
M A N N I N G

Craig Grummitt

Covers Swift 4, Xcode 9, and iOS 11



Save 35% at manning.com
Use the code humble35 at checkout to save on your 
first purchase.

Early access
Don’t wait to start learning! In MEAP, the Manning Early Access 
Program, you read books while they’re being written.

Access anywhere with liveBook
The Manning liveBook platform provides instant browser-based 
access to our content.

Beyond books
Cutting edge liveProjects, liveAudio, and liveVideo courses give 
you new ways to learn. Only available at manning.com

Impeccable quality
We believe in excellence. Our customers tell us we produce 
the highest quality content you can buy.

Exclusive eBooks
Manning eBooks are only available from manning.com. 
You won’t find them anywhere else.

Email

shop at manning.com

https://bit.ly/3h13ZcH
https://bit.ly/3h13ZcH
https://bit.ly/2J2R9OK
https://bit.ly/37r08lZ
https://www.linkedin.com/company/manning-publications-co/
https://www.facebook.com/ManningBooks?ref=nf
https://www.instagram.com/manning_publications/
https://twitter.com/manningbooks
https://www.youtube.com/channel/UCDia_lkNYKLJVLRLQl_-pFw
https://www.twitch.tv/manningpublications
https://bit.ly/2Wmabm6
https://bit.ly/37r08lZ
https://bit.ly/37r08lZ


Devices, orientation, and multitasking modes 
for iOS size classes

Compact

iPhone 4S, 5, 6, 7, 8,
SE landscape

C
om

pa
ct

R
eg

ul
ar

Regular

iPhone 6 Plus, 7 Plus,
8 Plus landscape

iPhone portrait iPad portrait/landscape

Horizontal (width)

V
er

tic
al

 (h
ei

gh
t)

iPad landscape:
split-view secondary app/

slide-over

iPad landscape:
split-view primary app

iPad portrait:
split-view/slide-over

iPad landscape:
side-by-side



iOS Development with Swift



ii



iOS Development
with Swift

CRAIG GRUMMITT

M A N N I N G
SHELTER ISLAND



For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity. 
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in 
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written 
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are 
claimed as trademarks. Where those designations appear in the book, and Manning 
Publications was aware of a trademark claim, the designations have been printed in initial caps 
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have 
the books we publish printed on acid-free paper, and we exert our best efforts to that end. 
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of 
elemental chlorine.

Manning Publications Co. Development editor: Helen Stergius
20 Baldwin Road Review editor: Aleksandar Dragosavljević
PO Box 761 Technical development editor: Doug Sparling
Shelter Island, NY 11964 Project editor: Kevin Sullivan

Copyeditor: Katie Petito
Proofreader: Katie Tennant

Technical proofreader: Doug Warren
Typesetter and cover design: Marija Tudor

ISBN 9781617294075
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

http://www.manning.com


brief contents
PART 1 INTRODUCING XCODE AND SWIFT ...................................  1

1 ■ Your first iOS application 3
2 ■ Introduction to Swift playgrounds 29
3 ■ Swift objects 55

PART 2 BUILDING YOUR INTERFACE ..........................................  81

4 ■ View controllers, views, and outlets 83
5 ■ User interaction 105
6 ■ Adaptive layout 133
7 ■ More adaptive layout 167
8 ■ Keyboard notifications, animation, and scrolling 199

PART 3 BUILDING YOUR APP ...................................................  225

9 ■ Tables and navigation 227
10 ■ Collections, searching, sorting, and tab bars 263
11 ■ Local data persistence 297
12 ■ Data persistence in iCloud 337
13 ■ Graphics and media 371
14 ■ Networking 409
15 ■ Debugging and testing 439
v



BRIEF CONTENTSvi
PART 4 FINALIZING YOUR APP .................................................  479
16 ■ Distributing your app 481
17 ■ What’s next? 513

 



contents
preface xv
acknowledgments xviii
about this book xix
about the author xxiii
about the cover illustration xxiv

PART 1 INTRODUCING XCODE AND SWIFT .................... 1

1 Your first iOS application 3
1.1 Exploring iOS SDK 3
1.2 Creating an Xcode project 5

Templates 6 ■ Project options 9

1.3 Exploring the Xcode interface 10
Toolbar area 11 ■ Utility area 12 ■ Navigator area 12
Editor area 13 ■ Debug area 15

1.4 Editing your app’s interface 15
Storyboards and nibs 15 ■ View controllers and views 16
Interface Builder 16 ■ Object Library 17 ■ Document 
Outline 18 ■ Inspectors 19

1.5 Running your app 22
Running your app on a device 22 ■ Running your app in the 
simulator 22 ■ Running your app 23 ■ Simulator features 23
vii



CONTENTSviii
1.6 Peeking at a completed app 24
Checking out a repository in Xcode 24 ■ Peeking at the 
completed app’s storyboard 24 ■ Tweaking the code 25

1.7 Summary 26

2 Introduction to Swift playgrounds 29
2.1 Xcode playground 30

Results sidebar 31 ■ Automatic compiling 32
Console 32

2.2 Type safety and type inference 33
Converting numeric types 35 ■ Concatenating 
strings 36

2.3 Collections 36
Arrays 36 ■ Sets 37 ■ Dictionaries 38

2.4 Control Flow 38
for-in 39 ■ switch statement 40

2.5 Functions 41
Modifying external parameter names 41 ■ Omitting 
external parameter names 42 ■ Default parameter names 42

2.6 Optionals 42
Declaring an optional 44 ■ Unwrapping an optional 44
Optional chaining 48 ■ Final comments on optionals 49

2.7 Tuples 49
Tuples as return values 50 ■ Tuple magic 50

2.8 Higher-order functions 51
map 51 ■ Closures 52 ■ filter 53 ■ reduce 53
sorted 54

2.9 Summary 54

3 Swift objects 55
3.1 Classes 56

Defining a class 56 ■ Properties 57 ■ Initializers 58
Methods 59 ■ Computed properties 63 ■ Class inheritance 65
Protocols 68

3.2 Structures 71
Structures vs. classes 72



CONTENTS ix
3.3 Extensions 76
Extensions of your type 76 ■ Extensions of their type 77
Operator overloading 78 ■ Generics 79

3.4 Summary 80

PART 2 BUILDING YOUR INTERFACE ........................... 81

4 View controllers, views, and outlets 83
4.1 View hierarchy 84
4.2 Model-view-controller 85
4.3 View controller 86

Creating a custom view controller 87 ■ Customizing 
a UIViewController subclass 88 ■ Initial view 
controller 90

4.4 Managing views 94
Managing views in code 94 ■  Managing views in 
Interface Builder 97

4.5  Summary 104

5  User interaction 105
5.1 Controls 106

Buttons 106 ■ Text field 109 ■ Other controls 114

5.2 Touching views 115
Hit testing 116 ■ Overriding touch methods 116
The responder chain 117

5.3 Gesture recognizers 119
Pan gesture 121 ■ Pinch gesture 125 ■ Rotate 
gesture 126 ■ Simultaneous gesture recognizers 126
Tap gesture in code 129

5.4 Summary 131

6 Adaptive layout 133
6.1 The problems 134
6.2 Auto layout 135

Auto layout tips 137 ■ Auto layout in Interface Builder 137
Auto layout in code 153



CONTENTSx
6.3 Autoresizing 157
Autoresizing in code 158 ■ Autoresizing in Interface 
Builder 160 ■ Autoresizing considerations 160

6.4 Manual adaptive layout 161
Receiving transition events 161 ■ Receiving layout 
events 163

6.5 Choosing an approach  165
6.6 Summary 166

7 More adaptive layout 167
7.1 Size classes 167

Size classes in code 170 ■ Size classes in Interface 
Builder 176

7.2 Stack views 185
The problem with auto layout 185 ■ Stack view properties 187
Simple stack view in Interface Builder 189 ■ Nested stack 
views in Interface Builder 191 ■ Adding or removing views 
from a stack view 194 ■ Stack views in code 195

7.3 Summary 197

8 Keyboard notifications, animation, and scrolling 199
8.1 The problem with the keyboard 200
8.2 Dismissing the keyboard 201

Dismissing the keyboard by resigning the first responder 202
Detecting when to dismiss the keyboard 202

8.3 Observing keyboard notifications 205
What is a notification? 205 ■ Observing a keyboard frame 
change notification 206 ■ Unregistering a notification 207
Extracting keyboard information from the notification 208
Getting a reference to the first responder 209 ■ Calculating 
the offset to animate 210

8.4 Animating views 211
Animating the view from under the keyboard 212 ■ Diving 
deeper into animating views with a sample bar chart 213

8.5 Scroll views 218
Scroll view with form content and keyboard 218 ■ Diving 
deeper into scroll views with image content 222

8.6 Summary 223



CONTENTS xi
PART 3 BUILDING YOUR APP ....................................  225

9 Tables and navigation 227
9.1 Displaying data in table views 228

Setting up a table view controller in the 
storyboard 229 ■ Displaying data in the table view 234

9.2 Adding a row 242
Embedding a navigation controller 243 ■ Creating 
a segue 245 ■ Embedding second navigation 
controller 248 ■ Communicating with the books 
scene using your own delegate 249 ■ Adding data 
to the table 252

9.3 Editing a row 255
Creating a segue from a row 255 ■ Passing in the book 
object to edit 257 ■ Removing the view controller 258
Updating the book object 259

9.4 Using large titles 259
9.5 Deleting a row 260
9.6 Summary 262

10 Collections, searching, sorting, and tab bars 263
10.1 Sorting the data 264

Creating a sort method to sort the books array 264
Changing sort order 265

10.2 Searching the data 270
Creating a search controller 271 ■ Adding the search 
controller to the view controller 272 ■ Filtering the 
data 273 ■ Removing and updating rows with 
filtered data 275

10.3 Displaying data in collection views 278
Creating custom collection cells 280 ■ Displaying data 
in a custom collection view cell 281 ■ Implementing a 
flow layout 283 ■ Adding a search bar to the collection 
view 283 ■ Creating a second section 285
Implementing the flow layout delegate 286

10.4 Creating sections with a tab bar controller 288
Sharing data between tabs 290

10.5 Summary 295



CONTENTSxii
11 Local data persistence 297
11.1 Preserving user preferences and state 298

Preserving and restoring state 298 ■ Preserving user 
preferences on the device 300

11.2 Storing data locally 302
Storage setup 302 ■ Structured data files 306 ■ Archiving 
objects 312 ■ SQLite 315 ■ Core Data 322

11.3 Summary 335

12 Data persistence in iCloud 337
12.1 Setting up your app for iCloud 338
12.2 Persisting data with ubiquitous key-value store 339
12.3 Storing data using CloudKit 342

Updating the model for CloudKit 344 ■ Adding a book 
record to CloudKit 346 ■ Updating a book record in 
CloudKit 352 ■ Loading book records in CloudKit 353
Deleting a book record in CloudKit 355 ■ Managing 
CloudKit errors 356 ■ Refreshing CloudKit data 360
Subscribing to changes 362

12.4 Summary 369

13  Graphics and media 371
13.1 Adding images to your app with an asset catalog 372

Adding image sets 373 ■ Adding app icons 377

13.2 Displaying a launch screen 379
13.3 Drawing with Core Graphics 381

Overriding the draw method 382 ■ Describing a path 382
Drawing into the graphics context 383 ■ Saving and restoring 
graphics state 384 ■ Drawing paths with UIBezierPath 
drawing methods 384 ■ Rendering views in Interface 
Builder 385 ■ Creating a star-rating view 386

13.4 Drawing with Core Animation 389
13.5 Using the camera 391

Taking photos with the image picker controller 392 ■ Selecting 
photos from photo library with the image picker controller 397
Taking photos with AVFoundation 398

13.6 Playing sounds 405
13.7 Summary 407



CONTENTS xiii
14  Networking 409
14.1 Using a web service 410
14.2 Setting up a books service 411
14.3 Communicating with the web service 413
14.4 Creating a URL Session 414

URLSessionConfiguration 414 ■ URLSession 414

14.5 Setting up the URL request 416
14.6 Requesting data from a web service 418
14.7 Examining the data 418
14.8 Parsing JSON data with JSONSerialization 420
14.9 Parsing JSON data with JSONDecoder 421

14.10 Parsing JSON data with SwiftyJSON 424
Integrating SwiftyJSON with Carthage 426 ■ Using SwiftyJSON 429

14.11 Downloading data from a web service 431
Accessing insecure domains 433

14.12 Displaying the network activity indicator 436
14.13 Cancelling a task 436
14.14 Summary 437

15  Debugging and testing 439
15.1 The setup 440
15.2 Debugging mode 440
15.3 Debugging crash logs in the console 443

Solving a crash caused by an outlet 445 ■ Solving a crash 
caused by an action 447

15.4 Examining variables and breakpoints 448
Examining a variable with print 449 ■ Pausing your app 
with a breakpoint 450 ■ Examining a variable with the 
variables view 452 ■ Controlling the app’s execution using the 
debug bar 452 ■ Examining a variable with Quick Look 454
Examining a variable with print description 455 ■ Examining 
a variable with LLDB 456 ■ Examining a variable with data 
tips 457 ■ Solving the save problem 458 ■ Examining a 
variable in summary 458

15.5 Debugging playback with gauges and instruments 459
Debugging playback with debug gauges 459 ■ Debugging playback 
with instruments 461 ■ Solving the playback problem 463



CONTENTSxiv
15.6 Debugging the user interface 463
Debugging the user interface with the Debug View Hierarchy 465
Debugging the user interface with runtime issues 467
Solving the user interface problem 468

15.7 Testing your app 469
Testing for functionality 470 ■ Testing for performance 473
Testing your user interface 475

15.8 Summary 478

PART 4 FINALIZING YOUR APP ..................................  479

16  Distributing your app 481
16.1 Joining the Apple Developer Program 482

Signing into Xcode 482 ■ Code signing your app 483

16.2 Setting up an app in iTunes Connect 490
16.3 Uploading your build to iTunes Connect 493
16.4 Distributing your app to beta testers 495

Distributing to beta testers manually 496 ■ Distributing to beta 
testers with TestFlight 497

16.5 Distributing your app to the App Store 505
16.6 Summary 511

17 What’s next? 513
17.1 Further learning 513
17.2 One more thing! 515

appendix A Project settings 517

appendix B Swift syntax cheat sheets 525

index 529



preface
It seems everyone has a brilliant idea brewing for an iOS app these days, though not
many actually do the work to see it to fruition. Even putting potential revenues aside,
the prospect of making your own app and seeing people download and appreciate
your work is exciting. This book should send you on the way to building your first app
using Swift.

What is Swift?

Swift is the modern language created by Apple for iOS that got the Apple developer
world buzzing back in June 2014—but why was Swift created in the first place? 

 While loved by many iOS developers, Objective-C was seen by some as an out-
moded language. More than 30 years old and based on C, it had a verbose and pecu-
liar syntax, with an unsafe type system. Built as a modern alternative to Objective-C,
Swift was designed with specific enhancements in mind, specifically:

 Safety—Swift introduced several programming concepts to reduce some com-
mon programmer mistakes. These include strong typing, optionals, and error
handling. 

 Performance—Apple introduced internal optimizations to ensure that Swift runs
fast. Xcode also provides warnings to encourage you to write code that ensures
your app is running optimally.

 Expressiveness—Expressive code maintains the right balance between clarity of
meaning and succinctness. Swift draws on lessons learned from Objective-C and
other languages to introduce several concepts that may be new at first, but in
time you’ll wonder what you did without them! 
xv



PREFACExvi
Why learn Swift?

You can still develop in iOS using Objective-C, and many developers do. In fact,
according to RedMonk’s programming language rankings guide (http://mng.bz/
zQNT), Objective-C is still ranked higher than Swift (but only just!). A common ques-
tion for a new iOS developer is, should I learn Swift or Objective-C? 

 Enhanced safety, performance, and expressiveness seem like significant qualities!
Combine those with a reputation for being relatively easy to learn, and Swift looks like
a pretty good choice. In an interview with Accidental Tech Podcast (http://atp.fm/
205-chris-lattner-interview-transcript/), Chris Lattner (creator of Swift) summed up
Swift’s benefits with the term “programmer productivity.” After all, it is called Swift!

 Swift has enjoyed a meteoric rise in popularity since its unveiling. It’s regularly
ranked as one of the most loved programming languages on Stack Overflow. Accord-
ing to RedMonk, “There is no debate that Swift is growing faster than anything else we
track.” According to the freelancing platform Upwork, Swift is the second-fastest-
growing tech skill desired by employers (http://mng.bz/R12L). 

 But what are other iOS developers doing?
 Many developers embraced Swift from the outset. Popular iOS tutorial site

https://raywenderlich.com fully transitioned all new and previous tutorials to Swift,
while other iOS developers such as Natasha the Robot (https://natashatherobot
.com/) blogged about their experiences exploring this new syntax. 

 On the other end of the spectrum, it’s true that some iOS developers resisted the
change. More than Just Code (http://mtjc.fm/) podcaster Tammy Coron said this:

In the early adoption of Swift I was very anti-Swift.... But the more I started to use it, the
more I was forced to use it, the more I liked it.... It feels like I’ve got cooties all over me
whenever I have to write in Objective-C! Every project that I start now is a Swift project,
and it feels so natural. Granted, I’m forty years old, I didn’t really want to learn
something new. I was using Objective-C, and having a good old time with it. Who wants
to learn another language? But I’m all for Swift now, and I feel bad I dogged it from the
beginning.

Resisting change can be instinctive. Change can feel as though you’re abandoning
your accumulated knowledge and reputation and entering the unknown. I’ve experi-
enced this myself several times over my development career as one skill or tool
became outmoded or redundant and others gained favor in the industry. But when
you apply yourself to exploring new technologies, you can find yourself discovering
once again the excitement of learning something new. My hope is that you, too, will
find that passion as you go through this book.

 It’s also clear that Swift is the future for iOS development. If your plans in iOS
development involve maintenance of a codebase, you may need to know Objective-C.
But in general, Swift is the way forward, and the consensus these days among iOS pro-
fessionals is that if they were learning iOS now, they’d do it in Swift.

http://mng.bz/zQNT
http://mng.bz/zQNT
http://atp.fm/205-chris-lattner-interview-transcript/
http://atp.fm/205-chris-lattner-interview-transcript/
http://mng.bz/R12L
https://raywenderlich.com
https://natashatherobot.com/
https://natashatherobot.com/
http://mtjc.fm/


PREFACE xvii
 Of course, learning iOS development with Swift doesn’t prevent you from also
learning Objective-C at some point in the future. Regardless of the language you’re
programming in, the underlying frameworks are nearly identical except for tweaks to
the syntax. Learning iOS development with Swift doesn’t mean planting your flag
firmly in the Swift camp. You can use Objective-C code in your Swift project, or vice
versa. Learning Swift is just a good place to start, and you’ll find exploring Objective-C
easier with Swift experience behind you. 

 On the one hand, there are some significant differences between the languages.
For example, Objective-C has very different approaches from Swift in regard to class
headers, type safety, nil values, and error handling. On the other hand, some differ-
ences are really just a matter of syntax. See the following listing for a comparison of
the same code in Swift and Objective-C.

UIView.animate(withDuration: 1) {
    self.yellowView.alpha = 0
}

[UIView animateWithDuration:1.0 animations:^{
    self.yellowView.alpha = 0.0;
}];

Swift isn’t necessarily limited to iOS app development, either. Swift is used in all
Apple platforms, from macOS to iOS to watchOS, and the concepts you learn in Swift
will be useful when you migrate to these platforms. And now it isn’t limited to only
Apple products. Apple stunned everyone in 2015 when they announced that Swift was
going open source. IBM was one of the first adopters of the new language, making
Swift available to enterprise app developers on IBM Cloud. There’s no lack of enthusi-
asm from Apple on this front. In the same podcast, Chris Lattner suggested that going
open source was a major step toward “world domination” for Swift!

 Whatever your plans in iOS development, this book should have you well on the
way to building your first app using Swift. 

 

Comparison of Swift and Objective-C

Swift

Objective-C



acknowledgments
In this book, I share many things I’ve learned over the years, and for that, I am in turn
deeply indebted to those who’ve shared their guidance, experience, and knowledge
with me, including those involved with producing the extremely helpful online
resources out there—sites, blogs, and podcasts such as Ray Wenderlich, NSHipster,
Use Your Loaf, AppCoda, Natasha The Robot, iOhYes, and More Than Just Code. I
also thank fellow mentors at Thinkful for their inspiration, and those who are kind
enough to share their knowledge on Stack Overflow.

 A big thanks goes to Manning and the wonderful staff who have helped make this
book as good as it could be. Thank you Helen Stergius for your tireless efforts, sup-
port, and energy—this book is a million times better for your advice. Thanks go to
Doug Sparling and Doug Warren for their meticulous work in editing from a techni-
cal perspective. Thanks also go to the many others at Manning for their assistance and
support in marketing and production: Candace Gillhoolley, Christopher Kaufmann,
Aleksandar Dragosavljević, Ana Romac, Katie Petito, Katie Tennant, Kevin Sullivan,
and Marija Tudor.

 I thank the reviewers who offered their time to read my manuscript at various
stages and whose feedback was invaluable: Amit Lamba, Andrea Prearo, Becky Huett,
Doniyor Ulmasov, Ghita Kouadri, Karolina Kafel, Laurence Giglio, Luis Moux-
Dominguez, Maksym Shcheglov, Stephan Heffner, and Žarko Jovičić. 

 Finally, I thank my wife Chris for her support, encouragement, and understanding
as I spent long days in front of the computer while there was a wedding to plan! I love
you.
xviii



about this book
In this book, we’ll look at building native iOS apps using Swift. iOS is the operating sys-
tem launched 10 years ago (how time flies!) by Apple for their range of “i” products:
iPhones, iPads, and iPod Touches. A native iOS app can take advantage of Apple’s
built-in user interface frameworks to present a UI that looks and acts consistently with
what users are accustomed to in iOS apps.

 To build iOS apps in iOS 11, you’ll use the current version of Apple’s powerful
development software, Xcode 9. Because Xcode comes directly from Apple, you can
be confident that apps you build will be native, and the tools and frameworks will be
up to date. Developers new to Xcode should be sure to read the first chapter to famil-
iarize themselves with it.

 You’ll also be programming in Swift 4. This book dedicates two chapters to get you
up to speed on Swift, and you’ll find other Swift tidbits where relevant throughout the
book. Of course, if you already have experience in Swift, feel free to skip or skim these
chapters.

 In this book, you’ll learn how to build up and lay out your app’s interface in code
or using a storyboard. You’ll learn how to structure your code and respond to user
input.

 You’ll also learn how to work with data: how to pull data down from a web service,
how to deal with data in your code, and how to store data on the device and in the
iCloud. We’ll look at how to then display data within the app. 

 We’ll also look at solving common problems, best practices for structuring your
code, and what to do when things don’t go to plan.

 There’s a good chance you’re reading this because you want to publish an app.
Throughout the book, we’ll be building up a demo app, and to finish off, we’ll go over
the process of publishing an app to the App Store.
xix



ABOUT THIS BOOKxx
Who should read this book

iOS Development with Swift is intended for those with some experience in programming
(you should probably have some familiarity with object-oriented programming, for
example) interested in learning about developing for iOS. Perhaps you’re curious and
want to dip your toe in the iOS waters to test them out, or perhaps you want to dive
right into a career change and build apps for a living! Don’t worry if you haven’t
played with mobile development before—novices to this area should have no problem
following along.

How this book is organized

The book has four parts that cover 17 chapters. 
 Part 1 introduces you to Xcode and gives a brief but solid overview of Swift.

 Chapter 1 covers an introduction to iOS development using Xcode. You’ll set
up an Xcode project, add visual elements in the storyboard, and run an app on
the simulator.

 Chapter 2 takes a look at what’s new, different, and exciting in the Swift lan-
guage. Using the Xcode playground, we look at type safety and inference in
Swift, collection types, higher-order functions, closures, tuples, and optionals.

 Chapter 3 takes our discussion of Swift deeper by looking at creating objects
from classes or structures. It examines Swift’s approach to methods and proper-
ties, initializers, and extending types and operators, and you’ll see what the
buzz is all about with protocol-oriented programming.

Part 2 has you building up your app’s interface using views.

 Chapter 4 looks at how apps are structured, from how model-view-controller
works in iOS to the view hierarchy. It also explains how view controllers work,
and how you connect views from the storyboard to your code using outlets.

 Chapter 5 introduces user interaction to your views by overriding touch meth-
ods, using gesture recognizers, and connecting controls in the storyboard to
actions in your code.

 Chapter 6 discusses solutions for adapting your layout to different environ-
ments (for example, different device resolutions or orientations) such as apply-
ing rules to a layout with auto layout constraints. 

 Chapter 7 takes adaptive layouts further, using size classes to make more-
substantial changes to a layout based on its environment, and using stack views
to apply general rules to a layout and managing constraints.

 Chapter 8 describes solving a real-world problem: moving the interface up
when the user selects a text field and the iOS keyboard appears onscreen, and
dismissing the keyboard when the user finishes editing the text field.



ABOUT THIS BOOK xxi
Part 3 explores some topics that are vital for building many apps, such as displaying,
storing, and downloading data, navigating between scenes, dealing with media, and
debugging.

 Chapter 9 introduces displaying data in a table view, and explores navigation to
a second form view to add or edit data in the table.

 Chapter 10 demonstrates displaying data in a collection view, and looks at
manipulating the data via sorting and searching. It also looks at navigating
between view controllers using a tab bar.

 Chapter 11 covers storing data on the device using a variety of techniques, from
the more basic state preservation and user defaults to the more complex SQLite
and Core Data.

 Chapter 12 looks at storing data in Apple’s iCloud using CloudKit. It also looks
at threads and queues, activity indicators, and alerts.

 Chapter 13 covers adding icons and images to your app with the asset catalog. It
also looks at taking photos, selecting photos from the photo library, detecting
patterns in images, drawing in a view, and playing audio.

 Chapter 14 examines connecting your app with web services and downloading
data such as text or images. It also discusses parsing JSON and using depen-
dency managers.

 Chapter 15 discusses some vital techniques for debugging your app, from the
console and breakpoints to gauges and instruments. We’ll also take a look at
applying unit tests to ensure your code is doing what it’s intended to do, and UI
tests to ensure that your app’s interface is working as expected.

Part 4 covers the next steps required for a successful application release.

 Chapter 16 describes in great detail the process of distributing your app to beta
testers using TestFlight, and then distributing your app to the wider world on
the App Store.

 Chapter 17 finishes up with a quick look at what you can do to continue your
journey of learning iOS development.

At the close of the book, two appendixes provide additional information to help you
find your way around Xcode and Swift. 

 Appendix A looks in detail at configuring your app with project settings.
 Appendix B helps you to adjust to programming in Swift with several Swift cheat

sheets.

This book covers building a real iOS app from initial layout in chapter 6 to launching
in the App Store in chapter 16. My hope is that watching the app develop over these
chapters, and considering and solving problems that inevitably present themselves,
will be an interesting and illuminating process for new iOS developers. 



ABOUT THIS BOOKxxii
About the code

This book contains many examples of source code both in numbered listings and in-
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to distinguish it from ordinary text. Sometimes code is also in bold to
highlight code that has changed from previous steps in the chapter, such as when a
new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; I’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 Source code for the examples in this book is available in a GitHub repository at
https://github.com/iOSAppDevelopmentwithSwiftinAction/. It is also available on
the publisher’s website at https://manning.com/books/ios-development-with-swift,
and at the author’s website for the book at http://iosdevelopmentwithswift.com/.

Note to print book readers

Some graphics in this book are best viewed in color. The eBook versions display the
color graphics, so they should be referred to as you read. To get your free eBook in
PDF, ePub, and Kindle formats, go to https://manning.com/books/ios-development-
with-swift to register your print book.

Book forum

Purchase of iOS Development with Swift includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum,
go to https://forums.manning.com/forums/ios-development-with-swift-grummitt. You
can also learn more about Manning’s forums and the rules of conduct at https://
forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://github.com/iOSAppDevelopmentwithSwiftinAction/
https://manning.com/books/ios-development-with-swift
http://iosdevelopmentwithswift.com/
https://forums.manning.com/forums/ios-development-with-swift-grummitt
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about
https://manning.com/books/ios-development-with-swift
https://manning.com/books/ios-development-with-swift


about the author
CRAIG GRUMMITT is an interactive developer with more
than 20 years of experience, from museum touchscreens to
games, and from online learning to mobile apps. He has mul-
tiple successful apps in the iOS and Android App Stores under
the moniker Interactive Coconut. He has a passion for mobile
development and finding simple and concise ways to explain
complex topics. 
xxiii



about the cover illustration
The caption for the illustration on the cover of iOS Development with Swift is “A Page of
the Grand Signior.” The illustration is taken from a collection of costumes of the Otto-
man Empire published on January 1, 1802, by William Miller of Old Bond Street, Lon-
don. The title page is missing from the collection, and we have been unable to track it
down to date. The book’s table of contents identifies the figures in both English and
French, and each illustration bears the names of two artists who worked on it, both of
whom would no doubt be surprised to find their art gracing the front cover of a com-
puter programming book … 200 years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for
the day. The Manning editor didn’t have on his person the substantial amount of cash
that was required for the purchase, and a credit card and check were both politely
turned down. With the seller flying back to Ankara that evening, the situation was get-
ting hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller proposed that the
money be transferred to him by wire, and the editor walked out with the bank infor-
mation on a piece of paper and the portfolio of images under his arm. Needless to say,
we transferred the funds the next day, and we remain grateful and impressed by this
unknown person’s trust in one of us. It recalls something that might have happened a
long time ago. We at Manning celebrate the inventiveness, the initiative, and, yes, the
fun of the computer business with book covers based on the rich diversity of regional
life of two centuries ago‚ brought back to life by the pictures from this collection.
xxiv



Part 1

 Introducing
Xcode and Swift

Many people have ideas for awesome apps, but you have decided to do
something about it, take the plunge and learn iOS app development. Congratu-
lations and good luck on your journey!

 Before you get too deep into the ins and outs of app development, you need
to focus on foundation skills. In this part, you’ll explore the development envi-
ronment and learn about Apple’s language for development in iOS, Swift.

 In chapter 1, you’ll examine Xcode, Apple’s own software for building iOS
apps. Then, in chapters 2 and 3, you’ll take a lightning tour of what’s new, differ-
ent, and exciting in Swift. Chapter 2 focuses more on different syntax and data
types, while chapter 3 takes a look at objects in Swift. You’ll explore Swift in
Xcode playgrounds, a tool that helps you focus purely on programming, without
concerning yourself with app development.

 
 
 
 
 
 
 
 
 
 



2 CHAPTER 
 
 
 
 
 
 
 
 
 



Your first iOS application
In this chapter, you’ll take your first look at Xcode, Apple’s software for building iOS
apps. You’ll also build a basic first app, launch it on the iOS simulator, and then
take a sneak peek at an app you’ll build throughout this book.

1.1 Exploring iOS SDK
An app wouldn’t be much use without access to the device. Storing files, playing
sounds, displaying information on the screen, receiving touch events from the
user—it’s all achieved via the iOS SDK. Your app never directly accesses the hard-
ware; instead, the iOS SDK provides abstraction layers for apps to access the under-
lying hardware. 

This chapter covers 
 Exploring the iOS SDK

 Creating a project in Xcode

 Exploring the Xcode interface

 Using Interface Builder and storyboards

 Running your app
3



4 CHAPTER 1 Your first iOS application
 Figure 1.1 shows the abstraction layers of the iOS SDK, from the higher-level ser-
vices and features to the lowest-level interfaces. Table 1.1 has more details about
what’s contained in each layer.

Figure 1.1 iOS abstraction layers

Table 1.1 iOS SDK abstraction layers

Layer name Description

Cocoa Touch The Cocoa Touch layer provides the highest-level abstraction, and you’ll use it 
frequently in iOS development. You can use frameworks in the Cocoa Touch 
layer to

 Display, layout and animate your views
 Recognize user touches and gestures
 Recognize device motion
 Display and lay out text
 Display maps
 Display user photos
 Display web content
 Send and receive push notifications
 Share content

Core OS

iOS device

Core Services

Media

Cocoa Touch

UIKit
GameKit
iAd
MapKit
Message UI
Notification Center

User

Foundation
Core Data
Core Location
CloudKit
WebKit
HomeKit

Accelerate
Core Bluetooth
External Accessory
Local Authentication
Security
Network Extension

Assets Library
AV Foundation
Core Graphics
OpenGL
SceneKit
SpriteKit



5Creating an Xcode project
To access features in the iOS SDK in your code, you’ll need to import the appropriate
framework. Common frameworks available in each of the layers are listed in figure 1.1. 

 These are two commonly used frameworks in iOS app development:

 UIKit framework of the Cocoa Touch layer—Among the many features it provides
are the basic architecture for your app and a library of standardized views and
controls, and it manages user input. The UIKit is often imported by default,
which in turn imports the Foundation framework by default.

 Foundation framework of the Core Services layer—Provides additional features and
functionality for basic data types. Foundation also adds basic classes and utili-
ties, such as URLs, timers, formatters, and notifications.

1.2 Creating an Xcode project
Now that you have an idea where everything fits together in the iOS SDK, how about
using that information to create your first app?

 To develop iOS apps, you first need to get your tools together: 

 You need a Mac. 
 You need to download Xcode (https://itunes.apple.com/us/app/xcode/

id497799835?mt=12) for free from the App Store. Xcode is the integrated
development environment (IDE) for building software for Apple products,
including iOS apps.

 If you’d like to distribute your app on the App Store, you also need to join the
Apple Developer Program (https://developer.apple.com/programs/). 

 For testing purposes, you’ll also probably want an iOS device such as an iPad or
iPhone.

Media The Media layer provides a lower level abstraction of graphics, video, and 
audio technologies. You can use frameworks in the Media layer to

 Record and play back audio and video
 Access and manipulate user photos
 Display and animate 2D and 3D graphics

Core Services Core Services goes even lower level, giving you access to features such as

 Working with data in the cloud
 Multi-threading
 In-app purchases
 Local data storage such as Core Data and SQLite
 File sharing
 HTML content

CoreOS CoreOS provides the lowest-level layer. You’re less likely to use this layer 
directly, but will use it indirectly frequently because other layers frequently tra-
verse this layer to access the underlying hardware.

Table 1.1 iOS SDK abstraction layers

Layer name Description

https://itunes.apple.com/us/app/xcode/id497799835?mt=12
https://itunes.apple.com/us/app/xcode/id497799835?mt=12
https://developer.apple.com/programs/


6 CHAPTER 1 Your first iOS application
That’s it! Let’s get started exploring Xcode and building your first project! 
 To build an app in Xcode, the first thing you need is an Xcode project. An Xcode

project is where you keep all your related source code, storyboards, frameworks,
images, and resources related to the app. 

 Open Xcode and select Create a New Xcode Project on the Welcome to Xcode
window, or select File > New > Project (see figure 1.2).

Figure 1.2 Create your Xcode project.

1.2.1 Templates

Similar to the way Microsoft Word has templates for resumes and letters or blank doc-
uments, Xcode provides templates for common app types. See figure 1.3.



7Creating an Xcode project
 

Figure 1.3 Xcode iOS templates 

Using Xcode, you can build apps for iOS (iPads, iPhones, and iPod Touch), watchOS
(Apple Watch), tvOS (Apple TV), or even macOS (Mac programs). Table 1.2 lists the
application types available for your convenience.

Table 1.2 iOS application templates

Template type Description

Single View Application The simplest template available for iOS; the equivalent of a blank doc-
ument in Word.

Game Leads you down a different path, configuring your app to use one of 
several game frameworks built into iOS

Augmented Reality Application Sets up your app to blend live video from the camera with animated 
objects using augmented reality

Document Based Application Demonstrates loading a document using the document browser

Master-Detail Application Configures your app with a split view, one way of customizing the pre-
sentation of your app’s content, depending on whether you view it on 
an iPhone or iPad

iOS application templates

Platform
type

Project
type



8 CHAPTER 1 Your first iOS application
See figure 1.4 for examples of the applications some of these templates can help
produce.

Figure 1.4 Applications from iOS templates

Page-Based Application Adds a storybook design to the app with animated page turns

Tabbed Application Adds a tab bar to the bottom of the app with two tabs preconfigured

Sticker Pack Application Provides a sticker pack for use in iMessage

iMessage Application Template for a sticker pack with additional features such as in-app 
billing

Table 1.2 iOS application templates (continued)

Template type Description

Game Master-Detail Application

Page-Based Application Tabbed Application



9Creating an Xcode project
In this book, we’ll focus on iOS development. To understand the inner workings of
app development, we’ll always start with a Single View Application. Not to worry, you
can add pages, tabs, and master detail later. You can even use a Single View Applica-
tion to create a game. Using this approach, you’ll build up the boilerplate setup your-
self and get a clearer understanding of what’s happening under the hood!

 Your next step is to select Single View Application, and then select Next.

1.2.2 Project options

Before you get to the fun part of playing with a project, you first have to set up its
options. Fill in your project options similar to the example in figure 1.5. Table 1.3
explains these options in detail.

 

Table 1.3 Project options

Option Description

Product Name Any name will do, but for a first project HelloWorld is tradition, after all.

Team Even if you’re a solo developer, your developer account with Apple is referred to as 
your team. You’ll need a team later to test your app on your device and pay to join 
the Apple Developer Program for your app to use special services such as iCloud 
or distribute your app on the App Store. You’re welcome to set up your Apple 
Developer account now if you like, but if you’re keen to get stuck into playing with 
Xcode, feel free to leave this option. We’ll look at teams and the Apple Developer 
Program in detail in chapter 16.

Organization Name This is used to generate copyright strings in your code.

Figure 1.5 Xcode project 
options



10 CHAPTER 1 Your first iOS application
Move on to the next screen by selecting Next. Select a path for your project. You can
check Create Git Repository on My Mac to enable version control for your applica-
tion. This can be useful for keeping a record of revisions you make to your app, as well
as later, when linking this repository to an online Git-hosting service such as GitHub. 

 Well done! You’ve created your first project! Now let’s explore a little more.

1.3 Exploring the Xcode interface
When you first open Xcode, you can feel overwhelmed. It’s a large and complex piece
of software. You could work in Xcode for years and still discover new features. This
book doesn’t comprehensively cover Xcode, but it will get you well on the way on your
journey of discovery, and to publishing your first app! 

 To keep things simple, let’s divide the Xcode workspace into five parts (see figure
1.6). Let’s briefly explore each of them.

Organization 
Identifier

This and the product name are used to generate the bundle identifier.  By conven-
tion, to ensure it’s unique, many developers use a reverse domain name for their 
organization identifier. More on the bundle identifier appears in the final chapter. 

Language You can still choose to develop your app in Swift’s predecessor, Objective-C, for 
the foreseeable future. Choosing Swift or Objective-C doesn’t preclude using the 
other; it’s more an indication of which you’re intending to use predominantly. In 
this book, we'll focus exclusively on development in Swift.

Devices You can choose to develop only for iPad or iPhone, but if you want your app to 
work on both, you should choose Universal.

Core Data Core Data is a framework for persisting complex data. Selecting it here adds boil-
erplate code that otherwise isn’t necessary. Let’s leave it deselected.

Unit/UI Tests Selecting Include Unit and UI Tests sets up your project with targets to conve-
niently test your app’s source code and interface. Taking advantage of these test 
targets to ensure your code is bug free and your app works as expected is a good 
habit to get into, especially as your apps become more complex. Let’s leave these 
selected.

Project targets
An Xcode project contains one or more targets. An Xcode target contains all the spec-
ifications for building a specific product. A common target is an app. You can also
have other targets for unit and UI testing. 

Most commonly, one Xcode project contains one app target, but an Xcode project can
have more. Pro and Lite versions of an app are a good example of where it would
make sense for an Xcode project to contain two app targets, because the apps share
many of their resources and codebase.

Table 1.3 Project options (continued)

Option Description



11Exploring the Xcode interface
Figure 1.6 The Xcode interface

1.3.1 Toolbar area

The top bar of the Xcode window is known as the toolbar. 
 In the toolbar, you’ll find

 View selector for showing or hiding views
 Editor selector for customizing the editor area
 The activity viewer for information about the current state of currently execut-

ing tasks and status messages
 App execution controls for playing and stopping your app, and for selecting the

scheme to run and the simulator or device

See figure 1.7 for the Xcode toolbar.

Figure 1.7 The Xcode toolbar

Navigator area

Editor area

Utility areaDebug area

Toolbar area

App execution
controls

Activity
viewer

Editor
selector

View
selector



12 CHAPTER 1 Your first iOS application
1.3.2 Utility area

On the right, you’ll find the utility area. The utility area includes the inspector pane
and the objects pane. We’ll look at these in more detail later in this chapter when we
learn about Interface Builder.

1.3.3 Navigator area

On the left is the navigator area. Notice the eight icons in the bar at the top of the
panel. These icons represent eight types of navigators that you can open in this area. 

 Tap on the icons now and check out each of the navigators. Table 1.4 briefly
describes the navigators. 

You’ll find yourself using certain navigators much more than others. Let’s look now at
the navigator you’ll probably use the most, the Project Navigator. We’ll come back to
other navigators in later chapters.

PROJECT NAVIGATOR

The Project Navigator looks straightforward enough—it’s like Finder, right? Well, not
exactly. While it’s true that you can navigate the files in your project using the Project
Navigator, the files in the Project Navigator can be simplified versions of the file struc-
ture on disk. To illustrate this, right-click on the project name at the top of the Project
Navigator and select Show in Finder to open your project in a Finder window (see
figure 1.8).

 For example, if you explore the Assets.xcassets icon in Finder, you’ll see it has sub-
folders for each media asset it contains. Similarly, the LaunchScreen.storyboard and

Table 1.4 Navigators

Navigator Icon Description

Project Navigator Manage and navigate to files in your project

Source Control Navigator Manage your project’s source control repository

Symbol Navigator Convenient way to navigate to classes, functions, and other 
objects in your project

Find Navigator Find text anywhere in your project

Issue Navigator Information on any current build warnings or build errors

Test Navigator Information on any current unit tests or UI tests

Debug Navigator Information on the current state of an app when execution is 
paused

Breakpoint Navigator Navigate to and modify breakpoints

Log Navigator A log of past builds of your app



13Exploring the Xcode interface
Main.storyboard are contained in a special folder in Finder called Base.lproj. If you
add other translations of your app, they will be contained in another folder.

 You decide what files make up your project. Xcode starts off your project a certain
way by default, but now you’re in control of the structure of your project. The yellow
icons in the Project Navigator are called groups. You can (and should) group related
items in your Project Navigator to keep your project neatly organized. As your project
grows, a well-organized project becomes more and more essential!

NOTE In previous versions of Xcode, there was a disconnect between the
groups contained in the Project Navigator and folders in Finder. Since Xcode
11, groups in the Project Navigator are by default synced with folders on disk.
If you open a project set up in a previous version of Xcode, you may see a tri-
angle in the corner of a group icon, indicating that it's not synced to a folder
in Finder. 

To practice organizing your project, right-click on ViewController.swift, and select
New Group from Selection. Name the group ViewControllers. 

1.3.4 Editor area

Focus now on the big panel in the center of the screen, called the editor area. The
editor area looks different depending on what you have selected in the Project Naviga-
tor. When you create your project, the project itself is selected, which takes you
straight to the project editor. We’ll look at the project editor in more detail in appen-
dix A, but for now, select other items in the Project Navigator and note the different
types of editors that appear in the editor area. These editors include the following:

 Project editor—Use to edit settings for your project and target
 Source editor—Use to edit source code, such as Swift

Project Navigator Project in Finder

Figure 1.8 Project Navigator versus Project in Finder



14 CHAPTER 1 Your first iOS application
 Property list editor—Use to edit property lists, recognizable by the .plist extension
 Interface Builder—Use to edit storyboards and nibs
 Asset catalog editor—Use to modify or add images in your app

Figure 1.9 Editor areas

Project editor

Source editor

Property list editor

Asset catalog editor



15Editing your app’s interface
See figure 1.9 for the appearance of some editor area
types. (We’ll look at Interface Builder in more detail
shortly.)

 A lot goes on in the editor area. Press Command-0
and Option-Command-0 to hide the navigator and util-
ity areas of the screen. Hiding these areas can be espe-
cially useful if you have limited screen space. If you
prefer, you can also open and close these areas by tap-
ping the relevant button in the view selector, at the right
of the toolbar (figure 1.10). Open the navigator area again by clicking the Navigator
toggle button. 

TIP You can find and customize all of the keyboard shortcuts in Xcode
inside the Xcode > Preferences > Key Bindings menu.

You’ll find that many panels in the Xcode interface have similar toggle buttons,
including the debug area. 

1.3.5 Debug area

If you select the Debug toggle button, a debug area opens below the editor area. The
debug area contains controls for running your app, a pane where you can view vari-
ables, and a console for displaying output from your app or interacting with the
debugger. You can also open and close the debug area with the keyboard shortcut
Command-Shift-Y. We’ll discuss debugging in more detail in chapter 15.

1.4 Editing your app’s interface
You can edit your app’s interface in code, but the easiest way to edit an interface is to
build it up visually. 

 Click on Main.storyboard in the Project Navigator to open the main storyboard in
the editor area.

1.4.1 Storyboards and nibs

Storyboards are used to visually define your app’s user interface (UI) and the flow of
navigation within your app. A storyboard contains scenes—screens or pages in your
app. You can use one storyboard, or if you have a more complicated app, set up sev-
eral interconnected storyboards. 

 The storyboard that’s generated by default in a Single View Application couldn’t
be simpler—it only contains one scene. Most apps contain several interconnected
scenes. These connections will be represented in the storyboard. 

 You may remember seeing another storyboard in your Project Navigator called
LaunchScreen.storyboard. This storyboard represents a basic scene that displays while
your app is loading. To ensure your launch screen loads quickly, this scene can’t do
anything other than display static images. 

Navigator
area

Debug
area

Utility
area

Figure 1.10 View selector



16 CHAPTER 1 Your first iOS application
 A related concept to the storyboard is the nib. A nib also represents a UI in a visual
way, but only a single scene or view. It’s typically instantiated from code. In general,
storyboards have replaced the older nib approach.

1.4.2 View controllers and views

Everything that you see in your scene is a type of view (or is rendered within a view).
Text fields, labels, buttons, switches, and images are all examples of types of views.
Views can contain other views and be contained within other views. At the root of a
scene is one parent view that contains everything visual in your scene. 

 If you have experience in programming, you’ll most likely have come across the
design pattern Model-View-Controller, where the view is separated from the model
and the controller. We’ll come back to this concept in chapter 4 when we look at mod-
els, but for now let’s consider the view and the controller.

 In iOS, the controller of your scene is called a view controller. The view controller is
responsible for managing your scene’s views. These responsibilities include the
following:

 Interaction with views—The user can interact with particular view types, such as
buttons and text fields. The view controller is responsible for responding to this
interaction. In the login scene for the Facebook app, the view controller is
responsible for responding when the user taps the Log In button. After success-
fully validating the login details, the view controller initiates navigation to the
Facebook news feed scene.

 Updating views—Several view types, such as image views or table views, display
content that might need updating from a data source. The view controller is
responsible for updating these views. The Facebook news feed is an example of
a view that would need updating.

We’ll take a closer look at view controllers and views in chapter 4.

1.4.3 Interface Builder

Storyboards and nibs at their rawest are XML files. Unlike HTML, iOS developers
rarely work directly with these XML files and instead use Interface Builder, a visual
environment that Apple provides for editing your storyboards and nibs.

 Close the navigator area on the left again (Command-0) and open the utility area
on the right (Command-Alt-0) to fully appreciate the Interface Builder options avail-
able to you. Your screen should look something like figure 1.11. 

 When you first open your Single View Application storyboard, you’ll see one scene
on the canvas, represented by a view controller.



17Editing your app’s interface
1.4.4 Object Library

On the right, you’ll find the utility area. At the bottom of the utility area, you’ll find
the libraries pane. Open to the library you’ll most likely use the most, the Object
Library. (This is the third icon at the top of the libraries pane, and looks like a square
inside a circle ). The Object Library contains a variety of different objects that you
can add to the storyboard, including these:

 User interface elements
 View controllers
 Visual effects
 Gesture recognizers

Interface Builder Utility areaCanvas Libraries

InspectorsDocument Outline

Show or hide document outline

Figure 1.11 Interface Builder



18 CHAPTER 1 Your first iOS application
For fun, drag a text field, a button,
and a label to the main scene’s view,
similar to figure 1.12. Notice blue
guidelines appear to guide you. Try to
follow these guidelines where possi-
ble, because they’re recommenda-
tions from Apple about scene margins
and distances between objects.
 
 
 
 
 
 
 
 
 
 

Figure 1.12 Simple interface

1.4.5 Document Outline

On the left of Interface Builder, you’ll find the Document Outline. This gives you a
representation of the hierarchy of all the elements in your storyboard (see table 1.5).

Table 1.5 Storyboard elements

Element Description

View controller Manager for a scene’s views.

View Visual components of your interface.

Safe area An area of the root view that you can be confident is not obstructed by special views 
such as navigation bars. You can use safe area layout guides to help you lay out 
your views. (More on the safe area when we discuss auto layout in chapter 5.)

Constraint Rules that define the layout of the views in a scene. (We’ll discuss constraints 
more in chapter 5, too.)

Gesture recognizers Helpers that detect common gestures. (We’ll come back to these when we dis-
cuss user interaction in chapter 4.)

First responder A first responder is the view in your scene that will be the first to receive any 
app events. Tapping on a text field, for example, will make it first responder. 
Use the first responder icon in Interface Builder to connect an action from a 
control to an action on the current first responder.

Exit Customize behavior when exiting a scene. We’ll explore this further when we 
learn about navigation in chapter 9.

Storyboard entry point Indicates the initial scene for the storyboard.



19Editing your app’s interface
If you added the objects in the previous section,
your document outline should look something
like figure 1.13. The elements you see in the main
view are similar to layers in a Photoshop docu-
ment, but with a difference—the top layer is
shown at the bottom in the Document Outline.
In our example, if the label and the button over-
lapped, the label would obscure part of the but-
ton. You can drag views around within the
Document Outline to reorder them.

 When your storyboard or UIs start to become
complex and unwieldy, the Document Outline is
a handy place to find and select views and view
controllers. You can show or hide the Document Outline by clicking the relevant but-
ton at the bottom left of the canvas ( ), as you saw in figure 11.11.

1.4.6 Inspectors

At the top of the utility area on the right is
where you’ll find the inspectors. Similar to
the navigator area, use the tabs at the top
to select different inspectors. See figure
1.14.

 These are not only useful in the story-
board; you’ll find relevant inspectors avail-
able in all file types. With the storyboard
open, you have the following inspectors
available. 

FILE INSPECTOR 
Here, you can manage the metadata for
the file, including which target it belongs
to, whether it has been modified, and
whether it has been localized.

 Be sure to select one of the views in
your scene so that you can see the details
in the remaining inspectors.

HELP INSPECTOR 
This inspector gives you context-specific help information about the element that’s
currently selected. It usually contains links to open the documentation if you want
more-detailed reference information. Try it now—select the button in the scene and
quick help should appear in the Help Inspector. 

 Select Class Reference (at the bottom of the documentation text, next to the label
More) to open more-detailed information in the documentation. UIButton is the

Figure 1.13 Document Outline

Inspector tabs

Figure 1.14 Inspectors

?



20 CHAPTER 1 Your first iOS application
name of the class underlying all standard buttons, provided to you by Apple in the
UIKit framework. You’ll find the UIKit framework ubiquitous in iOS development—it’s
essential for working with the views, view controllers, events, animation, and a myriad
of other functions within iOS. 

 Notice the detailed information in the documentation for UIButton:

 Overview—A description of how to use UIButton, including attributes you can
configure in Interface Builder and accessibility and internationalization infor-
mation.

 Symbols—Methods and properties available for UIButton, divided into related
sections.

 Relationships—Classes that UIButton inherits from, and protocols that UIButton
conforms to. Note that UIButton inherits from UIControl, which in turn inher-
its from UIView. We’ll come back to controls in chapter 5, but for now it’s suffi-
cient to know that objects that expect user interaction, such as buttons, pickers,
switches, and sliders, generally subclass UIControl. As you saw earlier, UI objects
at their base are views, which is why they, in turn, subclass UIView.

TIP The File and Help Inspectors are always open regardless of the file you
currently have open.

IDENTITY INSPECTOR

This is similar to the File Inspector, but in the Identity Inspector, you manage the
metadata for the selected element in your storyboard. This includes the class name
associated with the object, the ID, and accessibility details. 

 Select a view in the scene, and look at the class field in the Identity Inspector.
Notice that the class name is grayed out, and begins with the prefix UI. This indicates
that it isn’t a custom class; rather, it’s a class provided to you by Apple in the UIKit
framework. 

 Now, select the view controller either in your Document Outline or by clicking on
the yellow circle with a white square inside at the top of the scene in your storyboard.

 Notice that the view controller class name is in a darker font, and doesn’t begin
with a prefix. This indicates that this element has been associated with a custom class
that you can modify. This custom ViewController class subclasses Apple’s built-in
UIViewController class and comes as a default in the Single View Application tem-
plate. You can find it in the ViewController.swift file in the Project Navigator. Don’t
worry if this isn’t clear yet; it’ll make more sense when we look further at subclassing
UIViewController in chapter 4.

ATTRIBUTES INSPECTOR

In the Attribute Inspector, you can modify the attributes of an object, beyond the
default values. For example, you could modify the text, font, alignment, and number
of lines of a label. Try out the Attribute Inspector now by modifying the text of the
label to “Hello World.”



21Editing your app’s interface
 Select the button now and examine the attributes available to you. Notice that the
attributes are divided into sections, following the same hierarchy you saw in the docu-
mentation earlier. First, attributes that are specific to buttons are listed, followed by attri-
butes relevant to all controls, followed by attributes relevant to all views. Note that all
views have the same attributes, such as background, alpha, tint, and whether it’s hidden.

SIZE INSPECTOR

In this inspector, you can adjust the position and dimensions of an object. You can
also modify any layout constraints you’ve applied to the object. We’ll look more at
constraints and auto layout in chapter 6.

CONNECTIONS INSPECTOR

Here, you’ll find connections made between the storyboard and your view controller.
These connections are called outlets and actions. We’ll investigate these concepts fur-
ther in chapters 4 and 5. 

Building interfaces in Interface Builder vs. code
Interface Builder is a convenient tool for building up interfaces rapidly and visually. It
has limitations, however, so many iOS developers often prefer to build their inter-
faces in Swift. There have been many discussions over the years about which is the
best approach. Be aware when reading over any older posts on this topic online that
Apple has improved many limitations with storyboards and Interface Builder over the
last few years. Here are several pros and cons of both approaches.

Building interfaces in Interface Builder

Pros:

 Simple and fast to use.
 Easier to build interfaces visually.
 Apple’s recommended approach.

Cons:

 Resolving conflicts in revision control can be a headache.
 Some dynamic designs are impossible in Interface Builder.

Building interfaces in code

Pros:

 Greater control, making dynamic designs more possible.
 Resolving conflicts in revision control is less of a problem.

Cons:

 Interfaces need to be built without visual feedback.
 More complicated and time consuming.

In the end, the approach you take is up to your personal preferences and the best
solution for each specific situation. We’ll look at building up views in code in more
detail in chapters 6 and 7.



22 CHAPTER 1 Your first iOS application
Xcode is the main tool you’ll use to build apps in iOS, and it’s a good idea to begin
familiarizing yourself with it. One short chapter can’t cover all facets of this huge and
complex program, but after investing some time in exploring Xcode while going
through this book, you should develop a level of comfort in the tool and be building
apps of substance. You’ll get there soon!

1.5 Running your app
Now that you’ve created an app and are more familiar with the Xcode interface, let’s
run the app to see what it looks like! 

 You have two broad options for where to run your app: on a device or the simulator.

1.5.1 Running your app on a device

Nothing beats running your app on the device, for several reasons: 

 True interaction—It’s in your hand! You can touch, swipe, and pinch your app
the way your users will—with their fingers. 

 True experience—These days, simulators reproduce the iOS environment quite
well, but never perfectly. On the device, you can be sure you’re seeing how a
real-world environment responds to your app, including memory and CPU
restrictions.

 Necessity—Certain features are unavailable or unreliable on a simulator, such as
the accelerometer, camera, microphone, push notifications, and external acces-
sories. To test these features you need to use a physical device. For a full and up-
to-date list, check “API Differences” and “Hardware Differences” on Apple’s Test-
ing and Debugging in Simulator page (https://developer.apple.com/library/
content/documentation/IDEs/Conceptual/iOS_Simulator_Guide/Testingon-
theiOSSimulator/TestingontheiOSSimulator.html).

It’s a good idea to invest in at least one device, if you haven’t already. Before submit-
ting your app to the App Store, it’s imperative to experience your app the way the end
user will.

1.5.2 Running your app in the simulator

It’s also important to run your app in different environments. From iPhone 4S to iPad
Pro, you have many points of difference to test, including dimensions, Retina and
non-Retina, CPU speed, and memory availability. At the time of writing, 18 iOS simula-
tors are available by default for testing your app in different simulated environments.
If you want to be thorough, it’s quite an investment to get your hands on all possible
physical devices. 

 Simulators make testing your app in a variety of different environments, and even
iOS versions, as easy as choosing an option in a menu. The simulator is indispensable
for getting quick feedback as to how your app looks and operates in different device
environments.

https://developer.apple.com/library/content/documentation/IDEs/Conceptual/iOS_Simulator_Guide/TestingontheiOSSimulator/TestingontheiOSSimulator.html
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/iOS_Simulator_Guide/TestingontheiOSSimulator/TestingontheiOSSimulator.html


23Running your app
1.5.3 Running your app

In the Xcode workspace toolbar,
you’ll find the Run and Stop buttons.
Tapping the Run button automati-
cally builds the selected scheme in
the selected destination (see figure
1.15).

 The scheme specifies which target you wish to test, along with any other configura-
tion of the build. Your project comes with a scheme preconfigured to test your proj-
ect’s main target.

 The destination is where you can choose a device or a simulator to test your app.
You can also add an additional simulator in the Devices window. Xcode comes precon-
figured with a simulator for every available device in the latest version of iOS. If you’d
like to test your app in an earlier version of iOS, you can add a simulator specifying
iOS version. You need to download the sizable simulator app for that version.

1.5.4 Simulator features

Though hardware-specific features such as
accelerator and gyroscope aren’t available on
the simulator, other features are available either
in the Simulator menu or as keyboard shortcuts. 

 When you open the Simulator and select
the Hardware menu, you’ll find several actions
available that would otherwise be difficult to
perform on a simulator, such as rotating the
device, shaking the device, or tapping the
device’s Home button. You can connect your
Mac’s keyboard in the Hardware menu for con-
venience rather than using the simulator’s soft-
ware keyboard. You can even simulate two
fingers in the simulator by holding down Alt
(great for simulated pinching). 

 Run your app in the simulator now. Leave
the scheme and the simulator at their defaults
and select the Play button. You should see the
objects you created in Interface Builder appear
in the simulator. Success, you’ve made your first
(albeit basic) app! See figure 1.16. (Depending
on your Mac’s screen resolution, you may need
to reduce your app’s scale in the simulator’s
Window menu to see it all at once.)

Scheme Destination

Figure 1.15 App execution controls

Figure 1.16 Your first app in the 
simulator!



24 CHAPTER 1 Your first iOS application
 This app doesn’t do anything yet. To add more complexity to your apps, you’ll first
need to add code, and in this book we’ll do that with Swift. Let’s peek at a completed
app.

1.6 Peeking at a completed app
How awesome are books? Well, you must agree, you’re reading one right now! I don’t
know about you, but I find it difficult to keep track of my books. What books do I have
again? Where is that Jostein Gaarder book I read in university? In the bookcase in the
lounge room? Stored in the attic? Did Albert borrow it? Or maybe I imagined the
whole thing?

 Throughout this book, you’re going to build an entire app from start to finish that
will help users keep track of their books. Users will enter the author’s name, book
title, and notes about each book, or—and this is where it gets fancy—they’ll use the
handy barcode scanning feature, which will automatically generate the details for
each book. We’ll call this app Bookcase. Let’s take a sneak peek of what the finished
app looks like right now. We’ll also peek at programming in Swift by making a small
change to the code.

1.6.1 Checking out a repository in Xcode

To download the app, you’ll use Xcode’s version control, which is built right into the
IDE.

 You can easily download (or check out) a project repository (or repo) from an online
source such as GitHub. Check out the finished Bookcase app with the following steps:

1 Select Source Control > Clone.
2 Enter the URL of the repository in the text field. In this case, paste in https://

github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git.
3 Navigate to where you'd like to download the repo locally, and select Clone.

Easy, right? The repo should now open up in Xcode and be available on your local
drive.

NOTE Watch for Checkpoint callouts distributed throughout this book. These
are points where you can either download a project already set up for you or
compare your code with mine at the same point.

1.6.2 Peeking at the completed app’s storyboard

Let’s peek at the Bookcase app’s storyboard. Select the Main.storyboard file in the
Project Navigator and the storyboard should appear in Interface Builder (see figure
1.17). At a glance, you can get an idea of the flow of navigation, that the app has a tab
bar controller and several navigation controllers; you can see that one scene contains
a table view, and get an idea of the UI. 

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


25Peeking at a completed app
Figure 1.17 Bookcase app storyboard

1.6.3 Tweaking the code

Sometimes, when you’re working on an application, you might make use of test data
to get an idea of how the app will look in the real world after the user enters real data.
Because this app is finished now, it’s time to remove this test data. See figure 1.18 to
see how the first scene of the app looks with the test data, and how you want it to look
when it’s published to the App Store.

Before After

Figure 1.18 The app with 
and without test data



26 CHAPTER 1 Your first iOS application
Let’s remove the test data and take our first peek at Swift code in action:

1 Open the Project Navigator and notice the Model group. This is where code
that manages all data in the application is kept. 

2 Open the BooksManager.swift file. This file contains Swift code that’s responsi-
ble for managing the book data. 

3 Find the sampleBooks method. This method returns the sample data. (Meth-
ods start with the keyword func.) 

When the app is published to the App Store and a new user opens the app for the first
time, this method should no longer return sample data.

4 Modify the method to return a blank array:

func sampleBooks()->[Book] {
    return []
}

Run the app for the first time in the simulator. If all has gone to plan, it should open
with a clean slate, ready for the user to enter their own books into the app.

NOTE Because this app stores its data locally, this change to the sample data
only affects the user experience the first time they run the app. If you’ve
already run the app on the simulator and want to simulate running it again
for the first time, you can either delete the app or select Simulator > Reset
Content and Settings.

Well, that’s given you a small taste of Swift in an Xcode project. In the next two chapters,
we’ll cover a crash course in Swift, and the best place to do that is the playground!

1.7 Summary
In this chapter, you learned the following:

 The iOS SDK contains several abstraction layers of services and features, includ-
ing the Cocoa Touch layer.

 The abstraction layers of the iOS SDK contain frameworks that Apple provides,
such as the ubiquitous UIKit.

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check out mine in the Chapter1.2.Complete branch. To

change branches, open the Source Control Navigator, and find the remote
branch in Remotes/Origin. Right-click (or two-finger tap if you're using the
trackpad), and select Checkout. If you’ve made changes in this branch,
Xcode will request that you either commit or discard those changes before
changing branches. Select Source Control > Discard all Changes to discard
your changes.



27Summary
 The Xcode interface includes the navigator area, editor area, and the utility
area, which is composed of libraries and inspectors.

 Use Interface Builder to edit a storyboard. 
 Everything you can see in a scene is a type of view or rendered within a view. 
 View controllers manage views, interact with them, and update them.
 Use the simulator to test your app quickly on a variety of different device types,

but be sure to test your app on a device as well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



28 CHAPTER 1 Your first iOS application
 
 
 



Introduction to Swift
playgrounds
Swift isn’t JavaScript without the semicolons or Objective-C without the square
brackets. Swift is inspired by new philosophies and approaches to programming
that have driven its design and evolution. 

 Even the most experienced programmers will encounter new concepts and syn-
tax in Swift. In this chapter and the next, I assume that you have experience in
programming and are mainly interested in what’s new, different, and exciting
about Swift. I’ll also discuss how concepts in Swift relate to shifts in programming
philosophy.

 After looking at data types and collection types in Swift, we’ll look at a type that
may be new to many: the optional. The optional, tied closely to the idea of type

This chapter covers 
 Exploring Xcode playgrounds

 Using type safety in Swift

 Understanding simple Swift data types

 Working with collections and tuples in Swift

 Working with optionals
29



30 CHAPTER 2 Introduction to Swift playgrounds
safety in Swift, can be unfamiliar at first, but do stick with it—the optional is essential
to understanding programming in Swift.

 There’s much to look at in Swift, but don’t worry; as you progress in the book, or
for those of you who may already have some experience with Swift, you can always
refer to the cheat sheets in appendix B. This chapter is summarized in the first two
pages of the cheat sheets.

2.1 Xcode playground
When Apple introduced Swift, they also introduced a special environment in Xcode
called the Swift Playground. In a playground, you can experiment and play with Swift
concepts and syntax, without the distractions of peripheral concerns such as the archi-
tecture of your project, storyboards, or the simulator.

 A programmer new to Swift has new syntax and concepts to discover and explore.
In addition to the current body of Swift concepts, updates to the language occur rea-
sonably frequently, with more to learn and discover. 

 An Xcode project can be an unwieldy environment if all you want to do is explore
a new Swift concept. As you’ve seen, a project comes by default with all sorts of addi-
tional files, and if you want to see the result of a short code block, you first need to
build your project and run it on either a simulator or a device. If, for example, all you
want to do is explore how dictionaries work in Swift, this process is overkill. Play-
grounds solve this problem by simplifying the environment.

 Create a playground now by selecting either Get Started With a Playground on the
Xcode welcome screen, or by selecting File > New > Playground. 

 You should see a playground appear with default code (see figure 2.1).

Figure 2.1 Playground

Comment

Results sidebarDefine String
variable

Import
framework



31Xcode playground
You’ll notice the value of your str variable, "Hello, playground", appears in the
area on the right side of the playground. This area shows the result of each line of
code, and is called the results sidebar. 

2.1.1 Results sidebar

The results sidebar is a feature playgrounds have that Xcode projects don’t—use it to
view the result of every line of your code. In the default playground, you can see the
result of initializing the “Hello, playground” string in the sidebar. If you aim your
mouse pointer at the line containing the result, you’ll see two additional buttons that
give you two additional techniques for viewing the result.

QUICK LOOK

If you tap the eye button, the result appears in a bubble pop-up called a Quick Look.
This obviously isn’t necessary for the default string, but could in other circumstances
give you additional information that isn’t available or doesn’t fit in the limited space
in the sidebar (see figure 2.2).

Figure 2.2 Quick Look

SHOW RESULT

If you tap the filled, rounded, rectangle button a result view is anchored directly
below the line of code. Tap the same button to remove the Show Result view again.

 Quick Look and Show Result go beyond text information that you see in the side-
bar, giving you useful visual representations of the result. You can display UI views and
controls, visualize images and colors, and graph numeric calculations in for loops.  

 See figure 2.3 for examples of visual result views.
 Result views of URL variables even give you a preview of the web page at that URL!

Add a URL variable to your playground, with your own URL:

var url = NSURL(string: "http://www.craiggrummitt.com") 

Note how the string of the URL appears in the results sidebar. 
 Tap the Quick Look and Show Result buttons and note how your actual website is

rendered in the Show Result view.



32 CHAPTER 2 Introduction to Swift playgrounds
2.1.2 Automatic compiling

Note how the results automatically appeared in
the results sidebar, and you didn’t have to request
the playground to run. By default, playgrounds
automatically compile and run after every
change you make, meaning you don’t need to do
anything to see the results of your code immedi-
ately. Occasionally, in a large or complex play-
ground, these constant compilations can cause
your playground to slow down or even crash Xcode. If you prefer to manually request
your playground to run, hold your mouse button down over the Play button, and
choose Manually Run. The Play button toggles to an outline, and the playground
switches to run only when you press Play (see figure 2.4).

2.1.3 Console

As with Xcode projects, playgrounds have access to a console. If you’d like to go old-
school when visualizing the results of your code, you can use the console, for example,

Graph of for
loop calculation

Representation
of color

UI control

Figure 2.3 Examples of visual result views

Figure 2.4 Automatically Run and 
Manually Run



33Type safety and type inference
to display results of the print function. Use the print function to display the str
variable:

print(str)

Tap the arrow in a rectangle at the bottom left of the playground to open (or close)
the console. You should see the value of the string in the console (see figure 2.5).

Figure 2.5 Playground console

Occasionally, a runtime error can occur that isn’t anticipated by the compiler and
leaves your playground unresponsive or not working as expected. In these cases, it
pays to check the console to see if an error was reported there. 

 Now that you’re more familiar with playgrounds, you’re ready to use them to begin
exploring Swift concepts. 

 Where we explore Swift concepts in this book, you’ll find links to playgrounds to
follow along with the text. You can also experiment in your own playground. No need
to worry about saving playgrounds, Xcode keeps them saved automatically!

 Let’s get started!

2.2 Type safety and type inference
One of the key philosophies of Swift is safety, and one of the key components of safety
in Swift is type safety. Type safety ensures that all variables are defined with a specific
type. After a variable is defined as a specific data type, it can’t later store values of a dif-
ferent data type. A String variable, for example, can never contain an Int value.

CHECKPOINT You might prefer to examine the code listings in this sec-
tion in the TypeInference.playground. You can download all the code for

this chapter by selecting Source Code > Clone and entering the repository loca-
tion: https://github.com/iOSAppDevelopmentwithSwiftinAction/Chapter2. 

Show/Hide console

https://github.com/iOSAppDevelopmentwithSwiftinAction/Chapter2


34 CHAPTER 2 Introduction to Swift playgrounds
But wait—when you create a playground, by default you have a variable str containing
a string value, but the data type isn’t mentioned in the definition. How could this be?

 If you leave the data type out of the definition, Swift determines the data type of
the variable using a process called type inference. If Swift has enough information to
infer the correct type, this is as safe as specifically defining the data type. You can con-
firm the type that has been inferred for your variable by holding down the Alt key and
clicking on the variable (see figure 2.6).

Figure 2.6 Press Alt and click on the variable to see an inferred variable’s data type. 

Usually you can leave out the data type when you define a variable and let Swift infer
the data type for you—in fact, it’s good practice. There are cases, however, where
you’ll need to define a variable’s data type.

 Sometimes, you want to declare a variable without passing a value to it yet.
Xcode doesn’t have a value to infer the variable’s data type, so it needs to be
specified in the definition:

var feedback:String
if soupPaymentSuccessful {
    feedback = "Soup payment processed"
} else {
    feedback = "No soup for you!"
}

 Sometimes, the data type that Xcode infers isn’t the data type you intended. For
example, if you define a number without a decimal component, it will be
inferred to be of data type Int. You may prefer it to be defined as a number
with a decimal component, known as Double, so that you can easily perform
calculations with other decimal numbers. 
If you declare the data type, Xcode will better understand your intention: 

var quantitySoup:Double = 2
var priceSoup = 2.99
var total = quantitySoup * priceSoup

Variable definition

Declares variable’s 
data type

Passes it a value

Clarifies data 
type as Double

Double is 
inferred



35Type safety and type inference

In
This example explicitly specifies that you want the data type of quantity to be
inferred as a Double. If you don’t do this, quantity is automatically inferred to be
an Int, and calculations between an Int and a Double aren’t permitted without con-
verting the data type of one of the variables.

TIP An alternative to clarifying the data type in the declaration is giving
extra hints in the value as to the data type to be inferred. In the code snippet,
you could have declared the quantity as 3.0, and it would have been inferred
as a Double.

2.2.1 Converting numeric types

Because performing calculations between numbers of different types isn’t permitted,
sometimes data type conversion is necessary. To divide an Int from a Double, for
example, you first need to convert the Int to a Double, as shown in the following list-
ing.

var restaurantRent = 809.10
var daysInMonth = 31
var dailyRent = restaurantRent / daysInMonth 
var dailyRent = restaurantRent / Double(daysInMonth)

Here’s a question for you: in the following listing, what’s the value of slicesPer-
Person?

var totalPizzaSlices = 8
var numberOfPeople = 3
var slicesPerPerson = totalPizzaSlices / numberOfPeople

Try it out in the playground. You’ll find that slicesPerPerson is equal to 2. All I can
say is that I hope I’m third in line for pizza slices, and I get whatever’s left! 

 Be aware of this common pitfall. The result of an equation will be the same data
type as the data types in the equation. If you divide one Int from another Int, your
answer is an Int. If you want the answer to be a Double, you need to ensure you first
convert your Int variables to Doubles:

var slicesPerPerson = Double(totalPizzaSlices) / Double(numberOfPeople)

NOTE Several other number data types are available. For example, you’ll also
find an unsigned integer data type called UInt, and a data type called Float
that has a decimal component, but with much smaller precision than Double.
Unless you have a good reason to do otherwise, it’s best to use an Int and
Double for compatibility and to minimize data type conversion.

Listing 2.1 Convert Int to a Double

Listing 2.2 How many pizza slices per person?

Inferred as Doubleferred
as Int Error. Double can’t 

be divided by Int.

Converts Int to 
Double to divide it



36 CHAPTER 2 Introduction to Swift playgrounds
2.2.2 Concatenating strings

You may be used to using the addition symbol to generate a String from two values. 

var name = "Jerry"
var message = "Welcome " + name

As Swift is type safe, concatenating Strings in this way only works if every element
being concatenated is a String. A String and a Double, for example, by default
don’t concatenate. In the following example, cost is inferred to be a Double, so con-
catenating it with a String produces an error:

var cost = 3.50 
var message = "Your meal costs $" + cost

You have two options to generate a String with mixed types:

 Convert a data type—In any situation where you want two different data types to
interact, you can convert one of them to be the same data type as the other. In
the following code, you can add the cost variable by converting it to a String:

var message = "Your meal costs $" + String(cost)

 String interpolation—A much cleaner and easier-to-read approach is a technique
called string interpolation. Using string interpolation, you can integrate vari-
ables or expressions into the body of your String, surrounding it with a back-
slash and a pair of parentheses:

var message = "Your meal costs $\(cost)"

2.3 Collections
Swift has three main data types for storing dif-
ferent types of collections: arrays, sets, and dic-
tionaries. In keeping with Swift’s type-safe
philosophy, collections are only permitted to
store values of a specific data type. You can
either specify the type when you declare the collection, or let Swift infer the type by
analyzing all its elements when you instantiate it.

2.3.1 Arrays

An Array stores values of the same data type in an ordered list. The following listing
shows common Array syntax in Swift.

NOTE Constants are declared with the let keyword.

Error

OPEN Follow along in the
Collections.playground.



37Collections

Concat

el
t

Com
 

var friedChickenRecipe:[String] = []
friedChickenRecipe = ["Mix spices with flour, sugar and salt.",
                     "Dip chicken in egg white and flour.",
                     "Deep fry chicken.",
                     "Drain on paper towels."]
friedChickenRecipe.insert("Check chicken temp.", at: 3)
friedChickenRecipe.append("Serve!")
for step in friedChickenRecipe {
    print(step)
}
for (index, step) in friedChickenRecipe.enumerated() {
    print("Step \(index + 1):\(step)")
}
let firstStep = friedChickenRecipe.first
let secondStep = friedChickenRecipe[1]
let firstTwoSteps = friedChickenRecipe[0...1]   
let preRecipeSteps = ["Preheat oven to 350°F"]
friedChickenRecipe = preRecipeSteps + friedChickenRecipe

2.3.2 Sets

A Set stores values of the same data type in an unordered list. As the items in a Set
have no order, Array concepts such as subscripts, indices, and duplicate values are
meaningless. After instantiating a Set of values, take note in the results sidebar that
the elements are probably not displaying in the order they were defined, further illus-
trating that Sets don’t maintain a defined order. The following listing shows common
Set syntax.

var herbsNSpices:Set<String>            
herbsNSpices = ["Salt","Thyme","Oregano", 
                "Celery Salt","Black Pepper",
                "Dried Mustard","Paprika","Garlic Salt",
                "Ground Ginger", "White Pepper","MSG"]
herbsNSpices.insert("Basil")
herbsNSpices.remove("MSG")
for herbOrSpice in herbsNSpices {
    print(herbOrSpice)
}
var otherIngredients:Set = ["Chicken","Egg white","Brown Sugar"]
var allIngredients = herbsNSpices.union(otherIngredients)

In addition to union, Sets can be combined in creative ways, with the inter-
section, symmetricDifference, and subtracting methods.

Listing 2.3 Using arrays

Listing 2.4 Using sets

Declaring empty array

Instantiating 
array

Add elements to array

Iterate over array

Iterate over array 
with index

Extract element from array

Extract range of 
elements from arrayenating

arrays

Declares a set

Initializes 
a setAdds

ement
o a set

Removes element 
from a set

Iterates over set

bining
sets



38 CHAPTER 2 Introduction to Swift playgrounds

Ch
dict

co
2.3.3 Dictionaries

Like sets and arrays, a Dictionary stores a series of values.  Where the values in an
Array are referenced by an index, the values in a Dictionary are referenced by a
key. For example, a series of language names could be referenced by a three-letter lan-
guage code. Like a Set, a Dictionary is unordered. 

var abbreviations:[String:String] = [:]     
abbreviations = ["tsp":"teaspoon",          
                 "tbs":"tablespoon",
                 "qt":"quarts"]
let teaspoon = abbreviations["tsp"]
abbreviations.isEmpty
abbreviations["qt"] = nil
for (abbreviation,measurement) in abbreviations {
    print("\(abbreviation) is \(measurement)")
}
let abbreviationCodes = Array(abbreviations.keys)
let measurements = Array(abbreviations.values)

Concatenating two dictionaries is, strangely, not available in Swift. In the next chapter,
you’ll add this functionality to Swift by extending the Dictionary type.

2.4 Control Flow
As you’d expect, Swift has several standard
approaches for controlling the flow of a pro-
gram. Several, such as the if statement, or
while, should be familiar enough, as you can
see in the following code listing.

var bottles = 99
while bottles >= 0 {
   if (bottles == 0) {
        print("No more bottles of beer on the wall.")
    } else if bottles==1 {
        print("1 bottle of beer on the wall.")
    } else {
        print("\(bottles) bottles of beer on the wall.")
    }
    bottles -= 1
}

Listing 2.5 Using dictionaries

Listing 2.6 if, else, and while statements

Declares empty dictionary

Initializes 
dictionary Extracts element 

from dictionary

ecks if
ionary
ntains

data Removes element 
from dictionary

Iterates over 
dictionary

Extracts keys and values

OPEN Follow along in the
ControlFlow.playground.

Tests condition at 
start of each loop



39Control Flow
NOTE You can also test a condition at the end of each loop with the
repeat-while loop. Note also that parentheses around the condition of an
if statement are optional. Braces around an if statement’s block of code, on
the other hand, are never optional in Swift. 

Other control-flow approaches, such as for-in and switch, may be worth taking a
closer look to familiarize yourself with any differences in Swift.

2.4.1 for-in

Swift has two main for-in loop approaches. You’ve already seen that you can use a
for-in loop to iterate over the elements of a collection. A second type of for-in loop
can loop over a range, using the range operator, as shown in the following listing.

for index in 1...3 {
    print("\(index) banana")
}

You saw the range operator earlier, when you used it to extract a range of elements
from an Array. You’ll explore another use of range in a switch statement in a
moment.

 There are two main types of ranges, as explained in table 2.1.

The easiest way to remember the difference is that the half-open range ends when it’s
less than (<) the second number.

 To reverse a range, you need to call its reversed method. For example,
(0..<100).reversed()creates a range from 99 down to 0.

 You can also omit one side of the range to make a one-sided range that will continue
as far as possible on the side with the omitted value. This can be useful for iterating
over elements of a collection, for example, until the final element in the collection.

var numbers = [0,1,2,3,4]
for i in numbers[3...] {
  print(i)
}

Listing 2.7 for-in loop with range

Table 2.1 Ranges

Type Example Description

Closed 1...3 (1,2,3) A range of values, including the second number

Half-open 1..<3 (1,2) A range of values, excluding the second number

Iterates until 
final element

Prints 3 and 4



40 CHAPTER 2 Introduction to Swift playgrounds
2.4.2 switch statement

Most likely, you’re also familiar with the switch statement, which is used for compar-
ing one value against multiple values. Note the several points of difference, though,
between switch statements in Swift and in many other languages:

 Swift by default does not drop down to the next case. This means that the break
statement after every case isn’t necessary in Swift.

 Every case must contain executable statements. If you want two cases to share
the same executable statements, you can make a compound case by separating
the cases with a comma.

 You can compare a value in a case to a range; this is called interval matching.
 Switches must be exhaustive. If you want a case to signify “the rest” to make the

case exhaustive, use the default keyword, as shown in the following listing.

for bottle in (0..<100).reversed() {
    switch bottle {
    case 0:
        print("No more bottles of beer on the wall.")
    case 1:
        print("1 bottle of beer on the wall.")
    case 2...100:
        print("\(bottle) bottles of beer on the wall.")
    default:
        print("Something went wrong! ")
    }
}

Wait, isn’t something missing?
In addition to what’s in Swift, you might be interested to know what’s not in Swift that
you may be accustomed to in other languages. 

Two missing operators that might surprise you are the increment (++) and decrement
(--) operators. Swift is an evolving language, and these operators weren’t forgotten;
they were intentionally removed from Swift in Swift 3. You can read the arguments for
their removal in the Swift evolution document at https://github.com/apple/swift-
evolution/blob/master/proposals/0004-remove-pre-post-inc-decrement.md.

Similarly, you may be accustomed to the C-style for loop in other languages. For sim-
plicity, this type of for loop was deprecated in Swift 3:

for(var i=0;i<10;i++) 

Again, if you’re interested, you can read the evolution proposal for this change at
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-
style-for-loops.md.

Listing 2.8 switch statement

RIP C-style for loop

No break necessary

Interval 
matching

Default makes the 
switch exhaustive

https://github.com/apple/swift-evolution/blob/master/proposals/0004-remove-pre-post-inc-decrement.md
https://github.com/apple/swift-evolution/blob/master/proposals/0004-remove-pre-post-inc-decrement.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md
https://github.com/apple/swift-evolution/blob/master/proposals/0007-remove-c-style-for-loops.md


41Functions
2.5 Functions
Functions in Swift are defined with the func
keyword, followed by a list of parameters in
parentheses, and an optional return value indi-
cated by an arrow (hyphen and right angle
bracket), as shown in the following listing.

func serve(drink: String, customer: String) -> String {
    return("\(customer), your \(drink) is served")
}

Now that you have a serve function, you can call it by passing it a drink and a cus-
tomer:

print( serve(drink: "beer", customer: "Billy") )

Note that by default you need to pass in the names of the parameters when calling the
function. It’s possible, however, to modify these names.

2.5.1 Modifying external parameter names

Sometimes, you might want your parameter names when calling the function to be
different from the parameter names within the function. Swift makes this possible by
distinguishing between local and external parameter names.

 In listing 2.9, for example, you could make it extra clear to someone calling the
function that they’re serving the drink to the customer by renaming the external
parameter name to. In addition to reasons of clarity, this has the added benefit of sat-
isfying the Swift API design guidelines that method and parameter names should pref-
erably use “grammatical English phrases.”

 Local and external parameter names are the same by default. To split the parame-
ter name into two, specify the external parameter name followed by the local parame-
ter name, as in the following listing.

func serve(drink: String, to customer: String) -> String {
    return("\(customer), your \(drink) is served")
}

While the customer parameter within the function would continue to be referred to
as customer, the call to the function is now much closer to grammatical English:

print( serve(drink: "beer", to: "Billy") )

But wait—you wouldn’t say “Serve drink beer to Billy,” would you? This function call
could sound even closer to grammatical English by omitting the drink parameter name.

Listing 2.9 Function syntax

Listing 2.10 Modify external parameter name

OPEN Follow along in the
Functions.playground.



42 CHAPTER 2 Introduction to Swift playgrounds
2.5.2 Omitting external parameter names

If you prefer a function to be called without specifying a parameter name, you can
replace the external parameter name with an underscore: _. 

 An explicit external parameter name for the drink parameter is probably not nec-
essary. Remove it with an underscore before the parameter, as follows.

func serve(_ drink: String, to customer: String) -> String {
    return("\(customer), your \(drink) is served")
}

Your call to your function now sounds much cleaner: 

print( serve("beer", to: "Billy") )

If you read it back, it now sounds close enough to grammatical English: “Serve beer to
Billy.” Nice!

2.5.3 Default parameter names

Billy is such a regular at your restaurant that you could save time and make him the
default. In fact, he always drinks beer, so let’s make that the default too.

 Function parameters can define default values, as in the following listing.

func serve(_ drink: String = "Beer", 
       to customer:String = "Billy") -> String {
    return("\(customer), your \(drink) is served")
}

A parameter with a default value can be left out of the function call, and the default
value will be assumed:

print( serve() )

We’ll look more closely at types of functions in the next chapter. For now, we’ve had a
bit too much to drink with Billy, so we should be ready to discuss metaphysical philos-
ophy! Let’s enter the realm of optionals.

2.6 Optionals
It sounds like a Seinfeld routine, but imagine
being well known as the inventor of nothing. 

 That’s the plight of Sir C. A. R. Hoare (Tony
Hoare), who implemented the null reference
into a language called ALGOL W in 1965. In 2009, he called it his “billion-dollar
mistake”:

Listing 2.11 Omit external parameter name

Listing 2.12 Default parameter name

OPEN Follow along in the
Optionals.playground.



43Optionals
My goal was to ensure that all use of references should be absolutely safe, with checking
performed automatically by the compiler. But I couldn’t resist the temptation to put in a
null reference, because it was so easy to implement. This has led to innumerable errors,
vulnerabilities, and system crashes, which have probably caused a billion dollars of pain
and damage in the last forty years.

As mentioned earlier, a key component of Swift is type safety. A variable defined as a
String, for example, can never contain a value that isn’t a String.

 If you have experience in other languages, you’re probably familiar with the
absence of value—this concept is known in Swift as nil. 

 But wait, I said “a variable defined as a String can never contain a value that isn’t
a String.” nil isn’t a String. Therefore, a variable defined as a String can never
contain nil! Figure 2.7 illustrates what happens if you try to assign nil to a String.

Figure 2.7 Strings can’t be nil.

The question is this: what sort of variable can be
equal to nil? Swift introduces the optional type
to address this question—and the billion-dollar
mistake.

 Imagine you have a box with the word “CAT?”
written on it (see figure 2.8). You’re 100% certain
that this box contains either a cat or no cat. You
can’t know which without unwrapping the box.  

 What you’ve imagined is a cat optional!
 An optional contains either

 A thing of a certain type (for example, a cat)
 nil (that is, no cat)

So, a String optional, for example, contains either

 A String
 nil

Using an optional to represent a variable that may or may not be equal to nil is how
Swift stays type safe while allowing the concept of nil. 

 When would you declare a variable as an optional? You should declare a variable as
an optional if it may be equal to nil at some point in its lifetime. Perhaps the variable
is declared before it can be defined; perhaps a function can fail and needs to be able

Figure 2.8 A cat optional



44 CHAPTER 2 Introduction to Swift playgrounds
to return nil; or perhaps a property of an object may or may not exist, and this needs
to be expressed in code.

2.6.1 Declaring an optional

Declaring an optional is straightforward. You’re unlikely to pass a value to your optional
when declaring it, so type inference won’t be possible. Explicitly declare its type, fol-
lowed by a question mark to indicate it’s an optional. Here’s a String optional:

var main:String? 

Initializing an optional later is no different from initializing a non-optional.

main = "Steak"

Let’s say you want to print your main meal in uppercase. Where an optional is differ-
ent is in how to retrieve its value. You can’t access an optional like any other variable:

print("Your \(main.uppercased()) is served!")

As with the cat in the box, you need to unwrap your main optional to access its
contents.

2.6.2 Unwrapping an optional

Unwrapping an optional refers to extracting its contents. There are two main tech-
niques available for unwrapping an optional: forced unwrapping assumes the optional
can’t contain nil, while optional binding (combined with an if or guard state-
ment) performs a check.

FORCED UNWRAPPING

I’m a little reluctant to go into forced unwrapping. It’s a powerful feature, but used
incorrectly, we’re right back at the billion-dollar mistake that Tony Hoare bemoaned. 

 Okay, you’ve twisted my arm—here’s the secret. Add an exclamation mark after
the optional, and the optional will be unwrapped with the expectation that it will be
the appropriate data type (that is, not nil). 

print("Your \(main!.uppercased()) is served!")

Use forced unwrapping with caution—you must be 100% certain that the variable
can’t equal nil or you’ll cause a runtime error. How can you be certain that your vari-
able isn’t equal to nil? Well, one way is to surround your forced unwrapping of an
optional with an if statement verifying first that your optional contains a value:

if main != nil {
    print("Your \(main!.uppercased()) is served!")
}

This structure is so common that an alternative syntax has been developed to unwrap
your optionals called optional binding.

Error



45Optionals
OPTIONAL BINDING

Use optional binding with an if statement to bind the value in an optional to a vari-
able, if it exists. The previous if statement could be rewritten as

if let mainValue = main {
    print("Your \(mainValue.uppercased()) is served!")
}

I’ve used two names to indicate which is which. The if statement checks if the main
optional contains a value. If it does, its value is extracted to the mainValue variable
and execution continues inside the if block. 

 Commonly, the same name is used for the bound variable and the optional. The
extracted value will override the optional inside the if block:

if let main = main {
    print("Your \(main.uppercased()) is served!")
}

Sometimes, you may want to perform optional binding on several optionals. Prior to
Swift 1.2, this situation grew in infamy, as the nested if let statements could go on
and on, forming a triangular shape. This became known as the optional pyramid of
doom (see the following listing).

var drink:String? = "Malbec"
if let main = main {
    if let drink = drink {
        print("Your \( main.uppercased() ) pairs well with 

             ➥\( drink.uppercased() )")
    }
}

This scenario was resolved with Swift 1.2. Finally, multiple variables could be option-
ally bound in the same line, as shown in the following listing.

if let main = main, let drink = drink {
        print("Your \( main.uppercased() ) pairs well with 
        ➥\( drink.uppercased() )")
}

One drawback of optional binding is that the variable that contains the extracted
value is only available inside the if block. If you need to use your optional later in the
code, you need to unwrap it again. The guard statement resolves this problem.

GUARD STATEMENT

While an if statement performs a block of code if a condition is met, a guard else
statement performs a block of code if a condition is not met. 

Listing 2.13 Pyramid of doom

Listing 2.14 Multiple optional binding

Declares another 
optional for drink



46 CHAPTER 2 Introduction to Swift playgrounds
 The serve function in the following listing serves a drink based on the drink
argument. It ensures that the drink argument is not Kool-Aid before continuing. 

func serve(drink: String) -> String {
    guard drink != "Kool-Aid" else {
        return("Don't drink the Kool-Aid!")
    }
    return("Your \(drink) is served")
}

There’s another key difference between the guard and if statements. After if or
if else blocks, program execution can continue in the current scope. If a program
enters a guard else block, when it exits the block it must exit the current scope. For
example, it could return out of a function, continue to the next cycle of a loop,
break out of a block of code, or throw an error. 

 You can use this knowledge to combine the guard statement with optional bind-
ing to ensure a variable stays valid for the remainder of the current scope. With the
guard statement, what gets bound in the scope, stays in the scope, so to speak. 

 Let’s say your serve function can accept an optional drink parameter that
defaults to nil, making this parameter truly optional (see listing 2.16). 

 You can then extract the drink value through the process of optional binding. If
no drink parameter is passed into the function, this is trapped by a guard statement,
and a message is returned. If a drink parameter is passed in, the function continues
to the original guard statement checking that the drink isn’t Kool-Aid.

func serve(drink: String? = nil) -> String {
    guard let drink = drink else {
        return("No drink for you!")
    }
    guard drink != "Kool-Aid" else {
        return("Don't drink the Kool-Aid!")
    }
    return("Your \(drink) is served")
}

If you like, you can merge these two guard statements together, as shown in the fol-
lowing listing.

func serve(drink: String? = nil) -> String {
    guard let drink = drink, drink != "Kool-Aid" else {
        return("No drink for you!")
    }
    return("Your \(drink) is served")
}

Listing 2.15 The guard statement

Listing 2.16 The guard let statement

Listing 2.17 Merge guard statements

Optional function 
parameter



47Optionals

UNWRAPPING WITH OPERATORS

You’re probably familiar with the ternary conditional operator that gives you shortcuts
where if or guard statements would be used:

 condition ? if true do this : if false do this

You could use the ternary conditional operator to unwrap an optional, by doing the
following:

 optional != nil ? optional! : alternative value

If an optional doesn’t contain nil, the optional is force unwrapped. If the optional
does contain nil, an alternative value appropriate to the data type is suggested.

 Let’s say that unless there’s been a special request, martini cocktails are generally
mixed by stirring. In the following listing, you’ll use the ternary conditional operator
to determine how the martini should be prepared. (The ternary conditional operator
is in bold.)

var defaultMix = "Stirred"
var specialMix:String? 
specialMix = "Shaken"
let prepareMartini = specialMix != nil ? specialMix! : defaultMix

When setting the prepareMartini constant, we first check if the specialMix
optional contains nil. If specialMix doesn’t contain nil, the ternary conditional
operator force-unwraps specialMix. If specialMix does contain nil, it uses the
defaultMix.

 This approach is so common that an alternative operator syntax is available within
Swift that makes the above syntax even more succinct, called the nil coalescing oper-
ator. That’s quite a mouthful, but don’t worry, the concept is simple. The syntax is the
following:

 optional if not nil ?? alternative value

If the optional doesn’t contain nil, it’s automatically unwrapped. If it does, the alter-
native value is used.

 Let’s prepare another martini, but this time using the nil coalescing operator, as
shown in the following listing. (The nil coalescing operator is in bold.)

Listing 2.18 The ternary conditional operator

Defines string optional

Sets optional
let prepareMartini = specialMix ?? defaultMix

IMPLICITLY UNWRAPPED OPTIONALS

Occasionally, you may need to make a variable an optional because you don’t have
access to all the necessary information to initialize it when it’s defined. But you may
have 100% confidence that the variable will be initialized by the time it’s needed.

Listing 2.19 The nil coalescing operator



48

2.6.3
CHAPTER 2 Introduction to Swift playgrounds

 In these cases, unwrapping the optional whenever you need to access it can seem
unnecessary. Instead, you can indicate to the compiler that an optional should be
implicitly unwrapped by using an exclamation mark instead of a question mark when
defining it.

 Let’s make your first optional example implicitly unwrapped, as shown in the fol-
lowing listing.

var main:String!                              
main = "Steak"
print("Your \(main.uppercased()) is served!")

As with forced unwrapping, be extra careful with your use of implicitly unwrapped
optionals. Accessing one before it has been initialized will cause a runtime error.

Optional chaining

Any object or data type could have optional properties or methods that return option-
als. Arrays, for example, have an optional first property, which will return the first
value in the array. If the array is empty, the first property returns nil. 

 Imagine you have nine tables in your restaurant in a 3-by-3 grid. You have a two-
dimensional array (for those who came in late, that’s fancy talk for an array of arrays)
of Bools that represent whether each table is reserved for tonight’s dinner:

var reserved = [[true,  true,  false],
                [false, false, false],
                [true,  true,  false]
]

Imagine now that you’d like to display a message if your favorite table (first row, first
table) is available. You could extract this info using Array’s first property and multi-
ple optional binding, as you saw earlier:

if let firstRow = reserved.first, let firstTable = firstRow.first {
    let reservedText = firstTable ? "reserved" : "vacant"
    print("Best table in the house is \(reservedText)!")
}

But you have a more succinct and legible alternative when traversing multiple option-
als in a chain, called optional chaining. You can chain together multiple optionals into
one optional binding statement. 

Listing 2.20 Implicitly unwrapped optional

Implicitly unwrapped optional

No error now!
if let firstTable = reserved.first?.first {
    let reservedText = firstTable ? "reserved" : "vacant"
    print("Best table in the house is \(reservedText)!")
}

Your chain could keep going! You just need to append optionals with a question mark
that you traverse en route to the optional you’re binding.



49Tuples
2.6.4 Final comments on optionals

At first, optionals may appear strict, and the syntax may seem new and unfamiliar.
They represent a new approach to ensuring the safety of your variables that can take
some getting used to. But many who have worked with Swift do find that going back to
languages without optionals can feel strangely unsafe. 

 Optionals are an integral part of the Swift language, and it’s worth investing time
in becoming comfortable working with them. They’re trying to solve a billion-dollar
problem, after all!

2.7 Tuples
A tuple is a strange beast—it’s a group of
related data, but it is not a collection. Sounds a
bit like an array or a dictionary on the surface,
but a tuple differs from other collections in
three important ways:

 The number of items in a tuple is defined when it’s instantiated. While the
number of elements in an array can grow or shrink, if a tuple is defined as a
group of three items, it will never contain more or fewer items.

 Elements in a tuple are related, but aren’t necessarily of the same data type. A
tuple could contain an Int and a String, for example, and that’s fine.

 Though a tuple maintains a group of related data, it isn’t a Collection, and
therefore doesn’t have access to the higher-order functions mentioned in the
last section.

The types of data you might use tuples for are different as well. Tuples are a good fit
for finite related data. Examples of tuples:

 A geolocation with two Doubles representing latitude and longitude
 A dice-roll of two dice, with two Ints representing the top face of each individ-

ual die
 A playing card, with an Int representing the number and a String represent-

ing the suit

Declare a variable as a tuple with parentheses, with the data type of every element
specified. The following listing demonstrates standard syntax for initializing a tuple
and setting and retrieving tuple values.

var meal1:(String,Double) 
var meal2 = ("Turkey chili soup",2.99) 
print("\(meal2.0) costs \(meal2.1)")  

Listing 2.21 Using tuples

OPEN Follow along in the
Tuples.playground.

Declares a tuple. Specifies
data types of elements. Initializes a tuple.

Infers data types.
Set/Get tuple

elements with
index numbers



50 CHAPTER 2 Introduction to Swift playgrounds
var meal3:(name:String,price:Double)    
var meal4 = (name:"Bread",price:2)    
meal4.price = 3  

2.7.1 Tuples as return values

Tuples can be useful when you have small pieces of data that you need to return from
a function. You could, for example, return a tuple of the number and suit of a card
from a function:

func chefSpecial() -> (name: String, price: Double) {
    return (name:"Crab bisque",price:3.99)
}
var meal = chefSpecial()

If you plan to use a tuple frequently, it can be a good idea to set up a type alias. A type
alias lets you define an alias for a type. A type alias for the meal tuple we’ve been work-
ing with would look like this:

typealias Meal = (name: String, price: Double)

You could then rewrite the chefSpecial method definition as

func chefSpecial() -> Meal {

2.7.2 Tuple magic

If you’re not yet impressed with tuples, here are several magic tricks tuples can per-
form that could convince you that tuples are worth looking into.

INITIALIZING VARIABLES BASED ON A TUPLE

You can initialize variables inside a tuple, retrieving values from another tuple. The
following initializes a soupName and a soupPrice variable based on the elements of a
tuple variable called soup:

var soup = (name:"Jambalaya",price:2.99)
var (soupName,soupPrice) = soup

DEFINING TWO VALUES AT ONCE USING A TUPLE

Similarly, you could define two values at once using a tuple structure:

var (soupName,soupPrice) = ("Tomato soup",1.99)

This effectively becomes shorthand for

var soupName = "Tomato soup"
var soupPrice = 1.99

Optionally gives elements 
of tuple a name

You can also initialize 
tuple with names.Set/Get tuple elements

with names if available



51Higher-order functions
SWAPPING TWO VALUES USING TUPLES

Using this knowledge, you can easily swap two values. Say you have a variable repre-
senting a meal in your left hand and another variable representing a meal in your
right hand:

var mealLeftHand = "Fish and chips"
var mealRightHand = "Burger and fries"

Believe it or not, swapping the variables is as easy as

(mealLeftHand, mealRightHand) = (mealRightHand, mealLeftHand)

Shazam! The meals have switched. Now go and impress your friends!

2.8 Higher-order functions
Higher-order functions are functions
that can receive functions as parame-
ters. This can result in more succinct
and highly optimized code, and can be
a powerful weapon for your program-
ming arsenal. Because every Array, Set, and Dictionary is a Collection, they
have support for a number of shared higher-order functions. Let’s look at one now,
the map function.

2.8.1 map

Say you have an Array of all the prices of the soup in your restaurant:

var prices = [3, 1.99, 2, 1.99, 1.70]

One day, you realize that you’ve been undercharging for soup and need to add 10%
to all your prices. One solution could be to set up a for-in loop to generate the sec-
ond array:

var updatedPrices:[Double]=[]
for price in prices {
    updatedPrices.append(price * 1.1)
}

Not bad, but a little verbose. Let’s look at an alternative solution, using the map
higher-order function. The map function is a powerful tool that allows you to perform
an action on every element of a collection and return a new collection.

 First, create a function that returns one updated price. The following function
receives a price argument, calculates the updated price, and returns the value:

func updatePrice(price: Double) -> Double {
    return price * 1.1
}

OPEN Follow along in the Higher-
OrderFunctions.playground.



52 CHAPTER 2 Introduction to Swift playgrounds
Now that you’ve created this function, you can pass it into the map higher-order function. 

var updatedPrices = prices.map(updatePrice)

The map function uses the updatePrice method to calculate a new price on every
element of your prices Array and return a new Array with updated prices.

 Great! That works fine, but it isn’t any more succinct. An alternative approach is to
pass a closure into the map function. 

2.8.2 Closures

A closure is a block of functionality. You can think of a closure as a function without a
name. In reality, it’s the other way around—a function is a type of closure with a
name! Like functions, closures can accept arguments and return values.

CONVERTING A FUNCTION TO A CLOSURE

The syntax for closures is a little different from functions, and it can be difficult to
remember initially. There are ways to make the syntax of a closure more succinct
(we’ll get into that in a moment), but converting a function to a basic closure isn’t bad
if you follow two simple steps. 

 Let’s explore the two steps now while you convert the updatePrice function to a
closure.

1 Remove the keyword func and the function name:

(price:Double)->Double {
    return price * 1.1
}

2 Move the brace to the beginning and replace where it was with the keyword in:

{ (price:Double)->Double in
    return price * 1.1
}

That’s it! As I mentioned, in certain cases you can make your closure more concise,
but you’ve arrived at the base structure of a closure.

SIMPLIFYING A CLOSURE

The updatePrice closure can now be passed directly into the map function:

var updatedPrices = prices.map( 
    { ( price:Double ) -> Double in 
            return price * 1.1 
    } 
)

This still doesn’t look too succinct. Fortunately, there are several improvements you
can make:

 As the type of the price parameter and the closure return value can be inferred
by the type of the prices Array, these types don’t need to be specified.



53Higher-order functions
After shedding the data type, you can also remove the parentheses around the
parameter:

var updatedPrices = prices.map( { price in return price * 1.1 } )

 If you leave out argument names in a closure, you’re provided with default
argument names. The first argument is $0, the second is $1, and so on. With
this knowledge, you can make your code even more concise.

var updatedPrices = prices.map( { return $0 * 1.1 } )

 Believe it or not, you can go further! If the closure contains only one line of
code, Swift can infer that you want to return the result of this line, so you can
remove the return keyword.

var updatedPrices = prices.map( { $0 * 1.1 } )

That’s it! Compare that line of code with the for-in loop we began with:

var updatedPrices:[Int] = []
for price in prices {
    updatedPrices.append(price * 1.1)
}

Note the difference in conciseness without sacrificing clarity. The line still clearly
returns a version of the updatedPrices array that has been doubled.

 The map function is a powerful tool. All the higher-order functions are great exam-
ples of Swift’s expressiveness and performance. In addition to the map higher-order
function, Collections have access to many more, including filter, reduce, and
sorted.

2.8.3 filter

The filter function extracts the elements of a collection that satisfy a condition. It
accepts a closure that receives an element to check, and returns a Bool.

 Perhaps you might want to filter only meal prices that are greater than $5, to put
on the specials board:

var filteredPrices = prices.filter( { $0 >= 5 })

2.8.4 reduce

Use the reduce function to generate a single value by performing an operation on
every value of a collection.

 Maybe you’re interested to know how much you would make if someone came into
your restaurant and ordered everything on the menu:

var totalPrice = prices.reduce(0, {$0 + $1})



54 CHAPTER 2 Introduction to Swift playgrounds
2.8.5 sorted

The sorted method accepts a closure that determines which of two elements should
come first in the order. The closure receives two elements to compare and returns a
Bool.

 Say you’re interested in seeing the prices of meals in your restaurant by sorting
them from largest to smallest:

var sortedPrices = prices.sorted(by: { $0 > $1 } )

2.9 Summary
In this chapter, you learned the following:

 Xcode playground is a useful environment for experimenting with new Swift
concepts and syntax.

 Variables in Swift are type safe, but their type can be inferred.
 Variables of different types need to be converted to the same type to interact.
 Use for-in loops to loop through the elements of a collection.
 Use higher-order functions on your collections for succinct and optimized

code.
 Use closures to pass functionality to a function.
 Use tuples to pass multiple values around.
 Use optionals to store variables that may equal nil.
 Unwrap optionals with optional binding (if let or guard let else) or the

nil coalescing operator.
 Only unwrap optionals with forced unwrapping or implicit unwrapping if you

are 100% sure an optional contains a value.



Swift objects
It’s impossible to do anything in iOS development without using objects. Views are
objects, view controllers are objects, models are objects—even basic data types such
as String, Int, and Array are objects in Swift! 

 An object in Swift is a specific instance of a type of thing. In this chapter, we’ll
look at different ways of building up and structuring these types of things in your
code. From experience in other languages, you may know this “type of thing” (or
type) as a class. While it’s true that types can be represented by classes in Swift,
they’re not the only type of thing in Swift—other types called structures and enu-
merations also exist. We’ll come back to those, but first let’s look at classes.

This chapter covers 
 Exploring objects, methods, and parameters in 

Swift

 Initializing properties

 Comparing inheritance with protocols

 Differentiating between classes and structs

 Exploring ways to extend your code
55



56 CHAPTER 3 Swift objects
 Don’t forget, you can refer to the Swift cheat sheets in appendix B. This chapter is
summarized on the last page of the cheat sheets.

3.1 Classes
One approach for creating objects in Swift is with a class. A class defines what a type
does with methods. A method is a function defined within a type. Along with methods,
a class defines what a type is with properties. Properties are variables or constants
stored in a type.

 Let’s say you’ve decided to build a distance converter app. Your app will accept dis-
tances in miles or kilometers, and will display the distance in either form of measure-
ment, too. 

 You decide the best approach is to build a type that stores distances, regardless of
the scale. You could create a distance with a miles or kilometers value, update the dis-
tance with a miles or kilometers value, or use the distance type to return its value as
miles or kilometers (see figure 3.1).

Figure 3.1 Distance type

3.1.1 Defining a class

Let’s start by defining a simple Distance type with a class. In this chapter, you’ll build
up this class to contain a distance using different measurement types.

1 Create a new playground to follow along, and call it Distance. Classes are
defined with the class keyword followed by the name of the class and the rest
of the definition contained within curly brackets.

2 Create a Distance class.

class Distance {
    
}

3 Now that you have a class, you can create (or instantiate) your class with the
name of the type, followed by parentheses, and assign this object to a variable:

var distance = Distance()

You might recognize the parentheses syntax from the previous chapter as an alterna-
tive syntax for creating or instantiating simple data types.

 Now that you have a class definition for Distance, you can add properties and
methods to it.

Distance
miles

kilometers

miles

kilometers



57Classes
3.1.2 Properties

Variables that we’ve looked at so far have been global variables—defined outside the
context of a class or function. Variables that are defined within a class are called prop-
erties, and fall into two broad categories: type properties and instance properties. 

TYPE PROPERTIES

Type properties, also known as static properties, are relevant to all things of a certain
type. It isn’t even necessary that an instance of a type exist to access type properties.
Type properties are connected to the type rather than the object. You instantiate a type
property with the static keyword followed by a normal declaration of a variable. 

 For example, maybe you’d like to store the number of kilometers in a mile in a
type property in your Distance class. In this case, a constant would make more sense,
because the number of kilometers in a mile won’t be changing any time soon. Use the
keyword let instead of var to define a constant.

1 Add a type property constant to your simple Distance class:

class Distance {
    static let kmPerMile = 1.60934
}

You could then retrieve or set this type property directly on the type.

2 Print to the console using the type property you created:

print ("2 miles = \(Distance.kmPerMile * 2) km")

INSTANCE PROPERTIES

Instance properties are relevant to specific objects or instances of a type. 
 Because the miles value will be relevant to specific instances of Distance, add

miles as an instance property to your Distance class. 

class Distance {
    static let kmPerMile = 1.60934
    var miles:Double
}

Whoops! If you’re following along in the playground, you’ll notice that this triggers a
compiler error. Tap the red dot to see more information on the error (see figure 3.2).
A pop-up appears below the line that describes the error along with Xcode’s suggested
fix. 

Figure 3.2 Non-optional variable can't equal nil



58 CHAPTER 3 Swift objects
 As we explored in the previous chapter, non-optionals can never equal nil. The
Distance class can’t contain a miles property that’s equal to nil. 

 You have three possible alternatives to get rid of that red dot.

 One option is to give the property a default value. This is what Xcode suggests.
If you tap Fix Button, Xcode will resolve the problem in this way for you. 
But a default value for the miles property doesn’t make sense. There’s no
reason why 0 or any other value should be a default value for miles. Press Com-
mand-Z to undo this fix.

 Another option is to make the miles property an optional. This is easy to do;
all you need to do is add a question mark:

var miles:Double?

This removes the error, but isn’t appropriate for this example either. If you
define a Distance object, you want it to have a value for miles! A distance with
a miles value of nil doesn’t make sense. Undo this fix too.

 You could pass a value to the miles property in an initializer. What’s an initial-
izer?

3.1.3 Initializers

An initializer is a special type of function that sets up a type. You can use an initializer
to pass in values when you instantiate the type.

 You can create an initializer with the init keyword followed by any parameters
you want to pass in to initialize the instance properties. 

1 Add an initializer to the Distance class to pass in a value to initialize the
miles property. 

class Distance {
    static let kmPerMile = 1.60934
    var miles:Double
    init(miles:Double) {
        self.miles = miles
    }
}

As you can see, you can use the keyword self to differentiate between the
instance property (self.miles) and the parameter (miles) that’s passed in
to the initializer.

Now that the miles property is set in the initializer, the requirement that all
non-optionals should contain non-nil values is satisfied, and the red dot
should go away.

2 You can now instantiate a Distance object by passing in a value for miles. 

var distance = Distance(miles: 60)

Initializer

Initializes the 
miles property



59Classes
NOTE By default you need to pass in the names of the arguments in initializ-
ers and functions. We’ll look at this in more detail shortly.

3 Now that you have a Distance class, you could introduce a km property if you
like, and initialize it in the initializer calculated from the miles value and the
kmPerMile type property.

class Distance {
    static let kmPerMile = 1.60934
    var miles:Double
    var km:Double
    init(miles:Double) {
        self.miles = miles
        self.km = miles * Distance.kmPerMile
    }
}

In case we need to calculate kilometers again, it may make sense to move this calcula-
tion to a method.

NOTE If all properties of a class have default values, Xcode will synthesize a
default initializer automatically for you with no arguments.

3.1.4 Methods

Functions defined inside a class are called methods. Like variables and properties,
methods can be divided into instance methods or type methods.

 Instance methods are methods that are relevant to an instance of a type, whereas
type methods apply to the type itself.

INSTANCE METHODS

Instance methods are relevant to each instance of a type. 
 In the future, you might want your Distance class to return a nicely formatted

version of its data. Because the response will be different for each instance of Dis-
tance, this would be more relevant as an instance method.

1 Add an instance method to your Distance class that returns a nicely formatted
miles string.

func displayMiles()->String {
    return "\(Int(miles)) miles"
}

2 You can call your instance method now using a Distance object. 

var distance = Distance(miles: 60)
print(distance.displayMiles())
//prints "60 miles" to console

You currently calculate kilometers from miles in the Distance initializer. Let’s
refactor this calculation into a reusable method. You might be tempted to use
an instance method, but you’ll find this approach causes an error.

Adds km 
property

Calculates km
from miles



60 CHAPTER 3 Swift objects
3 Add an instance method that calculates kilometers from miles, and call it from
the initializer.

class Distance {
    static let kmPerMile = 1.60934
    var miles:Double
    var km:Double
    init(miles:Double) {
        self.miles = miles
        self.km = toKm(miles:miles)
    }
    func toKm(miles:Double)->Double {
        return miles * Distance.kmPerMile
    }
}

Curious! Why does calling an instance method in the initializer cause an error?
 Until an initializer has fulfilled its duties to provide initial values for all non-option-

als, the instance isn’t designated as safe and therefore its instance properties and
methods can’t be accessed. 

 To solve this problem, one solution could be to ensure that all properties have val-
ues before using the instance method:

init(miles:Double) {
    self.miles = miles
    self.km = 0
    self.km = toKm(miles:miles)
}

But stepping back from the problem, converting miles to kilometers could be as easily
set up as a useful utility method on the type. Let’s refactor our toKm method as a type
method.

TYPE METHODS

Like type properties, type methods (also known as static methods) are methods that
can be called directly on the type, rather than individual instances of the type.

1 Use the static keyword to refactor the toKm method as a type method. Type
methods have implicit access to type properties, so we can remove the class
name Distance before kmPerMile:

static func toKm(miles:Double)->Double {
    return miles * kmPerMile
}

Similar to the way you used type properties, call a type method by prefacing it
with the type. For example, here’s how you could call the toKm method we set
up on the Distance class:

print(Distance.toKm(miles: 30))

Call instance method; 
error here

Instance method

Provides default 
value

No error now!



61Classes
Because type methods are called on the type and don’t depend on an instance
of a type, they can be used to initialize properties in the initializer. 

2 Call your new static method in the initializer for Distance.

init(miles:Double) {
    self.miles = miles
    self.km = Distance.toKm(miles:miles)
}

OVERLOADING

It can be strange to developers new to Swift that it’s completely valid in Swift to have two
functions with the same name, as long as the names or types of the parameters are dis-
tinct. This is called overloading a function. “Overloading a function”—even the name
sounds a little scary! Don’t worry, this is standard practice in Swift and a useful tool.

 At the moment, the Distance class has a static method called toKm that calculates
kilometers from miles. What if later you find you need to calculate kilometers from
another form of measurement, for example, feet? You'll probably want to name that
method toKm, too. Well, in Swift you can do this by overloading the function by defin-
ing two functions with different parameter names, as shown in the following listing.

static let feetPerKm:Double = 5280

static func toKm(miles:Double)->Double {
    return miles * kmPerMile
}
static func toKm(feet:Double)->Double {
    return feet / feetPerKm
}

Which method you use depends on the parameter name you pass:

let km = Distance.toKm(miles:60)   //96.5604
let km2 = Distance.toKm(feet:100)  // 0.03048

Similarly, perhaps in the future you want your Distance class to accept an Int value
for km in your toMiles method. This time, you could overload the function by defin-
ing two functions with the same name that expect different data types, as shown in the
following listing.

static func toMiles(km:Double)->Double {
    return km / kmPerMile
}
static func toMiles(km:Int)->Double {
    return Double(km) / kmPerMile
}

Listing 3.1 Overloading a function with different parameter names

Listing 3.2 Overloading a function with different parameter data types



62 CHAPTER 3 Swift objects
Again, the method you use depends on the data type of the parameter you pass.
Initializers can be overloaded as well.

1 Add a second initializer for the Distance class to initialize the object based on
kilometers. You’ll need to add a type method to calculate miles from kilometers
as well. 

class Distance {
    static let kmPerMile = 1.60934
    var miles:Double
    var km:Double
    init(miles:Double) {
        self.miles = miles
        self.km = Distance.toKm(miles:miles)
    }
    init(km:Double) {
        self.km = km
        self.miles = Distance.toMiles(km:km)
    }
    static func toKm(miles:Double)->Double {
        return miles * kmPerMile
    }
    static func toMiles(km:Double)->Double { 
        return km / kmPerMile
    }
}

2 You can now use miles or kilometers to instantiate a Distance object:

var distance1 = Distance(miles: 60)
var distance2 = Distance(km: 100)

The Distance class is shaping up, but it has a bit of redundancy to it. Whether you
store the distance in miles or kilometers, you’re storing the same distance twice using
two different measurement units. Shortly, we’ll look at how to clean up that redun-
dancy with computed properties.

Convenience initializers
The initializers we’ve looked at so far have been designated initializers—the main ini-
tializer for the class that ensures that all instance properties have their initial values.
Convenience initializers are alternative initializers that add the keyword conve-
nience, and, by definition, must ultimately call self’s designated initializer to com-
plete the initialization process. Instead of overloading the initializer in the Distance
class, we could have added a convenience initializer.

convenience init(km:Double) {
  self.init(miles:Distance.toMiles(km:km)) 
}

Overloaded
initializer

New type
method

Convenience 
keyword  Calls designated

 initializer



63Classes
3.1.5 Computed properties

Computed properties are properties that calculate their values from other properties.
 As you saw earlier, there might be a point in the future when you want to add addi-

tional measurements to your Distance class—centimeters, feet, inches, cubits, yards,
furlongs, nautical miles, light years, you get the idea. Should you keep all these ver-
sions of the same distance in memory? Probably not.

 One solution to avoid this redundancy is to decide on one core property that will
store the distance—in our Distance class, this could be miles. Then the other prop-
erties, rather than storing values, will calculate their value from the miles property.
These types of properties will be computed properties.

 Computed properties lie somewhere between properties and methods—they’re
methods implemented with the syntax of properties. They act similarly to getters and
setters in other languages. 

 The computed property itself doesn’t store any data. Rather, when the property’s
value is retrieved, the getter calculates a value to return. Calculations are performed
in curly brackets {} and the value is returned using the return keyword.

1 To avoid redundancy, convert the km property to a read-only computed prop-
erty. The km property will no longer store data; rather, it will calculate kilome-
ters from the miles property at the moment it’s requested. The initializers will
no longer need to set the km property and will set the miles property directly.

class Distance {
    static let kmPerMile = 1.60934
    var miles:Double
    var km:Double {
        return Distance.toKm(miles:miles)
    }
    init(miles:Double) {
        self.miles = miles

self.km = Distance.toKm(miles:miles)
    }
    init(km:Double) {

              self.km = km
        self.miles = Distance.toMiles(km:km)
    }
    static func toKm(miles:Double)->Double {
        return miles * kmPerMile
    }
    static func toMiles(km:Double)->Double {
        return km / kmPerMile
    }
}

2 Confirm that the km property can continue to be retrieved like a normal property.

var distance = Distance(km: 100)
print ("\(distance.km) km is \(distance.miles) miles")



64 CHAPTER 3 Swift objects
This solves the redundancy, but unfortunately there’s a problem. You want to be
able to update a distance object by setting the kilometer value. 

3 Check what happens when you update the km property.

distance.km = 90

Because km is a read-only property, attempting to update it causes an error.

Computed properties can optionally also implement a setter. A setter is a block
of code that’s called when a computed property is set. Because the computed
property doesn’t store any data, the setter is used to set the same values that
derive the computed property’s value in the getter.

The getter approach used in the previous example uses shorthand syntax to
implement the getter. The longhand syntax uses a get keyword followed by
curly brackets {}. 

4 Convert the km computed property to use the longhand syntax.

var km:Double {
    get {
        return Distance.toKm(miles:miles)
    }
}

The set syntax is similar to the get syntax, with the exception that the set syn-
tax receives a variable representing the new value. 

5 Convert the km computed property so that it now can be “set,” as per the follow-
ing code snippet:

class Distance {
    static let kmPerMile = 1.60934
    var miles:Double
    var km:Double {
        get {
            return Distance.toKm(miles:miles)
        }
        set(newKm) {
            miles = Distance.toMiles(km:newKm)
        }
    }
    init(miles:Double) {
        self.miles = miles
    }
    init(km:Double) {
        self.miles = Distance.toMiles(km:km)
    }
    static func toKm(miles:Double)->Double {
        return miles * kmPerMile
    }
    static func toMiles(km:Double)->Double {
        return km / kmPerMile
    }
}

Error

Explicit getter syntax



65Classes
As you can see, setting the km property doesn’t store the value of kilometers.
Instead, it calculates and stores a value in the miles property.

6 Confirm you can now update a distance object using either miles or kilometers:

var distance = Distance(km: 100)
distance.km = 35
distance.miles = 90

7 Confirm you can also retrieve the values of either miles or kilometers:

print("Distance is \(distance.miles) miles")
print("Distance is \(distance.km) km")

Mission complete!

CHALLENGE Confirm in the results sidebar that the distance object is instanti-
ating, updating, and displaying correctly using miles or kilometers.

3.1.6 Class inheritance

If you’re experienced in object-oriented programming (OOP), class inheritance and
subtyping will most likely be a familiar topic. In Swift, multiple classes can inherit the
implementation of one class through subclassing, forming an is-a relationship. 

NOTE If you’re familiar with class inheritance, you can skim through to the
section called "Pros and cons."

Classes and subclasses form a hierarchy of relationships that looks like an upside-down
tree. At the top of the tree is the base class from which all classes inherit, and every
subclass inherits the methods and properties of its superclass and can add on imple-
mentation. 

 Let’s explore inheritance by building up a class structure representing telephones.
Different types of telephones exist—from older rotary phones to the latest iPhones,
but they all share common functionalities: to make calls and to hang up. 

 See figure 3.3 for a simplified representation of the hierarchy of relationships of
different types of telephones. At the base (top) of the tree is an abstract telephone,
which can initiate and terminate calls. This branches into landline and cellular
phones. Both landlines and cellular phones inherit the telephone’s ability to initiate
and terminate calls, but the cellular phone adds the ability to send an SMS. The vari-
ous types of phones that inherit from landlines and cellular phones add (among other
things) different input techniques. The various types of smartphones add their own
implementation of an operating system. 

DOWNLOAD You can check your Distance class with mine in the Dis-
tance.playground. Download all the code for this chapter by selecting

Source Code > Clone and entering the repository location: https://
github.com/iOSAppDevelopmentwithSwiftinAction/Chapter3. 

https://github.com/iOSAppDevelopmentwithSwiftinAction/Chapter3
https://github.com/iOSAppDevelopmentwithSwiftinAction/Chapter3


66 CHAPTER 3 Swift objects
NOTE This example isn’t intended to be comprehensive. If I listed everything
a smart phone could do, I’d be here all day! 

Figure 3.3 Telephone inheritance

You could model these relationships with classes. Subclasses indicate their superclass
with a colon after their name, as shown in the following listing.

class Telephone {
    func makeCall() {
        //make a call here
    } 
    func hangUp() {
        //hang up here
    }

}
class landline:Telephone { 
    
}
class Cellular:Telephone {
    func sendSMS() {
        //send SMS here
    }
}
//...

Listing 3.3 Class inheritance

Telephone

makeCall
hangUp

Smart

touchInput
accessInternet

Cellular

sendSMS

Landline

Push-button

buttonInput

Rotary

rotaryInput

Windows

windowsOS

iPhone

iOS

Android

androidOS

Non-smart

buttonInput

Landline subclasses 
Telephone

Cellular subclasses 
Telephone

Cellular adds 
functionality



67Classes
After modeling this hierarchy, a method could
receive a Telephone parameter, and regard-
less of whether the parameter passed is an
Android, iOS, or even a rotary phone, the
method knows that it can tell the telephone to
makeCall() or hangUp():

func hangUpAndRedial(telephone:Telephone) {
    telephone.hangUp()
    telephone.makeCall()
}

OVERRIDING

In addition to inheriting the implementation of a superclass, a subclass can override
this implementation. 

 The Cellular class probably wants to implement its own version of making a call
on cellular networks. It can do this by overriding the makeCall method, as shown in
the following listing.

class Cellular:Telephone {
    override func makeCall() {
        //make cellular call
    }
    func sendSMS() {
        //send SMS here
    }
}

Overriding a method will, by default, prevent the superclass’s implementation of that
method from running. Sometimes, a subclass might want to add to the superclass’s
implementation rather than replace it. In this case, the subclass can use the super
keyword to first call the method on the superclass, as shown in the following listing.

override func makeCall() {
    super.makeCall()
    //make cellular call
}

PROS AND CONS

Class inheritance is used extensively throughout Apple frameworks. For example, as
you saw in chapter 1, the UIButton class subclasses the UIControl class, which, in
turn, subclasses UIView. 

 Inheritance is a powerful technique for expressing relationships and sharing
implementation between classes and lies at the heart of object-oriented programming.

 Inheritance has issues, however, that are worth noting. 

Listing 3.4 Override method

Listing 3.5 Call super

OPEN Explore the rest of
the code in the Telephone-

ClassInheritance.playground.



68 CHAPTER 3 Swift objects
 Swift only permits inheritance from one class. iPhones aren’t simply telephones any
more. They’re game consoles, e-readers, video players, compasses, GPS devices,
step counters, heart rate monitors, fingerprint readers, earthquake detectors,
and the list goes on. How can an iPhone share common functionality and
implementation with these other devices? According to the simple inheritance
model, they can’t.

 Sharing code can only happen between subclasses and superclasses. Non-smart phones
and push-button phones both have push-button input, but neither of them
inherits from each other. iPads have iOS too, but they aren’t telephones. These
common implementations couldn’t be shared, according to the pure inheri-
tance model.

 Sometimes it’s not so clear which identity is the most relevant to subclass. Should you
have subclassed smartphones by operating system or by manufacturer? Both are
important and could potentially contain different functionality or properties.

The trend in pure Swift has moved away from class inheritance and toward implemen-
tation of protocols.

3.1.7 Protocols

Protocols are similar to interfaces in other languages. They specify the methods and
properties that a type that adopts the protocol will need to implement. 

 Protocol methods only indicate the definition of the method and not the actual
body of the method, for example:

func makeCall()

If you rewrote the abstract Telephone class as a protocol, it would look like the fol-
lowing code snippet:

protocol Telephone {
    func makeCall()
    func hangUp()
}

A type adopts a protocol with syntax similar to inheritance—a colon after the type
name. As the methods in a protocol don’t contain any implementation, a class that
adopts the protocol must explicitly implement these methods. If you rewrote the
Landline class to adopt the Telephone protocol, it would look like the following
code snippet:

class Landline:Telephone {
    func makeCall() {
        //make a landline call here
    }
    func hangUp() {
        //hang up a landline call here
    }
}

Protocol methods

Adopts the Telephone 
protocol

Implements the 
protocol methods



69Classes
Protocol properties only indicate whether a property can be retrieved or set. For
example, if you add a phone number property to Telephone, it looks like the follow-
ing code snippet:

protocol Telephone {
    var phoneNo:Int { get set }
    func makeCall()
    func hangUp()
}

The protocol only specifies that the phoneNo property needs to exist in an adopting
type, and that the property needs to get or set. Implementing the property is left to
the adopting class. 

class Landline:Telephone {
    var phoneNo:Int
    init(phoneNo:Int) {
        self.phoneNo = phoneNo
    }
    func makeCall() { 
        //make a landline call here
    }
    func hangUp() {
        //hang up a landline call here
    }
}

PROTOCOL EXTENSIONS

Okay. I have a confession to make. 
 I’ve been suggesting that protocols don’t contain implementation, and that’s not

entirely true. Protocols are blessed with the magical ability to be extended to add actual
functionality, which types that adopt the protocol will have access to. 

 In the previous example, the functionality of making a call and hanging up could
be implemented in the Telephone protocol through use of an extension, as shown in
the following listing.

protocol Telephone {
    var phoneNo:Int { get set }
    func makeCall()
    func hangUp()
}
extension Telephone {
    func makeCall() {
        print("Make call")
    }
    func hangUp() {
        print("Hang up")
    }
}

Listing 3.6 Extending a protocol

Protocol 
property 

Adopts the 
protocol property

Initializes the property

Extension 
of protocol

Implementation of 
methods in protocol



70 CHAPTER 3 Swift objects
class Landline:Telephone {
    var phoneNo:Int
    init(phoneNo:Int) {
        self.phoneNo = phoneNo
    }
}

Because these methods are now implemented in the Telephone protocol, they no
longer need to be implemented in a class that adopts that protocol. Note that the
Landline class no longer implements the makeCall or hangUp methods.

 Extended protocols still can’t store properties, but because computed properties
don’t store properties, computed properties can be implemented in extended
protocols.

PROTOCOL RELATIONSHIPS

This integration of protocols and protocol extensions into the Swift language made
different and complex approaches possible for structuring relationships between
types. This is due to several factors:

 Like classes, protocols can inherit other protocols. 
 Types can adopt multiple protocols. 
 Protocols can represent different types of relationships. 

Class inheritance places the emphasis on is-a relationships. As you’ve seen, protocols
can represent this relationship as well. When protocols represent an is-a relationship,
the convention is to use a noun. In our example, Landline is-a Telephone. 

 But protocols aren’t limited to identity or is-a relationships. Another common rela-
tionship that is represented is capabilities, or can-do. A common convention for proto-
cols that represent a can-do relationship is to suffix its name with “able,” “ible,” or “ing.”

 Relationships in the real world are often not as simple as a pure inheritance model
can handle. Complexity and nuance need to be addressed, and protocols and proto-
col extensions are useful for this.

 Let’s look again at telephones, converting subclasses to is-a and can-do protocols.
Figure 3.4 illustrates one way you could redraw their relationships.

 In this example, a protocol called PushButtonable could be written to handle
the capability of button input. This protocol could then be adopted by both the push-
button landline and the non-smart cellular phone. Despite not having an inheritance
relationship, the two classes could still share implementation through the Push-
Buttonable protocol extension.

 The iPhone no longer inherits all its smart characteristics through the Smart class.
Rather, it adopts specific capabilities through protocols such as Touchable or
Internetable. In this way, it could go beyond traditional telephone capabilities and
adopt protocols and share implementation through protocol extensions with
completely different devices. Maybe it could share VideoPlayable along with Tele-
vision, Navigable along with GPSDevice, or GamePlayable along with Game-
Console.



71Structures
Using protocols to structure the relationships
in your code has been coined protocol-ori-
ented programming. Sure, you could continue
to program in Swift using familiar object-ori-
ented programming techniques, but it’s worth
exploring the possibilities with protocols.

CHALLENGE Add a Television type that shares a VideoPlayable protocol
with iPhones, Androids, and Windows phones.

3.2 Structures
Classes aren’t the only “type of thing” in Swift. An alternative approach to creating
objects in Swift is with a structure.

 Structures have many similarities to classes. For example, they can

 Have properties
 Have methods
 Have initializers
 Adopt protocols

Define a structure with the struct keyword, for example:

struct Telephone {
    
}

OPEN Explore the protocol
relationships in code in the

TelephoneProtocols.playground.

Telephone

makeCall
hangUp

Cellular

sendSMS

Landline

Push-buttonRotary

Protocol

Class

Protocol inherits protocol

Class adopts protocol

Windows phone

windowsOS

iPhone

iOS

Android phone

androidOS

Non-smart

Internetable

accessInternet

Touchable

touchInput

PushButtonable

buttonInput

Rotaryable

rotaryInput

Key

Figure 3.4 Telephone using protocols



72 CHAPTER 3 Swift objects
Instantiation of a structure is identical to that of a class:

var telephone = Telephone()

3.2.1 Structures vs. classes

Structures have three main differences from classes worth noting:

 Structures can’t inherit.
 Structures can have memberwise initializers.
 Structures are value types.

Each of these is explained in the following sections.

STRUCTURES CAN’T INHERIT

Structures can’t inherit other structures. They can indirectly inherit functionality,
however, by adopting protocols, which, as you’ve seen, can inherit other protocols.

MEMBERWISE INITIALIZERS

If you don’t set up an initializer for a structure, an initializer that accepts all the struc-
ture’s properties as parameters will automatically be generated for you. This auto-
mated initializer is called a memberwise initializer. 

 As you saw earlier in the chapter, when the Distance class didn’t initialize its
miles property, an error appeared. If you change the definition of this class to a
struct, a memberwise initializer is automatically generated and the error disappears:

struct Distance {
    var miles:Double
}

You can now instantiate this structure using the memberwise initializer:

var distance = Distance(miles: 100)

STRUCTURES ARE VALUE TYPES

An important distinction between structures and classes is how they’re treated when
they’re assigned to variables or passed to functions. Classes are assigned as references,
and structures are assigned as values. 

 Look at the following listing. Predict the value of color1.name that will be
printed to the console.

class Color {
    var name = "red"
}
var color1 = Color()
var color2 = color1
color2.name = "blue"
print(color1.name)

Listing 3.7 Changes to reference types



73Structures
If you predicted "blue", pat yourself on the back!
Because classes are reference types, when color1
was assigned to the color2 variable, color2 was
assigned the reference to the underlying Color
object (see figure 3.5).

 In the end, both color1 and color2 refer to
the same object, and any changes to color2 are
reflected in color1 (and vice versa).

 In Swift, core data types such as String are value types. Look at the following list-
ing and predict the value of letter1 that will be printed to the console.

var letter1 = "A"
var letter2 = letter1
letter2 = "B"
print(letter1)

If you went with "A", you’re right. This time, when
letter2 was assigned to the letter1 variable,
letter2 was assigned the value of letter1,
instantiating a new String object. You're left with
two String objects, as in figure 3.6.

 Because you now have two separate String objects, making a change to one of
them doesn’t affect the other. 

 Like Strings, when a structure is assigned to a new variable, it’s copied. Let’s look
at the Color example again, but tweak one thing—it’s now a structure rather than a
class (to be clear, let’s also rename it ColorStruct). Now, what is the value of
color1.name that will be printed to the console in the following? 

struct ColorStruct {
    var name = "red"
}
var color1 = ColorStruct()
var color2 = color1
color2.name = "blue"
print(color1.name)

If you predicted "red", you’re paying attention! Because structures are value types,
when color2 was assigned color1, only the value of color1 was copied, two Color-
Struct objects now exist, and any changes to color2 aren’t reflected in color1. Try
it out in a playground and see for yourself!

 Since Swift went open source, it’s been fascinating to explore how the language
looks “under the hood.” One thing you’ll discover if you look at the source of Swift is
that many of the core data types are implemented as structs, explaining why types
such as String are value types. Incidentally, this represents a change in direction

Listing 3.8 Changes to value types

color1

color2

Color

name

Figure 3.5 Reference types

letter1 String

letter2 String

Figure 3.6 Value types



74 CHAPTER 3 Swift objects
from Objective-C, where many types are implemented as classes (though references
are implemented differently).

CONSTANTS

We’ve looked at constants in brief, but now’s a good time to look at them a little closer.
 You undoubtedly are familiar with constants—they’re a special type of variable that

will never be reassigned. In Swift, a constant is declared using the let keyword instead
of var.

 For example, if you assign an instance of a Person type to a constant, you can’t
later assign another instance of the Person type to the same constant:

let person = Person(name: "Sandra")
person = Person(name: "Ian")

TIP If a variable is never reassigned, for performance reasons you should
declare it a constant. 

Here’s a tricky question for you: is it permissible to modify a property of a constant of
the Person type? For example:

person.name = "Ian"

If your answer was a confused expression and a shrug of the shoulders, you’re right!
 Whether a property of a constant can be modified depends on whether you have a

value type or a reference type, and I wasn’t clear in the question about whether
Person was defined as a class or a structure. I did warn you it was going to be tricky!

 For value types, the identity of the constant is tied up with the properties it con-
tains. If you change a property, the variable is no longer the same value. For value
types such as structures, it isn’t permissible to modify a constant’s properties.

 For reference types, the identity of the constant is a reference to an object. There
could be other constants or variables that point to that same object. For reference
types such as classes, it’s permissible to modify a constant’s properties.

WHICH OBJECT TYPE?
After learning the differences between classes and structures, the next question most
people want the answer to is this: which should I use, and when?

 To arrive at an answer of that complex question I find it helps to break it down into
smaller questions:

 Does the type need to subclass? The choice may be clear—sometimes your type
needs to subclass; therefore, you need a class. 

 Should instances of this type be one of a kind? If you’re storing data in a type, and
want any changes to that data to be reflected elsewhere, it might make sense to
use a class. 

 Is the value tied to the identity of this type? Consider a Point type that stores an x
and a y value. If you have two points that are both equal to (x:0, y:0), would

Error—can’t 
reassign constant



75Structures
they be equivalent? I suggest that they would. Therefore, the value is tied to its
identity and it should probably be implemented as a structure. 
Now, consider an AngryFrog type that among other properties also contains
an x and a y value. If you have two angry frogs that both are positioned at
(x:0, y:0), would they be equivalent? I suggest probably not, because they’re
probably two distinct entities, maybe traveling in different directions, or may be
controlled by different players. The identity of an AngryFrog would be tied to
a reference to a specific instance rather than the current values of its proper-
ties, and therefore it should probably be implemented as a class. 

For a visual representation of this decision process, see figure 3.7.

Figure 3.7 Structure or class decision

A complex codebase may have additional factors to consider, but I find these three
questions a handy guide to arrive at an answer to the structure or class decision.

 Let’s practice this decision process with the Distance type you worked with ear-
lier in the chapter:

 Does the Distance type need to subclass? No, it doesn’t.
 Should there be only one Distance object? No, there can be more than one.
 Is the value equivalent to its identity? If you had two 100 km Distance objects,

they should be treated as equivalent, so yes, the value is equivalent to identity. 

Therefore, the Distance type should probably be implemented as a structure. Fortu-
nately, changing a class to a structure or vice versa is straightforward. Swap the class
keyword over for struct, and that’s often all that’s necessary. Go ahead and change
the Distance class to a structure now.

Need to subclass?

One of a kind?

Yes No

Value = identity?

No

No

Yes

Yes

Class Structure

Choose object type



76 CHAPTER 3 Swift objects
 We still haven’t looked at all the object types available in Swift. To make things
even more interesting, you have yet another alternative to classes and structures,
called enums. We’ll cover enums in chapter 10.

3.3 Extensions
We’ve looked at protocol extensions to add functionality to protocols. Extensions can
also be used to add functionality to classes and structures.

 There’s much that extensions can do, but they do have limitations:

 Extensions can’t override functionality.
 Extensions can add computed properties, but can't add stored properties.
 Extensions of classes can't add designated initializers. 

3.3.1 Extensions of your type

When we looked at the Distance class earlier in the chapter, we considered that at a
later point we may want to add additional measurements. Well, the time has come!
Let’s add feet to the Distance structure.

1 Open your Distance playground again.
2 Create an extension of your Distance structure.

extension Distance {
}

3 Add a feet computed property.

static let feetPerMile:Double = 5280

4 Add type methods to your extension to convert to miles and kilometers from
feet, or back again to feet from miles.

static func toMiles(feet:Double)->Double {
    return feet / feetPerMile
}
static func toKm(feet:Double)->Double {
    return toKm(miles:toMiles(feet:feet))
}
static func toFeet(miles:Double)->Double {
    return miles * feetPerMile
}

5 You can set up a computed property now for feet.

var feet:Double {
    get {
        return Distance.toFeet(miles:miles)
    }
    set(newFeet) {
        miles = Distance.toMiles(feet: newFeet)
    }
}



77Extensions

D

6 Finally, create an initializer for the Distance structure.

    init(feet:Double) {
        self.miles = Distance.toMiles(feet:feet)
    }
}

Your Distance structure can now be initialized with feet and updated by setting
feet. 

CHALLENGE To confirm it’s now possible, create a new instance of Distance
using feet, update this value, and then print this value to the console. Then
extend the DistanceExtensions playground to include another form of mea-
suring distance.

3.3.2 Extensions of their type

You aren’t limited to extending your own code. You can also extend classes, structures,
or protocols of third-party code, or even of Apple frameworks or the Swift language!

 As you saw in the previous chapter, the dictionary doesn’t contain a method to join
with another dictionary. Let’s rectify this situation! 

1 Create a new playground, and call it Extensions.
2 Add an extension to Dictionary so that it can add to another dictionary.

extension Dictionary {
    func add(other:Dictionary)->Dictionary {
        var returnDictionary:Dictionary = self
        for (key,value) in other {
            returnDictionary[key] = value
        }
        return returnDictionary
    }
}

3 To confirm your new extension works, create two sample dictionaries ready to
add together:

var somelanguages = ["eng":"English","esp":"Spanish","ita":"Italian"]
var moreLanguages = ["deu":"German","chi":"Chinese","fre":"French"]

4 Now use your new method to join the two dictionaries:

var languages = somelanguages.add(other:moreLanguages)

OPEN Compare your Distance extension with mine in the Distance-
Extensions.playground.

Extends
ictionary

Defines new 
method to extend 
Dictionary



78 CHAPTER 3 Swift objects
From now on, whenever you want to join two
dictionaries in a project that contains this
extension, the add method is available to you.
Because this method is defined directly on the
Dictionary structure, you didn’t need to
define the datatypes of the key and value, making this method available for all
Dictionary types.

3.3.3 Operator overloading

I’m not completely happy with the add method. It’s not intuitive that you’re returning
the union of the two dictionaries, rather than adding one dictionary directly to the
other. I think it would be clearer if you’d used the add (+) operator, the way you can
with Arrays. Fortunately, Swift makes it possible to define or redefine operators!
Redefining functionality for an operator is called operator overloading.

 The + operator function receives a left and right parameter and returns a value
of the same type. 

1 Redefine the add method in a Dictionary extension as an overloading of the
+ operator.

func +(left: [String:String], right:[String:String]) -> [String:String] {
    var returnDictionary = left
    for (key,value) in right {
        returnDictionary[key] = value
    }
    return returnDictionary
}

Apart from how it’s defined, not much has changed from the body of the
method. The data types of the key and value need to be specified because
you’re no longer defining a generic Dictionary inside a Dictionary exten-
sion. Apart from that tweak, the code is similar, and you now can add two
Dictionarys (with key/value String/String) with the plus (+) operator,
which is much more intuitive!

2 You'll still need two sample dictionaries to add together:

var somelanguages = ["eng":"English","esp":"Spanish","ita":"Italian"]
var moreLanguages = ["deu":"German","chi":"Chinese","fre":"French"]

3 Add the two dictionaries together again, but this time use your overloaded add
operator:

var languages = somelanguages + moreLanguages

CHALLENGE Overload the == operator to determine whether two Distance
objects are equivalent. Tip: The == operator returns a Bool value.

OPEN Compare your code
in this section with mine in

the Extensions playground.



79Extensions
3.3.4 Generics

It’s a shame, however, that this new overloaded operator will only “operate” on a spe-
cific type of Dictionary—one with a key that's a String, and a value that’s a
String. What if you had another Dictionary with a key/value of Int/String?
You’d need to define an overloaded operator again, for each combination of keys/val-
ues! How tiresome.

 This is where a concept called generics is super useful. A generic can be substituted
in a function for any type, but must consistently represent the same type. It turns a
function that deals with a specific data type to a generic function that can work with
any data type.

 Pass in a list of generics between angle brackets <>, after the function or operator
name. Like function parameters, generics can be given any name you like. 

1 Make the overloaded + operator for adding Dictionarys generic for any
datatype for key or value.

func +<Key,Value>(left: [Key:Value], right:[Key:Value]) -> [Key:Value] 
{    var returnDictionary = left
    for (key,value) in right {
        returnDictionary[key] = value
    }
    return returnDictionary
}

2 Again, you’ll need two sample dictionaries to add together.

let somelanguages = ["eng":"English","esp":"Spanish","ita":"Italian"]
let moreLanguages = ["deu":"German","chi":"Chinese","fre":"French"]

3 Check your generic method still adds these dictionaries of with a String key
and String value.

var languages = somelanguages + moreLanguages

Great, it still works! But will it add dictionaries of another type?

4 Create two sample dictionaries of another type to check. Let’s try dictionaries
with an Int key and String value:

let someRomanNumerals = 
 ➥[1:"I",5:"V",10:"X",50:"L",100:"C",500:"D",1000:"M"]
let moreRomanNumberals = [1:"I",2:"II",3:"III",4:"IV",5:"V"]

5 Confirm your overloaded operator can now join this different type of
Dictionary.

var romanNumerals = someRomanNumerals + moreRomanNumberals

Generics are another powerful tool to add to your programmer’s arsenal. The Swift
team themselves use them to define Arrays and Dictionarys, which is why you



80 CHAPTER 3 Swift objects
didn’t need to define the data type of the Dictionary when you extended it. You
were already using this powerful feature! 

3.4 Summary
In this chapter, you learned the following:

 Use classes or structures to represent types.
 Classes are reference types; structures are value types.
 Use initializers to initialize values.
 Use computed properties as getters and setters.
 Consider protocols to share functionality between classes or structures.
 Use extensions to add functionality to classes and structures.
 Use operator overloading to redefine operators.
 Use generics to make functions more flexible.



Part 2

Building your interface

Now that you have a good understanding of Xcode and Swift, you’re prob-
ably anxious to dive into building apps! In this part, you'll explore building basic
apps, with a focus on building up the interface.

 In chapter 4, you'll get to know the building blocks of iOS apps—view con-
trollers and views. You’ll use these concepts to build a basic app.

 In chapter 5, you'll take this basic app a little further, examining different
ways to integrate user interaction into your app.

 In chapter 6 and 7, you'll work on laying out more-complicated interfaces,
and use various techniques for ensuring that your interfaces adapt to different
devices, orientations, and multitasking modes.

 In chapter 6, you’ll also be introduced to Bookcase, a more complex app that
you'll build over the course of this book from a concept to a finished app, ready
to publish to the App Store.

 Chapter 8 takes a different approach: you'll solve a complex, real-life prob-
lem. You’ll look at dismissing the software keyboard and what to do when the
keyboard obscures part of the interface. Along the way, you'll encounter all sorts
of topics such as first responders, notifications, scrolling, and animation.

 
 
 
 
 
 



82 CHAPTER 
 
 
 
 
 
 
 



View controllers,
views, and outlets
Now that you’re familiar with Xcode and how to create a project, and you've
explored Swift, the language you’ll use to build apps, you’re ready to start building
an app.

 In this chapter, you’ll use view controllers and views, the basic building blocks of
building any app, to build two example apps:

 You’ll build a basic “Hello World”-style interface purely in code in an app
called ViewsInCode.  

 You’ll then build views into an interface in Interface Builder in a distance
converter app. Using the Distance structure that you built in chapter 3, the
distance converter app will convert distances from miles to kilometers.

This chapter covers 
 Exploring the view controller life cycle 

 Creating views

 Modifying properties of views

 Connecting views in the storyboard with code
83



84 CHAPTER 4 View controllers, views, and outlets
In the next chapter, we’ll look at integrating user interaction with the distance con-
verter app. In later chapters, we’ll look at techniques for laying out an interface. But
first, we need to look a little closer at the view hierarchy. 

4.1 View hierarchy
As mentioned in chapter 1, everything you can see in your app is either a view or con-
tained within a view. Examples of views are labels, images, or plain vanilla—views!
Controls such as buttons, date pickers, and switches are types of views, too. 

 All the views in your app could be represented in a hierarchy—views can contain
other views. Right at the top of every view hierarchy of an iOS app is a special view
called the window. 

 The window represents the entire area taken up visually by your app. You’re famil-
iar with the concept of a window from desktop computers. 

 With enhancements of multitasking in iOS 9, the similarity with windows on desk-
top computers is even closer, because multiple apps can now be visible on the screen
simultaneously. App windows no longer necessarily take up the entire dimensions of
the screen. We’ll look more at the implications this has on layout in chapter 6.

 Though the app window is also a type of view (subclassing UIView), it doesn’t dis-
play any content on its own. Rather, it contains another view, called its subview. Don’t
get subviews confused with subclasses—a subview is a view contained in another view,
while a subclass is a class that inherits its implementation from another class.

 In a simple interface, an app window’s subview could be the root view for a scene.
This root view would then contain subviews for every element in the interface. Sub-
views could be text fields, buttons, images, or other simple views. Subviews can then
contain further subviews, and so on.

 The distance converter app you’ll build later in the chapter will allow the user to
enter a distance in miles or kilometers and perform a conversion. See figure 4.1 for
the view hierarchy of the distance converter app.

 In the distance converter example, the app window has a subview that’s the root
view for the converter scene. The root view covers the available space in the window.

Root view

Window

1. Miles
    text field

2. Miles
    label

3. Equals
                label

4. Kilometers
    text field

5. Kilometers
    label

Figure 4.1 View 
hierarchy for the distance 
converter scene



85Model-view-controller
Underneath this root view are all the views of the scene—the text fields and labels that
make up the app’s interface.

4.2 Model-view-controller
To ensure good code design in iOS, it’s highly recommended you follow the model-
view-controller (MVC) design pattern. Objects in your code are conceptually divided
into three broad categories: model, view, and controller. Using the MVC pattern keeps
your code organized and easily manageable as you maintain or extend your app:

 Model objects maintain the data for an application and handle any manipula-
tion of that data. Model objects know nothing about the visuals of the scene
they’re used in; they’re only interested in the data. A model object in the dis-
tance converter app could be the Distance structure that contains distance
data and performs conversions.

 As you’ve seen, views are the visual components of an app. They can also pro-
vide visual feedback on interaction and report on user interaction. They’re typ-
ically generic and reusable. Apple provides many views for you in the UIKit that
are ready to go, such as labels, images, and switches. You’ve already seen that
the distance converter app will contain a root view that then contains standard
label and text field views.

 Every scene contains a controller called the view controller. The view controller is
a Swift object that you can customize to coordinate between the view and model
objects. You could think of the view controller as the director of a scene. 

The main scene of the distance converter app will be connected to a main view con-
troller, which will coordinate between the text field views and distance data. The view
controller will generate a distance model object with a default value, and use it to
update the text field views with the current distance. 

 When you make the distance converter truly interactive in the next chapter, these
text fields will notify the view controller when the user makes a change and the view
controller will in turn update the distance model object. 

 The model in your distance converter app will only be updated by the view control-
ler, but in certain apps it may also be updated by an external source, such as a web ser-
vice. In these cases, the model should then notify the view controller of this change, so
that the view controller can perform any necessary tasks, such as updating the view.

 See figure 4.2 for a look at how the MVC pattern works in iOS, in relation to the dis-
tance converter app. 

Figure 4.2  Model view controller in distance converter app

View

Miles text field

Updates

User actions
Kilometers text field

View controller

Model

Distance

Updates

Notifies



86 CHAPTER 4 View controllers, views, and outlets
As you can see, in iOS, the model and view are both self-contained units. They know
nothing about each other, nor do they know about the scene they’re in. The view con-
troller contains references to the model and view objects and is in the middle of the
communication between objects.    

NOTE If the view and model objects don’t have a reference to the view con-
troller, how can they communicate with it? iOS has alternative solutions to
solve this dilemma. In the next chapter, we’ll explore three approaches com-
monly used with view objects: target-action, events, and delegation (also often
used with model objects). Later in the book, we’ll look at notifications and
bindings, approaches more commonly used with model objects. 

Let’s look more closely at the view controller and see it in operation in a sample app. 

4.3 View controller
View controllers have several important responsibilities, such as

 Responding to communication from view objects (such as from user interaction)
 Configuring, laying out, and updating view objects for a scene
 Responding to communication from model objects (such as from network calls)
 Communicating with and updating the data in the model

As you’ve seen, every scene has a root view, which contains all the views in the scene,
and a view controller, which is responsible for managing all the views in the scene.
The view controller automatically contains a reference to the scene’s root view. Figure
4.3 shows how the view controller fits into the distance converter scene view hierarchy.

 The views themselves are already built to do what they do: the label will display
text, and the text field will display the software keyboard and accept user input. But
it’s up to the view controller to react to your specific app’s needs. 

Figure 4.3 Distance converter scene

View controller

• view

References

Legend

Contains

Root view

Views

Miles
text field

Miles
label

Equals
label

Kilometers
text field

Kilometers
label

Controllers



87View controller
4.3.1 Creating a custom view controller

Most of the time, the default behavior of views in a scene isn’t sufficient. Code needs
to be written to customize the behavior of the scene. This custom behavior is per-
formed by the view controller.

 For example, in the completed distance converter app, the view controller will
respond when the user enters a value in miles or kilometers, convert to the appropri-
ate measurement, and display the result to the user. But how do you create a custom
view controller? You can write the custom behaviors of your view controller by sub-
classing the UIViewController class and connecting this class with the scene.

 Let’s put the distance converter app aside for the moment—you’ll build that later
in the chapter. For now, you’ll build a basic app that displays views in code.

 Create a new Single View Application Xcode project following the steps you went
through in chapter 1. Call this project “ViewsInCode.” As the name suggests, the Sin-
gle View Application template sets up an app with one scene created and ready to use.

 Follow these steps to find where the class connected to a scene’s view controller is
defined:

1 Select the view controller for the app’s scene in Interface Builder.
2 In the Inspector area, select the Identity Inspector (third icon).
3 In the Custom Class field, you’ll find that this view controller is already con-

nected to a custom class, or subclass, unimaginatively called ViewController. 
4 Because the Swift file name is usually the same as the name of the class it

defines, you know to find the Swift file containing the ViewController class
in the ViewController.swift file in the Project Navigator. 

See figure 4.4 to help you navigate these steps.

Figure 4.4 Subclassing the view controller

4. Find ViewController class
    in Project Navigator

3. Note ViewController custom class 
    assigned in Identity Inspector

1. Select view controller
   in Interface Builder

2. Select Identity
    Inspector



88 CHAPTER 4 View controllers, views, and outlets
Open the view controller subclass now. You can
either select ViewController.swift in the Project
Navigator or, for convenience, you can click the
arrow next to the custom class in the Identity
Inspector (see figure 4.5).

4.3.2 Customizing a UIViewController subclass

When you open the file, you’ll find that the ViewController class is by default pre-
populated with two methods, overridden from its superclass UIViewController (see
figure 4.6).

During the lifetime of a view controller, it will go through certain life events. At these
special times in its life, certain view controller methods will be called. When you sub-
class UIViewController, you can override these methods to provide custom imple-
mentation in these moments.

 You’ll see viewDidLoad and didReceiveMemoryWarning in the default View-
Controller subclass. You can override many more methods, and we’ll look at more
shortly. But for now, viewDidLoad is a great place to start, because it’s triggered after
the root view, and all of its subviews have loaded.

 To prove that you automatically have access to the root view of the scene at this
point, let’s change the background color of the view in code to yellow. 

 The variable in the view controller that references the root view has a name that’s
simple enough to remember: view. You could test this out with simple code
completion.

1 In the line following super.viewDidLoad(), begin typing view. 
Code completion suggestions should appear automatically. With only the first
two characters entered, the view property should appear as the second sugges-
tion, with the V icon beside it indicating it’s an instance variable. (Other icons
you’ll see frequently are L for local variable, S for static variable, and M for
instance method.) Beside the suggestion, you’ll see that the suggested view
property is an implicitly unwrapped UIView optional (UIView!). You can also
see a description of the suggestion at the bottom of the suggestion window. You
can scroll or use your cursor keys to explore possible suggestions. See figure 4.7.

Figure 4.5 Jump to class

Figure 4.6 Default 
UIViewController



89View controller
Figure 4.7 Code completion

2 Select the view property from the code completion suggestions.
Where does this variable come from? You definitely haven’t set up a view prop-
erty in your ViewController class. The most obvious candidate is View-
Controller’s immediate superclass UIViewController, but it could have
come from a superclass of UIViewController. Who knows, it could even be a
computed property in a protocol extension that UIViewController or one of
its superclasses implements. 

You can find out where this property comes from by looking at the documenta-
tion. You can bring up the Help Inspector by moving the cursor inside the view
in your code and selecting the help icon in the inspector panel. Curiously, the
Help Inspector doesn’t tell you which class the property is declared in, so you’ll
need to select Property Reference at the bottom of the property description in
the Help Inspector to open documentation for this property. The documenta-
tion will indicate that this property is declared in the UIViewController class.

Now that you have a reference to the root view, let’s change its background
color. You know that the view property is a UIView, so you could scan through
the documentation for UIView, but let’s see if you have any luck with code
completion.

Code completion
overlay

Code completion
suggestion

Description

Icon Type



90 CHAPTER 4 View controllers, views, and outlets
3 Add a period(.) after view, and type color to
see what Xcode suggests. First on the list of
suggestions is a backgroundColor prop-
erty—that must be it! 
The backgroundColor property is defined
as a UIColor optional. If you look at
UIColor in the documentation, you’ll find
that it contains shorthand type methods that
return common colors—let’s use one now to
set the view’s background color. 

4 Add the following line to the viewDidLoad
method after calling the super method:

view.backgroundColor = UIColor.yellow

5 Run the app on the simulator. You should
see a blank app with a yellow background
(see figure 4.8).

4.3.3 Initial view controller

Not many apps have one scene. To illustrate, let’s
temporarily add a second scene to the ViewsIn-
Code app.

1 Open the main storyboard by selecting Main.storyboard in the Project
Navigator. 

2 Drag in another view controller from the Object Library beside the other. Now,
the storyboard contains two view controllers. How does the app know which
scene to display first? 
Look closer at the left of the view controllers in the storyboard, and notice that
one of them has an arrow pointing to it. Select each of the view controllers (not
the view), and examine the Attributes Inspector. Notice the “Is Initial View Con-
troller” attribute is selected for the original view controller. 

3 Select this checkbox for your new view controller. Notice the arrow now appears
before that new view controller, and the storyboard entry point changes in the
hierarchy too (see figure 4.9).
You can also drag this arrow directly to the left of a view controller. 

4 Drag the arrow back to the original view controller to identify it once again as
the initial view controller.
When you’re finished experimenting, delete the new view controller and make
sure the original view controller is set once again as the initial view controller. If

Figure 4.8 Blank app with a 
yellow background



91View controller
there’s no initial view controller, all you’ll see when you run your app is a black
screen!

iOS performs the following steps between launching your app and seeing the root
view of your initial view controller:

1 iOS instantiates the app window.
2 iOS loads the main storyboard and instantiates its initial view controller. 
3 A reference to the initial view controller is passed to the app’s window, which

keeps track of the view controller currently at the root in the rootView-
Controller property. 

4 This triggers the initial view controller’s root view to be added as the window’s
subview. 

5 This triggers the initial view controller to load its root view (usually from the
storyboard). 

6 The window becomes visible and the root view appears.

Select to make a view controller the
initial scene (or storyboard entry point).

Or drag the entry point
arrow to the view controller.

Figure 4.9 Initial view controller



92 CHAPTER 4 View controllers, views, and outlets
In the end, you’ll have relationships between the app window, initial view controller,
and the root view that look like figure 4.10.

View controller life cycle
To know how to subclass a UIViewController object, you need to know which
methods to override and when. To do this, you need to examine the steps a view con-
troller goes through in its life cycle.

View controller

Scene

• view

Window

• rootViewController

References

Legend

Contains

Root view

ViewsControllers

Figure 4.10 Window, view, 
and view controllers

viewDidLoad()

Display view

Is view loaded?

viewWillAppear()

viewDidAppear()

View appears

Load view

Remove view

viewDidDisappear()

viewWillDisappear()

View disappears

deinit()Remove from memory?

Yes

No Yes

No

init()



93View controller
Initializing a view controller

As is the custom in any Swift type, the view controller starts off life with an initializer.
The initializer doesn’t have access to the root view, so configuring the views in the
scene often occurs later in the life cycle. 

Loading a view

If the root view isn’t yet loaded, the view controller needs to load it. Wait—how could
a root view already be loaded? Well, when one scene navigates to another scene, the
originating view controller stays in memory. When returning to the originating view
controller, its root view will display but doesn’t need to load again and the viewDid-
Load method won’t be called.

The most common and recommended way for a view controller to load its root view
is via the storyboard. However, a view controller can also get its root view in other
ways. It can load its root view from a nib file (like a storyboard with one scene), or
alternatively instantiate it in code by overriding the UIViewController’s load-
View method.

After a root view and all of its subviews are loaded, the viewDidLoad method is
called. This method is commonly overridden to perform any additional one-off setup
that your root view requires. As you did earlier, you could modify the properties of the
root view itself. Alternatively, you could modify the properties of its subviews, or
instantiate and add new subviews to the root view.

Displaying a view

Whether the root view needed to be loaded or not, the viewWillAppear method
will be called before the view displays. This method is commonly overridden if you
want to update the root view or its subviews every time you navigate to this scene. 

Imagine the main menu scene of a game that displays a top score field. When the
user navigates to the game itself and then returns to the main menu, the top score
should be updated in case the player beats it! The top score field should then prob-
ably be updated in the viewWillAppear method.

The viewDidAppear method is called after the root view is displayed. This method
is commonly overridden to initiate processor-intensive work that otherwise could
cause sluggishness in presenting the view. This could include starting an animation,
playing a sound, or making a network call.

Removing a scene’s root view

Notice in the figure that the UIViewController’s methods for displaying its root
view have companion methods for removing its root view. 

For example, if your app navigates to a second scene, the root view for the first scene
would disappear. Before this view is removed, the viewWillDisappear method is
called. After the view is removed, the viewDidDisappear method is called. Over-
ride these methods to perform any final tidying up when the view disappears. Perhaps
you want to stop a sound file, stop a perpetual animation, remove notification observ-
ers, or store a state.



94 CHAPTER 4 View controllers, views, and outlets
4.4 Managing views
Now that you know more about view controllers, let’s look at how to use a view con-
troller to manage views. Views can be built up in code or in Interface Builder. Let’s
first look at building up views in code. 

4.4.1 Managing views in code

Open your ViewsInCode project again. You’ve demonstrated you had access to the
view controller’s root view by editing its background color in the subclassed view con-
troller’s viewDidLoad method.

 Now that you have access to the root view, you can
add subviews to it in code. Let’s add a red view that fills
the width of the root view, but only half the height (see
figure 4.11). 

ADDING A VIEW IN CODE

In the ViewController class, define an implicitly
unwrapped UIView object called redView above the
viewDidLoad method.

var redView:UIView!

To instantiate a UIView, you need to pass in the view’s
frame dimensions using a structure type called
CGRect. Get the width and height of the root view with
view’s bounds property. You can then set its back-
ground color to red and add it to the scene’s root view.

1 Add the following to the end of the viewDid-
Load method:

 

(continued)

Deinitializing a view controller 

When any object is removed from memory in Swift, a special deinit method is
called. Implement the view controller’s deinit method if you want to perform any
additional cleanup right before this view controller is destroyed. 

Releasing memory

One method that didn’t make the life cycle chart is didReceiveMemoryWarning.
You might remember seeing this method in the autogenerated custom view controller
code. With modern devices, the need to free up memory is unlikely, but if your app
does have high memory expectations (for example, perhaps it’s storing many images
in a cache), overriding this method is where you could free up that memory.

Figure 4.11 Add red view



95Managing views
redView = UIView(frame: CGRect(x: 0, y: 0,
    width: view.bounds.width, 
    height: view.bounds.height / 2)) 
redView.backgroundColor = UIColor.red
view.addSubview(redView)

2 Run the app again, and you should see a red rectangle appear in the top half of
the interface. Great!

Frame vs. bounds
Both the frame and bounds of a view refer to a rectangle, defined by a CGRect
object that contains the size (width and height) and origin (x and y) of the
view. The origin of a CGRect object usually refers to the upper-left corner.

The difference between frame and bounds is that frame is seen from the perspec-
tive of the view’s superview coordinate system, and bounds  is  seen  from  the  per-
spective of the view’s
own coordinate system.
As you can see in the
view in the example, the
size of the bounds is
often the same as the
size as the frame of a
view. The origin, on
the other hand, often dif-
fers, depending on the
perspective.

If you apply any transformations to the rectangle, however, such as scaling or rota-
tion, the size of a view can look different from the perspective of a view’s own coor-
dinate system or its superview’s. Scale a view 50% such as in the example, and the
size of its bounds won’t change, but from the perspective of its superview, the
size of its frame has shrunk by half.

We’ll explore transformations further in the next chapter.

Instantiates view

Ensures that the view
lives up to its name

Uses UIView’s addSubview method to
add as a subview of the scene’s root view

frame:

Origin Size

[10,10] [50,50]
bounds:  [0,0]  [50,50]

50

50

10,10

0,0

50

50

frame:

Origin Size

[37.5, 37.5] [25,25]
bounds:     [0,0]    [50,50]

25

View scaled 50%

25

37.5,37.5

0,0

50

50



96 CHAPTER 4 View controllers, views, and outlets
ADDING A LABEL IN CODE

Well, that’s all fine for basic views, but how about more
complex views such as labels? Let’s add a label to the
view halfway down, as in figure 4.12.

 You can instantiate a label the same way as with a
view, but using the UILabel class. 

 Let’s position the label halfway down the root view
with 20-point margins and give it an arbitrary width and
height of 20 points.

 
 
 
 

Figure 4.12 Adding a label
  

1 First, as before, add the definition of the implicitly unwrapped label above the
viewDidLoad method:

var label:UILabel!

Now, instantiate the label code. Because UILabel subclasses UIView, you can
use UIView properties such as backgroundColor. Give the label a temporary
background color so you can see it clearly. Display text in the label with UI-
Label’s text property, and use UILabel’s font property to adjust the font size.

2 Add the following listing code after the redView code in the viewDidLoad
method.

label = UILabel(frame:
            CGRect(x: 20, y: self.view.bounds.height / 2, 
            width: 20, height: 20))
label.backgroundColor = UIColor.orange

What’s the point?
Don’t worry, I’m not down in the dumps! 

Points are how coordinates and distances are measured in iOS and are distinct from
the actual pixels in the screen of the device. The intention of points is to have con-
sistency of scale across different devices, especially Retina and non-Retina devices.
In the main, the underlying pixels are irrelevant, and you’ll measure distances and
coordinates in points.

Listing 4.1 Add label



97Managing views
view.addSubview(label)
label.text = "Hello World"
label.font = label.font.withSize(40)

3 Run the app, and you’ll see a small orange rectangle appear where the text field
should go. 
Obviously, the text field needs more space to display, but what should the width
and height be? UIView has a handy method for setting the width and height to
its ideal dimensions to fit its contents, called sizeToFit. 

4 Run sizeToFit on the label, and run the app again.

label.sizeToFit()

Success! You can remove the orange background now if you like, and you should now
see something similar to figure 4.12. 

You can close the ViewsInCode project; we’ll come back to it later. But now, let’s use
Interface Builder to manage views in a scene in the storyboard.

4.4.2  Managing views in Interface Builder

In the remainder of this chapter, you’ll build the interface for the distance converter
app that we looked at earlier in this chapter. In the next chapter, this app will convert
distances the user enters, but for now you’ll spec-
ify a miles distance in code for the app to convert
to kilometers and display in the text field (see fig-
ure 4.13). 

 This time, we’ll explore building an interface
using Apple’s visual tool for building interfaces,
Interface Builder.

1 First, create another Xcode project and call
it “DistanceConverter.” 

CHECKPOINT If you’d like to compare, you can check out my project
at https://github.com/iOSAppDevelopmentwithSwiftinAction/Views-

InCode.git (1.DisplayingViews branch).

CHECKPOINT If you want to skip the ini-
tial setup, you can download it from

https://github.com/iOSAppDevelopmentwith-
SwiftinAction/DistanceConverter.git (1.Initial-
Setup).

Figure 4.13 Distance converter app

https://github.com/iOSAppDevelopmentwithSwiftinAction/ViewsInCode.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/ViewsInCode.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/DistanceConverter.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/DistanceConverter.git


98 CHAPTER 4 View controllers, views, and outlets
2 Click on the main storyboard in the Project Navigator to construct the interface
of the initial scene. Drag on text fields and labels to make the interface you see
in figure 4.14. 

Figure 4.14 Distance converter storyboard

Earlier, you set the text and adjusted the font size of a label in code. This time,
you’ll use Interface Builder’s Attribute Inspector. 

3 Select a label and find the text attribute in the Attribute Inspector. By default, it
will say “Label.” Enter the text “miles,” “kilometers,” and “is equal to” for the
three labels. 

4 Adjust the font size for the miles and kilometers labels. Find the font attribute
and click on the arrow, to edit the font (see figure 4.15). 
Use the custom font type if you want to specify the font family—otherwise, the
default font family for a font style will be used. In iOS 9 and later, for example,
the system font is San Francisco. In general, if you want a consistent look with
other iOS apps, use Apple’s built-in font styles. 

5 For the miles and kilometers labels, use the built-in Title 1.

Figure 4.15 Editing the font in the Attribute Inspector

Text fields Labels

Edit font



99Managing views
You’ll use the Distance structure from the previous chapter as a model in
this app.

TIP When you modify the text of a label or change its font size, you might
find that it’s no longer big enough to contain its content, indicated by an
ellipsis (…). You can resize a view to its content by selecting a view, and then
selecting Editor > Size to Fit Content. Frustratingly, you might find after run-
ning the app that Xcode has slightly misjudged the new size, and you’ll need
to add a few extra pixels in Interface Builder. You can do this by dragging the
width handle or adjusting the width in the Size Inspector. After resizing, you
might also find you need to reposition the view.

6 Create a Distance.swift file by selecting File > New > File, and select the Swift
File template.

TIP You have alternative approaches to creating a file. You could also right-
click on the group in the Project Navigator where you want to create the file,
select New File, and select the appropriate template. Alternatively, you could
find the file template you want in the File Template library in the library area,
and drag it where you want it in the Project Navigator. Too many options!

7 Paste in the Distance structure you worked on in chapter 3. You can also
find it at https://github.com/iOSAppDevelopmentwithSwiftinAction/Distance-
Converter /blob/1.InitialSetup/DistanceConverter/Distance.swift. 

8 In the custom ViewController class, add a distance variable that stores a
Distance object. I’m going to instantiate mine with 1,000 miles; you can
instantiate yours however you like.

var distance = Distance(miles: 1000)

Now that you have a distance object, the challenge is to display its miles property
in the miles text field and its km property in the kilometers text field. As you saw ear-
lier in the chapter, following the MVC pattern, it’s the view controller’s job to update
text field views from the model. 

 For the view controller to update the text field views, it will need a way of referenc-
ing them in code.

CONNECTING VIEWS TO OUTLETS

The easiest way to get a reference to a view in the storyboard in your custom view con-
troller class is to use what’s called an outlet. An outlet is a variable in your code that’s
connected behind the scenes with a view in Interface Builder. Let’s set up outlets for
the two text fields now. 

CHECKPOINT If you’d like to download the project at this point, you
can check it out at https://github.com/iOSAppDevelopmentwith-

SwiftinAction/DistanceConverter.git (1.InitialSetup).

https://github.com/iOSAppDevelopmentwithSwiftinAction/DistanceConverter.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/DistanceConverter.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/DistanceConverter/blob/1.InitialSetup/DistanceConverter/Distance.swift
https://github.com/iOSAppDevelopmentwithSwiftinAction/DistanceConverter/blob/1.InitialSetup/DistanceConverter/Distance.swift


100 CHAPTER 4 View controllers, views, and outlets
 Open the main storyboard. To set up your outlets, you’ll first need to open the
Assistant Editor. 

Using the Assistant Editor
Opening the Assistant Editor splits the editor area into two editor panes, most com-
monly with the standard editor on the left and the Assistant Editor on the right. The
two editor panes could be the same type of editor, such as two Swift files, or they
could be different types, such as the storyboard on the left and a related Swift file on
the right.

Open the Assistant Editor by selecting the Assistant Editor selector at the top right—
that’s the button in the middle of the three editor selectors that looks like two rings.

When you want to close the Assistant Editor, leaving only the standard editor open,
select the editor selector on the left that looks like a paragraph of text.

As you’ve seen, if you select a file in the Project Navigator, the standard editor pane
will open that file in the appropriate editor. How do you open a file in the Assistant
Editor pane? 

An alternative way to open a file in either editor pane is by using the jump bars at the
top of the editor panes. The jump bars display a hierarchical path of where what
you’re currently editing fits into the project. The hierarchy of the jump bars spreads
on the left from the project itself, to your current location in the file on the right. Use
the jump bars to jump to a different file or location within a file. 

In the Assistant Editor, the left of the jump bar gives you additional modes for navi-
gating to a file. The Manual mode gives you the same hierarchy you’ve seen in the
standard editor’s jump bar. But the real magic of the Assistant Editor lies in other
automated modes that open files related to your selection in the standard editor. If
you have Interface Builder open in the standard editor, for example, the Automatic
mode becomes available and automatically opens the source file for the object you
select in Interface Builder.

Standard
editor

  Assistant
  editor



101Managing views
Now, you should have the storyboard open in the standard editor, and the Assistant
Editor open to the view controller source file. 

1 Find the text field before the label that says “miles.” Hold down the Control key
and drag from the text field to your view controller source file below the decla-
ration of distance.

2 A connection menu appears. Give the outlet the name “milesTextField” and
select Connect. 

If, for example, you select the view controller in the storyboard, your custom View-
Controller class will automatically open in the Assistant Editor pane, if you have
Automatic mode selected.

Assistant editor jump bar
in automatic mode

Standard editor
jump bar

Assistant editor automatically
opens related class 

Storyboard in standard editor
with View Controller selected



102 CHAPTER 4 View controllers, views, and outlets
3 A variable appears in your code. See figure 4.16 for clarification on the steps to
create an outlet.

You should see a line of code appear in your code defining the outlet:

@IBOutlet weak var milesTextField: UITextField!

1. Control-drag the text field to
   the view controller subclass.

2. Give the outlet a name
    and click Connect.

3. An @IBOutlet is created.

Figure 4.16 Steps to create an outlet



103Managing views
NOTE An @ symbol indicates an attribute that provides more information
to the compiler about a variable or type declaration. Attributes that begin
with IB indicate a possible connection in Interface Builder. 

You might notice several interesting aspects of this outlet property:

 @IBOutlet—This keyword lets Interface Builder know that this property is an
outlet and can be connected to an object in the storyboard. 

 weak—The weak keyword relates to memory management and is included to
prevent strong reference cycles. 

AUTOMATIC REFERENCE COUNTING Automatic Reference Counting (ARC) is
Apple’s approach to automatically removing objects from memory that are
no longer being referenced. All instance variables default to be strong.
While at least one strong reference to an object exists, it won’t be deallo-
cated from memory. A weak reference to an object, on the other hand,
won’t prevent an object from being deallocated from memory. Why then,
doesn’t a weak IBOutlet variable get deallocated from memory? IBOutlet
variables usually refer to a view in the view hierarchy, which are automati-
cally strongly referenced in a view’s subviews array. While the variable
remains in the view hierarchy of a view controller in memory, it will not be
deallocated from memory.

 Implicitly unwrapped optional—That exclamation mark at the end of the outlet
declaration indicates that this is an implicitly unwrapped optional. As this outlet
isn’t defined in the init() method of the view controller, it needed to be an
optional, and rather than unwrapping this property every time you use it, Apple
made the decision that an implicitly unwrapped optional was most convenient
for outlets.

 A circle appears to the left of the declaration, in the line number column—The filled-in
circle within a circle indicates that this outlet is connected to an item in the sto-
ryboard. Hover over it to highlight the connected item in the storyboard.

EDIT OUTLET PROPERTIES

Now that you have an outlet for milesTextField, you can edit its properties, the way
you did earlier when you created views in code.

1 In the viewDidLoad() method, set the text field’s text property to the miles
property of the distance object you set up earlier. As text is a String and
miles is a Double, you’ll need to use string interpolation to assign the value. 

milesTextField.text = "\(distance.miles)"

2 Create an outlet for the kilometers text field as well, and this time set its text
property to the km property of distance.

kmTextField.text = "\(distance.km)"



104 CHAPTER 4 View controllers, views, and outlets
3 Run the app. 

The value for miles that you used to instantiate your distance object will be converted
to kilometers and displayed in the relevant text fields.

 Congratulations, you can now make connections in code to views you set up in the
storyboard!

In the next chapter, you’ll make this distance conversion useful by including user
interaction, using the special abilities of types of views called controls.

4.5  Summary
In this chapter, you learned the following:

 Manage your scene's root view and subviews with a subclass of UIView-
Controller.

 Use outlets to connect views in the storyboard to variables in your code.
 Use the Assistant Editor to create outlets. Provide custom implementation to

your UIViewController subclass by overriding methods that will be called at
different moments during the view controller's lifetime. Here are several impor-
tant UIViewController methods you can override: 

– init(): Initializer of view controller; view isn’t yet available.
– viewDidLoad(): Initial setup of view here.
– viewWillAppear(): Updates view every time you navigate to this scene.
– viewDidAppear(): Updates view every time you navigate to this scene. Use

if processor intensive, for example, to start an animation or play a sound.
– viewWillDisappear(): Cleans up before you navigate away from this

scene, for example, to stop a sound file, animation, or store a state.
– viewDidDisappear(): Cleans up after you navigate away from this scene.
– deinit(): Tidies up when deallocating this view controller from memory.
– didReceiveMemoryWarning(): Place to free up memory.

CHECKPOINT If you’d like to compare your code with mine, you can
check out the next branch at https://github.com/iOSAppDevelop-

mentwithSwiftinAction/DistanceConverter.git (2.ConvertDistanceFromCode).

https://github.com/iOSAppDevelopmentwithSwiftinAction/DistanceConverter.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/DistanceConverter.git


 User interaction
Apps would be static, linear, and boring if the user couldn’t interact with them. In
this chapter, we’ll look at three different ways an app can respond to user interaction:

 Controls are special types of views that are built to receive user interaction.
You’ve already seen one type of control in the distance converter app: the
text field. In this chapter, you’ll extend the distance converter app to convert
kilometers or miles that the user enters in the text fields, by adding buttons
and responding to changes in the text fields. Finally, we’ll look at other avail-
able controls for receiving user interaction.

 Next, we’ll look at receiving user interaction in a view via touches. Custom
views can respond to touches by overriding relevant view methods. To
explore this concept, you’ll build an app with a custom view that changes
color when you tap it. 

This chapter covers 
 Responding to simple touch events

 Responding to complicated touch gestures

 Using controls for user interaction
105



106 CHAPTER 5 User interaction
 We’ll then look at receiving user interaction via gestures. Using gesture recognizers,
your app can detect much more complicated movements from touches such as
pinching, rotating, long press, or swiping. In this chapter, you’ll build a simple
image viewer app that will respond to gestures.

5.1 Controls
A control is a special type of view that’s designed for user interaction. Because controls
come with UIKit and are available for everyone to use in their apps, they have a consis-
tent and familiar look across different apps, making controls in your interface more
intuitive for your users. 

 As with gestures, control events can trigger actions in your code. Let’s look at sev-
eral different types of controls, and how to receive notification of different control
events.

5.1.1 Buttons

One of the most common controls in UIKit is the button. See figure 5.1 for default
looks for several different button types.

You’ll use system buttons to make your distance converter app interactive. The user
can convert the number of miles they’ve entered to kilometers or vice versa (see fig-
ure 5.2). Okay, we’re not going to win any design awards, but we’re focused on func-
tionality for the moment.

Figure 5.2 Distance converter interface

CHECKPOINT Open the distance converter app where you left it at the
end of the last chapter, or check it out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/DistanceConverter.git. (2.ConvertDistance-
FromCode).

Figure 5.1 Button types

https://github.com/iOSAppDevelopmentwithSwiftinAction/DistanceConverter.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/DistanceConverter.git


107Controls
ADDING A BUTTON

Let’s add the two convert buttons to the interface.

1 Open the main storyboard and drag on a Button from the Object Library
beside the miles label. 

2 Open the Attributes Inspector and take a moment to inspect the attributes
available for buttons. Notice the State Config attribute. Buttons can have four
different states, shown in table 5.1.

One important thing to understand with buttons is that attributes below the State
Config attribute only apply to the currently selected state. If you don’t set specific attri-
butes for a state, appropriate defaults for that state will be implemented. 

 For the default state, change the text of the button (called its title) to “Convert to
km.” While you’re here, drag on a second button beside the kilometers label, and give
it the title “Convert to miles.”

 Run it on the iPhone 6s Plus simulator. The interface should look something like
figure 5.2.

CREATING CONTROL ACTIONS

Nothing happens yet when you tap the buttons. You’re going to connect the convert
buttons with methods in the view controller code that will perform the conversion
and display the result. 

 To connect a method to a control event in Interface Builder, you’ll need to define
the method as an action. An action in simple terms is a method that will be triggered
when something happens. In this case, you’ll create an action method in your view
controller code that will be triggered when a convert button is touched using the fol-
lowing steps:

1 As you did when creating an outlet in the previous chapter, open the Assistant
Editor. Holding down the Control key, drag from a Convert-to-km button in
Interface Builder to your view controller source code, below the viewDidLoad
method.

TIP If you don’t see the view controller source code, double-check you have
the Automatic mode selected in the Assistant Editor jump bar.

Table 5.1 Button states

State Description

Default The default state for the button

Highlighted Active while the user is touching the button

Selected Active if the button’s selected property is set to true

Disabled Active if the button’s enabled property is set to false



108 CHAPTER 5 User interaction
2 This time, instead of creating an outlet, you’ll create an action. Change the
Connection type to Action. Give your action a Name—let’s call it “convert-
ToKm.” 

3 Notice the many event options available to you. Touch Down refers to a touch
being detected on the button, while Touch Up Inside refers to a finger lifting
off the button. The rest of the settings are fine left at their defaults. Select Con-
nect, and an @IBAction will be generated in the view controller source. See
figure 5.3 to clarify the steps.

Figure 5.3 Create control action

1. Control-drag the button to
   the view controller subclass.

2. Select Action, give the action
    a name, and click Connect.

3. An @IBAction is created.



109Controls
Now that you’re receiving notification of the user tapping a convert button, you
can perform the conversion. 

Like outlets, action methods are tagged with a keyword that begins with @IB,
which stands for Interface Builder. The @IBAction keyword indicates that this
method can be connected to something in the storyboard and the filled-in cir-
cle next to the line number indicates that this action is indeed connected.

Connecting an event to a method (known as the action) in an object (known as
the target) in this way is called the target-action pattern. Later, we’ll explore set-
ting up this connection in code.

4 First, you need to cast the String contents of the miles text field to a Double
in the convertToKm method. As the result of this conversion is an optional,
use optional binding:

if let miles = Double(milesTextField.text!) {
}

5 Reset the distance object’s miles property, and the distance object will
automatically convert the kilometers. Convert the km Double to an Int to
remove the unnecessary decimal value, and display it in the kilometers text
field:

distance.miles = miles
kmTextField.text = "\(Int(distance.km))"

CHALLENGE Follow the same process to create a convertToMiles()
method, triggered by the Convert to Miles button, that converts the value in
the kilometers text field   to miles, and displays the result in the miles text
field. 

6 Run the app, and your distance converter app has become truly interactive,
converting distances when you tap the conversion buttons. 

But wait—are the conversion buttons necessary? Maybe the conversion could happen
automatically as the user types the distance into the text field.

 As it happens, text fields are types of controls too, and can also trigger actions in
your code. Let’s take a look.

5.1.2 Text field

Text fields display one line of text that the user can edit using the pop-up software key-
board. 

CHECKPOINT Compare your solution with mine at https://github.com/
iOSAppDevelopmentwithSwiftinAction/DistanceConverter.git (3.Con-

vertDistanceWithButtons).

https://github.com/iOSAppDevelopmentwithSwiftinAction/DistanceConverter.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/DistanceConverter.git


110 CHAPTER 5 User interaction
 Select a text field now, and examine the attributes available in the Attributes
Inspector. 

 You can adjust how autocorrection works in Capitalization, Correction, and
Spell Checking. 

 With the return key attribute, you can change the look or text of the return key
to a variety of predefined options. 

 You can request that text entered be hidden (that is, Password field) by select-
ing Secure Text Entry.

 Under Keyboard Type, you can choose which type of keyboard you want to
appear. Different types are relevant for different text field purposes.

KEYBOARD TYPES

There are three main categories of keyboards, with different variations, as explained
in table 5.2.

To make the different variations of keyboards, the bottom layer of keys in the ASCII
keyboard is swapped out, and one of the Number Pad keys is swapped out. See figure
5.4 for all keyboard type variations.

 That’s not all the different keyboard types! Keyboard keys and layout vary depend-
ing on the language, the orientation of the device, and the device type itself! 

 Which type of keyboard is most appropriate for your miles and kilometers text
fields? Choose an appropriate type and make the adjustment in the Attributes
Inspector.

CONNECTING ACTIONS FROM INTERFACE BUILDER

You’ll modify your distance converter app to automatically calculate the distance con-
version as the user types it into the text field.

1 Open the Assistant Editor. Unlike earlier, where you created a new method,
you’ll connect an existing method, convertToKm(), to a text field event. 

2 Holding down Control, drag from the miles text field to the convertToKm()
method. The Connect Action text should appear (see figure 5.5).

Table 5.2 Keyboard categories

Category Use

ASCII Text, emails, URLs, and so on. The Numbers and Punctuation keyboard 
can be accessed if necessary.

Numbers and Punctuation Numbers and punctuation, where the ASCII keyboard can be accessed if 
necessary.

Number Pad For when numbers and relevant symbols are required, and the ASCII key-
board isn’t required.



111Controls
 

Figure 5.5 Connect Action from Interface Builder

ASCII-capable

URL

Name phone pad

Email

Twitter

Web search

Numbers and punctuation

Number pad

Phone pad

Decimal

Figure 5.4 The three keyboard types



112 CHAPTER 5 User interaction
3 Run the app, and make changes to the miles text field. Notice that the kilome-
ters text doesn’t change. 

4 Inside your running app, tap in the kilometers text field. Notice that now the
kilometers value changes! What’s going on?

5 Back in Interface Builder, select the miles text field, and open the Connections
Inspector to get a better idea of what’s going on. You should see that the “Edit-
ing Did End” event is connected to the convertToKm method.

You may have noticed when you connected the action to the text field that you didn’t
have a choice of event. Connecting actions in this way assumes a control’s default
event. The Editing Did End event is the text field’s default, which only triggers after a
user stops editing a text field, for instance, by tapping on another text field. 

DELETING CONNECTIONS

This isn’t the event we’re looking for, so delete the Editing Did End connection by
selecting the X in the Connections Inspector (see figure 5.6).

CONNECTING ACTIONS FROM THE CONNECTIONS INSPECTOR

The Editing Changed event triggers whenever the text in a text field is modified. This
sounds more like it! Connect the Editing Changed event to the convertToKm
method.

1 Drag from the Editing Changed circle in the Connections Inspector to the
convertToKm method (see figure 5.7).

Figure 5.7 Connect Action from Connections Inspector

Click the X.

Figure 5.6 Delete the connection.



113Controls
2 Run the app again. This time, as you make changes to the miles text field, you
should see the kilometers text field converting automatically. Success!

CONNECTING ACTIONS FROM CODE

You could connect the Editing Changed event for the kilometers text field to the
convertToMiles() method in the same way, but this time let’s connect the action in
code. 

 Use the UIControl’s addTarget() method to specify the target and the action.
You’ll also need to need to specify the control event itself that you’re listening for
(editingChanged). These steps show you how:

1 Add the following line to the view controller’s viewDidLoad method:

kmTextField.addTarget(self, action: #selector(convertToMiles), 
    for: .editingChanged)

In English, this line says, "When the editingChanged event is triggered, call
the convertToMiles() action on self (that is, instance method of the view
controller).

And that’s all that’s necessary to connect the action in code! Now that you’ve
made the conversion happen automatically, you’ve made the buttons redun-
dant! 

2 Select and delete the buttons. 
3 You could also remove the @IBAction keyword from the convertToMiles()

method because this is called from code now, and isn’t connected to an event in
Interface Builder. If you forget to do this, don’t worry; it’s not strictly necessary.

4 Run the app again, and admire your work. You have completed a fully interac-
tive distance conversion app!

CHECKPOINT If you want to check out my version of the app at this
point, you can do that at https://github.com/iOSAppDevelopmentwith-

SwiftinAction/DistanceConverter.git (4.ConvertDistanceWhenTextChanges).

https://github.com/iOSAppDevelopmentwithSwiftinAction/DistanceConverter.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/DistanceConverter.git


114 CHAPTER 5 User interaction
5.1.3 Other controls

UIKit provides several controls for different purposes. We’re not going to discuss all of
them in detail now, but table 5.3 has a summary of what’s available and what they’re
useful for.

NOTE If we’re being pedantic, Picker isn’t a control, although Date Picker is!
How could this be possible? While the UIDatePicker class subclasses
UIControl, the UIPickerView class subclasses UIView directly, bypassing
UIControl. Therefore, UIPickerView doesn’t have access to connect
events to action methods. Rather, it uses what’s called the delegation pattern
to be customized and receive user interaction (we’ll look at the delegation
pattern shortly). The user has no idea of the internal implementation of a
view, so if it looks like a control and works like a control, it’s a control! I’ve
therefore included the Picker in this list of controls.

Controls are a useful high-level way to implement user interaction. But sometimes you
don’t need all the bells and whistles of controls—you might have a simple view, and
you need to receive information on touch events.

Table 5.3 UIKit controls

Control Default interface Use Example usage

Switch Modify a Boolean value 
between an on or off state. 
Similar to a toggle button 
or checkbox. 

Turn sound off or on.

Slider Modify a numeric value 
between a continuous 
range of values, such as 
between 0 and 1.

Adjust the sound volume.

Stepper Modify a numeric value by 
increasing or decreasing by 
a defined amount.

Select the quantity of a 
product in a shopping cart.

Picker Select a value from a set 
of values. Similar to a 
drop-down or combo box, 
but allows for multiple 
selectors.

Select a language from a 
set of languages.

Date Picker Select a date and/or time. Select a departure date in a 
travel app. 

Segmented 
Control

Select one value from a 
small set of values.

Select a travel class 
(Economy, Business) in a 
travel app.



115Touching views
5.2 Touching views
In this section, you’ll create an app called Touch Views that displays simple views that
change color when the user touches them. See figure 5.8 for the interface on the left,
and the view hierarchy of the app on the right.

Figure 5.8 Touch Views app view hierarchy

When you have the project open in Xcode, open the ViewController.swift file and
examine how the views are constructed in code, passing in a CGRect structure to the
UIView initializer, the way you did in the ViewsInCode project in the previous chapter.

 To distinguish the views from each other, they each have a different random back-
ground color. The random property is already set up for you in a UIColor extension
that you can find in the UIColorExtension.swift file.

 Notice that while views A, B, and C are being added to the subviews of the root view,
view D is added to the subviews of view C. Have another look at this view hierarchy
in figure 5.8. Note that a view that is added after another view appears in front. This is
why view B appears to be in front of view A.

CHECKPOINT To spare you the headache of setting up this interface,
check out the TouchViews project repository at https://github.com/

iOSAppDevelopmentwithSwiftinAction/TouchViews.git (1.Initial Setup).

Root view

View B View C

View D

View A

A

B

C
D

https://github.com/iOSAppDevelopmentwithSwiftinAction/TouchViews.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/TouchViews.git


116 CHAPTER 5 User interaction
5.2.1 Hit testing

Whenever an app receives a touch event, it first follows a path down the view hierarchy
performing what is called hit-testing to determine the lowest-level view that was
touched.

 For example, if the user touches within the bounds of view D (see figure 5.9), iOS
first checks the root views’ subviews from front to back (that is, views C, B, and then A)
until it finds a view that contains the touch. When it finds the touch in view C, it
doesn’t need to continue looking in views B and A. It then looks inside the subviews of
view C and finds that view D contains the touch. As view D doesn’t have any subviews,
it determines view D is the lowest-level view that was touched.

5.2.2 Overriding touch methods

After drilling down to view D, iOS will then call this view’s touchesBegan() method,
passing in a Set of touches. If you create a custom subclass of UIView and override
this method, you can provide custom implementation for this view when it’s touched.

1 Create a custom view class to receive and respond to this method. Select File >
New > File > iOS > Source > Cocoa Touch Class. Subclass UIView, and name
your custom view ColoredView. 

2 Override the touchesBegan() method. 
3 Call its super method.

Root view

View B View C

Hit test

Hit test

View D

View A

A

B

C
D

Touch

Found the touch!

Figure 5.9 Hit testing



117Touching views
4 Reset the background color of the view to another random color.

override func touchesBegan(_ touches: Set<UITouch>, with event: 
UIEvent?) {
    super.touchesBegan(touches, with: event)
    self.backgroundColor = UIColor.random
}

Now, back in the ViewController class, instead of creating instances of
UIView, create instances of your new view subclass, ColoredView. 

5 Go through the ViewController class replacing all mentions of UIView with
ColoredView.

6 Run the app again, touch the different views, and watch them change color. 

Notice that when you touch view B where it overlaps view A, only view B changes color.
iOS checks a view’s subviews in the order that they’re displayed, from front to back.
When a view returns a successful hit test, iOS stops checking other views at this level.
In the example, view B is closer to the front than view A because it was added last.
Because it’s the front view, when it returns a successful hit test, iOS stops there, and
doesn’t perform a hit test on view A.

 Notice that when you touch view D, its superview, view C, also changes color. Why?

5.2.3 The responder chain

When a view receives an event such as a touch event, it passes this event up to its super-
class, and so on. When the event arrives at the root view of a scene, it’s passed to the
scene’s view controller. The view controller in turn passes the event on to the super-
view of its root view. In this example, the superview of the root view of the scene is the
window of the app. The dotted line in figure 5.10 illustrates the path of the event in
our app, called the responder chain.

Root viewView controller

View B View C

View D

Window

View A

Figure 5.10 The responder chain



118 CHAPTER 5 User interaction
Every object that can receive these events is called a responder and every responder
(that is, UIView and UIViewController) subclasses the UIResponder class. The
UIResponder class is where you’ll find the touchesBegan() method. 

 Let’s demonstrate that the view controller is on the responder chain.

1 Add the same touchesBegan() method to the ViewController class. This
time, change the background color of its root view.

override func touchesBegan(_ touches: Set<UITouch>, with event: 
UIEvent?) {
    super.touchesBegan(touches, with: event)
    self.view.backgroundColor = UIColor.random
}

2 Run the app, and you should notice the background color of the root view
changes on all touches.

Other UIResponder methods can be overridden to receive other touch events, as
explained in table 5.4.

CHALLENGE Make the views also change color when the user lifts their finger
off the view. You can check out the completed app at https://github.com/
iOSAppDevelopmentwithSwiftinAction/TouchViews.git (2.ColoredView).

With all these triggers for touches, you could easily respond to taps—but what if you
want your view to also respond to double taps? Should you wait a short period before
responding to the tap, in case it was going to be a double tap? How long would that
short period of time be?

 What if you want your app to pinch to zoom in and out on an image? Are you
brushed up on your Pythagoras theorem?

 Not to worry, Apple has you covered with another type of user interaction called
gesture recognizers. 

Table 5.4 UIResponder touch methods

Touch method Trigger

touchesBegan() One or more fingers touched down on a view.

touchesMoved() One or more fingers moved within a view.

touchesEnded() One or more fingers lifted off a view.

touchesCancelled() A touch is interrupted by a system event.

touchesEstimatedPropertiesUpdated() To ensure touch events are presented in a timely 
manner, sometimes touch attributes are estimated. 
These estimated values are later updated in this 
method. 

https://github.com/iOSAppDevelopmentwithSwiftinAction/TouchViews.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/TouchViews.git


119Gesture recognizers
5.3 Gesture recognizers
Gesture recognizers go one step further than merely reporting touch information.
Gesture recognizers interpret the touches and recognize the intention of the move-
ment the way humans would. They can tell the difference between a swipe and a pan,
a double tap and two single taps, or a pinch and a rotation.

 Without needing to program or understand the complicated underlying code
defining the gesture recognition algorithms, your app can detect and respond to all
sorts of complex predefined gestures.  

 Having standardized gesture recognizers has the added benefit of consistency with
other apps in the App Store, which should make your interface more intuitive for
your users. Apple provides several gesture recognizers, each of which detects different
types of gestures. See table 5.5 for different gestures, the relevant recognizer, and how
this gesture can be used in your app.

You’ll explore the possibilities with gestures by creating a simple image viewer app. In
this app, you’ll pan, zoom, and rotate an image, or tap to view the next image. The
starter project is bare bones, with only an image view in the main scene ready for viewing.

Table 5.5 Gestures

Gesture Recognizer Example usage

Tap UITapGestureRecognizer Selecting a control or item.

Double tap UITapGestureRecognizer Zooming in (or out if already 
zoomed in).

Pinch UIPinchGestureRecognizer Zooming in/out.

Pan UIPanGestureRecognizer Dragging or panning content in 
any direction.

Flick UIPanGestureRecognizer Scrolling or panning content in any 
direction quickly.

Drag from edge of 
display

UIScreenEdgePanGestureRecognizer Drag in additional content from 
off-screen.

Swipe (left, right, 
up, or down)

UISwipeGestureRecognizer Returning to previous screen, 
revealing hidden view or button.

Two fingers circu-
lar movement

UIRotationGestureRecognizer Rotating content.

Touch and hold UILongPressGestureRecognizer Positioning cursor in text fields.

CHECKPOINT Check out a starter project for your image viewer app
at https://github.com/iOSAppDevelopmentwithSwiftinAction/Image-

Viewer.git (1.InitialSetup).

https://github.com/iOSAppDevelopmentwithSwiftinAction/ImageViewer.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/ImageViewer.git


120 CHAPTER 5 User interaction
Image views are straightforward—they’re a special type of view that can display an
image stored in your project.

 If you open the project folder in Finder, you’ll also find a folder called Images with
three photos. Feel free to use these images or replace them with your own photos.
Now let’s add these files to your project!

1 Drag the Images folder into your ImageViewer project in the Project Navigator.
A popup will appear with options when adding files. 

2 Select Copy items, if needed, Create groups, and Add to ImageViewer target,
and select Finish. A yellow group called Images should appear in the Project
Navigator.

Options when adding files to your project
When you add files to your project, you have a few options to consider:

Destination: Copy items if needed. If you check this option, any files or folders you
drag into your project will physically be copied into your project folder. You can theo-
retically include references in your project to files that aren’t in your project folder.
This could make sense, for example, if you’re sharing resources with another project,
though it's recommended to keep all relevant files within your project folder—it helps
organize your resources into one place. The image folder is already in the project
folder, so in this case checked or unchecked is irrelevant.

Added folders: Create groups/Create folder references. When you add a folder, you
have the choice to add it as a reference to the folder, or a reference to each individual
file bundled into a group. If you have a reference to a folder (blue icon), whenever you
update the contents of the physical folder on disk, Xcode will automatically update
its contents in the Project Navigator. A group, on the other hand (yellow icon), is no
longer connected to the folder itself after being added to the project. Any files you
add to the folder will not be reflected in the group, and any files you remove from the
folder will be highlighted as missing files. Generally, it makes sense to go with
groups, but cases exist where folder references can come in handy. For example, per-
haps you’re sharing a folder with a graphic designer and want the resources to update
automatically.

Add to targets: Choose which target you would like to add the files to. Every resource
and source file is explicitly included in the appropriate target. You can check this by
selecting a file in the Project Navigator and noting the Target Membership section in
the File Inspector. Generally, files are divided into their target groups in the Project
Navigator, but files can also be shared between targets. 

File categories

Xcode determines what to do with each file when building your app by categorizing
files into Compile Sources, Bundle Resources, and Frameworks and Libraries. 

Compile Sources—This category refers to all source files, such as Swift or Objective-
C code. Source files are compiled into your app executable, called the binary.



121Gesture recognizers
3 Open the settings for the project target, select the Build Phases tab, and verify
that the images have been added to the Copy Bundle Resources section.

4 Open the main storyboard, select the image view, and in the Attributes Inspector
in the Image attribute, select one of the photos you’ve dragged into the project.

For a view to respond to a gesture, you need to add a gesture recognizer to the view.
You can do this in code, or in Interface Builder. Let’s start by adding a pan gesture rec-
ognizer to the image view in Interface Builder.

5.3.1 Pan gesture

Add a pan gesture recognizer to your image view to be able to pan the image around. 

1 Find the Pan Gesture Recognizer in the Object Library, and drag it onto the
image view. 
You’ll notice that the pan gesture recognizer appears in the document outline
for the view controller and in the scene dock in the Interface Builder canvas. If
you select the image view, you’ll also find the pan gesture recognizer connected
to the image view in the Connections Inspector (see figure 5.11).

Figure 5.11 Pan gesture recognizer

Bundle Resources—This category refers to all sorts of resources and media you may
want to include. Certain resource files such as images, audio files, or even PDF files
are copied directly into your app bundle. Other resource files, such as the asset cat-
alog or storyboards, are converted in different ways when copied into the app bundle.

Frameworks and Libraries—This category refers to frameworks that your app will link
to. Distinct from third-party frameworks, frameworks from Apple are automatically
linked with your project, and they don’t need to be physically added. We’ll look more
at third-party frameworks and libraries in chapter 11.

You can examine the categories of the files in your app in the Build Phases tab of
your project target settings. For more details about project settings, check appendix A.



122 CHAPTER 5 User interaction
Certain gesture recognizers can be customized. If you open the Attributes
Inspector, you’ll find attributes that you can use to customize the pan gesture
recognizer. If you want your pan to only respond to only one- or two-finger
pans, for example, you do that here. 

2 In the Attributes Inspector for the pan gesture recognizer, adjust the maximum
touches to 2. You’re going to create an action to respond to the pan gesture.

3 Open the Assistant Editor. 
4 Holding down the Control key, drag from the pan gesture recognizer in Inter-

face Builder to your view controller source code below the viewDidLoad
method.

5 Change the type of the connection to Action and name the action “handlePan.”
6 Change the Type to “UIPanGestureRecognizer” so your method will explicitly

receive the recognizer, correctly typed as a UIPanGestureRecognizer, in the
function parameters. An action method should appear in your code.
See figure 5.12 for clarification on the steps to create an action for a gesture
recognizer.

7 While you have the Assistant Editor open, the way you did in the last chapter,
create an outlet for the image view and call it “imageView.”
Now you have a method that’s called whenever a pan gesture event is recog-
nized. As gestures take place over a period of time, events could represent, for
example, that a gesture began, changed, ended, or failed. The current state of
the gesture is stored in the state property of the gesture recognizer that’s
passed into the method. The state property stores its current state as a
UIGestureRecognizerState enumeration. Enumeration types store related
values, such as states. We’ll take a closer look at enumerations as well as create
our own enumeration type in chapter 10.

The gesture recognizer also reports back important information about the ges-
ture itself, measured from the moment the gesture began. The pan gesture rec-
ognizer reports a coordinate representing where the user has panned to, from
the moment the gesture began. This information is perfect to use for moving
the image.

You’ll need to convert the pan movement to a coordinate value relative to the
image view’s superview. This type of conversion is called translation. 

8 Translate the coordinate by calling the pan gesture recognizer’s translation
method, passing in the root view:

let translation = sender.translation(in: self.view)



123Gesture recognizers
 

1. Control-drag the Pan Gesture Recognizer
   to the view controller subclass.

2. Select Action, give the action a name, select the
    type of gesture recognizer, and click Connect.

3. An @IBAction is created.

Figure 5.12 Create gesture recognizer action



124 CHAPTER 5 User interaction
9 You can add this x,y coordinate to the image view’s current position to move
the image. Use the UIView’s center property to set the image view’s current
position:

imageView.center = CGPoint(
    x: imageView.center.x + translation.x,
    y: imageView.center.y + translation.y)

Because gesture recognizers report on movement since the moment a gesture
began, and the center property reports on the current location of the image
view, if we continue adding the gesture movement to the image view location
every time the gesture recognizer reports a movement, the image view will
move exponentially. 

To illustrate this, consider if the image view begins at (x:0, y:0). The first time
the gesture recognizer is called, the translation may be a movement of (x:1,
y:1), so the image view is moved to (x:1, y:1). The second time the gesture rec-
ognizer is called, the translation may have moved another 1 point in the x direc-
tion and 1 point in the y direction, so the translation (representing the
movement from the moment the gesture began) will be (x:2, y:2). The new
location of the image view should be (x:2, y:2) but following the code above,
instead it will be (x:3, y:3). What can be done about this?

There are two possible solutions:

 You could use the gesture recognizer’s state property to detect when the
gesture begins, and at this point record the initial location of the view. You
could then base all view movement calculations from this initial location
rather than the view’s current location.

 You could reset the gesture recognizer every time you respond to a gesture
event, so that the gesture recognizer now reports on movement since the last
pan gesture event.

Let’s follow the second solution. 

10 Reset the recognizer to zero:

sender.setTranslation(CGPoint.zero, in: self.view)

Your handlePan method should now look like the following code.

@IBAction func handlePan(_ sender:UIPanGestureRecognizer) {
    let translation = sender.translation(in: self.view)
    imageView.center = CGPoint(
        x: imageView.center.x + translation.x,
        y: imageView.center.y + translation.y)
    sender.setTranslation(CGPoint.zero, in: self.view)
}

Your pan gesture should be working! 

11 Run the app and drag the image around.

Translates
coordinate

Moves the image view

Resets 
the gesture 
recognizer



125Gesture recognizers
5.3.2 Pinch gesture

A good image viewer can zoom in on the image as well.
 Follow the same steps that you followed for the pan gesture recognizer, but with

the pinch gesture recognizer:

1 Drag the pinch gesture recognizer from the Object Library onto the image
view.

2 Open the Assistant Editor.
3 Control-drag the new pinch gesture recognizer to the view controller. 
4 Set the Connection to Action, Name it “handlePinch,” and make the Type

explicitly UIPinchGestureRecognizer.
The pinch gesture recognizer has a property, scale, that estimates the degree
that the user has pinched the view. You’ll use this property to set the scale of the
image view with a view transformation. 

Transformations of a view, such as scale, are performed on a view’s transform
property. This property is a transformation matrix that can be manipulated to
scale, rotate, translate, or skew an object (see figure 5.13).

Figure 5.13 View transformations

Several helper methods exist that can take a transformation matrix and per-
form the calculations to generate a new transformation matrix based on the
type of transformation you’re looking for. For example, to adjust the scale of a
view, you’d use the scaledBy method.

5 Scale the image view using the transformation matrix, passing in the recog-
nizer’s scale property:

imageView.transform = imageView.transform.scaledBy(
    x: sender.scale, y: sender.scale)

6 The way you did with the pan gesture recognizer, and to avoid the image view
scaling up exponentially, you want to reset the recognizer’s scale property.
The default for scale is 1:

sender.scale = 1

Scale Rotate Translate Skew



126 CHAPTER 5 User interaction

C

In the end, your handlePinch method should look like the following:

@IBAction func handlePinch(_ sender: UIPinchGestureRecognizer) {
    imageView.transform = 
        imageView.transform.scaledBy(
            x: sender.scale, y: sender.scale)
    sender.scale = 1
}

Run the app and confirm you can pinch the image to zoom. 

NOTE If you’re running the app in the simulator, you can simulate two fin-
gers if you hold down the Alt key.

Your image viewer app is coming along!

5.3.3 Rotate gesture

To round out your image viewer app, how about adding rotation to the mix?

CHALLENGE After going through the process twice already, you should be
familiar enough to try it yourself without following instructions. Add a rotate
gesture recognizer to the image view. When you’re done, compare your
results with the code in listing 5.1 for the handleRotate method.

TIP Use the rotated method to transform the rotation of the transforma-
tion matrix.

@IBAction func handleRotation(_ sender: UIRotationGestureRecognizer) {
    imageView.transform = 
        imageView.transform.rotated(by:sender.rotation)
    sender.rotation = 0
}

Run your app again, and you can rotate your view as well!

5.3.4 Simultaneous gesture recognizers

You may have noticed a limitation of the recognizers. By default, only one gesture can
be performed at a time. If the system recognizes that you’re pinching to zoom, for
example, you can’t rotate the image until you stop zooming by taking your fingers off
the screen.

 You can change this default behavior, however. You could be zooming and rotating
and panning all at the same time! But to change this default behavior, you’ll need to
use the delegation pattern. 

Listing 5.1 Rotate gesture action

Sets the transformation 
matrixonverts scale

Resets the 
gesture recognizer

Sets the transformation 
matrixConverts

rotation Resets the 
gesture recognizer



127Gesture recognizers
USING THE DELEGATION PATTERN

We’ve looked at the target-action pattern, where one object can call a method on
another object. The delegation pattern is like the target-action pattern on steroids—
in the delegation pattern, an object contains a property called the delegate, which
contains a list of methods that the object can call. You can then implement this dele-
gate object, providing custom responses to the methods the object calls.

 An object can call methods on its delegate for various purposes:

 Notify the delegate that something is about to happen (usually prefixed with
“will”).

 Notify the delegate that something happened (usually prefixed with “did”).
 Request permission from the delegate to do something (usually prefixed with

“should”).
 Request data. (In this case, the delegate is often called a data source. We’ll

explore data sources further in chapter 9.)

The list of methods in a delegate is defined by a protocol—in fact, all an object knows
or cares about its delegate is that it can handle the methods in the delegate protocol.
By convention, the delegate protocol has the suffix “Delegate.”

 You can create a delegate object that adopts the delegate protocol, and then set
your object as the delegate property. Often, for simplicity, a view controller is used as a
delegate object.

 You’ll find the delegation pattern is used frequently in the iOS SDK, including ges-
ture recognizers!

 All gesture recognizers have a property delegate with a list of methods defined
by the UIGestureRecognizerDelegate protocol. This protocol contains methods
such as

 gestureRecognizerShouldBegin—Requests permission from the delegate
to begin recognizing gestures

 gestureRecognizer(shouldRecognizeSimultaneouslyWith)—
Requests permission to recognize this gesture simultaneously with another ges-
ture recognizer

Oh! That method sounds like exactly what you need to be able to zoom, rotate, and
pan at the same time! How about using it?

 To define your view controller as the delegate for a gesture recognizer, your view
controller would need to

1 Set itself as the gesture recognizer’s delegate.
2 Adopt the UIGestureRecognizerDelegate protocol.
3 Implement any required methods in the UIGestureRecognizerDelegate

protocol.

 



128 CHAPTER 5 User interaction
Figure 5.14 Gesture recognizer with a view controller as a delegate

See figure 5.14 for a visual representation of the relationships when a gesture recog-
nizer uses a view controller as its delegate.

 Implement the delegation pattern here by doing the following:

1 Set the view controller as the delegate of the three gesture recognizers. The ges-
ture recognizers then know who to ask (the delegate, that is, the view control-
ler) to find out if they should permit simultaneous recognition. 
This time, you’ll set the delegate in Interface Builder. 

2 Open Interface Builder, and from the Document Outline, Control-drag from the
pan gesture recognizer to the view controller. Select Delegate (see figure 5.15).

Figure 5.15 Set recognizer delegate

Do the same for each of the three gesture recognizers. When you’re done,
select the view controller and open the Connections Inspector. In the Referenc-
ing Outlets section, you should see that each of the three gesture recognizers is
connected to the view controller as a delegate.

UIGestureRecognizerDelegate 

gestureRecognizer(shouldRecognizeSimultaneouslyWith)

ViewController:UIGestureRecognizerDelegate 

•Pan Gesture Recognizer
gestureRecognizer(shouldRecognizeSimultaneouslyWith)

Pan Gesture Recognizer

•delegate:UIGestureRecognizerDelegate 



129Gesture recognizers
3 Adopt the UIGestureRecognizerDelegate protocol. You could directly
adopt the protocol on the view controller class, but a useful convention is to
adopt the protocol on an extension to the view controller. This helps keeps
related code together.
Next, you need to implement any required methods on the protocol. The pro-
tocol contains the list of methods that a gesture recognizer can call on its dele-
gate so that the recognizer knows how to behave. One of the methods
determines whether it should allow other gesture recognizers to be recognized
at the same time—and that’s what you need! 

Add the following to your view controller class.

extension ViewController:UIGestureRecognizerDelegate {
    func gestureRecognizer(_ gestureRecognizer: UIGestureRecognizer,
    shouldRecognizeSimultaneouslyWith otherGestureRecognizer: 
UIGestureRecognizer) -> Bool {
        return true
    }
}

4 Run the app. You should be able to zoom, rotate, and pan at the same time! 

5.3.5 Tap gesture in code

After implementing three gesture recognizers using Interface Builder, you could
probably implement another gesture recognizer blindfolded! Let’s explore an alter-
native approach to setting up a gesture recognizer: implementing it purely with code.

 You’re going to implement a single-finger double-tap gesture that will navigate to
the next image. 

1 Set up an array of the available images and a variable that keeps track of the cur-
rent image number. If you’ve used your own images, make the necessary
changes to this array:

let images = ["CradleMountain.JPG", "Laguna69.JPG", "PatagoniaSky.JPG"]
var imageNo = 0

2 Add a handleTap() action method that will be triggered when the user taps
the image. The method increments the image number by 1 and returns it to 0 if
it reaches the upper limit of elements in the images array. It then replaces the
image in the image view with the next image in the array, as shown in the follow-
ing code. (You could add a fancy transition here, but let’s not complicate things
too soon—all in good time!)

@objc func handleTap(_ sender: UITapGestureRecognizer) { 
    imageNo += 1
    if imageNo == images.count {imageNo = 0}
    imageView.image = UIImage(named: images[imageNo])
}

Adopts
delegate
protocol

Implements 
appropriate 
delegate method

Allows simultaneous 
gesture recognizers 



130 CHAPTER 5 User interaction
NOTE Unlike the other action methods, this action method doesn’t begin
with @IBAction. Because you’re not going to trigger this method from Inter-
face Builder, this attribute isn’t necessary. Instead, this method will need to
begin with the @objc keyword to make it available to Objective-C—more on
that in a moment.

Now, to create the gesture recognizer itself. Every gesture recognizer is instanti-
ated with two parameters, as shown in table 5.6.

3 Add the instantiation of the tap gesture recognizer to your viewDidLoad
method:

let tapGestureRecognizer = 
    UITapGestureRecognizer(target: self, action: #selector(handleTap))

You can now customize the recognizer. 

4 Holding down Command, click on UITapGestureRecognizer to explore the
generated interface for the file. You’ll find that this gesture recognizer has two
forms of customization: numberOfTapsRequired and numberOfTouches-
Required.

5 Return to your view controller code by pointing your mouse cursor at the editor
area and swiping right with two fingers (see figure 5.16).

6 Use what you’ve learned about the tap gesture recognizer and customize yours
to require a single-finger double-tap:

tapGestureRecognizer.numberOfTouchesRequired = 1 
tapGestureRecognizer.numberOfTapsRequired = 2

7 All that’s left is to add this gesture recognizer to the image view:

imageView.addGestureRecognizer(tapGestureRecognizer)

8 Run your app again, and you should now be able to navigate to the next image!

Table 5.6 Gesture recognizer parameters

Parameter Description

target Specifies the object to receive any gesture events, which in this case will be 
self—the view controller.

action Specifies the method to receive notification of the gesture event. You set up 
the handleTap() method to receive these notifications. The action is spec-
ified using a special expression called #selector. Use #selector to 
pass in the name of the method. Because the #selector expression uses 
the Objective-C runtime to connect to the associated method, the method 
will need to be exposed with the @objc keyword.

One 
fingerDouble 

tap



131Summary
Figure 5.16 Shortcut to go back in the editor area

Well, you added double tapping to go to the next image, but how about double tap-
ping with two fingers to go to the previous image? Because each tap recognizer only
recognizes taps of a specific number of fingers and taps, you’ll have to set up another
tap gesture recognizer. 

CHALLENGE Add a double-tap-with-two-fingers gesture recognizer to go to the
previous image. If you want to peek at the answer, you can download the com-
pleted image viewer from https://github.com/iOSAppDevelopmentwithSwift-
inAction/ImageViewer.git (2.ImageViewerComplete).

5.4 Summary
In this chapter, you learned the following:

 Use UIKit controls such as buttons, text fields, switches, and sliders to add an
extra level of interaction to your app.

 When a view is touched, a touch event travels up the responder chain.
 Views or view controllers can respond to simple touches by overriding

UIResponder touch methods.
 Use gesture recognizers to interpret touches as more-complex gestures such as

pan, pinch, tap, and rotate.
 Controls and gesture recognizers can trigger actions that connect to methods

in your code.
 Connect control events or gestures to methods via Interface Builder or in code.

Swipe right
with two fingers

https://github.com/iOSAppDevelopmentwithSwiftinAction/ImageViewer.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/ImageViewer.git


132 CHAPTER 5 User interaction



Adaptive layout
From the iPhone 4S to the iPad Pro, vastly different device resolutions are available
that your app needs to look good in. After adding landscape and portrait to the
mix, plus all the different multitasking windows that your app can find itself in, it’s
a headache to think about designing different fixed app layouts for all the different
combinations and permutations.

 There must be an easier way. How can the interface of an app look great regard-
less of its environment?

 Over the years, Apple has introduced several different approaches for setting up
a layout that adapts to its environment. In this chapter, we’ll look at various solu-
tions and how to choose between them.

This chapter covers 
 Manually adapting layouts

 Automatically adapting layouts

 Adapting layouts in code and in Interface Builder

 Choosing how best to adapt layouts
133



134 CHAPTER 6 Adaptive layout
6.1 The problems
Before we look at the solutions, let’s look
closer at the problems we’re facing.

DEVICE RESOLUTIONS

Once upon a time, there was one iPhone,
and everyone was happy. Pixels were the
same as points, and developers knew the
resolution of the screen they were develop-
ing for. Fast-forward to today, and there are
multiple devices on the market, let alone in
people’s hands, and multiple point resolu-
tions that an app needs to look great on
(see figure 6.1).

DEVICE ORIENTATION 
Apps don’t display only in portrait orienta-
tion. Apple recommends that apps display
in both portrait and landscape orientation,
where possible. Oops, that doubles the
number of resolutions your app layout
must accommodate (see figure 6.2).

12.9-inch iPad Pro

iPad / iPad Mini / iPad Air

iPhone 8 Plus
iPhone 8

iPhone SE

10.5-inch iPad Pro

iPhone X

Figure 6.1 Device point resolutions

12.9-inch iPad Pro

iPad / iPad Mini / iPad Air

iPhone 8 Plus

iPhone 8

iPhone SE

10.5-inch iPad Pro

iPhone X
iPad / iPad Mini / iPad Air

10.5-inch iPad Pro

iPhone XiPhone 8
iPhone 8 Plus

12.9-inch iPad Pro

iPhone SE

Figure 6.2 Device point 
resolutions with orientation



135Auto layout
APP WINDOW SIZES

In iOS 9, Apple introduced different multitasking capabilities to iPads. Slide Over, avail-
able on most iPads, allows you to drag in a narrow version of an app. Split View, avail-
able on newer iPads, allows two apps to run side by side, at a width customizable by the
user, giving iPads nearly infinite combinations of widths.

VIEW CONTROLLER SIZES

View controller root views don’t always fill the screen. View controller views can take
up a portion of a screen, for example, when presented as a popover or as part of a split
view controller. 

 These factors—device resolutions, device orientations, app window sizes, and differ-
ent view controller sizes—need to be considered when presenting a scene in your app. 

CONTENT

And it doesn’t stop there. Up to now, we’ve looked at how the layout of a scene’s con-
tent must adapt to its environment. What if the content itself changes? A label could
display dynamic text, for example, or your app could support different languages. 

 Whether the pressure is from external or internal forces, the layout of your app
needs to adapt. But how? 

6.2 Auto layout
Auto layout is a technique for describing interfaces using constraints. The Auto Lay-
out engine uses these constraints to calculate how to lay out your app’s interface. 

 In this book, you’ll build a Bookcase app in which a
user can keep track of books in their bookcase. The
designer has sent through the interface in figure 6.3 for
adding the details of a book. You’re going to lay out this
scene, exploring auto layout!

CHECKPOINT Open the repo here, which con-
tains the interface ready to lay out with auto lay-

out from https://github.com/iOSAppDevelopment
withSwiftinAction/Bookcase.git (Chapter6.1.Initial-
Setup).

Figure 6.3 Add-a-book 
interface

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


136 CHAPTER 6 Adaptive layout
In auto layout, views have a number of main layout constraints. Constraints are
divided into size and location, which is divided further into horizontal (x-axis) and ver-
tical (y-axis). See table 6.1.

NOTE You may wonder, if leading and trailing are constraints on the left and
right, wouldn’t left and right attributes be redundant? Well, there’s a difference.
Although leading is on the left and trailing on the right if the device’s current
language is left-to-right (such as English), the two attributes switch sides if the
current language is right-to-left (such as Arabic). Why would they do this?
Whereas left-to-right language speakers expect to see their most important
content on the left, right-to-left language speakers expect it on the right. It’s
recommended to use leading and trailing constraints over left and right,
because they ensure the most important content is always in its correct place.

See figure 6.4 to help visualize these attributes.
 Size constraints are the only constraints that can be a value in themselves, without

relating to another view. All location constraints must (and size constraints can) spec-
ify the view that they relate to. It can make sense to say view A is 50 points high, but it
doesn’t make sense to say it’s 50 points in the y direction ... away from what? Fifty
points away from its superview top? Fifty points away from another view’s bottom?

Table 6.1 Constraint types

Categories Attribute Additional information

Location: Horizontal Leading, Trailing Constraints on the left (leading) and right (trailing) of a 
view. In right-to-left languages, their directions swap.

Left, Right It’s usually preferable to use leading and trailing. See the 
note following the table for more information.

Center X

Location: Vertical Top, Bottom

Center Y

Baseline, 
First Baseline

Text views such as labels contain a baseline representing 
the bottom of the first or last lines of text (excluding 
descenders that drop below the line in letters such as j, 
p, or q).

Size Width, Height Can be an absolute value, or relative to another view’s 
size constraint. 

Aspect ratio 
(based on width 
and height)

To constrain a view’s aspect ratio, constrain its width to its 
height.



137Auto layout
6.2.1 Auto layout tips

Auto layout can be a complicated topic at first, but with practice, the process of
describing your layout using constraints will become easier. 

 After laying out the interface in the storyboard, it can help—especially while learn-
ing auto layout—to sketch out the constraints on paper, separating the horizontal and
vertical constraints. Then ask yourself three questions:

 Is it possible to determine the size and position of every view based on these
constraints?

 Do your constraints still make sense if the width or height of the scene’s root
view increases? Will a view stretch, for example? 

 Do your constraints still make sense if the width or height of the scene’s root
view decreases? Will a view shrink, for example?

6.2.2 Auto layout in Interface Builder

Let’s use auto layout in Interface Builder to describe the add-a-book form interface. 
 Open the main storyboard and select View As at the bottom left of the storyboard

canvas. This opens the device configuration bar, where you can select to view the story-
board from the perspective of different devices or orientations (see figure 6.5).

Size attributes

View

Height

Width

Horizontal attributes

View View

Center X

Leading/left Trailing/right

Vertical attributes

Top

Bottom

Center Y

Baseline

Figure 6.4 Constraint attributes

Figure 6.5 View as



138 CHAPTER 6 Adaptive layout
You’ll find the interface has been laid out nicely in the storyboard for when you’re
viewing it as iPhone 8, but because no adaptive layout has yet been implemented, it
looks wrong viewed on other devices or orientations. Because views are merely posi-
tioned from the top left by default with absolute width and height point values, in dif-
ferent resolutions they can appear positioned incorrectly, or cut off (see figure 6.6).

Figure 6.6 Interface before auto layout

Let’s implement auto layout constraints to rectify the situation. 
 Luckily, our helpful designer has sketched out how they want the design to look,

separating the horizontal constraints (width and location) from the vertical con-
straints (height and location) and adding helpful comments. Take a moment to famil-
iarize yourself with the horizontal constraints in figure 6.7. Confirm for yourself
whether you could determine the x position and width of every view in the design
based on these constraints, regardless of the width of the root view. (Don’t worry if
certain rules aren’t clear yet; we’ll look at each of them in turn.)

 Before we look at the vertical constraints, how about adding a couple of horizontal
constraints? Let’s start with the horizontal constraints on the book view.

iPad ProiPhone 8 iPhone 4S



139Auto layout
If you select the book image and examine its attributes in the Attributes Inspector,
you’ll find that it’s set to Aspect Fit mode. This means that it will fit the image inside its
boundaries (represented in figure 6.7 by the shaded rectangle), but maintain its
aspect ratio. This has been set to Aspect Fit mode, so that in the future, if this image is
replaced by a wide and short image, it will fill out the available space. We’ll look more
at image views in chapter 13.

16 points from left
safe area layout guide

16 points from left safe
area layout guide

Standard distance Available width

All three text fields same
width, right justified

16 points from right
safe area layout guide

Available
width

16 points from right
safe area layout guide

Intrinsic
content width

Center

Figure 6.7 Horizontal constraints for the add-a-book scene



140 CHAPTER 6 Adaptive layout
CREATING CONSTRAINTS IN THE CANVAS

Add your first constraint on the book image: 16 points from left safe area layout guide.
Follow the steps in figure 6.8.

Figure 6.8 Create a constraint.

1. Control-drag from the book
   image view to the left and
   release on its superview.

2. Select Leading Space
    to Safe Area.

3. Red arrow appears in
    document outline; red
    lines appear in canvas.



141Auto layout
When you create your first constraint, red error lines will appear in the canvas. Auto
layout errors can indicate one of two types of errors, as explained in table 6.2.

At this early stage, these error lines indicate that your layout is ambiguous because you
have more constraints yet to define! You’ll also see an error arrow at the top right of
the document outline. Select this arrow to get more information about the problem.
You’ll find that the book view is missing a constraint for the y position. Not to worry,
you’ll get to that when you look at the vertical constraints!

The book’s width is represented with a dotted line in figure 6.7 because it’s implicitly
defined by other constraints. If the book view is pinned to the left and right of its
superview, there’s no option but for the width to fill the available space. If you were to
specify an absolute width for the book, the layout may work for one resolution, but if
the superview had a width of any other value, the layout rules would cause an unsatis-
fiable layout.

 Similarly, the widths of the title text field, author text field, and notes text view are
implicitly defined by the width of views to their left and right. If the root view is dis-
played on a wide device or orientation, these three views will merely grow to fill the
available space.

 Add the right constraint for the book:

1 This time, Control-drag to the right, releasing again on the book’s superview. 
2 Select Trailing Space to Safe Area. The book view is now pinned to the left and

right safe area layout guides of the root view, and implicitly fills the available
width. 

Table 6.2 Auto layout errors

Error Description

Unsatisfiable layout Two or more constraints are in conflict. 

Ambiguous layout Your layout has two or more solutions, and the Auto Layout engine isn’t clear 
which is preferable.

Safe area layout guides
The root view of each scene automatically contains a safe area, bordered by what are
called safe area layout guides. Pinning your view to safe area layout guides ensures
that your view is not obscured by other interface elements such as status, navigation,
and tab bars. 



142 CHAPTER 6 Adaptive layout
3 You can confirm that the two con-
straints have been added correctly by
opening the Size Inspector with the
book view selected. See figure 6.9.

To finish off the book’s constraints,
in figure 6.10, look at the vertical con-
straints from the sketch of our
friendly designer. Confirm for your-
self again that these rules are sufficient for the Auto Layout engine to deter-
mine the y position and height of every view.

Figure 6.10 Vertical constraints for add-a-book scene

Figure 6.9 Constraints in the Size Inspector

Flush with top safe
area layout guide

30% of container
height

Standard distance

Intrinsic
content height

Available height

Align baseline to
text field baseline

Align baseline to
text field baseline

Align top to
text view top

Flush with
bottom safe area
layout guide



143Auto layout
4 Pin the book to the top safe area layout guide by Control-dragging up from the
book this time.

5 Select Top Space to Safe Area.
Notice that despite not defining the book’s height yet, the red error lines are
gone. The top, left, and right guidelines should be blue, indicating that these
constraints are valid. However, there’s a problem. The book image view has
more than doubled in height. What’s going on? Why would the Auto Layout
engine do that?

The book image view has an intrinsic content size based on the size of the image
it contains. Because you’ve specified that the book image view use auto layout to
determine its size and position and you haven’t added a height constraint for the
view, the Auto Layout engine falls back to using the image view’s intrinsic content
size, which is based on the height of the image itself. However, in this case we
don’t want to use the book image view’s intrinsic content size. The designer has
requested that the book height be 30% the height of the root view. 

6 Control-drag up from the book again, releasing when the root view is selected. 
7 Select Equal Heights. 

A height constraint will generate based on 100% of the root view in the canvas. That’s
not exactly what you were after, so you’ll need to edit the additional constraint
options.

Intrinsic content size
Certain types of views have an intrinsic content size. Labels and buttons, for example,
have an intrinsic content size defined by their content, but text fields and switches
have a default intrinsic content size. Image views, such as the book and the star-rat-
ing view in our example, have an intrinsic size defined by the size of the image.

If you don’t specify a size for a view with an intrinsic content size, the Auto Layout
engine will assume the intrinsic content size to determine the size of the view.

Intrinsic content size is why you won’t need to specify height constraints for any of
the labels or text fields in the example. Their intrinsic height works fine with the
design. 

Plain views don’t have an intrinsic content size, so you have to define their size in
auto layout. If you have created a subclass of UIView, for example, you can set its
intrinsic content size in the code by overriding the instrinsicContentSize
property. 



144 CHAPTER 6 Adaptive layout
EDITING CONSTRAINTS IN CONSTRAINT OPTIONS

Occasionally, you’ll want to make more-detailed edits to a constraint. You can make
these edits in the constraint options.

1 With the book selected, open the Size Inspector. 
2 Find the Equal Height constraint you created, and select Edit. Here, you can

formulate an equation to define the constraint. 

3 Modify the multiplier to 0.3 to base the book height on 30% of the root view’s
height (see figure 6.11). 

IT’S ABOUT PRIORITIES

Notice in the options that constraints also have priorities. Priorities range from 1 to
1,000, clustering around 250 (low), 500 (medium), 750 (high), and 1,000 (required).
You can use priorities to describe your preferences and help the Auto Layout engine
understand how to resolve ambiguities. We’ll come back to priorities shortly.

CREATING CONSTRAINTS IN THE ALIGN MENU

Now, to center the star-rating view. You could
Control-drag from the star-rating view to its
superview again (this time, dragging up). But
for a change, you’ll use the Align button. In
the bottom, right-hand corner of the canvas,
you’ll find five curious buttons (see figure
6.12).

 We’ll come to each in turn, but first let’s
look at the Align menu: . When you have
two or more views selected, you can use the
Align menu with two views selected to align
their edges, centers, or baselines. When you only have one view selected, you can use
the Align menu to center a view horizontally or vertically in its container.

Book height = 0.3 x Superview height + 0

Figure 6.11 Constraint options

Add New
Constraints

Embed
in Stack

Align
Resolve Auto
Layout Issues

Update
Frames

Figure 6.12 Auto layout buttons



145Auto layout
1 Select the star-rating view and click Align. 
2 Center the star-rating view in the root view by selecting Horizontally in

Container. 
3 Select Add 1 Constraint (see figure 6.13).

Figure 6.13 Add constraint in align menu

The star-rating view should now have an x position (center) and width and height
(from intrinsic content size) and only needs a y position. The designer’s brief suggests
it should be a standard distance from the book view. A standard distance lets the Auto
Layout engine choose the most appropriate value.

CREATING CONSTRAINTS IN THE ADD NEW CONSTRAINTS MENU

Now, you’ll add a y position to the star-rating view, using the Add New Constraints
menu: .

1 With the star-rating view selected, click Add New Constraints.
The four spokes at the top of the menu can be used to pin an edge of the
selected view to its nearest neighbor. The nearest neighbor could be another
view, the edge of its container view, or a layout guide. You can specify a numeric
value, the current distance between the views in the canvas, or a standard value.
You’ll use the standard value. 

2 Select the drop-down on the top pin. 
3 Select Use Standard Value. 

Select to center
horizontally

Click to add
constraint



146 CHAPTER 6 Adaptive layout
TIP In this menu, you can also see which view Interface Builder has
detected that you’re most likely intending to pin your view to. You can make
a change to this here, if necessary, but your intention was to pin the star-rat-
ing view to the book view, Interface Builder has guessed correctly!

4 Select Add 1 Constraint to finalize your changes (see figure 6.14).

Figure 6.14 Add constraint in pin menu

CHALLENGE Practice using the Add New Constraints menu, by adding con-
straints for the notes text view. Pin it a standard distance on the left, 0 points
from the bottom safe area layout guide and 16 points to the right safe area
layout guide. (At the time of writing, standard distance isn’t available when
pinning to the safe area layout guides.)  

CREATING MULTIPLE CONSTRAINTS IN THE ADD NEW CONSTRAINTS MENU

You can also use the Add New Constraints menu to pin multiple views simultaneously. 

Select drop-down
for top pin

View to pin to
(change if necessary)

Select Use
Standard Value

Click to add
constraint



147Auto layout
The title text field, author text field, and notes text view all need to be separated by a
standard distance, pinned to the right safe area layout guide, and a standard distance
from their associated labels.

1 Select the title text field and the author text field.
2 Select the Add New Constraints button again.
3 Select a standard distance on the left, top, and bottom, and a value of 16 on the

right.  
4 Be sure that the red line connecting each of the four directions is active. If it's

dim, you need to click on it to activate it.
5 Select the Add 7 Constraints button (see figure 6.15).

Figure 6.15 Adding multiple view constraints in the pin menu

Wait—why 7? You selected two views and gave
each view four constraints. Two times four—
doesn’t that equal 8? 

When you created a constraint pinning the
bottom of the title field to the top of the
author field, Xcode recognized it would be
redundant to create a top constraint for the
author field, reducing your constraints to 7. 

You might notice your title and author text
fields have shrunk and moved to the right of
the scene. Strange! See figure 6.16. Figure 6.16 Shrunken text fields



148 CHAPTER 6 Adaptive layout
Because you added constraints to the text fields, the Auto Layout engine takes
over managing their position and size. Because these text fields are pinned to
labels on their left that don’t have auto layout positions yet, this is the Auto Lay-
out engine’s best guess as to your intention. The text fields have a width of 25
points, the default intrinsic content width of a text field that doesn’t contain text. 

Not to worry—this will all get sorted out when you add constraints to the labels.

The labels should already be set to right justified in the Attributes Inspector
and pinned to their related text fields. As requested by the designer, let’s make
them the same width.

6 Select the three labels (Title, Author, and Notes).
7 Select Equal Widths in the Add New Constraints menu. 
8 While you’re in this menu, pin them flush to the left safe area layout guide as

well, with a value of 16.
9 Don’t forget to select the Add 5 Constraints button! The labels and text fields

should return to their position on the left.

Why wouldn’t you need to specify an absolute width for one of these three labels? You
may have guessed it: the labels have an intrinsic content width based on their content.
The only way for all three widths to be equal is for them to be equal to the widest
option—otherwise, two labels would have to shrink smaller than their content width.

 But as you’ve seen, text fields have an intrinsic content size too. If both labels and
text fields have an intrinsic content size, how does the Auto Layout engine know
which views to stretch and shrink to accommodate different resolutions?

HUGGING AND RESISTANCE

Imagine a hypothetical interface laid out with
one view containing two labels. If the view
width increases, the first label should stay the
same width and the second label should stretch
to fill the available space. If the view width
decreases, again the first label should stay the
same width and the second label should shrink
to its available space (see figure 6.17).

 How would you indicate this preferred
behavior to the Auto Layout engine? Your first
thought might be to specify a fixed width for
the first label, but what happens one day when
you decide to localize your app into different
languages, and the word for “title” in another
language is shorter—or worse, longer? Do you
manually update the width of the title label for
every language you’ve localized your app into?
Or do you change the width value to the

Two labels in a view

Highlighted to see label frames

Stretched

Shrunk

Figure 6.17 Preferred behavior when 
stretching and shrinking



149Auto layout
longest possible version of the word “title”? A better approach is to allow the intrinsic
content size of the label to do its job in defining the width of the label, and let the
Auto Layout engine know which label you’d prefer to shrink and stretch if necessary.
How? By setting the label’s Content Hugging Priorities and Content Compression
Resistance Priorities.

 The higher the priority of Content Hugging, the more a view tries to hug its intrin-
sic content width and resists stretching. The higher the priority of Content Compres-
sion Resistance, the more a view resists compression of its content, or shrinking. See
figure 6.18 to help grasp these concepts.

Figure 6.18 Compression resistance versus hugging

The default Content Hugging Priority for a label is 251 (low) and the default Content
Compression Resistance Priority is 750 (high).

 In the hypothetical interface of fig-
ure 6.17, to indicate that your prefer-
ence is for the second label to shrink
or stretch if necessary, you could give
the second label lower priorities for
horizontal hugging and compression
in the Size Inspector (see figure 6.19).

 Conversely, you could also have
given the first label higher horizontal
hugging and compression priorities. 

 Great! But back to the add-a-book
interface layout. Will you need to Figure 6.19 Hugging and compression priorities



150 CHAPTER 6 Adaptive layout
make changes to these priorities to indicate whether the title label and title text field
should shrink or compress beyond their intrinsic content size? Well, no!

 Because it’s a common preference in a layout for a text field to grow or shrink
while the label remains the same width as its content, defaults to accommodate this
are baked into the system. Although the label hugging priority default is 251, the text
field hugging priority default is 250. The text field will be the preferable view to
stretch rather than using a label. Because the text field’s intrinsic content width is a
bare minimum width of 25 points, it’s fine for the text field to continue to resist com-
pression at the same priority level as other views.

CREATING BASELINE CONSTRAINTS

Now, all that’s left is to give these three labels a y location.

1 Control-drag from the title label to the title text field. 
2 Select Last Baseline to align the baselines of the two. 
3 Repeat steps 1 and 2 for the author label. As the notes are taken in a scrollable

multiline view, a baseline property doesn’t make sense, so the designer has sug-
gested the notes label could be aligned to the text view’s top. 

4 Control-drag between the notes label and the notes text view and select Top.

That’s it—you’ve fully described the add-a-book form using auto layout constraints.
Well done! 

 If you select all the views now by clicking on the storyboard and selecting Com-
mand-A, you should (hopefully) no longer be seeing any red error lines or arrows.
You may, however, still see orange warning lines, most likely indicating several views
are slightly misplaced on the canvas. Select the orange warning arrow at the top right
of the document outline and skim over the issues.

RESOLVING AUTO LAYOUT ISSUES

Sometimes, you might have issues with your auto layout constraints, but two buttons
can help you out:

  Update Frames will automatically update the views in the canvas based on
your constraints.

  Resolve Auto Layout Issues can either update or create constraints based on
the views’ locations, or clear all constraints so you can start from scratch.
Because Xcode can misinterpret your intention with your interface when defin-
ing your constraints for you in Resolve Auto Layout Issues, I generally avoid this
option.

If you have any orange warning lines indicating a misplaced view, let’s resolve the issue
now by updating frames. 

NOTE If you don’t have any orange warning lines, but you’re interested in
experimenting with updating frames, feel free to misplace a view by dragging
it to where it shouldn’t be! 



151Auto layout
1 Ensure that all views are still selected by clicking on the storyboard and select-
ing Command-A.

2 Say the magic word, and select Update Frames. Alakazam! The views in your
scene should move into their perfect position, based on the constraints you set
up. Orange error lines should be replaced with blue valid lines. 

Regardless of the device you run your app on, the layout should adapt based on the
rules you specified as constraints. See figure 6.20 for how your interface should look
now on three different devices.

Figure 6.20 Interface after auto layout

Congratulations, you’ve laid out an interface using constraints and auto layout! 
 Run the app yourself to confirm that your design adapts to different device resolu-

tions. You can rotate the simulator by holding down Command and the left-arrow (←)
or right-arrow (→) buttons, and the interface will adapt to its new environment. Your
app will even adapt to multitasking modes such as Slide Over or Split View! 

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out here: https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git (Chapter6.2.AutoLayout).

iPad ProiPhone 8 iPhone 4S

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


152 CHAPTER 6 Adaptive layout
Upside-down orientation
If you’re using an iPhone device or simulator, you may have discovered that the sim-
ulator doesn’t want to rotate in one orientation. What’s going on?

Because iPhone users are less likely than iPad users to want to use their handsets
upside down, the default approach is to indicate to the user that the handset is
upside down by not triggering a rotation for this orientation. This is set in the project’s
general target settings, under Deployment Info, where Upside Down Device Orienta-
tion is unchecked by default for Universal devices. (If you dig down and select iPad
devices, you’ll find that iPads override this universal behavior by allowing upside
down device orientation.) 

For more on project settings, see appendix A.

Landscape left

Portrait Upside down

Landscape right

Universal settings



153Auto layout
6.2.3 Auto layout in code

Because Interface Builder gives you the capacity to visualize your layout, and immedi-
ate feedback on errors and warnings, it’s the best place to set up your constraints if
possible. However, occasionally you may want your scene, or views within your scene,
to change state, for example, after user interaction. This adjustment to your layout
might need to be handled in code.

 Luckily, it’s possible to work with auto layout constraints in code. There are three
main approaches you can use that are syntactic differences that, in the end, produce
the same result: constraints that the Auto Layout engine can use to lay out a scene.
You can set up your constraints with combinations of different approaches. 

THREE APPROACHES

The following is a brief overview of the three different approaches to defining your
constraints programmatically. Whichever approach you use, you’ll generate an
NSLayoutConstraint object. After generating the constraint, you then need to acti-
vate the constraint. (This is an easy step to forget.)

 You can activate constraints in two ways:

 Set each constraint’s active property to true:

constraint.active = true

 Pass an array of constraints into NSLayoutConstraint’s activate method:

NSLayoutConstraint.activate(constraints)

NSLAYOUTCONSTRAINT

NSLayoutConstraint is a powerful but verbose approach to defining individual
constraints.

 Back in figure 6.11, you saw that setting up the options that define a constraint is
like formulating an equation. Using NSLayoutConstraint, you can create a con-
straint by passing in all the components of that equation and then activating the con-
straints (see figure 6.21).

Figure 6.21 NSLayoutConstraint syntax

Book height = 0.3 x Superview height + 0

NSLayoutConstraint(item: book,
                   attribute: .Height,
                   relatedBy: .Equal,
                   toItem: view,
                   attribute: .Height,
                   multiplier: 0.3,
                   constant: 0.0
                   ).active = true



154 CHAPTER 6 Adaptive layout
VISUAL FORMAT LANGUAGE

Visual Format Language (VFL) takes a different approach to defining constraints. In
VFL, you can describe multiple constraints simultaneously. 

 Rather than setting up each individual constraint, you describe the horizontal and
vertical sketches of your layout as strings in a visual format. Probably the easiest way to
get grasp VFL is by looking at an example. Imagine you want to set up the horizontal
constraints of a label and a text field, side by side, filling the available space.

 First, set up a dictionary containing the elements:

let views = ["label": label, "textField": textField]

Then, you need to describe the horizontal layout, using VFL. See figure 6.22 for your
first look at the VFL syntax.

Figure 6.22 Visual Format Language syntax example

In English, this string says, “In the horizontal direction, place the label a standard dis-
tance from the left edge, place the text field a standard distance away, and then place
the text field a standard distance away from the right edge.”

 This VFL string will automatically set up horizontal constraints for both the label
and textField; not bad for a little string!

 Once you define a VFL string, you can pass this and the dictionary of views into
NSLayoutConstraint’s constraintsWithVisualFormat method, and then acti-
vate the constraints you generate, as shown in the following listing.

let views = ["label": label, "textField": textField]
let formatString = "H:|-[label]-[textField]-|"
let constraints = NSLayoutConstraint.constraints (
        withVisualFormat: formatString, 
        options: [], 
        metrics: nil, 
        views: views)
NSLayoutConstraint.activate(constraints)

Listing 6.1 Create Visual Format Language constraints

|- [label] - [textField] -|

let formatString = "H:|-[label]-[textField]-|"



155Auto layout
VFL does have a limitation—it doesn’t support multipliers. If multipliers are necessary,
VFL needs to be used in combination with other techniques.

LAYOUT ANCHORS

NSLayoutAnchor creates individual constraints in a way similar to NSLayoutCon-
straint, but with a more succinct syntax. Every view and layout guide has anchors
representing the 12 main constraint types (listed in table 6.1). You can constrain these
anchors directly to each other to generate NSLayoutConstraints. Again, it’s a mat-
ter of passing in the different components of the constraint equation, but in a differ-
ent way (see figure 6.23).

Figure 6.23 NSLayoutAnchor syntax

If the defaults for multiplier (1) and constant (0) are sufficient, these parame-
ters can be left out of the call. 

 You’ll practice using programmatic constraints by adding layout anchors to adapt
views that were already created in code. 

Remind yourself of the project by running it on the simulator. In this project you
added a red view that was the width and half the height of the root view. You then
placed a label half-way down.

 Great! These coordinates and dimensions were relative to the size of the root view,
which was, by default, the same size as the app window. Regardless of whether you run
this app on an iPhone 4S or on an iPad Pro, the calculation is correct.

 
 
 
 

CHECKPOINT Open the ViewsInCode project from chapter 4, or
if you prefer, you can download it from https://github.com/

iOSAppDevelopmentwithSwiftinAction/ViewsInCode.git (1.Displaying-
Views branch).

book.heightAnchor.constraint(equalTo:view.heightAnchor, multiplier: 0.3, constant: 0.0
                   ).active = true

Book height = 0.3 x Superview height + 0

https://github.com/iOSAppDevelopmentwithSwiftinAction/ViewsInCode.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/ViewsInCode.git


156 CHAPTER 6 Adaptive layout
Figure 6.24 Rotating orientation

But wait, there’s a problem. Rotate the simulator, and you’ll see something like figure
6.24.

 When the app window rotates to another orientation, the scene’s root view auto-
matically rotates, but any subviews don’t automatically resize or reposition to the root
view’s new dimensions. What can we do about that?

 Auto layout to the rescue! 

1 After setting up the views programmatically in the viewDidLoad method, cre-
ate the view’s constraints, as shown in the code in this step.
First, pin the red view’s top, and leading and trailing anchors to the root view,
and set the red view’s height to half the height of the root view.

Next, pin the label’s leading anchor to the root view, and the top anchor of the
label points from the bottom of the red view.

For simplicity, set up an array of NSLayoutConstraints, and then activate
them all at once.

let constraints:[NSLayoutConstraint] = [
  //red view
  redView.topAnchor.constraint(equalTo: view.topAnchor),
  redView.leadingAnchor.constraint(equalTo: view.leadingAnchor),
  redView.trailingAnchor.constraint(equalTo: view.trailingAnchor),

What we are seeing

What we want to
be seeing



157Autoresizing
  redView.heightAnchor.constraint(equalTo: view.heightAnchor, 
    multiplier: 0.5),
  //label
  label.topAnchor.constraint(equalTo: redView.bottomAnchor, constant: 8),
  label.leadingAnchor.constraint(equalTo:   
    view.layoutMarginsGuide.leadingAnchor)
]
NSLayoutConstraint.activate(constraints)

2 Done. But wait! Run the app and rotate the simulator again. You’ll find that not
only are your new constraints being ignored, but there are a bunch of messages
in the console that Xcode was “Unable to simultaneously satisfy constraints.”
What’s going on?

AUTOMATIC AUTORESIZING CONSTRAINTS

Each view has a translatesAutoresizingMaskIntoConstraints property,
which, if true, will automatically convert your autoresizing masks into auto layout con-
straints. We’ll look at autoresizing masks in a moment, but for the moment it’s suffi-
cient to understand that these additional, automatically generated constraints are
conflicting with the constraints you’re manually creating. 

 The translatesAutoresizingMaskIntoConstraints property defaults to
true, but will automatically swap to false if you add auto layout constraints to a view
in Interface Builder. If you plan to add your views programmatically using auto layout
as you’re doing now, you must set this property on each view in code to false, or
these automatically generated constraints may conflict with yours.

1 Set this property to false for the redView.

redView.translatesAutoresizingMaskIntoConstraints = false

2 Do the same for the label.

label.translatesAutoresizingMaskIntoConstraints = false

That’s it! You’ve set up sufficient constraints for the red view and label to know
how to display, regardless of the device or orientation they're displayed in. 

3 Run the app in different device simulators and rotate the simulators to confirm
that the app is displaying correctly.

6.3 Autoresizing
Before auto layout, Apple’s first attempt at solving the problem of adaptive layout was
called autoresizing, known also as springs and struts. As you’ll see, autoresizing does
have limitations compared to auto layout, but can still be a useful tool for quickly
building simple interfaces, and the more powerful auto layout can be implemented
for more-complex layouts.  

 As you’ve seen, views by default maintain the absolute position (x-y) and size
(width-height) that they’re instantiated with. If a view’s superview (such as a scene’s
root view) changes size (perhaps due to a rotation), its subviews by default won’t



158 CHAPTER 6 Adaptive layout
adjust accordingly. Autoresizing aims to correct
this by adding certain rules that determine how
a view resizes when its superview resizes.

 The four outer margin attributes (top, left,
right, and bottom) and the two size attributes
(width and height) can be set to flexible (the
springs) or fixed (the struts). See figure 6.25 to
see how springs and struts define a view’s rela-
tionship with its superview.

6.3.1 Autoresizing in code

We’re going to explore how autoresizing works
in code by looking again at the ViewsInCode
project. 

NOTE You can comment out code by surrounding it with forward slash + aster-
isk (/*), and asterisk + forward slash (*/); for example: /* Comment */.

Let’s consider how autoresizing could be used to automatically resize the red view and
the label of the ViewsInCode project. Take another look at figure 6.24 to remind your-
self of what the intention of the interface is, and then look at a written description of
that intention for the red view in table 6.3.

Describing the interface this way helps make it clear which attributes are relative to the
size of the superview (and therefore springs), and which are absolute values (and there-
fore struts). 

CHECKPOINT You could remove (by selecting Source Control > Discard
all Changes) or comment out any adjustments you made to the layout ear-

lier, or if you prefer, you can check it out at https://github.com/iOSApp-
DevelopmentwithSwiftinAction/ViewsInCode.git (1.DisplayingViews branch).

Table 6.3 Red view 

Attribute Description

Left margin 0

Width The width of the superview

Right margin 0

Top margin 0

Height Half the height of the superview

Bottom margin Half the height of the superview

Figure 6.25 Autoresizing attributes

Superview

View

Height

Width RightLeft

Top

Bottom

https://github.com/iOSAppDevelopmentwithSwiftinAction/ViewsInCode.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/ViewsInCode.git


159Autoresizing
 When setting up the autoresizing rules for a view, rather than specifying all six
attributes, only relative or flexible measurements (springs) are specified, and all
unmentioned attributes are assumed to be absolute or inflexible (struts).

 The width, height, and bottom margin are all relative to the superview, so you’ll set
them to be springs. Use the UIView’s autoresizingMask property, and pass in an
array containing the three flexible attributes. 

1 Add the following line where you set up the redView in the viewDidLoad
method:

redView.autoresizingMask = [.flexibleHeight, .flexibleWidth,   
    .flexibleBottomMargin]

Follow the same process for the label described in table 6.4.

In the label’s case, the right margin, top margin, and bottom margin are all rel-
ative to the superview, so you should set them to springs. 

2 Add the following line after instantiating the label:

label.autoresizingMask = [.flexibleTopMargin, .flexibleBottomMargin, 
     .flexibleRightMargin]

3 Run the app and rotate the simulator to check how the views resize on rotation
(see figure 6.26). (I’ve given the label a background color to highlight the dif-
ference more clearly.)

Table 6.4 Label

Attribute Description

Left margin 20

Width Fixed width

Right margin Width of superview (minus) width (minus) left margin

Top margin Half the height of the superview

Height Fixed height

Bottom margin Superview height (minus) height (minus) top margin

What we are seeingWhat we want to be seeing

Figure 6.26
Autoresizing 
views in code



160 CHAPTER 6 Adaptive layout
Close, but not perfect! The red view resized great, but the label is slightly off. The sim-
ple calculation that Xcode performs to determine the top and bottom margins of the
label aren’t sufficient to place it precisely where you’d like it. This is a case where a
more precise method such as auto layout will be necessary to perfect the layout. 

6.3.2 Autoresizing in Interface Builder

You can perform autoresizing in Interface Builder as well. After laying out your views,
you go to the Size Inspector for each view, where you’ll find an autoresizing section
with the six autoresizing attributes that you saw in figure 6.5. 

 Click on the six attributes to turn them on and off. Margins attributes are repre-
sented by struts (lines with flat ends), and size attributes are represented by springs
(lines with arrowheads). The default attributes are represented by the Top-Left mar-
gin struts turned on and the Left-Bottom struts and Width-Height springs turned off
(see figure 6.27). Notice the image to the right of the autoresizing attributes gives you
a visual indication of the expected result with this combination of springs and struts.

For example, to replicate the red
view’s attributes from table 6.3, you’d
turn on the Width-Height springs,
and the right margin strut (see fig-
ure 6.28).

6.3.3 Autoresizing considerations

You probably already have noticed some limitations of autoresizing:

 Each measurement needs to be defined as either absolute or relative, but some-
times you want a combination of both. For example, you might want a label to
be positioned at a relative y position (half the height of its superview) plus an

Margin struts

Size springs

Expected result

Figure 6.27 Default autoresizing

Figure 6.28 Red view autoresizing



161Manual adaptive layout
absolute position (a margin). This sort of combination isn’t possible with
autoresizing only.

 In autoresizing, the only relationship a view has is with its container. In real-life
interfaces, views can have relationships with other views at the same level. 

 Autoresizing doesn’t take into consideration the possibility that the content of a
view could change, requiring layout adjustments.

How does Xcode know to use autoresizing or auto layout to lay out your interface?
When you drag a view onto Interface Builder, it will by default begin with top and left
struts defined in autoresizing. As soon as a view contains at least one constraint, Inter-
face Builder assumes you’re planning to use auto layout constraints on this view rather
than autoresizing, and the autoresizing attributes disappear from the Size Inspector. 

 Using autoresizing in a scene doesn’t prevent you from using auto layout on other
views in the same scene. It’s possible to lay out a scene using the simpler autoresizing
and then incrementally adopt the more powerful and complex system of auto layout
on views where it’s needed.

6.4 Manual adaptive layout
Auto layout (along with size classes discussed in the next chapter) will be sufficient for
most interfaces, but occasionally you may need to implement adaption and transitions
of your interface manually in code. 

 To explore manual adaptive layout, you’ll work on the same ViewsInCode project
from the previous section, but from its initial state. 

6.4.1 Receiving transition events

Whenever the root view of a view controller changes size (such as when the app
rotates), a UIViewController event called viewWillTransition()triggers. This
method passes in an argument containing the new size of the root view. 

 Override this method, and use this size parameter to resize the red view and
reposition the label, as shown in the following listing.

override func viewWillTransition(to size: CGSize,
        with coordinator: UIViewControllerTransitionCoordinator) {
    super.viewWillTransition(to: size, with: coordinator)  
    self.redView.frame.size = CGSize(width: size.width, 
        height: size.height / 2)
    self.label.frame.origin.y = size.height / 2
}

CHECKPOINT Again, discard or comment out changes, or check out the
repo again from https://github.com/iOSAppDevelopmentwithSwift-

inAction/ViewsInCode.git (1.DisplayingViews branch).

Listing 6.2 Reposition/Resize views when view size transitions

Overrides
method

Calls super 
method

Resizes red view

Repositions label

https://github.com/iOSAppDevelopmentwithSwiftinAction/ViewsInCode.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/ViewsInCode.git


162 CHAPTER 6 Adaptive layout
Run the app again, and rotate the simulator to test your repositioning code. The end
result of the rotations is great, but the rotation transition doesn’t look quite right and
it’s hard to tell exactly what’s happening with the speed of the transition. Slow down
the transition to get a better look at it by selecting Debug > Slow Animations.

 Remember the yellow view is the root view of the scene, and is resized automati-
cally by UIKit. On the other hand, the red view, a subview of the yellow view, is con-
trolled by you.

 When the animations are slowed down, notice that the yellow view’s rotation,
width, and height transition over the duration of the rotation transition. Meanwhile,
at the moment the rotation is triggered, the red view’s width and height change to
their new values without transitioning. How can you make the red view’s resizing tran-
sition over time like the yellow view's?

 There’s an argument in the viewWillTransition method that's the key to per-
forming this transition: the transition coordinator.

 The transition coordinator is generated when a scene transition begins, and han-
dles animations of views during the transition. You can tell the transition coordinator
to animate your views for you too, using the animate method.

 The animateAlongsideTransition method accepts two arguments that are
both closures, as explained in table 6.5.

In general, the structure of a viewWillTransition method should look like the fol-
lowing listing.

override func viewWillTransition(to size: CGSize,
        with coordinator: UIViewControllerTransitionCoordinator) {           
    super.viewWillTransition(to: size, with: coordinator)

    coordinator.animate (alongsideTransition: { (context) in

    }) { (context) in

    }
}

Table 6.5 animateAlongsideTransition arguments

Argument Description

animation Any changes to properties within this closure will automatically animate for the 
duration of the transition.

completion This closure will be called after the animation is complete, and can be used for 
any cleanups, such as removing subviews.

Listing 6.3 viewWillTransition method structure

Setup prior 
to transition

Properties 
to animate

Cleanup after 
transition



163Manual adaptive layout

y 
For our ViewsInCode example, you could resize the red view and reposition the label
within the animation block, as shown in the following listing.

override func viewWillTransition(to size: CGSize,
        with coordinator: UIViewControllerTransitionCoordinator) {           
    super.viewWillTransition(to: size, with: coordinator)

    coordinator.animate (alongsideTransition: { (context) in
        self.redView.frame.size = CGSize(width: size.width, 
            height: size.height / 2)
        self.label.frame.origin.y = size.height / 2
    }) { (context) in

    }
}

Run the app again with animations slowed down, and notice that this time the red
view and the label animate smoothly to their new positions and dimensions. 

6.4.2 Receiving layout events

Rather than programmatically adjusting the size and position of views in a scene at the
moment a view transitions, developers may prefer to adjust them at the moment the
scene’s root view’s layout is being updated. 

WHEN IS A VIEW’S LAYOUT UPDATED?
Every view contains a flag that indicates that it requires updates to its layout. If this flag
is set to true, it will be updated at the next appropriate moment in the run cycle. A
view could be flagged as needing layout several times in the same cycle, but the actual
layout process is only performed once. 

 The system can set this flag to true. When does the system flag that the root view’s
layout needs updating? Here are common times:

 When the view appears
 When the view is resized (for example, after an orientation change)
 When the view’s subviews change (that is, a subview is added to the view, or a

subview is removed from the view

You can also set the flag to true by calling the view’s setNeedsLayout method. If you
do need to manually request the layout process to be performed immediately, this is
possible as well, by calling the layoutIfNeeded method.

Listing 6.4 Animate reposition/resize views

No setup 
necessary

Animate propert
changes

No cleanup 
necessary



164 CHAPTER 6 Adaptive layout

C

R

UPDATING VIEW LAYOUT

When the appropriate time arrives in the run cycle to update a view, and it’s flagged to
require updates, three methods are called to lay out a view’s subviews (see figure 6.29). 

The view controller first registers that it will lay out the subviews, then the view does the
layout of subviews, and finally the view controller registers that it did lay out the sub-
views. You can override any of these methods to manually resize and reposition sub-
views. If the trigger to lay out involves a transition such as resizing a view, the transition
coordinator will animate any changes made in these three methods as well.

 To explore this alternative approach, you’ll use the viewWillLayoutSubviews
method to update the position and size of the redView and label.

 First, remove or comment out the viewWillTransition method from the previ-
ous section. 

 Override the viewWillLayoutSubviews method, and call its super method.
Resize the red view and reposition the label. To see when this method is called, print a
message to the console, as shown in the following listing.

override func viewWillLayoutSubviews() {
    super.viewWillLayoutSubviews()
    self.redView.frame.size = CGSize(width: view.frame.width, 
        height: view.frame.height / 2)
    self.label.frame.origin.y = view.frame.height / 2
    print("View will layout subviews")
}

Run the app on the simulator again, and rotate the app. You should see the red view
resizing and the label repositioning, animated the way it was before. 

Listing 6.5 Reposition/Resize views when view is laid out

viewWillLayoutSubviews()

viewDidLayoutSubviews()

layoutSubviews()

View controller View

Figure 6.29 Layout subviews

Override method
alls super

method Resizes red view

epositions
label Prints to 

console



165Choosing an approach 
CONSIDERATIONS

The approach you decide to go with is up to you and the specifics of your app, but
advantages do exist for repositioning and resizing when the layout updates:

 The layoutSubviews method will be called when a view appears, and when
the view resizes (such as a rotation). You can take advantage of this to perform
repositioning and resizing that will be consistent initially and on rotation.

 You can take advantage of the call setNeedsLayout to manually request that
the layout updates.

 By overriding the layoutSubviews method in a UIView subclass, you can
pass on the responsibility of managing a view’s layout to the view itself, some-
thing that can make sense in many cases.

Certain disadvantages to this approach are these:

 You probably noticed in the console that the viewWillLayoutSubviews
method was called twice when the view appeared. Despite the use of a flag to
avoid redundant layout updates, it’s still possible for this method to be called
on multiple run cycles. You should consider this possibility. Avoid processor-
intensive work in these methods and ensure that any one-off work is only per-
formed once.

 Repositioning and resizing views manually in a simple interface with a view and
a label isn’t too bad, but what happens when the interface contains dozens of
different types of views? What if you want the interface to look different on an
iPad and an iPhone, or portrait and landscape? Setting up an interface entirely
in code can get complex quickly. 

Although certain developers prefer to adapt views programmatically, most iOS devel-
opers use programmatic repositioning and resizing of views as a last resort, useful for
certain circumstances where auto layout isn’t sufficient, such as dynamic interfaces or
customized animations. 

6.5 Choosing an approach  
In this chapter, you’ve looked at several approaches to building an adaptive layout:

 Manually
– Responding to transition events
– Responding to layout events

 Automatically
– Using autoresizing

 In Interface Builder
 Setting autoresizing mask in code

– Using auto layout
 In Interface Builder
 In code



166 CHAPTER 6 Adaptive layout
 Using layout constraints
 Using layout anchors
 Using visual format language

Wow, that’s a long list of alternatives! How do you know which to use?
 We covered some of the pros and cons of each. Beyond those, it comes down to

personal preferences. Some users may prefer the granular control of making changes
manually. Others may prefer the relative simplicity of autoresizing. Another group
may prefer to have everything in code, whereas others like to work visually. 

 I generally lean toward auto layout. It can be complicated at first, but the time
investment in getting familiar with it is worth it, and with practice the process of
describing your layout using constraints will become easier. I also prefer to use Inter-
face Builder where possible to visualize the interface, and more quickly recognize
issues with my constraints.

 That said, auto layout isn’t like working in a vacuum, and it’s a good idea to be
familiar with other adaptive layout options. Different combinations of techniques can
be used where appropriate. Dynamic designs, for example, are great candidates for
working with adaptive layout in code.

 We’re not done with adaptive layout yet! We’ll explore more ways to adapt inter-
faces in the next chapter. Though our layouts have adapted, they’ve still been similar
on different devices and rotations. In the next chapter, you’ll make your apps adapt
even more to their environment!

6.6 Summary
In this chapter, you learned the following:

 The position and size of the views in your layout should adapt to their environ-
ment—regardless of the device resolution, orientation, or if they’re presented
in a multitasking mode or split view controller.

 You can manually adapt views in code when the scene’s view loads and transi-
tions, or when the scene’s view is laid out.

 You can adapt views using autoresizing, which can be sufficient on simpler lay-
outs.

 Constraints are the rules that describe a layout in auto layout, and can be
defined in Interface Builder or in code.

 Auto layout allows more-complicated relationships between views.
 A view in Interface Builder by default is positioned with autoresizing, until it’s

given an auto layout constraint.
 A layout can use a combination of methods to adapt its views.



More adaptive layout
In this chapter, we’ll look at a useful feature for manipulating layouts in different
environments, called size classes. We’ll use size classes to adjust layouts programmat-
ically and from within Interface Builder.

 We’ll then explore stack views—a feature introduced in iOS 9 that speeds up the
process of setting up an adaptive layout (in most cases). 

7.1 Size classes
Auto layout is great for adjusting a layout based on constraints, but sometimes a lay-
out requires more-significant adjustments based on the device type, screen size, or
orientation. 

 For example, you may want

 A bigger font size in the huge iPad Pro screen than on the tiny iPhone 4S. 
 A view laid out differently on iPhones when in landscape or portrait mode. 

This chapter covers 
 Adapting layouts for size classes

 Adapting layouts with stack views 
167



168 CHAPTER 7 More adaptive layout
 To provide additional buttons in the iPad version of your app.
 To lay out content differently when your app is in slide-over or split-view mode.

How can you make these sorts of adjustments to a layout?
 In older versions of Xcode, you may have had multiple storyboards for iPads and

iPhones. Or perhaps you used the device orientation or window size to determine the
environment for laying out a scene. Along with increasing numbers of devices, split view
controllers (introduced in iOS 8), and slide-over and split-view multitasking modes
(introduced in iOS 9), adjusting a layout to its environment became more complex. 

 To simplify things, Apple recommends a new paradigm. Rather than considering
your layout in terms of the many device types, resolutions, multitasking modes, and
device orientation, you should focus instead on adjusting your layout to two types of
widths (called compact and regular) and two types of heights (also compact and regular).
These distinctions are called size classes. You can then use these size classes to define
or adjust your layout.

 Size classes reduce all the different potential horizontal and vertical configurations
to just two types: compact for constrained space and regular for more expansive
space. An iPhone portrait orientation, for example, is considered to have a compact
width and a regular height. See figure 7.1 for a comprehensive breakdown of how the
size classes correspond to devices and device orientations.

Figure 7.1 Devices and orientation in relations to size classes

Compact

iPhone 4S, 5, 6, 7, 8,
SE landscape

C
om

pa
ct

R
eg

ul
ar

Regular

iPhone 6 Plus, 7 Plus,
8 Plus landscape

iPhone portrait iPad portrait/landscape

Horizontal (width)

V
er

tic
al

 (h
ei

gh
t)



169Size classes
In defining the size classes, Apple made interesting decisions worth noting: 

 When in landscape orientation, iPhones (other than the Plus range) are still
considered to have compact widths. 

 All iPads in portrait or landscape mode are considered to have regular widths
and regular heights, so a change in orientation on an iPad doesn’t trigger a
change in size class.

Size classes don’t describe only device types and orientation. Size classes also describe
an app’s environment when the app is presented inside iPad multitasking modes—
such as Slide Over, Split View, and Side by Side (see figure 7.2). Note that although
the horizontal size class may change for certain iPad multitasking modes, the vertical
size class remains regular. In fact, a compact vertical size class is sufficient to imply that
we’re working with an iPhone in landscape mode. 

WHAT CAN YOU DO WITH SIZE CLASSES?
Size classes aren’t an alternative to constraints and auto layout; rather, they work in
tandem. You can make many changes to a layout with size classes, such as

 Constraints can be activated or deactivated (called installed and uninstalled). 
 Views can be resized or repositioned.

V
er

tic
al

 (h
ei

gh
t)

Compact Regular

Horizontal (width)

C
om

pa
ct

R
eg

ul
ar

iPad landscape:
split-view secondary app/

slide-over

iPad landscape:
split-view primary app

iPad portrait:
split-view/slide-over

iPad landscape:
side-by-side

Figure 7.2
Multitasking 
modes in relation 
to size classes



170 CHAPTER 7 More adaptive layout
 Views can be added or removed (called installed and uninstalled). 
 Colors and fonts can be changed.

In fact, programmatically, you could make any change based on a size class.

7.1.1 Size classes in code

Let’s take another look at the ViewsInCode app you added constraints to in the previ-
ous chapter. With the layout anchor constraints you added, the layout adjusts when
the device rotates, but perhaps the layout could be made even more appropriate for its
space. The designer has decided the iPhone layout could be improved when the user
rotates the app to landscape orientation. Instead of the red rectangle squishing to the
top half of the view, it should move to the left of the scene (see figure 7.3).

Figure 7.3 New adaptive layout for ViewsInCode

Great, everyone agrees that this improves the layout in landscape on the iPhone, but
implementing this requires a different array of constraints. You can no longer define,
for example, the red rectangle’s height as half the height of the root view, because this
isn’t always the case. 

 You’re going to need two arrays of constraints—one array that you’ve already
defined and another array to define the new layout in landscape. 

Not bad

Oh, maybe
that’s better!



171Size classes
NOTE Certain constraints will essentially be the same and can be reused in
the two arrays, but the savings obtained by reusing constraints is generally
minimal. Depending on the complexity of the change, it can be cleaner and
simpler to create new constraints in both arrays. Knowing that all constraints
in an array are unique also makes it easier to confirm if an array of constraints
is active.

CHALLENGE Create a new array of layout anchor constraints matching the
new landscape layout in figure 7.3 below the constraints variable in view-
DidLoad. Call this new array landscapeConstraints. 

Now you should have two arrays of constraints ready to use: constraints and land-
scapeConstraints. If you’d like to check your landscapeConstraints against
mine, they’re shown in the following listing.

let landscapeConstraints:[NSLayoutConstraint] = [
 //red view
 redView.topAnchor.constraint(equalTo: view.topAnchor),
 redView.leadingAnchor.constraint(equalTo: view.leadingAnchor),
 redView.bottomAnchor.constraint(equalTo: view.bottomAnchor),
 redView.widthAnchor.constraint(equalTo: view.widthAnchor, 
   multiplier: 0.5),
 //label
 label.topAnchor.constraint(equalTo: view.topAnchor),
 label.leadingAnchor.constraint(equalTo: redView.trailingAnchor, 
   constant: 8)
]

DISPLAY LAYOUT FOR SIZE CLASS

To apply the appropriate array of constraints in code using size classes, you need to do
two things:

1 Set up the correct layout for the current size class when first laying out your
views. 

2 Update the layout when the size class changes (for example, when the user
rotates the device). 

Let’s start by activating the correct array of constraints for the current size class. But
how can you get access to the current horizontal and vertical size classes? 

 The current size classes are defined in the trait collection.

CHECKPOINT Open the ViewsInCode app where you left it after adding
layout anchor constraints in the previous chapter, or check out the repo

from https://github.com/iOSAppDevelopmentwithSwiftinAction/ViewsIn-
Code.git (2.LayoutAnchorConstraints branch).

Listing 7.1 Landscape constraints

https://github.com/iOSAppDevelopmentwithSwiftinAction/ViewsInCode.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/ViewsInCode.git


172 CHAPTER 7 More adaptive layout
TRAIT COLLECTION

UIView and UIViewController both adopt the UITraitEnvironment protocol,
giving them a property called traitCollection that describes its environment. You
can use the information in the trait collection to make decisions about how to build or
adjust the layout of your app.

 Trait collections contain information on several important traits, as shown in table 7.1.

By examining the horizontal and vertical size classes inside the traitCollection,
you can determine which set of constraints to install. 

SET UP LAYOUT FOR SIZE CLASS

You may have noticed that if the vertical size class is compact, you can assume an
iPhone in landscape orientation. This means you can check the vertical size class in
the traitCollection to determine the appropriate array of constraints to activate. 

1 Activate the correct set of constraints in the viewDidLoad method:

if traitCollection.verticalSizeClass == .compact {
    NSLayoutConstraint.activate(landscapeConstraints)
} else {
    NSLayoutConstraint.activate(constraints)
}

2 Run the app in an iPhone simulator (or an actual iPhone!). The layout of the
app should depend on the initial orientation of the simulator.

Great, you have the correct initial layout set up, but now you’ll need to change layout
when the size class changes (that is, a change in orientation). 

UPDATE LAYOUT ON CHANGES IN SIZE CLASS

To update the layout when the size class changes, you’ll need to listen for changes to
the traitCollection. You can do this by overriding UIViewController’s trait-
CollectionDidChange method. 

Table 7.1 Trait collection information

Trait information Description

displayScale Indicates the scale of the screen. iPhone 8 Plus has a display scale of 
3.0, other Retina devices have a display scale of 2.0, and older non-Ret-
ina devices (such as the iPad 2) have a display scale of 1.0. 

userInterfaceIdiom Indicates the type of device, such as Pad for iPads, or Phone for 
iPhones. (Apple recommends you ignore idioms where possible and 
instead use size classes.)

forceTouchCapability Indicates whether 3D touch is available on this device.

horizontalSizeClass Indicates if the horizontal size class is Compact or Regular.

verticalSizeClass Indicates if the vertical size class is Compact or Regular.

Determines the 
vertical size classActivates the

landscape
constraints Activates the nonlandscape 

constraints



173Size classes
 In the traitCollectionDidChange method, you can check the new vertical size
class and make any changes to constraints if necessary by deactivating the current
array of constraints and activating the appropriate array of constraints.

 But before you can do this, you’ll need to upgrade your two arrays of constraints to
instance properties, so you can access them outside the viewDidLoad method. 

1 Move your two arrays of constraints out of the viewDidLoad method to
instance properties of the ViewController class now. 
Whoops! When you defined your constraints as instance properties, you encoun-
tered a compiler error: "…property initializers run before 'self' is available."

You can’t initialize one instance property from another property of the same
instance. Why? Well, a property is initialized in the initialization phase—other
properties can’t be guaranteed to be initialized until this initialization phase is
complete. How can you initialize a property whose initial state depends on
another property? 

You might wonder if this is a job for a computed property. One thing to consider
with computed properties is that the property is calculated every time it’s
requested. Because you only want one instance of the array of constraints so that
you can deactivate the same instance later, computed properties won’t help you
here, unfortunately. 

Your next thought might be to initialize the arrays of constraints after the initial-
ization process. This means your arrays of constraints either need to be initial-
ized temporarily as something else (such as an empty array) or made optional.
A working solution, but not as elegant as lazy stored properties.

Lazy stored property 
A lazy stored property is a property that isn’t generated until it’s first used. Lazy
stored properties are useful for two main situations:

 The initial value of a property depends on the initial value of another property.
 The property requires a large amount either of computation or memory, and

would be better left for when it’s needed rather than instantiated during the
initialization process. 

Consider an alphabet class that merely stores two strings: the alphabet, and the
alphabet in uppercase computed from the alphabet string:

class Alphabet {
    let letters = "abcdefghijklmnopqrstuvwxyz"
    let lettersUpper= letters.uppercased() 
}

You have an error! The lettersUpper property can’t be initialized, because it
depends on the initial value of another property. Not to worry, this can be resolved by
making this property lazy with the lazy keyword:

lazy var lettersUpper:String = self.letters.uppercased()

Error



174 CHAPTER 7 More adaptive layout
2 Define the two constraints arrays as the lazy stored properties shown here:

lazy var constraints:[NSLayoutConstraint] = [
    self.redView.topAnchor.constraint(equalTo: 
        self.view.topAnchor),
    self.redView.leadingAnchor.constraint(equalTo: 
        self.view.leadingAnchor),
    self.redView.trailingAnchor.constraint(equalTo: 
        self.view.trailingAnchor),
    self.redView.heightAnchor.constraint(equalTo: 
        self.view.heightAnchor, multiplier: 0.5),
    self.label.topAnchor.constraint(equalTo: 
        self.redView.bottomAnchor, constant: 8),
    self.label.leadingAnchor.constraint(equalTo: 
        self.view.layoutMarginsGuide.leadingAnchor)
]
lazy var landscapeConstraints:[NSLayoutConstraint] = [
    self.redView.topAnchor.constraint(equalTo: 
        self.view.topAnchor),
    self.redView.leadingAnchor.constraint(equalTo: 
        self.view.leadingAnchor),
    self.redView.bottomAnchor.constraint(equalTo: 
        self.view.bottomAnchor),
    self.redView.widthAnchor.constraint(equalTo: 
        self.view.widthAnchor, multiplier: 0.5),
    self.label.topAnchor.constraint(equalTo: 
        self.view.topAnchor),
    self.label.leadingAnchor.constraint(equalTo: 
        self.redView.trailingAnchor, constant: 8)
]

Now that you have instance properties for your constraints, let’s get back to
your traitCollectionDidChange method. See figure 7.4 for a look at an
old-fashioned flow chart that explains what we intend to do.

(continued)

Phew! Now this property can be based on the initial value of another property. Notice
four additional factors:

 Lazy stored properties must be variables rather than constants.
 Lazy stored properties based on other instance properties or methods need

to specify the self keyword first.
 To assist the compiler to infer the type of lazy stored properties based on

other instance properties, you’ll need to explicitly type the variable.
 Because you can use an instance method to initialize your property, you could

also initialize your lazy stored property with a closure:

lazy var lettersUpper:String = {
    return self.letters.uppercased()
}()

Now lazy stored 
property 

Add references 
to self

Now lazy stored 
property

Add references 
to self



 
 
t

175Size classes

Figure 7.4 Update constraints when the trait collection changes

After (1) examining the new vertical size class, check to see whether the incor-
rect constraints are currently active (2 and 4). If they are, deactivate them and
activate the correct constraints (3 and 5).

3 Let’s see how this would look in code. Add the following traitCollection-
DidChange method to your ViewController class:

override func traitCollectionDidChange(_ previousTraitCollection:
        UITraitCollection?) {
    super.traitCollectionDidChange(previousTraitCollection)
    if traitCollection.verticalSizeClass == .compact {  
        if let first = constraints.first {
            if first.isActive {
                NSLayoutConstraint.deactivate(constraints)
                NSLayoutConstraint.activate(landscapeConstraints)
            }
        }
    } else {
        if let first = landscapeConstraints.first {
            if first.isActive {
                NSLayoutConstraint.deactivate(landscapeConstraints)
                NSLayoutConstraint.activate(constraints)
            }
        }
    }
}

4 Run the app on an iPhone simulator. The layout should (fingers crossed!)
adapt in a more significant way to its new environment as you rotate the device.

Trait collection did change

3. Deactivate regular constraints;
    activate landscape constraints

5. Deactivate landscape constraints;
    activate regular constraints

1. Vertical size
    class compact
    (iPhone compact
    in landscape)?

2. Regular
    constraints
    active?

4. Landscape
    constraints
    active?

Yes

Yes Yes

No

Implies iPhone 
in landscape

Gets 
reference
to sample
constrain

Checks sample
constraint is active



176 CHAPTER 7 More adaptive layout
If you rotate an iPhone to landscape, the red view moves from the top to the
left, and the label moves from halfway down the view, to halfway across.

7.1.2 Size classes in Interface Builder

Adapting your layout to size classes isn’t limited to code. You can also assign your lay-
outs and constraints to specific size classes in Interface Builder, and your layout will
update automatically when the size class changes—without writing a line of code! 

 You’re going to explore adding customizations for different size classes in Interface
Builder in an app with a simple layout that displays an article with a title and body text. 

 You’ll first build the iPhone interface, which contains the title in a label and the
body text in a text view (see the iPhone layout on the left of figure 7.5). This layout,
however, doesn’t look great on the iPad (layout in the center of figure 7.5) To resolve
this, you’ll use size classes to adapt the interface (layout on the right of figure 7.5).
Note the subtle and not so subtle differences between the layouts—because the iPad
has more space, you’ll adjust font and margin sizes, and add a subtitle label. 

Figure 7.5 Spot the difference!

CHECKPOINT If you’ve run into problems on the way, not to worry! You
can look at the project at this point, by checking it out from https://

github.com/iOSAppDevelopmentwithSwiftinAction/ViewsInCode.git
(3.SizeClasses).

iPad: adaptediPhone iPad

https://github.com/iOSAppDevelopmentwithSwiftinAction/ViewsInCode.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/ViewsInCode.git


177Size classes
Let’s start by setting up the basic interface and constraints. 

1 Create a simple Single View Application and call it SimpleSizeClasses. 
2 Select the File Inspector for the main storyboard. Note that the storyboard

automatically has Use Auto Layout and Use Trait Variations selected (see figure
7.6.) This indicates that this storyboard is ready for adaptive layout with con-
straints and size classes. 

NOTE An app that uses auto layout and size classes is not only ready for
adaptive layout but can take advantage of iOS multitasking environments. If
you want users to use Slide Over or Split View with your app, make sure you
don’t deselect these options!

Now to set up the basic interface. (If you’re feeling lazy, feel free to skip to the
checkpoint, where the basic interface is ready to go!)

3 Drag a label onto the main storyboard. 
4 Replace the label’s text with Title.
5 Use constraints in Interface Builder to center the label.
6 Pin the label to the top safe area layout guide. 
7 Choose the Title 1 font type.
8 Drag on a text view below the label, filling the available space. 
9 Pin the text view to the title label, the bottom safe area layout guide, and the

left and right safe area layout guides.

SPECIFYING LAYOUTS FOR SIZE CLASSES

Now that you’ve set up the basic interface of the article app, let’s look at how to specify
different layouts for different size classes in Interface Builder. Two main approaches
are available that you can use in tandem:

1 Add customizations to an attribute.
2 Vary for traits.

You’ll use both approaches to customize your simple layout for different size classes.
Let’s look at each in turn.

CHECKPOINT You can compare your app at this point with mine at
https://github.com/iOSAppDevelopmentwithSwiftinAction/Simple-

SizeClasses.git (1.InitialSetup branch).

Figure 7.6 Adaptive storyboard checkboxes

https://github.com/iOSAppDevelopmentwithSwiftinAction/SimpleSizeClasses.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/SimpleSizeClasses.git


178 CHAPTER 7 More adaptive layout
ADDING CUSTOMIZATIONS TO AN ATTRIBUTE

You can add customizations for a size class directly to an attribute. Let’s explore this
feature by modifying font sizes and margin sizes for different size classes in your sam-
ple application. 

 View the storyboard in the device configuration bar as an iPad Pro, and zoom out
to see the whole scene. Notice how tiny the text is on the expansive iPad screen. (You
can also see this in the center image of figure 7.5.) Let’s increase the font size for
larger size classes.

1 Select the title label and open the Attributes Inspector. Notice the grey plus (+)
symbol to the left of the font attribute. Selecting the plus symbol gives you the
opportunity to add a customized value for a size class. 

2 Select the plus symbol to the left of the font attribute now. Here, you can select
the size class you’re interested in, from Width, Height, and Gamut (a display
type). The current size class is suggested as a default. 

3 Select Regular Width, Regular Height to add a customized value for iPads. A cus-
tomized value appears for the font attribute, for the specified size class. The cryp-
tic wR hR to the left of the new attribute stands for width Regular, height Regular.

NOTE If you’re not interested in adding a customization for a certain size
class, you can set it to Any. Because we’re not interested in customizing for
Gamut, leave it as Any.

4 You can now modify the new value for this size class. Make it a System font of 55
points (see figure 7.7).

Figure 7.7 Add customized value for size class

5 Go through the same process to modify the font size for the text view as well—
how about a System font of 25 points?

6 Check the layout in different devices, orientations and adaptations. You should
find that the font attributes adjust appropriately for the different size classes. 



179Size classes
You can easily add more attributes for other size classes by going through the process
again. Removing a customized attribute is straightforward too—select the X to the left
of the attribute.

 What other attributes can you customize? Explore the Attributes and Size Inspec-
tors for the label. Any attribute with a plus sign can be customized. For the label, for
example, this includes color attributes in the Attributes Inspector (see figure 7.8) and
margin attributes in the Size Inspector.

Figure 7.8 Label customizable attributes

ADDING CUSTOMIZATIONS TO A CONSTRAINT

Importantly, you can also customize the values of a constraint for a size class. Let’s
increase the leading and trailing margins of the text view to make it narrower on the
iPad.

1 Select the text view and the Size Inspector and find the Leading space con-
straint. 

Customizable
attributes



180 CHAPTER 7 More adaptive layout
2 Instead of selecting Edit, double click on the constraint in the Size Inspector to
open a more detailed edit view for the constraint. Notice that the constraint’s
Constant value has a plus sign. 

3 Add a variation for iPads (Regular Width, Regular Height).
4 Give the Constant a customized value of 50 (see figure 7.9).

5 Do the same for the text view’s trailing constraint (you’ll need to select the text
view again to be able to choose a different constraint).

TIP If the text view goes offscreen after setting up the trailing constraint, you
need to reverse the first and second items. Select the drop-down for either the
first or second item and select Reverse the First and Second Item. Now modify
the constant again to 50, and the constraint should be set up correctly.

Note the effects of the changes you’ve made to the layout in different configurations.
If all’s gone well, the text view should have a wider margin on the iPad.

ADDING CUSTOMIZATION TO THE INSTALLED ATTRIBUTE

Now, to make some more-significant changes to the iPad layout. You’ll add a subtitle
label for iPad users. But first, you need to remove the constraint between the title and
the text view to make room for the subtitle view.

Figure 7.9 Add customization to a constraint



181Size classes
 You may have noticed another customizable attribute in both the Constraint
Inspector and the Attribute Inspector for the view: Installed. Views and constraints
can be installed or uninstalled for specific size classes. Let’s use this attribute to
remove the constraint.

1 Double-click the text view Top Space constraint.
2 Select the plus symbol next to the Installed attribute to add a customization.
3 Deselect the checkbox for wR hR (see figure 7.10). 

NOTE Don’t panic if the text view disappears—it’s temporarily confused
about where to go; you’ll resolve this shortly.

Now to add the subtitle view. Let’s add it by varying for traits.

VARYING FOR TRAITS

Varying for traits is great for making more-significant changes to a layout for a size
class. Let’s explore varying for traits by adding a view and a constraint for different size
classes in the sample application. 

 You may have noticed the Vary for Traits button at the right of the device configu-
ration bar, and wondered what that button was for. Well, wonder no more! You can
use the Vary for Traits button to start varying a layout just for specific size classes.

1 With an iPad device selected in the device configuration bar, select Vary for
Traits. You’ll be given the option to vary for the width size class (wR), height size
class (hR) or both (wR hR). 

2 Select both width and height. When you make your selection, the device config-
uration bar will turn blue, and you’ll see visually which devices, orientations,

Figure 7.10 Uninstall constraint



182 CHAPTER 7 More adaptive layout
and adaptations (multitasking environments) you’ll vary the layout for (see fig-
ure 7.11).
As you can see, the wR hR size class isn’t relevant only to iPads, but also certain
adaptations. You can now go ahead and vary the layout for this size class.

3 Add a subtitle label below the title. 
4 Give it sample text, such as “Subtitle goes here.”
5 Give it a System font size of 30.
6 Pin the subtitle label to the title and align it horizontally.
7 Pin the text view to the subtitle label. (if you don’t see the text view in the story-

board, you can find it in the Document Outline)
8 Modify the constraint constant to 8 points. The text view should slide in nicely

underneath the new subtitle label. You’re done varying the layout! 
9 Select Done Varying in the device configuration bar.

Again, select different devices or orientations in the device configuration bar to
admire the results of your work. The subtitle should appear for iPads and disappear

Clicking Vary for Traits and selecting
Width and/or Height highlights relevant
environments to vary for layout.

Figure 7.11 Vary for traits



183Size classes
for other size classes. Note that different views and constraints are installed or unin-
stalled in different size classes. Faded symbols in the document outline represent
uninstalled views and constraints (see figure 7.12).

Figure 7.12 Uninstalled views and constraints

 

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSAppDevelop-

mentwithSwiftinAction/SimpleSizeClasses.git (2.iPadLayout branch).

Automatic adaption
Up to now, we’ve been looking at creating your own customizations for different size
classes, but UIKit provides its own customizations based on size classes for you
automatically:

 Split view controllers manage the display of two related views. The current
size class automatically determines whether the user can see both views of
the split view controller at once, or one view at a time with navigation between
the two.

 Different types of popovers are automatically presented differently in different
size classes. We’ll look more at popovers in chapter 9.

 The correct assets (such as images) in asset catalogs can be automatically
chosen for the appropriate size class. We’ll look more at asset catalogs in
chapter 13.

wR hR Other

https://github.com/iOSAppDevelopmentwithSwiftinAction/SimpleSizeClasses.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/SimpleSizeClasses.git


184 CHAPTER 7 More adaptive layout
VARYING THE BOOKCASE LAYOUT

Well, varying a simple layout was fairly straightforward, but what about a more signifi-
cant change between size classes?

It’s looking great on iPhone in portrait, but maybe a two-column approach instead of
laying out all the elements from top to bottom would be a more attractive layout in
landscape on the iPhone (see figure 7.13).

1 View the storyboard as an iPhone 8 in landscape, and select Vary for Traits. 
Notice if you select to vary for height, you’re left with all iPhones in landscape.
That makes sense, if you go back to the size classes chart in figure 7.1. If you

CHECKPOINT Open the Bookcase app where we left it in the previous
chapter. You can find it at https://github.com/iOSAppDevelopment-

withSwiftinAction/Bookcase.git (Chapter6.2.AutoLayout branch).

Previous layout

Proposed new layout

Figure 7.13 Proposed layout 
for iPhone landscape

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


185Stack views
also select to vary for width, notice that this deselects the larger screen of the
iPhone 8. 

2 Because you want to adjust the layout for all iPhones, you can vary just for
height.
Rather than determining which constraints to add, which to keep, and which to
uninstall, sometimes when a new layout is significantly different, it can be sim-
pler to uninstall all constraints for a size class and start over. 

3 With the device configuration bar blue for varying for compact-height devices,
ensure that the view controller is selected, and select the Resolve Auto Layout
Issues button, at the right of the five auto layout buttons. 

4 In the All Views in View Controller section, select Clear Constraints.
Now it’s a matter of laying out the views according to the new layout in figure
7.11, and setting up the new constraints. This could be a good opportunity to
practice your auto layout skills from chapter 6! 

CHALLENGE Lay out the views for compact-height devices and add the appro-
priate constraints. If you run into problems, select the red or orange error
indicator in the Document outline and resolve any pending issues. Good
luck!

5 When you’re done laying out the new design, select Done Varying. 
6 Compare the portrait and landscape orientations. If all’s gone well, you should

see the original layout in portrait, and the layout you’ve set up in landscape.
Well done! You’ve set up a truly adaptive layout without writing a line of code.

7.2 Stack views
Stack views are container views that can contain multiple views in a specific arrange-
ment, applying the appropriate constraints automatically. Let’s look at the problem
they solve.

7.2.1 The problem with auto layout

Let’s be honest, auto layout and constraints can be a pain to deal with sometimes. Set-
ting up rules to describe the frame of each element in the app can be time consum-
ing, and making a small change to a layout can be frustrating.

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSAppDevelop-

mentwithSwiftinAction/Bookcase.git (Chapter7.1.SizeClasses branch).

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


186 CHAPTER 7 More adaptive layout
 Imagine that you need to make a small change to the Bookcase app scene you were
working in earlier. You want to make a simple change, inserting a field for ISBN
between the author and notes fields (see figure 7.14).

Figure 7.14 Update to bookcase design

What would you need to do to make that change? There are a few tasks you would
have to do, so quickly skim over the steps: 

1 Delete the constraint between the notes and author fields.
2 Move the notes title and field down to make room for the new field.
3 Drag in the label and text field for ISBN.
4 Reposition the notes title and field to the correct position.
5 Add four constraints to the ISBN label (leading, trailing, baseline alignment,

and make it equal width to another title label).
6 Add three constraints to the ISBN text field (trailing, and pin it to the author

and notes fields).

Wow, that’s quite a bit to do—and it doesn’t take into consideration the complications
with multiple layouts for different size classes! 

 And what if you wanted to make these sorts of changes to a layout at runtime?
You’d have to perform similar steps, but in code!

Updated designOld design



187Stack views
 Let’s take a step back for a second. One of the golden rules of interface design is
consistency of layout. You most likely want the distribution, alignment, and spacing
between each view to be consistent.

 Wouldn’t it save time and make the app less prone to error if you could declare
these consistent rules for a group of views rather than for each individual view? This
would make life so much easier when you’re adding or removing views to a preexist-
ing layout. 

 Well, that’s basically the idea behind stack views. 
 We’ll come back to converting the Bookcase app to use a stack view shortly, but first

let’s learn a bit more about stack views by implementing one in a simpler example.

7.2.2 Stack view properties

While constraints take a more granular approach by defining rules (constraints) for
each view, stack views allow you to take a broader approach by defining rules (proper-
ties) for a stack of views.

 For example, while auto layout requires you to specify the vertical constraints
between each view, stack views allow you to specify one property representing vertical
spacing for all views arranged in the stack view. In the article app iPad layout (see fig-
ure 7.15), you defined one constraint for the vertical space between the title and the
subtitle, and a second constraint for the vertical space between the subtitle and the
text view. If the three views are arranged in a vertical stack view, you only need to spec-
ify the vertical spacing once, and it’s applied to all views in the stack. 

Auto layout

spacing = 8
spacing = 8

Stack view

spacing = 8

Figure 7.15 Spacing: auto 
layout vs. stack view



188 CHAPTER 7 More adaptive layout
What other properties are necessary to define the arrangement of views in a stack
view? Figure 7.16 demonstrates how the four main properties of a stack view describe
the article layout in the SimpleSizeClasses app.

We’ll convert the simple article layout to use a stack view in a moment, but first, let’s
look closer at the four properties shown in figure 7.16: axis, spacing, alignment, and
distribution.

AXIS

All stack views lay out their views in either a horizontal or vertical direction.

SPACING

Spacing is a point value defining the space between the views.

ALIGNMENT

The alignment property specifies how to arrange the views in the direction contrary to
the axis. For example, if the views of a stack view are arranged in a vertical axis as in
our example, alignment refers to how the views will be aligned horizontally. See figure
7.17 for horizontal alignment properties. They probably look familiar enough—
they’re similar to text justification styles you’ll find in Microsoft Word. 

axis = Vertical

spacing = 8

alignment = fill

distribution = fill

Title label

Subtitle label

Text field

Figure 7.16 Stack 
view properties

fill leading center trailing

Figure 7.17 Stack view 
horizontal alignment



189Stack views
The only alignment property that affects the size of the views is fill alignment. All
other alignment alternatives only affect the position of the view, and the view defaults
to its intrinsic content size. This is fine for buttons or labels, for example, because
their intrinsic content size defaults to the size of their content. But certain views such
as plain views or scrolling text views don’t have an intrinsic content size. You need to
give the Auto Layout engine enough information to define the frame for views with
no intrinsic content size. 

 Vertical alignments are relatively predictable: fill, top, center, and bottom. How-
ever, the vertical axis has two additional alignments: firstBaseline for aligning with the
baseline of the first line of a text view, and lastBaseline for the last line.

DISTRIBUTION

The distribution property specifies how to distribute the views in the direction of the
axis to fill the stack view’s available space. 

 See figure 7.18 for an example of how distribution properties affect a vertical stack
view containing arranged views with hypothetical intrinsic content sizes. 

Figure 7.18 Stack view vertical distribution

The fill distribution looks for one view to stretch or shrink. The Auto Layout engine
stretches the view with the lowest content-hugging priority (or shrinks the view with
the lowest content-compression resistance priority). Because labels automatically have
higher content-hugging priority, the text view in the SimpleSizeClasses layout would
automatically stretch. If all of them had the same priority, the engine would stretch or
shrink the first view.

 The fillEqually distribution ignores the intrinsic content size, and simply resizes
views to have an equal size. The fillProportionally distribution resizes views maintain-
ing the proportions of the view sizes, based on intrinsic content size. The equalSpac-
ing distribution arranges views adding equal space between the views. The
equalCentering distribution arranges views so that their centers are at equal distances.

7.2.3 Simple stack view in Interface Builder

Now that you know about the four properties of stack views, let’s convert a simple lay-
out to use a stack view. 

fill

Lower
content-
hugging
priority

fillEqually fillProportionally equalSpacing equalCentering
Intrinsic

content size



190 CHAPTER 7 More adaptive layout
 Duplicate your SimpleSizeClasses project folder in Finder, and call the new folder
SimpleStackViews. If you need to, you can check out the SimpleSizeClasses project at
https://github.com/iOSAppDevelopmentwithSwiftinAction/SimpleSizeClasses.git
(2.iPadLayout branch).

1 Open the main storyboard and select View as iPad.
2 Select the title, subtitle, and text view. 
3 Embed these views in a stack

view. You can do this the long
way by selecting Editor > Embed
In > Stack View or the short way
by selecting the Embed in Stack
button, that you’ll find with the
five auto layout buttons (see fig-
ure 7.19).
The three views automatically
lose any existing constraints
because their constraints are now going to be automatically generated by the
stack view. You’ll see a red error indicator in the document outline. The stack
view itself needs to be given auto layout constraints. 

4 Select the stack view. This can be a little tricky to
select in the canvas because it contains other
views. You could select it in the document outline,
but another trick is to bring up a view hierarchy in
the canvas, by Control-Shift-clicking on the stack
view (or Shift-right-clicking). Select the stack view
in the context menu that appears (see figure
7.20).

5 Pin the stack view to the safe area layout guides of
the root view. Great! The red error symbol should
go away.

6 Now focus on the attributes of the stack view in
the Attributes Inspector, and modify them to look like figure 7.21.

Embed in Stack

Figure 7.19 Embed in Stack view button

Figure 7.20  Context menu

Figure 7.21 Stack view attributes

https://github.com/iOSAppDevelopmentwithSwiftinAction/SimpleSizeClasses.git


191Stack views
A distribution of fill for the stack view makes the most sense. Because the text
view automatically has a lower content-hugging priority than the two labels, it
will automatically fill the available space. Spacing the distribution by 8 points
will give the views a little breathing space.

Because the text view has no intrinsic content size, fill makes the most sense for
alignment as well, so that it fills the available width. This means the title and
subtitle labels will need to be center-aligned.

7 Select the title and subtitle labels, and select center-alignment in the Attributes
Inspector.
The layout should work perfectly now on an iPad, but check what’s happening
with the iPhone layout. You’ll encounter a couple of problems. First, the stack
view’s leading and trailing margins need to be adjusted for the iPhone. 

8 Select the two constraints and add a customization for the constraint constants
for wR hR (iPads). 

9 Set the default constant to 0 and the wR hR constant to 50. Because the views
lost any existing constraints when they were embedded in a stack view, the subti-
tle is appearing again in the iPhone. This is easy enough to remove.

10 Add a customization for the subtitle’s Installed attribute for wR hR. Deselect the
default Installed checkbox and select Installed for wR hR.
Notice how easy it is once a stack view is set up to add and remove views that fol-
low the same rules. Drag another label into the stack view and notice how the lay-
out adjusts accordingly. Remove the label by selecting it and pressing Delete or
by deselecting Installed, and again, the layout adjusts automatically. Too easy! 

7.2.4 Nested stack views in Interface Builder

Each stack view can only work with a horizontal or vertical layout. Layouts are often a
little more complicated. How do stack views help with more-complicated layouts? The
simple answer is that stack views can be nested. 

 Let’s go back to our more complicated add-a-book layout from the Bookcase app,
and convert it to use nested stack views. 

CHECKPOINT If you would like to compare your code with mine, you
can check out my project at this point at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/SimpleSizeClasses.git (3.SimpleStackViews
branch).

CHECKPOINT Duplicate the project folder in the Finder if you like and
call the new folder BookcaseStackview. If you need it, you can find the

Bookcase project where we left it at https://github.com/iOSAppDevelopment-
withSwiftinAction/Bookcase.git (Chapter7.1.SizeClasses branch).

https://github.com/iOSAppDevelopmentwithSwiftinAction/SimpleSizeClasses.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/SimpleSizeClasses.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


192 CHAPTER 7 More adaptive layout
The Bookcase app layout can be described as several horizontal stack views and other
views, nested inside a vertical stack view (see figure 7.22). Notice how much simpler
this description of the layout is than the constraints version in the previous chapter.

Figure 7.22 Stack view layout for the add-a-book scene

The easiest approach for defining the stack views is to work from the inside out.

1 Select the title label and text field and embed them in a stack view. Xcode
should automatically detect that you want a horizontal stack view. 

2 Do the same with the author label and text field, and then the notes label and
text view. You should now have the book image view, the star-rating view, and
three horizontal stack views. 

3 Select them all and embed them in a stack view. Again, Xcode should automati-
cally detect that you want a vertical stack view. Now you have tidying up to do. 

4 Pin your outer vertical stack view to the safe area layout guides of the root view
as you did earlier. 

Vertical
stack view

Horizontal
stack views



193Stack views
As you saw earlier, when you embed your views in stack views, they lose their
constraints. But you still want the title, author, and notes fields to be con-
strained to an equal width. 

5 Reinstate the equal width constraints on these three fields. They may or may
not be cut off in Interface Builder, but not to worry—they should look fine in
the simulator.

TIP You might find that Interface Builder occasionally has difficulty display-
ing stack view interfaces accurately. While Apple continues to iron out these
bugs, it’s always best to test your interface on various simulators for a true test
of how your interface will appear.

6 Because the text view has an intrinsic content height of its contents, you need to
manually constrain it to the height of the stack view it is embedded in.

7 Now you need to tweak the stack view properties. They’re fairly straightforward,
as shown in table 7.2.

The notes stack view should be aligned to top so that the top of the Notes label
is aligned with the top of the text view.

That’s it! You’ve successfully converted a layout to use stack views. You could
even add customizations to any of the four main stack view properties to tweak
the layout for other size classes.

But what of the original problem: how can you add another field for ISBN?

8 Select the author stack view, and select Edit > Copy and then Edit > Paste. 

9 Add an Equal Widths constraint between the author label and one of the other
three labels.

10 Replace the author label’s text property with ISBN:.  

That’s all! Another line has been inserted into the layout, and you didn’t have to
worry about breaking the original layout apart to squeeze it in; the other fields
adjusted themselves automatically.

Table 7.2 Stack view properties

Stack view Axis Alignment Distribution Spacing

Outer Vertical Fill Fill 8

Title Horizontal Fill Fill 8

Author Horizontal Fill Fill 8

Notes Horizontal Top Fill 8



194 CHAPTER 7 More adaptive layout
7.2.5 Adding or removing views from a stack view

Not everyone is interested in seeing the book’s ISBN. How could you set up the Book-
case app to just display the ISBN when the user taps on a special info button? Here are
two solutions:

 After instantiating the ISBN view in code, you could add it to the outer stack view
with either the addArrangedSubview method (which adds the view to the stack
view’s arranged views) or the insertArrangedSubview method (which inserts
the view into a specific location in the stack view’s arranged views).

 Create the ISBN view in Interface Builder, and set its isHidden attribute to
hide or unhide the view when required.

You’ll use the second option, taking advantage of Interface Builder and the fact that
you’ve already created the ISBN view. You’ll use the isHidden attribute to hide it until
the user taps an info button.

1 First, create outlets for the book cover and the ISBN stack view. I’ve called mine
bookCover and isbnStackView. 

2 Set the ISBN stack view to Hidden in the Attributes Inspector.
You’re going to add the info button as a subview to the book cover image view.
Because image views are, after all, special types of views, you can add subviews to
them too. 

3 Be sure that the book cover is set to User Interaction Enabled in the Attributes
Inspector, so that the user can interact with the button it contains. 

4 Add the info button in the viewDidLoad method of BookViewController:
 

let infoButton = UIButton(type: .infoLight)
bookCover.addSubview(infoButton)

5 Add an action to the button for the touchUpInside event that calls a tog-
gleISBN method:

infoButton.addTarget(self, 
    action: #selector(toggleISBN), 
    for: .touchUpInside)

6 Now, add the toggleISBN method that will be called when the user touches
the info button. 
All this method will need to do is toggle the isbnStackView’s isHidden prop-
erty, and the Auto Layout engine takes care of the rest, expanding and contract-
ing the outer stack view’s space to accommodate the ISBN stack view when
necessary:

@objc func toggleISBN() {
    self.isbnStackView.isHidden = !self.isbnStackView.isHidden
}

Creates info 
button

Adds info button
to book cover

Call toggleISBN 
on touch button

Toggles ISBN
visibility



195Stack views
As you saw in chapter 5, for a method to be visible to the #selector keyword,
it must be prefixed with the @objc keyword. 
You could even easily animate this change. 

7 Move the setting of the isHidden property in the toggleISBN method into an
animations closure of a call to the animate method of UIView:

UIView.animate(withDuration: 0.5, animations: { 
    self.isbnStackView.isHidden = !self.isbnStackView.isHidden
})

8 Run the app, tap on the info button, and you should see the ISBN field
smoothly animate into view. 

9 Tap the info button again and it should smoothly animate away. Too easy!

We’ll look more at animation of views in chapter 8.

CHALLENGE Combine what you learned about stack views and size classes to
adapt the layout of the stack view for iPhones in landscape (compact height)
with the book and star-rating view on the left, just as you did in figure 7.13
using pure auto layout. 

HINT You’ll probably want to create two new vertical stack views. One stack
view will contain the book and star-rating view, and the other will contain all
the horizontal stack views containing the labels and text fields. The axis of
the outer stack view could then be adapted for size views—a horizontal axis
for compact height and a vertical axis otherwise.

We’re going to leave the Bookcase app there for now. 

7.2.6 Stack views in code

Stack views are easiest to set up in Interface Builder, but you can set them up com-
pletely in code if you want to.

CHECKPOINT The project at this point can be found at https://
github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git

(Chapter7.2.StackViews).

CHECKPOINT If you would like to compare your solution with mine, you
can check out my project at this point at https://github.com/

iOSAppDevelopmentwithSwiftinAction/Bookcase.git (Chapter7.3.StackViews-
SizeClasses).

Calls animate on UIView

Sets 
isHidden

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git 
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git 


196 CHAPTER 7 More adaptive layout
 All you need to do is instantiate the stack view, passing in an array of views you want
the stack view to arrange. For example, the following listing instantiates a stack view
with three arranged views.

let stackView = UIStackView(arrangedSubviews: [
    titleLabel, subtitleLabel, greenView
    ])

You can then set the four main stack view properties directly in code, as shown in the
following listing.

stackView.axis = .vertical
stackView.alignment = .fill
stackView.distribution = .fill
stackView.spacing = 8

Don’t forget to give the stack view auto layout constraints when adding it to the root
view, as shown in the following listing.

view.addSubview(stackView)
//stack view constraints
stackView.translatesAutoresizingMaskIntoConstraints = false
let constraints = [
    stackView.topAnchor.constraint(equalTo: 
        self.topLayoutGuide.bottomAnchor),
    stackView.leadingAnchor.constraint(equalTo: 
        self.view.layoutMarginsGuide.leadingAnchor),
    stackView.trailingAnchor.constraint(equalTo: 
        self.view.layoutMarginsGuide.trailingAnchor),
    stackView.bottomAnchor.constraint(equalTo: self.view.bottomAnchor)
]
NSLayoutConstraint.activate(constraints)

CHALLENGE Practice what you’ve learned in this chapter. Recreate the simple
stack view article layout you created earlier in Interface Builder, but this time
build it in code! For extra points, have the layout adapt for iPads and use lazy
stored properties. 

Listing 7.2 Instantiate stack view

Listing 7.3 Set stack view properties

Listing 7.4 Add stack view and constraints

CHECKPOINT When you’re done, you can compare your answer with
mine at https://github.com/iOSAppDevelopmentwithSwiftinAction/

SimpleStackViewsInCode.git. 

https://github.com/iOSAppDevelopmentwithSwiftinAction/SimpleStackViewsInCode.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/SimpleStackViewsInCode.git


197Summary
7.3 Summary
In this chapter, you learned the following:

 Rather than designing layouts for specific devices or orientations, try to think
more in terms of size classes.

 Use size classes to add more-significant variations in your layout to accommo-
date for different environments.

 Use lazy stored properties when a property’s initial value depends on the initial
value of another property, or when the property requires more computation or
memory and may not be needed.

 Use stack views instead of auto layout where possible—you’ll work faster, your
layouts will be easier to maintain, and you'll have better consistency across
views.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



198 CHAPTER 7 More adaptive layout
 
 



Keyboard notifications,
animation, and scrolling
In this chapter, you’ll solve a real-world problem: what do you do when the user
taps on an editable text field and the keyboard pops up over the text field, obscur-
ing from view what the user’s typing? How can you recognize when the user taps on
the text field and move it so that the user can see what they’re typing?

 Along the way, we’ll encounter several important iOS concepts:

 First responders—The first responder is the first view in a scene to receive sys-
tem events.

 Notifications—Use notifications to listen to messages being broadcast from
elsewhere in your app or from other iOS SDK frameworks.

 View animation—Animate any views in the UIKit framework.
 Scroll view—Use the scroll view to animate content.

This chapter covers 
 Getting notifications of system events

 Dismissing the keyboard

 Animating views

 Implementing scrolling
199



200 CHAPTER 8 Keyboard notifications, animation, and scrolling
8.1 The problem with the keyboard 
Imagine that you’ve published what you think is a brilliant app for users to keep
records of all the books they own. Great! You submit it to the App Store, and then you
start getting comments back . . .

“Unusable!”
“The keyboard covers up the text fields!”
“The keyboard won’t go away!”

Oh no, what’s going on? You open the app on an iPhone SE simulator and immedi-
ately see the problem (see figure 8.1).

Figure 8.1 The problem with the keyboard

When the user taps on text entry fields—depending on the device—the keyboard
opens right over the top of the field, obscuring the field the user’s typing into! To top
things off, tapping Return doesn’t make the keyboard go away! Oh no, what a disaster! 

 You did all your testing on your iPad Pro, where there was so much screen real
estate this wasn’t an issue. “I knew I should have done beta testing!” you think to your-
self. (Not to worry, we’ll get to beta testing later in the book!) 

 After getting over the embarrassment, you think about how to solve the problem.
You decide that the best approach is probably to move the text fields up when the key-
board animates on. Good plan! “I’d better get to fixing this straight away!” you decide.
“But how?”

What we’re seeing when the
user taps the ISBN text field

What we want to see



201Dismissing the keyboard 
 Let’s break the problem into its components, and then we’ll look at each of the
parts in turn. 

 First, you need to ensure there’s a way for the user to dismiss the keyboard.
You’ll do this by detecting when the user taps the Return key or outside the key-
board, and then by resigning the first responder.

 Then, you need to detect when the keyboard shows and hides. You’ll do this by
observing keyboard notifications.

 When the keyboard is showing, you want to move the editable field to above the
keyboard so that it can be seen. You’ll do this by animating the view, and then
later you’ll explore how this could also be done with scroll views.

Let’s start by ensuring the user has a way to dismiss the keyboard. 

8.2 Dismissing the keyboard 
As you saw in chapter 5, the keyboard can look different depending on the device type
and orientation. While a special button exists on some keyboards to close the key-
board, the keyboard on iPhones in portrait mode doesn’t have such a button (see fig-
ure 8.2). You need to provide a way for the user to close the keyboard in every
configuration. A common approach is to manually close the keyboard when the user
taps the Return key.

CHECKPOINT Open the Bookcase project where you left it in the previ-
ous chapter. Alternatively, you can check it out at https://github.com/

iOSAppDevelopmentwithSwiftinAction/Bookcase.git (Chapter7.3.StackViews-
SizeClasses).

iPad Pro portrait

iPhone 8 portrait

Close keyboard

No close keyboard button! Figure 8.2
Close keyboard

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


202 CHAPTER 8 Keyboard notifications, animation, and scrolling
To manually close the keyboard when the user taps the Return key, you need to

1 Detect when the user taps the Return key or outside the keyboard.
2 Manually dismiss the keyboard.

We’ll explore detecting when the user taps the Return key shortly, but first, how do you
manually dismiss the keyboard?

 To manually dismiss the keyboard, you need to resign the first responder. What’s
the first responder?

8.2.1 Dismissing the keyboard by resigning the first responder

When I explained touch events in chapter 5, you discovered that an object that
receives events is known as a responder. The event travels up the view hierarchy from
the responder that first receives the event in what is called the responder chain. 

 As you saw in chapter 5, touch events use hit testing to determine the lowest-level
view that was touched and therefore which responder should first receive the event. 

 Other UIKit objects also make use of the responder chain, including

 Motion events to detect shakes
 Remote control events to detect commands from a remote control
 Editing-menu messages to handle operations such as cut, copy, and paste
 Text editing to handle text entry on an editable text field

The view that will be first to respond to these objects has a special name: the first
responder. In general, you tell UIKit which view you want to be the first responder by
calling its becomeFirstResponder method. But text fields and text views have a spe-
cial power—as soon as they’re tapped, they automatically set themselves as the win-
dow’s first responder. 

 When a text field or text view becomes first responder, the keyboard automatically
appears. Conversely, when they’re no longer the first responder, the keyboard auto-
matically disappears. How do you make a view stop being the first responder? Call its
resignFirstResponder method.

 If you want to dismiss the keyboard, you need the relevant text field or text view to
no longer be first responder, and you can do that by calling their resignFirstRe-
sponder method:

textField.resignFirstResponder()

Now that you know how to hide the keyboard, you need to determine when!

8.2.2 Detecting when to dismiss the keyboard

The user would reasonably expect the keyboard to disappear when they tap the
Return key for the three text fields. You need to detect this moment, so you can man-
ually dismiss the keyboard. 



203Dismissing the keyboard 

DETECTING THE RETURN KEY TAP TO DISMISS THE KEYBOARD

You can detect that the Return key was tapped on a text field by using the delegation
pattern. The text field’s delegate has a textFieldShouldReturn method that's
called when the Return key is tapped, that has a reference to the text field itself. Fol-
low the three steps for the delegation pattern:

1 Set the view controller as the delegate for the title text field. Control-drag from
the text field to the view controller. 

2 Select Delegate in the Outlets section of the context-sensitive menu that pops
up, just as you did with gesture recognizers in chapter 5 (see figure 8.3).

3 Repeat steps 1 and 2 for the author text field, notes text view, and ISBN text
field.

Figure 8.3 Set text field delegate

4 Adopt the UITextFieldDelegate protocol on an extension of the View-
Controller.

5 Implement any required methods on the protocol. You want to implement the
textFieldShouldReturn method:

extension BookViewController: UITextFieldDelegate {
    func textFieldShouldReturn(_ textField: UITextField) -> Bool {
        textField.resignFirstResponder() 

Control-drag from text field
to view controller

Select delegate
under Outlets
        return true
    }
}

Run the app, tap on a text field, and tap the Return key. The keyboard should animate
away. That works great for the three text fields. But what about the notes text view? 

Hides the keyboard



204 CHAPTER 8 Keyboard notifications, animation, and scrolling
 Because text views such as notes are multiline, the Return key has another mean-
ing—it represents a new line within the text view. Therefore, the Return key on a text
view shouldn’t be used to hide the keyboard. To bring that point home, the text view
delegate doesn’t even provide a way to recognize that the Return key was tapped!

 How can the user indicate that they’d like to dismiss the keyboard when editing
the text view? Well, how about tapping outside the keyboard and outside the text
fields (see figure 8.4)?

DETECTING TOUCHES TO DISMISS THE KEYBOARD

As you saw in chapter 5, you can detect touches using the touchesEnded method.
You can use this method to dismiss the keyboard when the user touches anywhere on
the screen. 

 Perfect for your intentions, controls such as text fields trap touches, preventing
them from continuing up the responder chain to the view controller. Similarly, the
keyboard appears in a different window that prevents touches from being recognized
in the main application window. Because of this, you can know that when the tou-
chesEnded method is called, the user hasn’t touched the keyboard or the text fields.

 Only problem: the touchesEnded method doesn’t know which text field the user
is currently editing to choose which first responder to resign, and UIKit doesn’t

Tapping Return hides
the keyboard when in
text fields only.

Tapping other parts
of the screen hides the
keyboard when in text
fields or in text views.

Figure 8.4 User taps 
to hide the keyboard



205Observing keyboard notifications
provide an easy way to get a reference to the current first responder. (We’ll explore a
way to do this later.)

 To resign the first responder, instead of calling resignFirstResponder directly
on the view, you can also use the more generic method endEditing on the root view
of the scene. The endEditing method goes on a hunt through its subview hierarchy
until it finds the first responder, and then it asks it politely to resign. If its force
parameter is set to true, it’s slightly less polite with the first responder, forcing it to
resign.

1 Add the endEditing method to a touchesEnded method:

override func touchesEnded(_ touches: Set<UITouch>, with event: UIEvent?) {
    super.touchesEnded(touches, with: event)
    view.endEditing(true)
}

2 Run the app again, and you should find that the keyboard dismisses either
when you tap the Return key or when you tap elsewhere on the screen. 

That’s the first problem solved!

8.3 Observing keyboard notifications
Next, you need to move the editable field so that it’s visible when the keyboard shows.
You need to detect when the keyboard shows, and you need to know the size of the key-
board to move the text fields accordingly. To do that, you need to listen for a special
keyboard notification. When the keyboard notification is broadcast, a selector method
you write will be notified, along with information about the keyboard, such as its size. 

8.3.1 What is a notification?

Notifications are a way of posting and receiving messages. One object in your app (the
publisher) can broadcast notifications, while other objects in your app (observers) listen
for the notification. 

 The UIKit’s UIWindow class broadcasts notifications when the keyboard is about to
be shown or hidden, or when its frame changes, and your app can listen for those
broadcasts. It’s a perfect time to make adjustments to your scene’s interface to accom-
modate the keyboard!

TIP Did you know that keyboards can change size? iPad keyboards, for exam-
ple, can be split in two, triggering a keyboard frame change notification.
Because all keyboard shows notifications and keyboard hides notifications trigger
keyboard frame change notifications, but all keyboard frame changes don’t necessar-
ily trigger keyboard show or hide notifications, UIKeyboardWillChangeFrame
is the best notification to listen for.

Each app has its own default Notification Center that is the middleman between the
observers and publishers. Your ViewController class can register as an Observer with



206 CHAPTER 8 Keyboard notifications, animation, and scrolling
the Notification Center for keyboard change notifications, and when the UIWindow
class broadcasts the keyboard frame change notification to the Notification Center, any
registered observers of that notification (your ViewController class, in this case)
will be notified (see figure 8.5).

Figure 8.5 The Notification Center

In using the Notification Center as a middleman, the publisher and observers are
decoupled—the publisher doesn’t know who’s listening, and the observer doesn’t nec-
essarily know who posted the notification. The decoupling of the publisher and the
observer is especially useful with frameworks, such as the frameworks of the iOS SDK.
Frameworks know nothing about how your app is structured, but your app still needs
a mechanism for receiving important messages from frameworks. 

NOTE To make things super confusing, be aware of an unrelated iOS concept
called remote and local notifications. These notifications refer to apps notify-
ing the user of important information with banners, sounds, and badges on
the app icon. To add to the confusion, missed notifications can be found in
your device’s “Notification Center,” also an unrelated concept to the Notifica-
tion Center we’re discussing!

8.3.2 Observing a keyboard frame change notification

Next, you’ll make your view controller become an observer of the keyboard frame
change notification. 

1 Set up a method in BookViewController.swift to be called when the notification
is observed that the keyboard’s frame changes. This method should receive the
notification as an argument. 

@objc func keyboardFrameChanges(notification:Notification) {
    print("Keyboard frame changes")
}

You can now register this method to be called on a specific notification, by call-
ing the default notification center’s addObserver method. The addObserver
method expects four parameters:

 The observer to be notified (usually self)
 The selector to be notified (a method in the observer class)

Notification
Center

UIWindow UIViewController

Broadcasts
notification

Registers
as observer

Notifies



207Observing keyboard notifications
 The notification name you want to observe
 The object to optionally only observe notifications from a specific sender

(we’ve left this parameter as nil to ignore the sender)

2 Connect this observer method to the keyboard notification in the viewDid-
Appear method:

override func viewDidAppear(_ animated: Bool) {
    super.viewDidAppear(animated)
    NotificationCenter.default.addObserver(self, 
        selector: #selector(keyboardFrameChanges), 
        name: NSNotification.Name.UIKeyboardWillChangeFrame, 
        object: nil)
}

3 Run the app on the simulator and tap on a text field. As the keyboard appears,
you should see “Keyboard frame changes” in the console. 

4 Tap the Return key. The keyboard should disappear, and the text “Keyboard
frame changes” should again print to the console. 

Other notifications
Many objects in iOS SDK frameworks broadcast notifications. Here are several exam-
ples of notifications you could listen for in your app.

 

8.3.3 Unregistering a notification

Don’t forget that when this scene is no longer active, you want this view controller to
stop receiving keyboard notifications. You can unregister an observer for specific noti-
fications, but to be safe, it can be easiest to remove all notifications for this observer in
one swoop. 

 Remove all observers in the viewDidDisappear method:

override func viewDidDisappear(_ animated: Bool) {
    super.viewDidDisappear(animated)
    NotificationCenter.default.removeObserver(self)
}

Class Examples of notifications

UIApplication Application became active, entered the background, finished launching, 
and is about to terminate.

UIDevice Orientation changed, battery level changed.

UIWindow Window became visible, keyboard shows, keyboard hides, and key-
board’s frame changes.



208 CHAPTER 8 Keyboard notifications, animation, and scrolling

k

Now you’ve detected when the keyboard frame changes, but how can you get the y
position of the keyboard, to determine the extent to which it’s currently overlapping
the main view?

8.3.4 Extracting keyboard information from the notification

When a keyboard notification is posted, information about the keyboard is included
in the notification’s userInfo parameter:

 Keyboard frame—UIKeyboardFrameEndUserInfoKey

 Keyboard animation duration—UIKeyboardAnimationDurationUserInfoKey

 Keyboard animation curve—UIKeyboardAnimationCurveUserInfoKey

With a bit of work, you can extract this information out of the userInfo dictionary. It’s
useful information to have as you coordinate your views to animate with the keyboard!

 Let’s start by getting the y position of the keyboard. 

1 After unwrapping the userInfo dictionary, extract the keyboard frame. This is
passed as a generic NSValue from which a CGRect can be extracted. Add the
following to the keyboardFrameChanges method:

//get keyboard height
guard let userInfo = notification.userInfo,
    var keyboardFrame = (userInfo[UIKeyboardFrameEndUserInfoKey] 
        as? NSValue)?.cgRectValue()
    else { return }

Broadcasting notifications
The power to broadcast notifications isn’t limited to the iOS SDK. An object in your
app can broadcast notifications too, and observe notifications from elsewhere in your
app.

To broadcast a notification, first create a notification name. To help organize your
code, it’s probably a good idea to define all your notification names in the same
struct. Use the Notification.Name method to generate your notification.

struct Notifications {
    static let TimeOutNotification = Notification.Name("TimeOut")
}

Your publisher then broadcasts the notification with the default Notification Center’s
post method:

NotificationCenter.default.post(
    name:Notifications.TimeOutNotification object: nil)

You can use the object parameter to optionally pass a reference to the sender of
the notification along with the notification. We’ve left it as nil here.

You can also pass in an optional userInfo parameter with any additional informa-
tion you’d like to pass with the notification.

Unwraps userInfo

Unwraps
eyboard frame Casts to NSValue 

and extracts CGRectReturns if above
unsuccessful



209Observing keyboard notifications

U

2 To make things more complicated, you need to then convert this value to
accommodate for any rotation factors, using the convert method. 

keyboardFrame = self.view.convert(keyboardFrame, from: nil)

3 Finally, you can extract the keyboard’s y position from the CGRect’s origin
property.

let keyboardY = keyboardFrame.origin.y

While you’re here, why not get other details on the animation that’s available in
the userInfo parameter? 

4 Extracting the animation duration and curve is relatively straightforward. (The
animation curve refers to any easing applied to the animation.)

guard let duration = userInfo[UIKeyboardAnimationDurationUserInfoKey]
        as? Double,
    curve = userInfo[UIKeyboardAnimationCurveUserInfoKey] 
        as? UInt
    else { return }

Great, you have the y position of the keyboard and some other animation properties,
but how do you know how far up to animate the layout? You’ll need to get the y posi-
tion of the text field or text view that the user is editing. You saw earlier that this view
is called the first responder.

8.3.5 Getting a reference to the first responder

Frustratingly, you have no simple way to get a reference to the current first responder.
Every UIView does, however, have an isFirstResponder property, so without too
much effort, it’s possible to recursively iterate through a view’s subviews to find the
first responder. This could even be appropriate to add as a property in an extension to
the UIView class for easy reuse.

1 Add this extension to the Bookcase project now. Create a Swift file called
UIViewExtension.swift, and add the following code:

import UIKit
extension UIView {
    var firstResponder: UIResponder? {
        if self.isFirstResponder {
            return self
        }
        for view in self.subviews {
            if let firstResponder = view.firstResponder {
                return firstResponder
            }

Converts keyboard frame

Gets y position 
from frame origin

Unwraps duration

Casts to
Double Unwraps 

curve
Casts to UIntReturns if above 

unsuccessful

Extends the 
UIView classDefines optional

IView computed
property

Returns self if 
first responder

Recursively iterates
through subviews



210 CHAPTER 8 Keyboard notifications, animation, and scrolling

U

        }
        return nil
    }
}

2 For convenience, you could add an additional firstResponder property in an
extension to the UIViewController class.

extension UIViewController {
    var firstResponder: UIView? {
        return view.firstResponder
    }
}

You can now always get a reference to the first responder!

8.3.6 Calculating the offset to animate

Now that you can get a reference to the first responder, you can use it to calculate how
far to animate the layout to accommodate the keyboard.

1 Unwrap the firstResponder property from the UIViewController exten-
sion you created. If no first responder exists, you can safely assume that the user
isn’t editing a field, and the offset of the view should be zero.

var offset: CGFloat = 0
if let firstResponder = firstResponder {
    
}

Now that you have the first responder, you can calculate the offset to animate
the view. 

2 Get the first responder’s frame in the view with the convert method. (We’ll
come back to the convert method in a moment.)

let frFrame = view.convert(firstResponder.frame, 
    from: firstResponder.superview)

3 Next, get a reference to the lowest point that it reaches in the view with the
maxY property, taking into consideration the top constraint and adding in a
five-point margin. 

let frMaxY = frFrame.maxY - topConstraint.constant + 5 

4 You can now compare this lowest point with where the keyboard frame begins,
to determine the offset to animate the view.

if frMaxY > keyboardFrame.origin.y {
    offset = frMaxY - keyboardFrame.origin.y
}

Returns nil if no first 
responder found

Creates offset 
variable of 0nwraps first

responder
Defines offset here

Gets first responder 
frame in view

Gets maxY of 
first responder

If keyboard covers 
first responder

Calculates offset 
to animate



211Animating views
Finally, you’re all set to animate the layout!

8.4 Animating views
Now that you’ve detected when the keyboard moves on, you want to move the text
field up so the user can see where they’re editing. Rather than the interface jumping
into place, animating it smoothly is a much better idea. Animation in an app can be
the difference between a boring, static app and a slick, interesting, energetic experi-
ence. But animation isn’t only pretty; it can also be practical. You can use animation to
indicate elements you want the user to interact with; you can animate elements the
user interacts with to give the user the illusion of a more tactile experience; and you
can animate elements to help illustrate instructions or results.

TIP If you want to create a visually rich app such as a game with frequent ani-
mations and transitions, you might want to look at the SpriteKit framework.
SpriteKit provides a straightforward approach to working with graphics in 2D.
SceneKit literally takes it to another dimension, giving developers a useful
framework for working with 3D graphics.

Converting frames and points
You can use the convert method to convert a
rect or point from one coordinate system to
another.

Imagine you have three views. View C is a sub-
view of view B, which is, in turn, a subview of
view A.

Each view has an origin (position) relative to
the coordinate system of their superview. For
this reason, view C’s position in the x direction
is 0. If you want to know the position of view C
within view A, use the convert method of
UIView:

let point = viewA.convert(viewC.frame.origin, from: viewB)
//point = [10,50]

The first parameter is the point or frame that you want to convert. In the from param-
eter, you need to pass in the coordinate system in which that point or frame currently
resides. In this example, viewC currently resides in viewB, so that’s the from
parameter.

CHECKPOINT If you want to compare your project with mine at this
point, you can check it out at https://github.com/iOSAppDevelopment-

withSwiftinAction/Bookcase.git (Chapter8.1.KeyboardNotification).

View B 

Origin[10,10], size[80,80]

Origin[0,0], size[100,100]

View A

View C 

Origin[0,40], size[70,30]

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


212 CHAPTER 8 Keyboard notifications, animation, and scrolling
8.4.1 Animating the view from under the keyboard

So far, you’ve extracted the keyboard frame, animation duration, and animation curve
from the keyboard notification, and determined the offset to animate the view by
comparing the keyboard frame with the first responder frame.

 Now, you’re ready to animate the outer stack view.

1 Create outlets for the top and bottom constraints of the outer stack view. You’ll
modify the constants of these constraints to move the view up. Call the outlets
topConstraint and bottomConstraint.

2 Create a UIViewAnimationOptions object from the easing curve of the key-
board:

let options = UIViewAnimationOptions(rawValue: curve)

3 Call the animate method on UIView to animate the constraint constants. The
animate method can be passed several parameters to customize the animation:

 withDuration to specify the duration of the animation.
 delay to specify a delay before the animation begins.
 options to customize a range of details, such as the easing curve, whether

the animation should reverse and whether the animation should repeat.
You’ll use it to pass in the easing curve of the keyboard.

 animations to pass in a closure of properties to animate.
 completion is another closure where you can perform any tasks after the

animation has completed. 

UIView.animate(
    withDuration: duration,
    delay: 0,
    options: options,
    animations: {
        self.topConstraint.constant = -offset
        self.bottomConstraint.constant = offset
        self.view.layoutIfNeeded()
    },
    completion: nil
)

4 Run the app on the iPhone SE simulator with its smaller screen. Tap on a text
field or text view, and if it’s covered by the keyboard, the whole view should
move up the appropriate amount. Hooray!

CHECKPOINT If you want to compare your project with mine at this
point, you can check it out at https://github.com/iOSAppDevelopment-

withSwiftinAction/Bookcase.git  (Chapter8.2.AnimateView).

Initiates 
animation

Passes in
curve option

Moves view up by offset

Requests update
to layout

No completion 
closure necessary

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


213Animating views
8.4.2 Diving deeper into animating views with a sample bar chart

You may wonder—why did you animate the constraints rather than the location of the
view? And why did you call layoutIfNeeded in the animations block? For the answers
to these questions and to explore view animation deeper, let’s explore the basics on a
simple fresh project.  

 Imagine your task is to animate a basic horizontal bar chart with the results of a
vote of whether to eat Chinese or Thai food tonight. As you can see, the results are
close! When the user taps the View button, the two bars of the bar chart should ani-
mate from the left while changing color. The titles for the bars should then appear
over the top (see figure 8.6).

Let’s get started!

1 Create a new project called AnimatingViews. 
2 Add two simple 25 x 25 views to the main view, one above the other. 
3 Add IBOutlets for the two views called bar1 and bar2.
4 Add a button below the two bars and give it the title View.
5 Add an IBAction for the view button and call it touchViewButton.

See figure 8.7. I’ve colored the two views so you can see them. 

Figure 8.7 Initial project setup

When user taps View, the
bars should animate out.

Figure 8.6 Animate bar chart



214 CHAPTER 8 Keyboard notifications, animation, and scrolling

th
ANIMATING VIEW PROPERTIES IN THE BAR CHART

We’ve already explored adding animations to coordinators of scene transitions called
transition coordinators. In chapter 6, you passed a closure to a transition coordinator
object containing changes to properties of a view that you want to animate during a
size change. You can also pass a closure of animations to the transition coordinator
during transitions between trait collections (size classes), or transitions between
scenes, called segues. We’ll come back to animation during segues in chapter 9.

 You can also initiate a closure of animations by passing them into a type method
on the UIView class called animate. You’ll use this method now to animate basic
properties on a view. 

 Most properties that affect how a view appears can be passed into the closure of
animations. These properties include those shown in table 8.1.

1 Add the following to the touchViewButton method to trigger when the user
taps the View button. Pass in the two required parameters of the animate
method, withDuration and animations:

self.bar1.frame.size.width = 0
self.bar2.frame.size.width = 0
UIView.animate(withDuration: 1, 
    animations: {
        self.bar1.backgroundColor = UIColor.red
        self.bar1.frame.size.width = 150
        self.bar2.backgroundColor = UIColor.orange
        self.bar2.frame.size.width = 150
    }
)

2 Play the app on the simulator to see the results of your animation. 

CHECKPOINT If you prefer, you can check out my project at this
point at https://github.com/iOSAppDevelopmentwithSwiftinAction/

AnimatingViews.git  (1.InitialSetup).

Table 8.1 Animatable properties

Type of animation View properties

Size frame.size or bounds.size

Location frame.origin or center

Transparency alpha

Background color backgroundColor

Rotation, scale, skew, translate transform

Sets up prior to animation

Initializes
e property

Closure of properties 
to animate

https://github.com/iOSAppDevelopmentwithSwiftinAction/AnimatingViews.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/AnimatingViews.git


215Animating views
It’s not looking bad, but with both bars animating simultaneously, it looks a little
boring.

NESTING ANIMATIONS

How about animating the two bars in sequence?

1 Nest the animations on the two views by animating the second bar in the
completion closure. Replace your animate method with the following:

UIView.animate(withDuration: 1,
    animations: {
    self.bar1.backgroundColor = UIColor.red
    self.bar1.frame.size.width = 150
    }, completion: { finished in
        UIView.animate(withDuration: 1, animations: {
            self.bar2.backgroundColor = UIColor.orange
            self.bar2.frame.size.width = 150
        })
    }
)

2 Run your app again to check that your bars animate in sequence now. Great!
It’s time you added the labels.

3 Add a completion closure to the second animate method, instantiate labels for
the two bars and add them to your scene’s view:

}, completion: { finished in
    let label1 = UILabel(frame: self.bar1.frame)
    label1.textColor = UIColor.white
    label1.text = "Chinese"
    self.view.addSubview(label1)
    let label2 = UILabel(frame: self.bar2.frame)
    label2.textColor = UIColor.white
    label2.text = "Thai"
    self.view.addSubview(label2)
}

4 Run your app again, and this time after animating, labels should appear for
both bars in your chart. Smooth!

ANIMATING THE BAR CHART WITH CONSTRAINTS

This all looks great, but you’ve spent two chapters looking at adaptive layout. What
happens to the animations when you add constraints to your views? 

1 Add constraints for the two bars to the top, leading, width, and height. 
2 Run your app again to see how your animations act now.

CHECKPOINT If you prefer, you can check out my project at https://
github.com/iOSAppDevelopmentwithSwiftinAction/AnimatingViews.git

(2.AnimationsConstraints).

Completion
closure

Nested animation

https://github.com/iOSAppDevelopmentwithSwiftinAction/AnimatingViews.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/AnimatingViews.git


216 CHAPTER 8 Keyboard notifications, animation, and scrolling
Ouch! What happened? The size and colors of the
bars animate, but as soon as you add the labels, the
bars snap back to their size as defined by their con-
straints (see figure 8.8).

Adding the labels set the flag that the layout needs
updating, which triggers auto layout to calculate the
size and position of views based on their constraints.
You haven’t made any changes to the constraints of
the two bars, so in calculating their size, auto layout arrives at the same figure it
did prior to the animation.

How can you make changes to the constraints? The first things you need are
outlets for the relevant constraints.

3 Select one of the bars in the storyboard, and you’ll see its four constraints repre-
sented by blue lines. 

4 Find the width constraint. (You can also find it in the Document Outline on the
left.) See figure 8.9.

Figure 8.9 Width constraint

5 Create an NSLayoutConstraint IBOutlet for the width constraint by Con-
trol-dragging from the constraint to the view controller Swift file, and call it
bar1width. 

6 Do the same for the second bar, and you guessed it, call it bar2width.

ANIMATING CHANGES TO CONSTRAINTS BY UPDATING CONSTRAINTS IN COMPLETION

Great, now that your constraints have outlets, we can look at a couple of solutions to
animating views with constraints. 

Figure 8.8 Bars return to 
their constraints

Width constraint



217Animating views
 One solution is to update the layout’s constraints to represent its new layout after
the animation is complete. In this case, as in the new layout, the two bars should be
150 points wide; you could pass 150 to the constants of the two width constraints. 

1 Add the following to the second completion closure:

self.bar1width.constant = 150
self.bar2width.constant = 150

2 Run the app, and you should find that when the layout updates now, auto lay-
out correctly calculates the new width of the two bars.

Updating the constraints of the layout in the completion handler is one solution, but
another, perhaps more elegant approach, exists.

ANIMATING CHANGES TO CONSTRAINTS WITH LAYOUTIFNEEDED IN ANIMATIONS CLOSURE

Rather than modifying the size and position properties on the view directly, you’re
going to make modifications to the constraints of the view. 

1 To start with, instead of setting the initial width of the bars, set the constant
value of the two bar width constraints to 0. 

self.bar1width.constant = 0
self.bar2width.constant = 0

2 Next, call layoutIfNeeded to request the Auto Layout engine to immediately
make any necessary adjustments to the layout.

self.view.layoutIfNeeded()

Because there have been changes to the constraints, the Auto Layout engine
recalculates the new sizes and positions of the views based on the constraints.

Next up is animating based on updates to the constraints. Constraints them-
selves can’t be animated; they're purely variables in the formula that the Auto
Layout engine uses to calculate the sizes and positions of each view. 

3 To confirm this, replace the update to the width of the bars in the animation
closures with updates to the width constraints of the bars:

self.bar1.frame.size.width = 150
self.bar1width.constant = 150 
...
self.bar2.frame.size.width = 150
self.bar2width.constant = 150

What you notice when you run the app is that these updates to the constraints
seem to register immediately. The properties of the constraints themselves
aren’t animated, so when the animations closure completes, the Auto Layout
engine notices that the layout is flagged to need updating, and handles it in the
next update cycle (almost immediately!).

Update constraint constants

Immediately 
update layout



218 CHAPTER 8 Keyboard notifications, animation, and scrolling
What can be animated are these size and position properties that the Auto Lay-
out engine calculates from your constraints. You can take advantage of this. 

4 After updating constraints in the animations closure, you should call lay-
outIfNeeded. Here's the complete first animations closure:

animations: {
                self.bar1.backgroundColor = UIColor.red
                self.bar1width.constant = 150
                self.view.layoutIfNeeded() 
            }

You’ll need to add this call to layoutIfNeeded to both animations closures.
This call requests the Auto Layout engine to immediately update the size and
position properties. These size and position properties will then animate. 

5 Run the app again, and this time you should see the bars animate out, and stay
there. Hooray!

8.5 Scroll views
The Bookcase app looks good, but it could be even better if the user could scroll
around the form when the keyboard appears and the space available for the form is
reduced. You can add scrolling by embedding the bookcase form in a scroll view.
What’s a scroll view?

 Sometimes, the content that you want on a view doesn’t fit in the view, such as
when the keyboard appears over the top of the bookcase form. Scroll views make it
possible for the user to scroll around a view to explore its content. 

8.5.1 Scroll view with form content and keyboard

Using scroll views for form content can make sense, because giving the user more free-
dom to scroll where they like makes it possible to build up a form or form field that
could go beyond the height of the app window. Embedding the form in a scroll view
allows unlimited space to add fields in the future.

 Scroll views have other advantages related to managing the keyboard:

1 They have a built-in mechanism for dismissing the keyboard. 
2 Scroll views automatically move their content so that a text field currently being

edited is visible.
3 You can call the scroll view instance method scrollRectToVisible to request

that a specific area of content be visible.

Let’s embed the bookcase form in a scroll view. 

CHECKPOINT If you like, you can check out my project at this point at
https://github.com/iOSAppDevelopmentwithSwiftinAction/Animating-

Views.git  (3.AnimationLayoutUpdate).

Requests update 
to layout

https://github.com/iOSAppDevelopmentwithSwiftinAction/AnimatingViews.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/AnimatingViews.git


219Scroll views
Follow the steps to set up the form to use scroll views:

1 Select the Outer Stack View in the storyboard, and select Editor > Embed in >
ScrollView. Unfortunately, the book will lose its constraints, so you need to add
them back. 

2 Set the book height to 0.3x the height of the root view and uninstall the con-
straint for the compact height size class.

3 Pin the four edges of the scroll view to the root view. This defines the area of the
scroll view.

4 Pin the four edges of the outer stack view to the scroll view. This defines the
edges of the scrollable content.
Next, you’ll need to define the width and height of the scroll view’s scrollable
content. Because the width and height of the scrollable content will be the
width and height of the scroll view, you should indicate this in constraints. 

5 Set the width and height of the outer stack view (the scroll view’s scrollable con-
tent) equal to the width and height of the scroll view. Now the interface will be
tightly flush on the edges. 

6 Give the outer stack view fixed margins by selecting Fixed in the Layout Mar-
gins section of the Size Inspector, with margins of 16 all round. 
The stack view should now be nicely framed in the scroll view (see figure 8.10).

Figure 8.10 Fixed margins

You can take advantage of the scroll view’s ability to dismiss the keyboard. 

7 Select the scroll view, and open the Attributes Inspector. In the Keyboard prop-
erty, select Dismiss Interactively. 

CHECKPOINT If you want to download the starting point of the project
at this point, you can check it out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git  (Chapter8.2.AnimateView).

Explicit marginsTightly flush

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


220 CHAPTER 8 Keyboard notifications, animation, and scrolling
You’ll find two alternative approaches for dismissing the keyboard, which are
really two means to the same end with slightly different effects. Dismiss on Drag
will dismiss the keyboard as soon as the user starts scrolling the scroll view. Dis-
miss Interactively will begin to dismiss the keyboard when the user scrolls into
the area of the keyboard, from which the keyboard then follows the user’s
movement. 

Because the scroll view will be managing scrolling to the current text field,
you’ll no longer be animating the constraints, so you can remove any code
related to this. 

8 Remove the constraint outlets and everything in the keyboardFrameChanges
method that follows calculating the keyboardFrame.
If you run your app now, you’ll notice that the form still doesn’t scroll, even if
you select a text field, causing the keyboard to appear. Because the scrollable
content is the same size as the scroll view, scrolling isn’t necessary, and the key-
board showing doesn’t automatically make any adjustments to the scrollable
area—you need to do this part manually. 

The best approach to make this adjustment is to create a bottom margin for
the scrollable content with the scroll view’s contentInset property (see fig-
ure 8.11).

You’ll need to determine the amount to offset the scrollable content. The key-
board height itself doesn’t change as it shows, so you’ll need to calculate this by
subtracting the keyboard y position from the height of the root view. 

9 Add the following to the keyboardFrameChanges method after calculating
the keyboardFrame:

let offset = self.view.frame.height - keyboardFrame.origin.y

Scroll view

Without keyboard With keyboard

Content inset
bottom margin

Scrollable
content

Figure 8.11 Content inset



221Scroll views
10 Create an outlet for the scroll view and call it scrollView. 
11 You can now set the contentInset property on the scroll view:

scrollView.contentInset.bottom = offset

12 Run the app, tap on a text field, and you should find that your form is now
scrollable! One thing will appear a little strange though—the scroll indicator
on the right isn’t right. Set a bottom margin for the scroll indicator as well to
resolve this:

scrollView.scrollIndicatorInsets.bottom = offset

13 Run the app again on the iPhone SE simulator, and the scroll indicator should
work as you expect.

14 Check that your tap gesture recognizer is working by tapping on the info but-
ton. The ISBN field should appear. Tap on the ISBN field, and as the keyboard
covers it up slightly, the scroll view should automagically scroll so that the field
is visible—no programming required!

15 Tap on the notes text view, and get ready for disappointment. Because the text
view is itself a type of scroll view, the scroll view doesn’t automatically scroll for
it. Not to stress, it’s quite straight forward to set this up manually.

16 Add an outlet for the outer stack view, and call it outerStackView. You’ll use
this to calculate the location of the text view in the scrollable content with the
convert method.

17 Still in the keyboardFrameChanges method, get a reference to the current
first responder if it’s a text view, and a reference to its superview for the convert
method.

if let textView = firstResponder as? UITextView,
    let textViewSuperview = textView.superview {
      //More to come here
}

18 Convert a frame for the text view within the scrollable content (the outer stack
view), and manually request the scroll view to make this frame visible:

let textViewFrame = outerStackView.convert(textView.frame, 
    from: textViewSuperview)
scrollView.scrollRectToVisible(textViewFrame, animated: true)

19 Run your app on the simulator, and edit the notes text view. This time, when the
keyboard appears, the scroller should scroll to ensure your text view is visible. 

Congratulations, the bookcase form is embedded neatly in a scroll view, and text fields
and text views are visible when the keyboard appears. You could probably submit it to
the App Store again now—but maybe beta test it this time!

Gets ref to 
text view

Gets ref to 
superview

Converts frame

Scrolls 
to frame



222 CHAPTER 8 Keyboard notifications, animation, and scrolling
8.5.2 Diving deeper into scroll views with image content

Scroll views can also make it easier to zoom in and out on content. Let’s explore scroll
views with a simple image viewer with zoom functionality.

 In chapter 5, you used gesture recognizers to create an image viewer app. Let’s
update this app to use a scroll view. Check out the starter branch for the image viewer
app at https://github.com/iOSAppDevelopmentwithSwiftinAction/ImageViewer.git
(1.InitialSetup).

1 Open the storyboard, where you’ll find an image view has already been added
to the view controller. This image view will be the scrollable content of your
scroll view. 

2 Select the image view, and embed it in a
scroll view by selecting Editor > Embed in
> Scroll View.

3 Pin the scroll view to the root view with 0
points on all four sides. This defines the
scroll view to have the same frame as the
root view (see figure 8.12).
You want to pin the image view to the
scroll view, but first be sure you’re starting
from scratch by clearing any existing con-
straints.

4 Clear constraints on the image view by selecting the image view, and then select-
ing Clear Constraints in the Resolve Auto Layout Issues menu.

5 Pin the image view to the scroll view, also with 0 points on all four sides. This
defines the edges of the scroll view, but unlike a normal view, this doesn’t define
its width and height to the same as the view it's pinned to. The size of scrollable
content is defined only by its content size. You need to either specify content that
has an intrinsic content size, or use constraints to define the size of the content.
Because you haven’t specified an image for the image view yet, the image view
doesn’t have an intrinsic content size. The scroll view doesn’t yet know the size of
its scrollable content, and you’ll see a red layout error in the document outline.

6 Just as you did in chapter 5, drag the Images folder into the Project Navigator. 
7 Select the image view in the storyboard. Under Image in the Attributes Inspec-

tor, select one of the images you dragged into the project, and the red layout
error will go away. If you can still see a yellow layout warning, select the Update
Frames button.

CHECKPOINT If you‘d like to compare projects, you can check mine out
at https://github.com/iOSAppDevelopmentwithSwiftinAction/Book-

case.git (Chapter8.3.ScrollView).

Figure 8.12 Pin all sides

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/ImageViewer.git


223Summary
8 Run the app, and believe it or not, that was all that was necessary to set up an
image that scrolls! It even has a fancy bounce animation if you stray past the
boundaries of the image.

But how about zoom? Well, that’s a little more work, but still mostly painless!

1 Select the scroll view, and in the Attributes Inspector, find the zoom properties. 
2 Select a minimum zoom of 0.5 and a maximum zoom of 2. You might think this

would be it, but wait—don’t run the app yet! You have to tell the scroll view
which view you want it to zoom.

3 First, create an outlet in the ViewController class to get a reference for the
image view, and call it imageView.

4 Make the view controller the delegate for the scroll view by Control-dragging
from the scroll view to the view controller in the document outline, and select-
ing delegate in the context menu.

5 Now, add an extension to the view controller that adopts the UIScrollView-
Delegate and implements the viewForZooming method to let the scroll view
know which view you would like to zoom.

extension ViewController: UIScrollViewDelegate {
    func viewForZooming(in scrollView: UIScrollView) -> UIView? {
        return imageView
    }
}

6 Run the app, and zoom the image. Remember, if you’re running in the simula-
tor, you can simulate pinching by holding down the Alt key.

As you can see, the scroll view is a convenient approach for setting up scrollable con-
tent. In addition to its built-in scroll and zoom behaviors that require little coding, it
provides neat scroll indicators while scrolling and nice bounce animations for when
you go beyond the bounds of the content. 

8.6 Summary
In this chapter, you learned the following:

 Resign the first responder to dismiss the keyboard.
 Use the UIKeyboardWillChangeFrame notification to listen for keyboard

events.
 Get information on the keyboard frame and animation from the userInfo

property in keyboard notifications.

CHECKPOINT If you would like to compare your project with mine, you
can check it out at https://github.com/iOSAppDevelopmentwithSwift-

inAction/ImageViewer.git (3.ImageViewerScrollView).

https://github.com/iOSAppDevelopmentwithSwiftinAction/ImageViewer.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/ImageViewer.git


224 CHAPTER 8 Keyboard notifications, animation, and scrolling
 To animate views with constraints, call layoutIfNeeded in the animations clo-
sure in the animate method of UIView.

 Animate the showing or hiding of an arranged view in a stack view by setting its
isHidden property in an animations closure.

 Unlike other types of views, scrollable content does not imply its size from the
size of its superview. 

 Use contentInset and scrollIndicatorInsets to give margins to the
content and scroll indicator in a scroll view.



Part 3

 Building your app

This part examines various common techniques and technologies used in
iOS app development that can transform your app from just looking pretty to
doing something cool or useful.

 In chapters 9 and 10, you’ll look at laying out data in your app using tables
and collections. You’ll also look at navigation between different scenes using seg-
ues and tab bars, and searching and sorting data.

 Various techniques for persisting data locally are reviewed in chapter 11.
 Chapter 12 demystifies persisting data in iCloud.
 In chapter 13, you’ll look at various topics related to graphics and media—

adding icons and images, drawing graphics, taking photos, selecting photos
from the photo library, detecting barcodes, and playing sound.

 Chapter 14 focuses on requesting data and downloading from a web service.
You’ll also look at parsing JSON and using a dependency manager.

 In chapter 15, you’ll explore debugging tools and techniques available in
Xcode. You’ll also try out different types of testing.

 In these chapters, you’ll explore these various concepts while building up the
Bookcase app from a simple interface to a complex and useful tool. Working
through challenges with the Bookcase app will help you to see a way forward for
developing your own great idea!



226 CHAPTER 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Tables and navigation
Most useful apps display dynamic information in one form or another. If you have a
list of items to display, Apple provides a convenient object for you to use called a
table view. 

 In this chapter, you’ll create the first scene of the Bookcase app you’ve been
working on. This scene will show a list of all the books the user enters into the app.
When the user adds or edits a book record, they’ll navigate to the bookcase form
you’ve worked on in previous chapters.

 In this chapter, you’ll explore

 Table views and table view controllers—Table views manage a list of data and dis-
play it in a simple one-column table. Table view controllers are view control-
lers that contain a table and handle part of the boilerplate setup for you. 

This chapter covers
 Displaying data in single-column tables 

 Adding, editing, and deleting rows

 Adding navigation to other scenes

 Passing data between scenes
227



228 CHAPTER 9 Tables and navigation
 Navigation controllers and navigation bars—You’ll use navigation controllers to
navigate between scenes. By default, navigation controllers provide a navigation
bar that indicates where you are in the app, gives you a back button for return-
ing to the previous scene, and can be used for additional controls.

 Segues—The transition between two scenes is also known as a segue. You’ll use
different kinds of segues to display view controllers in different ways.

9.1 Displaying data in table views
When you think of tables, you probably think of multicolumn spreadsheets or perhaps
HTML tables. Well, table views in the world of iOS display a list of data in one column.
Each row or item in the list is displayed in what’s called a cell. 

 You probably see tables in apps more than you realize. See figure 9.1 for types of
tables you could encounter in standard Apple apps. 

Figure 9.1 Tables in Apple apps

Tables are mighty useful for presenting a scrollable list of information. They’re also
useful for allowing the user to select items in the list. Selections can toggle a check-
mark in the cell or enable navigating to another scene. 

 Notice the variations available in table views. Table views can be grouped into sec-
tions (such as the Settings and Calendar apps in figure 9.1) or can display an index
such as letters on the right of the table (such as the Contacts app in figure 9.1). We’ll
focus on a plain table view (such as the Reminders app in figure 9.1) in this chapter.

Settings Reminders Calendar Contacts



229Displaying data in table views
 Apple provides several different styles of
default table view cells, which we’ll look at shortly.
You could also create your own completely cus-
tomized look for table view cells. We’ll look at
customized cells in the next chapter.

 You’re going to add a table view to the Book-
case app, which will display a list of books in your
bookcase. Then you’ll add tapping on a book in
the list to edit the book in the form you’ve been
working on. Let’s not get ahead of ourselves,
though! For now, let’s focus on adding the table
view to the app (see figure 9.2).

 You have two main ways to set up a table view
using Interface Builder:

 You could drag a table view object onto
your scene’s root view. You’d then need to
connect the view controller to the table
view—you’d make your scene’s view con-
troller the delegate and data source for the
table view and implement any required del-
egate methods. More on the delegate and
data source of the table view shortly.

 You can drag a special type of view controller called a table view controller onto
the storyboard. The table view controller comes with a table view ready to go
and connected to the table view. All you need to focus on is customizing the
table view to display your data.

9.1.1 Setting up a table view controller in the storyboard

You’re going to use the table view controller to display a list of books in your app.

1 Open the main storyboard. Move the book detail view controller scene you’ve
been working on to the right for the moment. We’ll come back to this later in
the chapter, but for now, you’ll set up a table view controller.

CHECKPOINT Open the Bookcase app where you left off in the previous
chapter. Alternatively, you can check out my project at the same point

at https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
(Chapter8.3.ScrollView).

Figure 9.2 Books table

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


230 CHAPTER 9 Tables and navigation
2 Find the Table view controller in the Object Library and drag it onto the story-
board. A table view controller will appear in the storyboard with a table view
already loaded as the root view of the scene (see figure 9.3).

Figure 9.3 Add Table view controller to canvas

3 Drag the arrow indicating the initial view controller from the book detail view
controller to the new table view controller (see figure 9.4).

Figure 9.4 Move initial view controller arrow.



231Displaying data in table views
4 Select the table view in the Document Outline. Notice in the Attributes Inspec-
tor that the content of the table view is using Dynamic Prototypes by default
(see figure 9.5).

Figure 9.5 Dynamic prototypes table view

Table views can use one of two types of cells:

 Static cells—Use table views with static cells to build up a static design using a
table. The number of rows in a table with static cells is set at design time, and
each cell has its own unique design. A list of customizable settings in an app
could be a good candidate for a table using static cells. 

 Dynamic prototypes—Use table views with dynamic prototypes to build a table
with content that can change at runtime and/or where cells have the same
layout. A table view set to dynamic prototypes will automatically give you a
prototype cell to customize the look of the cells in the table. 

Because the books in the Bookcase app will eventually change over time, and
each cell will have the same layout, a table view with dynamic prototypes is ideal
for our example.

5 Select the white rectangle at the top of the table view, underneath the title Pro-
totype Cells. This special table view cell is like a template that cells in your table
will emulate. 

6 Find Style in the Attributes Inspector for the cell and select Subtitle.
 
 
 
 
 
 
 
 



232 CHAPTER 9 Tables and navigation
7 Find Identifier in the Attributes Inspector for the cell. Give the table view cell a
reuse identifier—let’s call it bookCell. You’ll use this to identify the cell tem-
plate when you generate cells.

8 Notice the Accessory attribute in the Attributes Inspector—you’re going to
leave this set to None.

 

Table view cell styles
Apple gives you four simple table view cell styles to work with.

Each style uses different combinations of three main elements:

 imageView for displaying an image
 textLabel for displaying a primary text label
 detailTextLabel for displaying a secondary text label

Not all styles contain every element—the basic style doesn’t contain a detail text
label, and the left detail style doesn’t provide for an image view. If you don’t use an
element such as the image view, for example, the other elements will grow to fill the
space.

If none of these cell styles suits your data, you can create your own custom table view
cell by subclassing the UITableViewCell class. We’ll look at custom cells in the
next chapter, but for now, the subtitle style looks great for displaying books, so let’s
go with that!

Basic

Right detail

Left detail

Subtitle



233Displaying data in table views
 
 
 
 
 
 
 

Table view cell accessory views
Table view cells can contain an optional accessory view as well, for helping to indicate
what will happen when the user selects a cell.

Checkmark can be used to indicate when a cell is selected.

Disclosure can be used to indicate that selecting a cell goes to another table view,
such as in Apple’s Settings app.

Detail displays additional information about the selected cell when the user selects
the accessory view itself.

Detail disclosure displays additional information about the selected cell in another
view when the user selects the accessory view itself.

Checkmark

Disclosure

Detail

Detail disclosure



234 CHAPTER 9 Tables and navigation
9.1.2 Displaying data in the table view 

Now that you have the table view controller set up in the storyboard, you’ll need to
customize the table view in code. Select the table view controller and open the Iden-
tity Inspector. Note that the view controller’s base class is UITableViewController
(see figure 9.6).

Figure 9.6 Table view controller identity

You’re going to subclass UITableViewController to manage its table view.

1 Select File > New > File. A selection of templates will appear. In the iOS >
Source category, select Cocoa Touch Class (see figure 9.7). 

Figure 9.7 Select Cocoa Touch Class template



235Displaying data in table views
2 Give your class a name, and specify which class you want it to subclass. You want
to subclass UITableViewController, and you could call your class Books-
TableViewController. 

TIP A common convention when defining the name of your class is to suffix
it with the name of the iOS class you’re subclassing. You can type the word
Books in the Class field, and when you specify the subclass, Xcode will
automatically fill in the rest for you.

3 Leave XIB file unchecked.
4 Choose the language as Swift and select Next (see figure 9.8).

Figure 9.8 Create file options

5 Save your file in the default folder for your project. Xcode will automatically
open your new UITableViewController subclass generated from a template,
with additional methods ready to use. 
You need to connect the table view controller in the storyboard with the sub-
class you created. 

6 Open the main storyboard again, and select your table view controller. 



236 CHAPTER 9 Tables and navigation
7 Under Custom Class, replace the
base class with your subclass (see
figure 9.9). 

DATA SOURCE AND DELEGATE

In certain UIKit views, your view control-
ler can directly request a view to display
data. For example, you could tell a
UILabel to display “Hello World” by the
following:

label.text = "Hello world"

Table views work a little differently. Instead of passing the table’s data directly into the
table and letting the table view manage its data, table views use the delegation pattern,
and request information on demand. This way ensures separation of the view (table
view in this case) and the model (the table view’s data), and maintains a good MVC
structure.

 Table views divide their delegation responsibilities in two: 

 The data source provides the table view with all the information necessary to
display the data in the table. For example, when a table view needs to know how
many rows it should display in the table, it asks its data source. When it needs to
display a cell for a specific row, it asks the data source for it.

 The delegate handles additional responsibilities such as selecting and deleting
rows or specifying the height of a specific row. The table view will also notify the
delegate of certain events, such as when the user selects or edits a row.

If you drag a table view object into a regular view controller in the storyboard, you
have to configure the data source and delegate yourself. However, because you’re
using a table view controller, the UITableViewController class comes automati-
cally preconfigured to be both the table view’s delegate and data source (see figure
9.10).

Figure 9.10 Table view controller relationships

Figure 9.9 Connect table view controller to 
subclass

• tableView

UITableViewController:
      UITableViewDelegate,
      UITableViewDataSource

UITableView

• delegate:UITableViewDelegate
• dataSource:UITableViewDataSource



237Displaying data in table views
Stubs for delegate and data source methods are
also already implemented in the UITable-
ViewController class. To customize your sub-
class, you’ll need to override any delegate or data
source methods you wish to implement. In
fact, if you’re subclassing UITableView-

Controller, it doesn’t really matter whether
you override a method from the data source or
the delegate—the main takeaway here is that
you have several methods to override to manage
your table view.

 The suggested methods in the template will
get you off to a great start. Before you imple-
ment the Bookcase table, let’s create a basic
implementation of a table to get an idea of how
this is going to work (see figure 9.11).

 You’ll implement three methods in Books-
TableViewController that will answer three
important data source questions that the table
view needs to know to display the table. Here
are the three questions and your answers in
plain English:

 How many sections are there in the table? Just the one.
 How many rows are there in this section of the table? I’ll say ten!
 What cell goes in this row? I’d like cells based on the bookCell reuse identifier I set

up earlier, and I want to display the text “Row #” with the row number.

Now, let’s see how this looks in code. 

1 Replace the following methods in your BooksTableViewController class:

override func numberOfSections(
        in tableView: UITableView) -> Int {
    return 1
}
override func tableView(_ tableView: UITableView, 
        numberOfRowsInSection section: Int) -> Int {
    return 10
}
override func tableView(_ tableView: UITableView,
        cellForRowAt indexPath: IndexPath
        ) -> UITableViewCell {
    let cell = tableView.dequeueReusableCell(
        withIdentifier: "bookCell", for: indexPath)
    cell.textLabel?.text = "Row # \(indexPath.row)"
    return cell
}

Figure 9.11 Basic table

How many
sections

in the table?

Returns number 
of sections

How many rows
in each section?

Returns number 
of rows

What cell goes
in this row?

Gets table view cell

Customizes table 
view cellReturns table 

view cell



238 CHAPTER 9 Tables and navigation
The first two methods are straightforward. The number of sections in the table
or rows in each section is returned from the methods. If multiple sections exist,
you can check the section number the table view was asking about before
returning the number of rows. (Because your table only has one section, it’s
unnecessary to check the section number.)

The third method is interesting. It receives an IndexPath parameter, which
contains the number of the section and the row of the cell it’s interested in. It
then gets a table view cell for this index path, based on the reuse identifier you
defined earlier in Interface Builder. 

You can then customize the table view cell how you like. The index path is gen-
erally useful here to know what data to inject into the cell.

The interesting thing about this method is where it gets its cell from. Imagine if
you had a million rows in your table. It would start to be a major memory issue if
the table view kept a million cells in memory. On the flip side, imagine if the
app removed cells from memory as soon as they were scrolled offscreen and
created new cells every time they scrolled onscreen. This strategy could be a per-
formance issue, especially if the cells were graphically intensive. 

Apple’s shrewd solution is to keep a cache or queue of table view cells. When you
call the dequeueReusableCell method, it first checks for any cells with the
requested reuse identifier in the cache, and if none are found, it creates a new
cell. When a cell is scrolled offscreen, rather than removing the cell from mem-
ory, it's sent to the cache to be reused.   

2 Run the app, and you should see 10 cells appear in the simulator.

Now that you know the basics of table views,
you’ll set up the table view controller to dis-
play books for the Bookcase app. But first,
you’ll need to set up a model class to hold the
properties of a book.

SET UP THE MODEL 
To display books in the table view controller
for the Bookcase app, you’ll first need a way to
store data for each book. You’ll set up a simple
Book structure based on the data the user can
enter for each book. Remind yourself of the
book properties with another look at the
bookcase form in figure 9.12. 

1 Select File > New File > Swift File. 

2 This time, in the iOS > Source category,
select Swift File. 

3 Call it Book and select Create. Figure 9.12 Bookcase form



239Displaying data in table views
4 In this Book.swift file, create a Book type that stores the book properties with an
initializer that sets their initial values: 

import UIKit
struct Book {
    static let defaultCover = UIImage(named: "book.jpg")!
    var title: String
    var author: String
    var rating: Double
    var isbn: String
    var notes: String
    var cover: UIImage {
        get {
            return image ?? Book.defaultCover 
        }
        set {
            image = newValue
        }
    }
    private var image: UIImage?

    init(title: String, author: String,
            rating: Double, isbn: String,
            notes: String, 
            cover: UIImage? = nil) {
        self.title = title
        self.author = author
        self.rating = rating
        self.isbn = isbn
        self.notes = notes
        self.image = cover
    }
}

A few notes about the code listing:

 Because UIImage comes in the UIKit framework, you need to import the UIKit
framework! 

 As this type does not need to subclass, and the value of the properties defines a
book’s identity, define the Book type as a structure rather than a class.

 Later in the book, we’ll look at allowing the user to add an image for the book
cover; you can store this image in a UIImage object. Because entering a cover
image for the book isn’t required, leave the image variable as an optional
defaulting to nil, and set up a default cover image. Set up a computed
property cover that returns the image if it exists, and the default cover
otherwise.

 
 
 

UIKit necessary 
for UIImage

Computed property

Optional UIImage
property

Cover defaults 
to nil 



240 CHAPTER 9 Tables and navigation

num
Great, you can now use this Book class to create an array of Book objects that eventu-
ally will be used to fill the table. 

CREATING A BOOKS MANAGER

You could create this array directly in your BooksTableViewController class, but
to keep responsibilities of the controller and the model separate, maintaining a good
MVC structure, it’s a good idea to manage the books data in a model class. In our
Bookcase app, this model class is basically going to be your friendly librarian! It will
store books; give books to the user; manage adding, updating, and removing books;
and eventually it will handle sorting and searching the books.

 Call your friendly librarian class the BooksManager. The BooksManager will lazily
load an array of books that’s preloaded with sample data.

1 Create a BooksManager Swift file preconfigured with a computed property for
returning the number of books (bookCount), a method returning a specific
book (getBook), and a lazy property (the books array) that preloads with sam-
ple data.

import Foundation
class BooksManager {
    private lazy var books: [Book] = self.loadBooks()
    var bookCount: Int {return books.count}
    func getBook(at index: Int) -> Book {
        return books[index]
    }

Access control
Observant readers will notice the private keyword defining the image property.
Other classes should access the cover property, which provides a default image if
the image property is nil. To prevent other classes from accessing the image prop-
erty by mistake, you define it as private, restricting access to this property from
other files.

There are five access levels in Swift. Here they are, from most to least restrictive:

Private—Access is restricted to the entity (for example, structure or class) it's
declared in.

File-private—Access is restricted to the file it's declared in.

Internal—Access is restricted to the module it's declared in. A module is a unit of
code distribution, such as an application, framework, or build target. The default
access level is internal. 

Public—Access is unrestricted, but classes marked as public can't be subclassed
from another module.

Open—Access is unrestricted. (The open keyword only applies to classes.)

Lazy load 
books arrayCalculates

ber of books

Returns a book



241Displaying data in table views
    private func loadBooks() -> [Book] {
        return sampleBooks()
    }
    private func sampleBooks() -> [Book] {
        let books = [
            Book(title: "Great Expectations",
                author: "Charles Dickens",
                rating: 5,
                isbn: "9780140817997", 
                notes: "from Papa"),
                // Enter more sample books here
        ]
        return books
    }
}

2 You can now define an instance variable of the books manager in your Books-
TableViewController class:

var booksManager: BooksManager = BooksManager()

Now that your books table view controller has an array of books, you can update
your answers to the three important data source questions. There’s still going to
be only one section, so the answer to the number of sections won’t need updat-
ing from before. The number of rows has changed though, so it should reflect
the number of books in the array. 

3 Update your code:

override func tableView(_ tableView: UITableView, 
        numberOfRowsInSection section: Int) -> Int {
    return booksManager.bookCount
}

Next, you’ll need to update your answer to “What cell goes in this row?” 

4 First, get a reference to the relevant book from the books array for this row.
Then, you can update the elements of the cell with the data from the book object.

override func tableView(_ tableView: UITableView, 
        cellForRowAt indexPath: IndexPath) -> UITableViewCell {
    let cell = tableView.dequeueReusableCell(
        withIdentifier: "bookCell", for: indexPath)
    let book = booksManager.getBook(at: indexPath.row)
    cell.textLabel?.text = book.title
    cell.detailTextLabel?.text = book.author
    cell.imageView?.image = book.cover
    return cell
}

5 Run the app, and you should find that your sample books appear in the table.
Success!

Loads books

Creates sample 
books array

Returns 
array

Returns number 
of books

Gets book
object for a row Sets text label 

from book title

Sets detail text label 
from book author

Sets image view with
the book cover image



242 CHAPTER 9 Tables and navigation
9.2 Adding a row
It’s time for your users to add a book to the books table. 

 To add the data for a book, you want your users to tap an add button (plus), and
then navigate from the books table to the bookcase form to fill in the details for the
new book (see figure 9.13). 

Figure 9.13  Tap + to add a book.

One useful approach for managing navigation between view controllers is to embed
your view controller in a navigation controller.

Container view controllers
Until now, we’ve only looked at content view controllers with limited navigation, but
another category of view controllers exists called container view controllers. Con-
tainer view controllers manage the content from multiple view controllers, and each
have their own approach to view hierarchies. Certain container view controllers that
you may encounter include

Tab bar controllers—Adds a tab bar at the bottom of the interface to navigate
between view controllers

Split view controllers—Shows two content view controllers simultaneously in certain
devices and orientations and navigates between the two in other devices or
orientations

Navigation controllers—Manages navigation between content view controllers

Books table view controller Book edit view controller



243Adding a row
9.2.1 Embedding a navigation controller

A navigation controller manages navigation going forward and back through a hierar-
chy of content view controllers. The navigation controller is usually used in conjunction
with a navigation bar. The navigation bar can be helpful to orient the user with a title for
the scene and a back button to return to the previous scene. The navigation bar can also
be a useful location for additional buttons—a great place for the add button! 

 The navigation controller manages its view controllers in a navigation stack, which
is an array of view controllers. The navigation controller’s root view controller will be
the first view controller in the navigation stack. When the navigation controller navi-
gates to a new scene, the new view controller is added to the stack. When the user
selects the back button, the current view controller is removed from the stack.

 The iPhone Settings app is an example of a navigation controller. The Settings
scene is the navigation controller’s root view controller. After navigating down to the
Speak Selection scene, it becomes the fourth view controller in the navigation stack
(see figure 9.14 to see the current state of the navigation stack in each scene in the
navigation hierarchy). 

Figure 9.14 Navigation controller

You’re going to set up a navigation controller for navigating to the book detail view
controller, to add a book to the books table.

1 With the books table view controller selected, select Editor > Embed In > Navi-
gation Controller. 

Speak selection
Accessibility

General
Settings

Accessibility
General

Settings
General

SettingsSettings

Navigation stack



244 CHAPTER 9 Tables and navigation
The navigation controller will appear to the left of the books table view control-
ler, with a symbol and arrow between, indicating the relationship. The initial
view controller indicator arrow moves to the navigation controller, and a naviga-
tion bar appears at the top of your books table view controller (see figure 9.15).

Figure 9.15 Navigation controller

2 Add a title for the scene in the navigation bar. Double-click in the middle of the
navigation bar to open the edit title field and give it the title Books.
Navigation bars accept special kinds of buttons called bar button items. When you
use the navigation controller to navigate to another view controller, a special
back button automatically appears in the left of the navigation bar with the
name of the previous view controller.

3 You can add your own bar button item to the navigation bar, too. Find Naviga-
tion Bar Item in the Object Library and drag it to the right side of the naviga-
tion bar. The bar button item will say Item by default, but you want an add
button. 

4 Select the bar button item and open the Attributes Inspector. Examine the
options in the System Item attribute. Apple has several different preconfigured
button styles. 

5 Select Add, and a + symbol will appear. 

Relationship
indicator

Navigation bar



245Adding a row
9.2.2 Creating a segue

When the user taps the add button, you’ll transition to the book detail view controller.
A transition from one scene to another is called a segue. 

1 Create a segue for when the user taps the add button, by Control-dragging from
the add button to the book detail view controller. 

2 We’ll explore different types of segues shortly, but for now select Show. A symbol
appears between the two scenes representing the type of segue you created (see
figure 9.16).

Figure 9.16 Create Show segue

Select Show from
segue options

Control-drag from
+ to book edit form

Segue type
indicator appears



246 CHAPTER 9 Tables and navigation
3 Run the app to see your show segue in operation! 
4 Tap the plus button in the navigation bar. The book detail view controller

should slide in from the right, with a back button on the left of the navigation
bar (see figure 9.17).

The show segue is most appropriate for content that provides more details
about the user’s selection. When adding content, a modal segue is more appro-
priate. Rather than adding the new view controller to the navigation stack, a
modal segue replaces the current view controller, displaying the new view con-
troller over the top.

5 Select the segue, open the Attribute Inspector, and change the kind of segue to
Present Modally. 

Kinds of segues 
There are four main kinds of segues, each with its own unique approach and attri-
butes, and which act differently depending on the size class they’re in, or whether
they’re embedded in a navigation controller or a split view controller.

Show Detail—This segue is most useful for split view controllers. Split view con-
trollers support dividing an interface into a master view and a detail view when

in landscape orientation in a regular size class environment. If a detail view is avail-
able, the show detail segue will replace the current detail view.

Tapping + now
slides in book edit
form from right.

Tapping back
button slides back
to Books table.

Figure 9.17 Show 
segue in action



247Adding a row
Show—This segue really shines if the presenting view controller is in a naviga-
tion controller or a split view controller. The presented view controller is added

or pushed onto the navigation stack of view controllers (in the split view controller’s
detail view if available), and a back button automatically appears in the navigation
bar. If no navigation controller is available, it acts the same as a modal segue.

Modal—A modal window presents over the top of the presenting view controller
and must be closed before returning to the presenting view controller. Modal

segues can be customized using two attributes: 

 Presentation—Modal windows are always full-screen in a compact-width size
class environment, but in regular-width size class environments, the presented
view controller can appear in different presentation styles, such as form sheet,
which displays as a centered window. The default presentation is full-screen.

 Transition—By default, the modal window transitions from below (cover verti-
cal), but you can also use fancy flips, dissolves, and curls.

Popover—Popovers appear as a bubble with an arrow pointing to an anchor view
in your presenting view. Popovers only look like bubbles in regular-width size class

environments—in compact-width, popover segues appear as full-screen modal segues. 

Here’s what the four kinds of segues look like in landscape orientation on an iPad.

Show detail (in split view controller)

Modal (form sheet) Popover

Show (in navigation controller)



248 CHAPTER 9 Tables and navigation
Notice that when you change the navigation to a modal segue, the second view con-
troller loses its navigation bar because it’s no longer added to the navigation control-
ler’s stack. The user has no way of exiting this scene! 

9.2.3 Embedding second navigation controller 

A Cancel button and a Save button would be perfect for exiting the book detail view
controller, and the best place for these buttons is on a navigation bar (see figure 9.18).

To give the book detail view controller a navigation bar for the Save and Cancel but-
tons, embed it in its own navigation controller. 

1 Select the book detail view controller and select Editor > Embed In > Naviga-
tion Controller.

2 Select the navigation bar in the book detail view controller, and in the attributes
inspector give it the title Add book.

3 Drag in a bar button item on the left of the navigation bar. In the Attributes
Inspector and under System Item select Cancel.

4 Drag in another bar button item on the right of the navigation bar, and select a
System Item of Save.

5 Run the app again to see your changes. Notice that the default transition for
modal transition slides up rather than across. 
The Save and Cancel buttons don’t do anything yet. You need to hook them up
to return to the books table. If the user taps the Save button, you need to pass
the book data back to add to the books array.

Tapping + now
slides in book edit
form from bottom.

Tapping Cancel
or Save slides back
to Books table.

Figure 9.18 Modal 
segue in action.



249Adding a row
6 With the Assistant Editor open, Control-drag from the Cancel button to the
BookViewController class, to create an IBAction. Call the method touch-
Cancel. 

7 Do the same with the Save button, creating a touchSave method. 
8 From both methods, you can now call a dismissMe method where you can dis-

miss the view controller. A view controller can request itself to be dismissed with
the dismiss method.

@IBAction func touchCancel(_ sender: AnyObject) {
    dismissMe()
}
@IBAction func touchSave(_ sender: AnyObject) {
    //need to save data here
    dismissMe()
}
func dismissMe() {
    dismiss(animated: true, completion: nil)
}

9 Run the app, and you should find that tapping the Cancel or Save button now
closes the book detail view controller. But if you select Save, your book is still
not being added to the books table!

When the user selects Save, your book detail view controller needs to pass the new
book data back to the books scene for it to then add the data to the books array and
display the new book in the table. You’ll facilitate this communication with the delega-
tion pattern that we looked at in chapter 5.

9.2.4 Communicating with the books scene using your own delegate

To use the delegation pattern, you’ll need to set up a delegate protocol that defines a
list of all the methods that the delegate should implement. In this case, the protocol
will only need one method that will pass a book object to the delegate ready for sav-
ing. The table view controller would then adopt the protocol and define itself as the
book detail view controller’s delegate. See figure 9.19 for a visual representation of
the relationships.

Figure 9.19 Delegate to save book

saveBook(book)

BooksTableViewController:BookViewControllerDelegate

saveBook(book)

BookViewControllerDelegate

• delegate:BookViewControllerDelegate

BookViewController



250 CHAPTER 9 Tables and navigation
1 Create the delegate protocol. The naming convention for the delegate of a class
is to use the same name of the class with the suffix Delegate. Add the
BookViewControllerDelegate protocol to the BookViewController.swift file.

protocol BookViewControllerDelegate {
    func saveBook(_ book: Book)
}

2 Add a reference to the delegate in BookViewController, and make it an
optional.

var delegate: BookViewControllerDelegate?

Now, to extract the data that the user has entered for the book, you’ll need to
create outlets for each of the elements in the form. 

3 In the Assistant Editor, Control-drag from each text field and text view in the
form to the BookViewController class. (You probably already have a refer-
ence to the book cover.)

@IBOutlet weak var titleTextField: UITextField!
@IBOutlet weak var authorTextField: UITextField!
@IBOutlet weak var isbnTextField: UITextField!
@IBOutlet weak var notesTextView: UITextView!

4 In the touchSave method before calling the dismissMe method, create a
book object from the fields in the book edit form, and pass it into the delegate
method:

let bookToSave = Book(
    title: titleTextField.text!,
    author: authorTextField.text!,
    rating: 3,
    isbn: isbnTextField.text!,
    notes: notesTextView.text!
)
delegate?.saveBook(bookToSave)

USING YOUR DELEGATE PROTOCOL

As you saw in chapter 5, for a class to use a delegate protocol, it needs to follow three steps:

 Set itself as the delegate.
 Adopt the delegate protocol.
 Implement any required methods in the protocol.

Let’s follow these steps to set up the BooksTableViewController class to imple-
ment the BookViewControllerDelegate protocol you created.

 First, during the segue, the BooksTableViewController class needs to tell the
BookViewController that it is the BookViewController’s delegate. The problem
is that because the segue was created in Interface Builder, the instantiation of the new
view controller is managed automatically. 

Creates book object 
from form fields

We’ll come back to 
ratings in chapter 13

Passes book object 
to delegate



251Adding a row

r

 Fortunately, view controllers contain a prepareForSegue method that’s called
after any new view controllers are instantiated but before the segue is performed. 

1 Override this method so that you can get a reference to the destination view
controller using the segue parameter’s destinationViewController prop-
erty, ready to perform any additional customization.

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

Because the BookViewController is embedded in a navigation controller, the
segue’s destinationViewController will be a navigation controller. The
destinationViewController property is a UIViewController type, so
you’ll need to downcast it to a UINavigationController. 

2 Use optional binding to get a reference to the destinationViewController
as a navigation controller.

if let navController = segue.destination 
    as? UINavigationController {

3 Now that you have a reference to the navigation controller, you can get a refer-
ence to its root view controller. You can get a navigation controller’s root view
controller with the topViewController property. Because this returns a
UIViewController object, you’ll need to downcast it to a BookView-
Controller.

if let bookViewController = navController.topViewController 
    as? BookViewController {

4 Now you have a reference to the bookViewController, and the Books-
TableViewController can set itself as its delegate.
The following code shows the whole prepareForSegue method.

override func prepare(for segue: UIStoryboardSegue, 
    sender: Any?) {
    if let navController = segue.destination 
            as? UINavigationController {
        if let bookViewController = navController.topViewController 
                as? BookViewController {
            bookViewController.delegate = self
        }
    }
}

You’ll notice that an error appears on the delegate line, indicating that the
BooksTableViewController class isn’t the correct type to be the BookView-
Controller’s delegate. To resolve this, the BooksTableViewController
class needs to adopt the protocol.

Override prepareForSegue

Get reference to navigation controlle

Get reference to
book view controller

Set delegate 
as self



252 CHAPTER 9 Tables and navigation
5 Adopt the BookViewControllerDelegate protocol in an extension to
BooksTableViewController:

extension BooksTableViewController: BookViewControllerDelegate {

}

While this resolves the type error, another error will appear indicating that the
BooksTableViewController doesn’t conform to the BookViewController
Delegate protocol. 

6 Ensure that BooksTableViewController conforms to the protocol by imple-
menting any required methods in the BookViewControllerDelegate
protocol:

extension BooksTableViewController: BookViewControllerDelegate {
    func saveBook(_ book: Book) {
        // save book here
    }
}

9.2.5 Adding data to the table

Let’s recap where we are—the user has tapped the + symbol to add a book and then
entered details for the book (such as a title and author) into the book edit form. They
then selected Save or Cancel to dismiss the form. If they selected Save, the book detail
view controller passed the data back to the books table view controller via a delegate,
and requested it to be saved.

 Now that the books table view controller has received a book object representing
the data entered into the book edit form, it’s ready to add the data to the data source. 

1 First, add a method to the BooksManager to handle adding a book to the
books array:

func addBook(_ book: Book) {
    books.append(book)
}

2 Now, you can request BooksManager to add a book from the saveBook
method in the BooksTableViewController extension:

booksManager.addBook(book)

In general, when updating a table’s data, you have two choices:

 Perform a requested operation (for example insert, delete, or move rows) on
the table.

 Reload the table data. This will rebuild the table with the updated data.

Where an animation of the update to the table is possible, you should specifi-
cally request the appropriate operation, such as add or delete row (and only
after making the same change to the data source, or a runtime error will



253Adding a row
occur!). In this case, an animation won’t be necessary because the table won’t
be onscreen when the update is performed, so you’ll call a simple reloadData.

3 Add a call to reload data in the saveBook method:

func saveBook(_ book: Book) {
    booksManager.addBook(book)
    tableView.reloadData()
}

4 Run the app to see your hard work in action! 

Tap the + symbol to add a book to the table. Add a title for the book, and tap Save. You
should see your new book appear in the table. Tap the + symbol again, and this time
tap Cancel. There should be no change in the table.

CHALLENGE You may notice that it’s possible to save an empty book at this
stage. Because a book without a title doesn’t make sense, you should proba-
bly require at least the title for each book. Check that the title field contains
text when the text in the title text field changes (the way you did in chapter
5), and adjust the Save button’s isEnabled property appropriately. While
you’re tidying up loose ends, open the main storyboard and remove the
placeholder text that text views add by default from the notes text view.

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSAppDevelop-

mentwithSwiftinAction/Bookcase.git  (Chapter9.1.TableViewController).

Passing data back to the presenting view controller
There are often many ways to achieve the same goal in iOS development, and the
same goes with how data entry view controllers (also called detail view controllers)
return and pass data back to their presenting view controller. We’ve looked at one
solution for doing this using the delegation pattern, but alternative approaches are
often used. Let’s look at a couple—perhaps you might find one or another more
attractive than the delegate protocol approach you used.

Pass in a closure

This alternative has similarities to the delegation pattern, but focuses on one closure
rather than a list of methods in a protocol. The presenting view controller simply
passes in a closure to the detail view controller that the detail view controller can
then call before resigning itself.

Closures can be stored as variables to be called later. The following sets up an
optional closure declaration in the detail view controller class that could receive a
Book object and doesn’t return anything:

var saveBook: ((Book) -> Void)?

Adds book to 
data source

Reloads 
table data

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


254 CHAPTER 9 Tables and navigation
(continued)

In the prepareForSegue method, the presenting view controller would then pass
the complete saveBook method into the detail view controller as a closure:

bookViewController.saveBook = { (_ book: Book) in
    self.booksManager.addBook(book)
//etc
}

Alternatively, the saveBook method itself could be passed in:

bookViewController.saveBook = saveBook

The detail view controller can now directly call the saveBook method. Because clo-
sures capture variables from their original scope, when the detail view controller calls
the saveBook method, it will automatically have access to variables it refers to in
the presenting view controller’s scope. Because the closure is declared as an
optional, it must be unwrapped when called:

saveBook?(bookToSave)

Now, when the user taps the Save button in the detail view controller, before resign-
ing itself, it will call a closure scoped to the presenting view controller that performs
any necessary operations, such as saving data.

Unwind segue

Similar to the way a transition from a presenting view controller to another view con-
troller is called a segue, transitioning back to the presenting view controller is called
an unwind segue. You can trigger an unwind segue from a button in a detail view con-
troller by following two magical and mysterious steps.

1 Create a function in the presenting view controller with an @IBAction keyword
that accepts a UIStoryboardSegue object. You can name this function
whatever you like!

@IBAction func unwind(_ sender: UIStoryboardSegue) {
    //will be called after unwinding
}

2 Now comes the magical part! From the button in the presented view controller
from which you want to trigger the unwind segue, control-drag to the Exit but-
ton in the scene dock, and select the unwind function you created.

Control-drag
to Exit button Select unwind action



255Editing a row
9.3 Editing a row
Now that you’ve implemented adding a row, editing the data for a book when the user
taps on one of the rows in the table won’t be too difficult (see figure 9.20).

Figure 9.20 Tap a cell to edit the book.

You’ll need to

1 Create a segue from the prototype cell to the book detail view controller.
2 Pass in the book object to edit to update the book edit form’s initial state.
3 Remove the view controller correctly when the user selects Save or Cancel.
4 Update the appropriate book object in the table when the user selects Save.

Let’s start by creating a segue for editing a row.

9.3.1 Creating a segue from a row

You want the app to navigate to the book detail view controller when the user selects a
row in the books table. Because the book detail view controller will present more

When the user selects the button in the presented view controller, the unwind method
you set up will be called and an unwind segue will trigger back to the presenting view
controller. If your detail view controller needs to do something before the unwind
segue, such as store data, you can use the prepareForSegue method, the way
you did with normal segues.

Books table view controller Book edit view controller



256 CHAPTER 9 Tables and navigation
information about the user’s selection, a show segue will be most appropriate. The
show segue maintains the navigation bar from the presenting navigation controller, so
the additional navigation controller that you needed with the Modal segue for adding
a book won’t be necessary.

1 Control-drag directly from the prototype cell in the table view controller to the
book view controller, and select Show. 

2 Move the navigation controller out of the way to see the show segue you created
(see figure 9.21).

Figure 9.21 Creating a segue

Select Show from
segue options

Segue type indicator
appears (move navigation
controller to see)

Control-drag from prototype
cell to book view controller



257Editing a row

Sa
9.3.2 Passing in the book object to edit

If the user selects a book from the table, they’ll expect the book form to automatically
fill with the current contents of that book. The presenting view controller should pass
in the book object to edit to the book edit view controller. 

1 Define an optional book object in the BookViewController class:

var book: Book?

2 In the viewDidLoad method, the BookViewController should check if the
book object exists, and if it does, prefill the fields. If a book object exists, you
know that you’re editing rather than creating a book. Take the opportunity to
adjust the navigation bar’s title accordingly. Be sure to fill the fields before
checking if the Save button should be enabled.

if let book = book {
    bookCover.image = book.cover
    titleTextField.text = book.title
    authorTextField.text = book.author
    isbnTextField.text = book.isbn
    notesTextView.text = book.notes
    navigationItem.title = "Edit book"
}
saveButton.isEnabled = !titleTextField.text!.isEmpty

3 Now, the book view controller is ready to receive a book object and the books
table view controller needs to pass it in when the user is editing a book. If the
user has selected a row, you know the user is editing a book. In the prepare-
ForSegue method of the BooksTableViewController class, check that
there is a value in the table view’s indexPathForSelectedRow property:

if let selectedIndexPath = tableView.indexPathForSelectedRow {
            //Editing

4 You need to unwrap a reference to the destination view controller. Because
you’ve created the segue directly to the book view controller, it will be the desti-
nation view controller:

if let bookViewController = segue.destination 
    as? BookViewController {

5 This time, as well as setting itself as the delegate, the table view controller will
pass in the book to edit:

bookViewController.book = booksManager.getBook(at: selectedIndexPath.row)
bookViewController.delegate = self

Unwraps 
book object

Prefills form 
fields with book

Changes navigation 
bar title

Disables
ve button
if no title



258 CHAPTER 9 Tables and navigation
After merging the if statements together, the full prepareForSegue method
to pass the delegate and book data to the detail view controller will now look
like this:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
    if let selectedIndexPath = tableView.indexPathForSelectedRow,
        let bookViewController = segue.destination 
            as? BookViewController {
        //Editing
        bookViewController.book = 
            booksManager.getBook(at: selectedIndexPath.row)
        bookViewController.delegate = self
    } else if let navController = segue.destination 
            as? UINavigationController,
        let bookViewController = navController.topViewController 
            as? BookViewController {
        //Adding
        bookViewController.delegate = self
    }
}

9.3.3 Removing the view controller

If you run the app now, you’ll find that the Cancel and Save buttons no longer dismiss
the view controller. The dismiss method is appropriate for when a view controller
has been presented, such as via a modal segue. The show segue pushes the view con-
troller onto the navigation stack. When a view controller in a navigation stack wants to
be removed, it needs to request this from the navigation controller, using the
popViewController method.

 You need to update the dismissMe method to check how the view controller was
displayed to determine the appropriate method it should use to dismiss itself. 

 If the view controller was presented via a modal segue, the view controller’s
presentingViewController property will contain a value. If the view controller
was pushed via a show segue, presentingViewController will be nil. 

1 Check the presentingViewController property and dismiss the view con-
troller appropriately:

func dismissMe() {
    if presentingViewController != nil {
        // was presented via modal segue
        dismiss(animated: true, completion: nil)
    } else {
        // was pushed onto navigation stack
        navigationController!.popViewController(animated: true)
    }
}

Similar to the way you can remove view controllers in code, they can also be dis-
played in code, rather than using storyboard segues. Table 9.1 shows the segues
and their related methods.

If presented

Dismisses view 
controllerIf pushed

Pops view
controller



259Using large titles

 

2 Run the app, tap a row, and then tap Save or Cancel.

The detail view controller should close. However, the Save button will add the book
you’re editing to the books array—not exactly what you’re after!

9.3.4 Updating the book object

If the user is editing a book, you want to update the data for the book in the data
source and the table, rather than add it.

1 Add a method to update a book to the BooksManager class:

func updateBook(at index: Int, with book: Book) {
    books[index] = book
}

Next, in the saveBook method in the BooksTableViewController exten-
sion, you want to check if the user is editing or adding a book before perform-
ing the relevant operation. You know if a row of the table is selected, the user is
editing a book. 

2 Unwrap this index path to determine which book in the array needs updating,
and then reload the appropriate row in the table. Here's the updated save-
Book method:

func saveBook(_ book: Book) {
    if let selectedIndexPath = tableView.indexPathForSelectedRow {
        // Update book
        booksManager.updateBook(at: selectedIndexPath.row, with: book)
    } else {
        // Add book
        booksManager.addBook(book)
    }
    tableView.reloadData()
}

3 Run the app, and you should now be able to edit a book!

9.4 Using large titles
The observant amongst you may have noticed that the title first navigation controller
in the settings app back in figure 9.14 was in a large font. Since iOS 11, Apple has
introduced large titles in navigation bars, and recommends that you use them, espe-
cially in the first scene in a navigation stack. 

Table 9.1 Displaying and removing a view controller

Managed by Equivalent segue Method to display Method to remove

Navigation controller Show pushViewController popViewController

View controller Modal/Popover present dismiss



260 CHAPTER 9 Tables and navigation
 Add a large title to your Books Table View Controller. 

1 Select the navigation bar of the Books Table View Controller’s navigation con-
troller, and select Prefers Large Titles in the attributes inspector.
This will set up large titles for this navigation controller’s root view controller,
and for each subsequent view controller in the navigation stack. As you’re using
a show segue to push the book detail view controller onto the navigation stack
when the user edits a book, it will also by default use a large font. For a detail
view controller however, the smaller title font is more appropriate.

2 Select the navigation bar and look for the Large Title attribute in the attributes
inspector. 
By default, it’s set to Automatic, inheriting its font style.

3 Select Never to display the title of the book detail view controller in a smaller
font.

9.5 Deleting a row
You can’t let the user add rows without letting them delete! It’s surprisingly straight-
forward to implement row deletion in tables with a fancy swipe mechanism (see figure
9.22).

Figure 9.22 Swipe to delete row

The user swipes left to request a delete, and then continues swiping left or taps the
Delete button to confirm (or taps the cell again to cancel).

1 First, add a removeBook method to the BooksManager to handle removing a
book from the books array:

func removeBook(at index: Int) {
    books.remove(at: index)
}

Swiping left to delete is already built into table views in UIKit—when the user
confirms they’d like to delete a row, a data source method will be called. All you
need to do is override this method in BooksTableViewController and dou-
ble-check that the user is requesting to delete a row. 

2 You can now make the appropriate change to update both the data and the
table, identifying the row to delete with the index path parameter. Request the



261Deleting a row

req
booksManager to remove the book from the books array, and the tableView
to delete the row:

override func tableView(_ tableView: UITableView,
    commit editingStyle: UITableViewCellEditingStyle, 
    forRowAt indexPath: IndexPath) {
    if editingStyle == .delete {
        booksManager.removeBook(at: indexPath.row)
        tableView.deleteRows(at: [indexPath], with: .fade)
    }
}

NOTE Surprisingly, overriding this method is all that’s required for swiping
to delete functionality to be enabled. This method will also be called if the
user tries to move a row, if reordering of rows is enabled via the data source
method canMoveRowAt.

3 Run the app and swipe left on a row. 
4 Tap the Delete button that appears, and the row should disappear from the table.

Swiping row custom actions
Swiping rows isn’t limited to just delete actions, nor just swiping to the left. Since iOS
11, you can implement all sorts of custom actions, swiping left or right, and with one
or more actions available per swipe. 

To implement custom actions on swipe, instantiate one or more UIContextual-
Action objects, use these to instantiate a UISwipeActionsConfiguration
object, and then return this object from data source methods for trailing and/or leading
swipe actions. Swipe action buttons can be customized with images and different
colors. 

Our delete action, for example, could be rewritten as a custom swipe action:

override func tableView(_ tableView: UITableView,
    trailingSwipeActionsConfigurationForRowAt indexPath: IndexPath)
    -> UISwipeActionsConfiguration? {
  let deleteAction = UIContextualAction(style: .destructive,
    title: "Delete") { 
      (contextAction: UIContextualAction, 
      sourceView: UIView, 
      completionHandler: (Bool) -> Void) in
    self.booksManager.removeBook(at: indexPath.row)
    self.tableView.deleteRows(at: [indexPath], with: .left)

    completionHandler(true)
  }
  return UISwipeActionsConfiguration(actions: [deleteAction])
}

Overrides table 
view methodChecks user

uested deletion

Removes book
 from array

Removes book
from table

Overrides table view
method for trailing swipe

Creates
UIContextualAction

Removes book from array

Removes
book
from
table

Calls completion handler indicating success

Returns UISwipeActionsConfiguration object



262 CHAPTER 9 Tables and navigation
9.6 Summary
In this chapter, you learned the following:

 To display data in a table view. At a minimum you need to answer three data
source questions: how many sections are in the table, how many rows are in
each section, and what cell goes in each row?

 Embed a view controller in a navigation controller to push a view controller
onto the navigation stack. A navigation controller has the additional advantage
of a navigation bar, where you can display a back button, additional controls,
and information about the current view controller.

 Use show (push) segues to navigate to a scene that presents more information
about the user's selection. Use a present (modal) segue to perform a self-
contained operation.

 Use access control keywords private (restricted to file) and public (unrestricted)
to change the access control from the default internal (restricted to module). 

 Use prepareForSegue to pass data to a presented view controller. Pass data
back to the presenting view controller with a delegate, via a closure, or with an
unwind segue.

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git (Chapter9.2.EditDeleteBook).

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


Collections, searching,
sorting, and tab bars
It’s one thing to simply display and edit your data; it’s another to do something with
it—sort it, search it, or display it in a more visually interesting way.

 In this chapter, you’ll extend your Bookcase app. You’ll add the ability to sort
and search the books data, and you’ll display the books in a more customized grid
layout. You’ll add a tab bar to navigate between the table view of books and your
new grid view of books.

 Specifically, we’ll explore

 Sorting the data—You’ll explore sorting your data and giving the user the abil-
ity to select the sort order with a segmented control.

 Search controllers—You’ll use a search controller to add a search bar to a
scene, filtering your data and displaying search results.

This chapter covers
 Sorting and filtering data

 Displaying data in more-customizable layouts

 Using a tab bar to navigate between scenes
263



264 CHAPTER 10 Collections, searching, sorting, and tab bars
 Collection views and collection view controllers—Collection views manage a collection
of data and display it in a customizable layout, such as a grid. Similar to table
view controllers, collection view controllers handle part of the boilerplate setup
for you.

 Tab bar controllers—Tab bar controllers are useful for managing the navigation
between different sections of your app. 

10.1 Sorting the data
Imagine when the Bookcase app takes off and people start adding hundreds of books
to their collection. With all that data in the table, it’s going to be impossible for the
user to find the book they’re looking for. You need to implement strategies to make it
easier for the user to explore the books data. 

 You’ll achieve this in two ways:

 Keep the data sorted.
 Add search capability.

We’re going to first examine how to keep the data nicely sorted by title, and then we’ll
implement search by adding a search bar to the books scene.

Believe it or not, you’re only going to have to make changes to the BooksManager
class to keep the data nicely sorted.

10.1.1 Creating a sort method to sort the books array

Back in chapter 2, we looked at the sorted higher order function, which sorts an
array and returns the result. This time, you’ll use the sort function, which sorts an
array directly. To indicate that you’re going to modify the books array within the func-
tion, you should tag the parameter with the special inout keyword. 

1 Add a sort method to the BooksManager class to sort the array.

func sort(books: inout [Book]) {
    books.sort(by: {
        return $0.title < $1.title
    })
}

But what if two books have the same title? How can you also sort based on
author as a secondary field? A solution for sorting two fields is to use a little

CHECKPOINT Open the Bookcase project where you left it at the end of
chapter 9, or check it out at https://github.com/iOSAppDevelopment-

withSwiftinAction/Bookcase.git  (Chapter9.2.EditDeleteBook).

Declares parameter 
as inoutSorts books

array Sorts based 
on title

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


265Sorting the data
tuple magic! Rather than comparing strings, you can compare tuples contain-
ing two strings.

return ($0.title, $0.author) < ($1.title, $1.author)

Another problem remains with this sort, however. Uppercase and lowercase
characters are by default treated differently in comparisons, meaning that if the
user enters a title beginning with a lowercase character, it will appear after all
the other books. Furthermore, different locales have their own rules for sorting
that must be considered. Fortunately, strings have a localizedLowercase
property that’s a more appropriate version for comparisons. 

2 Add this property to the return call:

return ($0.title.localizedLowercase, $0.author.localizedLowercase) < 
    ($1.title.localizedLowercase, $1.author.localizedLowercase)

Great, you have a way to sort the books array. Now the only question is, where
in the BooksManager class do you need to call this method? The array must be
sorted every time that it could be out of order. The array could be out of order
in three places:

 After loading the sample data. Use the sampleBooks method in BooksMan-
ager.

 After adding a book. Use the addBook method in BooksManager.
 After updating a book. Use the updateBook method in BooksManager.

3 Call the sort method in each of these three methods, passing in the books
array. To indicate that you’re aware that the inout variable can be modified,
you need to mark the argument with an ampersand (&):

sort(books: &books)

If you run your app now, you should find that the data stays nicely in order, even after
you add a book or edit a book’s title. But what if the user also wants to sort the table
view by author?

10.1.2 Changing sort order

Because tables in iOS are single column, there’s no built-in mechanism for changing
the sort order. If you want your user to change the sort order, you’ll have to imple-
ment this yourself.

ADDING A SEGMENTED CONTROL

The segmented control allows the user to choose between two or more options. Let’s
add a segmented control to enable the user to choose between title and author to sort
the table (see figure 10.1).



266 CHAPTER 10 Collections, searching, sorting, and tab bars
 

Figure 10.1 Sort order with segmented control

1 In the storyboard, find the segmented control in the Objects Inspector, and
drop the segmented control directly into the table view controller’s navigation
bar on the left. 
This will automatically embed the segmented control inside a bar button item.
For a strange reason, the default style that Interface Builder gives the bar but-
ton item may produce a warning. 

2 Change the bar button item’s style to Bordered and the warning should go
away. The segmented control will by default contain two segments. 

3 Select the segmented control and open the Attributes Inspector. (Remember
the Control-Shift-click trick to select the segmented control and not the bar
button item.) The Segment attribute indicates which segment the other attri-
butes relate to (see figure 10.2). 

Sorted by Title

Segmented
control

Sorted by Author



267Sorting the data
4 Select Segment 0, and give it the title “Title.”
5 Select Segment 1, and give it the title “Author.” 

Figure 10.2 Segment attributes

Because the segmented control is a control, you can register a target action
method to be called when the user changes a value.

6 With the storyboard open in the Assistant Editor, Control-drag from the seg-
mented control to the BooksTableViewController, and create an action.
Call it changedSegment. Be sure to change the type from the generic Any to
UISegmentedControl. You should see this:

@IBAction func changedSegment(_ sender: UISegmentedControl) {
    // change sort order here
}

This method now needs to let the BooksManager know that you want the sort order
changed, and to update the table. 

UPDATING THE SORT ORDER

Let’s update the BooksManager first to deal with changes in the sort order.
 The sort order currently is by title (then author). You want to add a second sort

order of author (then title). Who knows? Maybe at some point in the future, you might
also like to add another sort order—perhaps sorting by ISBN or rating. 

 You need to set up a property in the BooksManager to record the current sort
order. Swift has a useful data type you can take advantage of here called an
enumeration.  

Segment 0
attributes

Segment 0

Select
segment



268 CHAPTER 10 Collections, searching, sorting, and tab bars
Enumerations
An enumeration defines a group of related values. Perhaps you might want to store
references to days of the week or monsters in your game. Storing values in an enu-
meration ensures type safety and prevents bugs such as spelling mistakes.

Enumerations are declared with the enum keyword, and each identifier in an enumer-
ation is called a case. Cases don’t need to store values. Here’s an example of an
enumeration of a Monster:

enum Monster {
    case blinky
    case pinky
    case inky
}

A variable can then be declared based on one of the cases of this enumeration:

let monster = Monster.blinky

Cases can be referred to with a dot prefix. For example:

if monster == .blinky {
    print("Color is red")
}

If an enumeration is declared to be a data type such as String or Int, each case
will store a raw value. If no values are provided, Swift can imply the raw values. With
String enumerations, cases are implied to store their name. With Int enumera-
tions, cases are implied to store an incrementing value. 

For example, here’s an enumeration to store the sort order of your books:

enum SortOrder: Int {
    case title
    case author
}

The title case is implied to store a raw value of 0, and the author case is implied
to be 1. 

You can declare an enumeration with a type using the raw value of the case. Because
this type of request could fail, an optional will be returned that will need unwrapping.

For example, the following would declare a SortOrder with the title case.

guard let sortOrder = SortOrder(rawValue: 0) else {return}

The power of enumerations is evident in switch statements. Because the enumer-
ation type defines the exhaustive list of options for a group, Swift can ensure that
switch statements are also exhaustive, without the need for a default case. 

Here’s a switch statement for the sortOrder property:

switch sortOrder {
case .title:
    print("sort titles first")
case .author:
    print("sort authors first")
}



269Sorting the data
1 Add the SortOrder enumeration to the BooksManager.swift file, but before
the BooksManager class.

2 Add a sortOrder property to the BooksManager class that defaults to .title
initially.

var sortOrder = SortOrder.title

3 You can now adjust the sort method to sort appropriately based on the current
sortOrder:

switch sortOrder {
case .title:
    books.sort(by: {
        return
            ($0.title.localizedLowercase,$0.author.localizedLowercase) <
            ($1.title.localizedLowercase,$1.author.localizedLowercase)
    })
case .author:
    books.sort(by: {
        return
            ($0.author.localizedLowercase,$0.title.localizedLowercase) <
            ($1.author.localizedLowercase,$1.title.localizedLowercase)
    })
}

4 Back in the BooksTableViewController class, you can now set the sort-
Order in the changedSegment method when the segmented control value
changes. The indices of the segments coincide with the indices of the enumera-
tion, so you can instantiate a SortOrder enumeration directly from the seg-
mented control’s selected index. You can then pass this straight into the
booksManager, and request the table to reload.

guard let sortOrder = SortOrder(rawValue: sender.selectedSegmentIndex)
   else {return}
booksManager.sortOrder = sortOrder
tableView.reloadData()

If you ran your app now, selecting a different sort order wouldn’t trigger the
data to be sorted. The BooksManager has to call the sort method whenever
the sortOrder changes. There’s a trick in Swift for detecting when a property
changes, called a property observer. (More on property observers in the sidebar
“Property observers.”)

5 You want the data to be sorted every time the sortOrder property is changed.
Add the didSet property observer to the sortOrder property:

var sortOrder: SortOrder = .title {
    didSet {
        sort(books:&books)
    }
}

Sorts by title, then author

Sorts by author, then title



270 CHAPTER 10 Collections, searching, sorting, and tab bars
6 Run the app now and tap Author in the segmented control. The table should
automatically be ordered by author. Done!

10.2 Searching the data
Let’s now add search capability to the app. You’ll add a search bar between the table
view and the navigation bar. When the user taps on the search bar to enter text, the
search bar will transition up to replace the navigation bar, and text entered into the
search bar will filter the rows (see figure 10.3).

Property observers
You can use property observers to perform an action every time the value of a property
is set. You have a choice of two property observers: 

 didSet is called immediately after a property is set.
 willSet is called immediately before a property is set.

CHECKPOINT If you’d like to compare your project with mine at this point,
you can check mine out at https://github.com/iOSAppDevelopment-

withSwiftinAction/Bookcase.git  (Chapter10.1.Sort).

User taps
search bar

Search bar slides up; typed
text filters rows below

Figure 10.3
Search bar

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


271Searching the data
10.2.1 Creating a search controller

To build up this search capability, you’ll need a UISearchController. This class
works hard for you: it instantiates a search bar for displaying, handles interactions with
the search bar, transitions movements of the search bar, optionally displays a second
view controller where you can display search results, and notifies you via a delegate
every time the search text changes. What the UISearchController class doesn’t do,
however, is search your data for you—this is something you’ll need to do for yourself.

NOTE In iOS 8, Apple deprecated the UISearchDisplayController class
and replaced it with a shiny new UISearchController class. That’s fine, but
at the time of writing, the shiny new search controller hasn’t yet been
updated in the Interface Builder object library. To use the updated class,
you’ll need to do it in code.

1 In your BooksTableViewController class, instantiate a new UISearch-
Controller. Pass it nil for searchResultsController to indicate that you
don’t want it to navigate to another view controller to display the results—
you’re going to show the results in the same view controller.

let searchController = UISearchController(searchResultsController: nil)

Now, you need to configure how the search controller works. By default, when
the user taps in the search bar, the table view is grayed out, but you want the
user to still select and delete rows while they’re searching. 

2 Turn this feature off in the viewDidLoad method:

searchController.obscuresBackgroundDuringPresentation = false

By default, the search bar will remain in the navigation bar when the user navi-
gates to a new scene. 

3 Turn this off, too:

searchController.definesPresentationContext = true

4 Great, now you can set the BooksTableViewController as the search con-
troller’s delegate, called searchResultsUpdater.

searchController.searchResultsUpdater = self

5 As usual, the class needs to adopt the delegate protocol and implement any
required methods in the protocol. 

extension BooksTableViewController: UISearchResultsUpdating {
    func updateSearchResults(for searchController: UISearchController) 
{
        // filter data here
    }
}



272 CHAPTER 10 Collections, searching, sorting, and tab bars
The updateSearchResults method is called every time the text in the search bar
changes. 

10.2.2 Adding the search controller to the view controller

Now that you've created your search controller, you have two options for adding it to a
table view controller:

 Table views have optional header and footer views available for additional con-
tent. One approach is to add the search controller’s search bar to the table
view’s header view.

tableView.tableHeaderView = searchController.searchBar

 A second, newer approach is to embed the search controller into the navigation
bar.

navigationItem.searchController = searchController

See figure 10.4 to compare the two. The search controller in the navigation bar looks
more tightly integrated into the interface, but is only available from iOS 11, meaning
that your app would be unavailable to devices on earlier versions of iOS.

Figure 10.4 Search controller alternative approaches

Search controller in
table header view

Search controller
in navigation bar



273Searching the data

If
Let’s use the #available keyword to specify that if the user has iOS 11, the search-
Controller will be added to the navigationBar, using the newer API. If the user is
still running a version of iOS lower than 11, the search controller would be added to
the table view’s header view. 

1 Add the search controller to the table view controller, using the #available
keyword to match the appropriate API with the user’s iOS version.

if #available(iOS 11.0, *) {
  self.navigationItem.searchController = searchController      
} else {
  tableView.tableHeaderView = searchController.searchBar
}

2 Run your app.

You should see the search bar working perfectly—well, except for one little detail:
when you enter text in the search bar, the data in the table view doesn’t change! Let’s
do something about that.

10.2.3 Filtering the data

Now that the search controller is set up and you’re receiving a notification every time
the search text changes, you can filter the data in the table view.

 To maintain the model and the controller as separate as possible, let’s filter the
data in the BooksManager class. First, the BooksManager will need to know what
you’re searching on.

Checking if an API is available
Should you dive into the new API or use the old API to support older versions of iOS?
You have three main options here:

 Only support versions of iOS from where the new API was introduced by
changing the deployment target in your project’s General settings. The disad-
vantage of this alternative is that users who haven’t updated iOS can’t down-
load your app. Apple’s App Store page gives you the percentage of devices
with different versions of iOS installed to help you make an informed decision
on your minimum deployment target.

 Continue to use the older API until you decide that a sufficient percentage of
users are using the version of iOS that the new API requires.

 Use the special keyword #available to specify that a section of code is
only to be used for a specific version of iOS. 

If iOS 11 available Adds search controller
to navigation bar

 user has less
than iOS 11

Adds search controller
to table header view



274 CHAPTER 10 Collections, searching, sorting, and tab bars
1 Add a variable to the BooksManager class that will receive the current search
string. When this variable is set, the BooksManager uses it to filter the data.
You’ll create the filter method next.

var searchFilter = "" {
    didSet {
        filter()
    }
}

2 You can now use the higher order filter function to filter the books array based
on the search text. You only want books to appear in the filteredBooks array
if their title or author properties contain the search text. 
Use the localizedLowercase string property again to ensure that case or
other local considerations such as accents don’t affect the search. 

func filter() {
    filteredBooks = books.filter { book in
        return book.title.localizedLowercase.contains(
                searchFilter.localizedLowercase) || 
            book.author.localizedLowercase.contains(
                   searchFilter.localizedLowercase)
    }
}

3 The updateSearchResults method in the UISearchResultsUpdating
extension of BooksTableViewController can now pass in the new search fil-
ter text to the BooksManager. After passing in this text, the BooksManager
should freshly filter the data, so the table view can reload here.

guard let searchText = 
    searchController.searchBar.text else { return } 
booksManager.searchFilter = searchText
tableView.reloadData()

That’s all you need to do in the BooksTableViewController. Now, you
need to ensure that the BooksManager deals with filtered data when the
searchFilter variable contains text.

4 Add a second array in the BooksManager that holds an array of filtered books:

var filteredBooks: [Book] = []

You now need to adjust how the BooksManager reports on the number of books
the table should display and the data in each row. If text appears in the search fil-
ter, the BooksManager should get this information from the filteredBooks
array. Otherwise, if the user isn’t currently searching, the BooksManager should
return this information from the full books array.

When variable is set

Filter the data

Higher-order 
filter function

Checks title contains
 searchFilter

Checks author 
contains searchFilter

Unwraps search 
text from search bar

Passes search text 
to BooksManager

Reloads table view



275Searching the data
5 Make the appropriate adjustments:

var bookCount: Int {
    return searchFilter.isEmpty ? books.count : filteredBooks.count
}
func getBook(at index: Int) -> Book {
    return searchFilter.isEmpty ? books[index] : filteredBooks[index]
}

10.2.4 Removing and updating rows with filtered data

If you run the app now and enter text in the search bar, the table should update with
only books whose titles or authors contain the search text. However, if you try to edit
or delete a row, things will start to go badly—in fact, the app may even crash! See fig-
ure 10.5. What’s going on?

Figure 10.5 Removing a row while searching can crash the app!

If the searchFilter isn’t empty, the table view is updated from the filteredBooks
array. The index then being passed to the removeBook and updateBook methods

Searching—typed
text filters rows

Attempting to
delete filtered
row—Crash!



276 CHAPTER 10 Collections, searching, sorting, and tab bars
relates to the index in the filteredBooks array; but currently the BooksManager is
using this index to update or delete a row in the books array, and that’s not right! 

REMOVING A ROW WITH FILTERED DATA

When the user searches the table and selects to remove a row, you need to remove this
item from the filteredBooks array and then determine the correct item to remove
in the books array. 

1 First, update the removeBook method in the BooksManager to check if the
searchFilter is empty and remove the book from the correct array. 

func removeBook(at index: Int) {
    if searchFilter.isEmpty {

              books.remove(at: index)
    } else {
        filteredBooks.remove(at: index) //incomplete
    }
}

You’re not done, however. Even if the user is currently searching, you still need
to remove the book from the books array. The remove method from an Array
returns the object being removed. 

2 Use the book object returned from the remove method to find the returned
book in the books array and remove it from there, too:

let removedBook = filteredBooks.remove(at: index)
guard let bookIndex = books.index(of: removedBook) else {
    print("Error: book not found")
    return
}
books.remove(at: bookIndex)

MAKING AN OBJECT EQUATABLE

You’ll find a compiler error appear on the guard statement: Cannot invoke ‘index’
with an argument list of type ‘(of: Book)’.

 This tells you that Swift doesn’t know how to determine if two books are equal or
how to find a book’s index in an array of books. For example, if two books have the
same properties, are they equal? Or perhaps they need to point to the same memory
address (in the case of reference types)?

 To tell Swift how to determine the index of an object in an array, you need to do
two things:

1 Overload the == operator for the object type to explain how to determine if two
objects are equal. Because two books are equal if all their properties are equal,
compare each property in the overloaded == operator for Book. Add the fol-
lowing to the Book.swift file, but outside the class:

Gets ref to 
removed book

Gets index of book
in books array

Removes
book from

books array



277Searching the data

Gets
func ==(lhs: Book, rhs: Book) -> Bool {
    return (
        lhs.title == rhs.title &&
        lhs.author == rhs.author &&
        lhs.rating == rhs.rating &&
        lhs.isbn == rhs.isbn &&
        lhs.notes == rhs.notes &&
        lhs.cover == rhs.cover
    )
}

2 The object must adopt the Equatable protocol. That’s easy enough! All you
need to do is add an extension to the Book structure:

extension Book: Equatable {}

The only requirement that the Equatable protocol has is an implementation of the
== operator for the class or struct that implements it, and you’ve done that!

UPDATING A ROW WITH FILTERED DATA

If you ran your app now and typed text into the search bar, you could remove a book,
but if you tried to update a book, you would probably find you’ve updated the wrong
book! 

 If the user is currently searching the table (the search filter isn’t empty), you need
to find the index of the book to update in the books array.

 Update the updateBook method in your BooksManager class.

func updateBook(at index: Int, with book: Book) {
    if searchFilter.isEmpty {
        books[index] = book
        sort(books: &books)
    } else {
        let bookToUpdate = filteredBooks[index]
        guard let bookIndex = books.index(of: bookToUpdate) else { 
            print("Error: book not found")
            return
        }
        books[bookIndex] = book
        sort(books: &books)
        filter()
    }
    
}

Notice that after sorting the books array, you’ll want to refilter the filteredBooks
array, because the order may have changed.

NOTE Adding a row doesn’t need any adjustments after adding search to the
app! Because the search bar moves to the navigation bar when the user is
searching, it’s only possible to add a row when you’re not searching. 

Gets ref to book 
to update

 index of book
in books array

Updates book 
in books array



278 CHAPTER 10 Collections, searching, sorting, and tab bars
Run the app and, with fingers crossed, you should find that search is fully operational
within your app. Play around with adding, updating, and deleting rows to confirm.

The table of books is certainly a practical view for exploring the data, but when the
user starts adding cover images, wouldn’t a more visual approach also be appropriate? 

10.3 Displaying data in collection views
You’re going to add a secondary scene for the
Bookcase app that displays the book cover
images in a grid format. If a book cover isn’t
available for a book, a gray default cover will
appear with the title of the book (see figure
10.6).

 You can display a customizable layout, such
as a grid, using a collection view. After working
with table views, you’ll find that collection views
feel familiar:

 A collection view controller can be used to
handle part of the boilerplate setup of a
collection view.

 You need to implement data source
methods to determine the number of
sections and number of items in each
section, and return a cell for each item.

 You need to dequeue cells. You can do this
by setting up a reusable cell in the story-
board and giving it a reuse identifier. 

CHALLENGE Using what you’ve learned about table view controllers, set up a
basic collection view controller that will show as many cells as books. Follow
the steps to guide you through the process. You should end up with some-
thing like figure 10.7.

1 Add a collection view controller to the storyboard, and set it as the initial view
controller. Xcode will warn you that your navigation controller is unreachable
now, but don’t worry, you’ll resolve this shortly.

2 Give the collection view a white background, and give the prototype cell a dark
gray background, and the reuse identifier bookCollectionCell. 

CHECKPOINT If you’d like to compare your project with mine at this point,
you can check mine out at https://github.com/iOSAppDevelopment-

withSwiftinAction/Bookcase.git  (Chapter10.2.SearchSort).

Figure 10.6 Bookcase collection view

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


279Displaying data in collection views
3 In the Size Inspector for the collection
view, give the cells a width and height
of 80. Inset the content from the mar-
gins by setting the section insets to 20
in all four directions.

4 Create a subclass of UICollection-
ViewController called Books-

CollectionViewController, and
connect it up to the collection view
controller in the Identity Inspector in
the storyboard. 

5 In the class you set up, comment out
the call to the register method in
the viewDidLoad method. 
In both the table view controller and
collection view controllers, the reg-
ister method is used to register a
class to use for a specific reuse identi-
fier. Because you’re defining your pro-
totype cell in the storyboard, this step
isn’t necessary and, in fact, will quietly
remove the connection to the storyboard prototype cell.

Next, you need to customize the three data source methods. 

6 The number of sections is simple—as with the table view controller, you’ll use
one section, so you can return 1. To customize the remaining two data source
methods, you need a booksManager property.

7 Instantiate a booksManager in your BooksCollectionViewController
class.

8 Use the bookCount property of the booksManager you set up to determine
the number of items in the collection to complete the numberOfItemsIn-
Section delegate method. 

9 Make sure to use the reuseIdentifier bookCollectionCell in the cell-
ForItemAt method. (Feel free to modify the reuseIdentifier constant that
this template uses). Don’t worry about configuring these cells; we’ll come back
to that in a moment.

10 Run the app, and you should see the layout in figure 10.7. 

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git (Chapter10.3.CollectionView-
InitialSetup).

Figure 10.7 Basic collection view

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


280 CHAPTER 10 Collections, searching, sorting, and tab bars
Obviously, the cells need customization—gray rectangles won’t do! 
 Not much customization is possible on the collection view prototype cell. Unlike

table view prototype cells, no labels or images are ready to use in the cell. You have to
create your own custom cell.

10.3.1 Creating custom collection cells

You’re going to create a custom cell that will display the image cover in an image view.
If there isn’t a cover image for the book, it will instead display the book title in a label
inside a gray default cover.

1 In the storyboard, drag the image view to the collection view prototype cell. 
2 Pin each of the four sides to the cell in the Add New Constraints menu (see fig-

ure 10.8). 

3 Drag in a label, too, and pin each of its sides to the edges of the cell. 
4 Adjust the attributes for the label in the Attribute Inspector. Give the label a

light gray color, center the text, remove the default text “Label,” and for the
Lines attribute, specify 0. 

NOTE Zero lines isn’t as silly as it sounds—it’s telling the label to use as many
lines as required.

Now you need to create a custom class for the cell. 

5 Create a Cocoa Touch class called BookCollectionViewCell, based on
UICollectionViewCell. 

6 Back in the storyboard, connect the prototype cell to the class you created in
the Identity Inspector. To update the text in the label or the image in the image
view, you need to set up outlets in the BookCollectionViewCell class. 

7 Create outlets called imageView and titleLabel. 

TIP When you open the Assistant Editor and select either the image view or
the title label in the document outline, the BookCollectionViewCell class

Figure 10.8 Pin sides



281Displaying data in collection views
should become available as a secondary automatic class in the jump bar. If the
class doesn’t appear in the automatic options, you can always drill down to it
using the manual option (see figure 10.9). 

Figure 10.9 Jump bar automatic versus manual file selection

You now have a custom collection view cell ready to use in your collection view
controller! 

10.3.2 Displaying data in a custom collection view cell

Let’s see if your custom cell is working.

1 Open the BooksCollectionViewController class, and locate the “Config-
ure the Cell” section. Because you’ve defined the prototype cell in the story-
board to subclass your BookCollectionViewCell class, you know that the
cell you dequeue with a bookCollectionCell reuse identifier is going to be
your custom cell class. 

2 Force downcast the cell:

let cell = collectionView.dequeueReusableCell(withReuseIdentifier:  
    reuseIdentifier, for: indexPath) as! BookCollectionViewCell

3 The same way you did in the related section in the BooksTableView-
Controller class, get a reference to the relevant book object for this cell based
on the index path:

let book = booksManager.getBook(at: indexPath.row)

Automatic options

Manual selection



282 CHAPTER 10 Collections, searching, sorting, and tab bars
4 Now, you can pass the book cover image into the image view you set up in your
custom cell:

cell.imageView.image = book.cover

If you run the app now, you should see that the gray rectangles have been
replaced by cover images for each of the books (see figure 10.10).

None of the books have a cover image yet, so you only see default blank cover
images, which doesn’t give any indication which book is which! When a book
doesn’t have a cover image, let’s display its title instead.

5 First, add a property to the Book structure to be able to check if it has a cover
image:

var hasCoverImage: Bool {
    return image != nil
}

6 Now, back in the collection view controller, you can check this property to
determine whether to display text in the label and hide the image view:

cell.titleLabel.text = book.hasCoverImage ? "" : book.title
cell.imageView.isHidden = !book.hasCoverImage

Run the app, and you should see, as in figure 10.11, titles displayed for all books that
don’t have cover images (all of them!). When you add cover images to books in chap-
ter 13, this screen will look much prettier! 

 

Figure 10.10 Collection view with 
custom cells

Figure 10.11 Collection view with 
custom cells



283Displaying data in collection views
10.3.3 Implementing a flow layout

Collection views have a Layout attribute that defines how the items are to be laid
out. You can select the custom layout to define your own layout style, providing end-
less possibilities to customize the collection view. A preconfigured layout style called
Flow is available that allows you to build up your items in a grid. Collection views with
Flow layout have the option to scroll horizontally or vertically.

 If you open the Attribute Inspector for the collection view, you’ll notice that by
default your collection is already set to a Flow layout with vertical scrolling (see figure
10.12).

10.3.4 Adding a search bar to the collection view

As you saw when searching the table view controller, you either add the search con-
troller to the navigation bar for iOS 11, or use a search bar as the table header view for
prior to iOS 11. Unfortunately, at the time of writing, the iOS 11 technique of adding a
search controller to the navigation bar in a collection view doesn’t seem to be work-
ing, and collection views don’t have an equivalent to the table header view. There is a
workaround, however! Collection views with the Flow layout style do have optional
section header views. If you only have one section, this works fine as a header view for
the whole collection view that can be used to hold the search bar. 

 Notice in the Attribute Inspector for the collection view that your section doesn’t
have a section header. 

1 Check the Section Header to add a search bar. When you check Section Header,
you should notice a header appear in the collection table view. (If you don’t,
select Editor > Refresh All Views.) Like cells, this header has a reuse identifier. 

2 Select the header, and in the Attributes Inspector, give it an identifier of
collectionHeader.

Section headers work differently than the tableHeaderView. Rather than
implementing the header by replacing a collection view property, you need to
implement another data source method that returns a dequeued view (similar
to the table and collection view cells).

Figure 10.12 Collection view attributes



284 CHAPTER 10 Collections, searching, sorting, and tab bars
3 Add the following method to your BooksCollectionViewController class:

// MARK: Header
override func collectionView(_ collectionView: UICollectionView,     
        viewForSupplementaryElementOfKind kind: String, 
        at indexPath: IndexPath) -> UICollectionReusableView {
    let reusableView = 
        collectionView.dequeueReusableSupplementaryView(ofKind: kind,  
        withReuseIdentifier: "collectionHeader", for: indexPath)
    // Customize reusable view here
    return reusableView
}

A blank header view should now appear ready to display a search bar.

CHALLENGE The same way you did for the table view controller, instantiate
and configure the search controller. Adopt the UISearchResultsUpdating
protocol to receive and respond to the updateSearchResults method.
Don’t worry about adding the search bar yet because this is done a little dif-
ferently in a collection view controller; we’ll look at that next.

NOTE The collection view controller has an optional collectionView
property, but unlike the table view controller’s tableView property, it isn’t
implicitly unwrapped. You need to use optional chaining to reload the collec-
tion view: collectionView?.reloadData().

4 Now that you have a search controller, you can add its search bar to the reus-
able view as a subview, before returning the reusable view.

reusableView.addSubview(searchController.searchBar)

5 Run the app, and you should find that a search bar appears in the header view.

But Houston, there’s a problem. Notice that when you tap the search bar once, the
keyboard appears and disappears. Tapping it again will make the keyboard appear,
but after you’ve typed two letters, the keyboard disappears again. What’s going on?

 The reloadData method (which is triggered whenever the search bar becomes
first responder or the user edits the search text) doesn’t just reload the data—unfortu-
nately, it also reloads supplementary views for the section, reloading the header. When
the header is reloaded, the search controller gets resigned as first responder, and the
keyboard is dismissed.

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out here: https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git  (Chapter10.4.CollectionView-
SearchBarInitial).

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


285Displaying data in collection views
 This is one of those moments where, as an iOS developer, you may need to be cre-
ative to get around a limitation of the UIKit framework.

10.3.5 Creating a second section 

The reloadData method isn’t the only way to reload the data in your collection. The
reloadSections method will load only the data in a section. To avoid having your
section header reload, you could move your book data to a second section, and then
only reload that section:

1 To begin with, your numberOfSections method should now return 2:

override func numberOfSections(in collectionView: UICollectionView) -> Int
{
  return 2
}

2 Your numberOfItemsInSection should also specify the correct amount
depending on the section number:

override func collectionView(_ collectionView: UICollectionView, 
    numberOfItemsInSection section: Int) -> Int {
  return section == 0 ? 0 : booksManager.bookCount
}

Because the numberOfItemsInSection method returns 0 for the first section,
the cellForItemAt method will never be called for the first section, so you
won’t need to make any modifications to that method.

Now, you want to only add the search bar to the section header view for the first
section. 

3 Add the following condition in the viewForSupplementaryElementOfKind
method:

if indexPath.section == 0 {
  reusableView.addSubview(searchController.searchBar)
}

Now that you’ve moved your data to the collection view’s second section, you’ll
need to ensure that only the second section is reloaded when the search results
are updated.

4 Replace your reloadData method with reloadSections:

collectionView?.reloadSections(NSIndexSet(index: 1) as IndexSet)

Run your app again, and this time your search bar should work great! However,
because the collection view thinks it needs to make room for two section headers, the
content begins a little way down the screen.

 How can you tweak these sorts of details in this flow layout? 



286 CHAPTER 10 Collections, searching, sorting, and tab bars

d

d

10.3.6 Implementing the flow layout delegate

You can further customize how your collection view flow layout looks by implementing
methods in the flow layout delegate. 

1 Add an extension to your BooksCollectionViewController class that
adopts the flow layout delegate:

extension BooksCollectionViewController:

➥ UICollectionViewDelegateFlowLayout
{
}

2 Specify the size of the header for both sections in the referenceSizeFor-
HeaderInSection method:

func collectionView(_ collectionView: UICollectionView, layout 
    collectionViewLayout: UICollectionViewLayout, 
    referenceSizeForHeaderInSection section: Int) -> CGSize {
  if section == 0 {
    return searchController.searchBar.bounds.size
  } else {
    return CGSize.zero
  }
}

While you’re working in the flow layout delegate, let’s adjust the sizes of the
book cover images. Ideally, each item in your collection will have the same pro-
portions as the book cover image.

3 Implement a delegate method to adjust the size of each book cover image indi-
vidually:

func collectionView(_ collectionView: UICollectionView, 
            layout collectionViewLayout: UICollectionViewLayout,  
            sizeForItemAt indexPath: IndexPath) -> CGSize {  
        let book = booksManager.getBook(at: indexPath.row)  
        let itemHeight:CGFloat = 90  
        let itemWidth = (book.cover.size.width /   
            book.cover.size.height) * itemHeight  
        return CGSize(width: itemWidth, height: itemHeight)  
    }
}

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git  (Chapter10.5.CollectionView-
SearchBar).

Implements
elegate method

Returns search b
section 0

Returns zero size 
for section 1

Implements
elegate method

Gets book for
index path

Sets standard height

Derives width from
cover image

Returns item size

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git 
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git 


287Displaying data in collection views
NAVIGATION CHALLENGE Your collection view controller is looking good, but
it’s not yet hooked up to the detail view controller! The same way you did with
the table view controller, embed the collection view controller in a navigation
controller and create segues to add or edit a book. You’ll need to implement
the prepare for segue method and adopt your BookViewControllerDelegate
to save books.

SORT CHALLENGE Now that your collection view controller has a navigation
controller, add the segmented control to the navigation bar to adjust the sort
order of books, the way you did earlier for the table view controller. You’ll
need to add an action to respond to user interaction on the segmented
control.

The books collection scene is working great, but hmm ... something’s wrong.

Organize your project
It’s a great idea to keep your project clear
and tidy by organizing your classes in the Proj-
ect Navigator sorted into Model, View, or Con-
troller categories. The way you did in chapter
1, select the three view controller classes in
the Project Navigator, right-click, select New
Group from Selection, and call the group
“Controller.” The Book.swift and BooksMan-
ager.swift files could go into the Model group
and the UIViewExtension.swift and BookCol-
lectionViewCell.swift files would qualify for
the View group. As you progress through the
book, try to keep new files categorized into
one of these groups. This will also help you
be clear about the role and responsibilities of
each class.

Ah, that’s better! Your Project Navigator
should now look much more organized.

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git  (Chapter10.6.CollectionView).

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


288 CHAPTER 10 Collections, searching, sorting, and tab bars
 The storyboard of your app should be looking something like figure 10.13. Note
that you currently have no way to navigate to the books table scene! In fact, Xcode will
warn you that several view controllers have no “entry points.” What can you do about
this? A useful way to switch between different sections of your app is called the tab bar
controller.

Figure 10.13 App storyboard

10.4 Creating sections with a tab bar controller
A tab bar is displayed at the bottom of the app window and is typically used to navigate
between different sections of your app. Tab bars contain a series of tab bar items with
titles and images that change color when the tab is selected. Like a segmented con-
trol, only one tab can be selected at a time. See figure 10.14 for a few example tab bars
in Apple iOS apps.

Books table scene

No entry point
to this scene

Books collection scene

Book add/edit detail scene



289Creating sections with a tab bar controller
 The most convenient way to implement a tab bar is via a tab bar controller. A tab bar
controller is a container view controller that manages navigation between multiple
content view controllers when different tabs are selected in the tab bar. 

Figure 10.14 Tab bars in Apple apps

You’ll implement a tab bar controller in the Book-
case app to navigate between the books table scene
and the book covers collection scene (see figure
10.15).

 Implementing a tab bar controller is simple:

1 Select the navigation controller for the table
view controller and select Editor > Embed in
> Tab bar controller. Everything should move
over, and a tab bar controller will appear to
the left of the navigation controller.
Now, you’ll need to edit the title and image
for the tab bar item. The content view con-
troller provides the tab bar item to the tab
bar controller, so you’ll need to edit the attri-
butes of the tab bar item by selecting it in the
navigation controller. Apple provides several
standard tab bar items that you can explore
in the System Item attribute, but you’re going
to create a Custom tab bar item. 

2 Select the tab bar item, and type “Books”
for the title. You’ll leave the tab bar item
images blank for now (represented in the
storyboard by a blue square), and come back to them when we look at graphics
in chapter 12.
Next, you’ll embed the navigation controller for the collection view controller
in the same tab bar controller. 

iBooks Videos

Clock Photos

Tab bar

Figure 10.15 Bookcase app with 
tab bar



290 CHAPTER 10 Collections, searching, sorting, and tab bars
3 Hold down Control and drag from anywhere on the tab bar controller to the
navigation controller. A segue menu will pop up. 

4 Select a Relationship Segue by selecting view controllers. A second tab bar item
should appear in the tab bar controller. 

5 Select the tab bar item in the second navigation controller, and name it
“Covers.”

6 Select the tab bar controller as the initial view controller for the storyboard. 

Note the change to the flow of the app in the storyboard in figure 10.16. (I’ve rear-
ranged my storyboard to make the flow clearer.) It’s clear the user can now navigate to
either books scene.

Figure 10.16 Storyboard with tab bar controller

Run the app, and you should see a tab bar appear at the bottom of the window, which
you can use to navigate between the two books scenes.

10.4.1 Sharing data between tabs

Notice that if you edit a book in one tab and then go to the other tab, your edits seem
to have disappeared. Each tab is currently creating its own books manager and

Book add/edit detail scene

Books table scene

Books collection scene

Tab bar controller



291Creating sections with a tab bar controller
therefore its own set of data—producing two books arrays, or one for each tab. How
can you ensure that both tabs use the same set of data? 

 Sharing data between view controllers is a theme that often pops up in iOS devel-
opment. We’ve already looked at strategies for passing data when navigating with seg-
ues, but tab bars are a different beast altogether. As you’ve seen, they have relationship
segues with their scenes, which don’t trigger the prepareForSegue method.

 Several alternative solutions exist for sharing data between tabs, each with their
own pros and cons: 

 Global variables
 Singletons
 Dependency injection

Figure 10.17 demonstrates the difference between the different relationships in each
alternative.

Figure 10.17 Alternative solutions for sharing data

booksManager

BooksManager

• instance

• booksManager • booksManager

Books table scene Books collection scene

Books table scene Books collection scene

References References

TabBarController

• booksManager

• booksManager • booksManager

Books table scene Books collection scene

Injects Injects

References References

Global
variable

Singleton

Dependency
injection



292 CHAPTER 10 Collections, searching, sorting, and tab bars
You’ll implement dependency injection in your app, but first let’s have a quick look at the
alternatives.

GLOBAL VARIABLES

If you create a variable outside of a class or struct, it’s automatically defined in the
global scope, available from anywhere in your project.

 All that’s required to implement this solution is to remove the instantiation of the
booksManager from both the BooksTableViewController and Books-

CollectionViewController classes, and instead instantiate it in the global scope.
You could, for example, create a GlobalVars.swift file, that contains

var booksManager = BooksManager()

The books view controllers would then automatically reference the booksManager
property in the global scope.

 When the user navigates away from a tab, the related view controller will remain in
memory. If the data is edited while the user is on a different tab, this change in data
won’t be represented when the user returns. To ensure the table or collection is up to
date when the user returns, you'll probably want to request them to reload in the
viewDidAppear method.

 Plenty has been written over the years about the dangers of global variables: they
create possible conflicts, make unit testing difficult, and make code more difficult to
understand and harder to maintain. It’s good to know the possibilities, but use global
variables with care and look for alternatives where possible!

SINGLETONS

Singletons enforce that an object has been instantiated once and only once by main-
taining its own instance internally.

 It’s straightforward to convert a class to a singleton in Swift. All a class requires is a
type property containing a reference to an instance of the class. You could make the
singleton’s initializer private to ensure it can only be referenced from this instance
property and not reinstantiated.

 The following listing demonstrates how to convert BooksManager to a singleton.

class BooksManager {
    static let instance = BooksManager()
    private init() {}
    lazy var books: [Book] = self.loadBooks()
    // etc
}

The BooksTableViewController and BooksCollectionViewController

classes no longer instantiate a BooksManager; rather, they access it via the instance
property:

var booksManager = BooksManager.instance

Listing 10.1 Convert BooksManager to singleton

Create shared 
instance

Prevent reinstantiation



293Creating sections with a tab bar controller
Like the global variables solution, in this solution, view controllers won’t receive noti-
fication when the user updates data in another tab, and you'll want to reload the table
or collection views in the viewDidAppear method. 

 Plenty has been written about the dangers of singletons, too. Connections between
different parts of your app can be obscured, making your app difficult to maintain
and test. Future scenarios where perhaps multiple users require multiple libraries of
books will consequently require significant refactoring.

 Whatever your opinion on singletons, there’s no question that they’re ubiquitous in
iOS. The iOS notification center, the file manager, the compass, the screen—even the
application itself contains a singleton. I suggest that singletons can be useful depend-
ing on the scale of a project, but use with caution, being aware of their drawbacks. 

DEPENDENCY INJECTION

With dependency injection, an object can inject a dependency such as data or a service
into another object. 

 Let’s use dependency injection to inject the booksManager into the two books
scenes. Because the tab bar controller controls both books scenes, it makes sense to
instantiate the booksManager in a subclass of the UITabBarController and then
inject it into the scenes when required.

1 Remove the instantiation of the books manager in the BooksTableView-
Controller and BooksCollectionViewController classes, and replace
with an implicitly unwrapped optional:

var booksManager:BooksManager!

Yes, you should be extra cautious using implicitly unwrapped optionals, but in this
case, you’ll inject them into the view controller as soon as they’re instantiated.

2 Create a class that subclasses UITabBarController, and call it TabBar-
Controller. 

3 Set TabBarController as the class of the tab bar controller in the Identity
Inspector in the storyboard.

4 Instantiate the books manager in your new class:

var booksManager = BooksManager()

To inject the books manager into both view controllers, you’ll set up an
Injectable protocol that both view controllers will adopt. Create the
Injectable protocol in the TabBarController.swift file, with an inject
method ready to pass in the books manager.

protocol Injectable {
    func inject(data: BooksManager)
}

5 In the table view controller, adopt the Injectable protocol:

class BooksTableViewController: UITableViewController, Injectable {



294 CHAPTER 10 Collections, searching, sorting, and tab bars

G

6 Implement the inject method:

func inject(data: BooksManager) {
    self.booksManager = data
}

After setting the instance variable, this is a good time to reload the table view.
Use optional binding in case the tableView implicitly unwrapped optional
hasn’t yet been instantiated.

7 Ensure the table view is up to date whenever the view appears:

override func viewDidAppear(_ animated: Bool) {
    tableView?.reloadData()
}

8 Do steps 5 through 7 again, but for the collection view controller. The books
view controllers are now ready to be injected!
Back in the TabBarController class, you’ll inject both view controllers with
the data in the viewDidLoad method. UITabBarController has a view-
Controllers array that stores a reference to the navigation controllers con-
taining the view controllers for each tab. 

9 Loop through the viewControllers array, getting a reference to the naviga-
tion controllers, from which you can then get a reference to its root view con-
troller to inject your data!

for navController in viewControllers! {
    if let navController = navController 
            as? UINavigationController,
        let viewController = navController.viewControllers.first 
            as? Injectable {
        viewController.inject(data: booksManager)
    }
}

It does take more work to implement the dependency injection pattern, but it can be
worth it. Dependency injection avoids global states, and connections between objects
are explicit and clearer, making testing and maintenance easier. On the other hand, if
in the future changes are made to the flow of the app, the approach for the injection
of data will need to be revised, whereas the singleton solution could potentially be fine
without any modification.

 In the end, the solution you choose for such coding dilemmas is up to you! In the
next chapter, you’ll use more iOS singletons when you take your app data to the next
level—saving the data!

CHECKPOINT If you’d like to compare your project with mine at this point,
you can check mine out at https://github.com/iOSAppDevelopment-

withSwiftinAction/Bookcase.git (Chapter10.7.TabBarController).

Loops through tab 
bar view controllers

Gets ref to navigation controller

ets ref to nav controller’s
 root view controller

Injects 
data

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


295Summary
10.5 Summary
In this chapter, you learned the following:

 When comparing strings for sorting, use their localizedLowercase property
to ignore case and follow local sorting rules. Use tuples to compare multiple
strings.

 Use a search controller to manage searching data in your app.
 Use enumerations to define a group of related values.
 Use property observers willSet and didSet to perform an action before or

after a property is set.
 Make a custom object equatable to find its index in an array.
 Use singletons or dependency injection to share data between view controllers

at the same level, such as those contained in a tab bar controller.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



296 CHAPTER 10 Collections, searching, sorting, and tab bars
 
 



Local data persistence
In this chapter, we’ll take a lightning tour of several options for persisting data
locally on the device. We can’t comprehensively cover all features of all alternatives
in one chapter, but we’ll explore the basics of the different options and the differ-
ences in approaches, so you can choose for yourself which option you prefer or
which is more appropriate for a project.

 Specifically, we’ll explore storing data using

 State preservation and restoration—Your app remembers where you left it.
 User defaults—Your app remembers your preferences.
 Property lists—Serialize your model objects into a type of structured data

often used by Apple.
 XML—Serialize your model objects into an XML format.

This chapter covers
 Storing app state on the device

 Storing user preferences on the device

 Using different techniques for storing data on the 
device 
297



298 CHAPTER 11 Local data persistence
 JSON—Encode your model objects into the JSON format.
 Archiving objects—Store model objects directly to the device by making them

encodable.
 SQLite—Use SQLite operations to store data in a local database.
 Core data—Store data using object-oriented code built over a relational data-

base. 

Along the way, we’ll also explore

 App delegate—Responding to app-level events in your app’s delegate.
 Error handling—Dealing with errors that may occur during your app’s execu-

tion.
 Using Objective-C in a Swift project—Creating a bridging header to import Objective-

C classes in your Swift project.

As you can see, we have much to get through, so let’s get started!

11.1 Preserving user preferences and state
Have you ever modified an app with your preferences—perhaps you turned sound off
or you navigated to the scene you’re most interested in—only to find the next time
you open the app that everything is back to its defaults? Frustrating! 

 Your app can use several techniques to remember where the user was and what
they prefer. Let’s look at state preservation. 

11.1.1 Preserving and restoring state

Your app can remember where the user last navigated to and return them to the same
place when they reopen the app. What’s more, it’s super easy to set this up!

 When the user opens the Bookcase app, they always go directly to the books table
view. What if the user prefers the more visual books collection view? 

 Let’s explore the steps involved in preserving and restoring state by setting up the
Bookcase app to remember the user’s scene preference.

The first thing to do is inform UIKit that you want to opt in to preserving and restor-
ing state. You do this in the app delegate.

 
 
 
 

CHECKPOINT Open the Bookcase project where you left it at the end of
chapter 10, or check it out at https://github.com/iOSAppDevelop-

mentwithSwiftinAction/Bookcase.git  (Chapter10.7.TabBarController).

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git 
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git 


299Preserving user preferences and state
1 Add the following methods to the app delegate to request the system to save
and restore the app’s state:

func application(_ application: UIApplication, 
        shouldSaveApplicationState coder: NSCoder) -> Bool {
    return true
}
func application(_ application: UIApplication, 
        shouldRestoreApplicationState coder: NSCoder) -> Bool {
    return true
}

Now that these methods exist in the app delegate and return true, the system
will walk down the view controller hierarchy from the root view controller, look-
ing for view controllers with a restoration identifier. (When the system reaches a
view controller without a restoration identifier, it won’t examine its children.)
Those view controllers with a restoration identifier will have their state pre-
served when the app moves to a background state and restored when the app
launches. 

2 Open the storyboard, select the tab bar controller, and open the Identity
Inspector.

3 Enter a string in the Restoration ID property—it doesn’t really matter what the
ID is, as long as it’s unique. 

4 Do the same for the two navigation controllers the tab bar controller displays in
its tabs. That’s it! The app should now remember the user’s last tab preference. 

App delegate
You’ve probably seen the AppDelegate.swift file in the Project Navigator and won-
dered what it’s for. Perhaps you’ve also wondered, could it be related to the delega-
tion pattern?

Well, if you wondered that, you’d be right! The app delegate is your app’s customiz-
able delegate, and is the best place to customize how your app responds to important
app-level events. 

Explore the app delegate file that Xcode automatically generates for each project.
Several UIApplicationDelegate methods are already implemented for you,
ready for customization. 

You can customize app delegate methods such as

 App launch
 App state changes (for example, app enters background/foreground)
 App receives remote or local notifications
 Manage preserving and restoring app state 



300 CHAPTER 11 Local data persistence
5 Run the app and switch to the books collection tab. 
6 Send the app to the background by clicking the simulator’s Home button. 
7 Now run the app again, and it should launch straight to the collection scene!

In addition to tab bar controllers and view controllers, you can also use state preserva-
tion and restoration to preserve the state of

 Navigation controllers
 Table views and collection views
 Scroll views
 Text fields and text views
 Image views

NOTE View controllers with restore identifiers can also encode and decode
additional state data by overriding the encodeRestorableStateWith-
Coder and decodeRestorableStateWithCoder methods. We’ll look more
at encoding and decoding data using Codable shortly.

11.1.2 Preserving user preferences on the device

Sometimes you may want to set a preference that will be preserved for future launches of
the app. Perhaps you want to preserve a user’s name, whether the user has turned off
sound or music, or the color scheme the user prefers. 

 User defaults are the perfect place for preserving small, discrete pieces of data such
as these. See figure 11.1 for sample preferences screens in various apps that could be
stored in user defaults. 

Figure 11.1 In-app settings are often stored in User Defaults.



301Preserving user preferences and state
You’ll use user defaults in your Bookcase app to keep track of whether the user prefers
to see the optional ISBN field in the book detail scene. All that’s necessary is to set the
user default for the ISBN field when the user hides or shows the field. When the book
detail scene loads, you can get this value from the user defaults and show or hide the
field accordingly.

1 First, you’ll need a key for the ISBN user default. The key is a string that’s used to
reference this preference when you store and retrieve its value. In the Book-
ViewController.swift file (external to the BookViewController class), create a
private global variable for the key.

private let isbnKey = "ISBN"

2 In the toggleISBN method, store the new user default using this key. Get a ref-
erence to the standard defaults with the standard singleton, and call its set
method. 

UserDefaults.standard.set(isbnStackView.isHidden, forKey: isbnKey)

3 Now, all that’s left is to retrieve this user default and use it to show or hide the
field. To retrieve user defaults, you can use convenience methods that specify
the data type you expect. As the isHidden property you stored was a Boolean
type, retrieve it using the bool method. Add the following to the viewDidLoad
method:

isbnStackView.isHidden = UserDefaults.standard.bool(forKey: isbnKey)

Now, test if the ISBN preference is persisting in user defaults.

4 Run the app, select to add a book, and select the Info button to show the ISBN
field. 

5 Run the app again, select to add a book again, and you should discover that
your preference for seeing the ISBN field has been preserved.

User defaults can store all sorts of Core Data types: Bool, String, Int, Float,
NSURL, NSData (binary data), and even arrays or dictionaries of any of the above.
User defaults, however, are most useful for small chunks of data. If there’s any sort of
complexity to the data, you’re better off looking at the features of alternative
approaches, starting with NSKeyedArchiver, which we’ll be looking at shortly.

CHALLENGE Using user defaults, record the user’s choice of sort order in the
segmented controls in the books table and books collection scenes.

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git (Chapter11.1.UserPreferences).

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


302 CHAPTER 11 Local data persistence
11.2 Storing data locally
Adding, deleting, and updating items in a table are pointless if your changes don’t stick
around for the next time you launch the app! User preferences are great for small, bite-
sized pieces of data, but for complex data, you’ll need a more robust solution. 

 You have many options for storing data locally on your device, including those
shown in table 11.1.

Like tools in a toolbox, there isn’t one alternative local storage solution that will be per-
fect for every project and scenario. The alternative you choose depends on the require-
ments and complexity of your project, along with your own personal preferences. 

 Before you choose the right tool for the job, it’s a good idea to understand each
alternative. 

 In the rest of this chapter, we’ll look at several of these alternatives by exploring
how they could be used to store books data locally for the Bookcase app. 

11.2.1 Storage setup

Before we get into comparing alternatives, let’s perform additional setup to the Book-
case app that will be useful for different options.

Table 11.1 Local storage alternatives

Alternative Description Pros Cons

Structured 
data files 

Parse structured data 
such as XML or property 
lists to/from a file.

Simple; output is human 
readable.

Storing/retrieving data in its 
entirety (called atomic 
stores); can have higher 
memory requirements and be 
slower due to higher disk 
access.

Archiving 
objects

Archive and unarchive 
objects in your code 
directly to/from a file.

Simple, object-oriented 
approach.

SQLite Perform database opera-
tions on a database file. 

Powerful and fast; can 
define relationships 
between entities; sophisti-
cated queries with familiar 
and portable syntax.

Overkill for smaller amounts 
of data. Native SQLite syn-
tax can be unwieldy, but third-
party alternatives can 
resolve this. (See third-party 
alternative cons.)

Core Data Manage model objects, 
including data persis-
tence.

Powerful and fast; can 
define relationships 
between entities; sophisti-
cated queries; track 
changes; caching; valida-
tion.

Can be overkill for smaller 
amounts of data. High learn-
ing curve, boilerplate setup.

Third-party 
alternatives

Plenty of third-party solu-
tions can be worth explor-
ing, such as FMDB to 
help with SQLite or Realm 
for mobile databases.

Can be useful for automat-
ing boilerplate code or 
common tasks.

Can go out of date or favor; 
no guarantees of updates.



303Storing data locally
DETERMINING STORAGE LOCATION

Every iOS app has its own little space on the device for storing files. This space is called
its sandbox, as access by other apps is generally prohibited. Similarly, your app gener-
ally doesn’t have access to the sandboxed file system of other apps.

 By default, every app’s sandbox contains several standard directories, including
those shown in table 11.2.

You’re going to add local storage of the user’s books to your Bookcase app. 
 It makes sense to store the data in the application support folder, so let’s get a refer-

ence to its path.
 You can use the FileManager class to handle regular file system activities such as

creating, copying, and moving files and directories. You can also use the FileManager
class to return a path for one of the iOS directories.

 Use the FileManager’s urls method to get an array of URL objects for the appli-
cation support directory. Because you only want the first item in the array, use its first
property. 

 Unlike the documents folder, the application support folder isn’t generated for
your app automatically, so before returning the URL, check if the folder exists, and if
not, create it. 

1 Define the appSupportDirectory private global variable in the BooksMan-
ager.swift file (outside the BooksManager class).

private let appSupportDirectory: URL = {
    let url = FileManager().urls(
        for: .applicationSupportDirectory,
        in: .userDomainMask).first!
    if !FileManager().fileExists(atPath: url.path) {
        do {
            try FileManager().createDirectory(at: url,
                withIntermediateDirectories: false)
        } catch {
            print("\(error.localizedDescription)")
        }
        

Table 11.2 Useful iOS directories

Directory Description

App bundle This read-only directory contains the app itself and all resources bundled with it.

Documents Files generated by the user that may be accessible to the user directly through 
file sharing.

Application support Files your app can generate to support itself that will be invisible to the user.

Temporary files Store files here temporarily while you work with them.

Caches Store files here temporarily for possibly improving download speed.

Gets URL to application 
support directoryChecks that

directory exists

do-catch 
statementCreates directory if necessary



304 CHAPTER 11 Local data persistence

e

    }
    return url
}()

Because the createDirectory method can throw an error, you’ll need to sur-
round it in a do-catch statement. (See sidebar “Error handling.”)

2 Once you have a path to the application support directory, generate a path to a
directory to store the books data, using the URL object’s appendingPath-
Component method.

private let booksFile = 
    appSupportDirectory.appendingPathComponent("Books")

Error handling
If a method can cause an error, it’s marked with the keyword throws, and then at a
point it may throw an error. Errors are defined by an enum that adopts the Error
protocol. The following example defines an error, and a method that can throw it:

enum HyperdriveError: Error {
    case broken
    case missing
}
class Spaceship {
    var hyperdriveOperational: Bool = false
    func goHyperspace() throws  {
        if !hyperdriveOperational {
            throw HyperdriveError.broken
        }
    }
}

To call a method that can throw an error, surround it in a do-catch block, identifying
the call with a try keyword. Use the do block to try code that could throw errors,
and then catch any errors in the catch block. The following would catch an error in
the goHyperspace method. The localizedDescription property offers an
explanation of the error.

var spaceship = Spaceship()
do {
    try spaceship.goHyperspace()
} catch {
    print("\(error.localizedDescription)")
}

Alternatively, you can choose to catch specific errors.

do {
    try spaceship.goHyperspace()
} catch HyperdriveError.broken {
    print("It's broken!")
} catch HyperdriveError.missing {
    print("It's missing!")
}

Returns url

Gets URL to Books fil



305Storing data locally
PREPARING FOR STORING AND RETRIEVING DATA

In many of the local storage alternatives you’ll explore, you’ll store and retrieve data
from disk in its entirety, also known as an atomic store. This process is fairly simple and
can make sense for small amounts of data. When you start working with thousands of
records, or are modeling relationships and filtering data, alternatives that update the
data using database operations can be more appropriate (such as SQLite or Core Data).

 For now, let’s prepare the Bookcase app to store and retrieve data in its entirety.

1 Create stubs for a storeBooks method and a retrieveBooks method in the
BooksManager, ready to fill in later with appropriate serializing and parsing
methods.

// MARK: Local storage
func storeBooks() {
    // Store books array to disk here
}
func retrieveBooks() -> [Book]? {
    // Retrieve books array from disk here
    return nil
} 

Notice that the retrieveBooks method returns an optional array of Book.
Obviously, at first there won’t be any books data to retrieve, so the first time the
app runs, this method will return nil.

Now that you have a method set up to store books, you can call it whenever
changes are made to the books array, such as when a book is added, updated,
or removed. 

2 Add a call to the storeBooks method at the end of each of the addBook,
removeBook, and updateBook methods.

storeBooks()

3 Now that you have a method set up to retrieve books, request them from the
loadBooks method. If no books are stored, resort to the sample books.

func loadBooks() -> [Book] {
    return retrieveBooks() ?? sampleBooks()
}

Generally, when serializing data, each property will require a name to identify it. 

4 To avoid typos, set up a private struct in the Book.swift file (but outside the
Book structure) that defines keys for each property in the Book structure.

internal struct Key {
    static let title = "title"
    static let author = "author"
    static let rating = "rating"
    static let isbn = "isbn"
    static let notes = "notes"
}



306 CHAPTER 11 Local data persistence
Now that you have stubs and a struct of Keys, you’re ready to explore various alter-
natives for storing data.

11.2.2 Structured data files

In this section, you’ll serialize your model objects into a specific structure, such as
JSON, XML, or property lists, that can be written to disk in a file. Later, you can read
the file back in and deserialize or parse it back into your model object (see figure 11.2).

Figure 11.2 Data persistence with structured data files

If you have a good parser, the specific syntax of the format you’re encoding the data
into doesn’t matter too much, and the code you write to encode and decode the data
will be fairly similar.

 You’re probably already familiar with common text-based formats for encoding
data, such as JSON or XML. You may not be as familiar with property lists, also known
as plists. 

PROPERTY LISTS

Property lists are another way of structuring data, common in iOS. When you create a
new project, for example, Xcode automatically generates an Info.plist file containing
additional preferences for your project. If you select the Info.plist file in the Project
Navigator, you’ll examine the contents of the .plist file in the property list editor by
default. To see the underlying structure of the plist, right-click on it and select Open
As > Source Code.

CHECKPOINT If you’d like to follow along from my project, we’ll
explore each local storage alternative beginning from the same starting

point at https://github.com/iOSAppDevelopmentwithSwiftinAction/Book-
case.git (Chapter11.2.StoreDataStart).

Book Serialize

Deserialize/parse

Book

Book

Book array Data structure

Memory Disk

Write

Read

Data file

Property list/XML/
JSON

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


307Storing data locally
Figure 11.3 Info property list edited two ways

You’ll find that under the hood, the .plist file is actually a special type of XML. Each
property in the plist is represented by a key followed by a value (see figure 11.3).

 You already created a property list earlier in this chapter! Behind the scenes, user
defaults are represented by property lists. You can also store an Array or Diction-
ary to disk as a property list, as long as they contain foundation data types that can be
stored in property lists such as String, Data, or other arrays and dictionaries. 

 You’re going to convert your array of Book objects to an array of dictionaries of
strings that can be stored on the device as a property list. You’ll then retrieve the prop-
erty list and convert it back into an array of Book objects.

1 Add a dictionary computed property to the Book structure that returns a
representation of the Book object as a dictionary of strings.

var dictionary: [String: String] {
  return [
    Key.title: title,
    Key.author: author,
    Key.rating: String(rating),
    Key.isbn: isbn,
    Key.notes: notes
  ]
}

Property list editor

Source code editor



308 CHAPTER 11 Local data persistence
Now, you can use this property and the map higher-order function to generate
an array of dictionaries, from an array of Book objects.

books.map( { $0.dictionary })

The Objective-C NSArray data type contains methods for writing and reading
to the device that don’t exist in the Swift Array data type. Before writing to
disk, you’ll need to cast your array of book dictionaries to an NSArray. 

TIP Many core Swift data types are bridged with their Objective-C counter-
parts, meaning that the two types can be used interchangeably. But in certain
cases, Objective-C functionality may be missing in the Swift implementation,
and you’ll need to cast your variable to the Objective-C implementation (usu-
ally beginning with NS) for access to additional Objective-C methods and
properties. 

2 Add the following to the storeBooks method in your BooksManager class:

func storeBooks() {
    (books.map( { $0.dictionary }) as NSArray).write(
        to: booksFile, atomically: true)
}

Storing files atomically has more safeguards to ensure that the file being written
to isn’t corrupted if a crash occurs. 

That’s it for storing the property list. Now you can retrieve it! Because you
stored each book as a dictionary of strings, when you retrieve your books array,
you’ll need to regenerate Book objects from this data.

3 Give the Book structure an initializer that generates a new Book based on a dic-
tionary. Unwrap the dictionary string values (casting them to the appropriate
data type where necessary, such as the rating Double property), and then
instantiate the new Book by calling the designated initializer.

init?(book: [String: String]) {
    guard let title = book[Key.title],
        let author = book[Key.author],
        let ratingString = book[Key.rating],
        let rating = Double(ratingString),
        let isbn = book[Key.isbn],
        let notes = book[Key.notes]
        else {return nil}
    self.init(title: title,
              author: author,
              rating: rating,
              isbn: isbn,
              notes: notes
              )
}

Failable initializer

Unwraps dictionary 
propertiesCasts rating

to Double

Calls designated 
initializer



309Storing data locally
NOTE The question mark following the init method indicates that this is a
failable initializer, meaning that it can return nil. If you’re instantiating an
object via a failable initializer, you need to unwrap the object that’s returned. 

Next, you retrieve your books array from file in the retrieveBooks method in
the BooksManager. The NSArray class can be instantiated directly from a file.

NSArray(contentsOf: booksFile)

4 You need to cast this NSArray as a Swift array of dictionaries of strings.

guard let array = NSArray(contentsOf: booksFile) 
    as? [[String: String]] else {return nil}

You can then use map to regenerate an array of Book, using the initializer you
just created.

array.map( { Book(book: $0) } ) 

5 Because the initializer is failable, it returns an array of optional Book, so you’ll
need to unwrap it.

guard let books = array.map( { Book(book: $0) } )
  as? [Book] else {return nil}

6 Return the books property. Your finished retrieveBooks method in the
BooksManager class should look like this:

func retrieveBooks() -> [Book]? {
    guard let array = NSArray(contentsOf: booksFile) 
        as? [[String: String]] else {return nil}
    guard let books = array.map( { Book(book: $0) } ) 
        as? [Book] else {return nil}
    return books
}

7 Run the app; add, delete, or update a book. 
8 Run the app again, and you should find that your changes have persisted as

property lists!  

TIP If you’re using the simulator, you can see the file that your app output!
Print the value of booksFile to the console, paste the path into a Spotlight
search, and as simple as that, the property list your app output should open in
Xcode.

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSAppDevelop-

mentwithSwiftinAction/Bookcase.git  (Chapter11.3.StoreDataPropertyList).

Retrieves property 
list file

Casts as array
of dictionaries Converts to 

Book objects

Unwraps
optional Books

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


310 CHAPTER 11 Local data persistence
You may want to keep a version of your project working with property list files before
we move on to exploring alternatives.

XML
In this section, we’ll explore storing and retrieving data locally as XML. 

iOS comes with a low-level XML parser. Rather than converting the XML to a format
that can be more easily manipulated, the XML parser in iOS explores the XML hierar-
chy, dispatching events to its delegate as it discovers the various elements and attri-
butes contained.

 It can be more convenient to use a higher-level XML parser that converts the XML
structure to objects that can then be more easily converted to your customized model
objects. Because this functionality doesn’t come packaged with the iOS SDK (curiously,
it does come with the macOS SDK), I built an XML parser that you can use in your proj-
ects. You can check out the parser here (https://github.com/craiggrummitt/Swift-
XML.git) and drag the XML.swift file into the Project Navigator. 

 Now that you have an XML parser in your project, you’ll explore how to use it by seri-
alizing the books array to an XML structure that can be stored on the device in a text
file. You’ll then retrieve the XML structure, and parse it back into your books array.

1 Add an xml computed property to the Book structure that returns a representa-
tion of the Book object as an XML node.

var xml: XMLNode {
    let bookNode = XMLNode(name: "book")
    bookNode.addChild(name: Key.title, value: self.title)
    bookNode.addChild(name: Key.author, value: self.author)
    bookNode.addChild(name: Key.rating, value: String(self.rating))
    bookNode.addChild(name: Key.isbn, value: self.isbn)
    bookNode.addChild(name: Key.notes, value: self.notes)
    return bookNode
}

Now that you have the structure for each book node, you could serialize a
books array into an entire XML structure.

let booksXML = XMLNode()
for book in books {
    booksXML.addChild(book.xml)
}

You’re going to access a String representation of the XML document using the
XMLNode’s description property. Once you have a String, you can use its

CHECKPOINT We’re going to start fresh from the same starting point as
earlier: https://github.com/iOSAppDevelopmentwithSwiftinAction/

Bookcase.git (Chapter11.2.StoreDataStart). 

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/craiggrummitt/SwiftXML.git
https://github.com/craiggrummitt/SwiftXML.git


311Storing data locally
write method to write it to disk. As this request can fail, you’ll need to encap-
sulate it in a do-catch statement.

2 Add the following to the storeBooks method in your BooksManager class:

func storeBooks() {
    let booksXML = XMLNode()
    for book in books {
        booksXML.addChild(book.xml)
    }
    do {
        try booksXML.description.write(
            to: booksFile, 
            atomically: true, 
            encoding: String.Encoding.utf8)
    } catch {
        print("\(error)")
    }
}

3 Give the Book structure an initializer that generates a new Book object based
on an XML node. Unwrap the XML node text values, and instantiate a new
Book. This code is similar to the property list code in the previous section.

init?(book: XMLNode) {
    guard let title = book[Key.title]?.text,
        let author = book[Key.author]?.text,
        let ratingString = book[Key.rating]?.text, 
        let rating = Double(ratingString),
        let isbn = book[Key.isbn]?.text,
        let notes = book[Key.notes]?.text
        else {return nil}
    self.init(title: title,
              author: author,
              rating: rating,
              isbn: isbn,
              notes: notes
              )
}

The BooksManager can now retrieve the XML structure from file using the XML
class. The root element of the XML will contain a series of children nodes that
represent book data. 

4 You can use the initializer you set up in the Book structure to parse each book
node and, finally, generate an array of Book objects:

func retrieveBooks() -> [Book]? {
    guard let xml = XML(contentsOf: booksFile) 
        else { return nil }
    guard let books = xml[0].children.map(
        { Book(book: $0)}) as? [Book] 
        else { return nil }
    return books
}

Creates XML 
root node

For each
book Adds XML 

child
Surrounds in

do-catch
Writes XML string to file

Use
safeguards

Specifies 
encoding

Failable
initializer

Unwraps dictionary 
propertiesCasts rating

to Double

Calls designated 
initializer

Parses 
XML file

Maps child
nodes Instantiates 

Book with XML



312 CHAPTER 11 Local data persistence
Again, if you run the app, make modifications to books, and run the app again, you
should find that your changes have persisted locally, this time as an XML file.  

You should notice several similarities between property lists and XML structures. The
code involved in writing and reading a structure of data to disk doesn’t change too
much depending on the type of structure. After going through this process twice, you
already have an idea of what the process would be to read and write your data as JSON!
(We’ll look more at JSON in the next chapter.)

 You might want to keep a version of your project working with XML, because we’ll
move on to a different alternative next.

11.2.3 Archiving objects

In this section, we’ll explore storing model types in your project directly to a local file. 

This approach has similarities to storing data as structured data files. You’ll still
encode (the equivalent of serializing) model types into a different data format, store
and retrieve data from disk, and decode (the equivalent of parsing) data back into
model types (see figure 11.4). One important difference is that data is stored as binary
files rather than text files, resulting in more-compact files.

Figure 11.4 Data persistence: archiving objects

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSAppDevelop-

mentwithSwiftinAction/Bookcase.git  (Chapter11.4.StoreDataXML).

CHECKPOINT We’ll start fresh again from the same starting point as
earlier: https://github.com/iOSAppDevelopmentwithSwiftinAction/

Bookcase.git (Chapter11.2.StoreDataStart). 

Book Encode

Decode

Book

Book

Book array Data structure

Memory Disk

Archive

Unarchive

Data file

Binary

Adopt Codable protocol

Property list/JSON

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


313Storing data locally
Your model types can be made encodable into another format by adopting the
Encodable protocol. At the time of writing, Apple provides two encoders: a JSON
encoder and a property list encoder. 

 Once your model object has been encoded, it can then be archived to a format that
can be written to disk. To unarchive and decode your data, you’ll need to adopt the
Decodable protocol to make your model types decodable. For your convenience, you
can make types both encodable and decodable by adopting the Codable protocol.

 You’re going to persist books data in your Bookcase app by archiving the books array. 

ADOPTING CODABLE PROTOCOL

Let’s start by making the Book structure codable.

1 Indicate that your model object can be encoded and decoded by adopting the
Codable protocol.

class Book: Codable {

Believe it or not, in many cases that’s all you’ll need to do for the encoder to
understand the structure of your model object! As long as every property of
your model object is also codable—and many standard types such as String,
Int, Double, Bool, and Array already are—then your model type is ready
to be automatically encoded.

However, the Book structure contains a UIImage property that unfortunately
doesn’t adopt the Codable protocol. In chapter 13, we’ll take a closer look at
this problem, but for now, the app isn’t yet receiving custom images for books
from the user, so let’s tell the compiler to omit this property from encoding and
decoding. But how can you omit a property?

When you adopt the Codable property, the compiler automatically generates
three things in your model object:

 An enumerator called CodingKeys that lists of all the properties in the object.
 An init method that generates your model object from data using the

Decoder.
 An encode method that encodes your model object’s data using the Encoder.

You can implement your own version of any or all these to replace the automat-
ically generated version. In implementing your own CodingKeys enumerator,
you can omit properties or modify names of properties from the encoded
version.

2 Implement your own version of the CodingKeys enumerator in the Book struc-
ture. This is identical to the CodingKeys enumerator that would have been
automatically generated, but by defining it yourself, you can omit the image
property. 

enum CodingKeys: String, CodingKey {
  case title



314 CHAPTER 11 Local data persistence

a

  case author
  case rating
  case isbn
  case notes
}

ENCODING AND ARCHIVING DATA

Now that your Book structure adopts the Codable protocol, you can encode and
archive the array of books to disk. You have a choice of two encoders: JSONEncoder
or PropertyListEncoder. Either will work fine. Let’s use the PropertyList-
Encoder.

 In the storeBooks method in the BooksManager class, get a reference to the
PropertyListEncoder, and use it to encode the books array. As encoding can fail,
you’ll need to encapsulate it in a do-catch statement.

1 Update the method in the BooksManager to archive the array of books.

func storeBooks() {
  do {
    let encoder = PropertyListEncoder()
    let data = try encoder.encode(books)
    //Archive data here
  } catch {
    print("Save Failed")
  }
}

Now that you have the data encoded as a property list, you can archive it with
the NSKeyedArchiver class, calling the archiveRootObject method, pass-
ing in the object and the file path. This method will return a Bool that indi-
cates whether the data was written successfully.

2 Add the following after encoding the books array:

let success = NSKeyedArchiver.archiveRootObject(
  data, toFile: booksFile.path)
print(success ? "Successful save" : "Save Failed")

Next, you need to unarchive an object when you want to retrieve it from disk.
For unarchiving, you’ll use the NSKeyedUnarchiver class, calling the
unarchiveObject method and passing in the file path. You can unwrap the
value returned as a Data object. 

3 Update the method in the BooksManager to retrieve archived data.

func retrieveBooks()->[Book]? {
  guard let data = NSKeyedUnarchiver.unarchiveObject(
    withFile: booksFile.path) 
    as? Data else { return nil }
    //Decode data here
}

Surrounds 
in do-catch

Gets
encoder Encodes 

books data

Archives encoded books dat

Prints result 
to console

Gets data from disk

Unwraps as 
Data object



315Storing data locally
Now that you have the data that was archived as a property list, you can decode
it back to a books array using the PropertyListDecoder. Tell the decode
method what type you’re expecting this data to decode to (in this case, an array
of Book), and magically, your books array should reappear! Of course, the
decode could fail, so again, you’ll need to surround it in a do-catch statement.

4 Decode the unarchived data in the retrieveBooks method.

  do {
    let decoder = PropertyListDecoder()
    let books = try decoder.decode([Book].self, from: data)
    return books
  } catch {
    print("Retrieve Failed")
    return nil
  }

5 Run the app, make changes to your data, and run the app again. If all has gone
well, the changes you made should persist! 

11.2.4 SQLite

If all the other techniques we’ve looked at for storing data locally have been hammers
and screwdrivers, SQLite is the power drill of local storage options!

Your iOS app comes ready to implement a relational database using a SQLite3 library.
If your app has a lot of data, contains complex relationships between model objects,
or will need to perform many queries (such as filtering, searching, and so on), you
might want to consider using the power of SQLite to manage your data. 

 SQLite is fast—operations using SQLite3 can even perform better than equivalent
operations on Core Data types. Rather than storing the whole database in memory or
encoding the entire model using atomic storage, SQLite3 operations only make spe-
cific changes to the database such as adding, deleting, or updating rows. To get data
out of your database, you’d query the database with an SQLite SELECT statement, and

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git (Chapter11.5.StoreData-
Archiving). Again, you might like to keep a version of the project storing
data locally by archiving objects before we move on.

CHECKPOINT Open up the same starting point: https://github.com/
iOSAppDevelopmentwithSwiftinAction/Bookcase.git (Chapter11.2.

StoreDataStart). 

Surrounds in do-catch
Gets

decoder

Decodes as
array of Book

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


316 CHAPTER 11 Local data persistence
receive a dataset in response. This type of data store is called a transactional store (see
figure 11.5).

 SQLite3 syntax is standard, so if you’re already familiar with working with data-
bases, applying this knowledge to iOS shouldn’t be too much of a learning curve, espe-
cially compared to the far more involved Core Data. I don’t intend to go into detail on
SQLite3 syntax here, but if you need to brush up, https://sqlite.org contains more
information.

 You’re going to explore using SQLite3 to store and retrieve data for the Bookcase
app. The first job to do is to create the database itself.

SET UP THE SQLITE3 DATABASE FILE

You have two choices to set up the database:

 You could build the database in code if it doesn’t yet exist.
 You could build the database in an SQLite3 database management program,

and include the database file with your app in the app bundle directory.

The latter has the advantage of being able to easily include data in the database before
adding it to your project. Because supplying data to a project via the database can
sometimes be an additional motivation for using databases, you’ll focus on adding a
database file to your app bundle.

 I use the free SQLiteBrowser (http://sqlitebrowser.org) to generate and edit data-
bases, but if you have a preferred program, feel free to use that.

 You’ll want to create a Books database containing a Book table recreating the data
structure of the Book structure. 

1 Feel free to create the Books database yourself, or you can download a version
of the database that I’ve set up here: http://mng.bz/t9IF. Once you’ve gener-
ated a database file, add it to your project. 

2 Drag the database file into your bookcase project’s Project Navigator. Be sure to
check the Bookcase target.

Database
reference

Results
Result set

Memory Disk

Updates
(create, add, delete, update, etc.)

Query (SELECT statement)

Data file

Database

Figure 11.5 Data persistence: archiving objects.

http://mng.bz/t9IF
https://sqlite.org
http://sqlitebrowser.org


317Storing data locally
This introduces the database file into your app bundle directory. An important
thing to note is that the app bundle is read-only. The first time the app runs, it
will need to copy this file into the application support directory to make
changes to it. 

3 Update your booksFile property to ensure the file exists before returning the
path.

private var booksFile: URL = {
    let filePath = appSupportDirectory.appendingPathComponent(
        "Books").appendingPathExtension("db")
    if !FileManager().fileExists(atPath: filePath.path) {
        if let bundleFilePath = 
            Bundle().resourceURL?.appendingPathComponent(
            "Books").appendingPathExtension("db") {
            do {
                try FileManager().copyItem(
                    at: bundleFilePath, to: filePath)
            } catch let error as NSError {
                //fingers crossed
            }
        }
    }
    return filePath
}()

NOTE To preserve system resources, global variables and constants are lazy by
default, without the need for the lazy modifier. Once the system determines
if the books database exists in the application support directory and copies it
over if not, this process won’t be repeated.

Now that you have the database set up, you can start performing operations on it
using the SQLite3 framework. SQLite3 is written in the C programming language,
which contains quite a laborious and un-Swift-like API. Most who use SQLite prefer to
use a wrapper that simplifies the code you need to write to perform operations on
your database. 

SET UP SQLITE WRAPPER

You’ll include SQLite3 in your project and set up a library of code that will act as a
wrapper to the SQLite3 framework, making interactions with the database more
straightforward.

 You’re going to use a popular SQLite wrapper library in your project called FMDB.
The only problem with this library is that it’s written in Objective-C. Not to worry, it’s
not too difficult to incorporate Objective-C in a Swift project.

Using Objective-C in a Swift project
To use Objective-C in a Swift project, you’ll need to set up what’s called a bridging
header, which explicitly imports the Objective-C classes you want access to from Swift.

Gets db path in
App Support

If db doesn’t 
existGets db path

in Bundle

do-catch
statement

Copies db to
App Support



318 CHAPTER 11 Local data persistence
Let’s go through the steps in setting up the FMDB framework. 
 You first need to request that Apple’s SQLite framework be included in the Book-

case project. 

1 Open the General tab for the Bookcase target.
2 Select the plus (+) symbol under Linked Frameworks and Libraries.
3 Select libsqlite3.tbd and tap the Add button. The SQLite framework is ready to

go, and you’re ready to install the FMDB wrapper!
4 In the Project Navigator for your Bookcase app, create an fmdb group in the

Bookcase project, ready to contain the wrapper.
5 Download the FMDB framework from here: https://github.com/ccgus/fmdb.git. 
6 Locate the fmdb group inside the Source group. Notice that it contains .m and

.h files; these are Objective-C implementation files and header files, respectively.
Select the .m and .h files and drag them into the fmdb group in the Project
Navigator.
As FMDB is written in Objective-C, you’ll need to create a bridging header. 

7 Xcode will offer to configure the bridging header for you. Select Create Bridg-
ing Header.

8 Import the header for FMDB in the Bookcase-Bridging-Header.h file that was
automatically generated by Xcode when you dragged in the FMDB classes. 

#import "FMDB.h"

The FMDB.h file, in turn, will import headers for all the FMDB classes. 

(continued)

The quickest way to set up a bridging header is to create an Objective-C file (with
extension .m), or drag a .m file into a project that doesn’t yet contain one. Xcode will
automatically offer to configure a bridging header for you.

After selecting Create Bridging Header, you’ll see a bridging header file appear in your
Project Navigator. Xcode also automatically adds a path to this header file in the
Objective-C Bridging Header setting in the target’s build settings.

Once your bridging header is set up, import the headers for any Objective-C classes
you wish to use. 

https://github.com/ccgus/fmdb.git


319Storing data locally
That’s it—the FMDB wrapper should be ready to use. To double-check, build your
project and then, somewhere inside a method, start typing FMDB. If all is well, code
completion should suggest one of the several FMDB classes you imported. 

RETRIEVING BOOKS FROM THE DATABASE

Let’s kick off by retrieving books from your Books database.
 First, you’ll need to use the FMDB wrapper to get a reference to the database.

Before performing any queries on a database you’ll also need to open it. 

1 Set up a method in the BooksManager class that performs these frequent tasks. 

func getOpenDB() -> FMDatabase? {
    guard let db = FMDatabase(path: booksFile.path) else {
        print("unable to create database")
        return nil
    }
    guard db.open() else {
        print("Unable to open database")
        return nil
    }
    return db
}

NOTE After opening a database and performing any necessary queries, be
sure to close it again to free up any system resources. 

Once you have a reference to an open database, you can perform a SELECT
query on it to extract data from a database. For example, the following will
query all data in the books table:

let rs = db.executeQuery("select * from books", values: nil) 

Because a database query can throw an error, it must be surrounded in a do-
catch statement.

Queries return a special FMDB data type called a result set. Result sets contain
the results of a query. In this case, it will contain the data for each row of the
books table, beginning with the first row. You can iterate through a result set by
calling its next method. 

2 Set up an initializer in the Book structure to instantiate a new book based on a
row in a result set.

init?(rs: FMResultSet) {
    let rating = rs.double(forColumn: Key.rating)
    guard let title = rs.string(forColumn: Key.title),
        let author = rs.string(forColumn: Key.author),
        let isbn = rs.string(forColumn: Key.isbn),
        let notes = rs.string(forColumn: Key.notes)
        else { return nil }
    self.init(title: title,
              author: author,
              rating: rating,



320 CHAPTER 11 Local data persistence
              isbn: isbn,
              notes: notes
    )
}

With this initializer set up, you can now retrieve book data from the database
table and parse it into an array of Book objects.

3 Set this up in the retrieveBooks method in the BooksManager.

// MARK: SQLite
func retrieveBooks() -> [Book]? {
    guard let db = getOpenDB() else { return nil }
    var books: [Book] = []
    do {
        let rs = try db.executeQuery(
            "select *, ROWID from books", values: nil)
        while rs.next() {
            if let book = Book(rs: rs) {
                books.append(book)
            }
        }
    } catch {
        print("failed: \(error.localizedDescription)")
    }
    db.close()
    return books
}

4 The way you did in the structured data files and archiving sections, you’ll want
to call this retrieveBooks method in the loadBooks method. Because you
could supply sample books in the database itself if you want, remove the
sampleBooks method. If you have any problems retrieving books, revert to a
blank array.

func loadBooks() -> [Book] {
    return retrieveBooks() ?? []
}

ADDING, UPDATING, AND REMOVING BOOKS

Rather than storing the entire database when an update occurs, it makes sense to take
advantage of the power of SQLite and perform the specific operations required, such
as adding, updating, or removing books. 

 To facilitate performing operations on specific rows, SQLite stores a unique pri-
mary key on each row called ROWID. It’s a good idea to keep track of these primary
keys in your model class to identify each row for updating or deleting books.

1 Add an id Int property to the Book structure. 
2 Update the initializers to update the property also. Give the id a temporary

value of -1. Don’t worry, as soon as the user adds a new book, the database will
return its ID ready to update this value.

Gets open 
database

Queries database
for all books

Iterates through 
result setInstantiates book

from result set
Adds to books array

Closes
database



321Storing data locally

do-
To perform an add/update/remove operation, you need to call the database’s
executeUpdate method, using question marks to bind values. As this method
can throw errors, you need to surround it in a do-catch statement.

After adding a book to the database, the lastInsertRowId method of your
database will contain the new ROWID of the book you added. Use this to provide
your Book object with an ID.

3 Create a SQLAddBook method in your BookManager class that receives a book
object and updates this in the database. Because you’re updating the book
object’s ID, you’ll need to tag the parameter as inout.

func SQLAddBook(book:inout Book) {
    guard let db = getOpenDB() else { return  }
    do {
        try db.executeUpdate(
            "insert into Books (title, author,
            ➥ rating, isbn, notes) values (?, ?, ?, ?, ?)",
            values: [book.title, book.author, 
              book.rating, book.isbn, book.notes]
        )
        book.id = Int(db.lastInsertRowId())
    } catch {
        print("failed: \(error.localizedDescription)")
    }
    db.close()
}

4 You can now call this new method at the beginning of the addBook method in
your BookManager class. As the book object is updated with the ID, you’ll need
to mark the argument with an ampersand. To make this parameter mutable,
you’ll need to reassign it as a variable.

var book = book
SQLAddBook(book: &book)

The methods for deleting and updating books will be similar, except the SQLite oper-
ation will change and you won’t need to get the ROWID (a book’s ID won’t change
when updated, and you no longer need a book’s ID after deleting it). 

 The following listing shows the contents of the executeUpdate methods for
deleting and updating a book.

try db.executeUpdate(
    "delete from Books where ROWID = ?",
    values: [book.id]

try db.executeUpdate(
    "update Books SET title = ?, author = ?, 
    ➥ rating = ?, isbn = ?, notes = ? WHERE ROWID = ?", 

Listing 11.1 Delete and update book

Gets open database
catch statement

Updates 
databaseSQLite operation

Values to bind

Gets 
ROWID

Closes
database



322 CHAPTER 11 Local data persistence
    values: [book.title, book.author, book.rating, 
        book.isbn, book.notes, book.id]

CHALLENGE Fill out the SQLUpdateBook and SQLRemoveBook methods,
based on the executeUpdate statements in the section “Adopting Codable
protocol,” calling these methods at the appropriate times.

Run your app to test what you’ve done. You can add, delete, and remove books. If you
run the app again, the data should persist.

Again, you might want to store a version of the project at this point using SQLite3
before moving on.

11.2.5 Core Data

If SQLite is the power drill to manage your app’s local data, Core Data is the jack ham-
mer! Using Core Data, you can create a relational diagram of your model objects visu-
ally in Xcode, and then create and update your data in an object-oriented manner,
with Core Data managing the underlying database implementation behind the scenes.
The way you can with SQLite, you can fetch data from Core Data performing queries
using search criteria.

 Core Data isn’t only about storing relational data—it also offers additional features
such as these:

 Tracking changes, and implementing undo or redo
 Caching or lazy loading of your objects
 Minimizing the number of objects in memory
 Validation of property values

Core Data is fast, powerful, and feature-rich, and if you’re planning a data-intensive
app and are interested in these sorts of additional features, it’s worth looking into. On
the other hand, Core Data can be overkill for many apps. No point getting the jack-
hammer out if all you’re interested in is hammering a nail!

 Core Data does have a reputation for being a challenging framework to learn, but
don’t be discouraged—recent improvements have made it easier to use.

 We’re going to explore using Core Data to store and retrieve data for the Bookcase
app. 

CHECKPOINT If you’d like to compare your project with mine at this point,
you can check mine out at https://github.com/iOSAppDevelopment-

withSwiftinAction/Bookcase.git  (Chapter11.6.StoreDataSQL).

CHECKPOINT Though we’re going to tweak it a little, you can open at
the same starting point at https://github.com/iOSAppDevelopment-

withSwiftinAction/Bookcase.git (Chapter11.2.StoreDataStart). 

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


323Storing data locally
CREATING A DATA MODEL

The first thing to do is create a data model describing the entities of your app (such as
database tables), the properties they contain, and any relationships between entities.
Core Data will then manage these entities for you.

 The only entity you have in the bookcase is the Book object.

1 Delete the Book.swift file; Core Data will generate the Book structure for you.
2 Create a data model file. Select File > New > File > Data Model (in the Core

Data section) > Next. The default name “Model” will be fine. Change the
group to Model to neatly store the data model in an appropriate group (see fig-
ure 11.6).

Figure 11.6 Create data model file

Select the data
model template.

Select the 
model group.

Leave the default
name or rename.



324 CHAPTER 11 Local data persistence
Now it’s time to edit your data model. 

3 Find the Model file you created in the Project Navigator, and select it. The data
model editor will appear. 

4 Add your first entity with the Add Entity button, and call it “Book” (see figure
11.7). Notice that you can add three types of things to your new entity:

 Attributes—Similar to object properties.
 Relationships—Connections with other entities. Relationships can be to-one

or to-many.
 Fetched properties—Similar to lazy computed properties.

Figure 11.7 Data model editor

Add Attribute

Attributes and Types Data Model Inspector

Add Entity



325Storing data locally
5 Add attributes to the Book entity with the Add Attribute button, and assign types
to each attribute:

 title—String
 author—String
 rating—Double
 isbn—String
 notes—String

6 Select one of the attributes you’ve added. Notice that you have a new inspector
in the Inspectors panel called the Data Model Inspector. Here, you can change the
attribute type, add validation specifications, give the attribute a default value, or
make the property optional—or not! Uncheck Optional for all the attributes in
the Book entity so you won’t have to unwrap your book properties.
Each entity will be represented in code by an NSManagedObject class, but
Xcode can generate a neat subclass of NSManagedObject for each entity you
create in the data model that contains the attributes you specified. By default,
you need to manually request this subclass to be generated, but you can request
for this to be done for you automatically. 

7 Turn on automatic subclass generation: select the Book entity, and open the
Data Model Inspector. Find the Codegen attribute, and instead of Manual/
None, select Class Definition.

That’s it: your data model is ready to go! Before you start using the data model for per-
sisting data to disk, I want to cover a few setup details.

Editor style
When entities have relationships with other entities, the power of Core Data becomes
truly evident. To visually examine the objects in your data model and the relationships
between them, select the Graph Editor Style.

Book data model in Graph Editor Style

Graph Editor
Style selected



326 CHAPTER 11 Local data persistence
INITIAL SETUP

When you first create a project, you have the option to use Core Data. Selecting this
option automatically creates the data model file you edited and generates boilerplate
code that’s necessary for using Core Data. In this section, you’ll build up this boiler-
plate code manually and explore exactly what’s involved.

 Core Data requires objects to manage your data. These objects are called the Core
Data stack, and include the objects shown in table 11.3.

See figure 11.8 for how they all fit together.
 That’s a lot of objects to keep track of—what a headache! Not to worry; since

iOS 10, Apple has greatly simplified creating and accessing the objects in this stack
with the NSPersistentContainer class. By instantiating the persistent container
and requesting it to load persistent stores, it will create the Core Data stack for you.

Table 11.3 Core Data stack

Object Description

Managed object context Responsible for managing the data model in the memory. The man-
aged object context is the object in the Core Data stack that you will 
interact with most directly.

Persistent store coordinator Persists to and retrieves data from the persistent object store. 

Persistent object store Maps between the objects in the persistent store and the objects 
defined in the managed object model of your application. 

Persistent store data file The data file itself stored on disk. The underlying data file can be 
stored as different formats: SQLite (the default), XML, or binary data. 

Managed object model Describes the data model in your application.

Memory Disk

Data file

Persistent
object store

Persistent
store

coordinator

Managed object model

Managed
object
context

Persistent
store

Figure 11.8 Core Data stack



327Storing data locally

 
In
Because the persistent container needs to be accessed globally, it’s often added as a
lazy computed property to the AppDelegate class. 

1 Add a persistent container to your AppDelegate class now. Instantiate it with the
name of your data model, and then load up any persistent stores. 
Basic error handling has been included for now, but you should include more-
relevant error handling when shipping your app.

// MARK: - Core Data stack
lazy var persistentContainer: NSPersistentContainer = {
    let container = NSPersistentContainer(name: "Model")
    container.loadPersistentStores(
            completionHandler: { (storeDescription, error) in 
        if let error = error as NSError? {
            fatalError("Unresolved error")
        }
    })
    return container
}()

Changes to data are performed in memory (via the managed object context)
and aren’t automatically saved to disk. To persist changes, you need to ask the
managed object context to save the changes to the persistent store.  

2 Add a method to the AppDelegate for committing unsaved changes.

// MARK: - Core Data Saving support
func saveContext () {
    let context = persistentContainer.viewContext
    if context.hasChanges {
        do {
            try context.save()
        } catch {
            fatalError("Unresolved error")E
        }
    }
}

This method will come in handy every time you save data in the app. You can
also ensure that unsaved data is saved to disk before the app terminates. 

3 Add a call to the saveContext method in the AppDelegate’s application-
WillTerminate method.

self.saveContext()

4 Add a reference to the application delegate in the BooksTableView-
Controller, so that it can easily access the saveContext method you created.
The UIApplication class has a singleton, shared, that refers to the applica-
tion instance. Use the delegate property to access the app’s AppDelegate.

let appDelegate = (UIApplication.shared.delegate as! AppDelegate)

Lazy computed
propertystantiates with

data model

Completion
handler

Improve error
 handling here

Gets managed 
object contextOnly saves if

necessary

do-catch 
statementSaves changes

to store
Improve error 
handling here



328 CHAPTER 11 Local data persistence
The table view controller will also need a reference to the managed object con-
text to perform updates and fetches on the database. 

5 Use the reference to the AppDelegate to keep a reference to the managed object
context via the persistent container. 

lazy var context:NSManagedObjectContext = {
    return self.appDelegate.persistentContainer.viewContext
}()

That’s all for the boilerplate setup; now, let’s do a little cleanup on your Bookcase app. 

CLEANUP

Core Data manages many operations on the data for you, making part of your existing
code redundant. For those following along in Xcode, before we get into the details of
using Core Data in your app’s code, you’ll need to perform a little cleanup of code
that won’t be required.

 It may surprise you that you won’t need the BooksManager class. Core Data will be
handling the management of your books data!

1 Delete the BooksManager class, leaving the BooksManager.swift file with just
the SortOrder enum. This will generate several errors elsewhere—not to
worry, we’ll attend to these in time. Rename the file SortOrder.swift.

2 Because you no longer have a BooksManager class, you won’t need to inject it
into the table view controller. Because injecting the BooksManager class was
the whole point of the TabBarController, you can remove this file. 

3 In the storyboard, remove the TabBarController from the custom class for
the tab bar controller in the Identity Inspector.

4 Remove the inject method from the BooksTableViewController.
5 Comment out the whole BooksCollectionViewController class for now, so

you can focus on the BooksTableViewController class without being con-
cerned about errors elsewhere. Temporarily remove this class from the identifi-
cation of this view controller in the storyboard.

6 Because you removed the original Book structure, you also removed a refer-
ence to the defaultCover. For simplicity, let’s add this back in the Books-
TableViewController class.

static let defaultCover = UIImage(named: "book.jpg")!

Great! Tidy-up complete, you’re finally ready to start adding managed objects to Core
Data for your app. 

ADDING MANAGED OBJECTS

Now that you’ve set up the data model and the Core Data stack, how can you add an
object to the persistent store for your app on a device?



329Storing data locally
 Since iOS 10, it’s too easy! All you need to do is instantiate a new model object, pass-
ing in the managed object context, set its properties like you would any Swift object, and
then call the AppDelegate’s saveContext method. Believe it or not, that’s it! 

 The following listing, for example, would create a new book with a title of Great
Expectations.

let book = Book(context: context)
book.title = "Great Expectations"
appDelegate.saveContext()

If you need to consider users with earlier versions of iOS, the first line blows out to the
following:

let book = NSEntityDescription.insertNewObject(
    forEntityName: "Book", into: context) as! Book

As you can see, the syntax prior to iOS 10 was unwieldy. For brevity and clarity, I’ll
assume at least iOS 10 for the rest of this section. If you need to update the deploy-
ment target of your app to iOS 10, you can find this in the General properties for your
app’s main target.

 If the user is creating a new book object, the BookViewController class will
need a reference to the managed object context.

1 Add an implicitly unwrapped optional for the managed object context in the
BookViewController class.

var context:NSManagedObjectContext!

2 Pass this context into the BookViewController in the prepareForSegue
method in the BooksTableViewController class:

viewController.context = context

3 Now you can update the touchSave method in BookViewController to save
a book. Each Book object is uniquely identifiable internally for Core Data. 
When the user taps the Save button in the detail view controller, you want to
first check if the book already exists. If it doesn’t, you want to create a new Book
managed object. If it does, you want to update the existing Book object. 

@IBAction func touchSave(_ sender: AnyObject) {
    let bookToSave: Book
    if let book = book {
        bookToSave = book
    } else {
        bookToSave = Book(context: context)
    }

Listing 11.2 Create managed object

Creates 
BookSets 

attribute

Saves to persistent store

Gets book 
to update

Creates 
book



330 CHAPTER 11 Local data persistence

B

    bookToSave.title = titleTextField.text!
    bookToSave.author = authorTextField.text!
    bookToSave.rating = 3
    bookToSave.isbn = isbnTextField.text! 
    bookToSave.notes = notesTextView.text!
    delegate?.saveBook(book: bookToSave)
    dismissMe()
}

4 Back in the saveBook method in the table view controller class extension, you
can now call the saveContext method on the AppDelegate, to commit
unsaved changes to the persistent store.

func saveBook(book: Book) {
    appDelegate.saveContext()
}

You no longer want to update the table view in this method. Instead, you’ll soon be
setting up the BookTableViewController class to receive notifications of updates
to the data and update the interface.

FETCHING MANAGED OBJECTS

Now that you know how to store managed objects in the persistent object store, you
need to retrieve these objects to display to the user. Use a fetch request to define how to
fetch these managed objects. You can request an NSFetchRequest object directly
from your managed object with the fetchRequest method. Using generics, you can
specify that your NSFetchRequest contains a fetch request of your Book managed
object.

 The NSFetchRequest can specify

 Batch size—The number of managed objects to return.
 Search criteria—Use the NSPredicate class to define search criteria.
 Sort order—Use an array of instances of the NSSortDescriptor class to define

the sort order. 

For example, a basic NSFetchRequest with a batch size of 20 items that searches for
all books and sorts by title would look like the following listing.

let fetchRequest: NSFetchRequest<Book> = Book.fetchRequest()
fetchRequest.fetchBatchSize = 20
fetchRequest.sortDescriptors = 
    [NSSortDescriptor(key: "title", ascending: true)]
fetchRequest.predicate = NSPredicate(value:true)

We’ll look at sorting with NSSortDescriptor and searching with NSPredicate in
more detail shortly.

Listing 11.3 Simple fetch request

Updates book attributes

Gets fetch 
request for Book

atches
size Specifies sort by title

Searches all 



331Storing data locally

fet
 Now that you have a fetch request, you can pass it and the managed object context
into a fetched results controller. A fetched results controller can perform the fetch and
manage the results of the fetch request. 

 You’re going to use the delegate of the fetched results controller to respond to
changes in the data and update your table view. You also have the option to request
the fetched results controller to cache the results of the query to avoid recalculating
the same fetch request.

1 Store a fetched results controller of your fetch request in a lazy computed prop-
erty in your BooksTableViewController. Set self as the delegate and per-
form the fetch. 

// MARK: FetchedResultsController
lazy var fetchedResultsController: NSFetchedResultsController<Book> = 
        self.getFetch()

func getFetch() -> NSFetchedResultsController<Book> {
    let fetchRequest: NSFetchRequest<Book> = Book.fetchRequest()
    fetchRequest.fetchBatchSize = 20
    fetchRequest.sortDescriptors = 
       [NSSortDescriptor(key: "title", ascending: true)]
    fetchRequest.predicate = NSPredicate(value: true)
    fetchedResultsController = NSFetchedResultsController(
        fetchRequest: fetchRequest,
        managedObjectContext: self.context,
        sectionNameKeyPath: nil,
        cacheName: nil
    )
    fetchedResultsController.delegate = self
    do {
        try fetchedResultsController.performFetch()
        return fetchedResultsController
    } catch {
        fatalError("Error \(error)")
    }
}

The table view controller now needs to adopt the protocol associated with the
fetched view controller’s delegate. Methods in this delegate will be triggered
when changes occur in the data. You could use the data returned in these pro-
tocol methods to perform specific operations in the table, such as insert, delete,
and update. For this example, you’ll keep it simple, however, and reload the
table when content changes. 

2 Add an extension to the BooksTableViewController that adopts the
NSFetchedResultsControllerDelegate protocol and implement the con-
trollerDidChangeContent method, reloading the table.

extension BooksTableViewController: NSFetchedResultsControllerDelegate {
    func controllerDidChangeContent(_ controller:     
            NSFetchedResultsController<NSFetchRequestResult>) {

Creates lazy var

Returns
ched results

controller

Creates fetched 
results controller

Specifies cache
name Specifies 

delegate

do-catch
statement

Performs fetch



332 CHAPTER 11 Local data persistence
        self.tableView.reloadData()
    }
}

You can use your fetched results controller to display the data to the user in the
table by responding to the UITableViewDelegate methods. 

Let’s start by defining the number of items in each section. The NSFetched-
ResultsController class contains a sections property with information about
each section. As you know, your results will have one section; you can get infor-
mation about the first section and extract the number of objects.

3 Return the number of objects from the fetched results controller in the
numberOfRowsInSection table view delegate method.

override func tableView(_ tableView: UITableView, 
        numberOfRowsInSection section: Int) -> Int {
    let sectionInfo = self.fetchedResultsController.sections![section]
    return sectionInfo.numberOfObjects
}

Now, you need to extract actual book data from the fetched results controller to
display in the table. It’s straightforward to get a Book managed object from the
fetched results controller by calling the object method and passing in an
indexPath.

4 Update the cellForRowAt method of the table view delegate protocol. Don’t
forget to update the location of the image because you’re no longer storing this
constant in the Book structure.

override func tableView(_ tableView: UITableView, 
        cellForRowAt indexPath: IndexPath) -> UITableViewCell {
    let cell = tableView.dequeueReusableCell(
        withIdentifier: "bookCell", for: indexPath)
    let book = self.fetchedResultsController.object(at: indexPath)
    cell.textLabel?.text = book.title
    cell.detailTextLabel?.text = book.author
    cell.imageView?.image = BooksTableViewController.defaultCover
    return cell
}

UPDATING AND DELETING MANAGED OBJECTS

Now that you can extract a managed object at an index of the table, you can use the
same method to pass this object to the detail view controller in the prepareFor-
Segue method, when the user selects a book in the table to update.

1 Pass in the book to update to the BookTableViewController, in the
prepareForSegue method of BooksTableViewController.

viewController.book = self.fetchedResultsController.object(
    at: selectedIndexPath)



333Storing data locally
Implementing deletion of a managed object is equally straightforward. Call the
managed object context’s delete method, passing in the Book object to delete
from the fetched results controller. To persist the changes to the store, finish by
calling the saveContext method. It’s not necessary to request the table view to
update because this update will be triggered in the fetched results controller
delegate.

2 Update the delete portion of code in your BooksTableViewController class
to delete a Book managed object:

override func tableView(_ tableView: UITableView, 
    commit editingStyle: UITableViewCellEditingStyle, 
    forRowAt indexPath: IndexPath) {
  if editingStyle == .delete {
    context.delete(fetchedResultsController.object(at: indexPath))
    appDelegate.saveContext()
  }
}

SORTING FETCH REQUESTS

Rather than the BooksManager sorting the data in memory, you’ll use the sortDe-
scriptors attribute of the NSFetchRequest. 

 Sort descriptors describe how you’d like a sort operation of your data to be per-
formed. A sort descriptor specifies a field to sort and the direction of the sort. The
sortOrder property of NSFetchRequest is an array so that your fetch request can
have multiple sort operations for multiple fields.

 The sort descriptor can also specify an optional method to customize the compari-
son. The NSString method has a convenient method called localizedCaseInsen-
sitiveCompare for comparisons that ignore case and localization differences.

 Here’s an example sort descriptor that will sort the title field in an ascending
order, ignoring case and localization:

NSSortDescriptor(key: "title", 
    ascending: true,
    selector: #selector(NSString.localizedCaseInsensitiveCompare(_:)))

You need two sort descriptors in the Bookcase app—one that sorts by title and
another that sorts by author.

 If the user selects to sort by title, the fetch request should prioritize the title sort
descriptor. Conversely, if the user wants to sort by author, the author sort descriptor
should take priority.

 You’ll need to get the user’s currently selected segment in the sort order seg-
mented control. If you haven’t yet created one (you may have for the user defaults
challenge at the end of section 11.1.2), connect an outlet for it in the Books-
TableViewController.

@IBOutlet weak var sortSegmentedControl: UISegmentedControl!



334 CHAPTER 11 Local data persistence

Ge
1 Replace the simple sort descriptor in the creation of the fetch request with one
that takes the user’s preferred sort order into consideration.

let segmentIndex = sortSegmentedControl.selectedSegmentIndex 
guard let sortOrder = SortOrder(rawValue: segmentIndex) 
    else {fatalError("Segment error")}
let titleDescriptor = NSSortDescriptor(key: "title",
    ascending: true,
    selector: #selector(NSString.localizedCaseInsensitiveCompare(_:)))
let authorDescriptor = NSSortDescriptor(key: "author", 
    ascending: true,
    selector: #selector(NSString.localizedCaseInsensitiveCompare(_:)))
if self.sortOrder == .title {
    fetchRequest.sortDescriptors = 
        [titleDescriptor,authorDescriptor]
} else {
    fetchRequest.sortDescriptors = 
        [authorDescriptor,titleDescriptor]
}

Now, when the user selects a new segment of the segmented control, you should
regenerate the fetch results controller before updating the table.

2 Update the changedSegment method.

@IBAction func changedSegment(_ sender: UISegmentedControl) {
    fetchedResultsController = getFetch()
    self.tableView.reloadData()
}

SEARCHING FETCH REQUESTS

Rather than the BooksManager searching through your data in memory, you’re
going to take advantage of searching via predicates as a built-in feature of NSFetch-
Request.

 Predicates allow you to define the criteria for filtering your data using a natural
language interface. You can use all the basic operators, such as = or <, and similar to
SQLite queries, you have English comparisons such as LIKE, CONTAINS, or
BEGINSWITH, and logical operations such as AND or OR. 

 All you need to do is instantiate the NSPredicate class, passing in the filtering cri-
teria via the format property. For example, here’s a predicate that returns books with
a rating of 4:

NSPredicate(format: "rating = 4") 

A predicate that returns books that contain “the” in the title looks like this:

NSPredicate(format: "title CONTAINS 'the'") 

Notice that strings need to be contained in quotes.

NOTE If you want your search to ignore differences such as letter case
(upper- or lowercase) or letter accents (called diacritics), you can use the CON-
TAINS[CD] comparison (CD stands for case diacritics).

ts segmented
control index Gets preferred 

Sort Order
Title sort

descriptor

Author sort
descriptor

User wants
sort by title Prioritizes title

Prioritizes author



335Summary
The predicate you added to the fetchRequest earlier returned all books, but if text
is in the search bar, you only want books that match this text. 

1 Replace the fetch request predicate with a predicate that fetches books whose
title or author fields contain the text in the search bar.

guard let searchText = searchController.searchBar.text 
    else { fatalError("No search bar") }
if searchText != "" {
    fetchRequest.predicate = 
        NSPredicate(format: "(title CONTAINS[CD] '\(searchText)') 
        ➥ OR (author CONTAINS[CD] '\(searchText)')")
}

When a change is made to the text in the search bar, the fetched results control-
ler should be regenerated before reloading the table view.

2 Update the updateSearchResults method in the extension.

func updateSearchResults(for searchController: UISearchController) {
    fetchedResultsController = getFetch()
    tableView.reloadData()
}

Well, it’s been a journey, but you’re there! Core Data should now be set up and ready
to use in your table view controller. You can view, add, delete, and update managed
objects, and search and sort the data.

CHALLENGE Add a fetched results controller to the collection view control-
ler. Make the necessary changes to display, add, edit, search, and sort book
managed objects from this tab. You will find interesting challenges when set-
ting up the collection view controller, because you’ll be displaying items in
section 2, but requesting them in section 1 of the fetched results controller.

In the next chapter, we’ll take data persistence to the next level—in iCloud!

11.3 Summary
In this chapter, you learned the following:

 Preserve app state to restore the app the way the user left it.

 User defaults can be used to store small, discrete pieces of information, such as
username, high score, or user preferences such as sound on or off.

 Respond to app-level events in the app delegate.

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check it out at https://github.com/iOSAppDevelop-

mentwithSwiftinAction/Bookcase.git (Chapter11.7.StoreDataCoreData).

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


336 CHAPTER 11 Local data persistence
 To include Objective-C classes in a Swift project, add a bridging header and
import their Objective-C header files.

 Store smaller amounts of data in their entirety locally (also known as an atomic
store) using technologies such as XML, property lists, or archiving objects.

 For apps with greater data requirements, such as creating relationships between
objects and sophisticated queries, consider storing data using a transactional
store such as SQLite.

 If your app has large data requirements with relationships and sophisticated
queries, you might also want to consider Core Data. Core Data also provides
additional features such as creating relationships between objects, tracking
changes, caching, and validation. 



Data persistence
in iCloud
In this chapter, you’ll take storing data to the next level—iCloud.
 Until now, you’ve only stored user defaults locally on the device. What happens

if the user opens your app on another device they own? 
 In this chapter, you’ll explore iCloud, a convenient cloud data storage service

provided by Apple, which can be used by developers to automatically share data
and give your user the same experience between multiple devices. You’ll look at
storing discrete values such as user preferences in iCloud using the ubiquitous key-
value store. You’ll also explore CloudKit, an essential framework for storing struc-
tured data in iCloud.

 Along the way, you’ll encounter additional concepts:

 Concurrent programming in iOS

 Indicating background tasks
 Displaying alerts

This chapter covers
 Storing user preferences in iCloud

 Storing data in iCloud using CloudKit
337



338 CHAPTER 12 Data persistence in iCloud
 Refreshing a table view
 Receiving remote notifications

NOTE If you haven’t enrolled in the Apple Developer Program yet, be aware
that membership is necessary to use iCloud. If you need to enroll, you’ll want
to click here and follow Apple’s instructions: https://developer.apple.com/
programs/enroll/. We’ll go into this process in more detail in chapter 16. If
you’re not ready to enroll, you might want to skip this chapter for now.

12.1 Setting up your app for iCloud
In this chapter, you’ll store book data and user preference data for the Bookcase app
in iCloud. 

Setting up your app to use iCloud is straightforward.

1 First, you need to ensure your team is specified in your target’s General prefer-
ences. (Even if you’re a solo developer, you’re defined as a development team by
Apple.)

2 While you’re in the General preferences, you’ll want to also change the bundle
identifier for your app. iCloud uses this bundle ID to uniquely identify your app.

3 Open the Capabilities tab to turn on iCloud (see figure 12.1). You have three
services to choose from:

 Key-value Storage—Store small, discrete values such as user preferences.
 iCloud Documents—Store complete documents.
 CloudKit—Store structured data. In this chapter, we’ll look at key-value stor-

age and CloudKit. 

4 For now, just keep Key-value Storage selected.

You’ll find that when you activate iCloud, Xcode creates an entitlements file— a prop-
erty list file representing the new capability that you introduced for your app—in your
Project Navigator.

 Now that you have iCloud set up for your application, you can use iCloud’s key-
value storage to store user defaults.

 
 

CHECKPOINT Open the app after adding user preferences in the last
chapter, or check it out at https://github.com/iOSAppDevelopment-

withSwiftinAction/Bookcase.git  (Chapter11.1.UserPreferences).

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://developer.apple.com/programs/enroll/
https://developer.apple.com/programs/enroll/


339Persisting data with ubiquitous key-value store
 

Figure 12.1 Activate iCloud for your app

12.2 Persisting data with ubiquitous key-value store
To persist user preferences data in iCloud, you’ll want to use the ubiquitous key-value
store. The ubiquitous key-value store stores data locally on the device and then
requests this data to be synced with iCloud. Unlike user defaults, the ubiquitous key-
value store doesn’t immediately store data to iCloud from memory. Rather, it waits a
few seconds, or until the app moves to the background. If you want the local storage
and memory to sync immediately after setting a value, you can call the synchronize
method.

 Let’s use the ubiquitous key-value store to sync the Bookcase app across a user’s
devices, tracking the user’s preference for the ISBN field in the book detail view.

 Implementing the ubiquitous key-value store rather than user defaults is surpris-
ingly simple—you can replace any reference to UserDefaults.standard with
NSUbiquitousKeyValueStore.default.

1 Replace references to setting and getting user defaults in your earlier
BookViewController code with the ubiquitous key-value store. You’ll find
these in the toggleISBN and viewDidLoad methods.

NSUbiquitousKeyValueStore.default.set(
    isbnStackView.isHidden, forKey: isbnKey)
isbnStackView.isHidden = 
    NSUbiquitousKeyValueStore.default.bool(forKey: isbnKey)

2 Run the app to test this. 

Select services Activate iCloud

Sets value (toggleISBN)

Gets value
(viewDidLoad)



340 CHAPTER 12 Data persistence in iCloud
3 In the running app, hide the ISBN field, tap the Home button to send the app
to the background, and then run the app again. You should find that the app
has preserved your preference, the way it did with user defaults. 
Preferences will be stored locally regardless of whether the user has iCloud set
up on their device! If the user has registered their device to use iCloud, the app
will let iCloud know that it has new values waiting to be uploaded, and they’ll be
uploaded at the next convenient moment. See figure 12.2 for a diagram show-
ing how this change finds its way to the ubiquitous key-value store and is propa-
gated to other devices.

Figure 12.2 Ubiquitous key-value store

NOTE Don’t depend on values being immediately updated. It can take sev-
eral seconds to upload data to iCloud! Don’t worry if your app loses connec-
tion to the internet or iCloud temporarily—the update will automatically
upload when your device reconnects.

To fully appreciate the ubiquitous key-value store, you’ll ideally test on two
devices. If you only have one device, you can use the simulator for one device,
but be sure to log in to iCloud on the simulator. 

4 If you’re using the simulator, log in now. With the simulator open, tap the
Home button to return to the home screen. Find the Settings app, select “Sign
in to your iPhone,” and follow the prompts. It’s not necessary to merge your
contacts.

Ubiquitous key-value store

iCloud

Local  disk

Memory

Change to ISBN preference

Synchronizes

Device 1
Uploads Downloads

Local  disk

Memory

Change to ISBN preference

Synchronizes

Device 2



341Persisting data with ubiquitous key-value store
NOTE Because each device has a different simulator, if you want to run your
app on a simulator for a different device, you’ll need to log in again to
iCloud.

5 Run the app on one device, make a change to the ISBN field, and send the app
to the background. Now run the app on the second device. 
You should notice that the change persists on both devices. But what if both
apps are running simultaneously? An app can be notified that the app running
on another device has updated the ubiquitous key-value store via a notification
from the notification center.

6 In the viewDidAppear method of the BookViewController class, add an
observer that will respond to changes in the ubiquitous key-value store. 

NotificationCenter.default.addObserver(self, 
    selector: #selector(uKVSChanged), 
    name: NSUbiquitousKeyValueStore.didChangeExternallyNotification,
    object: nil)

When this notification is triggered, the data in memory will automatically be
synchronized with the data that has recently been downloaded from iCloud. In
case of conflict, the value that was set most recently is given priority, and the
older value is discarded. 

7 Create a method that will be triggered by this notification. Once you know that
the data is up to date, you can update the ISBN field with the updated value.

 

@objc func uKVSChanged(notification: Notification) {
    isbnStackView.isHidden =
        NSUbiquitousKeyValueStore.default.bool(forKey: isbnKey)
}

Run the app on two devices with iCloud installed. Navigate to the book view controller
on both apps. Hide or show the ISBN field on one device. (If one of your devices is a
simulator, do this step on the simulator, because the simulator doesn’t reliably receive
key-value store change notifications.) Be patient, it can take time—eventually you
should notice that the change synchronizes on the other device. Magic!

CHALLENGE Using the ubiquitous key-value store, record the user’s choice
of sort order in the segmented controls in the books table and books collec-
tion scenes.

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git (Chapter12.1.UbiquitousKey-
ValueStore).

Observer 
method

Shows/Hides
ISBN field

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


342 CHAPTER 12 Data persistence in iCloud
12.3 Storing data using CloudKit
CloudKit is a service provided by Apple for storing data as records in a database in
iCloud, ready to be accessed by your app from different devices. 

 Unlike the ubiquitous key-value store, CloudKit doesn’t perform any local storage.
It’s up to you to determine whether your app requires an internet connection to
access CloudKit data, or whether you want to maintain local storage in addition to
CloudKit, and manage synchronization of the two. To keep things as simple as possi-
ble, in this section we’ll explore storage of data in iCloud using CloudKit without any
local storage.

 The same way the file system for your app on the device is sandboxed, your app has
a sandboxed area in iCloud, called a container. When you activate iCloud for your app,
Apple automatically creates a container for it, ready to store data using CloudKit. 

 Inside your app’s container, you have access to a public database that all users of
your app can access. Your app’s users can write to the public database if they’re logged
in to iCloud. A public database could be useful for an app that allows users to post res-
taurant reviews, for example, where reviews would be useful to other users. Logged-in
users will also have access to a private database, relevant only to a single user. A private
database will be perfect for the Bookcase app, where a user’s data should be private
and only relevant to them.

 Database tables in CloudKit are called record types. Each record type contains records
that are key-value dictionaries storing the fields of the record, and identified by a record
ID. In your Bookcase app, a books record type would be perfect for storing book records.
The book record fields would represent book properties (see figure 12.3).

Figure 12.3 CloudKit container

NOTE Within a private database, record types can also be grouped into zones. 

Public database

Record type

Record

User’s private database

Books record type

Book record

Bookcase CloudKit container



343Storing data using CloudKit
As you’ve probably guessed, you’re going to explore using a private database in Cloud-
Kit to store your app’s books data in iCloud. 

1 Return to the iCloud capabilities for your app, and turn on CloudKit services
(see figure 12.4). Use the CloudKit dashboard to manage your app’s container
or its contents.

Figure 12.4 Activate CloudKit, and open dashboard

2 Select the CloudKit dashboard. 
3 Select your app, select Development Data, and explore the dashboard for your

app. 

You won’t see any records in your app’s container yet, but by the end of this section,
you’ll have a Books record type in your private database containing book data (see fig-
ure 12.5).

 Great, let’s get started by updating your model!

Select services

Open dashboard



344 CHAPTER 12 Data persistence in iCloud
 

Figure 12.5 CloudKit dashboard

12.3.1 Updating the model for CloudKit

Records are represented in your code by the CKRecord class. Like a dictionary, the
CKRecord class can store values with keys. There are, however, only certain Objective-
C data types that can be stored: NSString, NSNumber, NSData, NSDate, and NSArray. To
store Swift data types, you need to cast them first to their Objective-C equivalent. Easy
enough—you need to cast String to NSString, Int or Double to NSNumber, Data to
NSData, Date to NSDate, and Swift arrays as NSArray.

 CloudKit records can also store three special data types:

 CLLocation—Geographical locations.
 CKAsset—Large files, such as images, sounds, or video.
 CKReference—A reference to another record. Using a CKReference, you can

build relationships between record types.

When you create a new record, CloudKit automatically assigns it a record ID. To
update a record, you need a reference to the CKRecord object you need to change.
One way to do this is to fetch the record using its record ID, but for simplicity, you’ll
store CKRecord objects for each book in memory.

1 Add a record optional property to the Book structure to store the record for
each book:

var record: CKRecord

CloudKit containerRecord types Books record type



345Storing data using CloudKit
2 You’ll need to import CloudKit, because CKRecord comes from the CloudKit
framework.

import CloudKit

To identify a record type, it needs a name. 

3 Add a constant to specify the record type’s name:

static let recordType = "Books"

Now, you can include a reference to a record when instantiating a Book struc-
ture. When you’re first creating a Book object, you won’t yet have a reference to
a CKRecord, so this should be an optional, and the Book initializer can handle
instantiating a CKRecord with the record type you set up.

4 Add the code in bold in the following listing to the init method of Book:

init(record: CKRecord? = nil, title: String, …) {
    if let record = record {
        self.record = record
    } else {
        self.record = CKRecord(recordType: Book.recordType)
    }
    // Continue setting properties

Now, you have a CKRecord object stored in the Book object that will be storing
all of the Book properties. Because it would be redundant to store the same
properties in the Book object and the CKRecord object, let’s convert the Book
properties to computed properties that set and get their values from CKRecord. 

5 For example, change the title property to

var title: String {
    get { return record[Key.title] as! String }
    set { record[Key.title] = newValue as NSString }
}

CHALLENGE Convert the Book object’s other properties—author, rating,
isbn, and notes—to computed properties that derive their values from the
CKRecord.

Shortly, you’ll be querying CloudKit for all book records, which you’ll want to
convert to Book objects. 

6 Add an initializer to the Book structure that instantiates a Book object from a
CKRecord:

init(record: CKRecord) {
    self.record = record
}



346 CHAPTER 12 Data persistence in iCloud
12.3.2 Adding a book record to CloudKit

Now that the book objects you create have a CKRecord property, you can add this
record to your app’s private database.

1 Add a reference to your app container’s private database in the BooksManager
class. 

let db = CKContainer.default.privateCloudDatabase

Use the default type method to return the container object for this app.
Instances of CKContainer contain properties for both the private and public
databases. Because you’ll use the private database in Bookcase to store each
user’s private data, get a reference to it with the privateCloudDatabase
method.

2 You’ll need to import CloudKit here in BooksManager too, because
CKContainer comes from the CloudKit framework.

import CloudKit

Adding a new record to iCloud is as simple as calling the database’s save
method, and passing in the new record. Because a call to iCloud occurs asyn-
chronously, the response from iCloud is returned in a completion handler clo-
sure that receives the saved record, and an optional error object if something
went wrong.

3 Set up an addBookCloudKit method in BooksManager that will add a new
book:

func addBookCloudKit(book: Book) {
    db.save(book.record) { (record, error) in
        // Save complete or Error occurred
        // Do something here
    }
}

When you receive the response from iCloud, you want to either add the new book
record to the table, or, if something went wrong, you probably want to notify the
user. Both actions occur in the user interface, but there’s a problem. Because the
save method occurs asynchronously, its completion handler is performed on a
background queue and therefore doesn’t have access to the interface. 

Using threads and queues in iOS
As you saw in chapter 4, the path of execution that code follows is called a thread.
If all code were to execute in the same thread, as soon as a time-consuming operation
were encountered, such as heavy-duty processing or a network operation, everything
else including the user interface would freeze waiting for the operation to complete. 



347Storing data using CloudKit
Multiple threads are the solution to this problem, where time-consuming operations
can occur on background threads without holding up the main thread, where impor-
tant work occurs, such as updating the user interface and responding to system
events.

Apple provides developers with several alternatives for managing threads. One com-
mon solution is the concept of a dispatch queue. A dispatch queue is like a to-do list
of tasks. Queues can dispatch their tasks in sequence (serial queues) or simultane-
ously (concurrent queues). 

Serial and concurrent queues

The thread a queue performs its tasks on is managed by the system behind the
scenes. One exception to this rule is a serial queue called the main queue that’s
intrinsically tied to the main thread, meaning that tasks you run on the main queue
will be guaranteed access to the user interface.

You can create your own dispatch queue, but most commonly you’ll use one of the
system queues. In addition to the main queue, four global concurrent queues, with
different quality of service (QOS), affect their priority and therefore the time the task
takes to complete:

 User-initiated tasks are the highest priority, because the user is waiting on a
response. Saving a file is an example of a task that should be given a QOS of
user-initiated.

 Utility tasks are a medium priority, because they’re time-consuming opera-
tions that aren’t expected to return an immediate response. Downloading a
file is an example of a utility task.

 Background tasks are a low priority, because they generally perform adminis-
trative tasks that aren’t time critical, such as performing backups.

Task 1 Task 2 Task 3

Serial queue

Task 1

Task 2

Task 3

Concurrent queue

Time



348 CHAPTER 12 Data persistence in iCloud
4 Request the main queue before going any further to have access to the user
interface. Once you’re on the main thread, you can deal with errors, or (if the
operation was successful) call the addBook method to add the book to the
books array and sort. 

func addBookCloudKit(book: Book) {
  db.save(book.record) { (record, error) in
    DispatchQueue.main.async {
      if let error = error as? CKError {
        print("failed: \(error.localizedDescription)")
      } else {
        print("Record saved to iCloud!")
        self.addBook(book: book)
      }
    }
  }
}

The BooksManager will now need to notify the view controller that the save
operation has completed so that the view controller can update the view based
on the result of updating the model. As you’ve seen, several options exist for
achieving this. For instance, the BooksManager could use the delegation pat-
tern, or it could dispatch a notification. This time, let’s pass in a closure to the
BooksManager, which it will call when the operation is complete.

5 Add in a completion handler parameter to the addBookCloudKit method
that accepts an error variable. You can then call this closure to notify it that the
save operation has either completed or failed.

func addBookCloudKit(book: Book, 
    completion: @escaping (_ error: CKError?) -> Void) { 
    db.save(book.record) { (record, error) in
        DispatchQueue.main.async {
            if let error = error as? CKError {
                // Error occurred

(continued)

Use the DispatchQueue syntax to pass in tasks to perform (as closures) to specific
queues. Here’s how you could request a background queue to perform a time-con-
suming operation on a global concurrent queue with a utility QOS and then request
the main queue to display the result of the operation to the user:

DispatchQueue.global(qos: .utility).async { 
    // time consuming operation here
    DispatchQueue.main.async {
        // Update the UI here
    }
}

We’ll explore an alternative approach to concurrent programming in chapter 14.

Requests 
background queue

Requests main 
queue

Requests 
main queue

Deals with
save errors

Saves 
successful

Adds book 
to memory

Passes in 
closure



349Storing data using CloudKit
                completion(error)
            } else {
                // Record saved to iCloud
                self.addBook(book: book)
                completion(nil)
            }
        }
    }
}

Because the completion handler closure is called within a dispatch queue, it
needs to escape its function.

6 Back in the saveBook method in the BooksTableViewController exten-
sion, you can now call the new BooksManager method you set up, and pass in a
completion closure:

booksManager.addBookCloudKit(book: book, 
    completion: { (error) in
        // Add book operation is complete
    }
)

While the save operation is being performed, you’ll prevent the user from per-
forming additional operations by displaying an indicator to signal to the user
that something is happening.

Escaping closures 
By default, a closure passed in to a function can’t escape that method: it can’t be
stored in a property outside the function, used as an argument when calling another
function, or added to a dispatch queue. Think of the function as a walled area—once
a closure is passed in, it can’t get out, with one exception: you can specify that you’re
okay with a closure escaping its function by marking it @escaping. 

Indicating background tasks
UIKit provides you with two alternatives for indicating to the user that a background
task is in progress:

 The Activity Indicator is a view containing infinitely animating spinning
spokes that indicate a task is in progress. Use an activity indicator
when a task has an indeterminate finish time. 

 The Progress View is a view containing
a progress bar, illustrating the prog-
ress of a background task. Use a progress view when it's possible to esti-
mate the progress of a task.

Notifies failure 
with error

Notifies success 
with nil



350 CHAPTER 12 Data persistence in iCloud
Because you can’t accurately estimate when a save operation will complete, let’s
use an activity indicator. 

7 Create an activity indicator in a lazy stored property. When it’s first referenced,
you can also add it to the root view’s subviews and center it.

lazy var activityIndicator: UIActivityIndicatorView = {
    let indicator = UIActivityIndicatorView(activityIndicatorStyle: .gray)
        indicator.center = self.view.center
        self.view.addSubview(indicator)
    return indicator
}()

8 Now, when a cloud operation is in progress, you need a method to call that pre-
vents the user from interacting with the interface and starts animating the activ-
ity indicator. By passing in a function parameter, the same method could be
used to stop the activity indicator animating and reenable user interaction.

func cloudOperation(waiting: Bool) {
  if waiting {
    activityIndicator.startAnimating()
  } else {
    activityIndicator.stopAnimating()
  }
  tableView?.isUserInteractionEnabled = !waiting
  navigationController?.navigationBar.isUserInteractionEnabled =
  ➥ !waiting
  tabBarController?.tabBar.isUserInteractionEnabled = !waiting
}

NOTE The activity indicator will automatically hide itself when it isn’t 
animating.

9 You can now call this method in the saveBook method both before requesting
the CloudKit operation and in the completion handler:

cloudOperation(waiting: true)
booksManager.addBookCloudKit(book: book, 
    completion: { (error) in
        self.cloudOperation(waiting: false)
        self.tableView.reloadData()
    }
)

Your Bookcase app should now be ready to add a book record to iCloud. 

10 Run your app, and from the table view controller, add a book and select Save.
(Don’t forget that if you’re testing on the simulator, you need to log in to
iCloud.) You should see an activity indicator appear for a second before the
new book appears. 
Let’s see if your new book has been added in iCloud. 

Waits for response 
from iCloud

Response received 
from iCloudReloads table



351Storing data using CloudKit
11 Open the CloudKit dashboard again, and select the Bookcase app and Develop-
ment Data. Under Record Types, the Books record type should now appear, list-
ing all the fields associated with this record type. 
While you’re in the record types section, take a look at the metadata that have
been set up for this record. You should see metadata Created By, Date Created,
Modified By, and Date Modified. Here, you can also find your record’s automat-
ically generated record name that the record ID is generated from.

While the fields in your record are automatically sortable, queryable, and
searchable by default, the metadata by default is not. If you want to perform
queries on specific metadata, you’ll need to check that field here. In fact, to
return all records in a query, you’ll need to make the record name queryable.

12 Select the Indexes tab.
13 Select Add Field, recordName, Queryable, and Save Record Type (see figure

12.6).

Figure 12.6 Check CloudKit book record ID

Add Index

Select
recordName Select Queryable Save Record Type



352 CHAPTER 12 Data persistence in iCloud
14 Now, take a look at the book record data you added. Select Records, and with
the Books record selected, select Query Records (see figure 12.7).

Figure 12.7 CloudKit book record data

12.3.3 Updating a book record in CloudKit

Updating a book is similar to adding one. If you fetch a record from CloudKit, update
it, and then pass it in to the save method of CKDatabase, this record will be updated in
iCloud.

 When the user taps the Save button in the detail view controller, be sure that you’re
updating the CKRecord object if it exists, rather than generating a new one, by instan-
tiating a Book object with the CKRecord object of the book the user is currently editing. 

1 Include the current book’s record when saving a book in the touchSave
method of BookViewController.

let bookToSave = Book(record: book?.record,
    title: titleTextField.text!,
    …

Make sure
Books record
type is selected

Book record
data appears

Select Records

Click Query
Records



353Storing data using CloudKit
Now, the book object returned from the detail view controller contains a record
to update rather than a newly generated record, and the call to save it in Cloud-
Kit should perform an update rather than an add operation. 

2 Add a method to update a book in BooksManager (which will look similar to
adding a book).

func updateBookCloudKit(at index: Int, with book: Book, 
    completion: @escaping (_ error: Error?) -> Void) {
    db.save(book.record) { (record, error) in
        DispatchQueue.main.async {
            if let error = error as? CKError {
                // Error occurred
                completion(error)
            } else {
                self.updateBook(at: index, with: book)
                completion(nil)
            }
        }
    }
}

3 Call the updateBookCloudKit method of BooksManager from the saveBook
method of BookTableViewController. (This will look equally familiar.)

cloudOperation(waiting: true)
booksManager.updateBookCloudKit(at: selectedIndexPath.row, with: book,

➥ completion: { (error) in
    self.cloudOperation(waiting: false)
    self.tableView.reloadData()
})

12.3.4 Loading book records in CloudKit

Run the Bookcase app again, and you’ll notice that the book you added earlier
doesn’t appear in the table. When the app first loads, you have to load all book
records stored in CloudKit into memory. 

1 Add a flag to the BooksManager to register whether the books array requires
loading:

var booksRequireLoading = true

2 Change the initial state of books to an empty array and remove the loadBooks
method:

var books:[Book] = []

To load all books, you need to perform a query. A query performs a search for
records in a database via a CKQuery object. The search parameters in the

Waits for response 
from iCloud

Response received 
from iCloud

Reloads table



354 CHAPTER 12 Data persistence in iCloud
CKQuery object are configured via an NSPredicate object. CKQuery first
specifies the record type you’re interested in. If you’re interested in every ele-
ment in that record type, you’ll specify an NSPredicate with a value of true,
for example:

let query = CKQuery(recordType: Book.recordType, 
    predicate: NSPredicate(value: true))

NOTE You might remember using the NSPredicate to filter your records
using Core Data in the previous chapter. You should be aware that certain
predicate operations aren’t supported by CKQuery. Check the documenta-
tion for CKQuery for more details.

Once you have a CKQuery object, you can request your database to perform the
query. Because you’re not using zones, you can leave that parameter as nil.
The response from CloudKit will be returned in a completion handler closure,
containing an optional array of CKRecord objects that matched the query, and
an optional error object if something went wrong.

db.perform(query, inZoneWith: nil) { (records, error) in

Because the response occurs on a background thread, you’ll need to request
the main thread before going any further. Unwrap the array of CKRecord
objects, map them to Book objects, and set the loaded flag to true.

3 Wrap it all in a method in the BooksManager class that accepts a completion
handler, loads books from CloudKit, and then calls the closure to notify it of the
success of the load operation.

func loadBooksCloudKit(
        completion: @escaping (_ error: Error?) -> Void) {
    let query = CKQuery(recordType: Book.recordType,
        predicate: NSPredicate(value: true))
    db.perform(query, inZoneWith: nil) { (records, error) in 
        DispatchQueue.main.async {
            if let error = error as? CKError {
                // Error occurred
                completion(error)
            } else if let records = records {
                self.books = records.map { Book(record: $0) } 
                self.booksRequireLoading = false
                completion(error)
            }
        }
    }
}

4 Set up a method in the BooksTableViewController class that will request
the books to be loaded if they haven’t yet been loaded. Be sure to disable the

Creates query
of Book

Requests 
database 
perform 
query

Requests 
main threadError handling

goes here

Unwraps records in
the query response

Maps records
to Book objectsSets books

 to loaded



355Storing data using CloudKit

Re
user interface and display an activity indicator while the data loads. After load-
ing the data, ensure the data is sorted correctly and reload the table.

func loadCloud() {
    cloudOperation(waiting: true)
    booksManager.loadBooksCloudKit(
            completion: { (error) in
        self.cloudOperation(waiting: false)
        self.updateSortOrderFromKVS()
        self.tableView?.reloadData()
    })
}

5 Call the loadCloud method in the viewDidAppear method, if the books
haven’t been loaded yet.

if booksManager.booksRequireLoading {
    loadCloud()
}

6 Run the app, and the book you added earlier should appear in the table! 
7 Edit the book and save; back in the table, the book should update. 
8 Double-check in the dashboard that everything updated correctly in CloudKit.

12.3.5 Deleting a book record in CloudKit

It won’t surprise you that deleting a book in CloudKit follows a similar pattern to add-
ing and updating.

 Use the delete method of CKDatabase, passing in the record ID of the record
you wish to delete. The response will be returned in a completion handler closure,
where you can delete the book from the books array in memory.

1 Wrap all of this in a method in the BooksManager class with a completion han-
dler to notify that the delete operation is complete.

func deleteBookCloudKit(at index: Int, book: Book, 
        completion: @escaping (_ error:Error?) -> Void) {
    let record = book.record
    db.delete(withRecordID: record.recordID,
            completionHandler: { (recordID, error) -> Void in
        DispatchQueue.main.async {
            if let error = error as? CKError {
                 // Error occurred
                completion(error)
            } else {
                self.removeBook(at: index)
                completion(nil)
            }
        }
    })
}

Waits for response 
from iCloud

Response received
from iCloud

Updates sort order 
from the key-value store

Reloads table

Gets record from 
book object

quests database
perform delete

Requests main 
threadError handling

goes here

Calls completion handler
Removes book
from memory



356 CHAPTER 12 Data persistence in iCloud
2 You can now call this method from the table view controller in the table view
commitEditingStyle method.

let book = booksManager.getBook(at: indexPath.row)
cloudOperation(waiting: true)
booksManager.deleteBookCloudKit(at: indexPath.row, book: book,

➥ completion: { (error) in
    self.cloudOperation(waiting: false)
    tableView.deleteRows(at: [indexPath], with: .fade)
})

12.3.6 Managing CloudKit errors

To keep things simple, I’ve basically ignored errors returned from CloudKit, but for a
functional app, it’s vital to manage these responsibly. I can’t go into all the possible
CloudKit errors here (28 possible CloudKit errors to be exact, at the time of writing!)
but let’s look at several example CloudKit errors, as shown in table 12.1, and how to
deal with them.

Now that you know what sort of errors to expect, how can you deal with them?

RESOLVING CONFLICTS

If you receive a serverRecordChanged error, indicating a conflict between the local
updates to a record and the server version of the same record, your app will need to
decide how to deal with the conflict. 

 For convenience, the userInfo property for the error will return three versions of
the same record:

 The original record your user made changes to
 The record after your user made changes
 The record stored on the server

With this information, your app is in the best position to decide how to resolve the
conflict between the three record objects. 

Table 12.1 Example CloudKit errors

Error Description

notAuthenticated User isn’t authenticated to perform the operation. Could indi-
cate that the user isn’t logged in to iCloud.

networkUnavailable, 
networkFailure

Problems with user’s network.

serviceUnavailable, 
zoneBusy, requestRateLimited

Problems with the CloudKit service.

serverRecordChanged A conflict encountered between the server and the request, 
for example, when two devices try to update the same record.

unknownItem Record doesn’t exist.



357Storing data using CloudKit
 For example, if you decide that the server’s version of the record should win the
conflict, you could reset the book record to the record stored on the server.

1 Add the following to the error-handling code of the updateBookCloudKit
method in the BooksManager class:

if error.code == .serverRecordChanged {
  if let serverRecord =   
         error.userInfo[CKRecordChangedErrorServerRecordKey] as?
         ➥ CKRecord {
    book.record = serverRecord
    self.updateBook(at: index, with: book)
  }
}

2 To test this, run the app. 
3 While the app is running, make a change to a record in the dashboard. 
4 Back in the app, try to make a change to the same record. 
5 Select the Save button. 

Your change will be rejected and the record will revert to the version of the record on
the server. 

 This may or may not be the best approach for conflict resolution for your app, but
this gives you an idea of how you can handle resolving such conflicts.

RETRYING OPERATIONS

Sometimes an operation fails, but this doesn’t mean you should give up trying! Cer-
tain types of operations, such as problems with the CloudKit service, are worth retry-
ing. The question is, how long should you wait before trying again? Apple has a
suggestion for you, and they include the suggestion in the CKErrorRetryAfterKey
property in the userInfo property for the error object.

 You should check if this CKErrorRetryAfterKey interval exists in the userInfo
property, as shown in the following listing. You can wait a specified suggested time
with the DispatchQueue’s asyncAfter method.

if let retryInterval = error.userInfo[CKErrorRetryAfterKey] 
      as? TimeInterval {
  DispatchQueue.main.asyncAfter(deadline: .now() + retryInterval) {
    self.updateBookCloudKit(at: index, with: book, completion: completion)
  }
  return
}

CHALLENGE Add a retry operation to error-handling sections of the addBook-
CloudKit, updateBookCloudKit, and deleteBookCloudKit methods.

Listing 12.1 Retry operation



358 CHAPTER 12 Data persistence in iCloud
NOTIFYING THE USER OF THE ERROR

For certain errors, you probably want to provide the user with error information. A
useful technique for providing information to the user is via an alert controller.

Displaying alert controllers
An alert controller is a modal popup window that contains a title, message, and but-
tons. Two styles of alert controller exist:

 Alerts display in the center of the screen.
 Action sheets display at the bottom of the screen.

To display an alert controller, you need to

 Instantiate a UIAlertController with the required title, message, and
style.

 Add any buttons required with UIAlertAction objects that can optionally
define a handler closure that will execute when the user selects the button.

 Present the alert controller.

Alert Action sheet



359Storing data using CloudKit
The alert controller will need to be presented from a view controller. 

1 Add a utility method to the BooksTableViewController that builds and
presents a customized alert controller from an error object, which can also be
passed an optional completion closure that will trigger when the user taps the
alert’s action.

func cloudErrors(error: Error?,
        buttonTitle: String = "OK", 
        completion: (() -> Void)? = nil) {
    if let error = error {
        let alertController = UIAlertController(
                title: "CloudKit error", 
                message: error.localizedDescription, 
                preferredStyle: . alert)
        let okAction = UIAlertAction(title: buttonTitle, 
                style: .default) { (action) in
            completion?()
        }
        alertController.addAction(okAction)
        self.present(alertController, animated: true)
    }
}

This method can now be called in the table view controller after responses have
been received from CloudKit operations, to display an appropriate message to
the user from the error object.

2 Add a call to cloudErrors in the completion handler of addBookCloudKit,
updateBookCloudKit, and deleteBookCloudKit in BooksTableView-
Controller.

self.cloudErrors(error: error)

In code, this looks like the following:

let alertController = UIAlertController(
        title: "CloudKit error", 
        message: "The request timed out.", 
        preferredStyle: .alert)
let tryAction = UIAlertAction(title: "Try again", 
        style: .default) { (action) in
    // User pressed button
}
alertController.addAction(tryAction)
self.present(alertController, animated: true)

Creates alert controller

Creates action

Action closure Adds action to 
alert controller

Presents alert controller

Optional error 
object

Passes in
optional closure

Creates alert 
controller

Gets message
from error

Creates alert 
action

Calls completion
handler Adds action 

to alert controller

Presents 
alert controller



360 CHAPTER 12 Data persistence in iCloud
3 Because the app has been built to require CloudKit access, if the loadCloud
operation fails, give the user the option to try again, changing the button title
to “Try again” and calling loadCloud again when the user taps the button:

self.cloudErrors(error: error, buttonTitle: "Try again") {
    self.loadCloud()
    return
}

RECORD DOESN’T EXIST

As you’ve seen, when you first store a book object, the books record type is added in
iCloud for your app. If you ran your app for the first time and hadn’t stored a book
object yet, you’d find that your query to return books records would return an
unknownItem error. The unknownItem error indicates that this record type doesn’t
yet exist.

 Oh, but if any sort of error occurs when loading books data, you added a “Try again”
alert. This creates an infinite loop; the app would never get past the query to return
books records to the point where it can add a book and create a books record type.

 If the books query in the loadBooksCloudKit method in BooksManager returns
an unknownItem error, that’s one error you can ignore. 

 Add this condition to the if statement in loadBooksCloudKit in Books-
Manager:

if let error = error as? CKError,
  error.code != .unknownItem {
  //Error occurred
  completion(error)
…

12.3.7 Refreshing CloudKit data

As the app stands, the data is loaded from CloudKit only once—when the app is
launched. If the app is running on two devices, a change on one device won’t be rep-
resented on the other device and vice versa. Requiring the user to relaunch the app to
refresh the data won’t do! Let’s look at two approaches for updating the data in
the app:

 The user requests the data to refresh.
 The app subscribes to notifications of changes to the data.

The simplest mechanism for the user to request a refresh on the data in a table view
controller is a built-in UIKit control called a refresh control. If you add a refresh con-
trol to a table view controller, the user can pull the table down to request a refresh,
displaying an activity indicator. When the user releases the table by lifting their finger,
a method in your code that can request new data for the table will be called. When the
data has downloaded, you can reload the table and tell the refresh control to finish
refreshing, and the table will automatically return to its place with data refreshed (see
figure 12.8).



361Storing data using CloudKit
 

Figure 12.8 Refresh control

You’ll add a refresh control to the table view controller in the Bookcase app to refresh
the data when the user pulls down on the table.

1 Add the following to the viewDidAppear method of the table view controller:
 

refreshControl = UIRefreshControl()
refreshControl?.attributedTitle = 
    NSAttributedString(string: "Reload Books")
refreshControl?.addTarget(self, 
    action: #selector(loadCloud), for: .valueChanged)

The loadCloud method will be called when the user pulls the table down. 

2 Prefix loadCloud with the @objc attribute to make the method visible to the
#selector keyword:

@objc func loadCloud() {

3 When data is returned from this method, hide the refresh control and stop it
from animating by calling the endRefreshing method:

self.refreshControl?.endRefreshing()

4 Run the app.
5 Make a change to the data in the CloudKit dashboard. 
6 Back in your app, pull the table down and release. 

User pulls down table
and activity indicator
appears. When user
releases table, new
data is requested.

Creates refresh 
control

Adds instruction to control

Specifies
method to call



362 CHAPTER 12 Data persistence in iCloud
The data in the table should magically update to resemble your changes in the
dashboard!

 Let’s look at the second approach for keeping the data in your app up to date.

12.3.8 Subscribing to changes

Giving the user the power to keep the table up to date is nice, but wouldn’t it be great
if the table would stay up to date without the user lifting a finger? (Hilarious pun
intended!) This is achievable through database subscriptions.

 A database subscription is how your app can be notified of any changes to the data-
base. Your app is notified of these changes via remote notifications. To add subscrip-
tions to your app, you need to follow three steps:

1 Add remote notifications to your app.
2 Save a database subscription to CloudKit to be notified of changes.
3 When you receive a subscription notification, update the data in memory and

the user interface.

You’ll add database subscriptions to the Bookcase app, to ensure that the data in the
table is always as up to date as possible.

ADDING REMOTE NOTIFICATIONS TO YOUR APP

To receive remote (also called push) notifications, you need to turn on its capability. 

1 Find the Capabilities tab in your project target’s settings, and turn on Push
Notifications (see figure 12.9).

Figure 12.9 Push notifications capability

NOTE If you’re interested in running your app in the background to begin
downloading any new content as soon as your app receives a notification, you
should also turn on the Background Modes capability, and check Remote
notifications. 

2 Next, you need to register to receive remote notifications. Because your app only
needs to do this once, this is commonly added to the didFinishLaunching-
WithOptions method in the AppDelegate.

application.registerForRemoteNotifications()



363Storing data using CloudKit

rec
This will request remote notifications to be sent to your app if it’s running. 

If you want alerts, sounds, or badges displayed on the app’s icon when a remote
notification arrives and your app is either in the background or not running,
you need to register additional notification settings:

application.registerUserNotificationSettings(
    UIUserNotificationSettings(
        types: [.alert, .badge, .sound], categories: nil)) 

But be aware that requesting any of these
additional notification types requires specific
permission from the user that the user could
decide to reject, crippling your app’s ability
to stay up to date (see figure 12.10).

3 Your app will receive remote notifications in
the AppDelegate’s didReceiveRemote-

Notification method. Implement that
method now:

func application(_ application: UIApplication, 
        didReceiveRemoteNotification userInfo: [AnyHashable: Any]) {
    print("Notification received")
}

We’ll deal with any notifications this method receives in a moment, but first you need
to set up the database subscription.

REQUEST A DATABASE SUBSCRIPTION

Now that your app is set up to receive notifications, it’s ready to subscribe to notifica-
tions from CloudKit. Before you try this yourself, let’s look at what’s involved.

 First, you create a CKQuerySubscription for a specific record type with search
parameters configured with the NSPredicate. Use options to specify what types of
operations you’re interested in, and optionally identify the subscription with an ID.

let subscription = CKQuerySubscription(
    recordType: Book.recordType,
    predicate: NSPredicate(value: true),
    subscriptionID: "All Book updates",
    options: [.firesOnRecordCreation,
              .firesOnRecordDeletion,
              .firesOnRecordUpdate]
) 

Deprecated APIs
Prior to iOS 10, a CKSubscription object was used to subscribe to CloudKit noti-
fications. CKQuerySubscription, a subclass of CKSubscription, was intro-
duced in iOS 10, and CKSubscription initializers were deprecated, essentially
converting CKSubscription into an abstract class. 

Figure 12.10 Notification 
permission

Creates subscription
Specifies
ord type Configures 

search 
parametersAdds ID to 

subscription
Specifies 
operations



364 CHAPTER 12 Data persistence in iCloud

me

D

After defining a subscription object, you configure the data that the remote notifica-
tion sends your app. If you want your notification to display a badge or alert, or play a
sound, this is where you should specify the details. If you want a silent notification that
doesn’t require additional user permissions, you should include a shouldSend-
ContentAvailable flag, as shown in the following listing.

let notificationInfo = CKNotificationInfo()
notificationInfo.shouldSendContentAvailable = true
notificationInfo.shouldBadge = true
notificationInfo.alertBody = "Your books have changed!"
notificationInfo.soundName = "default"
subscription.notificationInfo = notificationInfo

Now, your subscription is ready to submit to the database, which you can do with a
simple save operation. Your app only needs to subscribe once, so if your save opera-
tion is successful, you can store a UserDefaults preference to avoid unnecessarily
requesting a subscription more than once. 

(continued) 
Deprecated APIs in iOS generally continue to work for a time, but there’s no guaran-
tee that they’ll work indefinitely—at a point in the future, Apple might decide to make
deprecated functions or classes obsolete. 

Just as you did in chapter 10, you could choose to use the special keyword #avail-
able to check the user device’s version of iOS. If the user has at least iOS 10, you'd
instantiate a CKQuerySubscription object, using the newer API. If the user's still
running a version of iOS lower than 10, you’d instead instantiate a CKSubscrip-
tion object. 

Because CKQuerySubscription is a subclass of CKSubscription, you can
define the subscription value for either case as a CKSubscription.

let subscription: CKSubscription
if #available(iOS 10.0, *) {
  subscription = CKQuerySubscription(
  …
} else {
  subscription = CKSubscription(
  …
}

For simplicity, change your app’s deployment target to 10.0 in the General settings
to only support users with iOS 10 and to use the newer version of the CKQuery-
Subscription API without backward compatibility issues.

Listing 12.2 Add notification info to subscription

Defines subscription 
constant

If user has at
least iOS 10Uses iOS 10 API

If user has older
version of iOS

Uses older API

Creates 
notification info

Required for 
silent notifications

Increments 
badge

Alert
ssage

efault
Sound

Adds notification
to subscription



365Storing data using CloudKit
 Let’s add a database subscription to the Bookcase app.

1 Add the complete subscribe method to the BooksManager class, and call it
from its initializer.

init() {
    subscribe()
}
func subscribe() {
    let alreadySubscribed = "alreadySubscribed"
    if !UserDefaults.standard.bool(
            forKey: alreadySubscribed) {
        let subscription = CKQuerySubscription(
            recordType: Book.recordType,
            predicate: NSPredicate(value: true),
            subscriptionID: "All Book updates",
            options: [.firesOnRecordCreation,
                      .firesOnRecordDeletion,
                      .firesOnRecordUpdate]
        )
        let notificationInfo = CKNotificationInfo()
        notificationInfo.shouldSendContentAvailable = true
        subscription.notificationInfo = notificationInfo
        db.save(subscription) { (subscription, error) in
            if error == nil {
                UserDefaults.standard.set(
                    true, forKey: alreadySubscribed)
            }
        }
    }
}

Now that you’ve requested a subscription to your app’s private database, the
didReceiveRemoteNotification method in your app’s AppDelegate will
begin receiving notifications whenever a change occurs to the data.

2 Extract the CloudKit query notification from the userInfo argument that the
didReceiveRemoteNotification method receives by instantiating a
CKQueryNotification object.

guard let userInfo = userInfo as NSDictionary as? [String:NSObject] 
    else {return}
let queryNotification = CKQueryNotification(
    fromRemoteNotificationDictionary: userInfo)

From the CKQueryNotification object, you can extract the affected
recordID and the reason for the change (add, delete, or update), or verify that
you’re dealing with the correct subscription with the subscriptionID you set
when you created the subscription.

let recordID = queryNotification.recordID
let reason = queryNotification.queryNotificationReason
let subscriptionID = queryNotification.subscriptionID

Checks if already subscribed

Requests
subscription

Set already subscribed



366 CHAPTER 12 Data persistence in iCloud
Now that you’ve received the remote notification from CloudKit, you need to update
the data and user interface.

UPDATING THE DATA AND USER INTERFACE FOR THE CHANGE

The easiest way for the AppDelegate to inform all relevant classes that the data and
user interface require an update is by requesting the Notification Center to broadcast
a notification. 

 See figure 12.11 for a representation of the path a CloudKit subscription notifica-
tion of a change to the books data in the database will take to eventually update the
data and user interface in your app.

Figure 12.11 CloudKit subscription notification path

1 Set up a struct containing Notifications in the project, in the Books-
Manager file (outside the BooksManager class).

struct Notifications {
    static let CloudKitReceived = Notification.Name("CloudKitReceived")
}

2 Back in the didReceiveRemoteNotification method in the AppDelegate,
post this notification when the remote notification is received.

// Broadcast Notification
let notification = Notification(
    name: Notifications.CloudKitReceived,
    object: nil
)
NotificationCenter.default.post(notification) 

AppDelegate

BooksManager BooksTableViewController

Notification center
Post notification

Change to book data

Broadcast notification to observers

Your app on your device

Remote notification

CloudKit
Your app on another device/

CloudKit dashboard for your app



367Storing data using CloudKit
Any interested classes can now observe this notification. The table view control-
ler would be a great place to start. When the notification arrives from CloudKit,
it could reload the books data and table.

3 Register the BooksTableViewController as an observer of the notification
in its viewDidAppear method. When the notification is observed, it should
reload the books data from CloudKit.

NotificationCenter.default.addObserver(self,
    selector: #selector(loadCloud),
    name: Notifications.CloudKitReceived,
    object: nil)

What happens if the notification arrives when the user is editing the book
details in the book detail scene? It could be a dangerous moment to reload
book data because you’re currently editing a book. A better approach would be
to flag that the books data is out of date and check this when you return to the
table view controller. As it happens, the BooksManager already contains a flag,
booksRequireLoading, that the table view controller checks in the view-
DidAppear method to determine whether it should load the books data. 

4 In the init method of BooksManager, add a closure as an observer of the
CloudKit notification that flags that the books array needs reloading. 

NotificationCenter.default.addObserver(
    forName: Notifications.CloudKitReceived,
    object: nil,
    queue: OperationQueue.main,
    using: { notification in
        self.booksRequireLoading = false
    }
)

NOTE Notice that you used an alternative syntax—adding an observer that
passes in a closure—rather than a selector method.

That’s it! Run the app, and then make a change to the data in the CloudKit dash-
board. After several moments, the app should receive the notification of a change,
update the data, and reload the table. All automatic, and no table pulling necessary!

Why request data from CloudKit?
You may be wondering, why request the data from CloudKit if the query notification
from CloudKit already contained information regarding the change?

While it’s true that you could use the data from the CKQueryNotification object
to derive details of the change, a problem exists: subscriptions aren’t guaranteed to
successfully notify your app of every change. If your device is disconnected from the
internet at the moment several changes are made, the notifications may be consoli-
dated into one notification. Though a subscription query notification describes one



368 CHAPTER 12 Data persistence in iCloud
NOTE Before submitting your app to the App Store, you need to migrate the
CloudKit environment for your app from development to production. You’ll
find this option in the lower-left corner of the CloudKit dashboard.

CHALLENGE Up to now, you’ve added CloudKit to the table view controller.
Make the necessary CloudKit changes to the collection view controller, too. It
should load data from CloudKit, display an activity indicator and disable the
user interface while loading, observe the CloudKit notification, and display
information to the user about CloudKit errors. (Unfortunately, the refresh
control only works in table view controllers, so leave that out.)

(continued)

change, rather than accept this at face value, it’s a good idea for your app to recog-
nize that this notification indicates that one or more things may have changed and
request the server for the exact details. 

What data should you request from CloudKit? If you’re implementing a local cache of
the data being stored in CloudKit, it makes sense for you to request only the changes
that have occurred since your last fetch. You can do this with CKFetchRecord-
ChangesOperation, and then go through the local cache making the appropriate
updates. This operation only works if your records are contained within a record zone.

For this example, we’ll keep things simple, and reload all book records when the app
receives a change notification.

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git  (Chapter12.2.StoreDataCloud-
Kit).

CloudKit beyond iOS
Though the focus in this book is on iOS development, you may be curious to know
what the prospects are of porting your CloudKit-connected iOS app to other environ-
ments. CloudKit Web Services and a JavaScript library called CloudKit JS make it pos-
sible to connect to your CloudKit data from anywhere—a web app, another server, or
even an Android app. 

One thing to consider is that your users will need to log in to (or register for) iCloud,
a process with the potential to confuse or frustrate your Android users!

Perhaps you prefer to set up your own backend server to store data, or you have a
preexisting service you want to connect to. Not to worry, in chapter 14 we’ll look at
connecting to your own or a third-party web service.

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


369Summary
12.4 Summary
In this chapter, you learned the following:

 While the ubiquitous key-value store maintains sync with local data, CloudKit
doesn’t provide local syncing.

 When performing operations on a background thread, request the main queue
to update the user interface.

 It’s vital to respond appropriately to errors returned from CloudKit.
 Use alert controllers or action sheets to present the user with a message or pres-

ent a choice of two or more options.
 When using remote notifications to update CloudKit data, avoid alerts, badges,

or sounds, if possible, to avoid requesting user permissions.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



370 CHAPTER 12 Data persistence in iCloud
 
 



 Graphics and media
In this chapter, we’ll look at making your apps more visual! Though you want your
app to follow Apple standards for app consistency, you also want your app to stand
out in the crowd. We’ll explore changing the look of your app, from adding images
and app icons to custom drawing. We’ll also look at allowing the user to add their
own images from the camera and photo library and even turn their device into a
barcode scanner!

 Along the way, you’ll encounter additional concepts:

 Asset catalog and image sets
 Core graphics

This chapter covers
 Adding images and app icons to your app bundle

 Drawing in your app and creating a reusable 
custom view

 Taking or selecting photos from the photo library

 Detecting barcodes

 Playing sounds
371



372 CHAPTER 13 Graphics and media
 Core animation
 UIImagePickerController

 AVFoundation

13.1 Adding images to your app with an asset catalog
You’ve probably noticed the Assets.xcassets file in your Project Navigator. This is the
default asset catalog for your app and a convenient place to store assets. Though it’s
possible to drag images directly to your Project Navigator to include them in your
project bundle, an asset catalog is generally preferable. Why? 

 The asset catalog makes it easy for you to categorize your images into image sets,
variations of the same image optimized for different environments. With different size
classes, resolutions, and devices, you could potentially provide many variations of each
image, but Apple makes it simpler for you with the distinction of scale factor. Variations
of an image in an image set can be divided into three scale factor categories, as
explained in table 13.1.

By providing variations for each scale factor, the appropriate variation for each image
is automatically displayed for a device. iPhones in the Plus range, such as iPhone 7
Plus, automatically use 3x images, while most other iPhones and iPads on the market
today use 2x images. 

TIP 1x scaled images for non-Retina devices apply to a small percentage of
iOS devices in use today. (The last non-Retina device to be sold in stores, the
16GB iPad Mini 1, was discontinued in mid-2015.) In fact, if your deployment
target is iOS 9 or later, your app won’t even support non-Retina iPhones! 

All that said, you don’t even need to know which scale factor goes with each device
type. You provide scale factor alternatives, and the correct image is used automati-
cally—sorry for the cliché, but it just works!

NOTE Asset catalogs are capable of holding other types of assets as well, such
as textures or data. Similar to images, adding other types of assets to the asset
catalog can prove useful in providing variations for different environments.

Table 13.1 Scale factor

Scale factor Device types

1x Non-Retina devices (for example: iPhone 3, iPad mini 1, iPad 2, and earlier)

2x Retina devices (for example: iPhone 4–8, iPad mini, and iPad Pro)

3x iPhone X, iPhone Plus range (for example: iPhone 8 Plus)



373Adding images to your app with an asset catalog
13.1.1 Adding image sets

Next, you’ll add image sets to the asset catalog of the Bookcase app to display in the
tab bar (see figure 13.1).

Figure 13.1 Tab bar icons

1 Select Assets.xcassets in the Project Navigator. This opens the asset catalog edi-
tor. On the left, you’ll find the asset set list, with the set viewer on its right. You’ll
find the project already has an asset set defined for the app icon. We’ll look at
this shortly. 

CHECKPOINT Open the Bookcase app where you left it after imple-
menting the archiving data storage option, or check it out at https://

github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
(Chapter11.5.StoreDataArchiving).

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


374 CHAPTER 13 Graphics and media
2 Select the + button at the bottom of the set list to add a new image set, and
select New Image Set (see figure 13.2). 

Figure 13.2 Asset catalog editor

3 Double-click on the name of the image set to rename it to “literature.”
With the literature image set selected, you’ll see the variations defined for the set
in the set viewer. If you want additional variations (for device types, for exam-
ple) you can add those in the Attributes Inspector for the image set. We’ll stick
with the three default scale factor variations.

Now, to add the actual images to the image set. Your designer has sent you a
nice crisp design for both tabs, but the question is, what size should a tab bar
image be? You’ll find the answer in the iOS Human Interface Guidelines.

iOS Human Interface Guidelines
Apple provides a helpful site called the Human Interface Guidelines (https://
developer.apple.com/ios/human-interface-guidelines) that provides recommenda-
tions and advice direct from Apple to improve the interface of your apps, with an aim
to make them more consistent and simple to use. I recommend you browse these
guidelines (also known as the HIG), especially any areas with relevance to an app you
hope to build.

Add New Image Set

Set list Set viewer Attributes Inspector

https://developer.apple.com/ios/human-interface-guidelines
https://developer.apple.com/ios/human-interface-guidelines


375Adding images to your app with an asset catalog

According to the HIG (https://developer.apple.com/ios/human-interface-
guidelines/icons-and-images/custom-icons/), tab bar icons should be 75 x 75
pixels for 3x images and 50 x 50 pixels for 2x images. The HIG doesn’t mention
the older 1x images, but through simple mathematics, 1x images should be 25 x
25 pixels.

4 Download the icons. You can find a package of media you’ll use in this chapter
at https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase-
Media.

5 In the literature and cover folders, you’ll find the icons already exported into the
three scale factor sizes. The 2x and 3x files have suffixes @2x and @3x to distin-
guish them from the 1x file. 

NOTE To avoid compression artifacts, PNG files are usually recommended in
iOS development, especially for smaller images such as icons. In fact, app
icons (which we’ll explore shortly) accept only PNG files.

6 Drag the three literature icons from the Finder into their appropriate wells in
the set viewer for the literature set list (see figure 13.3).

Figure 13.3 Add images to image set from Finder
The suffixes of the image files can also help to automate this process. 

7 Create the image set for the second icon by selecting all three files in the Finder
and dragging them directly to the asset set list. A new image set will be created
with the name cover, and, like magic, the files will automatically drop into the
appropriate wells in the image set (see figure 13.4). 

https://github.com/iOSAppDevelopmentwithSwiftinAction/BookcaseMedia
https://github.com/iOSAppDevelopmentwithSwiftinAction/BookcaseMedia
https://developer.apple.com/ios/human-interface-guidelines/icons-and-images/custom-icons/
https://developer.apple.com/ios/human-interface-guidelines/icons-and-images/custom-icons/
https://developer.apple.com/ios/human-interface-guidelines/icons-and-images/custom-icons/
https://developer.apple.com/ios/human-interface-guidelines/icons-and-images/custom-icons/
https://github.com/iOSAppDevelopmentwithSwiftinAction/BookcaseMedia
https://github.com/iOSAppDevelopmentwithSwiftinAction/BookcaseMedia


376
 CHAPTER 13 Graphics and media

NOTE It would probably be more consistent to give the cover 1x image the
suffix @1x, but unfortunately Xcode doesn’t work that way—leave the 1x file
without a suffix if you want Xcode to automatically detect its scale factor.

Figure 13.4 Add image set

Now that you’ve added both image sets, it’s straightforward to add these images
to the tab bar items of the tab bar. 

8 Select the Books tab bar item.

TIP There’s a trick to selecting a tab bar item that can drive you crazy until
you know what the problem is! Your instinct may be to select and configure
tab bar items in the tab bar controller; but tab bar items can only be selected
in the first view controller for each tab. In this example, because both tabs
take you to navigation controllers, you’ll need to select the tab bar items in
each navigation controller.

9 In the Image item in the Attributes Inspector, select the literature image set
(see figure 13.5).
10 Do the same for the Covers tab bar item, selecting the cover image set.
Optionally, you can include an image to display when the tab is selected, in the
Selected Image item. If you don’t include a separate image, the distinction is still
clear, because selected tab bar items are automatically tinted blue. You can adjust
the tint color in the attributes of the tab bar itself in the tab bar controller. 



377Adding images to your app with an asset catalog
11 That’s it! If you run your app now, you should find your tab bar has two icons
representing each tab.

13.1.2 Adding app icons

As you’ve seen, the asset catalog also contains an image set for the icon for your app.
Unlike regular image sets, iOS app icons accept a range of sizes for different devices
and purposes. In addition to the app icon displayed in the home screen, versions of
the icon are needed for when your app turns up in a Spotlight search, when push noti-
fications appear, or for adjusting settings for your app in the Settings app. You’ll also
need a large version of your app icon for the App Store (although this icon doesn’t
need to be included in your app bundle). Apple provides a template for app icons in
the resources section of the HIG.

App slicing
Once you define variations for each asset, your app will automatically use this infor-
mation to produce a variation of your app bundle appropriate for each device. This
process is called app slicing. Only assets that are appropriate for a user’s device will
be included in the app’s bundle when it’s distributed to the user, reducing app size
and download time.

Select tab bar item Select image set

Figure 13.5 Add image to tab bar item



378 CHAPTER 13 Graphics and media
 Apple also provides several guidelines in the HIG for app icons, such as these:

 Keep it simple.
 Avoid transparency.
 Don’t include photos.
 Keep icon corners square. iOS will automatically

provide rounded corners for your icon.

You may have noticed that your app already has a default
icon consisting of grid lines and circles (see figure 13.6).
This curious symbol is the grid system that Apple design-
ers use to design icons for their apps and can be a great
guide to consider in composing your own app icons. 

 You’re going to update the app icon for the Bookcase
app. Fortunately, your friendly designer has already pre-
pared an icon and output it in a variety of image sizes. You
can find a folder of app icon image files in the app icon
folder of the same package you downloaded for image
sets. All you need to do now is play “Match that file”! 

1 As you did earlier, drag each file to the appropriate well. (Unfortunately, auto-
mating this process isn’t as straightforward as simple image sets.) When you’re
finished, your app icon should look like figure 13.7 in the asset catalog. 

Figure 13.7 App icon in the asset catalog and device home screen

Figure 13.6 Apple icon grid



379Displaying a launch screen
2 Run the app and close it again; you should now see your brand-new app icon in
your device’s home screen. 

13.2 Displaying a launch screen
You may have noticed a moment of white screen after launching your app, before
your app loads and the interface of your app appears. To indicate to the user that your
app is loading, Apple recommends you prepare a launch screen to replace that moment
of white screen that resembles the initial scene of your app. Let’s look at how Apple
has implemented the launch screen in two of their own apps to get a better idea of
what they mean (see figure 13.8).

Figure 13.8 Launch screens in Apple apps

You can build your launch screen using the LaunchScreen storyboard that’s generated
automatically for you when you create your project. As with regular storyboards, you
can add standard UIKit components from the Object Library to the launch screen sto-
ryboard and position views with auto layout and size classes.

 As you’d expect, launch screen storyboards do have their limitations. To load up
quickly, launch screens are static and noninteractive, don’t animate, and are discon-
nected from the rest of your app. Launch screen storyboards don’t permit you to sub-
class views or view controllers or perform segues or actions.

 You can read more about Apple’s recommendations for launch screens in the HIG
at https://developer.apple.com/ios/human-interface-guidelines/icons-and-images/
launch-screen/. For example, Apple suggests that text, in general, should be avoided,
because launch screen text can’t be localized. 

Launch screen Initial scene

Safari

Launch screen Initial scene

Calendar

https://developer.apple.com/ios/human-interface-guidelines/icons-and-images/launch-screen/
https://developer.apple.com/ios/human-interface-guidelines/icons-and-images/launch-screen/


380 CHAPTER 13 Graphics and media
TIP Though storyboards are the recommended approach for building up a
launch screen, sometimes it can be difficult to build up an appropriate
launch screen storyboard for your app using standard UIKit components,
especially for games or other graphically intensive apps. If you prefer, you can
create a launch screen with an image set of PNG files. Add a launch screen
image set to the asset catalog, providing variations for all possible device
types, orientations, and environments. To direct Xcode to the correct launch
screen, you should then specify the image set you created in the launch
screen file attribute in the General settings for your project target.

You’ll modify the launch screen storyboard of the Bookcase app so that it resembles
the app’s initial screen. Following Apple’s lead, let’s implement a plain navigation bar,
search bar, and tab bar, ready to create the illusion that these elements are completed
when the first scene appears (see figure 13.9).

Figure 13.9 Bookcase launch screen

1 Select LaunchScreen.storyboard in the Project Navigator.
2 Drag a tab bar to the bottom of the launch screen. Remove any default tab bar

items. 
3 Drag a navigation bar to the top of the main scene of the launch screen. The

navigation controller in the main storyboard increases the height of its naviga-
tion bar to 118 points. 

Launch screen Initial scene



381Drawing with Core Graphics
4 Give your navigation bar a height constraint of 118 points to match, and while
you’re there, pin the navigation bar to the left, top, and right edges.

5 Drag a search bar below the navigation bar.

That’s it! If you run your app now, you should catch a glimpse of your launch screen
handiwork for a second before it’s replaced by the real thing. Well done!

13.3 Drawing with Core Graphics
Up to now, all the visuals you’ve used in apps have been standard UIKit components or
PNG images from the asset catalog. What if you want to go a little further and draw
your own 2D shapes in code? Perhaps you want to draw a simple shape such as a rect-
angle or circle or a more complicated path such as a star or even a custom button.
One way to achieve drawing in Swift is with the Core Graphics framework. 

 You’re going to explore Core Graphics by building a view in the Bookcase app that
displays star-ratings for each book that the user can interact with to edit the rating (see
figure 13.10).

Figure 13.10 Star-ratings

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git (Chapter13.1.AssetCatalog
LaunchScreen).

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


382 CHAPTER 13 Graphics and media
First, let’s build a view that will draw a yellow star. 

13.3.1 Overriding the draw method 

The most common place to draw using Core Graphics is in the draw method of
UIView. This method is called when a view is first laid out and any time that the view
needs to be redrawn. 

1 Create a subclass of UIView called Star. The draw method shows up in the
UIView template, but it’s commented out. 

2 Uncomment the draw method:

class Star: UIView {
    override func draw(_ rect: CGRect) {
        // Drawing code
    }
}

Note that the draw method is passed a rect parameter containing the dimensions
available to you to draw in. 

13.3.2 Describing a path

To draw both simple and complex shapes in Core Graphics, you first need to describe
their paths. Paths are described with a CGPath object, but UIKit class UIBezierPath
is often used, because it has additional functionality and can provide you with a
CGPath object anyway, via its cgPath property.

 Simple shapes are easy to define in UIBezierPath—it has initializers that define
ovals, rectangles, rounded rectangles, and arcs. For example, the following will create
a circle path that fits inside a rectangle:

UIBezierPath(rect: CGRect(x: 0, y: 0, width: 100, height: 100))

Complex shapes are easy, too. To create a complex path, after instantiating an empty
UIBezierPath object, you’d move to the initial point of the path with the move
method, draw lines to each point in the path with the addLine method, and finally
close the path with the close method.

 You’ll use the UIBezierPath method to draw a star. Add the following method
to your Star class that returns a UIBezierPath object that describes the path to
draw a star:

func getStarPath() -> UIBezierPath {
    let path = UIBezierPath()
    path.move(to: CGPoint(x: 12, y: 1.2))
    path.addLine(to: CGPoint(x: 15.4, y: 8.4))
    path.addLine(to: CGPoint(x: 23, y: 9.6))
    path.addLine(to: CGPoint(x: 17.5, y: 15.2))
    path.addLine(to: CGPoint(x: 18.8, y: 23.2))
    path.addLine(to: CGPoint(x: 12, y: 19.4))
    path.addLine(to: CGPoint(x: 5.2, y: 23.2))



383Drawing with Core Graphics
    path.addLine(to: CGPoint(x: 6.5, y: 15.2))
    path.addLine(to: CGPoint(x: 1, y: 9.6))
    path.addLine(to: CGPoint(x: 8.6, y: 8.4))
    path.close()
    return path
}

To draw the shape you defined with Core Graphics, you need a graphics context.

13.3.3 Drawing into the graphics context

The graphics context is where all your Core Graphics drawing is performed. You can
get a reference to the current graphics context with the global UIGraphicsGet-
CurrentContext method.

1 Add a reference to the current graphics context in the draw method:

let context = UIGraphicsGetCurrentContext()

Now that you have a graphics context, you can set the stroke or fill color, add
the path you defined earlier, and then draw the path using either a fill, a stroke,
or both. 

2 Draw the star path into the current graphics context using an orange fill. Use
the cgColor property of UIColor to pass in a CGColor object.

context?.setFillColor(UIColor.orange.cgColor)
context?.addPath(getStarPath().cgPath)
context?.drawPath(using: .fill)

How to get the path of a complex shape
Several paid programs out there, such as PaintCode, will automatically convert vector
images to Swift code. Alternatively, if you already have a program that can export an
XML-based vector format such as SVG, you can extract the points from the SVG file
in a text editor and copy-paste away!

Features of Core Graphics 
Core Graphics isn’t limited to drawing paths. It also offers additional features that we
don’t have time to delve into here, such as these:

 Drawing images
 Displaying text
 Adding shadows
 Transforms (We looked at view transforms in chapter 5.)
 Creating PDFs

Sets fill color

Adds path 
to context

Draws path using fill



384 CHAPTER 13 Graphics and media
13.3.4 Saving and restoring graphics state

Every time you make a change to an attribute in the graphics context (such as setting
the fill color, font name, line width, anti-aliasing, or transforms—the list goes on)
you’re adjusting the graphics state, and any future graphics calls will be affected by
these changes. If you only want to adjust the graphics state temporarily for the current
operation you’re performing, it’s a good idea to save the graphics state to the stack
first and then restore the graphics state from the stack when you’re finished, to leave
the graphics state as you found it. 

 Surround the drawing of the star path with saving and restoring the graphics state:

context?.saveGState()
//change graphics state
//draw operation (e.g. draw star)
context?.restoreGState()

13.3.5 Drawing paths with UIBezierPath drawing methods

An additional feature of the UIBezierPath wrapper for CGPath is the ability to
stroke or fill a path into the current graphics context directly from the path object.
Using the UIBezierPath drawing methods not only avoids the need for a reference
to the graphics context, but will automatically perform the administrative detail of sav-
ing and restoring graphics state for you. 

NOTE Drawing paths with UIBezierPath methods will only work within the
draw method of UIView, where drawing automatically updates the view’s
graphics context.

1 Replace the graphics context–focused code from earlier with the UIBezier-
Path drawing methods. You can set the fill on the UIColor class itself, and
then fill the path by calling the fill method on the UIBezierPath object.

override func draw(_ rect: CGRect) {
    UIColor.orange.setFill()
    getStarPath().fill()
}

Notice the relative brevity of the UIBezierPath drawing methods. When you use
these stars in the star-rating view, you need to display both filled and unfilled stars. 

2 Add a fill property to the Star class, which determines whether the star
should be filled or given a stroke.

var fill = false
override func draw(_ rect: CGRect) {
    if fill {
        UIColor.orange.setFill()
        getStarPath().fill()
    } else {
        UIColor.orange.setStroke()
        getStarPath().stroke()
    }
}

Should star 
be filled?



385Drawing with Core Graphics
When the fill property is set, the star should be redrawn. However, the star is
being drawn in the draw method, and you should never call the draw method
directly. Instead, you should notify the system that the view needs to be redrawn
with the setNeedsDisplay method.

3 Add a didSet property observer to the fill property, which calls setNeeds-
Display.

var fill: Bool = false {
    didSet {
        setNeedsDisplay()
    }
}

13.3.6 Rendering views in Interface Builder

It would be great to see the star you’ve drawn. Let’s look at what you have so far in
Interface Builder.

1 With the main storyboard open, drag in a temporary view controller and then
drag a view into its root view. 

2 In the Identity Inspector, give the view the custom class of Star, and you should
see ... nothing change! Xcode needs to be notified that it should render your
custom code for a view in Interface Builder. You can do this with the
@IBDesignable attribute.

3 Add the @IBDesignable attribute before the class declaration for Star.

@IBDesignable class Star: UIView {

Return to the main storyboard, and the star view should now render nicely. But
it’s defaulting to not filled. It would be great if you could specify from the story-
board that you want to see the star filled (see figure 13.11).

Figure 13.11 Inspectable custom attribute

Star filled Star hollow



386 CHAPTER 13 Graphics and media
You can specify that a property be adjustable directly from Interface Builder by
adding the @IBInspectable attribute before declaring the property.

4 Add the @IBInspectable attribute before the fill property in the Star
class.

@IBInspectable var fill: Bool = false {

5 Return to the main storyboard and select the Attributes Inspector for the star
view. You should find a new attribute, called “Fill.” 

6 Select On, and your star view should appear filled in the canvas! 

CHALLENGE Add inspectable properties for both the fill color and stroke
color of the star view and check that they update in the storyboard. 

13.3.7 Creating a star-rating view

Now that the star view is ready, you can set up your star-rating view. Similar to the star
view, the star-rating view will render in Interface Builder, and will have inspectable
properties to customize its appearance (see figure 13.12).

Figure 13.12 Star-rating view in Interface Builder

1 Create a Rating class that subclasses UIView, and make it render in the story-
board with the @IBDesignable attribute.

@IBDesignable class Rating: UIView {



387Drawing with Core Graphics
2 Set up a property to define how many stars the rating view should fill. Make the
property inspectable, and include a property observer that registers that the
view requires layout when it is set.

@IBInspectable var rating: Double = 3 {
    didSet {setNeedsLayout()}
}

3 Add the star subviews in the layoutSubviews method of the star-rating view.
Check that the stars array is empty. If it is, you need to create the star views,
adding them to the view and the stars array. You need to clear the back-
ground color of each star view because it will default to black otherwise when
generated from the draw method. Finally, use the rating property to deter-
mine how many stars should be filled.

var stars: [Star] = []
let numberOfStars = 5
override func layoutSubviews() {
    if stars.count == 0 {
        // add stars
        for i in 0..<numberOfStars {
            let star = Star(frame: 
                CGRect(x: CGFloat(30 * i), y: 0, 
                    width: 25, height: 25))
            star.backgroundColor = UIColor.clear
            self.addSubview(star)
            stars.append(star)
        }
    }
    for (i,star) in stars.enumerated() {
        star.fill = Double(i) < rating
    }
}

4 Open the main storyboard, and in the Identity Inspector, change the subclass of
your temporary view to your new Rating class. Your rating view should now
render nicely in the storyboard. 

5 Play with the number of stars and rating properties in the Attributes Inspector,
and change the look of the rating view in the canvas. 
Now you want to make your ratings view interactive in your Bookcase app, so
that the user can select ratings.

6 Override the touchesBegan method in the Rating class. Determine the index
of the star view the user touched from the stars array, and use this index to set
the rating property.

override func touchesBegan(_ touches: Set<UITouch>, 

➥ with event: UIEvent?) {
    guard let touch = touches.first else {return}
    guard let star = touch.view as? Star else {return}

Creates array to 
hold star viewsSets number 

of stars
Checks if

need stars Repeats for 
numberOfStars

Creates star view

Sets background 
to clearAdds star

to view Adds star to 
stars array

For each
star Fill if count is lower 

than rating

Gets touch 
objectGets star

view touched



388 CHAPTER 13 Graphics and media
    guard let starIndex = stars.index(of: star) else {return}
    rating = Double(starIndex) + 1
}

Because the rating property calls setNeedsDisplay in its didSet property
observer, setting the rating property is all that’s needed for the star-rating view
to update visually when the user selects a different rating.

For auto layout and scroll views to manage the size of the star-rating view cor-
rectly, you'll need to specify its intrinsic content size. 

7 Override the intrinsicContentSize property in the Rating class.

override var intrinsicContentSize: CGSize {
    return CGSize(width: 30 * numberOfStars, height: 25)
}

Congratulations—you’ve completed a custom star-rating view, which you could
reuse in other projects! Now that your star-rating view is interactive and opera-
tional, you can move it to the book edit form. 

8 Delete the temporary view controller where you’ve been experimenting, and
replace the placeholder ratings image in the book edit form with the star-
rating view.

9 Connect the star-rating view up to an outlet in the BookViewController class.
Give it the name starRatings.

10 After unwrapping the book object in the viewDidLoad method, set the rating
in the star-rating view in viewDidLoad to the current book rating.

starRatings.rating = book.rating

11  When saving a new book in the touchSave method, instead of hardcoding the
rating to 3, use the current rating in the star-rating view.

let bookToSave = Book(title: titleTextField.text!, …
   rating: starRatings.rating, …)

12 Run the app, select a book, and you should find your new star-rating view
appear below the book cover. 

13 Select a different rating, select Save, and then return to the book. You should
see the rating appear as you left it.

CHECKPOINT If you’d like to compare your project with mine at
this point, you can check mine out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git (Chapter13.2.StarRatings-
View).

Gets index
of star

Sets rating

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


389Drawing with Core Animation
13.4 Drawing with Core Animation
It’s also possible to draw in a view in iOS using the Core Animation framework. All UIKit
views and subclasses are backed by a Core Animation layer, represented by the CALayer
class from the Core Animation framework. The CALayer describes everything visual
about a view that needs rendering and can be used to animate these visuals. 

 You can access a view’s layer with its layer property. With
the reference to the layer, you can then modify its appearance.
For instance, properties are available to adjust background
color, border, corner radius, shadow, mask, transform, and anti-
aliasing. 

 Certain CALayer properties are available in UIView already,
while others aren’t. If you want to give a UIView a background
color of yellow, you could set this directly on the view in Inter-
face Builder without needing to reference its layer. But if you
want to give your UIView a black border of 1 pixel and a gray
shadow (see figure 13.13), you need to manipulate its layer
properties, as shown in the following listing.

layer.borderColor = UIColor.black.cgColor
layer.borderWidth = 1
layer.shadowColor = UIColor.gray.cgColor
layer.shadowOffset = CGSize(width: 2, height: 2)
layer.shadowOpacity = 1
layer.shadowRadius = 2.0

If you find that you need to
adjust a layer property fre-
quently, you could add it to the
inspectable attributes for all
views by creating an extension
for UIView and adding it as an
inspectable computed prop-
erty. The following extension
for UIView adds a corner
radius inspectable property
(see figure 13.14).

 
 
 
 
 

Listing 13.1 Add border and shadow to view layer

Figure 13.13 View 
layer with border 
and shadow

Figure 13.14 Corner radius



390 CHAPTER 13 Graphics and media

 

extension UIView {
    @IBInspectable var cornerRadius: CGFloat {
        get {return layer.cornerRadius}
        set {layer.cornerRadius = newValue}
    }
}

NOTE If you want your Attributes Inspector adjustments to show up in Inter-
face Builder, views still need to be attached to a subclass of UIView that con-
tains the @IBDesignable attribute.

Core Animation layers not only provide customizable properties, they’re ready and
primed for animation; and though it’s true you can customize animations explicitly
using CATransaction objects, the exciting thing about Core Animation layers is that
adjusting layer properties will implicitly trigger an animation of the transition between
the properties, and you don’t have to do a thing! 

 You’ll update the star object in your star-rating view to use the CALayer and take
advantage of this fancy built-in animation. Rather than an immediate change when
the star’s fillColor is set, there will be a smooth transition from white to orange.

The Core Animation framework contains many CALayer subclasses that offer addi-
tional functionality beyond the basic CALayer. You’ll find layer subclasses that help
you to display gradients, text, tiles, video; you’ll even find an emitter layer that displays
particle systems, which you could use to simulate fire or smoke.

Listing 13.2 Add inspectable layer property in UIView extension

Layer hierarchy
Similar to the way you can add subviews to views to create a hierarchy of views, you
can also add sublayers to layers. Every view and subview of a view has its own layer
property that, in turn, can contain a hierarchy of layers. 

View and layer hierarchy

CALayer

• sublayers

CALayer

• sublayers

CALayer

• sublayers

UIView

• layer

• subviews

UIView

• layer

• subviews

UIView

• layer

• subviews



391Using the camera
Figure 13.15 View and layer hierarchy of rating view

A subclass of CALayer specializes in drawing paths; it’s called CAShapeLayer. You’ll
use shape layers to draw star shapes, and then add them to each star view’s layer (see
figure 13.15).

1 Refactor the draw method of the Star class in the Bookcase app to create a
CAShapeLayer object and build up the star shape. Then add the shape layer as
a sublayer to the main layer for the view.

let star = CAShapeLayer()
override func draw(_ rect: CGRect) {
    star.path = getStarPath().cgPath
    if fill {
        star.fillColor = UIColor.orange.cgColor
    } else {
        star.fillColor = UIColor.clear.cgColor
        star.strokeColor = UIColor.orange.cgColor
    }
    self.layer.addSublayer(star)
}

2 Run the app again, select a book, and change the rating. You should find, this
time, that the change causes an animation between the filled and unfilled states
of the star. Fancy!

13.5 Using the camera
In addition to including images in your app catalog or drawing them with Core
Graphics or Core Animation, an app can also use images from external sources, such
as the device’s camera or the user’s photo library.

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git (Chapter13.3.StarRatingsView-
CoreAnimation).

Rating:UIView

• layer

• subviews

Star:UIView

• layer

•subviews

Star:UIView

• layer

• subviews

Star:UIView

• layer

• subviews

Star:UIView

• layer

• subviews

Star:UIView

• layer

• subviews

CAShapeLayer

• sublayers

Creates 
shape layer

Sets path of
shape layer

Fill path

Fill path
with clear Stroke path

Adds shape layer 
to view layer

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


392 CHAPTER 13 Graphics and media
 Here are two main ways of allowing the user to access the device’s camera from
your app:

 The UIImagePickerController from the Cocoa Touch Layer is the simplest
approach. It provides a default interface for taking photos and videos, or select-
ing photos from the photo library that you can “drop in” to your app. You don’t
need to concern yourself with too many details, though customization of the
image picker interface is possible.

 If you need to go beyond the default possibilities of UIImagePickerCon-
troller, use the AVFoundation framework from the iOS SDK’s Media layer. 

13.5.1 Taking photos with the image picker controller

We’ll come back to the AVFoundation framework shortly, but for now you’ll use the
simpler UIImagePickerController in the Bookcase app to allow users to add cover
images to their books. 

 The user will select a camera button in the book edit scene, which will open the
default image picker controller. After taking and accepting the photo, the image will
appear instead of the default cover image (see figure 13.16).

Figure 13.16 Using UIImagePickerController to photograph a book cover

REQUESTING PERMISSION TO USE THE CAMERA

Before you can use the camera, you need user permission, and to get permission you
must explain why you need it! This explanation will be included in a dialog that
requests authorization from the user when you first access the camera (see figure
13.17).

UIImagePickerController



393Using the camera
You can provide the explanation text by adding a value to the Info.plist file:

1 Select the Info.plist file in the Project Navigator.
2 Right-click anywhere on the Property List Editor, and select Add Row.
3 Select Privacy - Camera Usage Description from the key drop-down.
4 Add a value describing why you need access. I went with Required to Photo-

graph Your Book (see figure 13.18).

Figure 13.18 Add row to property list

NOTE Be careful not to forget to add this value to the Info.plist file—with-
out it, your app will crash in iOS 10 when it attempts to access the camera!

Your explanation text

Figure 13.17 Camera 
permission dialog

Add description



394 CHAPTER 13 Graphics and media

er
ADDING A CAMERA BUTTON

For the user to take a photo, you need to add a camera button to the interface. Let’s
add a bar button item to the navigation bar of the book edit scene (see figure 13.19).

1 Find the book edit view controller in the main storyboard.
2 Drag a bar button item from the Object Library to the left of the Save button.
3 Conveniently, bar button items already have a camera symbol available. In the

System Item attribute for the bar button item, select Camera.

ENSURING THE CAMERA IS AVAILABLE

It’s good practice to make sure the camera is available before using it. 
 You’ll disable the camera button when the device doesn’t have access to a camera.

1 Open the main storyboard in the Assistant Editor, and create an IBOutlet for
the camera button and call it cameraButton. You can use the isSource-
TypeAvailable method of the UIImagePickerController class to check a
source type’s availability. 

2 Add the following to the viewDidLoad method of the BookViewController
class:

if !UIImagePickerController.isSourceTypeAvailable(.camera) 
    cameraButton.isEnabled = false
}

TAKING A PHOTO

Finally, you’re set to take a photo! The UIImagePickerController class handles
the interface for taking pictures, but you need to instantiate it and present it. Because
the UIImagePickerController can also be used to record video or choose from
images already saved on the device, you’ll need to specify that you want the camera to
be the source.

1 With the storyboard open in the Assistant Editor, create an IBAction for the
camera button in the BookViewController class, and call it takePhoto.

2 Inside the takePhoto method, instantiate a UIImagePickerController
with a camera source and present it.

let imagePicker = UIImagePickerController()
imagePicker.sourceType = .camera
present(imagePicker, animated: true, completion: nil)

Figure 13.19 Camera button 
item added to the navigation bar

Checks 
camera is 
unavailableDisables

camera button

Creates image 
picker controllSets source

to camera
Presents full

screen



395Using the camera

ge 
You can get notification that the user has taken a photo through the image
picker controller’s delegate.

3 Set the BookViewController as the delegate of the imagePicker.

imagePicker.delegate = self

The delegate of UIImagePickerController must adopt two protocols,
UIImagePickerControllerDelegate and UINavigationController-

Delegate. 

4 Adopt these protocols in an extension of BookViewController.

extension BookViewController: UIImagePickerControllerDelegate, 
        UINavigationControllerDelegate {
    // Implement protocol methods here
}

When the user has taken a picture, the delegate’s didFinishPickingMedi-
aWithInfo method is called and passed a reference to the image. Be sure to
dismiss the image picker controller from this method. 

5 Implement the didFinishPickingMediaWithInfo delegate method:

func imagePickerController(
        _ picker: UIImagePickerController, 
        didFinishPickingMediaWithInfo info: [String: Any]) {
     dismiss(animated: true, completion: nil)
    // Store image
}

The image picker controller should be working now, but your app isn’t doing
anything with the photo the user takes! First, you need a property to store the
image. 

6 Define an optional property to store the image in the BookViewController
class.

var coverToSave: UIImage?

The image the user takes is passed into the delegate method as an element in
the info dictionary and stored against the UIImagePickerController-
OriginalImage key. 

7 In the didFinishPickingMediaWithInfo method, extract the image from
the info dictionary, store it in the coverToSave property, and use it to replace
the default image in the book edit form.

if let image = info[UIImagePickerControllerOriginalImage] 
        as? UIImage {
    coverToSave = image
    bookCover.image = image
}

Delegate 
method

Dismisses image 
picker controller

Unwraps picked ima
from the dictionary

Stores image in
the book object Displays image 

in form



396 CHAPTER 13 Graphics and media

s

Now, when the user selects to save the book they’ve edited, you can also use the
coverToSave property to generate the Book object to save. 

8 Add in the cover property when saving a book.

let bookToSave = Book(title: titleTextField.text!,
    author: authorTextField.text!,
    rating: starRatings.rating,
    isbn: isbnTextField.text!,
    notes: notesTextView.text!,
    cover: coverToSave
)

Next, you'll set up the Book structure to store cover images to disk. 

Unfortunately, the UIImage class does not adopt the Codable protocol. Fortu-
nately, the Data structure does adopt the Codable protocol, and it’s fairly
straightforward to convert a UIImage to the Data format and vice versa.

Instead of using the init and encode methods that the Codable protocol
automatically generates, you’re going to implement your own version. It will be
mostly identical to the synthesized version, but yours will also manage convert-
ing your image to image data and back. (If you need reminding about the Cod-
able protocol, revisit section 11.2.3, "Archiving objects.")

9 Implement your own init method in the Book struct that works with the
decoder to generate a Book object. Use the NSKeyedUnarchiver class to unar-
chive image data to a UIImage object. 

init(from decoder: Decoder) throws {
  let container = try decoder.container(keyedBy: CodingKeys.self) 
  title = try container.decode(String.self, forKey: .title)
  author = try container.decode(String.self, forKey: .author)
  rating = try container.decode(Double.self, forKey: .rating)
  isbn = try container.decode(String.self, forKey: .isbn)
  notes = try container.decode(String.self, forKey: .notes)

  if let imageData = 
    try container.decodeIfPresent(Data.self, forKey: .imageData) { 
    image = NSKeyedUnarchiver.unarchiveObject(with: imageData) 
      as? UIImage
  } else {
    image = nil
  }
}

10 Implement your own encode method in the Book structure that works with the
encoder to encode Book data. Use the NSKeyedArchiver class to archive the
image to the Data format.

func encode(to encoder: Encoder) throws {
  var container = encoder.container(keyedBy: CodingKeys.self)
  try container.encode(title, forKey: .title)
  try container.encode(author, forKey: .author)

Identical to
synthesized init

Decodes image data

Unarchives 
to UIImage

Sets to nil if 
no image data

Identical to
ynthesized encode



397Using the camera

sy
  try container.encode(rating, forKey: .rating)
  try container.encode(isbn, forKey: .isbn)
  try container.encode(notes, forKey: .notes)
  
  if let image = image {
    let imageData = NSKeyedArchiver.archivedData(withRootObject: image)
    try container.encode(imageData, forKey: .imageData)
  }
}

11 Add an imageData constant to the CodingKeys structure in Book.swift to use
as a key when encoding your data for archiving.

enum CodingKeys: String, CodingKey {
    case title
    case author
    …
    case imageData
}

That’s it! Now, if you run your app on a device, select the camera button, select the
camera shutter button, and select Use Photo, you should see the photo appear as a
cover for the book. If you select Save, the book cover should appear in the table or col-
lection views and persist for the next launch of your app.

NOTE The simulator doesn’t have access to your Mac’s camera, so you need
to test taking photos with an actual device. The simulator will come in handy,
however, for testing that your camera button is disabled if the camera is
unavailable!

13.5.2 Selecting photos from photo library with the image picker controller

The UIImagePickerController can handle selecting images from a user’s photo
library too! Although the interface is vastly different from the interface for taking
photos, the code you need to implement is quite similar, with three main differences:

 Access to the photo library requires a different permission, and so a different
explanation. You need to set the explanation in your app’s Info.plist file under
Privacy - Photo Library Usage Description.

 You need to adjust the sourceType of the image picker controller to photo-
Library.

imagePicker.sourceType = .photoLibrary

Alternatively, you can use savedPhotosAlbum, which only shows the device’s
camera roll.

 Apple recommends in the documentation for UIImagePickerController
that you present your image picker as a popover when picking from a photo
library or saved photos album. As you saw in chapter 9, popovers appear as a
bubble with an arrow pointing to an anchor point. 

Identical to
nthesized encode

Unwraps 
image

Archives image
to Data

Encodes image data



398 CHAPTER 13 Graphics and media
You need to present your image picker as a popover simply by updating its
modal presentation style, and specifying the popover’s anchor point:

imagePicker.modalPresentationStyle = .popover
imagePicker.popoverPresentationController?.barButtonItem 
    = galleryButton

CHALLENGE Add a custom bar button item to the navigation bar next to the
camera button, using the gallery image from the media package. If the user
selects the Gallery button, the device’s photo library should open. The selected
photo should replace the current book’s cover image (see figure 13.20).

Figure 13.20 Using UIImagePickerController to select a photo from the photo library

13.5.3 Taking photos with AVFoundation

The UIImagePickerController is the simplest approach for taking photos and vid-
eos, and selecting photos from the device, and is appropriate for many circumstances,
but sometimes you might need to dig a little deeper with the AVFoundation framework. 

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git (Chapter13.4.UIImagePicker-
Controller).

Sets popover 
presentation style

Sets popover 
anchor point

UIImagePickerController

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


399Using the camera
 The AVFoundation framework is useful for recording, editing, and playing back
audio and video. With AVFoundation, you can get lower-level access to the device’s
camera to do things such as adjust white balance, focus, and exposure; add effects;
access raw picture data; or detect patterns such as faces, barcodes, or QR codes.

 You’ll use the AVFoundation framework in your Bookcase app to use the camera to
automatically detect barcodes for the book and fill in the ISBN field. (Book barcodes
are derived from their ISBN.) Your users will thank you for not making them labori-
ously type in the ISBN for each book! See figure 13.21.

Figure 13.21 Using AVFoundation to detect barcodes

SETTING UP THE BARCODE DETECTION VIEW CONTROLLER

Because you’ll use AVFoundation to access the camera, you need to build your own
interface. None of this will be too new to you, so if you prefer, you can skip to the next
checkpoint where you’ll begin using AVFoundation. Alternatively, following the steps
to set up the barcode detection view controller could be an interesting revision.

 First, you’ll need a scene to display the video preview for barcode detection.

1 In the main storyboard, drag another view controller into the right of the book
edit form. Next, you need a button in the book edit form that opens the bar-
code detection scene.

2 Add the barcode icon from the media package to the asset catalog.

BarcodeViewController

ISBN detected



400 CHAPTER 13 Graphics and media
3 Drag in another bar button item to the top right of the book edit form’s naviga-
tion bar. Give it the barcode image.

4 Add a popover segue from the barcode button to the barcode detection scene.
To implement the barcode detector scene, you’ll need to create a view control-
ler subclass.

5 Create a new Cocoa Touch class called BarcodeViewController that sub-
classes UIViewController. The BarcodeViewController will display the pre-
view of the camera and handle detection of barcodes. We’ll look at how to do
this shortly, but first, the BarcodeViewController will also need a way for the
user to cancel this operation. 

6 In the main storyboard, embed the barcode detection scene in a navigation
controller. Give the barcode scene the title “Detect barcode” and add a Cancel
bar button item to the right of the navigation bar. The Cancel button should
dismiss the barcode view controller.

7 Link the Cancel button to an @IBAction in the BarcodeViewController
class.

@IBAction func touchCancel(_ sender: AnyObject) {
    dismiss(animated: true, completion: nil)
}

If the barcode detection scene detects a barcode, it will need to communicate
the ISBN back to the book edit form. You’ll implement a delegation pattern to
handle this communication.

8 Add a delegation protocol to the BarcodeViewController.swift file that contains
a foundBarcode method. The BarcodeViewController class can use this
method to notify its delegate that it has found a barcode.

protocol BarcodeViewControllerDelegate {
    func foundBarcode(barcode: String)
}
class BarcodeViewController
    var delegate: BarcodeViewControllerDelegate?
…

9 The BookViewController can set itself as the delegate of the BarcodeView-
Controller, to be notified when a barcode is detected and then update the
ISBN field in the book edit form.

extension BookViewController: BarcodeViewControllerDelegate {
    func foundBarcode(barcode: String) {
        isbnTextField.text = barcode
    }
}



401Using the camera
10  In the BookViewController class, set up a prepareForSegue method, dig
down through the barcode detection scene’s navigation controller to get a
reference to the barcodeViewController, and set the BookView-

Controller as the delegate of the barcodeViewController.

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
    if let navController = segue.destination as?
            UINavigationController,
        let barcodeViewController = navController.topViewController
            as? BarcodeViewController {
        barcodeViewController.delegate = self
    }
}

11 If you run your app now, you can open the barcode detection scene and cancel
it, but you haven’t implemented any barcode detection yet! Let’s do that now.

DETECTING A BARCODE

As is often the case in iOS, there isn’t just one way to solve a problem. To detect bar-
codes you could use

 The Vision framework, a powerful new framework introduced in iOS 11 that
performs object detection, taking advantage of the new machine learning
framework, CoreML.

 The AVFoundation framework itself provides object detection. Some object
detection such as faces can be more accurate with the Vision framework and
machine learning, but on the other hand, AVFoundation has a faster processing
time.

We’ll explore barcode detection using the AVFoundation framework.
 The AVFoundation framework contains several classes that work together to cap-

ture, play, edit, and write video and audio. To detect book barcodes, we’ll look specifi-
cally at using AVFoundation to capture metadata from the device’s camera.

 At the center of capturing media with AVFoundation is an instance of an
AVCaptureSession. You can imagine your AVCaptureSession as a sort of black
box where you can make connections between inputs and outputs. First, you hook up
a device (such as a camera or microphone) to its own input that captures data from
the device. You then connect this input to the capture session, which then directs this

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git (Chapter13.5.PreAVFoundation)

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


402 CHAPTER 13 Graphics and media
data to appropriate outputs (such as writing to file, still images, or metadata). See fig-
ure 13.22 for more detail on this process and the classes involved.

 Notice the boxes with broken lines—these are the objects you’re going to need to
use to capture input data from the camera, output it to metadata, and detect bar-
codes.

1 In the BarcodeViewController class, define a capture session instance prop-
erty ready to accept inputs and dispatch appropriate data to outputs.

var captureSession: AVCaptureSession = AVCaptureSession()

2 In viewDidLoad, get a reference to the default capture device for the camera.

let cameraDevice = AVCaptureDevice.default(for: AVMediaType.video)

NOTE The default device for video happens to be on the back camera,
which is perfect for barcode detection. If you wanted the front camera (aka
selfie camera) instead—perhaps for face detection—you’d use the devices
method, which you could use to return an array of all available cameras. You
could then use the position property on the AVCaptureDevice objects to
find the front camera.

3 Instantiate an input object, passing it the camera. This operation can throw an
error, so you’ll need to implement error handling. Use an optional try to trap

AVCaptureDeviceInput AVCaptureDeviceInput

AVCaptureSession

Camera
AVCaptureDevice

(AVMediaTypeVideo)

Movie file
AVCaptureMovieFileOutput

Video frames for processing
AVCaptureVideoDataOutput

Still images
AVCaptureStillImageOutput

Audio file
AVCaptureAudioFileOutput

Audio buffers for processing
AVCaptureAudioDataOutput

Metadata 
AVCaptureMetadataOutput

Microphone
AVCaptureDevice

(AVMediaTypeAudio)

Figure 13.22 AVCaptureSession with inputs and outputs



403Using the camera
any errors, call a failed method if you need to notify the user of the error with
an alert (see chapter 11 if you need a reminder on alerts), and exit the method.

guard let videoInput =
        try? AVCaptureDeviceInput(device: cameraDevice)
    else {
        failed()
        return
}

4 Now, you can plug the camera’s video input into the capture session black box,
but first, you need to check that the capture session can accept this type of input.
Again, if there’s a problem, you should notify the user and exit the method.

guard (captureSession.canAddInput(videoInput)) 
  else {
    failed()
    return
}
captureSession.addInput(videoInput)

Now that you’ve plugged your input into your capture session, it’s time to plug
in the output to extract barcode metadata. Similar to adding inputs, you need
to check if the capture session is capable of adding this type of output, and if
not, notify the user.

let metadataOutput = AVCaptureMetadataOutput()
guard (captureSession.canAddOutput(metadataOutput)) 
  else {
    failed()
    return
}
captureSession.addOutput(metadataOutput)
// Customize metadata output

Not only are there several types of metadata, there are several barcode formats.
Fortunately, a standard 13-character barcode format exists that books imple-
ment these days. 

Error handling with an optional try
Earlier we looked at the do-catch block with try, to handle places in your code
where an error can be thrown. A more succinct alternative can be the optional try,
represented by try?. An optional try will return an optional for the value that a throw-
able operation returns. It’s then up to you to unwrap the optional. If you’re confident
that an error will never be thrown, you also have the option to use an implicitly
unwrapped optional try, represented by try!. 

Unwraps 
input objectTries to

instantiate
input object Notifies user 

if error
Exits method if error

Checks capture session 
can add input

Notifies the user if 
problem and returns

Adds input to 
capture session

Instantiates 
output object

Checks capture session
can add output

Notifies the user if 
problem and returns

Adds output to 
capture session



404 CHAPTER 13 Graphics and media
5 Let the output object know what sort of metadata to look for.

metadataOutput.metadataObjectTypes = [AVMetadataObject.ObjectType.ean13]

When the output object discovers a barcode, it will notify its delegate. To
receive callbacks from the metadata output, your BarcodeViewController
class will need to specify itself as the delegate. You also need to specify which
queue to receive callbacks on. Because you’ll be updating the user interface, it
makes sense to receive callbacks on the main queue.

6 Specify the delegate and the queue with the setMetadataObjectsDelegate
method. 

metadataOutput.setMetadataObjectsDelegate(self, 

➥ queue: DispatchQueue.main)

Great—your black box is all set up with inputs and outputs, ready to start
detecting barcodes, but there's one thing left to do—you need to turn it on!

7 Turn on the capture session:

captureSession.startRunning()

Because the BarcodeViewController is the delegate of the metadata output
object, it will need to adopt the delegation protocol. The captureOutput del-
egate method will be notified whenever the metadata output object finds a bar-
code, and any information on barcodes found will be passed into the
metadataObjects array. For simplicity, you’ll use the first object in the array,
and cast it as a special class for barcodes called AVMetadataMachineReadable-
CodeObject, which stores the barcode value in its stringValue property. 

Now that you’ve detected a barcode, you can stop the capture session, report
the barcode back to the BookViewController using the delegate you created
earlier, and dismiss the BarcodeViewController.

8 Create an extension of BarcodeViewController that adopts the output
object’s delegate, implements the captureOutput method, and deals with bar-
codes detected.

extension BarcodeViewController:
        AVCaptureMetadataOutputObjectsDelegate {
    func metadataOutput(_ captureOutput: AVCaptureMetadataOutput, 
            didOutput metadataObjects: [AVMetadataObject], 
            from connection: AVCaptureConnection) {
        if let metadataObject = metadataObjects.first as? 
                AVMetadataMachineReadableCodeObject {
            captureSession.stopRunning()
            delegate?.foundBarcode(barcode: 
                metadataObject.stringValue!)
            dismiss(animated: true, completion: nil)
        }
    }
}

Adopts the metadata 
output delegate

Receives
detected
barcodes

Casts first 
object as barcodeTurns off

capture session

Notifies 
BookViewController 
of barcode

Dismisses
BarcodeViewControlle

r



405Playing sounds
If you ran your app now, you’d find that barcodes are being detected correctly,
but you won’t yet see a preview of the camera—not exactly user friendly! To pre-
view the camera, you need to generate a special type of CALayer that will pre-
view the video from the AVCaptureSession.

9 Add a preview layer instance property to the BarcodeViewController.

var previewLayer: AVCaptureVideoPreviewLayer!

10 Back in the viewDidLoad method, instantiate the preview layer, passing in the
capture session.

previewLayer = AVCaptureVideoPreviewLayer(session: captureSession)

11 Set the frame of the preview layer to the frame of the root view’s layer. Then, set
the preview layer’s scaling to maintain its aspect ratio but fill the frame, with the
strangely named videoGravity property.

previewLayer.frame = view.layer.frame
previewLayer.videoGravity = AVLayerVideoGravity.resizeAspectFill

12 Finally, add the preview layer to the layer of the BarcodeViewController’s
root view.

view.layer.addSublayer(previewLayer)

13 That’s it! Run your app, open a book, and select the Barcode button. The bar-
code detector scene should appear, previewing the camera. 

14 Point the camera at a book barcode; the barcode scene should disappear, and
the ISBN field should fill with the book’s ISBN, like magic!

13.6 Playing sounds
The AVFoundation framework contains an area dedicated to audio. If you’re inter-
ested in audio features, such as managing audio interruptions or playing audio in the
background, look into the AVAudioSession. If you’re interested in mixing audio
and applying different audio effects, you should check out the AVAudioEngine. If,
on the other hand, you only need the basic features of recording and playing audio,
you can use the AVAudioRecorder and AVAudioPlayer classes.

 We’ll keep it simple here and play a sound in the Bookcase app, using an AVAudio-
Player instance.

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSAppDevelop-

mentwithSwiftinAction/Bookcase.git  (Chapter13.6.AVFoundation).

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


406
 CHAPTER 13 Graphics and media

 You may have noticed that a default camera shutter sound already plays when you
take a photo, as part of the image picker controller. Let’s play a short sound as well to
indicate that a barcode has been detected.

1 Grab the barcode scanning sound (scanner.aiff) out of the media package, and
drag it into your Project Navigator. 

2 To keep your project organized, you might want to create a group in the Project
Navigator called “Media” and move in the sound file and asset catalog. 
You’ll play the barcode sound when the book edit form scene is notified by the
barcode detection scene that it has found a barcode. 

3 In the foundBarcode method for the BookViewController class, call the
playBarcodeSound method. 

4 Create the playBarcodeSound method. Get a URL reference to the sound file
via the main bundle.

func playBarcodeSound() {
    guard let url = Bundle.main.url(
        forResource: "scanner", 
        withExtension: "aiff") else {return}
    // Play sound
}

5 Add an AVAudioPlayer instance property to the BookViewController class
to play the sound. This property mustn’t only be defined locally within the
method, or the property could be released while the sound is playing.

var barcodeAudio: AVAudioPlayer!

6 Back in the playBarcodeSound method, instantiate the barcodeAudio prop-
erty with the URL you generated. Trap any errors with an optional try.

barcodeAudio = try? AVAudioPlayer(contentsOf: url)

7 Now that you have a sound file generated, you can go ahead and play it.

barcodeAudio?.play()

8 Run the app again, and this time the app should indicate when it detects a bar-
code with a simple barcode sound.
CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git (Chapter13.7.AVAudioPlayer).

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


407Summary
13.7 Summary
In this chapter, you learned the following:

 Including variations for your assets in the asset catalog helps streamline your
app bundle through app slicing.

 App icons you add to your asset catalog should be square—Apple will round the
corners for you.

 Include a launch screen that resembles the first screen of your app to give the
illusion that your app's interface is loading.

 When subclassing UIView, perform your drawing in the draw method.
 Consider Core Animation layers for drawing if a hierarchy of layers makes sense

for your drawing or if you want to use animation features.
 UIImagePickerController is the simplest approach to giving the user

access to the camera in your app. For a more advanced feature set, use
AVFoundation.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



408 CHAPTER 13 Graphics and media
 
 
 
 
 
 
 
 



 Networking
Without a doubt, web services can transform an everyday app into an extraordinary
experience. By hooking into the vast and diverse number of services and informa-
tion online, or using the processing power of virtual servers, connecting to third-
party web services can turn your humble app into an app that astounds!

 You may be interested in connecting to your own web service, too. Perhaps
Apple’s iCloud and CloudKit services don’t meet your needs precisely; maybe you
need a more sophisticated back-end solution; or perhaps you already have a web
service built that you hope to use.

 In this chapter, we’ll focus on using iOS networking capabilities to connect your
app with online web services. Along the way, you’ll encounter additional concepts:

This chapter covers
 Connecting to web services

 Requesting data from a web service

 Downloading from a web service

 Parsing JSON data

 Using dependency managers
409



410 CHAPTER 14 Networking
 URL sessions and URL session tasks
 JSON serialization and SwiftyJSON

 CocoaPods and Carthage
 Operation queues
 App Transport Security

14.1 Using a web service
Most of the big players such as Google, Amazon, Twitter, and Facebook offer a range
of web services such as mapping, cloud computing, login, analytics, or mobile advertis-
ing. Many of these services also provide their own SDK for iOS to simplify the process
of using their service. In fact, basic social interactions such as posting to Facebook or
Twitter are built right into the iOS SDK via the Social framework. Plenty of small play-
ers are out there though, and directories such as http://programmableweb.com can
help you discover that potential. 

 In the previous chapter, you implemented bar code detection in your Bookcase app,
which automatically filled in the ISBN field. How cool would it be if, by scanning a
book’s bar code, the book’s details were automatically filled in as well! See figure 14.1.

 In this chapter, you’ll improve your Bookcase app by integrating it with the
Google Books web service (https://developers.google.com/books/). You’ll download

ISBN
detected

Data
returned

BarcodeViewController

Figure 14.1 Request book data from a web service.

http://programmableweb.com
https://developers.google.com/books/


411Setting up a books service
JSON data for scanned books, parse the data, and download cover images for
scanned books.

14.2 Setting up a books service
When the BookViewController receives the bar code, it will send this code to the
books web service to request data on the book.

 The temptation might be to add networking code directly to the BookViewCon-
troller, but to keep code nicely organized, testable and reusable, you’re going to set
up a model class to connect with the books web service, and return the book data to
the BookViewController, which will then update the views (see figure 14.2).

Figure 14.2 Model view controller getting book data

1 Right-click on the Model group in the Project Navigator, select New File > Swift
File, and name the new file “GoogleBooksService.”

2 Set up a class to connect with the Google Books web service:

class GoogleBooksService { 
}

The BookViewController class needs to call a method on this class to get the
data on a book. Because the networking code will be performed on a back-
ground thread, this method needs to be passed a closure that will receive the
response from the server.

3 Add to the GoogleBooksService a getBook method that receives the bar
code and a completion handler to notify the BookViewController when it
has finished. We’ll fill the details of this method later.

func getBook(with barcode: String, 
    completionHandler: @escaping (Book?, Error?) -> Void) {

CHECKPOINT Open the Bookcase app where you left it at the end of
the last chapter, or you can check it out at https://github.com/

iOSAppDevelopmentwithSwiftinAction/Bookcase.git (Chapter13.7.AVAudio-
Player).

title text field

author text field

book cover image

View

booksService

Model

BookViewController
Updates Requests book

Returns book

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


412

Comp
ha
CHAPTER 14 Networking

    // Get book from web service
}

Because the completion handler will be called from an asynchronous opera-
tion, it needs to be defined as @escaping.

4 Add a cancel method, if you need to cancel an operation. You’ll fill in the
details of this method later, too.

func cancel() {
    // Cancel any web service operations
}

One day, who knows—Google might close their web service to developers or
you might decide an alternative web service does a better job. Let’s ensure with
a protocol that, from the perspective of your view controllers, the internal
details of the web service are irrelevant.

5 Before the GoogleBooksService class definition, set up a protocol that
defines the two main public methods of this class.

protocol BooksService {
    func getBook(with barcode: String, 
        completionHandler: @escaping (Book?, Error?) -> Void)
    func cancel()
}

6 Now, set the GoogleBooksService to adopt the BooksService protocol.

class GoogleBooksService: BooksService { 

The BookViewController will request data from the BooksService when
the user scans a barcode.

7 Instantiate a GoogleBooksService object instance property in the Book-
ViewController. Define the variable with the BooksService protocol, so it
can be easily swapped out if you go with a different service in the future.

var booksService: BooksService = GoogleBooksService()

Now, when a barcode is detected, the BookViewController can request the
booksService to get the details of the book, and use these details to fill in the
details of the book in the form, ready for the user to either save this informa-
tion or cancel.
8 Add the request to get the book details to the end of the foundBarcode
method in the BookViewController extension.

booksService.getBook(with: barcode) { 
        (scannedBook, error) in
    if error != nil {
        // Deal with error here
        return

Gets book from 
BooksServiceletion

ndler Error handling 
to go here



413Communicating with the web service
    } else if let scannedBook = scannedBook {
        self.titleTextField.text = scannedBook.title
        self.authorTextField.text = scannedBook.author
        self.bookCover.image = scannedBook.cover
        self.coverToSave = scannedBook.cover
        self.saveButton.isEnabled = true
    }
} else {
    // Deal with no error, no book!
}

Now that the skeleton of the GoogleBooksService is ready, and it’s communicating
with the BookViewController, you can focus on setting up communication with the
web service itself.

14.3 Communicating with the web service
We’ll look in detail shortly about how to communicate with the web service using the
URLSession API. As an overview, you’ll want to follow these steps:

1 Create or access a URLSession object (optionally configured with a URL-
SessionConfiguration object).

2 Create a URL object (optionally using a URLComponents object to customize
the URL).

3 Optionally create a URLRequest object to further customize the URL request.
4 Use the URLSession object and the URL (or URLRequest) object to create a task.
5 Resume (begin) the task.
6 Receive responses from the web service either in a completion callback or with

delegate methods.

See figure 14.3 for a broad overview of the path for creating and configuring all
objects that are involved in communicating with a web service. 

Figure 14.3 Create and configure objects for communicating with the web service.

Moves book 
information into 
form fields

Ensures Save 
button enabled

Necessary
Key

Alternative/
optional 

URL string

URL

Use to instantiate

Use to instantiate

Instantiates
Use to instantiate

URLComponents

• queryItems

• url

URLSession taskURLSession

• priority

URLRequest

• url

• cachePolicy

• timeOutInterval

• HTTPMethod

• networkServiceType

URLSessionConfiguration

• requestCachePolicy

• timeOutIntervalForRequest

• allowsCellularAccess

Use to instantiate



414 CHAPTER 14 Networking
14.4 Creating a URL Session
First, you’ll need a URLSession object to coordinate communication with the web
service. 

 Most of the configuration of your URLSession object is performed with a URL-
SessionConfiguration object. 

14.4.1 URLSessionConfiguration

URLSessionConfiguration objects come in three flavors:

 Default—Caches responses to requests to disk
 Ephemeral—Performs no caching
 Background—Permits tasks to be performed when the app is in the background

The following sets up a default session configuration object:

let configuration = URLSessionConfiguration.default

Once you have a standard URLSessionConfiguration object, you can configure it
further by modifying properties such as

 requestCachePolicy—Determines when requests in this session check for
cached data. The following, for example, requests that local caches are ignored:

configuration.requestCachePolicy = .reloadIgnoringLocalCacheData

 timeoutIntervalForRequest—The acceptable waiting time before a
request times out. The following, for example, changes the timeout interval
from 60 (the default) to 30:

configuration.timeoutIntervalForRequest = 30

 allowsCellularAccess—Specifies whether this session should connect via
cellular networks. The following, for example, prevents your session from con-
necting via cellular networks:

configuration.allowsCellularAccess = false

14.4.2 URLSession

There are three ways to access a URLSession, which range from basic access to the
session to broader access to configure the session and receive session events.

 Shared session. URLSession contains a type property called shared which
contains a reference to a URLSession singleton.

let session = URLSession.shared

This shared session is appropriate for basic network tasks because it can't be
customized beyond the default configuration, and doesn’t have access to more-
advanced session events. As the shared session is a singleton, multiple sessions
aren’t available via this property. 



415Creating a URL Session
 Instantiated with a session configuration object.

let session = URLSession(configuration: configuration)

 Instantiated with a session configuration object, delegate, and queue.

let session = URLSession(configuration: configuration, delegate: self, 
delegateQueue: OperationQueue.main)

In addition to a configuration object, you can specify a delegate to receive additional
session notifications and permit additional configuration. Because network opera-
tions are performed on a background thread, when you receive notifications from the
server, you can’t be sure to be on the main thread. Specifying a queue when instantiat-
ing the session configuration object can request that responses from the server be
served on a specific queue (often, this would be the main queue to be able to update
the user interface).

1 Add a URLSession as a lazy property to the GoogleBooksService class that is
instantiated with a default URLSessionConfiguration object, sets the
GoogleBooksService class as the session’s delegate, and specifies that session
responses are sent to the main queue.

lazy var session: URLSession = {
    let configuration = URLSessionConfiguration.default
    return URLSession(configuration: configuration, 
        delegate: self, delegateQueue: OperationQueue.main)
}()

Because you’ve made GoogleBooksService the delegate of the URLSession,
it needs to adopt the URLSessionDelegate. Because the URLSession-
Delegate inherits from NSObjectProtocol, your class also needs to adopt
this protocol. The easiest way to inherit NSObjectProtocol is to subclass
NSObject. 

2 Update the GoogleBooksService class definition.

class GoogleBooksService: NSObject, BooksService, URLSessionDelegate {

TIP When defining a subclass, the class it subclasses always precedes proto-
cols in its definition.

Operation queue
In chapter 12, we looked at one approach for managing threads, called the dispatch
queue. The API for using dispatch queues is known as Grand Central Dispatch, or
GCD. An alternative approach to GCD is what’s known as the operation queue. Built
on top of the GCD API, the operation queue provides additional features and control. 

Similar to dispatch queues, you either create a background operation queue with a
certain quality of service or request access to the main queue, which has access to



416 CHAPTER 14 Networking
14.5 Setting up the URL request
To connect to the books web service, you need to pass a URL to the URLSession.
According to the API documentation at the Google Books web service page (https://
developers.google.com/books/docs/v1/using#WorkingVolumes), you can get infor-
mation on a book by passing its ISBN in a URL that looks something like this: https://
www.googleapis.com/books/v1/volumes?q=9780767926034

NOTE You can check this URL in the browser to see what sort of data you
should expect to see returned. You should see a JSON structure with informa-
tion about the book requested.

(continued)

the main thread. You then add operations (known in GCD as tasks) to the operation
queue. You can build up an operation either by subclassing Operation or by using
one of Apple’s subclasses such as the BlockOperation class, which creates an
operation from one or more closures. You can also add an operation directly to the
OperationQueue via a closure.

Here’s one way you could request a background operation queue to perform a time-
consuming operation and then request the main queue to display the result of the
operation to the user:

let queue = OperationQueue()
queue.qualityOfService = .utility
let operation = BlockOperation {
    // Time consuming operation here
    OperationQueue.main.addOperation {
        // Update the UI here
    }
}
queue.addOperation(operation)

Here are several advantages to operation queues over dispatch queues:

 Unlike GCD tasks, the state of operations can be monitored, and operations
can be cancelled. 

 The quality of service of specific operations can be changed independently of
the operation queue they're in. 

 An operation’s readiness to execute can also be dependent on the comple-
tion of other operations.

These additional features also add overhead, so in situations where only the more
basic features of GCD are required, an argument could be made for using GCD.

Because the URLSession class makes use of the OperationQueue API under the
hood, it expects a reference to an operation queue in the delegateQueue parameter.

Creates background 
operation queue Specifies queue 

quality of service

Creates Block 
Operation

Adds operation
to main queue Adds block operation 

to background queue

https://developers.google.com/books/docs/v1/using#WorkingVolumes
https://developers.google.com/books/docs/v1/using#WorkingVolumes
https://www.googleapis.com/books/v1/volumes?q=9780767926034
https://www.googleapis.com/books/v1/volumes?q=9780767926034


417Setting up the URL request

s 
1 Create a constant in the GoogleBooksService class containing the URL of the
Google Books web service as a String, minus the query string.

let googleUrl = "https://www.googleapis.com/books/v1/volumes"

To get data on a specific book, you will need to pass in the ISBN in a parameter
named q. One way to do this is to build this parameter directly into the URL
itself with a query string, when instantiating the URL object. You can then see
the query string in the query property.

let url = URL(string: "\(googleUrl)?q=9781617294075")!
print(url.query!) //q=9781617294075

The query property of URL is read only. If you prefer to construct the compo-
nents of your URL object (such as the query string), you can instead build your
URL object with a URLComponents object. 

To define each parameter of the query, for example, you could pass in an array
of URLQueryItem to the queryItems property. You’ll use a URLComponents
object to build up your URL.

2 Create a URL object from a URLComponents object, in the getBook method of
the GoogleBooksService class:

 

var components = URLComponents(string: googleUrl)! 
components.queryItems = [
    URLQueryItem(name: "q", value: barcode)] 
guard let url = components.url else {return}
print(url.query!) // q=9781617294075 for example

The URLComponents object has a url property that, in this case, would be
identical to the URL created in the previous code listing. You can pass this URL
object directly to the URLSession, or you can customize the request with a
URLRequest object (see figure 14.3).

3 Create a URLRequest object from the URL object.

let request = URLRequest(url: url)

A URLRequest object can customize features of the request such as

 cachePolicy—Determines whether the request checks for cached data.
 timeOutInterval—The acceptable waiting time before a request times out.
 HTTPMethod—The request method. GET is the default; then, there’s POST.

4 networkServiceType—Specifies the type of data, to help iOS to prioritize net-
work requests. Options are default, voip, video, background, and voice.

NOTE These customizations only override the configuration of URL-
Session if they’re stricter than the configurations set in the URLSession-
Configuration object.

Creates URL component
from URL string

Sets URL components 
query itemsGets URL

string



418 CHAPTER 14 Networking

comp
Now that you have either a URL or a URLRequest, you can use this to create a task. A
URL session task is the object that performs a request from the web service. 

14.6 Requesting data from a web service 
With the URL or URLRequest you just created, the URLSession object will create and
coordinate one or more tasks for you. You have three types of tasks available:

 Data tasks are used for requesting small amounts of data, such as text-based
data. The data will be delivered to you as a Data object, either in small chunks
via a delegate method or all at once via a completion closure.

 Download tasks download larger amounts of data and will be delivered to you via
a file.

 Upload tasks are used to upload data as a file.

We’ll look at download tasks shortly, but for now, let’s use a data task to get data about
a book from the Google Books web service.

1 Create a URLSessionDataTask by passing in the URLRequest object to the
URLSession. A completion handler will receive the response from the server,
which contains data, response, and error optional objects. Because all tasks
begin life by default in a suspended state, you must trigger them to start by call-
ing the resume method to activate them.

let dataTask = session.dataTask(with: request) { 
        (data, response, error) in
    // -------> Deal with data/error
}
dataTask.resume()

TIP Tasks have an additional property called priority that allows you to
adjust the priority of certain tasks relative to others.

2 If there's an error, call the getBook method’s completion handler, passing the
error object. Otherwise, unwrap the data object, ready to extract book infor-
mation.

if let error = error {
    completionHandler(nil, error)
}
guard let data = data else { return }
// Get book information

14.7 Examining the data
You now have a Data object returned from the web service in the dataTask comple-
tion handler. Because Data objects are binary, conversion will be necessary. 

 To convert the data object to text, you could instantiate a String, pass in the data
object, and specify the most frequently used character encoding, UTF-8.

let dataAsString = String(data: data, encoding: String.Encoding.utf8)

Creates data task
Completion

handler
Triggers task
to begin

Unwraps 
error objectCalls getBook

letion handler
Unwraps 
data object



419Examining the data
Open an example book in the browser to see what results you expect the Google
Books service to return. (Here’s the link again: https://www.googleapis.com/books/
v1/volumes?q=9780767926034.) Notice that the data you get back is in JSON format.

 To better analyze the structure of the data returned, it can be useful to view it in an
online JSON viewer. See figure 14.4 for the raw JSON returned and how it looks in the
JSON viewer at http://jsonviewer.stack.hu/.

Figure 14.4 JSON data returned

We’ll look at three different approaches for parsing this JSON data to a Book object.
The API returns multiple books that contain the requested barcode. For simplicity for
now, we’ll assume the first book returned is correct.

Raw JSON

JSON formatter

https://www.googleapis.com/books/v1/volumes?q=9780767926034
https://www.googleapis.com/books/v1/volumes?q=9780767926034
http://jsonviewer.stack.hu/


420 CHAPTER 14 Networking
14.8 Parsing JSON data with JSONSerialization
First, let’s see what parsing the data object as JSON using the jsonObject method of
the JSONSerialization class looks like:

let dataAsJSON = JSONSerialization.jsonObject(with: data, options: [])

This method serializes the JSON object into Foundation data types. Because this
method by default returns an Any type, and we know to expect a dictionary at the top
level of the JSON data, you can downcast this result to [String: Any]. Because this
method can throw an error, surround it with a do-catch method and unwrap the
result. 

1 Parse the JSON data in a parseJSON method in the GoogleBooksService
class, that receives a completion handler for returning the result.

private func parseJSON(data: Data,
        completionHandler: 
        @escaping (Book?, Error?) -> Void) {
    do {
        if let dataAsJSON = 
            try JSONSerialization.jsonObject(
                with: data, 
                options: []) 
                as? [String: Any] {
            // -------> Traverse hierarchy
        } else {
            completionHandler(nil, nil)
        }
    } catch let error as NSError {
        completionHandler(nil, error)
        return
    }
}

Now that you have a dictionary containing the data returned, you need to tra-
verse the hierarchy down to the data you’re after. 

To extract the title and author from the first book in the JSON structure
returned, you can follow this path:

dataAsJSON["items"][0]["volumeInfo"]["title"]
dataAsJSON["items"][0]["volumeInfo"]["authors"]

Because Swift is a strictly typed language, you need to downcast each value to the
type of data you expect.

2 Continue to traverse the hierarchy in the do clause, using optional binding and
downcasting to Foundation data types:

if let dataAsJSON = 
    try JSONSerialization.jsonObject(
        with: data, 

Function receives Data object 
and completion handler

do-catch
statement

Parses data as JSON to 
Foundation data types

Downcasts to
Dictionary

If downcast 
unsuccessful

If error thrown
in parsing



421Parsing JSON data with JSONDecoder

U
as
        options: []) 
        as? [String: Any],
    let items = dataAsJSON["items"] as? [Any],
    let volume = items[0] as? [String: Any],
    let volumeInfo = volume["volumeInfo"] as? [String: Any],
    let title = volumeInfo["title"] as? String,
    let authors = volumeInfo["authors"] as? [String] {

Finally, you’ve dug down into the hierarchy of the data to the book’s title and
authors and can use this information to generate a Book object. 

3 Instantiate a Book object from the JSON data and call the completion handler.

let book = Book(title: title,
    author: authors.joined(separator: ","),
    rating: 0, isbn: "0", notes: "")
completionHandler(book,nil)

4 The getBook method can now call the parseJSON method, passing it the com-
pletion handler to call when it's done.

self.parseJSON(data: data, completionHandler: completionHandler) 

Now, if you run the app, create a new book, and scan a book barcode, the form fields
should automatically fill with the data returned from the Google Books web service.
Hooray!

14.9 Parsing JSON data with JSONDecoder
Let’s look at parsing the JSON data using the JSONDecoder. The JSONDecoder can
automatically decode data to native Swift types that are set up using the Decodable
(or Codable) protocol.

 You may remember you encountered encoding and decoding data to JSON using
the Codable protocol back in chapter 11, but the data you used was fairly straightfor-
ward. How can data that has a complex structure be decoded, such as the data being
returned from the Google Books service?

 First, you need to set up a ServerResponse type that manages the data that’s
returned from the server. 

1 Create a ServerResponse.swift file. Because you’re only going to decode this
server response, adopt the Decodable protocol. The ultimate aim of this
ServerResponse is to retrieve a Book object, so set up a book property.

struct ServerResponse: Decodable {
  var book:Book
}

Unwraps 
array of Any

Unwraps
dictionary of Any

Unwraps title 
as Stringnwraps authors

 Array of String

Creates a book

Joins author
array with comma

Blank
values

Sends book to
completion handler



422 CHAPTER 14 Networking
2 Because you’re only interested in the array of items returned in the JSON data,
set up a CodingKeys enum.

enum CodingKeys: String, CodingKey {
  case items
}

3 Next, you need to set up custom implementation of the Decodable protocol’s
init method that works with the Decoder to decode the data. Get a reference
to the items array with the nestedUnkeyedContainer method and loop
through the array, digging out Book objects. As mentioned earlier, you’ll use
the first book in the array for simplicity.

init(from decoder: Decoder) throws {
  let values = try decoder.container(
    keyedBy: CodingKeys.self)
  var items = try values.nestedUnkeyedContainer(
    forKey: .items)
  var books:[Book] = []
  while !items.isAtEnd {
    //Get title and author here
    /* ... */
    let book = Book(title: title, author: author, 
      rating: 0, isbn: "0", notes: "")
    books.append(book)
  }
  book = books[0]
}

4 In the raw JSON data, each item contains a volumeInfo property. Set up
another keys enum called ItemKeys.

enum ItemKeys: String, CodingKey {
  case volumeInfo
}

5 Use the ItemKeys enum in the init method to define the data you expect.

let item = try items.nestedContainer(keyedBy: ItemKeys.self)

6 The volumeInfo data in the raw JSON contains the title and author proper-
ties. Set up another keys enum to describe this.

enum VolumeKeys: String, CodingKey {
  case title
  case authors
}

7 Back in the init method, use this VolumeKeys enum to define the structure
that you expect in the volumeInfo property.

let volumeInfo = try item.nestedContainer(keyedBy: VolumeKeys.self, 
  forKey: .volumeInfo)

Gets main data container

Gets Items arrayLoops
through

array

Creates BookAppends book
to array

Extracts 
first book



423Parsing JSON data with JSONDecoder
8 You can now extract the title and author from this volumeInfo container.
Because author is an array of String for cases of multiple authors, merge
these to make one String, separated by a comma.

let title = try volumeInfo.decode(String.self, forKey:.title)
let authors:[String] = try volumeInfo.decode([String].self,

➥ forKey:.authors)
let author = authors.joined(separator: ",")

9 Let’s look at the completed ServerResponse structure, ready to decode data
returned from the Google Books service:

import Foundation
struct ServerResponse:Decodable {
  var book:Book
  
  enum CodingKeys: String, CodingKey {
    case items
  }
  enum ItemKeys: String, CodingKey {
    case volumeInfo
  }
  enum VolumeKeys: String, CodingKey {
    case title
    case authors
  }
  
  init(from decoder: Decoder) throws {
    let values = try decoder.container(
      keyedBy: CodingKeys.self) 
    var items = try values.nestedUnkeyedContainer(
      forKey: .items)
    var books:[Book] = []
    while !items.isAtEnd {
      let item = try items.nestedContainer(
        keyedBy: ItemKeys.self)
      let volumeInfo = try item.nestedContainer(
        keyedBy: VolumeKeys.self, forKey: .volumeInfo)
      let title = try volumeInfo.decode(
        String.self, forKey:.title)
      let authors:[String] = try volumeInfo.decode(
        [String].self, forKey:.authors)
      let author = authors.joined(separator: ",")
      let book = Book(title: title, author: author, 
        rating: 0, isbn: "0", notes: "")
      books.append(book)
    }
    book = books[0]
  }
}

Now that you have the ServerResponse Decodable structure set up, you can
use it to parse data returning from the Google Books service. 

Adopts 
Decodable 

Sets up Coding Keys

Gets main data container

Gets items array

Loops through 
array

Gets item container

Gets volumeInfo 
container

Gets title string

Gets authors 
String array

Joins
authors Creates Book

Appends book 
to array

Extracts 
first book



424 CHAPTER 14 Networking

D

10 Create a method in the GoogleBooksService class that parses the JSON using
a combination of the JSONDecoder and your ServerResponse struct. 

  private func parseJSONDecodable(data:Data, 
        completionHandler: 
        @escaping (Book?, Error?) -> Void) {
    do {
      let jsonDecoder = JSONDecoder()
      let serverResponse = try jsonDecoder.decode(
        ServerResponse.self, from: data)
      let book = serverResponse.book
      completionHandler(book,nil)
    } catch let error as NSError {
      completionHandler(nil, error)
      return
    }
  }

11 Last, the getBook method can now call the parseJSONDecodable method.

self.parseJSONDecodable(data: data, completionHandler:

➥ completionHandler) 

14.10 Parsing JSON data with SwiftyJSON
You may have noticed that both techniques we’ve looked at for parsing JSON have
required a number of lines of code: 

 With JSONDecoder, because the structure of the raw JSON data differs signifi-
cantly from the model’s structure in code, you had to define your own decoding
logic in your custom implementation of Decodable, missing out on the conve-
nience of automatically generated decoding.

 With JSONSerialization, due to Swift’s type safety, the code involved in
extracting information from JSON data can also be verbose. With the data
returned from the JSONSerialization class, it’s then necessary to unwrap
and downcast every object as you traverse the data hierarchy. 

Several third-party solutions out there address this problem and try to reduce the
number of lines required to extract data from JSON. Probably the most popular at
present is SwiftyJSON (https://github.com/SwiftyJSON/SwiftyJSON).

 Let’s explore using SwiftyJSON to parse the same JSON data. To use SwiftyJSON, you
need to integrate it with your project. 

 In previous chapters, when you integrated third-party code into your projects, you
downloaded the relevant files and dragged them into the Project Navigator. But what
happens when you come back to tweak your code in six months and find that all your
third-party frameworks are out of date? You’d need to manually step through each of
your dependencies, repeating the process. This time, you’re going to integrate third-
party code into your project using a dependency manager to help automate this process. 

Function receives Data object 
and completion handlerdo-catch

statement

Parses data as JSON to 
Foundation data typesecodes server response

Extracts 
bookSends book to

completion handler If error thrown 
in parsing

https://github.com/SwiftyJSON/SwiftyJSON


425Parsing JSON data with SwiftyJSON
Dependency managers
Dependency managers specify a list of third-party code, called dependencies, that
your app requires. They then provide a mechanism for you to automatically load and
update this third-party code. They may also integrate this code into your Xcode project
for you.

At the time of writing, three main dependency managers are available for your Xcode
projects.

Swift Package Manager
Because the Swift Package Manager is being developed by Apple, you’d think that it
would be the safest option, but (at the time of writing) it’s still a work in progress,
and doesn’t yet support iOS.

CocoaPods
CocoaPods, with a long history since its release in 2011, is probably the most pop-
ular dependency manager. CocoaPods isn’t only a dependency manager, but it main-
tains a central database of third-party libraries at http://cocoapods.org that you can
browse to find what you’re looking for. It’s compatible with Swift and Objective-C and
automatically integrates dependencies (called pods) into your project. 

As pods are managed by a CocoaPods project, something called a workspace is cre-
ated to contain both your project and the CocoaPods project. 

All that sounds great, but CocoaPods does have several cons:

 The CocoaPods software can be a pain to set up, requiring you to install the
correct version of several command-line tools such as Gem and Ruby.

 Complete automation to integrate dependencies in a workspace can feel
inflexible, and, ironically, add complexity, especially when something goes
wrong. 

 Removing CocoaPods from a project can be laborious.

Carthage

Carthage, released in 2014, is a little newer than CocoaPods, but has been steadily
gaining in popularity. Carthage is less feature-heavy than CocoaPods; Carthage
merely manages your dependencies and leaves it up to you to integrate them into
your Xcode project. This lack of automation could be seen as a negative, but support-
ers of Carthage would say it reduces complexity and increases flexibility. A couple
more points in favor of Carthage:

 Carthage is easier to install than CocoaPods, only requiring the running of an
installer package. 

 Carthage is decentralized, and unlike CocoaPods, it doesn’t have a central
database of frameworks. 

In the end, which dependency manager you use (if any) can come down to personal
preference, but it’s definitely worth exploring the options. We’re going to explore
using dependency managers with the simplest of the three main options, Carthage.

http://cocoapods.org


426 CHAPTER 14 Networking
14.10.1 Integrating SwiftyJSON with Carthage

You’re going to integrate SwiftyJSON with your project, using the Carthage depen-
dency manager.

1 First, you need to install the software for Carthage via an installer package or
Homebrew. You can find instructions for installing Carthage at https://
github.com/Carthage/Carthage#installing-carthage. 
To add dependencies to your project, you need what Carthage calls a Cartfile. A
Cartfile is basically a list of your project's dependencies that you want Carthage
to manage.

2 With your favorite text editor, create a file called Cartfile and save it your proj-
ect folder. The basic syntax for adding a dependency to your Cartfile is straight-
forward:

github "profile name/repository name"

3 Add SwiftyJSON as a dependency in your Cartfile.

github "SwiftyJSON/SwiftyJSON"

Now, it’s time to request that Carthage automatically download your requested
dependencies. You’ll do this from the Terminal.

4 Find the Terminal application in the Application/Utilities folder—or, even bet-
ter, keep it conveniently in the dock. Drag your project folder from the Finder
to the Terminal icon, and the Terminal should open, ready to go at the right
path (see figure 14.5).

Figure 14.5 Drag folder to the Terminal

https://github.com/Carthage/Carthage#installing-carthage
https://github.com/Carthage/Carthage#installing-carthage


427Parsing JSON data with SwiftyJSON
Figure 14.6 Fetch Carthage dependencies.

5 Run the command carthage update in the Terminal (see figure 14.6).

NOTE If you’re building only for iOS, you can specify that you want only iOS
frameworks to download by adding the flag --platform iOS to the Termi-
nal command.

Like magic, all your project’s dependencies (that is, the SwiftyJSON framework!)
should appear in the Carthage/Build folder in your project. Later, when you
want to update your dependencies, you should run this command again.

Unlike CocoaPods, Carthage doesn’t integrate your dependencies into your
Xcode project for you. Not to worry, doing so is straightforward; you have a few
simple steps left to complete this process.

6 First, you need to add the SwiftyJSON framework to your project. Open the proj-
ect in the Finder. In the Carthage/Build folder, you should find an iOS folder,
which contains the SwiftyJSON framework relevant to the iOS platform.

7 Back in Xcode, open the General settings for the main project target. At the
bottom, you should find Linked Frameworks and Libraries. Drag the Swifty-
JSON.framework file from the Carthage/Build/iOS folder in the Finder to the
Linked Frameworks and Libraries section in the General settings (see figure
14.7).
Next, you need to add a special script that will run when your project builds and
copy debug information from the SwiftyJSON framework to your project.

Update or install
Carthage dependencies



428 CHAPTER 14 Networking
 

Figure 14.7 Add linked framework

8 Open the Build Phases tab of the settings for the main project target. Select the
plus (+) symbol at the top left of the window, and select New Run Script phase
(see figure 14.8).

9 Add the following text to the script area (figure 14.8):

/usr/local/bin/carthage copy-frameworks

10 Now, in the same area, add the SwiftyJSON framework to be copied, by selecting
the plus (+) symbol beneath the Input Files title and pasting in the location of
the framework, using a shortcut variable to the root path of the project (figure
14.8).

$(SRCROOT)/Carthage/Build/iOS/SwiftyJSON.framework

Open General settings
in Xcode for main
project target

Drag framework file
from Finder to Linked
Frameworks and Libraries



429Parsing JSON data with SwiftyJSON
Figure 14.8 Add run script to build phases

NOTE If you want to know more about project settings, check appendix A.

14.10.2Using SwiftyJSON

Now that you have SwiftyJSON integrated into your Xcode project, parsing your JSON
and digging down to the data you need is a piece of cake!

 First, any Swift file that uses the SwiftyJSON framework will need to import it.

1 Add a line to import the SwiftyJSON framework at the top of the Google-
BooksService.

import SwiftyJSON

Now, create a new method to parse the JSON with SwiftyJSON, so that you can
compare it with the other JSON parsing methods we’ve looked at.

Open the Build
Phases tab

Click + and select
New Run Script Phase

Add scriptAdd input file



430 CHAPTER 14 Networking
2 Add a new method called parseSwiftyJSON, with the same definition as the
other JSON parsing methods you’ve created.

private func parseSwiftyJSON(data:Data, 
    completionHandler: @escaping (Book?, Error?) -> Void) {
}

3 Parse the JSON in the parseSwiftyJSON method by instantiating SwiftyJSON’s
JSON class, passing in the data object.

let dataAsJSON = JSON(data: data)

Using SwiftyJSON, you can now drill down to the data you’re after using familiar
dictionary and array syntax. To finally extract a foundation type, use the prop-
erty relevant to the type. For example, to extract a String, Double, Int, or
Array you would use the properties string, double, int, or arrayObject.
(If you prefer a default value to an optional, add the suffix Value to the prop-
erty, that is, stringValue, doubleValue, intValue, or arrayValue.)

4 Extract and unwrap the title and authors properties from the parsed JSON.
Like before, if this is successful, create a book object and pass it in a call to the
completion handler; otherwise, call the completion handler, passing nil to
indicate the method was unsuccessful in extracting a book from the JSON data.

if let title = dataAsJSON["items"][0]["volumeInfo"]
               ➥ "title"].string,
   let authors = dataAsJSON["items"][0]["volumeInfo"]
                 ➥ "authors"].arrayObject as? [String] {
    let book = Book(title: title,
        author: authors.joined(separator: ","),
        rating: 0, isbn: "0", notes: "")
    completionHandler(book,nil)
} else {
    completionHandler(nil, nil)
}

Notice the difference in the amount of code required with SwiftyJSON. You’ll
most likely find that because the SwiftyJSON method is much more succinct, it’s
clearer at a glance.

5 Finally, you need to call your new parseSwiftyJSON method from the get-
Book method:

self.parseSwiftyJSON(data: data, completionHandler: completionHandler)

6 Run the app, and test your barcode detection. You should find the app fills the
title and authors fields the way it did before, but this time using the Swifty-
JSON framework to parse the JSON returned from the Google Books web ser-
vice. You’ll still need to give your book a title to save it.

Extracts title

Extracts authors

Creates book

Sends book to 
completion handlerIf parsing

unsuccessful



431Downloading data from a web service
CHALLENGE Because the Google Books web service searches for any incidence
of the ISBN number in the book data, it can sometimes return multiple books
for a search query if the same number coincidentally occurs in a different field.
Your challenge (if you choose to accept it!) is to ensure that the book data you
use has the correct ISBN. You need to analyze the structure of the data being
returned from Google Books web service to find the ISBN for each book.
Remember, you’re detecting barcodes with standard 13-character ISBNs.

14.11 Downloading data from a web service
How cool would it be if you could automatically load the cover art for a book when the
user scans the book’s ISBN? In this section, you’re going to explore using a download
task to download a book cover image (see figure 14.9).

Figure 14.9 Download book cover

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git (Chapter14.1.WebServiceData).

Book cover
downloaded

ISBN
detected

Data
returned

BarcodeViewController

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


432 CHAPTER 14 Networking
Looking at the data being returned from the Google Books web service, you'll see
you’re already receiving a URL with a thumbnail for the book at the following path:

dataAsJSON["items"][0]["volumeInfo"]["imageLinks"]["thumbnail"]

1 Extract the URL for the book cover thumbnail in the parseSwiftyJSON
method after extracting the title and author.

let thumbnailURL = volumeInfo["imageLinks"]?["thumbnail"].string {

Now, instead of calling the completion handler, you have more work to do! 

2 Call a loadCover method that you’ll define next. Pass in the book object that
you generated, the thumbnailURL that you extracted from the JSON, and the
completion handler.

loadCover(book: book, 
    thumbnailURL: thumbnailURL, 
    completionHandler: completionHandler)

3 Create the stub of the method to load the cover art in the GoogleBooksSer-
vice class. Because you eventually want to modify the book parameter by pass-
ing it the image, you’ll need to reassign it as a variable.

func loadCover(book: Book,
    thumbnailURL: String,
    completionHandler: @escaping (Book?, Error?) -> Void) {
  var book = book
}

4 Set up a URL object using the thumbnailURL string. 

guard let url = URL(string: thumbnailURL) else {return}

Because an image is a larger chunk of data that makes sense to receive as a file,
you’re going to get the book cover using a download task from the URLSession.
Because you’ll use the default configuration, this time let’s not instantiate a
URLRequest, and instead instantiate the task passing the URL object directly.

5 Create a download task, and activate it by calling the resume method.

task = session.downloadTask(with: url) { 
    (temporaryURL, response, error) in
    // -------> Deal with data/error
}
task?.resume()

The download task works somewhat differently from the data task. Instead of
the completion handler providing you with a data object that was returned
from the web service, the download task provides a URL that links to a file
stored in the local temporary directory.

Creates 
download taskCompletion

handler
Triggers task 
to begin



433Downloading data from a web service

E

6 Unwrap the optional URL and use it to create a Data object. (Creating a data
object can throw an error, so prefix this with an optional try.) Use the data
object to generate a UIImage object, which you can use to set the cover prop-
erty on the book object. Finally, regardless of the success of the task, you should
call the completion handler, passing it the book object. 

if let imageURL = temporaryURL,
    let data = try? Data(contentsOf: imageURL),
    let image = UIImage(data: data) {
        book.cover = image
}
completionHandler(book, error)

NOTE Because you’re using UIImage, ensure that the GoogleBooks-
Service class imports UIKit.

7 Run the app, add a book, and scan a book barcode. The details of the book
should appear—but the cover? Nothing changes. What’s going on? 

Check the console and you’ll find the error:

App Transport Security has blocked a cleartext HTTP (http://) resource load 
since it is insecure. Temporary exceptions can be configured via your 
app's Info.plist file.

14.11.1Accessing insecure domains

By default, apps aren’t permitted to connect to insecure domains. Secure domains are
defined as those using HTTPS that use a Transport Layer Security of at least 1.2. If you
look at the URLs for the book cover art, you’ll notice that they’re only HTTP and so are
blocked from loading.

 As the error indicates, you can specify that you want to make an exception for spe-
cific (or all) insecure domains by editing the Info.plist file. 

 As you saw in chapter 11, the XML representing the attributes in the Info.plist file
consists of key tags followed by data type tags. To add exceptions, you’ll add an
NSAppTransportSecurity key that contains a dictionary describing the security
level you want in your app. This dictionary accepts the keys shown in table 14.1.

Table 14.1 App Transport Security keys

Key Type Default Description

NSAllowsArbitraryLoads Boolean false Disables security on all 
domains. This option requires 
justification when you publish 
your app to the App Store.

NSAllowsArbitraryLoadsInMedia Boolean false Disables security on media 
loaded with AVFoundation.

Unwraps URL

Extracts Data 
from local URL

xtracts UIImage
from data

Sets book cover 
to image



434 CHAPTER 14 Networking
Make domain exceptions by adding them as keys to the NSExceptionDomain dic-
tionary. You then add a dictionary describing how this domain should be treated,
using the keys shown in table 14.2.

* These options require justification when you publish your app to the App Store.

All the book cover art seems to be derived from the same insecure HTTP domain at
http://books.google.com, so you'll make this domain an exception.

1 Open the Info.plist file, this time as raw XML. Right-click on the Info.plist file in
the Project Navigator, and select Open As > Source Code. Add books.google
.com to the NSAppTransportSecurity dictionary in the NSAppTransport-
Security dictionary, and request that insecure HTTP loads for this domain be
permitted.

<dict>
…
    <key>NSAppTransportSecurity</key>
    <dict>
        <key>NSExceptionDomains</key>
        <dict>
            <key>books.google.com</key>
            <dict>

NSAllowsArbitraryLoadsInWebContent Boolean false Disables security on content 
loaded into web views.

NSAllowsLocalNetworking Boolean false Disables security on loading 
local resources.

NSExceptionDomains Dictionary None Disables security for specific 
domains.

Table 14.2 Exception domain keys

Key Type Default Description

NSIncludesSubdomains Boolean false Exception applies to subdo-
mains

NSRequiresCertificateTransparency Boolean false Requires valid certificate 
transparency timestamps

NSExceptionAllowsInsecureHTTPLoads Boolean false Allows insecure HTTP loads*

NSExceptionRequiresForwardSecrecy Boolean true Requires cyphers that sup-
port forward secrecy

NSExceptionMinimumTLSVersion String TLS v1.2 Specifies the minimum Trans-
port Layer Security version*

Table 14.1 App Transport Security keys (continued)

Key Type Default Description

http://books.google.com


435Downloading data from a web service
                <key>NSExceptionAllowsInsecureHTTPLoads</key>
                <true/>
            </dict>
        </dict>
    </dict>
</dict>

NOTE If you view the Info.plist file in the property list editor, you’ll see more
human-readable names for these keys by default. NSAppTransportSecu-
rity, for example, is called “App Transport Security Settings.”

2 Run the app, add a book, and scan a book barcode. This time, because you’ve
added the books.google.com domain to the list of exception domains, the
cover art should appear. 

3 Select Save, and you’ve added a book’s details and cover art by scanning a bar-
code—too easy!

Session task delegate
Managing session tasks by implementing a custom delegate has an alternate
approach. This approach provides greater configuration and control over the session
task. 

To use this approach, you’ll want to instantiate the task without a callback and imple-
ment the delegate for the specific task type.

For example, to use the custom delegate approach to download the book cover, you’d
take these steps:

1 Instantiate the task without a completion handler.

task = session.downloadTask(with: url)

2 GoogleBooksService would adopt the URLSessionDownloadDele-
gate. (This protocol subclasses URLSessionDelegate, so you don’t have
to specify that delegate.)

class GoogleBooksService: NSObject, BooksService, 
URLSessionDownloadDelegate 

3 GoogleBooksService then implements required protocol methods. The
URLSessionDownloadDelegate requires you to respond to when the data
has finished downloading. This is where you would generate an image from
the data downloaded to the temporary URL at location and update the
book object.

public func urlSession(_ session: URLSession, 
        downloadTask: URLSessionDownloadTask, 
        didFinishDownloadingTo location: URL) {
    //Set book cover from image downloaded
}



436 CHAPTER 14 Networking
14.12 Displaying the network activity indicator
If a networking task can take more than a couple of seconds, it’s a good idea to indicate
this to the user with a network activity indicator in the status bar (see figure 14.10).

Figure 14.10 Network activity indicator

Displaying the network activity indicator is straightforward—all that’s needed is to set
the isNetworkActivityIndicatorVisible property of the UIApplication to
true.

1 In the foundBarcode method in BookViewController, get a reference to
the UIApplication with its singleton type property shared and turn on the
activity indicator.

UIApplication.shared.isNetworkActivityIndicatorVisible = true

2 In the completion handler of getBook, when network activity is complete, hide
the indicator by setting the same property to false:

UIApplication.shared.isNetworkActivityIndicatorVisible = false

14.13 Cancelling a task
It may have occurred to you that the user is currently able to exit the book edit form
while a data or download task is in progress. 

 If the user exits the book view controller by saving or cancelling while the
BooksService is still waiting for a response from the web service, you should cancel
any ongoing operations.

(continued)

4 GoogleBooksService could then implement any optional protocol meth-
ods. For example, the URLSessionDownloadDelegate and its subclasses
permit additional customization of the task, such as providing authentication
details to the server and managing HTTP redirects. The delegate can also be
used to provide notifications, such as if a session becomes invalidated or of
a download’s progress (this is useful for showing percentage downloaded in a
progress bar for downloads of larger file sizes).

Indicates ongoing
network task to user



437Summary
1 Add a request to cancel web operations in the viewDidDisappear method of
BookViewController.

booksService.cancel()

2 In the GoogleBooksService class, fill out the cancel method by cancelling
the current task.

func cancel() {
    task?.cancel()
}

14.14 Summary
In this chapter, you learned the following:

 You can optionally use URLRequest to configure your URL request beyond the
defaults and URLSessionConfiguration to configure your URLSession
beyond the defaults.

 Use the URL session task delegate for fine-grained control over a task. Alterna-
tively, for basic requirements, use the completion handler when instantiating
the URL session task.

 Use a third-party JSON parser such as SwiftyJSON to access more-complex JSON
data with a more readable syntax.

 You can use operation queues instead of dispatch queues to manage threads for
additional control, such as dependencies between operations. 

 You can use dependency managers such as Carthage and CocoaPods to main-
tain third-party code and keep it conveniently updated.

 Configure your app's App Transport Security to be able to connect to insecure
domains.

 
 
 
 
 

CHECKPOINT If you’d like to compare your project with mine at
this point, you can check mine out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git (Chapter14.2.WebService-
Download). You may need to call carthage update in the Terminal to
update SwiftyJSON to the latest version.

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


438 CHAPTER 14 Networking
 



 Debugging and testing
All’s well and good reading a book or following a tutorial, but in the real world
things go wrong. And often! This is your chance to put your detective hat on and
investigate.

 In this chapter, we’ll look at what to do when things go wrong by using debug-
ging. We’ll also look at how to prevent things from going wrong with testing.

 Along the way, we’ll explore additional concepts:

 The console
 Variables view
 Breakpoints and the breakpoint navigator
 The debug navigator and gauges
 Instruments
 Unit tests and UI tests

This chapter covers
 Debugging using different techniques, tools, 

gauges, and instruments in Xcode 

 Testing your app

 Testing your app interface
439



440 CHAPTER 15 Debugging and testing
15.1 The setup
A friend has kindly offered to look at your app and see if they can find any bugs. You
sent them a link to the GitHub repo for your Xcode project, and a few days later you
got this email in return:

Hey—I’ve had a look at the app for you. It’s looking good, but I also found a few odd
problems:

 The book edit form was working well to begin with, but then it started crashing.
Don’t know what that’s about.

 The Cancel button in the book edit form crashes the app. 
 After you add an image and save it, the next time you edit the book and save it, the

book cover seems to disappear ... strange?

Oh, I also made a couple of little improvements here and there. Hope that’s okay! 

 I used a cool third-party framework to detect a nice color palette in the cover art of
each book, to use in styling the table view cells and the book edit form. I’ve also
added properties for these colors in the Book class. The app seems to freeze, though,
for a couple of seconds when you add an image. Is there something you can do
about that? 

 I added a nice little three-page help section to onboard the app, using a page view
controller. It automatically triggers when you first open the app, and you can
reopen it with a Help button. There should be a title, blurb, and image, but for
some weird reason, only the images are displaying.

Oh, and you should probably add some tests.

Sorry I ran out of time to fix everything up. All the best with it, I look forward to
downloading it from the App Store! 

Oh, here’s the repo with my updates: https://github.com/iOSAppDevelopmentwithSwift-
inAction/Bookcase.git (Chapter15.1.UpdatesNeedFixing).

Well, that was a nice surprise. Your friend made a couple of nice additions to the app.
Great! But it seems the app has been left in a buggy state. That email contains a lot of
information; let’s go through it step by step, check out what they’ve done, and explore
what needs fixing.

15.2 Debugging mode
The book edit form was working well to begin with, but then it started crashing. Don’t
know what that’s about.

Let’s confirm what your friend is saying about the app crashing. 

1 Download your friend’s repo update. 
2 As usual, run carthage update in the Terminal to update third-party code in

the project.
3 Run the app. Your friend’s onboarding section should appear.
4 Select the Skip button.
5 Select the + button to add a book. 

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git 
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git 


441Debugging mode
Bam! Your friend was right—the app crashes!
 When Xcode crashes, it automatically enters debugging mode (see figure 15.1).

Debugging mode can be intimidating, especially at first. Let’s break it down. 

Figure 15.1 Xcode debugger in a crash

Debugging mode consists of

 A red line that appears in the source editor indicating the most recent line of
your code that ran before the crash occurred.

 The debug navigator appears in the navigator panel, consisting of

– Gauges for measuring the current state of your device or simulator’s CPU,
memory, disk, and network activity.

– A path of how you arrived at the current line of code in each active thread.
This is called the backtrace (people also call this the call stack or stack trace).

 The debug area appears below the source editor, consisting of

– The debug bar with several debug controls including stepping through your app.
– The variables view showing the current state of variables from the scope of the

line in the source editor.
– The console, which outputs the reason for the crash and a printed call stack.

Debug gauges

BacktraceDebug
navigator

Crash line
Hide or show
debug area

Debug areaDebug
bar

Variables
view

Console



442 CHAPTER 15 Debugging and testing
Don’t worry, this has only been a short summary of these tools. In a moment, we’ll
look at each in turn.

Xcode behaviors
How does Xcode know to automatically show you the debug navigator and the debug
area when the app crashes? Well, it’s all defined in special Xcode preferences called
behaviors. Use behaviors to request that Xcode performs specific actions when spe-
cific events occur. Xcode comes with certain behaviors already set up for you by
default. 

Let’s look at the default behavior that opens the debug navigator and debug area.
Select Xcode > Behaviors > Edit Behaviors. In the events menu on the left, select
Running > Pauses. This behavior is triggered when a running app is paused, such as
when the app crashes! In the actions menu on the right, you can specify actions to
perform when this event occurs. In addition to showing the debug navigator and
debug area, you could, for example, play a sound, display a system notification, or
even have an announcement spoken to you.

Events

Show debug area

Actions
Show debug
navigator



443Debugging crash logs in the console
Sometimes, such as in this case, the red line freezes on your AppDelegate class, indi-
cating that the problem probably occurred in initial setup. One common reason for
this is a problem with the storyboard. Let’s look at the console for clues.

15.3 Debugging crash logs in the console
At first glance, the output in the console after a crash looks crazy complicated. To give
yourself a shock, take a glance at figure 15.2. But don’t panic! You’ll see a number of
strange symbols, numbers, and unfamiliar syntax. Where to start? 

Figure 15.2 Crash log in console

The trick in interpreting this output is learning what you can ignore 90% of the time
and where to find the most relevant information.

 The text that automatically outputs to the console when your app crashes is made
of two main parts that answer two important questions:

 Exception information—What caused the problem?
 Call stack—What was happening at the time?

I’ve organized the console output in figure 15.3. I separated the two main parts and
emphasized part of the output to help you focus on what’s most important.

 First, what caused the problem? The exception information should answer this impor-
tant question, and ironically, it’s often scrolled offscreen by the call stack! Ignore the
time codes and memory addresses and look for the description of the exception in
English. According to the exception information in this case, there was an
NSUnknownKeyException for the key titleL in the BookViewController.



444 CHAPTER 15 Debugging and testing
Figure 15.3 Crash log in console

Great—the English description of the exception information is often all you’ll need to
look at after a crash, but sometimes it helps to also look at what was happening at the
time of the crash. The call stack is a path of method calls called frames that lead to a
certain location in the code. You can use the call stack to trace the path backward
from the most recent frame marked with a 0 at the top, down to the least recent frame
at the bottom.

 To identify each frame in the call stack, each line gives you the framework, origin
(usually object and method), line number, and even the memory address of each call.
See figure 15.4 for a close-up of frame 5.

Figure 15.4 Frame in call stack

Call stack

Exception
information

Frame
number Memory address

Framework Line
number

Object name Method name



445Debugging crash logs in the console
Calls originating from your own code will have your project name at the left. Note in
the call stack that only one call originates from your project, indicated by the project
name Bookcase. Look for main at line 29 of figure 15.3.

NOTE The main call is a special one—main represents the main entry point
for your app, which in your project (and most others as well) is the App-
Delegate class. If you take a close look at the AppDelegate class in your
project, you’ll notice that it’s preceded by the keyword @UIApplication-
Main. This keyword defines the AppDelegate as your app’s entry point.
You’ll find this in the call stack too, at line 28. 

Sometimes the call stack can give you a peek behind the curtain of certain classes in
the iOS SDK that aren’t available to developers. If you look through the objects and
method calls in the call stack, you might get an idea as to what was happening when
the unknown key exception occurred. Perhaps the connect call to the UIRuntime-
OutletConnection object at line 5 could be a clue. Although you don’t have docu-
mentation for this object, you could make a reasonable guess by its name that this
object is involved in connecting outlets, and perhaps this has something to do with
your crash. The plot thickens!

15.3.1 Solving a crash caused by an outlet

Let’s revise your clues. You know that an outlet problem likely exists in BookView-
Controller related to the key titleL. Let’s look at the storyboard and try to dig
deeper.

1 Open the storyboard, and select the book edit form scene. 
2 Open the Connections Inspector to explore problems with outlets. As

expected, it appears there’s a problem with the titleL property—the Connec-
tions Inspector shows it with an exclamation mark within a yellow triangle, indi-
cating a broken connection (see figure 15.5). 

Figure 15.5 IBOutlet issues

Below the broken outlet connection is another outlet called titleLabel with
a hollow circle, indicating that a property in the BookViewController class
called titleLabel has been defined with the @IBOutlet keyword, but hasn’t
been connected to a view in the storyboard. 

Broken connection

No connection



446 CHAPTER 15 Debugging and testing
It appears that your friend set up an outlet called titleL and then decided to
give it the name titleLabel, probably to ensure good naming practices. They
renamed it in the code, but didn’t update the connections! Let’s fix it and see if
that resolves the crash.

3 Remove the old connection by selecting the X next to TitleL. 
4 Now, set up a new connection to titleLabel in the Connections Inspector.

You could do this in the Assistant Editor as you’ve done previously, but since
you’re already in the Connections Inspector, drag from the circle beside
titleLabel to the title label in the storyboard  (see figure 15.6).

Figure 15.6 Connect IBOutlet into the Connections Inspector.

You should see the title label with a filled circle in the Connections Inspector,
indicating that it’s now connected to a view in the storyboard. If you open the
BookViewController class, you’ll see the same filled circle indicator there as
well (see figure 15.7).

Figure 15.7 IBOutlet connected in the source editor

Drag from Connections Inspector to
appropriate element in storyboard

Connected



447Debugging crash logs in the console
Now, all that’s left is to run the app and see if you’ve solved the problem!

5 Run the app, select or add a book, and ... no crash! 

First problem solved, what’s next?

15.3.2 Solving a crash caused by an action

The Cancel button in the book edit form crashes the app.

With the app running and the book form open, select the Cancel button. Your friend
was right! 

 Another long crash log fills the console, but this time you have a better idea of
what to look for. Let’s start with what caused the problem. With memory addresses
removed, the exception information reads thus:

-[Bookcase.BookViewController touchCancel:]: unrecognized selector sent to 
instance

It appears that in the BookViewController class, a selector (that is, a method)
called touchCancel is being called but not recognized. Why would that be, and what
was happening at the time? You probably have enough information to take a good,
educated guess, but let’s look at a portion of the call stack for more clues. See figure
15.8—again, I’ve emphasized part of the output to help you focus on more-interesting
details.

Figure 15.8 Crash log in the console

Note that sending an action for an event triggered by a UIControl seems to be a
theme. The event itself seems to be a touch, according to frame 11, and the control
seems to be a UIBarButtonItem.

 Let’s revise all of our clues again. When a bar button item in the scene connected
to the BookViewController class (assumedly the Cancel button) tries to call the
touchCancel method, it’s not recognized. Let’s look at the storyboard to get a
clearer idea of the problem. 

1 Open the storyboard, select the book edit form scene, and open the Connec-
tions Inspector to explore problems with actions. Similar to earlier, there seems
to be a problem with the touchCancel method (see figure 15.9).



448 CHAPTER 15 Debugging and testing
Figure 15.9 IBAction issues

There seems to be a broken connection between the Cancel button and the
touchCancel action method. Curiously, there seems to be an unconnected
action method called touchCancelzzzz! 

2 Open the BookViewController class and see what’s going on in the code (see
figure 15.10).

Figure 15.10 IBActions in the source editor

It’s true! There’s a touchCancelzzzz method in the BookViewController,
and there isn’t a touchCancel method to be seen. Your “helpful” friend must
have leaned on the keyboard and inadvertently renamed the method. As the
hollow circle indicates, this caused the touchCancelzzzz method to discon-
nect from the storyboard. 

3 Remove the extra z’s from the method name and rebuild the project. The circle
should fill in, indicating that all is well in the world again, and the Cancel but-
ton in the storyboard is reconnected with the touchCancel action in your
BookViewController class. 

4 To be sure, rerun the app, open a book, and select Cancel. 

This time, the app should act as expected, closing the book edit form scene.
 What’s next, detective?

15.4 Examining variables and breakpoints
After you add an image and save it, the next time you edit the book and save it, the book
cover seems to disappear ... strange?

First, check that you can replicate the problem. 
 Run the app, open a book with a cover image (you’ll have to add a cover image for

a book first if none of your sample books have cover art), and select Save. The book
image returns to the default cover image. “Strange” is right! What could be happening? 

Broken connection

No connection

Connected

Not connected



449Examining variables and breakpoints
 Your immediate suspicion is that for some reason, an existing book cover isn’t
being used when the BookViewController generates a book to save. Let’s confirm
that by examining the bookToSave variable in the BookViewController class in
the touchSave method.

 As is so often the case in Xcode, there are many different ways to examine the con-
tents of a variable. Let’s look at a few now, beginning with a method that you’ve seen
before, the print method.

15.4.1 Examining a variable with print 

To examine the bookToSave variable, let’s print its contents to the console with the
print method.

1 Before the touchSave method calls dismissMe, print the bookToSave variable.

print("Saving book: \(bookToSave)")

2 Run the app again, once again open a book with a cover image, and select Save.
This time, the book object should print to the console, looking something like
this:

Saving book: Book(title: "Five on Brexit Island", author: "Enid 
Blyton", rating: 3.0, isbn: " 9781786488077", notes: "", image: 
Optional(<UIImage: 0x1c02aeb20>, {128, 202}), backgroundColor: 
UIExtendedGrayColorSpace 1 1, primaryColor: UIExtendedGrayColorSpace 0 
1, detailColor: UIExtendedGrayColorSpace 0 1)

Well, that’s great. By default you’re seeing the value of every property of the
object, down to its background color. Sometimes, however, when you print an
object, you might not need to see its every last detail. You might prefer to see
just the important stuff. It would probably be sufficient detail to identify a book,
for example, by the title and author. To resolve this bug, you might also want to
see whether or not this book has a cover image. 

There’s a neat little trick for adjusting the string that’s output when you print
an object. If your custom type adopts the CustomStringConvertible proto-
col, you can provide a description property that describes your object as a
String, and it will automatically be used by print. 

3 Add a description property to the Book class that returns the title, author,
and a message about whether the book has a cover image.

override var description: String {
    return "\(title) by \(author) : 
         ➥ \(hasCoverImage ? "Has" : "No") cover image"
}

4 Run the app again, and save a book with a cover image. This time, you should
see more meaningful information about the book being saved in the console:

Saving book: Five on Brexit Island by Enid Blyton : No cover image



450 CHAPTER 15 Debugging and testing
It appears that your suspicion was correct. For some unknown reason, the book
object to be saved isn’t being generated with its cover image. 

TIP Classes that subclass NSObject, such as UIView, automatically adopt
the CustomStringConvertible protocol and contain a description
property. To provide your own description, you'll have to override the
default description property.

Sometimes, adding print statements everywhere in your code to help diagnose a
problem can get out of hand, and more-sophisticated debugging techniques would be
more appropriate. 

TIP An alternative approach to print that certain developers prefer is the
NSLog statement. While NSLog is a little slower, it does add a timestamp to
the log and stores logging data to disk. Having a log history can be useful,
but makes it even more important to ensure you remove all NSLog calls from
your code before publishing your app to the App Store. 

Remove the print statement now. We’re going to explore other debugging tech-
niques to diagnose the source of this problem further.

15.4.2 Pausing your app with a breakpoint

To diagnose problems in your app, sometimes it can help to use a file and line break-
point to pause execution at a line in your code. File and line breakpoints are ultra-
useful for

 Checking the current state of the app. This is useful for taking a closer look at vari-
ables, the call stack, threads, the user interface (UI), or the app’s use of system
resources at a specific point in time.

 Stepping through your app. You can use the step controls to run your app step by
step and diagnose any problems with the flow of your app.

You’ll use file and line breakpoints to analyze why books aren’t being saved with their
images. Let’s start by looking at right after a book object is generated for saving data
from the book edit form.

1 Add a breakpoint to your code after setting the bookToSave variable in the
touchSave method in BookViewController. Adding a breakpoint is simple;
click to the left of the line where you want execution to be paused. A dark blue
pointed rectangle should appear where you clicked, indicating an active break-
point (see figure 15.11).

Figure 15.11 File and line breakpoint

Breakpoint
indicator



451Examining variables and breakpoints
NOTE Be careful not to click on the breakpoint again; this will cause the
indicator to turn light blue and the breakpoint will toggle to a disabled state.

Another place that could be interesting to analyze is when a view is loaded and
the BookViewController class receives a Book object to edit.

2 Using the same technique, add a second breakpoint to the viewDidLoad
method of BookViewController after unwrapping the book object.

3 Run your app again, and this time tap on a book that does not have a cover
image. The app should pause immediately at the breakpoint you specified in
the viewDidLoad method.

The same way it did earlier when the app crashed, the Running > Pauses behavior
launches into action, automatically opening the debug navigator and debug area for
you. One difference you may notice is that the paused line of execution is green this
time (see figure 15.12).

Figure 15.12 Breakpoint pausing execution

Now that your app has paused execution, you can examine the state of the app’s vari-
ables. Checking the book object at this point may help diagnose the problem with sav-
ing a book cover. 

Advanced breakpoints
Most commonly, you’ll use breakpoints to pause execution at a specific line of code,
but they’re capable of doing so much more. 

For example, exception breakpoints break execution whenever specific types of
exceptions occur, and symbolic breakpoints break execution whenever a specific
method is called on all subclasses of a certain type of class. You have to add these
types of breakpoints in the breakpoint navigator.

Your breakpoint could be set up to trigger only if a certain condition is true or after a
certain number of times. Breakpoints can also be set up to perform one or more
actions, such as output to the console or play a sound. Ironically, breakpoints don’t
necessarily break execution. If you like, after performing an action, a breakpoint can
automatically continue. 

Edit your breakpoints by double-clicking on the breakpoint indicator in the source edi-
tor or the breakpoint navigator.

Execution paused



452 CHAPTER 15 Debugging and testing
 You can use several approaches for examining the state of variables while the app is
paused:

 The variables view
 Quick Look
 Print description
 Command line in the lower-level debugger
 Datatips

We’ll look at each of these in turn. Let’s look first at the variables view.

15.4.3 Examining a variable with the variables view

The variables view contains variables in the context of where the app is currently
paused. Instance variables of BookViewController will be contained within the
self property, while local variables are shown at the top level. As the book object is
unwrapped with optional binding, it’s considered a local variable. 

 At the left of several variables, you’ll see a disclosure triangle, indicating that you can
“open up” the variable to have a closer look at its contents.

1 Click on the disclosure triangle for the book object to inspect the value of its
properties (see figure 15.13).

Figure 15.13 Variables view

2 Note that the book image is nil. 

This makes sense, as you selected a book with no cover.
 Now, let’s resume execution so that you can add an image to this book.

15.4.4 Controlling the app’s execution using the debug bar

Above the variables view, you’ll find the debug bar, which contains several controls
useful for controlling the execution of your app (see figure 15.14).

Disclosure
triangle

Book image



453Examining variables and breakpoints
Figure 15.14 Debug bar

Table 15.1 lists several elements that could use extra explanation.

Let’s use the controls in the debug bar to resume execution of the app.

1 Tap the Continue button.
2 Add a cover image to the app.
3 Save the book with the new image by tapping the Save button.

Table 15.1 Debug bar elements

Element Description

Toggle breakpoints For convenience, toggle all breakpoints on or off.

Continue/Pause Continue execution of the app.

Step buttons Three skip buttons allow you to execute your code step by step. 
Step over and step into differ as to how they act when there's a method call 
in the current line. Step into will step through every line of the method, 
whereas step over will interpret the entire method as one step. Step out, on 
the other hand, executes the rest of the current function as one step and 
pauses execution again when it exits the function.

Debug view hierarchy View the hierarchy of views in the app. We’ll come back to this soon.

Memory graph Visualize the memory allocations in the app.

Simulate location Simulate that your app is running from an alternative location.

Jump bar Use the jump bar to examine your app state from the context of different 
threads and stack frames.

Step
over

Step
out

Step
into

Memory
graph

Jump bar

Simulate
location

Show/Hide
debug bar

Debug view
hierarchy

Toggle
breakpoints

Continue/
Pause



454 CHAPTER 15 Debugging and testing
The app should pause execution again after generating a new book to save in the local
bookToSave variable. Let’s examine this variable for more clues.

15.4.5 Examining a variable with Quick Look

Let’s explore examining variables using another technique, called Quick Look.

1 First, focus once again on the variables view, and select the disclosure triangle
beside the bookToSave variable to open it up.

2 Note that this time, the book image shows a memory address. You can reason-
ably assume that this means that your book contains an image, but how can you
know which?
Certain variables are visual in nature, and the variables view may not be suffi-
cient to describe a variable. Quick Look provides you with a visualization of the
contents of a variable. (You may remember Quick Look from playgrounds, way
back in chapter 2.) 

3 Select the image property of bookToSave.
4 To open a visualization of the image property and select the button that looks

like an eye, located below the variables view (see figure 15.15).

Show Quick Look

Quick Look

Figure 15.15
Quick Look



455Examining variables and breakpoints
Well, that seems to have worked correctly. The image you added to the book
edit form is stored in the image you’re saving. But the problem was presenting
itself in books that already have an image. You’ll need to go through this pro-
cess again, with the same book now that you know it contains an image, and
find the source of this problem.

5 Tap the Continue button, which should return you to the main screen. 
6 Choose the same book you added a cover image to.

The app should pause once again at the breakpoint in the viewDidLoad method
after unwrapping the book object to edit.

 Let’s use yet another technique for examining the contents of the book object.

15.4.6 Examining a variable with print description

Next to the Show Quick Look button, is another useful button that appears as an “i” in a
circle. This is called the Print Description button. If you select a variable in the variables
view, and select the Print Description button, you get exactly the same output in the
console as you did earlier when you printed a variable in code.

 This time, you’ll examine the contents of the book object with the Print Descrip-
tion button.

1 Select the book object in the variables view.
2 Select the Print Description button.

The description property of the Book object that you set up earlier will output to the
console (see figure 15.16). Covering all bases, the properties of the Book object also
output to the console.

Figure 15.16 Print variable description

Well, according to the output, it seems no problem exists with the book object. You’ll
have to continue execution and save the book to see if the problem is happening there.

 But first, what’s that strange lldb message that crops up in the console?

Print Description button Description



456 CHAPTER 15 Debugging and testing
15.4.7 Examining a variable with LLDB

The console is much more than an area for receiving debug logs and outputting print
messages. It’s a window into the powerful command-line debugger called lower-level
debugger (LLDB), and the lldb message is a prompt for you to enter commands.

 Many debugging features in this chapter are GUI representations of lower-level
commands that are available to you as command-line commands in the console.

 For example, the Print Description button you used to explore details on the book
object uses the LLDB po command under the hood.

1 Use the po command to examine the book variable. Type the following after
the lldb prompt and press the Return key:

po book

You should see the same
description appear for Book
that you saw for Print Descrip-
tion (see figure 15.17).

If you want to go beyond the
default description of a vari-
able and print the underly-
ing implementation of an
object, use the p command.

2 Use the p command on the
book variable.

p book

See figure 15.18 for the result from the p command. This time, you should see a
much more detailed output of the contents of the book variable. 

Command Response

Figure 15.17 LLDB command po in the console

Command Response

Figure 15.18 LLDB 
command p in the console



457Examining variables and breakpoints
We’ve barely scratched the surface of what’s possible with LLDB. Apart from
online documentation, you can use LLDB’s help command to get a compre-
hensive listing of debugger commands.

For a change, let’s use LLDB to resume program execution.

3 Type c after the lldb prompt, and press Return. The program should
continue.

4 Tap Save, to test saving this book.

Once again, the app should pause execution right after generating a book to save.
Let’s use one final technique to examine the contents of the book to save.

15.4.8 Examining a variable with data tips 

Believe it or not, there’s yet another way to examine the contents of your variable, and
this time, you don’t even need the variables view or the console!

 With app execution paused, you can point your cursor in the source editor at a
variable you want to examine, and a data tip for that variable will pop up. From there,
you can open the variable the way you did in the variables view, select to show Quick
Look, or select the Print Description button. 

1 Point to the bookToSave variable now. A data tip for the variable should
appear.

2 Select the disclosure triangle, open the variable, and examine its contents (see
figure 15.19).

Notice that this time, the image property of bookToSave is equal to nil. You seem to
be getting closer to the problem! 

Figure 15.19 Examine a variable with data tips

Point to
variable

Data tip
appears

Open up
variable

Quick
Look

Print
Description



458 CHAPTER 15 Debugging and testing
15.4.9 Solving the save problem 

Why would the image property be nil? Look at how the bookToSave object is gener-
ated—the cover image comes from the coverToSave property. Okay, where’s this
property set?

 A quick search for the coverToSave property uncovers the problem. The cover-
ToSave property is only set in two places: when the user selects a photo or image for the
book or when the booksService returns an image after the user scans a barcode.
What about books that already have an image? The coverToSave property is never set.

1 In the viewDidLoad method, after unwrapping the book object, set the
coverToSave property. Check first that the book has a cover image, to avoid
setting the default cover to the coverToSave property.

if let book = book {
    navigationItem.title = "Edit book"
    bookCover.image = book.cover
    if book.hasCoverImage {
        coverToSave = book.cover
    }
    …

2 Run the app again, select a book with a cover image, and save it. This time (fin-
gers crossed!) the book cover image should stick around. Hooray! Good job,
detective—problem solved. You can remove your two breakpoints now.

3 To remove the breakpoints, click on them, and drag them to the right. They
should disappear—in a puff of smoke!

15.4.10Examining a variable in summary

Many methods exist for examining the contents of a variable, each with their own
advantages, as shown in table 15.2.

Table 15.2 Examining a variable

Element Best for

print If you prefer to not pause execution of your app

NSLog If you want timestamps on your console logs and a log history

Quick Look If you want a visualization of the variable’s contents

Data tips If you’re short on screen space and prefer to hide the debug area, or if you 
prefer to explore variables in the context of your source code

p command in LLDB If you need information beyond what the default description returns for the 
variable

Variables view If you want a visual representation of the hierarchy of variables in your app



459Debugging playback with gauges and instruments
15.5 Debugging playback with gauges and instruments
Let’s check out your friend’s next piece of feedback.

I used a cool third-party framework to detect a nice color palette in the cover art of each
book, to use in styling the table view cells and the book edit form. I’ve also added
properties for these colors in the Book class. The app seems to freeze, though, for a couple
of seconds when you add an image. Is there something you can do about that?

Sounds like quite an interesting addition to the app that your friend has contributed;
see figure 15.20 to see it in action. 

The freezing interface isn’t so useful, though!
 If your app is having playback problems such as a stuttering or freezing interface,

the cause may be that you’re performing long operations in the main thread and
therefore blocking your interface from updating. 

 Let’s explore this theory with the debug gauges.

15.5.1 Debugging playback with debug gauges

If your app is experiencing performance issues, it can be a good idea to look at your
app’s use of system resources. One way to do this is with the debug gauges that you can
find in the debug navigator. The debug gauges give you a good summary of how your
app is using the device’s CPU, memory, disk access, and network calls. You can click on
a gauge to get a more detailed report on your app’s use of this system resource. 

Add photo

Figure 15.20
Color detection 
of the book image



460 CHAPTER 15 Debugging and testing
 You’re going to examine your app’s use of the CPU when adding an image to diag-
nose why the user interface is freezing temporarily.

1 Run your app, and select the Debug Navigator. 
2 Select the CPU gauge from the debug gauges, to display the CPU report. 
3 Select a book, and add an image. You should see something like figure 15.21.

Figure 15.21 Debug gauges and CPU report

Note that the majority of the work is going on in thread 1. Thread 1 is also known as
the main thread and is where the user interface is updated. As you’ve seen, if your app
is busy working on a time-consuming algorithm such as image color detection in the
main thread, the app’s user interface will be prevented from updating and respond-
ing to user interaction. 

 It has become clear that a certain operation that your friend introduced needs to be
moved to a background thread. But which operation? You could spend time hunting
down this method in the code, but you have yet another debugging trick up your sleeve!

Debug gauges

Main thread

CPU report



461Debugging playback with gauges and instruments
15.5.2 Debugging playback with instruments

Xcode provides developers with a library containing debugging tools called instru-
ments that build on and supplement the performance and testing tools that are avail-
able in debug gauges. 

 To get a feel for instruments, we’ll have a look at the time profiler instrument. The
time profiler measures how frequently your app performs different processes. You
could use the time profiler to find any long-running processes that could be holding
up the main thread. 

 Although you could open the time profiler up by selecting Xcode > Open Devel-
oper Tool > Instruments > Time Profiler, you have a shortcut right in front of you in
the CPU debug report—at the top-right corner is a Profile in Instruments button. 

1 Select the Profile in Instruments button. Xcode will offer to transfer or restart
the debug session. 

2 Select Transfer.
3 The time profiler opens and automatically begins recording the time spent on

various processes in your app.
4 Back in the simulator, add an image to a book again.
5 Once the image has been added to the book, you can select the Stop button in

the time profiler. The processes that you want to debug have been profiled, and
now you can explore the time profiler (see figure 15.22).

Figure 15.22 Time profiler

CPU track

Call tree

Controls

Display settings



462 CHAPTER 15 Debugging and testing
While you were recording your app, the time profiler sampled CPU percentage
usage (indicated in the CPU track) and call stacks (detailed in the call tree) at
regular intervals. Each call in the call tree indicates what’s called a weight, which
is an approximation of the amount of time spent in this process.

6 Because you’re interested in finding problems in your own code rather than
Apple’s, select the Call Tree menu in the bar along the bottom, and check Hide
System Libraries.

7 Now, your detective work involves digging down through the call tree hierarchy,
following the process with the greatest amount of sample time. You should find
a clear path in the main thread down to the receiveImage method in the
BookViewController class, which in turn calls the UIImage object’s get-
Colors method.

8 Double-click the line that reads BookViewController.receiveImage. This
will show you the problem line of code, indicating the number of samples
recorded containing this process (see figure 15.23). 

Figure 15.23 Time profiler

If there was any question which line of code was taking up processing time, it
seems to be resolved now! This line definitely needs to be moved to a back-
ground thread.

9 Select the Open in Xcode button at the top right of the time profiler. This
should take you straight to the problem line of code, ready for you to solve the
problem.

Open in XcodeHeavy processing



463Debugging the user interface
15.5.3 Solving the playback problem

Now that you know for sure what was causing the app to freeze, let’s move it to a back-
ground thread.

1 Move the getColors call to a background thread using Grand Central Dispatch. 
2 Move the receiveColors call to the main thread, so that it can update the

user interface.

DispatchQueue.global().async {
    let colors = image.getColors()
    DispatchQueue.main.async {
        self.receiveColors(colors:colors)
    }
}

3 Run your app again and add an image to a book. You should find that the app
no longer freezes while the colors are being detected in the image. You’re free
to interact with the app, and when the algorithm has finished its work on a
background thread, the colors in the interface smoothly animate to the colors
detected in the image. Nice!

I think you’re ready for your final debugging challenge!

15.6 Debugging the user interface
I added a nice little three-page help section to onboard the app using a page view
controller. It automatically triggers when you first open the app, and you can re-open it
with a Help button. There should be a title, blurb, and image, but for some weird reason
though, only the images are displaying.

Again, this is a nice improvement that your friend has contributed. However, as men-
tioned, there’s a visual issue—the title and blurb for each page aren’t appearing. Your
friend sent through an image showing how the help pages should look, and how they
do look (see figure 15.24).

 Your friend isn’t a fan of the storyboard and has set up the three pages entirely in
code. These three view controllers make use of convenience methods in a structure
called InstructionFactory to perform the repetitive tasks of building their inter-
face. They then use a convenience method in another structure called Content-
LayoutMachine that automatically sets up their auto layout constraints.

 It’s all sophisticated, but what’s going wrong—where’s the title and blurb? 
 

Runs on 
background thread

Runs on 
main thread



464 CHAPTER 15 Debugging and testing
 
What we want to be seeing

What we are seeing

Figure 15.24 Help page view controller



465Debugging the user interface
15.6.1 Debugging the user interface with the Debug View Hierarchy

When there’s a visual problem with your app, a good place to look for answers is the
Debug View Hierarchy. The Debug View Hierarchy helps you visualize your app’s inter-
face and interact with it by separating the layers of the interface and rotating them in
3D space. 

 You’ll use the Debug View Hierarchy to see if you can get a better idea of what’s
going on in the interface of the help pages.

1 Run the app, and select the Help button. 
2 Back in Xcode, select the Debug View Hierarchy button in the debug bar (see

figure 15.25).

Figure 15.25 Debug View Hierarchy button in the debug bar

Onboarding and page view controllers
It’s a good idea to walk your users through how to use your app. This sort of introduc-
tion is called onboarding your users. Frequently, onboarding requires multiple pages,
and the most common approach for displaying these pages is with a page view con-
troller. Rather than the default page turn, it’s more common to use a scroll transition
style and a page control at the bottom of the screen, indicating the page you’re cur-
rently viewing. 

Pages are represented by view controllers, and the next and previous pages are
loaded, ready for the user to scroll to them.

Your friend has been kind enough to set up such a page view controller for you in the
Bookcase project, but for future reference, these are the general steps you’d take:

1 Add a page view controller to the storyboard that’s connected to a custom
class that subclasses UIPageViewController.

2 In the viewDidLoad method, set the initial view controller to display with
the setViewControllers method.

3 Adopt the UIPageViewControllerDataSource protocol, set the data
source, and implement data source methods that return the next and previ-
ous view controllers.

4 Also implement data source methods that return the number of pages, and
the number of the initial page.



466 CHAPTER 15 Debugging and testing
The app will automatically pause. A rendering of the views in your app will
appear in the editor window with controls below it for adjusting the view. A hier-
archy of views will appear on the left in the Debug Navigator. The object and
size inspectors become available in the inspector panel, with additional infor-
mation on currently selected views (see figure 15.26).

Figure 15.26 Debug View Hierarchy

This is where it gets interesting! 

3 Click on the rendering of views and drag to the right. The layers will separate
and rotate in 3D orientation, giving you a clearer perspective on what’s happen-
ing in the scene (see figure 15.27).

Debug View Hierarchy View controls Object Inspector

Rendering of views



467Debugging the user interface
That’s interesting! Two text labels are hiding behind the navigation bar. They
must be the title and blurb that you’re looking for! But what could be causing
the layout issue?

4 Select one of the labels. If you find it difficult to select, you can use one of the
two sliders in the view controls. The slider on the left adjusts the spacing
between views, and the slider on the right adjusts the range of visible views.

The label should automatically highlight in the view hierarchy. Notice the purple
exclamation mark beside the view. This indicates a runtime issue with this view. 

5 To get more clues on this issue, open the Issue Navigator.

15.6.2 Debugging the user interface with runtime issues

The Issue Navigator gives you more detail on any pending issues. Until now, you’ve
probably only noticed build-time issues, but Xcode can also report runtime issues.
Ambiguous layouts, problems with threading, and problems with memory allocation
can all trigger runtime issues.

 Let’s examine the runtime issues to further diagnose the problem with your app’s
layout. 

Orient to 2D Orient to 3D

Click-drag 2D view to right

Figure 15.27 Debug view oriented to 3D



468 CHAPTER 15 Debugging and testing
 Select the Runtime Issues tab in the Issue Navigator. You should find that several
labels have ambiguous vertical positions (see figure 15.28).

Select one of the issues and open the Size
Inspector. Look at the Constraints section. In
addition to reiterating the layout issue, the
existing constraints are specified. The descrip-
tion of the ambiguous layout issue makes
sense; there doesn’t appear to be a constraint
specified for vertical position! See figure 15.29.

 Now that you know that certain views
aren’t being provided with vertical position
constraints, you have an idea of the problem
to look for in the layout code. 

15.6.3 Solving the user interface problem 

1 Open the ContentLayoutMachine.swift file where your friend defined the
layout for the help pages.
It appears that the verticalLayout method your friend wrote loops through
all the views in the page, attaching their topAnchor to the bottomAnchor of
the previousView:

static func verticalLayout(to rootView: UIView,views: [UIView]) {
    …
    var previousView: UIView?
    …
    for view in views {
        if let previousView = previousView {

Issues Navigator

Runtime Issues tab

Ambiguous layout issues

Figure 15.28 Runtime issues

Figure 15.29 Constraints in the Size 
Inspector

Declares 
previousView optional

Loops through
views

Unwraps 
previousView



469Testing your app
            constraints += [view.topAnchor.constraint(   
                equalTo: previousView.bottomAnchor) ]
        }
        …
    }
    …
}

Going through the logic, you see a significant problem. The previousView is
never set, so the constraint is never added!

2 Set the previousView at the end of the for loop: 

static func verticalLayout(to rootView:UIView,views:[UIView]) {
    var previousView:UIView?
    for view in views {
        if let previousView = previousView {
            constraints += [view.topAnchor.constraint(
                equalTo: previousView.bottomAnchor) ]
        }
        previousView = view
    }
}

Vertical constraints should be added to views now, pinning them to the previous
view.

3 Run the app to check, and select Help. The help pages should appear as
expected, and if you open the debug view hierarchy, you shouldn’t find any run-
time issues. Hooray! 

Well, you solved all the bugs your friend reported in their email, detective. Congratu-
lations! But what was that your friend said about testing?

15.7 Testing your app
It’s so easy to make changes to your app to make a minor fix or improvement, only to
realize later that you’ve inadvertently caused a major problem elsewhere in your app.
Solving one problem can create another, or, like your friend earlier in this chapter,
even resting your hand on the Z key for a second could cause it to crash! 

 Testing your app manually but comprehensively after every small change would be
a tedious prospect. Xcode provides you with the tools for automating this testing process. 

 Xcode can perform two types of tests:

 Unit tests test that your code is doing what it’s intended to do.

CHECKPOINT If you’d like to compare your project with mine at
this point, you can check mine out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git (Chapter15.2.Debugged).
Don’t forget to run carthage update to update third-party code.

Attaches top anchor 
to previousView

Sets previous
View

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git


470 CHAPTER 15 Debugging and testing
 UI tests test that your app is doing as expected from the perspective of the user
interface.

Within both categories, Xcode can focus from two perspectives:

 Functional—Is it working correctly? For example, in a calculator app, does 2+2 = 4?
 Performance—Is its performance acceptable compared against a benchmark

time? For example, in a calculator app, is a complex calculation taking a reason-
able time to process? 

Let’s add tests to the Bookcase app to help prevent the sort of bugs you’ve seen so far
in this chapter and to keep the app working in tip-top shape!

15.7.1 Testing for functionality

Let’s start by adding unit tests to test that the BooksManager is sorting and searching
the books array correctly.

 Tests are performed in special targets in your project: one test target for unit tests
and another test target for UI tests. Targets can contain multiple test classes, which are
useful for grouping related tests. Each test class can contain multiple test methods, each
performing a single test.

 When you create a project, the project option screen gives you two checkboxes to set
up your project with unit tests and UI tests. Selecting these checkboxes automatically
adds appropriate testing targets to your project and a test class containing test methods. 

 Open the Test Navigator to see the tests that come in your project by default (see
figure 15.30).

Test Navigator

Unit test target

Test class

Test methods

Add test targets
and classes

UI test target

Figure 15.30 Default tests
in the Test Navigator



471Testing your app
If by chance you didn’t select the testing checkboxes when you created your app,
don’t despair—it’s easy enough to add test targets to your project. Select the + symbol
at the bottom of the Test Navigator, give the target a name, and select the target to be
tested. A test class will automatically be created with the same name as the target.

 Let’s use the same menu to add another test class (see figure 15.30) to test the
BooksManager class.

1 Select the + symbol, and then select New Unit Test Class. 
2 Name the test class “BooksManagerTests.” A unit test class will appear with two

default test methods: testExample and testPerformanceExample. 
3 You can delete these two default test methods.

SETTING UP YOUR TEST CLASS

To perform tests on the BooksManager class, you first need to set it up. To have com-
plete control over the test data, it’d be a good idea to set that up in the test class, too.

 You may have noticed your test class has a setup method. This is a good place to
specify any code that you want to run before each test method. This’ll be the perfect
place to instantiate the BooksManager and pass in test data to the books array.
Because you know that these variables will necessarily be instantiated prior to the test
methods, you can confidently set these to implicitly unwrapped optionals.

1 Set up the BooksManager and test data.

var booksManager: BooksManager!
var bookDaVinci: Book!
var bookGulliver: Book!
var bookOdyssey: Book!

override func setUp() {
    super.setUp()
    bookDaVinci = Book(title: "The Da Vinci Code", 
        author: "Dan Brown", rating: 5, isbn: "", notes: "")
    bookGulliver = Book(title: "Gulliver's Travels", 
        author: "Jonathan Swift", rating: 5, isbn: "", notes: "")
    bookOdyssey = Book(title: "The Odyssey", 
       author: "Homer", rating: 5, isbn: "", notes: "")
    booksManager = BooksManager()
    booksManager.addBook(bookDaVinci)
    booksManager.addBook(bookGulliver)
    booksManager.addBook(bookOdyssey)
}

NOTE You’ve probably noticed a teardown method as well. You can specify
any code you want to run after each test method here.

You’ll see errors basically on every line, for example: Use of undeclared type ‘Books-
Manager’.

By default, files in one target don’t have access to files in another. If you select
the BooksManager file in the Project Navigator, and select the File Inspector,



472 CHAPTER 15 Debugging and testing
you’ll find that this file is only set to be accessi-
ble from within the Bookcase target (see figure
15.31).

You could add test target membership checking
the checkboxes in figure 15.31 for every file your
test class needs to access, but there’s a much
quicker and easier solution! You can give your
test class access to your app target files by simply importing the app target with a
@testable attribute. 

2 Add a testable import at the top of your BooksManagerTests file to make classes
in the Bookcase target visible to your test target.

@testable import Bookcase

The errors should go away, and you’re ready to start filling out your test methods.

ADDING TESTS TO YOUR TEST CLASS

Let’s start by creating a test method that tests that the booksManager is sorting the
books correctly by title. 

1 Add a method called testSortTitle. 

func testSortTitle() {
}

2 Because you want to test sorting by title in this method, set the sortOrder prop-
erty in the BooksManager to title.

booksManager.sortOrder = .title

Great, so your test method is set up, but how does it perform a test?

To create a test, first consider what you’re expecting as the correct result. In this
case, after sorting by title, you would expect that the books array will be sorted
in a certain order: “Gulliver's Travels,” “The Da Vinci Code,” then “The Odyssey.”

In Xcode, you express this expectation with what’s called an assertion. The basic
assertion is expressed with the XCTAssert method. This method requires a
Boolean expression—if it returns true, the test has passed. Conversely, if it
returns false, the test has failed. 

3 Assert the order of the sorted array:

XCTAssert(booksManager.getBook(at: 0) == bookGulliver)
XCTAssert(booksManager.getBook(at: 1) == bookDaVinci)
XCTAssert(booksManager.getBook(at: 2) == bookOdyssey)

That’s it—you’re ready to run your test! Because your method starts with the
word “test,” Xcode automatically recognizes that it’s a test method and indicates
this with a diamond beside the method. 

Figure 15.31 Books-
Manager.swift target 



473Testing your app
4 Hover over this diamond, and it should become a Play button. Click on this Play
button, and the test method you just created should run. 

If the test is successful, the diamond will display a green tick, while an unsuc-
cessful test will display a red cross (see figure 15.32).

Figure 15.32 Test method

Several assertion methods expand on the basic XCTAssert method, perform-
ing various common test assertions such as equality, inequality, greater than,
less than, and so on.

5 Add another test method to test the sort by author function. This time, use the
XCTAssertEqual method:

func testSortAuthor() {
    booksManager.sortOrder = .author
    XCTAssert(booksManager.getBook(at: 0) == bookDaVinci)
    XCTAssert(booksManager.getBook(at: 1) == bookOdyssey)
    XCTAssert(booksManager.getBook(at: 2) == bookGulliver)
}

6 This time, run both tests in this class by selecting the Run test button next to
the class declaration. You should end up with two successful tests. You can also
see your successful and unsuccessful tests in the test navigator.

CHALLENGE Create a functional test method to test searching the books
array. You’ll find my solution in the repo coming later in this chapter!

Great! If you make changes to your app now, you can be sure by running your tests
that your books should still sort and search correctly. 

15.7.2 Testing for performance

Unit tests aren’t only about whether a unit of code is correct or incorrect—performance
unit tests permit you to accurately analyze the efficiency of a unit of code. Perfor-
mance tests run a unit of code 10 times and give you the average execution time.

Successful test indicator

Test method indicator: hover over to change to Play button

Play button: click to run test method



474 CHAPTER 15 Debugging and testing
 Let’s add a performance unit test to analyze the efficiency of the image color
detection algorithm that your friend introduced.

1 As you did in the previous section, add a new unit test class called UIImage-
ColorDetectionTests to test the UIImageColors framework, and remove
the default test methods.

2 You’re going to need an image to detect colors. Add an image variable and set it
up in the setUp method.

var image: UIImage!
override func setUp() {
    super.setUp()
    image = UIImage(named: "book")
}

To analyze the performance of a unit of code, run it in a closure passed to the
measure method. 

3 Create the testColorDetection test method, and measure the performance
of the getColors method.

func testColorDetection() {
    self.measure {
        self.image.getColors()
    }
}

Because this UIImage extension comes from a third-party binary framework
that's not compiled by Carthage for testing, the @testable attribute won’t
work. 

4 Instead, select the UIImageColors framework in the Project Navigator, and
check the BookcaseTests target in the File Inspector to make this framework
available to your unit tests.

5 Run the test by clicking the Play button beside the test method. An average time
will appear after the measure closure, along with a gray diamond. 

6 Click to the left of the Play button for more information about performance
(see figure 15.33).

7 Select the Set Baseline button in the performance result. 
Future tests will now be based on this baseline. If something changes in this
third-party code in the future, and it becomes significantly less efficient than
this baseline, you’ll know about it when this performance test fails.



475Testing your app

15.7.3 Testing your user interface

User interface testing tests your app from a different perspective than unit testing.
While functionality and performance can still be tested, UI testing shifts the focus
from testing units of code to testing the user experience of your app. 

 Let’s explore UI tests by creating one to test a user experience in your app. If you
select the Info button in the book edit form, the ISBN field should appear. If you select
the Info button again, it should disappear. Let’s test that this functionality is working
correctly.

 UI tests are created in a separate target to the app and unit tests. 

1 Find the BookcaseUITests test target that was generated when the Bookcase
project was created, and open the default test class BookcaseUITests.

2 Create a new test method called testToggleISBN. 
Your test class accesses the application via the XCUIApplication object, which
is launched by default in the setUp method. You can use this object to access

Silence the warning!
Because you’re only testing the performance of the method, you aren’t interested in
the returned result. The Xcode compiler finds this strange and warns you of the
unnecessary function call. To silence the warning, you can explicitly ignore the result
by assigning it to an underscore:

_ = self.image.getColors()

Click to set result as
baseline for future tests Average time

Performance result

Figure 15.33 Performance result



476 CHAPTER 15 Debugging and testing
interface elements in various ways. For example, to get a reference to the Add
button in the navigation bar, you could type

let addButton = XCUIApplication().navigationBars["Books"].buttons["Add"]

This gets a reference in the application to the navigation bar with the title
Books, and then within the navigation bar finds a reference to the Add button.
With this reference, you can now simulate the user tapping the button.

addButton.tap()

This is great, but with all this syntax, all you’ve achieved is a button tap. What
happens when you want to test a longer and more complex user experience
with multiple interactions? Setup would be a time-consuming and frustrating
process.

Fortunately, Xcode allows you to record a user experience live and automatically
convert to UI test sequences of code. If you entered the addButton code,
delete it now. You’re going to set up this UI test by recording it!

3 Ensure your cursor is inside the testToggleISBN method, and press the
Record button (see figure 15.34). 

The app will launch, and the Stop Recording button will replace the Record
button in the debug bar.

4 Select the Add button. A UI test action will automatically be added to the test-
ToggleISBN method:

XCUIApplication().navigationBars["Books"].buttons["Add"].tap()

5 Now that you’re in the book edit form, select the Info button. Again, Xcode will
automatically add this action to your test, even refactoring the first line to set up
a convenience variable to hold the application object:

let app = XCUIApplication()
app.navigationBars["Books"].buttons["Add"].tap()
app.scrollViews.otherElements.buttons["More Info"].tap()

Cursor is inside
test method

Click to record

Figure 15.34 Record UI test



477Testing your app
To check that the ISBN field has been toggled, you’ll need a reference to the
ISBN field. 

6 To find how to reference the ISBN label, click on it. You’ll find that Xcode once
again has refactored your code, setting up a property to hold the elements in
the interface:

let elementsQuery = app.scrollViews.otherElements
elementsQuery.buttons["More Info"].tap()
elementsQuery.staticTexts["ISBN:"].tap()

Great, with little effort on your part, you know how to reference the ISBN field!
You can stop the recording now, because you’re going to finish writing the test
yourself!

7 Press the Stop Recording button. You’re going to refactor the test yourself. You
only tapped the ISBN field to get a reference to it. 

8 Remove the line tapping the ISBN label and instead use the reference to deter-
mine whether the ISBN label exists in the interface prior to tapping the Info
button. You can do this with the exists method:

elementsQuery.staticTexts["ISBN:"].tap()
let isbnExists = elementsQuery.staticTexts["ISBN:"].exists
elementsQuery.buttons["More Info"].tap()

Now, you’re ready to make an assertion. Tapping the Info button should have
toggled the existence of the ISBN field in the interface. 

9 Confirm that the ISBN field’s existence has toggled with a call to XCTAssert-
NotEqual.

XCTAssertNotEqual(elementsQuery.staticTexts["ISBN:"].exists, isbnExists)

You’ve set up your first UI test! 

10 As you did with unit tests earlier in the chapter, run the test by tapping the Play
button beside the method.

The app will run in the simulator, automatically performing the actions defined in the
test method. With any luck, it should eventually highlight a successful test with a green
tick. 

Accessibility
For a user interface to be testable, its interface elements need to have accessibility
enabled. But even if accessibility wasn’t required for UI testing, it’s still best practice
to ensure that your interface is accessible. 



478 CHAPTER 15 Debugging and testing
15.8 Summary
In this chapter, you learned the following:

 Different methods exist for examining the contents of a variable, each with
their own advantages. Check table 15.2 for a summary.

 Debugging in Xcode is a massive topic, and the tools available for exploring
your app are extensive. One chapter can’t cover everything—if you’d like to
explore further, check out the memory graph debugger, instruments tools, and
type “help” into the lldb command line.

 Use functional tests to test that something does what it should, and use perfor-
mance tests to confirm that a process is taking an appropriate amount of time,
compared with a baseline.

 Unit tests test from the perspective of units of code, while UI tests test from the
perspective of the user experience of your app.

 Ensure that the elements in your app are accessible.
 For further reading on testing, check out Apple’s documentation on testing at

https://developer.apple.com/library/content/documentation/Developer-
Tools/Conceptual/testing_with_xcode. Look at how to perform asynchronous
testing.

(continued)

Select an interface element and open the Identity
Inspector. There, you’ll find the accessibility panel.
Here, you can provide a label to describe the ele-
ment, a hint to describe the result of interacting
with the element, and a unique identifier for the
element.

Beneath these properties are a number of trait checkboxes, such as Button,
Selected, Image, Search Field, and Static Text. These properties give the operating
system a better understanding of how the element is expected to behave.

Adding accessibility properties to the visual elements in your app will open them up
to be described by the VoiceOver accessibility app, and enable users with impaired
vision to use your app.

CHECKPOINT If you’d like to compare your project with mine at this
point, you can check mine out at https://github.com/iOSApp-

DevelopmentwithSwiftinAction/Bookcase.git  (Chapter15.3.Tested).

https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/Bookcase.git
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode


Part 4

 Finalizing your app

Finally, your app is nearly ready to publish to the App Store! But first, there
are a couple of things that need attention.

 In chapter 16, you’ll look at distributing your app to beta testers—a source of
invaluable feedback before you launch your app. You’ll also look at the process
of setting up a home for your app in the App Store and what is technically
involved in publishing your app.

 In chapter 17, you’ll find a number of links to resources and further informa-
tion that will help you continue your journey in iOS app development.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



480 CHAPTER 
 
 



 Distributing your app
What’s the point of all this work perfecting your app if you’re going to keep it to
yourself? At some point, you’ll most likely want to share your awesome new app
with the world. 

 But, wait! Before you do, it’s a good idea to get beta testers to give your app a
good run-through. Their feedback will be invaluable—not only for finding obscure
bugs, but also to provide you with a more subjective perspective of user experience
with the app.

 You can put your Swift hat away for now. In this chapter, we’ll look at distribut-
ing your app. Along the way, we’ll explore

 Joining the Apple Developer Program
 Signing identities and provisioning profiles
 Developer account site and iTunes Connect
 Beta testing and TestFlight
 Building a home for your app in the App Store

This chapter covers
 Distributing your app to beta testers

 Publishing your app to the App Store 
481



482 CHAPTER 16 Distributing your app
16.1 Joining the Apple Developer Program
Exciting days—your Bookcase app is feeling ready to distribute to beta testers. Then,
after you tweak the app based on beta feedback, the App Store awaits! 

 The first thing you’ll need to do before you can distribute your app is join the
Apple Developer Program. You may have already done this, because it was mentioned
in chapters 1 and 12 (you needed membership to utilize iCloud). But if you haven’t
joined yet and you hope to distribute your app on the App Store, now might be the
time to bite the bullet!

 To enroll in the Apple Developer Program, click on this link and follow Apple’s
instructions: https://developer.apple.com/programs/enroll/.

 If you can demonstrate you have or are part of a legally registered company, you
can enroll as an organization using your company’s name. If not, you’ll need to enroll
as an individual, using your legal name.

16.1.1 Signing into Xcode

To make the most of your membership, you need to ensure that you’ve signed into
your Apple account in Xcode.

1 Select Xcode > Preferences, and select the Accounts tab. If your Apple account
is listed under Apple IDs, you should be good to go! (Unless your session is
expired—not to worry, you’ll need to log in again.) 

2 If you don’t see your Apple account listed, select the + button at the bottom left
of the window, and select Apple ID to add your personal Apple account to
Xcode (see figure 16.1).

3 In the unlikely case that you haven’t yet set up an Apple ID, select Create Apple
ID now. 

Figure 16.1 Adding Apple ID to Xcode

https://developer.apple.com/programs/enroll/


483Joining the Apple Developer Program
4 You can now sign in to your account (see figure 16.1). You should see your
Apple ID appear in the Accounts tab. 

16.1.2 Code signing your app

Apple has security measures in place to ensure that apps have the correct permissions
to be installed on devices. These measures ensure that apps are

 Unaltered
 From a trusted source (that is, Apple)
 Developed by a developer authorized by Apple

These security measures are carried out on your app using a process called code signing. 

EXPLORING YOUR SIGNING CERTIFICATES

To code sign your apps, you’ll need what’s called a signing certificate, which identifies
you as a developer. Let’s explore your signing certificate.

1 Select your Apple ID in the left column. 
A list of app development teams that you belong to will appear on the right.
You’ll automatically be assigned a team connected to your Apple ID. If you’ve
enrolled in the Apple Developer program, your role will be listed as Agent (see
figure 16.2).

Figure 16.2 Teams and signing certificates

Select your
Apple ID

Your teams
appear

Click Manage
Certificates

Details for your
team’s signing
certificates appear



484 CHAPTER 16 Distributing your app
2 Select your team, and select Manage Certificates. A popup will appear with
details of your team’s signing certificates. You may or may not see signing certif-
icates appear in this section. Don’t worry if you don’t see any—you’ll set these
up now.

You need two types of signing certificates for iOS:

 iOS Development allows you to test your app on devices and is free.
 iOS Distribution allows you to distribute your app to beta testers and the App

Store. You need to join the Apple Developer Program to receive this signing
identity.

CREATING YOUR IOS DEVELOPMENT SIGNING CERTIFICATE

If you don’t see an iOS Development signing certificate, it hasn’t yet been generated.
Let’s generate your iOS Development signing certificate now.

 You could tap the + button right now and create one, but believe it or not, an even
easier way exists! Xcode will automatically generate a development signing identity for
you when you select your team in a project’s settings.

1 Open the Bookcase project. 
2 Navigate to the project’s settings for the app target. 
3 In the General tab, find the Signing section, which should already be set to

Automatically Manage Signing. 
4 In the Team combo box beneath it, select your team. An iOS Development Sign-

ing Certificate will be automatically created for you, and appear below (see fig-
ure 16.3).

Apple Developer Program team roles
As an individual member of the Apple Developer Program, your team can only consist
of yourself, but if you enroll as an organization, you can add more people to your
team. 

Different roles are available to define access privileges for different members of the
team:

 Team agent—That’s you! There’s only one team agent who has all access priv-
ileges.

 Team admins—They can do much that an agent can do, with a few exceptions
such as renewing membership or creating certificates.

 Team members—They have limited access.

You can read more details of team roles in Apple’s app distribution guide at http://
mng.bz/Ou8U.

http://mng.bz/Ou8U
http://mng.bz/Ou8U


485Joining the Apple Developer Program
Figure 16.3 Project target signing preferences

NOTE Though the signing certificate is called iPhone Developer, it’s relevant
to all of iOS.

CREATING YOUR IOS DISTRIBUTION SIGNING CERTIFICATE

Of course, using a development provisioning profile to test your app on a device that
you can connect to your computer is important, but the power in iOS development is
distributing to any device in the world, such as via the App Store. To do this, you also
need a distribution signing certificate.

 Luckily, creating your distribution signing certificate is also straightforward, now
that you’re enrolled in the Apple Developer Program.

1 Open the Accounts tab in Xcode preferences again and select your Apple ID.
2 Open the Manage Certificates popup again to see your signing certificates.

Signing identity vs. signing certificate
You may occasionally in iOS see mention of a signing identity, and wonder—is that
the same as a signing certificate? Well, both are used to authenticate you in the
code-signing process but a subtle difference exists:

 Your signing identity is stored locally in your Mac’s keychain. It contains two
encryption keys: a public key and a private key.

 Your signing certificate contains only the public key. It’s included in an app’s
provisioning profile (more on that coming up), and once you’ve joined the
Apple Developer Program, it’s also stored remotely on Apple’s servers in your
Developer account. 

Let Xcode
manage signing

Xcode automatically
generates signing certificate

Select
your team



486 CHAPTER 16 Distributing your app
3 Select the + button. 
4 Select iOS App Store.

That’s it—your Distribution certificate is ready to go!

CREATING A DEVELOPMENT PROVISIONING PROFILE

To install your app on devices, it must be bundled with its authorization details in
what’s called a provisioning profile. Let’s look at the three types of provisioning profiles:

 A development provisioning profile is used with a development certificate. Gener-
ally, you’ll use this to test apps on local devices during development. 

 An ad hoc provisioning profile is used with a distribution certificate to manually
distribute to beta testers.

 A store provisioning profile is also used with a distribution certificate to distribute
your app to the App Store.

The easiest way to create provisioning profiles is to let Xcode manage signing and gen-
erate them for you automatically. Behind the scenes, a provisioning profile contains

 An App ID for your app. If Xcode is managing signing for you, your app’s App ID
will be automatically determined for you. Two types of App IDs exist:
 Wildcard App IDs are the default, and make it possible to group more than one

app with the same App ID. Wildcard App IDs are specified with an asterisk. 
 Explicit App IDs explicitly identify your app. Apps that use app services such

as In-App Purchase or iCloud automatically use an explicit App ID, which is
generated from a combination of your team ID plus your app’s bundle ID
(which is initially generated from your app’s organization ID and your app
name).

 Signing certificates for each developer in your team. 
 Device IDs that the app is authorized to be installed on. In development or ad

hoc provisioning profiles, device IDs must be registered for an app to be
installed on them. That’s easy enough—by plugging in a device and running
the app from Xcode, your device will automatically be registered in the provi-
sioning profile. Later, we’ll look at adding devices for beta testers. 

Figure 16.4 shows the contents of a development provisioning profile. 

Figure 16.4 Development provisioning profile

Development provisioning profile

App ID Device IDDevelopment certificate

Public key



487Joining the Apple Developer Program
You might notice errors appear indicating that Xcode can’t create a provisioning pro-
file for your app (see figure 16.5). 

Apple requires that your account be associated with at least one iOS device before
Xcode can generate provisioning profiles for your apps. This is easy enough to solve:

1 Plug an iOS device in.
2 Select to run your app on the device rather than the simulator.
3 Run your app. The errors should disappear, the provisioning profile will be gen-

erated for you automatically, and the Bookcase app will run on your device. 

CHECKING YOUR CERTIFICATES

With a few steps, you’ve created a development signing identity and certificate, a
device ID for your iOS device, and an App ID and development provisioning profile
for the Bookcase app. Wow! To be sure it all works as expected, let’s check Apple’s
records of this information on their servers.

1 Open your Developer account site at https://developer.apple.com/account.
The Developer account site is where you’ll find many relevant links for manag-
ing your Developer account with Apple, along with additional resources such as
documentation and forums. In this chapter, we’ll look at two sections that also
happen to be the main links highlighted:

 Certificates, Identifiers, and Profiles, where you can view and manage these
assets.

 iTunes Connect, where you’ll manage and submit apps to the App Store or dis-
tribute them to beta testers.

Figure 16.5 Provisioning profile errors

https://developer.apple.com/account


488 CHAPTER 16 Distributing your app
2 Select Certificates, Identifiers, and Profiles now. You’re automatically brought
to the Certificates section. Here, you’ll find your iOS Development and Distribu-
tion Signing Certificates (see figure 16.6).

Figure 16.6 Checking your certificates

While you’re here, let’s look at the ID Apple has automatically generated for
your app.

iOS signing
certificates 

Developer account

Certificates, Identifiers & Profiles



489Joining the Apple Developer Program
3 Select App IDs in the Identifiers section on the left. You should find that an App
ID for the Bookcase app has automatically been registered by Xcode for the
Bookcase app, including your own bundle ID (see figure 16.7).

Figure 16.7 Checking your App IDs

4 Select All in the Devices section. You should find that your iOS device has been
registered (see figure 16.8).

Figure 16.8 Checking your registered devices

TIP It’s usually easier to let Xcode handle automating code signing for you,
but it’s possible to create a signing certificate, register an App ID, register a
device, or even generate a provisioning profile right here in the Certificates,
Identifiers, and Profile center. Sometimes there may be reason to do so. If
you wanted, for example, to restrict certain registered devices from installing
an app, you’d need to generate a custom provisioning profile.

Let’s check how Xcode stores your signing details locally.

5 The same way you did earlier, open Xcode > Preferences > Accounts, navigate
to your Apple ID in the Accounts tab, and select Manage Certificates on your
team.



490 CHAPTER 16 Distributing your app
You should now see your development and distribution certificates; this indicates that
these identities have been generated and stored locally in your keychain.   

 That’s it! You’re all signed up and ready to start distributing your new app. 

16.2 Setting up an app in iTunes Connect 
Before distributing your app either via the App Store or TestFlight, you need to create
a record for it in iTunes Connect. Later, you’ll upload a build of your app from Xcode
to the app record that’s ready for distribution.

1 Open your Developer account site (https://developer.apple.com/account),
and navigate to iTunes Connect (see figure 16.9).

2 Select the My Apps section. 
3 Select the + symbol to add your first app record to iTunes Connect.

iTunes Connect
iTunes Connect is where Apple developers can manage their apps, users, and
finances. You’ll use iTunes Connect more and more as you start distributing your
apps via TestFlight or the App Store. Do a little exploration and familiarize yourself
with iTunes Connect—you’ll find seven sections:

 My Apps—Create, manage, and submit your apps, and edit their metadata.
This is also where you’ll manage your TestFlight builds.

 App Analytics—iTunes Connect has built-in analytics data to help you keep
tabs on user engagement, sales, crashes—even how often your app has
been viewed in the App Store.

 Sales and Trends—Details of sales and downloads, showing trends over time.
 Payments and Financial Reports—Download reports of any payments to you

by Apple.
 User and Roles—Add iTunes Connect users to your team and modify their

roles. You can also define your internal and external TestFlight testers here.
Take note: somewhat confusingly, your team and their roles in iTunes Connect
are different than your team and their roles in the Apple Developer Program. If
you’re an individual member of the Apple Developer program, you cannot add
members to your Apple Developer team, but you can add members to your
iTunes Connect team. 

 Agreements, Tax, and Banking—A little admin may be necessary here. If you
want to develop paid apps or accept in-app purchases, you’ll need to accept
the iOS Paid Applications Contract and enter your tax and bank information.

 Resources and Help—This section is a great place to learn more about dis-
tributing apps using iTunes Connect.

https://developer.apple.com/account


491Setting up an app in iTunes Connect 
Figure 16.9 iTunes Connect

Developer account

iTunes Connect



492 CHAPTER 16 Distributing your app
4 Fill out the form to create a new app (see figure 16.10.)

 Platforms—Specify the iOS platform, of course!
 Name—This is a unique name for your app in the App Store. Because I called

dibs on the name “Bookcase,” you’ll need to find another, sorry!
 Primary Language—The language that your app will default to if your app

hasn’t been localized into the user’s language. 

Figure 16.10 Creating an app record in iTunes Connect

Click + and
select New App

Fill out New App
form and click Create



493Uploading your build to iTunes Connect
 Bundle ID—Look for the bundle ID that matches your project’s bundle ID in
its General settings in Xcode.

 SKU—The SKU is purely used as an identifier among your apps and can be an
identifying text of your choosing that needs to be unique among your apps.
Make sure it doesn’t contain spaces and doesn’t start with a hyphen (-),
period (.), or underscore (_).

5 Select Create. You should now have a brand-new app record in iTunes Connect. 

16.3 Uploading your build to iTunes Connect
To distribute your app to the App Store or TestFlight, you need to upload it to its app
record in iTunes Connect. Let’s upload a build of the Bookcase app to iTunes Con-
nect now.

1 Building an archive of your app is the first step toward all means of distribution.
Archive your app in Xcode by selecting Product > Archive. If the archive option
is unavailable, ensure you either have Generic iOS Device or your actual device
selected for the active scheme.
After archiving the app, Xcode will automatically open the Organizer, a pro-
gram for managing your app archives. 

2 With your app and archive selected, select the big blue Upload to App Store
button. (I think this button title is a little confusing—you’re actually uploading
to iTunes Connect, from where you can later submit the app to the App Store if
you like.) 

3 You’re asked to confirm your App Store distribution options.  You can choose to
include bitcode, which allows Apple to optimize your app when necessary. You
can also choose to strip the Swift symbols, further reducing your app’s file size.

4 You’re next given the opportunity to manually manage code signing if you so
wish. Most likely, you'll want Xcode to automatically manage code signing.



494 CHAPTER 16 Distributing your app
Figure 16.11 Uploading build to iTunes Connect

5 Finally, you’ll need to reconfirm the upload (see figure 16.11).
6 You may be prompted that codesign wants to access a key in your keychain, so

select Always Allow. Xcode will prepare your app archive for uploading, which
could take several minutes. iTunes Connect will then take time to process your
app. You’ll receive an email when it has finished processing.

7 Open the Bookcase app within My Apps in iTunes Connect, and select the
Activity tab. This is where you’ll find the following:

 All Builds—Details of builds you have uploaded. 
 App Store Versions—The status history of versions of your app on the App

Store. 

1. Select app 2. Select archive
3. Click Upload
    to App Store…

4. Select App Store
    distribution options
    and click Next

5. Select Automatically
    manage signing and
    click Next

6. Click Upload



495Distributing your app to beta testers
Figure 16.12 Uploaded build

 Ratings and reviews—Available after launching your app on the App Store.
You should find your build listed in the All Builds section. When it has fin-
ished processing, it should have an upload date (see figure 16.12).

Your app is another step closer to distribution. It’s time to hear from your beta testers!

16.4 Distributing your app to beta testers
Before you send your new app into the wider world via the App Store, it’s a good idea
to get feedback from your app’s intended audience. Beta testers can give you a whole
new perspective on your app—they might find bugs or problems by using the app dif-
ferently than you expected or tested for; they might give you ideas for improvements
that you never considered; or perhaps they might even confirm that you’re on the
right track.

 There are three ways to distribute your app to beta testers:

 Distribute your app manually using an ad hoc provisioning profile.
 Distribute via TestFlight, using iTunes Connect.
 Distribute via a third party, such as Microsoft’s HockeyApp, or Twitter’s beta by

Crashlytics. We won’t cover third-party approaches in this chapter.

TestFlight and third-party tools offer more automation in the process of distributing
to beta testers. Apps distributed via TestFlight can also be installed on a vastly greater
number of devices. 

Open Activity tab

Select All Builds to find
your uploaded app



496 CHAPTER 16 Distributing your app
 In this chapter, we focus mainly on distributing via TestFlight, but for those curious
about the manual approach, here’s a quick overview.

16.4.1 Distributing to beta testers manually

Distributing your app manually bypasses the TestFlight process using iTunes Connect
by exporting your app as a file, and then distributing this file to beta testers—for
example, via email—to install on their devices. Previously, this was the only option
provided to you from Apple, until TestFlight was introduced.  

 Let’s explore the manual approach by distributing the Bookcase app. Follow these
steps:

1 Add devices—Because beta testers’ devices probably won’t be physically connect-
ing to your computer, you’ll need to manually add their device IDs to the list of
authorized devices online in your Certificates, Identifiers, and Profiles center. 
To get the device ID, also known as the unique device identifier or UDID, you need
to ask for it. A handy guide for helping beta testers find their UDID in iTunes
can be found at whatsmyudid.com.  

If you can access an additional device to experiment with, add its device ID in
the Certificates, Identifiers, and Profiles center now. Select All in the Devices
section, tap the + symbol, and enter the device’s name and UDID.

2 Archive the app—Similar to uploading to iTunes Connect, you’ll want to build an
archive of your app. Select Product > Archive in Xcode with Generic iOS Device
or your iOS device selected as the current scheme.
After archiving the app, Xcode will automatically open the Organizer. Instead
of uploading to iTunes Connect here, you want to generate a file to distribute
to your beta testers.

3 Export the app—Select your Bookcase app’s archive and select the Export but-
ton. Select Save for Ad Hoc Deployment. Choose your team and select Export,
choosing a local folder to export to (see figure 16.13).

4 Distribute the app—Great, you should now have a file with extension .ipa—that’s
your app! It’s a compressed file like a zip, but with a .ipa extension. You can now
distribute this file to your testers, via email, for example.

A tester can then open the app in iTunes on their Mac and install it to their device.
After testing your app, ask them to send you their feedback.

 Some developers prefer this approach as it places all of the control of the process
in the developers’ hands. But it does have drawbacks:

 Your tester will require a reasonable degree of technical literacy. Finding their
device’s UDID to send to you can be challenging, and the request itself can even
sound a little strange, or worse, suspicious. Even installing the app from the app
file can be a complicated process if you’re unfamiliar with it. Don’t forget, beta



497Distributing your app to beta testers
testers are generally testing your app for you as a favor. Any obstacles that make
the process laborious or confusing could discourage them from doing it at all.

 A limitation with this approach is that it can register only 100 iPad and 100
iPhone devices.

16.4.2 Distributing to beta testers with TestFlight

TestFlight streamlines the process of beta testing. Developers upload their betas to
iTunes Connect and add their beta testers, and Apple handles the rest. Invitations to
install your app are automatically sent to your beta testers, and your app installs on tes-
ters’ devices with a click of a button in the TestFlight app on their device. Developers
don’t need to concern themselves with requesting UDIDs from testers and can keep
track of which testers have installed or opened their app.

 TestFlight defines two types of beta testers:

 Internal testers have specific roles within your team, but are limited to 25 internal
testers per app.

 External testers are generally kind people willing to test out your app but who
don’t have a role within your team. This role has a much more generous limit of
2,000 beta testers per app. Great! But there’s a catch—you’re required to sub-
mit your app for Apple’s approval before distributing to external testers.

Let’s distribute the Bookcase app to an internal tester now. An internal tester must
first be added as an iTunes Connect User in your team. 

1. Select app 2. Select archive 3. Click Export…

4. Select Ad Hoc

Figure 16.13 Exporting archive



498 CHAPTER 16 Distributing your app
ADDING AN ITUNES CONNECT USER

1 Open iTunes Connect again. 
2 Open the Users and Roles section. You’ll find three tabs in this section:

 iTunes Connect Users—Add users to your team on iTunes Connect. Specify
their role within your team to define their level of access.

 Test Flight Beta Testers—Manage your internal and external testers here.
 Sandbox Testers—Test In-App Purchases or Apple Pay without generating any

actual financial transactions with sandbox test accounts that you can create
here.

3 You’ll find that you’re already listed in the iTunes Connect Users tab. Tap the +
button to add another iTunes Connect User (see figure 16.14).

Figure 16.14 iTunes Connect Users

4 Enter the user’s name and email address, and select Next.
5 Specify the user’s role in iTunes Connect, and optionally limit their role to spe-

cific apps. When selecting different roles, you’ll see the privileges the user will
have access to. Make sure you give your new user either an admin, app
manager, developer, or marketer role, as only these roles can become internal
testers. 

6 Select Next (see figure 16.15).
7 Optionally, specify which notifications your new user should receive, and then

select Save. Your new user will receive an email and be able to activate their
account. When they’re all set up, you can add them as an internal tester.

Add a user



499Distributing your app to beta testers
Figure 16.15 iTunes Connect Users

SET UP AN INTERNAL TEST

Now that you’ve created your app record on iTunes Connect, uploaded a build of
your app, and set up an iTunes Connect user, it’s straightforward to create an internal
test and add an iTunes Connect User as a tester. 

1 Within your app in iTunes Connect, open the TestFlight tab, where you can edit
general test info and manage your internal/external tests and testers.

2 Select Add iTunes Connect Users. Here, you can add internal testers.
3 Select the + symbol to add an internal tester, and in the pop-up, select the tes-

ter(s) you want to invite to test your app. 
4 Select the iOS tab where you can select a version of your app to test. You should

see an app version that was generated automatically when you uploaded your
build.
Apple requires you to specify whether you use encryption in your app. 

Click Next
when doneSpecify user’s roles

Optionally limit
app access

Privileges of
selected role



500 CHAPTER 16 Distributing your app
5 Select Provide Export Compliance Information to provide details of encryption
in your app. Because the Bookcase app doesn’t use cryptography, select No.
The version of the Bookcase app that you have selected should appear with the
message “Ready to Test.” Your app is now ready for internal testing.

6 Select Start Internal Testing. That’s it! See figure 16.16 for a visual summary of
the steps in creating an internal test.

1. Open TestFlight tab

2. Select Add iTunes
    Connect Users (it
    changes to iTunes
    Connect Users after
    you select)

3. Select internal
    testers

Figure 16.16 Creating an internal test in TestFlight



501Distributing your app to beta testers
 

Figure 16.16 Creating an internal test in TestFlight, continued

Your testers will automatically receive an email inviting them to test your app. They’ll
receive instructions to first install the TestFlight app on their device, which will man-
age installs of new test apps. 

SET UP AN EXTERNAL TEST

External testers are an entirely different species from your internal testers. They may
be friends, family, or colleagues you’ve asked to help out. Or maybe you put the call
out on Twitter or one of the many beta tester community websites. They’re unlikely to

4. Select iOS

5. Select Provide Export
    Compliance Information 

6. Click Start Internal Testing



502 CHAPTER 16 Distributing your app
be familiar with your app, so they make the perfect testers for how your app will be
received when it makes its way to the App Store.

 Setting up an external test is similar to setting up an internal test, except for a few
differences:

 Because external testers aren’t likely to have seen your app before, you need to
provide them with additional information about the app, and what you’d like
them to look out for.

 Because Apple will review your app before you can distribute to beta testers, you
need to give Apple reviewers additional information about the app and who to
contact if there’s a problem.

 Because beta testers aren’t part of your team, you need to provide a name and
email address for each. 

Let’s get started—your Bookcase app won’t test itself! 

1 If it’s not selected already, select the TestFlight tab within iTunes Connect.
2 Select Add External Testers. 
3 Create an External Testing Group for this app.
4 Select the + symbol to add new testers. In the pop-up, select the tester(s) you

want to invite to test your app. Because there can be up to 2,000 beta testers,
rather than add each tester’s details individually, you can upload a CSV file with
their details or specify testers from another one of your apps.

5 Select the Builds tab for this group. 
6 Add a build of your app to test.
7 Provide more information for Apple reviewers, including a demo account if

your app has a login.
8 Provide more information for your beta testers. This is your opportunity to let

your testers know what sort of information you want from them. I find that tes-
ters are more likely to give a thorough response if you structure your questions
in a numbered list.

9 Select Submit for Review. The build of the Bookcase app that you selected
should appear with the message “Waiting for Review.” This review can take a few
hours or even a day or two. When your app comes out of Apple review, you'll
have the opportunity here to select Start Testing. As with internal testing, emails
will be sent out to all your testers with instructions for how to install your app
via the TestFlight app. See the steps involved in setting up an external test in fig-
ure 16.17.



503Distributing your app to beta testers
10 While you wait for the app to be reviewed, you can flesh out the Test Informa-
tion tab, for example: 

 Beta App Description—What’s this app about? Be as succinct as possible!
 Marketing URL—Where can they learn more about the app? 
 Review Notes—any additional notes to help expedite the review. 

1. Open
   TestFlight tab

2. Select Add
    External Testers

3. Create an External
    Testing Group

4. Add Testers

Continues to step 5…

Figure 16.17 Creating an external test in TestFlight 



504 CHAPTER 16 Distributing your app
Figure 16.17 Creating an external test in TestFlight, continued

5. Select Builds tab 6. Add a build to test

7. Add info for
    Apple reviewers

8. Add testing info
    for beta testers

9. Click Submit
    for Review



505Distributing your app to the App Store
That’s it! If you do need to make any changes to the beta test information, you can go
into the Test Information tab. You can also specify an optional privacy policy there as
well.

 It’s now your job to sit back, wait, and hope that you get good, productive feedback
from your beta testers. When you have all the feedback you expect, make any neces-
sary changes and finishing touches to your app, because the next step is the big one!

16.5 Distributing your app to the App Store
After what’s probably been months of development and testing, congratulations!
You’re finally ready to distribute to users worldwide via the App Store. Let’s get
started!

 If you’ve been following along with distributing your app via TestFlight, you should
already have set up an app record in iTunes Connect. If not, you need to go back and
do this step before distributing an app to the App Store.

 If you’re happy with one of the builds you’ve already uploaded as a beta, you’re
free to distribute that version to the App Store. You can also upload a new build if you
prefer—go back to the Uploading your build to iTunes Connect section of this chapter if
you need a refresher.

 You now need to fill in, at a minimum, any required fields for your app in iTunes
Connect.

1 Open the App Store tab. You’ll find three tabs here that you need to fill out:

 App Information—Fill in any general information related to your app.
 Pricing and Availability—Set up a price for your app.
 Platform Version Information—Fill in information specific to this version of

your app.

2 Select App Information. See figure 16.18 for a peek at the editable fields in this
tab.
Here, you can fill in the following:

 Name—You’ve already specified this in the beta test process, but you have
another opportunity to rename your app every time you submit your app to
the App Store.

 Privacy Policy—Although including a link to a privacy policy is listed as
optional, several types of apps require this, such as apps for kids or with sub-
scriptions.

 Language—At the top right of the app info tab, you’ll see the language
you’re currently editing the app info in. For me, this says English (US). Select
this to open a combo box listing all the possible different languages you can
localize your app info into. Add a version of your app info in a different lan-
guage by selecting one of these languages.



506 CHAPTER 16 Distributing your app
Figure 16.18 Editable fields in App Information

 Primary Language—If your app info supports more than one language, you
can change the primary language here at any time.

 Category—You need to find an appropriate category and, optionally, second-
ary category to describe your app. Choose wisely as the category is one of the
ways users may discover your app. For the Bookcase app, I’d go with Utilities
and Books.

 License Agreement—It’s possible to customize the End User License Agree-
ment here. Apple’s standard EULA is generally sufficient.

 Rating—This refers to the age appropriateness of your app and is derived
from version information that you’ll set shortly. Other app details such as
Bundle ID, SKU, and Apple ID aren’t editable after creating the app record. 

3 Enter data in the necessary App information fields, and select Save when you’re
done.

4 Select the Pricing and Availability tab. 
Here, you can specify the price tier of your new app. This price tier will display
the applicable amount that the user will pay in your local currency and

Must submit new
version to change

EditableNot editable Not editable after
uploading build

Derived from
version info



507Distributing your app to the App Store
automatically convert to the user’s local currency. Select Other Currencies to
see how much your app will be priced in a specific price tier in different curren-
cies. (Apple will take royalties of 30% out of that amount.) You can go back and
change the price of your app later, or even schedule price changes here. Once
you’ve set the price, you can optionally set the availability in various countries
and discounts for educational institutions. 

5 Set the price tier of your app. If you’re feeling generous like me, set it to Free!
The defaults will be fine for the other options. Select Save when you’re done
(see figure 16.19).

Figure 16.19 Selecting the price tier for your app

NOTE Don’t forget, if you do want your users to pay money for your app,
you’ll need to fill out the necessary agreements, tax, and bank details in the
Agreements, Tax and Banking section.

Below the Pricing and Availability tab, you’ll find a Platform Version Information
tab, represented by a version number and the status of your app. You’ll proba-
bly see your app’s current version listed with 1.0 Prepare for Submission.

6 Select the Platform Version Information tab. Some highlights include these:

 App Preview and Screenshots—You can drag a 30-second demo video and up to
five screenshots of your app onto this section. You’ll need to provide at least

Select
price tier

View price in
other currencies



508 CHAPTER 16 Distributing your app
one screenshot of your app in both the 5.5-inch iPhone and the 12.9-inch
iPad if you want the app to appear in these stores. If your app varies signifi-
cantly between different device types—say, the iPhone SE version is signifi-
cantly different from the iPhone 7 version—you should provide additional
screenshots using Media Manager (see figure 16.20). 

Figure 16.20 Uploading app demo and screeenshots

TIP If you don’t have all the devices you need screenshots for, don’t worry—
you don’t  necessarily need to access a physical device for screenshots. If you
can demonstrate the app’s functionality sufficiently on the simulator, you can
save screenshots directly to your Mac’s desktop using Command-S. 

Select
device family

Drag app demo and
screenshots here to upload

Add screenshots to
other device sizes

View screenshots in
other device sizes



509Distributing your app to the App Store
 Description—The description of your app should be engaging, accurate, and
succinct. Apple recommends a short descriptive paragraph followed by a list
of your app’s most interesting features. 

 Promotional text gives you the opportunity to update the users on any news
regarding your app. Unlike description, promotional text for a version can
be updated after submission.

 What’s new in this version gives you the opportunity to let users know what has
been resolved or improved in the latest version. As you’re looking at the first
version of this app, this field is irrelevant and won’t be available. 

 Keywords—These help determine where your app appears in search results.
It’s important to consider your keywords carefully—you have only 100 char-
acters available. Be sure to use commas to separate keywords; spaces are
unnecessary and a waste of characters. Including both the plural and singu-
lar of the same word is also a waste of characters because Apple includes
both versions by default. Because your app name is automatically a search
term for your app, including it as a keyword is also a waste of characters. 

TIP A whole discipline called App Store Optimization (ASO) has sprung up
out of the need to improve the visibility of your app in the App Store, and key-
word optimization is a vital ingredient of this discipline. If you want to look
into this more, you might consider checking out one of the many third-party
ASO tools out there.

 Support URL—A URL your users can go to for help if something goes wrong.
 Marketing URL—An optional URL with additional information about your

app. See figure 16.21 for the next section of the form.

Figure 16.21 Adding description, keywords, and URLs to Version Information

Description (short paragraph
and list of features)

Promotional Text Keywords (comma separated)

URLs



510 CHAPTER 16 Distributing your app
 Build—Add a build of your app to the version that you uploaded to iTunes
Connect.

 App icon—You’ll need to upload a 1024 x 1024 image of the app icon here.
(Back in chapter 13, you downloaded a folder of different sizes of the same
icon for the Bookcase app. You should find the appropriate-sized image in
this folder.)

 Version—Best to follow common convention for version numbers; 1.0 is the
default for the first version of your app.

 Rating—Apple will determine your app’s recommended age rating for you
based on your responses in a pop-up as to how frequently your app may con-
tain types of mature content, and whether it contains unrestricted web
access, or gambling and contests. You can also specify here whether your app
is made for kids, and, if so, which age group. 

NOTE Apps intended for kids do have specific requirements, such as requir-
ing a privacy policy and potentially requiring a “parental gate,” a task at an
adult level that would prevent children from accessing parts of the app not
intended for children, such as in-app purchases.

 Version Release—After Apple approves your app (fingers crossed!), you need to
specify what happens next. Should it automatically be released, choose
whether to manually release it, or perhaps you want to schedule a release date.
There’s a lot to this form, and I haven’t listed every field. Among other
things, you’ll also find a Copyright field, additional information for Apple’s
review team, and What’s New in This Version for new versions of the app.

7 Fill out the platform version information form for the Bookcase app. 
8 After completing all fields, select Save, and the Submit for Review button

should become available.

TIP Before choosing the Submit button, it might be a good time to review
Apple’s Common App Rejections page at https://developer.apple.com/app-
store/review/rejections/ and double-check that your app doesn’t breach any
of Apple’s guidelines. You can find a full list of Apple’s App Store Review
Guidelines at https://developer.apple.com/app-store/review/guidelines/.

9 Now, take a deep breath, and select Submit for Review! 
Sigh. You’ll find yourself taken to yet another form. Thankfully, this is only a cou-
ple of Yes/No questions regarding content rights (that is, whether your app
contain third-party content) and an identifier (called IDFA) used by advertising
services. If your app doesn’t contain advertising, you can safely say no to this
question. 

10 When you’ve answered these questions, take another deep breath, and select
Submit. This time, it’s for real!

https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/rejections/
https://developer.apple.com/app-store/review/rejections/


511Summary
Your app will now go to Apple’s review team, where it will probably take a couple of
days to process. To get a better idea of how long of a wait time to expect, you can
check an unofficial average at appreviewtimes.com.

16.6 Summary
In this chapter, you learned the following:

 Though it’s possible to create signing certificates, register App IDs and devices,
and generate provisioning profiles in the Certificates, Identifiers and Profile
center online, it’s generally easier to let Xcode handle it all for you.

 To distribute an app to the App Store or Test Flight beta testers, you need to
create an app record in iTunes Connect and upload a build from Xcode.

 Internal TestFlight beta tests have a limit of 25 testers who have a role within
your team. External TestFlight beta tests have a much higher limit of 2,000 tes-
ters, but require Apple's approval before distributing to testers.

 Be sure to check Apple's Common App Rejections page before submitting your
app to the App Store to avoid problems.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



512 CHAPTER 16 Distributing your app
 
 
 
 



What’s next?
Congratulations! You’ve followed the Bookcase app on the long journey from a
basic idea through to publication on the App Store. 

17.1 Further learning
Along the way, we’ve covered dozens of Swift and iOS concepts, but the learning
doesn’t stop here. First, don’t forget there were important resources that we looked
at in this book:

 Swift—Continue to work on your Swift expertise with the book from Apple,
The Swift Programming Language (http://mng.bz/6fKi). 

 iOS Human Interface Guidelines—Ensure your app follows Apple’s human
interface guidelines (http://mng.bz/g9dI).

Other resources and tutorials you should be aware of include these:

 WWDC videos—Apple’s extensive library of videos from their Worldwide
Developers Conference (http://mng.bz/i030)

 Guides and sample code—Straight from Apple (http://mng.bz/eo56)
 Apple API reference documentation—http://mng.bz/2Jr9
 iOS Frameworks—A comprehensive list of all available iOS frameworks (http:/

/mng.bz/D5cb)
 raywenderlich.com—A comprehensive library of iOS books and tutorials
513

http://mng.bz/6fKi
http://mng.bz/g9dI
http://mng.bz/i030
http://mng.bz/eo56
http://mng.bz/2Jr9
http://mng.bz/D5cb
http://mng.bz/D5cb


514 CHAPTER 17 What’s next?
Many more iOS concepts are available for you to explore as you continue your journey
as an iOS developer. Depending on your personal goals, these could include

 Mapping and location services—http://mng.bz/3N31
 Split view controllers—Display your content in two panes if it’s in an appropriate

size class (http://mng.bz/d96M).
 Local and push notifications—https://developer.apple.com/notifications/. 
 Attributed strings—Define text styles (font, style, color) on ranges of characters

within a string (http://mng.bz/t078).
 WebKit—Display web pages in your app (http://mng.bz/LH0a). 
 Social—Integrate your app with social media such as Facebook or Twitter

(http://mng.bz/vw0h). 
 Internationalization—Add translations or localizations of content, such as dates

or number formats (http://mng.bz/893x). 
 Accessibility—Ensure your content is accessible to all users, including those with

impaired vision, hearing, or mobility (http://mng.bz/3B9c). 
 In-App purchases—Add premium content within your app that requires payment

(http://mng.bz/x9hi). 

If you’re interested in developing games, there’s plenty to sink your teeth into:

 SpriteKit (http://mng.bz/gIqu) is a great place to start for building 2D graphic
interfaces, while SceneKit (http://mng.bz/er3J) is generally more relevant for 3D.

 GameKit (http://mng.bz/8Hef) and Game Center (http://mng.bz/0DUQ) are
for building multiplayer games, high score tables, and setting achievements. 

 Metal 2 (http://mng.bz/R433) is a lower-level framework you may want to look
at if graphics performance is critical for your game.

There are also several third-party services that are worth looking at:

 Advertising—Though Apple no longer provides an advertising framework, other
third-party services can help you monetize your app through advertising. You
could start with MoPub (https://www.mopub.com/), Google’s AdMob (http://
mng.bz/PQhV), or Vungle (https://vungle.com/) for video ads.

 Analytics—In addition to the app analytics that iTunes Connect provides, you
can find several third-party services that use event tracking to provide addi-
tional information about user behavior within your app. These include Yahoo’s
Flurry (www.google.com/admob/), Google’s Analytics (http://mng.bz/Ltv6),
and Mixpanel (https://mixpanel.com/).

 Cloud services—In this book, you’ve looked at iCloud, but many other options
exist for cloud-based services and data persistence, such as Realm (https://
realm.io/), Dropbox (http://mng.bz/faGt), Firebase (https://firebase.google
.com/), and Google Cloud (https://cloud.google.com/).

www.google.com/admob/
http://mng.bz/3N31
http://mng.bz/d96M
http://mng.bz/t078
http://mng.bz/LH0a
http://mng.bz/vw0h
http://mng.bz/893x
http://mng.bz/3B9c
http://mng.bz/x9hi
http://mng.bz/gIqu
http://mng.bz/er3J
http://mng.bz/8Hef
http://mng.bz/0DUQ
http://mng.bz/R433
https://developer.apple.com/notifications/
http://mng.bz/PQhV
http://mng.bz/PQhV
https://www.mopub.com/
http://mng.bz/Ltv6
https://cloud.google.com/
https://mixpanel.com/
http://mng.bz/faGt
https://realm.io/
https://realm.io/
https://vungle.com/
https://firebase.google.com/
https://firebase.google.com/


515One more thing!
17.2 One more thing!
Oh, there’s one more thing, and to break tradition I’m afraid it’s bad news. Hopefully,
you’re sitting down. It’s about the Bookcase app you’ve been working on. There’s no
easy way to say this: someone has already launched an extremely similar looking app
on the App Store. The nerve! Even down to the same app icon. You can check it out at
https://itunes.apple.com/us/app/bookcase!/id1191400786?ls=1&mt=8.

 Oh well, I’m confident you have another absolute winner of an app idea taking
shape in your mind right now. You probably even had it before you started reading
this book! 

 It’s over to you. What are you waiting for? Go for it!
 I’d love to hear about your experience, your app, and launching it on the App Store.

Tweet me (@craiggrummitt) a link to your app on the App Store, and I’ll add it to the
list of reader’s apps at the companion site for this book, iosappdevelopmentwithswift
.com.

 Most of all, enjoy yourself. If you’re excited about your app, chances are others
might be too! Good luck!

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://itunes.apple.com/us/app/bookcase!/id1191400786?ls=1&mt=8
https://twitter.com/craiggrummitt


516 CHAPTER 17 What’s next?
 
 
 
 
 
 
 
 



appendix A
Project settings

Apple engineers provide app developers with an exceptional degree of configu-
rability for their projects and apps. On the flip side, all these customizable settings
can be intimidating—the build settings alone could contain approximately 300 cus-
tomizable fields! 

 We’ll take a short tour of project settings, but don't be alarmed: it’s not neces-
sary to understand the detailed implications of every setting you see. In many cases,
leaving them at their default is the best option.

 If you select the project itself in the Project Navigator, you’ll see the project edi-
tor (see figure A.1). Here, you can edit the settings for your project or your target.
The Projects and Targets column on the left shows what you’re currently editing,
and shows that in addition to your app target, Xcode by default created two targets
for your unit and UI tests. You’ll find that you’ll most often be editing the settings
for your main app target.

 Along the top of the project editor, you’ll find the Settings tabs, where you can
choose which settings you wish to edit in the settings pane. 
517



518  APPENDIX A Project settings
A.1 General 
In the main target’s General tab, you’ll find the most commonly needed settings (see
figure A.1).

 You’ll recognize several of these from when you created your project, along with a
few more:

 Deployment Target—Minimum version of iOS your app will work on
 Device Orientation—Which device orientations your app is designed to work in
 Status Bar Style—The look of your status bar, including whether it should be

there at all
 App Icons and Launch Images—Where Xcode can find the app icon and launch

screen

Settings tabs

Settings paneProjects and
targets

Figure A.1 Project editor



519Build settings
NOTE All the settings in the General tab are in fact generated from other
tabs. In earlier versions of Xcode, this tab was called Summary, which was per-
haps a clearer indication that this tab summarizes the most relevant informa-
tion from all the tabs. Not to worry though, any changes you make here will
automatically update elsewhere, and vice versa.

A.2 Capabilities
In the Capabilities tab, you can include Apple app services that aren’t included by
default. These include iCloud, push notifications, and Game Center. Look at the capa-
bilities available—it’s interesting to look through the list of app services Apple pro-
vides to you that could add value to your app.

 We looked at adding iCloud and push notification capabilities in chapter 12.

A.3 Resource tags
Here, you can assign tags to certain resources such as data files or images. These
resources are then excluded from the main app bundle and can be downloaded when
they’re required or on demand. This is a great way to keep your app size down.

A.4 Info
The Info tab defines and configures your app’s final executable file, or bundled execut-
able. You saw several of these settings already in the General tab, and modifying them
in either place updates the other. All the info settings are also hardwired to a file you
may have noticed in your Project Navigator called Info.plist. This is a special type of file
called a property list that contains a hierarchy of key-value properties. If you open the
Info.plist file in the property list editor, you’ll notice that it contains exactly the same
information as your main target’s Info tab, but in a different order. 

 When you create an Xcode project, Info.plist is generated with all required prop-
erties, but during development of your app you may need to add keys to this list for
different purposes.

 Several properties in the Info.plist file are by default derived from elsewhere. You
can spot these because they’re surrounded by brackets and prefixed by a dollar sign.
For example, Bundle Name is derived from $(PRODUCT_NAME), which is defined in
Build Settings.

 We modified the Info.plist file in chapter 13, to request permission to use the cam-
era, and again in chapter 14, to add app transport security. 

A.5 Build settings
Build settings are the instructions Xcode follows to build your app. Though hundreds
of settings are available in the main target’s build settings, the good news is that most
of the time you’ll leave these settings at their default values. However, at times you’ll
need to modify a build setting, so let’s be sure you know your way around.

TIP Select a setting to learn more about it in the Help Inspector.



520  APPENDIX A Project settings
A.5.1 Changing your build settings for configurations

By default, settings are divided into two categories under Configurations: Debug and
Release. These configurations are defined in the Info tab for the project (see figure
A.2) and can be used to apply different rules to your build settings, depending on
whether you’re building for an internal debug or archiving your project as ready for
distribution. 

Figure A.2 Configurations

Most of your build settings are the same for both debug and release, but it’s possible
to change a build setting for a specific configuration. Let’s say you want to change the
app icon for debug and release builds (see figure A.3).

1 Open the build settings for the target and point to the app icon setting. You’ll
notice an arrow appear at the left of the line. Tap on this arrow to open the set-
ting’s configurations. 

2 Click on a debug or release configuration setting to specify a different value. 
3 Once a setting’s configurations contain different values, it will display the text

<Multiple values>.

Select your project Define configurations

Open Info tab



521Build settings
 

1. Point to App Icon and click on the
   arrow that appears to open its
   setting configurations

2. Click a configuration
    and edit its setting

3. Setting now has different 
    values for different
    configurations

Figure A.3 Edit build setting for a configuration



522  APPENDIX A Project settings
A.5.2 Filtering build settings 

Build settings aren’t necessarily all determined at the target level. If a specific build
setting hasn’t been customized for your target, that setting will be inherited from your
project. Similarly, if a specific build setting hasn’t been customized by your project, it
will be derived from the built-in iOS default.

 At the top of the Build settings window, you’ll see two sets of buttons that help you
to explore these relationships. First, you’ll see three options that filter which build set-
tings appear:

 Basic—Shows you only the most basic build settings 
 Customized—Shows only the settings that have been customized at the target

level
 All—Shows all settings

Be careful not to have Basic or Customized selected when searching for a setting from
the search field; though the setting may exist, if it’s not basic or customized, it may not
appear.

 Next, you’ll find two options (see figure A.4) that determine how the build settings
appear: 

 Combined—This is the default view, showing you the current status for each
build setting, regardless of where in the hierarchy it’s being set.

 Levels—This view of the build settings highlights in columns where each build
setting is being set in the hierarchy—at the target, project, or iOS default level. The
Resolved column is the equivalent of what you see in the Combined view.
The resolved value for each setting is represented in the hierarchy with a green
rectangle.  



523Build settings
 

Figure A.4 Filters and Combined/Levels views for build settings

Filter build
settings

View build
settings levels

Target-level
settings

Project-level
settings

iOS default–level
settings

View build
settings combined

Search build
settings



524  APPENDIX A Project settings
A.6 Build phases
The build phases define the phases Xcode steps through when building your app.
Table A.1 describes them in more detail.

Sometimes, Xcode makes mistakes when automatically detecting a file’s category
(compile sources, frameworks and libraries, or copy bundle resources), and if some-
thing seems to go wrong after you add a file to your project, it can be a good idea to
verify that Xcode has made correct assumptions about the file in your build phase set-
tings. We looked at adding files to your project in chapter 5.

 In addition to the default steps, you can add other steps to the build phases, such
as copying files or running a script. We added a run script in chapter 14 to copy frame-
works downloaded via the dependency manager Carthage.

A.7 Build rules
The Build Rules tab defines how different file types are processed by Xcode. The
default behavior for file types is probably fine for your projects, and it’s unlikely you’ll
need to make changes here.

Table A.1 Build phases

Build phases Description

Target Dependencies Relevant for more-complex projects, where a target may have another tar-
get as a dependency.

Compile Sources Defines any source files (that is, any Swift files) that Xcode needs to com-
pile. When you add a Swift file to your project, it's automatically added to 
compile sources.

Link Binary with Libraries Instructs Xcode to link this app to a library or framework. There are many 
libraries and frameworks provided by Apple, or you can select a third-party 
framework by selecting Add Other. This section corresponds to the Linked 
Frameworks and Libraries section in the General tab. 

Copy Bundle Resources Here, Xcode will copy any resources your app requires, such as images, 
audio, data, or even storyboards. When you add a resource to your proj-
ect, it's automatically added to this build phase.



appendix B
Swift syntax cheat sheets
525

Variables and constants

var aVariable = 0
let aConstant = 0

DATA TYPE ANNOTATIONS

var aString: String
var aBool: Bool
var aInt: Int
var aDouble: Double

DATA TYPE INFERENCE

var bString = "A String!"
var bBool = true
var bInt = 3
var bDouble = 3.0

CLARIFY DATA TYPE

var cDouble: Double = 3

CONVERT DATA TYPE

var dDouble = Double(3)

PROPERTY OBSERVERS

var score = 0 {
  willSet {
    // Score will be updated
  }
  didSet {
    // Score was updated
  }
}

STRING INTERPOLATION

var message = "You scored\(score)"

Collections

ARRAYS

var emptyArray: [String] = []
var arrayOfInts = [3, 1, 2, 5]
arrayOfInts.append(4)

DICTIONARIES

var emptyDictionary: [String: String] = [:]
var dict = ["A": 1, "B": 2, "C": 3]
dict["D"] = 4

SETS

var emptySet: Set<String> = [] //empty Set
var setOfStrings: Set = ["A", "B", "C"]
setOfStrings.insert("D")

RANGE OPERATORS

let closedRange = 1...3 // include 3
let halfOpenRange = 1..<3 // exclude 3

FOR-IN LOOPS WITH RANGE

for index in 1...3 {
    print("\(index) banana")
}

FOR-IN LOOP

let distances = [3, 1, 2, 5, 4]
var returnDistances: [Int] = []
for distance in distances {
    returnDistances.append(distance * 2)
}



526  APPENDIX B Swift syntax cheat sheets

Collections (continued)

COLLECTION HIGHER ORDER FUNCTIONS

print(distances.map( { $0 * 2 } ))
// [6,2,4,10,8]
print(distances.filter( { $0 >= 3 } ))
// [3,5,4]
print(distances.reduce(0, {$0 + $1} ))
// 15
print(distances.sorted(by: { $0 > $1 } ))
// [5,4,3,2,1]

Tuples

var card1: (Int, String)
card1 = (7, "?")
card1.0 = 3
print("\(card1.0) of \(card1.1)")
// The 3 of ♥

TUPLES WITH ELEMENT NAMES

var card2: (number: Int, suit: String)
card2 = (number: 10, suit: "?")
card2.number = 5
print("\(card2.number) of \(card2.suit)")
// The 5 of ♠

RETURN A TUPLE FROM A FUNCTION

func pickCard() -> (number: Int, 
                    suit: String) {
    return (number: 2, suit: "?")
}

DEFINE TWO VALUES AT ONCE USING A TUPLE

var (number, suit) = card1
var (number2, suit2) = (13, "?")

SWAP TWO VALUES USING TUPLES

var coin1 = "dollar"
var coin2 = "penny"
(coin1, coin2) = (coin2, coin1)

Enumerations

enum AEnum {
    case aCase
    case bCase
}
let aEnum = AEnum.bCase

SWITCH STATEMENT WITH ENUM

switch aEnum {
case .aCase:
    print("Do a thing")
case .bCase:
    print("Do b thing")
}

Control flow

WHILE

var num = 1
while num < 100 {
    num += num
}

REPEAT WHILE

repeat {
    num += num
} while num < 200

Functions

func aFunc() {
    // Do something
}

FUNCTION RETURNS VALUE

func bFunc() -> String {
    // Do something
    return ""
}

FUNCTION WITH PARAMETERS

func multiply(a: Int, b: Int) -> Int {
    return a * b
}
multiply(a: 1, b: 2)

FUNCTION WITH PARAMETERS WITHOUT ARGUMENT LABELS

func add(_ a: Int, _ b: Int) -> Int {
    return a + b
}
add(1, 2)

ARGUMENT LABEL DIFFERENT FROM PARAMETER NAME

func subtract(_ a: Int, 
              from b: Int) -> Int {
    return b - a
}
subtract(3, from: 5)

DEFAULT PARAMETER VALUES

func greet(with planet: String = "World") {
    print("Hello \(planet)")
}
greet()             // Hello World
greet(with: "Mars") // Hello Mars

VARIADIC PARAMETERS

func add(_ numbers: Int...) -> Int {
    return numbers.reduce(0, {$0 + $1})
}
add(3, 2, 5) // 10



527 APPENDIX B Swift syntax cheat sheets

Functions (continued)

OVERLOADING FUNCTIONS

func display(text: String) {
    print(text)
}
func display(num: Int) {
    print(num)
}

OVERLOADING OPERATORS

func +(left: Int, right: Int) -> Int {
    return left - right
}
print(3 + 2) // 1! Crazy, right?

Closures

METHOD RECEIVES CLOSURE

func use(num: Int, 
         with calc: (Int) -> Int) {
    calc(num)

}

PASS CLOSURE TO METHOD

use(num: 10, with: 
    { (num: Int) -> Int in
       return(num * 2)
    }
)

SHORTHAND CLOSURE

use(num: 5, with: { $0 * 2 })

TRAILING CLOSURE

use(num: 6) { $0 * 2}

Optionals

var w: Int?
var h: Int?
(w, h) = (5, 10)

FORCED UNWRAPPING

print("Rect area is \(w! * h!)")

OPTIONAL BINDING

if let w = w, let h = h {
    print("Rect area is \(w * h)")
}

OPTIONAL PARAMETER, GUARD LET

func getSquareArea(w: Int? = nil) -> Int {
    guard let w = w, w > 0 else 
    {
        return(0)
    }
    return(w * w)
}

TERNARY CONDITIONAL OPERATOR

print("Width is \(w != nil ? w! : 0)")

NIL COALESCING OPERATOR

print("Width is \(w ?? 0)")

IMPLICITLY UNWRAPPED OPTIONALS

var width2: Int!

OPTIONAL CHAINING

//: ### With a two-dimensional array:
var pos = [["O", "X", "O"],
           ["X", "X", "O"],
           ["X", "O", "X"]
]
//: ### With optional chaining:
if let firstPos = pos.first?.first {
    print("Top left is a \(firstPos)")
}

Protocols

protocol AProtocol {
    func aFunc()
}
protocol BProtocol: AProtocol { 
    var computedProp: Int {get set}
}

Inherits 
protocol



528  APPENDIX B Swift syntax cheat sheets

Structures

struct AStruct: BProtocol {
    var prop: Int
    static var typeProp = 3 
    var computedProp: Int {
      get {
        return prop
        }
        set(value) {
            self.prop = value
        }
    }

    func aFunc() {
        // Do something
    }
    static func typeFunc() {
        // Do something
    }

var aStructObject = AStruct(prop: 3) 

Classes

class AClass {
    var prop: Int
    lazy var lazyProp = AClass(parm: 3)
    init(val: Int) { 
        self.prop = val
    }
    convenience init() {
        self.init(val: 0)
    }
    func bFunc() {
        // Do something
    }
}
var aObject = AClass(val: 3)
aObject.prop
aObject.bFunc()

class ASubClass: AClass, AProtocol {
    func aFunc() {
        // Do something
    }
    override func bFunc() { 
        // Do something
    }
}

DOWNLOAD You can download these cheat sheets as playgrounds
here: https://github.com/iOSAppDevelopmentwithSwiftinAction/

CheatSheets.git.

Implements 
protocol Instance 

property

Type property

Computed property

Instance method

Type method

Uses Memberwise 
initializer

Lazy stored 
property

Designated initializer

Convenience initializer

Subclasses Class; 
implements protocol

Overrides method

https://github.com/iOSAppDevelopmentwithSwiftinAction/CheatSheets.git
https://github.com/iOSAppDevelopmentwithSwiftinAction/CheatSheets.git


index
Symbols

-- operator 40
! (exclamation mark) 

character 103
? (question mark) character 309
. (period) character 90
... (ellipsis) character 99
{ } (curly brackets) 56, 63
@ symbol 103
& (ampersand) character 265
#available keyword 273
#selector keyword 195
+ operator 78
++ operator 40
<> (angle brackets) 79
== operator 276–277

Numerics

2D shapes, drawing 381
3D orientation 466

A

absolute values 158
access control 240
accessibility 514
Accessory attribute 232
accessory views 233
Action sheets 358
actions

connecting
from code 113
from Connections 

Inspector 112–113
from Interface 

Builder 110–112
creating for buttons 107–109

activated constraints 169
Activity Indicator view 349
Activity tab, iTunes Connect 494
ad hoc provisioning profile 486, 

495
adaptive layout 133–197

auto layout approach 135–157
in code 153–157
in Interface Builder

137–151
autoresizing approach

157–161
in code 158–160
in Interface Builder 160

choosing between 
approaches 165

manual adaptive layout 
approach 161–165

receiving layout 
events 163–165

receiving transition 
events 161–163

problem with layouts 134–135
app window sizes 135
content 135
device orientation 134
device resolutions 134
view controller sizes 135

size classes 167–185
in code 170–176
in Interface Builder

176–185

overview 167–170
stack views 185–196

adding or removing views 
from 194–195

in code 195
in Interface Builder

189–193
properties of 187–189

Add New Constraints menu 280
add operator 78
addArrangedSubview 

method 194
addBook method 305, 321, 348
addBookCloudKit method 346, 

348, 357
addLine method 382
addObserver method 206
addTarget() method 113
AdMob 514
Agreements, Tax, and Banking 

section, iTunes Connect 490
alert controllers 358
Align menu 144
All option, Build settings 

window 522
allowsCellularAccess 

property 414
ambiguous layout error 141
ampersand character 265
Analytics 514
angle brackets 79
animatable properties 214
animate method 162, 212, 

214–215, 224
animateAlongsideTransition 

method 162
529



INDEX530
animating views
from under keyboard 212
with sample bar chart

213–218
constraints 215–218
nesting animations 215
properties 214–215

animation argument 162
API reference documentation, 

Apple 513
APIs, deprecated 363
App Analytics section, iTunes 

Connect 490
App Icons setting, General 

tab 518
App Information tab, iTunes 

Connect 505
app slicing 377
App Store, distributing apps 

to 505–511
App Transport Security keys 433
app window sizes, layouts 

and 135
AppDelegate class 327, 443, 445
AppDelegate.swift file 299
appendingPathComponent 

method 304
Apple API reference 

documentation 513
Apple Developer Program

code signing 483–490
checking certificates

487–490
creating development provi-

sioning profile 486–487
creating iOS development 

signing certificate 484
creating iOS distribution 

signing certificate
485–486

signing certificates 483–484
signing into Xcode 482–483

application support 
directory 303–304, 317

application templates 7
applicationWillTerminate 

method 327
appSupportDirectory 

variable 303
ARC (Automatic Reference 

Counting) 103
archiveRootObject method 314
archiving objects

adopting Codable 
protocol 313

encoding and archiving 
data 314–315

Array data type 36, 308
ASCII category, keyboards 110
ASO (App Store 

Optimization) 509
Aspect Fit mode 139
asset catalog 372–379

adding app icons 377–379
adding image sets 373–377

Asset Catalog editor 14
Assistant Editor 100, 107
atomic storage 315
atomically storing files 308
attributed strings 514
Attributes Inspector, Xcode

20–21
attributes, autoresizing 158
Augmented Reality Application 

template 7
auto layout approach 135–157

in code 153–157
automatic autoresizing 

constraints 157
NSLayoutAnchor 

class 155–157
NSLayoutConstraint 

class 153
Visual Format 

Language 154–155
in Interface Builder 137–151

creating constraints
140–148, 150

editing constraints 144
priorities 144, 148–150
resolving issues 150–151

problem with 185–187
Auto Layout engine 217
auto layout errors 141
automatic adaption 183
Automatic Reference Counting. 

See ARC
autoresizing approach (springs 

and struts) 157–161
in code 158–160
in Interface Builder 160

autoresizing masks 157–159
AVAudioEngine class 405
AVAudioSession class 405
AVCaptureSession 401, 405
AVFoundation framework, tak-

ing photos with 398–405
detecting barcode 401–405
setting up barcode detection 

view controller 399–401

B

background tasks 347, 349
background threads 347
backgroundColor property 90, 

96
backtrace 441
bar button items 244, 266
barcode detection 398–405

detecting barcode 401–405
setting up barcode detection 

view controller 399–401
BarcodeViewController 

class 400, 402, 404
Basic option, Build settings 

window 522
becomeFirstResponder 

method 202
beta testers, distributing apps 

to 495–505
manually 496–497
with TestFlight 497–505

BlockOperation class 416
Bookcase app

removing test code 25
repository in Xcode 24
storyboard 24

BookCollectionViewCell 
class 280–281

BookManager class 321
books array 261
books record type 342, 360
BooksCollectionViewController 

class 279, 281, 284, 286, 328
BooksManager method 349
booksManager property 279, 292
BooksManager.swift file 26
BooksTableViewController 

method 359
bookToSave variable 449–450, 

454, 457
bounds property 94
Breakpoint Navigator 12
breakpoints, pausing app 

with 450–452
bridged type 308
bridging header 317
broadcasting notifications 208
Build Phases tab, project 

settings 121
Bundle Resources category 121
bundled executable 519
buttons 106–109

adding 107
creating control actions

107–109



INDEX 531
C

cachePolicy 417
CALayer class 389
call stack 441, 443–445, 447, 450
camera 391–405

AVFoundation framework, 
taking photos with
398–405

barcode detection view 
controller 399–401

detecting barcode 401–405
image picker controller

selecting photos from 
photo library with 397

selecting photos from 
photo library with image 
picker controller 398

taking photos with 392–397
canMoveRowAt method 261
capture session 401
captureOutput method 404
Cartfile 426
Carthage dependency manager, 

integrating SwiftyJSON 
with 426–428

carthage update command 427, 
440, 469

CAShapeLayer class 391
CD (case diacritics) 334
cellForItemAt method 279, 285
cellForRowAt method 332
Cellular class 67
cgColor property 383
CGPath object 382
CGRect type 94, 115
changedSegment method 267, 

334
cheat sheets

classes 528
closures 527
collections 525–526
control flow 526
enumerations 526
functions 526–527
optionals 527
protocols 527
structures 528

Checkmark cell 233
CKAsset data type 344
CKErrorRetryAfterKey 

property 357
CKFetchRecordChangesOperati

on 368
CKQuery object 353–354

CKQueryNotification 
object 365, 367

CKQuerySubscription class 363
CKRecord class 344
CKReference data type 344
CKSubscription class 363
class keyword 56, 75
classes 56–71

cheat sheets for 528
computed properties 63–65
defining 56
inheritance 65–68

overriding 67
pros and cons of 67–68

initializers 58–59
methods 59–62

instance methods 59–60
overloading functions

61–62
type (static) methods 60

properties 57–58
instance properties 57–58
type (static) properties 57

protocols 68–71
extensions 69–70
relationships 70–71

structures versus 72–76
as value types 72–74
choosing between 74–76
constants 74
inheritance 72
memberwise initializers 72

CLLocation data type 344
closures

cheat sheets for 527
escaping 349

closures capture variables 254
CloudKit

adding book records 346–352
deleting book records

355–356
loading book records 353–355
managing errors 356–360

notifying user of error
358–360

record doesn't exist 360
resolving conflicts 356–357
retrying operations 357

refreshing data 360–362
subscribing to changes

362–369
adding remote notifica-

tions to app 362–363
requesting database 

subscription 363–366

updating data and user 
interface 366–369

updating book records
352–353

updating model 344–345
CloudKit JS 368
Cocoa Touch layer 5
CocoaPods 425
Codable protocol 313–314, 322, 

396
code

adding labels in 96–97
adding views in 94–95
managing views in 94–97

code sharing 68
code signing 483–490

checking certificates 487–490
creating development provi-

sioning profile 486–487
creating iOS development 

signing certificate 484
creating iOS distribution sign-

ing certificate 485–486
signing certificates 483–484

Codegen attribute 325
CodingKeys enumerator 313
collection storage 36–38

arrays 36
dictionaries 38
sets 37

collection view controller
278–279, 282, 284, 287, 289, 
294

collection views 263–264,
 278–288

adding search bar to 283–285
creating custom collection 

cells 280–281
creating second section 285
displaying data in custom col-

lection view cell
281–282

implementing flow layout 283
implementing flow layout 

delegate 286–288
collections, cheat sheets 

for 525–526
collectionView property 284
Combined option, Build settings 

window 522
Command-0 16
Command-Alt-0 16
comment out 158
commitEditingStyle 

method 356



INDEX532
Compile Sources phase 120, 524
compiler error 57
completion argument 162
complex shapes 383
compression artifacts 375
computed properties 63–65, 

173
concurrent queues 347
Connections Inspector, connect-

ing actions to text fields 
from 112–113

consistency of layout 187
console 441
constants 74
constraint attributes 137
Constraint element, 

storyboard 18
constraints

adding customizations 
to 179–180

animating changes to by 
updating in 
completion 216–217

animating changes to with lay-
outIfNeeded in anima-
tions closure 217–218

creating
baseline 150
in Add New Constraints 

menu 145–146
in Align menu 144–145
in canvas 140–143
multiple in Add New Con-

straints menu 146–148
editing 144
priorities 144, 148–150
resolving issues with 150–151

constraints variable 171
constraintsWithVisualFormat 

method 154
Contacts app 228
Content Hugging and Resis-

tance priorities 148–150
Content Hugging Priorities 149
content, layouts and 135
contentInset property 220–221
ContentLayoutMachine 

structure 463
control-flow approaches 38–40

cheat sheets for 526
for-in loops 39
switch statements 40

controllerDidChangeContent 
method 331

controls 106–114

buttons 106–109
adding 107
creating control 

actions 107–109
text fields 109–114

connecting actions 110–113
deleting connections 112
keyboard types 110

convenience initializers 62
convert method 209–211, 221
convertToKm() method 110
convertToMiles() method 109, 

113
Copy Bundle Resources 

phase 524
Core Animation, drawing 

with 389–391
Core Data

adding managed objects
328–330

cleanup 328
creating data model 323–325
fetching managed 

objects 330–332
initial setup 326–328
searching fetch requests

334–336
sorting fetch requests 333–334
updating and deleting man-

aged objects 332–333
Core Graphics, drawing 

with 381–388
creating star-rating view

386–388
describing path 382–383
drawing into graphics 

context 383
drawing paths with UIBezier-

Path drawing methods
384–385

overriding draw method 382
rendering views in Interface 

Builder 385–386
saving and restoring graphics 

state 384
Core Services layer 5
Covers tab bar, Attributes 

Inspector 376
coverToSave property 395–396, 

458
crash logs 443–448

crashes caused by 
actions 447–448

crashes caused by 
outlets 445–447

Create a New Xcode Project 
option, Welcome to Xcode 
window 6

createDirectory method 304
Customized option, Build set-

tings window 522
customizing UIViewController 

subclass 88–90
CustomStringConvertible 

protocol 450

D

data files, structured 302
data persistence 337–369

local 297–336
preserving and restoring 

state 298–300
preserving user preferences 

on device 300–301
storing data locally 302–336

setting up app 338
storing data using 

CloudKit 342–369
adding book records

346–352
deleting book records

355–356
loading book records

353–355
managing errors 356–360
refreshing data 360–362
subscribing to 

changes 362–369
updating book 

records 352–353
updating model 344–345

with ubiquitous key-value 
stores 339–341

data return, JSON 419
data source methods 465
data tasks 418
data tips, examining variables 

with 457
database subscriptions 362–369

adding remote notifications to 
app 362–363

requesting database 
subscription 363–366

updating data and user 
interface 366–369

Date Picker control, UIKit 114
deactivated constraints 169
debug area 15, 441
debug bar, controlling app 

execution 452–454



INDEX 533
debug gauges, debugging play-
back issues with 459–460

Debug Navigator 12
Debug View Hierarchy, debug-

ging user interface 
with 465–467

debugging 439–478
breakpoints, pausing app 

with 450–452
controlling app execution 

using debug bar 452–454
crash logs in console 443–448

crashes caused by 
actions 447–448

crashes caused by 
outlets 445–447

debugging mode 440–443
examining variables 448–458

with data tips 457
with lower-level 

debugger 456–457
with Print Description 

button 455
with print method 449–450
with Quick Look 

technique 454–455
with variables view 452

playback issues 459–463
debug gauges 459–460
instruments 461–462
solving 463

save problems 448–458
setup 440
user interface issues 463–469

Debug View 
Hierarchy 465–467

runtime issues 467–468
solving 468–469

Decodable protocol 313
decodeRestorableStateWith-

Coder method 300
decrement operator 40
default autoresizing 160
default method 346
Default state, buttons 107
defaults 300
deinit() method 94, 104
delegate property 250–252, 327
delegation pattern 127–129, 299
delete method 355
deleteBookCloudKit 

method 357
dependency injection, sharing 

data between tabs 293–295
dependency managers 425

Deployment Target setting, 
General tab 518

deprecated APIs 363
dequeue cells 278
dequeueReusableCell 

method 238
description property 310, 449, 

455
designated initializers 62
destinationViewController 

property 251
Detail cell 233
detail view controllers 253
detailTextLabel element 232
development team, Apple 338
device IDs 486
Device Orientation setting, 

General tab 518
device orientation, layouts 

and 134
device resolutions, layouts 

and 134
devices method 402
Dictionary data type 38
didFinishLaunchingWith-

Options method 362
didFinishPickingMediaWithInfo 

method 395
didReceiveMemoryWarning() 

method 88, 94, 104
didReceiveRemoteNotification 

method 363, 365–366
didSet property 270, 385, 388
Disabled state, buttons 107
Disclosure cell 233
disclosure triangle 452, 454, 457
dismissMe method 249–250, 

258
dispatch queue 347, 415
DispatchQueue syntax 348
displaying text 383
displayScale trait 172
Distance class 56–63, 65, 72, 

75–76
Distance structure 83, 85, 99
distributing apps 481–511

Apple Developer 
Program 482–490

code signing 483–490
signing into Xcode

482–483
iTunes Connect

setting up apps in 490–493
uploading build to 493–495

to App Store 505–511

to beta testers 495–505
manually 496–497
with TestFlight 497–505

do-catch statement 303–304, 
311, 314–315, 317, 319, 321

Document Based Application 
template 7

Document Outline, Xcode
18–19

Double data type 35
Double property 308
downcasting values 420
download tasks 418, 431–432, 

436
draw method 382
drawing

with Core Animation 389–391
with Core Graphics 381–388

creating star-rating 
view 386–388

describing path 382–383
drawing into graphics 

context 383
drawing paths with 

UIBezierPath drawing 
methods 384–385

overriding draw 
method 382

rendering views in Interface 
Builder 385–386

saving and restoring graph-
ics state 384

drawing images 383
Dropbox 514
dynamic prototypes 231

E

editing outlet properties
103–104

editing-menu messages 202
editingChanged event 113
editor area, Xcode 13–15
ellipsis character 99
enabled property 107
Encodable protocol 313
encode method 313
encodeRestorableStateWith-

Coder method 300
endEditing method 205
endRefreshing method 361
enumerations 268, 526
Equatable protocol 277
error handling 304, 403



INDEX534
error management, in 
CloudKit 356–360

notifying user of error
358–360

record doesn’t exist 360
resolving conflicts 356–357
retrying operations 357

Error protocol 304
error variables 348
escaping closures 349
exception breakpoints 451
Exception domain keys 434
exclamation mark character 44, 

103
executeUpdate method 321
Exit button, storyboard 18, 254
Explicit App IDs 486
extensions 76–80

generics 79
of protocols 69–70
of types 76–78
operator overloading 78

external testers 497
eye button 31

F

faded symbols 183
failed method 403
fetched properties 324
fetched results controller

331–333, 335
fetchRequest method 330
file categories 120
File Inspector, Xcode 19
File-private level, Swift 240
FileManager class 303
files, adding to project 120
fill method 384
fillEqually distribution 189
filter function 53
filteredBooks array 274–277
filtering data 273–275

making objects 
equatable 276–277

removing rows with filtered 
data 276

updating rows with filtered 
data 277–278

Find Navigator 12
Firebase 514
first property 48, 303
First Responder element, 

storyboard 18
first responders

dismissing keyboard by 
resigning 202

getting reference to 209–210
firstResponder property 210
flagged view 163
Float data type 35
flow layout

implementing 283
implementing delegate

286–288
Flurry 514
font property 96
for-in loops 39
forceTouchCapability trait 172
Foundation framework, Core 

Services layer 5
foundBarcode method 412, 436
frame vs. bounds 95
frames 211, 444
Frameworks and Libraries 

category 121
func keyword 41, 52
functions

cheat sheets for 526–527
default parameter names 42
higher-order 51–54

closures 52–53
filter 53
map 51–52
reduce 53
sorted 54

modifying external parame-
ter names 41

omitting external parameter 
names 42

G

Game template 7
GameKit 514
GCD tasks 416
generics 79
gesture recognizers

pan gesture 121–124
pinch gesture 125–126
rotate gesture 126
simultaneous 126–129
tap gesture 129

Gesture Recognizers element, 
storyboard 18

gestureRecognizerShouldBegin
127

getBook method 411, 417–418, 
421, 424, 430

getColors method 462, 474

global concurrent queues 347
global variables 292, 317
goHyperspace method 304
Google Cloud 514
GoogleBooksService class 412, 

415, 417, 420, 424, 432–433, 
437

Graph Editor Style 325
graphics 371–407

asset catalog 372–379
adding app icons 377–379
adding image sets 373–377

camera 391–405
selecting photos with image 

picker controller
397–398

taking photos with 
AVFoundation 398–405

taking photos with image 
picker controller
392–397

drawing with Core 
Animation 389–391

drawing with Core 
Graphics 381–388

creating star-rating 
view 386–388

describing path 382–383
drawing into graphics 

context 383
drawing paths with 

UIBezierPath drawing 
methods 384–385

overriding draw 
method 382

rendering views in Interface 
Builder 385–386

saving and restoring graph-
ics state 384

launch screen, 
displaying 379–381

groups 13
guard statements, unwrapping 

optionals with 45–46

H

handleRotate method 126
handleTap() method 129
Hardware menu 23
height size class 181
Hello World app 3–24

creating project 5–10
project options 9–10
templates 6–9



INDEX 535
editing interface 15–22
Document Outline 18–19
inspectors 19–22
Interface Builder 16
Object Library 17–18
storyboards 15–16
view controllers and 

views 16
running 22–24

in simulator 22–24
on devices 22

help command 457
Help Inspector, Xcode 19–20
hierarchy of views

MVC 85–86
windows 84–85

HIG (Human Interface 
Guidelines) 374, 379

higher-order functions 51–54
closures 52–53

converting functions to 52
simplifying 52–53

converting functions to 52
filter 53
map 51–52
reduce 53
simplifying 52–53
sorted 54

Highlighted state, buttons 107
hit testing 116, 202
horizontal constraints 139
horizontalSizeClass trait 172
HTTPMethod 417

I

@IBAction keyword 108–109, 
113, 254

@IBDesignable attribute
385–386, 390

@IBOutlet keyword 103, 445
iCloud data persistence 337–369

setting up app 338
storing data using 

CloudKit 342–369
with ubiquitous key-value 

stores 339–341
iCloud Documents service 338
icon grid, Apple 378
IDE (integrated development 

environment) 5
identity Inspector, Xcode 20
identity, signing 485
if block 45
if statement 38–39, 44–45

Image item, Attributes 
Inspector 376

image picker controller
selecting photos from photo 

library 397–398
taking photos with 392–397

adding camera button 394
ensuring camera is 

available 394
requesting permission to 

use camera 392–393
taking photo 394–397

image property 454, 457–458
image sets

adding 373–377
adding app icons 377–379

image variable 239
images, drawing 383
imageView element 232
iMessage Application 

template 8
in keyword 52
In-App purchases 514
increment operator 40
IndexPath parameter 238
Info.plist file 306, 519
init() method 103–104, 309, 

313, 345, 367, 396, 422
initializers

memberwise 72
overview 58–59

inject method 293–294
Injectable protocol 293
inout keyword 264
inout variable 265
insertArrangedSubview 

method 194
inspectors, Xcode 19–22

Attributes Inspector 20–21
Connections Inspector 21–22
File Inspector 19
Help Inspector 19–20
identity Inspector 20
Size Inspector 21

installed constraints 169
instance methods 59–60
instance properties 57–58
InstructionFactory 

structure 463
instruments, debugging play-

back issues with 461–462
Int enumerations 268
Int property 320
Int value 33
Interface Builder

auto layout approach in
137–151

creating constraints
140–148, 150

editing constraints 144
priorities 144, 148–150
resolving issues 150–151

autoresizing approach in 160
connecting actions to text 

fields from 110–112
managing views in 97–104

connecting views to 
outlets 99–103

editing outlet 
properties 103–104

rendering views in 385–386
size classes in 176–185

adding customizations to 
attributes 178–179

adding customizations to 
constraints 179–180

adding customizations to 
installed attributes
180–181

varying for traits 181–183
varying layout 184–185

stack views in
nested 191–193
simple 189–191

Internal level, Swift 240
internal testers 497
internationalization 514
intersection method 37
interval matching 40
intrinsic content size 143, 145, 

148–150
intrinsicContentSize 

property 143, 388
iOS Development 

certificate 484
iOS Distribution certificate 484
iOS Frameworks 513
iOS Human Interface 

Guidelines 513
iOS SDK 3–5
isEnabled property 253
isFirstResponder() method 209
isHidden property 195, 301
isSourceTypeAvailable 

method 394
Issue Navigator 12
iTunes Connect

setting up apps in 490–493
uploading build to 493–495

iTunes Connect Users tab, 
iTunes Connect 498



INDEX536
J

JSON data parsing
with JSONDecoder class

421–424
with JSONSerialization 

class 420–421
with SwiftyJSON class

424–430
JSONDecoder class, parsing 

JSON data with 421–424
JSONEncoder 314
JSONSerialization class 420, 

424, 429
jump bar, Assistant Editor 100

K

Key-value Storage service 338
keyboard 200–211

animating views from 
under 212

covering text fields 200–201
dismissing 201–205

by resigning first 
responder 202

detecting Return key tap to 
dismiss 203–204

detecting touches to 
dismiss 204–205

notifications 205–211
calculating offset to 

animate 210–211
defined 205–206
extracting keyboard infor-

mation from 208–209
getting reference to first 

responder 209–210
keyboard frame change 

notification 206–207
unregistering 207–208

keyboard frame change 
notifications 205

keyboardFrameChanges 
method 208, 220–221

L

labels, adding in code 96–97
landline class 68, 70
landscapeConstraints array 171
Launch Images setting, General 

tab 518
launch screen, displaying

379–381

layer property 389–390
Layout attribute 283
layoutIfNeeded() method 163, 

213, 217–218
layouts 167–197

size classes 167–185
in code 170–176
in Interface Builder

176–185
overview 167–170

stack views 185–196
adding or removing views 

from 194–195
in code 195
in Interface Builder 189–193
properties of 187–189

layoutSubviews method 165, 
387

lazy computed properties 324
lazy stored property 173–174
leading 136
learning resources 513–514
let keyword 36, 74
lettersUpper property 173
Levels option, Build settings 

window 522
life cycle, View controller 92
Lines attribute 280
Link Binary With Libraries 

phase 524
LLDB (lower-level 

debugger) 456–457
loadBooks method 305, 320, 

353
loadCloud method 355, 361
loadCover method 432
local data persistence 297–336

preserving and restoring 
state 298–300

preserving user preferences 
on device 300–301

storing data locally 302–336
archiving objects 312–315
Core Data 322–336
SQLite 315–322
storage setup 302–306
structured data files

306–312
local notifications 514
localizedCaseInsensitive-

Compare method 333
localizedDescription 

property 304
localizedLowercase 

property 265, 274, 295
Log Navigator 12

M

main threads 347
Main.storyboard file 24
mainValue variable 45
makeCall method 67
manual adaptive layout 

approach 161–165
receiving layout events

163–165
timing of flagging for 

update 163
updating view layout 164

receiving transition 
events 161–163

Manually Run option, Play 
button 32

map function 51–53, 308
Master-Detail Application 

template 7
media 371–407

asset catalog 372–379
adding app icons 377–379
adding image sets 373–377

camera 391–405
selecting photos with image 

picker controller
397–398

taking photos with 
AVFoundation 398–405

taking photos with image 
picker controller
392–397

drawing with Core 
Animation 389–391

drawing with Core 
Graphics 381–388

creating star-rating 
view 386–388

describing path 382–383
drawing into graphics 

context 383
drawing paths with

 UIBezierPath drawing 
methods 384–385

overriding draw 
method 382

rendering views in Interface 
Builder 385–386

saving and restoring graph-
ics state 384

launch screen, 
displaying 379–381

playing sounds 405–407
memberwise initializers 72



INDEX 537
memory issues 238
metadataObjects array 404
Metal 2 514
methods 59–62

instance methods 59–60
overloading functions 61–62
type (static) methods 60

Mixpanel 514
modal presentation style 398
Modal segue 246–247
Model group 26
Model-View-Controller 

pattern 16
MoPub 514
motion events 202
multiple view constraints 147
multitasking modes, iPad 169
MVC (model-view-controller)

85–86
My Apps section, iTunes 

Connect 490

N

navigation bars 228
navigation controllers, 

embedding 243–244, 
248–249

navigator area, Xcode 12–13
nestedUnkeyedContainer 

method 422
network activity indicators, 

displaying 436
networkFailure error 356
networking 409–437

cancelling tasks 436–437
examining data 418–419
network activity indicator, 

displaying 436
parsing JSON data

with JSONDecoder 
class 421–424

with JSONSerialization 
class 420–421

with SwiftyJSON class
424–430

setting up books service
411–413

setting up URL requests
416–418

URLSession objects 414–415
creating 414–415
URLSessionConfiguration 

objects 414
web services 410–411

communicating with 413
downloading data 

from 431–436
requesting data from 418

networkServiceType 417
networkUnavailable error 356
nibs 15–16
nil coalescing operator 47, 54
notAuthenticated error 356
Notification.Name method 208
notifications, keyboard 205–211

calculating offset to 
animate 210–211

defined 205–206
extracting keyboard informa-

tion from 208–209
getting reference to first 

responder 209–210
keyboard frame change 

notification 206–207
unregistering 207–208

NSAllowsArbitraryLoads 
key 433

NSAllowsArbitraryLoadsIn-
Media key 433

NSAllowsArbitraryLoadsInWeb-
Content key 434

NSAllowsLocalNetworking 
key 434

NSAppTransportSecurity 433
NSArray class 309
NSExceptionAllowsInsecure-

HTTPLoads key 434
NSExceptionDomains key 434
NSExceptionMinimum-

TLSVersion key 434
NSExceptionRequiresForward-

Secrecy key 434
NSFetchedResultsController 

class 332
NSFetchedResultsController-

Delegate protocol 331
NSFetchRequest 333
NSIncludesSubdomains key 434
NSKeyedArchiver class 301, 314
NSKeyedUnarchiver class 314, 

396
NSLayoutAnchor class 155–157
NSLayoutConstraint class 153, 

216
NSLog statement 450
NSManagedObject class 325
NSObjectProtocol 415
NSPersistentContainer class 326

NSPredicate class 330, 334, 354
NSRequiresCertificateTranspar-

ency key 434
NSSortDescriptor class 330
NSString method 333
NSUnknownKeyException 443
Number Pad category, 

keyboards 110
numberOfTapsRequired 130
numberOfTouchesRequired

130
Numbers and Punctuation cate-

gory, keyboards 110
numeric types, converting 35

O

@objc attribute 130, 361
object creation 55–80

with classes 56–71
computed properties 63–65
defining class 56
inheritance 65–68
initializers 58–59
methods 59–62
properties 57–58
protocols 68–71

with structures 71–76
Object Library, Xcode 17–18
object method 332
Objective-C in a Swift 

project 317
Objective-C NSArray data 

type 308
onboarding 465
one-sided range 39
OOP (object-oriented 

programming) 65
Open level, Swift 240
operation queue 415–416
operators

overloading 77–78
unwrapping optionals with 47

optional try 402
optionals 42–49

chaining 48
cheat sheets for 527
declaring 44
unwrapping 44–48

binding 45
forced 44
guard statements 45–46
implicitly 47–48
with operators 47

Outer Stack View 219



INDEX538
outlets
connecting views to 99–103
editing properties of 103–104

overlapped views 117
overloading functions 61–62

P

page view controllers 465
Page-Based Application 

template 8
pan gesture recognizer 121–124
parameters

default names 42
external parameter names

modifying 41
omitting 42

parentheses 49
parseJSON method 420–421, 

430
parseSwiftyJSON method 430, 

432
Payments and Financial Reports 

section, iTunes 
Connect 490

PDFs, creating 383
performance issues 238
period (.) character 90
persistent container 326–328
Picker control, UIKit 114
pinch gesture recognizer

125–126
Platform Version Information 

tab, iTunes Connect 505, 
507

playback issues 459–463
debugging

with debug gauges 459–460
with instruments 461–462

solving 463
playBarcodeSound method 406
playgrounds 29–54

automatic compiling 32
collection storage 36–38

arrays 36
dictionaries 38
sets 37

console access 32–33
control-flow approaches

38–40
for-in loops 39
switch statements 40

creating 30–31
functions 41–42

default parameter 
names 42

modifying external parame-
ter names 41

omitting external parame-
ter names 42

higher-order functions 51–54
closures 52–53
filter 53
map 51–52
reduce 53
sorted 54

optionals 42–49
chaining 48
declaring 44
unwrapping 44–48

tuples
as return values 50
defining two values at once 

using 50
initializing variables based 

on 50–51
swapping two values 

using 51
type safety and type 

inference 33–36
concatenating strings 36
converting numeric 

types 35
viewing results of code 31

Quick Look feature 31
Show Result feature 31

po command 456
pods 425
Point type 74
points, converting 211
popover 397
Popover segue 247
popViewController method 258
position property 402
prepareForSegue method 251, 

254–255, 257–258, 291, 329, 
332

presentingViewController 
property 258

price parameter 52
Pricing and Availability tab, 

iTunes Connect 505, 507
Print Description button 455
print method, examining vari-

ables with 449–450
print statements 450
priorities, Content Hugging and 

Resistance 148–150
priority property 418
private database 342–343, 346, 

365

private keyword 240
Private level, Swift 240
privateCloudDatabase 

method 346
Progress View 349
project editor 517–524

Build Phases tab 524
Build Rules tab 524
Build Settings tab 519–522

changing build settings for 
configurations 520

filtering build settings 522
Capabilities tab 519
General tab 518
Info tab 519
Resource Tags tabs 519

Project Navigator, Xcode 12–13
project repository (repo) 24
project targets 10
properties

inspectable 386
instance properties 57–58
lazy computed 324
lazy stored 350
type (static) properties 57

Property list editor 14
property lists 306–310, 519
property observers 269–270
PropertyListEncoder 314
protocols

cheat sheets for 527
extensions 69–70
relationships 70–71

prototype cell 231
provisioning profile, 

creating 486–487
public database 342
Public level, Swift 240
push notifications 362, 514
PushButtonable protocol 70

Q

QOS (quality of service) 347
quantity data type 35
question mark character 309
queues 346
Quick Look feature, Xcode 31
Quick Look technique, examin-

ing variables with 454–455

R

random property 115
Rating class 386–388



INDEX 539
rating property 387–388
raw value 268
Realm 514
record types 342, 344, 351
rectangle button 31
red dot 57–58
red view autoresizing 160
reduce function 53
refresh control 360
register method 279
Relationship Segue 290
reloadData method 253, 

284–285
reloadSections method 285
remote control events 202
remove method 276
removeBook method 275–276, 

305
requestCachePolicy 

property 414
requestRateLimited error 356
resignFirstResponder 

method 202
Resolve Auto Layout Issues 

button 150
resources 513–514
Resources and Help section, 

iTunes Connect 490
responder chain 117–118, 202
Restoration ID property 299
results sidebar, Xcode 31
resume method 418, 432
retrieveBooks method 305, 309, 

315, 320
return keyword 63
rootViewController property 91
rotate gesture recognizer 126
rotated method 126
rotating orientation 156
rows

adding to tables 242–255
adding data to table

252–255
communicating with scene 

using own 
delegate 249–252

creating segues 245–248
embedding navigation 

controller 243–244
embedding second naviga-

tion controller 248–249
deleting 260
editing 255–259

creating segues from 
row 255–256

passing in object to 
edit 257–258

removing view 
controller 258–259

updating objects 259
Run button, Xcode workspace 

toolbar 23
runtime issues

debugging user interface 
with 467–468

errors 33
reporting 467

Runtime Issues tab, Issue 
Navigator 468

S

Sales and Trends section, iTunes 
Connect 490

sampleBooks method 26, 320
sandbox 303
Sandbox Testers tab, iTunes 

Connect 498
save problems 448–458
saveBook method 252–254, 259, 

330, 349–350, 353
saveContext method 327, 

329–330, 333
scale factor 372
scale property 125
scaledBy method 125
scroll views

with form content and 
keyboard 218–221

with image content 222
scrollRectToVisible method 218
search bars, adding to collec-

tion views 283–285
search controllers

adding to view 
controller 272–273

creating 271–272
searchFilter variable 274
searching data 263–264, 270–278

filtering data 273–275
making objects 

equatable 276–277
removing rows with filtered 

data 276
updating rows with filtered 

data 277–278
search controllers

adding to view 
controller 272–273

creating 271–272

searchResultsController 271
Segment attribute 266
Segmented Control, UIKit 114
segmented controls, 

adding 265–267
segues

creating 245–248
creating from rows 255–256

SELECT query 319
Selected state, buttons 107
serial queues 347
serve function 41, 46
serverRecordChanged 

error 356
ServerResponse type 421
serviceUnavailable error 356
session tasks 410, 435
Set data type 37
set list 373
set viewer 373
setMetadataObjectsDelegate 

method 404
setNeedsDisplay method 385, 

388
setNeedsLayout method 163
Settings app 228
setUp method 474–475
setViewControllers method 465
shadows, adding 383
shared property 414
sharing code 68
shouldSendContentAvailable 

flag 364
Show Detail segue 246
Show Quick Look button 455
Show Result feature, Xcode 31
Show segue 247
signing certificates

checking certificates 487–490
creating iOS development 

signing certificate 484
creating iOS distribution 

signing certificate
485–486

signing identity 484–485, 487
SimpleSizeClasses layout 189
Simulator menu 23
simulators

features of 23–24
running apps in 22

Single View Application 
template 7

singletons, sharing data between 
tabs 292–293



INDEX540
size classes
in code 170–176

setting up layout for 172
trait collection 172
updating layout on 

changes 172–176
in Interface Builder 176–185

adding customizations to 
attributes 178–179

adding customizations to 
constraints 179–180

adding customizations to 
installed attributes
180–181

varying for traits 181–183
varying layout 184–185

overview 167–170
Size Inspector, Xcode 21
sizeToFit method 97
slicing apps 377
Slide Over, Apple 135
Slider control, UIKit 114
Smart class 70
social media 514
sort method, creating 264–265
sortDescriptors attribute 333
sorted function 54
sorting data 263–270

changing sort order 265–270
adding segmented 

control 265–267
updating sort order

267–270
creating sort method 264–265

sortOrder property 268–269, 
333, 472

sounds, playing 405–407
Source Control Navigator 12
Source editor 13
split view controllers 242
Split View, Apple 135
SpriteKit framework 211, 514
SQLAddBook method 321
SQLite

adding, updating, and remov-
ing books 320–322

retrieving books from 
database 319–320

setting up SQLite 
wrapper 317–319

setting up SQLite3 database 
file 316–317

SQLiteBrowser 316
SQLRemoveBook method 322
SQLUpdateBook method 322

stack trace 441
stack views 185–196

adding or removing views 
from 194–195

in code 195
in Interface Builder

nested 191–193
simple 189–191

properties of 187–189
alignment 188–189
axis 188
distribution 189
spacing 188

Star class 382, 384, 386, 391
star-rating view, creating

386–388
State Config attribute 107
state preservation, preserving 

and restoring state 298–300
state property 122, 124
static cells 231
static keyword 57, 60
Status Bar Style setting, General 

tab 518
step into 453
step out 453
step over 453
Stepper control, UIKit 114
Sticker Pack Application 

template 8
Stop button, Xcode workspace 

toolbar 23
store provisioning profile 486
storeBooks method 305, 308, 

311, 314
storing data locally 302–336

archiving objects 312–315
adopting codable 

protocol 313
encoding and archiving 

data 314–315
Core Data 322–336

adding managed 
objects 328–330

cleanup 328
creating data model

323–325
fetching managed 

objects 330–332
initial setup 326–328
searching fetch 

requests 334–336
sorting fetch requests

333–334

updating and deleting man-
aged objects 332–333

SQLite 315–322
adding, updating, and 

removing books
320–322

retrieving books from 
database 319–320

setting up SQLite 
wrapper 317–319

setting up SQLite3 data-
base file 316–317

storage setup 302–306
determining location

303–304
preparing for storing and 

retrieving data 305–306
structured data files 306–312

property lists 306–310
XML 310–312

storing data using 
CloudKit 342–369

adding book records 346–352
deleting book records

355–356
loading book records

353–355
managing errors 356–360
refreshing data 360–362
subscribing to changes

362–369
updating book records

352–353
updating model 344–345

Storyboard Entry Point ele-
ment, storyboard 18

storyboards
overview 15–16
setting up view controllers 

in 229–232
viewing 24

string interpolation 36
String variable 33
strings, concatenating 36
structured data files 306–312

property lists 306–310
XML 310–312

structures 71–76
cheat sheets for 528
classes versus 72–76

as value types 72–74
choosing between 74–76
constants 74
inheritance 72
memberwise initializers 72



INDEX 541
subclasses 74
subtracting method 37
super.viewDidLoad() 

method 88
Swift 29–30, 317, 513
SwiftyJSON class, parsing JSON 

data with 424–430
Switch control, UIKit 114
switch statements 39–40, 268
Symbol Navigator 12
symbolic breakpoints 451
symmetricDifference 

method 37
System Item attribute 289

T

tab bar controllers 242, 263–264
creating sections with

288–290
sharing data between 

tabs 290–292
dependency injection

293–295
global variables 292
singletons 292–293

TabBarController class 293–294, 
328

Tabbed Application template 8
table views 228–241

creating model class 240–241
data source and 

delegate 236–238
setting up model 238–240
setting up table view control-

ler in storyboard
229–232

tableHeaderView 283
tables 227–262

adding rows 242–255
adding data to table

252–255
communicating with scene 

using own 
delegate 249–252

creating segues 245–248
embedding navigation 

controller 243–244
embedding second naviga-

tion controller 248–249
deleting rows 260
displaying data in table 

views 228–241
creating model class

240–241

data source and 
delegate 236–238

setting up model 238–240
setting up table view con-

troller in 
storyboard 229–232

editing rows 255–259
creating segues from 

row 255–256
passing in object to 

edit 257–258
removing view 

controller 258–259
updating objects 259

using large titles 259–260
takePhoto method 394
tap gesture recognizer 129
Target Dependencies phase 524
targets 10, 470
team admins 484
team agent 484
team members 484
team roles, Apple Developer 

Program 484
teardown method 471
Telephone parameter 67
templates, Xcode 6–9
temporary files 303
ternary conditional operator 47
test class

adding tests to 472–473
setting up 471–472

Test Flight Beta Testers tab, 
iTunes Connect 498

test methods 470–471, 474
Test Navigator 12
@testable attribute 472, 474
testColorDetection method 474
TestFlight, distributing apps to 

beta testers with 497–505
adding iTunes connect 

users 498
setting up external test

501–505
setting up internal test

499–501
testing 469–478

for functionality 470–473
adding tests to test 

class 472–473
setting up test class 471–472

for performance 473–474
user interface 475–478

testSortTitle method 472

testToggleISBN method 475–476
text editing 202
text fields 109–114

connecting actions
from code 113
from Connections 

Inspector 112–113
from Interface 

Builder 110–112
deleting connections 112
keyboard types 110

text property 96, 103
text view 176
text, displaying 383
textFieldShouldReturn 

method 203
textLabel element 232
threads 346
throws keyword 304
time profiler 461
timeOutInterval 417
timeoutIntervalForRequest 

property 414
title field 333
titleL key 445
toggleISBN method 194–195, 

301, 339
toKm method 60
toolbar area, Xcode 11
topViewController property 251
touch events 115–118

hit testing 116
overriding touch 

methods 116–117
responder chain 117–118

touchCancel method 249, 
447–448

touchCancelzzzz method 448
touchesBegan() method 116, 

118
touchesCancelled() 

method 118
touchesEnded() method 118, 

204–205
touchesEstimatedProperties-

Updated() method 118
touchesMoved() method 118
touchSave method 249–250, 

329, 352, 388, 449–450
touchUpInside event 194
trailing 136
trait collection 172
traitCollectionDidChange 

method 172–175



INDEX542
traits, varying for 181–183
transactional store 316, 336
transform property 125
transition coordinator 162
translatesAutoresizingMaskInto-

Constraints property 157
translation 122
try keyword 304
tuples 49–51

as return values 50
defining two values at once 

using 50
initializing variables based 

on 50–51
swapping two values using 51

type (static) methods 59–60
type (static) properties 57
type safety and type 

inference 33–36
concatenating strings 36
converting numeric types 35

U

ubiquitous key-value store 337, 
339–342, 369

UDID (unique device 
identifier) 496

UI (user interface) 15, 450, 460, 
463–470, 477

debugging
with Debug View 

Hierarchy 465–467
with runtime issues 467–468

solving issues 468–469
UIApplication class 207, 327
UIApplicationDelegate 

method 299
@UIApplicationMain 

keyword 445
UIBezierPath wrapper, drawing 

methods 384–385
UIButton 20
UIColor class 90, 384
UIColorExtension.swift file 115
UIControl class 67
UIDatePicker class 114
UIDevice class 207
UIGestureRecognizerDelegate

127, 129
UIGestureRecognizerState 122
UIGraphicsGetCurrentContext 

method 383
UIImage class 239, 313, 396, 

433

UIImageColorDetectionTests 
class 474

UIImagePickerController 
class 392, 394

UIImagePickerController-
Delegate 395

UIKeyboardAnimationCurve-
UserInfoKey 208

UIKeyboardAnimation-
DurationUserInfoKey 208

UIKeyboardFrameEndUser-
InfoKey 208

UIKeyboardWillChangeFrame
205

UIKit control 360
UIKit framework, Cocoa Touch 

layer 5
UILabel class 96
UILongPressGestureRecognizer

119
UINavigationController-

Delegate 395
UInt data type 35
UIPageViewController class 465
UIPageViewControllerData-

Source protocol 465
UIPanGestureRecognizer 119, 

122
UIPicker class 114
UIPinchGestureRecognizer 119
UIResponder class 118
UIRotationGestureRecognizer

119
UIRuntimeOutletConnection 

object 445
UIScreenEdgePanGesture-

Recognizer 119
UIScrollViewDelegate 223
UISearchController class 271
UISearchResultsUpdating 

protocol 284
UISegmentedControl 267
UIStoryboardSegue object 254
UISwipeGestureRecognizer 119
UITabBarController class 293
UITableViewCell class 232
UITableViewController 

class 235–237
UITableViewDelegate 

method 332
UITapGestureRecognizer 119, 

130
UITextFieldDelegate 

protocol 203
UITraitEnvironment 

protocol 172

UIView class 84, 114, 143, 209, 
214

UIViewController class 20, 87, 
89, 210

UIViewExtension.swift file 209
UIWindow class 205–207
unarchiveObject method 314
uninstalled constraints 169
unique device identifier. See 

UDID
unit tests 469
unknownItem error 356, 360
unsatisfiable layout error 141
unwind segue 254
Update Frames button 150
updateBook method 275, 305
updateBookCloudKit 

method 353, 357
updatedPrices array 53
updatePrice method 52
updateSearchResults 

method 272, 274, 284, 335
updating views 16
upload tasks 418
Upload to App Store button, 

iTunes Connect 493
upside-down orientation 152
url property 417
URL requests, setting up

416–418
urls method 303
URLSession objects 414–415

creating 414–415
URLSessionConfiguration 

objects 414
URLSession property 415
URLSessionConfiguration 

object 413–415, 417
URLSessionDataTask 418
URLSessionDelegate 415
User and Roles section, iTunes 

Connect 490
user defaults 301
user interaction 105–131

controls 106–114
buttons 106–109
text fields 109–114

gesture recognizers 119–131
pan gesture 121–124
pinch gesture 125–126
rotate gesture 126
simultaneous 126–129
tap gesture 129

touch events 115–118



INDEX 543
hit testing 116
overriding touch 

methods 116–117
responder chain 117–118

user interface. See UI
user preferences, preserving on 

device 300–301
user-initiated tasks 347
userInfo dictionary 208
userInfo parameter 208–209
userInfo property 356–357
userInterfaceIdiom trait 172
users, onboarding 465
utility area, Xcode 12
utility tasks 347

V

value types 73
variables view 441, 452
variables, examining 448–458

with data tips 457
with lower-level 

debugger 456–457
with Print Description 

button 455
with print method 449–450
with Quick Look 

technique 454–455
with variables view 452

Vary for Traits button 181
vertical constraints 142
vertical distribution 189
verticalLayout method 468
verticalSizeClass trait 172
VFL (Visual Format 

Language) 154–155
VideoPlayable protocol 71
View Controller element, 

storyboard 18
view controllers

adding search controllers 
to 272–273

creating custom 87–88
customizing UIViewController 

subclass 88–90
initial 90–92
overview 16
removing 258–259
setting up in storyboard

229–232
sizes of 135

View element, storyboard 18
view property 88–89
view transformation 125

ViewController class 87–89, 94, 
99, 101, 117–118, 205, 223

viewControllers array 294
viewDidAppear method 93, 207, 

292–293, 341, 355, 361, 367
viewDidDisappear() 

method 104, 207, 437
viewDidLoad() method 103–104
viewForSupplementaryElement-

OfKind method 285
viewForZooming method 223
views

adding in code 94–95
adding or removing views 

from 194–195
animating 211–218

from under keyboard 212
with sample bar chart

213–218
connecting to outlets 99–103
editing outlet properties

103–104
from under keyboard 212
hierarchy of 84–85

MVC 85–86
windows 84–85

hit testing 116
in code 195
in Interface Builder

nested 191–193
simple 189–191

managing 94–104
in code 94–97
in Interface Builder 97–104

overriding touch 
methods 116–117

overview 16
properties of 187–189

alignment 188–189
axis 188
distribution 189
spacing 188

responder chain 117–118
scroll views 218–223

with form content and 
keyboard 218–221

with image content 222
table views 228–241

creating model class
240–241

data source and 
delegate 236–238

setting up model 238–240
setting up table view con-

troller in 

storyboard 229–232
with form content and 

keyboard 218–221
with image content 222
with sample bar chart 213–218

constraints 215–218
nesting animations 215
properties 214–215

viewsInCode app 171
ViewsInCode project 97, 158
viewWillAppear() method 93, 

104
viewWillDisappear() 

method 104
viewWillLayoutSubviews 

method 164–165
viewWillTransition() 

method 161–162, 164
visualization 454
VoiceOver accessibility app 478
volumeInfo property 422
Vungle 514

W

weak keyword 103
web services

communicating with 413
downloading data from

431–436
requesting data from 418

WebKit 514
weight 462
Welcome to Xcode window 6
while statement 38
width size class 181
Wildcard App IDs 486
willSet property observer 270
windows 84–85
workspace 425
WWDC videos 513

X

Xcode
behaviors 442
creating projects 5–10

project options 9–10
templates 6–9

interface 10–15
debug area 15
editor area 13–15
navigator area 12–13
toolbar area 11
utility area 12



INDEX544
signing into 482–483
viewing repository in 24

XCTAssert method 472–473

XCTAssertEqual method 473
XML class 310–312
xml property 310

Z

zoneBusy error 356



Craig Grummitt

O
ne billion iPhone users are waiting for the next amazing 
app. It’s time for you to build it! Apple’s Swift language 
makes iOS development easier than ever, offering 

modern language features, seamless integration with all iOS 
libraries, and the top-notch Xcode development environment. 
And with this book, you’ll get started fast.

iOS Development with Swift is a hands-on guide to creating 
iOS apps. It takes you through the experience of building 
an app—from idea to App Store. After setting up your dev 
environment, you’ll learn the basics by experimenting in Swift 
playgrounds. Then you’ll build a simple app layout, adding 
features like animations and UI widgets. Along the way, 
you’ll retrieve, format, and display data; interact with the 
camera and other device features; and touch on cloud and 
networking basics. 

What’s Inside
●  Create adaptive layouts
●  Store and manage data
●  Learn to write and debug Swift code
●  Publish to the App Store

Written for intermediate web or mobile developers. No prior 
experience with Swift assumed.

Craig Grummitt is a successful developer, instructor, and 
mentor. His iOS apps get over 100,000 downloads.

To download their free eBook in PDF, ePub, and Kindle formats, 
owners of this book should visit 

www.manning.com/books/ios-development-with-swift

$49.99 / Can $65.99  [INCLUDING eBOOK]

iOS Development with Swift

iOS DEVELOPMENT

M A N N I N G

“A practical approach, with 
lots of real-world examples.” 

—Andrea Prearo, Capital One

“More than just a guide 
to learning Swift, this book 

demonstrates concepts useful 
for any language.” 

—Becky Huett, Big Shovel Labs

“A self-contained 
step-by-step tutorial 

  with plenty of examples.”—Ghita Kouadri
University College London 

“Provides comprehensive 
knowledge of Swift 4 
combined with clear 

explanations of iOS key 
concepts and APIs.” 

—Žarko Jovičić, Quandoo Berlin

SEE  INSERT


	iOS Development with Swift
	brief contents
	contents
	preface
	What is Swift?
	Why learn Swift?

	acknowledgments
	about this book
	Who should read this book
	How this book is organized
	About the code
	Note to print book readers
	Book forum

	about the author
	about the cover illustration
	Part 1 Introducing Xcode and Swift
	1 Your first iOS application
	1.1 Exploring iOS SDK
	1.2 Creating an Xcode project
	1.2.1 Templates
	1.2.2 Project options

	1.3 Exploring the Xcode interface
	1.3.1 Toolbar area
	1.3.2 Utility area
	1.3.3 Navigator area
	1.3.4 Editor area
	1.3.5 Debug area

	1.4 Editing your app’s interface
	1.4.1 Storyboards and nibs
	1.4.2 View controllers and views
	1.4.3 Interface Builder
	1.4.4 Object Library
	1.4.5 Document Outline
	1.4.6 Inspectors

	1.5 Running your app
	1.5.1 Running your app on a device
	1.5.2 Running your app in the simulator
	1.5.3 Running your app
	1.5.4 Simulator features

	1.6 Peeking at a completed app
	1.6.1 Checking out a repository in Xcode
	1.6.2 Peeking at the completed app’s storyboard
	1.6.3 Tweaking the code

	1.7 Summary

	2 Introduction to Swift playgrounds
	2.1 Xcode playground
	2.1.1 Results sidebar
	2.1.2 Automatic compiling
	2.1.3 Console

	2.2 Type safety and type inference
	2.2.1 Converting numeric types
	2.2.2 Concatenating strings

	2.3 Collections
	2.3.1 Arrays
	2.3.2 Sets
	2.3.3 Dictionaries

	2.4 Control Flow
	2.4.1 for-in
	2.4.2 switch statement

	2.5 Functions
	2.5.1 Modifying external parameter names
	2.5.2 Omitting external parameter names
	2.5.3 Default parameter names

	2.6 Optionals
	2.6.1 Declaring an optional
	2.6.2 Unwrapping an optional
	2.6.3 Optional chaining
	2.6.4 Final comments on optionals

	2.7 Tuples
	2.7.1 Tuples as return values
	2.7.2 Tuple magic

	2.8 Higher-order functions
	2.8.1 map
	2.8.2 Closures
	2.8.3 filter
	2.8.4 reduce
	2.8.5 sorted

	2.9 Summary

	3 Swift objects
	3.1 Classes
	3.1.1 Defining a class
	3.1.2 Properties
	3.1.3 Initializers
	3.1.4 Methods
	3.1.5 Computed properties
	3.1.6 Class inheritance
	3.1.7 Protocols

	3.2 Structures
	3.2.1 Structures vs. classes

	3.3 Extensions
	3.3.1 Extensions of your type
	3.3.2 Extensions of their type
	3.3.3 Operator overloading
	3.3.4 Generics

	3.4 Summary


	Part 2 Building your interface
	4 View controllers, views, and outlets
	4.1 View hierarchy
	4.2 Model-view-controller
	4.3 View controller
	4.3.1 Creating a custom view controller
	4.3.2 Customizing a UIViewController subclass
	4.3.3 Initial view controller

	4.4 Managing views
	4.4.1 Managing views in code
	4.4.2 Managing views in Interface Builder

	4.5 Summary

	5 User interaction
	5.1 Controls
	5.1.1 Buttons
	5.1.2 Text field
	5.1.3 Other controls

	5.2 Touching views
	5.2.1 Hit testing
	5.2.2 Overriding touch methods
	5.2.3 The responder chain

	5.3 Gesture recognizers
	5.3.1 Pan gesture
	5.3.2 Pinch gesture
	5.3.3 Rotate gesture
	5.3.4 Simultaneous gesture recognizers
	5.3.5 Tap gesture in code

	5.4 Summary

	6 Adaptive layout
	6.1 The problems
	6.2 Auto layout
	6.2.1 Auto layout tips
	6.2.2 Auto layout in Interface Builder
	6.2.3 Auto layout in code

	6.3 Autoresizing
	6.3.1 Autoresizing in code
	6.3.2 Autoresizing in Interface Builder
	6.3.3 Autoresizing considerations

	6.4 Manual adaptive layout
	6.4.1 Receiving transition events
	6.4.2 Receiving layout events

	6.5 Choosing an approach
	6.6 Summary

	7 More adaptive layout
	7.1 Size classes
	7.1.1 Size classes in code
	7.1.2 Size classes in Interface Builder

	7.2 Stack views
	7.2.1 The problem with auto layout
	7.2.2 Stack view properties
	7.2.3 Simple stack view in Interface Builder
	7.2.4 Nested stack views in Interface Builder
	7.2.5 Adding or removing views from a stack view
	7.2.6 Stack views in code

	7.3 Summary

	8 Keyboard notifications, animation, and scrolling
	8.1 The problem with the keyboard
	8.2 Dismissing the keyboard
	8.2.1 Dismissing the keyboard by resigning the first responder
	8.2.2 Detecting when to dismiss the keyboard

	8.3 Observing keyboard notifications
	8.3.1 What is a notification?
	8.3.2 Observing a keyboard frame change notification
	8.3.3 Unregistering a notification
	8.3.4 Extracting keyboard information from the notification
	8.3.5 Getting a reference to the first responder
	8.3.6 Calculating the offset to animate

	8.4 Animating views
	8.4.1 Animating the view from under the keyboard
	8.4.2 Diving deeper into animating views with a sample bar chart

	8.5 Scroll views
	8.5.1 Scroll view with form content and keyboard
	8.5.2 Diving deeper into scroll views with image content

	8.6 Summary


	Part 3 Building your app
	9 Tables and navigation
	9.1 Displaying data in table views
	9.1.1 Setting up a table view controller in the storyboard
	9.1.2 Displaying data in the table view

	9.2 Adding a row
	9.2.1 Embedding a navigation controller
	9.2.2 Creating a segue
	9.2.3 Embedding second navigation controller
	9.2.4 Communicating with the books scene using your own delegate
	9.2.5 Adding data to the table

	9.3 Editing a row
	9.3.1 Creating a segue from a row
	9.3.2 Passing in the book object to edit
	9.3.3 Removing the view controller
	9.3.4 Updating the book object

	9.4 Using large titles
	9.5 Deleting a row
	9.6 Summary

	10 Collections, searching, sorting, and tab bars
	10.1 Sorting the data
	10.1.1 Creating a sort method to sort the books array
	10.1.2 Changing sort order

	10.2 Searching the data
	10.2.1 Creating a search controller
	10.2.2 Adding the search controller to the view controller
	10.2.3 Filtering the data
	10.2.4 Removing and updating rows with filtered data

	10.3 Displaying data in collection views
	10.3.1 Creating custom collection cells
	10.3.2 Displaying data in a custom collection view cell
	10.3.3 Implementing a flow layout
	10.3.4 Adding a search bar to the collection view
	10.3.5 Creating a second section
	10.3.6 Implementing the flow layout delegate

	10.4 Creating sections with a tab bar controller
	10.4.1 Sharing data between tabs

	10.5 Summary

	11 Local data persistence
	11.1 Preserving user preferences and state
	11.1.1 Preserving and restoring state
	11.1.2 Preserving user preferences on the device

	11.2 Storing data locally
	11.2.1 Storage setup
	11.2.2 Structured data files
	11.2.3 Archiving objects
	11.2.4 SQLite
	11.2.5 Core Data

	11.3 Summary

	12 Data persistence in iCloud
	12.1 Setting up your app for iCloud
	12.2 Persisting data with ubiquitous key-value store
	12.3 Storing data using CloudKit
	12.3.1 Updating the model for CloudKit
	12.3.2 Adding a book record to CloudKit
	12.3.3 Updating a book record in CloudKit
	12.3.4 Loading book records in CloudKit
	12.3.5 Deleting a book record in CloudKit
	12.3.6 Managing CloudKit errors
	12.3.7 Refreshing CloudKit data
	12.3.8 Subscribing to changes

	12.4 Summary

	13 Graphics and media
	13.1 Adding images to your app with an asset catalog
	13.1.1 Adding image sets
	13.1.2 Adding app icons

	13.2 Displaying a launch screen
	13.3 Drawing with Core Graphics
	13.3.1 Overriding the draw method
	13.3.2 Describing a path
	13.3.3 Drawing into the graphics context
	13.3.4 Saving and restoring graphics state
	13.3.5 Drawing paths with UIBezierPath drawing methods
	13.3.6 Rendering views in Interface Builder
	13.3.7 Creating a star-rating view

	13.4 Drawing with Core Animation
	13.5 Using the camera
	13.5.1 Taking photos with the image picker controller
	13.5.2 Selecting photos from photo library with the image picker controller
	13.5.3 Taking photos with AVFoundation

	13.6 Playing sounds
	13.7 Summary

	14 Networking
	14.1 Using a web service
	14.2 Setting up a books service
	14.3 Communicating with the web service
	14.4 Creating a URL Session
	14.4.1 URLSessionConfiguration
	14.4.2 URLSession

	14.5 Setting up the URL request
	14.6 Requesting data from a web service
	14.7 Examining the data
	14.8 Parsing JSON data with JSONSerialization
	14.9 Parsing JSON data with JSONDecoder
	14.10 Parsing JSON data with SwiftyJSON
	14.10.1 Integrating SwiftyJSON with Carthage
	14.10.2 Using SwiftyJSON

	14.11 Downloading data from a web service
	14.11.1 Accessing insecure domains

	14.12 Displaying the network activity indicator
	14.13 Cancelling a task
	14.14 Summary

	15 Debugging and testing
	15.1 The setup
	15.2 Debugging mode
	15.3 Debugging crash logs in the console
	15.3.1 Solving a crash caused by an outlet
	15.3.2 Solving a crash caused by an action

	15.4 Examining variables and breakpoints
	15.4.1 Examining a variable with print
	15.4.2 Pausing your app with a breakpoint
	15.4.3 Examining a variable with the variables view
	15.4.4 Controlling the app’s execution using the debug bar
	15.4.5 Examining a variable with Quick Look
	15.4.6 Examining a variable with print description
	15.4.7 Examining a variable with LLDB
	15.4.8 Examining a variable with data tips
	15.4.9 Solving the save problem
	15.4.10 Examining a variable in summary

	15.5 Debugging playback with gauges and instruments
	15.5.1 Debugging playback with debug gauges
	15.5.2 Debugging playback with instruments
	15.5.3 Solving the playback problem

	15.6 Debugging the user interface
	15.6.1 Debugging the user interface with the Debug View Hierarchy
	15.6.2 Debugging the user interface with runtime issues
	15.6.3 Solving the user interface problem

	15.7 Testing your app
	15.7.1 Testing for functionality
	15.7.2 Testing for performance
	15.7.3 Testing your user interface

	15.8 Summary


	Part 4 Finalizing your app
	16 Distributing your app
	16.1 Joining the Apple Developer Program
	16.1.1 Signing into Xcode
	16.1.2 Code signing your app

	16.2 Setting up an app in iTunes Connect
	16.3 Uploading your build to iTunes Connect
	16.4 Distributing your app to beta testers
	16.4.1 Distributing to beta testers manually
	16.4.2 Distributing to beta testers with TestFlight

	16.5 Distributing your app to the App Store
	16.6 Summary

	17 What’s next?
	17.1 Further learning
	17.2 One more thing!


	appendix A Project settings
	A.1 General
	A.2 Capabilities
	A.3 Resource tags
	A.4 Info
	A.5 Build settings
	A.5.1 Changing your build settings for configurations
	A.5.2 Filtering build settings

	A.6 Build phases
	A.7 Build rules

	appendix B Swift syntax cheat sheets
	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	iOS Development with Swift-back

