutlet inputField to the
TextField in your UI. Next, connect IBOutlet outputField to the label on
your UI. Finally, connect the IBAction btnCheckClicked to your button in
the UI.

Run the app
You should see this display in the simu-
lator or on your device (figure 5.8).

When you enter 1, 2, 3, or 4 in the
TextField and click the Button, you get
the number you entered as a word as
output in the Label.

If you enter other numbers in the Text-

Field and click the Button, you get "Uh-
oh, you did not enter 1, 2, 3, or 4!"

That’s how the switch cases make the
app work!

Check your app knowledge
1 What is the difference between else

and else if?

2 Create code that uses a switch case to
tell whether the user entered + or - or
* or /. You may display messages in a
label or by using print().

3 What is a block of code?

4 What are glitches, or bugs, and how are patches and fixes related to
them?

Check my input

I will be full of output, eventually.

Enter a number: 1-4

Figure 5.8 The Mystery of the
Entered Number app

118 CHAPTER 5 Computers make decisions, too!
12 3

5 What’s wrong with this code, and how can it be fixed? (Hint: The
code has two mistakes.)

var x = 10
if x = 11 {
 print("X is equal to eleven.")
} else if x = 9 {
 print("X is equal to nine.")
} else {
 print("X is neither eleven nor nine.")
}

6 What do you think will be printed after the code is fixed? Run it in
the playground to check.

7 What is an alternative way of doing the same thing for the corrected
code as shown in question 5? Try this method in the playground or
as an app.

8 What are the conditional operators, and what are they used for?

App-Exercise: Gold, Silver, Bronze
Flex your fingers and warm up for the first app-exercise of this chap-
ter: Gold, Silver, Bronze.

What does this app do?
In this app-exercise, I
teach you how to create an
app that ranks numbers
as Gold, Silver, and
Bronze (figure 5.9).
You enter three
numbers, and the app
lists them in the order
greatest to least.

Figure 5.9 A visual
representation of the app

you’re about to create

App-Exercise: Gold, Silver, Bronze 119
This app requires a lot of if statements to be checked, so get ready!

NOTE You can find the code for this application in the Chapter05
_GoldSilverBronz file inside the Hello-Swift-Code-master folder that you
downloaded from GitHub. If you haven’t downloaded the code from GitHub,
go to: https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip.
You should download the code only once for all chapters.

Set up the project
Go to Xcode, and create a new project called Gold, Silver, Bronze.

Create the UI
Make a UI like the one in figure 5.10.

Figure 5.10 Gold, Silver, Bronze UI

Type: TextField, IBOutlet: text1,

Placeholder Text: Number 1
Type: TextField, IBOutlet: text2,

Placeholder Text: Number 2

Type: TextField, IBOutlet: text3,

Placeholder Text: Number 3Type: Button, IBAction: btnClicked(),

Text: Sort
Type: Label, IBOutlet: output3,

Text: 0

Type: Label, IBOutlet: output2,

Text: 0

Type: Label, IBOutlet: output1,

Text: 0

Number 1 Number 2 Number 3

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

120 CHAPTER 5 Computers make decisions, too!
Code the app
Now code the Gold, Silver, Bronze application.

ADD THE IBOUTLETS

Add these IBOutlets to your code.

@IBOutlet var text1: UITextField!
@IBOutlet var text2: UITextField!
@IBOutlet var text3: UITextField!

@IBOutlet var output1: UILabel!
@IBOutlet var output2: UILabel!
@IBOutlet var output3: UILabel!

ADD IBACTION

Add this IBAction:

@IBAction func btnClicked() {
 var a = Int(text1.text!)!
 var b = Int(text2.text!)!
 var c = Int(text3.text!)!

 var num1 = 0
 var num2 = 0
 var num3 = 0

 if a < b {
 if a < c {
 if b < c {
 num1 = a
 num2 = b
 num3 = c
 } else {
 num1 = a
 num2 = c
 num3 = b
 }

App-Exercise: Gold, Silver, Bronze 121
 } else {
 num1 = c
 num2 = a
 num3 = b
 }
 } else {
 if b < c {
 if a < c {
 num1 = b
 num2 = a
 num3 = c
 } else {
 num1 = b
 num2 = c
 num3 = a
 }
 } else {
 num1 = c
 num2 = b
 num3 = a
 }
 }

 output1.text = "\(num3)"
 output2.text = "\(num2)"
 output3.text = "\(num1)"
}

CONNECT THE IBActions AND IBOutlets WITH CONTROLS

Now hook up the IBAction with the Button and the IBOutlets called
text1, text2, and text3 with the TextFields, respectively. Also, connect
the IBOutlets output1, output2, and output3 to the Labels, respectively.

Run your app
Next, run your app and, finally, enjoy the happiness of having created
a three-number sorter app. (You may want to test it now.)

122 CHAPTER 5 Computers make decisions, too!
Figure 5.11 shows what the app looks like when it’s running.

Figure 5.11 The Gold, Silver, Bronze app

This app is another one that can help you do your homework and test
your answers.

App-Exercise: tTables the Times Tables Bee!
Now it’s time for a personal favorite of mine: the Times Tables Bee app,
called tTables. I’m sure that it’s going to help you a lot!

What does this app do?
In this section, you create a times-tables helper app. The app generates
two random numbers, of which you have to find the product. (By
product, I mean the answer you get if you multiply the first number by
the second number.)

NOTE You can find the code for this application in the Chapter05_tTables file
inside the Hello-Swift-Code-master folder that you downloaded from

Number 1 Number 2 Number 3 8 5 11

App-Exercise: tTables the Times Tables Bee! 123
GitHub. If you haven’t downloaded the code from GitHub, go to: https://
github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You should
download the code only once for all chapters.

You’ll build tTables, a multiplication-table helper app. tTables does the
following things:

1 Shows you two random numbers to multiply.

2 Gets your answer as input.

3 Uses an if statement with a condition that checks your answer
against the real one.

4 Displays correct or wrong and repeats.
Along the way, this app also keeps track of your score.

Set up the project and create the UI
Open Xcode, and create a new project called tTables. Make a UI like
the one in figure 5.12.

Figure 5.12 tTables UI

Type: Label, IBOutlet: numOne, Text: 0

Type: Label, IBOutlet: numTwo, Text: 0

Type: TextField, IBOutlet: userAns, Text: Nothing

Type: Label, IBOutlet: IblWrong, Text: 0

Type: Label, IBOutlet: IblCorrect, Text: 0

Type: Label, IBOutlet: LblQA, Text: 0

Type: Button, IBAction: stopClicked, Text: Stop

Type: Button, IBAction: checkAnswer,

Text: Check your answer

Type: Button, IBAction: startClicked,

IBOutlet: startButton, Text: Start

Check your answer

Start Stop

Questions Attempted: 0

tTables-HiP Edition!

Correct: 0 Incorrect: 0

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

124 CHAPTER 5 Computers make decisions, too!
NOTE If this UI is a little too complicated for you to understand and create,
you can refer to the UI in the app you downloaded.

Code the app
Now code the tTables application.

CREATE IBOUTLETS

Go to the ViewController.swift file, and create these seven IBOutlets.

@IBOutlet var numOne: UILabel!
@IBOutlet var numTwo: UILabel!
@IBOutlet var userAns: UITextField!
@IBOutlet var lblCorrect: UILabel!
@IBOutlet var lblWrong: UILabel!
@IBOutlet var lblQA: UILabel!
@IBOutlet var startButton: UIButton!

CREATE VARIABLES

Next, create these six variables:

var correct:Int = 0
var wrong:Int = 0
var QA:Int = 0
var num1:Int = 0
var num2:Int = 0
var numUser:Int = 0

CREATE IBACTIONS

Finally, create these three IBActions:

@IBAction func startClicked() {
 num1 = Int(arc4random() % 12) + 1
 num2 = Int(arc4random() % 12) + 1

 numOne.text = "\(num1)"
 numTwo.text = "\(num2)"

 startButton.isEnabled = false
}

@IBAction func checkAnswer() {
 numUser = Int(userAns.text!)!
 var realAns:Int = num1 * num2

App-Exercise: tTables the Times Tables Bee! 125
 if numUser == realAns {
 correct += 1
 lblCorrect.text = "\(correct)"
 QA += 1
 lblQA.text = "\(QA)"
 userAns.text = ""
 num1 = Int(arc4random() % 12) + 1
 num2 = Int(arc4random() % 12) + 1
 numOne.text = "\(num1)"
 numTwo.text = "\(num2)"
 } else {
 wrong += 1
 lblWrong.text = "\(wrong)"
 QA += 1
 lblQA.text = "\(QA)"
 userAns.text = ""
 num1 = Int(arc4random() % 12) + 1
 num2 = Int(arc4random() % 12) + 1
 numOne.text = "\(num1)"
 numTwo.text = "\(num2)
 }
}

@IBAction func stopClicked() {
 correct = 0
 wrong = 0
 QA = 0
 num1 = 0
 num2 = 0
 numUser = 0
 lblCorrect.text = "0"
 lblWrong.text = "0"
 lblQA.text = "0"
 numOne.text = "0"
 numTwo.text = "0"
 userAns.text = ""
 startButton.isEnabled = true
}

126 CHAPTER 5 Computers make decisions, too!
Learn how the code works
You’re declaring seven IBOutlets, and table 5.3 shows what they’re
used for.

You’re also creating six Int variables (table 5.4.).

Table 5.3 The IBOutlets for tTables

Name of IBOutlet Type Use

numOne UILabel The first number that the user sees in the multiplication
question

numTwo UILabel The second number that the user sees in the multipli-
cation question

userAns UITextField The user’s answer typed in a TextField

lblCorrect UILabel The label that shows how many correct answers the
user got in the current round

lblWrong UILabel The label that shows how many wrong answers the
user got in the current round

lblQA UILabel The label that shows how many questions the user
attempted in the current round

startButton UIButton The button that starts the quiz

Table 5.4 The variables for tTables

Name of variable Type Use

correct Int The number of correct answers the user submitted.

wrong Int The number of wrong answers the user submitted.

QA Int The total number of answers the user submitted.

num1 Int The first random number that the user gets in the question. (I
explain random numbers soon.)

num2 Int The second random number that the user gets in the question.
(I explain random numbers soon.)

numUser Int The user’s answer to the question.

App-Exercise: tTables the Times Tables Bee! 127
Finally, you’re creating three IBActions (table 5.5).

RANDOM NUMBERS

A random number is a number chosen randomly from a list or range
that you specify. Computers are used to generate random numbers for
many purposes, such as these:

 Choosing the winning ticket of a lottery
 Choosing one of the six numbers in a roll of a die
 Choosing a number to practice times tables as though someone else

is randomly asking the times-tables questions

To get a random number, you can use this statement (which generates
a number from 1 to 12):

Int(arc4random() % 12) + 1

You can try this statement in a playground. It gives you a new random
number if you refresh your playground by clicking first Editor and
then Execute Playground.

Table 5.5 The IBActions for tTables

Name What it does

startClicked This button starts the test. It generates two random numbers and stores them
in num1 and num2. It also prevents the user from clicking Start again (start-
Button.enabled = false).

checkAnswer The user’s answer is put in the numUser variable as an Int, and the correct
answer (calculated by the computer) is put in the realAns variable. The app
checks whether the user’s answer is correct by checking whether the
numUser variable is equal to the realAns variable. If the variables match, the
user is correct. The app increments correct answers and QA (questions
attempted) variables; it also generates two new random numbers. If the vari-
ables don’t match, the user is wrong, The app increments wrong answers and
QA variables; it also generates two new random numbers.

stopClicked This button stops the test. It resets all the variables and text of all UILabels,
and it makes sure that the user can click Start again (startButton.enabled
= true).

128 CHAPTER 5 Computers make decisions, too!
Here, Int(arc4random() % 12) is code that generates a random number
from 0 to 11. But in your app, you want to get random numbers from
1 to 12 to practice times tables, so add 1 to get random numbers from
1 to 12.

To make this random-number generation clearer to you, here’s an
example of generating a random number from 1 to 6 to simulate a com-
mon six-sided die:

Int(arc4random() % 6) + 1

This code generates random numbers from 0 to 5 and adds 1 to these
numbers to get random numbers from 1 to 6. This code gives you the
same results as though you rolled a six-sided die.

For now, that’s all you need to know. You learn more about generating
random numbers when you create a virtual dice app in chapter 8.

Run your app
If you run your app, you should see the interface in figure 5.13.

Figure 5.13 The tTables app

The first number in the multiplication question

The second number in the multiplication question

The answer to the question that the user enters

The number of incorrect attempts the user made

The number of correct attempts the user made

The total number of attempts the user made

This button stops the test

This button checks the user’s answer

This button starts the test

These are all the inactive, “just for information” labels:

“tTables-HiP Edition!”

“X”

“=”

“Correct:”

“Incorrect:”

“Questions Attempted:”

• Title of the App

• Multiplication operator

• Answer symbol

• “Correct” label

• “Incorrect” label

• “Total” label

Check your answer

Start Stop

Questions Attempted: 0

tTables-HiP Edition!

Correct: 0 Incorrect: 0

App-Exercise: tTables the Times Tables Bee! 129
Pop quiz

1 What is a random number? Give five examples of when you’d need random
numbers.

2 How do you generate a random number in these situations?

A 0 to 49 to generate a probable lottery number
B 2 to 12 to simulate rolling a pair of dice

6
1

3

5

4

6

14

8

7 9

N A Journey

2

12

13

10

11

Let computers do repetitive
work

In this chapter you’ll learn how to make
your app repeatedly perform an action
using a loop.

This chapter covers

• What are repetitions or iterations, and how are they used in programming?
• What are loops, and how do you use the three types of loops?
• Why do you need to repeat the same block of code multiple times?
130

Controlling repetition 131
Milestone 6, learn about loops, helps you write more efficient code.
You’ve come a long way on your journey of programming in Swift.
Chapter 1 gave you a head start. Chapter 2 introduced you to the user
interface (UI). Chapter 3 taught you about the iPhone’s memory—as a
matter of fact, the memory of most computers—and variables. You had
hands-on experience with input/output (I/O) in chapter 4. Then chap-
ter 5 made you feel like an app developer because you started to make
apps decide, at runtime, what to do next based on data and situations.

Loops are constructs provided by Swift and other programming lan-
guages that allow you to run the same block of code a number of times.

Controlling repetition
Take a look at a loop you might perform in real life. You’re in physical-
education class, and the teacher tells you to run three laps. As you run,
you keep track of how many laps you’ve done. When you finish the third
lap, you stop running. It’s important to know how many times you’ve
gone around the track so that you don’t do too few laps or too many.

Here are some more real-life examples:

 You’re taking a test in which you have to answer 15 questions. You
keep answering questions until you’ve finished all 15. When you’ve
done that, the test is over.

 You have to find the sum of a set of ten numbers. You loop through 1
to 10 and keep adding each number, and when all ten numbers are
summed, you stop.

 You have to clean a part of the floor where you spilled some milk.
You keep mopping while the floor is still dirty with milk.

 Your bicycle tire is low. You keep pumping the air pump until the
tire is full.

In all these examples, you have to perform the same activity more than
once while a condition remains true, and until the condition becomes
false. Sometimes, you want your code to do the same thing more than
once. Next, I show you how to do this without a loop and then how to
do it with one.

132 CHAPTER 6 Let computers do repetitive work
Imagine an app that’s like your physical-education teacher, telling you
to do exercises. This app may tell you to do five laps. Suppose that you
want to write code that prints out each lap you’re supposed to run, one
at a time. Using a playground, you could do this:

print("Run a lap.")
print("Run a lap.")
print("Run a lap.")
print("Run a lap.")
print("Run a lap.")

This code works, but it doesn’t seem to be a good method. It’s time-
consuming and lengthy to print five times. What if you wanted to print
50 or 100 times?

Printing the same thing again and again seems silly. Why would I
want to do that?

I agree; you won’t need to print the same thing. But I’m about to show
you how the same block of code—in this case, print()—can be
repeated. Usually, your apps need to repeat code blocks that do more
important things than print text. I’ll get to that topic soon.

Although printing the same text isn’t common, lots of times you’ll need
to repeat some code. When you need to repeat the same commands,
you can use loops. There are several types of loops, and you’ll dive into
all of them in this chapter.

for-in loop statements
I’ll start with the most commonly used loop in Swift: the for-in loop.

Suppose that you want to create code that prints Do a situp. ten times.
What do you do? As you saw in the preceding section, you can type
print("Do a situp.") ten times, but this method isn’t efficient. Fortu-
nately, you have a much easier way: the for-in loop.

for-in loop statements 133
Try it yourself
Open the playground, and write the following code, which I’ll explain
in a minute. Can you guess what it does?

for counter in 1...10
{
 print("Do a situp.")
}

Take another look at this line of code:

for counter in 1...10

Here, 1…10 means “Repeat the loop ten times, making the variable coun-
ter go from 1 through 10.” If it were

for counter in 4...6

4…6 would mean “Repeat the loop three times, making the variable
counter go from 4 through 6 in three steps.” In each repetition, the vari-
able counter takes on the values 4, 5, and finally 6. Although these
ranges are uncommon, there are situations in which they can be useful!
If you needed to print Report Cards for Grades 4 to 6 for a student, for
example, these ranges would come in handy.

In the preceding examples, I used a variable called counter to
keep track of the values each time you go through the loop. You
can call the variable whatever you want. In programming, you
often see the letter i, j, k, or n used for this kind of variable.
Programmers use these single-letter variable names on purpose
because they keep the loop’s structure compact and also give
you a feel for variable i or n being an integer or number in use.

Now you’ve seen a simple loop. A variable keeps track of how many
times you’ve gone through a loop, and code inside the curly braces gets
executed each time the loop runs. Next, I show you something impor-
tant that you can use a loop variable for.

This line initializes the loop, declares
the variable that controls the loop, and
tells it how many times to execute.

This line is the block of code that
the for-in loop repeats.

134 CHAPTER 6 Let computers do repetitive work
How does it work?
Look at the following lines of code, which print numbers 1 through 5
on five lines, one below the other:

for cupcakeCount in 1...5 {
 print(“\(cupcakeCount)”)
}

This code shows that in the for-in loop, the variable cupcakeCount takes
values from 1 through 5 in five iterations.

So far, you’ve seen a loop that prints the same text each time it exe-
cutes. You can use a loop variable to make what you print change each
time through the loop. This code keeps track of putting icing on five
cupcakes:

for cupcakeCount in 1...5 {
 print("Icing put on cupcake \(cupcakeCount)")
}

And this is the output:

Icing put on cupcake 1
Icing put on cupcake 2
Icing put on cupcake 3
Icing put on cupcake 4
Icing put on cupcake 5

Figure 6.1 is a screenshot of the code and output from Xcode.

Figure 6.1 Icing-on-cupcake code example viewed in the playground

for-in loop statements 135
If your Xcode Playground doesn’t look like figure 6.1 and you don’t see
the output, choose View> Debug Area > Activate Console.

Take a closer look at the parts of a loop. Here’s the basic syntax of a
for-in loop:

for <variablename> in <range> {
 <code>
}

Table 6.1 shows what each part of this code means.

Playground example
Open a new playground, and name it loops_in_swift. Next, type this
code:

 for i in 1...5 {
 print("Loop number \(i)")
}

Table 6.1 Syntax definitions for the for-in loop

Syntax block Definition

<variablename> The name of the variable that the computer increases in each repetition of
the loop, called the loop control variable

Examples: i, j, n, num, counter, or any valid variable name

<range> The range of numbers to go through. The format is <startingnumber>
...<endingnumber>.

The loop starts at the first number in the range and goes all the way to the
last one. If you want 42 loop cycles, you can use 1...42. For 13 loops, use
1...13.

Examples: 1...53, 1...100

<code> The block of code that the loop executes each time.

Examples: print("6 x 7 = 42")

 print("\(i) x \(j) = \(i * j)")

Assume that in the second code example, i = 6, j = 7. Run these
examples to see what they do.

This line is where you
start the loop.

This line of code is executed
every time the loop repeats.

136 CHAPTER 6 Let computers do repetitive work
Now open the debug pane in the playground. You should see output
like this:

Loop number 1
Loop number 2
Loop number 3
Loop number 4
Loop number 5

Let me explain how the loop works. The <variablename> in this case is i.
As the loop starts, it makes the value of i equal to the starting number
of your range—in this case, 1. Every time the loop repeats, the follow-
ing statement executes automatically, even though you don’t write it: i
+= 1 (same as i = i + 1). You may remember from chapter 3 that this
statement adds 1 to the value of i. Next, the <range> in this case is 1…5.
This range means that the loop executes five times. The variable i will
be 1, then 2, then 3, then 4, and finally 5.

I’m still not sure I understand. How am I printing Loop num-
ber 1, Loop number 2, and so on each time? And how is the
number getting bigger each time?

You’re printing the text Loop number followed by the value of
i. The for-in command automatically makes the variable i
increase by 1 at the end of the loop each time you loop. This
process is called autoincrementing.

for-in loop statements 137
Figure 6.2 illustrates how for-in loops work.

Figure 6.2 How a for-in loop works

You use the variable i to print the iteration index (number of loops
you’ve done) each time. You may remember from chapter 3 that the
print("\(i)") part prints the value of the variable i.

This kind of iteration with the for-in loop isn’t the only way you can
repeat a block of code. You’ll learn about a few more loop types in this
chapter. First, though, take a break and try this pop quiz.

Pop quiz

1 Create a for-in loop that gives you this output:

Now it is 2

Now it is 4

Now it is 6

Now it is 8

Now it is 10

Hint: You need simple math from chapter 3 and print() from chapter 1, com-
bined with the power of loops you’ve learned in this chapter.

2 This exercise is trickier. Write a program that prints the numbers 1 to 25, and with
each number, it prints whether that number is divisible by 4.

Hint: You need to use both an if statement and a math function.

print("Frank")

Loop
starts

For i in
1...4

Loop
ends

print("Frank") print("Frank") print("Frank")

i = 1
loop 1

i = 2
loop 2

i = 3
loop 3

i = 4
loop 4

138 CHAPTER 6 Let computers do repetitive work
What does modulus mean!?

The modulus is the remainder that you get when you divide two num-
bers. It’s a math operator like +, -, *, and /.

 while loop statements
Now that you know about for-in loops, you’re ready to learn about a
slightly less common but still useful loop: the while loop.

Suppose that you wanted to create a loop that would do something
over and over until a condition becomes false (and keeps running as
long as the condition is true). How would you do it?

Here’s the scenario: the countdown for launching a space shuttle has
begun! The computer has to count down until it reaches 0 and then
launch the shuttle. So the counter keeps looping down from 10 until it
encounters 0. At 0, the space shuttle is launched.

Answers:

1for i in 1...5 {
 print("Now it is \(i*2)")
}

2for i in 1...25 {
 if i % 4 == 0 {
 print("\(i) is divisible by 4")
 } else {
 print("\(i) is not divisible by 4")
 }
}

See, I told you it was tricky!

You have to multiply
the variable i with 2.

This says “if i modulus
4 is equal to 0”.

This prints the numbers
that are evenly divisible by 4.

This prints the numbers that
are not evenly divisible by 4.

while loop statements 139
Well, a for-in loop can’t handle that job. Luckily, while loops exist!

Try it yourself
Here’s how you can use a while loop. As long as the counter variable is
more than 0 (the condition), the loop keeps counting down:

var counter: Int = 10

while counter > 0 {
 print("Space Shuttle Launch Countdown: \(counter)")
 counter -= 1
}
print("Launched!")

If you forget the increment or decrement in the body of the
while loop, you end up with a problem. Why? Well, when you
forget the increment or decrement (or forget to update the con-
dition that takes you out of the loop) in a while loop, you end up
never making the condition of the while loop false, which
means that it’s always true. And as long as the condition is true,
the while loop continues. So you end up creating an infinite and
uncontrollable loop, which results in your iPhone, computer, or
Playground crashing.

If you run this loop in a playground and open the debug pane, you’ll
see

Space Shuttle Launch Countdown: 10
Space Shuttle Launch Countdown: 9
Space Shuttle Launch Countdown: 8
Space Shuttle Launch Countdown: 7
Space Shuttle Launch Countdown: 6
Space Shuttle Launch Countdown: 5
Space Shuttle Launch Countdown: 4
Space Shuttle Launch Countdown: 3
Space Shuttle Launch Countdown: 2
Space Shuttle Launch Countdown: 1
Launched!

140 CHAPTER 6 Let computers do repetitive work
Table 6.2 shows you what this code is saying in English. (You may
remember that I called that Englishy code pseudocode in Chapter 5.)

Here’s the syntax of the while loop:

while <condition> {
 <code>
}

Table 6.3 explains each part of the syntax.

Table 6.2 English versus Swift: Analysis of this while loop

English language Swift language

Create a variable, and give it a value. var counter: Int = 10

As long as the variable named counter is greater than 0, run the
code in the brackets. This is called loop condition.

while counter > 0 {

Print the counter variable after the text. print(“Space Shuttle
Launch Countdown:
\(counter)”)

Subtract 1 from the counter (decrement). counter -= 1

When the brackets end:

If the condition was met, that is, counter > 0, start the loop again.

If the condition was not met, run the code after the brackets.

}

Table 6.3 Syntax definitions for the while loop

Syntax Definition

<condition> Any condition. As long as the outcome of this condition is true, the while
loop keeps repeating. When the loop detects that the condition is false, it
makes no more iterations.

<code> The code inside the while statement that’s repeated.

while loop statements 141
Something to think about

In the space-shuttle-launching playground, why do you use 0 (as in the while
condition counter > 0), and why does the countdown go only till 1?

The while loop continues only if the condition is true, so when the condition be-
comes false (i becomes 0), the while loop stops, ensuring that the countdown
goes only from 10 to 1.

The not equal to (!=) operator
In the example earlier in this chapter, I used

counter > 0

for the condition. But I could have used a new operator called not
equal to:

counter != 0

The conditional operators you already know are <, >, ==, <=, and >=.
The not equal to operation is two symbols put together: !=. The excla-
mation point means not, and the equal sign means equal to. So 5 != 6
means “5 is not equal to 6.”

This question may be weird, but what happens if my condi-
tion is never false? If the earlier example was while counter <
10, the condition would always be met!

Excellent question. Your loop would keep going forever and
ever, and your computer would break. Okay, not really; your
computer would be fine, but you’d have created something
called an infinite loop. You have to prevent an infinite loop
from happening! So when you’re using a while loop, don’t
forget to increment or decrement the right way.

CAUTION If you happen to create an infinite loop, it takes up a lot of your
computer’s memory. As a result, the playground, the app on your phone, or
your computer may crash. If you create an infinite loop while testing in Xcode,
you can press the Command, Option, and Escape (+OPTION+ESC) keys

142 CHAPTER 6 Let computers do repetitive work
together to bring up a window. In this window, click Xcode and then click
Force Quit to kill the Xcode process from memory.

Playground example
Now you’re going to turn the for-in loop you made in the playground
earlier into a while loop.

Go back to Xcode, and open the loops_in_swift playground you cre-
ated earlier. Type this code:

var counter: Int = 10

while counter > 0 {
 print(“\(counter)”)
 counter -= 1
}

You should see this output in the debug area:

10
9
8
7
6
5
4
3
2
1

Figure 6.3 is a screenshot of the output.

Figure 6.3 Output of the while loop playground exercise

while loop statements 143
Pop quiz

1 Create a while loop that prints multiples of 4 from 1 to 12.
2 Write a small program, using the while loop, that prints the numbers 1 to 25 and

prints whether e number is divisible by 4.

The repeat while loop
A variant of the while loop is called the repeat while loop. Here are the
main features of these loops:

 The while loop checks a condition, and if the condition is true, it runs
a block of code. If the condition is false, the block of code doesn’t run
at all.

 The repeat while loop runs a block of code and then checks a condi-
tion. If the condition is true, the loop continues to run. If the condi-
tion is false, the loop stops after at least one iteration. So even if the
condition is false, the loop always executes at least one time. Here’s
the scenario: you come home from school, and at least once, you
clean the study table. After you’ve cleaned the study table, if it’s still
dirty, you repeat until the study table is clean.

Here is the syntax of the repeat while loop:

repeat {
 <code>
} while <condition>

Answers:

1var i = 1
while i <= 12 {
 print(i*4)
 i += 1
}

2var i = 1
while i <= 25 {
 if i % 4 == 0 {
 print("\(i) is divisible by 4")
 } else {
 print("\(i) is not divisible by 4")
 }
 i += 1
}

Remember! “i*4” doesn’t actually
change the value of “i”. In this case, it
just prints 4 times the value of “i”.

This says “if i modulus 4
is equal to 0”.

This prints the numbers
that are evenly divisible by 4.

This prints the numbers that
are not evenly divisible by 4.

144 CHAPTER 6 Let computers do repetitive work
Table 6.4 lists syntax definitions for repeat while loops.

Playground exercise: repeat while
Here’s a simple playground example for the repeat while loop:

var loopCounter = 1
repeat {
 print(“\(loopCounter)”)
 loopCounter += 1
} while loopCounter <= 10

NOTE Remember that if you’re not careful about the counter and the condi-
tion, you could end up in an infinite loop.

This code helps you count from 1 to 10. If you were to run this code in
the playground right now, you’d get this output:

1
2
3
4
5
6
7
8
9
10

Table 6.4 Syntax definitions for the repeat while loop

Syntax Definition

<condition> Any condition. As long as the outcome of this condition is true, the repeat
while loop keeps repeating. When the condition becomes false, the loop
doesn’t make another iteration.

<code> The code inside the repeat while loop that‘s repeated.

App: How Many Times? 145
Pop quiz

Create a repeat while loop that prints multiples of 4 from 1 to 12.

How could you write a small program, using the repeat while loop, that prints the
numbers 1 to 25 and, for each number, whether that number is divisible by 4?

App: How Many Times?
What this app does

In this app, you make something that takes a number from the user.
The app has two buttons. If the user clicks the first button, the app
counts from 1 up to that number. If the user clicks the second button,
however, the app counts from that number down to 1. Let’s get started!

NOTE You can find the code for this application in the Chapter06_How-
ManyTimes file inside the Hello-Swift-Code-master folder that you down-
loaded from GitHub. If you haven’t downloaded the code from GitHub, go
to: https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You
should download the code only once for all chapters.

Answers:

1var ctr = 1
repeat {
 print(ctr*4)
 ctr += 1
} while ctr <= 12

2var ctr = 1
repeat {
 if ctr % 4 == 0 {
 print("\(ctr) is divisible by 4")
 } else {
 print("\(ctr) is not divisible by 4")
 }
 ctr += 1
} while ctr <= 25

Remember! “i*4” doesn’t actually
change the value of “i”. In this case, it
just prints 4 times the value of “i”.

This says “if i modulus 4
is equal to 0”.

This prints the numbers that
are evenly divisible by 4.

This prints the numbers
that are not evenly
divisible by 4.

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

146 CHAPTER 6 Let computers do repetitive work
Set up the project and create the UI
To start, create an app called How Many Times. (If you have any trou-
ble doing this, revisit chapter 2.) Next, create a UI like the one in fig-
ure 6.4.

Figure 6.4 The How Many Times? UI

The yellowish, rectangular part in the middle is a TextView, not a
TextField. You create a TextView so that you can change the height,
not only the width, as with the TextField. If you remember from chap-
ter 2, you can also have multiple-line text with TextViews.

Code the app
Modify your code to look like listing 6.1. (The highlighted parts are
what you need to add.)

Type: UILabel, Text: Number of times to count

Type: UITextField, IBOutlet: input, Text: Nothing

Type: UIButton, IBAction: count_1UpToN,

Text: Count from 1 to your number

Type: UIButton, IBAction: count_NDownTo1,

Text: Count from your number to 1

Type: UITextView, IBOutlet: output, Text: Nothing

Number of times to count:

App: How Many Times? 147
Listing 6.1 How Many Times? app

class ViewController: UIViewController {
 @IBOutlet var input: UITextField!
 @IBOutlet var output: UITextView!

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically

 ➥ from a nib.
 }

@IBAction func count_1UpToN() {
 output.text = ""
 var inputNumber = Int(input.text!)!
 for outputNumber in 1...inputNumber {
 output.text = "\(output.text!)\(outputNumber) \n"
 }
 }

 @IBAction func count_NDownTo1() {
 output.text = ""
 var inputNumber = Int(input.text!)!
 while inputNumber != 0 {
 output.text = "\(output.text!)\(inputNumber) \n"
 inputNumber -= 1
 }
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be re-created.
 }
}

Tables 6.5 and 6.6 show what the code you added does.

Table 6.5 IBOutlets for the How Many Times? app

IBOutlet Reason

input This IBOutlet is where the app gets input from the user for how many times the app
should count.

output This IBOutlet is the output the App gives to the user: the set of numbers in ascend-
ing or descending order.

Reset the output
label’s text.

Convert the input the user gave
to Integer form and store it in
the inputNumber variable.

This for-in loop counts up
from 1 to the inputNumber.

Set the
output

label’s text.

Reset the output
label’s text.

Convert the input the user gave
to Integer form and store it in
the inputNumber variable.

This while loop counts down
from inputNumber to 1.

148 CHAPTER 6 Let computers do repetitive work
Run your app
When you run the app, it should look like figure 6.5.

Check your app knowledge
1 What is the most common loop in programming and the most com-

mon loop in Swift?

2 What are for-in loops used for?

3 If you end up creating an infinite while loop, how would you stop it?

Table 6.6 IBActions for the How Many Times? app

IBAction Reason

count_1UpToN This IBAction executes when the user clicks Count from 1 to your number.
It creates the variable inputNumber with the user’s input in it as an integer.
Then it uses a for-in loop to count from 1 up to the number the user gave it
in the variable inputNumber and displays these numbers in the TextView.

count_NDownTo1 This IBAction executes when the user clicks Count from your number to
1. It creates the variable inputNumber with the user’s input in it as an integer.
Then it uses a while loop to count from the number the user gave it in the
variable inputNumber down to 1 and displays these numbers in the TextView.

Count from 1 to your number

Count from your number to 1

Number of times to count:

Count from 1 to your number

Count from your number to 1

Number of times to count:

Figure 6.5 The How
Many Times? app test

Check your app knowledge 149
4 Create an app similar to How Many Times? that prints only even
numbers. (Hint: Refer to chapters 3 and 6, and maybe use a modu-
lus, or an alternative.)

5 Create an app that prints a specific times table that the user asks for.
The app should be able to print the times table in reverse order as
well.

6 What’s the mistake in this code?

for i in 2..5 {
 print("Hello!")
}

7 If you make a for-in loop with the range 25...30, how many times
will it execute?

8 What will these loops print?

9 This problem may take a while to complete. Ready? With the help of
for-in loops, try making a playground that creates a tree graphic
made of asterisks (*) that is nine rows high, with a stem that’s 2 rows
high and 2 columns wide. Your output should look like this:

 *
 * *
 * * *
 * * * *
 * * * * *
 * * * * * *
 * * * * * * *
 * * * * * * * *
 * * * * * * * * *
 * *
 * *

Code snippet 1 Code snippet 2

var i = 0

while i != 0 {

print(“Hello Frank!”)

}

var i = 0

repeat {

print(“Hello Frank!”)

} while i != 0

150 CHAPTER 6 Let computers do repetitive work
App-Exercise: Hang Your Word Upside-Down
NOTE You can find the code for this application in the Chapter06_Hang-
YourWordUpsideDown file inside the Hello-Swift-Code-master folder that
you downloaded from GitHub. If you haven’t downloaded the code from
GitHub, go to: https://github.com/tanmayb123/Hello-Swift-Code/archive/
master.zip. You should download the code only once for all chapters.

What this app does
In this section, you create an app that reverses a string that you provide
(such as "Frank" to "knarF"). You create the code in a Playground to
understand it fully and then put it in an app.

Here are the activities you’ll go through to create the app:

 Explanation and playground exercise
 Creating the app
 Coding the app
 Running and testing the app

When you’re done, your app should look like figure 6.6.

Type: UILabel, Text: Enter String to be reversed:

Type: UITextField, IBOutlet: inputField, Text: Nothing

Type: UIButton, IBAction: btnClicked(),

Text: Reverse the text

Type: UILabel, Text: I will be full of text, one day!

Reverse the text

I will be full of text, one day!

Enter string to be reversed:

Figure 6.6 The final Hang
Your Word Upside-Down app

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

App-Exercise: Hang Your Word Upside-Down 151
Explanation, Playground exercise, and helper code
How in the world are you going to do this?

I’ll explain how the app works. Don’t worry about building it yet;
you’ll do that in a few minutes. For now, read about how it works.

First, download the starter playground from the website that has the
starter code you need. (You learn more about this topic in chapters 7,
8, and 9.) At this point, I want you to include it in your code as is. If
you’re curious, listing 6.2 is the code that you’ll be downloading.

Listing 6.2 String extension for Hang Your Word Upside-Down

extension String {

 subscript(value: Int) -> String {
 get {
 var j = 0
 for i in self.characters {
 if j == (value) {
 return "\(i)"
 }
 j += 1
 }
 return ""
 }
 set(toSet) {
 var array: [String] = []
 var finalString: String = ""
 for i in self.characters {
 array.append("\(i)")
 }
 array[value] = toSet
 for i in array {
 finalString += i
 }
 self = finalString
 }
 }

}

152 CHAPTER 6 Let computers do repetitive work
Next, you create two variables: strStart and strEnd. You set strStart to
0 and strEnd to 1 less than the number of characters in the string you
want to reverse. (You learned about characters and strings in chapter 3.)

Now create a while loop that keeps repeating as long as strStart < strEnd.
Every time the loop executes, the character at number strStart in the
string and character at number strEnd in the string are swapped. Also,
in each iteration of the loop, you increase strStart by 1 and decrease
strEnd by 1. Here’s the code, which you can try out in the starter play-
ground:

var str = "Frankie!"

var strStart = 0
var strEnd = str.characters.count - 1

while strStart < strEnd {
 var temp = str[strStart]
 str[strStart] = str[strEnd]
 str[strEnd] = temp
 strStart += 1
 strEnd -= 1
}

print("\(str)")

Table 6.7 gives you a closer look at the variables used in this code.

Table 6.7 Variables for the Hang Your Word Upside-Down app

Variable Reason

str This string gets reversed by the program.

strStart This integer variable starts at 0 and counts up to the middle of the variable str.

strEnd This integer variable starts at the length (end) of str, minus 1, and counts down
to the middle of str. You subtract 1 because strings start from position 0 (not 1).
Take this example:

"ABC"

If you get the count of characters in this string, it’s 3. That is, A is at position 0, B
is at 1, and C is at 2. So if the str is "Frank", strEnd is 4.

App-Exercise: Hang Your Word Upside-Down 153
If you were to change the str variable, declared at the top of the code,
you should see the variable reversed when you print it at the bottom.

Figure 6.7 is a diagram that helps you understand the logic behind
reversing a string.

Figure 6.7 Diagram of string-reversing logic

Now use this knowledge to create an app.

Do you need to write a lot of code to make the app work? Not really;
Swift provides a function that makes reversing strings easy. In fact, if
you were to run the code

var name = “Reader”
name = String(name.reversed())
print(name)

Swap (S)tart character with (E)nd

rF

S = 0 E = 7
S < E

S < E

S < E

S < E

S = 1 E = 6

S = 2 E = 5

S = 3 E = 4

E = 3 S = 4
Stop swapping now, as

the condition “Start<End”
is no longer true.

a n k i e !

r! a n k i e F

e! a n k i r F

e! i n k a r F

e! i n k a r F

r! a n k i e F

e! a n k i r F

e! i n k a r F

e! i k n a r F

Result

154 CHAPTER 6 Let computers do repetitive work
you’d get "redaeR" (which is the string "Reader" reversed)! It’s that sim-
ple, but to teach you the concept—how to think logically and reverse
the string—I wanted to show you the technique behind it.

Set up the project and create the UI
Create another single-view application called Hang Your Word
Upside-Down. Create a UI like the one in figure 6.8.

Code the app
Make your code look like this, and please ignore the following code
until you see the following line:

class ViewController: UIViewController {

Listing 6.3 The Hang Your Word Upside-Down app-exercise

import UIKit

extension String {

Reverse the text

I will be full of text, one day!

Enter string to be reversed:

Figure 6.8 The Hang Your
Word Upside-Down UI

App-Exercise: Hang Your Word Upside-Down 155
 subscript(value: Int) -> String {
 get {
 var j = 0
 for i in self.characters {
 if j == (value) {
 return "\(i)"
 }
 j += 1
 }
 return ""
 }
 set(toSet) {
 var array: [String] = []
 var finalString: String = ""
 for i in self.characters {
 array.append("\(i)")
 }
 array[value] = toSet
 for i in array {
 finalString += i
 }
 self = finalString
 }
 }
}

class ViewController: UIViewController {
 @IBOutlet var inputField: UITextField!
 @IBOutlet var outputField: UILabel!

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically
 ➥ from a nib.
 }

 @IBAction func btnClicked() {

 var str = inputField.text!

 var strStart = 0
 var strEnd = str.characters.count – 1

 This user input gets
reversed by the app.

The strStart
counter

increments
from 0 up.

The strEnd counter
decrements from
1 less than the length
of the string.

156 CHAPTER 6 Let computers do repetitive work
 while strStart < strEnd {
 var temp = str[strStart]
 str[strStart] = str[strEnd]
 str[strEnd] = temp
 strStart += 1
 strEnd -= 1
 }

 outputField.text = "Reversed: \(str)"
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be re-created.
 }
}

You’re done!

Run your app
The running app should look like figure 6.9.

The logic that
reverses the string

Reverse the text

I will be full of text, one day!

Enter string to be reversed:

Figure 6.9 The final Hang
Your Word Upside-Down app

App-Exercise: Hang Your Word Upside-Down 157
Type a string in the TextField, and click the button labeled Reverse the
text. You see the reversed output on the label (figure 6.10).

This chapter concludes the discussion of loops. You learned the follow-
ing loop types:

 for-in
 while
 repeat while

Tune in next time (chapter 7), when you knit variables together!

Reverse the text

Reversed: !yaY !eiknarF

Enter string to be reversed:

Frankie! Yay!

Figure 6.10 Testing the final Hang
Your Word Upside-Down app

7
1

3

5

4

6

14

8

7 9

N A Journey

2

12

13

10

11

Knitting variables into arrays
and dictionaries

In chapter 3, I introduced the concept of
variables to you, and now is the time to
put them all together and use them in
different ways: in arrays and dictionaries.

This chapter covers

• What arrays and dictionaries are, and why you need them
• How to store data in an array or a dictionary
• How to use this data
• How to add, delete, and modify

your data
• How to loop through an

array or dictionary
158

Why do we need arrays and dictionaries? 159
You’ve reached milestone 7, knitting variables into arrays and diction-
aries. In this chapter, you’ll be knitting variables together. You’ve been
using variables in different situations for quite some time. Now you’ll
learn about using them in arrays and dictionaries. The attendance reg-
ister that lists your names in order, for example, is an array. Your test
scores in the past five quizzes you took are an array as well.

Also, the glossary at the end of your math textbook is a dictionary that
lists keywords like polygon, ratio, data, diagonal, and integers along
with their definitions! In fact—which may come as a surprise to you—
an English dictionary is a dictionary in programming as well!

Why do we need arrays and dictionaries?
Imagine that ten kids have to give reports to the class. The teacher
gives each one a piece of paper with a number from 1 to 10 on it. Frank
gets 1, Amy gets 2, Maya gets 3, Tom gets 4, Timmy gets 5, and so on.
This list is similar to an array in programming. An array is an ordered
set of variables. In this example, the values are these kids’ names, and
the numbers on the pieces of paper control the order:

Unlike an array, a dictionary lets you assign values other than numbers
to order your group of values. I go into more detail on this topic later,
but for now, imagine that instead of writing numbers on those slips of
paper, the teacher wrote the nicknames of the students. This makes a dic-
tionary, which uses anything except numbers to order the variables.

With what you’ve learned so far, if you want to number a list of things
(suppose that you’re teaching Swift to five students and you want to
keep a record of their progress by assigning numbers to students), you
might do this:

var Frank = 1
var Amy = 2

Name1 Name2 Name3 . . . nameN

Tim Joe Anna . . . Tanmay

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

160 CHAPTER 7 Knitting variables into arrays and dictionaries
var Maya = 3
var Tom = 4
var Timmy = 5

This code isn’t bad if you have only a few variables to assign. But sup-
pose that you need to give numeric order to a much larger group of
variables. Can you imagine having to enter 5 or 100 variables this way?
Typing all that is time-consuming; you might make a lot of typos; and
the list is going to be hard to maintain and use in general. If you want
to loop through the values of all these variables, you’d have a tough
time. So how do you do it?

Arrays are great for this purpose. You declare an array, loop through
it, and give it the correct values, as you see in the next section.

What is an array?
An array is a group of multiple variables of the same kind. Consider the
example shown in figure 7.1.

If you wanted to create this array in code, you could do this:

var arrFriends: [String] = ["Frank", "Amy", "Maya", "Tom"]

This line of code is an example of creating an array, with String values
in it. The square brackets ([]) around String tell Swift that this String
is an array. Then the code sets values inside the array for Frank, Amy,
Maya, and Tom.

As I mention in chapter 3, when Swift is given a value for a variable, it
can automatically infer the type, so you don’t need to set it manually.
Swift can do the same for arrays. You could have written this:

var arrFriends = ["Frank", "Amy", "Maya", "Tom"]

arrFriends AmyFrank Maya Tom

Figure 7.1 Array of names

What is an array? 161
But this sometimes introduces ambiguity. Suppose that you want a
blank array:

var arrFriends = []

Swift no longer knows the type of the array, because there’s no longer
any value for Swift to infer a type from. You need to do this:

var arrFriends: [String] = []

In the real-life example, you give each student a slip of paper
with a number. But in this code, there aren’t any numbers.

That’s the cool thing about arrays. When you put values in it,
the array assigns the numbers for you. In this example, these
four students end up with numbers assigned in the order in
which they’re added to the array.

Arrays start counting with 0!
Now I have to tell you something that’s really important and kind of
confusing. Arrays start counting with 0, not 1. If you think back to the
example of the students in class getting slips of paper, the first slip
given out says 0, not 1. If ten slips are given out, they’re numbered: 0 to
9. This makes sense because digits actually start with 0. It may seem a
little weird at first, because in school, you learn to count from 1. You
almost forget about zero! (Poor zero.)

You have an array with values, which helps you because it’s easy to get
the values back out of the array in order.

Think back to the earlier example about the students with numbered
slips of paper. Pretend that it’s time for the next student to give a
report. The teacher may not remember who’s next in line, but he
knows that the last student who did a report was number 2, so all he
has to do is call number 3.

To get the name of someone stored in the array you created, you also (in
code) use the number. In programming, this number is called the index.

162 CHAPTER 7 Knitting variables into arrays and dictionaries
To access some value (friend’s name) from the array, you have to type
the name of the array and then [<index>]. So to retrieve the first name
from the array:

print("\(arrFriends[0])")

This makes sense because "Tim" is at index 0 of the array. Note that the
array indexes start with 0, as 0, 1, 2, 3, and so on. The indexes don’t
start with 1 as 1, 2, 3, and so on. The index of an array starts at 0, not at
1, as you can see in figure 7.2.

Figure 7.2 Array of names, positions, and indexes

What if you didn’t know the index number? What would you do?
Well, you learn this in a little while. (Hint: You loop through, check
values, and find the index.)

Getting to your data
Now I’ll start the official lesson: to get to your data. To get to your
data, you need to know the index number of that specific entry. Sup-
pose that you make a list of your pets in the form of an array. You want
to access "fish" from that list.

Let’s first try this code in the playground!

var arrPets: [String] = ["dog", "cat", "fish", "hamster"]

print("\(arrPets[2])")

Array of names FrankTim Bob Timothy

Position of array

elements

Indexes of array

elements

Position 2Position 1 Position 3 Position 4

index 1index 0 index 2 index 3

What is an array? 163
In the playground, the code should print "fish".

The array is illustrated in figure 7.3.

Figure 7.3 Array of pets, positions, indexes, and the print commands

You’re grabbing the value at index 2. Why is that "fish" and
not "cat"?

Remember, in programming, most ranges start with 0, not 1.
If you access index 1, you’d get "cat"✌ which is in fact the sec-
ond value in the array. If you access index number 0, you get
"dog", the first value in the array. So "fish" is at index num-
ber 2.

Pop quiz

Take a look at these arrays:

var food: [String] = ["pizza", "burger", "salad", "fries"]
var bigNumbers: [Int] = [53000, 24789, 6093, 4949493]

What do you think will be printed with these print() commands?

print("\(bigNumbers[2])")
print("\(food)")
print("\(food[4])")

Array of names catdog fish hamster

Position of array

elements

print

(arrPets[0])

print

(arrPets[1])

print

(arrPets[2])

print

(arrPets[3])

Indexes of array

elements

Position 2Position 1 Position 3 Position 4

index 1index 0 index 2 index 3

164 CHAPTER 7 Knitting variables into arrays and dictionaries
The first command prints 6093. Did you notice that this array contains integers, not
strings?

The second command prints all the values in the food array. Try it out!

The third command gives you an error because it’s trying to print the fifth value, and
the array has only four values.

TIP You can create an array of integers. You need to use the keyword Int and
leave off the quotes around the values.

Altering the array
Now you’re going to store and change data in arrays with program-
ming.

Start by changing the name of one of your friends. The array of friends
you already have is

var arrFriends: [String] = ["Tim", "Frank", "Ann", "Maya"]

What if you need to replace "Maya" with "Tommy"? How do you change
that name in the array?

First, you need to know the index at which to find Maya’s name.
Maya’s name is the fourth one in the list, so her name is at index num-
ber 3.

Remember: You know that the index starts with 0, not 1, right?
So the fourth name in the list has an index of 3.

You can do this:

print("\(arrFriends[3])")
arrFriends[3] = "Tommy"
print("\(arrFriends[3])")

You want to see what is at index 3
to make sure it contains Maya.

Here, change the name stored at
index 3 to Tommy.

Now print the name at index 3
again to see that it has been
successfully changed to Tommy.

What is an array? 165
At line 2, you set the third index of the arrFriends array to "Tommy" the
way you’d change the value of any other variable.

Now try it yourself! In this playground exercise, you make an array
that lists some of the games you like. Then, in the next section, you
loop through it.

To start, open Xcode, and create a new playground. Name this play-
ground arrays_in_Swift. Then remove the first line and type the array
code and five games, as in this example:

var gamesILike: [String] = ["Basketball", "Soccer", "Hockey",
"Tetris", "Pacman"]

If you want to access the values of the array, type

print("\(gamesILike[0])")
print("\(gamesILike[1])")
print("\(gamesILike[2])")
print("\(gamesILike[3])")
print("\(gamesILike[4])")

What do you do if you want to add another game to the array? In addi-
tion to editing values that are already in the array, you can add more
values. To do this, you use the append function (method) on an array, as
in this example:

var gamesILike: [String] = ["Basketball", "Soccer", "Hockey",
"Tetris", "Pacman"]

gamesILike.append("Agar.io")

You can use .append after the name of the array along with the value
that you want to append to the array, and the value gets added to the
array. Remember that as the function name append says, the name of
this game is put at the end of the array.

After you run this command, the array contains this:

["Basketball", "Soccer", "Hockey", "Tetris", "Pacman", "Agar.io"]

166 CHAPTER 7 Knitting variables into arrays and dictionaries
Now suppose you’re bored with hockey and want to remove it from the
array. The process is as simple as appending to an array. All you need
to do is this:

gamesILike.remove(at: 2)

There you go! Hockey is no longer in the array.

Looping through arrays
The most interesting part of using arrays is looping through them. Sup-
pose that you create an array and want the names of your friends to be
in it. Here’s that array:

var arrFriends: [String] = ["Tim", "Bob", "Frank", "Tommy", "John"]

Now suppose that you want to print every friend’s name in the array.
How would you do that if you didn’t want to list them all by running
print() five times, with the index changed each time? (And imagine if
the array had 100 values in it!)

Instead, you can loop through the array and print every value in the
array as you loop. To do this, use what you know about loops from
chapter 6 and combine it with what you’ve learned in this chapter.

In chapter 6, I said that for in loops are amazing for iterating or loop-
ing through arrays. You’re about to find out why for yourself.

The syntax of looping through an array is

for <variablename> in <arrayname> {
 <do something>

}

Table 7.1 shows what that code means.

Table 7.1 Syntax definitions for the for in loop with arrays

Part of syntax Definition

<variablename> You may remember from chapter 6 that this is the name of the variable
that’s incremented each time in the loop. But wait—for an array, you don’t
need to put a range to loop from and to. What will this variable be equal to,
and when will it end? Stick around to find out.

What is an array? 167
I remember the for in loop uses a range that tells it how
many loops to do, but this doesn’t have one. How does it
know how many loops to make?

The for in can figure out how long the array is without being
told. So instead of <variablename> having the value of a
number_from to number_to, the loop knows the length of the
array. In the following code example, the code in the loop
prints the names of your friends, not 0, 1, 2, 3, 4.

This code loops through the friends array and prints every name in it:

var arrFriends: [String] = ["Tim", "Bob", "Frank", "Tommy", "John"]

for friendname in arrFriends {
 print(friendname)

}

But wait—I didn’t put the quotes and brackets around the "friendname"
as "\(friendname)" in the print() statement. This code couldn’t possibly
work. Or could it?

Well, it can. I didn’t teach you this before, because I didn’t want you to be
confused, but I think that now is the right time to demonstrate it to you.

You can print variables with print() without having to
add the quotes, so it’s completely valid to use print(i).
Try it yourself!

<arrayname> This is the name of the array that you want to loop through.

<do something> Here, you can write any code you want to run. This is the block of code
that gets repeated.

Table 7.1 Syntax definitions for the for in loop with arrays (continued)

Part of syntax Definition

168 CHAPTER 7 Knitting variables into arrays and dictionaries
You can put any valid variable name in a for-in statement. Instead of
having to use "friendname", you could use i, x, or myFriends. You see this
output after running that code:

Tim
Bob
Frank
Tommy
John

Notice that you don’t have to use five different variable names to store
or print your friends’ names!

As you can see, loops help when you’re dealing with lots of array ele-
ments in an efficient way instead of needing to use a bunch of variable
names.

Now that you’ve seen how arrays work, it’s time to create an app.

10 Number Sorter app
In this section, you build the 10 Number Sorter app, which allows you
to sort any ten numbers you provide.

What does this app do?
This app lets the user enter ten numbers and sorts them from small to
large.

NOTE When you sort from small to large (say, from 1 to 5), the sort is in
ascending order. If you sort from 5 to 1, the sort is in descending order.

NOTE You can find the code for this application in the Chapter07_10Number
Sorter file inside the Hello-Swift-Code-master folder that you downloaded
from GitHub. If you haven’t downloaded the code from GitHub, go to: https://
github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You should
download the code only once for all chapters.

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

10 Number Sorter app 169
Set up the project, and create the UI
To begin, create a user interface (UI) like the one in figure 7.4.

Figure 7.4 The 10 Number Sorter UI

Code the app
Next, modify your code to look like listing 7.1.

Listing 7.1 The 10 Number Sorter code

class ViewController: UIViewController {

 @IBOutlet var textfield1: UITextField!
 @IBOutlet var textfield2: UITextField!
 @IBOutlet var textfield3: UITextField!
 @IBOutlet var textfield4: UITextField!
 @IBOutlet var textfield5: UITextField!
 @IBOutlet var textfield6: UITextField!

Type: Textfield,

IBOutlet: textfieldOne

Type: Textfield,

IBOutlet: textfieldTwo

Type: Textfield,

IBOutlet: textfieldThree

•

•

•

•

•

•

Type: Textfield,

IBOutlet: textfieldTen

Type: Button,

IBAction: checkNumbers
Sort

These IBOutlets allow you
to get and set the text of
the ten TextFields so that
you can handle the numbers
that the user enters.

170 CHAPTER 7 Knitting variables into arrays and dictionaries
 @IBOutlet var textfield7: UITextField!
 @IBOutlet var textfield8: UITextField!
 @IBOutlet var textfield9: UITextField!
 @IBOutlet var textfield10: UITextField!

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view,

➥ typically from a nib.
 }

 @IBAction func checkNumbers() {
 var numArray = [
 Int(textfield1.text!)!,
 Int(textfield2.text!)!,
 Int(textfield3.text!)!,
 Int(textfield4.text!)!,
 Int(textfield5.text!)!,
 Int(textfield6.text!)!,
 Int(textfield7.text!)!,
 Int(textfield8.text!)!,
 Int(textfield9.text!)!,
 Int(textfield10.text!)!
]
 for outerLoop in 0...numArray.count - 2 {
 for innerLoop in outerLoop+1...numArray.count - 1 {
 if numArray[outerLoop] > numArray[innerLoop] {
 var temp = numArray[outerLoop]
 numArray[outerLoop] = numArray[innerLoop]
 numArray[innerLoop] = temp
 }
 }
 }
 textfield1.text = "\(numArray[0])"
 textfield2.text = "\(numArray[1])"
 textfield3.text = "\(numArray[2])"
 textfield4.text = "\(numArray[3])"
 textfield5.text = "\(numArray[4])"
 textfield6.text = "\(numArray[5])"
 textfield7.text = "\(numArray[6])"
 textfield8.text = "\(numArray[7])"
 textfield9.text = "\(numArray[8])"
 textfield10.text = "\(numArray[9])"
 }

This IBAction uses the
“Selection Sort” to sort the
numbers and puts the sorted
text back into the TextFields.

Using Int(), you convert the
text from the text fields
(as Strings) to Integers.

A “Selection Sort”
algorithm with for
loop statements

This code is where you set the
text of all the text fields
 with the sorted numbers.

10 Number Sorter app 171
 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be re-created.
 }
}

Learn how the code works
The preceding section uses an algorithm called Selection Sort. In this
section, I explain it to you.

You’re running two loops, one inside the other. You have an outer loop
using the variable "outerLoop" and an inner loop using the variable
"innerLoop". The outer loop goes through all the numbers except the
last one one time. Every time the outer loop repeats, the inner loop
loops though the remaining numbers and brings the smallest number to
the top by repeatedly swapping the outer loop’s number with the
smaller numbers below it. This repeats, with the help of "outerLoop", up
to the one less than the end of the array, and you get a sorted array in
ascending order.

Why do I need to know how to sort things? How can I use
this in my own programs?

Although built-in functions can sort your array, it’s essential
to do this exercise yourself to get familiar with coding tech-
niques and problem-solving.

Knowing when to use sorting in your applications is simple: wherever
you need to check for duplicate items in arrays, use sorting. Sorting
also makes searching for values faster. Moreover, it’s easy to work with
numbers that are sorted. You can use sorting in many more ways!

172 CHAPTER 7 Knitting variables into arrays and dictionaries
Run your app
Run your app now. To test it, enter numbers in each of the boxes; then
click the Sort button.

Go to the second dimension (rows and columns)
In this section, I teach you about the second dimension. Instead of hav-
ing only rows, your array can have rows and columns. In other words,
you get a grid or a matrix.

Table 7.2 shows you a visual example of the arrays you’ll be creating.

An array with rows and columns is called a two-dimensional array.
You could also have three- or four-dimensional arrays, but they’re a lit-
tle too complicated to explain right now. In simple terms, a two-dimen-
sional array is an array inside another array, like so:

var teamsArr: [[String]] =
[["Ann", "Bob", "Tim"],
 ["Todd”, "Jimmy", "Tom"],
 ["Frank", "Amy", "Maya"]]

var scoresArr: [[Int]] = [[1, 3, 5, 2, 4], [1, 6, 2, 2, 6]]

NOTE You can see that teamsArr is formatted with newlines, whereas scores-
Arr isn’t. This doesn’t change the functionality of teamsArr; it makes the array
more readable for the developer.

Table 7.2 Tables showing the two-dimensional arrays

teamArr array scoresArr Array

player1 player2 player3 student1 student2 student3 student4 student5

team1 Ann Bob Tim test1 1 3 5 2 4

team2 Todd Jimmy Tom test2 1 6 2 2 6

team3 Frank Amy Maya

What is a dictionary? 173
As you can see, the type of the array changes to

[[<TYPE>]]

as opposed to

[<TYPE>]

The difference, if you can’t make it out, is that this declaration has two
pairs of square brackets around the type, not one pair. You can have as
many brackets as you like. The more brackets you use, the more
dimensions the array has.

Next, to access the name "Amy" in row 3 and column 2 of teamsArr, use
this code:

print(teamsArr[2][1])

NOTE The position of "Amy" is row index 2 and column index 1 because
ranges always start with 0.

Now that you know about arrays, it’s time to take your skills to the
next level by learning about dictionaries.

What is a dictionary?
A dictionary is exactly what it sounds like. You have pairs of items as in
an array, but instead of being an integer, the index can be whatever
data type you like, as with words and their definitions in a dictionary
on your bookshelf.

Turning a dictionary into code
Suppose that you have this excerpt from a real dictionary:

 Paper a sheet to write or print on
 Water a liquid you drink when you are thirsty
 Mouse a pointing & clicking device used in computers
 Pencil an instrument you write with on paper

174 CHAPTER 7 Knitting variables into arrays and dictionaries
Here’s what the code would look like for that dictionary:

var meanings: [String: String] = ["paper": "a sheet to write or print
on", "water": "a liquid you drink when you are thirsty", "mouse":
"a pointing device used in computers", "pencil": "an instrument
you write with on paper"]

To make the code more readable, you can add extra spaces or newlines:

var meanings: [String: String] = [
 "paper": "a sheet to write or print on",
 "water": "a liquid you drink when you are thirsty",
 "mouse": "a pointing device used in computers",
 "pencil": "an instrument you write with on paper"
]

TIP As with arrays, you can type inference with dictionaries as well. In the
preceding code, you don’t need to include ": [String: String]".

If you want to access the meaning of "water", you could code

print(meanings["water"])

which prints

a liquid you drink when you are thirsty

If you want to access the meaning of "pencil", this is what you do:

print(meanings["pencil"])

This code prints

an instrument you write with on paper

That seems pretty simple. But what can I use a dictionary for besides
listing the meanings of words?

Well, you can do a lot of interesting things with dictionaries! You can
keep track of players’ scores, for example, or the number of days in
each month. You can also keep track of data in your science experi-
ments, such as elements’ names and their boiling and freezing points.

What is a dictionary? 175
Creating a dictionary and getting to your data
Suppose that you have a list of people, and you want to make a list of
them and indicate whether they’re family members or friends. Frank is
a friend, for example. Tom is family. Mark is family. Todd is a friend.

You can’t do that with an array because you need to store both a name
and a relationship, so a number won’t work. You’re going to use a dic-
tionary.

Here’s what the code looks like to make this list a dictionary:

var people: [String: String] = ["Frank": "Friend", "Tom": "Family",
"Mark": "Family", "Todd": "Friend"]

You could also do this to make the code easier to read. (Remember,
this change doesn’t affect the functionality of the code—only makes it
more visually appealing.)

var people: [String: String] = [
 "Frank": "Friend",
 "Tom": "Family",
 "Mark": "Family",
 "Todd": “Friend"
]

The code is easier to read with indenting, isn’t it! Here’s how this
works.

This is the basic syntax to create a dictionary:

var <dictionaryName>: [<keytype>: <valuetype>] = [<key1>: <value1>,
<key2>: <value2>, <key3>: <value3>, and so on and so forth]

Table 7.3 lists the syntax definitions for the preceding code.

Table 7.3 Syntax definitions for dictionaries

Part of syntax Definition

<dictionaryName> The name of the dictionary you want to declare

<keytype> The type of variable you want your key to be

<valuetype> The type of variable you want your value to be

176 CHAPTER 7 Knitting variables into arrays and dictionaries
Now that you know how to store the data in a dictionary, you need to
be able to get the data out. The syntax is simple:

<dictionaryName>[<key>]

Suppose that you want to look up whether some name is a friend or a
family member. The program could tell you whether that person is a
friend or a family member. If you want to know whether "Frank" is a
friend or family member, enter

print(people["Frank"])

which should print

Friend

NOTE A key can’t occur twice in a dictionary. “Frank” can’t exist in the
example dictionary twice, for example. If you make an attempt, Swift replaces
the earlier value.

Modifying the dictionary
To store data in dictionaries, you need to have a dictionary. In this sec-
tion, you use the same people dictionary that you created in the section
“Creating a dictionary and getting to your data”:

var people: [String: String] = ["Frank": "Friend", "Tom": "Family",
"Mark": "Family", "Todd": "Friend"]

Here, if you want to add something to this dictionary, the process is
quite different from adding to an array. If you want to add to an array,
do this:

array.append(value)

<key> A key, which can be anything, but it must be the type that you listed in
<keytype>

<value> A value, which can be anything, but it must be the type that you listed in
<valuetype>

Table 7.3 Syntax definitions for dictionaries (continued)

Part of syntax Definition

What is a dictionary? 177
If you want to add to a dictionary, on the other hand, code

<dictionaryName>[<KEY>] = <VALUE>

If you want to add "Craig" as your cousin’s name, for example, do this:

people["Craig"] = "Family"

NOTE If the index already exists, Swift doesn’t add a new value; instead, it
overwrites the previous value.

But what if you want to remove someone from your friends list? This is
all you need to do:

people["Frank"] = nil

NOTE nil means nothing.

There you go! Frank is no longer in the friends list.

Why doesn’t the append function work with dictionaries?

When you append, you’re adding something to the next spot
in an array. If the last index in an array is 5, when you
append, the new value gets an index of 6. But dictionaries
don’t use numbers as indexes, so there isn’t a “last” index. If
you were to append to a dictionary, Swift wouldn’t under-
stand what to set the index to, because you’re the one setting
the indices!

After you enter Craig’s info into the dictionary, if you print the diction-
ary called people, Swift may print

["Todd": "Friend", "Craig": "Family", "Frank": "Friend", "Tom":
"Family", "Mark": "Family"]

If you’re wondering, printing dictionaries is the same as printing
arrays. You can use the print() command with the name of the array or

178 CHAPTER 7 Knitting variables into arrays and dictionaries
dictionary, and you’ll get everything in it. To print the preceding dic-
tionary, enter this:

print(people)

What if you want to read through a dictionary and check for a certain
condition before you print an item? You have to use a loop and an if
statement for that purpose.

Looping through data in dictionaries
In this section, you learn how to loop through your dictionaries. This
process is almost as simple as looping through arrays, except that you
have a key and value pair every time, not the value alone.

Suppose that you have a list of fruits and animals. The item (apple,
banana, cat, dog) is the key. Keys are unique; they can’t repeat. You’re
looking up items (keys) to figure out whether they’re animals or fruits.
The item you’re looking for is the value. Suppose that you want to look
through your dictionary for anything with a value of animal and list the
key for it. You should get cat and dog as the keys:

To get your answer, type

for (key, value) in myThings {
 if value == "animal" {
 print(key)
 }
}

<dictionary> myThings

<vname1> key <vname2> value

apple fruit

banana fruit

dog animal

cat animal

What is a dictionary? 179
This code says, “For each data pair in my dictionary, if the value is ani-
mal, print the key.” Swift prints

dog
cat

Here’s the syntax:

for (<vname1>, <vname2>) in <dictionary> {
 <code>
}

Table 7.4 explains all the parts of the syntax.

Pop quiz

1 Create a loop to selectively print only family.

2 Create a loop that changes all "Family" to "Relative".

I give you more examples in the next section.

Table 7.4 Syntax definitions for for in loops with dictionaries

Part of syntax Explanation

<vname1> The first variable name, or the key part of the dictionary

<vname2> The second variable name, or the value part of the dictionary

<dictionary> The actual dictionary to loop through

<code> The code that’s executed in each iteration

Answers:

1for (key, value) in people {
 if value == "Family" {
 print(key)
 }
 }

 2for (key, value) in people {
 if value == "Family" {
 people[key] = "Relative"
 }
 }

180 CHAPTER 7 Knitting variables into arrays and dictionaries
Friend List app
Here’s another app!

What does this app do?
This app creates a list of your friends.

NOTE You can find the code for this application in the Chapter07_FriendList
file inside the Hello-Swift-Code-master folder that you downloaded from
GitHub. If you haven’t downloaded the code from GitHub, go to: https://
github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You should
download the code only once for all chapters.

Set up the app, and create the UI
Give the app a UI like the one in figure 7.5.

Figure 7.5 The Friend List UI

Type: Textfield,

IBOutlet: personName,

Placeholder Text: Person name

Type: Textfield,

IBOutlet: personInfo,

Placeholder Text: Person Info

Type: Textview,

IBOutlet: personList

Type: Button,

IBAction: addPerson,

Text: Add Person to list

Type: Button,

IBAction: reload,

Text: Reload List

Add Person to listPerson Name

Person Info Reload List

View Controller

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

Friend List app 181
Code the app
Next, modify the code to look like the following listing.

Listing 7.2 The Friend List code

class ViewController: UIViewController {

 var persons: [String: String] = [:]

 @IBOutlet var personName: UITextField!
 @IBOutlet var personInfo: UITextField!
 @IBOutlet var personList: UITextView!

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view,

➥ typically from a nib.
 }

 @IBAction func reload() {
 var finalString = ""
 for (name, who) in persons {
 finalString = "\(finalString)\(name), \(who)\n"
 }
 personList.text = finalString
 }

 @IBAction func addPerson() {
 persons[personName.text!] = personInfo.text!
 personName.text = ""
 personInfo.text = ""
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be re-created.
 }
}

You have a dictionary of String and String type to store the name and
info of your friend. Later, you can loop through the dictionary (which
is what you do in the IBAction) and put that list in the actual TextView
with a little bit of formatting.

Here, you’re declaring a
blank dictionary by
enclosing a colon within a
pair of square brackets.

182 CHAPTER 7 Knitting variables into arrays and dictionaries
CONNECT THE IBOUTLETS AND IBACTIONS

Table 7.5 lists what all the IBOutlets in the app do.

Table 7.6 lists what all the IBActions in the app do.

Now, you can hook up all the IBActions and Outlets as follows:

1 Connect the “Person Name” TextField to the personName IBOutlet.

2 Connect the “Person Info” TextField to the personInfo IBOutlet.

3 Connect the “Add Person to list” Button to the addPerson IBAction.

4 Connect the “Reload List” Button to the reload IBAction.

5 Connect the “Output” TextView to the personList IBOutlet.

Table 7.5 IBOutlets in the Friend List app

IBOutlet What it does

personName The TextField where the user can enter his
friend’s name. The friend’s name also acts as the
key in the dictionary called persons.

personInfo The TextField where the user can enter his
friend’s info. The friend’s info also acts as the
value of the dictionary.

personList The output that the user gets in the TextView.

Table 7.6 IBActions in the Friend List app

IBAction What it does

reload This button or IBAction reloads the TextView
of output and puts whatever is in the dictionary
in the TextView.

addPerson This button or IBAction puts whatever the user
entered in the TextFields into the dictionary.

Check your app knowledge 183
Run your app! When you do, it should look like figure 7.6.

You should be able to add a person’s name to the friend list and display
the list, as shown in figure 7.7.

Check your app knowledge
1 How do you create an empty array and dictionary?

Hint: If you’re wondering why in the world you’d want to create an
empty array or dictionary, there are many reasons. The main reason
is that you may want to create an array but don’t have the data that
goes in it yet. You create a blank array as a placeholder and add the
data as it comes in.

2 What are three differences between an array and dictionary?

3 What’s wrong with the following line of code?

var emptyDictionary: [String: String] = []

Add Person to listPerson Name

Person Info Reload List

Figure 7.6 Running the
Friend List app

Add Person to listFrank

Friend

Frank, Friend

Reload List

Figure 7.7 Using the Friend
List app

184 CHAPTER 7 Knitting variables into arrays and dictionaries
4 Fill in the blanks for the following code:

for ____ in arr {
 print(____)
}

5 How do you use a for in loop to go through an array? Describe with
example code.

6 How can you retrieve every person who’s a friend from the people
dictionary you made in the “Modifying the dictionary” section?
Rules: You must use a loop and an if statement.

7 Is there a shorter way to do this?

var someArray = [1, 4, 23, 6, 7, 2, 8, 9]
for j in 0…someArray.count - 1 {
 print(someArray[j])
}

8 The table in figure 7.8 shows the quiz scores of five students in Lan-
guage, Math, Science, and Social Studies classes.

Figure 7.8 Diagram showing the marks in the two-dimensional array

Student 1

Student 2

Student 3

Student 4

Student 5

17 4 5

58 6 2

49 7 8

43 8 5

32 1 7

Language Math Science
Social

Studies

App-Exercise: Alphabet Unscrambler 185
Here’s some code that uses the information from the figure in a two-
dimensional array:

var scores: [[Int]] = [[2, 3, 1, 7], [8, 5, 6, 2], [7, 1, 4, 5],
[3, 4, 8, 5], [9, 4, 7, 8]]

for i in scores {
 print(i)
}

Try to find out what the code prints. If you get stuck, test it in the
playground to get the correct answer.

App-Exercise: Alphabet Unscrambler
Now you’re ready to start building this chapter’s first exercise.

What does this app do?
In this section, you make a game: the Alphabet Unscrambler app.

NOTE You can find the code for this application in the Chapter07_Alphabet-
Unscrambler file inside the Hello-Swift-Code-master folder that you down-
loaded from GitHub. If you haven’t downloaded the code from GitHub, go
to: https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You
should download the code only once for all chapters.

In this game, you have nine letters: A, B, C, D, E, F, G, H, and I. The
game starts with these letters scrambled. In this game, it’s the player’s
job to put the letters in the correct order by unscrambling them. To
unscramble letters, all you can do is click them. When you click a letter,
all the letters from the beginning to wherever you clicked are put in
reverse order. Continue this process, and you’ll be able to unscramble
the letters.

Suppose that one scrambled set of letters is

C D I H A B F E G

If you click A, the game reverses the order of the letters C, D, I, H, A
to A, H, I, D, C. Then the set of letters looks like this:

A H I D C B F E G

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

186 CHAPTER 7 Knitting variables into arrays and dictionaries
Your job is to click the letters until you get

A B C D E F G H I

The finished app looks like figure 7.9.

Set up the project, and create a UI
To start, create a UI like the one shown in figure 7.10.

Figure 7.10 The Alphabet Unscrambler game UI

View Controller

Figure 7.9
The final app

Type: Button,

Text: 0,

IBOutlet: button2,

IBAction: btnClicked

• • •• •

Type: Button,

Text: 0,

IBOutlet: button9,

IBAction: btnClicked

Type: Button,

Text: 0,

IBOutlet: button1,

IBAction: btnClicked

View Controller

App-Exercise: Alphabet Unscrambler 187
Code the app
Next, modify the code to look like the following listing.

Listing 7.3 The Alphabet Unscrambler code

import UIKit

extension Array {
 func shuffle() -> Array {
 var tempArr = self
 for (index, _) in tempArr.enumerated() {
 let rand = Int(arc4random_uniform(UInt32(tempArr.count - 1)))
 let temp = tempArr[rand]
 tempArr[rand] = tempArr[index]
 tempArr[index] = temp
 }
 return tempArr
 }
}

extension UIButton {
 func text() -> String {
 return self.titleLabel!.text!
 }
}

class ViewController: UIViewController {

 var alphabet: [String] = []

 @IBOutlet var button1: UIButton!
 @IBOutlet var button2: UIButton!
 @IBOutlet var button3: UIButton!
 @IBOutlet var button4: UIButton!
 @IBOutlet var button5: UIButton!
 @IBOutlet var button6: UIButton!
 @IBOutlet var button7: UIButton!
 @IBOutlet var button8: UIButton!
 @IBOutlet var button9: UIButton!

 override func viewDidLoad() {
 super.viewDidLoad()
 alphabet = ["A", "B", "C", "D", "E", "F", "G", "H", "I"]

This array contains the
alphabet from A to I.

These are the IBOutlets for the
buttons, so that you can put
letters A to I into them.

188 CHAPTER 7 Knitting variables into arrays and dictionaries
 alphabet = alphabet.shuffle()
 button1.setTitle(alphabet[0], for: .normal)
 button2.setTitle(alphabet[1], for: .normal)
 button3.setTitle(alphabet[2], for: .normal)
 button4.setTitle(alphabet[3], for: .normal)
 button5.setTitle(alphabet[4], for: .normal)
 button6.setTitle(alphabet[5], for: .normal)
 button7.setTitle(alphabet[6], for: .normal)
 button8.setTitle(alphabet[7], for: .normal)
 button9.setTitle(alphabet[8], for: .normal)

 // Do any additional setup after loading the view,

➥ typically from a nib.
 }

 @IBAction func btnClicked(sender: UIButton) {
 var indexTo: Int = 0
 for (index, i) in alphabet.enumerated() {
 if i == sender.text() {
 indexTo = index
 }
 }
 let indexFrom: Int = 0
 var newArray: [String] = []
 for i in indexFrom...indexTo {
 newArray.append(alphabet[i])
 }
 //REVERSE NEW ARRAY!
 var k = 0
 var j = newArray.count - 1
 while k < j {
 let temp = newArray[j]
 newArray[j] = newArray[k]
 newArray[k] = temp
 k += 1
 j -= 1
 }
 //ADD TO OLD ARRAY!
 for i in indexFrom...indexTo {
 alphabet[i] = newArray[i]
 }
 button1.setTitle(alphabet[0], for: .normal)
 button2.setTitle(alphabet[1], for: .normal)

Here, you’re putting
the shuffled
alphabet into the
buttons one by one.

In this IBAction, you
swap all letters from
the letter at position
1 to the letter that
the user clicked.

Same as in 9 lines of code
above, where you set the

text of the buttons; it's just
after the line in which you
called alphabet.shuffle().

App-Exercise: Alphabet Unscrambler 189
 button3.setTitle(alphabet[2], for: .normal)
 button4.setTitle(alphabet[3], for: .normal)
 button5.setTitle(alphabet[4], for: .normal)
 button6.setTitle(alphabet[5], for: .normal)
 button7.setTitle(alphabet[6], for: .normal)
 button8.setTitle(alphabet[7], for: .normal)
 button9.setTitle(alphabet[8], for: .normal)
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be re-created.
 }
}

Learn how the code works
NOTE You can ignore the two extensions at the top of the code. Put them in
your code, though, to make it work better. You learn about extensions in
chapter 9.

Let me explain the code.

First, in the viewDidLoad function, you’re shuffling all nine letters in the
array so that when you start the game, the letters aren’t by default
already in A, B, C, D, E, F, G, H, I order. (If they are, what’s the point
of the game?) Then you put the values (the letters A to I) in the but-
tons in random order one by one, as in this example:

button1.setTitle(alphabet[0], for: .normal)

This line of code sets the title of the first button to the element at position
zero of the array, which could be E or another letter from the set. This
way, all the letters gets displayed as clickable buttons in the interface.

Next, all the buttons are connected to an IBAction called btnClicked.
Here, you check what index that button holds, in the array; then you
swap all array elements from the beginning to the letter that was
clicked. In the last part of the code, you update the text of all the but-
tons—a repetition of the nine lines of code you wrote in the viewDidLoad
function. You can avoid this repetition by using functions.

190 CHAPTER 7 Knitting variables into arrays and dictionaries
Run the app
Try your game. Does it work as I described it?

That’s it! In chapter 8, you learn about functions and get rid of repeti-
tion in your code.

8
1

3

5

4

6

14

8

7 9

N A Journey

2

12

13

10

11

Reuse your code: Clean it with
function detergent

This chapter discusses one of the most
interesting and important topics: functions!

This chapter covers

• What a function is
• How a function is created and used
• How to pass data to a function
• How to receive data from a

function
191

192 CHAPTER 8 Reuse your code: Clean it with function detergent
You’ve reached the eighth milestone: reuse your code. Before you get
started, here’s the main thing you need to know about functions: func-
tions exist so that you can reuse and clean your code.

Read on, and I’ll explain why you might want to have reusable code.

Reuse and clean your code with functions
You’re about to find out what a function is. I’ll start with a simple
example.

Imagine that you’re playing a game on your computer. In this game,
your character needs to jump over obstacles. You have three ways to
make your character jump:

 Press the J key.
 Press the up-arrow key.
 Press the spacebar.

Although it sounds like a simple thing, making a character jump in a
game could take 40 lines of code or more.

Now think about the jump taking 40 lines of
code. I won’t put a big block of code here, but
look at the diagram in figure 8.1.

All three blocks of code do the same thing: make
the character jump. As shown in the figure, you
could type the same 40 lines of code for jumping
for all three events, but there are a few problems
with that:

 It’s messy. Your code is long and difficult to
understand, and hard to follow later if you
want to change it.

 It’s not good to update the code to change
something. What if you wanted to make the
character jump higher? You’d have to find and
change the code in all three places, not in one

lots of code that
makes character jump

Player presses J key, so do

Player presses up arrow, so do

Player presses spacebar, so do

lots of code that
makes character jump

lots of code that
makes character jump

Figure 8.1 Painting a picture
of a function

Reuse and clean your code with functions 193
block. And forgetting to update in all places will make your app buggy
and seem to be of bad quality.
Functions are blocks of code that are written once and can be called how-
ever many times you need them in your app and wherever the scope
allows, so you don’t have to type the same lines of code many times. You
will learn about scope in chapter 9.

Functions help you keep your code unclut-
tered and easier to change. If you turn the
block of code you used three times into a
function, it looks like figure 8.2.

Are you ready to see what a function looks
like in code?

Simple functions
You’re about to use code to write some simple functions:

 Create a new playground, and call it functions_in_swift.
 Remove the first line of code.
 To create a function, type this code:

func sayHello() {
 print("Hello, iOS!")
}

Creating a function means

 Giving a name to a function
 Writing the function’s code between two curly braces to tell it what

to do when it’s called
 Take another look at this code, with the lines explained:

func sayHello() {
 print("Hello, iOS!")
}

lots of code that
makes character jump

Player presses J key, up arrow,
or the spacebar, so do

Figure 8.2 Understanding
functions

This line is where you give the function a name after the
keyword func, followed by parentheses and then a curly brace.
The opening brace means that everything that comes after
it is the function’s code until the closing brace is found.

This line is the only line of code in the function.
You can have any number of lines in a function.
You could have 40 lines, for example, as in the
game with the jumping character.

This curly brace
ends the
function block.

194 CHAPTER 8 Reuse your code: Clean it with function detergent
This function prints "Hello, iOS" in the playground. To make this hap-
pen, you call the function. When you call a function, it carries out the
code in its curly braces.

To call this function, type the name of it anywhere in your code. Try
this:

sayHello()

You should see the words "Hello, iOS!" print in the playground.

Now that you have a function in use, here’s the basic syntax of a
function:

func <functionName>() {
 <funcCode>
}

Table 8.1 shows what these parts are doing.

Why do I need a function to print the same text? It’s almost faster to
type the code when I need it.

First of all, what if you needed to print 100 lines, and you needed to do
this several times? Would you repeat those hundred lines of code?
No? Of course not! Functions can have hundreds of lines of code, and
think about not having to repeat those lines over and over in your
main code. Also, although it’s true that this function isn’t very useful,
you can make functions do more than run the same code. And you can
make the code in a function do different things, depending on condi-
tions, as you’ll find out soon.

Table 8.1 Syntax definitions for simple functions

Part of syntax Explanation

<functionName> The name of the function, which you use when you call it in your code

<funcCode> The code between the curly braces that runs whenever the function name
is called

Giving info to your reusable code 195
Here are two more functions you can try.

The enjoy() function tells Frank to have a good weekend:

func enjoy() {
 print("Enjoy your weekend, Frank! See you next week.")
}

enjoy()

Next is the printDaysOfWeek() function, which prints the days of the
week by using an array:

func printDaysOfWeek() {
 let days = ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
 ➥ "Friday", "Saturday"]
 for i in days {
 print(i)
 }
}

printDaysOfWeek()

Exercise

1 Create a function that prints the numbers 1 to 10. (Hint: Use a loop in the function
block.) Then call the function and check your work.

2 Write a function to print the times table of 3, when called. Check your work from
the output it gives.

The functions you’ve seen so far have limited functionality. They can
do the same thing each time they’re called. But you can do a lot more
with functions. You’re about to learn how you can send them data to
make them more useful.

Giving info to your reusable code
In this section, you give your functions some data so that they can
work with it. You do this with the help of parameters. Parameters are
the data you give to a function. Think of a parameter as being like
input for the function.

This line is where you
call the function.

Here, you’re calling the function
to print the days of the week.

196 CHAPTER 8 Reuse your code: Clean it with function detergent
Take a look at the simple function in figure 8.3. This function prints
whatever the programmer asks it to, using a parameter called
printThis:

Figure 8.3 Understanding parts of a function

Now try it for yourself! You can use the same playground you created
earlier in this chapter.

1 First, type this function in your playground:

func say(printThis: String) {
 print(printThis)
}

2 Next, call the say() function by typing this line:

say(printThis: "Hi, my name is Frank.")

When you call the function, you’re sending it some data. In this exam-
ple, you’re sending it the string "Hi, my name is Frank."

When you type the code say("Hi, my name is Frank."), an instruction is
sent to the say() function to set the parameter printThis to that text
string. Then this function prints whatever is passed to it by the calling
function.

You can send whatever text you want. Try something like this:

say(printThis: "Good morning!")

function name

parameter name

parameter type

Giving info to your reusable code 197
This code prints "Good morning!"

This solves the problem of creating a new function every time you need
to print something different. You’re now using a single function to
print different messages depending on what you put in the printThis
parameter. But functions can do a whole lot more than print whatever
they get sent in a parameter.

Here’s a taste of what else a function is capable of doing. Imagine a
function that takes two numbers as parameters and prints the sum.
When you call a function with parameters, even if there’s only one, you
have to specify each parameter name along with the value that you’re
passing. In figure 8.4, there are two parameters, num1 and num2, and
each has an integer as a value.

Figure 8.4 Function with parameters

To print the sum of 23 and 5, you can call the function like this:

add(num1: 23, num2: 5)

This code prints 28.

Maybe you noticed that in the say() function, you used quotes around
the parameter value you were passing to the function, and in the add()
function, you didn’t. This is because of the data types you were passing
in. The say() function needed a string, and strings need quotes. And
add() takes integers, so you don’t need quotes.

function name

parameter 1

parameter 2

198 CHAPTER 8 Reuse your code: Clean it with function detergent
Why do I need to put the parameter names? Does this mean I can put
the parameters in any order I want?

The parameter names are there to identify the values you’re passing to
the function. Also, unfortunately, the parameter names and values
have to be put in the order in which they were specified in the decla-
ration of the function. But putting those parameters in order does
make it easier to go back and understand your code later, when you
may have forgotten it.

You can give the add() function all kinds of numbers (big or small, neg-
ative or positive integers), and it will still work, add(num1: 294, num2:
357) prints 651, for example.

Here’s the syntax of such a function that takes parameters:

func <funcName>(<parameter1: type>, <parameter2: type>, ...) {
 <funcCode>
}

Table 8.2 shows the syntax of a function that takes parameters.

Table 8.2 Syntax definitions for functions with parameters

Part of syntax Explanation

<funcName> The name of the function and what you use when you call it

<parameter1: type>,
<parameter2: type>, ...

The variables, or values, that the function takes when it’s called.
Before you pass these parameters (values or variables), you
have to declare, in the parentheses, each of the parameters as

<varName>: <varType>

<funcCode> The code inside the curly braces that runs whenever the function
is called

Giving info to your reusable code 199
What happens if you have a function that expects two param-
eters, but you call it with only one?

Xcode gives you a special category of error: a “fix-it.” You
can click this error, and Xcode will give you the solution and
fix it for you automatically.

What types of parameters can you use other than text and
integer?

Any valid data type will work as a parameter as it works with
a variable or a constant.

Before moving on, you should take another look at the add() function,
which takes two numbers, adds them, and prints the result. What if the
programmer wanted the result back from the function so he could store
it in a variable to do other things with it?

Here’s an example. Suppose that a cashier is selling pens for 50 cents
apiece. At any time, when a person comes to buy pens, the cashier has
to calculate the money that the customer needs to pay by multiplying
the number of pens by the rate.

The programmer can write a function called penCost() that takes two
parameters: the number of pens and the rate. Then it returns a value:
the money to be charged to the customer for the pens.

But there are taxes on this purchase. The programmer can write
another function to compute the tax: costPlusTax(). The tax function
needs the cost result from the first function, penCost(), so it can be used
to calculate the taxes with the costPlusTax() function.

To capture data from a function, you need to use a return value.

You’ve learned how to pass some text or a number to a function so that
the function can use it. Now you learn how to code a function so that it
can return values, or the results of calculations, to the caller.

Next, you learn about return values.

200 CHAPTER 8 Reuse your code: Clean it with function detergent
Getting info from your reusable code
Welcome to the final and most interesting stage of learning about func-
tions: return values.

What if you need to receive values returned from a function? Fortu-
nately, this task is simple. I’ll begin with an example. Here’s a modified
version of the add() function you saw in the preceding section. Now it
returns the result it gets after adding the two numbers:

func addNums(num1: Int, num2: Int) -> Int {
 return num1 + num2
}

Here’s how you can call this function and see the return value:

var result: Int!
result = addNums(num1: 23, num2: 5)
print(result)

Now try it yourself to get a clearer picture of function syntax. Test the
addNums() function in the playground:

func <funcName>(<parameters>) -> <returnType> {
 <funcCode>
 return <valueToReturn>
}

The addNums() function
takes two parameters,
num1 and num2, and has
a return type of Int.

This line returns the
sum of the two numbers.

This line creates the variable
called result of type Int with no
value assigned to it.

This line sets the result variable’s
value to the value returned by the
addNums function.

This line prints the
value of the result variable.

Getting info from your reusable code 201
Table 8.3 gives you a closer look at the syntax.

Here’s another example that calculates the area of a rectangle:

func areaOfRectangle(length: Int, width: Int) -> Int {
 return length * width
}

Try the function by calling it like so:

var area = areaOfRectangle(length: 10, width: 5)
print("The area of the rectangle with length 10 and width 5 is

\(area)")

WARNING You can put return statements anywhere in your function block,
but you usually won’t want to do that, because any code that comes after a
return statement in the function block is ignored.

Table 8.3 Syntax definitions for functions with parameters and return values

Part of syntax Explanation

<funcName> The name of the function and what you use when you call it

<parameters> The variables, or values, that the function takes when it is called. Before
you pass these parameters (values or variables), however, you have to
declare each of the parameters:

<varName>: <varType>, ...

<returnType> The type of variable you’ll be returning from the function. The -> (arrow)
symbol can be read as returns in this context.

<funcCode> The code that runs whenever the function is called

<valueToReturn> The value that the function returns, which can be a value or a variable.
You can have:

return num1 + num2

or

var answer = 0

answer = num1 + num2

return answer

202 CHAPTER 8 Reuse your code: Clean it with function detergent
At times, though, you may want to take advantage of this situation. If
you put a return statement in an if statement, the function wouldn’t
stop until the if condition was true. If the if statement weren’t exe-
cuted (with a return statement in it), Swift would continue with the
code in the function. Your function would need another return state-
ment, or Swift would give you an error. Here’s an example:

func franksStatus() -> String {
 let franksAge = 13

 if franksAge >= 18 {
 return "Adult"
 }
}

If you try to run this code in the playground, you see an error. Note
that the function is programmed to return "Adult" only if Frank’s age is
greater than or equal to 18. But Frank is 13 at present, so the if state-
ment won’t execute. The function won’t return anything, which Swift
doesn’t accept, because this function has been coded to return a string.
So Swift gives you an error.

Both of the following code samples compile correctly, however.

func franksStatus() -> String {
 var franksAge = 13
 if franksAge >= 18 {
 return "Adult"
 }
 return "Minor"
}

func franksStatus() -> String {
 var franksAge = 13
 if franksAge >= 18 {
 return "Adult"
 } else {
 return "Minor"
 }
}

Check your app knowledge 203
Also, here’s a working example of a function that can take two numbers
and tell you whether those numbers are equal:

func isEqual(num1: Int, num2: Int) -> Bool {
 if num1 == num2 {
 return true

 }
 return false
}

Exercise

Try this in your head with these pairs of numbers, and figure out which return
statement will be called.

num1 num2
 2 4
 7 3
10 10

NOTE Even though you use Int and Bool as return types in these functions,
you can return any data type that’s available in Swift.

Now you know how to create a function, pass parameters, and return
values. But (lucky you) you’re getting three apps in a row.

Before you dive into these apps, take a few minutes to check your app
knowledge.

Check your app knowledge
1 Create a function that takes two numbers as parameters and gives

you the product of the two numbers. Do the same thing by creating a
function for subtraction and another for division. This function
should return a Double.

2 What’s wrong with the following code?

func returnRandom(input: Int) -> Int {
 if input == 5 {
 return 1
 }
}

204 CHAPTER 8 Reuse your code: Clean it with function detergent
(Hint: After you’ve made a guess, try the code in the playground to
see whether you were right!)

3 What will the following code print? (Trick question!)

func customPrint() {
 print("Hello World")
}

4 What will the following code print?

func a() {
 print("A CALLED")
 b()
}
func b() {
 print("B CALLED")
 c()
}
func c() {
 print("C CALLED")
}
a()

5 Create a function that takes three integers and returns the biggest of
them.

6 Create a function called squareIt() that can take a number as an Int
and return its squared value. You must print the number returned.

App-Exercise: Virtual Dice
Now you’re ready to start the first exercise for this chapter: creating
the Virtual Dice app. You’ll never need physical dice again!

What does this app do?
In this section, you create a virtual dice application that generates two
random numbers from 1 to 6.

NOTE You can find the code for this application in the Chapter08_Virtual-
Dice file inside the Hello-Swift-Code-master folder that you downloaded from

App-Exercise: Virtual Dice 205
Type: Label, Text: “Die #1:”

Type: Label, IBOutlet: diceOne

Type: Label, IBOutlet: diceTwo

Type: Button, IBAction: simulateDie

Type: Label, Text: “Die #2:”

Randomly Generate Die Numbers

Die #1:

Die #2:

GitHub. If you haven’t downloaded the
code from GitHub, go to: https://github
.com/tanmayb123/Hello-Swift-Code/archive
/master.zip. You should download the code
only once for all chapters.

When the app is done, you’ll see output
like figure 8.5.

Set up the project and create the UI
For this app, you need a UI like the one
in figure 8.6.

Figure 8.5 Virtual Dice final app

Figure 8.6 The Virtual Dice UI

5

3

Die #1:

Die #2:

Randomly Generate Die Numbers

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

206 CHAPTER 8 Reuse your code: Clean it with function detergent
Code the app
Edit your code to look like this:

Listing 8.1 Code for the Virtual Dice app

class ViewController: UIViewController {

 @IBOutlet var diceOne: UILabel!
 @IBOutlet var diceTwo: UILabel!

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view,

➥ typically from a nib.
 }

 @IBAction func simulateDie() {
 diceOne.text = "\(randDice())"
 diceTwo.text = "\(randDice())"
 }

 func randDice() -> Int {
 return Int(arc4random_uniform(UInt32(6))+1)
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be re-created.
 }
}

CONNECT IBOUTLETS AND IBACTIONS

Start with IBOutlets (table 8.4).

Table 8.4 IBOutlets for the Virtual Dice app

IBOutlet Control

diceOne Label under Die #1:

diceTwo Label under Die #2:

This IBAction is called whenever
someone clicks the button.

This function returns a
random number from 1 to 6.

App-Exercise: Rock Paper Scissors 207
Table 8.5 shows the IBActions.

Learn how the code works
Because this app is so small, it’s easy to explain in a paragraph. The app
waits for you to click the button. When you click the button, it gener-
ates two random numbers from 1 to 6 and puts them in the two labels.
Observe how the function randDice() works to provide you the values
as though they’re from a real pair of dice. With this app on your phone,
you’ll never need real dice again!

Run your app
When you run your app, it shows you
two random numbers. An example of
output is in figure 8.7.

And that’s it! Time for the next app.

App-Exercise: Rock Paper Scissors
It’s time for the second exercise of this
section: creating the Rock Paper Scis-
sors app. You can play Rock Paper Scis-
sors anywhere, any time, with this app.

What does this app do?
You’re about to create a Rock Paper
Scissors simulator that you can play
with me, except that I’ll be the com-
puter! In this game, Tanmay (the com-
puter) has as many chances of winning
as the real player does, because my
moves are 100 percent random.

Table 8.5 IBActions for the Virtual Dice app (continued)

IBAction Button

simulateDie Randomly Generate Die Numbers button

5

3

Die #1:

Die #2:

Randomly Generate Die Numbers

Figure 8.7 Virtual Dice: final app

208 CHAPTER 8 Reuse your code: Clean it with function detergent
Type: Label, Text: “Your Choice:”

Type: Label, IBOutlet: personLabel

Type: Label, IBOutlet: computerLabel

Type: Label, IBOutlet: outputLabel

Type: Button, IBAction: btnClicked, Text: Scissors

Type: Button, IBAction: btnClicked, Text: Paper

Type: Button, IBAction: btnClicked, Text: Rock

Type: Label, Text: “Tanmay’s Choice”

Your Choice:

Tanmay's Choice:

Rock Paper Scissors

NOTE You can find the code for this
application in the Chapter08_Rock-
PaperScissors file inside the Hello-Swift-
Code-master folder that yoGitHub. If
you haven’t downloaded the code from
GitHub, go to: https://github.com/
tanmayb123/Hello-Swift-Code/archive/
master.zip. You should download the
code only once for all chapters.

When you build and run the app, it
will look like figure 8.8.

Set up the project, and create the UI
To start, create a UI like the one in
figure 8.9.

Figure 8.8 The Rock Paper Scis-
sors UI

Figure 8.9 Rock Paper Scissors UI

Tanmay wins!

Scissors

Paper
Your Choice:

Tanmay's Choice:

Rock Paper Scissors

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

App-Exercise: Rock Paper Scissors 209

d.
Code the app
Change your code to look like this:

Listing 8.2 Code for the Rock Paper Scissors app

import UIKit
extension UIButton {
 var text: String {
 get {
 return self.titleLabel!.text!
 }
 set {
 self.setTitle(newValue, for: .normal)
 }
 }
}

class ViewController: UIViewController {
 @IBOutlet var computerLabel: UILabel!
 @IBOutlet var personLabel: UILabel!
 @IBOutlet var outputLabel: UILabel!

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view,

➥ typically from a nib.
 }

 @IBAction func btnClicked(sender: UIButton) {
 personLabel.text = sender.text
 computerLabel.text = type()
 if personLabel.text! == computerLabel.text! {
 outputLabel.text = "TIE! Play Again?"
 return
 }
 if checkForPlayerWin(
 humanType: personLabel.text!,
 compType: computerLabel.text!) {
 outputLabel.text = "You win!"
 } else {
 outputLabel.text = "Tanmay wins!"
 }
 }

Ignore this extension! Type it,
however. You don’t need to know
yet, but this extension allows you
to get the text of your UIButton
and set it without lots of code.

This IBAction is called
whenever one of the
three buttons is clicke

210 CHAPTER 8 Reuse your code: Clean it with function detergent
 func type() -> String {
 let randNum = arc4random_uniform(UInt32(3))+1
 switch randNum {
 case 1:
 return "Rock"
 case 2:
 return "Paper"
 case 3:
 return "Scissors"
 default:
 return "ERROR"
 }
 }

 func checkForPlayerWin(humanType: String, compType: String) ->

 ➥ Bool {
 if humanType == "Rock" {
 if compType == "Paper" {
 return false
 }
 if compType == "Scissors" {
 return true
 }
 }
 if humanType == "Paper" {
 if compType == "Scissors" {
 return false
 }
 if compType == "Rock" {
 return true
 }
 }
 if humanType == "Scissors" {
 if compType == "Rock" {
 return false
 }
 if compType == "Paper" {
 return true
 }
 }
 return false
 }

This function returns
a random move that
the computer makes.

This function checks
whether the user
wins or loses.

App-Exercise: Rock Paper Scissors 211
 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be re-created.
 }
}

Connect the IBOutlets and IBActions
Start with the IBOutlets (table 8.6).

Table 8.7 lists the IBActions.

Learn how the code works
Here’s what the app does with the input that you give it:

1 It stores the move the player makes.

2 The app generates a random move by using the turn() function.

3 The app saves your move in the personLabel and the computer’s
move in the computerLabel.

4 The app figures out who won by using the checkForPlayerWin() func-
tion, which returns true if the player won and false if the player lost.

5 The app puts the result in the outputLabel.

Table 8.6 IBOutlets for the Rock Paper Scissors app

IBOutlet Control

personLabel The label under Your Choice:

computerLabel The label under Tanmay’s Choice:

outputLabel The label under computerLabel

Table 8.7 IBActions for the Rock Paper Scissors app

IBAction Button

btnClicked All three player buttons (Rock, Paper, Scissors)

212 CHAPTER 8 Reuse your code: Clean it with function detergent
Run your app
That was simple, wasn’t it! When you run the app, make your choice of
rock, paper, or scissors, and Tanmay will make his. Your screen will
look similar to figures 8.10 and 8.11.

App-Exercise: Money Denomination
Get ready for another app-exercise. This exercise will help you to build
your programming skills, your math skills, and will be useful in your
everyday life.

NOTE You can find the code for this application in the Chapter08_Money-
Denomination folder inside the Hello-Swift-Code-master folder that you
downloaded from GitHub. If you haven’t downloaded the code from GitHub,
go to: https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip.
You should download the code only once for all chapters.

Your Choice:

Tanmay's Choice:

Rock Paper Scissors

Figure 8.10 The final RPS app

Tanmay wins!

Scissors

Paper
Your Choice:

Tanmay's Choice:

Rock Paper Scissors

Figure 8.11 The Rock Paper
Scissors UI

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

App-Exercise: Money Denomination 213
Warning: There’s a lot of code in this one, so you’ll need to be a
patient typist. Or you can use the code you downloaded.

What does this app do?
In this section, you create an app that takes a total amount of money
from a user (you) and tells you the fewest bills and coins that you’ll
need to make the total amount of money. This app is based on Cana-
dian currency, which consists of

 $100 bills
 $50 bills
 $20 bills
 $10 bills
 $5 bills
 $2 coins
 $1 coins
 $0.25 coins
 $0.10 coins
 $0.05 coins
 $0.01 coins

When you run the app, you see output
like figure 8.12. (This example uses
$234.67.)

How does this app work?
I’ll start by discussing how this app
works. It may be a bit challenging, so I
created the diagram in figure 8.13 to
help you. Take a look at the diagram
and then read the explanation after it.

Denominate the money!

234.67

234.67TOTAL:

Figure 8.12 Money Denomina-
tion: final app

214 CHAPTER 8 Reuse your code: Clean it with function detergent
Figure 8.13 How the number of bills and coins is calculated

Here’s a description of what that figure entails:

1 The code takes an amount of money that a user enters into the app.
Call this amount the starting amount.

2 Starting with the $100 bills, the code uses the greater-than (>) or
equal-to (=) operator to find out whether it can use the bill or coin
it’s currently checking. If so, it calculates how many of that kind of
bills or coins it can use and then subtracts that much from the start-
ing amount of money.

3 This step repeats from the biggest to the smallest denominations.

4 When the app is done with the $1 coin, it gets into the cents. This
part is where calculations start to change, and the app has to do a bit
more math, so things get trickier!

Suppose that you have $0.40, or 40 cents. You don’t want that in deci-
mal form, because it makes the calculations easier when the amount is
a whole number. So the code rounds the decimal to hundredths and
then multiplies it by 100. As a result, the app gets a whole number
that equals the remaining money in cents. Then it continues, and
instead of doing math with complicated decimals, it uses simple whole
numbers.

Get the amount of money entered by the user.
Let’s say the user enters $234.67.

Check if it is greater than $100
(the current bill).

Do integer division for $234.67 and the current bill ($100).
You get 234.67/100 = 2. Repeat

this for all
denominations.You realize that you need 2 of $100 bills for the amount.

Show this amount in the label on the app.

Calculate the remaining money that you need to find bills and
coins for 234.67 − (2 × 100) = $34.67.

App-Exercise: Money Denomination 215
Set up the project, and create the UI
Create the UI first. Figure 8.14 shows all the elements you’ll need to
place in the UI.

Figure 8.14 Money Denomination UI

Code the app
Type the following code:

Listing 8.3 The code for the Money Denomination app

class ViewController: UIViewController {

 @IBOutlet var inputMoney: UITextField!

 @IBOutlet var b100: UILabel!
 @IBOutlet var b50: UILabel!

Type: Button

Text: “Denominate the money!”

IBAction: denominateMoney

Type: Label, Text: “$100 bills”

Type: Label, Text: “$50 bills”

Type: Label, Text: “$20 bills”

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Type: Label, Text: “$0.01 coins”

Type: Label, Text: “TOTAL:”

Type: TextField

Placeholder Text:

 “Amount of Money”

IBOutlet: inputMoney

Type: Label, Text: 0,

IBOutlet: b100

Type: Label, Text: 0,

IBOutlet: b50

Type: Label, Text: 0,

IBOutlet: b20

Type: Label, Text: 0,

IBOutlet: c1c

Type: Label, Text: 0,

IBOutlet: totalLab

0

Amount of Money

TOTAL:

Denominate the money!

216 CHAPTER 8 Reuse your code: Clean it with function detergent
 @IBOutlet var b20: UILabel!
 @IBOutlet var b10: UILabel!
 @IBOutlet var b5: UILabel!
 @IBOutlet var c2: UILabel!
 @IBOutlet var c1: UILabel!
 @IBOutlet var c25: UILabel!
 @IBOutlet var c10: UILabel!
 @IBOutlet var c5: UILabel!
 @IBOutlet var c1c: UILabel!

 @IBOutlet var totalLab: UILabel!

 var moneyVals: [String: Int] = ["NB100d": 0, "NB50d": 0, "NB20d":

➥ 0, "NB10d": 0, "NB5d": 0, "NC2d": 0, "NC1d": 0, "NC25c": 0,

➥ "NC10c": 0, "NC5c": 0, "NC1c": 0]

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view,

➥ typically from a nib.
 }

 @IBAction func denominateMoney() {
 moneyVals = ["NB100d": 0, "NB50d": 0, "NB20d": 0, "NB10d": 0,

➥ "NB5d": 0, "NC2d": 0, "NC1d": 0, "NC25c": 0, "NC10c": 0, "NC5c":

➥ 0, "NC1c": 0]

 var total = (inputMoney.text! as NSString).doubleValue

 if total >= 100 {
 let nOfBills: Int = Int(total / 100)
 total -= Double(nOfBills * 100)
 moneyVals["NB100d"] = nOfBills
 }

 if total >= 50 {
 let nOfBills: Int = Int(total / 50)
 total -= Double(nOfBills * 50)
 moneyVals["NB50d"] = nOfBills
 }

 if total >= 20 {
 let nOfBills: Int = Int(total / 20)

This code is the dictionary
that will hold the amount
of each bill that’s required.

This IBAction denominates the
money when the button is clicked.

App-Exercise: Money Denomination 217
 total -= Double(nOfBills * 20)
 moneyVals["NB20d"] = nOfBills
 }

 if total >= 10 {
 let nOfBills: Int = Int(total / 10)
 total -= Double(nOfBills * 10)
 moneyVals["NB10d"] = nOfBills
 }

 if total >= 5 {
 let nOfBills: Int = Int(total / 5)
 total -= Double(nOfBills * 5)
 moneyVals["NB5d"] = nOfBills
 }

 if total >= 2 {
 let nOfCoins: Int = Int(total / 2)
 total -= Double(nOfCoins * 2)
 moneyVals["NC2d"] = nOfCoins
 }

 if total >= 1 {
 let nOfCoins: Int = Int(total / 1)
 total -= Double(nOfCoins * 1)
 moneyVals["NC1d"] = nOfCoins
 }

 total = round(100 * total) / 100
 total = total * 100

 if total >= 25 {
 let nOfCoins: Int = Int(total / 25)
 total -= Double(nOfCoins) * 25
 moneyVals["NC25c"] = nOfCoins
 }

 if total >= 10 {
 let nOfCoins: Int = Int(total / 10)
 total -= Double(nOfCoins) * 10
 moneyVals["NC10c"] = nOfCoins
 }

218 CHAPTER 8 Reuse your code: Clean it with function detergent
 if total >= 5 {
 let nOfCoins: Int = Int(total / 5)
 total -= Double(nOfCoins) * 5
 moneyVals["NC5c"] = nOfCoins
 }

 if total >= 1 {
 let nOfCoins: Int = Int(total / 1)
 moneyVals["NC1c"] = nOfCoins
 }

 var total__: Double = 0
 total__ += Double(moneyVals["NB100d"]!) * 100
 total__ += Double(moneyVals["NB50d"]!) * 50
 total__ += Double(moneyVals["NB20d"]!) * 20
 total__ += Double(moneyVals["NB10d"]!) * 10
 total__ += Double(moneyVals["NB5d"]!) * 5
 total__ += Double(moneyVals["NC2d"]!) * 2
 total__ += Double(moneyVals["NC1d"]!)
 total__ += Double(moneyVals["NC25c"]!) * 0.25
 total__ += Double(moneyVals["NC10c"]!) * 0.10
 total__ += Double(moneyVals["NC5c"]!) * 0.05
 total__ += Double(moneyVals["NC1c"]!) * 0.01

 totalLab.text = "\(total__)"

 putValuesInLabels()

 }

 func putValuesInLabels() {
 let b100V = (moneyVals["NB100d"]!)
 let b50V = (moneyVals["NB50d"]!)
 let b20V = (moneyVals["NB20d"]!)
 let b10V = (moneyVals["NB10d"]!)
 let b5V = (moneyVals["NB5d"]!)
 let c2V = (moneyVals["NC2d"]!)
 let c1V = (moneyVals["NC1d"]!)
 let c25V = (moneyVals["NC25c"]!)
 let c10V = (moneyVals["NC10c"]!)
 let c5V = (moneyVals["NC5c"]!)
 let c01V = (moneyVals["NC1c"]!)

App-Exercise: Money Denomination 219
 b100.text = "\(b100V)"
 b50.text = "\(b50V)"
 b20.text = "\(b20V)"
 b10.text = "\(b10V)"
 b5.text = "\(b5V)"
 c2.text = "\(c2V)"
 c1.text = "\(c1V)"
 c25.text = "\(c25V)"
 c10.text = "\(c10V)"
 c5.text = "\(c5V)"
 c1c.text = "\(c01V)"

 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be re-created.
 }

}

Connect the IBOutlets and IBActions
Now connect the IBOutlets and IBActions to their respective controls
(tables 8.8 and 8.9).

Table 8.8 The IBOutlets for the Money Denomination app

IBOutlet Control

b100 Label beside $100 bills

b50 Label beside $50 bills

b20 Label beside $20 bills

b10 Label beside $10 bills

b5 Label beside $5 bills

c2 Label beside $2 coin

c1 Label beside $1 coin

c25 Label beside $0.25 coin

220 CHAPTER 8 Reuse your code: Clean it with function detergent
Run the app
When you run this app, it should look
like figure 8.15.

That’s it for functions and apps. In
chapter 9, you learn how to group your
functions and variables to create
classes and why you should use them.

Figure 8.15 Money Denomination app

c10 Label beside $0.10 coin

c5 Label beside $0.05 coin

c1c Label beside $0.01 coin

inputMoney Input TextField

totalLab Label beside TOTAL:

Table 8.9 The IBActions for the Money Denomination app

IBAction Button

denominateMoney() Denominate the Money!

Table 8.8 The IBOutlets for the Money Denomination app (continued)

IBOutlet Control

TOTAL:

234.67

234.67

Denominate the money!

9
1

3

5

4

6

14

8

7 9

N A Journey

2

12

13

10

11

Reduce your code: Use less,
do more with class detergent

Congratulations! You’ve finished all the beginner’s
topics, and now you move on to intermediate
topics. In this first intermediate-level chapter,
you learn about classes and how they make your
code cleaner, shorter, and easier to reuse.

This chapter covers

• What is a class?
• Why would I use a class, anyway?
• What are the benefits of classes?
• What are initializers?
• How do classes inherit from their

parent classes?
• What is evolution?
• What’s scope and how does

it apply to your code?
• What’s the difference

between declaring,
defining?
221

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

222 CHAPTER 9 Reduce your code: Use less, do more with class detergent
Milestone 9, Reduce your code, is where things get a little more
advanced. Classes make your code more portable and easier to maintain.

Reduce and clean your code with classes
I’ll start by giving you a bird’s-eye view of what classes are and then
show you how to code them.

WARNING The topic of classes isn’t simple. This chapter has been made easy
to understand to help you learn. But some information on classes isn’t
included or explained in-depth, either because I teach it to you later or you
don’t need to know it yet.

What is a class?
Think of a class as a collection of related functions and variables, with
special features, that are organized into a bundle. Let me give you an
example.

To understand the concept of a class, think about what the word per-
son means. We’re all different in lots of ways—skin color, height, age,
hair color, gender, and more—but still, each one of us is a person.

Now suppose that you’re making a class called Person. This class has
many attributes, such as height, age, and eye color. It also contains lots
of functions, which are things that a person can do, including breath-
ing, talking, working, playing, eating, and reading this book.

So a class is essentially a group of attributes and functions that identify
something broadly. Every one of us can be in the Person class.

If you talk about a specific person, however, such as Tim Cook, you’d
say that he’s an object of the class Person. (I come back to the idea of
objects a bit later.)

So the class Person can describe every person. Now consider a shark. If
you think about what goes into the Person class, it’s clear that a shark is
in a different class.

Reduce and clean your code with classes 223
Similarly, you know that a dog, cat, snake, or plant are in different
classes because all these beings have different attributes and functions.

You apply the same concept in your programs. You can take related
attributes and functions and organize them into a bundle called a class.

Why you should learn to use classes
You may be thinking, “Okay, I know that a class groups a bunch of
related stuff. But I don’t see the big deal. Why bother using classes?”

Using classes makes things easier when you have to go back and main-
tain your code, which you will. (I explain why in a moment.) Here’s
why you should use classes instead of mushing all your code into one
big program. Classes do all the following things:

 Keep code clean and organized.
 Make code readable for yourself and for other programmers.
 Add functionality. (I talk about this topic later.)
 Help you debug your code because the code is understandable; if

there’s a problem, you can find it and solve it quickly.
 Make changes globally. If you change code in one class, it changes in

all the places it’s referenced.
 Make sharing code easy. (You could make a class for line drawing

and put it on the internet for thousands of people to see and use.)
 Give you more great features, such as initializers and inheritability,

that aren’t available without classes. You learn about these features
in this chapter.

Have some fun with classes
Ready to have some fun? I’m going to ask you some questions about
some pictures—what are the things in rows A, B, C, and D of table
9.1?

224 CHAPTER 9 Reduce your code: Use less, do more with class detergent
You probably got the answers right: A. dogs, B. cars, C. plants, and D.
horses. That quiz was easy because you can identify classes of things,
even if you don’t know all the details (or properties, as you’ll learn soon).

THINK How can your brain distinguish among a dog, a horse, a plant, and a
car? Your brain knows that what it’s looking at belongs to a class named Dog, for
example. The specs of the object (Dog in this case) can be worked out by looking
closely at it. Similarly, your brain works its way out for recognizing horses,
plants and cars! This is how the concept of classes works in everyday life.

Table 9.1 What are these things?

A

B

C

D

Reduce and clean your code with classes 225
Classes are part of everyday life. Each car may be slightly different in
size or shape from other cars, for example, but the basic idea is the
same: “a structure with four wheels, a hood, a trunk, a steering wheel,
and the ability to throttle its wheels when the gas pedal is pressed.”

In a similar way, classes are used in programming. Classes are tem-
plates that can be filled out to create a final thing. (I’m using the word
thing because the template can create anything of that kind.)

You can create a template for a Dog and use that template to create a
specific Dog. Anything in class Dog performs the same actions (or func-
tions), such as barking and tail-wagging, and has a good sense of smell.
You can set attributes, or properties, such as name, color, breed, size,
amount of fur, tail size, shape of mouth, and eye color in the template to
make a final thing—in this case, a final dog. The final thing you create
is called an object or instance. The actions that these objects are capa-
ble of performing are called functions or methods. Fur color, length of
tail, eye color, and other qualities are called variables and properties.

If I’m talking about any dog, I’m talking about the actual template or
class. If I’m talking about a specific dog, such as Amy’s dog Ranger,
that dog is an instance (or object) of the template (or class).

Table 9.2 may help you visualize classes better.

Table 9.2 Visualization of a simple Dog class and instance

Class Properties Values Instance

Dog Name Ranger Ranger

Color Brown

Size of ears 3 inches

Functions

Bark

Wag tail

Fetch ball

226 CHAPTER 9 Reduce your code: Use less, do more with class detergent
Pop quiz

Write down 3 classes based on real-life things. Add attributes (what makes one of
these things stand out from others in the same class) and functions (what this thing
can do) to your classes.

One of the best things about classes is that they let you reuse your code
and reduce the size of your programs.

How do classes reduce code?
The best way to see how classes reduce code is to try one for yourself
and see what it can do with a few lines.

In this section, you create a class named TestClass, which starts off
empty. Then you add a variable called name to the class. After that,
you’ll see how you can access the name variable that you declared in the
class and even change its value.

I explain the rest with the flow as you go.

SNEAK PEEK You’ll be learning about adding functions, initializing the class
you made, and even making classes inherit from other classes. When you learn
that much, you’ll create a special Calculator app.

Create a class
Get started by creating a simple class in a new playground called
classes_in_swift:

class TestClass {

}

It’s that easy to get started with a class. Keep in mind that this class is
the simplest kind you can have, with no functions, variables, methods,
or initializers inside it.

Start the class with the class
keyword, the class name
(TestClass), and an opening brace.

End the class with
a closing brace.

Create a class 227
Add a variable
Now add a variable to the class. Between the braces, type this line of
code:

var name: String = "Frank"

I have a variable called name inside a class, with the value set
to Frank. What if I want to do something with it? How do I
access this class’s variable, called name, from the rest of the
playground?

Before I answer, type the name variable in the playground
outside the class. Go ahead; I’ll wait.

Why didn’t it work? What’s happening?

You should be getting an error (Use of unresolved identi-
fier ‘name’) because the name variable is reserved for use
inside the TestClass class. You won’t be able to access this
variable from any other scope (as you see later in this chapter). To access the
name variable, you have to create an instance of the type TestClass.

Create Instances of your class
To create an instance, use

var testClassInstance = TestClass()

Try typing outside the class, in the playground area.

You’ve created your own type of variable. This variable isn’t a data
type like Int or String, but it’s close because you can make a variable
instance of it. Here, the variable you’ve created is called testClassIn-
stance.

You may have noticed that you’re not using a colon to declare a type of
variable, as you sometimes do for other data types. The key is type
inference, which you learned about in chapter 3.

Even though it’s completely valid to say

var testClassInstance: TestClass = TestClass()

228 CHAPTER 9 Reduce your code: Use less, do more with class detergent
with type inference, you can avoid the type (and colon) and cut to the
chase (or, in this case, the instance part):

var testClassInstance = TestClass()

Now that you know this much, how will it help you? Well, the variable
testClassInstance is essentially a box, and not any box, but a box of type
TestClass. You should recall that this box contains the variable, or a
placeholder of String type, called name. You can do this in the playground:

testClassInstance.name

The code should print "Frank".

This is how you access a variable inside a class. First, you create an
instance of a class; then you type <instanceName>.<variableName> to get
access to it and in this case to see it print.

NOTE Instances are also called objects of the class.

Change the value of a variable
Amazing, right? Well, there’s more. You can change the value in the
name variable (because it’s not a constant) to something like this:

testClassInstance.name = "Tim Billy"

So you’ve also changed the value inside the box itself.

Pop quiz

Here’s a tricky question for you. What do you think will happen if you create a new
instance

var instance2 = TestClass()

and print its name

instance2.name

Will the ouput be "Frank" or "Tim Billy"?

If you guessed "Frank", you’re right! When you changed the name earlier, you
changed only that specific box’s (testClassInstance) name. You didn’t change

Create a class 229
the variable stored in the class; only the variable that was inside the specific box in-
stance (testClassInstance) changed, as illustrated in figure 9.1.

Figure 9.1 Instances of a class are independent.

Adding functionality to classes
Now that you know the bare-bones details of classes, add some func-
tionality, or functions, to your class. You want to add some functions
that let you get and set the value of the variable name:

class TestClass {

 var name = ""

 func getName() -> String {
 return name
 }

 func setName(yourName: String) {
 name = yourName
 }

}

ClassX
name = "Frank"

instanceB
name = "Frank"

instanceA
name = "Tim Billy"

instanceC
name = "Frank"

instanceA
name = "Frank"

name = "Tim Billy"

230 CHAPTER 9 Reduce your code: Use less, do more with class detergent
You added the getName() -> String function and the setName(yourName:
String) function because getting and setting the name in your code
becomes easier for you, as you can call these functions as many times
and include checks for data validity. (I explain another way of doing
this in the Metric Conversion app-excercise later in this chapter.) If
you want to print the variable when you set or get it, for example, enter
this code:

class TestClass {

 var name = ""

 func getName() -> String {
 print("Name is currently: \(name) ")
 return name
 }

 func setName(yourName: String) {
 print("Now setting name to: \(yourName) ")
 name = yourName
 }

}

Table 9.3 takes a closer look at these two functions.

If you were to create an instance, you’d use

var testClassInstance = TestClass()

And to access the name variable, use

testClassInstance.name

Table 9.3 Functions for the TestClass class

Function Purpose

getName() -> String This function gets (accesses) and returns the value of the
variable called name.

setName(yourName: String) This function sets (stores) the value of yourName in the vari-
able called name.

Create a class 231
This still works but won’t execute the code you asked it to in the func-
tion, which is the print statement, because you’re accessing the variable
directly instead of going through the getName() -> String function.

 Quick review
To assign a value to the name variable that you created, use the set-
Name(yourName: String) function, which prints the new value and then
sets the new value.

Add an initializer that does something every time you create an
instance

Next, you add an initializer—a function that’s called automatically
whenever the instance (object) of a class is created. This function can
take parameters but can’t return anything. There are a few types of ini-
tializers (inits, for short), but the three main ones are

 Required—This type of init must be called when you create an
instance of the class.

 Convenience—This type of init is optional, and you can have many
inits of this kind in a class.

 Designated—To create a designated init, you don’t specify the type
of init; Swift takes it as designated.

There are other initializers, but you don’t need to worry about them at
this point.

If initializers are like functions, why can’t they return any-
thing, even though they can take parameters?

It may not seem obvious at first, but you probably already
know the answer. If an initializer returns an Int, how do you
create an instance of the class it’s initializing? You could say
that initializers do return objects of type <their_own_class>.

232 CHAPTER 9 Reduce your code: Use less, do more with class detergent
To see why you need an initializer, try this code in a playground:

class TestClass {

 var name = ""

 // This is a required init, which means it has to run
 required init(yourName: String) {
 name = yourName
 }

 func getName() -> String {
 print(name)
 return name
 }

}

To create a new instance of this class, do this:

var testClassInstance = TestClass()

Oops—you got an error. You set your initializer to required, so you got
an error because you didn’t supply the argument for the required init to
run! Here’s that error:

"Missing argument for parameter ‘yourName’ in call"

To fix this problem, give the required init function a value, because it’s
expecting one. You can try this:

var testClassInstance = TestClass(yourName: "Amy Rizzo")

No more error.

To access the name, call the getName() function or print the variable:

testClassInstance.getName()

This prints the name you gave in the initializer: "Amy Rizzo", in this case.

Now you know that to initialize this class, you have to give it a name
argument.

Create a class 233
What if the user wants to give only the first name and last
name in separate arguments? How can you make the app
handle the situation given?

That’s a good question. Get ready, because here’s your
answer (the rest of this section, until you start the Inheritance
section).

To solve this problem, you have to take a look at how to use conve-
nience initializers. Look at the following code and make some guesses
about what’s going on. Then I’ll explain.

class ConvenientClass {

 var name = ""

 init(yourName: String) {
 name = yourName
 }

 convenience init(fName: String) {
 self.init(yourName: fName)
 }

 convenience init(lName: String) {
 self.init(yourName: lName)
 }

 convenience init(fName: String, lName: String) {
 self.init(yourName: "\(fName) \(lName)")
 }

 func getName() -> String {
 print(name)
 return name
 }

}

234 CHAPTER 9 Reduce your code: Use less, do more with class detergent
NOTE Don’t get rid of this code; you’re going to need it in the next section!

You can initialize an instance of this class in several ways:

 Give the full name in String format in a single argument, yourName.
 Give the name in one argument, fName.
 Give the name in one argument, lName.
 Give the full name in two separate arguments, fName and lName.

When the designated init is called, you do the same thing that you did
with the required init. When a convenience init is called, however,
call the designated init with the values that you get from the conve-
nience init.

NOTE When you work with convenience inits, they have to call another reg-
ular init (designated or required), not of type convenience, on their first line of
code.

This is what each init does in ConvenientClass:

 init(yourName: String)—The designated init. It runs if you give a
"yourName" parameter as a string. It sets the name variable to
"yourName".

 convenience init(fName: String)—A convenience init that runs if you
give an "fName" parameter as a string. It calls the designated init with
the "yourName" parameter as the "fName" that it gets from you.

 convenience init(lName: String)—A convenience init that runs if you
give an "lName" parameter as a string. It calls the designated init with
the "yourName" parameter as the "lName" that it gets from you.

 convenience init(fName: String, lName: String)—A convenience init
that runs if you give an "fName" string and an "lName" string as sepa-
rate parameters. It doesn’t set the name variable to the parameters
given; instead, it calls the designated init with the parameter "your-
Name", as fName and lName concatenated with a space between.

Now you know the basics of classes. Here’s the simple syntax of a
class:

Like father, like son: Inheritance 235
class <classname> {
 <variables>
 <initializers>
 <methods & functions>
}

Table 9.4 breaks down the syntax.

I hope you got the answer to your question!

In the next section, you look at more-advanced class topics.

Like father, like son: Inheritance
In this section, you’ll take some of the code you created and use it to
learn what inheritance is. Try it out!

In the same playground with the ConvenientClass code, try typing this:

class sonOfConvClass: ConvenientClass {

}

Believe it or not, this class is complete. In this example, you’re also tell-
ing the class called sonOfConvClass to inherit and act like Convenient-
Class. If you were to take the code

var dad = ConvenientClass(yourName: "Robert Brooks")
dad.getName()

And modify it to look like

var son = sonOfConvClass(yourName: "Jim Brooks")
son.getName()

Table 9.4 Syntax definitions for the class

Syntax block Definition

<classname> The name of the class

<initializers, methods, vari-
ables...>

The place for all the code that can go in the class

Prints "Robert Brooks"

Prints "Jim Brooks"

236 CHAPTER 9 Reduce your code: Use less, do more with class detergent
it works exactly the same way. The reason is
that sonOfConvClass (I’ll call it sonny) is a dupli-
cate, or clone, of ConvenientClass (I’ll call it
daddy), as represented by figure 9.2.

What if you wanted a clone of daddy but then
changed a few things in sonny to make it
smarter than daddy? How would you do that?
You’d override whatever you needed to change
from daddy’s class in sonny’s class.

You can’t use words like daddy in code, of
course. Use the word super in the code.

Furthermore, sonny doesn’t have a name in
daddy’s code, because daddy is unaware of
sonny’s existence (the sad life of a daddy class).
If you want to override the getName() function
and make it return the name, along with an
extra message, use this:

class sonOfConvClass: ConvenientClass {

 override func getName() -> String {
 return name + " from Convenient’s son"
 }

}

If you try this

var son = sonOfConvClass(name: "Jim Brooks")
son.getName()

the code returns "Jim Brooks from Convenient’s son".

If you do this

var dad = ConvenientClass(name: "Robert Brooks")
dad.getName()

Figure 9.2 Representing the
likeness of classes as in “dad”
and “son”

All about scope 237
the code returns "Robert Brooks" because it doesn’t contain the modified
function.

IMPORTANT When a class inherits from another class, it automatically gets all
the functions, initializers, and variables from the parent class. Then you can
add a few more functions to the child class or rewrite some functions of the
parent class with some modifications in the child class so that the child class is
different from the parent.

All about scope
Scope is where in your code you can access certain variables, func-
tions, or classes.

NOTE I’m not going to load you down with jargon such as public, private,
and global scope. I’ll give you enough knowledge to write intermediate-level
apps. Anything more, you’ll find when you need it in the rest of the book.

What is variable’s scope?
In any playground exercise or app, you’ve seen that curly braces ({})
start and end blocks of code. These braces are always paired and can
be nested in another pair (as in a function in a class). These braces
divide your code into little blocks, which you can understand part by
part. Keeping these braces in mind, here’s the basic idea of variable’s
scope: anything declared inside a pair of braces isn’t accessible outside
the braces.

Try this code in the playground to understand how scope works:

var age = 20
if age >= 18 {
 let status = "Adult"
 status
}
status

This code works fine and
prints the status Adult.

This line gives you an error because “status”
was declared in the braces of the if block, so
after that brace pair ends, it’s inaccessible.

238 CHAPTER 9 Reduce your code: Use less, do more with class detergent
Because you declared the variable status inside the braces, when
you’re outside the braces, you can’t get to it. What happens if you try
to access it before the if statement?

You also get an error. Your program doesn’t know what status is until
you’ve declared it (let status). Figure 9.3 explains scope visually.

IMPORTANT I’ve been talking about declaring a variable. Don’t get declaring
confused with defining!

 To declare is to create the variable (var age: Int!)
 To define is to give the variable a value (age = 20)

Or you can declare and define at the same time:

(var age = 20 or var age: Int = 20)

Figure 9.3 A diagram explaining the way scope
works inside of code blocks

Calculator app 239
What if I need to be able to access a variable outside the
braces?

If you need to get the value of status to be used even after the
brace pair ends, you could do this:

var age = 20
var status: String = "Child"
if age >= 18 {
 status = "Adult"
 print(status)
}
print(status)

FIGURE IT OUT!

1 Create a function.
2 Now declare a variable in your function.
3 Try to define this variable inside and outside this function. What happened?
4 Next, declare a variable outside the function.
5 Try to define this variable inside and outside this function. What happened?

Are you ready to practice with classes and scope? In the next section,
you build an app.

Calculator app
Now build the Calculator app to help you out with your math.

What does this app do?
NOTE You can find the code for this application in the Chapter09_Calculator
folder inside the Hello-Swift-Code-master folder that you downloaded from
GitHub. If you haven’t downloaded the code from GitHub, go to: https://
github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You should
download the code only once for all chapters.

This code works fine
and prints Adult.

This line works because the declaration of
“status” was before the braces opened or closed,
but it was defined in the brace (which doesn’t
matter in programming). So it was accessible in
that scope and prints Adult here as well.

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

240 CHAPTER 9 Reduce your code: Use less, do more with class detergent
In this section, you create an app that can add,
subtract, multiply, or divide any number of
values at the same time. Figure 9.4 shows what
your app will look like when you’re done.

Create the UI
Create the user interface (UI). Use the details
in figure 9.5 to create your controls.

How does this app work?
This app takes lots of numbers in a text view,
each number on a new line, without gaps. You
create an array of these numbers. You write a
ListOfNumbers class that contains an array of
numbers called numberList. This class also has a
required init that takes one parameter: init-
WithNumberList: [Double]. In the init, set the

90.5

Add Subtract Multiply Divide

Figure 9.4 The final running app

Type: TextView

Text: Nothing

IBOutlet: inputNumbers

Color: Mustardy yellow

Type: UILabel

Text: Output comes here

IBOutlet: outputNumber

Type: Button

Text: Add

IBOutlet: doOperation

Type: Button

Text: Subtract

IBOutlet: doOperation

Type: Button

Text: Divide

IBOutlet: doOperation

Type: Button

Text: Multiply

IBOutlet: doOperation

Output comes here

Add Subtract Multiply Divide

Figure 9.5 The UI for
the Calculator app

Calculator app 241
numberList variable to the initWithNumberList parameter. Next, create a
class called Calculator that inherits from the ListOfNumbers class. The
Calculator class becomes a clone of the ListOfNumbers class. When that’s
done, add a few functions to the Calculator class:

addAllInNumberList() -> Double
subtractAllInNumberList() -> Double
multiplyAllInNumberList() -> Double
divideAllInNumberList() -> Double

You don’t need to understand the code inside these functions beyond
the basic idea.

Code the app
Listing 9.1 contains the code for the Calculator app.

Listing 9.1 Code for the Calculator app

extension UIButton {
 var text: String {
 get {
 return self.titleLabel!.text!
 }
 set {
 self.setTitle(newValue, for: .normal)
 }
 }
}

class ListOfNumbers {
 var numberList: [Double] = []

 required init(initWithNumberList: [Double]) {
 numberList = initWithNumberList
 }
}

class Calculator: ListOfNumbers {

 func addAllInNumberList() -> Double {
 let temp = numberList

Add all numbers in the list.

Subtract all numbers in the list.

Multiply all numbers in the list.

Divide all numbers in the list.

242 CHAPTER 9 Reduce your code: Use less, do more with class detergent
 var finalVal = numberList[0]
 numberList.remove(at: 0)
 _ = numberList.map({finalVal += $0})
 numberList = temp
 return finalVal
 }

 func subtractAllInNumberList() -> Double {
 let temp = numberList
 var finalVal = numberList[0]
 numberList.remove(at: 0)
 _ = numberList.map({finalVal -= $0})
 numberList = temp
 return finalVal
 }

 func multiplyAllInNumberList() -> Double {
 let temp = numberList
 var finalVal = numberList[0]
 numberList.remove(at: 0)
 _ = numberList.map({finalVal *= $0})
 numberList = temp
 return finalVal
 }

 func divideAllInNumberList() -> Double {
 let temp = numberList
 var finalVal = numberList[0]
 numberList.remove(at: 0)
 _ = numberList.map({finalVal /= $0})
 numberList = temp
 return finalVal
 }

}

class ViewController: UIViewController {

 @IBOutlet var inputNumbers: UITextView!

 @IBOutlet var outputNumber: UILabel!

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view,

 ➥ typically from a nib.

Calculator app 243
 }

 @IBAction func doOperation(sender: UIButton) {
 var finalNumberlist: [Double] = []

 _ = inputNumbers.text
 ➥ .components(separatedBy: "\n")
 ➥ .map({finalNumberlist.append(Double($0)!)})

 let calculatorInstance = Calculator(
 initWithNumberList: finalNumberlist)

 if sender.text == "Add" {
 let shouldRemove =
 ➥ "\(calculatorInstance.addAllInNumberList())"
 ➥ .componenents(separatedBy: ".")[1] == "0" ? true : false
 let intVal =
 ➥ Int("\(calculatorInstance.addAllInNumberList())"
 ➥ .components(separatedBy: ".")[0])!
 outputNumber.text = shouldRemove ? "\(intVal)" :
 ➥ "\(calculatorInstance.addAllInNumberList())"
 } else if sender.text == "Subtract" {
 let shouldRemove =
 ➥ "\(calculatorInstance.subtractAllInNumberList())"
 ➥ .components(separatedBy: ".")[1] == "0" ? true : false
 let intVal =
 ➥ Int("\(calculatorInstance.subtractAllInNumberList())"
 ➥ .components(separatedBy: ".")[0])!
 outputNumber.text = shouldRemove ? "\(intVal)" :
 ➥ "\(calculatorInstance.subtractAllInNumberList())"
 } else if sender.text == "Multiply" {
 let shouldRemove =
 ➥ "\(calculatorInstance.multiplyAllInNumberList())"
 ➥ .components(separatedBy: ".")[1] == "0" ? true : false
 let intVal =
 ➥ Int("\(calculatorInstance.multiplyAllInNumberList())"
 ➥ .components(separatedBy: ".")[0])!
 outputNumber.text = shouldRemove ? "\(intVal)" :
 ➥ "\(calculatorInstance.multiplyAllInNumberList())"
 } else if sender.text == "Divide" {
 let shouldRemove =
 ➥ "\(calculatorInstance.divideAllInNumberList())"
 ➥ .components(separatedBy: ".")[1] == "0" ? true : false
 let intVal =
 ➥ Int("\(calculatorInstance.divideAllInNumberList())"

244 CHAPTER 9 Reduce your code: Use less, do more with class detergent
 ➥ .components(separatedBy: ".")[0])!
 outputNumber.text = shouldRemove ? "\(intVal)" :
 ➥ "\(calculatorInstance.divideAllInNumberList())"
 }
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

}

NOTE When you’ve entered your number in the text view, please don’t press
the Return key on your keyboard! If you do, you’ll cause the app to crash,
because Swift doesn’t know how to convert a newline to an integer; it’s not a
valid number. You can click the buttons at the bottom of the screen, however.

Why do I use an underscore (_) in the line of code "_ = number-

List.map({finalVal += $0})"?

When you run the map function, remember that it returns a value. If a
function returns a value and you don’t use that value, Swift gives you
a warning (meaning that it thinks you might be doing something
wrong). If you set the underscore’s value to the result of the function,
however, Swift knows that it needs to trash the return value from the
function; it understands that you don’t need it.

Connect IBOutlets and IBActions
Now that you’ve coded the app, connect the IBOutlets and IBActions, as
shown in tables 9.5 and 9.6.

Table 9.5 IBOutlets for the Calculator app

IBOutlet Control

inputNumbers Yellow, TextView

outputNumber "Output Comes Here", Label

Check your app knowledge 245
Run the app
Run the app, enter some numbers in
the text view, and click a button like
Add. You see something like figure 9.6.

This special calculator helps you do
data-management problems in math,
such as finding the mean or average of
some numbers.

That’s it for this chapter except for
checking your app knowledge and an
app-exercise. I hope you enjoyed it! In
chapter 10, you learn about managing
files.

Check your app knowledge
1 What’s the difference between declar-

ing and defining?

2 What characters control the scope of
a variable?

3 What are the different types of ini-
tializers, and what do they do?

4 What can classes in programming be compared to in real life?

5 What’s wrong with the following code?

class somethingIsWrong {

 convenience init(name: String) {
 print(name)
 }

}

Table 9.6 IBActions for the Calculator app

IBAction Buttons

doOperation Add, Subtract, Multiply, and Divide

90.5

Add Subtract Multiply Divide

Figure 9.6 The running Calculator
app

246 CHAPTER 9 Reduce your code: Use less, do more with class detergent
6 What is one thing you must do with convenience initializers?

7 What will the following code print?

var age = 20
var status: String = "Child"
if age >= 18 {
 status = "Adult"
}
"I am a(n) \(status) "

8 What will the following code print?

var age = 17
var status: String = "Child"
if age >= 18 {
 status = "Adult"
}
"I am a(n) \(status)"

App-Exercise: Metric Conversion
All right, it’s time for the first exercise: building and running the Metric
Conversion app to help you with your measurements!

What does this app do?
Welcome to the app-exercise that does metric-unit conversion. It con-
verts one metric unit to another. It converts 2.5 kilometers to meters,
for example, or 25 millimeters to centimeters. It doesn’t convert meters
to miles or yards.

NOTE You can find the code for this application in the Chapter09_Metric-
Conversion folder inside the Hello-Swift-Code-master folder that you down-
loaded from GitHub. If you haven’t downloaded the code from GitHub, go
to: https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You
should download the code only once for all chapters.

Math: Negative powers
Before you start, I need to talk about a little math that I haven’t taught
you how to do in Swift yet: negative powers. Do you remember powers
from chapter 3?

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

App-Exercise: Metric Conversion 247
10 to the power 2 = 10 x 10, which is 100

10 to the power 5 = 10 x 10 x 10 x 10 x 10, which is 100,000

There are also negative powers:

10 to the power -3 = (1 / 10) x (1 / 10) x (1 / 10), which is 0.001.

10 to the power -5 = (1 / 10) x (1 / 10) x (1 / 10) x (1 / 10) x (1 / 10),
which is 0.00001

And even though it’s not a negative power:

10 to the power 0 = 1

Got it? Okay, in the next section you create the UI.

Creating the UI
The details of the UI you need to create are in figure 9.7.

Figure 9.7 Metric Conversion UI

Type: UIButton,

Text: kilometre,

IBAction: fromClicked

Type: UIButton,

Text: hectometre,

IBAction: fromClicked

•

•

•

•

•

•

•

•

Type: UIButton,

Text: millimetre,

IBAction: fromClicked

Type: UILabel,

Text: Result comes here,

IBOutlet: output

Type: UITextField

IBOutlet: input

Type: UIButton,

Text: kilometre,

IBAction: toClicked

Type: UIButton,

Text: hectometre,

IBAction: toClicked

Type: UIButton,

Text: millimetre,

IBAction: toClicked

From:

Result comes here

Measurement:

To:

kilometre

hectometre

decametre

metre

decimetre

centimetre

millimetre

hectometre

decametre

metre

decimetre

centimetre

millimetre

kilometre

248 CHAPTER 9 Reduce your code: Use less, do more with class detergent
Code the app
First, look at how you convert from kilometers to meters so you can
write the code.

Table 9.7 lists the units of the metric system in order. You’ll use the
rank to help figure out the conversion.

To learn how to convert 5 kilometers to meters, for example, follow
these steps:

1 Note the unit you’re converting from—in this case, kilometer
(ranked 1).

2 Note the unit you’re converting to—in this case, meter (ranked 4).

3 Get the difference of the ranks from the To unit to the From unit—
in this case, rank of meter to rank of kilometer. In numbers, that’s
4 – 1 = 3.

4 Get 10 to the power of the number you got in the last step, even if it’s
a negative number—in this case, 10 to the power of 3, or 1000.

5 Multiply the amount of the unit you’re converting from by the num-
ber you got in the last step —in this case, 5 ✕ 1000, or 5000 m).

Done! You should have the right answer: 5 kilometers = 5000 meters.

Table 9.7 Unit rankings for Metric Conversion

Unit Abbreviation Rank Example value

kilometer km 1 1

hectometer hm 2 10

decameter Dm 3 100

meter m 4 1,000

decimeter dm 5 10,000

centimeter cm 6 100,000

millimeter mm 7 1,000,000

App-Exercise: Metric Conversion 249
You use these seven steps to convert 2.5 kilometers to meters and 348
millimeters to centimeters. You’re going to work on these two exam-
ples: 2.5 km = ? m and 348 mm = ? cm (see table 9.8).

Now you have to code this in Swift, as shown in Listing 9.2. Create a
class called MetricConversionHandler, which has a dictionary that ranks
all the units; then you have variables that store the from unit, from
amount, and to unit.

Listing 9.2 MetricConversion app

import UIKit
extension UIButton {
 var text: String {
 get {
 return self.titleLabel!.text!

Table 9.8 Steps for Metric Conversion

Steps Description of steps
How to convert:
2.5 kilometers to

meters

How to convert:
348 millimeters to

centimeters

1 Rank the units as shown in table 9.6.

2 Note the rank of the unit you’re con-
verting from.

Rank is 1 Rank is 7

3 Note the rank of the unit you’re con-
verting to.

Rank is 4 Rank is 6

4 Get the difference of ranks of the To
unit and the From unit as rank of unit
to – rank of unit from.

4 – 1 = 3 6 – 7 = -1

5 Get 10 to the power of (the number
you got in the last step).

10 to the power of
3 = 1,000

10 to the power of
-1 = 0.1

6 Multiply the number of units you’re
converting from by the number you
get in step 4.

2.5 x 1,000 = 2,500 348 x 0.1 = 34.8

7 Write your answer. 2.5 km = 2,500 m 348 mm = 34.8 cm

250 CHAPTER 9 Reduce your code: Use less, do more with class detergent
 }
 set {
 self.setTitle(newValue, for: .normal)
 }
 }
}

class MetricConversionHandler {
 var from = ""
 var to = ""
 var fromNumber: Double = 0.0

var value = ["kilometer": 1, "hectometer": 2, "decameter": 3, "meter": 4,

➥ "decimeter": 5, "centimeter": 6, "millimeter": 7]

 init(userFrom: String, userTo: String, fromNum: Double) {
 from = userFrom
 to = userTo
 fromNumber = fromNum
 }

 func convert() -> Double {
 let numberToUse = pow(10.0, Double(value[to]!) -

 ➥ Double(value[from]!))
 return Double("\(fromNumber * numberToUse)")!
 }
}

class ViewController: UIViewController {
 @IBOutlet var input: UITextField!
 @IBOutlet var output: UILabel!
 var from = ""
 @IBAction func fromClicked(sender: UIButton) {
 from = sender.text
 }

 @IBAction func toClicked(sender: UIButton) {
 let metricHandlerInst = MetricConversionHandler(userFrom: from,

 ➥ userTo: sender.text, fromNum: Double(input.text!)!)
 let converted = round(pow(10.0, 10.0) *

 ➥ metricHandlerInst.convert()) / pow(10.0, 10.0)

App-Exercise: Metric Conversion 251
 if floor(converted) == converted {
 output.text = "\(input.text!) \(from)(s) = \(Int(converted))

 ➥ \(sender.text)(s)"
 } else {
 var convertedString = String(format: "%.10f", converted)
 while "\(convertedString.last!)" == "0" {
 convertedString.removeLast()
 }
 output.text = "\(input.text!) \(from)(s) =

 ➥ \(convertedString) \(sender.text)(s)"
 }
 }

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically

 ➥ from a nib.
 }
}

That’s the code! And this time, you don’t need to ignore the extension.
An extension extends the code that’s written in the class that it extends
(its base class).

Why would you need an extension? The answer is simple. To see why
you need an extension, see what your extension currently does. The
current extension adds a computed property, called text, to the UIBut-
ton class. In case you’re wondering what a computed property is, it’s a
variable with a getter and a setter.

NOTE Extensions don’t allow you to add variables or constants, but com-
puted properties are allowed.

You add a variable (I’m calling it a variable for the time being so that
you aren’t confused) called text to the class UIButton. The UIButton class
is the class you use for buttons in your IBOutlets.

252 CHAPTER 9 Reduce your code: Use less, do more with class detergent
Why is it called a computed property?

Property is another word for variable. A computed property is a
property that’s computed whenever it’s get or set. Here’s an example.
Suppose that you’ve got variables A, B, and C. When you get C, it’s
always equal to A + B. Whenever you set C, that value should go into A
and B. Instead of always inserting the numbers into A and B manually,
adding A and B manually, and inserting the result into C, you can make
C a computed property to run a function to do these sorts of things
whenever C is get or set.

Create a class called MetricConversionHandler, which does what the
seven steps do.

If you are wondering why we have an if statement calling the floor
function, and a while loop inside the else block, we do this to format the
numbers displayed in output label. Using this code you’ll be able to dis-
play “3 meter(s)” instead of “3.0 meter(s)”, and “3.1 meter(s)” instead
of “3.1000000000 meter(s)” in case that occurs.

Connect IBOutlets and IBActions
Table 9.9 lists all the IBOutlets and IBActions in the ViewController class.

Table 9.9 IBOutlets for Metric Conversion app

IBOutlet Explanation

input The text field that tells you the amount of the starting unit you need

Example: 15 in the phrase 15 kilometers

output The label that tells the user how many of one type of unit will be equal to
how many of another type of unit

Example: 15 kilometer(s) = 15000 meter(s)

Extra app-exercise: Metric Conversion app, Part 2 253
Table 9.10 lists the IBActions.

Run your app!
Run the app with a value of 30 in
the measurement box, starting with
meters and converting to kilome-
ters. You should see the output as in
figure 9.8.

Extra app-exercise: Metric
Conversion app, Part 2

This section covers Part 2 of the
Metric Conversion app.

What does this app do?

NOTE You can find the code for this
application in the Chapter09_Metric-
ConversionLined folder inside the
Hello-Swift-Code-master folder that
you downloaded from GitHub. If you
haven’t downloaded the code from
GitHub, go to: https://github.com/
tanmayb123/Hello-Swift-Code/archive/
master.zip. You should downloaded
the code only once for all chapters.

Table 9.10 IBActions for Metric Conversion app

IBAction Explanation

fromClicked(sender: UIButton) Called whenever one of the buttons from the From side
is clicked

toClicked(sender: UIButton) Called whenever one of the buttons from the To side is
clicked

From:

30 metre(s) = 0.03 kilometre(s)

30Measurement:

To:

kilometre

hectometre

decametre

metre

decimetre

centimetre

millimetre

hectometre

decametre

metre

decimetre

centimetre

millimetre

kilometre

Figure 9.8 Metric Conversion app
running.

254 CHAPTER 9 Reduce your code: Use less, do more with class detergent
You already have the UI created, so continue
to what’s new in this part. Figure 9.9 shows
your new UI.

In this second part, you add a connecting
line, making a line from the unit you’re con-
verting from to the unit you’re converting to.
This line graphically displays to the user the
type of unit that is being converted from its
left end to another at its right end.

Code the app
Instead of recoding the entire app, you can
modify your existing code from the preced-
ing app.

To start, insert the Connector class in your
code. You can copy and paste the code after
your extension to the UIButton class, or type it
yourself after the UIButton extension.

Next, create these two variables:

var fromButton: UIButton!
var lineDrawer: Connector!

Add the following line to your viewDidLoad() function:

lineDrawer = Connector(initWithView: self.view)

Add this line to your fromClicked(sender: UIButton) IBAction:

fromButton = sender

Finally, add these lines to the bottom of your toClicked(sender: UIBut-
ton) IBAction:

From:

30 metre(s) = 0.03 kilometre(s)

30Measurement:

To:

kilometre

hectometre

decametre

metre

decimetre

centimetre

millimetre

hectometre

decametre

metre

decimetre

centimetre

millimetre

kilometre

Figure 9.9 The new running Met-
ric Conversion app. See the con-
nector line?

This variable stores the button
that was clicked on the From side.

This variable creates an instance of the
Connector class so you can draw lines easily.

Extra app-exercise: Metric Conversion app, Part 2 255
lineDrawer.clear()
lineDrawer.drawLineBetweenPoints(
 CGPoint(
 x: 110,
 y: fromButton.frame.origin.y + lineDrawer.thickness),
 CGPoint(
 x: 260,
 y: sender.frame.origin.y + lineDrawer.thickness))

You don’t need to understand these lines of code yet. You’re essentially
clearing older connecting lines and then calculating and drawing a line
from any of the From buttons to any of the To buttons.

You may be thinking, “Hey, Tanmay, that was pretty easy! I drew
lines, but I didn’t need to code the line-drawing part. How was that
possible?” The secret is that I shared code with you through classes.
Classes are great for sharing code, and there’s one more thing you
should know: classes hide functionality from the coder. I hid the code
for drawing lines from you, for example, so you added that code in the
form of a class that I already wrote. After that, you drew lines by creat-
ing an instance of the class Connector with the required parameters
inside the initializer.

So all you need to know to draw the lines is how to use the class, not
the functionality behind it. You may not be interested in knowing how
the class works. If you are, though, you should look at the code in the
class. (Nothing’s stopping you. You can even modify or extend it to
work differently and better!)

This is the final code:

Listing 9.3 Metric Conversion app, Part 2

import UIKit
extension UIButton {
 var text: String {
 get {
 return self.titleLabel!.text!
 }
 set {
 self.setTitle(newValue, for: .normal)

256 CHAPTER 9 Reduce your code: Use less, do more with class detergent
 }
 }
}

class Connector {
 var lines = [UIImageView]()
 var lineHeight = 3
 var lineWidth = 3
 var thickness: CGFloat {
 get {
 return CGFloat(((lineWidth + lineHeight)) + 10)
 }
 }
 var viewToEdit: UIView!
 var allFrames = [CGRect]()
 convenience init(initWithView view: UIView) {
 self.init()
 viewToEdit = view
 }
 func drawLineBetweenPoints(_ p1: CGPoint, _ p2: CGPoint) {
 if p1.x == p2.x && p1.y == p2.y {
 handleTouch(p1)
 }
 if p1.y == p2.y {
 if p2.x - p1.x > 1 {
 var xVal = p1.x
 for _ in 1...Int(p2.x - p1.x) {
 xVal += 1
 handleTouch(CGPoint(x: xVal, y: p1.y))
 }
 } else if p2.x - p1.x < -1 {
 var xVal = p1.x
 for _ in (Int(p2.x - p1.x)) * 2...Int(p2.x - p1.x) {
 xVal -= 1
 handleTouch(CGPoint(x: xVal, y: p1.y))
 }
 } else {

 }
 }
 else if p1.x == p2.x {
 if p2.y - p1.y > 1 {
 var yVal = p1.y

Extra app-exercise: Metric Conversion app, Part 2 257
 for _ in 1...Int(p2.y - p1.y) {
 yVal += 1
 handleTouch(CGPoint(x: p1.x, y: yVal))
 }
 } else if p2.y - p1.y < -1 {
 var yVal = p1.y
 for _ in (Int(p2.y - p1.y)) * 2...Int(p2.y - p1.y) {
 yVal -= 1
 handleTouch(CGPoint(x: p1.x, y: yVal))
 }
 } else {

 }
 }
 else {
 let rise = p2.y - p1.y
 let run = p2.x - p1.x
 let res: Double = Double(rise) / Double(run)
 var xVal = Double(p1.x)
 var yVal = Double(p1.y)
 if run > 1 {
 for _ in 1...Int(run) {
 yVal += res
 xVal += 1
 handleTouch(CGPoint(x: xVal, y: yVal))
 }
 } else if run < -1 {
 xVal = Double(p2.x)
 yVal = Double(p2.y)
 for _ in Int(run) * 2...Int(run) {
 yVal += res
 xVal += 1
 handleTouch(CGPoint(x: xVal, y: yVal))
 }
 } else if run == 1 {
 for _ in 0...Int(run * (rise > 0 ? rise : -rise)) {
 yVal += res / Double(rise > 0 ? rise : -rise)
 xVal += 1 / Double(rise > 0 ? rise : -rise)
 handleTouch(CGPoint(x: xVal, y: yVal))
 }
 } else if run == -1 {
 drawLineBetweenPoints(p2, p1)
 return

258 CHAPTER 9 Reduce your code: Use less, do more with class detergent
 }
 }
 }
 func handleTouch(_ location: CGPoint) {
 let newImage = UIImageView()
 newImage.backgroundColor = UIColor.black
 newImage.frame = CGRect(x: Int(location.x), y: Int(location.y),
 ➥ width: lineWidth, height: lineHeight)
 allFrames.append(newImage.frame)
 lines.append(newImage)
 drawLines()
 }
 func drawLines() {
 _ = viewToEdit.subviews.map({ if self.allFrames
 ➥ .contains($0.frame) { $0.removeFromSuperview() } })
 for i in lines {
 viewToEdit.addSubview(i)
 }
 }
 func clear() {
 lines = []
 drawLines()
 }
}

class MetricConversionHandler {
 var from = ""
 var to = ""
 var fromNumber: Double = 0.0

 var value = ["kilometer": 1, "hectometer": 2, "decameter": 3,
 ➥ "meter": 4, "decimeter": 5, "centimeter": 6, "millimeter": 7]

 init(userFrom: String, userTo: String, fromNum: Double) {
 from = userFrom
 to = userTo
 fromNumber = fromNum
 }
 func convert() -> Double {
 let numberToUse = pow(10.0, Double(value[to]!) -
 ➥ Double(value[from]!))
 return Double("\(fromNumber * numberToUse)")!
 }

Extra app-exercise: Metric Conversion app, Part 2 259
}

class ViewController: UIViewController {
 @IBOutlet var input: UITextField!
 @IBOutlet var output: UILabel!
 var from = ""
 var fromButton: UIButton!
 var lineDrawer = Connector()

 @IBAction func fromClicked(sender: UIButton) {
 from = sender.text
 fromButton = sender
 }
 @IBAction func toClicked(sender: UIButton) {
 let metricHandlerInst = MetricConversionHandler(userFrom:
 ➥ from, userTo: sender.text, fromNum: Double(input.text!)!)
 let converted = round(pow(10.0, 10.0) * metricHandlerInst
 ➥ .convert()) / pow(10.0, 10.0)
 if floor(converted) == converted {
 output.text = "\(input.text!) \(from)(s) =
 ➥ \(Int(converted)) \(sender.text)(s)"
 } else {
 var convertedString = String(format: "%.10f", converted)
 while "\(convertedString.last!)" == "0" {
 convertedString.removeLast()
 }
 output.text = "\(input.text!) \(from)(s) =
 ➥ \(convertedString) \(sender.text)(s)"
 }
 lineDrawer.clear()
 lineDrawer.drawLineBetweenPoints(CGPoint(x: 110,
 ➥ y: fromButton.frame.origin.y + lineDrawer.thickness),
 ➥ CGPoint(x: 260, y: sender.frame.origin.y +
 ➥ lineDrawer.thickness))
 }
 override func viewDidLoad() {
 super.viewDidLoad()
 lineDrawer = Connector(initWithView: self.view)
 // Do any additional setup after loading the view,
 ➥ typically from a nib.
 }
}

260 CHAPTER 9 Reduce your code: Use less, do more with class detergent
Run the app
Figure 9.10 shows the output you see
when you run the app.

It worked! Hooray!

Well done; you’ve finished your first
intermediate-level Swift concept! See
you in chapter 10, where you learn
about reading and writing files.

Figure 9.10
Metric Conversion

app, Part 2, running

From:

30 metre(s) = 0.03 kilometre(s)

30Measurement:

To:

kilometre

hectometre

decametre

metre

decimetre

centimetre

millimetre

hectometre

decametre

metre

decimetre

centimetre

millimetre

kilometre

10
1

3

5

4

6

14

8

7 9

N A Journey

2

12

13

10

11

Reading and writing files

In this chapter, you’ll start a new Swift topic:
file content management, so that your data
is preserved across sessions.

This chapter covers

• What are files?
• Why do you need to read from and write to files?
• How do you read from and write to files?
• How do you download a file from the internet

to use in an app?
• What are file management and file

content management?
261

262 CHAPTER 10 Reading and writing files
You’ve reached Milestone 10: reading and writing files. Learning a new
computer language isn’t complete without learning to read and write
files using code. Reading and writing files lets apps store data that they
can access later in the app, in another session of the app, or even when
the device restarts.

An example of this is a game score. In games like Temple Run, you’d
like to keep the coins that you earn after a round, so if your game stores
the scores in variables, you lose your scores every time you remove
your app from memory or restart your device. If the score is stored in a
file, however, it can be retrieved at any time. You can store many other
pieces of information in files, such as user or personal information, user
preferences, volume settings, and where someone left off reading an e-
book or watching a movie.

What’s in a file?
A file is a place to store information you’d like to use again and again,
such as music, homework, and your apps. Files allow you to store data
and retrieve it later, even if the RAM (random-access memory) has
been reset by restarting the app or even restarting your iDevice.

Here’s an example: if you’re reading this book on a computer, you’re
reading it from a file, possibly a .pdf file (or maybe a .mobi or .ipub).

Or if you downloaded some new music, it’s stored in a file on your
computer that can be opened with special apps that understand how to
use that type of file. If you try to peek into a .mp3 file with a text
editor, you’ll see some weird characters that won’t make any sense. If
you play this file by using an MP3 player, however, you’ll be able to
listen to the sounds it contains. You can see some more examples in
figure 10.1.

Every file has a format. Formats tell you what type a file is. Depending
on the type, a file may need some special software that’s capable of
understanding what it contains.

What’s in a file? 263
Your music file, for example, probably has the format .mp3. This book,
read on a computer, might be .pdf, and the Xcode projects you’ve been
writing are stored in the .xcodeproj file format. Furthermore, the play-
grounds that you’ve been creating for many chapters are stored in a
special file format: .playground.

There are thousands of file formats. I’ve listed only a few here.

Pop quiz

Name a couple of other file formats you sometimes work with. (Hint: Images you see
online can be in a couple of formats, and if you use Microsoft Word, you may know
another format.)

One common file type is .txt. This particular file format holds nothing
but plain text. You’ll be using this file format in this chapter for your
file content management apps.

What is file content management?
File content management (FCM) is keeping control of what’s inside a
file so you can store, view, and edit it.

My Homework

*Math test this Friday
*Speech due next Monday
*Scientific Method paper
due on Wednesday

ÄNÄ~ӱòtû$áõ Ê0ÉI∂v
It2LI¢A x-mÓ
¹^\ZÛ{J¦|VÚ+moÉ_±
Ñ¢i6′ PiCô]2ú60Æ}
Öμ2a!õ ÀÄ
Ö@ùaÿùG•MíK¢HƉ2Ta

X-4ÿòt×.uÊG*XÑsa

J(Ó″^§

Page 49 Questions 5–7C

Page 50 Questions 1–5

Page 54 Questions 10 & 11

Math Homework Music

agenda.txt mathhw.doc performancepractice.mp3

Figure 10.1 Examples of file types

264 CHAPTER 10 Reading and writing files
NOTE You may have heard the term file management, which is different from
FCM. File management is what your operating system does, such as copying
files, moving them, and renaming and deleting them. FCM is managing the
stuff inside a file, whereas file management is managing the files themselves.
On a Mac, you use Finder as your main file management tool. Windows uses
Explorer, and Ubuntu uses Files.

You’re managing the contents of a file when you edit your ViewCon-
troller.swift file and put your code in it. That file stores the code that
you type so that you can create an app. Also, you usually use Xcode to
view, edit, and save your .swift files.

Go back and take a look at figure 10.1, with the agenda.txt file that
saves My Homework content. Suppose that you have a scary-looking
math test this Friday, but the test gets postponed to next Tuesday. You
want to reflect that change in your file. To do so, you open that file,
type next Tuesday in place of this Friday, and then save the file. This is a
simple example of FCM.

File Content Manager app
The best way to see how FCM works is with a simple app.

NOTE You can find the code for this application in the Chapter10_FCMApp
file inside Hello-Swift-Code-master folder that you downloaded from GitHub.
If you haven’t downloaded the code from GitHub, go to: https://github.com/
tanmayb123/Hello-Swift-Code/archive/master.zip. You should download the
code only once for all chapters.

What does this app do?
This app stores text that a user types in a file. Then the user can
retrieve the info whenever he wants with a tap of a button. This app is
capable of handling a lot of text. How much text, or information, it can
store depends on your iDevice’s memory.

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

File Content Manager app 265
Set up the project, and create the UI
The user interface (UI) for your app is shown in figure 10.2.

Figure 10.2 The UI for the simple FCM app

Code the app
Next, create a few file manipulation functions that you can use to read
from and write to files (listing 10.1).

Type: UITextView,

IBOutlet: writeField

Background Color: Black

Forecolor: White

Type: UIButton,

Action: save

Text: Save Type: UIButton,

Action: load

Text: Load

Save Load

266 CHAPTER 10 Reading and writing files
Listing 10.1 The code for the simple FCM app

import UIKit

class ViewController: UIViewController {
 @IBOutlet var writeField: UITextView!
 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view,
 ➥ typically from a nib.
 }
 func read(file: String) -> String {
 let paths = NSSearchPathForDirectoriesInDomains(
 .documentDirectory,
 .userDomainMask, true)[0]
 let pathToFile = (paths as NSString)
 .appendingPathComponent(file)
 if FileManager.default.fileExists(
 atPath: pathToFile) {
 return String(data: NSData(
 contentsOfFile: pathToFile)! as Data,
 encoding: String.Encoding.utf8)!
 } else {
 return ""
 }
 }
 func write(file: String,
 value: String,
 newline: Bool,
 overwrite: Bool) {
 var paths = NSSearchPathForDirectoriesInDomains(
 .documentDirectory, .userDomainMask, true)
 let documentsDirectory: String = paths[0]
 let filePath = "\(documentsDirectory)/\(file)"
 if !overwrite {
 if newline {
 try! (read(file: file) + "\n" + value)
 .write(toFile: filePath,
 atomically: true,
 encoding: .utf8)
 } else {
 try! (read(file: file) + value)

File Content Manager app 267
 .write(toFile: filePath,
 atomically: true,
 encoding: .utf8)
 }
 } else {
 try! value.write(to: URL(
 fileURLWithPath: filePath),
 atomically: true, encoding: .utf8)
 }
 }
 @IBAction func save() {
 write(file: "infoSave.txt",
 value: writeField.text!,
 newline: false, overwrite: true)
 }
 @IBAction func load() {
 writeField.text = read(file: "infoSave.txt")
 }
}

Learn how the code works
Now I’ll talk about the code.

 THE SAVE IBACTION

You’re taking the input that the user gave you in the TextView and put-
ting it in a file named infoSave.txt. You’re overwriting any text that
was already in the file so that the file always contains the user’s latest
data. In other words, you’re writing your new text to a file.

THE LOAD IBACTION

You’re taking the information from the infoSave.txt file and displaying
it in your TextView. Then the user can edit and save the info or choose
to read it. So you’re reading text from a file.

THE WRITE FUNCTION

The write() function

write(file: "infoSave.txt", value: writeField.text!, newline: false, over-
write: true)

268 CHAPTER 10 Reading and writing files
writes files for you with the content you provide. This function is capa-
ble of creating a new file if the file doesn’t exist, overwriting an existing
file, and even appending to an existing file.

Table 10.1 describes the parameters in this function.

Now I’ll talk about the code. The first line uses the built-in function
NSSearchPathForDirectoriesInDomains and finds the path to the Docu-
ments directory:

let paths = NSSearchPathForDirectoriesInDomains(
 .documentDirectory, .userDomainMask, true)[0]

Wait—I’m confused. What is the Documents directory?

The Documents directory is one of the few places where an iOS app
can store its files and data. Any time you want to write or read a file,
you need to figure out the location, or path, to the Documents direc-
tory.

Table 10.1 Parameters for the write function

Parameter Description

file The name of the file that you’re going to save (write to)

value The value that will be stored in the file: the content

newline If the file isn’t to be overwritten (next parameter), tells you whether the value
should be appended on a new line or continued on the same line

overwrite Tells the system whether it should overwrite the file if it exists. If the file doesn’t
exist, it’s created.

File Content Manager app 269
NOTE All iOS apps have their own separate Document directories. This is
called sandboxing. Each app has its own private sandbox to do things such as
modify files and create variables. One app can’t change or even access another
app’s sandbox.

When the code finds the path to the Documents directory, the follow-
ing things have to happen:

1 The path is stored in a variable named documentsDirectory.

2 You figure out the complete path to the file that you want to create
by appending a slash (/) and then the filename your app is using to
the documentsDirectory variable.

3 Put this complete path and filename in the filePath variable.

Suppose that you’re creating a file called scores.txt. The path and file-
name documentsDirectory/scores.txt are finally stored in a variable
called filePath.

Next, check whether you want to overwrite the file, if it exists. If you
don’t, check whether you want to append the contents to a new line
(after the old text). If you do, concatenate the earlier contents of the
file, a newline code, and the new value into one big string and write it
into that file.

EXTRA When you append, the code does overwrite the file; because it keeps
the old contents as well as the new, you can’t tell. It looks like the old file with
the new information added. Tricky, right?

If you don’t want a newline, the code concatenates the old contents in
the file and the new contents and then writes to the file. Again, you’re
overwriting the old file but keeping the old contents as well.

If you do want to overwrite the contents of the file, the code writes to
the file with the new contents you gave to the function. In this case,
anything that was in the file is overwritten with the new contents.

270 CHAPTER 10 Reading and writing files
The flow chart in figure 10.3 may
make this concept clearer.

THE READ FUNCTION

The read() function

read(file: file)

is much simpler than the write
function. This function takes one
parameter: file, which is the name
of the file you want to read from.
Then this function returns a string
value with the contents of that file.

In the first two lines of code, you
find the path to the file that you
want to read.

Then, in conditional #1, you check
whether the file exists. Please refer
to the first if-statement in read-
function, in code listing 10.2. If it
does, you return the string value
of the NSData of the file. (You
don’t know what NSData is, but
don’t worry; you don’t need to care
about it yet. For now, all you need
to know is that it stores data.) If
the app code file doesn’t exist, the
app code returns an empty string.

Run your app
To see for yourself that the app saves your text, do this:

1 Open the app.
2 Type something in the field.
3 Tap Save.
4 Exit the app.

Start

End

Take old value

Take old value

Create new file

Add new line

Write file

Add value

No
overwrite?

New line
required?

No

Yes

Yes

No

Figure 10.3 The write function as a flow chart

Hangman app 271
5 Do anything on your device (such as remove an app from memory
or reboot).

6 Open the app again.

7 Tap Load.
The text you typed in step 2 reappears.

This app allows you to edit the text and save again.

Now that you know how all this works, you can move on to more
advanced and interesting topics.

Hangman app
You’re finally ready to build a game. Not a game with complex anima-
tion or anything close to Surgeon Simulator, but a game of Hangman.

But FCM is too hard!

If you think FCM is a bit too hard to code in every time, well, so did I when I was be-
ginning iOS development. In chapter 11, however, you learn how to create a frame-
work or library for FCM. (Spoiler: It’s named Swifto’File.) That should make things
much easier for you!

What does this app do?
In this game, there are no graphics. Instead, you tell the user how many
tries he has left. This app lets you learn the code without having to
learn the graphics yet.

NOTE You can find the code for this application in the Chapter10_Hangman
file inside the Hello-Swift-Code-master folder that you downloaded from
GitHub. If you haven’t downloaded the code from GitHub, go to: https://
github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You should
download the code only once for all chapters.

If you’ve come from Mars (greetings, alien!), you may not know what
Hangman is. Here’s a description:

1 The computer picks a random word that a player has to guess and
shows a set of underlines, one for each character in the word, in a
label. (Example: Swift displays as _ _ _ _ _.)

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

272 CHAPTER 10 Reading and writing files
2 The player is given at least ten chances to guess all the letters in the
word.

Suppose that the word is objective, and the user guesses e. The com-
puter fills out the template with all the es as follows: _ _ _ e _ _ _ _ e.
Because the letter is in the word, the player still has ten chances left.

If the user guesses g, however, he’s used up one of his chances. Now
he has nine chances left.

3 The game goes on until the player guesses the entire word (player
wins) or runs out of tries (app wins).

 Set up the project, and create the UI
First, create a UI that looks like figure 10.4.

Figure 10.4 The UI for the Hangman app

Type: UIButton,

Text: Make Guess

IBAction: letterClicked

Type: UILabel,

Text: All alphabet a–z

as shown

IBOutlet: letterLabel

Type: UILabel,

Text: Status will come here

IBOutlet: statusLabel

Type: UILabel,

Text: No word yet

IBOutlet: wordLabel

Type: UILabel,

Text: No tries yet

IBOutlet: tryLabel

Type: UITextField,

Placeholder:

Put your guess here!

IBOutlet: inputLetter

Type: UIButton,

Text: New Game!

IBAction: newGameClicked

New Game!

Put your guess here!

Status will come here

a b c d e f g h i j k l m n o p q r s t u v w x y z

Make Guess

Current Word: No word yet

H a n g m a n !

Remaining Tries: No tries yet

Hangman app 273
Code the app
When you’ve created the UI, it’s time to add the code. Listing 10.2 is the
code you need to add. The code creates a few simple starter functions
that make the Hangman game work; I’ll explain them after the listing.

Listing 10.2 The code for the Hangman app

import UIKit

extension Array {

 func randomElement() -> String {
 return self[Int(arc4random_uniform(UInt32(
 self.count-1)))] as! String
 }
}

class ViewController: UIViewController {

 @IBOutlet var wordLabel: UILabel!
 @IBOutlet var triesLeft: UILabel!
 @IBOutlet var inputLetter: UITextField!
 @IBOutlet var lettersLabel: UILabel!
 @IBOutlet var statusLabel: UILabel!

 let maximumTries = 10
 var currentTries = 0

 var currentWord = ""
 var wordArray: [String] = []
 var tryArray: [String] = []
 var usedLetters: [String] = []

 override func viewDidLoad() {
 super.viewDidLoad()
 newGame()
 // Do any additional setup after loading the view,
 ➥ typically from a nib.
 }

 func possibleWords() -> [String] {
 let stringVal = String(data: try! Data(

 ➥ tanmayb123/english-words/raw/master/words.txt")!),
 encoding: .utf8)

 contentsOf: URL(string: "https://github.com/

274 CHAPTER 10 Reading and writing files
 return stringVal!.replacingOccurrences(
 of: "\r", with: "").components(separatedBy: "\n")
 }

 @objc func read(file: String) -> String {
 let paths = NSSearchPathForDirectoriesInDomains(
 .documentDirectory, .userDomainMask, true
)[0] as String
 let pathToFile = (paths as NSString)
 .appendingPathComponent(file)
 if FileManager.default.fileExists(atPath: pathToFile) {
 return String(data: NSData(
 contentsOfFile: pathToFile
)! as Data, encoding: .utf8)!
 } else {
 return ""
 }
 }

 @objc func write(file: String, value: String,
 newline: Bool, overwrite: Bool) {
 var paths: [AnyObject] =
 NSSearchPathForDirectoriesInDomains(
 .documentDirectory, .userDomainMask, true
) as [AnyObject]
 let documentsDirectory = paths[0] as! String
 let filePath: String = "\(documentsDirectory)/\(file)"
 if !overwrite {
 if newline {
 try! (read(file: file) + "\n" + value)
 .write(toFile: filePath, atomically:
 true, encoding: String.Encoding.utf8)
 } else {
 try! (read(file: file) + value).write(
 toFile: filePath, atomically: true,
 encoding: String.Encoding.utf8)
 }
 } else {
 try! value.write(toFile: filePath,
 atomically: true,
 encoding: .utf8)
 }
 }

 func getHighscoreStatus() -> String {
 var finalValue = ""

Hangman app 275
 if read(file: "highscore.txt") == "" && read(
 file: "lastscore.txt") == "" {
 finalValue = "No saved scores."
 } else {
 let lastScore = read(file: "lastscore.txt")
 let highScore = read(file: "highscore.txt")
 finalValue = "Last score: \(lastScore)"
 finalValue += "\n | Highest score: \(highScore)"
 }
 return finalValue
 }

 func writeScore() {
 var highscore = 0
 if read(file: "highscore.txt") != "" {
 highscore = Int(read(file: "highscore.txt"))!
 }
 if currentTries > highscore {
 highscore = currentTries
 }
 write(file: "highscore.txt",
 value: "\(highscore)", newline: false,
 overwrite: true)
 write(file: "lastscore.txt",
 value: "\(currentTries)", newline: false,
 overwrite: true)
 }

 func newWord() {
 wordLabel.text = possibleWords().randomElement()
 currentWord = wordLabel.text!
 wordArray = []
 tryArray = []
 for i in currentWord.characters {
 wordArray.append("\(i)")
 tryArray.append("_")
 }
 }

 func newGame() {
 currentTries = maximumTries
 newWord()
 updateWordLabel()
 updateTryLabel()
 usedLetters = []
 updateLetterLabel()

276 CHAPTER 10 Reading and writing files
 inputLetter.text = ""
 statusLabel.text = getHighscoreStatus()
 }

 @IBAction func newGameClicked() {
 newGame()
 }

 func gameover() {
 writeScore()
 statusLabel.text = getHighscoreStatus()
 tryArray = wordArray
 updateWordLabel()
 }

 @IBAction func letterClicked() {
 if currentTries != 0 && !usedLetters.contains(
 inputLetter.text!) && inputLetter.text! != "" {
 ➥ // Conditional #1
 var wasUseful = false
 for (ind, val) in wordArray.enumerated() {
 if val == inputLetter.text! {
 tryArray[ind] = val
 wasUseful = true
 }
 }
 if !wasUseful {
 currentTries -= 1
 }
 usedLetters.append(inputLetter.text!)
 updateTryLabel()
 updateWordLabel()
 updateLetterLabel()
 }
 if tryArray == wordArray { // Conditional #2
 triesLeft.text! = "YOU WON!"
 gameover()
 }
 if currentTries == 0 { // Conditional #3
 triesLeft.text = "You lost."
 gameover()
 }
 inputLetter.text = ""
 }

Hangman app 277
 func updateTryLabel() {
 triesLeft.text = "\(currentTries)"
 }

 func updateWordLabel() {
 wordLabel.text = ""
 for i in tryArray {
 wordLabel.text! += "\(i) "
 }
 }

 func updateLetterLabel() {
 lettersLabel.text =
 "a b c d e f g h i j k l m n o p q r s t u v w x y z"
 for i in usedLetters {
 lettersLabel.text = lettersLabel.text!.
 replacingOccurrences(of: i, with: " ")
 }
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
}

Usually, you see a lot of code annotation after a listing. I tried that but
thought this listing would be easier to read without it.

Connect the variables, IBOutlets, and IBActions
Table 10.2 shows what the variables in the program do.

Table 10.2 Variables for the Hangman app

Variable Description

maximumTries Allows you to set the maximum number of tries that the user has

currentTries Allows you to keep track of the number of tries the user has taken

currentWord Current word that the user is trying to guess

wordArray Array of letters in the word the user is guessing

278 CHAPTER 10 Reading and writing files
Table 10.3 shows the IBOutlets.

Table 10.4 shows the functions.

tryArray Array of letters that the user correctly guessed. This array has the same
number of elements as wordArray. When a user gets a letter correct, it
pops up in this array.

Examples:

Word the user is trying to guess: Swift

 wordArray = [s, w, i, f, t]

 tryArray = [_, _, _, _, _]

Suppose that the user guesses the letter f:

 wordArray = [s, w, i, f, t]

 tryArray = [_, _, _, f, _]

usedLetters Letters that the user has already guessed, right or wrong

Table 10.3 IBOutlets for the Hangman app

IBOutlet Description

wordLabel The word that the user is trying to guess

triesLeft How many tries the user has left

inputLetter The letter that the user is guessing

lettersLabel The label that shows the user which letters she has left to use

statusLabel The user’s last game score and her highest score

Table 10.4 Functions for the Hangman app

Function Description

possibleWords This function downloads and returns all the possible words from a
word list on my website. The address is https://raw.githubusercontent
.com/tanmayb123/Hangman/master/wordlist.txt.

Table 10.2 Variables for the Hangman app (continued)

Variable Description

https://raw.githubusercontent.com/tanmayb123/Hangman/master/wordlist.txt
https://raw.githubusercontent.com/tanmayb123/Hangman/master/wordlist.txt

Hangman app 279
newWord This function sets the text of wordLabel to a randomElement from the
array that the possibleWords function returns. Then it sets the cur-
rentWord to the text you put in the wordLabel. Finally, it loops
through the characters of the currentWord. For every character in
currentWord, you append the character to the wordArray and an
underscore to the tryArray.

newGame This function starts a game by setting currentTries to maximum-
Tries so that the user has ten tries when he starts. It also calls the
newWord, updateWordLabel, updateTryLabel, and updateLet-
terLabel functions. It sets usedLetters to nothing and sets input-
Letter’s text to nothing as well. Last, it puts the value of a function,
getHighscoreStatus, in the statusLabel.

updateTryLabel This function puts currentTries in tryLabel.

updateWordLabel This function puts tryArray in wordLabel.

updateLetterLabel This function updates the letterLabel so that users know what let-
ters they have used and have left.

getHighscoreStatus This function displays the status of the user, meaning the last game’s
score and the high score.

First, create a variable called finalValue. This variable holds the
final result until you can return it.

Next, read highscore.txt and lastscore.txt, and if both of the values
from the files are nothing, you know that the user has never played a
game and therefore doesn’t have a high score. So you set final-
Value to No saved scores.

If those two files had values, however, set finalValue to Last
score: <THE USER’S LAST SCORE> | Highest score: <THE
USER’S HIGH SCORE>.

writeScore If you’re wondering how the values get into the file in the first place,
this function takes care of that process.

First, this function creates a highscore integer, which is 0 by default.

Then it checks whether highscore.txt has something in it. If so, it sets
the highscore variable to the contents of the file.

Next, it checks whether currentTries is higher than the last high-
score. If so, it sets the highscore variable to currentTries.

Finally, it writes the value of the highscore variable in highscore.txt
and the value of currentTries in lastscore.txt.

gameover When this function is called, call writeScore; set the statusLabel’s
text to the value returned by getHighscoreStatus(); set the try-
Array to wordArray; and update the word label.

Table 10.4 Functions for the Hangman app (continued)

Function Description

280 CHAPTER 10 Reading and writing files
Table 10.5 shows the final IBActions.

Run your app
When you run the app, you should see an interface similar to figure
10.4. To see an example of what it looks like when someone wins, take
a look at figure 10.5.

Check your app knowledge
1 Which function from the String class allows you to write to files?

Give an example.

2 What does newline: true do in this code?
write(file: "test.txt", value: writeField.text!, newline: true,
overwrite: false)

Table 10.5 IBActions for the Hangman app

IBAction Description

letterClicked 1 This IBAction checks if currentTries is not 0, and the letter that the
user is guessing hasn’t been used, and the user typed a letter.

2 If all those conditions are true, do the following:

3 Create a Boolean named wasUseful, with a default value of false.

4 Loop through the enumerated wordArray.

5 Check whether the val you were on is equal to the input letter. If so,
set the tryArray’s ind element to val, and set wasUseful to true.

6 After the loop, check whether wasUseful is false. If it is, subtract 1
from currentTries.

7 Append the input letter to the usedLetter array.

8 Call all your update functions.

9 Clear the inputLetter TextField.

10 In conditional #2, check whether the tryArray is equal to the
wordArray. If so, the user has won. In this case, set the triesLeft
label’s text to YOU WON! and then call gameover.

11 In conditional #3, check whether currentTries is equal to 0. If so, the
user lost, so set triesLeft’s text to You lost and then call gameover.

12 Finally, return to the caller of this function or the button.

newGameClicked When this IBAction function executes, it calls the newGame function.

App-Activity: Store your name and birth date 281
3 What happens when you append
new data to an existing file?

4 What parameter does the read()

function take?

5 Create an app that allows you to write
your first name to a file, read it later,
and display it on a label. The app
should have Load and Save buttons.

App-Activity: Store your name
and birth date

Create an app that takes the user’s
name and date of birth in two separate
text fields and stores them in separate
files. Later, whenever the user wants
to, he should be able to read the values
back from the files and see what he
stored. When the Load button is
clicked, the app should display the
contents of the two files in two labels.

New Game!

Put your guess here!

Current Word: s t r i c t l y

H a n g m a n !

Remaining Tries: YOU WON!

Last score: 6 I Highest score: 6

 b d f g h j k m n p q v w x z

Make Guess

Figure 10.5 The running Hang-
man application.

11
1

3

5

4

6

14

8

7 9

N A Journey

2

12

13

10

11

Frameworks: Bookshelves
of classes

You’ve made it through ten chapters, and
you’ve finished most of your iOS developer
education. Now it’s time to move on to
some special topics of interest, starting
with frameworks.

This chapter covers

• What a framework is and how to use it
• How to build frameworks for simulators and iDevices
• How to use a framework in an Xcode

project
• What UIKit is
282

What is a framework? 283
Milestone 11 is frameworks. This chapter is for people who plan to
help others code, not by teaching them, but by uploading sets of code
for people to use on sites such as GitHub, BitBucket, and GitLab. You
can also create local repositories so that you can keep track of your
learning and use older code as building blocks for your newer, full-
fledged apps!

How can I be almost done learning iOS development if I still
have more chapters to go?

What you learn in the final chapters, including this one, cov-
ers topics you use for specific purposes instead of the general-
purpose code you’ve used so far. At the beginning of each
chapter, I explain what that chapter is most useful for.

What is a framework?
I’ll start with a simple question: what is a framework? A framework is
a set of classes, functions, code, and even other frameworks that can be
easily reused.

The easiest way to understand frameworks is to look at what contains
what.

You must start organizing your code in functions when your code
starts to grow. You can group a collection of related functions into a
class, and then create frameworks by using a group of related classes.
This group of classes, called a framework, can be given to others in an
integrated way.

So a function is a set of code and other functions. (A function can even
contain another function.) A class is a set of functions and other
classes. (A class can contain another class.) Finally, a framework is a
set of classes and even other frameworks. (Yes, a framework can con-
tain another framework.)

284 CHAPTER 11 Frameworks: Bookshelves of classes
This hierarchy is described in figure 11.1.

Here’s another example that you’re already
familiar with. You may recall file content man-
agement (FCM) from chapter 10. If you’re cre-
ating a new app and want it to use the FCM
functions, you have to create the read and write
functions every time you want to manage files.

Now imagine that you want to create 20 apps
with FCM incorporated into them. You could
copy and paste the same functions into each app,
but that would make the code messy, bulky, and
unorganized.

Also, suppose that you find a bug in your code or
a change you want to make. If you were to
change the function, you’d still have to copy it to
all of your apps manually.

Frameworks help you further clean up your
code and solve both of those problems.

Frameworks offer you a better option than having repeated functions
and classes in each app. You create or download a framework with the
FCM classes in it and drag that file into your project, and your project
instantly gets code for reading and writing files. You can do this for
each app in which you want to implement FCM. All you need to do is
import the framework into your code (which takes only one line of
code).

Without further ado, get straight to it!

Create a framework
To start, create a framework called Swifto’File. To realize the power of
frameworks, you’re going to re-create the FCM app from chapter 10,
with these differences: all the classes reside in a framework, and the
code for the app is one line of code using the framework. In the follow-
ing sections, you see how.

framework

framework

func

code

class

class

func

Figure 11.1 The “What-
contains-what?” diagram

Create a framework 285
What does this app do?
You’re creating a new project, but this project won’t be a single-view
application. In fact, this app will have no view at all!

NOTE You can find the code for this application in the Chapter11_SwiftoFile
file inside the Hello-Swift-Code-master folder that you downloaded from
GitHub. If you haven’t downloaded the code from GitHub, go to: https://
github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You should
download the code only once for all chapters.

Create the project
To select the right setting, choose iOS > Framework &
Library (instead of Application, as you did in the pre-
ceding chapters), as shown in figure 11.2.

Next, click the Cocoa Touch Framework button, as
shown in figure 11.3; then click Next again.

Now you can fill out this page as you would for any other project.

NOTE Make sure that you don’t include apostrophes (’) in the project name.
Apostrophes are invalid characters for an Xcode project’s name, and they may
interfere with the building part of the process. Don’t write Swift’o’File; write
SwiftoFile.

Figure 11.2 The Proj-
ect Template pane.

Figure 11.3 Cocoa Touch Framework
is the template you should choose.

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

286 CHAPTER 11 Frameworks: Bookshelves of classes
When you’ve done that, you should see a screen like the one in figure
11.4.

Figure 11.4 The Xcode project screen

This screen looks different from normal. Why don’t I see ViewCon-
troller.swift and Main.storyboard in the file navigator?

You don’t see them because you don’t need them. You won’t be devel-
oping a user interface (UI) for this project, so you don’t need those
files. Xcode knows that and didn’t automatically generate them for
you this time.

Okay, but how am I going to code the app without a Swift file?

That’s a good question! Instead of having Xcode autogenerate those
files for you, you create the files manually. Xcode doesn’t know what
to name the files, so it leaves that job to you.

Create a framework 287
Get started by pressing
Command-N. This key com-
bination tells Xcode to cre-
ate a new file. You should
see a screen like figure 11.5.

Double-click Swift File, and
you see the dialog box
shown in figure 11.6.

Figure 11.6 Giving the file a name

Type a name for the file (in this case, FileContentManager) in the Save
As field; then press the Return key or click the Create button. A new
file appears in the file navigator pane, and the file opens in the main
area.

Now do the same thing to create three more files: FileReader, File-
Writer, and SwiftoFile.

Figure 11.5 New File Template screen

288 CHAPTER 11 Frameworks: Bookshelves of classes
Code the app
In this section, you add code to your new files. Follow the next few
steps, and then I’ll explain what all the code does. When the frame-
work is set up, you’ll take the Read and Write example from chapter 10
and modify the code to use your new SwiftoFile framework.

After you create all four files, click FileContentManager.swift in the
file navigator pane, and type the following code:

Listing 11.1 The FileContentManager class

class FileContentManager {

 // This variable will contain the name of the file to read or write,

➥ coming from the FileReader and FileWriter classes, respectively.
 var filename = ""

 // The initializer for this class.
 init(inputfilename: String) {
 filename = inputfilename
 }

}

Then type the following code in FileReader.swift.

Listing 11.2 The FileReader class

// Defining the FileReader class, which inherits from
FileContentManager.

class FileReader: FileContentManager {

 func returnContents() -> String {
 let paths = NSSearchPathForDirectoriesInDomains(
 .documentDirectory, .userDomainMask, true)[0]
 let filePath = paths.last! == "/" ?
 paths + filename : paths + "/" + filename
 if FileManager.default.fileExists(atPath: filePath) {
 return try! String(contentsOfFile: filePath)
 }
 return ""
 }
}

Create a framework 289
Type the code in listing 11.3 in FileWriter.swift.

Listing 11.3 The FileWriter class

import Foundation

class FileWriter: FileContentManager {

 var towrite = ""
 var overwrite = false
 var newline = false

 func writeToFile() {
 let paths = NSSearchPathForDirectoriesInDomains(
 .documentDirectory, .userDomainMask, true)[0] as String
 let filePath = paths.characters.
 last! == "/" ? paths + filename :
 paths + "/" + filename
 if newline {
 towrite = "\n" + towrite
 }
 if !overwrite {
 if FileManager.default.fileExists(
 atPath: filePath) {
 towrite = FileReader(inputfilename: filename)
 .returnContents() + towrite
 }
 }
 try! towrite.write(toFile: filePath,
 atomically: true,
 encoding: .utf8)
 }

}

Type the code in listing 11.4 in SwiftoFile.swift.

Listing 11.4 The SwiftoFile class

import Foundation

public class SwiftoFile {

290 CHAPTER 11 Frameworks: Bookshelves of classes
 var reader: FileReader!
 var writer: FileWriter!

 var canOperate = false

 public init() {
 canOperate = false
 }

 public init(userfilename: String) {
 canOperate = true
 reader = FileReader(inputfilename: userfilename)
 writer = FileWriter(inputfilename: userfilename)
 }

 public func write(content: String,
 overwriteFile: Bool,
 appendNewline: Bool) {
 if canOperate {
 writer.towrite = content
 writer.overwrite = overwriteFile
 writer.newline = appendNewline
 writer.writeToFile()
 } else {
 print("Not able to operate. " +
 "You probably missed out the file name.")
 }
 }

 public func read() -> String {
 if canOperate {
 return reader.returnContents()
 } else {
 print("Not able to operate. " +
 "You probably missed out the file name.")
 }
 return ""
 }
}

Create a framework 291
Why did I put the word public in so many places inside
SwiftoFile.swift?

These places are the only places you want developers (users
of the framework) to be able to access from outside the
framework. I’ll explain further after I explain FileContent-
Manager, FileReader, and FileWriter.

Learn how the code works
Now take a look at what each of these chunks of code is doing.

FILECONTENTMANAGER

FileContentManager doesn’t do anything; it’s a base class that both
FileReader and FileWriter inherit from. (If you want to know more
about inheritance, refer to chapter 9.)

Figure 11.7 should help you understand inheritance (hierarchy) a bit
better.

In FileContentManager, you define filename as a String, and you make
an initializer that takes inputfilename and puts its value in filename. This

File
ContentManager

FileReaderFileWriter

Child-Class 2Child-Class 1

SwiftoFile

Class
Parent-Class

Universe of the Framework

Figure 11.7 Universe
of the Framework, an
Inheritance diagram

292 CHAPTER 11 Frameworks: Bookshelves of classes
initializer is required, even though you don’t specify it because it’s the
only initializer.

FILEREADER

As I mention earlier, this class inherits from FileContentManager, so it
has the initializer and filename variable that were created there.

Here, however, you define a function called returnContents that returns
the contents of the file. In case you were wondering where you got the
filename from, you have it in filename. If you don’t remember, filename
was set from the value that we gave FileContentManager’s initializer as
inputfilename.

FILEWRITER

Again, FileWriter inherits from the FileContentManager class. Here,
however, you also define the variables toWrite, which contains the con-
tents of the file; overwrite, which tells you whether to overwrite the file
(the default value is false); and newline, which tells you whether to
append toWrite to a new line (the default value is false).

Then you have a writeToFile() function that writes to the file that was
passed through FileContentManager’s intializer, using the preceding
variables.

SWIFTOFILE

SwiftoFile is the main class that the users of the framework will use!
That’s why you put public at the beginning of the class; you want peo-
ple to be able to access it. You don’t want them to access the reader and
writer variables, however, so you don’t put public in front of them.

Next, you have an initializer that’s public and that has a parameter:
userfilename. This parameter takes the filename that the user wants to
read from or write to. When called, the initializer sets

 reader to a new instance of the FileReader class, with userfilename as
the value for the inputfilename parameter

 writer to a new instance of the FileWriter class, with userfilename
again as the value for the inputfilename parameter

Create a framework 293
Build the framework
You’ve created this framework in this chapter and partly in chapter 10.
Before you can use one, however, you must build one.

Wait a minute—I already coded the framework! Why am I
building it again?

In this sense, build doesn’t mean to create or code files.
Building means that you’re compiling the files you’ve already
coded to translate them into a language that the machine can
understand and run.

This step is important: from the device menu
(you learned about it in chapter 2), choose
Generic iOS Device (figure 11.8).

Then press Command-B. To Xcode, this key
combination means build, and it creates your
framework.

Next, click the little arrow beside Products
at the bottom of the file navigator pane (fig-
ure 11.9.

Figure 11.9 The Products folder in the file navigator

Finally, right-click the framework file and choose Show in Finder from
the contextual menu. You should see a Finder window pop up, and if
you have a .framework file selected, you’re ready to use this frame-
work. If your project name is SwiftoFile, for example, you should see
SwiftoFile.framework here.

Figure 11.8 Device
menu, with Generic iOS
Device selected

294 CHAPTER 11 Frameworks: Bookshelves of classes
But there’s a catch: this framework works only on a real iOS device. If
you’d like this framework to work with the simulator, you need to fol-
low these additional steps to build the framework differently:

1 Click the Finder window so that it gets the focus.

2 Press Command-Up arrow, which tells Finder to go up a directory.

3 Double-click the debug-iphonesimulator folder.
You may not see a file, but don’t worry. Even if you do, continue fol-
lowing the steps.

4 Go back to Xcode without closing the Finder window.

5 From the device menu, choose any random simulator—preferably
the simulator for the device that you normally use (such as the
iPhone 7 Plus).

6 Press Command-B again to create the .framework file that’s compat-
ible with the simulator only.
The missing file should now appear in Finder.

7 Go back to the Finder window, and you can now see the file with the
.framework extension.
Whenever I refer to the framework file, that’s the file I’m talking
about.

You’re ready to create your app with a simulator or iDevice, depending
on whichever one you chose.

Use the framework
To use the framework you created, you need to think of an example.
What better example is there than implementing this framework into
the app you created in chapter 10?

In the next section, I teach you how to take the Read and Write exam-
ple from chapter 10’s file content management (FCM) app and modify
the code to use the new SwiftoFile framework you created.

App: Load Save, Part 2, using frameworks
Now you can build the second part of the Read and Write app, using
the new SwiftoFile framework you’ve created.

App: Load Save, Part 2, using frameworks 295
What will you do to this app?
NOTE You can find the code for this application in the Chapter11_Load-
SaveChp10 folder inside the Hello-Swift-Code-master folder that you down-
loaded from GitHub. If you haven’t downloaded the code from GitHub, go
to: https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You
should download the code only once for all chapters.

You’ll be following this set of steps:

1 Remove the read and write functions, which are now contained in the
framework you created.

2 Add the SwiftoFile framework to the Xcode project.

3 Import the framework and change some code in the project.

Removing the read and write functions
The process is about as simple as it sounds: You need to remove the
read and write functions.

But when you do, you get two errors, as shown in figure 11.10. You
may wonder why you’re getting these errors in the IBActions.

Figure 11.10 The errors you get on removing the read and write functions

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

296 CHAPTER 11 Frameworks: Bookshelves of classes
The IBActions are trying to refer to the read and write functions that
don’t exist anymore, because you’ve removed them, and the Swift com-
piler is telling you that you’ve made a mistake. Don’t worry; you’ll be
fixing it later.

Creating the framework reference in Xcode
Next, you add the framework.

To do this, simply drag the framework file into the Xcode file pane (fig-
ure 11.11).

Figure 11.11 Dragging the framework file into an Xcode project

When you release the mouse button, you see a screen like figure 11.12.

App: Load Save, Part 2, using frameworks 297
Figure 11.12 Putting the framework file into the Xcode project

On this screen, make sure that the Copy items if needed check box is
checked; then click Finish.

Next, click the Xcode project in the file navigator pane (figure 11.13).

Specifically, click the file shown in figure 11.14.

Figure 11.14 The LoadSaveChp10 Xcode project

Figure 11.13 File navigator pane in Xcode

298 CHAPTER 11 Frameworks: Bookshelves of classes
Scroll down until you see Embedded Binaries, and click the plus sign
(+), (figure 11.15).

Figure 11.15 The Xcode project screen

Figure 11.16 shows the embedded binaries section.

Figure 11.16 Embedded Binaries section in the Xcode project

App: Load Save, Part 2, using frameworks 299
Finally, double-click your new frame-
work file (in this case, SwiftoFile.frame-
work) in the window that pops up
(figure 11.17).

You’re done creating the reference.
Next, you’ll code it.

Coding the framework in the LoadSave app
It’s time to code. First, you need to
import your framework.

You may remember that in chapter 1, I
told you to ignore the line import UIKit in
your playgrounds and apps? Well, don’t
do that anymore. UIKit is a framework that contains many classes and
functions that Apple has put together for developers.

EXTRA, EXTRA! UIKit is the foundation framework with more classes related
to UI development with Cocoa Touch, and the foundation framework is the
Darwin (the open-source kernel that macOS is based on) framework with
more developer-oriented classes.

To import, scroll in your ViewController.swift file to import UIKit, and
add this new line after it:

import <FRAMEWORK_NAME_HERE>

If your framework is named SwiftoFile, for example, type

import SwiftoFile

Go to load @IBAction, and change

@IBAction func load() {
 writeField.text = read("infoSave.txt")
}

to

@IBAction func load() {
 let fileContentManaging = SwiftoFile(userfilename: "infoSave.txt")

Figure 11.17 Embedded Bina-
ries add page

300 CHAPTER 11 Frameworks: Bookshelves of classes
 writeField.text = fileContentManaging.read()
}

Then go to the save IBAction, and change

@IBAction func save() {
 write("infoSave.txt", value: writeField.text!, newline: false,
 ➥ overwrite: true)
}

to

@IBAction func save() {
 let fileContentManaging = SwiftoFile(userfilename: "infoSave.txt")
 fileContentManaging.write(content: writeField.text!,
 ➥ overwriteFile: true, appendNewline: false)
}

Listing 11.5 shows how the code looks after all your modifications.

Listing 11.5 The final code for the Load Save app, Part 2

import UIKit
import SwiftoFile

class ViewController: UIViewController {

 @IBOutlet var writeField: UITextView!

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view,
 ➥ typically from a nib.
 }

 @IBAction func save() {
 let fileContentManaging = SwiftoFile("infoSave.txt")
 fileContentManaging.write(content: writeField.text!,
 overwriteFile: true, appendNewline: false)
 }

 @IBAction func load() {
 let fileContentManaging = SwiftoFile("infoSave.txt")
 writeField.text = fileContentManaging.read()
 }

Check your app knowledge 301
 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be re-created.
 }

}

You’re done!

Run your app
Make sure to note which framework type you chose. If you chose sim-
ulator, make sure to run or test only on a simulator. If you chose a real
iDevice, make sure to run or test only on an iDevice. If you mix up the
two platforms, you get an error. In case you want to get really techni-
cal, this error occurs because real iDevices run on ARM chips,
whereas Macs, which run iOS simulators, run on Intel chips. The
architectures are different, and Xcode needs to know what to build the
app for to build it. In simpler terms, the simulator and iDevice speak
different languages and need differently translated code to use the
framework.

Therefore, choose simulator if you want to run the app on a simulator,
or choose your iDevice if you want to run the app on an iDevice.

You’ve used a framework in Swift! In chapter 12, you move on to (drum-
roll, please) SpriteKit—or, as I like to think of it, animation and games.

Check your app knowledge
1 Why do you have to build for simulators and iDevices differently

when you make a framework?

2 What’s the advantage of using a framework instead of functions and
classes?

3 Why do you use the keyword public in some classes when creating a
framework?

4 Why don’t you see files like Main.storyboard when you create a
framework project in Xcode?

5 Describe two situations in which creating a new framework could be
useful.

12
1

3

5

4

6

14

8

7 9

N A Journey

2

12

13

10

11

SpriteKit: Fun animation time

This chapter will help you build your
confidence by getting your first simple
graphics-based app up and running!

This chapter covers

• What is SpriteKit?
• What is a pixel?
• How does the coordinate system work in SpriteKit?
• What are the differences between

SpriteKit and UIKit?
• How can you use SpriteKit to

create a simple app?
302

Meet SpriteKit 303
In this chapter, you’re going to get your toes wet with SpriteKit. It’ll
help you build your confidence, as you’ll see your first simple graphics-
based app up and running.

This chapter is for patient typists. I can assure you that you know what
all this code means—or will understand it easily—even though the
actual code listings are lengthier than you’ve seen so far.

Please don’t hate me, but this chapter is math-intensive. It’s not
calculus-level math, but it’s relatively more complex than in the other
chapters.

In this book, however, I won’t be going into too much detail with
SpriteKit; you either get your toes wet or you dive into the pool. I may
cover the more-complicated applications later in the online version of
this book as an extension to this chapter.

This chapter is a starter for those who want to learn simple 2D anima-
tion for iOS apps.

Meet SpriteKit
SpriteKit is a framework designed by Apple for intense 2D graphics.
By intense, I mean not only the type of graphics that allow you to show
rectangular buttons onscreen, but also the type of graphics that enable
you to simulate a ball that bounces as it hits a wall or a comic character
flying across the screen.

UIKit also allows me to put graphics onscreen and in 2D.
What’s special about SpriteKit?

SpriteKit gives you tools in the code to create advanced
graphics, and it lets you get closer to game development. One
down side is that SpriteKit gives you no graphical way to cre-
ate the user interface (UI). You won’t be able to drag buttons
or other widgets to the screen from a storyboard file, for
example; you have to add buttons by specifying coordinates,
size, color, and everything else your buttons need through
your code. You won’t be able to design the UI through a
graphic interface by dragging and dropping elements.

304 CHAPTER 12 SpriteKit: Fun animation time
If you like, however, you can create your own graphics for a game (fish,
Christmas-tree ornaments, logos, and so on) by using a graphic design tool. I
recommend Sketch or Adobe Photoshop for this purpose.

Now, without any further ado, get straight to some SpriteKit coding.

How does SpriteKit work?
You need to learn about pixels and the coordinate system to understand
the concepts that come up in your journey of coding with SpriteKit.

Pixels
Before I can talk about SpriteKit, I have to talk about the basics, down
to the hardware level.

To start, every screen or display you see uses lots and lots of tiny
squares called pixels. Here, I’d like to remind you that the standard
colors of light are red, green, and blue (RGB), which are different from
the primary colors red, yellow, and blue. When you mix RGB in differ-
ent proportions, you can create any color.

Look at the image in figure 12.1.

This image is a bunch of RGB values that control how much red,
green, and blue should be displayed in every pixel to create a particular
color.

Figure 12.2 shows what 1 pixel looks like, but it’s magnified in the fig-
ure because a single pixel is so tiny that it’s practically invisible to the
naked eye.

Figure 12.2 A magnified pixelFigure 12.1 Some colorful pencils

How does SpriteKit work? 305
Did you know that pixel is an acronym for picture cell? In
fact, screens are made up of pixels. Now you know!

This information seems really nitpicky. Why do I need to
know about pixels?

You need to learn about pixels for two reasons:

 You’ll be able to appreciate the resolution of the screen.
 You’ll use these pixels to draw shapes and position them

onscreen.

A pixel can display almost any color imaginable by specifying how
much red, green, and blue to mix together, as shown in table 12.1.
RGB values can range from 0 to 255.

When you have hundreds of thousands of pixels in a 2D array (which
you can picture as a grid or matrix), you have a display that’s capable
of showing images.

Table 12.1 How different proportions of RGB result in different colors

Amount of R Amount of G Amount of B Resulting color

255 0 0 Red

0 255 0 Green

0 0 255 Blue

255 0 255 Purple

255 255 0 Yellow

306 CHAPTER 12 SpriteKit: Fun animation time
Suppose that you want to create a line from
point A to point B in a 100 x 100 grid of pixels.
Because a line is a set of points placed closely to
one another, you light up all the pixels as points
between A and B to create a line (figure 12.3).

You create any other shape or image similarly.

To conclude, an image is a bunch of RGB values
at specific positions, reconstructed by the oper-
ating system to be displayed on a screen. Now,
the more pixels you have packed together in a
smaller space, the more HD (high-definition)

that screen is, so in the same amount of space, you can show more pix-
els distinctly.

Apple and Dell have released 5K monitors, for example, which means
that these monitors have an enormous amount of pixels: 5120 x 2880,
which represents 14,745,600 individual pixels onscreen!

More pixels equal more detail in images, text, and the like because
your eyes can perceive the image more easily; hence, your brain can
pick out more details.

Coordinate system
In this section, you apply your
new understanding of pixels to
basic graph concepts. Learning
this concept will help you under-
stand how to locate a point or
place an object on the iPhone’s
screen.

To start, draw a 100 x 100 pixel
square (figure 12.4).

The bottom-left corner has (0, 0)
beside it, which means that the
computer takes this point as x: 0,
y: 0.

Figure 12.3 A 100 x 100 grid
depicting pixels that have been
illuminated in a way that repre-
sents a straight line

Figure 12.4 A square to explain the coordinate
system, starting at bottom left and increasing to
the right and to the top

Drag the Square (DTS) app 307
NOTE The size of the square in the figure isn’t really 100 x 100 pixels; it’s rep-
resented that way to teach you the concept.

As you go up from that corner, the y value starts to increase. Eventu-
ally, in the top-left corner, you get to (0, 100), which means x: 0, y: 100.

Also, as you go toward the right from the bottom-left corner, the x
value starts to increase. Eventually, in the bottom-right corner, you get
to (100, 0), which means x: 100, y: 0.

So the top-right corner is (100, 100).

This square is 100 x 100 pixels. As you can well imagine, however, that
grid would be way too small for an iPhone. Table 12.2 lists the dimen-
sions of iPhones starting with the iPhone 5S.

As you can see, those dimensions are a lot of pixels, so you can fit a lot
of stuff onscreen.

In the next section, you get into the apps.

Drag the Square (DTS) app
NOTE You can find the code for this application in the Chapter12_Drag-
TheSquare folder inside the Hello-Swift-Code-master folder that you down-
loaded from GitHub. If you haven’t downloaded the code from GitHub, go
to: https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You
should download the code only once for all chapters.

Table 12.2 Screen sizes for iPhone 5S and later

iPhone Model Pixels onscreen

iPhone XR 1792 x 828

iPhone XS Max 2688 x 1242

X/XS 2436 x 1125

6+/6S+/7+/8+ 1920 x 1080

6/6S/7/8 1334 x 750

5S/SE 1136 x 640

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

308 CHAPTER 12 SpriteKit: Fun animation time
What does this app do?
This app is simple: you put a square in the center
of your screen and then drag it around by tap-
ping it. You can tap anywhere on the screen, and
as you tap, the square jumps to your finger’s posi-
tion. As you move your finger across the screen,
the square follows. When you lift your finger, the
square stays where it is.

Figure 12.5 shows you how the application starts.

With SpriteKit, you don’t have a graphical
method of creating the UI because there’s no
storyboard file.

Create the project
There are a few differences between creating a
SpriteKit project and creating a UIKit project.

When you create a SpriteKit project in Xcode,
Xcode fills your project with a small application
automatically. The application is supposed to dis-
play Hello World! on your screen, along with

some more functionality, but I don’t want to confuse you with all that
functionality yet.

To make your life a lot easier, in the blank project I created for you, I
removed the example code and interface from the GameScene.swift
and GameScene.sks files, and also reset the coordinate system. So
download those code files before you begin.

NOTE You can find the code for this application in the Chapter12_SpriteKit-
BlankTemplate folder inside the Hello-Swift-Code-master folder that you
downloaded from GitHub. If you haven’t downloaded the code from GitHub,
go to: https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip.
You should download the code only once for all chapters.

Alternatively, you can create a new default SpriteKit application and
modify the template so that it’s a blank application.

Figure 12.5 The starting
screen of the Drag the Square
app

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

Drag the Square (DTS) app 309
I’m assuming that you downloaded the project, however, so in the next
section, you start coding.

Code the app
Here’s an overview of the logic you’ll code:

1 Create the square.

2 Set the position of the square to the center of the screen.

3 Make the square red.

4 Make the square appear onscreen.

Start by opening the Xcode project that you downloaded by double-
clicking DragTheSquare.xcodeproj in Finder.

PUTTING THE SQUARE ONSCREEN

Every time you code an application by using UIKit (every app you’ve
coded before this one), you have a viewDidLoad function, in which you
can enter the code that you want to execute at the beginning of the
application. Well, that function doesn’t exist in SpriteKit applications.
Instead, you have a didMove(to: UIView) function, so you have to enter
your application-start code there.

There’s one more difference between SpriteKit and UIKit: you usually
code in your ViewController.swift file when you use UIKit, but that
file doesn’t exist in SpriteKit applications either. You have to use the
GameScene.swift file instead (figure 12.6).

Figure 12.6 The GameScene.swift file

310 CHAPTER 12 SpriteKit: Fun animation time
Head over to the GameScene.swift file on the left side of the file navi-
gator pane. You’ll see the didMove() function. Inside that function,
insert the following code:

square = SKShapeNode(rectOf: CGSize(width: 60, height: 60))
square.position = CGPoint(x: self.frame.midX, y: self.frame.midY)
square.fillColor = UIColor.red
self.addChild(square)

By the way, this code corresponds to the four steps I mentioned at the
beginning of this “Code the app” section.

The first line initializes a new shape of class SKShapeNode. You use the
rectOf: initializer and pass it a new size (CGSize, in Swift terms). This
size is the size of your square, such as 60 pixels wide and 60 pixels
high. You can set the size to whatever you want, though (and even
make the square a rectangle).

When you do that, you need to tell the square where to go by setting its
position to a point on the screen (CGPoint, in Swift terms). As I
mentioned earlier, different devices have different screen sizes, which
means that the center of the screen is at different coordinates on differ-
ent devices. To make this application work on any device, you tell the
square to go directly to the center of the screen, no matter where that is.

MidY

MidX

iPadiPhone

Drag the Square (DTS) app 311
Find the frame of self and get the midX variable from it. This variable is
your middleX coordinate. You get the middleY coordinate the same way.

Next, set the square’s color to red.

Finally, when the square is created in memory, add it as a child to self
so that it’s visible onscreen. self refers to the GameScene class (an
SKScene object). After you’ve initialized the object and specified its
attributes (steps 1-3), you’re ready to draw the object onscreen
(step 4).

You still have to add a little more functionality to make the square
move around the screen, and you do that in the next section.

MOVING THE SQUARE

The code file has two more functions: touchesBegan and touchesMoved.
Those functions are responsible for telling the code what to do when
the user touches the screen or moves a finger across the screen.

To move the square along with the user’s finger, you need to use these
functions. In table 12.3, I explain the touches functions.

Now that you know what these functions do, continue with the code.

In the touchesBegan and touchesMoved functions, add this code (the same
for both functions):

let touchLocation = touches.first!.location(in: self)
square.position = touchLocation

Table 12.3 Functions in the Drag the Square app

Function What it does

touchesBegan This function is called right as the user puts a finger anywhere on the
screen.

touchesMoved This function is called when the user moves a finger across the
screen, even if by only a pixel.

touchesEnded This function is called when the user removes a finger from the
screen. You won’t be using this function in this application yet.

312 CHAPTER 12 SpriteKit: Fun animation time

o Th
th

This
the
the

th
put
You need to find out where the user touched the screen—that is, the
coordinates of the pixel that the user touched. Create a new constant
called touchLocation, and set it to the location in self of the first finger
that touched the screen. (You must unwrap the location of the first fin-
ger forcefully.)

Then, when you’ve extracted that location, set the square’s position to
that location.

The job is that simple. You’re done. Here’s the app’s full code:

Listing 12.1 The final code for the Drag The Square app

import SpriteKit
import GameplayKit

class GameScene: SKScene {

 var square: SKShapeNode!

 override func didMove(to view: SKView) {
 square = SKShapeNode(rectOf: CGSize(width: 60, height: 60))
 square.position = CGPoint(x: self.frame.midX, y:

➥ self.frame.midY)
 square.fillColor = UIColor.red
 self.addChild(square)
 }

 override func touchesBegan(_ touches: Set<UITouch>, with event:

➥ UIEvent?) {
 let touchLocation = touches.first!.location(in: self)
 square.position = touchLocation
 }

 override func touchesMoved(_ touches: Set<UITouch>, with event:

➥ UIEvent?) {

 let touchLocation = touches.first!.location(in: self)
 square.position = touchLocation
 }

}

Here, you initialize
the square.

This code allows you to set
the position of the square t
the middle of the screen.

is code makes
e square red. This code puts the

square onscreen.

 code finds
 location of
 first finger
at the user
s onscreen.

Here, you set the
location of the square to
the user’s first finger.

A Christmas Tree app to try on your own 313
Now if you run the application, you
should see a red square in the mid-
dle of your phone’s screen, and you
should be able to move it around.
Figure 12.7 shows the working app.

Run the app
As the app starts, you see a red
square in the center of the screen.
Place your finger anywhere on the
screen, and the square jumps right
under your finger. Now you can
move your finger across the screen,
and the square follows along right
under your fingertip. When you lift
your finger, the square stays at the
point where you lifted your finger.

This app is the humble beginning of
your journey to SpriteKit develop-
ment!

A Christmas Tree app to try on your own
I’m sure that many of you want to try something more challenging and
fun. If you’d like to, download a full explanation of, and code for,
another SpriteKit app, called My Christmas Tree.

NOTE You can find the code for this application in the Chapter12_Christmas-
Tree folder inside the Hello-Swift-Code-master folder that you downloaded
from GitHub. If you haven’t downloaded the code from GitHub, go to: https://
github.com/tanmayb123/Hello-Swift-Code/archive/master.zip. You should
download the code only once for all chapters.

Figure 12.7 Moving the square
across the screen

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

314 CHAPTER 12 SpriteKit: Fun animation time
Figure 12.8 gives you a sneak peek at this app.

This application gives you a Christmas tree and some
ornament options so that you can decorate your tree.
With the help of this application, you learn how to do
math to place objects on the screen.

And with that, you’ve finished your journey in SpriteKit.

Figure 12.8 The My Christmas Tree app with an ornament on the tree

Check your app knowledge
1 What is a pixel, and how does it create a particular color onscreen?

2 Where is the (0, 0) point of an SKSpriteNode, and where is the (0, 0)
point of an SKScene?

3 How can you create a 20 x 20 pixel square?

4 Suppose that you have three squares. How can you center one
square and put a square 20 pixels to the left of it and another 20 pix-
els to the right of it? (When you build this application, download the
blank template as explained in subsection “Create the project” under
section “Drag the Square app.”)

5 In the Drag the Square app, you put the same code in two places: in
the touchesBegan function and in the touchesMoved function. Reason
out why the same code was put in two places. If you want to know
what that code was, here it is:

let touchLocation = touches.first!.location(in: self)
square.position = touchLocation

6 Modify the Drag the Square app so that when a user drags the
square (while her finger is onscreen), the square is yellow, but when
she lifts her finger, the square snaps back to the center position and
becomes red.

7 If you’re not allowed to use midX and midY, how would you create an
app that creates a 60 x 60 pixel square (your choice of color) in the
middle of your device’s screen?

13
1

3

5

4

6

14

8

7 9

N A Journey

2

12

13

10

11

Time to watch your WatchKit
code

Welcome to Chapter 13, where you’ll be
introduced to Apple Watch application coding.

This chapter covers

• How to create an interface for an Apple Watch app
• How to code a Watch app
• How to run the Watch app
• How WatchKit development is

different from iOS
development
315

316 CHAPTER 13 Time to watch your WatchKit code
Time to watch your WatchKit code is stop 13 on your journey. The
Apple Watch is like a mini iPhone that works with the iPhone in your
pocket via Bluetooth, but with some obvious restrictions. If you get a
text, you’ll see it on your Watch. The Watch lets you know when you
receive a call. It can also keep track of your calendar and alarms you’ve
set. Finally, the Watch has a few special apps, such as activity trackers
that can tell you how much exercise, or sleep, you’ve gotten.

Get ready to dive right into the topic of this chapter: Apple Watch
development. You’re going to code a Number Guessing Game app.
Along the way, I show you how Watch development is different from
standard iOS development.

NOTE The application you code in this chapter provides an introduction to
Apple Watch development. I won’t be taking you on a deep dive into Watch
development; instead, you go knee-deep.

Number Guessing Game app
Get ready to dive right into creating the first app for this chapter: the
Number Guessing Game app!

What does this app do?
NOTE You can find the code for this application in the Chapter13_Number-
GuessingGame folder inside the Hello-Swift-Code-master folder that you
downloaded from GitHub. If you haven’t downloaded the code from GitHub,
go to: https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip.
You should download the code only once for all chapters.

When you start this game, it generates a random number from 1 to 120,
and your goal is to try to guess it. To make a guess, tap the + and - but-
tons until you reach the number you want to submit as your guess, and
then tap Make Guess. Each time you submit a guess, the app tells you
whether your guess is greater than or less than the random number.
Based on the message, you can decide your next guess. Rinse and
repeat until the number you guess and the app’s random number are
equal, which means that you win!

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

Number Guessing Game app 317
The final running application looks like
figure 13.1 on your Watch.

Before you begin developing WatchKit
apps, keep in mind the fact that WatchKit
applications are dependent on iOS appli-
cations. You have to create an iOS appli-
cation to create a Watch application
because the Watch is too small to perform
massive computations; it needs the iPhone
to do the heavy lifting for it (such as inter-
net access). Watch apps are meant to be
second and instant displays for the
iPhone, as shown in figure 13.2.

Figure 13.2 The relationship between iOS and watchOS apps

To start developing a Watch app, create a new project in Xcode, but
instead of choosing iOS > Single View Application, choose watchOS >
iOS App with WatchKit App. Then continue as usual.

You won’t give the iOS app any user interface (UI) or code in this
example; you’re focusing on the Watch.

NOTE Apple requires a Watch app to have its own iOS app with it. In prac-
tice, you’d have an iOS app and an Apple Watch extension. Skype on your
iPhone, for example, could be extended to Skype calls on your Apple Watch.

To code the Watch part, however, you can’t code in ViewCon-
troller.swift, as you’ve been doing for all your iOS apps thus far.

Figure 13.1 The Number
Guessing Game app in action

Watch-Code iOS-WatchKit
Extension

318 CHAPTER 13 Time to watch your WatchKit code
Instead, in your Xcode view, expand the NumberGuessingGame
WatchKit Extension folder, and then click InterfaceController.swift,
which is where you code the app.

Create the UI
Before you can code the app, you need to create the Watch UI, as
you’ve been doing for all your iOS apps, so you can see the labels and
buttons that are in the final UI. Open the NumberGuessingGame
WatchKit App folder, and then click Interface.storyboard, as shown in
figure 13.3.

Figure 13.3 Showing your WatchKit development files

Number Guessing Game app 319
You see three views (sized as Apple Watches), as shown in figure 13.4.
You develop your UI in the blank one.

Figure 13.4 The three views in the Interface.storyboard file

Before you continue, be aware that Apple Watch comes in two sizes:
38mm and 42mm. Because the 42mm Watch is easier to work with, I
show you how to develop for that screen size, but you can develop for
the screen size of the Watch you have. To choose, go to the bottom-left
corner of the Xcode window. By default, you should see a message

320 CHAPTER 13 Time to watch your WatchKit code
saying View As: Apple Watch 38mm. Click that message, and you should
see two Apple Watch graphics. The bigger one is 42mm, and the
smaller one is 38mm, as shown in figure 13.5. Choose the one that suits
your needs.

Figure 13.5 The two screen sizes of the Apple Watch. 38mm is the default size.

Number Guessing Game app 321
Back to the interface! Drag two
labels and three buttons to your
Watch view (figure 13.6).

Figure 13.6 The final UI for the
Number Guessing Game app

Table 13.1 explains these elements.

Coding the application
Now it’s time to get to the fun part: coding your first Watch app, the
Number Guessing Game (and then playing it)!

DECLARE VARIABLES, IBOutlets, AND IBActions

To begin, declare the variables shown in table 13.2 in the Interface-
Controller class.

Table 13.1 Interface elements of the Number Guessing Game app

Interface element Purpose

Guess Label label Shows the user’s current guess of the random
number

Status Label label Tells the user the status of the current guess: Too

Much!, Too Little!, or Correct!

+ button Increments the current guess by 1

- button Decrements the current guess by 1

Make Guess button Takes the number in the Guess Label, calculates

the new status based on it, and puts that status in

the Status Label

322 CHAPTER 13 Time to watch your WatchKit code
Here’s the code for declaring these variables:

var tryingToGuess: Int = 0
var currentGuess: Int = 0

Next, declare the IBOutlets shown in table 13.3.

Here’s the code for declaring these IBOutlets:

@IBOutlet var guessLabel: WKInterfaceLabel!
@IBOutlet var statusLabel: WKInterfaceLabel!

NOTE For WatchKit development, use WKInterfaceLabel instead of
UILabel.

All right, now that you’ve done the IBOutlet and variable declarations,
I’ll talk about the real code.

Once again, there are quite a few differences between this type of
development and iOS development. One of those differences is the fact
that there’s no viewDidLoad function. Instead, there’s an awake function,
the equivalent of viewDidLoad for watchOS. Type the following code in
that function:

tryingToGuess = Int(arc4random_uniform(UInt32(120)) + 1)
guessLabel.setText("\(currentGuess)")

Table 13.2 Variables of the Number Guessing Game app

Variable name Type Purpose

tryingToGuess Int Target number that the user is trying to get to

currentGuess Int User’s current guess

Table 13.3 IBOutlets of the Number Guessing Game app

IBOutlet Type Purpose

guessLabel WKInterfaceLabel IBOutlet for the Guess Label

statusLabel WKInterfaceLabel IBOutlet for the Status Label

Number Guessing Game app 323
The first line sets the tryingToGuess variable’s value to a random num-
ber from 1 to 120, using the arc4random_uniform function. Although this
function returns a random number from 0 to 119, if you specify 120 as a
parameter, when you add 1 to the result, the range shifts to 1 to 120.
The second line, however, sets the text of the Guess Label to the current-
Guess the user has made (which is 0 by default).

When you finish that part, you’re done initializing the app. Next, see
what happens when the user clicks one of the three buttons.

Create the three IBActions shown in table 13.4.

Here’s the code for those IBActions:

@IBAction func increment() {
 currentGuess = currentGuess + 1
 guessLabel.setText("\(currentGuess)")
}

@IBAction func decrement() {
 currentGuess = currentGuess - 1
 guessLabel.setText("\(currentGuess)")
}

@IBAction func makeGuess() {
 if currentGuess == tryingToGuess {
 statusLabel.setText("Correct!")
 } else if currentGuess < tryingToGuess {
 statusLabel.setText("Too Little!")
 } else if currentGuess > tryingToGuess {
 statusLabel.setText("Too Much!")
 }
 }

Table 13.4 IBActions of the Number Guessing Game app

IBAction Purpose

increment Called when the + button is tapped

decrement Called when the - button is tapped

makeGuess Called when the Make Guess button is tapped

324 CHAPTER 13 Time to watch your WatchKit code
In the following sections, I explain this code.

INCREMENT AND DECREMENT IBActions

In the increment IBAction, you begin by incrementing the currentGuess
variable by 1, and in the decrement IBAction, you decrement the current-
Guess variable by 1. Each IBAction is followed by another line of code,
which displays the value of the modified currentGuess variable to the
guessLabel.

MAKEGUESS IBAction

This function is simple: it checks whether the value of the currentGuess
variable is smaller than, greater than, or equal to the value of the
tryingToGuess variable, and it sets the text of the statusLabel accord-
ingly, as shown in table 13.5.

COMPLETE CODE

Finally, here’s the complete code listing:

Listing 13.1 Complete code for the Number Guessing Game app

import WatchKit
import Foundation

class InterfaceController: WKInterfaceController {

 var tryingToGuess: Int = 0
 var currentGuess: Int = 0

 @IBOutlet var guessLabel: WKInterfaceLabel!
 @IBOutlet var statusLabel: WKInterfaceLabel!

Table 13.5 The logic for the statusLabel

Condition Text

currentGuess == tryingToGuess Correct!

currentGuess < tryingToGuess Too Little!

currentGuess > tryingToGuess Too Much!

Number Guessing Game app 325
 override func awake(withContext context: Any?) {
 super.awake(withContext: context)
 // Configure interface objects here.
 tryingToGuess = Int(arc4random_uniform(UInt32(120)) + 1)
 guessLabel.setText("\(currentGuess)")
 }

 @IBAction func increment() {
 currentGuess = currentGuess + 1
 guessLabel.setText("\(currentGuess)")
 }

 @IBAction func decrement() {
 currentGuess = currentGuess - 1
 guessLabel.setText("\(currentGuess)")
 }

 @IBAction func makeGuess() {
 if currentGuess == tryingToGuess {
 statusLabel.setText("Correct!")
 } else if currentGuess < tryingToGuess {
 statusLabel.setText("Too Little!")
 } else if currentGuess > tryingToGuess {
 statusLabel.setText("Too Much!")
 }
 }

 override func willActivate() {
 // This method is called when watch view controller is about

➥ to be visible to user
 super.willActivate()
 }

 override func didDeactivate() {
 // This method is called when watch view controller is no

➥ longer visible
 super.didDeactivate()
 }

}

326 CHAPTER 13 Time to watch your WatchKit code
CONNECTING THE IBACTIONS AND IBOUTLETS

One thing hasn’t changed throughout the transition from iPhone to
Apple Watch development (phew): connecting your IBActions and
IBOutlets. You can do those jobs now.

Run your application
Unfortunately, one key element of iOS development changes in Apple
Watch development: running your app. Getting your Apple Watch app
running on your Watch is quite a process, so you need to watch my
video tutorial at http://www.tanmaybakshi.com/runWatchApp to find
out how. Please note that “runWatchApp” is case sensitive.

Running your Watch app in the Apple Watch simulator is much, much
easier, however. To begin, change the target to run in Xcode: which
target of your application Xcode must run when you click the Run or
Play button. To do this, click NumberGuessingGame before the arrow
that points to your device name (figure 13.7).

Figure 13.7 Changing the run target (part 1)

A drop-down menu appears, displaying a list of options. Choose the
NumberGuessingGame WatchKit App option (figure 13.8).

Figure 13.8 Changing the run target (part 2)

http://www.tanmaybakshi.com/runWatchApp

Number Guessing Game app 327
Next, where you usually select your simulator or device, choose the
Apple Watch screen size you’d like to use (figure 13.9).

Figure 13.9 Choosing the Apple Watch simulator

Finally, run as normal. You should see
your application in a Watch simulator (fig-
ure 13.10).

You should have a fun application to play
with on the go!

Figure 13.10 The final, running application

No devices connected to 'My Mac'…

Generic iOS Device + watchOS Device

iPhone 7 + Apple Watch Series 2 - 38mm

iPhone 7 Plus + Apple Watch Series 2 - 42mm

iPhone 8 + Apple Watch Series 3 - 38mm

iPhone 8 Plus + Apple Watch Series 3 - 42mm

Add Additional Simulators…

Download Simulators…

iOS Simulators

Build Only Device

Device

328 CHAPTER 13 Time to watch your WatchKit code
Check your app knowledge
1 Now that you’ve coded iOS and WatchKit apps, list some of the sim-

ilarities and differences of the two kinds of developments that you’ve
noticed along the way.

2 How can you modify this app so that when you guess correctly, it
shows how many tries it took you to win?

3 Suppose that you want to teach someone how to play this game and
come to the right guess in the minimum number of tries every time.
How can you do this?

4 What’s the equivalent of the watchOS awake function in iOS, and
what does it do?

5 How can you modify the code to prevent the user’s guess from going
below 0 or above 120? (Note: Currently, the code doesn’t handle this
situation.)

14
1

3

5

4

6

14

8

7 9

N A Journey

2

12

13

10

11

Continuing your journey with
Swift

You’ve successfully completed your journey of
learning the fundamentals of iOS development
with Swift. Great job! Now you may be wondering
what comes next.

This chapter covers

• What to do to continue your journey
• Which resources to use to continue learning
• What to learn next
329

330 CHAPTER 14 Continuing your journey with Swift
Your last milestone is continuing your journey with Swift. Before you
go further, you need to learn one more topic: what you should do to con-
tinue your journey from here. To make your journey ahead smoother,
I’m breaking this chapter into two main parts: the resources available for
you to learn from and what you should learn next using those resources.

Resources
Programmers in need of help can turn to lots of resources, both online
and physical. I take a look at a few of those resources in the following
sections.

liveBook Discussion Forum
On the liveBook Discussion Forum, I’ll try to answer any of the ques-
tions you may have that are directly or indirectly related to the content
of this book. I’ll also post new updates as Swift and Xcode evolve, as well
as some tips and tricks to make your learning easier. I believe that this
forum will help answer the questions that all readers have in common,
and the questions can also be answered and read by other readers.

To access the forum, go to https://livebook.manning.com/#!/book/
hello-swift/discussion.

Stack Overflow
Many novice programmers are confused about where to get the quick,
quality help they need to solve problems. These problems have been
solved by others, but there’s hardly any documentation available for
those solutions.

When programmers are stuck in such situations, forum sites come to
the rescue! The most popular site with the biggest community is Stack
Overflow (SO), a Q&A StackExchange site with more than 10 million
programmers (at the time I wrote this book).

Here’s a short list of reasons why SO is such a great place to give and
receive help in the programming field:

 Great community of programmers in various fields.
 A rewarding points system (reputation) that encourages users to ask

good questions and provide good answers.

https://livebook.manning.com/#!/book/hello-swift/discussion
https://livebook.manning.com/#!/book/hello-swift/discussion

Resources 331
 A solution to almost every problem in iOS development.
 Community and industry acceptance. SO can help you with employ-

ment when you need it (if you’re still a kid, like me). You’ll be viewed
with respect if you’re active and have a good reputation in SO.

You can become a member of the growing SO community by signing
up at https://stackoverflow.com. As you gain membership, go through
the Dos and Don’ts lists, which discuss the ethics and etiquette of SO.
Figure 14.1 shows an example of a user asking a question and getting
an answer from fellow users.

NOTE Make sure you’re at least 13 years old before you sign up for Stack
Overflow. If you’re younger than 13, ask a parent or another guardian to sign
up on your behalf.

Figure 14.1 Example question and answer on Stack Overflow

https://stackoverflow.com

332 CHAPTER 14 Continuing your journey with Swift
GitHub
Nothing beats learning from examples, which is also true in the world
of programming.

Learning to program from the code that other people write is a great
way to learn, because you get to see everything (such as programming
style, logic, and structure) that you can’t get from regular documenta-
tion. Also, by understanding the way that others solved a particular
problem, you not only learn, but also tend to come up with your own
style, logic, and structure. Then you can share your knowledge with
others, and the knowledge growth cycle continues. That cycle helps the
programming community grow and improve every second.

This cycle is where GitHub comes in. GitHub is a code-sharing and
open-sourcing platform for coders around the globe. It has a great Git
backend for version control and code sharing.

On GitHub, you can see hundreds of thousands of iOS applications
contributed to by millions of different programmers worldwide.
GitHub allows programmers to do more than share code; it allows the
community to work on the code, improve it, and contribute to it.

Here are two main advantages of using GitHub:

 You’re learning from examples created by others. The code has been
worked on by lots of people who made it better with each iteration.

 It has a great community of programmers who are willing to help
and contribute to lots of projects.

I used GitHub to open-source some of my projects, such as AskTan-
may, the world’s first web-based NLQA system to be powered by IBM
Watson. (If you’re wondering what NLQA means, it stands for Natu-
ral Language Question Answering.) I created it in November 2015 and
open-sourced it to share it with the developers during my keynote
address at IBM DeveloperConnect 2016 (https://www.youtube.com/
watch?v=xryTC-M7SWY).

If you’re interested in learning how to use Git (the backend for GitHub)
and GitHub, you can search online; you can find many great resources
to learn from. You can also read Learn Git in a Month of Lunches, by

https://www.youtube.com/watch?v=xryTC-M7SWY
https://www.youtube.com/watch?v=xryTC-M7SWY

Resources 333
Rick Umali, as shown in figure 14.2
(https://www.manning.com/books/learn-
git-in-a-month-of-lunches).

YouTube and books
Then again, sometimes you have to go
back to the classics: YouTube and books.

I’m putting YouTube and books in the
same category because they have the same
basic advantages:

 Learning from the examples of others
who created the content

 Learning from others who are coding
live

The only real advantage of a video over a book is that . . . well, it’s a
video. You can watch all the cursor movements, screen navigation, and
keystrokes to get a better idea of what’s happening.

On YouTube, it’s easy to find videos related to your topic, which
can complement your learning; search for them. I also have the
YouTube channel Tanmay Teaches, where I like to teach Swift and many
other topics. Here’s the address: https://www.youtube.com/c/tanmay
bakshiteaches.

In terms of books, I recommend Man-
ning’s iOS Development with Swift, by
Craig Grummitt, as a further reading
resource (figure 14.3).

Figure 14.3 iOS Development with Swift,
by Craig Grummitt, for your further reading

Figure 14.2 Learn Git In a
Month of Lunches, by Rick
Umali, helps you become an
expert in Git and GitHub.

https://www.youtube.com/c/tanmaybakshiteaches
https://www.youtube.com/c/tanmaybakshiteaches
https://www.manning.com/books/learn-git-in-a-month-of-lunches
https://www.manning.com/books/learn-git-in-a-month-of-lunches

334 CHAPTER 14 Continuing your journey with Swift
What’s next?
As a final topic, I’d like to tell you what I believe you should be pursu-
ing next by using the resources listed in this chapter:

 Debugging—Learn how to debug your code when there’s an excep-
tion or your app doesn’t work the way you intended, using break-
points, inspection, dry runs, and more. Debugging will help you
methodically solve the problem and create better code quickly.

 Protocols—Learn how to implement protocols in your applications.
This skill will help you create apps with more-complex objects, such
as Table Views and Picker Views.

 Structures—Learn how to implement structures in your apps to
make apps that use and work better with complex data of specific
types.

 UITableView—Learn how to implement lists in your apps so that
you can list an unknown amount of data dynamically.

 UIPickerView—Learn how to implement scroll-pickers in your apps
to help your users pick data from a few options.

 Auto Layout—Learn how to use Auto Layout to make your apps
work on all different devices automatically, to eliminate the process
of creating separate screens for each device manually.

I recommend learning those six topics in order as you continue your
journey to becoming an advanced iOS developer.

Appendices
Preface

Congratulations for completing your journey of iOS app programming
through Swift. You’re now entering the appendices section of this book.
Here, you’ll learn the concepts and see how to create apps related to your
studies. This section not only gives you an opportunity to learn technol-
ogy, but also makes these mathematical concepts easy and fun to under-
stand (and at the same time may improve your grades in school). Don’t
worry—you’ll be learning these concepts by creating apps, so you’ll have
a different learning experience. This won’t be like your everyday math
class—you’re going to build iOS Apps with Swift that will help you learn
mathematical concepts like prime numbers, fractions, calculating a trian-
gle’s area, and more—but you’ll have fun on the way!

Here’s a sneak peek at what’s in each appendix:

 A—Prime
 B—Mean and median
 C—Factors
 D—Area of triangles
 E—Fractions
 F—Installation

NOTE As I mention in the “About the Book” section at the front of this book,
make sure that you’ve gone through the first 14 chapters before you attempt to
try the appendixes. You need to build a sound foundation to understand the rel-
atively advanced concepts in the appendices. However, you’ve already gone
through Appendix F to install your developer tools and set up your software
environment.
335

336 Appendices Preface
 What about building games? Well, you’re now in a position to pick
up an intermediate- to advanced-level book on game development,
refer to online tutorials, watch YouTube videos, and even attend col-
lege to specialize in game development. Soon, you’ll be able to build
your own games that use animations, audio, video, gestures, aug-
mented reality, and many more features. The game idea you’re inter-
ested in developing may or may not involve some mathematical or
scientific concepts such as gravity, speed or velocity, reflection, and
energy. If they do, you should be knowledgeable about those con-
cepts. If you don’t have that knowledge, you can always go to online
forums or to a library, or ask others who know about these concepts.
It’s not difficult to learn these concepts so you can develop great apps.

Without further ado, it’s time to get to the appendices!

Appendix A
Check whether I’m prime

In this appendix, you learn how to build an app
to check whether a number is prime.

What does this app do?
Because you’ve already read this entire book,
I won’t be providing an in-depth explanation
of the concepts or code, but I’ll walk you
through the steps involved in building this
app.

NOTE You can find the code for this application
in the Appendix A file inside the Hello-Swift-
Code-master folder that you downloaded from
GitHub. If you haven’t downloaded the code from
GitHub, go to: https://github.com/tanmayb123/
Hello-Swift-Code/archive/master.zip. You should
download the code only once for all chapters.

You’ll end up with an app that looks like fig-
ure A.1.

Figure A.1 The finished app
337

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

338 Appendix A Check whether I’m prime
When you’ve made a similar user
interface (UI) in your application,
you can start coding. To begin,
find out how you can check whet-
her a number is prime.

A whole number is considered to
be prime if it’s divisible only by 1
and itself. Examples of such num-
bers are 2, 3, 5, 7, 11, and 13. The
smallest prime number is 2. Also
remember that the whole num-
bers are 0, 1, 2, 3, 4, and so on
into infinity. As the name sug-
gests, whole numbers are non-
negative integers without a deci-
mal or fraction part.

A simple way to check whether a
number is prime is to loop from 2
to the square root of that number.
If the input is divisible by a num-
ber in that loop, the number isn’t
prime, and you can end the loop.
However, if the number is not
divisible by any value of i, then it
is a prime. The flow chart in fig-
ure A.2 describes this concept.

Figure A.2 How to figure out whether a
number is prime

StartUIP is “User Input”
op is “Output”

i is Loop Control Variable

Stop

Start loop from
2 using i

op = Neither

op = Prime

op = Composite

 i + = 1

Get UIP

Display output

Is UIP
% i
= 0

Is i >
int(sqrt (UIP))

Is UIP
> 1

Is UIP
= 2

No

No

op = Prime

Yes

No

Yes

Yes

Yes

No

Code the app 339
Set up the project, and create the UI
To start, create a user interface like
the one in figure A.3.

The UI’s three main elements are

 Input TextField—This UITextField

at the top of the view takes the
number that the user wants to
check for being prime.

 Am I Prime?—This UIButton runs a
function to check whether the num-
ber in Input Here is prime.

 Output Comes Here!—This UILabel

displays the final output.

Code the app
Now that you know how the algorithm
works and what the UI elements are,
start coding the application.

Create IBOutlets
To start, add the IBOutlets:

@IBOutlet var inputField: UITextField!
@IBOutlet var outputField: UILabel!

Create IBActions
Next, add your IBActions:

 @IBAction func processInput() {
 let userInput = Int(inputField.text!)!
 var output = "Prime!"
 if userInput > 1 {
 if userInput == 2 {
 outputField.text = "Prime!"
 } else {
 for i in 2...Int(sqrt(Double(userInput))) {

Figure A.3 Build this UI

340 Appendix A Check whether I’m prime
 if userInput % i == 0 {
 output = "Composite, divisible by \(i)!"
 break
 }
 }
 }
 } else {
 output = "Neither prime, nor composite."
 }
 outputField.text = output
 }

There you go! You’ve successfully implemented a prime-number
checker in Swift. Now connect your IBActions and IBOutlets to your
text field, button, and label, and you should be good to go!

Run your app
Figure A.4 is a screenshot of the app running on the simulator.

Figure A.4 The app running on the simulator

Appendix B
Mean Median Detective

The Mean Median Detective application teaches
you how to build an app that finds the mean
and median of a set of numbers.

What does this app do?
NOTE You can find the code for this appli-
cation in the Appendix B folder inside the
Hello-Swift-Code-master folder that you
downloaded from GitHub. If you haven’t
downloaded the code from GitHub, go to:
https://github.com/tanmayb123/Hello-Swift-
Code/archive/master.zip. You should down-
load the code only once for all chapters.

Figure B.1 is a screenshot of the running
app.

Before you can start, though, you need to
understand what the mean and median
are. The mean and median are numbers
that represent the center of a set of num-
bers. You may remember other numbers

Figure B.1 The final running
Mean Median Detective app
341

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

342 Appendix B Mean Median Detective
from math class, such as the mode, that also represent the central num-
ber in different ways, but I go through only the mean and median in
this appendix.

Here’s how you can find the mean of a set of numbers:

Mean is a fancier way to say average, and the formula for calculating it
is simple. Suppose that you want to find the average of a set of six num-
bers:

[1, 6, 7, 4, 2, 10]

First, add the numbers together to find the sum. In this case, the sum is
30.

Then divide the sum (30) by the number of items in the list of numbers
(6). For this example, the answer is 5.0.

This process is illustrated in figure B.2.

Figure B.1 How to find the mean of a set of numbers

num1

num6

num3

num5

num2

num4
1

10

7

2

6

4

Sum machine

Sum ÷ 6

Mean

What does this app do? 343
But wait—what is the median? The median is the number in the middle
of the list.

Suppose that you want to find the median of a list of seven numbers.
The calculation is simple. You start with the list, or array:

[1, 9, 4, 5, 3, 7, 6]

You sort the array from smallest to largest. It’s OK if numbers repeat,
even though they don’t in this list.

[1, 3, 4, 5, 6, 7, 9]

Subtract 1 from the lengh of the array—in this case, 6. You’re doing
this because an array’s index starts at 0. Then divide the length by 2.
For this example, the answer is 3.

Next, locate the element at index 3 of the array. (Remember to start
counting at zero!) That element is your median—in this array, 5. This
number is in the middle of the array, with an equal number of elements
before and after it.

You may have thought of a problem: what if the length of the array is
even, with no middle number?

Because you already know how to find the mean (average), there’s a
simple solution: find the average of the two elements in the middle of
the array.

Suppose that your list is these eight elements:

[1, 9, 4, 5, 3, 2, 8, 7]

The sorted version is

[1, 2, 3, 4, 5, 7, 8, 9]

The two middle elements are

[4, 5]

The mean of those 2 elements is

 (4+5)/2 = 4.5

344 Appendix B Mean Median Detective
Figure B.3 clarifies the process of finding the median.

Figure B.2 How to find the median of a set of numbers

Set up the project, and create
the UI

To start, create a user interface (UI) like
the one in figure B.4.

The UI has 13 main elements:

 #1–#10—These 10 UITextFields allow
the user to enter up to 10 numbers as
input.

 Detect—This UIButton runs a function
to find the mean and median of the set
of numbers.

Figure B.3 The UI for the Mean
Median Detective app

Take all numbers

Sort the numbers

If arrayLength
is even (e.g., 4)

Get elements at
arrayLength ÷ 2 and
(arrayLength ÷ 2) -1

median

This is the Median. This is the Median.

Find the mean of
above two numbers

Get element at position:
(arrayLength -1) ÷ 2

If arrayLength
is odd (e.g., 7)

3 2 1 1
left right

2 3

Mean Will Come Here!
Median Will Come Here!

Detect

Input:

Create the IBOutlets, functions, and IBAction 345
 Mean Will Come Here!—This UILabel displays the mean.
 Median Will Come Here!—This UILabel displays the median.

When you’ve made a similar UI in your application, you can start coding.

Code the app
To begin, add this extension before your ViewController class:

extension UITextField {
 var decimalValue: Double? {
 return Double(self.text!)
 }
}

This computed property in the UITextField class allows you to get the
text in the TextField as a Double without converting it to a Double manu-
ally each time.

Create the IBOutlets, functions, and IBAction
To start, add the IBOutlets:

 @IBOutlet var input1: UITextField!
 @IBOutlet var input2: UITextField!
 @IBOutlet var input3: UITextField!
 @IBOutlet var input4: UITextField!
 @IBOutlet var input5: UITextField!
 @IBOutlet var input6: UITextField!
 @IBOutlet var input7: UITextField!
 @IBOutlet var input8: UITextField!
 @IBOutlet var input9: UITextField!
 @IBOutlet var input10: UITextField!

 @IBOutlet var medianLabel: UILabel!
 @IBOutlet var meanLabel: UILabel!

Next, add the functions:

 func median(arr: [Double]) -> Double {
 let sortedArr = arr.sorted()
 if sortedArr.count % 2 == 0 {
 return mean(arr: [sortedArr[sortedArr.count / 2],

➥ sortedArr[sortedArr.count / 2 - 1]])

346 Appendix B Mean Median Detective
 }
 return sortedArr[sortedArr.count / 2]
 }

 func mean(arr: [Double]) -> Double {
 var totalValue = 0.0
 for i in arr {
 totalValue += i
 }
 return totalValue / Double(arr.count)
 }

Finally, add your IBAction:

 @IBAction func meanMedianCalculator() {
 let inputTextfields = [input1, input2, input3, input4, input5,

➥ input6, input7, input8, input9, input10]
 var input: [Double] = []
 for i in inputTextfields {
 if i!.decimalValue != nil {
 input.append(i!.decimalValue!)
 }
 }
 if input.count == 0 {
 medianLabel.text = "Enter Values for Median"
 meanLabel.text = "Enter Values for Mean"
 return
 }
 meanLabel.text = "Mean is: \(mean(arr: input))"
 medianLabel.text = "Median is: \(median(arr: input))"
 }

There you go! You’ve successfully implemented the Mean Median
Detective in Swift! Now connect your IBActions and IBOutlets to your
text fields, button, and labels, and you should be good to go.

Extra challenge
For a challenge, extend this app to allow the user to find the mode of
the numbers as well. The mode is the most frequently occurring num-
ber in a list, but there can be multiple numbers in a tie of occurrences.
Go for it!

Appendix C
Factoring factory

The Factoring Factory teaches you how to build an app
that finds the first ten factors of any number. I’ve
chosen the Factoring Factory app because it helps you
learn concepts such as LCM (least common multiple),
GCF (greatest common factor), fractions, prime and
composite numbers, and (later) factoring polynomials.

What does this app do?
NOTE You can find the code for this application
in the Appendix C folder inside the Hello-Swift-
Code-master folder that you downloaded from
GitHub. If you haven’t downloaded the code
from GitHub, go to: https://github.com/tanmayb
123/Hello-Swift-Code/archive/master.zip. You
should download the code only once for all
chapters.

Figure C.1 is how the running app will look.

Before you build this app, I’d like you to
have a good understanding of factors. Sup-
pose that you have to find all the factors of
10. Factors of 10 are any whole numbers
that can divide it fully. The factors of 10 are
1, 2, 5, and 10 because when you divide 10
by any of these numbers, you get a remain-
der of 0.

Figure C.1 The final running
Factoring Factory app
347

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

348 Appendix C Factoring factory
The factors of 20, similarly, are 1, 2, 4, 5, 10, and 20. You have to be
able to evenly divide a factor into the target with no remainder. So 3,
for example, wouldn’t be a factor of either 10 or 20.

Set up the project, and create the UI
To start building your app, create a user
interface (UI) like figure C.2.

Table C.1 describes the UI.

When you’ve made a similar UI in your
application, you can start coding.

Code the app
You know what a factor is, but now you need to understand how to
write the code to find factors of a number.

Suppose that you have an input number of 9. Loop from 1 to 9, and
every time, check whether the input number is divisible by the number
in the loop. If so, append it to a new array and also keep a count of fac-
tors you found. Keep doing this while the length of this array is less
than or equal to 10. You do this so that you’re able to find the first ten
factors of the number. If there are more, only the first ten are

Table C.1 UI main elements

Element Description

Number To Find
Factors For

This UITextField accepts the user’s
input.

Find Factors! This UIButton finds up to the first ten
factors of the user’s input number.

Up to First 10
Factors Will
Come Here

This UILabel displays the final out-
put.

Reset This UIButton resets the input and
output fields.

Up to First 10 Factors Will Come Here

Number to Find Factors For

Find Factors!

Figure C.2 The UI for the
Factoring Factory app

Code the app 349
displayed; if there are fewer, all factors are displayed. This process is
illustrated in figure C.3.

Start

Stop

factors = ""

factorsFound = 0

i = 1

for loop

divis =
numToFind % i ==0

factors =
“\(factors)\(i)”

factorsFound +=1

break out from loop

Get input number
“N” from user

output.text = factors

divis == true

factorsFound
== 10

i > numToFind

divis &&
i !=

numToFind

Yes

Yes

factors = “\(factors),”

i = i + 1

Yes

NoNo

No

Yes

No

Figure C.3 How to find up to the
first ten factors of a number

350 Appendix C Factoring factory
Now that you know how the algorithm works, you’re reading to start
coding the application itself.

Create IBOutlets and IBActions
To start, add the IBOutlets:

 @IBOutlet var input: UITextField!
 @IBOutlet var output: UILabel!

Finally, add your IBActions:

 @IBAction func reset() {
 input.text = ""
 output.text = "Up to First 10 Factors Will Come Here"
 }

 @IBAction func findFactors() {
 let numToFind = Int(input.text!)!
 var factors = ""
 var factorsFound = 0
 for i in 1...numToFind {
 let divis = numToFind % i == 0
 if divis {
 factors = "\(factors)\(i)"
 factorsFound += 1
 }
 if factorsFound == 10 {
 break
 } else if divis && i != numToFind {
 factors = "\(factors), "
 }
 }
 output.text = factors
 }

There you go! You’ve successfully implemented a factoring factory in
Swift! Now connect your IBActions and IBOutlets to your text field,
button, and label, and you should be good to go.

Appendix D
How big is a triangle?

This app finds the area of a triangle for you if you
have either the height and base length or the
lengths of the three sides.

What does this app do?
NOTE You can find the code for this appli-
cation in the Appendix D folder inside the
Hello-Swift-Code-master folder that you
downloaded from GitHub. If you haven’t
downloaded the code from GitHub, go to:
https://github.com/tanmayb123/Hello-Swift-
Code/archive/master.zip. You should down-
load the code only once for all chapters.

Figure D.1 is a screenshot of the run-
ning app.

Figure D.1 The final running
How Big is a Triangle? app
351

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

352 Appendix D How big is a triangle?
Do you remember how to find the area of a triangle? Suppose that you
have a triangle like the one in figure D.2. The base of the triangle is 9;
the height is 4.

To find the area of a triangle, you need its height and the length of its
base. When you have those values, multiply the height (h) by the base
(b) and then divide them by 2:

(b * h)/2

Using this formula, you can see that the area is 18:

(9 * 4)/2 = 18

But what if you don’t have the height and do have the length of all
three sides? This problem is a little more complicated, but you can still
figure it out. In the triangle in figure D.3, you have sides with the
lengths of 5, 7, and 9. You don’t know the angles of any of the corners.

4 units

9 units

Figure D.2 A triangle with a base
length of 9 units and a height of 4
units. Its area is 18 square units.

b = 7 unitsc = 5 units

a = 9 units

A

B C

Figure D.3 A triangle with side
lengths of 9, 7, and 5 units

What does this app do? 353
If you’d like to find the area of the triangle in this case, you can use
Heron’s formula, which is

Here, the symbols a, b, and c, are the side lengths of the triangle, and
sp is semi-perimeter, which you can find by dividing the perimeter of a
triangle by 2.

You must be wondering how in the world to find sp, which is the
perimeter of the triangle divided by 2. Here’s how you find it:

sp = (a + b + c) / 2

In this specific case, the semi-perimeter of the triangle is

sp = (9 + 7 + 5) / 2
sp = 21 / 2

So sp is 10.5 units.

Wow! Right? That process looks long, but it’s simple. You don’t have
to figure out how to code it, but I do want to tell you how it works.

TIP This explanation may be a little more math than you were hoping to see
right now. If it’s too complicated for you today, go ahead and create the app
anyway, because I’ll show you how. One day, this formula may come in
handy, and maybe you’ll remember that you saw it here first!

Work through your triangle so you can see this formula in action. The
variables that you need values for are a, b, c, and sp:

a = 5
b = 7
c = 9
sp = (5 + 7 + 9) / 2 = 10.5

Plug those values into Heron’s formula:

Area = SQRT(10.5 * (10.5 - 5) * (10.5 - 7) * (10.5 - 9))
Area = SQRT(10.5 * (5.5) * (3.5) * (1.5))

sp * (sp −a) * (sp −b)* (sp −c)√

354 Appendix D How big is a triangle?
Area = SQRT(10.5 * (28.875))
Area = SQRT(303.188)
Area = 17.41 square units

I’m sure that this formula will prove to be useful to you in some
situations!

Set up the project, and create the UI
To start, create a user interface (UI) like
figure D.4. More information about the ele-
ments is in table D.1.

Figure D.4 The UI for the How Big Is a Triangle? app

Table D.1 UI main elements

Element Description

Base Length of Triangle This UITextField takes in the triangle’s base length.

Height of Triangle This UITextField takes in the triangle’s height to the base.

Output Will Come Here This UILabel stores the area of the triangle once it has been
calculated.

Output Will Come Here

OR

Base

Find Area

Reset

Height

Side 1

Side 2

Side 3

Code the app 355
When you’ve made a similar UI in your application, you can start coding.

Code the app
Now it’s time to code the application so that you and your friends can
find the area of a triangle with ease (and maybe check your homework
as well)!

Add the IBOutlets and IBActions
To start, add the IBOutlets:

 @IBOutlet var triangleHeight: UITextField!
 @IBOutlet var triangleBase: UITextField!
 @IBOutlet var triangleSide1: UITextField!
 @IBOutlet var triangleSide2: UITextField!
 @IBOutlet var triangleSide3: UITextField!
 @IBOutlet var triangleArea: UILabel!

Finally, add your IBActions:

 @IBAction func reset() {
 triangleSide1.text = ""
 triangleSide2.text = ""
 triangleSide3.text = ""
 triangleHeight.text = ""
 triangleBase.text = ""
 triangleArea.text = "Output Will Come Here"
 }

 @IBAction func getArea() {
 if Double(triangleHeight.text!) != nil &&
 ➥ Double(triangleBase.text!) != nil {

Side 1, Side 2, Side 3 These three UITextFields take in the triangle’s side lengths
if the height is unavailable.

Find Area This UIButton finds the area of the triangle.

Reset This UIButton resets the application’s UITextFields and
UILabel.

Table D.1 UI main elements (continued)

Element Description

356 Appendix D How big is a triangle?
 triangleArea.text = "\(Double(triangleHeight.text!)! *
 ➥ Double(triangleBase.text!)! / 2) sq units"
 } else if Double(triangleSide1.text!) != nil &&
 ➥ Double(triangleSide2.text!) != nil &&
 ➥ Double(triangleSide3.text!) != nil {
 let perim = Double(triangleSide1.text!)! +
 ➥ Double(triangleSide2.text!)! +
 ➥ Double(triangleSide3.text!)!
 let semiperim = Double(perim / 2)
 let heron = sqrt(Double(semiperim * (semiperim -
 ➥ Double(triangleSide1.text!)!) * (semiperim -
 ➥ Double(triangleSide2.text!)!) * (semiperim -
 ➥ Double(triangleSide3.text!)!)))
 triangleArea.text = "\(heron) sq units"
 }
 }

There you go! You’ve successfully implemented a calculator for a tri-
angle’s area in Swift! Now connect your IBActions and IBOutlets to
your text fields, labels, and buttons, and you should be good to go.

Learn how the code works
You know how to do the math already, but I’ll explain how the code
works here so you’ll understand what you’ve programmed.

First, the code checks whether the user entered inputs in both text
fields (height and base). If so, the code runs the usual method to calcu-
late the area of a triangle on the input and displays the output in the
UILabel. It does this by multiplying the height and base and then divid-
ing the product by 2.

If the user didn’t make valid inputs for these text fields, however, the
code checks for user input in the other three text fields (side a, side b,
and side c). If it finds input for these three text fields, it runs Heron’s
formula on the input and displays the output in the UILabel. The code
achieves all this by performing the following steps:

1 It finds the following four numbers:

– sp (or semi-perimeter)
– The difference between sp and side a, as sp - a

Code the app 357
– The difference between sp and side b, as sp - b
– The difference between sp and side c, as sp - c

2 It multiplies the four numbers you got in step 1.

3 Finally, it finds the square root of the number it got in step 2, and
that’s the area of the triangle.

NOTE If the user doesn’t provide input for either the regular method or
Heron’s method, the program does nothing. It won’t crash.

Appendix E
I’m mixed up; make me
improper

In this appendix, you learn how to build an app
that can convert mixed numbers to improper
fractions, and vice versa.

What does this app do?
Start with a fraction or a proper fraction, in the form shown in figure E.1.

Here, 2 and 5 are two integers separated by a horizontal line. The integer
part above the line is called a numerator, and the bottom part is called a
denominator. If the numerator is less than the denominator, the fraction
is called a proper fraction. But if the numerator is greater than the
denominator, the fraction is called an improper fraction, as shown in fig-
ure E.2.

2
5

numerator

denominator Figure E.1 A proper fraction

5
3 Figure E.2 An improper fraction
358

What does this app do? 359
Such a fraction can be converted to a mixed number, which is a combi-
nation of a whole number followed by a proper fraction, as shown in
figure E.3.

You’re ready to get to the coding now!

NOTE You can find the code for this application in the AppendixE file inside
the Hello-Swift-Code-master folder that you downloaded from GitHub. If
you haven’t downloaded the code from GitHub, go to: https://github.com/
tanmayb123/Hello-Swift-Code/archive/master.zip. You should download the
code only once for all chapters.

Figure E.4 is a screenshot of the final
running app, which is converting an
improper fraction to a mixed number.

Figure E.4 The final running app

2
31

Figure E.3 A mixed number

https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip
https://github.com/tanmayb123/Hello-Swift-Code/archive/master.zip

360 Appendix E I’m mixed up; make me improper
Set up the project, and create the UI
To start, create a user interface (UI) like figure E.5. Details about the
elements are in table E.1.

Table E.1 UI main elements

Element Description

Mixed Number Integer This UITextField takes the mixed number’s integer
value as input.

Mixed Number Numerator This UITextField takes the mixed number’s numera-
tor value as input.

Mixed Number Denominator This UITextField takes the mixed number’s denomi-
nator value as input.

Improper Fraction: Mixed Number:

< < < <
> > > >

Figure E.5 The UI for the app

Set up the project, and create the UI 361
When you’ve made a similar UI in your application, you can start
coding.

Learn how this code works
Before you can start, though, you need to understand the math behind
this application.

These are the steps to convert an improper fraction to a mixed number,
using an example in which the numerator is 11 and the denominator is 4:

1 Run integer division on the improper fraction, which is the integer
part of your mixed number.
You do the integer division of 11 by 4 and get 2, so 2 is your integer
part of the mixed number.

2 Find the remainder (using mod) of the improper fraction, which is
the numerator of the fraction part of your mixed number.
You do 11÷ 4 and get 3, because you get a remainder of 3 when you
divide 11 by 4. This 3 becomes the numerator part of your mixed
number.

3 Finally, set the denominator of the fraction part of your mixed num-
ber to the denominator of the improper fraction, which is 4.

You’re done!

Improper Fraction Numerator This UITextField takes the improper fraction’s numer-
ator value as input.

Improper Fraction Denominator This UITextField takes the improper fraction’s
denominator value as input.

Convert IF to MN!
(> > > >)

This UIButton converts the improper fraction to a
mixed number.

Convert MN to IF!
(< < < <)

This UIButton converts the mixed number to an
improper fraction.

Table E.1 UI main elements (continued)

Element Description

362 Appendix E I’m mixed up; make me improper
These are the steps to convert a mixed number back to an improper
fraction, using the same example:

1 Multiply the integer from the mixed number with the denominator
from the mixed number’s fraction.
In this example, you multiply 2 and 4 to get 8.

2 Add the numerator to the number you calculated in step 1.
You add 3 and 8 to get 11, which becomes the numerator part of the
improper fraction.

3 Set the numerator of the improper fraction to the number you calcu-
lated in step 2.

4 Set the denominator of the improper fraction to the denominator of
the mixed number’s fraction.

Code the app
Now that you know how the algorithm works, you’re ready to start
coding the application itself.

Create the IBOutlets, functions, and IBActions
To start, add the IBOutlets:

 @IBOutlet var mixedInt: UITextField!
 @IBOutlet var mixedNum: UITextField!
 @IBOutlet var mixedDen: UITextField!

 @IBOutlet var improperNum: UITextField!
 @IBOutlet var improperDen: UITextField!

Next, add the functions:

func mixedNumberToImproperFraction(mixedNumberInteger: Int,

➥ mixedNumberNumerator: Int, mixedNumberDenominator: Int) -> [Int] {
 return [mixedNumberInteger * mixedNumberDenominator +
 ➥ mixedNumberNumerator, mixedNumberDenominator]
}

func improperFractionToMixedNumber(improperFractionNumerator: Int,

➥ improperFractionDenominator: Int) -> [Int] {
 return [Int(improperFractionNumerator /

Code the app 363
 ➥ improperFractionDenominator), Int(improperFractionNumerator %
 ➥ improperFractionDenominator), improperFractionDenominator]
 }

 func factors(of: Int) -> [Int] {
 var factors: [Int] = []
 for i in 1...of {
 if of % i == 0 {
 factors.append(i)
 }
 }
 return factors
 }

 func GCF(arr1: [Int], arr2: [Int]) -> Int? {
 var finalArr1: [Int] = []
 var finalArr2: [Int] = []
 for i in arr1 {
 if arr2.contains(i) {
 finalArr1.append(i)
 }
 }
 for i in arr2 {
 if arr1.contains(i) {
 finalArr2.append(i)
 }
 }
 return finalArr1.last
 }

Finally, add your IBActions:

 @IBAction func mixedToImproper() {
 improperNum.text = ""
 improperDen.text = ""
 if Int(mixedInt.text!) != nil && Int(mixedNum.text!) != nil &&
 ➥ Int(mixedDen.text!) != nil {
 var result =
 ➥ mixedNumberToImproperFraction(mixedNumberInteger:
 ➥ Int(mixedInt.text!)!, mixedNumberNumerator:
 ➥ Int(mixedNum.text!)!, mixedNumberDenominator:
 ➥ Int(mixedDen.text!)!)
 let gcf = GCF(arr1: factors(of: result[0]), arr2:
 ➥ factors(of: result[1]))

364 Appendix E I’m mixed up; make me improper
 if gcf != nil {
 result[0] = result[0] / gcf!
 result[1] = result[1] / gcf!
 }
 improperNum.text = "\(result[0])"
 improperDen.text = "\(result[1])"
 }
 }

 @IBAction func improperToMixed() {
 mixedInt.text = ""
 mixedNum.text = ""
 mixedDen.text = ""
 if Int(improperNum.text!) != nil && Int(improperDen.text!) !=
 ➥ nil {
 var result =
 ➥ improperFractionToMixedNumber(improperFractionNumerator:
 ➥ Int(improperNum.text!)!, improperFractionDenominator:
 ➥ Int(improperDen.text!)!)
 let gcf = GCF(arr1: factors(of: result[1]), arr2: factors(of:
 ➥ result[2]))
 if gcf != nil {
 result[1] = result[1] / gcf!
 result[2] = result[2] / gcf!
 }
 mixedInt.text = "\(result[0])"
 mixedNum.text = "\(result[1])"
 mixedDen.text = "\(result[2])"
 }
 }

There you go! You’ve successfully implemented a mixed-number and
improper-fraction interchanger app in Swift! This app will even sim-
plify your fractions to the lowest terms in the results for you. Now con-
nect your IBActions and IBOutlets to your text fields and buttons, and
you should be good to go.

FOR YOU TO EXPLORE—what happens if you make the denominator of a
fraction zero?

Appendix F
Installation

Welcome to installation! In this appendix, you
learn how to install and set up your iOS
development environment, which includes the
installation and setup of Xcode and the setup
of your developer account.

First, though, I’ll talk about the system requirements. Your Mac com-
puter should have at least macOS 10.14 (Mojave) or later; your iDevice
should have iOS 12 or later; and you should have an Apple ID.

To start, complete the following steps at https://help.apple.com/xcode/
mac/current/#/dev60b6fbbc7:

1 Add your Apple ID to Xcode’s Account Preferences so that Xcode:
knows which account to link your applications to.

2 Assign your app’s target to a team (your Apple ID).
Xcode links your application to the account you added in step 1.

3 Add capabilities to your app.
If you need your application to have some special capabilities (such as
notifications), you should complete this step. But you don’t need to do
this for any of the apps in the book, so you don’t need to complete this
step during installation.

4 Run your app on your device.
This is the step in which you register your iDevice with your Apple
account. If you don’t have an iDevice and want to use the simulator,
you don’t need to complete this step.
365

https://help.apple.com/xcode/mac/current/#/dev60b6fbbc7
https://help.apple.com/xcode/mac/current/#/dev60b6fbbc7

366 Appendix F Installation
5 Export your signing certificates and provisioning profiles.
This step allows you to save all the certificates and profiles that
Apple creates to ensure that your applications are . . . well, yours.
You don’t need to complete this step, as you can always download
the certificates and profiles again from the Apple Developer site.

These steps take you to the point where you can start your journey of
learning iOS development.

 Index
Symbols
!= (not equal to) operator 102, 141
. . . (ellipsis) character 108
(), formatting text with 61–62
- (minus) sign 104
* operator 66
/ operator 66
// character 57
\ formatting text with 61–62
% operator 70
+ (plus) sign 104
== operator 102
> operator 102
>= operator 102

Numerics
10 Number Sorter app 168–172

coding 169
creating UI for 169
overview of 168
running 172
Selection Sort algorithm 171
setting up 169

A
acceleration 35
add() function 197
adding integers 67–68
addNums() function 200
Alignment control 43
Alphabet Unscrambler app 185–190

coding 187, 189
creating UI for 186
overview of 185–186
running 190
setting up 186

Always Allow button 38

angular brackets 109
apostrophes 285
append function 165
apps

creating 11–17, 21–48
gathering hardware 11–12
installing Xcode 13
setting up developer accounts 15
starting Xcode 16–17

defined 5
developing 39–40
elements of 6
from ideas to 8–9
interacting with users 74–75
running on simulators 35–38
storing data in variables 50–55

arrays 158–160, 168–190
accessing data in 162
altering 164–166
looping through 166–168
start counting with 0 161–162
two-dimensional 172–173, 184
why needed 159–160

ascending order 168
asterisks 149
attributes 226
Attributes inspector 43
Auto Layout 334
autoincrementing 136
awake function 328

B
Background Color menu 42
binary operators 68
blocks of code 102
braces 102
branching 111
btnSortClicked 100
367

368 INDEX
built-in functions 171
Button control 42
buttons

adding
opening main storyboards 84
overview of 84

connecting IBActions to 100–108
else clause 104–106
else if clause 106–108
glitches 104, 106

C
Calculator app 239–245

coding 241
connecting IBActions 244
connecting IBOutlets 244
creating UI for 240
overview of 240–241
running 245

camera feature 35
Catch & Throw app 89
CGPoint 310
Christmas Tree app 313–314
classes 222–226

adding functionality to 229–231
benefits of using 223
creating 226–235

adding initializers 231–235
adding variables 226–227
assigning values to variables 231
changing values of variables 228

creating instances of 227–228
overview of 222–226
reducing code with 226

clause 104, 106
closing braces 102
Cocoa Touch Framework 285
code 7

cleaning with functions 192–195
debugging 334
reducing 221–260
reusing

parameters 195–199
return values 200–203
with functions 192–195

codesign 38
colors, changing

of controls, background 42
of text 41
of views, background 42

Command-B key combination 293
Command-N key combination 287
compiler 80
computed property 252
concatenating

data 62–63
strings 63

concatenating app 90–91
coding 91
creating UI for 91
overview of 91

conditional operators 102, 141
conditions with if statements 95–96
Connector class 254
constant 111
controls

background colors of 42
connecting IBActions with 121
connecting IBOutlets to 100–108, 121

else clause 104–106
else if clause 106–108
glitches 104, 106

navigating screens with 43–44
overview of 33
types of 42

convenience inits 231, 234
converting data 64
coordinate system 306–307
coordinates 312
counter variable 133
curly braces 78, 237

D
data

accessing
in arrays 162
in dictionaries 175–176

concatenating 62–63
converting 64
looping through 178–180
spying on 58–59
storing in variables 50–55
transforming 62–64

debug-iphonesimulator folder 294
declaring

IBActions 321–324
IBOutlets 321–324
variables 56–62, 321–324

denominator 358
descending order 168
designated init 231
developer accounts 15
dictionaries 158–173, 180–190

accessing data 175–176
changing 176–178
creating 175–176
looping through data in 178–180
turning into code 173–174
why needed 159–160

didMove function 309

INDEX 369
displayToLabel() function 88
dividing integers 67–68
Documents directory 268
DTS (Drag the Square) app 307–313

coding 309–313
creating project 308–309
overview of 308
running 313

E
ellipsis (. . .) character 108
else clause 104–106
else if statements 106–109
Embedded Binaries section, Xcode project 298
errors 6, 79
exclamation points 77, 141
extensions 251

F
Factoring Factory app 347–350

coding 348–350
creating UI for 348
overview of 347–348
setting up 348

FCM (file content management) 263–264, 284
File Content Manager app 264–271

coding 265, 267–270
loading IBAction 267
reading functions 270
saving IBAction 267
writing functions 267–270

creating UI for 265
overview of 264
running 270–271
setting up 265

FileContentManager class 288, 291–292
filePath variable 269
FileReader class 288, 292
files 262–264

FCM (file content management) 263–264
reading 261–281
writing 261–281

FileWriter class 289, 292
fingerprint sensor 35
fix-it error 199
Font control 43
for-in loop statements 132–137
formatting text 61–62
fractions. See mixed number and improper

fraction interchanger app
frameworks 282–301

building 293–294
coding 299–301

creating 284–294
FileContentManager 291–292
FileReader 292
FileWriter 292
SwiftoFile 292

creating references in Xcode 296–299
overview of 283–284

Friend List app 180–183
coding 181–183

connecting IBActions 182–183
connecting IBOutlets 182–183

creating UI for 180
overview of 180
setting up 180

functionality, adding to classes 229–231
functions

cleaning code with 192–195
creating 345–346, 362–364
read, removing 295–296
reading 270
reusing code with 192–195
simple functions 193–195
write, removing 295–296
writing 267–270

G
GCD (Grand Central Dispatch) 3
GCF (greatest common factor) 347
General tab, Xcode project 29
getName() function 236
GitHub 332–333
Gold, Silver, Bronze app 118–122

coding 120–121
adding IBAction 120
adding IBOutlets 120
connecting IBActions with controls 121
connecting IBOutlets with controls 121

creating UI for 119
overview of 118
running 121–122
setting up 119

good graphics 6
Grand Central Dispatch (GCD) 3
greatest common factor (GCF) 347
Greeting Generator app 91–93

coding 92–93
connecting IBActions 93
connecting IBOutlets 93

creating UI for 92
overview of 92
running 93

Greeting Generator UI 92
guide grids 33
gyroscope functions 35

370 INDEX
H
Hang Your Word Upside-Down app 150–157

coding 154–156
creating UI for 154
overview of 150
running 156–157
setting up 154
variables for 151–154

Hangman app 271–280
coding 273–277
connecting IBActions 277–280
connecting IBOutlets 277–280
connecting variables 277–280
creating UI for 272
overview of 271
running 280
setting up 272

hardware 11–12
Hello World! app 22–38

creating UI for 30–33
dragging label objects to views 32–33
opening main storyboard 30–31
setting screen size 31–32

overview of 23
running 34–38
setting up 24–28

choosing project options 26
create new projects 24
saving projects 27–28

Xcode interface for 28
Hello-Swift-Code-master folder 22
Heron’s formula 353, 356
High Sierra 365
How Big Is a Triangle? app 351–356

coding 355–356
adding IBActions 355–356
adding IBOutlets 355–356

creating UI for 354–355
overview of 351–354
setting up 354–355

How Many Times? app 145–148
coding 146
creating UI for 146
overview of 145
running 148
setting up 146

I
IBActions

adding 120, 355–356
connecting 93, 117, 182–183, 206, 211,

219, 244, 252–253, 277–280, 326–327
connecting to buttons 100–108

else clause 104–106

else if clause 106–108
glitches 104, 106

connecting with controls 121
creating 124, 339–340, 345–346, 362–364
declaring 321–324
loading 267
saving 267

IBOutlets
adding 120, 355–356
connecting 93, 117, 182–183, 206, 211,

219, 244, 252–253, 277–280, 326–327
connecting to controls 100–108, 121

else clause 104–106
else if clause 106–108
glitches 104, 106

creating 85–87, 124, 339, 345–346,
 362–364

declaring 321–324
if statements 95–96
if, else statements 108–109
improper fractions. See mixed number and

improper fraction interchanger app
incrementing IBActions 324
infinite loops 139, 141, 144
inheritance 235–236
initializers 231–235
innerLoop variable 171
input 83–89

adding buttons
opening main storyboards 84
overview of 84

adding text fields
opening main storyboards 84
overview of 84

changing label text to input text 87–89
connecting text fields to code 85–87

inputfilename parameter 292
inputNumber variable 148
installing Xcode 13, 365–366
instances of classes 227–228
integers

adding 67–68
dividing 67–68
multiplying 67–68
subtracting 67–68

Interface Builder 82–83
interfaces. See UIs (user interfaces)

K
Keep in Dock option 25

L
Label control 42
label objects 32–33
label text 87–89

INDEX 371
label variables, connecting to labels in
views 81–82

connecting labels and variables 81–82
opening main storyboard 81

labels
adding code for 77
adding variables to hold 76–80

editing ViewController.Swift file 78–80
opening View Controller 76

and variables, connecting 81–82
connecting label variables to 81–82

Launchpad icon 24
LCM (least common multiple) 347
Libraries panel 32
literal output 64
liveBook Discussion Forum 330
loading IBActions 267
LoadSave app 294–301

coding frameworks in 299–301
creating framework references in

Xcode 296–299
overview of 295
removing read functions 295–296
removing write functions 295–296
running 301

looping
through arrays 166–168
through data in dictionaries 178–180

loops 131–132, 139, 141, 144

M
machine language 80
makeGuess IBAction 324
map function 244
Mean Median Detective app 341–346

coding 345
creating functions 345–346
creating IBActions 345–346
creating IBOutlets 345–346
creating UI for 344–345
overview of 341–344
setting up 344–345

median 343
Metric Conversion app 246–260

coding 248–252, 254–255
connecting IBActions 252–253
connecting IBOutlets 252–253
creating UI for 247
negative powers 246–247
overview of 246, 254
running 253, 260

microphone feature 35
midX variable 311
minus (-) sign 104
mixed number and improper fraction inter-

changer app 358–364

coding 362–364
creating functions 362–364
creating IBActions 362–364
creating IBOutlets 362–364
overview of 361–362

creating UI for 360–362
overview of 358–359
setting up 360–362

modulus operator 69, 138
Money Denomination app 212–220

coding 215
connecting IBActions 219
connecting IBOutlets 219
creating UI for 215
overview of 213–214
running 220
setting up 215

multigesture actions 35
multiplying integers 67–68
Mystery of the Entered Number app 113–117

coding 115–117
connecting IBActions 117
connecting IBOutlets 117

creating UI for 114
overview of 113–114
running 117
setting up 114

N
navigating screens 43–44
negative powers 246–247
nil (nothing) 177
not equal to operator. See != (not equal to)

operator
NSData 270
NSSearchPathForDirectoriesInDomains

function 268
Number Guessing Game app 316–327

coding 321–326
connecting IBActions 326–327
connecting IBOutlets 326–327
declaring IBActions 321–324
declaring IBOutlets 321–324
declaring variables 321–324
makeGuess IBAction 324

creating UI for 318–321
overview of 316–318

NumberGuessingGame WatchKit App
option 326

numerator 358

O
Object Explorer 84
Object Library 32, 40
objects. See label objects

372 INDEX
open source language 10
opening braces 102
operands 68
operations 66–71

adding integers 67–68
dividing integers 67–68
multiplying integers 67–68
overview of 66–67
print() function 69
subtracting integers 67–68

operators
modulus 69
power 69
square root 69

Optional variable 58
outerLoop variable 171
output 75–83

adding variables to hold labels 76–80
adding code for labels 77
editing ViewController.Swift file 78–80
opening View Controller 76

connecting label variables to labels in
views 81–82

connecting labels and variables 81–82
opening main storyboard 81

Interface Builder 82–83
outputLabel variable 77, 82

P
parameters 195–199
patch 104
Person class 222
picture cell 305
pixels 304–306
playground 17–20

creating 18
overview of 17–18
playing with code in 18–20

plus sign (+) 104
power 69
prime number app 337–340

coding 339–340
creating IBActions 339–340
creating IBOutlets 339

creating UI for 339
overview of 337–338
running 340
setting up 339

print() function 20, 50–51, 69, 166
printThis parameter 196
programming defined 6–7
projects

choosing options 26
creating 24
saving 27–28

proper fraction 358
protocols 334
proximity sensor 35
pseudocode 106, 140

Q
quotes character 55

R
random numbers 127–128
read functions 281, 284, 295–296
reading

files 261–281
functions 270

red, green, and blue (RGB) 304
reducing code 221–260
repeat while loop 143–144
repetition 130–157
required init 231
return statements 201
return values 200–203
returnContents function 292
reusing code 191–220

cleaning code with functions 192–195
parameters 195–199
return values 200–203

RGB (red, green, and blue) 304
Rock Paper Scissors app 207–212

coding 209
connecting IBActions 211
connecting IBOutlets 211
creating UI for 208
overview of 207–208, 211
running 212
setting up 208

rotation function 35

S
saving

IBActions 267
projects 27–28
variables 52

scope 237–239
scoresArr variable 172
screens

navigating with controls 43–44
setting size of 31–32

scroll-pickers 334
segues 43–44
Selection Sort algorithm 171
semi-perimeter 353
Shadow Offset option 43
Shadow option 43
simulators 35–38

INDEX 373
Single View Application 25
single-letter variable names 133
size of screens 31–32
SKSpriteNode 314
SO (Stack Overflow) 330–331
sorting 168
SpriteKit 302–314

coordinate system 306–307
overview of 303–307
pixels 304–306

spying on data 58–59
square brackets 160
square root 69
squareIt() function 204
status variable 238
storing variables 51
strEnd variable 152
String type 228
string-reversing logic 153
strings

concatenating 63
converting to integers 64
creating 55

strStart variable 152
structures 334
subtracting integers 67–68
Swift

advantages of 10
limitations of 10–11
overview of 9–11
resources for 330–333

books 333
GitHub 332–333
liveBook Discussion Forum 330
SO (Stack Overflow) 330–331
YouTube 333

SwiftoFile class 289, 292
Switch control 42
switch statements 109–113

T
teamsArr variable 172
text

changing label text to input text 87–89
colors of 41
fields

adding 84
connecting to code 85–87

formatting 61–62
TextField control 42
TextView control 43
touch actions 35
touchesBegan function 311
touchesEnded function 311

touchesMoved function 311
transforming data 62–64

concatenating data 62–63
concatenating strings 63
converting data 64

tryingToGuess variable 323
tTables app 122–128

coding 124, 126–128
creating IBActions 124
creating IBOutlets 124
creating variables 124
random numbers 127–128

creating UI for 123
overview of 122–123
running 128
setting up 123

two-dimensional arrays 172–173, 184

U
UIButton 87, 339
UIKit 299, 303
UILabel 339
UIPickerView 334
UIs (user interfaces) 38–46

10 Number Sorter app 169
Alphabet Unscrambler app 186
Attributes inspector 43
concatenating app 91
controls, background color of 42
designing 46–47
developing apps 39–40
Factoring Factory app 348
File Content Manager app 265
Friend List app 180
Gold, Silver, Bronze app 119
Greeting Generator app 92
Hang Your Word Upside-Down app 154
Hangman app 272
Hello World! app 30–33

dragging label objects to views 32–33
opening main storyboard 30–31
setting screen size 31–32

How Big Is a Triangle? app 354–355
How Many Times? app 146
Mean Median Detective app 344–345
Metric Conversion app 247
mixed number and improper fraction inter-

changer app 360–362
Money Denomination app 215
Mystery of the Entered Number app 114
overview of 38–39
prime number app 339
Rock Paper Scissors app 208
segues 43–44

374 INDEX
UIs (user interfaces) (continued)
text colors 41
tTables app 123
types of controls 42
views, background color of 42
Virtual Dice app 205

UITableView 334
UITextField class 99, 339, 344–345, 354
uncontrollable loops 139
underscore character 54, 244
user interface label 77
users, interaction with apps 74–75

V
variables 49–72

adding 226–227
adding to hold labels 76–80

adding code for labels 77
editing ViewController.Swift file 78–80
opening View Controller 76

and labels, connecting 81–82
connecting 277–280
creating 54–55, 124
declaring 56–62, 321–324
for Hang Your Word Upside-Down

app 151–154
operations 66–71

adding integers 67–68
dividing integers 67–68
multiplying integers 67–68
overview of 66–67
print() function 69
subtracting integers 67–68

operators
modulus 69
power 69
square root 69

overview of 50
saving 52
scope 237–239
single-letter names 133
spying on data 58–59
storing data in 50–55
transforming data 62–64

concatenating data 62–63
concatenating strings 63
converting data 64

types of 53–54
using \ and () to format text 61–62
values

assigning to 231
changing 56–62, 228

view controller 30

ViewController class 76, 345
ViewController.Swift file, editing 78–80
viewDidLoad() function 83, 189, 309, 322
views

background colors of 42
connecting label variables to labels in 81–82
dragging label objects to 32–33

Virtual Dice app 204–207
coding 206

connecting IBActions 206
connecting IBOutlets 206

creating UI for 205
overview of 204–205, 207
running 207
setting up 205

W
WatchKit 315–328
Which Number Is Bigger? app 96–109

coding 98–99
connecting IBActions to buttons 100–108

else clause 104–106
else if clause 106–108
glitches 104, 106

connecting IBOutlets to controls 100–108
else clause 104–106
else if clause 106–108
glitches 104, 106

creating UI for 98
overview of 96–97
running 108
setting up 97

while loop statements 138–144
!= (not equal to) operator 141
repeat while loop 143–144

write functions 268, 284, 295–296
writeToFile() function 292
writing

files 261–281
functions 267–270

X
Xcode IDE (integrated developer environ-

ment)
creating framework references in 296–299
installing 13, 365–366
interface for Hello World! app 28
starting 16–17

Y
YouTube, as resource for Swift 333

tells Swift that a variable is going to be created

name of the variable type of the variable

assigns a value to the variable

Think of an

app idea and

get started

Make a

rough app

Fix bugs

and glitches

Submit app to

the App Store

If rejected

by Apple

Repeat until

bug free!

Test it

The steps to create apps

Starting to create
apps right in chapter 2

Explanation of code

for your solid start

. . . and some math too!

Playgrounds: examples and practice

To help you “know” and “practice,” the book includes:

	Hello Swift!
	Brief contents
	Contents
	Preface
	Acknowledgments
	About this book
	Audience
	Road map
	Source-code downloads
	liveBook discussion forum
	Software and hardware requirements
	Online and other resources

	About the author
	1 Get ready to build apps with Swift!
	Your “I can do it!” journey begins
	What is an app, anyway?
	The pieces of a good app
	What is programming?
	From idea to app

	What is Swift?
	What’s so special about Swift?
	Swift can’t do everything

	Prepping your app toolbox
	Gather hardware
	Install Xcode
	Set up an optional developer account
	Start Xcode for the first time

	Write code and see it work in the Swift Playground
	What is the playground?
	Create a playground
	Play with code in the playground

	Check your app knowledge

	2 Create your first app
	Hello apps!
	Your first app: Hello World!
	What does this app do?
	Set up the project
	The Xcode interface
	Create the UI
	Run your app

	Discover the user interface
	What is a UI?
	Develop an app on your own
	Change text colors
	Change the background color of a control
	Change the background color of a view
	More about controls: Try these for a challenge
	A few more things you can do with the Attributes inspector
	Segues: Using controls to navigate screens
	Try an extra challenge

	Designing good UIs
	Try this app on your own
	Test your app knowledge

	3 Your first real Swift code using variables
	Apps store data in variables
	What is a variable?
	Hands on!
	How does an app use and save variables?
	What types of variables are there?
	How to create variables
	Hands on!

	Declaring variables and changing values
	Declaring variables
	Changing variable’s values
	Hands on! Spying on data
	Using \ and () to format text

	Transforming your data
	Concatenating data
	Hands on!
	Test these rules
	Converting data

	Math Operation Theater
	What is an operation?
	Do basic math with Swift (+, -, *, /)
	Doing math in a print() function
	Step up in math with Swift (square root, power, modulus)
	Hands on!
	Advanced math in the playground

	Check your app knowledge

	4 I/O laboratory
	How apps and users interact
	How users get output
	Start with Hello World!
	Add a variable to hold the label
	Connect your label variable to a label in the view
	The Interface Builder

	Users give apps input
	Add a text field and button to the app
	Add code to connect the text field to code
	Add the function to change the label text to input text

	Check your app knowledge
	App-Activity: Concatenate
	What does this app do?
	Create the UI
	Code the app

	App-Exercise: Greeting Generator
	What does this app do?
	Create the UI
	Code the app
	Run the app

	5 Computers make decisions, too!
	Conditions with the if statement
	App: Which Number Is Bigger?
	What does this app do?
	Set up the project
	Create the UI
	Code the app
	Connect IBOutlets to controls and IBActions to buttons
	Run the app
	Run the code again
	Recapping the if, else, and else if statements

	switch statements
	App: The Mystery of the Entered Number
	What does this app do?
	Create the UI
	Code the app
	Run the app

	Check your app knowledge
	App-Exercise: Gold, Silver, Bronze
	What does this app do?
	Set up the project
	Create the UI
	Code the app
	Run your app

	App-Exercise: tTables the Times Tables Bee!
	What does this app do?
	Set up the project and create the UI
	Code the app
	Learn how the code works
	Run your app

	6 Let computers do repetitive work
	Controlling repetition
	for-in loop statements
	Try it yourself
	How does it work?
	Playground example

	while loop statements
	Try it yourself
	The not equal to (!=) operator
	Playground example
	The repeat while loop
	Playground exercise: repeat while

	App: How Many Times?
	What this app does
	Set up the project and create the UI
	Code the app
	Run your app

	Check your app knowledge
	App-Exercise: Hang Your Word Upside-Down
	What this app does
	Explanation, Playground exercise, and helper code
	Set up the project and create the UI
	Code the app
	Run your app

	7 Knitting variables into arrays and dictionaries
	Why do we need arrays and dictionaries?
	What is an array?
	Arrays start counting with 0!
	Getting to your data
	Altering the array
	Looping through arrays

	10 Number Sorter app
	What does this app do?
	Set up the project, and create the UI
	Code the app
	Learn how the code works
	Run your app

	Go to the second dimension (rows and columns)
	What is a dictionary?
	Turning a dictionary into code
	Creating a dictionary and getting to your data
	Modifying the dictionary
	Looping through data in dictionaries

	Friend List app
	What does this app do?
	Set up the app, and create the UI
	Code the app

	Check your app knowledge
	App-Exercise: Alphabet Unscrambler
	What does this app do?
	Set up the project, and create a UI
	Code the app
	Learn how the code works
	Run the app

	8 Reuse your code: Clean it with function detergent
	Reuse and clean your code with functions
	Simple functions

	Giving info to your reusable code
	Getting info from your reusable code
	Check your app knowledge
	App-Exercise: Virtual Dice
	What does this app do?
	Set up the project and create the UI
	Code the app
	Learn how the code works
	Run your app

	App-Exercise: Rock Paper Scissors
	What does this app do?
	Set up the project, and create the UI
	Code the app
	Connect the IBOutlets and IBActions
	Learn how the code works
	Run your app

	App-Exercise: Money Denomination
	What does this app do?
	How does this app work?
	Set up the project, and create the UI
	Code the app
	Connect the IBOutlets and IBActions
	Run the app

	9 Reduce your code: Use less, do more with class detergent
	Reduce and clean your code with classes
	What is a class?
	Why you should learn to use classes
	Have some fun with classes
	How do classes reduce code?

	Create a class
	Add a variable
	Create Instances of your class
	Change the value of a variable
	Adding functionality to classes
	Quick review
	Add an initializer that does something every time you create an instance

	Like father, like son: Inheritance
	All about scope
	What is variable’s scope?

	Calculator app
	What does this app do?
	Create the UI
	How does this app work?
	Code the app
	Connect IBOutlets and IBActions
	Run the app

	Check your app knowledge
	App-Exercise: Metric Conversion
	What does this app do?
	Math: Negative powers
	Creating the UI
	Code the app
	Connect IBOutlets and IBActions
	Run your app!

	Extra app-exercise: Metric Conversion app, Part 2
	What does this app do?
	Code the app
	Run the app

	10 Reading and writing files
	What’s in a file?
	What is file content management?

	File Content Manager app
	What does this app do?
	Set up the project, and create the UI
	Code the app
	Learn how the code works
	Run your app

	Hangman app
	What does this app do?
	Set up the project, and create the UI
	Code the app
	Connect the variables, IBOutlets, and IBActions
	Run your app

	Check your app knowledge
	App-Activity: Store your name and birth date

	11 Frameworks: Bookshelves of classes
	What is a framework?
	Create a framework
	What does this app do?
	Create the project
	Code the app
	Learn how the code works
	Build the framework
	Use the framework

	App: Load Save, Part 2, using frameworks
	What will you do to this app?
	Removing the read and write functions
	Creating the framework reference in Xcode
	Coding the framework in the LoadSave app
	Run your app

	Check your app knowledge

	12 SpriteKit: Fun animation time
	Meet SpriteKit
	How does SpriteKit work?
	Pixels
	Coordinate system

	Drag the Square (DTS) app
	What does this app do?
	Create the project
	Code the app
	Run the app

	A Christmas Tree app to try on your own
	Check your app knowledge

	13 Time to watch your WatchKit code
	Number Guessing Game app
	What does this app do?
	Create the UI
	Coding the application
	Run your application

	Check your app knowledge

	14 Continuing your journey with Swift
	Resources
	liveBook Discussion Forum
	Stack Overflow
	GitHub
	YouTube and books

	What’s next?

	Appendices Preface
	Appendix A Check whether I’m prime
	What does this app do?
	Set up the project, and create the UI
	Code the app
	Create IBOutlets
	Create IBActions

	Run your app

	Appendix B Mean Median Detective
	What does this app do?
	Set up the project, and create the UI
	Code the app
	Create the IBOutlets, functions, and IBAction
	Extra challenge

	Appendix C Factoring factory
	What does this app do?
	Set up the project, and create the UI
	Code the app
	Create IBOutlets and IBActions

	Appendix D How big is a triangle?
	What does this app do?
	Set up the project, and create the UI
	Code the app
	Add the IBOutlets and IBActions
	Learn how the code works

	Appendix E I’m mixed up; make me improper
	What does this app do?
	Set up the project, and create the UI
	Learn how this code works

	Code the app
	Create the IBOutlets, functions, and IBActions

	Appendix F Installation
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Hello Swift! - back

