

Save 35% at manning.com
Use the code humble35 at checkout to save on your
first purchase.

Early access
Don’t wait to start learning! In MEAP, the Manning Early Access
Program, you read books while they’re being written.

Access anywhere with liveBook
The Manning liveBook platform provides instant browser-based
access to our content.

Beyond books
Cutting edge liveProjects, liveAudio, and liveVideo courses give
you new ways to learn. Only available at manning.com

Impeccable quality
We believe in excellence. Our customers tell us we produce
the highest quality content you can buy.

Exclusive eBooks
Manning eBooks are only available from manning.com.
You won’t find them anywhere else.

Email

shop at manning.com

https://bit.ly/3h13ZcH
https://bit.ly/3h13ZcH
https://bit.ly/2J2R9OK
https://bit.ly/37r08lZ
https://www.linkedin.com/company/manning-publications-co/
https://www.facebook.com/ManningBooks?ref=nf
https://www.instagram.com/manning_publications/
https://twitter.com/manningbooks
https://www.youtube.com/channel/UCDia_lkNYKLJVLRLQl_-pFw
https://www.twitch.tv/manningpublications
https://bit.ly/2Wmabm6
https://bit.ly/37r08lZ
https://bit.ly/37r08lZ

JavaScript on Things

JavaScript on Things
HACKING HARDWARE FOR WEB DEVELOPERS

LYZA DANGER GARDNER

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Developmental editor: Susanna Kline
20 Baldwin Road Review editor: Ivan Martinovic
PO Box 761 Project editor: Kevin Sullivan
Shelter Island, NY 11964 Copyeditor: Andy Carroll

Proofreader: Melody Dolab
Typesetter: Gordan Salinovic

Cover designer: Leslie Haimes
Cover and interior illustrations: Lyza Danger Gardner

ISBN 9781617293863
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18

http://www.manning.com

v

brief contents
PART 1 A JAVASCRIPTER’S INTRODUCTION TO HARDWARE...................1

1 ■ Bringing JavaScript and hardware together 3

2 ■ Embarking on hardware with Arduino 26

3 ■ How to build circuits 48

PART 2 PROJECT BASICS: INPUT AND OUTPUT WITH JOHNNY-FIVE79

4 ■ Sensors and input 81

5 ■ Output: making things happen 107

6 ■ Output: making things move 144

PART 3 MORE SOPHISTICATED PROJECTS179

7 ■ Serial communication 181

8 ■ Projects without wires 214

9 ■ Building your own thing 253

BRIEF CONTENTSvi

PART 4 USING JAVASCRIPT WITH HARDWARE IN
 OTHER ENVIRONMENTS ..295

10 ■ JavaScript and constrained hardware 297

11 ■ Building with Node.js and tiny computers 332

12 ■ In the cloud, in the browser, and beyond 375

vii

contents
preface xii
acknowledgments xv
about this book xvii

PART 1 A JAVASCRIPTER’S INTRODUCTION TO HARDWARE1

1 Bringing JavaScript and hardware together 3
1.1 The anatomy of hardware projects 4

Inputs and outputs 5 ■ Processing 6 ■ Power, circuits, and
systems 6 ■ Logic and firmware 8 ■ Enclosures and
packaging 10 ■ Embedded systems 10

1.2 How JavaScript and hardware work together 11
Host-client method 11 ■ Embedded JavaScript 15 ■ Other
hardware-JavaScript combinations 16

1.3 Is JavaScript a good fit for hardware? 19

1.4 Putting together a hardware toolkit 20
Development boards 20 ■ Input and output components 21
Other electronic components 22 ■ Power, wires, and
accessories 23 ■ Tools 23

CONTENTSviii

2 Embarking on hardware with Arduino 26
2.1 Getting to know the Arduino Uno 28

Creating your first circuit with an Arduino Uno 30

2.2 Working with the Arduino workflow 33
Arduino Uno’s digital pins 33 ■ Sketches and the Arduino
IDE 34 ■ Connecting the LED to a digital pin 36
Programming the LED to blink 37

2.3 Controlling the Arduino with JavaScript 39
Configuring the Arduino as a client 40 ■ Installing the Johnny-
Five Node.js framework 42 ■ Hello World blinking LED with
Johnny-Five 43 ■ Firmata, Johnny-Five, and the host-client
method 44 ■ Structuring scripts with Johnny-Five 45

3 How to build circuits 48
3.1 Voltage, current, and resistance 49

Ohm’s law 53 ■ Problems and dangers 56

3.2 Building circuits 57
Using breadboards to prototype circuits 57 ■ Wiring a simple LED
circuit on a breadboard 58 ■ Expanding a series circuit with a
button 65 ■ LEDs in series 67 ■ Parallel circuits and current
dividers 71 ■ Powering your project with batteries 76

PART 2 PROJECT BASICS: INPUT AND OUTPUT WITH
JOHNNY-FIVE ...79

4 Sensors and input 81
4.1 Working with analog sensors 84

Analog-to-digital conversion 84 ■ Working with photoresistors 85
Voltage dividers 89 ■ Wiring and using a photoresistor 92 ■ Using
an analog temperature sensor 97

4.2 Digital inputs 101
Using a button as a digital input 101

5 Output: making things happen 107
5.1 Lighting things up 109

Fading LEDs with pulse-width modulation (PWM) 109
Animating LEDs with PWM 114 ■ Combining input with LED
output 117 ■ Going full-color with RGB LEDs 121 ■ Build
your own “weather ball” 122

CONTENTS ix

5.2 Working with parallel LCD displays 125
Making a full-featured timer with LCD 125 ■ Adding a visual
LED “chime” 136

5.3 Making noise with a piezo 139
Adding an audible piezo chime to the timer 141

6 Output: making things move 144
6.1 Making motors spin 146

How motors work 146 ■ Controlling a motor with a push-button
switch 148 ■ Controlling a motor with Johnny-Five 152

6.2 Making servos go 155
Controlling a servo with Johnny-Five 157

6.3 Building your first robot! 161
Robots and motors 162 ■ Building the robot’s chassis base 164
Controlling the robot’s motors 166

PART 3 MORE SOPHISTICATED PROJECTS............................179

7 Serial communication 181
7.1 Communicating digital data in parallel and in serial 183

7.2 The basics of serial communication 184

7.3 Asynchronous serial communication 185
UARTs 187 ■ Trying out software serial with a GPS breakout
board 189 ■ Learn to solder! 190 ■ Building the GPS circuit 194

7.4 Synchronous serial communication 196
Serial Peripheral Interface (SPI) 197 ■ I2C 198
Making a digital compass with an I2C magnetometer 200

7.5 Pulling it together: shake-to-change multisensor widget 202
Step 1: combining a compass with LCD output 203 ■ Step 2:
adding a multisensor to the device 206 ■ Step 3: updating the
display to show temperature and pressure 208 ■ Step 4: adding a
shake-to-swap display feature with an accelerometer 209

8 Projects without wires 214
8.1 Why you’ve been tethered so far 217

Data exchange, the I/O layer, and I/O plugins 217 ■ USB
as a power source 217 ■ Options for wires-free project
communication 219

CONTENTSx

8.2 Toward wires-free projects using the Tessel 2 220

8.3 Getting your Tessel set up 221
Configuring the Tessel 222 ■ “Hello World” LED blinking on the
Tessel 224 ■ Blinking an external LED with the Tessel 225
Exploring the Tessel’s pins and capabilities 229

8.4 Projects without wires on the Tessel 230
Wires-free data: a remote weather station 231

8.5 Powering projects with batteries 244
A battery-powered robot with the Tessel 246

9 Building your own thing 253
9.1 Hacking consumer electronics 255

Modifying RF-controlled outlet switches 255

9.2 Controlling the remote switches with a Johnny-Five component
plugin 263

Prototyping the switch project 263 ■ Writing the RemoteSwitch
plugin 266

9.3 Writing software for sophisticated hardware 272
Project: Johnny-Five support for APDS-9660 gesture sensor 272
Implementing constructor and initialization methods 284
Integrating the gesture sensor and remote switches 289 ■ Pulling
the whole project together 292

PART 4 USING JAVASCRIPT WITH HARDWARE IN
OTHER ENVIRONMENTS...295

10 JavaScript and constrained hardware 297
10.1 The Espruino Pico platform 299

Setting up the Pico 300 ■ Hello World LED blink 302

10.2 Learning about new platforms 303
Discovering a platform’s core features 303 ■ Finding a pinout
diagram 306 ■ Learning about configuration and
workflow 307 ■ Finding examples and tutorials 307 ■ Using
reference API documentation 307

10.3 Experimenting with the Pico 308
The Pico and the BMP180 multisensor 308 ■ The Pico and the
Nokia 5110 LCD 310 ■ Building a power-efficient weather gadget
with the Pico 317

CONTENTS xi

10.4 Experimenting with the Kinoma Element platform 320
The Element’s core features 320 ■ Pinout and hardware
diagram 321 ■ Configuration, management, workflow 321
Examples and tutorials 322 ■ API reference 323 ■ Case-study
project: live-updating compass readings 323

11 Building with Node.js and tiny computers 332
11.1 Working with tiny computers 335

The Raspberry Pi platform 336 ■ Configuration option 1: the
traditional way 340 ■ Configuration option 2: headless 341

11.2 Learning about the Raspberry Pi 3 345
Core features 345 ■ GPIO features and pinouts 346
Configuration and workflow 348 ■ Examples and tutorials 351
API documentation 357

11.3 Writing Johnny-Five applications for different platforms 357
Adapting the mini weather station for the Pi 3 358 ■ Adapting the
mini weather station for the Arduino Uno 364

11.4 Using the Raspberry Pi as a host 365

11.5 Case study: BeagleBone Black 366
Learning about the BeagleBone Black 367 ■ Adapting the weather
station for the BeagleBone 372

12 In the cloud, in the browser, and beyond 375
12.1 IoT and the cloud 377

12.2 Containerized deployment with resin.io 378
Creating a resin.io application 380 ■ Provisioning the BeagleBone
Black 382 ■ Adapting the weather application software 383

12.3 Hardware and the web browser 388
The Web Bluetooth API 389 ■ The Generic Sensor API 389
The Physical Web 390

12.4 Exploring Bluetooth LE with Puck.js 391
Core features 391 ■ GPIO features and pinouts 392
Configuration and workflow 393 ■ Examples, tutorials, and API
documentation 395 ■ Controlling the LED from a web page 395
The Physical Web and Puck.js 400 ■ A web-based Bluetooth
doorbell 402

12.5 Pushing the frontiers of JavaScript and hardware 413

index 415

xii

preface
On a late summer day in 2013, I stood on a stage in a large tent on the grounds of
Bletchley Park in England, the site where British codebreakers (famously including
Alan Turing) defeated the Enigma machine in World War II. It was one of the better
days of my life, as two fundamentally wonderful things had just happened.

 First, I’d just somehow managed to win a hacking contest (that’s why I was
onstage). The National Museum of Computing—also located on the grounds of
Bletchley Park—was seeking tech help in creating web-based, interactive timeline
exhibits. I’d stayed up through the night, extending an open source JavaScript
library and building a prototype: this was my entry, which was, to my great delight,
declared best in show. The second wonderful thing was that I’d won a prize—and
not just any prize.

 The reward I received was one of the original Arduino Uno starter kits—an Ardu-
ino board, a collection of electronic components, and an instructional book. It pro-
foundly changed my life. I’d later find that combining my newly learned electronics
skills with the stuff I did every day—coding open source, standards-based websites and
apps—resulted in one of the most fascinating alchemies I’d ever experienced: Java-
Script on Things. That is, I could use the JavaScript I already knew as a turbo boost to
electronics hacking and the internet of things (IoT).

 That came later, however. Initially, I learned how to construct simple electronic cir-
cuits by working through the examples in the kit’s book and, later, avidly searching
the web to learn more. I learned how to apply logical control to these circuits by pro-
gramming the Arduino Uno’s microcontroller, writing simple sketches (programs) in

PREFACE xiii

Arduino’s (very) C/C++-like language, optimized for the board’s (very) limited pro-
gram space and memory.

 And then, at the end of 2013, I discovered Johnny-Five. The open source Node.js
framework was young at the time, but already powerful. Instead of writing lower-level,
constrained Arduino code, I could write higher-level JavaScript programs to control
my Uno. I thought, “Wow, if I’d only discovered this earlier.”

 The combination of JavaScript and microcontrollers isn’t just a parlor trick, per-
formed for the sake of coating the entire known world with JavaScript. At first, even I,
a Node.js adherent, was skeptical: maybe this is pointless; maybe it will never take root.

 Don’t worry. It’s not, and it did.
 Adding JavaScript into the mix perversely simplified my experience, and made pro-

totyping little projects much, much faster. I could use development workflows that were
more familiar to me as a web developer. I didn’t have to concern myself as much with
lower-level memory and resource optimization. Johnny-Five’s encapsulation of behav-
ior into high-level component classes is intuitive: the resulting code can be cleaner and
easier to work with than many Arduino libraries. And it allowed me to take advantage
of the almost fathomless depths of the worldwide Node.js ecosystem via npm. I could
simply import modules, just like any other Node.js script out there. It was wonderful.

 I want to be very clear: there’s nothing wrong with Arduino or more “traditional”
C-based microcontroller programming. There are very good reasons to care about
memory management, for example, especially if you’re writing firmware or making
production devices. And Arduino is rather a miracle: its entire raison d’être is to make
embedded electronics accessible to novices. Starting from scratch with Arduino and the
Arduino programming language is a perfectly reasonable, surmountable approach.

 But JavaScript can help web developers get up to speed with electronics faster. For
one thing, introductory materials for Arduino (and other platforms) often assume no
pre-existing knowledge of programming whatsoever, which means you may end up
wading through explanations of what an array is and how loops work. The finicky con-
straints and particulars of microcontrollers can be distracting when you’re just learn-
ing how things work. IDEs can be clunky. In some cases, you can end up spending a lot
of time getting things configured and not much time making things actually happen.
JavaScript has the power to abstract much of this away, letting you focus on the essen-
tial new things you need to learn.

 From that notion, this book arose: the idea that JavaScript can serve as a gateway to
electronics, making it easier for more people to learn how to make cool stuff with a
minimum of cognitive pain. JavaScript is the most popular programming language in
the world, the de facto language of the web; and the internet of things and maker cul-
ture is tantalizing both creatively and commercially. Why not make a happy blend of
the two?

 At the end of the day, this stuff is fun. It’s a kick to be able to dream up and make real
your own inventions. It’s confidence-lifting to have a basic competency with low-voltage
electronic circuits, and to understand how embedded systems work in the real world.

PREFACExiv

 Maybe you’ll really love this like I do. Maybe you’ll help contribute to open source
projects. Maybe you’ll construct a wildly clever gadget. Maybe you’ll teach other peo-
ple what you’ve learned.

 Perhaps you’ll simply have fun. That, on its own, is more than enough.

xv

acknowledgments
My gratitude starts right where my love of hardware hacking began: with the Over the
Air conference crew and The National Museum of Computing (UK), whence my initial
Arduino Starter Kit originated. None of this would have happened without that seren-
dipitous event. Dan Appelquist, Margaret Gold, and Matthew Cashmore—thank you
for creating such a superb conference and inviting me to it, more than once, even!

 Rick Waldron achieves more in a day than I do in a month. (Rick, your JavaScript
genius is legend.) His involvement with TC-39, the ECMA working group responsible
for the JavaScript language itself, means he is literally indispensable. Oh, and he also
invented Johnny-Five, the leading open source Node.js framework for robotics and
IoT, around which much of this book revolves. I could go on for pages, chapters,
about Rick.

 Writing a book takes a ridiculously large amount of time. Huge thanks go to lead-
ers and colleagues at Bocoup for giving me the time and support I needed, and for
continuously pumping steady amounts of enthusiasm in my direction, as well as to the
partners and staff at Cloud Four for their patience.

 Great editors are a true gift in a world that sometimes dismisses the value of edito-
rial process and feedback. My editor, Susanna Kline, provided helpful and insightful
support through the long haul. Brad Luyster, your technical review feedback was phe-
nomenal; it’s hard to say thank you hard enough. Several other reviewers also pro-
vided helpful feedback on the manuscript at different stages: Alessandro Campeis,
Amit Lamba, Andrew Meredith, Bruno Sonnino, Earl Bingham, and Kevin Liao. I also

ACKNOWLEDGMENTSxvi

want to thank Manning’s publisher, Marjan Bace, and the rest of the editorial and pro-
duction teams who worked on the book behind the scenes.

 Thanks also to Francis Gulotta for technical input, Kyle Jackson at Manning for
fielding my tech support needs, and my pal Chau Doan for sharing his firmware and
embedded-electronics wisdom.

 The Johnny-Five and related JavaScript-on-Things communities have been just bril-
liant. Thanks, Derek Runberg of SparkFun! Thanks, Donovan Buck, David Resseguie,
Brian Genisio, and all the other Johnny-Five contributors!

 Shawn Hymel’s Arduino library for the APDS-9960 sensor—a handsome piece of
work—served as a springboard for parts of chapter 9. And the rover examples in chap-
ters 6 and 8 are adapted from code written by Rick Waldron. (Again, Rick, thanks!)

 Equally important to those who help you on a project itself are those who help you
keep your sanity while enduring it: thank you, my splendid family and friends.

 I saved this extra-best spot right here to thank my partner (and all-round fantastic
person) Bryan Fox: without his joyful and steady presence, this book could not possi-
bly exist.

xvii

about this book
“I’m curious about hardware and electronics and IoT, but I have absolutely no idea
where to begin.” I’ve heard that notion, in many variations, from many (dozens?—at
least—maybe a hundred?) web developers. Yes, it certainly would be fun to be able to
build robots and clever gadgets. Yes, it would be useful to know how to read data from
sensors and do interesting things with the data, to be able to construct your own auto-
mated, web-connected devices (for feeding your pet on time, detecting rainfall
amounts, displaying the latest rugby scores—the mind really does boggle at all the
possibilities). But also, yes, it can feel like a daunting, even overwhelming, new land-
scape if you’ve never so much as made an LED blink, much less written and flashed
optimized firmware to an embedded microcontroller.

 Good news! You can take advantage of your understanding of JavaScript and gen-
eral programming metaphors to frame your learning adventure, and make wrapping
your head around this new world a bit less chaotic. JavaScript can lend a sheen of
familiarity, providing a touchstone to ease your introduction to electronics, hardware,
and the internet of things (IoT).

 This book teaches the fundamentals of electronics and embedded systems for folks
who are comfortable with basic JavaScript but who may have no experience whatso-
ever wiring up even the simplest circuit. Emphasis is put on the topics that will be new
to software developers: the critical basics of designing and building circuits, hardware
components (sensors, motors, resistors, and the like), and the interface between hard-
ware and software.

ABOUT THIS BOOKxviii

 Over the course of this book, you’ll get hands-on with a variety of development
boards, hardware components, and software platforms. For the experiments (small
projects) in the first two-thirds of the book, we’ll use the Johnny-Five open source
Node.js framework with the Arduino Uno development board. Johnny-Five’s API pro-
vides many intuitive component classes that you can use to quickly prototype your
gadgets and inventions. The Uno is the most ubiquitous hobbyist board in the world,
boasting stability, simplicity, reliability, and a huge community of users and educators.
The last third of the book surveys a broader range of platforms, including the Node.js-
capable Tessel 2 and the very popular Raspberry Pi.

 By the end of the book, you should have a foundational toolkit—both mental and
physical—for planning, designing, implementing, and extending your own JavaScript-
controlled electronic creations.

Roadmap
The book consists of 12 chapters:

■ Chapter 1 defines what embedded systems are and enumerates the physical
components from which they’re built. It explains the ways in which JavaScript
and hardware can work together.

■ Chapter 2 introduces the Arduino Uno development board and gets you hands-
on, quickly, with some basic blinking LEDs. We’ll briefly look at how to control
the Uno with the Arduino IDE before jumping into JavaScript and Johnny-Five.

■ Chapter 3 zooms way in on the fundamentals of electronics that serve as the
foundation for all the circuits you’ll ever build. You’ll plumb the depths of
Ohm’s law and build a few different kinds of simple circuits.

■ Chapters 4 through 6 are a romp through key electronics and concepts for
embedded gadgets, exploring input (sensors), output (actuators), and physical
movement (motors and servos). Using the Johnny-Five framework, you’ll get a
chance to build a bunch of different experiments with an Arduino Uno board.

■ Chapter 7 examines serial communication, which is used for exchanging more
sophisticated data. You’ll try out several serial components, including a compass
(magnetometer), an accelerometer, and a GPS, again using Johnny-Five and the
Arduino Uno.

■ Chapters 8 and 9 introduce the Node.js-capable Tessel 2 development board. In
chapter 8, you’ll learn how to make projects that aren’t tethered by wires. In
chapter 9, you’ll explore the process of taking an original project from idea to
inception.

■ Chapters 10 and 11 delve into other I/O-capable embedded hardware and
JavaScript. Chapter 10 looks at JavaScript and JavaScript-like environments on
constrained platforms like the Espruino Pico. Chapter 11 explores more
general-purpose single-board computers (SBCs) like the Raspberry Pi.

ABOUT THIS BOOK xix

■ Chapter 12 touches on cloud services and hardware control from the browser,
and it looks to the future. You’ll learn how to use a cloud service, resin.io, to
manage and deploy a Johnny-Five application to a BeagleBone Black, and you’ll
build an in-browser wireless doorbell with the Puck.js device and the Web Blue-
tooth API.

Who should read this book?
This is a book for people who have some experience with JavaScript, but who know lit-
tle or nothing about electronic circuitry and microcontroller programming.

 Code examples in this book are not, for the most part, complex. My philosophy is
that it’s better for code to be readable and understandable than for it to be show-offy
and clever. You certainly don’t need to have a deep familiarity with every word in the
ECMA-262 spec (that’s the document that defines the JavaScript language); but if you
feel faint at the sight of arrow functions or haven’t yet gotten to know Promises, for
example, you may want to brush up a bit or keep a friendly companion at your side,
such as the very excellent Secrets of the JavaScript Ninja, Second Edition, by John Resig,
Bear Bibeault, and Josip Maras (Manning, 2016; www.manning.com/books/secrets-of-
the-javascript-ninja-second-edition). Code complexity and the use of modern lan-
guage features increase toward the end of the book.

 Although the step-by-step instructions for the experiments provide all the com-
mands you’ll need to make your creations go, you should have basic competency in
installing, managing, and using Node.js and the npm package manager. You should
also be comfortable with executing commands from within a terminal environment.

 A working knowledge of HTML and general grasp of CSS is helpful, although not
essential. (You could always cut and paste source markup for those components.)
Chapter 12 involves the use of Git version control software—prior experience with Git
is helpful but not critical.

Code conventions and downloads
This book includes copious examples, which include various resources needed for
applications and experiments: JavaScript, HTML, CSS, JSON, and so on. Source code in
listings, or in text, is in a fixed-width font to separate it from ordinary text. Addition-
ally, method or class names, variable names, object properties, method parameters,
HTML elements, and the like, in text are also presented using a fixed-width font.

 Johnny-Five is open source, released under the (liberal) MIT software license. The
book makes use of many other open source software projects, including a dozen or so
third-party npm modules. Most of the hardware platforms explored are open source
as well; an exception is the Raspberry Pi 3, covered in chapter 11. To complete the
“weather ball” example in chapter 5, you’ll need a (free) API key from Dark Sky
(https://darksky.net/dev/register).

 Code annotations accompany many of the source code listings, highlighting
important concepts.

https://darksky.net/dev/register
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition

ABOUT THIS BOOKxx

 The source code and assets for all examples in this book are available at https://
github.com/lyzadanger/javascript-on-things. Most examples in the book include all
the needed code and markup in the text (source code for third-party modules isn’t
included). But you can find the complete source of a few longer examples toward the
end of the book, as well as binary assets for examples (such as the MP3 used in the
web-controlled doorbell in chapter 12), in the code repository.

 A zip file containing source code at the time of publication will also be available on
the publisher’s website: www.manning.com/books/javascript-on-things.

Book forum
Purchase of JavaScript on Things includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the
forum, go to https://forums.manning.com/forums/javascript-on-things. You can also
learn more about Manning’s forums and the rules of conduct at https://forums.man-
ning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest her interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

About the author
LYZA DANGER GARDNER likes figuring out how to do things. In turn, she likes to teach
others how to do new things, too. Lyza cofounded Cloud Four, a web consultancy in
Portland, Oregon. She’s been building web things for over 20 years, advocating for
elegant standards, education, and compassion in pursuit of the best possible future
web. You can find her online at www.lyza.com or @lyzadanger on Twitter. As a counter-
point to her futuristic technical vantage, she lives in the forest in Vermont and enjoys
anachronistic hobbies. She reads and reads and reads.

https://forums.manning.com/forums/javascript-on-things
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about
https://github.com/lyzadanger/javascript-on-things
https://github.com/lyzadanger/javascript-on-things
https://www.manning.com/books/javascript-on-things

Part 1

A JavaScripter’s
 introduction to hardware

This part of the book will introduce you to the fundamentals of embedded
systems and electronic circuits. In chapter 1, you’ll learn what embedded systems
are and how to analyze their constituent components. We’ll spend some time
looking at what it means for JavaScript to “control” hardware, and we’ll examine
the different ways that JavaScript and electronics can work together.

 You’ll meet the Arduino Uno R3 development board in chapter 2, which
we’ll use with all of the experiments through chapter 7. You’ll learn what the
main parts of development boards do and how they interact with other software
and hardware components. You’ll try out some basic LED experiments with the
Uno using both the Arduino IDE and the Johnny-Five Node.js framework.

 Chapter 3 will teach you the key fundamentals of electronic circuitry, diving
into Ohm’s law and the relationships between voltage, current, and resistance.
You’ll work on a breadboard, constructing series and parallel circuits that con-
tain multiple LEDs.

 When you’re finished with this part of the book, you’ll have grasp of the basic
embedded-system underpinnings and core circuit concepts. You’ll be ready to
start building small, JavaScript-controlled projects with different kinds of inputs
and outputs.

3

Bringing JavaScript
 and hardware together

As a JavaScript-savvy web developer, you make logical alchemy happen every day.
But now it’s possible to wield your software-development skills in a new way, to pro-
gram and control things in the real world. In this chapter, you’ll learn about the
hardware involved in different kinds of projects and devices, and you’ll also see
how JavaScript and hardware can work together.

 We’re surrounded by little magical things that blend the physical world with the
realm of the logical, connected, and virtual (figure 1.1). A keychain that broadcasts
its location wirelessly so you can find it with an app on your smartphone. A plant
pot that makes whining noises when it needs to be watered, or, better yet, sends you

This chapter covers
 Components and hardware involved in hobbyist

projects and the “internet of things”

 Common components of embedded systems

 Different methods for using JavaScript with
embedded systems

 Tools and supplies you’ll need to start building

4 CHAPTER 1 Bringing JavaScript and hardware together

a petulant text message. Billions of such objects blink, beep, tweet, automatically dim
the lights, make customized pots of tea, and otherwise perform their specialized
duties across the planet.

 It’s fun to build this stuff. The creativity involved when crafting with these kinds of
physical gadgets, the grassroots charm of inventive homebrew projects—these are the
kinds of things that hold appeal for web developers. We’re cut out for prototyping,
experimenting with new technologies, and blazing our own trails.

 But getting started can be intimidating. When we see all the wires and compo-
nents, hear the jargon, stand on the outside looking in at hardware-hacking commu-
nities, the kinds of skills involved can feel formidable, foreign. As a JavaScript
developer, you may be faced with some hurdles—perceived complexity, overabundant
and scattered information, conflation of hardware and software concepts—as you
make your tentative first forays into the world of physical hardware.

 We’re going to use your JavaScript know-how as an advantage, an aid to learning how
to design and build the kinds of things that make up the “internet of things” (IoT) and
inspire hardware hackers. You’ll be able to use your software-development skills to skip
past some distractions and get focused, quickly, on the new skills you need to learn.

 To get a feel for the journey we’re taking, let’s first take a look at the kinds of
things you’ll be learning to build. Let’s explore what we mean, exactly, when we say
things or hardware.

1.1 The anatomy of hardware projects
We could build a little gadget that would automatically turn a fan on when it gets
warm. This miniature, independent climate-control device would continuously moni-
tor the temperature of the surrounding environment. When it gets too hot, the fan
comes on. When it’s nice and cool again, the fan turns off.

Figure 1.1 Oh, the magical things in our world!

5The anatomy of hardware projects

 While we wouldn’t win any prestigious awards for the invention of this admittedly
pedestrian contrivance, its basic ingredients are common to the other—more inspir-
ing—things you’ll learn to build.

1.1.1 Inputs and outputs

The most important thing—really the only thing—our temperature-triggered device
needs to do is turn a fan on when it’s too toasty and turn it back off again when the
area around it has cooled off. The motor-driven fan is an example of an output device.

 To get continuous information about the temperature of the immediate environ-
ment—so that the device can make decisions about when to turn the fan on or off—
we need data from an input, in this case a temperature sensor (figure 1.2).

 Inputs provide incoming data to the system, and sensors are a type of input that pro-
vides data about the physical environment. There are all kinds of sensors you can use
in projects: sensors for light, heat, noise, vibration, vapors, humidity, smells, motion,
flames—you name it. Some, like our fan’s temperature sensor, provide simple data—
just a single value representing temperature—whereas others, like GPS or accelerome-
ters, produce more elaborate data.

 A project’s outputs represent its net functionality to someone using it. Blinking
lights, irritating beeping sounds, status readouts on LCD screens, a robotic arm mov-
ing sideways—all these are kinds of outputs. For this project, the fan is the sole output.

 Not all inputs and outputs necessarily manifest in the physical world. A customer
encountering an error when trying to order a product online (virtual input) might
cause a red light to go on (physical output) on a device sitting on a support technician’s
desk. Conversely, a change in soil humidity (physical sensor input) might cause a plant
pot to send a demanding text message (virtual output).

Figure 1.2 The automatic fan system needs to take input from a temperature sensor and
manage the output of a motorized fan.

6 CHAPTER 1 Bringing JavaScript and hardware together

1.1.2 Processing

Our automatic fan also needs a brain, something that can pay attention to the tem-
perature sensor’s readings and turn the fan on when it gets too warm. The kind of
brain it needs is in fact a tiny computer: a processor, some memory, and the ability to
process inputs and control outputs. When processor, memory, and I/O functionality
are contained in a single physical package, we call the resulting chip a microcontroller
(figure 1.3).

Microcontrollers (MCUs) aren’t as powerful as the general-purpose processors in lap-
tops. Most can’t run a full operating system (most, not all, as you’ll see), but they’re
cheap, reliable, small, and consume minimal power—that’s why they’re positively
ubiquitous in hardware projects and products like our apocryphal automatic fan.

1.1.3 Power, circuits, and systems

We’ve now got input, output, and a brain—time to pull the bits together into a system.
We’ll need to connect the components using one or more electronic circuits and pro-
vide some power. Constructing a system involves both circuit design and the manipu-
lation of components in physical space (figure 1.4).

 Connecting wires directly to a microcontroller’s tiny pins would require solder and
a very steady hand. Not to mention that we’d end up with a lot of loose parts awk-
wardly floating around. To aid hardware developers, microcontrollers are often
mounted onto physical development boards (figure 1.5). Among other things, boards
make it easier to connect I/O devices to the microcontroller.

Figure 1.3 The automatic fan needs a brain. A popular option is a microcontroller, which combines
a processor, memory, and I/O capabilities in a single package.

7The anatomy of hardware projects

Figure 1.4 A rough schematic drawing showing how the fan’s inputs, outputs, and microcontroller
are connected in a system with power and circuitry. Don’t stress out if the symbols are new to you—
you’ll be learning about circuitry as we continue our journey.

Figure 1.5 Microcontroller-based development boards make it more convenient to connect input
and output devices.

8 CHAPTER 1 Bringing JavaScript and hardware together

A development board helps, but we’re still left with a number of loose wires and com-
ponents. To help corral this, hardware developers use a prototyping tool called a
breadboard (figure 1.6) to lay out circuits in physical space.

1.1.4 Logic and firmware

Our hardware design is moving along, but you might be wondering how the microcon-
troller knows what to do. There’s logic involved here, as shown in the following listing:
listening to the sensor, making decisions, sending instructions to turn the fan on or off.

initialize temperatureSensor
initialize outputFan
initialize fanThreshold to 30 (celsius temperature)

loop main
read temperatureSensor value into currentTemp
if currentTemp is greater than fanThreshold

if outputFan is off
turn outputFan on

Listing 1.1 Pseudo-code for temperature-triggered fan logic

Figure 1.6 A breadboard
provides an electrically
connected grid on which to
prototype electronic circuits.

9The anatomy of hardware projects

else if currentTemp is less than or equal to fanThreshold
if outputFan is on

turn outputFan off

The dominant language for programming microcontrollers has long been C (or C-like
derivatives). Writing C for microcontrollers tends to be platform-specific and can be quite
low-level. References to specific memory addresses and bitwise operations are common.

 The code is compiled to architecture-specific assembly code. To get the code into the
project, it is physically uploaded, or flashed, to the microcontroller’s program memory.

 This program memory is usually non-volatile memory—ROM, the kind of memory
that lets the microcontroller “remember” the program even if it’s powered off (in con-
trast with RAM, which only retains its contents if it’s powered). The space available for
programs is constrained, often on the order of a few tens of kilobytes, meaning pro-
grams that run on microcontrollers need to be carefully optimized.

 Once the program is flashed to the microcontroller, it functions as the microcon-
troller’s firmware—when powered, the microcontroller runs the program continuously
until it’s programmed with something different (or otherwise reset).

 For JavaScript developers accustomed to higher-level logic, this lower-level specific-
ity may feel off-putting. Fret not. This is where JavaScript can help us, allowing us to
write programs for microcontroller-based hardware without having to use C or tangling
ourselves up in the nitty-gritty of hexadecimal register addresses right off the bat.

 The process of getting program firmware onto microcontrollers has also become a
lot easier thanks both to advances in chip technology and the wide availability of
hobbyist-friendly development boards (figure 1.7).

Figure 1.7 Non-volatile program memory (EEPROM and Flash) and user-friendly boards have
made it easier to program microcontrollers with firmware.

10 CHAPTER 1 Bringing JavaScript and hardware together

EEPROM (electrically erasable programmable ROM), exemplified by the well-known
flash memory medium, is commonly used in microcontrollers. This kind of rewritable
memory makes it feasible to reprogram microcontrollers over and over again with dif-
ferent logic.

 Development boards, in addition to making I/O connections easier, also aid hard-
ware hackers by providing convenient interfaces for programming the board’s micro-
controller (USB is quite common). This alleviates the need for specialized hardware
programming devices. These days, programming microcontrollers is often as easy as
plugging in a USB cable and clicking a button in an IDE.

1.1.5 Enclosures and packaging

Our fan’s design is almost done. But we can take it to the next level by packaging the
auto-fan inside a nice enclosure—embedding our system inside of something, where its
wires and circuits will be hidden from view (figure 1.8). Ta-da!

1.1.6 Embedded systems

Though the term embedded system can sound a bit formal or forbidding, it’s not really
too complicated. A tiny computer combining processor, memory, and I/O forms the
brain. As you saw with our automatic fan, connecting the inputs, outputs, and micro-
computer together and giving them power creates an independent system. We say it’s
embedded because it’s often squirreled away inside of something—an enclosure, a teddy
bear, a washing machine’s control panel, an umbrella.

 Though an automatic fan, an umbrella that lights up when it rains, and a tweeting
teddy bear don’t seem immediately similar, they have more in common than you
might think. These examples, along with the majority of hardware projects and
devices that form the IoT, can be described as embedded systems.

 Now let’s see how JavaScript fits into the picture.

Figure 1.8 The completed, packaged,
automatic fan is an example of an
embedded system. Inputs and outputs
are processed by a microcontroller-based
microcomputer and supported by power
and circuitry. And the whole thing is
hidden inside a pretty fancy box,
because, why not?

11How JavaScript and hardware work together

1.2 How JavaScript and hardware work together
When combining JavaScript with embedded systems, we still build electronic circuits
in the same way as we would for other types of hardware projects. There are still inputs
and outputs, wires and components. However, instead of using assembly code or C to
define what the project’s microcontroller or processor does, we use JavaScript.

 There are several ways to do this, different methods for using JavaScript to provide
the logic for hardware projects. These methods are categorized based on where the
JavaScript logic itself executes: on a host computer separate from the embedded sys-
tem, on the embedded system’s microcontroller, or somewhere else entirely.

1.2.1 Host-client method

To get around the constraints of certain microcontrollers, the host-client method allows
you to execute JavaScript on a more powerful host computer. As the host runs the
code, it exchanges instructions and data with the embedded hardware, which behaves
like a client (figure 1.9).

 Many microcontrollers have limitations that impact their ability to run JavaScript.
Program memory is constrained, meaning that complex programs either won’t fit or

Figure 1.9 The host-client method of controlling hardware with JavaScript

12 CHAPTER 1 Bringing JavaScript and hardware together

have to be greatly optimized. Also, many inexpensive microcontrollers are built with 8-
or 16-bit architectures running at clock speeds that are low relative to, say, desktop
computers. Most wouldn’t be up to the task of running an operating system, ruling
out the ability to run a Node.js or other JavaScript runtime directly on the chip.

 Instead, the host-client method involves executing JavaScript logic on a host com-
puter, such as your laptop, which does have the brawn necessary to run a full OS. The
host machine is able to run Node.js and can make use of the worldwide JavaScript soft-
ware ecosystem (including npm and the web).

 The trick to getting this setup to work is to make the client hardware (such as the
microcontroller) and host system (your laptop) communicate with each other using a
mutually intelligible “language”—a common API (figure 1.10).

 To configure our automatic fan system to use this method, we’d first need to pre-
pare the embedded hardware by uploading special firmware to the microcontroller’s
program memory. Instead of a specific, single-purpose program for controlling the
fan, this firmware program makes the microcontroller able to communicate back and
forth with other sources that speak the same “language” (the API). That is, it turns the
microcontroller-based hardware into a client, all ears and ready to do the bidding of
the host computer (figure 1.11).

Figure 1.10 For host computer and client hardware to communicate
in this method, they both need to use a common API.

13How JavaScript and hardware work together

The hardware is now ready to communicate—the next step is to write software for the
fan, using the host computer. For the hardware and software to understand each
other, the host computer needs to bark out instructions in a language the microcon-
troller can comprehend. To make this happen, we can write code using a library or
framework that implements the common API (figure 1.12).

Figure 1.11 Specific firmware converts
the microcontroller into a client.

Figure 1.12 The host also
needs to communicate
using the common API.

14 CHAPTER 1 Bringing JavaScript and hardware together

The host is connected to the client hardware, either with a physical, cabled connec-
tion (often USB) or wirelessly (WiFi or Bluetooth).

 Then we execute the fan-controlling JavaScript on the host computer. The host
continuously communicates instructions for running the fan to the client. The client
can also send messages back to the host, such as data from the temperature sensor
(figure 1.13).

 Don’t panic, you won’t have to write low-level firmware protocol API software!
There are straightforward, open source options for firmware and Node.js frameworks
that implement those firmware protocols, so you can write your host-side JavaScript
logic with minimal fuss.

 The benefits of the host-client approach are that it’s easy to set up and it’s sup-
ported on many platforms. What’s more, it gives you access to the entire Node.js eco-
system, while avoiding the performance and memory constraints of inexpensive
microcontrollers. The downside is that the client hardware is helpless without the
host—it can only do its thing when the host computer is actively running the software.

 We’ll go wireless eventually, but we’ll be starting out with the simplest of host-client
options—USB tethering. That means that, for a while, your projects will be physically
attached to your computer.

Figure 1.13 As the host executes the JavaScript logic, instructions and data are continuously exchanged
between client and host, using a common API.

15How JavaScript and hardware work together

1.2.2 Embedded JavaScript

With embedded JavaScript, the JavaScript logic to control the project runs directly on the
hardware’s microcontroller.

 Many microcontrollers aren’t up to running JavaScript natively, but some are. As
you’d expect with the march of technology, inexpensive microcontrollers are getting
more advanced. It has become possible to run JavaScript, or an optimized variant of
JavaScript, directly on certain embedded processors.

 Each embedded-JavaScript platform is a combination of hardware and software
ingredients working in tandem. On the hardware side, development boards up to the
task of running code natively are based on more capable (but still cheap) chips.

 Most platforms also provide a suite of software tools to complement their hard-
ware. There may be a library or framework to use for writing compatible JavaScript
code and a CLI (command-line interface) or other method for preparing the code
and uploading it to the microcontroller.

 Espruino (www.espruino.com) is an example of a JavaScript-based embedded plat-
form. Espruino’s flavor of JavaScript combines optimized core JavaScript with an API
of hardware-relevant features. For example, you write code for the Espruino Pico
board in a web-based IDE and upload it to the board via USB (figure 1.14). To adapt
our automatic fan for an Espruino board, we’d need to write the logic using Espru-
ino’s API.

 Another example of embedded JavaScript is the Tessel 2 (https://tessel.io/), a
Node.js-based development platform. You can control and deploy code to your Tessel

Figure 1.14 The Espruino platform combines small hardware boards with an IDE development environment.

https://tessel.io/
http://www.espruino.com

16 CHAPTER 1 Bringing JavaScript and hardware together

using the tessel-cli npm module—wirelessly, if you like, because Tessel 2 has built-
in WiFi (figure 1.15).

 Being able to run JavaScript directly on embedded hardware can be power-
efficient and self-contained. Projects are independent systems that can run on their
own. Unlike the host-client setup, which requires firmware to translate from JavaScript
to machine code, there are (usually) fewer layers of abstraction between your
JavaScript and the hardware.

 This sounds great, and you might wonder why we wouldn’t use this approach
exclusively. There are a few downsides. For one, there are fewer hardware options at
the moment. Also, each platform has its own platform-specific techniques (software,
tools, methodology), which can muddy the waters when learning hardware basics.
Most also have certain limitations, either in JavaScript language feature support or in
the types of inputs and outputs supported. But it’s an inspiring method with a very
bright future.

1.2.3 Other hardware-JavaScript combinations

Aside from the host-client method and running embedded JavaScript, there are a few
other ways to combine JavaScript with hardware projects.

 Tiny, single-board computers (SBCs) blend the host and the client into one unit. Cloud-
based services make it possible to write JavaScript code online and deploy it wirelessly

Figure 1.15 The Tessel 2 is an open source platform that runs Node.js natively.

17How JavaScript and hardware work together

to hardware. And emerging, new, and experimental features in web browsers them-
selves may offer a portal into the world of hardware for millions of web developers.

RUNNING JAVASCRIPT ON TINY COMPUTERS (SBCS)
Single-board computers (SBCs) like the Raspberry Pi family and BeagleBone Black
can run full OS environments (typically Linux), and, by extension, Node.js. Instead of
an 8- or 16-bit microcontroller, SBCs have higher-performance, general-purpose pro-
cessors. But many SBCs also have I/O pins and capabilities built right into the same
board (figure 1.16).

 Using an SBC to control a hardware project blends aspects of both the host-client
method and running embedded JavaScript. The processor has to continuously run the
JavaScript logic for the project to work (as in the host-client model), but the whole pack-
age is contained on one board and feels more like an independent, embedded setup.

 Unlike microcontrollers that run embedded JavaScript logic, though, the processor on
an SBC doesn’t run a single-purpose program—it can simultaneously run other processes.

 These single-board computers are getting cheap. At this moment, there’s the $5
Raspberry Pi Zero (if you can get your hands on one—they’re notoriously out of stock)
and the WiFi-enabled Pi Zero W for just a tad more. There’s no longer such a large cost
differential between low-power microcontroller hardware and legitimate tiny comput-
ers with processors that rival tablets and smartphones.

Figure 1.16 Several single-board computers (SBCs): Intel Galileo, Gen 2 (top),
Raspberry Pi 2 Model B (bottom left), and Raspberry Pi Zero (bottom right)

18 CHAPTER 1 Bringing JavaScript and hardware together

Although running JavaScript on single-board computers with GPIO (general-purpose
I/O) support gives you lots of options on one piece of packaged hardware, it has a few
drawbacks. SBCs aren’t as low-power as many microcontroller-based boards—the Rasp-
berry Pi 2 Model B draws 4 watts. The SBCs we’ll look at do have GPIO support, but the
pin mappings and usage can be confusing and documentation sketchy or technical,
which can be challenging if you’re just learning about hardware hacking. You’ll also need
to be ready to face system administration hurdles, as the Linux distributions for SBCs,
especially when combined with Node.js, can require some debugging and patience.

CLOUD-BASED SERVICES AND THE BROWSER

This last catch-all category for hardware-JavaScript combinations is admittedly blurry.
Stuff’s changing. Fast. The current growth of commercial, cloud-based services for the
IoT has taken on the proverbial hockey-stick shape, and we’re just seeing the very van-
guard of advances that will let us directly interface with hardware from the browser itself.

 Cloud-based services try to ease the complexity of managing fleets of IoT devices at
scale. Many of these are targeted at the enterprise. Resin.io (figure 1.17), for example,
builds, packages, and deploys containerized application code to provisioned devices,
taking care of some of the security and automation headaches for you.

 And then there’s the browser itself, where many of the most cutting-edge hardware-
JavaScript combinations are just starting to emerge. A few browsers already allow you to

Figure 1.17 The Resin.io service helps to streamline application deployment to and management of Linux-
capable SBCs.

19Is JavaScript a good fit for hardware?

experiment with Web Bluetooth, an API that, while not currently on the standards track,
may be a harbinger of webby things to come. Web Bluetooth, as its name suggests, lets
you connect to and control Bluetooth Low Energy (BLE) hardware, using JavaScript,
from within the browser.

 Another open project coming out of Google, the Physical Web, proposes an
uncomplicated idea: give a small device the ability to broadcast a URL with Bluetooth
Low Energy (BLE). A beacon used like this could transform a bus stop sign into a real-
time arrivals tracker by broadcasting the URL to a web app with that information (fig-
ure 1.18). A simple concept, but flexible.

Of all the marriages between JavaScript and hardware, this variant—the deeper inte-
gration of the web with hardware—is the most volatile. It’s simultaneously intriguing
and unpredictable. It’s likely that the demand for more ways to build IoT products
with JavaScript will lead to head-spinning acceleration in this space.

1.3 Is JavaScript a good fit for hardware?
So maybe we can use JavaScript to hack on hardware in various ways, but should we? Is
there utility here or is it just a self-indulgent parlor trick?

 When the idea of using JavaScript with hardware first started surfacing a few years
ago, it wasn’t met with universal enthusiasm. It was seen by some as arbitrary and mis-
placed cleverness—a do we really have to use JavaScript everywhere? weariness. Others

Figure 1.18 In this example application of the Physical Web, a bus stop sign uses a BLE beacon to
broadcast a URL once per second (1); a human in the vicinity can scan for available beacons on their
device and select the one corresponding to the bus stop (2); the bus-rider’s device can now fetch the
URL broadcast by the beacon and display it in the browser (3).

20 CHAPTER 1 Bringing JavaScript and hardware together

argued that the performance of JavaScript on constrained hardware would never be
acceptable for anything but hobby use. A certain amount of old-guard crustiness sur-
faced, comment threads bogged down with passionate excoriations against anything
but C/C++, and naysayers warned that a higher-level language would obscure essential
low-level hardware nuances from newcomers.

 And yet, there were many who remained open-minded. Why use JavaScript when
C/C++ is good enough? had a curious echo of an earlier paradigm shift in hardware: Why
use C when assembly language is good enough?

 Whether it’s awesome or it sucks—and we’re not going to have that argument
now—JavaScript is the de facto programming language of the internet. People know
it, people use it, and it’s everywhere. JavaScript’s ubiquity gives it a unique potential to
serve as a gateway for millions of web developers who sure would love to get going on
the IoT.

 Certain aspects of JavaScript programming lend themselves well to hardware, espe-
cially its proficiency at event handling and asynchronous processes. JavaScript is also a
good tool for prototyping, a boon for fast iteration.

 It’s going to be fascinating to see where we end up. The JavaScript train is pulling
out of the hardware station, and a lot of folks are jumping on for the ride.

1.4 Putting together a hardware toolkit
You’ve had a whirlwind tour of the ingredients that make up embedded systems and
the methods of combining hardware with JavaScript. Let’s now get more specific
about the types of physical hardware, accessories, and tools needed to concoct these
types of projects. Then we’ll be ready to stock up a basic toolkit to get you started.

 Our projects will combine a development board with input and output hardware.
To build circuits and connect the systems together, you’ll need supporting electronic
components, as well as wires, power, and accessories. Throw in a few basic tools and
you’re ready to go.

1.4.1 Development boards

Development boards, also called prototyping boards or just boards, are physical development
platforms that combine a microcontroller or other processing component with useful
supporting features (figure 1.19). They’re the bread and butter of the hardware-hacking
lifestyle. Boards range in cost from just a few bucks to over $100 for high-end SBCs.

 Boards are centered around their brain, a combination of processor, memory, and
I/O. 8- or 16-bit microcontrollers are at the center of straightforward, entry-level
prototyping boards like (most) Arduinos (figure 1.20). Boards with more sophisti-
cated 32-bit microcontrollers may be able to run embedded JavaScript.

 Not all boards are microcontroller-based. More powerful SBCs are powered by
components you’d normally find on a computer’s motherboard. The architecture of
these boards is accordingly more complex, involving one or more miniaturized sys-
tems on a chip (SoCs) and additional interconnects like HDMI, audio, or Ethernet.

21Putting together a hardware toolkit

Although SBCs may have physical I/O interfaces on-board—Raspberry Pis do, for
instance—their general-purpose processors can as easily be put to use to power non-
hardware-centric projects.

1.4.2 Input and output components

Oh, my, there are so many sensors and gizmos you can connect to your boards to
enhance your projects! This is all sorts of fun, but it can also feel overwhelming at first.
Lots of technical terms get thrown around, and there are lots of numbers, values, and
specifications to absorb. You’ll learn to find your bearings as you go through this book.

 Most of the input and output components we’ll work with are simple in design and
ready to be plugged into a breadboard (that is, they are breadboard-friendly). Some are
packaged as breakout boards. In the same way that development boards make I/O easier

Figure 1.19 Some typical
microcontroller-based
development boards, clockwise
from top left: a Tiva C-Series
LaunchPad from Texas
Instruments, an Arduino Uno R3,
an Adafruit Trinket (5V model),
and a Particle Photon

Figure 1.20 This Arduino
Uno board is powered by the
AVR ATmega 328-P, a 8-bit
microcontroller.

22 CHAPTER 1 Bringing JavaScript and hardware together

by wiring a microcontroller’s tiny pins to connections that are more convenient,
breakout boards make it easier to work with single-purpose sensors or output devices
by wiring their pins to more convenient connections (figure 1.21).

1.4.3 Other electronic components

Cobbling together electronic circuits requires a collection of supporting electronic
components.

 Although it can feel like there are a lot of little pieces, the basic components like
resistors, capacitors, diodes, and transistors are inexpensive and can be bought in con-
venient starter kits (figure 1.22). We’ll take our time to get to know these parts—soon
they’ll feel like old pals.

Figure 1.21 An assortment of common input and output components

Figure 1.22 Common
components like these will
help you build functional
electronic circuits.

23Putting together a hardware toolkit

1.4.4 Power, wires, and accessories

One thing you’ll soon realize is that there are a whole lot of ways to power a project!
 Development boards can be powered over USB or by plugging them into a DC

adapter (wall wart). In many cases, other project components can take advantage of
that same power source (figure 1.23).

Batteries are useful for making projects wire-free, as well as for providing additional
power at different voltages. There are many kinds of battery snaps and holders for con-
necting batteries to projects.

 To connect stuff together, you’ll need wires. Jumper wires are precut wires. One par-
ticularly handy variety has pins on each end that slide easily into breadboards and the
I/O pins on many boards. Jumper wires are great for quick prototyping. Alternately,
hookup wire usually comes on a spool and can be cut to specific lengths as needed.

1.4.5 Tools

A pair of needle-nose pliers and a precision screwdriver or two are useful companions
when building projects. You’ll want a pair of wire strippers—which usually have built-in

Figure 1.23 A sampling of wires and accessories for power and circuitry

24 CHAPTER 1 Bringing JavaScript and hardware together

wire cutters—if you’re cutting or stripping hookup wire (precut jumper wires don’t
need to be cut or stripped). As you progress, you might want to get your hands on a
multimeter, a tool for measuring voltage, current, and resistance.

STORING YOUR ELECTRONIC COMPONENTS As you start building projects, you’ll
end up with a lot of small parts. You can find compartmentalized storage
boxes or drawer units at hardware and hobby stores. Boxes and cases
designed for fishing lures can make especially handy containers for electronic
parts because their compartments are small and their dividers fit snugly (fig-
ure 1.24).

It’s time to start our journey. Hacking with low-power embedded hardware can be fun,
creative, and exciting—and it’s increasingly useful in the commercial world. Web

Figure 1.24 This compact tackle box has space in the top for tools, and storage for
components in stacking, removable containers.

25Summary

developers (like you) already have skills that can be great stepping stones on your
path. You can use the ubiquitous language of the web, JavaScript, to get you going and
reduce roadside distractions.

 On our adventure, you’ll get a fundamental understanding of the few basic rela-
tionships that make electronic circuits work. Not mathy? Don’t fret, neither am I.
You’ll meet some helpful characters on the way: components and modules, different
kinds of boards and software. We’ll try out different combinations of things and learn
how to dust ourselves off and try again when we blow up an LED.

 The road goes on forever, the horizons are infinite. We won’t be able to visit it all,
but by the end of this book you’ll be prepared to assess and use future technologies
that haven’t yet dawned. By the time you’re midway through your travels, it’s likely the
road you set out on will have changed remarkably. But by relying on some constants as
your compass—hardware basics, the application of JavaScript, web technologies—
you’ll be able to find your way.

Summary
 Starting from scratch on an embedded-electronics hobby can feel intimidating,

but your existing JavaScript skills can give you a boost.
 Embedded systems combine a brain—a microcontroller or power-efficient pro-

cessor—with inputs and outputs in a small package.
 A microcontroller combines a processor, memory, and I/O in a single chip.

Logic defining the behavior of a microcontroller—the firmware—is typically
flashed to the MCU’s program memory.

 There are several ways JavaScript can control hardware: host-client, embedded
JavaScript, Node.js on SBCs, and even from within a browser.

 In a host-client setup, Node.js executes on a host computer, and instructions
and data are exchanged with the microcontroller using a messaging protocol
(API). The project can’t function without the host computer.

 Some constrained microcontrollers are optimized to run JavaScript (or a subset
of JavaScript) directly on the chip (embedded JavaScript).

 Single-board computers (SBCs) have more sophisticated processors and addi-
tional features, like USB ports or audio connections. These devices can usually
run full-fledged OSs and often behave like tiny computers. Many give you the
option of controlling I/O and behavior with higher-level languages like python,
C++, or JavaScript.

 Development boards are platforms combining a microcontroller (or other pro-
cessing component) with handy supporting features. They provide convenient
connections to I/O pins, allowing for quick prototyping of projects.

 Building projects involves a certain amount of electronic gear: development
boards, input and output components, basic electronic components like resis-
tors and diodes, power connections, and basic tools.

26

Embarking on
 hardware with Arduino

Arduino. It’s a company. It’s a project. It’s hardware. It’s a user community. Ardu-
ino is, well, it’s Arduino, a broad concept combining open source hardware and soft-
ware with the goal of making it easy (and inexpensive) for beginners to build
interactive devices.

 Like most development boards, Arduino boards have a microprocessor, I/O pins,
power connections, and other standard features. There are a dozen or so current

This chapter covers
 What Arduino is and the features of the Arduino Uno R3

development board

 Connecting components and power to the Arduino Uno

 Coding and uploading a sketch using the Arduino IDE to
make an LED blink

 Configuring an Arduino Uno in a host-client setup using
Firmata firmware and the Johnny-Five Node.js framework

 Using JavaScript to control an Arduino Uno and make an
LED blink

27

board models, including the Uno, shown in figure 2.1. Each Arduino board has stan-
dardized dimensions and layouts, such that modular shields can be used. Shields are
manufactured to fit the shape of an Arduino and provide an extra feature—like WiFi or
GPS—that isn’t provided by the board itself. (Breakout boards are another way to
extend the functionality of development boards, but shields are tailored to the Ardu-
ino’s form factor specifically.)

Figure 2.1 The Arduino Uno is
Arduino’s most popular board
and the one we’ll be exploring
over the next several chapters.

Arduino: what’s in a name?
Although all Arduino hardware (and software) is open source, meaning that you can
easily obtain the schematics and even construct your own boards without too much
effort, only “official” boards manufactured by the Arduino company are marketed
using the name “Arduino.”

The term Arduino-compatible board describes boards that are manufactured to the
same design specifications as official Arduino boards but are not necessarily pro-
duced by Arduino (the company).

Genuino is a brand name used for Arduino boards marketed outside of the United
States.

Several products, such as the pcDuino and the Netduino, use the -duino suffix to hint
at their Arduino-like qualities, and both have form factors that allow the use of Arduino-
compatible shields. The pcDuino allows you to program using the Arduino programming
language if you so desire (though it also supports higher-level languages).

28 CHAPTER 2 Embarking on hardware with Arduino

For this chapter, you’ll need the following:

 1 Arduino Uno Revision 3 (R3)
 1 USB cable (USB A to USB B)
 1 standard LED (any color)

Typically, programming the Arduino is accomplished by composing sketches—bits of
code—in Arduino’s cross-platform IDE (integrated development environment) and
uploading compiled sketches to the board’s microcontroller. Code inside of sketches
is written in the Arduino programming language, which is similar to C++, but with
extra hardware-controlling goodies thrown in. The IDE takes care of compiling
sketches and sending them to the board, usually over a USB connection.

 Arduino hardware is very popular, inexpensive, and well-tested. It’s straightforward
to configure an Arduino with the kind of firmware that will let you control it using the
Johnny-Five Node.js framework, so it makes an ideal jumping-off place for combining
JavaScript and hardware.

2.1 Getting to know the Arduino Uno
Of all of the Arduino board models, the Arduino Uno is the most popular. It’s been
put through its paces all over the world by hardware novices and shouldn’t pull any
big surprises on us. It’s reliable and ubiquitous.

 In chapter 1 you saw some of the common features of development boards, like
microcontrollers, I/O pins, and connections for power. Figure 2.2 shows these and the
other major features of an Arduino Uno board:

29Getting to know the Arduino Uno

 Microcontroller—The Uno’s Atmel ATmega328P microcontroller has an 8-bit pro-
cessor and 32 KB of flash memory to hold programs. Remember that a micro-
controller combines a processor, memory, and I/O processing capabilities into
a single package.

 Connection for programming and communication—The USB connector lets you con-
nect the Uno to your computer. You can upload programs to the Uno over this
connection, and you can also use USB to power the board.

 Digital I/O pins—Of the Uno’s I/O pins, 14 are digital pins, which can be used
either as inputs or outputs.

 Power pins—Several pins on the Uno give you access to a steady source of power
and ground. You can use these to provide power to your projects.

 Analog input pins—Six of the Uno’s pins are capable of processing analog input.
Digital pins can only read or produce two states (HIGH or LOW, more on that
shortly), but analog input pins use the Uno’s onboard analog-to-digital converter
(ADC) to convert analog input—different voltages—to values between 0
and 1,023. This is useful for obtaining data from sensors. Analog pins can also
be used as digital pins.

 DC (direct current) connector—If you’re not powering the board over USB, the
Uno’s DC barrel jack lets you plug the board into a DC power adapter or other
DC power source.

Figure 2.2 Major parts of an Arduino Uno

30 CHAPTER 2 Embarking on hardware with Arduino

Figure 2.3 The ON LED lights up
whenever the Uno has power.

 ON light—The little ON LED lights up whenever the board is powered.
 Reset button—The reset button restarts the microcontroller’s firmware and sets

the Uno’s pins back to default levels, which is roughly analogous to “rebooting”
the board.

2.1.1 Creating your first circuit with an Arduino Uno

In software tradition, Hello World programs are a common first exercise when learn-
ing a new language or system—usually these programs do something trivial like make
the words “Hello, world” print to the screen.

 Basic tricks with LEDs are the Hello World of hardware hacking. Making one light
up and blink has been the first foray into electronics for scores of hardware newbies.

 To light up an LED, you’ll need to construct a circuit. A circuit provides an unbro-
ken pathway from power to ground along which electrons can travel. Along this path,
the electrons might encounter and travel through components, causing interesting
things to happen, like lighting up an LED.

 Any gaps in the road from power to ground will ruin the whole thing—no elec-
trons are going to go anywhere. To light up the LED, you need to complete a circuit by
filling in the breaks between power and ground.

To build your first circuit, you’ll need
 1 Arduino Uno
 1 USB cable to connect the Uno to your computer’s USB port
 1 standard LED (any color)

The Arduino board needs to be powered to
work. There are several ways to provide power to
an Arduino board, but the easiest for right now
is to connect it to a USB port on your computer.
Go ahead and plug the Arduino into the USB
with the cable that was packaged with the board.
The ON LED shown in figure 2.3 should light up.

 When the board receives power, several of
the board’s power pins (figure 2.4) become
active. When active, they provide a voltage—that
is, a steady source of low-voltage power—and
you can connect components to them, should
you want to (and we do!).

 You’ll learn more about voltages and power
in chapter 3, but figure 2.4 provides a quick look
at some of the Uno’s basic power pins.

✔

31Getting to know the Arduino Uno

Figure 2.5 Standard LEDs have
an anode (positive terminal) and a
cathode (negative terminal).
Typically, the anode is longer than
the cathode, making identification
easier. Many LEDs also have a flat
spot on the negative (cathode) side.

CREATING THE LED CIRCUIT

LEDs like the one shown in figure 2.5 are light-emitting
diodes—a kind of diode that dissipates some energy as
light when current moves through them.

 Diodes are electronic components that only allow
current to flow through in one direction—a diode
won’t allow current to go through it backwards.
Because of this, it’s important to identify the posi-
tive (anode) and negative (cathode) terminals of any
kind of diode before trying to plug it in to anything.

 The ON light on the Uno, as seen in figure 2.5,
is an LED too—a surface-mount LED. Surface-mount
components are often seen in mass-produced,
machine-built boards. They have to be soldered,
and their itsy-bitsy dimensions make them tricky to
use in projects built by hand. Instead, we’ll stick
with larger, through-hole components (they have
leads that fit through the holes of pins, breadboards, or other circuit boards) like the
LED in figure 2.5.

UNPLUG! Always make sure to disconnect your development board from
power sources before connecting components. If you don’t, you risk causing
damage to the components or the board.

Figure 2.4 Some of the Arduino Uno’s power pins. These are powered whenever the board is powered.

32 CHAPTER 2 Embarking on hardware with Arduino

Now you’re ready to build the circuit to light up an LED. Before proceeding, make
sure you unplug your Arduino Uno from USB or any other power source. Connect the
LED to the Arduino:

1 Locate the cathode (negative terminal) of your LED. See figure 2.5 if you need
help finding it. Plug the cathode terminal of the LED into one of the pins
marked GND in the POWER section of the board, as in figure 2.6.

2 Locate the anode (positive terminal) of the LED and plug it into the pin
marked 3.3 V in the POWER section.

Once the LED is oriented and connected, connect the Uno to your computer with
USB so that it has power.

 Ta-da! You used the LED’s leads to connect power to ground, creating a circuit and
lighting up the LED (figure 2.6).

Figure 2.6 Lighting up an LED with
an Uno. Connecting power (3.3 V) to
ground (GND) with the LED completes
the circuit, removing any gaps and
allowing electrons to flow through.

Voltages and the Arduino Uno
The typical operating voltage for an Arduino Uno is 5 V, and the projects you’ll build
in the next several chapters will primarily involve circuits based on this voltage. That
may make you curious as to why the LED in this example is connected to 3.3 V power.
Plugging this kind of LED straight into the 5 V Arduino power pins gives it a little too
much juice—it’s not super risky, but you might burn your LED out. You’ll learn more
of the hows and whys of this kind of stuff as we go, and I’ll stop using loose terms
like juice.

In future projects, we’ll use resistors, electronic components that resist the flow of
electricity, to bring the current in the circuit to a level that’s less hard on LEDs and
other components. For now, we’ll just use 3.3 V, which, at the Uno’s current, isn’t as
rough on your LED.

33Working with the Arduino workflow

By connecting power from the 3.3 V pin to ground through an LED, you completed a
circuit (figure 2.7). Power is able to flow through this circuit and, as a nice side effect,
it makes your LED glow.

You could have constructed the basic LED circuit with any low-voltage power source,
like batteries. There’s no logic involved, so you didn’t technically need a development
board (though the Uno’s steady power source is handy). But things get more interest-
ing when you program the Arduino to do different things—let’s try that now.

2.2 Working with the Arduino workflow
Before we bring JavaScript into the Arduino mix, let’s make your LED blink using the
typical Arduino workflow. It’s helpful to see how the Arduino works in its stock form
before we heap a layer of JavaScript abstraction atop it.

2.2.1 Arduino Uno’s digital pins

No Hello World LED situation is complete without making it blink.
 But you can’t make the LED blink using the pins it was connected to in the previ-

ous exercise. The 3.3 V power pin will always be powered whenever the board itself is
powered—the LED will always be lit because the circuit will always be complete.

Having said that, it’s never a great idea to power an LED without a current-limiting
resistor for long periods of time, so don’t leave your Uno-LED arrangement plugged
in for longer than a few minutes or so (you may notice your LED getting warm to the
touch the longer it’s lit).

Figure 2.7 A diagram of the basic LED circuit. In the conventional way of representing circuits, power
flows from positive to negative. Power flows into the anode (positive) end of the LED and out of the
cathode (negative) end.

34 CHAPTER 2 Embarking on hardware with Arduino

What we need to do instead is control an LED that’s connected to one of the Ardu-
ino’s programmable digital pins—pins 0 through 13 on the Uno (figure 2.8).

 A configured digital pin can have one of two states: HIGH or LOW. This binary
logic may feel familiar to you as a programmer—the true/false, 1/0, yep/nope duality
is a seminal theme in software development and digital architecture in general.

 On a hardware level, HIGH and LOW logic corresponds to voltages. When a digital
pin is configured as an output, a HIGH state means the pin is providing voltage, so
there’s power applied to that pin (in Uno’s case, 5 V or near to it)—it is, in effect, on.
LOW means that the voltage on the pin is at or near 0 V—the pin is effectively off.

 Programming a digital pin configured as an output to cycle between HIGH and
LOW is the ticket to making a connected LED blink.

DIGITAL INPUTS When a digital pin is configured as an input pin, the HIGH
and LOW states are also at play, but in a slightly more nuanced way. More
about that when we talk about digital sensors in a later chapter.

2.2.2 Sketches and the Arduino IDE

To configure and program the digital pins on the Uno, you’ll need to write a sketch
and upload it to the board using the Arduino IDE.

 Head over to the Arduino software page (www.arduino.cc/en/Main/Software)
and download the latest version of the Arduino IDE for your OS platform. It’s free and
it supports Windows, Mac OS, and Linux. After installing the software, launch the IDE.
You’ll see something similar to figure 2.9.

Figure 2.8 Arduino Uno’s digital pins

http://www.arduino.cc/en/Main/Software

35Working with the Arduino workflow

THE ARDUINO PROGRAMMING LANGUAGE

Within the Arduino IDE, you can write sketches for your Arduino Uno (or other Arduino-
compatible boards) using the Arduino programming language. Let’s look at a few exam-
ple snippets of code, which look quite different from the JavaScript we’ll use later on.

 To get a digital pin ready to support an LED, you set it up in an Arduino sketch as
an output pin—the LED is, after all, an output component. Configuring a digital pin
as an output pin looks like the following in the Arduino programming language.

pinMode(12, OUTPUT);

Listing 2.1 Example of configuring a digital output pin

Figure 2.9 The first time you
launch the Arduino IDE, it will
create a new empty sketch for you.

What’s a sketch?
Sketch is simply a fancy word for code or program. Arduino keeps your sketches in a
so-called sketchbook (basically a folder). The term sketch can be traced back to the
processing programming language and its IDE, from which the Arduino’s IDE is
descended.

Hints of Arduino’s lineage can also be seen in some of the Arduino programming lan-
guage’s library of hardware-supporting functions, which are derived from the wiring
development platform, itself an offshoot of processing.

Configures (digital)
pin 12 as an output

36 CHAPTER 2 Embarking on hardware with Arduino

To program the output pin, you set it HIGH or LOW by using the digitalWrite function
that’s built into the Arduino programming language, as shown in the next listing.

digitalWrite(12, HIGH);
digitalWrite(12, LOW);

2.2.3 Connecting the LED to a digital pin

It’s ostensibly possible to take the LED from the last exercise and connect its anode to
pin 12 on the Uno and its cathode to a nearby GND pin. Then, setting pin 12 to HIGH
from a sketch would provide voltage and turn the LED on, whereas setting it to LOW
would turn the LED off.

 But you shouldn’t do this. Remember, digital pins’ output voltage when set to
HIGH is 5 V. We’re not using resistors to manage voltage (yet), and the pin’s 5 V out-
put could overwhelm the LED and potentially burn it out (figure 2.10).

We’re in luck, though. Arduino Unos have a built-in LED on pin 13 (figure 2.11). Ever
so convenient! Whenever digital pin 13 is set to HIGH, the onboard LED will light up.
For this experiment, you don’t have to wire anything up—instead, let’s concentrate on
the programming part.

Listing 2.2 Setting a digital output pin

Setting a pin to HIGH applies
voltage to the pin (turns it “on”)

Setting a pin to LOW sets the
voltage low (turns it “off”)

Figure 2.10 It's hard on your LEDs
to plug them directly into a 5V Uno
digital I/O pin.

37Working with the Arduino workflow

2.2.4 Programming the LED to blink

It’s time to pull this all together into a sketch to control the Uno.
 An Arduino sketch is divided into two parts:

 setup—This is where you can—I bet you’ve already guessed it—put setup code for
your sketch. This code executes once at the beginning of the program’s execution.

To set up your LED blinking sketch, the setup will need to configure the pin
connected to the LED (13). Even though you won’t physically connect an external
component to this pin, you still need to configure it as a digital OUTPUT pin.

 loop—After setup completes, the code in the loop will get executed over and
over and over again until the Arduino loses power or is reset.

This is the part of the sketch that needs to alternately set pin 13 HIGH (5 V
voltage applied) and LOW (no voltage) so that the LED will blink.

In the Arduino IDE, create a new sketch to hold the code to blink the onboard LED, as
shown in the following listing.

void setup() {
pinMode(13, OUTPUT);

}
void loop() {

digitalWrite(13, HIGH);
delay(500);
digitalWrite(13, LOW);
delay(500);

}

Listing 2.3 A complete sketch to blink an LED

Figure 2.11 The tiny surface-mount LED next to pin
13 lights up (orange) whenever pin 13 is set to HIGH.

Configures pin 13 (with
built-in LED) as an OUTPUT

Sets pin 13 HIGH to
turn on the LED

Waits for
500 ms
(half a

second)

Sets pin 13 LOW to
turn off the LED

38 CHAPTER 2 Embarking on hardware with Arduino

If the Arduino programming language looks like C/C++ to you, you’re right, it basi-
cally is, minus a few types and features. The Arduino language also provides a built-in
library of hardware-specific functions, including pinMode and digitalWrite.

EXAMPLE SKETCHES If you don’t feel like typing the blinking sketch into the
Arduino IDE, or you just want to see more example sketches, you can find a
similar blink sketch and many more under File > Examples in the IDE.

UPLOADING THE BLINK SKETCH

Go ahead and connect your Arduino Uno to a USB port on your computer. From the
IDE, you can click on the Verify button in the sketch window (figure 2.12) to make
sure your code is error-free, or go straight to the Upload button, which will verify,
compile, and upload your sketch to the board’s microcontroller. If you haven’t saved
the sketch yet, you will be prompted to do so when you upload it.

If everything went right, you should see the onboard LED blink every 500 ms (figure 2.13).
 Though the Arduino programming language is a lower-level syntax than Java-

Script, it’s still a high-level language. The contents of your sketch are first compiled
into machine code that the microcontroller can execute natively. That compiled code
is then written to the non-volatile program memory on the microcontroller. The
Uno’s microcontroller stores the program in flash memory, the same technology com-
monly used in memory cards and solid-state drives.

 Just like photos don’t disappear from a memory card when you remove the card
from a digital camera, the sketch will remain in place on the microcontroller even if
the microcontroller loses power. Compare this to volatile memory (such as RAM),
which loses its contents if not powered. Your successfully uploaded sketch will remain
until replaced by something else.

Figure 2.12 Sketch window inside the Arduino IDE

39Controlling the Arduino with JavaScript

A program stored indefinitely like this in non-volatile memory is called firmware. Each
time you upload a new sketch to an Arduino, you’re replacing its firmware. The firm-
ware won’t “go away” after you unplug the board from its USB tether. If you plug the
board back into the USB, or plug it into another power source, the LED will start blink-
ing again because the firmware is still intact.

Now you’ve seen the basic lay of the land of the Arduino Uno and learned the basics
of writing and uploading sketches using the IDE. It’s time to get to the JavaScript!

2.3 Controlling the Arduino with JavaScript
The workflow for working with an Arduino using JavaScript and a host-client configu-
ration is different from the default Arduino workflow. Instead of authoring and

Figure 2.13 The uploaded sketch
should make the onboard LED blink
every 500 ms.

Resetting the Arduino board
When an Arduino regains power after a disconnection, it will reset, bringing its pins
back to the default behavior and restarting the microcontroller’s firmware. The execution
of the firmware in program memory will start from the beginning. From the perspective
of an Arduino sketch, that means the setup code will run again. Resetting can be a
sanity-saving tactic if you have something running amok on a development board.

You don’t have to unplug the Arduino Uno board from power to reset it. You can use
the handy onboard RESET button—press and hold it for a moment—to accomplish
the same thing.

40 CHAPTER 2 Embarking on hardware with Arduino

repeatedly uploading sketches using the Arduino IDE, you’ll initially upload a single
sketch that will stay in place as the board’s firmware.

 After that, you won’t use the Arduino IDE anymore—instead, you’ll write Java-
Script code using your text editor of choice and execute it with node from within a
terminal.

 These are the steps for setting up a host-client configuration with the Uno:

1 Upload a sketch containing compatible firmware to the board.
2 Install the Johnny-Five Node.js framework on your computer.

2.3.1 Configuring the Arduino as a client

Recall from chapter 1 that the host-client method involves communicating via a com-
mon API between the host and the client. The Node.js framework you’ll be using in
the next several chapters—Johnny-Five—communicates (by default) with boards
using a protocol called Firmata.

 Firmata allows hosts (computers) and clients (microcontrollers) to exchange mes-
sages back and forth in a format based on MIDI messaging. The Firmata protocol spec-
ifies what those command and data messages should look like. The Arduino
implementation of Firmata provides the actual firmware you can put on your board to
make it “speak” Firmata. It takes the form of an Arduino sketch that you upload to the
board (figure 2.14).

 Good news: Firmata is popular enough that the Firmata sketches you need come
packaged with the Arduino IDE.

Figure 2.14 The first step to configuring the host-client setup with the Uno is to upload
a Firmata sketch that will allow the board to communicate using the Firmata protocol.

41Controlling the Arduino with JavaScript

UPLOADING FIRMATA TO THE UNO

Follow these steps to upload the right flavor of Firmata to your Uno so it can be used
as a client in a host-client setup:

1 Connect your Arduino Uno to USB.
2 Launch the Arduino IDE.
3 Access the File > Examples > Firmata menu and select StandardFirmataPlus

from the list (figure 2.15).
4 Send the sketch to the Uno by clicking the Upload icon.

Figure 2.15 Selecting StandardFirmataPlus from available example sketches

42 CHAPTER 2 Embarking on hardware with Arduino

When you made the blinking LED using the Arduino IDE, you uploaded a sketch that
became the board’s firmware. This firmware was single-purpose—it blinked an LED.

 In contrast, the Firmata firmware doesn’t have a specific purpose. Instead, it’s a
program that allows the board to communicate with the Node.js framework you’re
about to install.

 You’re done with the Arduino IDE for the time being—you can quit the program
after uploading the Firmata sketch.

2.3.2 Installing the Johnny-Five Node.js framework

Johnny-Five is an open source Node.js framework created by Bocoup for controlling
development boards in a host-client configuration (http://johnny-five.io). Johnny-Five
has a special emphasis on robotics, but you can do a lot of different things with the soft-
ware. It’s been around longer than most JavaScript frameworks for hardware and has a
clear API and a little bit of maturity—both ideal things for hardware beginners.

 To create your first Johnny-Five project, create a directory for it and install the
framework npm package, as the following listing shows.

$ mkdir hello-world
$ cd hello-world
$ npm install johnny-five

Listing 2.4 First Johnny-Five project preparation

Why so many Firmatas?
The Examples > Firmata menu in the Arduino IDE provides quite a banquet of Firmata
sketch options.

This is somewhat analogous to optional feature packages for new vehicles. Custom-
ers can preorder a car or truck with a certain combination of options—a sunroof, pre-
mium sound, floor mats—but you can’t combine every option in a single vehicle.
There’s not room for three kinds of floor mats, and only a few consumers are inter-
ested in the most decadent performance suspension.

Likewise, different Firmata sketches implement different assortments of goodies, tai-
lored for different Arduino hardware or use cases. StandardFirmataEthernet adds
support for Ethernet shields. AnalogFirmata attempts to maximize the number of ana-
log inputs that can communicate at once. StandardFirmataPlus is a nice balance of
all the most popular stuff, and it’s what we’ll use.

Installing Johnny-Five: getting help
Usually Johnny-Five installs happily with just an npm install command, but the
installation process does compile some native extensions, which can occasionally
cause woe.

http://johnny-five.io

43Controlling the Arduino with JavaScript

2.3.3 Hello World blinking LED with Johnny-Five

You’ve seen what a blinking-LED script looks like in the Arduino programming lan-
guage. Now it’s time to write a JavaScript version of the Hello World blinking LED to
get to know Johnny-Five.

 Inside the hello-world directory where you installed Johnny-Five, create a file
called hello.js, and open it in the text editor of your choice. Inside this JavaScript file,
you can write the code to control your Arduino Uno, shown in the next listing.

const five = require('johnny-five');
const board = new five.Board();

board.on('ready', () => {
const led = new five.Led(13);
led.blink(500);

});

Save the file. Plug your Uno into a USB port on your computer if it’s not already con-
nected. In a terminal, cd to the project directory and run this command:

node hello.js

You’ll see some output like the following in your terminal.

$ node hello.js
1457806454739 Device(s) /dev/cu.usbmodem1421
1457806454752 Connected /dev/cu.usbmodem1421
1457806458536 Repl Initialized

Built-in LED blinking? That’s it! You’ve just controlled an Arduino Uno with Java-
Script.

Listing 2.5 hello.js

Listing 2.6 Running hello.js in a terminal

If you’re using Windows and run into trouble, try executing this command:

npm install johnny-five --msvs_version=2012

Here are a couple of other resources, should you run into trouble:

 The troubleshooting section in Johnny-Five’s wiki: http://mng.bz/nW62
 NodeBots Community Forum: http://forums.nodebots.io

Requires the johnny-five package Initializes a new Board
object representing your
Uno

Waits for the
board to fire

the ready
event

Instantiates an LED object
on pin 13 (Uno’s built-in LED
pin)

Makes the
LED blink

every 500 ms

http://mng.bz/nW62
http://forums.nodebots.io

44 CHAPTER 2 Embarking on hardware with Arduino

2.3.4 Firmata, Johnny-Five, and the host-client method

While the script is running, you’ll see the built-in TX (transmit) and RX (receive)
LEDs—identified in figure 2.16—flash. This is because the host and the client are
exchanging serial messages using the Firmata protocol.

 To stop the execution of your Johnny-Five hello.js program, type Ctrl-C twice in the
terminal window. Take a look at your Uno. Depending on the moment you quit the
program, the pin-13 LED may be off, or it may steadily be on. In either case, it won’t be
blinking anymore.

 That’s because the program on the host computer has stopped executing, and as a
result it has stopped sending messages to the Firmata firmware. The board is left in a
state representing the last successfully communicated messages from the program.

 Now that the hello.js script is no longer running, press and hold the Uno’s RESET
button for a moment. The Uno’s pin-13 LED will be off and it will stay off.

 Recall that, when reset, the Arduino Uno resets its pins and restarts the firmware
program. Earlier, when your firmware was the blinking LED sketch uploaded from the
Arduino IDE, the blinking would resume. Now the firmware is Firmata, which doesn’t
make LEDs blink itself, but instead waits for instructions about what to do. The LED on

Figure 2.16 When the host script is
executing, the Uno’s TX and RX
(transmit and receive) LEDs will blink
as communication is exchanged
between the host and the client.

45Controlling the Arduino with JavaScript

pin 13 is turned off by the hardware reset of pins, and nothing has told it to start blink-
ing again.

 In the host-client method, the client doesn’t do anything on its own—it has to be
continually directed by the host. The Uno client is like a puppet in this setup. It needs
constant input from a puppeteer—our host-executed JavaScript.

2.3.5 Structuring scripts with Johnny-Five

The structure of sketches written in the Arduino programming language with the
Arduino IDE differs from the structure of Johnny-Five scripts.

 In the Arduino programming language, you split your code into setup and loop.
The code within loop gets executed perpetually until the board is reset or the firm-
ware is replaced. To make an LED blink forever, you wrote the following code.

void loop() {
digitalWrite(13, HIGH);
delay(500);
digitalWrite(13, LOW);
delay(500);

}

Each time the code within the loop is executed, it sets pin 13 HIGH, waits 500 ms, sets it
LOW, and waits another 500 ms. Then the loop executes again (and again and again
and again…). The alternating HIGH and LOW voltages provided to pin 13 with dura-
tions of 500 ms makes the LED appear to blink.

 However, with Johnny-Five you wrote the following.

board.on('ready', () => {
const led = new five.Led(13);
led.blink(500);

});

Boards only fire the ready event once (don’t worry, though; if you bind to the ready
event after it fires, it’ll still invoke the event handler function). That means the func-
tion you pass as the handler will also only get executed once—it’s not a loop.

 Another difference is that Johnny-Five provides a higher-level API. Instead of con-
figuring a pin as a generic digital output, with Johnny-Five you initialize an object rep-
resenting an LED component, specifically. This gives you access to some handy
methods and properties on the Led class, which include the methods blink, on, off,
and toggle, along with more interesting ones you’ll meet later.

 Instead of manipulating the LED by setting a pin to HIGH or LOW and invoking
delay between the two, you can invoke the blink method with an argument that

Listing 2.7 LED blinking with the Arduino programming language

Listing 2.8 LED blinking with Johnny-Five

46 CHAPTER 2 Embarking on hardware with Arduino

defines the blink period in milliseconds. Under the covers, Johnny-Five uses a set-
Interval to handle the timing on blinks. An LED will blink until you tell it to stop.

ADAPTING THE BLINKING LED
But how do we tell the LED to stop blinking? This is where JavaScript metaphors start
having a role and give you some great options for interacting with your device. In
Johnny-Five, the Led’s blink method takes an optional second argument, a callback
function. Every time the LED blinks on or off, the callback will be invoked.

const five = require('johnny-five');
const board = new five.Board();

board.on('ready', () => {
const led = new five.Led(13);
var blinkCount = 0;
const blinkMax = 10;

led.blink(500, () => {
blinkCount++;
console.log(`I have changed state ${blinkCount} times`);
if (blinkCount >= blinkMax) {

console.log('I shall stop blinking now');
led.stop();

}
});

});

Go ahead and try out hello.js again:

$ node hello.js

You should see output similar to the following listing.

1457808024073 Device(s) /dev/cu.usbmodem1421
1457808024079 Connected /dev/cu.usbmodem1421
1457808027867 Repl Initialized
>> I have changed state 1 times
I have changed state 2 times
I have changed state 3 times
I have changed state 4 times
I have changed state 5 times
I have changed state 6 times
I have changed state 7 times
I have changed state 8 times
I have changed state 9 times
I have changed state 10 times
I shall stop blinking now

Listing 2.9 Using LED callbacks in hello.js

Listing 2.10 Running the altered hello.js script

Keeps track of how
many times the LED
has blinked on or off

Configures how
many times the

LED should
blink in total

This callback function gets invoked
each time the LED turns on or off.

Once blinkCount
has hit blinkMax,
invokes the stop

method

47Summary

This example stops the LED from blinking after a particular number of blinks, but you
could do various other things by using a callback on Led.blink. For example, you
could change the blink frequency, or simply keep track of the total number of blinks
over a long period of time.

 When you look at Johnny-Five code, it may feel more natural and familiar than the
lower-level Arduino sketch code. As a software person, hardware—specifically elec-
tronic circuitry—may be a completely new world for you. But there’s some basic stuff
you need to know. That’s where we’ll go next.

Summary
 Arduino boards are a common jumping-off point for learning about hardware

because they’re straightforward, widespread, and well-tested.
 In a typical Arduino workflow, sketches are written in Arduino’s cross-platform

IDE and uploaded, as firmware, to boards.
 Sketches are written in the Arduino programming language, which is similar to

C or C++. Arduino sketches are composed of a setup section and a loop.
 To control an Arduino board with JavaScript in a host-client setup, the board’s

microcontroller needs to run firmware that can communicate using the same
protocol as the host. Firmata is one such protocol, and it can be uploaded to
the board as a sketch.

 The Johnny-Five Node.js framework communicates using the Firmata protocol,
but it also exposes a higher-level API. Led is an example of a Johnny-Five class
for controlling a hardware component.

 Scripts written in Johnny-Five can be executed from the command line, using
node. The code on the host must execute and communicate constantly with the
client board—the client can’t run independently.

 In contrast to the setup and loop sections in an Arduino sketch, the structure
of Johnny-Five scripts is event-driven, a familiar design pattern for JavaScript
programmers.

48

How to build circuits

For this chapter, you’ll need

 1 Arduino Uno

 4 standard LEDs, red

 4 220 � resistors

This chapter covers
 Using Ohm’s law to manipulate voltage, current, and

resistance in a circuit

 Prototyping basic circuits on breadboards

 The difference between parallel and series circuits

 Nitty-gritty details about LEDs and how to wire them
up in several useful configurations

 Identifying and selecting the right resistor for different
circuits and components

 Calculating the resistance in a series circuit and a
parallel circuit

49Voltage, current, and resistance

 4 560 � resistors

 1 100 � resistor

 1 push-button switch

 1 9 V battery

 1 9 V battery snap

 5 red and two black jumper wires

 1 half-size breadboard

Designing and building circuits may be completely new to you, and may seem intimi-
dating. The good news is that there are just a handful of core concepts to wrap your
head around. Once you understand the interplay of voltage, current, and resistance—
as formalized in Ohm’s law—you’re well on your way to being able to understand
basic circuits.

 There are a couple of metaphors traditionally used to illustrate voltage, current,
and resistance. The most common analogy is a hydraulic (water) system involving
tanks and pipes. Effective, but not always memorable. Let’s try a different adventure.

3.1 Voltage, current, and resistance
High in the mountains, deep in the forest of some place that doesn’t exist, a tribe of
gnomes found themselves inexplicably in possession of an infinite supply of jellyfish.

50 CHAPTER 3 How to build circuits

The gnomes, being ornery and mischievous, struck out to find a humorous use for the
otherwise-inert creatures. They found great fun in dropping jellyfish over cliffs, watch-
ing them splash into the lake below or bounce off the roofs of local villages.

 The nearby townspeople were initially inconvenienced but soon recognized that
the plummeting invertebrates carried energy and could be a free source of power for
their cookie factories—but only if the onslaught could be harnessed safely. So they
observed, and, over time, came to understand and manipulate the core factors of elec-
trical circuits: voltage, current, and resistance.

 Townspeople noticed quickly, for example, that the higher and steeper the cliff,
the more energy the tossed jellyfish have when they reach the lake on the valley floor.
Lesser drop-offs don’t provide as much potential energy for hijinks when the jellyfish
splash down (figure 3.1).

Voltage is a measurement of the difference of potential energy between two points. It’s
something like pressure or tension or gravitational force, as electricity is always itching
to move from higher voltage to lower voltage. Voltage, measured in volts, is potential
energy, but voltage alone, without moving charged electrons (jellyfish), can’t wreak
any havoc (figure 3.2).

Figure 3.1 Higher cliffs provide more “voltage,” that is, electrical potential. Voltage is like electrical
“pressure,” pushing the charges (jellyfish) from high potential energy toward a location of lower potential.

51Voltage, current, and resistance

For something interesting to happen, jellyfish need to get actively chucked over the
edge of the cliff, a task that the gnomes are more than happy to perform.

 The townspeople learned to measure jellyfish current by staking out a spot on the
cliff and precisely counting the number of jellyfish that passed by, over a precise
period of time (figure 3.3). Current, the flow of electric charge, is measured in
amperes, often abbreviated as amps.

 The townspeople needed to find a way to manage the current of jellyfish so that it
wouldn’t overwhelm the delicate cookie presses and ovens. This is the lynchpin of

Figure 3.2 Voltage
is potential energy.

Figure 3.3 Current, the flow of electricity, can be measured by counting how many charges (jellyfish)
pass a specific spot on a cliff during a defined period of time.

52 CHAPTER 3 How to build circuits

jellyfish circuit control: resistance. Resistance is how much a material is able to resist
electrical flow. It’s measured in ohms.

 They engineered jellyfish-channeling systems into the cliff faces (figure 3.4), restrict-
ing the jellyfish flow to a more reasonable level. For circuits near the higher cliffs (more
voltage), these systems had to be more robust because of the immense jellyfish-falling
pressure from above.

 A summary of the townspeople’s discoveries is shown in table 3.1.

Table 3.1 Voltage, current, and resistance

Factor What it means Abbreviated as Measured in units

Voltage The difference of electrical potential between two
points, akin to electrical “pressure.” It’s what
pushes electrical charges through a circuit.

V Volts

Current Electrical flow: how many electrical charges are
passing a single point during a defined period of
time.

I Amperes (amps)

Resistance A measurement of a material’s ability to resist
electrical flow.

R Ohms (denoted by
the � symbol)

Figure 3.4 Townspeople add resistance to the circuit by channeling falling jellyfish through a series of
tubes. Increasing resistance lowers the current.

53Voltage, current, and resistance

In the end, the townspeople perfected the circuit and the jellyfish helped to make
some of the best cookies around.

 There’s a power source—troops of gnomes—tossing jellyfish over a cliff. The
higher the cliff, the more voltage (potential energy) is supplied to the circuit. The cur-
rent (flow) of jellyfish heads toward the factory machinery.

 To reduce the jellyfish current to manageable levels, channeling systems and pipes
add resistance.

 Once the jellyfish have given power to the cookie-making machinery and reached the
floor of the factory, they reach the point of lowest potential in the circuit. Jet-pack-wearing
gnomes act like a pump of sorts, hoisting the weary jellyfish back up the cliff where they
can be thrown over again. And again and again… (figure 3.5).

Voltage, current, and resistance are vital concepts of basic circuitry. The next step is to
understand how these factors relate to each other, and how they apply to real-world
circuits.

3.1.1 Ohm’s law

Voltage, current, and resistance are related to each other in consistent ways. Each of
the three factors is like a lever: tweak one and you’ll affect the others. These interplays
became so central to the town’s populace that the factories started producing cookies
that illustrated the relationships (figure 3.6).

Figure 3.5 A complete gnome-and-jellyfish “circuit”

54 CHAPTER 3 How to build circuits

The bearer of the cookie can bite off the factor they wish to determine—then see how
it can be derived from the other two factors (figure 3.7).

 Georg Ohm figured out these key relationships between voltage, resistance, and
current back in the 1820s, well before the clever cookie-townspeople, which is why
Ohm’s law bears his name. If you prefer your math in non-cookie form, these are the
relevant equations:

V = I x R (voltage equals current times resistance)
I = V / R (current equals voltage divided by resistance)
R = V / I (resistance equals voltage divided by current)

“OK,” you might be thinking, “but how do I apply this in the real world?”

Figure 3.6 The townspeople’s new signature cookie shows the relationship
between voltage (V), current (I), and resistance (R).

Figure 3.7 By biting off the edge of the cookie imprinted with the factor the cookie-eater wants to figure out,
they can quickly see the equation they need to solve. For example, if they want to determine resistance (R), they
could bite that off and see that R = voltage (V) divided by current (I).

55Voltage, current, and resistance

APPLYING OHM’S LAW TO REAL-WORLD CIRCUITS

Designing and building basic circuits starts with the right balance of the key factors:
voltage, current, and resistance.

 Table 3.2 outlines a few common examples of how to adjust voltage, current, and
resistance in basic circuits. The examples aren’t exhaustive (for example, there are
additional ways to adjust voltage in a circuit) but they highlight the kinds of things
we’ll be doing in the short term to make our circuits work correctly.

One of the most common calculation needs that comes up in hobby electronics hack-
ing is “given a supply voltage, what resistor do I need to use to make sure my component
is supplied with a desired current ” (figure 3.8)?

 Voltage is often defined by the power supply for the project—batteries, USB power,
DC adapter—and you know you want to provide a particular current to a component
in the circuit. Voltage and current are, then, defined, which means you need to solve
for R, resistance.

Table 3.2 Adjusting voltage, current, and resistance in hobby electronics

Factor Relationship
Example of common way to

increase
Example of common way to

decrease

Voltage V = IR Use a power supply with a higher
voltage.

Use a power supply with a lower
voltage.

Current I = V / R Remove resistance by removing
resistors or using resistors with
lower resistance. Current can also
be increased by raising the voltage
of the power supply.

Add resistance by adding resistors
or using resistors with higher resis-
tance. Current can also be
decreased by lowering the voltage
of the power supply.

Resistance R = V / I Add resistors or use resistors with
higher resistance.

Remove resistors or use resistors
with lower resistance.

Figure 3.8 A common real-world Ohm’s law problem: what resistor value is needed
to provide an LED with 20 mA of current in a circuit with a 6 V supply voltage?

56 CHAPTER 3 How to build circuits

Say you know that your supply voltage is going to be 6 V, and you have a component
that needs 20 mA (.02 A, or 20 thousandths of an amp) of current (figure 3.10). Solv-
ing for R (resistance in ohms) means dividing V (voltage in volts) by I (current in
amps) because R = V / I:

R = 6 V / .02 A
so
R = 300 �

WATCH YOUR UNITS! Make sure to keep your units consistent when using
Ohm’s law equations. Current should always be measured in amps (A), volt-
age in volts (V), and resistance in ohms (�). Volts and ohms tend to be
straightforward, but when you’re dealing with current in hobby-electronics
ranges—often tens of milliamps—don’t forget to express those values in
amps or you’ll get the wrong answer:

300 (�) = 6 (V) / .02 (A)

but

300 (�) � 6 (V) / 20 (mA)

OK! Almost ready. But before we start cobbling together circuits with this new under-
standing, let’s have a grown-up moment and protect ourselves against some potential
problems.

3.1.2 Problems and dangers

In the kind of electronics hacking we’re doing, we’re working with voltages that are
quite low—5 V or 3.3 V are typical examples—using components that draw current
measured in tens of milliamps (mA). These kinds of current and voltage combina-
tions aren’t going to throw you across the room (or worse) if you do something
slightly daft. But there are a couple of things to be aware of (and avoid).

AVOID TOO MUCH CURRENT

The first of the two problems arises when you provide too much current to a compo-
nent in a circuit (often by using too low of a resistor value or forgetting to add one to
the circuit entirely). Some of that energy is converted into what is likely a desired out-
come—light in the case of an LED, for example—but the rest of it has to get used up
too. If you provide 100 mA of current to an LED that’s rated for a maximum of 20 mA
for steady (not blinking) use, that’s not going to go well in the long run. The first sign
of too much current is often warmth—the LED will start to feel hot to the touch. At a
certain point, it’ll get overwhelmed and burn out completely.

AVOID CREATING A SHORT CIRCUIT

The second “uh oh” has the potential to be much worse. If there’s no load in a circuit—
that is, no components or resistors to draw or resist current—things get nasty indeed.

57Building circuits

If there is, say, a path running directly from the positive to the negative terminal of a bat-
tery, there’s no resistance to limit the current running through the circuit. This is a short
circuit (figure 3.9), and it causes immense amounts of current to discharge through the
circuit very, very quickly. This energy can cause heat, fire, even explosions.

 Development boards can protect you from the worst of this. If you short-circuit the
Uno’s power to ground (P.S., don’t), you won’t blow up because the board has current
limiters on its output pins (your board may be toast, though). The most current you’ll
ever get out of its 5 V pin is 450 mA; the most out of a single I/O pin is about 40 mA.
You get no such protection against outrageous currents if you’re working with batter-
ies—you can cause a regrettable festival of sparks, or worse. So be careful.

3.2 Building circuits
Now that you’ve been debriefed, let’s experiment! As you start adding components to
circuits, you’re going to need a way to lay them out without losing your mind. Twisting
wire together or trying to hold several components in place in a circuit with your fin-
gers is impractical (and maybe a bit risky).

 Instead, breadboards make great foundations for laying out circuits. They play a role
sort of like a LEGO base, providing a grid to plug components and wires into.

3.2.1 Using breadboards to prototype circuits

Breadboards for prototyping circuits are solderless, meaning you can stick things right
into the board without any need for solder. They come in various shapes and sizes but
are consistent in how the board’s connections are wired. Figure 3.10 shows the layout
of a half-size breadboard (full-size breadboards are like two half-sized breadboards con-
nected end to end; they’re twice as long).

 A typical breadboard combines horizontal terminal rows (a technical-sounding term
that really means “spots to plug components into”) with vertical power rails (holes
meant for connecting power between power sources and components) on both sides.

 Terminal rows often have a notch between each set of five holes. A ten-hole termi-
nal row—two sets of five connected holes divided by a notch—is a common layout.

Figure 3.9 A short circuit has no load to moderate the current. A common illustration of a short circuit
is running a wire directly from the positive to the negative terminal of a battery (don’t do this in real life).

58 CHAPTER 3 How to build circuits

Each hole in a five-unit row is electrically connected, but connections do not continue
across the notch.

 Power rails have two holes per row: one for positive and one for negative. These are
usually helpfully marked for you in red (positive) and blue or black (negative). Con-
nections in the power rails run vertically down the length of the board. The power rail
on one side of the board isn’t connected to the power rail on the other side of the board.

 Let’s get a feel for how these connections work by using a breadboard to rewire the
simple LED circuit from the last chapter.

3.2.2 Wiring a simple LED circuit on a breadboard

What you’ll need
 1 Arduino Uno and USB cable

 Jumper wires: two red, one black

 1 standard red LED

 1 220 � resistor

First, let’s check in with Ohm’s law to figure out what we’ll need to adjust to make the
circuit work correctly. Here’s what we know:

 The Arduino will provide a 5 V supply voltage.
 The maximum current we should run through the LED is somewhere around

20 mA (0.02 amps)—for most standard LEDs, 20 mA is a general rule of thumb.

Figure 3.10 A typical breadboard and the connections inside it

✔

59Building circuits

SELECTING A RESISTOR FOR THE LED
Because we have a fixed voltage and a target current, the variable value is resistance.
What resistor value is needed to create the circuit? Remember,

R = V / I

so

R = 5 V / 0.02 A
R = 250 �

Resistors come in certain common resistance values, and 250 � is not a commonly
produced resistor. Calculating a needed resistance value only to find that there is no
such resistor happens all the time—not to worry. Typically, the rule of thumb is to
round up to the next common resistor value (having too much resistance is safer than
not enough, ordinarily).

 For the moment—trust me, I’ll explain shortly—we’re going to do the opposite
and round down a bit to the nearest common resistor: 220 �.

Finding the right resistor
Resistors are color-coded in a standard way to aid identification. There are two strip-
ing systems out there: four-band resistors and five-band resistors. Four-band resis-
tors are somewhat more common.

Every resistor has bands of color representing leading digits in the resistor’s value.
Four-band resistors have two of these bands, whereas five-band resistors have three.

The last two bands of a resistor are its multiplier band and its tolerance band, respec-
tively.

The color of the multiplier band indicates how many zeros to add after the value indi-
cated by the preceding digit bands. In other words, multiplying the leading digits by
this power of ten gives you the resistor’s value.

The tolerance band color indicates how accurate the resistance is guaranteed to be.
A tolerance of +/-5% (gold) is common for the types of resistors we’re using.

A four-band resistor has two digit bands. The four-band resistor in the following figure
is coded as follows:

1 First digit: 2 (red)
2 Second digit: 2 (red)
3 Multiplier: 1 (brown) = 101
4 Tolerance: +/- 5% (gold)

60 CHAPTER 3 How to build circuits

CIRCUIT DIAGRAMS AND SCHEMATICS

There are a couple of ways to represent a circuit visually, to provide other builders
with a “map” to recreate the circuit. The most formal way to represent a circuit is
through a schematic, as seen in figure 3.11. A schematic is a graphical representation of
components using standardized notation and symbols. It can be thought of as a sort of
visual, abstracted graphic: the position of components in a schematic don’t necessarily
correspond to their layout in physical space.

(continued)

Its value is

22 * 10^1 = 220 � @ +/-5%

The five-band resistor in the figure is coded as follows:

1 First digit: 1 (brown)
2 Second digit: 0 (black)
3 Third digit: 0 (black)
4 Multiplier: 1 (brown)
5 Tolerance: +/-5% (gold)

The value is

1 0 0 * 10 ^ 1 = 1000 � (or 1 k�) @ +/- 5%

Resistors are coded with colored bands to indicate their resistance and tolerance.

61Building circuits

There are many possible ways to physically implement the schematic in figure 3.11, so
a wiring diagram can be a helpful tool. Diagrams, like the one in figure 3.12 (created
with the open source Fritzing desktop application), show one specific implementation
of the circuit and how it could be laid out (in this case, on a breadboard).

 Schematics can feel mathy and abstract at first, but they’re universally used in the
electronics community. You’ll get to know more symbols and conventions as we con-
tinue our journey, and they’ll start feeling more comfortable. To improve your under-
standing of schematics, make a habit of comparing wiring diagrams back to their
source schematics.

Figure 3.11 Schematic of the simple
LED circuit. Schematics are concise and
standardized representations of circuits,
but they don’t show how to position
components in physical space.

Figure 3.12 Wiring diagram of the simple LED circuit, showing a specific physical layout to
implement the circuit from its schematic. This diagram was created in the open source Fritzing
desktop application.

62 CHAPTER 3 How to build circuits

Time to build the circuit. Referring to figure 3.12, begin by connecting components
into the terminal rows. Plug the anode of the red LED into hole 5C (row 5, hole C)
and its cathode into hole 5D (the next row down). Plug one end of the resistor into
hole 5B, next to the LED’s cathode.

POWERING THE CIRCUIT

The circuit needs to be connected to power. First, you’ll need to connect the compo-
nents in the terminal rows to the power rail—recall that terminal rows are isolated
(for good reason!) from the power rails.

Use a red jumper wire to connect hole 5B—electrically connected to the anode of the
LED—to a hole in the red (positive) column of the power rail. The fourth row down
should do nicely if you can’t decide on a favorite. Connect the resistor’s free end
directly into the negative power rail as shown in figure 3.12. Now there’s an unbroken
path leading from the positive power rail, through the red wire to the LED, out of the
LED and through the resistor back to the negative power rail.

Plugging things in the right way: polarity
LEDs are polarized, meaning they need to be plugged in in a certain way to function
correctly. As you learned earlier, the anode is the positive terminal and the cathode
is the negative terminal.

Resistors are not polarized, meaning it doesn’t matter which direction you plug them
in. They work just fine oriented either way.

Another thing to note is that although I’ll give you precise row and column breadboard
coordinates in this exercise, you could just as successfully plug the components into
any row or column as long as the connections work out in the end (terminal rows are
connected horizontally; power rails, vertically).

Plugging things in the right way: jumper wire colors
If you have a packet of colored jumper wires, you might be wondering which colors
are for what purpose. By convention, power connections are usually made with red
(positive) and black (ground) wires. Other colors you may see representing negative
power connections include white or other dark colors (brown or purple).

Green and yellow are often used for input and output connections, which will come
up in later chapters. Although there is widespread consistency in using red and
black/white for power connections, different hackers use different color combina-
tions for various other things. Long story short: there are no hard and fast rules, but
try to be consistent in whichever combination you implement.

Jumper wires aren’t polarized. They can be connected in either direction.

63Building circuits

UNPLUG THE UNO! As ever, make sure your Uno is unplugged from USB or
wall power before connecting it to components or circuits.

The Uno can provide a nice, steady 5 V from its 5 V power pin. Using a red jumper
wire, plug one end into the Uno’s 5 V pin and the other into the top row of the posi-
tive power rail. Run a black jumper wire from the Uno’s GND pin to the top row of the
negative power rail. This completes the circuit wiring.

 Now plug your Uno into USB or wall power. Your LED should light up!

SERIES AND PARALLEL CIRCUITS

This simple LED circuit (figure 3.13) is a series circuit. A series circuit has only one path
for electrons—current, those individual flowing jellyfish of the gnome world—to take.
Because there’s only one possible route, all jellyfish/electrons go through the whole

The current is flowing… which way now?
The kinds of projects we’re building with development boards and embedded sys-
tems use DC (direct current) circuits. Current flow in a DC circuit is in a single direc-
tion, usually rendered as going from positive source (highest potential energy) toward
negative, or ground (lowest potential energy).

Technically, this isn’t correct—current can be more accurately described as flowing
from negative toward positive, and even that’s an oversimplification. But the conven-
tion of drawing circuits with flow in the positive to negative (+ toward -) direction is
deeply entrenched, and there’s nothing inherently harmful in representing DC current
flow in this traditional way, as long as you’re consistent. Fun fact: the practice of envi-
sioning current flow from positive to negative was established by none other than
electricity pioneer Benjamin Franklin.

Besides DC, the other type of current flow is AC (alternating current), in which the flow
of current reverses directions periodically. Wall-outlet power is AC, oscillating direc-
tion 50 or 60 times per second, depending on what part of the world you live in.

Troubleshooting the circuit
If your LED doesn’t light up, there are a few things to check. The most common rea-
son for a circuit like this to fail is that it’s an open circuit, meaning there’s a gap in
the path from the positive to negative ends of the circuit. Check the positions of your
components and wires, and make sure wires are snugly plugged into breadboard
holes. Make sure that none of the exposed metal terminals on the components are
touching each other. Also double-check that your Uno’s power LED is lit.

If those steps don’t do the trick, try swapping out your LED with a fresh one on the
off chance that the LED is dead. On occasion, a breadboard’s connections can be
wonky (though this is more typical for breadboards you’ve been using for a long time).
As a last resort, try wiring the components onto a different part of the breadboard or
try with another breadboard.

64 CHAPTER 3 How to build circuits

route; they’re not able to wander off on some shortcut or side road. That means the
current is the same at all points in the circuit (figure 3.13).

 When modifying the current of a series circuit with resistors, it doesn’t matter
whether you use, say, one resistor rated at 200 � or two resistors at 100 �. The values of
the resistors add together and modify the current across the whole circuit (figure 3.14).

VOLTAGE AND SERIES CIRCUITS Although current is the same at any point in a
series circuit, voltage may differ from point to point. We’ll talk about this when
we build voltage dividers in chapter 4.

One detail of these series circuits that might have given you pause is the position of
the current-limiting resistor(s) (a current-limiting resistor is one that’s placed to moder-
ate the current in the circuit).

 In figure 3.14, the resistors are connected between the LED and ground; that is,
they’re positioned “after” the LED. As it turns out, it doesn’t matter where the resistors
are positioned relative to the LED in a series circuit.

Figure 3.13 A series circuit has only one possible path
for the charges (jellyfish) to flow through—there are no
branches. The current is the same at any point in a series
circuit, meaning that points 1, 2, 3, and 4 all have equal
current.

Figure 3.14 Resistor values add together in a series circuit.

65Building circuits

A current-limiting resistor placed in a series circuit affects current throughout the
whole circuit, no matter its position—remember, current is the same at all points in a
series circuit.

3.2.3 Expanding a series circuit with a button

What you’ll need
 1 Arduino Uno and USB cable

 1 push button

 1 standard red LED

 1 220 � resistor

 3 jumper wires

In the simple LED series circuit you wired, all of the current runs through the LED,
then through the resistor, and then to ground (figure 3.14). A single gap in a series
circuit will cause the entire circuit to stop working, because it’s a gap in the only path
through the circuit. That makes it possible to activate and deactivate the whole circuit
with one switch.

 You can see how this works by adding a button to the circuit. A button is a kind of
switch that only completes a connection when it’s pressed down (sometimes buttons
are called momentary switches) (figure 3.15).

 In figure 3.16, the button is connected to a breadboard, oriented such that the
“always-connected” pins span the notch in the middle. That means the top row’s high-
lighted connections are always connected electrically, as are those highlighted in the
bottom row. While the button is inactive (not pressed), the two rows are isolated from
each other. When the button is pressed, however, a connection is made between the
top and bottom pins on the button’s left side, and the top and bottom pins on its right

✔

Figure 3.15 Pins on opposite sides of the button are always electrically connected, whereas
pins sharing a single side are only connected when the button is held down.

66 CHAPTER 3 How to build circuits

Figure 3.16 A push button connected to a
breadboard, spanning the center notch. When
not pressed, the pairs of pins at the top and
bottom of the button are connected
electrically (horizontally). When pressed and
held, the pairs of pins on the left and right
sides of the button are electrically connected
(vertically).

Figure 3.17 Schematic of the updated
circuit, integrating a push button

side. The effect is that both highlighted rows
are electrically connected to each other
while the button is pressed.

 When a properly connected button is
pressed and held, the circuit is closed, com-
pleting the path and allowing electrons to
flow through the circuit. When released, the
circuit is open—it has a gap and no current
flows. The schematic of the circuit you need
to construct is shown in figure 3.17.

BUILD THE CIRCUIT: BUTTON AND LED
To build the button circuit in figure 3.18,
follow these steps:

1 Disconnect the Uno from power.
2 Remove the LED and the resistor from

the breadboard.
3 Using a black jumper wire, connect

GND on the Uno to the top row of the
negative power rail on the right side
of the breadboard.

4 Connect the button to the bread-
board. Your button might be a differ-
ent size and fit more comfortably
between different rows, which is fine.

5 Plug the LED’s anode (longer leg)
into a slot in the same row as the bot-
tom two legs of the button.

6 Plug the LED’s cathode in one row
down.

7 Connect the resistor from a slot in the
same row as the LED’s cathode to the
negative power rail. You can leave
the red wire connecting the left-hand
power rail to row 4 in the same place
as it was in the previous exercise.

8 Reconnect the Uno’s power.

The LED should not be lit initially. Press the
button. The LED should light up for as long
as you hold the button down.

67Building circuits

3.2.4 LEDs in series

There’s one more stop on the series-circuit discovery tour. Let’s construct a circuit con-
taining multiple LEDs wired in series—that is, multiple LEDs on a circuit that only has
one path. Here’s where I can come clean about the detail left out in the LED-resistor cal-
culation we did earlier in the chapter.

 To jog your memory, the calculation was aimed at finding the right resistor value
for an LED—target current 20 mA—in a 5 V circuit:

R = 5 V / .02 A
R = 250 �

Instead of rounding up to the next common resistor value, we rounded down to 220 �.
 The reason that a 220 � resistor is more than plenty for an LED in a 5 V circuit

at 20 mA is that, because of a characteristic of LEDs, we don’t need to account for the
full 5 V when calculating for the right resistor value. In fact, 220 � is slightly high.

 There’s a relevant law, called Kirchoff’s voltage law (KVL to those in the know). It
states that all of the voltage in the circuit has to be in balance: the amount generated
has to be the same as the amount used. Voltage in, voltage out.

 In the LED-series circuit, 250 � would be the correct approximate resistor to use if
the resistor were the only thing in the circuit “using” some voltage. But it’s not.

Figure 3.18 Wiring diagram of adapted LED circuit with a push button

68 CHAPTER 3 How to build circuits

LEDs have a metric called forward voltage drop. There’s a bit of detail to that, but for our
purposes it’s the approximate amount of voltage the LED will use up in the circuit (fig-
ures 3.19 and 3.20).

 While most workaday standard LEDs have a consistent forward current (for purposes
of brevity, you can think of that as “roughly the current it should receive”) of 20 mA,
forward voltage differs between LEDs, mostly related to the color of the LED.

Figure 3.19 As electricity travels across an
LED, some voltage is used, or dropped. The
amount of voltage used is called the LED’s
forward voltage. It ranges between about 1.8 V
and 3.5 V, depending on the color of the LED—
the higher the frequency of the emitted light,
the higher the voltage drop.

Figure 3.20 Hearkening back to the analogy of voltage as cliff steepness or height, the same series-
LED circuit can be seen from a different perspective. As the jellyfish current moves through the LED,
1.8 V is “used up,” reducing the remaining voltage to 3.2 V (reducing the steepness). That 3.2 V is
then used up by the current-limiting resistor. When the jellyfish reach the point of lowest electrical
potential, all of the voltage in the circuit has been accounted for.

69Building circuits

Red LEDs have a forward voltage that varies for the most part between 1.8 and 2 V. If
the LED in the circuit has a forward voltage drop of 1.8 V, we can subtract that from
the system voltage of 5 V, and that is the voltage that the resistor needs to account for:

5 V (supply voltage)
- 1.8 V (red LED forward voltage)

= 3.2 V (remaining voltage)

Given that we want to aim for that 20 mA current (0.02 A), the resulting Ohm’s law
equation is

R = 3.2 V / 0.02 A

or

R = 160 �

A 220 � resistor is close enough in value to be just dandy—rounding up to the next
common resistor value as per convention. Now, 220 � is more resistance than 160 �,
so you might wonder what effect using a higher resistance value has on the LED and
the circuit. Higher resistance with steady voltage means the current goes down
(because, as always, Ohm’s law):

I = V / R
I = 3.2 / 220 �
I = 0.0145 A

In the end, the LED gets less current
than 20 mA—about 15 mA (.0145 A).
The amount of current provided to
an LED is directly proportional to its
brightness: an LED getting 15 mA will
not be as blindingly bright as one
receiving 20 mA.

 What’s the situation if another iden-
tical red LED is added into this series
circuit? What’s the needed resistor?
We’ll need to account for the voltage
drop of both LEDs (figure 3.21).

 Fortunately, this is a question of
straightforward arithmetic. After sub-
tracting the voltage drop of each LED
from the total circuit voltage, we’re left with 1.4 V:

Figure 3.21 Each of the two LEDs drops some of the
voltage in the circuit, and, again, the remaining
voltage is dropped by the resistor.

70 CHAPTER 3 How to build circuits

5 V (supply)
- 1.8 V (LED 1)
- 1.8 V (LED 2)

= 1.4 V

R = 1.4 V / 0.02 A
R = 70 �

Rounding up to the next common resistor
value, a 100 � resistor will do nicely, as shown
in the schematic in figure 3.22.

BUILD THE CIRCUIT: TWO LEDS IN SERIES

What you’ll need
 1 Arduino Uno and USB cable

 1 push button

 2 standard red LEDs

 1 100 � resistor

 3 jumper wires

To build the circuit in figure 3.23, follow these
steps:

1 Unplug your Uno from power.
2 Unplug the 220 � resistor from the breadboard and put it away.
3 Plug the anode of a second LED into the same row as the cathode from the first

LED (row 7 in figure 3.23).
4 Connect a 100 � resistor from the negative power rail to the row containing the

second LED’s cathode (row 8).

✔

Figure 3.23 Wiring diagram of two LEDs in series

Figure 3.22 The two LEDs are wired in
series with a 100 � resistor. There’s only a
single path through this circuit when the
button is pressed: through the first LED,
through the second LED, through the
resistor, and back to ground.

71Building circuits

If you plug your Uno into power and then press the button, both LEDs should light
up. They’re wired in series, which may be easier to visualize by looking at figure 3.22
again.

 And what if you add a third LED? Trick question: you can’t really. Not if you want to
produce reliable and bright light. There’s only 1.4 V “left” after the first two LEDs’
voltage drops. That’s not quite enough to power a third LED—an LED requires at least
its voltage drop value to light up. You might be able to get the three LEDs to light up
weakly, but they wouldn’t be robust.

 It is possible to steadily power more than two LEDs with 5 V, but to do so you need
a parallel circuit.

3.2.5 Parallel circuits and current dividers

In a series circuit, there’s only one path for electrons to take, but in a parallel circuit,
there are two or more possible paths, or branches (figure 3.24).

As electrons move through the circuit and encounter a fork in the road, they each
make a decision about which branch to take. Current prefers a path with less resis-
tance (figure 3.25).

Figure 3.24 In a parallel circuit,
there’s more than one path, or
branch, current can take. In this
example, there are two branches:
each has its own LED and resistor.

Figure 3.25 Because the two
branches in this parallel circuit
have the same resistance (100 �),
half of the current will take one
branch and half will take the other.

72 CHAPTER 3 How to build circuits

When calculating how much resistance is in the parallel circuit, things get a bit weird
and counterintuitive. Look again at the parallel circuit in figure 3.25. What’s the total
resistance that the two 100 � resistors provide?

 The total resistance of series circuits is easy to figure out—just add ’em up and
voilà! You’ve got the total resistance. It’s tempting to do the same at first with parallel
circuits—to assume the total resistance is 200 �. Nope. Or maybe you spied that any
given charge going through the circuit is only going through one resistor, not both.
So that must mean there’s a total resistance of 100 �? Also, sorry, nope.

 The correct answer is 50 �.
 I know, I know. That doesn’t feel right, but it’s true: in a parallel circuit, the total

resistance will always be less than the smallest resistor value. Let’s arm ourselves with
Ohm’s law and a few deep breaths and examine how this can possibly be. Calculating
equivalent resistance in parallel circuits is one of the more challenging concepts to
novice electronics hackers, so don’t pull your hair out just yet.

 Let’s break it down and put it back together. The 5 V series circuit with a 100 �
resistor shown in figure 3.26 will draw 50 mA of current (I) because

.005 A (I) = 5 V (V) / 100 � (R)

Now say you duplicate that same path—5 V and a 100 � resistor—and glom it onto
the circuit. That second path will also independently draw 50 mA because the supply
voltage (5 V) and the resistance (100 �) stay the same (figure 3.27).

Figure 3.26 This series circuit draws 50
mA because 5 V / 100 � = .05 A.

73Building circuits

Added together, the current drawn by the two branches is 100 mA—the total current
draw of the circuit has increased (figure 3.28).

 Looking at the circuit as a whole now, its total current is 100 mA (.1 A) and supply
voltage is, as ever, 5 V. Plugging that into Ohm’s law,

Total resistance (R) = 5 V (V) / .1 A (I)

R = 50 �

Figure 3.27 Each branch of a parallel circuit in isolation acts like its own series circuit. We can
use Ohm’s law to verify that this branch will also draw 50 mA.

Figure 3.28 The total current going in to the
circuit is 100 mA (point A). It splits equally
into two branches—each branch gets 50 mA
(points B, C). The current rejoins and at point
D is again 100 mA. In a parallel circuit, the
supplied voltage is constant for each branch
but the current varies.

74 CHAPTER 3 How to build circuits

The resistance provided by each resistor in a parallel circuit is reduced because each
branch in a parallel circuit increases the total current in the circuit. Current is going
up while voltage is constant: resistance goes down.

Current dividers
Any circuit that splits the current coming from the power source into more than one
branch is called a current divider. The parallel circuit in the following figure is an example
of a current divider: some current follows one branch while the rest follows the other.

If a charge finds itself at a fork in the road and both available paths have the same
resistance, the charge is equally likely to take either route (like the parallel circuit in
figure 3.28). But if the resistance is unequal, more charges will opt for the road with
less resistance—that is, more current will take the less-resistant branch.

You can calculate the total resistance in the circuit shown in this figure by looking at
each branch in isolation and figuring out the circuit’s total current draw:

Branch 1:
5 V / 200 � = .025 A (25 mA) because I = V / R

Branch 2:
5 V / 100 � = .05 A (50 mA) because I = V / R

.025 A (branch 1)
+ .05 A (branch 2)
=========================
= .075 A (75 mA) total current

R(Total) = 5 V / .075 A because R = V / I
R(Total) = 66.667 �

If the branches have unequal resistance,
current will proportionally flow through
each branch.

75Building circuits

Some of this parallel-circuit calculation may seem pointlessly convoluted, but it does
have useful applications.

 Here’s the rub: each branch of the parallel circuit is provided with the same volt-
age. So if we take the series-circuit LED and add more branches to it (turning it into a
parallel circuit—figure 3.29), each branch gets “its own” 5 V to work with. This way, we
can wire three, four, or even more LEDs on the same circuit and not run out of voltage
like we would in a series circuit.

BUILD THE CIRCUIT: LEDS IN PARALLEL

What you’ll need
 1 Arduino Uno and USB cable

 4 standard red LEDs

 4 220 � resistors

 6 jumper wires

Figure 3.30 shows a physical layout of the same circuit. To wire four LEDs on the same
circuit, start with a fresh, clean breadboard and follow these steps:

1 Connect the anode terminals of four LEDs to a hole in rows 2, 9, 16, and 23.
2 Plug the cathode ends into the same terminal row but on the other side of the

gap (such that they aren’t electrically connected).

Doing calculations for total resistance in this manner can become cumbersome as
the number of branches increases. We won’t be architecting complex current dividers
with lots of branches with different resistances, but if you’re the curious type, there’s
a formula for calculating equivalent (total) resistance in any parallel circuit:

1 / R(Total) = 1 / R1 + 1 / R2 + 1 / R3 ... + 1/Rn

✔

Figure 3.29 In the schematic for the parallel-LED circuit, each of the branches A, B, C,
and D is supplied with 5 V. Each branch receives 1/4 of the total current in the circuit.

76 CHAPTER 3 How to build circuits

3 Run four red jumper wires from the positive power rail on the left side of the
board to the anode row of each LED.

4 Connect a 220 � resistor from each LED’s cathode row to the negative power
rail on the right side of the board.

5 Connect the power rails to the Uno’s 5 V and GND pins (using a red and black
jumper wire, respectively).

6 Plug the Uno into USB or DC power.

If everything goes right, all four LEDs should happily light up.
 Parallel circuits have another useful feature. If you were to remove the red wire

between the LED in row 2 and the power rail, the other 3 LEDs would still light up.
The circuit still has three other complete paths it can use. Contrast this to a series cir-
cuit, where a single gap stops current from flowing to any component.

3.2.6 Powering your project with batteries

So far, you’ve been providing power to the breadboard using the Arduino Uno’s
onboard 5 V power, but there are other ways to provide power to projects. One (obvi-
ous) option is to use batteries.

 A single, 9 V battery is a convenient power source, and in the case of the LED cir-
cuits you’ve been building, it removes the reliance on a development board.

Figure 3.30 Wiring LEDs in parallel allows you to wire more in a single circuit
because each branch gets the same voltage (5 V).

77Summary

BUILD THE CIRCUIT: 9 V POWERED LEDS

What you’ll need
 1 breadboard

 9 V battery and snap, with wires

 4 standard red LEDs

 4 jumper wires

 4 560 � resistors

With a 9 V battery, the supply voltage is (obviously) different than the Arduino’s 5 V.
That means we’ll need to use different resistors for the LEDs in the parallel circuit.

 Recall that each branch in a parallel circuit
“gets” the full 9 V supply voltage to work with,
so you can calculate the resistor needed on
each branch using Ohm’s law:

R = 9 V / 20 mA
R = 450 �

A 560 � resistor is the nearest common resistor
value, and it will do fine (have you noticed
there’s a bit of fudge room, as long as you
round up?).

 Disconnect the breadboard’s power rails from
the Arduino and swap out each of the 220 �
resistors in favor of the brawnier 560 � resistors.
Now plug the battery case’s positive and negative
wires into the breadboard’s power rails (fig-
ure 3.31). All done!

Summary
 The relationships between voltage, current, and resistance—as formalized in

Ohm’s law—are the keys to understanding basic circuitry.
 Breadboards provide a tangible and convenient prototyping platform, with

standard connection patterns, for trying out circuits.
 A series circuit provides one single path for electrical flow. A parallel circuit has

two or more paths.
 LEDs have a characteristic called forward voltage drop. When calculating the right

resistor for an LED wired in series, first subtract this forward voltage drop from
the supply voltage.

 In a series circuit, the current is equal at all points of the circuit, whereas in a
parallel circuit, all branches have equal voltages.

✔

Figure 3.31 Powering the parallel LED
circuit with a 9 V battery involves swapping
out some resistors and connecting a 9 V
battery snap to the power rails.

78 CHAPTER 3 How to build circuits

 In a series circuit, it’s straightforward to calculate total resistance in the circuit:
add the resistor values together.

 A circuit with more than one path splits up the current in the circuit and is
called a current divider. Determining the total resistance in such a parallel circuit
can be accomplished using a current-division formula.

Part 2

Project basics: input
 and output with Johnny-Five

This part of the book is where things really get cooking: you’ll learn how to
add sensors, outputs, and moving parts to projects, building a whole bunch of
small experiments along the way with your Arduino Uno board and Johnny-Five.

 In chapter 4, you’ll get to know all about inputs (sensors), both analog and
digital. You’ll try your hand at reading data from a simple temperature sensor
and a photosensitive resistor, and you’ll learn to detect button presses.

 Chapter 5 concerns itself with outputs, building on your earlier experimenta-
tions with LEDs. You’ll move beyond blinking LEDs to animated LEDs and full-
color RGB LEDs. You’ll display text on a parallel LCD module and build your own
“weather ball” (a simplified weather conditions display).

 If you’ve been waiting for the robots part, chapter 6 is it! This chapter is all
about motion: motors and servos. We’ll investigate how motors work and how to
power and control them. At the end of chapter 6, you’ll build a simple roving
robot using an inexpensive robot chassis kit.

 By the end of this part of the book, you’ll have surveyed all of the major types
of simple inputs and outputs for small embedded projects. You’ll be able to read
environmental data from sensors and output light and sound. You’ll be ready to
build more sophisticated, wires-free projects.

81

Sensors and input

To build nifty gadgets, whether they’re temperature-controlled automatic fans or
more interesting inventions, you’ve got to be able to gather information and input
from the real, physical world.

This chapter covers
 The role sensors play in projects as transducers,

converting physical phenomena to electrical signals

 How microcontrollers use analog-to-digital conversion
(ADC) to interpret incoming analog signals

 Building voltage divider circuits to read resistive
sensors like photoresistors

 Using Johnny-Five’s generic Sensor class to read
sensor data and listen for data and changes

 Taking advantage of Johnny-Five’s component-specific
Thermometer and Button classes

 Managing default digital logic levels using pull-down
resistors

82 CHAPTER 4 Sensors and input

For this chapter, you’ll need the following:

 1 Arduino Uno and USB cable

 1 photoresistor

 1 4.7 k� resistor

 1 TMP36 analog temperature sensor

 1 push button

 1 10 k� resistor

 Black, red, and green jumper wires

 1 half-size breadboard

Analog and digital sensors pay attention to a particular phenomenon in the physical
environment—temperature, brightness, dampness, pressure, vibration—and they out-
put information about changes in the intensity of that phenomenon as a signal. In the
automatic fan example in chapter 1, a temperature sensor translated temperature
changes into an electrical signal that the microcontroller’s firmware could read and
process (figure 4.1).

83

That conversion from physical input to electrical output means that sensors are a type of
transducer, which is any device that converts one form of energy into a signal (or vice versa).

 Sensors and inputs are classified based on what kind of signal they produce: ana-
log, a continuous, smooth set of values with no gaps, or digital, consisting of a dis-
crete, finite set of values (figure 4.2).

Figure 4.1 The temperature-controlled fan from chapter 1 used an analog temperature
sensor to gather information about changing temperatures in the surrounding environment.

Figure 4.2 An analog sensor like a temperature sensor (top) transduces changes in temperature into a
smooth, analog signal. A digital input like a tilt switch (bottom) might have as few as two discrete output
values: one when oriented normally (off, LOW, 0, or false) and one when inverted (on, HIGH, 1, true).

84 CHAPTER 4 Sensors and input

4.1 Working with analog sensors
Our physical reality is analog: we live in a world of the infinite. There are an infinite
number of temperatures between 0 and 20 degrees Celsius, an infinite number of
colors, an infinite number of sound frequencies. Of course, as humans, we can’t
discern 280.3984 Hz from 280.3985 Hz, but the two different values exist.

 Analog sensors are sensitive to these analog, real-world inputs. Their output is a
smooth signal, usually of varying voltage that corresponds to the intensity of the thing
they’re measuring (figure 4.3).

4.1.1 Analog-to-digital conversion

Analog sensors like the temperature sensor in the fan provide an analog signal, but
our programming world is digital. Analog input signals need to somehow be sampled
and normalized—quantized—into discrete digital values so they can be processed
with digital logic.

 Doing this conversion of signal samples from analog to digital requires a bit of
hardware and processing. The Arduino Uno’s microcontroller provides built-in
analog-to-digital conversion (ADC) capability on six of its pins. Analog input pins—those
with ADC support—are prefixed with “A” on the Uno (figure 4.4).

 The number of possible values that can be derived from an incoming analog signal
depends on the bandwidth of the ADC hardware on the microcontroller. The
ATmega328P on the Uno provides 10-bit ADC for each of its six enabled pins. That
means it can resolve 1024 (210) possible interpreted digital values. An analog input
of 0 V will be interpreted as 0, 5 V as 1023, and anything between scaled to the nearest
(integer) step value.

Figure 4.3 The output signal from an analog temperature sensor varies in voltage over
time as the temperature changes.

85Working with analog sensors

An analog sensor responds to a physical stimulus to which it is sensitive, transducing
that physical energy into an output signal of varying voltage. That signal can be sam-
pled by an analog input pin on a microcontroller and converted to digital values using
the MCU’s analog-to-digital (ADC) capability. To see how this works in action, let’s
experiment with a basic analog sensor.

4.1.2 Working with photoresistors

A photoresistor, also called a photocell or light-dependent resistor (LDR), is a simple sensor.
Its name gives away that it’s actually a kind of resistor, but its conductivity changes
depending on the brightness of incident light hitting it—it’s photoconductive.

 When things are dim, the photoresistor has higher resistance, topping out at
about 10 k� when it’s totally dark. As the amount of light it’s exposed to increases, it
becomes more conductive—its resistance decreases—down to about 1 k� when
things are quite bright (figure 4.5).

VOLTAGES IN A CIRCUIT

Let’s say we want to be able to use the Uno’s ADC-capable pin A0 to read a signal rep-
resenting changing ambient light values. We need a circuit that contains the photore-
sistor and that’s connected to power, ground, and pin A0 on the Uno.

Figure 4.4 ADC is supported by the ATmega328P microcontroller on specific pins (made
available as A0-A5 on the Uno). ADCs convert analog signals to discrete digital values.

86 CHAPTER 4 Sensors and input

But the circuit shown in figure 4.6 isn’t going to do the trick. Remember Kirchoff’s volt-
age law (KVL) from chapter 3? All of the voltage in a circuit has to get used up. The
only component in the circuit in figure 4.6 that “uses up” any voltage is the photoresis-
tor itself.

This means that no matter what the actual resistance value of the photoresistor is at
any given moment, it’s going to use up all of the voltage in the circuit anyway—mean-
ing that the voltage at A0 won’t change.

 In chapter 3, you also saw how current is the same at every point in a series circuit.
The circuit shown in figure 4.7 assumes a 2 V forward voltage drop across the LED,
leaving 3 V for the resistors to take care of. The total resistance in the circuit is 200 �
(the two 100 � resistors add together), so

I = V / R

thus

0.015A = 3 V / 200 �

Figure 4.5 As light conditions change,
the resistance of the photoresistor
changes. It becomes more conductive—
that is, less resistive—when more light
hits it. When it’s darker, the resistance
is higher.

Figure 4.6 With a circuit like this,
there won’t be any meaningful
voltage variance on pin A0.

87Working with analog sensors

The current at all points in the circuit will measure 15 mA.
 The key thing for figuring out our photoresistor problem here is that voltage gets

divided up amongst the components in the circuit (figure 4.8) and it’s not constant at
every point.

 Let’s tease the circuit in figure 4.7 apart and analyze it to see where the voltage is going.

2 V of the 5 V supply is getting chewed up by the LED because of its forward voltage
drop. That leaves 3 V that needs to go…somewhere. It gets divided up amongst the
remaining components in the circuit.

 The amount of voltage allotted to each remaining resistive component—the two
resistors, R1 and R2—is a ratio of the given component’s resistance to the total resis-
tance in the circuit.

Figure 4.7 In a series circuit,
current is the same at all points.

Figure 4.8 In a series circuit, voltage
can differ at different points. Each
component uses up, or drops, its own
share of the circuit’s available voltage.

88 CHAPTER 4 Sensors and input

Let’s calculate the voltage allotted to R1:

R1 resistance value = 100 �
Total circuit resistance = 200 �
Proportional voltage R1 = 100 � / 200 � = 1/2
Thus, voltage across R1 = (1/2) * 3 V remaining = 1.5 V

Because there are two resistors, and they’re of equal resistance, the remaining voltage
will be distributed 50–50 between them. The results would be different if the resistors
had differing values (for example, if R1 were 300 � and R2 were 100 �, their allotted
voltages would be 1.125 V and .375 V respectively).

 In the circuit depicted in figure 4.9, the two resistors R1 and R2 have equal resis-
tance—each provides half of the total resistance in the circuit. Thus the remaining
voltage (3.0 V) in the circuit will get divided up equally (50–50) between them—1.5 V
each.

A more formal way of saying that “all voltage in a circuit needs to get used up” is that
all voltages in a circuit must add up to 0. Traveling around the circuit in figure 4.9, we
start at the power supply: +5 V. Then R1 drops its share, 1.5 V; the LED drops 2.0 V;
and R2 drops 1.5 V. All of this adds up to 0:

(+5 V) + (–1.5 V) + (–2 V) + (–1.5 V) = 0 V

Because we know how much voltage each component in the circuit is using up, we can
derive the voltage at different points in the circuit (figure 4.10).

 So when there’s only one component in a circuit, it’s going to use up all the volt-
age. If you wired the photoresistor without any other components (figure 4.11), it
would provide 100% of the resistance in the circuit (technically, this isn’t quite true
because of a resistor we’ll meet later that’s hidden inside the microcontroller, but it’s
close enough).

Figure 4.9 Kirchoff’s voltage law states
that adding up all voltages in a circuit
always produces 0. That is, all voltage in
the circuit needs to be accounted for (be
used up).

89Working with analog sensors

We need a way to create a circuit that has a point of reference, a point where voltage
does vary in a predictable way and can be read.

4.1.3 Voltage dividers

Voltage dividers to the rescue! A voltage divider circuit makes it possible to read useful
values from the photoresistor. To understand how, let’s first look at what a voltage
divider is and how it works.

 A voltage divider is a circuit that uses a pair of resistors to convert a higher supply
voltage into a lower output voltage. Although the voltage of the circuit as a whole is the
supply voltage (5 V in our examples), voltage between the two resistors is a new output
voltage (figure 4.12).

 If the two resistors used in the voltage divider have equal resistance and are the only
components in the circuit, it’s intuitive that the voltage available at Vout in figure 4.13
will be half of the original supply voltage—R1 drops its proportional share of the supply
voltage, 50%, as electricity flows across it.

Figure 4.10 Voltages at different points
in a series circuit vary based on how much
voltage has been dropped by components
in the circuit.

Figure 4.11 With only
the photoresistor in the
circuit, there’s no point of
reference at which to read
measurable voltage
changes.

90 CHAPTER 4 Sensors and input

Figure 4.12 A voltage divider provides a new, lower voltage at Vout, available at points between two
resistors, R1 and R2. There are several ways to draw a voltage divider schematic; the two circuits
depicted here are functionally identical.

Figure 4.13 When R1 and R2 are of equal resistance in a circuit, Vout is half of Vin, as each resistor
drops 50% of the supply voltage.

91Working with analog sensors

On the other hand, if R2 remained at 100 � but R1 changed resistance to 400 �, 80%
of the available voltage would be dropped by R1 (figure 4.14), such that the output
voltage at point Vout is now 20% of the supply voltage.

 Voilà! Changes in the proportion of resistance R1 provides to the circuit are
reflected as voltage changes at Vout. There’s the point of reference we need!

VOLTAGE DIVIDER FORMULA

The formula for voltage divider circuits—that is, the method for determining what
voltage will be at Vout between the two resistors—is as follows:

V(out) = V(in) * (R2 / (R1 + R2))

Vout is what’s “left over” of the supply voltage after R1 has dropped its portion of the
circuit’s voltage.

 We’ll be using a fixed 4.7 k� resistor as
R2 (figure 4.15). The photoresistor will
play the part of R1. Its resistance ranges
between 1 k� and 10 k� depending on
ambient brightness.

 As the resistance of R1 (the photoresis-
tor) changes proportionally to the circuit’s
total resistance, the output voltage on A0
will also vary. We can measure that voltage
with the Uno and see how the light levels
are fluctuating.

Figure 4.14 Vout is 1/5 (20%) of the
supply voltage because R1 provides 80%
of the total resistance in the circuit.

Figure 4.15 The schematic for the
photoresistor circuit

92 CHAPTER 4 Sensors and input

4.1.4 Wiring and using a photoresistor

What you’ll need
 1 Arduino Uno and USB cable

 1 photoresistor

 1 4.7 k� resistor (or 10 k� will also work)

 Red (2), black (2), and green (1) jumper wires

 1 half-size breadboard

Calculating the voltage range of Vout
You can calculate the range of possible voltages at Vout by using the voltage divider
formula.

At the photoresistor’s highest resistance, when it’s dark, R1 will have a resistance
of 10 k� (remember, R2 is always 4.7 k�). This higher-resistance response to dark-
ness will produce the lowest voltage in the range:

V(out) = V(in) * (R2 / (R1 + R2))

R1 = 10000 �
R2 = 4700 �

V(out)
= 5 V * (4700 / 14700)
= 5 V * .32
= 1.6 V

When it’s bright, R1’s lowest possible resistance is 1 k�, resulting in the highest volt-
age in the range:

V(out) = V(in) * (R2 / (R1 + R2))

R1 = 1000 �
R2 = 4700 �

V(out)
= 5 V * (4700 / 5400)
= 5 V * .825
= 4.125 V

By using a voltage divider circuit with the photoresistor, you can create a readable
output voltage signal for pin A0 that varies from 1.6 V to 4.125 V.

4.125 – 1.6 V = 2.525 V, or just slightly more than 50% of the total 0–5 V range. That
means you’ll get a decent spread of values—ranging from (very roughly) about 328
(~1.6 V) to 845 (~4.125 V) of the possible 10-bit (0–1023) range.

✔

93Working with analog sensors

Like the other resistors you’ve been working with, photoresistors aren’t polarized, so
you don’t need to worry about positive-negative orientation. Connect the photocell
and 4.7 k� resistor to the breadboard as shown in figure 4.16.

 The voltage divider output, Vout, is available in any terminal-row hole between the
photocell and the resistor (recall that the five holes in each terminal row on the
breadboard are electrically connected).

 Plug one end of a green jumper wire into one of those holes and the other end
into pin A0 on the Uno. Hook up power to the power rail from the Uno’s 5 V power
and GND pins. Now you can put your breadboard aside for a moment and we’ll turn to
the software side.

 Once the photoresistor circuit is powered (not yet! by the way), a signal of varying
voltage will be present on pin A0. So how can we read values from that signal using our
handy Johnny-Five JavaScript framework?

PROCESSING ANALOG SENSOR INPUT WITH JOHNNY-FIVE

Johnny-Five’s API contains a collection of classes that can be used to interact with your
development board and components. You’ve seen Led, for example. Many of the com-
ponent classes, like Led, are for specific types of devices, such as Accelerometer and
Servo. There are also a few more generic classes that have broader use, including one
that can be used with analog sensors like the Sensor photoresistor.

KEEPING UP TO DATE WITH THE JOHNNY-FIVE API Johnny-Five, like much other
open source software, is constantly evolving. New features and classes get
added, and the API evolves as well. You can keep up to date with the current
Johnny-Five API at http://johnny-five.io/api.

Figure 4.16 Wiring diagram for the photoresistor voltage divider circuit. The jumper wire connected
to A0 needs to have its other end connected to Vout, between the photoresistor (R1) and the 4.7 k�
resistor (R2).

http://johnny-five.io/api

94 CHAPTER 4 Sensors and input

USING JOHNNY-FIVE’S SENSOR CLASS

The Sensor class can be used to read and process data from analog sensors. First, cre-
ate a new Sensor object in a Johnny-Five Node.js script, as shown in the next listing.

const five = require('johnny-five');
const board = new five.Board();

board.on('ready', () => {
const sensor = new five.Sensor({

pin: 'A0'
});

});

The internals of Sensor take care of configuring the indicated pin as an analog input
pin and then automatically and continuously reading ADC data from that pin.

 So what can you do with a Sensor object? You could log out its value, as the follow-
ing listing shows—value is one of several parameters available on Sensor objects, and
it holds the most recently read value.

board.on('ready', () => {
const sensor = new five.Sensor({

pin: 'A0'
});
console.log(sensor.value);

});

But the code in listing 4.2 will only log the value of the sensor once—that’s of limited
use. It’s much more useful to look at sensor values over time. This is a job for event-
driven JavaScript.

THE SENSOR DATA EVENT IN JOHNNY-FIVE

Different objects in Johnny-Five provide different events that your code can bind to.
You can handle these events, when they occur, using a callback function.

 The Sensor class, for example, has a data event that gets triggered every time the
pin’s value is read successfully, as shown in the next listing.

sensor.on('data', () => {
console.log(sensor.value);

});

Listing 4.1 Instantiating a new Sensor object with Johnny-Five

Listing 4.2 Logging a sensor’s value

Listing 4.3 Logging values using the data event

When instantiating a Sensor, “pin”
is the only required property for the
passed options object.

This will only log once
(ready event fires once).

The data event is fired every
time a value is successfully
read from the pin.

95Working with analog sensors

TRYING OUT THE PHOTORESISTOR

Let’s put together our voltage-divider-enhanced photoresistor circuit with some
Johnny-Five code to sense changes in surrounding light conditions. Create a new file,
photoresistor.js, and populate it with the following code.

const five = require('johnny-five');
const board = new five.Board();

board.on('ready', () => {
const sensor = new five.Sensor({

pin: 'A0'
});
sensor.on('data', () => {

console.log(sensor.value);
});

});

Plug in the Arduino’s USB cable to your computer—now the board and breadboard
circuit have power. Execute the photoresistor script:

node photoresistor.js

Once the script is running, increase and decrease the amount of light reaching the
photoresistor by placing your hand over it or dimming the lights. As you do this, you
should see the values in the logged output change, which will look something like the
following.

$ node photoresistor.js
1464612512404 Device(s) /dev/cu.usbmodem1421
1464612512416 Connected /dev/cu.usbmodem1421
1464612515883 Repl Initialized
>> 354
354
355
355
355
355
354
353
432

ADJUSTING FREQUENCY, SCALE, AND THRESHOLD

Photoresistor values are scrolling by awfully fast. By default, Sensor will read, calcu-
late, and scale ADC data once every 25 ms. That’s why your photoresistor value logging

Listing 4.4 Photoresistor.js

Listing 4.5 Photoresistor data logging output

96 CHAPTER 4 Sensors and input

is scrolling by so briskly. It’s possible to adjust the frequency of these reads with the
freq parameter, as the following listing shows.

const sensor = new five.Sensor({
pin: 'A0',
freq: 1000

});

A more elegant approach is to bind to the change event instead of the data event. The
change event is fired whenever the sensor’s most recent value differs by more than a
threshold amount from the previously read value.

 The threshold value defaults to 1, which means that—because read sensor values
are integers—any change in value will trigger the change event. threshold is an attri-
bute on the Sensor object instance and can be changed at any point to alter the
threshold for triggering change events. The following listing combines this into a
script that logs out any time the sensor changes value by 5 or more (remember, possi-
ble values range from 0 to 1023).

var const = require('johnny-five');
var const = new five.Board();

board.on('ready', () => {
const sensor = new five.Sensor({

pin: 'A0'
});
console.log(sensor.value);

Listing 4.6 Sensor freq parameter

Listing 4.7 Logging changing photoresistor values

Values are in milliseconds: this
will read once per second.

Johnny-Five event binding and this
Sensor object events bind this to the Sensor object, meaning that you could write
code like the following:

sensor.on('data', function () {
console.log(this.value); // `this` is bound to `sensor`

});

Note that because of the binding that happens with arrow functions used as anony-
mous callbacks, the following won’t work:

sensor.on('data', () => {
console.log(this.value); // --> undefined

});

Logs out the sensor’s
initial value

97Working with analog sensors

sensor.threshold = 5;
sensor.on('change', () => {

console.log(sensor.value);
});

});

Because the actual voltage at Vout for the photoresistor circuit will vary depending on
what resistor is used at R2, the photoresistor’s changing values are more relative (it’s
getting brighter, it’s getting darker) than absolute (in foot-candles or whatever light
intensity is measured in). Other kinds of sensors provide a calibrated output voltage
that can be directly converted into fixed units, like degrees Celsius in the case of ana-
log temperature sensors.

4.1.5 Using an analog temperature sensor

The TMP36 is an analog temperature sensor manufactured by Analog Devices. It’s plen-
tiful, cheap, and easy to work with. Like other analog sensors, it provides a signal of vary-
ing voltage. You don’t have to build a voltage divider to use it, though: it provides a
varying output voltage on a third pin. All you have to do is connect the sensor to +5 V
and ground, and then read the voltage on the third, output-voltage pin (figure 4.17).

You can adjust
the threshold

attribute;
default is 1

change fires when value
changes by >= threshold

Figure 4.17 The schematic for the TMP 36 circuit

98 CHAPTER 4 Sensors and input

With the TMP36 and other similar analog temperature sensors, the output voltage can
be used to calculate a “real” temperature value. The TMP36 sensor’s voltage increases
linearly with temperature—given a voltage reading from the TMP36, the Celsius tem-
perature can be obtained by multiplying the current voltage by 100 and subtracting 50.
For example, if the output voltage from the sensor is 0.7 V,

Temperature in Celsius = 0.7 V * 100 – 50 = 20

To perform this calculation, however, you’d need to convert the ADC 10-bit reading
back into (approximate) voltage and also put the arithmetic into your code. To make
this convenient for us, Johnny-Five offers the Thermometer class, which supports a
number of different kinds of temperature sensors.

BUILDING THE CIRCUIT: TMP36 TEMPERATURE SENSOR

What you’ll need
 1 Arduino Uno and USB cable

 1 TMP36 sensor

 1 half-size breadboard

 Red (2), black (2), and green (1) jumper wires

The circuit for the TMP36 is shown in figure 4.18. Connect the TMP36 to power using
red and black jumper wires, and then connect its output (middle) pin to A0 with a
green jumper wire.

DON’T PLUG THE TMP36 IN BACKWARDS! TMP36 sensors don’t like to be
plugged in backwards. Make sure you check the orientation of the flat side of
the sensor when placing it into the circuit. After applying power to your cir-
cuit, touch the TMP36 sensor. If it feels unpleasantly hot to the touch—uh oh!
Disconnect power immediately and check the sensor’s orientation.

✔

Figure 4.18 Wiring the TMP36 sensor

99Working with analog sensors

LOGGING AND INSPECTING TMP36 DATA

Instantiating a Thermometer object is similar to using the Sensor class, but it needs
information about what kind of temperature sensor (controller) is being used. A
simple example of logging temperature is shown in the following listing.

var five = require('johnny-five');
var board = new five.Board();

board.on('ready', () => {
const tmp36 = new five.Thermometer({

controller: 'TMP36',
pin: 'A0'

});
tmp36.on('data', () => {

console.log(tmp36.celsius);
});

});

INTERACTING WITH COMPONENTS USING THE JOHNNY-FIVE REPL
When a Johnny-Five script is running, you can interact with it in your terminal
window. Or, you could, if all that console.log stuff wasn’t scrolling by. Sometimes
console.log is all you need, but for more convenient debugging or inspection
without having to restart the script or change the code, you can take advantage of
Johnny-Five’s REPL (read-evaluate-print loop).

 If you removed the console.log-ing data event handler from temperature.js and
executed the script, you’d see something like the following.

$ node temperature.js
1464614001498 Device(s) /dev/cu.usbmodem1421
1464614001506 Connected /dev/cu.usbmodem1421
1464614004970 Repl Initialized
>>

You can type JavaScript expressions at the double-arrow prompt and press Enter on
your keyboard—it’s an interactive prompt. Maybe you want to see what the value of
the tmp36 temperature sensor is, in Fahrenheit, as shown in the next listing.

>> tmp36.fahrenheit
ReferenceError: temp36 is not defined

at repl:1:1
at REPLServer.defaultEval (repl.js:264:27)
at bound (domain.js:287:14)
at REPLServer.runBound [as eval] (domain.js:300:12)

Listing 4.8 temperature.js

Listing 4.9 Johnny-Five’s REPL

Listing 4.10 What if you want to get information from a Johnny-Five component…?

Thermometer
requires a controller
parameter—about 15
different temperature
sensors are supported.

Like Sensor,
Thermometer

needs to know
which pin it’s on.

celsius, fahrenheit, and
kelvin are all attributes on
Thermometer instances.

100 CHAPTER 4 Sensors and input

at REPLServer.<anonymous> (repl.js:431:12)
at emitOne (events.js:77:13)
at REPLServer.emit (events.js:169:7)
at REPLServer.Interface._onLine (readline.js:211:10)
at REPLServer.Interface._line (readline.js:550:8)
at REPLServer.Interface._ttyWrite (readline.js:827:14)

This isn’t game over; we just missed a step. “Injecting” something into the scope of
Johnny-Five’s REPL requires us to be explicit about it.

 Within your Johnny-Five script, you can selectively inject things into the REPL that
you’d like to have available for inspection or manipulation when the script is running,
as shown in the next listing.

board.repl.inject({
tmp36: tmp36,
foo: 'bar'

});

Making the string 'bar' available as foo is kind of silly, but the point is that you can
make any kind of value you like available from within the REPL. You can then use the
REPL as a console for interacting with these items, as the following listing shows.

var five = require('johnny-five');
var board = new five.Board();

board.on('ready', () => {
const tmp36 = new five.Thermometer({

controller: 'TMP36',
pin: 'A0'

});
board.repl.inject({

tmp36: tmp36
});

});

Now, when you run node temperature.js, you won’t see data logging by, but you’ll
get a REPL prompt once the board is initialized. Then you can interact with the tmp36
object. Try typing this:

>> tmp36.celsius

Or this:

>> tmp36.fahrenheit

Listing 4.11 Injecting into the REPL

Listing 4.12 Altering temperature.js to use REPL injection

Things are injected into the
REPL as key-value pairs.

This makes the
tmp36 object

reference available
(as tmp36).

This makes the string ‘bar’
available as foo.

101Digital inputs

This can come in handy, especially when debugging or exploring more complex
components.

 The photoresistor is a good fit for measuring relative changes to an environmental
stimulus—it’s brighter, now it’s dimmer, now it’s brighter again. The TMP36 sensor is a
good fit for measuring environmental stimulus as fixed units—degrees Celsius or
Fahrenheit. Both produce voltage signals of infinite analog resolution (in theory, at
least), and the range of values available for software processing is defined by the
microcontroller’s ADC (10-bit, in the Uno’s case).

 For some types of environmental sensing, though, you don’t need a continuous set
of values as input. For these types of applications, you can use components that gener-
ate digital signals.

4.2 Digital inputs
Pins 0 through 13 on the Uno are digital pins. Each can be configured as either an
input pin or an output pin. When configured for input, a digital pin can evaluate,
based on the voltage present, whether it’s in a HIGH or LOW logical state.

 Buttons and some switches are good examples of components that provide simple
digital signals because they are binary. A button is either pressed or it isn’t: it’s on or it’s
off. This corresponds to digital input pins, whose states are also binary (LOW or HIGH).

4.2.1 Using a button as a digital input

Our challenge is to construct a circuit that correctly causes a digital pin to be in a
HIGH state when a push button (a.k.a. momentary switch) is pressed, but in a LOW state
otherwise. That way, our software can determine when a button is being pressed and
do something with that information.

Push-button connection refresher
Pins that share one side of a push button are only electrically connected when the
button is pressed. But pins on opposite sides of the button are always electrically
connected.

The pin connections of a typical push button

102 CHAPTER 4 Sensors and input

UNDERSTANDING LOGIC LEVELS

The Arduino’s microcontroller determines whether a given digital input pin is HIGH
or LOW based on the voltage present on the pin at the time that it’s read. As you
might expect in the Uno’s case, 5 V present on an input pin will make it logically
HIGH and 0 V makes it logically LOW. There’s some nuance here you need to know
about, however, because it will affect the design of the button circuit.

Let’s say you have a configured digital input pin on the Arduino but have nothing
connected to it yet. What state would you expect the pin to have if you read its value?
Turns out, it’s impossible to predict. Could be HIGH, could be LOW. If you read it over
time, you’d see LOWs and HIGHs pretty much at random. This kind of disconnected
behavior is called floating.

 This comes about because of the pin’s high impedance, in which it takes just a teeny-
tiny amount of current to move the pin between one logic level and the other. This is
a useful and efficient thing—the pin can detect changes in connected components
without needing to waste a lot of current to do so. Yet little blips commonly arising
from electrical noise in the environment or interference from other pins on the same
microcontroller are enough to make the pin swap around between LOW and HIGH
basically at random.

Voltages and logic levels
A digital pin doesn’t have to have exactly 5 V present to read HIGH. Similarly, low volt-
age of, say, 0.8 V, will result in a logical LOW. Each microcontroller has a set of volt-
age ranges that will result in a LOW state or a HIGH state, as well as a noise margin
in the middle.

In the case of the Uno’s ATmega 328P, input voltages from about 0–1.5 V will result
in a LOW state, whereas voltages greater than 3 V will read HIGH.

Voltage ranges for logical states on Arduino Uno pins. Any voltage below 1.5 V is LOW;
anything above 3 V, HIGH. Voltages between 1.5 V and 3 V fall in the noise margin and
should be avoided.

103Digital inputs

WIRING A BUTTON WITH A PULL-DOWN RESISTOR

What you’ll need
 1 Arduino Uno and USB cable
 1 push button
 1 10 k� resistor
 4 jumper wires
 1 half-size breadboard

What we need to do is build a safe circuit (one that doesn’t have a risk of a short cir-
cuit) that establishes a reliable “default” logic level when the button isn’t pressed—
LOW or HIGH, but one that won’t flop around randomly. One way this can be done is
by pulling the input pin to ground (0 V) with the aid of an additional resistor.

 When a pull-down resistor is present in the circuit, there’s always a connection
between pin 2 and ground, even when the button isn’t pressed (figure 4.19).

 This takes care of the floating problem—if any stray current shows up uninvited
when the button isn’t pressed, it’ll get wicked away to ground through the resistor
(left side of figure 4.19). Pin 2 will continuously read LOW (0 V) when the button isn’t
pressed.

 When the button is pressed (right side of figure 4.19), current flows at 5 V through
the button, and then into both pin 2 and ground—pin 2 will read HIGH. The pull-down

✔

Figure 4.19 A pull-down resistor “pulls” the digital pin to logical LOW when the component (button)
isn’t pushed (connected).

104 CHAPTER 4 Sensors and input

resistor performs another role here: it prevents a short circuit when the button is
pressed, limiting the current that flows.

The resulting wiring diagram (figure 4.20) isn’t too complex. Go ahead and wire the
button on the breadboard as shown, making sure to connect a 10 k� resistor between
pin 2 and ground.

A current divider in disguise
When using a pull-down resistor in the circuit, you’ll actually be creating a current
divider, even though it’s not immediately obvious. Remember from chapter 3 that cur-
rent division is a feature of parallel circuits (the circuit in the figure is a parallel circuit
because there’s more than one path an individual charge could take). When there’s
more than one path to choose, current will split up proportionally based on the resis-
tance in each path.

Internally, microcontroller pin circuitry includes a resistor with high resistance (on the
order of 100 k� to several megohms) when a pin is configured for input (high imped-
ance state). This internal resistor will play the part of R2. For R1, we have the 10 k�
pull-down resistor—high resistance, but about an order of magnitude less resistant
than the internal resistor (R2).

When current flows through the circuit (the button is pressed), a whole lot more of it
will go through the 10 k� (R1) resistor’s path than the path with the internal resistor
(R2).

In a current divider, each path gets a different current allotment, but both get the
same voltage. The bit of current that does reach pin 2 is at or near 5 V, which will set
the pin to HIGH.

Using a pull-down resistor in combination with an input pin actually creates a current
divider.

105Digital inputs

JOHNNY-FIVE’S BUTTON CLASS

Johnny-Five’s Button class takes care of configuring a digital output pin and provides
several features that you’d want in a button, including the ability to listen for button
pushes, as shown in the next listing.

const five = require('johnny-five');
const board = new five.Board();

board.on('ready', () => {
const pushButton = new five.Button(2);
pushButton.on('down', () => {

console.log('I have been pressed!');
});

});

Try out the code in listing 4.13. Connect your Arduino to USB power and run the
script:

$ node button.js

Once the board is initialized, every time you press the button down, you should see
this:

>> I have been pressed!

In this chapter, you’ve seen a few flavors of basic inputs: two kinds of analog sensors
and digital input with a push button. Inputs and sensors are vital for gathering infor-
mation about the physical environment, but it gets considerably more fun when you
actually do something with that information—when you create output. That’s what
you’ll be doing next.

Listing 4.13 button.js

Figure 4.20 The button circuit with a 10 k� pull-down resistor

106 CHAPTER 4 Sensors and input

Summary
 Analog sensors generate signals of varying voltage with (theoretically) infinite

resolution, and microcontrollers convert this signal to digital value equivalents
using analog-to-digital (ADC) conversion.

 The Arduino Uno has six analog input pins, which provide 10-bit ADC (1024
values). Its 14 digital pins can be configured as either input or output and have
binary logic levels: LOW or HIGH.

 Each component in a series circuit receives the same amount of current, but
voltage is apportioned based on the component’s proportional resistance. A
voltage divider uses this principle to convert a higher input voltage into a lower
output voltage, using two resistors wired in series.

 A voltage divider circuit creates a point of reference at which you can detect
changes in resistance as changes in voltage. This approach can be used to read
data from resistive sensors like a photoresistor.

 Classes like Sensor, Thermometer, and Button in Johnny-Five or equivalent
higher-level JavaScript frameworks can add convenience by abstracting away pin
configuration and tedious calculations and providing relevant events to bind to.

 Each branch in a parallel circuit receives the same amount of voltage, but cur-
rent is apportioned based on the branch’s proportional resistance. A current
divider uses this principle by using resistors wired in parallel.

 Using a pull-down resistor is one way to avoid a floating situation of indetermi-
nate logic level when digital inputs are disconnected or inactive.

107

Output:
 making things happen

Now it’s time to do something noisy. Or something bright. Or something blinky or
expressive. You’ve tried out a few basic LED tricks, but now we’re going to take a more
comprehensive look at some of the ways you can integrate outputs into projects.

This chapter covers
 Mastering more advanced LED-controlling techniques—

animating LEDs and using full-color RGB LEDs

 Using pulse-width modulation (PWM) support to make digital
output signals behave more like analog output signals

 The basics of bitshifting and binary operations in JavaScript

 Integrating a third-party weather API to create a multi-colored
LED “weather ball” gadget

 Wiring up and controlling a parallel LCD module with Johnny-
Five and the Uno

 Combining multiple input and output components to build an
advanced timer device

 Making noises and playing tunes with piezo components and
Johnny-Five

108 CHAPTER 5 Output: making things happen

For this chapter, you’ll need the following:

 Arduino Uno and USB cable

 2 standard LEDs, any color

 1 photoresistor

 1 common-cathode RGB LED

 3 push buttons

 1 16x2 parallel LCD module

 1 rotary potentiometer

 1 piezo

 3 10 k� resistors

 2 220 � resistors

 23 jumper wires in various colors

 1 half-size breadboard

109Lighting things up

5.1 Lighting things up
LEDs seem to do a lot more tricks than just turn on or off. If you look around at the
electronics embedded in your own electronic gadgets, you’ll see them pulsing or fad-
ing out. You may even see them change color.

 These common LED behaviors are, technically, illusions (figure 5.1). An LED can
emit only one wavelength of light—it can only be one color. And yet, LEDs around us
certainly appear to dim or take on different hues.

Time to become an LED magician—there’s an electronic technique we can harness to
make LEDs take on depth and intrigue.

5.1.1 Fading LEDs with pulse-width modulation (PWM)

OK, so an LED can only be on or off at any point in time. You’ve made one blink,
which is really just a cycle of periodic ons and offs. We’re going to get fancier with the
blinking, with the aim of tricking human eyes.

What you’ll need
 1 Arduino Uno and USB cable

 1 breadboard

 2 standard LEDs, any color you like

 2 220 � resistors

 Yellow (2) and black (1) jumper wires

Figure 5.1 LEDs emit a single color and are either on or off.

✔

110 CHAPTER 5 Output: making things happen

First, construct the circuit shown in figure 5.2. Next, create a file and add the code
shown in the following listing.

const five = require('johnny-five');
const board = new five.Board();

board.on('ready', () => {
const led1 = new five.Led(2);
const led2 = new five.Led(3);

board.repl.inject({
led1: led1,
led2: led2

});
});

This code doesn’t really do much. It instantiates two Led objects and makes them avail-
able in Johnny-Five’s REPL as led1 and led2. Run the script:

$ node experiment-LED.js

Once it’s up and running, you’ll be able to type commands at the REPL prompt.
First—and I know this is territory we’ve been through before—make one of the LEDs
blink. Type the following at the REPL prompt and press Enter:

>> led1.blink()

Listing 5.1 experiment-led.js

Figure 5.2 Wiring diagram for LED experimentation

Instantiates an Led
object on pin 2

Instantiates an
Led object on

pin 3

Injects the Led object
instances into the REPL

111Lighting things up

The first LED should be blinking now, in 100 ms periods (on for 100 ms, off for 100
ms)—this is the default phase length (speed of blink periods) for the blink method if
you don’t tell it otherwise.

 Now I want you to carefully gather up the Arduino and the breadboard with the
LEDs in one hand and wave it in front of your face. You’ll know you’re waving franti-
cally enough when the LED appears not to blink anymore but is just a smeared line.

 You’re fooling your own eyes. When things move too quickly, your eyes and brain
can’t quite keep up. Your brain, in effect, connects the dots for you and decides you’re
seeing a continuous line of light. If you’re a photographer, you can think of it as sort
of analogous to shutter speed—your own “shutter speed” isn’t fast enough, and you
end up with motion blur. This is why films and movies can appear fluid at 24 individ-
ual frames per second or so.

 The same goes for the detection of individual blinks. If a light blinks fast enough,
humans won’t be able to see the blinking at all (figure 5.3). Different humans have
different thresholds of perception—this explains why I get maniacally grumpy around
old fluorescents or CRTs with slow refresh frequencies while some of my colleagues
aren’t bothered at all. But everyone reliably loses the ability to discern individual
blinks at around 100 Hz (a hundred cycles per second).

Figure 5.3 We lose
the ability to discern
individual blinks when an
LED is moving quickly.

Make it stop!
If the blinking LED is driving you nuts, you can always stop the blinking with the
Led.stop instance method:

> led1.stop()

Depending on when the command is issued, the result may be an LED that’s off or
an LED that’s steadily on. If the LED is on and you want it off, use this:

> led1.off()

You’ll need to use both methods—you can’t just skip to the off method. The stop
will clear the interval that causes the blinking to happen—off won’t.

112 CHAPTER 5 Output: making things happen

So, great, what’s the point of making an LED blink so fast that the blinks are invisible
and it seems like it’s always on? Can’t we just turn an LED on steadily to get the same
effect?

 It turns out that interesting things come to pass if you mess around with the pro-
portion of time that the LED is on (versus off). If you’re blinking the LED really fast,
humans won’t be able to perceive the blink—that we’ve covered. But if the LED is only
on one-quarter of the time (off the other three-quarters), it will also appear consider-
ably dimmer.

 Let’s make this happen. Try (again in the REPL):

>> led1.on()
>> led2.brightness(64)

brightness is an instance method on Johnny-Five Led objects that takes an 8-bit
value (0–255). A value of 64 is, then, one-quarter of the brightest possible value. The
result of the call to led2.brightness(64) is that the LED spends 75% of its time off
and is lit 25% of the time. All of this turning on and off is happening at frequencies
too fast for the eye to pick out. You’ll note that led2 now appears less bright than
led1—it’s dimmer.

 The Uno’s microcontroller helps out here. It provides hardware support for a
technique called pulse-width modulation (PWM), which does the juggling of ons and offs
more quickly than software can easily provide. The percentage of time a PWM signal is
HIGH (on) is called the duty cycle. An output that is HIGH a quarter of the time is said
to have a 25% duty cycle (figure 5.4).

Figure 5.4 A 25% duty cycle

113Lighting things up

PWM hardware support is common because it’s quite useful, but its support varies
from board to board and it’s typically only available on certain pins. This is the case
with the Arduino Uno. PWM is only available on pins 3, 5, 6, 9, 10, and 11.

 Don’t worry, you don’t have to memorize that. If you look at your Arduino, you’ll
see that those pin numbers are silkscreened with a tilde (~) next to them (figure 5.5).
That indicates that PWM is supported on that pin.

 Now, back in the REPL, try this:

>> led1.brightness(64)

This won’t work. You’ll get an exception that starts with something like

Error: Pin Error: 2 is not a valid PWM pin (Led)

That’s Johnny-Five and firmata—the software includes mappings of which pins do
what on which boards.

 All right, we’ve looked at several things in our exploration here. People can’t dis-
cern blinks if they’re really fast. Changing the duty cycle of the signal into an LED
makes its brightness appear to change. One last thing, and then we’ll do something
with this knowledge.

BE SURE TO USE PINS WITH PWM SUPPORT FOR FEATURES THAT REQUIRE IT Methods
like brightness and several others you’ll need on Led instances require the com-
ponent to be connected to a pin that supports PWM. Johnny-Five will throw an
error if you try to invoke a PWM-requiring method on a pin that doesn’t support
it. When designing your circuits, it’s good to keep in mind which pins support
PWM to save time and headaches later.

Try this in the REPL:

>> led1.on()
>> led2.brightness(128)

Figure 5.5 Only some of the Arduino Uno’s
digital pins support PWM. They’re marked
with ~.

114 CHAPTER 5 Output: making things happen

128 is exactly in the middle of the brightness range, so you may expect that these two
JavaScript expressions would result in the second LED shining at half brightness com-
pared to the first, which is on full blast. But unless you squint really hard, both LEDs
look about the same. You might be able to see a slight difference, but not much.

 That’s because brightness wins. brightness(128)does result in a duty cycle of 50%—
the LED is only on half of the time—but the brain skews that toward brightness. Put
another way, Johnny-Five’s 8-bit brightness scale 0–255 appears non-linear, entirely due
to human perception.

5.1.2 Animating LEDs with PWM

Now you know how to turn an LED on or off, blink it, and, assuming it’s connected to
a pin that supports PWM, set its brightness. To complement this small stable of tricks,
you can also animate the brightness of an LED, making it appear to pulse or bounce or
breathe or slowly fall asleep—your imagination is the limit here.

 Johnny-Five includes an Animation class, which offers fine-grained control over
animations of—at the time of writing—the brightness of LEDs and the motions of ser-
vos (we’ll meet servos in chapter 6).

 Working with animations in Johnny-Five involves a few steps, shown in the next listing.

const pulsingLED = new five.Led(3);
const options = { /* animation details */ };
const animation = new five.Animation(pulsingLED);
animation.enqueue(options);

Let’s take this for a spin by making an LED appear to pulse. Johnny-Five needs us first
to define how we want the animation to behave.

 The pulsing LED should fade in and then fade out again in loops that use attractive
easing. Easing functions are functions that vary the rate of an animation during its
duration. For example, an animation that eases out starts out moving quickly but gets
slower as it goes.

 Easing functions are typically non-linear, integrating sine, cubic, exponential, and
other curves into the equation. An in-out-sine easing creates an animation with a
rhythm like that shown in figure 5.6. Easing functions can make an animation more
lifelike or give it different qualities of motion. Of course, LEDs don’t move, but
changes in their brightness can definitely be animated.

 The inOutSine easing is what we’ll use for pulsing, as the changes to brightness start
out slow and then accelerate midway through the brightening of the LED. A pulse is a
metronomic animation, meaning that once the animation runs forward, it should then
run backward, moving between its start and end points in a back-and-forth loop.

Listing 5.2 Steps for animating components in Johnny-Five

Creates an options object containing
animation details—more on this shortly Instantiates an

Animation object and
passes it a target
component—the target
will be animated

Starts the animation
with enqueue

115Lighting things up

We also need to tell the animation what it’s easing between by defining keyframes (fig-
ure 5.7). Keyframes define the specific states (like still frames) between which the
animation should fill in intermediate frames using the easing function. The process
of creating these intermediate frames or states between keyframes is known as tween-
ing. For this simple pulse, the keyframes are simple: totally off (brightness 0) and
totally on (brightness 255).

Finally, we need to give the animation a duration, in milliseconds. Each segment of the
animation—going from dark to bright or bright to dark—should take one second. Put
together, the animation options look like the following code.

const options = {
easing : 'inOutSine',
metronomic: true,
loop : true,
keyFrames : [0, 255],
duration : 1000

};

Listing 5.3 Animation options for pulsing

Figure 5.6 inOutSine is one of a couple of
dozen easing function options available in
Johnny-Five via its dependency on the ease-
component npm package.

Figure 5.7 The pulse animation
will loop metronomically
between two basic keyframes
(brightness 0 and brightness
255) with inOutSine easing.

116 CHAPTER 5 Output: making things happen

Let’s see what this looks like, shall we? You can use the circuit from the last set of
experiments for this part (you won’t be using the first LED). Create a new file called
animate-LED.js. Paste the contents from experiment-LED.js into animate-LED.js as a
starting point, and edit the code to create a single LED on pin 3. Add the options
object after the instantiation of the pulsing Led object as follows.

const five = require('johnny-five');
const board = new five.Board();

board.on('ready', () => {
const pulsingLED = new five.Led(3);
const options = {

easing : 'inOutSine',
metronomic: true,
loop : true,
keyFrames : [0, 255],
duration : 1000

};
// ...

});

Steps 2 and 3 are next: creating an Animation object and making it go with enqueue.

const five = require('johnny-five');
const board = new five.Board();

board.on('ready', () => {
const pulsingLED = new five.Led(3);
const options = {

easing : 'inOutSine',
metronomic: true,
loop : true,
keyFrames : [0, 255],
duration : 1000

};
const animation = new five.Animation(pulsingLED);
animation.enqueue(options);

});

Now run the script:

$ node animate-LED.js

And there you have it. Well, sort of. I made you do it the hard way, because as it hap-
pens, the code in the following listing does the same thing.

Listing 5.4 animate-led.js

Listing 5.5 Animation instantiation and enqueuing

Passes the target—
the thing to animate.
In this case, the LED
(pulsingLED).

Enqueues the animation and
passes it the animation options.

117Lighting things up

const five = require('johnny-five');
const board = new five.Board();

board.on('ready', () => {
const pulsingLED = new five.Led(3);
pulsingLED.pulse(1000);

});

Underneath, the implementation of pulse is similar to what we did earlier, but it’s
such a common use that it’s been simplified into a method for Johnny-Five users.

 Pulsing LEDs can be a nice way of grabbing attention without being too invasive.
Using what we’ve covered, you can make a simple timer using just a few lines of
code—it will start pulsing when the time’s up, as the following listing shows.

const five = require('johnny-five');
const board = new five.Board();

board.on('ready', () => {
const pulsingLED = new five.Led(3);
const timerLength = 10000;
setTimeout(() => {

pulsingLED.pulse();
}, timerLength);

});

Of course, this timer is of limited use. You can’t change the timer’s length or when the
timer starts, or start a new timer. Don’t worry; we’ll make it better in a bit.

5.1.3 Combining input with LED output

Of course, output is more interesting if it’s responding to some sort of meaningful
input. The connections between input and output are what makes the internet of
things tick.

 One such coupling could be a photoresistor and an LED to create a brightness-
aware nightlight. When the readings from the photoresistor are lower, the LED can be
brighter—that is, the “nightlight” turns on at “night,” when it’s darker.

What you’ll need
 1 Arduino Uno and USB cable

 1 standard LED, any color (you can reuse the pulsing LED from above)

 1 photoresistor

 1 10 k� resistor

 1 220 � resistor

 Yellow (1), red (2), green (1), and black (1) jumper wires

 1 half-size breadboard

Listing 5.6 Easier way to pulse an LED

Listing 5.7 The world’s simplest timer

Led.prototype.pulse takes a
duration in ms (default 1000).

Defines a
 timer length

 in milliseconds
(here 10 seconds)

Sets a timeout to start
pulsing the LED after 10
seconds

✔

118 CHAPTER 5 Output: making things happen

Leave the LED connected to pin 3 on the breadboard (the pulsing LED from the last
example), but remove the other LED and add a photoresistor and a 10 k� resistor as
shown in figure 5.8.

 Listing 5.8 shows a first attempt at a light-sensitive nightlight using Light, a class in
Johnny-Five that provides features for working with photoresistors (ldr stands for
light-dependent resistor, another name for a photoresistor).

const five = require('johnny-five');
const board = new five.Board();

board.on('ready', () => {
const nightlight = new five.Led(3);
const ldr = new five.Light({ pin : 'A0', freq: 500 });
ldr.on('change', () => {

nightlight.brightness((ldr.value >> 2) ^ 255);
});

});

The following line may have made your eyes cross if you haven’t spent much time in
the world of bitwise operators:

nightlight.brightness((photoresistor.value >> 2) ^ 255);

Listing 5.8 A naive nightlight

Figure 5.8 Wiring diagram for automatic nightlight

Checking light levels twice
per second (every 500 ms,

the value of freq) should
more than suffice.

Sets LED brightness to
“the opposite” of the
photoresistor’s value

119Lighting things up

Recall that the Arduino Uno’s microcontroller provides ADC readings as 10-bit inte-
gers (0–1023). Meanwhile, the brightness method on the Led object expects an 8-bit
number (0–255).

 The expression photoresistor.value >> 2 shifts photoresistor.value to the right
by two bits. That means two bits pop off the right side of the number and are never heard
from again (figure 5.9). In the case of photoresistor.value >> 2, in goes a 10-bit num-
ber, its two least significant digits are booted out, and what’s returned is an 8-bit number.

You can think of the 10-bit number as being too precise for an 8-bit input; the bitshift-
ing right by 2 “rounds” it to a lower resolution that brightness can use.

 The ^ 255 part uses the bitwise XOR (exclusive OR) operator (^) to obtain what I’m
going to loosely call “the opposite” 8-bit number from the left-hand argument. XOR
performs a comparison on each pair of bits and returns 1 in the digit’s place only
when the digits evaluated are different—when one is a 1 and one is a 0 (figure 5.10).

 The expression (photoresistor.value >> 2) ^ 255 means, then, shift photoresis-
tor.value 2 bits to the right (making it an 8-bit number) and subsequently XOR the resulting
value with 255.

Figure 5.9 Bitshifting a 10-bit number to the right by 2 results in an 8-bit number.

Figure 5.10 The XOR operation compares each binary digit, producing a 1 if the binary digits
are different.

120 CHAPTER 5 Output: making things happen

BITSHIFTING ALL OVER THE PLACE Bitshifting and bitwise operations may feel
foreign to software developers who usually work in higher-level code, but it
comes up all over the place when working with hardware. The Mozilla Devel-
oper Network has a nice reference of JavaScript bitwise operators, which con-
tains the key things you’ll want to know (http://mng.bz/CLvy).

The first version of the nightlight has some shortcomings, which you can see in action
by running it:

$ node nightlight.js

For one, the LED is always on at some brightness, even when readings for the photore-
sistor are near the brightest possible values. Wouldn’t we want the LED to come on
only when it’s darker? We don’t need it on during broad daylight. The second version
of the nightlight code addresses that by replacing what happens inside the change
callback function, as shown in the following listing.

ldr.on('change', () => {
if (ldr.level < 0.5) {

nightlight.brightness((ldr.value >> 1) ^ 255);
} else {

nightlight.off();
}

});

In this variant, the LED is switched off entirely if the photoresistor’s level is greater
than or equal to 0.5 (nightlight.off()).

 If the photoresistor.level is less than 0.5 (50%), we know that its 10-bit value also
must be less than 512 (because 511 is the middle of the range of possible 10-bit
values, 0–1023). That means photoresistor.value is an integer somewhere from 0
to 511, inclusive. All of the numbers in that range are 9-bit numbers (0–511). That means
we only need to shift one bit to the right to convert the value to an 8-bit number (0–255).

 The end result is that the LED will grow increasingly bright as photoresistor values
decrease from 511 to 0.

 But we can still do better. As you saw in chapter 4, even when choosing the best
possible resistor value for the photoresistor circuit’s voltage divider, you won’t be able
to get the full range of voltages from 0 to 5 V. It would be better if the nightlight could
calibrate itself based on the real range of conditions and readings it’s encountering, as
shown in the next listing.

const five = require('johnny-five');
const board = new five.Board();

board.on('ready', () => {

Listing 5.9 Slightly improved nightlight

Listing 5.10 Self-calibrating nightlight

Light instances have a level value, which is a percentage between 0.0 and 1.0.

Changes the calculation
of the LED brightness

LED is off if level >= 0.5

http://mng.bz/CLvy

121Lighting things up

const nightlight = new five.Led(3);
const ldr = new five.Light({ pin : 'A0', freq: 500 });
var dimmest = 1024,

brightest = 0;
ldr.on('change', () => {

if (ldr.value < dimmest) { dimmest = ldr.value; }
if (ldr.value > brightest) { brightest = ldr.value; }

const relativeValue = five.Fn.scale(ldr.value, dimmest, brightest, 0, 511);
if (relativeValue <= 255) {

nightlight.brightness((relativeValue >> 1) ^ 255);
} else {

nightlight.off();
}

});
});

The nightlight code in listing 5.10 makes two changes. One, it keeps track of the
dimmest and brightest actual values seen during the nightlight’s script lifetime. Then
it takes advantage of the scale utility method available on the Fn object on Board
instances.

 scale(value, fromLow, fromHigh, toLow, toHigh) takes a value that currently
exists in a range between fromLow and fromHigh (the dimmest and brightest values
seen) and remaps it to a range between toLow and toHigh (0 and 511), proportionally.

 The resulting number will be a 9-bit number (between 0 and 511). Now we can
proceed, knowing that values <= 255 are in the lower half of the observed values. The
nightlight will continue to adjust itself (calibrate low and high) as it runs over time.

5.1.4 Going full-color with RGB LEDs

All right, that’s some extensive coverage of dimming an LED, but what about LEDs that
seem to change color? Sure, a single LED can only ever be one color—one wavelength—
but if you group red, green, and blue LEDs in a single package and control the brightness
(duty cycle) of each component LED, voilà! All the colors of the rainbow.

 RGB LEDs have four legs. There’s one leg for each LED (red, green, blue). The
fourth leg is either a cathode or an anode. Common-cathode RGB LEDs—where all
three color LEDs share a single cathode leg—are the kind we’ll be using (figure 5.11).
Common-anode RGB LEDS, which have a shared anode leg, are also available.

Keeps track of the dimmest
and brightest readings it sees

Updates dimmest
and brightest if it
encounters lower
and higher values

Scales the current value
to a 9-bit number

between dimmest and
brightest readings

Figure 5.11 Common-cathode
RGB LEDs have three component
LEDs (red, green, blue) in one
package. The longest leg is the
shared cathode.

122 CHAPTER 5 Output: making things happen

Like regular LEDs, RGB LEDs allow you to control brightness with PWM, but now there
are three LEDs representing the primary colors of light. For common-cathode LEDs, a
higher-percentage duty cycle on a component color LED will make that color brighter,
whereas a lower duty cycle makes it dimmer.

5.1.5 Build your own “weather ball”

I grew up in Portland, Oregon, and when I was a kid, spotting the weather ball on top
of the Standard Insurance Plaza was always a little thrill. The weather ball provided a
very basic encoded visual representation of the weather forecast for the next 24 hours
or so. The pole-mounted weather ball was large enough to be seen throughout the
city, and it was covered with lights.

 It only had six possible states. Predicted temperature trend was represented by
color: red if it’s forecast to get warmer, white if it’s getting colder, green if it’s staying
about the same. If precipitation was in the offing, it would blink. Simple, and yet,
remarkably clear and useful. Let’s make one.

What you’ll need
 Arduino Uno and USB cable

 1 common-cathode RGB LED

 1 220 � resistor

 Red (1), green (1), blue (1), and black (1) jumper wires

 1 breadboard

Wire up an RGB LED circuit as shown in figure 5.12.

✔

Figure 5.12 Wiring diagram for the weather ball

123Lighting things up

Now we need the weather forecast! The service Dark Sky provides a weather forecast API
that, at the time of writing, provides free results for up to 1,000 queries a day. You do
need to sign up for an API key, which you can do at https://darksky.net/dev/register.
You may need to provide a credit card number to sign up for the service.

 Once you have a developer API key, write it down and keep it somewhere reason-
ably safe. You’ll also need your latitude and longitude, which you can find on
http://mygeoposition.com/.

 Create a new file called weatherBall.js. First, let’s collect some settings for the
weather ball, as shown in the following listing.

const API_KEY = 'YOUR API KEY HERE';
const LAT = '43.3463760';
const LONG = '-72.6395340';
const API_URL = 'https://api.darksky.net/forecast';

Time to take care of our dependencies:

$ npm install johnny-five request

We’ll use the request package to make API calls to Dark Sky. Add requires to the top
of the file, and go ahead and instantiate a board with Johnny-Five. Notice in the next
listing that Johnny-Five provides a special kind of Led component class for RGB LEDs:
Led.RGB.

const five = require('johnny-five');
const request = require('request');
// SETTINGS AS BEFORE

var board = new five.Board();
board.on('ready', () => {

console.log('Powered by Dark Sky: https://darksky.net/poweredby/');
const rgb = new five.Led.RGB({ pins: [3, 5, 6] });
// Make request to API

});

Next, we need to get some data about the forecast by requesting it from the Dark Sky
API in the next listing.

//...
board.on('ready', () => {

console.log('Powered by Dark Sky: https://darksky.net/poweredby/');
const rgb = new five.Led.RGB({ pins: [3, 5, 6] });
const requestURL = `${API_URL}/${API_KEY}/${LAT},${LONG}`;

request(requestURL, function (error, response, body) {

Listing 5.11 Settings for the weather ball

Listing 5.12 Instantiating a board

Listing 5.13 Requesting data from the Dark Sky API

I’m in Vermont. Change the LAT and
LONG values to your own location.

You shouldn’t need
to change this URL.

Puts together the request URL

https://darksky.net/dev/register
http://mygeoposition.com/

124 CHAPTER 5 Output: making things happen

if (error) {
console.error(error);

} else if (response.statusCode === 200) {
const forecast = JSON.parse(body);
console.log(forecast);

}
});

});

Assuming everything went OK, you’ll now have data to work with. Let’s make the
weather ball go, as shown in the following listing.

request(requestURL, function (error, response, body) {
if (error) {

console.error(error);
} else if (response.statusCode === 200) {

const forecast = JSON.parse(body);
const daily = forecast.daily.data;
const willBeDamp = daily[1].precipProbability > 0.2;
const tempDelta = daily[1].temperatureMax - daily[0].temperatureMax;
console.log(forecast);

if (tempDelta > 4) {
rgb.color('#ff0000'); // warmer

} else if (tempDelta < -4) {
rgb.color('#ffffff'); // colder

} else {
rgb.color('#00ff00'); // about the same

}
if (willBeDamp) { rgb.strobe(1000); }

}
});

Listing 5.14 Make the weather ball go

If the response comes back OK…

Parses the response body as JSON

Logs the forecast object to the REPL

daily.data is an Array
with seven day-forecast
elements.

daily[1] is
tomorrow.
Is it likely

to rain?

daily[0] is today. How much is
the temperature changing?

Sets the color of the RGB LED based on
how much the temperature is changing

strobe is the same as blink—
blink is an alias to strobe.

Troubleshooting the circuit
For maximum flexibility, methods related to colors on Johnny-Five component object
instances—most relevantly, Led.prototype.color in this case—accept several dif-
ferent color formats, such as these:

 Hex (string)—Familiar to web developers, RGB hex values like "#00ff00"
(bright green) can be used. It works with or without the leading #.

 CSS color name (string)—“red” or “darksalmon” or “lemonchiffon” or any
other valid CSS color name works.

 Array of R, G, B values (array)—Each element of the array should be an 8-bit
value, such as [0x00, 0xff, 0x00] or [0, 255, 0].

 Object of RGB values (object)—Again, 8-bit values should be used, such as
{ red: 0x00, green: 0xff, blue: 0x00}

Keep up to date with the latest at http://johnny-five.io/api/led.rgb/.

http://johnny-five.io/api/led.rgb/

125Working with parallel LCD displays

Now run your weather ball:

$ node weatherBall.js

The sensors and outputs we’ve used in examples so far have only required a few wires
and have had simple hookups. In the next section, you’ll meet a component that has a
bunch of wires, but it isn’t hard to work with as long as you’re paying attention.

5.2 Working with parallel LCD displays
LCDs (liquid crystal displays) can display characters and shapes, making them useful
outputs for tons of projects. Their resolution is often defined in terms of how many
characters they can display. The 16x2 LCD module we’ll use in the following experi-
ments can display up to 32 characters total: 16 each on 2 lines. Each “character” slot is
actually its own matrix of 5x7 dots; non-character shapes can also be represented.

 LCD modules are available with different interfaces, including several serial
options (you’ll learn about serial communication in chapter 7). The module shown in
figure 5.13 has a parallel interface.

Don’t panic when you see the wiring diagrams in this section. Wiring up parallel LCDs
requires a fistful of jumper wires, but working with them isn’t complicated. Make sure
you pay attention to which wires go where when you’re plugging things in and you’ll
be fine. Improving the timer project from earlier in the chapter admittedly requires
more jumper wires than you’ve yet seen in one place, but it’s a good exercise for piec-
ing together more-complex circuits.

5.2.1 Making a full-featured timer with LCD

What you’ll need
 1 16x2 5 V parallel LCD module, such as any of SparkFun’s basic 16x2 5 V parallel

LCD modules

 1 standard LED, any color

 3 push buttons (momentary switches)

Figure 5.13 16x2 parallel
LCD modules are available
from many manufacturers.
They have 16 pins and an
LED backlight.

✔

126 CHAPTER 5 Output: making things happen

 1 rotary potentiometer

 1 220 � resistor

 3 10 k� resistors

 1 piezo (optional)

 23 jumper wires

 1 half-size breadboard

This smarter timer will allow you to adjust the timer’s duration using buttons (even
when the timer is running!) and will count down the remaining time on the LCD. You
can pause and restart the timer, as well. When the time’s up, an LED will pulse to (gen-
tly) grab your attention.

BUILDING THE CIRCUIT

The fully constructed circuit will look like figure 5.14. We’ll break it down into a few
steps to make it less intimidating.

Figure 5.14 The fully
built LCD timer

127Working with parallel LCD displays

CONNECTING AND TESTING BUTTONS

Let’s start with some buttons that will allow a user to control the timer. From left to
right, the buttons in figure 5.15 are

1 A Down button (represented by downButton in the following code), which will
subtract one second from the current timer

2 An Up button (upButton), which will add one second to the current timer
3 A toggling Go button (goButton), which will start and pause the timer

Make sure the buttons straddle the center notch and are oriented as shown in fig-
ure 5.15. Each button is connected to ground through a 10 k� pull-down resistor,
and to the +5 V power rail with a jumper wire.

 Create a new file called timer-advanced.js and start by adding the following code to
handle button presses.

const five = require('johnny-five');
const board = new five.Board();

Listing 5.15 Test the Buttons in timer-advanced.js

Figure 5.15 Wiring diagram
showing only the buttons:
Down, Up, and Go

128 CHAPTER 5 Output: making things happen

board.on('ready', () => {
const downButton = new five.Button(2);
const upButton = new five.Button(3);
const goButton = new five.Button(4);
downButton.on('press', () => {

console.log('down');
});
upButton.on('press', () => {

console.log('up');
});
goButton.on('press', () => {

console.log('go');
});

});

By beginning with some simple button handlers, you can validate that your buttons
are wired correctly before moving on to other parts of the device. Run the script (node
timer-advanced.js) and verify that pressing the different buttons logs the correct
message to the console.

TROUBLESHOOTING THE BUTTONS If pressing the buttons isn’t giving you the
results you expect, make sure the jumper wires from the button’s output are
connected to the Arduino correctly—specifically, that the breadboard side of
the connection is in a hole between the button’s output leg and the resistor.

Double-check that the button’s input leg is connected to power and that
the 10 k� pull-down resistors connect each button to ground. Also make sure
your push button’s orientation is correct—most buttons fit more comfortably
across the center notch in one orientation (the correct one) but there are lots
of different kinds of buttons out there.

CONNECTING THE LCD
With the buttons squared away, we can move on to connecting the LCD module to the
breadboard, connecting to most of its 16 pins (figure 5.16).

Figure 5.16 A 16x2 parallel
LCD module

129Working with parallel LCD displays

Go ahead and connect the LCD to the breadboard as shown in the LCD positioning
diagram (figure 5.17), making sure the leftmost pin of the LCD module is connected
to the leftmost row of the breadboard, as in the wiring diagram. The LCD’s pins are
numbered 1–16, starting from the left in this orientation.

LCD MODULE PIN OUTS Most common 16x2 parallel modules have the same
pin orientation, with pin 1 at the left and 16 at the right, when in the orienta-
tion shown in the LCD positioning diagram (figure 5.17). Double-check that
your LCD module has the same pin orientation—you may need to flip your
LCD around if not.

Next, connect the potentiometer to the breadboard.

WIRING A CONTRAST-CONTROL POTENTIOMETER

Like photoresistors, potentiometers are a kind of variable resistor (figure 5.18).
Potentiometers have three pins: two power pins and a third, middle pin. As the knob
is turned on a rotary potentiometer (or slid on other kinds of potentiometers), the

Figure 5.17 Wiring diagram of
timer including potentiometer and
LCD placement

130 CHAPTER 5 Output: making things happen

voltage on its middle pin changes. Potentiometers have internal voltage dividers, so
their output voltages can be read directly—we don’t have to build a voltage divider
like we do with photoresistors.

 In this circuit, the potentiometer’s middle pin is connected directly to the LCD’s
pin 3. The LCD’s onboard electronics read the voltage on that pin to determine the
contrast of the display. Rotating the potentiometer will, therefore, adjust the contrast.

 Your potentiometer might be a different size or shape than the one shown in the
LCD positioning diagram (figure 5.17): that’s fine. Connect its outer pins to power
and ground—you can’t get it backwards, as potentiometers aren’t polarized. Either
orientation works. Next, connect the potentiometer’s middle leg to pin 3 of the LCD
(remember, connections don’t continue across the center notch).

COMPLETING THE LCD’S CONNECTIONS

Onward! The LCD has several power connections (figure 5.19). Connect LCD pins 1, 5,
and 16 to the ground power rail and pins 2 and 15 to the source power rail.

Figure 5.18 Potentiometers
are variable resistors. They
come in several shapes and
sizes.

Figure 5.19 Wiring diagram showing the
breadboard power connections to the LCD

131Working with parallel LCD displays

The connections to LCD pins 1 and 2 power the LCD itself, and LCD pins 15 and 16
power the display’s LED backlight.

 Pin 5 is a read/write (R/W) pin. When it’s pulled to ground, it puts the LCD in
write mode, which is what one often wants when using an LCD—to write to it.

 The rest of the pins we’ll use on the LCD will connect directly to the Arduino’s pins
(figure 5.20).

 LCD pin 4 is the register select (RS) pin. At certain times, Johnny-Five’s underlying
software needs to send instructions to the LCD to tell it how to behave. At other times,
it needs to send the specific data for display. This pin allows it to switch between the two
different memory registers for instructions and data. It should be connected to pin 7 on
the Arduino.

 Pin 6 on the LCD is the enable (EN) pin. It should be connected to pin 8 on the
Arduino. Writing a voltage to this pin prompts the LCD to read incoming data waiting
for it on the data pins.

 Data pins, eh? Those are the last remaining LCD connections. Pins 7 through 14
on the LCD are parallel data pins (D0–D7), which represent the bit values of data writ-
ten to the registers of the device. You only need to connect four of the eight—D4
through D7 (LCD pins 11, 12, 13, and 14, connected to pins 9, 10, 11, and 12 on the
Arduino respectively). Whew. There are a lot of wires!

Figure 5.20 Wiring diagram showing
all of the LCD connections

132 CHAPTER 5 Output: making things happen

CONTROLLING THE LCD WITH JOHNNY-FIVE

You can take your LCD for a spin by using the Johnny-Five LCD class. By default,
Johnny-Five’s LCD object constructor will treat the LCD as a parallel LCD. It expects an
array of six pin numbers for wires attached to different pins on the LCD: register select
(RS), enable (EN), and four data connections (D4, D5, D6, and D7).

 The details of interacting with parallel LCDs are fairly low-level, but Johnny-Five
abstracts much of that away for you. Useful LCD methods in Johnny-Five include these:

 cursor(row, column)—Positions the cursor before displaying text
 print(str)—Displays text starting at the current cursor position
 clear()—Clears the LCD’s contents

Try it out by adding more code to your timer-advanced.js script, as shown in the fol-
lowing listing.

const five = require('johnny-five');
const board = new five.Board();

board.on('ready', () => {
const downButton = new five.Button(2);
const upButton = new five.Button(3);
const goButton = new five.Button(4);
const lcd = new five.LCD([7, 8, 9, 10, 11, 12]);
/** button handler functions... **/
lcd.cursor(0, 0).print('hello, world');
lcd.cursor(1, 0).print('hello, again');

});

Run the script (node timer-advanced.js) and, once it’s running, turn the potentiom-
eter’s dial to adjust the contrast on the LCD.

 The LCD should display “hello, world” on the first line and “hello, again” on the
second line.

TROUBLESHOOTING THE LCD If your LCD doesn’t seem to work right, or at all,
the first thing to do is double-check all of the wire connections and make sure
they’re connected to the correct pins on the Arduino.

If your LCD doesn’t light up, check the power connections on pins 15 and 16
(backlight power).

Make sure the LCD module is seated correctly and that the pins are aligned
accurately.

Listing 5.16 Test the LCD

Instantiates a Johnny-
Five LCD object

Positions the cursor on the
0th line, 0th position (top left)
and prints “hello, world”

Writes “hello, again” to the
LCD’s second line, 0th position

133Working with parallel LCD displays

PROGRAMMING THE TIMER’S LOGIC

Our LCD circuitry is ready. It’s time to program the timer. We’ll break this down into
chunks, but an overview of the timer’s eventual structure is shown here.

const five = require('johnny-five');
const board = new five.Board();

// constants

board.on('ready', () => {
// Initialize J5 components for buttons and LCD
// Initialize some variables

function init () {
// initialize timer

}

function showRemaining () {
// format remaining timer duration and
// update LCD display

}

function adjustTime (delta) {
// add or remove delta milliseconds
// to/from timer duration

}

function start () {
// start the timer
// use setInterval to invoke tick()

}

function pause () {
// pause the timer

}

function tick () {
// update timer values internally
// if timer is over, chime() and reset timer
// otherwise, showRemaining()

}

function chime () {
// pulse the indicator LED

}

// add button-press handlers

// initialize the timer
});

Listing 5.17 Overview of timer application structure

134 CHAPTER 5 Output: making things happen

Jumping in from the top, a section of variable initialization sets up some of the values
we’ll need for operating the timer, as shown in the following listing. Add these to
timer-advanced.js.

const five = require('johnny-five');
const board = new five.Board();

const DEFAULT_TIMER = 60000;
const UPPER_LIMIT = 99 * 60000;
const LOWER_LIMIT = 1000;

board.on('ready', () => {
const downButton = new five.Button(2);
const upButton = new five.Button(3);
const goButton = new five.Button(4);
const lcd = new five.LCD([7, 8, 9, 10, 11, 12]);
const alertLED = new five.Led(6);
var remaining, timer, timeString, lastTimeString, timestamp, lastTimestamp;

// ...
});

The 99-minute upper limit is based on the way the remaining time is formatted on the
LCD (mm:ss). Longer durations wouldn’t fit.

 Speaking of display formatting, let’s get that going. It’s time to add a function to
initialize a timer and to show the time remaining in the current timer on the LCD.
The next bit of code to add defines the init() and showRemaining() functions.

// ...
board.on('ready', () => {

// ... components and variable initialization
function init () {

remaining = DEFAULT_TIMER;
lastTimeString = '00:00';
timeString = '';
showRemaining();

}

function showRemaining () {
var minutes, seconds, minPad, secPad;
minutes = Math.floor(remaining / 60000);
seconds = Math.floor((remaining % 60000) / 1000);
minPad = (minutes < 10) ? '0' : '';
secPad = (seconds < 10) ? '0' : '';
timeString = `${minPad}${minutes}:${secPad}${seconds}`;
if (timeString != lastTimeString) {

lcd.cursor(0, 0).print(timeString);
}

}
// ...

});

Listing 5.18 Setting up some values

Listing 5.19 Initializing and displaying timer remaining time

60 seconds is the default
timer length, in ms. You
can change this if you like.

The upper limit of the
timer is 99 minutes.

You can’t make the timer
shorter than one second.

Initializes a new timer
and some variables

Formats and displays
the remaining time in
this timer

Only updates the LCD if the
formatted string has changed

135Working with parallel LCD displays

The showRemaining function will get invoked frequently when the timer is actually
running. The check to make sure the time string has changed before updating the
LCD (timeString != lastTimeString) will improve performance. The time remain-
ing in the current timer will display at the top left (cursor position 0, 0) of the LCD.

 Onward! upButton and downButton should adjust the timer’s duration when
pressed, adding or removing a second, respectively. The adjustTime() function (in
listing 5.20) takes a delta in milliseconds and adjusts the timer’s duration by that
amount, making sure to keep the total duration within bounds.

 Button handlers need to be registered to invoke adjustTime(), and this is also a
good spot to initialize the timer (init()).

 Add adjustTime() and the button handlers as follows.

// ...
board.on('ready', () => {

// ... variable and component initialization
function init () { /* ... */ }
function showRemaining () { /* ... */ }

function adjustTime (delta) {
remaining += delta;
if (remaining < LOWER_LIMIT) {

remaining = LOWER_LIMIT;
} else if (remaining > UPPER_LIMIT) {

remaining = UPPER_LIMIT;
}
showRemaining();

}

downButton.on('press', () => { // remove a second
adjustTime(-1000);

});
upButton.on('press', () => { // add a second

adjustTime(1000);
});

init();
});

Now, let’s hook up the Go button. That button should toggle the timer (play/pause).
That means we’ll also need logic for activating the timer—invoking the tick() func-
tion every 250 ms—and pausing it, as shown in the next listing.

// ...
board.on('ready', () => {

// ... variable and component initialization

Listing 5.20 Add time-adjustment handler functions

Listing 5.21 Making the timer tick

The timer’s duration has
changed, so the LCD’s
display needs updating.

Don’t forget to
initialize the timer.

136 CHAPTER 5 Output: making things happen

function init () { /* ... */ }
function showRemaining () { /* ... */ }
function adjustTime (delta) { /* ... */ }

function start () {
lcd.clear();
timestamp = Date.now();
timer = setInterval(tick, 250);
tick();

}

function pause () {
timer = clearInterval(timer);
lcd.cursor(0, 9).print('PAUSED');

}

function tick () {
lastTimestamp = timestamp;
timestamp = Date.now();
remaining -= (timestamp - lastTimestamp);
if (remaining <= 0) {

timer = clearInterval(timer);
init();

}
showRemaining();

}

downButton.on('press', () => { /* ... */ });
upButton.on('press', () => { /* ... */ });
goButton.on('press', () => {

if (!timer) {
start();

} else {
pause();

}
});
init();

});

Now you can start and pause the timer, but what happens when the time runs out? We
need something to alert the user that their time is up.

5.2.2 Adding a visual LED “chime”

As the final part of this circuit construction, you can add an LED as shown in figure 5.21.
It should be connected through a 220 � resistor to ground, and its anode should be con-
nected to the Arduino’s pin 7.

Clears
anything
currently
displayed

on the LCD

Sets an interval to
invoke tick four times
per second or so

Kicks off
the timer

with a tick

Clears the
timer interval

so the timer
stops ticking

PAUSED will get erased
when the timer is started
again by lcd.clear().

Makes sure
there isn’t

already a timer
running before

starting

137Working with parallel LCD displays

We’ll need to make a few adjustments to the start and tick functions, and we’ll add
a new chime function, shown in the next listing.

// ...
board.on('ready', () => {

const downButton = new five.Button(2);
const upButton = new five.Button(3);
const goButton = new five.Button(4);
const lcd = new five.LCD([7, 8, 9, 10, 11, 12]);
const alertLED = new five.Led(6);
var remaining, timer, timeString, lastTimeString, timestamp, lastTimestamp;

function init () { /* ... */ }
function showRemaining () { /* ... */ }
function adjustTime (delta) { /* ... */ }

function start () {
alertLED.stop().off();
lcd.clear();
timestamp = Date.now();
timer = setInterval(tick, 250);
tick();

}

Listing 5.22 Add a visual chime

Figure 5.21 The completed
wiring diagram, with LED

Instantiates an Led
object on pin 6

Any time the timer is
counting down, the
chime-LED should be off.

138 CHAPTER 5 Output: making things happen

function pause () { /* ... */ }

function tick () {
lastTimestamp = timestamp;
timestamp = Date.now();
remaining -= (timestamp - lastTimestamp);
if (remaining <= 0) {

timer = clearInterval(timer);
chime();
init();

}
showRemaining();

}

function chime () {
alertLED.pulse();
lcd.cursor(0, 9).print('DONE!');

}

downButton.on('press', () => { /* ... */ });
upButton.on('press', () => { /* ... */ });
goButton.on('press', () => { /* ... */ });
init();

});

Because init() is called again when time runs out, the timer can be used over and
over again without restarting the program (figure 5.22). Try it!

$ node timer-advanced.js

CODE ARCHITECTURE FOR THE TIMER The logic for the timer all happens
within the ready callback for the Johnny-Five board object, and it’s starting to
feel unwieldy. It would likely be more elegant to encapsulate the logic in an
external module. You’ll see examples of that in later chapters.

Some logic to determine if
time’s up and if so to clear
the interval, and so on

chime()…

Pulses the LED! Time’s up!

Displays “DONE!” as well

Figure 5.22 The
timer, timing away!

139Making noise with a piezo

5.3 Making noise with a piezo
First off, I’m not going to try to convince you that piezos (figure 5.23) make lovely,
dulcet noises. They can produce tones, based on simple frequencies, but they sound
tinny and grating. Still, you can make one play a song, and they’re fun to noodle
around with. If you’d like to add a piezo to your timer, you can swap out the LED for a
piezo (as you’ll see in figure 5.24). Then you’ll be ready to have fun and annoy friends
with your piezo!

When voltage is applied to a piezo, it causes physical changes to the shape of a surface
inside the piezo. Piezos transduce the electrical energy into mechanical energy, and we,
as humans, detect that mechanical energy as sound waves. Applying voltages at spe-
cific frequencies creates vibrations that correspond to different musical notes. This
phenomenon is known as the reverse piezoelectric effect—electricity is converted to
mechanical movement.

 Piezos can also be used as sensors. Used as an input, piezos can detect knocks or
other kinds of vibrations. This demonstrates the reverse of the reverse piezoelectric
effect, that is, the piezoelectric effect.

Figure 5.23 Some piezos have wire
leads, and others have legs. Piezos
have two pins: + and -.

Piezos: timing and frequencies
To get a piezo to squawk out a note requires a combination of PWM and timing. To
make a piezo make noise, you give it voltage at a 50% duty cycle—this creates
square waves (on off on off). To make a piezo play a particular note, you adjust the
frequency of these PWM cycles.

For example, the note A4, or A440 is a common reference tuning note. It’s called
A440 because it vibrates at 440 Hz. Every 1/440th of a second, there’s a full wave
period. In real life, these are smooth analog waves. With a piezo, they are square dig-
ital waves. By applying a 50% duty cycle voltage to a piezo 440 times a second, you
can approximate A4.

140 CHAPTER 5 Output: making things happen

Musical frequencies double every octave, so that by the time you get to A7, you’re
looking at 3520 Hz.

In Johnny-Five, A4 (A440) is created by alternately writing HIGH and LOW to the piezo’s
pin in equal intervals 880 times per second. Yep, 880—that’s twice the frequency,
because one full “wave” (on-off) should happen 440 times per second.

The octaves contained on a standard 88-key piano keyboard. A4 (a.k.a. A440) is the A above
middle C (the A in the fourth octave).

Frequency doubles every octave. A3 (220 Hz) is half the frequency of A4 (440 Hz), whereas A5
(880 Hz) is double the frequency of A4. A’s have nice round frequencies. The notes between also
have predictable frequencies that double every octave, such as middle C (C4) at 261.626 Hz and
C5 at 523.521 Hz.

141Making noise with a piezo

5.3.1 Adding an audible piezo chime to the timer

Depending on which kind of piezo you have, either plug it directly into the breadboard
or plug its wires into the breadboard (figure 5.24). Don’t forget to remove the 220 �
resistor, as well.

PLAYING TUNES ON THE PIEZO

The code changes for the timer are minor. Inside of timer-advanced.js, instantiate a
Piezo instead of an Led and remove the reference to alertLED from the start()
function, as shown in the following listing.

var alertChime = new five.Piezo(6);

Johnny-Five’s Piezo class gives you some handy tools to make piezos play tunes, han-
dling the complex timing and frequency conversions. Notes are exposed by their
names (such as 'e5') so you don’t have to memorize frequencies. You can pass an
object representing a “tune” to the play method, with properties such as tempo (BPM)
and a song (array of notes and their durations).

Listing 5.23 Instantiating a piezo

The frequencies involved here far exceed the resolution of what you can do with built-
in JavaScript timers (setInterval, setTimeout), so Johnny-Five depends on an npm
package called nanotimer. This allows setInterval-like behavior but at much more
precise, fine-grained precision.

The note A4 has a frequency of 440 Hz.
A complete wave period is 1/440th of
a second. Unlike natural, analog sound
waves, which have smooth curves,
piezos emit square waves.

142 CHAPTER 5 Output: making things happen

Update the chime() function to play a song, as shown in the next listing.

function chime () {
alertChime.play({

tempo: 120,
song: [

['e5', 1],
['g#5', 1],
['f#5', 1],
['b4', 2],
['e5', 1],
['f#5', 1],
['g#5', 1],
['e5', 2],
['g#5', 1],
['e5', 1],
['f#5', 1],
['b4', 2],
['b4', 1],
['f#5', 1],
['g#5', 1],
['e5', 2]

Listing 5.24 The new chime() function

Figure 5.24 Wiring diagram
showing the replacement of the
LED with a piezo

tempo is an optional property.

This will play the note e5 for 1 “beat”.

143Summary

]
});
lcd.cursor(0, 9).print('DONE!');

}

You’ll have to try this out to find out what the time’s-up tune is!

Summary
 An LED can only emit one wavelength (color) and can only be off or on at any

given time, but pulse-width modulation (PWM) can be used to fool the eye into
thinking an LED is shining at different brightnesses.

 PWM support is a hardware feature, and only some pins on development boards
support PWM.

 The brightness of LEDs can be “animated” to create effects and communicate
information. Using different easing functions and providing different anima-
tion options can generate different outcomes with Johnny-Five.

 RGB LEDs combine three LEDs (red, green, blue) at different brightnesses—via
PWM—to create different colors. Common cathode RBG LEDs have three com-
ponent LEDs that share a single cathode leg.

 Parallel LCDs have a lot of connections. Johnny-Five provides a simplified inter-
face to LCDs via its LCD class.

 Potentiometers are another kind of variable resistor, like photoresistors. Unlike
photoresistors, they have their own internal voltage dividers, so changing volt-
age can be read on the third pin.

 Piezos take advantage of the reverse piezoelectric effect to transduce voltages at
different frequencies into mechanical motion, and, as a result, sound waves.

144

Output:
 making things move

By now you’re likely tapping your feet impatiently and wondering, “When do we
get to make robots?” Well, your ship has come in. It’s time to learn how to make
things move.

 The motors and servos you’re about to get to know provide the fundamental
control of robots’ movements. There’s lots to learn, but by the end of this chapter
you’ll have built a basic roving bot.

This chapter covers
 How motors work and what makes them spin

 The inductive characteristics of motors and how to
safely construct motor circuits

 Using diodes, capacitors, and transistors in circuits
to control motors and protect components

 How to position things, precisely, with servos

 How to control motors using an H-bridge circuit and
motor drivers

 How to build your first basic, roving robot

145

 Making robots move involves choreographing electronically controlled movement.
Motors spin, making wheels roll. Servos allow precise positioning of components:
cameras, robotic arms, and so on. Let’s get moving.

For this chapter, you’ll need the following:

 Arduino Uno and USB cable

 1 9 V DC motor

 1 9 V battery and snaps

 1 1N4001 diode

 1 N-channel MOSFET, such as FQP30N06L

 1 100 µF capacitor

 1 4.8 V micro servo

 1 Texas Instruments SN754410 Quadruple Half-H Driver

 Actobotics Peewee Runt Rover kit (or 2 gearmotors, 2 wheels, chassis)

 Breakaway male header pins

 Jumper wires

 1 half-size breadboard

146 CHAPTER 6 Output: making things move

6.1 Making motors spin
Motors convert electrical energy into mechanical energy (figure 6.1). Current goes in
and motion comes out, typically in a rotary form, such as a spinning axle.

At the heart of a motor’s electricity-to-motion alchemy? Magnets!

ACTUAL CURRENT FLOW Recall how conventional current representations
show electrical current as flowing from positive to negative, but in reality the
opposite is closer to the truth? The actual direction of current flow is relevant
to some of the topics covered in this chapter, and, as such, the conceptual dia-
grams show current flowing from negative toward positive.

6.1.1 How motors work

When an electrical current runs through a wire, a magnetic field is also created. The
magnetic field is oriented at a right angle to the current’s direction (figure 6.2).

 The current-induced magnetic field near a single, straight wire is weak, relatively
speaking. But it’s possible to concentrate the magnetic effect by winding a length of wire
around (and around and around) a piece of metal. When current is applied to the coil

Figure 6.1 A typical
hobby DC motor

Figure 6.2 Electrical current
through a wire creates a magnetic
field at a right angle to current flow.

147Making motors spin

Figure 6.3 The current through the coil
creates a magnetic field that magnetizes
the iron core of the electromagnet.

Figure 6.4 Reversing current flow reverses
the polarity of the electromagnet.

of wire, the collective right-angle magnetic
field has enough oomph to yank some of the
previously disorganized atoms in the metal
core into a north-south alignment. And, voila!
You’ve created a magnet by using electricity: an
electromagnet (figure 6.3).

 If you reverse the direction of the current
that’s running through the coiled wire, the
electromagnet’s polarity will flip too—the
north and south magnetic poles will swap
places (figure 6.4). Cut off current from the
wire, and the magnetic field will dissipate—
you can turn your magnet off!

 Let’s envision our imaginary electromag-
net being put to theoretical use. In the left side
of figure 6.5, an unpowered electromagnet is
mounted on an axle and suspended between
two stationary magnets. As soon as current is
applied to the electromagnet (the middle of
figure 6.5), the electromagnet will want to
align itself as magnetic forces dictate—its
north pole toward the stationary magnet with
the inward-facing south pole. What it will want
to do is rotate half a turn to make this happen,
like on the right in figure 6.5. Of course, this
hypothetical motor isn’t going to work: the
battery is in the way and things are getting all
tangled up.

 Without further intervention, things would
stop here—the magnets are aligned in a happy
way. But if we were able to swap the current
direction through the electromagnet again

Figure 6.5 An electromagnet on an axle between two fixed magnets is going to want to orient itself—by
rotating—as magnetic forces dictate.

148 CHAPTER 6 Output: making things move

Figure 6.6 A brushed motor’s
electromagnets are connected to a split ring
called a commutator (A). The commutator and
electromagnets rotate as the motor spins.
Fixed-position brushes (B) are attached to the
power supply and “brush” alternating polarities
onto the commutator as it rotates beneath
them, changing the polarity of the
electromagnets on the motor’s armature (C).

at exactly this spot, the motion could
be forced to continue, as the magnet seeks
to align itself correctly once more. Revers-
ing current polarity every half-turn could
keep things going forever. Indeed, this
concept is how motors work. A motor wired
like the thing shown in figure 6.5 would
quickly become a tangle of batteries and
wires, so a real motor involves some design
enhancements.

 Figure 6.6 shows a—still oversimpli-
fied—brushed DC motor. The wall of the
motor contains fixed magnets. Positive and
negative power connections from the power
source are connected to two stationary
brushes, which “brush on” power in a given
polarity as the motor’s shaft turns and they
come into contact with different parts of a
split ring called a commutator. The current—
and, thus, the magnetic field—changes
polarity as the motor turns, keeping every-
thing in motion. Brushed motors are very
common, but non-brushed motors use the
same general concepts—electricity and
magnets—to accomplish the same thing.

6.1.2 Controlling a motor with a push-button switch

Let’s ease into motor control gently by building a basic circuit that powers a motor,
controlled by a push button. In a bit, we’ll add the ability to control the motor with
the Arduino Uno and Johnny-Five.

What you’ll need
 1 9 V battery

 1 9 V battery snap with leads

 1 small DC motor, rated up to 9 V

 1 1N4001 diode

 1 jumper wire (black)

 1 half-size breadboard

Motors take electricity in, and put mechanical rotation out. But the inverse is also true:
if the shaft of a motor is turned (mechanical energy is applied), the motor will generate
electrical energy—it acts as a generator. This is how water can generate (hydroelectric)
power, for example. Flowing water physically turns the shaft of a motor (generator), and

✔

149Making motors spin

electricity comes out. So motors also take mechanical energy in, and put electricity out
(figure 6.7). This set of phenomena—the creation of voltage or motion via interactions
with magnetic fields—is called inductance. A motor is an inductive component.

 The characteristics of inductive components have relevance to your circuitry. Say
you apply current to a motor, and it’s spinning merrily along. Remove the current—
shut off the power—and the motor will continue to spin on its own for a little while.
During this brief time, it will be generating power, and an important thing to note is
that a motor (or any inductor) will generate voltage in the opposite direction of the
input voltage (figure 6.8).

Figure 6.7 When a motor is turned by an external force, electrical current is generated.

Figure 6.8 When a motor is connected to a power supply, current flows from negative (low potential)
toward positive (higher potential). The current flow causes the motor to spin. When current flow is
removed from the motor, inertia causes the motor to continue spinning briefly. During this time, the
motor acts as a generator, generating electricity with voltage opposite to the previous input voltage.

150 CHAPTER 6 Output: making things move

Figure 6.9 In the unprotected circuit pictured
here, current flow is controlled with a push button
(switch). When the switch is pressed and held, the
current flows as expected, powering the motor.
The motor consumes the voltage provided.

Figure 6.10 When the button is released (switch
opened), the motor continues to spin for a little
while. During this time it’s generating negative
voltage. The lead formerly connected to the
positive terminal of the battery (through the
switch) can build up a very large negative
potential—hundreds of volts, say—which is much,
much lower than the +9 V of the battery.

This means that the electricity flow can
“move around backwards” in your cir-
cuit, and the negative voltage spike can
be huge (albeit for a very short amount
of time). Without intervention, this back
voltage (also called back electromotive force
or back-EMF) can do nasty things, like
damage components or cause actual
sparks to leap around!

 A circuit without protection from this
back voltage works fine when the circuit is
closed and current is flowing through the
motor (figure 6.9), but it can be problem-
atic when the current through the motor
changes (figure 6.10), which changes
when the button is released (the switch is
opened, breaking the circuit).

 The large negative voltage briefly
generated in figure 6.10 wants so very
much to make a path to the +9 V voltage
that it might do crazy things, like leap
through the air or through other non-
conductive materials to get there. We’ve
got to protect our circuit against this
kind of inductive voltage spike.

MANAGING BACK VOLTAGE WITH FLYBACK

DIODES

We’ve got to manage this back voltage sit-
uation for the health and safety of our cir-
cuit. We need to make sure negative
voltage isn’t allowed to go wandering
around the circuit willy-nilly, hurting
innocent components.

 There’s a standard method for accom-
plishing this, using a diode (figure 6.11).
You briefly met diodes in chapter 2—LEDs
are a kind of diode. A diode is a semicon-
ductor component that only allows cur-
rent to flow through it in one direction.

 The diode placement in the cir-
cuit wiring diagram for the push-
button-controlled motor we’re about to

151Making motors spin

construct—with the diode’s cathode connected to the positive power rail—looks
backwards, and it is (figure 6.12).

 The way the diode is oriented (“backwards,” or, more technically, reverse-biased) in
the circuit means that current will be blocked from flowing through it—usually. But
when the back-voltage situation arises, and the flow through the circuit is topsy-turvy,
the diode becomes temporarily forward-biased—it’s momentarily oriented so that cur-
rent can flow across it. At these times, it can create a path to “wick away” dangerous
negative voltage current and reroute it through the motor over and over again until
the negative voltage dissipates naturally on its own (don’t worry, it will, and quickly).

 A diode used this way is called a flyback diode, or a snubber diode (figure 6.13).

Figure 6.11 Diodes are
semiconductor components
that only permit current to
flow in one direction.

Figure 6.12 Circuit diagram of a basic,
push-button-controlled motor, including
a protective diode

Figure 6.13 If a flyback diode is used in a circuit with
an inductor like a motor, it can provide a path for pent-up
negative voltage that’s trying to go the wrong way. It can
route it back through the motor in a loop until it dissipates.

152 CHAPTER 6 Output: making things move

POWERING MOTORS IN CIRCUITS

Inductive elements like motors are current-hungry, especially when they’re being
turned on or off (by now you’ve probably recognized that inductors have some inter-
esting characteristics when they’re starting up or shutting down). The maximum cur-
rent draw possible from a single Arduino Uno pin is only 20 mA—this isn’t enough!
Plus, many hobby motors are rated at 6 V or even 9 V—more than the Uno can pro-
vide, voltage-wise. We’ll use a stable, separate power source for our motor—a 9 V bat-
tery—to make sure our motor gets the juice it needs.

BUILDING THE CIRCUIT

For the motor shown in figure 6.12 to spin, you’ll need to create a closed path from
the power source (positive battery terminal) to ground (negative battery terminal).
Pressing the push button will connect this path—the motor will operate when the but-
ton is pressed.

 Build the circuit as shown in figure 6.12, taking care to orient the flyback diode
correctly. If you get it backwards, it’s going to get really hot (at a minimum) or possi-
bly even blow up or damage the battery.

 Once you’ve constructed the circuit, you should be able to start the motor by hold-
ing down the push button. Those little hobby motors spin fast!

SPINNING MOTORS BACKWARDS Your motor may have red and black wire
leads, implying that there’s a “correct” or “polarized” way to plug the motor
into a circuit. That’s a little misleading: motors are happy plugged in in either
orientation—swapping the connections will simply reverse the direction that
the motor spins. You’re welcome to try reorienting your motor’s leads in the
circuit and see if you can get it to run “backwards.” Changing the direction of
current through a motor to change the motor’s direction is a key part of
robotic control, as you’ll see in a bit.

6.1.3 Controlling a motor with Johnny-Five

Our first motor experiment has a few shortcomings: there’s no logic controlling the
motor—just our own fingers—and the motor is either on (full speed!) or off—there’s
nothing in between.

 Johnny-Five has a Motor component class that can give you more control over the
motor’s speed. It gives you even more control if you use more sophisticated integrated
circuits or motor controllers—but let’s start basic.

What you’ll need
 1 Arduino Uno and USB cable

 1 9 V battery

 1 9 V battery snap with leads

 1 small 9 V DC motor

 1 1N4001 diode

 1 N-channel MOSFET, such as the FQP30N06L

✔

153Making motors spin

 4 jumper wires

 1 half-size breadboard

In this experiment, we want to replace the human-powered push-button switch with a
switching mechanism that can be controlled by the output from one of the Uno’s
pins. You already know that the motor needs more than the Arduino’s on-board
power can provide—both in terms of voltage and current—but any output signal from
an Uno pin is going to be at 5 V. We’re going to end up with circuitry that combines
two separate power sources: 9 V (battery) and 5 V (Arduino logic).

USING TRANSISTORS AS SWITCHES

MOSFETs are metal-oxide-semiconductor
field-effect transistors (whew, no wonder
people just say MOSFET). Transistors
are semiconductor components that
play one of two roles: amplifying or
switching signals. There’s more to know
about transistors, but in our immediate
case, we’re going to use a MOSFET as a
very fast, reliable switch.

 When a small voltage is applied to
the MOSFET’s gate pin (figure 6.14), the
other two pins (source and drain) are
connected, and current can flow
between them—the MOSFET is turned
on. The Uno can reach out with a
weaker, 5 V “finger” and “push” the gate
pin, completing the 9 V circuit attached to source and drain. That is, you can use a signal
with low voltage and power to control a signal with higher voltage and power. The result-
ing motor circuit has two input power sources: the 9 V battery and 5 V input coming from
the Uno.

MOSFET PINOUT Although most field-effect transistors (FETs) of this type
(N-channel) use the pinout shown in figure 6.14, make sure you double-
check your component’s datasheet to confirm which pins are the gate, drain,
and source.

One last thing: you need to connect the two power sources to a common ground.
Although the input power sources are segregated—the positive power rail is only for
9-volt power—the ground for both is connected.

BUILDING THE CIRCUIT

Make sure the MOSFET’s metal tab is oriented as shown in the wiring diagram for the
MOSFET-switched motor (figure 6.15)—the tab should be oriented toward the right.
From the top, the first pin is the gate: this should be connected to the Uno’s pin 6.

Figure 6.14 A MOSFET and its circuit symbol. A
small voltage applied to the gate (G) pin will make a
connection between the drain (D) and source (S)
pins.

154 CHAPTER 6 Output: making things move

Connect the bottommost pin—the source—to ground. The MOSFET’s drain pin (mid-
dle pin) should be connected to one of the motor’s leads and the flyback diode as
shown (the diode is in parallel with the motor).

 When voltage is applied to the gate pin, current will be able to flow between the
source and drain pins, allowing the motor to spin.

TAKING THE MOTOR FOR A SPIN

Create a JavaScript file called motor-basic.js in your Johnny-Five working area with the
following code. This script instantiates a Motor on pin 6 and makes it available to the
REPL for your manual control.

const five = require('johnny-five');
const board = new five.Board();

board.on('ready', () => {
const motor = new five.Motor({ pin: 6 });
board.repl.inject({

motor: motor
});

});

Johnny-Five’s Motor component class has more to it, but we’re starting with the most
basic instantiation: identifying a single pin for controlling a motor’s speed in a single
direction. This is called a non-directional motor.

 Run the script and interact with the motor in the REPL:

$ node motor-basic.js

Listing 6.1 Motor test drive

Figure 6.15 Circuit diagram for a
transistor-switched motor control

Pin 6 will control the
motor’s speed with PWM.

You’ll have access to the
motor from the REPL.

155Making servos go

Once the board and REPL are initialized, you can experiment with the available motor
object reference by typing into the REPL. Here are some handy methods:

 speed(0-255)—Make your motor spin at a given speed; for example,
motor.speed(100).

 stop()—Stop the motor; for example, motor.stop().
 start()—Start the motor using the previously set speed; for example,

motor.start().

Motor speed is controlled with pulse-width modulation (PWM), so it’s a good thing we
have a fast switch (the MOSFET) that can open and close the circuit at high frequencies.

6.2 Making servos go
Servos are mechanisms for positioning things precisely, and they’re indispensable in
robotics and other gadgets that require things to be moved accurately (figure 6.16).

 A servo’s movement is powered by a DC motor, similar to the ones we’ve been
experimenting with in this chapter. But a servo needs a few more parts to get its job
done. A gear assembly translates the fast but weak rotation of the motor into a slower,
but more accurate and strong (higher torque) rotation. Additional built-in circuitry
monitors for input signals to tell the servo at what angle it should position itself, and it
allows the servo to detect when it’s in the correct position.

Take it further: make your own temperature-controlled fan
You now have all the tools you need in your growing builder’s kit to construct the
temperature-controlled fan first mentioned in chapter 1.

Challenge: Instead of using the REPL to control a motor, add a TMP 36 sensor to your
circuit and use changes in its value to turn the fan on or off, or to change its speed.
You may have more fun if you cut a fan blade out of stiff paper or cardboard and
attach it to your motor’s axle!

Figure 6.16 A servo
and its basic parts.
Horns come in different
shapes and sizes: discs,
stars, single arms.

156 CHAPTER 6 Output: making things move

Most servos have about 180 degrees of rotation. They have a “neutral” position (90
degrees, or “up”) and can rotate about 90 degrees from that neutral position in either
direction (figure 6.17). The 180 degrees of rotation is best-case: inexpensive low-
power servos have as little as ~150 degrees of rotation.

 The circuitry within the servo package responds to coded signals on the servo’s sig-
nal wire. The signal used for controlling the position of a servo is a specific kind of PWM.

Figure 6.17 A servo (with attached horn) positioned at a minimum angle, a neutral
angle, and a maximum angle. Different servos have different real-life angle ranges.

Servo-flavored PWM
A servo’s position, or angle, is controlled by sending PWM over its signal wire, but it’s
a special “flavor” of PWM. A servo expects to receive a pulse every 20 ms. The length
of time that the pulse persists—the amount of time that the signal is HIGH—deter-
mines the position of the servo. The shorter the pulse duration, the further to the left
the resulting position will be.

Typically, a pulse of 1.5 ms will cause the servo to point in its neutral direction (90°).
A pulse of 1 ms or so will peg the servo left (0°), whereas a 2 ms pulse will position
it all the way to the right (180°).

The duration of a PWM pulse determines the servo’s angle. A 1.5 ms pulse positions the servo at
a neutral angle. Shorter pulses equate to more acute angles, and longer pulses to obtuse angles.

157Making servos go

6.2.1 Controlling a servo with Johnny-Five

What you’ll need
 1 Arduino Uno and USB cable

 1 micro servo (4.8 V)

 1 100 µF (microfarads) capacitor

 3 male header pins, if needed

 3 jumper wires (red, black, yellow)

 1 breadboard

Like motors, servos are power-hungry when they move and can cause voltage fluctuation
in the circuit. However, it’s possible to power low-voltage micro servos—those rated
for 4.8 V or below—directly from the Uno’s power supply if you take some precautions.

PROTECTING CIRCUITS WITH DECOUPLING CAPACITORS

Capacitors (figure 6.18) are passive electronic components that act kind of like batter-
ies: they store a certain amount of charge, measured in units called farads (abbrevi-
ated as F). One farad is a lot; most capacitors for hobby electronics are measured in
micro-, nano-, or even picofarads.

✔

Header pins for connecting your servo
Most servos’ wires terminate in a female connector with three terminals.

The easiest way to plug these into a breadboard is to obtain some breakaway header
pins. These strips of pins come in rows of 16 to 40 pins, and you snap off the number
of pins you need to connect a given component. Some are sturdier than others and
may require pliers to snap apart.

Look for male header pins at a 0.1" pitch (the 0.1" pitch makes them breadboard-
compatible).

Male breakaway header pins come in strips. You “break away” (snap off) the number of pins you
need for a given component.

158 CHAPTER 6 Output: making things move

A charged capacitor will get twitchy if there’s a voltage fluctuation between source
power and ground. For example, if the voltage suddenly drops to 4.5 V, the capacitor
will discharge some of its stored charge to “smooth out” the voltage.

 That means a capacitor can act as a tiny, boosting battery, squirting out extra charge
as needed to keep the voltage steady. A capacitor used this way is called a decoupling capac-
itor, as it decouples the rest of the circuit from voltage noise caused by components.

BUILDING THE SERVO CIRCUIT

Connect your servo’s power, ground, and control wires to the breadboard, using
header pins if needed (see figure 6.19). Different servo manufacturers use different

Figure 6.18 Capacitors come in a number of different packages and sizes; electrolytic capacitors
and ceramic capacitors are quite common. Take care: some, but not all, capacitors are polarized.

Be careful with capacitors
Watch out! Capacitors are sneaky little devils and can be downright dangerous in cer-
tain cases. They deserve extra respect and care.

An important thing to know is that capacitors can retain their charge for long periods
of time, even if current isn’t running through them. They’re, again, like batteries in
that regard. That means that if you accidentally complete a circuit across a capaci-
tor—and, yeah, you can cause this situation with your fingers—it could discharge
immediately and violently. If you ever find yourself deconstructing old televisions or
electronic camera flashes, be very careful. If one of those powerful capacitors dis-
charges at you unexpectedly, you could be looking at a trip to the hospital, or worse.

A more day-to-day thing to keep in mind is that electrolytic capacitors, like the one used
in this experiment, are polarized. They won’t abide being plugged in backwards and they
have a rather ornery habit of exploding when used in a reverse orientation. In our low-
voltage, low-capacitance world, these are rather mild explosions, but they could still scare
the bejeezus out of you, or melt components and boards you’d rather not melt.

159Making servos go

wire colors, but the positive power connection should be a red wire. Most servos use
black for the negative lead wire, but some have a brown or maroon-ish wire. Finally,
the signal wire could be white, yellow, orange, or even blue. In summary, the red
wire is power, the darkest wire is ground, and what’s left over is the signal wire (fig-
ure 6.20).

Figure 6.19 Wiring diagram for a servo with a decoupling capacitor

Figure 6.20 Servo wires come in various colors and have differing connectors. There should be a
red wire—this connects to Vcc (source power). The darkest wire—black or brown—is ground. The
remaining wire is the signal wire—abbreviated here as S—for controlling the servo’s position.

160 CHAPTER 6 Output: making things move

Connect a 100 µF electrolytic capacitor in parallel with the servo’s power connec-
tions—that is, plug the capacitor’s anode into the same breadboard row as the servo’s
power connection and its cathode into the same row as the servo’s ground connec-
tion. Connect the servo’s signal wire to pin 6 on the Uno. Finally, connect the servo’s
power to the Uno’s 5 V power and the servo’s ground to the Uno’s GND pin.

TAKING THE SERVO FOR A TEST DRIVE

You may by now have guessed already that Johnny-Five has a Servo class for con-
trolling servos. It sure does!

 Create a new file, servo-basic.js, and add the following JavaScript. This is similar to
the motor test drive: it will make a reference to servo available to you in the REPL.

const five = require('johnny-five');
const board = new five.Board();

board.on('ready', () => {
const servo = new five.Servo({ pin: 6 });
board.repl.inject({

servo: servo
});

});

Run the script:

$ node servo-basic.js

Now you can avail yourself of the Servo’s methods:

 to(deg)—Move the servo to the deg value (between 0 and 180). For example,
servo.to(50)

 center()—Move the servo to its center/neutral position, 90 degrees by default.
For example, servo.center()

If you try to position your servo at the extreme ends of its range—0 or 180 or near to
those values—it will likely protest, making sad grinding sounds. That’s because the
effective range of the servo is less than 180 degrees. Try experimenting to determine
the lowest and highest angle values your servo can comfortably reach.

 This little test drive is but a brief introduction to servos. If the next section—build-
ing a robot!—appeals to you, and robotics is an area you want to dive into, you’ll have
many more encounters with servos as you explore.

Listing 6.2 Servo test drive

Servos require PWM control
signals—make sure to use a
PWM-enabled pin!

161Building your first robot!

6.3 Building your first robot!
It’s time to build a robot. To build a robot that can move around on wheels, you need
some basic parts (figure 6.21):

 A chassis—Every robot needs a body. A chassis is a structure onto which you can
attach motors, wheels, and other components.

 At least two geared motors—Motors for driving robots need to have some gear
reduction to give them some torque. Otherwise they won’t be able to climb over
even the most minimal obstacles. The drive axle of a gear motor is usually (but
not always) at a right angle to the spin of the motor itself.

 Wheels or tracks—These translate the motion of the motors. Wheels fit onto the
drive axles of gearmotors.

 A brain—A microcontroller or processor to define the robot’s logic.
 Motor circuitry—Your robot needs some components to translate its desired

movement into motor motion.

One of the things that can be off-putting about getting into basic robotics is the combined
expense of various parts. Chassis can cost up to a few hundred dollars (!), and off-the-
shelf shields, boards, or other circuitry for controlling the motors can cost a bit too.

 Our first roving bot will use quite inexpensive parts. You can find the suggested Acto-
botics Peewee Runt Rover chassis kit for about $16 online and in electronics-supply stores.

Figure 6.21 A basic robot needs a chassis (body). Two or more geared motors connect to wheels or
tracks to propel the bot. Of course, you’ll also need circuitry, a brain (microcontroller), and a power supply.

162 CHAPTER 6 Output: making things move

What you’ll need
 1 Arduino Uno and USB cable1

 1 Actobotics Peewee Runt Rover robot kit or similar2

 9 V battery and snaps

 1 Texas Instruments SN754410 Quadruple Half-H Driver

 15 jumper wires

 Double-sided tape, electrical tape, gaffer’s tape, or other adhesive (optional)

 1 half-size breadboard

OTHER OPTIONS FOR BUILDING YOUR FIRST BOT The Actobotics Peewee Runt
Rover kit is a handy option for a first robot because it’s inexpensive and
includes a chassis, wheels, gearmotors, and mounts—the basic pieces you’ll
need. But other two-wheeled chassis frames or kits are fine too. SparkFun’s
Shadow chassis is another cheap option (though you’ll need to buy motors
and wheels separately). Whatever you end up with, make sure you have a chas-
sis, geared motors, and wheels. The instructions that follow for constructing a
rover bot assume the Peewee kit, but construction shouldn’t differ too much
for similar kits.

6.3.1 Robots and motors

From our recent experiments, you’ve seen how a motor’s speed can be controlled
with PWM, and how a motor’s direction can be reversed by swapping its power and
ground connections. You’ve also seen how motor circuits are a little more complex
than other circuits: you need diodes to protect your circuit’s other components, and
you’ll likely need a more robust power supply for a motor than a development board
can provide.

 It gets a bit more complicated. A roving robot needs at least two motors to be steer-
able, and you need to be able to run those motors in a forward and a reverse direction
(without physically unplugging and swapping the leads, of course). Multiple motors
on a single circuit should also be isolated with decoupling capacitors so that sudden
spikes caused by one motor don’t affect the other motor or components. The details
are starting to add up.

CONTROLLING MOTORS WITH H-BRIDGE DRIVERS

An H-bridge is a circuit with four switches and a load in the middle—the load being a
motor, in our case. In concept, it’s laid out roughly in the shape of the letter H, as
shown in figure 6.22.

 The arrangement of switches (that is, transistors) in an H-bridge allows the motor’s
direction to be controlled without you having to physically change its wiring. Closing

1 If you happen to have a longer USB A to USB B cable than the one that came with your Arduino, this would
be a good time to use it.

2 Contains chassis, 2 gearmotors, and 2 wheels.

✔

163Building your first robot!

switches 1 and 4 (figure 6.23, left) allows current to flow through the motor in one
direction, whereas closing switches 2 and 3 (figure 6.23, right) allows the motor to
spin in the opposite direction.

There are 16 possible states (switch combinations) an H-bridge circuit can be in, of
which the two in figure 6.23 are the most obviously useful. Several others are innocu-
ous, allowing the motor to coast (when there’s no path through the circuit) or brak-
ing the motor (both leads of the motor connected to the same voltage).

 There are six switch combinations that are bad news, causing a situation called
“shoot-through,” more simply described as a short circuit (figure 6.24). This is not
good and will fry things.

 For our robot we’d need to build one H-bridge circuit per motor, not to mention
adding in additional protective diodes and capacitors—that’s starting to sound like a lot
of connections and complications. Fortunately, H-bridges are available inexpensively as

Figure 6.22 An H-bridge circuit contains four switches, with the
motor in the center. Different combinations of switch states can
route current through the motor in different directions.

Figure 6.23 By activating
different switches in an
H-bridge, a motor can be
made to spin in a forward
or a reverse direction.

164 CHAPTER 6 Output: making things move

integrated circuit (IC) chips (figure 6.25). Even better, many inexpensive ICs package
together H-bridge circuitry along with internal diodes and other gadgetry to protect
your motor circuit as well as preventing shoot-through states. These chips are called
motor drivers or just drivers.

The Texas Instruments SN754410 Quadruple Half-H Driver costs just a few bucks and is
available from various electronics supply resellers. Yeah, its name is a mouthful (bonus
hint: a quadruple half-H-bridge is equivalent to two complete H-bridge circuits), but it
does everything we need to drive both motors for our first roving robot.

 Before we dive into the details of the motor driver IC’s pins and related circuitry,
let’s get started on the foundational pieces of our first robot.

6.3.2 Building the robot’s chassis base

You’ll want to attach the side supports (this may take some oomph) and your bread-
board to the bottom plate of the robot chassis (figure 6.26). If you have the Peewee
kit, the side supports are the pieces of plastic with the larger, rectangular holes in the
middle.

Figure 6.24 Closing both switches
on either side of the H-bridge causes
“shoot-through”—a short circuit!

Figure 6.25 Inexpensive motor
drivers, like this Texas Instruments
SN754410, give you logical control
over internal H-bridge circuits. They
also include other components, like
diodes, making motor control
simpler and less error-prone. The
SN754410 is a dual H-bridge—it can
control two motors.

165Building your first robot!

ATTACHING THE BREADBOARD TO THE CHASSIS Most half-sized breadboards
have adhesive that can be exposed by peeling off a piece of backing paper,
and this can be useful for adhering the breadboard to the robot’s chassis to
keep it from moving around. If you can’t permanently commit a breadboard
to the robot—perhaps this is your only breadboard!—or if your breadboard
doesn’t have adhesive, you can temporarily attach the breadboard to the
robot chassis using double-sided tape, electrical tape, gaffer’s tape, or your
choice of removable adhesive. You could also use wire ties.

Go ahead and center the breadboard and attach it to the chassis. The hole in the cen-
ter of the plate will leave some of the breadboard adhesive exposed (if you’re perma-
nently attaching your breadboard). You can cut a piece of the backing paper in the
shape of the hole and reattach it to cover up the exposed gummy surface, if you like.
Don’t attach the top plate of the chassis yet.

 Gearmotors made for robots have a geared output axle for driving wheels that’s
(typically) at a right angle from the motor’s spin. Wheels attach to the output axle,
facing outward from the robot, while the motor’s spinning shaft is oriented up (as in
the Peewee kit, figure 6.27) or toward the back (as in the SparkFun Shadow Chassis).
In all cases, you’ll want to have the motors’ wires on the inside.

 Take the Peewee chassis’ top plate and attach the gearmotors to it. The motors’
leads can then be routed down through the circular hole in the middle of the top
plate, for access to the breadboard below. The Peewee kit also comes with two devel-
opment-board supports, in the shape of wide, shallow Us. These should be attached to

Figure 6.26 The bottom plate of the Peewee Runt Rover chassis, with attached side supports
and breadboard. If you’re using a different chassis, it’ll look a little different, of course.

166 CHAPTER 6 Output: making things move

the top plate now, and you can nestle the Arduino into them, with the USB connection
toward what will be the rear of the robot (the plate is symmetrical front-to-back, so you
get to decide now where the rear of your bot is).

 You can now slide the wheels onto the gearmotor axles. At this point, you should
have a bottom plate with attached breadboard and side supports, and a top plate with
attached Arduino, motors, and wheels.

6.3.3 Controlling the robot’s motors

If you orient the SN754410 motor driver with the semicircular dimple at the top, the
pins are ordered from 1 to 16, as shown in figure 6.28. Different pins have different
purposes and provide connections to different things inside the chip. We’ll walk
through these as we build the circuit.

Figure 6.27 The top plate of
the Peewee Runt Rover
chassis, shown with attached
gear motors, wheels, dev-board
support, and Arduino Uno.
Make sure the motors’ wires
are oriented toward the inside
of the chassis. The motor wires
can be run underneath the Uno
and through the center hole of
the chassis plate.

Figure 6.28 The pinout of
the SN754410 motor driver

167Building your first robot!

SN754410 POWER AND ENABLE CONNECTIONS

The first step for wiring up the SN754410 is connecting some of its pins to power and
ground (figure 6.29).

The driver needs to be connected to two separate
power sources. The 9 V battery will power the motors
themselves (the motor power source), whereas the logic
for controlling the motors will be 5 V from the Uno
(the logic power source).

 In addition, there are two enable pins on the chip:
one for each motor’s driver. You need to “turn on”
each driver by connecting each enable (EN) pin—
physical pins 1 and 9—to 5 V (that is, logical HIGH).

 Make connections to the power and enable pins
as shown in the motor power wiring diagram (fig-
ure 6.30). Note that the ground rails are tied
together (shared ground), but the power sources are
isolated: the left rail for the motor power source
(9 V), the right rail for the logic power source (5 V).

SN754410 LOGIC CONNECTIONS

On the SN754410, each motor is controlled via two
input pins. Two corresponding output pins are con-
nected to the motor (figure 6.31).

 Different logic-level combinations on a motor’s
two input pins cause different things to happen
with each motor, thanks to the internal H-bridge

Figure 6.29 The SN754410 needs to be connected to a motor power supply on VCC2 (physical pin 8)
and the logic power supply on VCC1 (physical pin 16). The two enable pins should be connected directly
to 5 V to set them HIGH. There are also four GND pins that, unsurprisingly, need to connect to ground.

Figure 6.30 Wiring the SN754410’s
power connections on the robot’s
breadboard

168 CHAPTER 6 Output: making things move

switches and circuitry. For each motor, one
input pin can be used for controlling direc-
tion while the second input pin can be used
to control the motor’s speed. Let’s take a
look at how that can possibly be, examining
how the first of the two motors is controlled
(the second motor is controlled identically).

CONTROLLING MOTOR DIRECTION

We’ll use pin 1A (physical pin 2 on the
SN54410) to control the direction of the
first motor (figure 6.32).

 When pin 1A is set HIGH and pin 2A is
LOW, 9 V current will be allowed to flow
across the two output pins (1Y, 2Y) and the
motor will spin in a forward direction (fig-
ure 6.33).

Figure 6.31 Each of the two motor drivers has two input pins and two output pins.

Figure 6.33 When the first input is set
HIGH and the second input is set LOW, the
motor will turn in a forward direction.

Figure 6.32 The first motor controller: two
input pins and two output pins. We’ll use one
of the input pins to control the motor’s
direction and the other to control its speed.

169Building your first robot!

Similarly, when the direction pin 1A is set LOW, the motor will spin in a reverse direc-
tion (9 V current flow is reversed) any time pin 2A is HIGH (figure 6.34).

 Put another way, any time 1A and 2A have opposite logic levels, the motor will be
powered to spin in the direction dictated by the logic level of pin 1A. But if both input
pins have the same logic level, no current will flow through the motor (detailed in
table 6.1).

CONTROLLING MOTOR SPEED

Pin 2A (SN54410 pin 7) will control the speed of the first motor, using PWM. Let’s say
pin 1A, the direction pin, is set LOW, indicating a reverse direction for the motor’s spin,
while PWM with a duty cycle of 25% is applied to pin 2A, the speed pin (figure 6.35).
Seventy-five percent of the time, 1A and 2A will have the same logic levels (LOW/LOW),
during which no current will flow through the motor. However, 25% of the time, the
LOW/HIGH combination will allow current to flow, powering the motor. This results in
what we want: the motor spinning in a reverse direction at a 25% speed setting.

 The same goes for speed control in a forward direction, but there’s a wrinkle. Let’s
say 1A (direction) is set HIGH—forward—and 2A (speed) is set to a 25% duty cycle
PWM. What we intend is for the motor to spin forward at 25% speed, but what will
actually end up happening is that it will spin forward at 75% speed (figure 6.36).

Table 6.1 Motor driver direction control for motor 1

1A (direction pin) value 2A (speed pin) value Result

HIGH LOW Motor spins in direction 1 (forward)

HIGH HIGH No current through motor

LOW HIGH Motor spins in direction 2 (backward)

LOW LOW No current through motor

Figure 6.34 When first input is LOW and
second is HIGH, the motor rotates in the
opposite (reverse) direction.

170 CHAPTER 6 Output: making things move

To account for this, the PWM signal needs to be inverted when the motor direction is
forward. Some motor drivers handle this for you, automatically inverting PWM when
the motor is set to spin forward. The SN54410, however, doesn’t, so we’ll have to
account for it in our code.

COMPLETING THE MOTOR CIRCUIT

The rest of the circuit involves connections to the Arduino, 9 V motor power supply,
and the two motors (figure 6.37). Connections to the Arduino and the motors should
be routed through the center hole of the top chassis plate. As you finish making these
connections, you can rest the top chassis plate on the bottom chassis plate and tuck
the 9 V battery inside, but don’t snap the pieces together yet—you need to test the
motors first.

Figure 6.35 With direction set to LOW (reverse) on pin 1A and a 25% duty cycle on
pin 2A (speed), the motor will be powered 25% of the time in the reverse direction.

Figure 6.36 With direction set to HIGH (forward) on pin 1A and a 25% duty cycle on
pin 2A (speed), the motor will be powered 75% of the time in the forward direction.

171Building your first robot!

TESTING THE MOTORS WITH JOHNNY-FIVE

Before putting the robot together, you should test that the motor circuit is working as
expected. Create a file called motor-test.js in your working directory, and put the fol-
lowing code into it.

const five = require('johnny-five');
const board = new five.Board();

board.on('ready', function () {
const motors = new five.Motors([

{ pins: { dir: 12, pwm: 11 }, invertPWM: true },
{ pins: { dir: 4, pwm: 5}, invertPWM: true }

]);

board.repl.inject({
motors: motors

});
});

Listing 6.3 Motor driver test drive

Figure 6.37 Circuit diagram for the rover’s completed motor circuit

172 CHAPTER 6 Output: making things move

Let’s zoom in on the instantiation of a Johnny-Five Motors object in the next listing.
Motors is a Johnny-Five component collection class, akin to Leds. It can control multi-
ple Motor components at once.

const motors = new five.Motors([
{ pins: { dir: 12, pwm: 11 }, invertPWM: true },
{ pins: { dir: 4, pwm: 5}, invertPWM: true }

]);

To the Motors constructor, you pass along an array containing options for each Motor.
Now that each motor is controlled by two pins, Johnny-Five needs to be told which
pins do what: one for direction (dir) and one for speed (pwm).

 Remember that the PWM signal needs to be inverted when the motor runs for-
ward. The hardware doesn’t do this automatically, but you can let Johnny-Five know
that it needs to be done, and Johnny-Five will do it for you, by using the invertPWM
option.

DON’T LET YOUR BOT RUN AWAY! Before running the motors in the test script,
lift your partially constructed robot off the ground so that the wheels are in
the air. Otherwise it might run off!

Run the script:

$ node motor-test.js

When the board and REPL are initialized, enter the following command and press
Enter:

> motors.forward(100)

Now look at your motors. Are they running forward, rather slowly? There’s a reason-
able chance that one or both of them are spinning in the wrong direction. Not a prob-
lem. Kill the script, disconnect power, and swap the connection between the motor’s
leads and the output pins on the motor driver for any motor that’s going the wrong
way. Then try again.

FINISHING THE CHASSIS CONSTRUCTION

Attach the small plastic nubbins to the bottom of the bottom plate, at front and back.
These are what the bot rests on when it’s not moving. Confident your motors are spin-
ning as expected? Good. Now you can snap together the top and bottom chassis plates
(figure 6.38).

WRITING THE ROBOT SOFTWARE

The rover’s software will allow you to use the arrow keys on your keyboard to steer the
bot (and use the spacebar to stop it). The code is going to consist of a couple of scripts

Listing 6.4 Instantiating motors

Options and pins
for the first motor

Options and pins for
the second motor

173Building your first robot!

(modules) and an extra dependency (the npm keypress module). Let’s be a little
more organized about the project’s working area:

1 Create a new directory called rover, and cd into that new directory.
2 Run this command: npm init --yes. This will initialize a package.json file with

some sane defaults.
3 Run this command: npm install --save johnny-five keypress. This will

install the two modules listed and save information about the dependencies to
package.json.

Create a file called Rover.js (listing 6.5). This module will hold a JavaScript class that
defines the rover’s basic movements. Rover doesn’t know about the specific pins or
the configuration of the motors in the Motors object passed to its constructor; those
details are abstracted away.

class Rover {
constructor (motors) {

this.motors = motors;
}

forward () {
console.log('Full speed ahead!');
this.motors.forward(255);

}

backward () {
console.log('Reverse!');
this.motors.reverse(255);

Listing 6.5 The Rover class

Figure 6.38 The completed
robot, viewed from the front

Organizing behavior with
class syntax can make code

more readable. The constructor creates
a reference to the
motors (this.motors).

174 CHAPTER 6 Output: making things move

}

left () {
console.log('To the left!');
this.motors[0].reverse(200);
this.motors[1].forward(200);

}

right () {
console.log('To the right!');
this.motors[0].forward(200);
this.motors[1].reverse(200);

}

stop () {
this.motors.stop();
console.log('Stopping motors...');

}
}

module.exports = Rover;

Now the robot needs an interface and a way to control it. Create another file called
index.js, shown in the following listing.

// Require dependencies
const five = require('johnny-five');
const board = new five.Board();
const keypress = require('keypress');
const Rover = require('./Rover');

board.on('ready', function () {
// 1. Instantiate Motors
// 2. Instantiate Rover, using Motors
// 3. Configure `keypress` to generate events on keypresses in the REPL
// 4. Listen for `keypress` events and invoke appropriate Rover methods

});

Expanding on steps 1 and 2 in the preceding listing, let’s instantiate the Motors and
then the Rover in the next listing.

// ...

board.on('ready', function () {
// 1. Instantiate motors
const motors = new five.Motors([

{ pins: { dir: 12, pwm: 11 }, invertPWM: true },
{ pins: { dir: 4, pwm: 5}, invertPWM: true }

Listing 6.6 Structure of index.js

Listing 6.7 index.js: setting up the motors and the rover

Each Motor in a Motors
object can be accessed
with array notation.

Steering involves running
one motor forward and
one backward.

Exports the Rover class
for outside consumption

Left motor details

Right motor
details

175Building your first robot!

]);

// 2. Instantiate Rover, with motors
const rover = new Rover(motors);

// 3. Configure `keypress` to generate events on keypresses in the REPL
// 4. Listen for `keypress` events and invoke appropriate Rover methods

});

To control the robot, you need to listen for relevant keystrokes for steering input. The
third task in index.js is to configure keypress.

//...
board.on('ready', function () {

// 1. Instantiate motors (as before)
// 2. Instantiate Rover, with motors (as before)
// 3. Configure `keypress` to generate events on keypresses in the REPL
keypress(process.stdin);
process.stdin.setEncoding('utf8');
// 4. Listen for `keypress` events and invoke appropriate Rover methods

});

Finally, you need to listen for and handle keypresses.

//...
board.on('ready', function () {

// 1. Instantiate motors (as before)
// 2. Instantiate Rover, with motors (as before)
// 3. Configure `keypress` to generate events on keypresses in the REPL
// 4. Listen for `keypress` events and invoke appropriate Rover methods
process.stdin.on('keypress', function (ch, key) {

if (!key) { return; }

switch (key.name) {
case 'q':

rover.stop();
console.log('Bye-bye!');
process.exit();
break;

case 'up':
rover.forward();
break;

case 'down':
rover.backward();

Listing 6.8 index.js: setting up keypress

Listing 6.9 index.js: handling keypresses

Passes Motors to the
Rover constructor

Tell keypress to generate events for process.stdin
(standard input, via your keyboard)

Be explicit about character encoding.

Listen for keypress
events. You care about
the key argument here.If there’s nothing useful in

key, return (do nothing).

Pressing the q key will
quit the robot. First, the
motors are stopped.

process.exit()
will terminate

the robot’s
process.

‘up’ refers to the keyboard’s
up arrow (and so on with
‘down’, ‘left’, and so on).

176 CHAPTER 6 Output: making things move

break;
case 'left':

rover.left();
break;

case 'right':
rover.right();
break;

case 'space':
rover.stop();
break;

default:
return;

}
});

});

DRIVING YOUR ROBOT

Place your robot where it has a bit of space to move around, and then run the script:

$ node index.js

Once the board and REPL are initialized, you can use your arrow keys (up, down, left,
right) to steer the robot around and the spacebar to make it stop.

 You may feel mingled feelings both of triumph (hooray! first robot!) and restric-
tion (adventures are limited by the length of your USB cable). There’s good news: as
we proceed, you’ll be able to untether your robots and make them more interesting.

 Before we do that, however, you’ll round out the major topics of input and output
by learning how to work with serial data.

Summary
 Electromagnets make motors spin. A motor provided with current will convert

that electrical energy into mechanical energy—it will spin. Turning a motor’s
shaft causes it to act as a generator, converting mechanical energy into electri-
cal energy.

 Building circuits with motors involves additional care. Motor circuits often com-
bine multiple voltages, and motor power supplies tend to be isolated from
lower-voltage logic circuitry.

 Motor direction can be reversed by reversing the direction of current flow
through the motor, and motor speed can be controlled with PWM.

 Transistors like MOSFETs can be used as high-speed switches, using low-voltage
logic to switch higher-voltage circuitry.

 Diodes and capacitors are two components that can help build safer motor
circuits.

 Diodes only allow current to flow through them in one direction. A diode, ori-
ented to be reverse-biased in parallel with a motor, can protect the circuit, act-
ing as a flyback diode.

The robot can be
stopped with the
spacebar.

The default case for the
key switch statement is
to do nothing.

177Summary

 Capacitors store electric charge and can be placed in parallel with components
to isolate them from the circuit and smooth out voltage changes they cause.
When used this way, they are called decoupling capacitors.

 Servos allow for precise positioning, converting PWM signals into angle posi-
tion. Most servos’ ranges are, ostensibly, 180 degrees, but the usable range is
narrower on inexpensive servos.

 H-bridge circuits provide the ability to direct current through a load (motor) in
multiple directions, allowing you to reverse motor direction. H-bridges, com-
bined with other features, are packaged in motor driver ICs.

 Basic roving robots combine a microcontroller with a motor driver, gearmotors,
wheels, a source of power, and a chassis.

Part 3

More sophisticated projects

This part of the book ups the ante and opens new possibilities through serial
communication and the snazzy, Node.js-capable Tessel 2 development board.

 To use more sophisticated sensors and exchange more complex data, you’ll
need to get a handle on how serial communication works, which is the topic of
chapter 7. You’ll get a chance to experiment with some nifty sensors, including
an accelerometer, a GPS, and a compass. Along the way, you’ll learn the differ-
ence between asynchronous and synchronous serial, and you’ll meet the I2C and
SPI protocols. You’ll also learn to solder.

 In chapter 8, you’ll untether your projects, going wires-free with the Tessel 2
development board. You’ll get to know the Tessel, which can run your Johnny-
Five scripts natively, and you’ll build more complex experiments that make
increasing use of third-party npm packages.

 As you continue your adventure, you’ll likely be starting to think of your own
things to build. Chapter 9 walks through the steps of adapting existing hardware
and writing your own software support for components. You’ll hack a remote-
controlled outlet switch and the APDS-9960 gesture sensor breakout board.

 This part of the book is a step toward more independence and sophistication
for your projects. You’ll achieve independence from wires via the Tessel’s native
Node.js and onboard WiFi, and you’ll try out more sophisticated components
using serial communication.

181

Serial communication

For this chapter, you’ll need the following:

 1 Arduino Uno and USB cable

 1 Adafruit Ultimate GPS breakout board

 1 Adafruit HMC5883L magnetometer (compass) breakout board

This chapter covers
 What serial communication is, what it can do, and

where it gets used

 How to work with asynchronous serial components
like GPS modules

 An introduction to the core skills of soldering

 The basics of synchronous serial communication and
the most popular protocols for hobby electronics: SPI
and I2C

 Building more complex projects by combining multiple
serial device components

182 CHAPTER 7 Serial communication

 1 Adafruit BMP180 multisensor breakout board

 1 Adafruit ADXL345 Triple-Axis accelerometer breakout board

 1 16x2 parallel LCD module, or, optionally, I2C-enabled Grove RGB LCD
module

 1 rotary potentiometer (for parallel LCD)

 Breakaway male header pins

 Soldering iron and soldering supplies

 Jumper wires

 2 half-size breadboards

In our experiments so far, we’ve been able to glean some fun but straightforward data
about the world around us, such as temperature (figure 7.1) or ambient light inten-
sity. And by listening for variance in a basic digital signal (HIGH vs. LOW), we could
tell if a button had been pressed.

183Communicating digital data in parallel and in serial

But there’s a lot more information out there than can be (plausibly) relayed with a
single analog signal. In fact, much of the interesting data is considerably more compli-
cated and needs more refined coordination (figure 7.2). What if you want to detect
physical motion in three directions simultaneously—like from an accelerometer?
What about reading information from GPS chips? Precise compass coordinates and
headings? More sophisticated data calls for more structured, sophisticated methods of
digital communication between components.

7.1 Communicating digital data in parallel and in serial
Serial communication: it’s a single concept with myriad manifestations. The single
concept at its core is dead simple: serial simply means that information—data—is sent
one bit at time, one bit following the next. This is in contrast with parallel communica-
tion, in which multiple bits get sent at the same time (figure 7.3).

 The benefits of communicating in parallel can be rather evident: why throw bits
around one at a time if you can open the floodgates and chuck out a whole slew of bits
simultaneously? It’s true, parallel communication can be very fast. But there are some
gotchas.

Figure 7.1 With a simple analog sensor like the TMP36, you can obtain a value for a single data
point (temperature) by sampling the voltage of the signal at different points in time (A, B, C).

Figure 7.2 The complex digital data from sensors like accelerometers, compasses,
and GPS modules requires a more sophisticated method of data exchange.

184 CHAPTER 7 Serial communication

In fact, you’ve already seen one of the downsides of parallel communication. Remem-
ber the LCD timer experiment in chapter 5? That circuit used a parallel LCD compo-
nent. Think back for a moment to the circuit. One of its hallmarks was that it required
an entire herd of wires. Four of those wires were responsible for sending data, in par-
allel, to the LCD, and that circuit only used four of a possible eight parallel data pins
on the LCD. Drawback number one for parallel: tons of wires.

 Parallel hardware also requires more physical bits and pieces than serial hardware.
More wires leads to more expensive, complex circuits—and lots of pieces means that
there are more things that might break.

 It’s also tricky to wrangle all of those parallel bits and make sure they get to the
same place at the same time. In the end, parallel’s complexity can be more trouble
than it’s worth. And serial, despite its simplicity, is more than fast enough. Serial is all
around us: HDMI, USB, Ethernet. Serial is the data exchange method for a vast array of
electronic components. So let’s talk about serial.

7.2 The basics of serial communication
Although the core concept of serial communication isn’t hard to grasp—one bit at a
time down the wire—there are an intimidating number of ways that it can actually
happen. How fast should those bits move around? How many bits make up each dis-
crete grouping (frame) of delivered data? How are errors detected and corrected? If

Figure 7.3 In serial communication (top), one bit is sent at a time sequentially. In contrast,
parallel communication (bottom) transmits multiple bits at the same time.

185Asynchronous serial communication

there are more than two components communicating, how does data get sent
(addressed) to the correct component? Is one component in charge (the master) of sev-
eral connected components?

 All of the components conversing on the same serial communication channel, or bus,
need to be in agreement about how that conversation is going to work (figure 7.4)—they
need to use the same protocol. There are a lot of serial protocols, and it can feel overwhelm-
ing. The good news is that only a handful are commonly used in hobby electronics com-
ponents. Get a conceptual grip on basic asynchronous serial, I2C, and perhaps SPI, and
you’ll be in good shape. And if you’re feeling especially wary, note that nearly all of the low-
level complexity can be abstracted out for you by libraries such as Johnny-Five.

7.3 Asynchronous serial communication
When people refer to serial without any further qualification, they often mean asynchro-
nous serial communication—two devices transmitting (TX) and receiving (RX) data between
themselves (figure 7.5). Yet even a setup as simple as this needs to have some rules.

 Asynchronous serial is so called because there’s no managed clock signal shared by
the components. Each device has to be its own timekeeper. That’s fine, but there has to
be a common agreement between components about how many bits are sent per unit
of time. Put another way, each component needs to know how long one bit of data will
take—for example, how long will a signal remain HIGH to indicate a single 1-bit value?
(Without knowing this, how would a receiver be able to tell the difference between two
sequential 1 bits and a single, long 1 bit?). The speed of bits is usually expressed in bits
per second (bps), or baud rate.

Figure 7.4 For devices to
exchange data using serial
communication, they need
to know how to talk to each
other.

Figure 7.5 The exchange of asynchronous serial data: each of two connected devices can
transmit (TX) data to and receive (RX) data from the other component. Note that one device’s
TX connects to the other’s RX and vice versa. A GPS breakout board like Adafruit’s is an
example of a component that communicates its data using asynchronous serial.

186 CHAPTER 7 Serial communication

But wait, there’s more! Data isn’t sent in endless streams of 1s and 0s. Instead, data is
packaged in brief segments called frames. Each frame of data sent is composed of sev-
eral parts: the data itself (5–9 bits of it), but also a start bit, a stop bit (or two), and,
maybe (though not all that often) a parity bit to aid in error detection (figure 7.6).

 Each asynchronous protocol configuration defines the specifics of how its data
frames will be structured, as well as the baud rate. For example, 9600/8N1, a common
protocol configuration, indicates a data rate of 9600 baud, 8-bit data chunks, no parity
bit, and one stop bit (figure 7.7).

Figure 7.6 A frame of asynchronous serial data. A single start bit is followed by 5–9 bits of data.
A parity bit may be used for error detection. Then one or two stop bits indicate the end of the frame.

Figure 7.7 The data frame structure of 9600/8N1: start bit, 8 data bits, no parity bit, one stop bit

Firmata, serial, and a bit more about how Johnny-Five works
The architecture of Johnny-Five makes a clear distinction between the exposed, high-
level JS API for components and the actual I/O implementation under the covers that
writes data to and reads it from those connected components.

Johnny-Five assumes that compatible dev boards have the ability to perform a set of
I/O operations. For example, the logic inside of the Led class assumes it’s possible
to enact a digital write to a pin (to set it HIGH or LOW), but it doesn’t specifically care
how that digital write is implemented. Instead, it’s the responsibility of compatible
I/O plugins to define how those operations actually take place.

187Asynchronous serial communication

7.3.1 UARTs

A universal asynchronous receiver/transmitter (UART) is a piece of hardware for handling
asynchronous serial communication (figure 7.8). A UART can take a bunch of parallel
data—say, data coming from several I/O pins or other sources—digest it, and spit it out
in a desired serial protocol. It goes the other way, too: a UART can also decode incoming
serial data and make it available as parallel data. Parallel in, serial out—and vice versa.
UARTs can be configured to speak different flavors of asynchronous serial: different
baud rates, and so on. That makes UARTs highly flexible and useful bits of hardware.

 The term transistor-transistor logic (TTL) in this case refers to the use of asynchronous serial
communication via UARTs. With TTL, logical HIGH is represented as the microcontroller’s

When you instantiate a Board object, you can optionally declare which I/O plugin to
use. For example, if you wanted to use Johnny-Five with the Tessel 2 board (and we
will, in the next chapter), you can set an io option property.

const five = require('johnny-five');
const Tessel = require('tessel-io'); // A third-party I/O plugin module

➥ for J5
const board = new five.Board({

io: new Tessel() // tell Johnny-Five to use this I/O plugin
});

You’ve probably noted that, so far, we haven’t been providing an io option in our Board
instantiations. If the option isn’t set, Johnny-Five, by default, uses Firmata for I/O. That
default Firmata I/O layer is compatible with a slew of Arduino boards, including your Uno.

When running a Johnny-Five Node.js script on your host computer, it’s Firmata that’s
translating your application’s logic into I/O commands to send to the board. It’s also
running on the board as firmware and does the translation in the other direction:
sending data from the board back to the host computer.

Firmata’s execution is an example of asynchronous serial in action. Firmata data is
transmitted in 8-bit chunks (8N1) between the host computer and the Arduino board
at a fast baud rate. When you execute a Uno-compatible Johnny-Five Node.js program
on your host computer (“compatible” meaning it uses the default Firmata I/O), Fir-
mata data is sent and received through the connected USB cable. (USB does stand
for Universal Serial Bus, after all!) On the Arduino’s end, receiving and transmitting
serial Firmata data is handled by the Uno’s single on-board Universal Asynchronous
Receiver/Transmitter (UART) (figure 7.8).

For the curious: although the Firmata protocol defines the structure of messages, and
the Firmata implementation handles the packaging and processing of these mes-
sages, the actual nuts-and-bolts mechanics of serial data exchange via your com-
puter’s USB port is supported by an npm package called node-serialport.

Listing 7.1 Using a different I/O plugin with Johnny-Five

188 CHAPTER 7 Serial communication

Vcc (+5 V in the case of the Uno), and LOW is represented as 0 V—that is, the voltage range
is always limited to the voltages appropriate for the microcontroller at hand.

Your trusty Arduino Uno has one UART (more accurately, its ATmega 328P microcon-
troller has one UART). While a Johnny-Five script is executing on your host computer,
the Uno’s UART is busy receiving and transmitting messages in Firmata format.

 There’s a potential conflict here. Say you’ve got a device component you want to
use in your project that communicates data using async serial. But your Uno’s UART is
already occupied, monopolized by the Firmata communication it needs to carry on in
order to make Johnny-Five programs work.

 Fortunately, there’s a way! The work a UART performs is certainly more efficient and
speedy when implemented in hardware, but it can be emulated in software. So-called
software serial allows you to communicate in async serial via microcontroller pins that
wouldn’t normally support it at the hardware level. Software serial can be processor-
intensive and it isn’t as fast as a UART, but it can be fast enough and gets the job done.

Figure 7.8 A UART is specialized
hardware for asynchronous serial
communication and parallel-to-serial
conversion.

The multiple meanings of TTL
The term transistor-transistor logic (TTL) usually refers to a method for constructing
digital circuits using transistors for logic—for example, AND gates, logical inverters,
XOR gates, and so on. Standard voltages used in TTL components will look familiar:
+5 V to indicate a logical HIGH and 0 V for LOW. TTL ICs, especially those compatible
with the wildly popular Texas Instruments 7400 family, were widely used into
the 1990s. They’re still very much available and are useful for hobby projects or sim-
pler embedded systems, though they’ve been superseded by other technologies for
most sophisticated mass-produced electronics (for example, complimentary metal-
oxide-semiconductor, which is abbreviated to something you may recognize: CMOS).

Perhaps confusingly, the term TTL is also applied to a device or circuit that can be
connected to another device or circuit without any extra translation or interfacing. In
this context, it indicates that the signal between the two will communicate logically
using HIGH (+5 V) and LOW (0 V) logic levels. It’s this usage that leads to the con-
vention of alternately referring to asynchronous serial as TTL serial.

189Asynchronous serial communication

7.3.2 Trying out software serial with a GPS breakout board

What you’ll need
 1 breadboard

 1 Adafruit Ultimate GPS breakout board

 Red, black, yellow, and white jumper wires

 Arduino Uno and USB cable

Here’s where it gets fun—the first time you connect up a GPS and see incoming data,
it feels pretty awesome. Reading GPS data with an Arduino Uno used to feel a little
arcane—lots of copying and pasting of Arduino code and relying on low-level libraries
cooked up by community members. It worked, but it wasn’t terribly intuitive for the
non-C expert.

 Interacting with GPS using Johnny-Five these days, however, is so streamlined it
feels almost magical. Your little GPS chip is listening to satellites! It’s hard to believe
that something so sophisticated can be controlled and sampled with only a few, clear
lines of JavaScript. Technology is cool.

✔

GPS data and NMEA sentences
Many GPS chips output data conforming to a standard called NMEA 0183. The
National Marine Electronics Association (NMEA) maintains this standard, which
defines the structure of data from the kinds of hardware you might expect to find
aboard a seagoing vessel: sonar, gyroscopes, marine radar—and GPS.

NMEA data is communicated over asynchronous serial as ASCII characters—ASCII
characters are 7 bits, which fit nicely inside of a byte of data—and those characters
are assembled into comma-delimited NMEA sentences. Although the standard does
make mention of a particular configuration (4800 8N1), NMEA data can be sent over
various configurations. The GPS breakout from Adafruit defaults to 9600 baud, but
some GPS modules can transmit even faster.

Sample NMEA sentence and some of its fields explained. Data transmitted from the GPS is sent
in comma-delimited ASCII conforming to the NMEA standard.

190 CHAPTER 7 Serial communication

The good news is that building a circuit with a GPS breakout board requires minimal
connections. You’ll find that the supporting electronic components are often built
into breakout boards—capacitors, resistors, and so on—leaving you with just power
and data connections to hook up.

 On the flip side, you’ll need to learn to solder now. The Adafruit GPS breakout
board needs to be soldered onto headers so that you can plug it into a breadboard
(figure 7.9). Soldering isn’t hard, but like any new core life skill, it can take a few tries
before you’ll have your soldering sea legs.

7.3.3 Learn to solder!

Solder is a metal alloy intended for making—fusing—per-
manent bonds between bits of metal (figure 7.10). Solder
melts at a lower temperature than the legs and connections
of your components, allowing it to flow, liquid, around
those connections without damaging them. Once it hard-
ens—this happens nearly instantly—you’ve got a perma-
nent connection. It’s sort of like conductive metal glue.
Solder comes in long, thin lengths on a spool, like wire.

 To provide the heat needed to melt solder and make
those connections, you’ll need a soldering iron (figure 7.11).
Soldering irons range from ten bucks (U.S.) to several
hundred. Unsurprisingly, you get what you pay for. Cheap
soldering irons behave in, well, cheap ways and aren’t
adjustable. But an inexpensive soldering iron will get
the job done just fine if you’re not ready to invest in a
quality model.

(continued)
Johnny-Five’s GPS class parses NMEA sentences from the GPS hardware using soft-
ware serial and organizes them into handy properties like latitude and longitude.

Figure 7.9 Before you can use it on
a breadboard, the GPS needs to have
some header pins soldered to it.

Figure 7.10 Solder comes on
a wound spool, like thread.

191Asynchronous serial communication

Make sure your soldering iron has a stand to put it in when it’s not in your hand (fig-
ure 7.12). You’ll also need sponge for cleaning the tip of your soldering iron between
solders and for tinning the tip (more on that shortly). Good soldering sponges are
brass, but regular household sponges work, too. If you use a cellulose household
sponge, make sure to dampen it before using it with your iron.

PUTTING TOGETHER YOUR SOLDERING KIT

If the list of necessary soldering supplies seems onerous (figure 7.13), you might con-
sider a “learn-to-solder” kit, sold by online electronics retailers, which comes with
most of the items you’ll need and a practice project to boot.

 Solder, traditionally, is made of an alloy containing a high percentage of lead. As
you likely know, lead is bad for humans. Since 2006, the use of lead in electronics has
been restricted in the EU via the Restriction of Hazardous Substances Directive
(RoHS), which has all but eliminated the use of lead in manufacturing solder. Lead-
free solder is definitely good for people and the earth, but it’s also a little more chal-
lenging to work with—it doesn’t flow as smoothly as leaded solder. Both lead-free and

Figure 7.11 A run-of-the-mill
inexpensive soldering iron.
Cheap ones don’t typically have
temperature-control settings—
they just get one flavor of hot.

Figure 7.12 Your soldering iron needs
a stand to hold it when not in use, and
to protect things around it from burning.

192 CHAPTER 7 Serial communication

Figure 7.14 Secure your
components before soldering. A third
hand is a convenient tool for this.

leaded solder are available; some feel that learning to solder with leaded solder is eas-
ier than with lead-free.

 You may also wish to pick up a spool of solder wick (a.k.a. desoldering braid). This
braided copper wire acts as a chemical vacuum cleaner to undo bad solders: reheat
the soldered joint and use the solder braid to wick
up the misplaced solder.

HOW TO SOLDER, STEP BY STEP

Read these instructions completely before setting
out to solder, so you’re prepared and ready to
rock:

1 Before you begin, set up your workspace
using a third hand (figure 7.14) or some
other method for securing your work and
leaving your hands free—slotting header
pins into a breadboard and positioning the
board in place on top is also an option.
Have the tools and parts you anticipate
needing at the ready so you’re not flailing
around with a hot soldering iron later.

2 Plug your soldering iron in and let it heat
up for several minutes. Now, especially if

Figure 7.13 Key things you’ll need to start soldering

193Asynchronous serial communication

Figure 7.15 Place the soldering iron’s tip on
the metal connection pad and the pin to heat
them up.

Figure 7.16 The heated pin will cause the
solder to melt and flow around the joint.

Figure 7.17 A well-soldered connection
resembles a little volcano of solder.

you have an inexpensive model, wait a few more minutes—that is, be patient.
Working with a soldering iron that’s not hot enough is a recipe for frustration
and singed boards.

3 Prepare (tin) your soldering iron’s
tip. Melt a little bit of solder onto the
tip of the iron and then wipe off the
excess on your sponge. This should
result in a shiny, bright tip on your sol-
dering iron. If the solder doesn’t melt
readily when you touch it to the iron’s
tip, the iron isn’t hot enough. Wait a
few more minutes and try again.

4 Hold the soldering iron in your dom-
inant hand and the solder in your
other hand. Press the tip of your hot
iron to the header pin and the con-
nection pad for about one second
(figure 7.15).

5 Keep the iron in place and apply the
end of the solder to the opposite side
of the joint (figure 7.16). You won’t
be melting the solder directly with
the iron—solder instead comes into
contact with the heated pin and
board connection. Keep your solder-
ing iron at the bottom of the pin;
ignore the temptation to move it up
toward the solder.

6 The solder will melt and flow around
the joint. Once you have a nice-
looking mountain-shaped mound of
solder (figure 7.17), remove the
soldering iron and voila! You’ll find
with time that the solder kind of
naturally “wants” to flow into that
volcano shape.

Soldering isn’t complicated, but it can take a few rounds to get it quite right. YouTube
and the web are your friend: there are tons of videos and tutorials for learning to sol-
der. It’s one of those skills that may be easier to understand if you watch it in motion.
SparkFun’s “Through-Hole Soldering” tutorial is clear and straightforward
(http://mng.bz/cv1Z).

http://mng.bz/cv1Z

194 CHAPTER 7 Serial communication

7.3.4 Building the GPS circuit

Once the header pins are soldered onto the GPS breakout board, building the circuit
is a snap. Plug the GPS into the breadboard. Connect power and GND to the Uno’s 5 V
and GND pins, respectively. Connect the board’s TX pin to pin 11 on the Uno, and the
RX to pin 10 (figure 7.18).

Common challenges for soldering newbies
Like any new physical skill, soldering takes a while to master. Here are some of the
common things that can slow you down:

 A soldering gun you know to be hot doesn’t seem to “want” to melt solder, or,
“it just doesn’t seem to work”—Make sure you keep the tip of your soldering
iron tinned, that is, coated with just a bit of solder. You can tell a tip is tinned
because it will be shiny. If your soldering iron’s tip is black or matte-textured,
it’s oxidized and you need to re-tin it. This process can be tedious: you need
to get solder melted so that it will coat the tip, but non-tinned parts of the tip
don’t cause the chemical reaction that causes solder to flow correctly. Take
your time, be patient, and get this right, using your sponge to help direct the
solder and wipe off excess.

The best way to fix this is to keep it from happening in the first place: check
your iron after every few soldered joints, and touch up the tip with some addi-
tional solder if it starts to look oxidized in any spot. Note that lead-free solder
will cause your soldering iron to oxidize considerably faster than leaded solder.

 Blackened, warped, or singed boards—Soldering doesn’t damage compo-
nents if you don’t apply too much heat, but it’s pretty easy to mess this up by
touching your soldering iron to the board (instead of the metal connections),
using too high a temperature setting, holding the iron too long against a com-
ponent, and so on. You’ll get better at this with practice. Often singed-looking
boards or components will still function okay, but sometimes you may find
that you’ve truly fried something. Go slow, aim carefully, and try out your first
few soldering tasks on inexpensive components, just in case.

 Soldered joints don’t work right—A joint without enough solder (a “cold joint”)
won’t conduct—plug your soldering iron back in and try again. Another common
problem is accidentally using too much solder and soldering the connection to
a neighboring connection as well, causing any number of woes with the circuit.
An overabundance of solder can be cleaned up with soldering wick.

 Solder just won’t stick to the thing you’re trying to stick it to—Soldering is a
chemical process. You can’t solder to non-metal surfaces like plastics, and
even some metals are non-solderable.

195Asynchronous serial communication

READING GPS DATA WITH JOHNNY-FIVE

The code required is breathtakingly simple. In your Johnny-Five working directory,
create a new file called gps.js and add the following code.

const five = require('johnny-five');
const board = new five.Board();

board.on('ready', function () {
const gps = new five.GPS([11, 10]);

board.repl.inject({
gps: gps

});
});

As soon as the GPS board is connected to power, it will start trying to get a satellite fix.
Until it has a fix, you’ll see an onboard LED blink about once per second.

Listing 7.2 Johnny-Five GPS

Figure 7.18 GPS circuit wiring diagram

Software serial is supported
on these pins—and only
these pins—on the Uno.

Makes the GPS object (gps)
available in the REPL

196 CHAPTER 7 Serial communication

 The GPS has a built-in antenna, but it won’t be able to get a satellite fix without
exposure to a wide slice of sky. Most likely, you’ll need to go outside. With luck, this
requirement won’t be too cumbersome—scoop up your laptop and Uno and bread-
board, and head to the great outdoors for a few minutes. Then again, it was 24
degrees (F) out and spitting snow pellets when I tested this code. Or maybe you’re
working on a desktop computer, which isn’t going to be outdoor-friendly.

 You might have luck next to a large window with a clear view of the sky, or you may
be able to use a longer USB cord so that your Uno and breadboard can sit outside
while your computer is inside.

 It takes about 30–60 seconds to get a solid (“cold-start”) satellite fix.
 “But wait,” you say, “my phone can get my GPS position in just a few seconds…and

it works inside. What gives?”
 Your smartphone uses some extra tricks to derive your location: where it is relative

to local cell phone towers and nearby WiFi networks. In fact, for your phone to get a
real GPS lock—the satellite kind—it can take just as long or longer than these stand-
alone chips—up to several minutes.

 Once your GPS chip has a satellite fix, the onboard LED will stop blinking so
quickly, slowing down to one blink every 15 seconds. It doesn’t matter when you start
the gps.js script—before the chip has a fix or after—but, obviously, location data won’t
be available until the fix is solid:

$ node gps.js

Assuming you have a fix, you can now start interacting with your GPS and logging out
data, as shown in the next listing.

1479058386733 Device(s) /dev/cu.usbmodem1411
1479058386761 Connected /dev/cu.usbmodem1411
1479058388413 Repl Initialized
>> gps.latitude
42.38
>>

All right, cool—almost too easy! You can try inspecting other properties on your gps
object, like longitude. See the Johnny-Five GPS documentation for the latest about
what you can do (http://johnny-five.io/api/gps/).

 Nice. You’ve mastered basic asynchronous serial connectivity using software serial.
Let’s see what else serial can do.

7.4 Synchronous serial communication
Async serial is straightforward and useful, but it isn’t the right fit for everything. To
account for small potential differences in the clocks of each of the components, each
data chunk has to be surrounded by start and stop bits, and maybe a parity bit is

Listing 7.3 Photoresistor data logging output

http://johnny-five.io/api/gps/

197Synchronous serial communication

thrown in there, too. That’s a sizable overhead: best case (one start bit, one stop bit,
no parity), it takes 10 bits to transmit 8 bits of information. UART hardware is com-
plex, and software implementations are slower and processor-intensive. Getting the
baud rate and other details sorted out between components can be finicky. Finally,
async serial is really only cut out for letting two devices talk to each other.

 Synchronous serial protocols add a shared clock line in addition to data connec-
tions for synchronizing components. Because the clock signal dictates the speed of
the data transmission, the data rate of components doesn’t have to be configured
beforehand. Certain synchronous serial protocols also make it possible and conve-
nient to communicate among many devices on the same communication bus. There
are also drawbacks; for example, both the SPI and I2C protocols you’re about to meet
require connecting wires to be short—for example, you can’t reasonably communi-
cate using I2C over a 20-foot cable.

7.4.1 Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI) is a synchronous serial protocol originally developed
by Motorola in the 1980s. It allows for a “master” device to control and coordinate data
exchange between itself and one or more “slave” devices. For a one-to-one master-slave
connection, as few as three wires can be used (figure 7.19), but four or more are
required if there are multiple slave devices (figure 7.20).

 SPI’s biggest advantage is that it allows for really fast data transmission rates. The
receive hardware is also significantly simpler than a UART. SDCard memory cards are a
popular example of real-world use of the SPI protocol.

 SPI components are widely available to hobby tinkerers. Johnny-Five has support for
a certain SPI barometer, for example. Also, we’ll work with an LCD module (Nokia 5110)

Figure 7.19 In a simple SPI configuration—one master, one slave—as few as three
wires can be used for data exchange: a shared clock line (SCK) managed by the
master, master-out-slave-in (MOSI), and master-in-slave-out (MISO).

198 CHAPTER 7 Serial communication

in chapter 10 that has an SPI interface. But SPI components aren’t nearly as common as
the big-hitter protocol: I2C. That’s where we’ll put our attention.

7.4.2 I2C

Inter-Integrated Circuit (more commonly written as I2C, pronounced “I-squared-C”) is a
synchronous serial protocol created by Philips Semiconductor (which is now NXP).
Although it’s not quite as fast as SPI, I2C makes up for it with flexibility and simplic-
ity—only two wires (figure 7.21)!

 With I2C, you can have up to, oh, about a thousand devices on a single bus (1008 if
you use 10-bit addressing; the more common 7-bit addressing allows up to 127). That
means that you’re back to the connection simplicity of async serial—minimal wires—but
you get the benefits of sync serial—multiple devices and no advance configuration.

 All of the data for all connected components is carried on a single SDA (serial
data) line. The second wire is SCL (serial clock), which, like SDA, is shared by all of the

Figure 7.20 When more devices are added, at least one additional line—slave-select (SS)—is
needed, though some SPI configurations require one SS line per slave device.

An aside on terminology
I’m no fan of the archaic master-slave terminology to describe certain metaphors in
electronics and computer science. But it’s entirely pervasive in serial protocols—for
example, it’s hard-baked into acronyms like MOSI and MISO. Thus, I am using master-
slave language here, reluctantly, as to do otherwise could lead to confusion.

Note also that in these discussions about different serial configurations, the dev
board’s serial hardware is playing the part of “master,” and the connected devices
are the “slaves.”

199Synchronous serial communication

connected components. Connect each device to the SDA and SCL lines (and give ’em
some power!), and you’re ready to go.

Figure 7.21 No matter how many
devices are connected together,
with I2C there are always just two
lines: SCL (clock) and SDA (data).

How I2C devices talk to each other
Because there are often many I2C components on the same bus, I2C messages have
to be more structured, and something needs to take control of directing traffic. One
or more master device on the bus has this authority. The active master (there can be
more than one master device on a bus, but only one can be actively in charge at any
given time) generates the clock signal and tells other devices when to transmit or
receive data.

To start the ball rolling, the active master first transmits an address frame (first frame
on left in the following figure) to determine which connected slave device needs to
perform the subsequent action.

High-level structure of I2C frames

200 CHAPTER 7 Serial communication

7.4.3 Making a digital compass with an I2C magnetometer

What you’ll need
 1 Arduino Uno and USB cable

 1 HMC5883L magnetometer (compass) 5 V-friendly breakout board, such as
Adafruit’s

 1 half-size breadboard

 Red, black, yellow, and white jumper wires

The Honeywell HMC5883L is a popular I2C triple-axis mag-
netometer chip—that is, a compass—available on a 5 V-
friendly breakout board from Adafruit. Determining your
orientation is moments away, combining Johnny-Five’s
Compass class with a breakout board centered on the Hon-
eywell chip.

 You’ll have to exercise your soldering skills again—the
breakout board will need to be soldered onto header pins
(figure 7.22) before it can slot into a breadboard.

WATCH OUT FOR OPERATING VOLTAGES! Breakout boards for the HMC5883L are
available from various electronics resellers, but make sure the board you choose
can tolerate 5 V. Many, including Sparkfun’s variant, are made for 3.3 V
logic-level voltages. Connecting a 3.3 V compass to your Arduino’s 5 V power
and pin outputs can fry the chip. Adafruit’s HMC5883L breakout board
has an on-board power regulator, which makes it safe to provide anywhere

(continued)
Each connected device on the bus has its own, unique address. Commonly, this is
a 7-bit address, and the full (8-bit) address frame consists of 7 address bits fol-
lowed by a R/W (read/write) bit. The R/W bit designates whether the indicated
device should read or write data. The addressed device is then expected to trans-
mit a single ACK bit to indicate that all systems are go. Then data frames can be
transmitted, each frame followed by an ACK bit. All this is choreographed by the
shared clock signal.

The ins and outs of the protocol’s details are a bit more involved—for example, you’d
need to use 10-bit addresses to exercise the 1008-device bus maximum (7-bit num-
bers don’t go higher than 127, and every device needs to have a unique address) and
the exact mechanics of a read-from-slave process require identifying things like which
memory register to read from. If you want to learn more, I recommend Sparkfun’s
“I2C” tutorial (https://learn.sparkfun.com/tutorials/i2c).

Many I2C devices ship with hardware-defined addresses. That means you can’t
change the device’s address: if you have another device with the same (hard-wired)
address, you won’t be able to put them on the same bus. But some devices have
configurable addresses.

✔

Figure 7.22 The compass
breakout board, like the GPS
breakout, will need to be
soldered onto header pins.

https://learn.sparkfun.com/tutorials/i2c

201Synchronous serial communication

from 3–5 V DC—it’s a so-called “5 V-safe” component. Although there are ways
to make 3.3 V components work safely with a 5 V board like the Uno, it requires
some extra steps and hardware, so for now, make sure you have a 5 V-friendly
breakout board.

As with the GPS breakout board, once the headers are soldered, the wiring is simple
for this circuit: connect the breakout board’s SDA pin to the Uno’s A4 pin and the SCL
to Uno pin A5. Connect VIN to the Arduino’s 5 V power and connect the ground pin
to GND (figure 7.23).

I2C HARDWARE SUPPORT ON ARDUINO UNO Note that the pin numbers for this
circuit aren’t arbitrary: Uno pins A4 and A5 have hardware support for I2C;
other pins don’t. The Uno’s A4 pin provides SDA; A5 is SCL.

Johnny-Five’s Compass class supports a number of different chips, so you’ll need to let
it know, during instantiation, which specific controller to use; see listing 7.4. The
Johnny-Five Compass documentation identifies the supported components (http://
johnny-five.io/api/compass/). You don’t have to define which pins the compass
is connected to, as there’s only one way to connect I2C devices to the Uno board
(pins A4 and A5).

const compass = new five.Compass({ controller: 'HMC5883L' });

Listing 7.4 Instantiating a Compass with a specific controller

Figure 7.23 Wiring diagram for compass

http://johnny-five.io/api/compass/
http://johnny-five.io/api/compass/
http://johnny-five.io/api/compass/

202 CHAPTER 7 Serial communication

Using a controller option to differentiate between different supported hardware is a
common pattern in many of Johnny-Five’s component classes. You first saw it in chap-
ter 4, with the TMP36 analog temperature sensor.

 Inside of your Johnny-Five working directory, create a file called compass.js, as
shown in the following listing.

const five = require('johnny-five');
const board = new five.Board();

board.on('ready', () => {
const compass = new five.Compass({ controller: 'HMC5883L' });
compass.on('change', () => {

console.log(compass.bearing);
});

});

Now run the script:

$ node compass.js

Once the board and REPL initialize, you’ll see output in your terminal like this:

$ node compass.js
1479310483561 Device(s) /dev/cu.usbmodem1411
1479310483570 Connected /dev/cu.usbmodem1411
1479310485230 Repl Initialized
>> { name: 'East', abbr: 'E', low: 84.38, high: 95.62, heading: 94 }
{ name: 'East', abbr: 'E', low: 84.38, high: 95.62, heading: 91 }

Each bearing object being logged contains several properties (abbr, heading, and so
on). This digital compass would be slicker if it had an output—we’ll make one now.

7.5 Pulling it together: shake-to-change multisensor widget
This next experiment combines several I2C sensors together and displays output on
an LCD. There are enough sensors here that it’s tough to display all the output at once
on the LCD, so we’ll use an accelerometer to create a shake-to-swap-display feature. By
shaking the device, you can toggle which data is displayed on the LCD: a screen with
temperature and pressure data, or a screen with the current compass heading.

 Pins A4 and A5 are the only I2C-compatible pins on the Arduino Uno, but that’s
just fine—the I2C protocol allows a whole bunch of devices on a single bus. That is,
you can control multiple I2C devices using just those two pins.

What you’ll need
 1 Arduino Uno and USB cable

 1 HMC5883L (compass) 5 V-friendly breakout board, such as Adafruit’s

Listing 7.5 compass.js: reading HMC5883L data with Johnny-Five

Instantiates a
Compass for the
HMC588L chip

Compass object instances,
like most other J5 component
objects, have a change event.The bearing property is an

object with information about
the compass’s orientation.

✔

203Pulling it together: shake-to-change multisensor widget

 1 16x2 LCD: parallel or Johnny-Five-compatible I2C LCD, such as the Grove-compatible
JHD1313M1

 Adafruit 5 V-ready BMP180 breakout board (I2C temperature, atmospheric pres-
sure sensor)

 Adafruit ADXL345 triple-axis accelerometer

 Jumper wires

 2 half-size breadboards or 1 full-size breadboard

If you have a Johnny-Five-supported I2C LCD like the Grove RGB LCD module on
hand, you’re in luck: it’s a breeze to connect I2C LCDs. A parallel LCD will work fine in
this circuit, too, but, as you now know, it requires a slew more wires.

7.5.1 Step 1: combining a compass with LCD output

The wiring diagram in figure 7.24 shows how to orient the compass and LCD on two
breadboards. (As you add sensors to this project, there won’t be enough room on a
single breadboard.)

WHY NOT USE THE GPS IN THIS EXPERIMENT? Using the GPS breakout in this
combined-sensor project seems like it would be a nifty idea. However, Johnny-
Five support for software serial is relatively fresh, and some of the complica-
tions of implementing software serial mean that it can be hard to predict how
much data a sensor is going to communicate (the data exchange isn’t struc-
tured like I2C in that regard). Because of this, at the time of writing, combin-
ing a GPS with other sensors or output can cause garbage-y issues with the
LCD’s display and other unpredictable behavior.

Mixing and matching sensors
The specifics of this experiment’s code and wiring are based on the items mentioned
in the list of supplies, but you can mix and match other Johnny-Five-supported I2C
sensors:

 Other “multi” sensors (combining temperature, pressure, altimeters, and
sometimes humidity): BME 280, BMP 280, HTU21D, and so on. See the
Johnny-Five “Multi” API page for more supported I2C devices: http://johnny-
five.io/api/multi/.

 Other accelerometers. See the Johnny-Five “Accelerometer” API page for more
supported I2C accelerometers: http://johnny-five.io/api/accelerometer/.

Of course, you’ll need to adapt the code examples to use the correct controllers for
the hardware you choose.

Note that most of these sensors come on breakout boards that require you to solder
header pins.

http://johnny-five.io/api/multi/
http://johnny-five.io/api/multi/
http://johnny-five.io/api/accelerometer/

204 CHAPTER 7 Serial communication

CONFIGURING MAGNETIC DECLINATION FOR BETTER ACCURACY

One thing I like to do with my compass headings is correct them for my local magnetic
declination. A compass will always give readings relative to magnetic north, which is in
different places relative to true (geographic) north depending on where you are on
the surface of the earth. In my locale, true north is about 14 degrees west of magnetic
north—that is, there’s a magnetic declination here of –14.28 degrees. You can find
your magnetic declination by visiting www.magnetic-declination.com—we’ll make use
of it in the code for the device.

BUILDING THE MULTISENSOR CODE

Create a script called multi-sensor.js and start with this configuration code.

Figure 7.24 Wiring diagram, step 1. The wires on the breadboard with the compass breakout board are
arranged to make room for sensors that will be added later.

http://www.magnetic-declination.com

205Pulling it together: shake-to-change multisensor widget

const five = require('johnny-five');

const DECLINATION = -14.28;
const UPDATE_FREQ_MS = 1000;
var lastDisplay = null;

const board = new five.Board();

Next, add a helper function to correct compass readings for local declination. The
arithmetic in the following declination-correcting function will ensure that the
returned value is a valid degree measurement between 0 and 360.

function correctForDeclination (heading, declination) {
var corrected = heading + declination; // Recall: declination may be negative
corrected += 360;
while (corrected >= 360) {

corrected -= 360;
}
return corrected;

}

And now, a formatting helper function to format the display of readings taken from
the project’s sensors. In this first round, shown in the following listing, it’ll format a
heading property—we’ll populate it shortly with data from the compass.

function formatDisplay (readings) {
var displayLine1, displayLine2;
displayLine1 = 'HEADING: ';
displayLine2 = Math.round(readings.heading) + ':circle:';
return [displayLine1, displayLine2];

}

Now, let’s finish up this round of code.

Listing 7.6 multi-sensor.js: configuration

Listing 7.7 multi-sensor.js: correcting for declination

Listing 7.8 multi-sensor.js: display formatting for compass heading

Your local magnetic declination: this should be
the value from www.magnetic-declination.com.

How frequently to
update the LCD’s display

Keeps track of the last
thing displayed on the LCD

This function corrects a (Number)
heading for local declination.

Ensures corrected
value is positive

Subtracts units of 360 (degrees) from
corrected value until it’s less than 360

Takes a readings object and returns what
to display on each of the LCD’s two lines

:circle: is a special
character that can be
displayed on the LCD.

206 CHAPTER 7 Serial communication

/* ... */
function correctForDeclination (heading, declination) { /** ... **/ }
function formatDisplay (readings) { /** ... **/ }

board.on('ready', () => {
const compass = new five.Compass({ controller: 'HMC5883L' });
const lcd = new five.LCD({ pins: [7, 8, 9, 5, 6, 12] });

lcd.useChar('circle');

function update () {
var display = formatDisplay({

heading: correctForDeclination(compass.heading, DECLINATION),
});
if (!lastDisplay || (lastDisplay.join('') != display.join(''))) {

lcd.clear();
lcd.cursor(0, 0).print(display[0]);
lcd.cursor(1, 0).print(display[1]);
lastDisplay = display;

}
}

board.loop(UPDATE_FREQ_MS, update);
});

By only checking data every second (board.loop frequency) and only reprinting to
the LCD if data has changed, performance is improved and excessive LCD flicker is
avoided.

 Try it out:

$ node multi-sensor.js

You should see a compass heading on your LCD—adjusted for magnetic declination
and rounded to the nearest full degree. It should update every second as the compass
is reoriented.

7.5.2 Step 2: adding a multisensor to the device

Johnny-Five’s Multi component class is meant for devices
like the BMP180, which combine multiple sensors into one
package. Figure 7.25 shows Adafruit’s BMP180 breakout
board, which contains both temperature and atmospheric
pressure sensors. Like the GPS and compass, the BMP180
board needs to be soldered onto header pins before use
in a breadboard.

Listing 7.9 multi-sensor.js: displaying compass heading

Instantiates a parallel LCD

Tells the LCD to use the special circle
character (for a degree marker)

Corrects the compass reading for declination and
populates readings.heading with the result

Has the display
value changed? If so,

updates the LCD.
Keeps track of the
last thing displayed

Sets up a loop to invoke update every
UPDATE_FREQ_MS milliseconds (1000 ms,
in this example)

Figure 7.25 Adafruit’s
BMP180 breakout board

207Pulling it together: shake-to-change multisensor widget

A Multi object behaves as a container for various sensor components and lets you
interact with them in a coordinated manner. Each contained sensor is mapped to its
own appropriate J5 component class. For example, the object instantiated as

const multi = new five.Multi({ controller: 'BMP180' });

will contain the following instance properties:

 thermometer—A reference to a Johnny-Five Thermometer instance for the tem-
perature sensor

 barometer—A reference to a Johnny-Five Barometer instance for the pressure
sensor

The BMP180 uses I2C for communication, meaning you can connect it to the shared
SDA and SCL line already in use by the compass (figure 7.26).

Figure 7.26 Wiring diagram for adding the BMP180 breakout to the circuit

208 CHAPTER 7 Serial communication

7.5.3 Step 3: updating the display to show temperature and pressure

Displaying temperature, atmospheric pressure, and compass heading at the same time
overcrowds the limited 16x2 character space on the LCD. It would be better if we split
the display into two screenfuls: one to display temperature and pressure, and the
other to show compass heading. In our first version, there won’t be a way to swap
between the two screens—it’ll just show temperature and pressure—but we’ll come
back to that in a few moments.

 First, add one more additional variable near the top of the file:

var altDisplay = false;

This is simplistic way to help the program determine which screen—temperature and
pressure, or compass heading—to display.

 Now, update the display-formatting function, shown in the next listing.

function formatDisplay (readings, altDisplay) {
var displayLine1, displayLine2;
if (altDisplay) {

displayLine1 = 'HEADING: ';
displayLine2 = Math.round(readings.heading) + ':circle:';

} else {
displayLine1 = 'TEMP/PRESSURE:';
displayLine2 = readings.temperature.toFixed(1) + ':circle:F';
displayLine2 += ' / ' + Math.round(10 * readings.pressure) + 'mb';

}
return [displayLine1, displayLine2];

}

Next, update the board’s ready callback: instantiate a Multi sensor and pass more
properties to the display-formatting function, as shown in the following listing.

board.on('ready', () => {
const compass = new five.Compass({ controller: 'HMC5883L' });
const lcd = new five.LCD({ controller: 'JHD1313M1' });
const multi = new five.Multi({ controller: 'BMP180' });

lcd.useChar('circle');

function update () {
var display = formatDisplay({

temperature: multi.thermometer.F,
heading : correctForDeclination(compass.heading, DECLINATION),

Listing 7.10 multi-sensor.js: updating the display formatting

Listing 7.11 multi-sensor.js: updating the board’s ready callback

Update to take an altDisplay
parameter (Boolean).

This branch will never execute in this
version of the code (it’s always false).

Pressure is in kPa; multiply by 10 and
round to get more familiar millibars

Instantiates a Multi
object for the BMP180

Adds a temperature property
from the BMP180’s temperature
value, in Fahrenheit

209Pulling it together: shake-to-change multisensor widget

pressure : multi.barometer.pressure
},
altDisplay);
if (!lastDisplay || (lastDisplay.join('') != display.join(''))) {

lcd.clear();
lcd.cursor(0, 0).print(display[0]);
lcd.cursor(1, 0).print(display[1]);
lastDisplay = display;

}
}

board.loop(UPDATE_FREQ_MS, update);
});

Now try things out:

$ node multi-sensor.js

You should see the current temperature and pressure on the LCD’s screen (but not
the compass heading).

7.5.4 Step 4: adding a shake-to-swap display feature with an accelerometer

Accelerometers measure acceleration and orientation changes. By monitoring an
accelerometer for acceleration—forces that exceed 1 G—you can create a shake-to-
change display feature.

 The ADXL345 triple-axis accelerometer breakout board from Adafruit (figure 7.27)
is a 5 V-friendly accelerometer component that provides both I2C and SPI interfaces.
Although the board’s connections support both serial protocols, Johnny-Five’s sup-
port for it uses the I2C interface (only).

Adds a pressure property from
the BMP180’s pressure sensor

Passes the (currently always
false) altDisplay value

Figure 7.27 The ADXL345 triple-axis
accelerometer breakout board from
Adafruit. It can be connected to an I2C
bus (via SDA and SCL pins) or, with
some pins doing double duty as noted
in the image, a four-wire SPI setup
(via CS, SDO, SDA, and SCL pins).

210 CHAPTER 7 Serial communication

Add the accelerometer to the circuit (figure 7.28) once it’s soldered onto header pins,
connecting to the shared SDA and SCL rows on the breadboard.

 The Johnny-Five Accelerometer class provides support for, you guessed it, acceler-
ometers (J5 component classes are probably starting to feel old hat).

 To implement the shake-to-swap display feature, we’ll bind to the Accelerometer
instance’s acceleration event, which is fired when the device’s acceleration reading
has changed, and see if it exceeds a rough threshold that suggests a brisk, shaking-like
movement.

 Edit the following code.
 First, add additional variables near the top of the file to set a shake threshold (in

Gs) and to keep track of last shake detected, for debounce purposes:

const SHAKE_THRESHOLD = 1.15;
var lastJiggleTime = null;

Figure 7.28 Wiring diagram for adding
the accelerometer to the circuit

211Pulling it together: shake-to-change multisensor widget

Inside the ready callback, instantiate the accelerometer:

const accel = new five.Accelerometer({ controller: 'ADXL345' });

Also inside the ready callback function, add a handler for the acceleration event,
shown in the following listing.

accel.on('acceleration', () => {
if (accel.acceleration > SHAKE_THRESHOLD) {

var jiggleTime = Date.now();
if (!lastJiggleTime || jiggleTime > (lastJiggleTime + 1000)) {

altDisplay = !altDisplay;
lastJiggleTime = Date.now();
update();

}
}

});

It’s done! Run.

$ node multi-sensor.js

Initially, you should see the temperature and pressure information displayed on the
LCD. Pick up the breadboard with the sensors, and give it a brisk shake: you should see
the LCD swap over to the compass-heading display.

 By now, it’s likely you’ve started noticing an elephant in the room. You’ve just built
an orienteering-like device…that is chained by a cable to your laptop or computer.

Listing 7.12 multi-sensor.js: acceleration handler

Detecting and debouncing “shakes”
An Accelerometer object’s acceleration event fires whenever the acceleration read-
ing changes. In rough, unscientific experimentation, I found that a reasonable threshold
for what should register as a shake is around 1.15 G. If you find that this is too sensitive
or requires too energetic a shake, you can adjust the threshold in the code.

A real-life movement like a shake generates fluctuating acceleration values over the
period of several device reads. That is, several sequential acceleration events
are fired in a short amount of time, multiple times, with readings that exceed the
threshold. If we implemented the swapping to switch displays each time the accel-
erometer reported acceleration above the threshold, the display would flicker wildly
back and forth.

Instead, we need to debounce the swap, preventing it from occurring too frequently.
We can do this by keeping track of the last time the display was swapped, and making
sure we don’t swap it more often than, say, once per second.

If the current value of the acceleration
property exceeds the G threshold… If the display wasn’t

swapped within the
past 1000 ms…

Flip the value of
altDisplay.

Keep track of the time
the swap happened.

Update the
display.

212 CHAPTER 7 Serial communication

Swapping in an I2C LCD: a case study
The wiring for the combined-sensor circuit is crowded, requiring two breadboards.

On the off chance you have an I2C-enabled LCD display hanging around (I did), you
can use that instead of the parallel one. I used a Grove-compatible I2C LCD (part num-
ber, JHD1313M1). Grove is a system of components made by Seeed Studio that all
share common connectors—but, alas, those connectors aren’t compatible with head-
ers or breadboards. You can purchase connector adapters, but in my case, I did some
homebrew surgery: I cut the connector off the end and soldered the four stranded
wires (VCC, GND, SCL, and SDA, just like any other I2C device) to solid-core hookup
wire that slotted more easily into a breadboard.

The resulting circuit frees up a bunch of Uno pins and is much simpler overall. I2C is
an ideal protocol for cutting down on the number of physical dev board I/O pins you’ll
need to support your project’s components.

The only change to the orienteering code is in the LCD’s instantiation. Instead of this,

const lcd = new five.LCD({ pins: [7, 8, 9, 5, 6, 12] });

use this:

const lcd = new five.LCD({controller: 'JHD1313M1'});

Wiring diagram using the Grove I2C LCD component. It can share the same SDA and SCL lines as
the other connected sensors.

213Summary

The Arduino and its attached components are helpless without the compute power
on the host machine—that’s where the Node.js process executes. This is, of course, a
pretty ridiculous setup for hiking through the woods. Similarly, the robot you built in
chapter 6 can only rove as far as its USB cable allows.

 It’s time to break free. In the next chapter, we’ll start untethering our projects and
setting them free.

Summary
 Although simple analog signals suffice for basic sensor data, reading data from

more advanced components calls for a more structured way of exchanging
information.

 Parallel communication is fast by its nature, but it can be cumbersome. Serial
communication—one bit at a time—is the method of choice for exchanging
data in hobby electronics.

 Asynchronous serial is commonplace, but it requires both devices to be config-
ured for protocol specifics beforehand and is limited to two devices.

 TTL (transistor-transistor logic) is the type of async serial used on dev boards.
UART hardware makes fast TTL serial possible on boards, but this type of serial
communication can also be emulated in software (software serial).

 Synchronous serial protocols add a shared clock line to the communication
bus. SPI is a protocol that requires three or four (data and clock) wires; the even
more popular I2C protocol only requires two wires.

 Serial components can be combined to make fun and more powerful projects.
Although only two devices can exchange data over an async (TTL) serial con-
nection, many devices can be added to the same SPI or I2C buses, allowing more
efficient use of development board I/O pins.

 I2C can support up to 1008 devices on a single bus (with 10-bit addresses). Each
device on the bus needs to have a unique address.

 Support for serial data exchange is usually provided at the hardware level (soft-
ware serial emulation being the evident exception). On development boards,
this is often dependent on the serial support provided by the microcontroller
or processor.

 Serial connections are available only on certain pins. For the Arduino Uno, I2C
is supported on pins A4 (SDA) and A5 (SCL), SPI on pins 10 (SS), 11 (MOSI), 12
(MISO), and 13 (SCK).

214

Projects without wires

For this chapter, you’ll need the following:

 1 Tessel 2 development board

 1 USB A to USB micro cable

 1 standard LED, any color

This chapter covers
 Why hobby electronics projects need wires, and how

to get rid of them

 Using Johnny-Five with different I/O plugins on
different platforms

 Configuring and working with the Tessel 2
development platform

 Adapting to 3.3 V logic levels and different pin
configurations

 Deploying code wirelessly to the Tessel 2

 Taking advantage of the Node.js and npm ecosystem
to create more complex software for the Tessel 2

 Using batteries to go fully wires-free with the Tessel 2

215

 1 100 � resistor

 1 Adafruit BMP180 multisensor breakout board

 Any one of the following:
– 3 female header pins
– 2 lengths of 22-gauge, solid-core wire
– 9 V battery and snaps

 Soldering iron and supplies

 1 USB 5 V wall charger or similar, to power the Tessel 2

 1 USB battery (sometimes called a power bank)

 Jumper wires

 1 half-size breadboard

 Roving robot (motor-driving circuit and chassis) from chapter 6

216 CHAPTER 8 Projects without wires

The things we’re building are becoming more intricate and powerful, but there’s a
limiting factor: they’re physically connected to a computer. These Arduino Uno-
based Johnny-Five projects lack physical independence—they’re wholly dependent
on a host computer for logical instructions and power. For some kinds of projects,
this tethered host-client setup isn’t a problem. But to move further on your journey,
to create JavaScript-controlled, autonomous, self-contained projects—to free your-
self of wires—you’ll need to expand your hardware horizons.

 The ATmega328P microcontroller used on the Arduino Uno is too constrained to
run a full operating system or execute JavaScript natively. If you want to control the
Uno with JavaScript, you have to use something external and more powerful—a host—
to execute the JavaScript on the board’s behalf.

 On the host, the logic in the JavaScript program needs to be translated into
instructions the constrained microcontroller can understand. Those instructions then
need to be communicated to the Uno, which acts as a thin client. Likewise, data com-
ing from the Uno—sensor readings, and so on—are communicated back to the host
for processing (figure 8.1).

 With Johnny-Five, formatting and exchanging those instructions and data between
host and client is the job of the I/O layer.

Figure 8.1 This sketch from chapter 1 outlines theoretical host-client communications for an automatic fan
widget. In your experiments so far, the Arduino Uno has acted as a thin client, and your computer as the host.

217Why you’ve been tethered so far

Arduinos, including the Uno, are a special case with Johnny-Five: Firmata provides the
I/O layer and is available by default in Johnny-Five. That is, when you instantiate a
Board object, unless you tell it otherwise (with an option), Firmata (over USB) will be
used for I/O. You’ve been using this default I/O in the previous chapters.

8.1 Why you’ve been tethered so far
You’ve used physical USB tethering for your projects thus far because the USB connec-
tion has provided both a means of I/O exchange and a supply of power. To unplug,
you need to satisfy those requirements—I/O and power—in different ways, so let’s dig
deeper to see what’s going on under the hood.

8.1.1 Data exchange, the I/O layer, and I/O plugins

Although Johnny-Five defines APIs and the logical behavior of components, exactly how
data and instructions are exchanged between a Johnny-Five application and the
hardware is left up to the I/O layer. This is how Johnny-Five keeps itself platform-agnostic:
it leaves those details up to compatible I/O plugins.

 You haven’t been using any Johnny-Five I/O plugins up to this point because com-
mon Arduinos, including the Uno, are special cases with Johnny-Five. When you instan-
tiate Board objects without specifying what I/O to use, Johnny-Five uses Firmata over USB
by default—that’s why it “just works.” Unlike I/O plugins for other platforms, which have
to be installed individually, Firmata comes with Johnny-Five (technically: it’s a depen-
dency). That can make it seem like Firmata and nitty-gritty I/O details are part of Johnny-
Five’s code, which isn’t actually the case. As you try out Johnny-Five on other platforms,
you’ll see that you have to install appropriate I/O plugins. More on that in a bit.

 In your host-client Johnny-Five setup with an Arduino Uno thus far, the USB cable
serves as an umbilical cord for the exchange of serial Firmata-formatted messages.
That’s one reason you’ve been physically tethered.

8.1.2 USB as a power source

Something has to power the circuits in a project. The USB connection you’ve been
using is a source of steady 5 V power. With the exception of a few inductive circuits—
motors and servos, which require more current or voltage than the development board
can provide—you’ve relied on the USB cable for power as well as for data exchange.

DC power for development boards
The Arduino Uno has a built-in DC barrel jack that you can use to connect it to a wall-
powered DC adapter. Such “wall warts” are ubiquitous, converting wall-based AC
power to the DC power that so many electronics hunger for.

The wall warts of yore have barrel-jack connectors that can socket into anything from
answering machines to your own development boards, like the Uno.

218 CHAPTER 8 Projects without wires

(continued)

Most dev boards (including the Uno) have onboard voltage regulators for their power
inputs, which means it’s OK to provide anywhere from 9 V to over 20 V to the Uno via
DC, and it takes care of regulating that down to its needed 5 V.

Voltage regulators need to be provided with a higher voltage than their target output
voltage. Like with LEDs, there’s a forward voltage drop across the regulator itself—
the power-adjusting circuitry on the board eats up some of the input voltage. In the
Uno’s case, to get a steady 5 V, at least 7 V input is needed.

Any 9 V–12 V DC adapter with center-positive polarity and a 5.5 mm x 2.5 mm plug
(the most common size) is ideal for powering the Uno.

Not all adapters have a polarity symbol printed on them. That’s a pity, because you
can’t assume a given adapter is center-positive polarity—there’s no default, although
center-positive polarity is more common.

I keep a collection of DC wall warts, as well as 5 V USB chargers, at hand for use in
projects. Long-since orphaned from their original consumer electronics, they’re handy
in their second life of providing power for various prototypes and projects.

The Uno has a DC-in
barrel jack for power

This symbol indicates that the power adapter has center-positive polarity. That is, the tip of
the connector has positive polarity, and the sleeve is negative. A majority of DC wall warts
are center-positive polarity—that’s the kind you want for powering the Uno and, typically,
other dev boards.

219Why you’ve been tethered so far

8.1.3 Options for wires-free project communication

As you’ve seen, there are two main reasons projects have wires: data exchange and
power. We’ll tackle power momentarily, but let’s first look at different ways to create
projects that don’t require physically tethered data connections.

WIRELESS HOST-CLIENT SETUPS

Certain development boards with constrained microcontrollers provide wireless com-
munication capabilities, like WiFi or Bluetooth.

 A host is still needed to execute JavaScript logic, but data and instructions can be
exchanged between the host and client wirelessly—obviating the need for a physical
USB data tether (figure 8.2).

The Blend Micro board, for example, can be used wirelessly with Johnny-Five by mak-
ing use of the blend-micro-io I/O plugin and using BLEFirmata firmware on the board.
You’ll meet another BLE-capable small board, Espruino’s Puck.js, in chapter 12.

EMBEDDED JAVASCRIPT

Another class of development boards has microcontrollers that range from con-
strained to moderately sophisticated and are optimized to run JavaScript, some subset
of JavaScript, or JavaScript-like code natively. The microcontrollers on these boards
aren’t cut out to run full-fledged OSs, but tend to be power-efficient, inexpensive, and
small—all ideal characteristics for embedded systems.

 Workflow varies from platform to platform. In some cases, the JavaScript you write
might get compiled to something else (code that’s more low-level and efficient) before
being flashed to the device. In other cases, the board’s microcontroller might be able
to execute some subset of JavaScript directly—meaning you write in JavaScript, but you
might not have access to every language feature (figure 8.3). We’ll revisit constrained,
embedded JavaScript platforms in chapter 10.

Figure 8.2 Like the Uno, these boards have constrained microcontrollers, but
both can communicate wirelessly.

220 CHAPTER 8 Projects without wires

CONTROLLING A CLIENT WITH TINY COMPUTERS (SBCS)
Single-board computers (SBCs) are capable of running a real, multitasking operating
system and provide a range of options in terms of processing power and onboard
peripheral support. They can do a lot, including running Node.js, but they’re corre-
spondingly more power-hungry, more costly, and physically larger than other develop-
ment boards for embedded projects.

 With SBCs, the lines can be blurry between computer and dev board: some, like the
popular Raspberry Pi series, combine generalized computing functionality with
dev-board-like I/O on one board. Does that count as embedded logic execution, or is
it a miniaturized variant of the host-client setup (with the Pi’s processor serving as a
host to control the I/O)? Things get even more convoluted because you can, for
example, use a Raspberry Pi to control an Arduino attached to one of the Pi’s own
USB ports—a mini host-client setup. We’ll look at more SBCs in chapter 11.

8.2 Toward wires-free projects using the Tessel 2
The Tessel 2 (https://tessel.io/) is an open source development platform (both the
hardware and the software are open source) centered around Node.js and the npm
package manager (figure 8.4). In addition to the kinds of basic I/O you’ve come to
rely on—digital, analog, PWM, I2C, and so on—the Tessel 2 also has a few higher-level
peripheral goodies, like USB ports, Ethernet, and—hooray!—WiFi. (The Tessel 2 is
the only Tessel model currently available, so I’ll generally just refer to it as the Tessel.)

 The Tessel is an interesting and useful piece of hardware. Based on the “can run a
real OS” criterion, it’d fall in the SBC category of devices—it ships with OpenWrt, a

Figure 8.3 This class of devices combines constrained microcontrollers with optimized variants of
JavaScript and JavaScript-like runtimes. We’ll explore both the Pico and the Element in chapter 10.

https://tessel.io/

221Getting your Tessel set up

Figure 8.4 The Tessel 2 open source
development board

Linux distribution commonly found on rout-
ers, preinstalled.

 But the development workflow is more rem-
iniscent of host-client setups and embedded-
JavaScript devices: you write code on your com-
puter and deploy to the Tessel, as opposed to
writing code on it. And although the Tessel runs
OpenWrt and comes with some nifty software
goodies that we’ll check out in a bit, it’s more
constrained than SBC platforms like Raspberry
Pis. It only has 64 MB of RAM and 32 MB of Flash
space for programs. That’s leagues beyond
what’s available on ATmega328P-based boards
like the Uno, but it’s not in the same ballpark as
a typical desktop computer.

 After developing projects with Johnny-Five
for the Uno, you’ll find many of the ergonomics with the Tessel familiar. Indeed, the
mechanics of working with the Tessel will feel old hat if you’re used to developing with
or for Node.js in general.

 There’s one difference between the Tessel and the Arduino Uno that’s essential to
note: the Tessel operates at 3.3 V versus the Uno’s 5 V.

TESSEL 2 IS 3.3 V The Tessel 2 operates at 3.3 V. You need to design circuits with
this in mind, and make sure to use 3.3 V-friendly components. Plugging 5 V
components or power into your Tessel 2’s pins could do damage to the board.
Don’t worry: we’ll walk through the details as we go.

8.3 Getting your Tessel set up
What you’ll need

 1 Tessel 2
 1 USB cable: USB A to USB micro

To get the Tessel ready for adventure, you need to connect it to your laptop with a USB
cable, just like with the Uno. But there are some big differences. For one, the JavaScript
code you’ll write will get uploaded to and run on the Tessel itself—the Tessel doesn’t
need a host to do its thinking for it. Also, the Tessel has WiFi, so you don’t have to keep
it plugged into USB once it’s set up—you can deploy to it wirelessly.

✔

Tessel and Node.js LTS
The Tessel supports the Long Term Support (LTS) version of Node.js, which at the
time of writing is at 6.11 (and by the time you read this, it’ll likely be considerably
further along). The code examples in this book will assume at least version 6.11, and
the example scripts will make use of available language features in that version.
Node.js versions newer than current LTS may not be compatible with the Tessel.

222 CHAPTER 8 Projects without wires

8.3.1 Configuring the Tessel

The following explanations may make the setup steps feel lengthy, but the process
takes just a few minutes in most cases.

STEP 1: INSTALL THE CLI
Install the command-line interface (CLI) for controlling your Tessel from your com-
puter. This should be installed as a global npm package by entering the following
command in your terminal:

$ npm install -g t2-cli

Once the module is installed, you’ll be able to use the t2 command in a terminal to
control your Tessel.

t2 VS. t2-cli The npm module is named t2-cli, but the command it
makes available is t2.

STEP 2: CONNECT, FIND, AND RENAME YOUR TESSEL

Connect a USB cable from the USB micro port on your Tessel to a USB port on your
computer. This will provide power to the Tessel, and you should see an LED blink as it
boots (this can take about 30 seconds).

 Find the Tessel by using this command in your terminal:

$ t2 list

You should see something like this.

$ t2 list
INFO Searching for nearby Tessels...

USB Tessel-02A397D5D8A4

Yay! But Tessel-02A397D5D8A4 isn’t very catchy. Luckily, it’s easy as pie to rename
your Tessel with this command:

t2 rename <name>

I decided to call my Tessel sweetbirch. You can choose your own name.

Listing 8.1 t2 list

(continued)
Note that the version of Node.js running on the Tessel itself is likely different (and
older) than your system Node.js version. Once your Tessel is configured, you can see
what version of Node.js it’s running onboard, as well as its firmware version, by using
the t2 version command (more on the t2 tool shortly).

223Getting your Tessel set up

$ t2 rename sweetbirch
INFO Looking for your Tessel...
INFO Connected to Tessel-02A397D5D8A4.
INFO Renaming Tessel-02A397D5D8A4 to sweetbirch
INFO Changed name of device Tessel-02A397D5D8A4 to sweetbirch

STEP 3: GET TESSEL ON WIFI AND PROVISION

Get your Tessel on your WiFi network with the following command:

$ t2 wifi -n <network-name> -p <password>

TESSEL’S WIFI COMPATIBILITY It’s usually easy to get a Tessel on a typical 2.4
GHz home WiFi network with a single command. But be aware, Tessels aren’t,
at this time, compatible with 5 GHz networks. If you run into trouble, head
over to Tessel’s WiFi connection setup page (http://tessel.github.io/t2-start/
wifi.html) for more connection info.

Finally, provision the Tessel so that you can send code to it from your computer over WiFi:

$ t2 provision

The output of the t2 list command after provisioning should show the Tessel as
available both on a USB connection and over WiFi (LAN), as shown in the next listing.

$ t2 list
INFO Searching for nearby Tessels...

USB sweetbirch
LAN sweetbirch

STEP 4: UPDATE YOUR TESSEL

Updates are released now and again for the Tessel’s firmware. Make sure you have the
latest version by running this command:

$ t2 update

If there are available updates, this process may take a few minutes.
 Make sure your Tessel is still connected to USB and booted up. To get the LED-

blinking code going on your Tessel, first initialize the project as shown in the follow-
ing listing.

$ t2 init
INFO Initializing new Tessel project for JavaScript...
INFO Created ".npmrc".
INFO Created ".tesselinclude".
INFO Created "package.json".

Listing 8.2 t2 rename

Listing 8.3 t2 list after provisioning

Listing 8.4 Initialize the Blinking-LED Tessel project

http://tessel.github.io/t2-start/wifi.html

224 CHAPTER 8 Projects without wires

8.3.2 “Hello World” LED blinking on the Tessel

You can control the Tessel with JavaScript right out of the proverbial box—that’s what
the Tessel is made for. Create a file called hello-tessel.js and add the LED-blinking
code in the following listing to it. This script will make one of the Tessel’s built-in,
onboard LEDs blink.

const tessel = require('tessel');

tessel.led[2].on();

setInterval(function () {
tessel.led[2].toggle();
tessel.led[3].toggle();

}, 100);

console.log("I'm blinking! (Press CTRL + C to stop)");

Now you can run the LED-blinking code on the Tessel by using the t2 run <file>
command, as in the following listing. After the code deploys and starts running, you
should see two of the Tessel’s onboard LEDs blinking rapidly.

$ t2 run hello-tessel.js --lan
INFO Looking for your Tessel...
INFO Connected to sweetbirch.
INFO Building project.
INFO Writing project to RAM on sweetbirch (89.088 kB)...

Listing 8.5 hello-tessel.js

Listing 8.6 t2 run

The t2 init command
Newer releases of the t2-cli npm package require you to run the command t2 init
within a project directory before that project’s code can be deployed to your Tessel.
You only need to do this once (per project). If you forget to run t2 init, you’ll get a
helpful message:

$ t2 run index.js
INFO Looking for your Tessel…
INFO Connected to sweetbirch.
WARN This project is missing an ".npmrc" file!
WARN To prepare your project for deployment, use the command:
WARN
WARN t2 init
WARN
WARN Once complete, retry:
WARN
WARN t2 run index.js

Imports the tessel
hardware interface

Starts by turning one of
the onboard LEDs onToggles

LEDs
every

100 ms

225Getting your Tessel set up

INFO Deployed.
INFO Running hello-tessel.js...
I'm blinking! (Press CTRL + C to stop)

THE --lan FLAG Johnny-Five scripts that log to the REPL (with console
.log()) do better if the script is deployed over a LAN (WiFi) connection. The
--lan flag for the t2 run command specifies that the WiFi connection should
be used (versus the wired usb connection).

UNDERSTANDING THE “HELLO TESSEL” EXAMPLE

There are some familiar-looking things in the hello-tessel.js code, but some details are
unique to the Tessel (as compared to controlling the Uno with Johnny-Five).

 The first thing in the code is the requirement of a library called tessel:

var tessel = require('tessel');

Sharp-eyed observers may note that this is curious: you never npm install-ed any such
library or otherwise made it available to the code on your computer. The Tessel 2 Hard-
ware API documentation (http://mng.bz/Ror5) explains this require statement:

When you require('tessel') within a script which is executed on Tessel 2, this
loads a library which interfaces with the Tessel 2 hardware, including pins, ports, and
LEDs…

An important piece of the puzzle here is the phrase “executed on Tessel 2.” It’s true: if
you tried to run the hello-tessel.js script with Node.js on your own computer, you
wouldn’t get far—you’d encounter an error about the missing module. You won’t find
the tessel package on npm, either. Instead, tessel is a JavaScript API library prein-
stalled on the Tessel itself, and therefore available to scripts that run on Tessel 2.

 Turning on and toggling the Tessel’s onboard LEDs via the tessel object looks sort
of like working with Johnny-Five Led objects, but not quite:

tessel.led[2].on();
tessel.led[2].toggle();
tessel.led[3].toggle();

The tessel object gives you access to the ports and pins on the Tessel board, exposing
a hardware API to work with them. It’s a lower-level API than Johnny-Five: you can read
and write digital, analog, and serial data, but there are no higher-level objects that
wrap, say, a temperature sensor. The Tessel 2 Hardware API documentation provides
lots more information (http://mng.bz/Ror5).

8.3.3 Blinking an external LED with the Tessel

What you’ll need

 1 Tessel 2
 1 USB to USB-micro cable
 1 standard LED

✔

http://mng.bz/Ror5
http://mng.bz/Ror5

226 CHAPTER 8 Projects without wires

 1 100 � resistor
 Jumper wires
 1 full-size breadboard

Honoring the age-old tradition of the blinking-LED “Hello World,” let’s sink our teeth
further into the Tessel with this classic first circuit. Instead of blinking an onboard LED,
this example uses an externally connected LED. Although this experiment is pedestrian
in scope, it will introduce you to the workflow and structure of Tessel projects.

SETTING UP A JOHNNY-FIVE TESSEL PROJECT

Before writing any code, set up the working area for the project. You’ll need to create
a directory and set up a package.json file using the npm init command. Open up a
terminal and execute the following commands:

mkdir t2-blink
cd t2-blink
npm init -y

Running npm init will typically walk you through an interactive set of questions to set up
your project. Adding the -y flag will skip those steps and create a package.json file with
default settings. It’s a faster way to get started if you’re not concerned with your project’s
specific configuration details. Once you’ve run npm init, you’ll have a package.json file.

WIRING THE 3.3 V LED CIRCUIT

Though you’ve build a basic LED-blink circuit before, a little arithmetic is in order to
adjust for Tessel’s 3.3 V supply voltage. The circuit is similar to the basic LED circuit
for the Uno you built in chapter 3 (figure 8.5), but you’ll need a different current-
limiting resistor to account for the Tessel’s 3.3 V logic.

 Back in chapter 3, you made a calculation for the needed current-limiting resistor for
a single LED in a series circuit by taking into account both the Uno’s operating voltage
(5 V) and an approximation of an LED’s forward voltage (~1.8 V). You came up with this:

5.0 V (supply voltage)
– 1.8 V (red LED forward voltage)

= 3.2 V (“remaining” voltage in the circuit)

Tessel project structure
Instead of writing one-off, standalone scripts as you did with the Uno, you’ll structure
each Tessel experiment as a proper Node.js project:

 Each experiment will have its own working directory.
 You’ll use a package.json file to manage dependencies.
 The main (entry point) script for experiments will be named index.js.

If you’re experienced with writing software with Node.js, this structure will look familiar.

227Getting your Tessel set up

Targeting 20 mA of current for the LED, you then used Ohm’s law:

Resistance (R) = Voltage (V) / Current (I)
R = 3.2 V / 0.02 A

--
= 160 �

160 � isn’t a common resistance value, so you rounded up to 220 � (which is a com-
mon value).

 Adjust the values for the 3.3 V supply on the Tessel:

3.3 V (supply voltage)
– 1.8 V (red LED forward voltage)

= 1.5 V (“remaining” voltage in the circuit)

Resistance (R) = Voltage (V) / Current (I)
R = 1.5 V / 0.02 A

--
= 75 �

75 � isn’t a common resistance value, but 100 � is—a 100 � resistor will do just fine
here! It makes sense that a lower resistance value is called for than in the 5 V circuit:
there’s less voltage left over after the LED voltage drop to account for.

 Wire the circuit as shown in the Tessel LED wiring diagram (figure 8.6).

Figure 8.5 The origi-
nal basic LED circuit
for the Uno. The Uno
operates at 5.5 V,
whereas the Tessel is
a 3.3 V device. The
circuit needs to be
adjusted for the dif-
ferent voltage of the
Tessel.

Figure 8.6 Connect
the LED’s anode to
Tessel’s port A, pin 5,
and its cathode to the
GND connection on
port A.

228 CHAPTER 8 Projects without wires

WRITING THE LED-BLINKING CODE

In chapter 2, the blinking-LED experiment for the Arduino Uno using Johnny-Five
used the following code.

const five = require('johnny-five');
const board = new five.Board();

board.on('ready', () => {
const led = new five.Led('13');
led.blink(500);

});

There isn’t much that needs changing to make this work with the Tessel. You need to
account for two things:

 The Tessel needs different I/O-layer support to work with Johnny-Five. You’ll
need to make your Board object use tessel-io for its I/O (instead of the
default firmata).

 The pin number that the LED is attached to needs to be updated.

Start by running the following command in your t2-blink working directory:

$ npm install --save johnny-five tessel-io

This will install the johnny-five and tessel-io packages locally and save the depen-
dencies into the package.json file. You know the johnny-five package well already.
tessel-io is the Johnny-Five I/O plugin for the Tessel.

 Create a file called index.js in the same directory, and add the following code.

const five = require('johnny-five');
const Tessel = require('tessel-io');
const board = new five.Board({

io: new Tessel()
});

board.on('ready', () => {
const led = new five.Led('A5');
led.blink(500);

});

This code is remarkably similar to the Uno-compatible code. The only differences are the
I/O plugin and the pin number. Go ahead and try it out by using the t2 run command:

$ t2 run index.js

Listing 8.7 led.js

Listing 8.8 index.js

Instantiates a Board
object with no non-
default optionsWhen the

board is
ready…

Instantiates an Led,
connected to pin 13Blinks

the LED

Requires the
tessel-io package

Tells the
Board to

use tessel-io
for I/O

The LED is connected
to port A, pin 5 on the
Tessel.

229Getting your Tessel set up

Figure 8.7 The Tessel’s pins are divided into
two “ports,” each with 8 I/O pins.

You should see output similar to the next listing, and the LED should start blinking.

$ t2 run index.js
INFO Looking for your Tessel...
INFO Connected to sweetbirch.
INFO Building project.
INFO Writing project to RAM on sweetbirch (746.496 kB)...
INFO Deployed.
INFO Running index.js...
1484926245789 Device(s) Tessel 2 (Tessel-02A397D5D8A4)
1484926245946 Connected Tessel 2 (Tessel-02A397D5D8A4)
1484926246003 Repl Initialized
>>

8.3.4 Exploring the Tessel’s pins and capabilities

Like the Arduino Uno, different pins on the
Tessel do different things. There are 16 I/O
pins on the Tessel, split between two ports
(figure 8.7).

 Pins are numbered A0–A7 (on port A) and
B0–B7 (on port B). The top two pins in each
physical port provide power connections
(GND and 3.3 V). Other features, like I2C, SPI,
and UART (asynchronous/TTL serial) are
supported on specific pins (figure 8.8).

 Although all pins can be used as digital
I/O pins, analog input (ADC) is available on

Listing 8.9 Running the LED-blink code on the Tessel

Figure 8.8 Tessel 2 pins and their
features. Any numbered pin can be
used as digital I/O.

230 CHAPTER 8 Projects without wires

pins A4 and A7 and on all port B pins. You can also see that some pins support inter-
rupts (meaning they would be viable for “listening” for button presses or for other
applications that need to accurately detect a change from LOW to HIGH or vice versa).
Some, but not all, pins support PWM.

 Pin B7 has a capability we haven’t run into yet: analog out. That pin can provide
digital-to-analog conversion (DAC). We won’t explore that capability directly, but it is
available on the Tessel.

8.4 Projects without wires on the Tessel
Hey, wait! The LED example still has you tethered. Next you’ll start removing some wires.

 First, you’ll untether the Tessel from your computer but use a wall outlet to pro-
vide power.

What you’ll need
 1 Tessel 2

 5 V–12 V USB charger

 1 LED

 1 100 � resistor

 1 half-size breadboard

Just to prove you can, you’ll adapt the LED blink code a bit to make the LED pulse. You
can do this because the LED is connected to a PWM-capable pin on the Tessel.

 To make that change, find the following line in index.js:

led.blink(500);

Replace it with this:

led.pulse(500);

✔

Wall power for the Tessel
If your Tessel didn’t come with a USB
DC adapter, you can use a 5 V USB
charger, like a tablet or phone charger,
to power the Tessel.

Like the Arduino Uno’s DC input jack,
the Tessel’s USB micro connection has
a power regulator to regulate input volt-
age down to the needed 3.3 V. The
standard 5 V (USB voltage) is just right
for input voltage.

USB wall adapters that provide 5 V DC power
are widespread. They’re especially popular as
chargers for phones and tablets.

231Projects without wires on the Tessel

Now, plug your Tessel into wall power anywhere you like, as long as it’s within range of
the same WiFi network that your computer’s on. Allow it time to boot before trying to
deploy code to it.

 Now, back at your computer, you can try deploying in a slightly different fashion.
In your working directory, execute this command:

t2 push index.js

The t2 push command differs from the t2 run command. With t2 run, the Node.js
process will execute on the Tessel only until the host computer kills the process (typi-
cally via Ctrl-C). With t2 push, the program will be flashed to the Tessel and will run
as long as the Tessel has power. If you unplug the Tessel and plug it back in again, it
will resume executing the program.

 Now you have an LED pulsing somewhere yonder, but that’s not terrifically excit-
ing. It’s time to build something a little more functional that can also hook into the
Node.js ecosystem available on the Tessel. You can use the Tessel as an independent
weather station: reading data from one or more sensors and serving that data by run-
ning a local web server (figure 8.9).

8.4.1 Wires-free data: a remote weather station

What you’ll need
 1 Tessel 2

 1 USB-micro to USB-A cable

 1 5 V–12 V USB charger

Figure 8.9 A Tessel serves as the nerve center for a mini weather station. A Node.js application
running on the Tessel will read data from the BMP180 multisensor and run a web server so that
other computers on the same WiFi network can view weather information in a web browser.

✔

232 CHAPTER 8 Projects without wires

 1 Adafruit BMP180 I2C multisensor

 Jumper wires

 1 half-size breadboard

There’s a nifty feature of the Adafruit I2C sensors used in chapter 7: they’re happy at
both 5 V and 3.3 V. Their breakout boards each contain voltage regulator hardware
and can handle level shifting—that is, they can account for the different logic-level
voltages of 3.3 V and 5 V microcontrollers. You can use these sensors as easily with the
Tessel as with the Arduino Uno.

 The circuit is straightforward: wire the BMP180 I2C sensor to the Tessel as shown in
figure 8.10.

In your terminal application, set up a new working project directory and install depen-
dencies in the same way as for the LED example:

mkdir t2-weather
cd t2-weather
npm init -y
npm install --save johnny-five tessel-io

Create a file called index.js and add the following code.

const five = require('johnny-five');
const Tessel = require('tessel-io');

const board = new five.Board({
io: new Tessel()

});

board.on('ready', () => {
const weatherSensor = new five.Multi({

controller: 'BMP180'
});

Listing 8.10 index.js

Figure 8.10 Connect the BMP180 I2C sensor to power (GND and 3.3 V pins
of port A), SCL (A0), and SDA (A1).

Don’t forget to specify
tessel-io as the I/O layer.

233Projects without wires on the Tessel

weatherSensor.thermometer.on('change', function () {
console.log(this.F);

});
});

As with the previous LED-blinking code, the abstraction of I/O out of Johnny-Five core
components makes this code look nearly identical to how you’d use an I2C sensor on
the Arduino Uno. In fact, the only difference here is that you’re passing a different
I/O plugin option when creating the Board object. You don’t have to mess with pin
numbers because the board already knows which pins support I2C on the Tessel (and
it will default to port A).

 The preceding code accesses the thermometer instance via weatherSensor. A Multi
object instance for controller BMP180 contains thermometer and barometer properties,
which are references to component class instances representing the BMP180’s tempera-
ture and pressure sensors. Each multisensor component generates events inde-
pendently, and events are also aggregated up to the Multi instance collectively:

weatherSensor.on('change', () => {
// This will get invoked any time ANY of the multi component’s sensors
// have a change

});

weatherSensor.barometer.on('change', () => {
// This gets invoked only when the barometer’s reading changes

});

Other collection component classes in Johnny-Five (such as Buttons and Leds) behave
in a similar fashion.

 With your Tessel connected via USB for now, use t2 run to try the script out on the
Tessel:

$ t2 run index.js --lan

You should see something like this:

$ t2 run index.js --lan
INFO Looking for your Tessel...
INFO Connected to sweetbirch.
INFO Building project.
INFO Writing project to RAM on sweetbirch (440.832 kB)...
INFO Deployed.
INFO Running index.js...
1487876926840 Device(s) Tessel 2 (sweetbirch)
1487876926995 Connected Tessel 2 (sweetbirch)
1487876927051 Repl Initialized
>> 72.14
72.32
72.14
72.32

When the change
event fires on the
sensor’s thermometer
instance…

…logs out the current
reading in Fahrenheit

234 CHAPTER 8 Projects without wires

To do something useful with the sensor’s readings—something more intuitive and
visual—you’ll take advantage of the Tessel’s ability to support npm packages and exe-
cute more sophisticated Node.js code—let’s see how to build a web app.

BUILDING MORE SOPHISTICATED APPS ON THE TESSEL

To serve web content from the Tessel, you’ll need to create a few additional files. At
the very least, you’ll need to start with a basic HTML document.

 Create a directory called “app” inside the t2-weather directory. Create an
index.html file inside of that directory, as shown in the following directory structure.

t2-weather/
 app
 index.html
 index.js
 node_modules
 package.json

Open up index.html and add the following content.

<!DOCTYPE html>
<html lang="en">
<head>
<title>Current Conditions</title>

</head>
<body>
<h1>Current Conditions</h1>
<p>Data coming soon!</p>

</body>
</html>

When you execute code on the Tessel, the Tessel knows to copy over and use the script
you’re running as well as the Node.js modules installed for the project. But you need
to tell it explicitly if it needs to use assets outside of those items. You can do this by
placing a .tesselinclude file in the root level of your project.

 Create a .tesselinclude file and add the following to it:

app/

Each line in a .tesselinclude is a glob, a pattern for matching files. For example, app/
matches all the files in the app directory. This will ensure that the Tessel copies over
all of the files in the app directory when it deploys.

 After adding .tesselinclude, your file structure should look like this.

Listing 8.11 Project directory and file structure, so far

Listing 8.12 index.html

235Projects without wires on the Tessel

t2-weather/
 .tesselinclude
 app
 index.html
 index.js
 node_modules
 package.json

Next, you’ll tackle building a web app to show weather station data in two steps:

1 You’ll set up a basic, static web server by combining the Express
(http://expressjs.com/) web application framework with built-in Node.js mod-
ules. This will serve a basic web page that will be the container for the weather
station data.

2 You’ll set up a socket.IO server on the Tessel (the web server) and connect to it
from the client (from the JavaScript that runs in the browser). You’ll also spiff
up the HTML with some CSS and structured markup.

SETTING UP A STATIC WEB SERVER

You’ll start simple by spinning up a basic, static web server in your app’s code. Static
here means that the web server will deliver assets (like HTML, images, JavaScript, and
the like) without performing any dynamic, server-side processing on them—it’ll just
deliver the files it’s asked for from a designated directory.

 Begin by installing the express web framework. Make sure you’re in the t2-weather
directory, and execute the following command in a terminal:

$ npm install --save express

Returning now to the index.js script, add the following code to the top of the file.

const five = require('johnny-five');
const Tessel = require('tessel-io');
const express = require('express');

const path = require('path');
const http = require('http');
const os = require('os');

var app = express();
app.use(express.static(path.join(__dirname, '/app')));
var server = new http.Server(app);

const board = new five.Board({
io: new Tessel()

});

board.on('ready', () => {
const weatherSensor = new five.Multi({

Listing 8.13 Project directory and file structure with .tesselinclude

Listing 8.14 index.js

Requires
Express

Requires some built-in
Node.js modules

Instantiates a
new Express app

Tells the app to serve
static assets out of the
app/ directory

Creates an HTTP server
and passes it the app

http://expressjs.com/

236 CHAPTER 8 Projects without wires

controller: 'BMP180'
});
server.listen(3000, () => {

console.log(`http://${os.networkInterfaces().wlan0[0].address}:3000`);
});

});

It’s not necessary to npm install the modules os, path, or http because they’re built
into Node.js.

 Try it out!

$ t2 run index.js --lan

You should see results like the following.

$ t2 run index.js
INFO Looking for your Tessel...
INFO Connected to sweetbirch.
INFO Building project.
INFO Writing project to RAM on sweetbirch (933.376 kB)...
INFO Deployed.
INFO Running index.js...
1487884455497 Device(s) Tessel 2 (sweetbirch)
1487884455635 Connected Tessel 2 (sweetbirch)
1487884455691 Repl Initialized
>> http://192.168.1.16:3000

You can now open up a web browser and view the URL logged in the console (make
sure you use the URL that displays in your output—not the one shown in the preced-
ing example output).

Listing 8.15 Running index.js

Omit or comment out the console.log
lines from the previous version.

Makes the server listen for
requests on port 3000

The app is getting
larger as you add
more dependencies.

This is the Tessel’s internal
address and actively listening
HTTP port.

The Tessel’s IP address
Your Tessel needs to be connected to the same network as your computer for this
experiment to work. This will likely be a WiFi network, as discussed in the setup sec-
tion, though the Tessel does also have an Ethernet port.

Being connected to the network results in the Tessel being assigned its own IP
address, which you’ll need to know to access the web server running on it. The fol-
lowing line in the index.js code conveniently displays this for you:

console.log(`http://${os.networkInterfaces().wlan0[0].address}:3000`);

You can copy and paste the output of this from your terminal app into a browser’s
URL bar. Visiting the output URL in a browser will render the current index.html file
(figure 8.11).

237Projects without wires on the Tessel

USING SOCKET.IO TO DISPLAY LIVE DATA

One option for a simple web app would be to include the current sensor values within
the markup of the HTML document that’s served. This is a perfectly valid approach,
and it follows a traditional HTTP model: the browser is in charge of asking the server
for more data, in the form of a full document (web page) request. The side effect is
that a user would have to reload the page in the browser to see new readings.

 There’s a better way!
 The WebSocket API is a web standard that lets a client (a browser) and a server

exchange asynchronous messages over a single TCP socket. Each can push messages to
the other, allowing for the exchange of near-real-time data.

 WebSocket is supported by many, but not all, browsers. To help plug the gaps,
you’ll use Socket.IO, an API that uses WebSocket when it can (when the browser sup-
ports it), but that has a long list of other fallback transports to emulate WebSocket
behavior. In short, it makes using WebSocket features easy and worry-free.

 With Socket.IO, when sensor readings change, the socket server can “push” the
new data to the client (assuming the client is listening for it and does something use-
ful with the updated data). The net effect is that you can make the sensor readings
update in the browser frequently, without page reloads.

 The first step is to install the socket.io npm package:

npm install --save socket.io

Next, update the contents of index.js with the following code.

Figure 8.11 Nothing fancy! Navigating to the Tessel’s IP address and port in a browser displays the
index.html file, which doesn’t do anything much yet.

238 CHAPTER 8 Projects without wires

const five = require('johnny-five');
const Tessel = require('tessel-io');
const express = require('express');
const SocketIO = require('socket.io');

const path = require('path');
const http = require('http');
const os = require('os');

const app = new express();
const server = new http.Server(app);
const socket = new SocketIO(server);
app.use(express.static(path.join(__dirname, '/app')));

const board = new five.Board({ io: new Tessel() });

board.on('ready', () => {
const weatherSensor = new five.Multi({

controller: 'BMP180',
freq: 5000

});

socket.on('connection', client => {
weatherSensor.on('change', () => {

client.emit('weather', {
temperature: weatherSensor.thermometer.F,
pressure: (weatherSensor.barometer.pressure * 10)

});
});

});

server.listen(3000, () => {
console.log(`http://${os.networkInterfaces().wlan0[0].address}:3000`);

});
});

Dialing down the sensor-read frequency to every five seconds keeps performance
within bounds and establishes a reasonable threshold for how often the client will
receive new data over the socket. Every five seconds is the maximum frequency that
the socket server will trigger updates, because the weather event will only get fired if
the sensor readings change.

 Let’s examine the Socket.IO connection handling more closely in the following
listing.

// Register a callback for when a client (browser) tries to connect.
// The callback is passed a reference to the `client`
socket.on('connection', client => {

// Listen for change events on the J5 Multi (representing the BMP180)
weatherSensor.on('change', () => {

Listing 8.16 index.js

Listing 8.17 index.js

Requires the
socket.io library

Creates the
socket.io server

Has Johnny-Five reduce the
frequency of sensor reads
down to five seconds

Registers a callback for when a
client requests a connection

239Projects without wires on the Tessel

// Emit a `weather` event on the client
// And pass an object representing current sensor values
// The client can listen for this event and handle it accordingly
client.emit('weather', {

// This is the temperature in Fahrenheit;
// change to `C` if you'd prefer Celsius
temperature: weatherSensor.thermometer.F,
// Multiplying by 10 converts the sensor's readings in kilopascals
// to more commonly used millibar units
pressure: (weatherSensor.barometer.pressure * 10)

});
});

});

CODE NOT PRODUCTION-WORTHY The code in these examples is pared down to
a minimum for clarity and brevity. That’s fine for at-home prototyping, but
the code in index.js isn’t production-ready. In a “real” codebase, you’d want
to be sure that the socket server doesn’t willy-nilly accept every incoming con-
nection, that a maximum number of connections is enforced, and so on. In
addition, although the index.html markup contains valid HTML, it lacks a few
accessibility and polish niceties, and greater care could be taken in the CSS
for supporting older browsers and diverse browsing environments (such as
mobile devices).

The socket server won’t be too useful if there isn’t also a client that takes advantage of
it. First, you need to prepare the HTML to display sensor values by adding some struc-
tured markup, as shown in the next listing.

<!DOCTYPE html>
<html lang="en">
<head>

<script src="/socket.io/socket.io.js"></script>
<link rel="stylesheet" href="style.css" type="text/css" />
<title>Current Conditions</title>

</head>
<body>

<main role="main">
<h1>Current Conditions</h1>
<div class="row">

<div class="col">
<div class="data">
<h2>Temperature</h2>
--.--
<small class="data--unit">F</small>

</div>
</div>
<div class="col">

<div class="data">
<h2>Pressure</h2>

Listing 8.18 index.html

Includes the client
socket.io JavaScript

You’ll create this
CSS file shortly.

Marks the content up in some
container elements that will
render as a row

The .data—value spans will be
populated with sensor data.

240 CHAPTER 8 Projects without wires

---.--
<small class="data--unit">mBar</small>

</div>
</div>

</div>
</main>

</body>
</html>

This line may be causing you to scratch your head:

<script src="/socket.io/socket.io.js"></script>

Where’d that JavaScript file “magically” come from?
 In index.js, you started up socket.io by giving it a server instance—it makes client-

side code available automatically, via the server, at /socket.io/socket.io.js.
 As for this line:

<link rel="stylesheet" href="style.css" type="text/css" />

You’ll make that stylesheet now. Within the t2-weather directory, navigate into the app
subdirectory and create a file called style.css. Add the following code to it.

html {
font-family : "Helvetica Neue", "Helvetica", "Arial", san-serif;

}
.row {
display : flex;
justify-content : center;
max-width : 48rem;
margin : auto;

}
.row .col {
margin : auto;
padding : 2rem;

}
h1, h2 {
margin : 0;
text-align : center;

}
h2 {
font-size : 1.5rem;

}
small {
color : #999;
font-size : 0.65em;

}
.data {
padding : 1.5rem;

Listing 8.19 style.css

241Projects without wires on the Tessel

background-color: #eee;
border-radius : 10px;
font-size : 3rem;

}
.data--value {
font-weight : bold;

}
.connected { /* Make font color green to show that websockets updating works

*/
color : #093;

}

t2-weather/
 .tesselinclude
 app
 index.html
 style.css
 index.js
 node_modules
 package.json

Now, finally, the linchpin. The client needs to connect to the socket server, listen for
relevant events (weather, in this case), and respond to them in some useful manner.
Return to index.html and add the following code to the file, just before the body clos-
ing tag (</body>).

<script>
window.addEventListener('DOMContentLoaded', function () {

var socket = io();
socket.on('weather', updateData);

});
function updateData (data) {

['temperature', 'pressure'].forEach(function (dataPoint) {
document.getElementById(dataPoint).innerHTML =

 ➥ data[dataPoint].toFixed(2);

Listing 8.20 Complete file and directory structure of project

Listing 8.21 index.html

CSS flexbox
The CSS here makes use of the “flexible box” layout mode, a.k.a. flexbox. Flexbox
allows you to arrange and position elements without the confusion of floats and col-
lapsing margins. Flexbox is increasingly well supported, but if you’re using Internet
Explorer, things may lay out a bit funky (Edge browsers do, however, support flexbox).
If all this is gibberish, not to worry. The CSS here just styles the web page and isn’t
critical to understanding the functionality of the project.

When the page’s DOM is all loaded…
Create a

Socket.IO
client.

Register a callback
for weather events.Handler function

for the weather
event: parses
updated data
and updates
page display

242 CHAPTER 8 Projects without wires

});
document.querySelectorAll('.data--value').forEach(function (el) {

el.classList.add('connected');
});

}
</script>

Let’s look more closely at the preceding code.
 When the DOM has loaded, you need to create a Socket.IO client and tell it to

invoke a callback (updateData) whenever a weather event happens:

window.addEventListener('DOMContentLoaded', function () {
var socket = io();
socket.on('weather', updateData);

});

WHERE’D IO() COME FROM? The io function, for initializing a Socket.IO client,
is made available globally via the inclusion of the /socket.io/socket.io.js script.

The updateData function takes the updated data object and updates the page’s DOM
to include the new values, as the following listing shows.

// `data` is an object containing a `temperature` and `pressure` properties
function updateData (data) {

['temperature', 'pressure'].forEach(function (dataPoint) {
document.getElementById(dataPoint).innerHTML = data[dataPoint].toFixed(2);

});
document.querySelectorAll('.data--value').forEach(function (el) {

el.classList.add('connected');
});

}

First, the HTML elements with IDs temperature and pressure are updated—their
HTML content is set to the value of the temperature and pressure sensors, respectively:

['temperature', 'pressure'].forEach(function (dataPoint) {
document.getElementById(dataPoint).innerHTML = data[dataPoint].toFixed(2);

});

The sensor values are formatted such that two digits display after the decimal.
 Then, as a visual cue, an additional class—connected—is added to the #tempera-

ture and #pressure elements (the CSS styles this as green text) to show that data is
being received over the socket:

document.querySelectorAll('.data--value').forEach(function (el) {
el.classList.add('connected');

});

Listing 8.22 updateData() detail

243Projects without wires on the Tessel

It’s ready! You can position the Tessel, plugged into wall power, anywhere within your
wireless network’s range. Then, once again, from your computer, enter this command:

t2 run index.js --lan

Open a browser to the URL indicated in the console (figure 8.12).

DOM-manipulation code, jQuery style
To avoid excessive client dependencies, the JavaScript in index.html uses the
browser DOM API directly; for example, document.querySelectorAll(). But lots of
people are more familiar with jQuery-style syntax, which makes DOM traversal and
manipulation more readable and intuitive.

You can use jQuery if you like. To do this, you’d need to add a <script> tag to include
it. Using their CDN-hosted code (https://code.jquery.com/) is recommended so you
don’t have to add another file to the app directory.

The updated index.html script would then look something like this:

$(function () {
var socket = io();
socket.on('weather', updateData);

});
function updateData (data) {

$('#temperature').html(data.temperature.toFixed(2));
$('#pressure').html(data.pressure.toFixed(2));
$('.data--value').addClass('connected');

}

Figure 8.12 The temperature and pressure values update in real time in your browser, via websockets.

https://code.jquery.com/

244 CHAPTER 8 Projects without wires

T2 PUSH DEPLOYMENT FOR FULL INDEPENDENCE

Remember, when deploying a project with t2 run, the Tessel still has some depen-
dence on your computer: the process only runs on the Tessel as long as it isn’t termi-
nated from your computer. With t2 push, the Tessel can reach full autonomy.

 Take note of your Tessel’s current IP address and web server port. If you need to be
reminded, run t2 run index.js again and copy the logged IP address and port com-
bination somewhere you can access. When deploying via t2 push, you won’t be able to
see output from console.log anymore.

 Now, run this command:

$ t2 push index.js

You should see output like the following.

$ t2 push index.js
INFO Looking for your Tessel...
INFO Connected to sweetbirch.
INFO Building project.
INFO Writing project to Flash on sweetbirch (1400.832 kB)...
INFO Deployed.
INFO Your Tessel may now be untethered.
INFO The application will run whenever Tessel boots up.
INFO To remove this application, use "t2 erase".
INFO Running index.js...

Give the Tessel several seconds to finish spinning up the web server and get started,
and then view the weather station web page (at the Tessel’s IP address, port 3000) in
your browser.

 Even if your Tessel loses power, it will start running the weather station script once
it regains power and boots up. The Tessel doesn’t need your computer anymore.

MAKE IT STOP You can use t2 erase to make the Tessel stop running the
weather station program.

8.5 Powering projects with batteries
There’s one wire left: a wall connection that provides power for the Tessel and its circuit.

 There are myriad options for powering projects, such as wall power, alkaline or
rechargeable household batteries, many forms of lithium-ion batteries, or solar pan-
els. The options can feel overwhelming. Let’s break it down a bit.

 First, what exactly needs to be powered? For a project like the weather station, the
Tessel itself (dev board, microcontroller, processor) needs to be powered, and the Tes-
sel subsequently provides power at 3.3 V to the BMP180 breakout board. In that case,
it’s natural to think of providing power to the dev board and assume the dev board
will serve as a power source for the rest of the circuit and its components.

Listing 8.23 t2 push output

245Powering projects with batteries

 That’s a fine concept when the project circuitry requires little in the way of power,
but it’s different when projects contain motors or other current-hungry components.
Back in chapter 6, the circuitry for the rover robot contained two DC motors and
required more current than the Arduino Uno pins could provide directly. That proj-
ect included a secondary power source to drive the motors: a 9 V alkaline battery (fig-
ure 8.13).

In any case, whatever you select to provide power for your project needs to power the
whole project—sometimes all of the power will flow through the dev board, some-
times not, depending on what’s in the circuit.

 For your first foray into completely battery-powered freedom, we’ll use a USB power
bank. Perhaps you already have one on hand: these little power packs are often used to
provide extra juice for mobile phones and tablets on the go. They provide a steady 5 V
current over USB and are easy to charge with USB wall chargers. They’re great as an
extra battery for your mobile device, but they’re also great for powering projects that
can run on 5 V power.

Figure 8.13 The dual-motors setup for the robot in chapter 6 used a power source
external to the Uno for powering the DC motors: a 9 V battery.

246 CHAPTER 8 Projects without wires

8.5.1 A battery-powered robot with the Tessel

What you’ll need
 1 Tessel 2

 1 constructed roving robot and chassis from chapter 6

 1 USB “power bank” battery with a USB micro connection

 3 female header pins or a length of solid-core wire (22-gauge solid-core is ideal)
(optional)

 Soldering gun and supplies

By making some minor alterations, the robot you built with the Arduino Uno in chap-
ter 6 can be set free (of wires). Won’t that feel more like a real robot?

 To liberate the bot, you’ll need to do the following:

1 Solder some connections to the Tessel to make a 5 V power source available to
the motors (optional)

2 Replace the Uno in the circuit with a Tessel
3 Initialize a project working directory, copy the rover code into the new project,

and adjust pin numbers for the motor-driver pins

Battery capacity
The amount of “juice” in a given battery is measured in terms of current over time. A
battery’s capacity is measured in Amp hours at its rated voltage, or, in the context of
household batteries, milliamp hours (mAh). A 1.5 V battery with a capacity of 500
mAh should be able to provide, at 1.5 V, a steady current of 100 mA for 5 hours. Or
a steady current of 10 mAh for 50 hours.

Of course, it’s not quite that simple. A battery’s actual capacity varies based on a lot
of variables: discharge rate (higher discharge rates result in lower total capacity),
ambient temperature (batteries don’t like the cold), time elapsed since the battery
was charged (batteries naturally and normally slowly discharge), the battery’s chem-
istry, and more.

Consumer 1.5 AA batteries can range in capacity from 400 to over 3000 mAh
depending on their chemistry and other factors. That’s a big range!

The beefiest of my current collection of USB power banks provides 8000 mAh (8 Amp
hours). On the opposite end, some of my smaller lithium polymer (LiPo) batteries are
only a few hundred mAh.

The power needs of the Tessel (not a particularly low-power board) and motors call
for a higher-capacity battery like that USB brick, whereas a project combining an Ardu-
ino Nano (a small and efficient Arduino board) and a low-power temperature sensor
would do fine on a lower-capacity LiPo.

✔

247Powering projects with batteries

POWERING THE MOTORS

In chapter 6, the roving robot’s motors were powered with a 9 V battery. The Tes-
sel’s 3.3 V operating voltage is too low to power the motors—and besides, the cur-
rent restrictions on the pins would be problematic. But Tessel boards provide access
to 5 V power with enough current to get the job done (figure 8.14). The trick is
accessing it—you’ll need to do a bit of soldering.

 The most flexible option is to solder female headers to the three power pins on the
Tessel, resulting in reusable “sockets” you can plug jumper cables into (8.15).

Soldering female header pins (figure 8.16) is a little different than soldering on male
breakaway headers: you turn the board upside down and solder the pins on the bot-
tom. Use a piece of tape to keep the pins in place on the top so they don’t fall off the
board when you invert it.

Figure 8.15 Soldering female header pins
to the 5 V power pins provides handy
reusable slots for jumper wires.

Figure 8.14 The Tessel can provide 5 V
power from the power pins highlighted here.

Figure 8.16 To solder female headers to the board, flip the board over and solder on the bottom.
You’ll need a piece of tape to hold the pins in place from the top while you solder.

248 CHAPTER 8 Projects without wires

Alternatively, you could solder lengths of wire to the +5 V and GND pins (figure 8.17).
However, this results in permanently attached wires.

 If this seems like too much hassle, you could opt to use two power supplies for this
project: the existing 9 V battery for the motor power rail, and the USB battery to
power the Tessel—a wiring diagram for each is provided in the next section.

DON’T POWER THE MOTORS FROM 3.3 V The Tessel’s 3.3 V power pins provide
neither the voltage nor the current the motors require. Don’t attempt to
power the motors directly from the Tessel’s 3.3 V pins.

(RE-)BUILDING THE ROBOT CIRCUIT

Take the top off of the Uno-powered robot chassis (figure 8.18) so that you can access
the inside, and alter the circuit to use the Tessel instead of the Uno. If you soldered
connections to the Tessel’s 5 V power, build the circuit as shown in figure 8.19. If you
opted to continue using the 9 V battery, wire the circuit as shown in figure 8.20.

Figure 8.17 Soldering solid-core wires
to the power pins is also an option.

Figure 8.18 By replacing the
Uno in chapter 6’s roving bot
with a Tessel, making a couple
of wiring adjustments, and
plugging in a USB battery to the
Tessel, you can create a wires-
free roving bot.

249Powering projects with batteries

Figure 8.19 The rover robot circuit
using the Tessel and the Tessel’s 5 V
power. The Tessel’s 5 V power needs to
power both power rails—make sure you
connect the positive columns of the
power rails together using an additional
(red) jumper wire (near the top).

Figure 8.20 The rover circuit
using two power sources: the
Tessel’s 3.3 V and a 9 V
battery for the motors.

250 CHAPTER 8 Projects without wires

UPDATING THE ROVER CODE

Create a working directory and install some dependencies. In a terminal (making sure
you’re not inside the t2-weather or any other preexisting project directory), enter
these commands:

mkdir t2-rover
cd t2-rover
npm init -y
npm install --save johnny-five tessel-io keypress

The keypress package is used to capture keyboard input, so the bot can be steered
with the arrow keys.

 Copy the two robot scripts into the t2-rover directory—index.js and Rover.js (or
flip back to chapter 6 to find the source). Open the index.js file in a text editor and
make the following changes:

1 Add a require for tessel-io near the top of the file:

const Tessel = require('tessel-io');

2 Update the board instantiation to specify the I/O plugin:

const board = new five.Board({ io: new Tessel() });

3 Update the motor pins:

const motors = new five.Motors([
{ pins: { dir: 'A4', pwm: 'A5' }, invertPWM: true },
{ pins: { dir: 'B4', pwm: 'B5' }, invertPWM: true }

]);

That’s it! Your bot is ready to go, wires-free. Nestle the Tessel board into place on the
roving bot where the Uno was previously. Plug in the USB power supply (and 9 V bat-
tery, if you’re using one) and use tape or Velcro to secure it to the robot chassis. Make
sure the Tessel is fully booted and visible over the LAN (use t2 list to make sure).
Then run this command:

$ t2 run index.js --lan

You should be able to control your robot from your computer using the arrow keys,
and the rover should be able to roam much more widely than when it was tethered
with a USB cable.

 Through the experiments in this chapter, you’ve seen how you can start setting
your projects free from physical tethers. You’re past the basics now. It’s time to give
you more tools to invent your own experiments and create things that haven’t been
created before.

251Summary

Summary
 There are two main reasons that projects require wired connections: data and

communication exchange, and power.
 Using Johnny-Five with Arduino Uno is an example of a host-client setup. A

tether must exist between a host computer and the Uno at all times. Some con-
strained hardware like the Photon Particle can communicate wirelessly with
Johnny-Five, but a host computer is still required to do the thinking.

 Tessel 2 is an open source platform that runs embedded Linux and Node.js
directly on the board itself. The Tessel can execute code independently of a
host computer.

 The Tessel 2 operates at 3.3 V. It has two ports of 8 pins each and supports dif-
ferent features on different pins.

Voltages and the motor driver
The Arduino Uno-based rover used 5 V logic levels, and the motors were provided with
9 V of power from a battery. Remember, there are two power sources here—one for
the motor driver’s logic and one to power the motors themselves.

In the Tessel-based setup, the motor driver is connected to 3.3 V logic levels and the
motors only get 5 V (unless you’re using a 9 V battery). The motor driver works on 3.3
V logic because 3.3 V HIGH is enough to register as a logical HIGH for the 5 V motor
driver device—oftentimes you can use 5 V logic with 3.3 V because the range of valid
HIGH voltages for a 5 V device usually includes 3.3 V.

You’ll notice that the motors aren’t as zippy with 5 V as on 9 V. That’s to be expected.
But they’re still good enough to rove.

3.3 V logic is sometimes compatible with components that have 5 V logic levels. The voltage
range that’s interpreted as HIGH for 5 V logic-level devices often encompasses 3.3 V. That is, a
+3.3 V signal (HIGH from the 3.3 V device) will be interpreted as HIGH on the 5 V device because
it falls within its HIGH voltage range.

252 CHAPTER 8 Projects without wires

 For the most part, the only adaptations required to write Johnny-Five scripts for
the Tessel versus the Uno (or to port between the platforms) is to use the
tessel-io I/O plugin for Johnny-Five and change the pin numbering for
components.

 Because the Tessel can run Node.js natively and supports npm packages, it’s
possible to create sophisticated, high-level applications and execute them
directly on the Tessel.

 There are many options for powering projects. So far you’ve used wall power,
alkaline batteries, and a USB power bank. USB batteries are handy because they
have multiple applications, including charging up mobile devices, and they’re
easy to use.

253

Building your own thing

For this chapter, you’ll need the following:

 1 Tessel 2

 1 set of remote-controlled wall outlets

 1 SparkFun 3.3 V APDS-9960 breakout board

This chapter covers
 The endless possibilities of creating your own mashups

using preexisting, low-voltage consumer electronics

 Steps for creating your own inventions: prototyping,
iterating, and debugging

 Isolating circuits from each other using photocouplers

 Analyzing datasheets and other software and firmware
implementations to create your own software support
for components

 Encapsulating component behavior with custom Johnny-
Five plugins and the J5 Collection mixin

 Wrangling sophisticated sensors: processing complex
data and managing configuration

254 CHAPTER 9 Building your own thing

 Soldering iron and supplies

 Push buttons and/or LEDs for debugging circuits (optional)

 6 photocouplers (opto-isolators), such as the 4N25

 6 100 � resistors

 1 full-size breadboard

 Jumper wires

 1 multimeter

 0.1" male breakaway headers

 22AWG solid-core wire (optional, for soldering to remote control circuitry)

Hardware toolkit for chapter 9 (optional 22AWG solid-core wire not shown)

Already you’ve moved well beyond the light-up-an-LED world, and you might be chaf-
ing to start building things with electronics that haven’t been built before, to chart
your own course. Let’s take a tour through the arc of an entire example project—

255Hacking consumer electronics

remixing a remote-controlled set of outlet switches—from inception, through proto-
typing, troubleshooting, iteration, and improvement. Instead of relying upon preex-
isting schematics, instructions, and software, you’ll forge your own way through some
parts of the project.

 The projects in this chapter will expose you to more software complexity than ear-
lier experiments. Depending on your level of JavaScript expertise, this might hit a
sweet spot, or it might feel like more than you want to bite off right now. If it’s too
much, that’s just fine: it’s always valid to put together projects from preexisting com-
ponent support.

 Real-world projects have ups and downs. It takes a touch of bravery to jump into
more elaborate projects with unknowns. Making it work in the end is sweetly reward-
ing, and I hope you’ll learn to relish the plunge.

9.1 Hacking consumer electronics
One of the most electrifying moments (if you’ll pardon the wretched pun) during the
growth of my electronics expertise was when I realized that I had enough basic know-
how to mess around with existing consumer electronics: to make them better, or to
invent creative mash-ups—scratching whatever inventor’s itch might arise. Why
design, buy parts for, and laboriously build a circuit if you’ve got an unused electronic
trinket lying around the house that already performs the same function?

9.1.1 Modifying RF-controlled outlet switches

Wandering around a room to turn on (or off) several individual lamps can be tire-
some, especially if their switches are inconveniently located. Wirelessly controlled
plug-in switches for electrical outlets can be handy. For about $20 you can buy a set of
three with a remote control (figure 9.1).

 With the battery-operated remote in hand, you can turn each of the plugged-in
switches (and, by turn, the lamps plugged into them) on or off, individually. This is a

Figure 9.1 Sets of remote-controlled
outlets are inexpensive and widely
available at hardware stores and home
centers. The remote control unit is
powered by a low-voltage battery.

256 CHAPTER 9 Building your own thing

step up from having to make a physical lap around the room. But there are some
things which could be improved upon.

 It’s not possible—at least with the model I have—to turn all of the switches (and
thus their lights) on or off at the same time. Each has to be switched individually.

 More interestingly, wouldn’t it be nice to be able to trigger the lights in other, possibly
automated, ways? Maybe you want the lights to turn on when it gets dark, or from
another room in your home, or using some other form of input that you’ve dreamed up.

 Good news! The circuitry inside these little remote controls is both low in com-
plexity and in oomph—low voltage, low current. They’re easy to understand and
probably won’t zap you terribly if you mess something up. Let’s get hacking. Using the
guts of the remote control, you’ll cobble together your own personalized device.

DISASSEMBLING THE REMOTE CONTROL UNIT

You’ll need to dismantle the remote control assembly. Your remote control unit may
be slightly different, but to disassemble the remote control that I have, I removed two
small screws. Inside of the case, I found just a few things (figure 9.2):

 A 3 V coin-cell battery (lithium CR2032 in this remote)
 The physical, pressable buttons, which are all attached together on one flexible

bed of plastic
 A small circuit board containing the contact pads for the buttons, battery con-

tacts, and a status LED (among other things, like the radio transmitter)
 A telescoping antenna, attached to the circuit board

Each button has a corresponding pad beneath it on the circuit board, which looks like
a zig-zag pattern. When the overlying button is pressed, it makes a connection
between the two different sides of the zig-zag, completing the circuit. You can connect
the circuit yourself, acting like a single pressed button, by using a jumper wire and
touching one end to each side of the zig-zag (figure 9.3).

Always be careful!
Although the circuitry in many low-voltage, battery-powered consumer electronics is
benign, every device is different, and you need to exercise common sense.

Unless you’re a qualified electrician, don’t open up or alter the outlet components of
the remote-control system—keep your hackery confined to the remote-control unit.
The outlets plug into the wall, and I make it a policy never to get near mains power
in my electronics explorations—this keeps me out of the hospital.

Remove batteries from electronics when you’re working with them. And always,
always give capacitors a wide berth. They can hold a charge for a long time, even
when not connected to power.

257Hacking consumer electronics

ADDING ONTO THE REMOTE’S CIRCUITRY

One side of the zig-zag is connected to ground. You need to determine which side that
is so that you can wire up your own “buttons” correctly (that is, not backwards). The
best way to do this is with a multimeter, but if you don’t want to purchase a multimeter
right now, you can try touching the LED’s leads to each side of the button contacts and

Figure 9.2 The deconstructed remote control

Figure 9.3 When a button is pressed, it makes
contact with both sides of the zig-zag contacts
underneath it. You can reproduce this effect by
connecting the two sides with a jumper wire.

258 CHAPTER 9 Building your own thing

see when it lights up—whichever side the cathode of the LED is touching at that point
is the ground side (figure 9.4). Keep in mind that you run the risk of sacrificing the
LED if it ends up getting too much current or balks at being connected backward.

Figure 9.4 No multimeter? You may be able
to use an LED to figure out which side of the
button contacts is the ground side. An LED is a
diode—it will only allow current to flow if it’s
aligned correctly in the circuit. When it lights
up, that means its cathode is on the ground
side of the button.

Mastering multimeters
A multimeter, which can measure voltage, current, and resistance, is an essential
tool for an electronic-tinkerer’s toolbox. They’re inexpensive—tolerable hobby-quality
ones can be had for less than $20.

A multimeter allows you
to measure resistance,
current, and voltage.

259Hacking consumer electronics

The next step may require some ingenuity depending on the specifics of your device’s
circuit board: you need to attach wires to each side of the button zig-zags (two wires
per button). Subsequently you’ll be able to turn remote switches on and off by con-
trolling—making and breaking—connections between these wires.

 If you’re lucky, you can solder wires directly to the button contact pads (figure 9.5).
In my case, the remote control’s printed circuit board (PCB)—a board manufactured spe-
cifically for this product with connections silkscreened onto it and traces connecting dif-
ferent elements—made this challenging. Although the button contacts were electrically

In our current experiment, you can determine which side of the button contact pads are
connected to ground by looking at the difference in voltage potential between the two
sides of the zig-zag. To do this, set the multimeter to a DC voltage setting. I chose 20
V—the device should operate around 3 V based on its battery. The 20 V setting can
display voltage readings up to 20 V; the device’s voltage is just a tad too high to use
my 2 V setting.

When you touch the multimeter’s probes to each side of the button contacts, you
should see a voltage reading on the device. If the number is negative, swap the
probes. Once you see a positive reading—mine was about 2.5 V—you’ve found the
positive side (red probe connection) and the negative side (black probe connection).
Take note of these for each button connection.

The controls can look intimidating at first, but multimeters are a great friend to have
for sanity checking and debugging circuits. SparkFun’s “How to Use a Multimeter”
tutorial is a good one: http://mng.bz/9f03.

With the multimeter set to an appropriate DC
voltage setting, the reading will be positive
when the ground probe is on the ground side
of the button contacts.

http://mng.bz/9f03

260 CHAPTER 9 Building your own thing

conductive, solder would not adhere to them. Try as I might, all I achieved was globbing
solder onto my wires and making a mess. Securing the wires to the pads using electrical
tape was frustrating and finicky and kept falling apart on me.

 Finally, poking around using my multimeter, I was able to find holes on the circuit
board that corresponded to button contacts. Those holes still didn’t hold solder, but
they served as anchor points through which I could stick wires into an underlying
breadboard (figure 9.6).

Figure 9.5 An ideal setup would be to
solder wires directly to each side of each
button contact pad.

Figure 9.6 My home-brew wiring solution, taking advantage of the structure of the particular circuit board

261Hacking consumer electronics

It turned out that each button on the circuit board had its own separate connection to
ground (blue wires—top six in figure 9.6). But all of the buttons were connected via
traces to a single shared positive power source (yellow wire—bottom in figure 9.6). To
activate any one button, it was necessary to complete the circuit by connecting the but-
ton’s specific ground connection to the shared positive source.

If you’d like to experiment, you can wire up a few momentary switches (push buttons)
to your button wires and use those to make connections, thus turning on or off the
remote switches (figure 9.7).

 So far, this has been an interesting exercise in understanding how things work, but
you may have realized that it doesn’t accomplish anything useful. It still requires
pokes from human fingers to operate the controls. Instead, let’s design it so you can
control the device based on whatever input or logic you desire.

Learning to have patience when inventing
When you’re blazing new trails and inventing your own things, chances are you’ll have
at least one point in each project where things don’t go as expected (probably more,
to be honest). It can be a letdown. Whether it’s a problem soldering a wire to a con-
nection or a component that doesn’t fit into a breadboard, you’ll need to be resource-
ful and thoughtful to get through it.

Try not to rush or get flustered—easier advised than done, of course! It’s all part of
the experience. Try to use the right tool for the job, even if that means putting your
project aside for a few days while you wait for the right online-ordered tool or part to
arrive in the mail. Even if you do have the necessary materials on hand, sometimes
it’s a good idea to take a breather.

It does get better! As you go on, you’ll learn to foresee certain gotchas. You’ll also
be building your toolset, so you’ll have more options to fall back on when you need
to fix a glitch or troubleshoot. And you’ll learn how long it really takes to build a project
from scratch: it can take longer than you’d think!

Figure 9.7 If you like, you can connect up
one or more of your wired buttons to a push
button to test it out.

262 CHAPTER 9 Building your own thing

USING PHOTOCOUPLERS TO KEEP CIRCUITS ISOLATED

When interfacing with circuits in other electronics, it’s best to keep the power sources
and circuit components of the target device isolated from your development board
and circuit. You wouldn’t want vagaries of current or voltage in the remote to damage
the electronics in the dev-board circuit or vice versa. You want your development
board and the devices connected to it to be able to control the flow of current through
the remote (making and breaking connections for different buttons), but you don’t
want to actually connect to the remote’s circuitry (figure 9.8).

This is where photocoupler components shine (literally). When current is flowing
between two pins on the input side of a photocoupler component, current is allowed
to flow between two pins on the output side. That is, the output-side switch is closed
(figure 9.9). If this notion strikes you as somewhat reminiscent of how transistors
work—a small input current that allows current to flow between two other pins—
you’re right. But in this case, the input current activates the output transistor without
“touching” it with its current. Instead, an internal LED is powered by the current flow-
ing across the input pins. The output-side transistor is photosensitive and activates
(closes the switch) when light hits it.

 As you’ve seen with some other components, a photocoupler goes by many alterna-
tive names: you may see them referred to as optocouplers or opto-isolators.

Figure 9.8 For each button on the remote, you want to be able to press and release the button using
the Tessel as a switch-like controller. You want it so that applying current across points 1 and 2 (the
input side) causes current to flow between points 3 and 4 (the output, remote side), but you don’t
want the two circuits to be physically connected.

263Controlling the remote switches with a Johnny-Five component plugin

9.2 Controlling the remote switches with a Johnny-Five
component plugin
Your first experiment with remotely controlling the remote control (oh, it’s getting
meta!) will involve using existing Johnny-Five features, but cobbling them together in
new ways.

 In this first iteration, you’ll make it so you can control each on and off switch—
virtually pressing buttons—using application logic running on the Tessel.

9.2.1 Prototyping the switch project

Instead of going all-in and wiring up all of the photocouplers and switches at once—
six photocouplers and related components in my case—it can be helpful to start with
one chunk of the circuit and make sure it works. Then you can whip up some less-
than-polished code to check that things are behaving as expected before doing any
fine tuning.

 This process of prototyping can help you validate your approach and troubleshoot
issues on a smaller scale before diving in too deep.

PROTOTYPING THE HARDWARE

Wire up the first set of on and off buttons as shown in figure 9.10. Yellow wires should
connect to positive button connections, black to negative (in my case, all yellow wires
connect to the same, shared positive source). Make sure the dot indicating pin 1 on the
photocouplers is oriented correctly. Connect pin 2 of both photocouplers to ground.

 Connect pin 1 of the first photocoupler to pin A0 on the Tessel through a 100 � resis-
tor, and pin 2 to GND. The current-limiting resistor is needed here because there’s an

Figure 9.9 Current applied to the input side of a photocoupler activates an internal infrared LED. The
LED shines onto a photosensitive transistor, activating it and allowing current to flow on the output side.

264 CHAPTER 9 Building your own thing

LED inside of the photocoupler. Connect pin 5 of the photocoupler to the positive wire
of the first switch’s on button, and pin 4 to the ground wire for that button.

 Connect the second photocoupler in a similar fashion, but connect it to pin A1 on
the Tessel (source) side and to the positive and ground wires of the first switch’s off
button.

PROTOTYPING THE SOFTWARE

Here’s something to consider. What does it mean to “press a button” on the remote?
The connection that the button-press makes doesn’t stay connected forever, nor is it
an instantaneous blip—think of a human finger pressing and then releasing the but-
ton. On my remote, in fact, I’d noticed in the past that if I pressed a button too fast—
releasing it too quickly—the switch didn’t always respond. There’s a bit of press-and-
hold involved.

 You can imitate this with software by enabling a button’s connection via the photo-
coupler and keeping it on for a period of time, say half a second, before turning it off
again. This is probably easier to conceptualize by looking at actual code. Let’s go.

 First, set up the project:

mkdir remote-switches
cd remote-switches
npm init -y

Next, install the standard dependencies and create an index.js file:

npm install --save johnny-five tessel-io
touch index.js

Figure 9.10 Wiring diagram for the
first set of on/off buttons

265Controlling the remote switches with a Johnny-Five component plugin

Instead of using a higher-level Johnny-Five component class like Led, you’ll write digi-
tal values—HIGH (1) or LOW (0)—to pins A0 and A1 directly. A pin can be configured
as a digital output pin, like this:

board.pinMode('A0', five.Pin.OUTPUT);

Once configured, it can be written to like this:

board.digitalWrite('A0', 1); // set HIGH (3.3V on Tessel)
board.digitalWrite('A0', 0); // set LOW (0V)

To “press” the button that turns the first switch on, you’ll want to set pin A0 HIGH—
”turning on” the photocoupler and allowing current to flow across the first button.
After 500 milliseconds, you’ll set A0 LOW again, breaking the circuit connection and
“releasing” the button.

 Add the following prototype switching code to index.js.

const five = require('johnny-five');
const Tessel = require('tessel-io');

const board = new five.Board({ io: new Tessel() });

const switchPins = {
on: 'A0',
off: 'A1'

};
const pressDuration = 500;

board.on('ready', () => {

board.pinMode(switchPins.on, five.Pin.OUTPUT);
board.pinMode(switchPins.off, five.Pin.OUTPUT);

const pressButton = function (pin) {
board.digitalWrite(pin, 1);
setTimeout(() => {

board.digitalWrite(pin, 0);
}, pressDuration);

};
const turnOn = function () {

pressButton(switchPins.on);
};
const turnOff = function () {

pressButton(switchPins.off);
};

board.repl.inject({
turnOn: turnOn,
turnOff: turnOff

});
});

Listing 9.1 Prototype button-pressing code

These two pins are
connected to the source side
of the two photocouplers.

“Presses and holds” buttons
for 500 milliseconds to
ensure switch activation

Configures A0 and A1
as digital output pins

To press a button, first set the
associated photocoupler pin HIGH.

Then set a timeout for
pressDuration (500 ms) before
setting the pin LOW again.

For the prototyping phase,
make turnOn and turnOff
available to the REPL.

266 CHAPTER 9 Building your own thing

Try it out. Deploy the code to the Tessel over LAN (you need to deploy over LAN for
the REPL to function):

$ t2 run index.js --lan

Try invoking the turnOn() and turnOff() functions from the REPL. Note that both
functions return undefined—this is fine and not an error.

1492612088185 Available Tessel 2 (sweetbirch)
1492612088341 Connected Tessel 2 (sweetbirch)
1492612088415 Repl Initialized
>> turnOn()
undefined
>> turnOff()
undefined

Doing this should “press” the on and off buttons on the remote and turn the associ-
ated wall outlet on and off.

BUILDING OUT THE REST OF THE CIRCUIT

Once you’re feeling more confident that your first circuit is doing what you expect,
expand on it as shown in figure 9.11. Make sure to pay attention to each photocou-
pler’s orientation.

9.2.2 Writing the RemoteSwitch plugin

Now that you’ve polished the circuit, it’s time to polish the code. Instead of having a mot-
ley collection of code in the application’s main module (index.js), you can encapsulate
the behavior of each of the three on/off switch combinations in a custom component
called RemoteSwitch. Whisking away the component-specific code will allow you, back

Figure 9.11 The completed
switch/photocoupler wiring. The
outputs from the photocouplers
should connect to the button
contact wires.

267Controlling the remote switches with a Johnny-Five component plugin

in index.js, simply to instantiate a RemoteSwitch object for each of the three on/off pairs
(or however many switch pairs your remote has) and turn them on or off at will.

 Let’s walk through the steps of creating a reusable Johnny-Five component plugin.

JOHNNY-FIVE COMPONENT PLUGINS VS. COMPONENT CLASSES Built-in component
classes like Led and Motor are part of Johnny-Five’s core. Creating a new com-
ponent class requires changes to the Johnny-Five codebase itself. On the
other hand, component plugins can be created without making any modifica-
tions to Johnny-Five—ergo the terminology plugin. The structure of a compo-
nent plugin bears many similarities to the structure of component class code,
but the two things—component class versus component plugin—are differ-
ent animals, so don’t get confused (you are making a plugin)!

COMPONENT PLUGIN STRUCTURE BASICS

Create a new file in the remote-switches directory called RemoteSwitch.js to contain
the plugin module. The structure of the module will start out as shown in the follow-
ing listing. This skeleton structure follows some Johnny-Five component plugin con-
ventions to make it modular and flexible.

module.exports = function (five) {
return (function () {

function RemoteSwitch (opts) { /* ... */ }
RemoteSwitch.prototype.toggle = function (turnOn) {};
RemoteSwitch.prototype.on = function () {};
RemoteSwitch.prototype.off = function () {};
return RemoteSwitch;

}());
};

The RemoteSwitch module doesn’t have a direct dependency on Johnny-Five. Instead,
it takes a Johnny-Five object reference as an argument to its exported function. That
way the plugin can work on top of whichever Johnny-Five object is in play when it’s
included. The passed Johnny-Five object might contain a board configured with the
Tessel I/O plugin, or it might have an Arduino with a Firmata I/O layer, or perhaps
something else—this way the plugin doesn’t have to care about logistics or valid pin
numbers or anything. The passed-in Johnny-Five object will take care of that, leaving
you free to deal with the logic at hand.

 The plugin needs to have a constructor that can take some options, perform any
setup it needs to do, and register itself with Johnny-Five. The instantiation of a
RemoteSwitch will look like this when you’re done:

const switch1 = new RemoteSwitch({ pins: { on: 'A0', off: 'A1' } });

You’ll work on that constructor next.

Listing 9.2 RemoteSwitch.js: starting point

Consuming module provides a
reference to Johnny-Five (five).

This will initialize a new
RemoteSwitch object
(this is its constructor).

You’ll add three prototype
methods to control the

switch component.

268 CHAPTER 9 Building your own thing

CODING THE PLUGIN

Add the following code to RemoteSwitch.js.

module.exports = function (five) {
return (function () {

function RemoteSwitch (opts) {
if (!(this instanceof RemoteSwitch)) {

return new RemoteSwitch(opts);
}
five.Board.Component.call(this, opts = five.Board.Options(opts));

// opts.pins should contain two properties, `on` and `off`,
// defining their pin numbers, respectively
this.pins = opts.pins;
this.duration = 500;
this.isOn = undefined;
this.isActive = false;

this.io.pinMode(this.pins.on, this.io.MODES.OUTPUT);
this.io.pinMode(this.pins.off, this.io.MODES.OUTPUT);

}
// ...

}());
};

Now it’s time to add the methods that turn the switch on and off.

module.exports = function (five) {
return (function () {

function RemoteSwitch (opts) { /* we already wrote this */ };

RemoteSwitch.prototype.toggle = function (turnOn) {
if (this.isActive) { return false; }
this.isActive = true;
if (typeof turnOn === 'undefined') {

turnOn = !this.isOn;
}
const pin = (turnOn) ? this.pins.on : this.pins.off;
this.io.digitalWrite(pin, 1);
setTimeout(() => {

this.io.digitalWrite(pin, 0);
this.isActive = false;
this.isOn = !!turnOn;

}, this.duration);
};
RemoteSwitch.prototype.on = function () {

this.toggle(true);
};
RemoteSwitch.prototype.off = function () {

Listing 9.3 RemoteSwitch.js: constructor

Listing 9.4 RemoteSwitch.js: prototype methods

This (boilerplate)
pattern ensures the
function is called with
the “new” keyword.

Registers the
component

You don’t know,
technically,

whether the
switch is on or

off at the outset.

isActive is true when one
of the switch’s buttons is
activated (being pressed).

Configures the switch’s on and off
pins to be digital output pins.

Doesn’t
activate the
switch if it’s

already
active (busy)

Denotes that
the switch is
currently activeDetermines

toggle behavior
if turnOn is

missing
Determines which of
the switch’s pins (on

or off) to activate
Switch is no

longer active;
isActive should
be false again

Keeps track of the
switch’s current state

269Controlling the remote switches with a Johnny-Five component plugin

this.toggle(false);
};

}());
};

You’ll notice that everything centers around the toggle method. The single toggle
argument, turnOn, defines what happens. If it’s truthy, the switch will turn on. If it’s
falsy, the switch will turn off. If it’s missing (undefined), the switch will toggle from
whatever state it’s currently in. To support that functionality, the switch’s current state
is stored in the isOn property.

 To prevent the remote from trying to send two signals at once, the isActive prop-
erty is used as a flag. toggle won’t write to any pins if isActive is true.

REFACTORING INDEX.JS TO USE REMOTESWITCH

You can now update index.js to contain the following code.

const five = require('johnny-five');
const Tessel = require('tessel-io');
const RemoteSwitch = require('./RemoteSwitch')(five);

const board = new five.Board({ io: new Tessel() });

board.on('ready', () => {
const switch1 = new RemoteSwitch({

pins : { on: 'A0', off: 'A1' }
});
const switch2 = new RemoteSwitch({

pins: { on: 'A2', off: 'A3' }
});
const switch3 = new RemoteSwitch({

pins: { on: 'A4', off: 'A5' }
});
board.repl.inject({

switch1: switch1,
switch2: switch2,
switch3: switch3

});
});

Try it out:

t2 run index.js --lan

Once it’s running, you can interact with the switch objects in the REPL:

1492618175517 Available Tessel 2 (sweetbirch)
1492618175671 Connected Tessel 2 (sweetbirch)
1492618175746 Repl Initialized
>> switch1.on()

Listing 9.5 Refactored index.js

Imports the
RemoteSwitch
module and passes
it the five reference

270 CHAPTER 9 Building your own thing

undefined
>> switch1.off()
undefined
>> switch2.on()
undefined

ITERATION: QUEUING AND CALLBACKS

Right now, the toggle method on RemoteSwitch instances won’t do anything if
isActive is true—that is, it won’t allow multiple simultaneous switch activations. The
downside is that, as it’s currently written, commands to toggle will be effectively
thrown away and ignored if they happen while the switch is already active. Say for
some reason you wanted to blink the switch on and off again several times, and you
had the following code in index.js to try to accomplish that:

for (var i = 0; i < 10; i++) {
switch1.toggle();

}

The switch would toggle once as expected, sure. But the subsequent nine calls to tog-
gle would happen immediately afterward—while the switch is still activated from the
first invocation (and, thus, while isActive is true). They’d be ignored. As a result,
the switch would only toggle once, not 10 times.

 You can fix that by throwing in simple FIFO queueing (first in, first out—analogous
to “calls are answered in the order they’re received”) for toggle commands that come
in while the switch is active. This requires just a few lines of code.

 While you’re in there, you can also add some callback support to RemoteSwitch’s
methods, as shown in the next listing. This is consistent with other J5 components and
makes it possible to register a function to be called when the switch command
(on/off/toggle) is complete. Right now this is gravy, but it’ll be useful later.

module.exports = function (five) {
return (function () {

function RemoteSwitch (opts) {
if (!(this instanceof RemoteSwitch)) {

return new RemoteSwitch(opts);
}
five.Board.Component.call(this, opts = five.Board.Options(opts));

this.pins = opts.pins;
this.duration = opts.duration || 500;
this.isOn = undefined;
this.isActive = false;
this.queue = [];

this.io.pinMode(this.pins.on, this.io.MODES.OUTPUT);
this.io.pinMode(this.pins.off, this.io.MODES.OUTPUT);

}

Listing 9.6 The complete RemoteSwitch plugin

Instantiates an empty array
to hold queued “commands”

271Controlling the remote switches with a Johnny-Five component plugin

RemoteSwitch.prototype.toggle = function (turnOn, callback) {
if (this.isActive) {

this.queue.push([turnOn, callback]);
return;

}
this.isActive = true;
if (typeof turnOn === 'undefined') {

turnOn = !this.isOn;
}
const pin = (turnOn) ? this.pins.on : this.pins.off;
this.io.digitalWrite(pin, 1);
setTimeout(() => {

this.io.digitalWrite(pin, 0);
this.isActive = false;
this.isOn = !!turnOn;
if (typeof callback === 'function') {
callback();

}
if (this.queue.length) {
this.toggle.apply(this, this.queue.shift());

}
}, this.duration);

};

RemoteSwitch.prototype.on = function (callback) {
this.toggle(true, callback);

};
RemoteSwitch.prototype.off = function (callback) {

this.toggle(false, callback);
};
return RemoteSwitch;

}());
};

Now if you add the following code to index.js, it should work as expected:

for (var i = 0; i < 10; i++) {
switch1.toggle(); // This will cause the switch to toggle 10 times

}

YOUR HARDWARE MAY VARY The switch should toggle 10 times, based on the
software we’ve written. It’s worth noting, however, that there may be hard-
ware limitations that prevent this from actually being the case. For example,
your remote’s electronics may not allow a switch to be toggled that frequently.

So far, you’ve hacked into consumer electronics, built a small prototype, and then
expanded that into a more polished circuit with a custom Johnny-Five component
plugin for output (switches).

 You could trigger your RemoteSwitch components with some of the input devices
you’ve seen before. You could use a photoresistor and trigger the switches when it gets
dark in the room. You could use a motion or proximity sensor to turn them on when

Now accepts
a callback

Pushes things
onto the queue if
the switch is busy

The toggle action is
complete: invokes the
callback, if there is one

Calls toggle
on the next
item in the

queue, if
there is one

on and off handler
functions take a
callback argument and
pass it on to toggle.

272 CHAPTER 9 Building your own thing

Figure 9.12 The APDS-9960 crams three
sensors into one package, including a
gesture sensor. SparkFun offers a breakout
board that makes working with the chip
easier.

your cat walks by (and turn them off automatically after a certain amount of elapsed
time). But what happens when you have your heart set on controlling the switches
with a kind of input that isn’t supported by Johnny-Five? What then?

9.3 Writing software for sophisticated hardware
There’s this nifty I2C device that caught my eye.
The Avago APDS-9960 device (figure 9.12)
contains multiple sensors: an RGB ambient light
sensor, a proximity sensor, and a sophisticated
gesture sensor. SparkFun sells an inexpensive
(about $15) breakout board based on the chip.
Neat! A gesture sensor! What a fun way to
control your remotely switched lamps. Why
poke buttons when you can swipe through the
air like a magician?

 The problem is, at the time I stumbled
upon the APDS-9960, there was no preexisting
Johnny-Five support for it. There’s no compo-
nent class for gesture sensors. That means you
need to create that support! When preexisting
software doesn’t exist for something you want to use, you’ve got two options: substitute
another piece of hardware that does have support, or create that support yourself.

9.3.1 Project: Johnny-Five support for APDS-9660 gesture sensor

The APDS-9960 is going to test your mettle (it’s a sophisticated device), but the high-
level structure of the plugin you’ll create for it will mirror that of RemoteSwitch. The
following project process is based on a real experience and highlights some common
phases, setbacks, and results encountered while creating new support for a piece
of hardware.

 To build the support, you’ll do the following:

1 Define the goals and scope
2 Gather information and do research on the APDS-9960

3 Build a quick, proof-of-concept prototype
4 Define the API surface and plugin lifecycle
5 Write the code for the plugin
6 Test that the plugin works
7 Finish the project, integrating the APDS-9960 plugin with your RemoteSwitch

from earlier in the chapter

GOALS FOR THE GESTURE SENSOR PLUGIN

Before plugging in wires, soldering, or slinging code, the first thing to do is ask your-
self what you’re trying to accomplish.

273Writing software for sophisticated hardware

 You want to make a Johnny-Five component plugin for the gesture sensor on the
APDS-9960. A reasonable API consistent with other Johnny-Five components would
include exposing gesture events that could be listened for and responded to by appli-
cation code.

 What’s not in scope? Given the complexity of the APDS-9960’s gesture sensor alone,
don’t try to tackle support for its other sensors. Likewise, to save on development time
and headaches, you’ll go ahead and hard-code many of the default settings and fea-
ture support that could later be managed in another way, such as through options
passed to the plugin.

 Designing the code to be usable on multiple hardware platforms is a good goal, as
is keeping flexibility for the future in mind as you go. Writing a module that conforms
to Johnny-Five component plugin conventions—like RemoteSwitch—will aid with the
cross-platform objective. Being mindful about how constants are managed, paying
attention to the consistency of the API surface, and keeping methods modular will
help make the software easier to modify and to expand upon later.

 You’ll be writing this gesture-sensor support based on the Tessel. There’s no reason
to think it wouldn’t work on other (3.3 V) Johnny-Five-compatible platforms, but you
won’t be taking the time in this project to do testing beyond the Tessel.

GATHERING INFORMATION ABOUT THE APDS-9960
With your goals and scope defined, it’s time to gather information. There are many
questions to answer:

 Physical hardware and protocols—What is the operating voltage of the device?
What are the pins and connections? What communications protocol does it
use?

 Communicating—What are the particulars for reading data from and writing it
to the device?

 Configuration and setup—What steps need to be taken to initialize the device, set
defaults, and enable needed features?

 Data—What kind of data is produced by the device? How do you interpret and
process the data?

Your first stop on the discovery journey is to read SparkFun’s APDS-9960 hookup guide
and documentation (http://mng.bz/MapU). SparkFun’s breakout board for the
APDS-9960 takes care of some of the hardware-level busywork for you—jumpers and
power connections. The resulting board can be wired up like other I2C components
you’ve encountered. But there’s one addition: a connection to an interrupt-capable
pin. We’ll come back to that. Another really important detail is that this device operates
at 3.3 V—that’s totally fine for the Tessel, but don’t try to connect it to a 5 V Arduino.

 Next, get your hands on the datasheet for the APDS-9960 and give it a scan
(http://mng.bz/by50). The great news is that the APDS-9960’s datasheet is excellent,
as datasheets go. But it’s still a datasheet for a nontrivial device: don’t panic if an ini-
tial peek makes your eyes cross a bit. Read page 1 in its entirety—it’s a good summary.

http://mng.bz/MapU
http://mng.bz/by50

274 CHAPTER 9 Building your own thing

From the datasheet you can obtain vital details like the device’s hard-coded I2C
address (it’s 0x39; see p. 8).

 By reviewing existing software and firmware support for the APDS-9960, you can get
a big leg up. Shawn Hymel at SparkFun authored a complete and excellent open
source Arduino library (for 3.3 V Arduinos only!) that supports every feature of the
device (http://mng.bz/8gE7). It’s outstanding: readable and exhaustively com-
mented. Cross-referencing between the Arduino library and the datasheet fleshes out
some other details about working with the device.

HOW TO WORK WITH THE APDS-9960
Before gesture data can be generated, the APDS-9960 hardware needs to be initialized
and have its gesture mode enabled. This is, conceptually, a two-step process.

 First, there’s a setup phase in which defaults and settings are written to a number of
different individual registers on the APDS-9960. Subsequently, there’s an enable phase
in which the gesture mode is activated (as opposed to a mode for one of the device’s
other sensors) and some gesture-specific settings are written to some more registers
(figure 9.13).

 To use a very sloppy, inaccurate metaphor: setup is like turning the chip on and
booting it up, whereas enable is like launching a gesture-specific app on the device.
Although your implementation will only support gesture sensing—which means
enable will always happen right after setup without user intervention—keeping these
two phases distinct will make it easier to add additional sensor support later.

 Which registers and what values need to be written during setup and enable? All of
that info is in the datasheet; it requires time and patience and attention to detail to
organize it all.

 With setup and enable completed, the APDS-9960 will be actively sensing for ges-
ture movement. When the device senses motion and begins to produce data, it will

Figure 9.13 In this simplified partial state machine representation of your plugin, a plugin object
instance starts out in a new state. Via a setup method it moves into an initialized state, at
which point the APDS-9960 device is initialized but not actively sensing gestures. An enable method
enables the gesture mode on the device.

http://mng.bz/8gE7

275Writing software for sophisticated hardware

pull the interrupt pin LOW, signaling that a gesture has been detected. That is, the volt-
age on the Tessel pin connected to the breakout board’s interrupt pin will change
from 3.3 V to 0 V. That so-called falling edge from HIGH to LOW is the sign that your
software should read gesture data from the device.

 The data representing a gesture is composed of a collection of 4-byte datasets, each
containing 1 byte (a value from 0 to 255) for each direction (up, down, left, right). By
analyzing the way these values change for each direction over the set of dataset sam-
ples, it’s possible to derive an overall gesture direction.

 When the device detects gesture movements, it pulls the interrupt LOW and then
starts stashing datasets into memory registers. There are 128 bytes of space on the
device for this—up to 32 readings of 4 bytes each—and the data is put into these regis-
ters in a FIFO (first-in, first-out) manner (figure 9.14).

When the controlling device—your Tessel—reads data bytes out of those registers, it
frees up space, and more data can be pushed into the FIFO RAM. This cycle contin-
ues—the controller reads, the device puts more data in the FIFO—until no more ges-
ture data is coming in and the FIFO is emptied. Then the data can be processed by the
controlling device (figure 9.15).

TECHNICALLY SPEAKING: INTERRUPTS Technically, the device will trigger an
interrupt on detecting gesture data because you’ll configure it to do so as part
of the enable step. The APDS-9960 is highly configurable, and gesture inter-
rupt is an optional feature. Even more technically, it will trigger an interrupt
after four datasets (samples) have been put into the FIFO RAM. Precisely when
that interrupt triggers is, yep, also configurable.

Figure 9.14 There are 128 bytes of FIFO RAM, starting at memory address 0xFC, available to hold gesture data.
In this example, there are three datasets available in the FIFO queue. A dataset is composed of four bytes, each
representing data for a different direction—up, down, left, and right.

276 CHAPTER 9 Building your own thing

PROTOTYPING A PROOF-OF-CONCEPT

Before tackling the plugin implementation, a sanity check is in order. You’re going to
establish a working area, wire up the chip, and make sure you can establish I2C com-
munication with it. That will make you feel more confident as you get into the more
detail-oriented development phases.

 Wiring up the APDS-9960 breakout board is easy, though you’ll need to solder
header pins onto it first. Connect it as shown in figure 9.16. The interrupt pin is con-
nected to pin A2 on the Tessel, which is an interrupt-capable pin.

 Create a new project working area and install these dependencies:

mkdir gesture
cd gesture
npm init -y
npm install johnny-five tessel-io

Copy the RemoteSwitch.js file into the gesture directory, as well. You’ll be using it
again later.

Figure 9.15 The plugin’s state machine gains more detail as research continues. When an interrupt is
detected, the plugin instance enters a reading cycle phase and then a processing phase before returning
to the active-listening enabled state.

277Writing software for sophisticated hardware

One of the many registers on the APDS-9960 is a read-only DEVICE_ID register, with
address 0x92 (p. 25 of the datasheet). When reading a byte from that address, you
should always get the value 0xAB (figure 9.17). This isn’t useful for your further opera-
tion of the chip, but it is a convenient way to make sure that I2C communication is
working and that you are, indeed, connected to an APDS-9960.

Figure 9.16 Wiring
diagram for APDS-9960
breakout board

Creating and sharing circuit and wiring diagrams
To create the wiring diagrams used in this book, I used the open source Fritzing software
(http://fritzing.org/home/), which is available on Mac, Windows, and Linux platforms.
It comes with a variety of parts, including boards and components that you can build
diagrams with. In addition, parts manufacturers like SparkFun and AdaFruit often pro-
vide Fritzing parts for their products. I was able to find a part for the APDS-9960 in
SparkFun’s Fritzing_Parts repository, for example (http://mng.bz/Hsa2).

It’s possible to create schematics as well as diagrams with Fritzing, though I find it
finicky. Considerably more heavy-hitting in the schematic and PCB-design software
world is EAGLE by Autodesk. It has, unsurprisingly, a learning curve, but it’s widely
used and there is a cross-platform free version if you want to take it for a spin
(www.autodesk.com/products/eagle/free-download).

KiCad EDA is another option for cross-platform, open source schematic and PCB
design software (http://kicad-pcb.org/).

If you’re keen on experimenting with simulating electronics circuitry—not high-level
breakout boards and microcontrollers, but fundamentals like capacitors, logic gates,
transistors, and transformers—you might try the iCircuit App ($9.99), available for
iOS, Android, and Windows (desktop and phone). This isn’t a static drawing or draft-
ing app. Instead, it’s a live-simulation engine that allows you to see what really hap-
pens as you make changes to circuits.

http://fritzing.org/home/
http://mng.bz/Hsa2
http://www.autodesk.com/products/eagle/free-download
http://kicad-pcb.org/

278 CHAPTER 9 Building your own thing

Create a file called i2c-test.js and add the following code to it.

const five = require('johnny-five');
const Tessel = require('tessel-io');
const board = new five.Board({ io: new Tessel() });

board.on('ready', () => {
board.i2cConfig({ address: 0x39 });
board.i2cReadOnce(0x39, 0x92, 1, data => {

if (data[0] !== 0xAB) { // DEVICE_ID register should return 0xAB
throw new Error('Unable to establish connection with APDS9960');

} else {
console.log('Connected to APDS-9960!');

}
});

});

DEFAUL I2C INTERFACE Tessel has two I2C interfaces. Johnny-Five, via tessel-
io, will automatically use the one on port A if not told otherwise in options
passed to board.i2cConfig().

Listing 9.7 Testing the connection to the APDS-9960

Figure 9.17 The value in the DEVICE_ID register at
address 0x92 on the APDS-9960 should always be
0xAB (10101011 in binary).

Starts I2C communications with slave address 0x39.
This is the APDS-9960’s hard-coded I2C address.

Reads 1 byte from the
0x92 register of the
device at address 0x39

If that register doesn’t
contain the data 0xAB,

something went wrong.

279Writing software for sophisticated hardware

Try this test code out on your connected Tessel and APDS-9960 circuit:

$ t2 run i2c-test.js --lan

Once you successfully see the logged message “Connected to APDS-9960!” it’s time to
move on and build the component plugin itself.

WRITING THE APDS9960 PLUGIN

Create a file called APDS9960.js and start with the code shown in the following listing.
To complete the plugin’s code, you’ll fill these sections in.

// Dependencies
const Emitter = require('events').EventEmitter;
const util = require('util');

/** CONSTANTS HERE **/

module.exports = function (five) {
return (function () {

/**
* @param {Object} opts Options: pin, address
* pin denotes interrupt pin connection
*
* Sample initialization:
* var gesture = new APDS9960('A2');
* var gesture = new APDS9960({ pin: 'A2'});
* gesture.on('up', () => { ...do something ...});
*/

function APDS9960 (opts) {
// Constructor: Set up instance properties and kick off initialization

}

// Extend Node.js' EventEmitter class so that our object can emit events
util.inherits(APDS9960, Emitter);

Listing 9.8 APDS9960.js starting point

I2C capabilities in Johnny-Five
The i2cReadOnce(address, register, bytesToRead, handler(arrayOfBytes))
method reads the given number of bytesToRead starting from the register indi-
cated. The callback is called and passed an array of bytes when the read is complete.

i2cReadOnce is distinct from a related method, i2cRead. Like the name implies,
i2cReadOnce reads once, whereas i2cRead will continuously read from the indicated
address/register combination. i2cRead is handy if you want to read from the same
register(s) over and over again to watch for changes. In your case, you’ll be using the
interrupt capability of the APDS-9960 to let you know when there’s new gesture data,
not polling using i2cRead.

The actual underlying implementation of these I2C utility methods—which also,
unsurprisingly, include the ability to write to an I2C device—is up to the active I/O
plugin. In the Tessel’s case, this is handled by tessel-io; for Arduino, it would be
Firmata doing the heavy lifting here.

280 CHAPTER 9 Building your own thing

/* Reset this instance's current gesture data */
APDS9960.prototype.resetGesture = function () { };

/* `setup` and `enable` are invoked from the constructor */
APDS9960.prototype.setup = function (callback) { };
APDS9960.prototype.enable = function () { };

/* When interrupt is pulled LOW, `readGesture` reads data out of the
* FIFO until the data are exhausted, then invokes `processGesture`
* and `decodeGesture` to process the resulting data
*/

APDS9960.prototype.readGesture = function () { };

/* `processGesture` performs some computations over read data and
* determines some ratios and deltas in the directional samples.
*/

APDS9960.prototype.processGesture = function () { };

/* Using `deltas` computed by `processGesture`, "decodes" the
* information into a gesture (up, down, left, right) when possible
* and emits events.
*/

APDS9960.prototype.decodeGesture = function () { };

return APDS9960;
}());

};

Methods in the high-level API surface represent the complete state machine (figure 9.18).
Now you need to implement those methods.

Figure 9.18 The plugin’s state machine is now complete. The next step is to implement it.

281Writing software for sophisticated hardware

CONSTANTS AND CONFIGURATION SETTINGS

You’ll get some constants defined first, as there are a lot of them. But don’t panic. The
constants in APDS9960.js define register addresses, bitmasks, default values, and some
other configuration bits and bobs.

 Figuring out which registers need to be written to set up and enable the device is a
detail-oriented exercise of datasheet reference (and peeking at other software imple-
mentations when available).

 Figure 9.19 shows some of the registers to which configuration settings are written
during setup and enable. Some registers’ values are set to a simple sensible default
value, such as GPENTH, which is set to the binary representation of 40. Others are dis-
abled—GOFFSET_U is set to 0x00. And some are bitmasks, setting several flags—config-
uration values—at once (GCONF1, GCONF2).

USING BITMASKING TO MANAGE FEATURE CONFIGURATION The APDS-9960 plugin
makes use of bitmasking to manage configuration settings on the APDS-9960—
several configuration values are often contained within a single byte, with dif-
ferent bit positions corresponding to the values for different features. Several
mask flags are bitwise-OR’ed together to compose the multifeature byte.
For example, the register at address 0xA3 (GCONF2), contains configuration
for three features (figure 9.20).

Figure 9.19 A sampling of the APDS-9960 registers that are written to during setup and enable

282 CHAPTER 9 Building your own thing

Once again, I point you to MDN’s excellent article on bitwise operators and
bitmasking (http://mng.bz/CLvy).

Fill in the constants as shown in the following listing.

const REGISTERS = {
 ENABLE : 0x80, // Enable different sensors/features (p.20)
 WTIME : 0x83, // Wait time config value (p.21)
 PPULSE : 0x8E, // Proximity pulse count and length (p.23)
 CONFIG2 : 0x90, // Second configuration register (p.24), for LED boost
 DEVICE_ID: 0x92, // Contains device ID (0xAB) (p.25)
 GPENTH : 0xA0, // Entry proximity threshold for gestures (p.27)
 GEXTH : 0xA1, // Exit proximity threshold for gestures (p.28)
 GCONF1 : 0xA2, // Gesture config 1: gesture detection masking (p.28)
 GCONF2 : 0xA3, // G config 2: gain, LED drive, gesture wait time (p.29)
 GOFFSET_U: 0xA4, // Gesture offset (up) (p.30)
 GOFFSET_D: 0xA5, // Gesture offset (down) (p.30)
 GPULSE : 0xA6, // Gesture Pulse count and length (p.31)
 GOFFSET_L: 0xA7, // Gesture offset (left) (p.30)
 GOFFSET_R: 0xA9, // Gesture offset (right) (p.31)
 GCONF4 : 0xAB, // Gesture config 4: interrupts, mode enable (p.32)
 GFLVL : 0xAE, // Gesture FIFO level: # of datasets in FIFO (p.32)
 GSTATUS : 0xAF, // Gesture status; bit 0 indicates available data (p.33)
 GFIFO_U : 0xFC, // 1st FIFO register in (RAM)—read data from here (p.33)
};

Listing 9.9 APDS9960 constants

Figure 9.20 Different bit ranges within the GCONF register
correspond to different settings. The two bits in positions 6
and 5 set the gesture gain, for instance. Bit 7 isn’t used.

http://mng.bz/CLvy

283Writing software for sophisticated hardware

const FLAGS = {
 GFIFOTH : 0b10000000, /* FIFO threshold: trigger interrupt after
 4 datasets in FIFO (GCONF1 <7:6> p.28) */
 GGAIN : 0b01000000, /* Gesture gain control:
 4x (GCONF2 <6:5> p.29) */
 GLDRIVE : 0b00000000, /* Gesture LED drive strength:
 * 100mA (GCONF2 <4:3> p.29) */
 GWTIME : 0b00000001, /* Gesture wait time:
 2.8ms (GCONF2 <2:0> p.29) */
 GPLEN : 0b11000000, /* Gesture pulse length:
 32µs (GPULSE <7 :6> p.31) */
 GPULSE : 0b00001001, /* Gesture pulse count:
 10 (9 + 1) (GPULSE <5:0> p.31) */
 GVALID : 0b00000001, /* GSTATUS register value
 indicates valid data if 0th bit is 1 */
 PPLEN : 0b10000000, /* Proximity pulse length:
 16µs (PPULSE <7 :6> p.23) */
 PPULSE : 0b10001001, /* Proximity pulse count:
 10 (9 + 1) (PPULSE <5:0> p.23) */
 LED_BOOST: 0b00110000, /* LED drive boost:
 300% (CONFIG2 <5:4> p.24) */
 GIEN : 0b00000010, /* Gesture interrupt enable:
 yes (GCONF4 <1> p.32) */
 GMODE : 0b00000001, /* Gesture mode:
 yes! (GCONF4 <0> p.32) */
 ENABLE : 0b01001101, /* Enable features:
 Gesture, Wait, Proximity, Power on
 (ENABLE, p.20) */
};

// During setup, (value) is written to each register (key)
const SETUP_DEFAULTS = {
 ENABLE : 0x00, /* Disable all things,
 effectively turning the chip off (p. 20) */
 GPENTH : 40, // Entry proximity threshold
 GEXTH : 30, // Exit proximity threshold
 GCONF1 : FLAGS.GFIFOTH, // FIFO interrupt threshold
 GCONF2 : FLAGS.GGAIN | FLAGS.GLDRIVE | FLAGS.GWTIME, // Gesture gain,
 ➥ LED drive, wait time
 GOFFSET_U: 0x00, // no offset
 GOFFSET_D: 0x00, // no offset
 GOFFSET_L: 0x00, // no offset
 GOFFSET_R: 0x00, // no offset
 GPULSE : FLAGS.GPLEN | FLAGS.GPULSE // pulse count and length,
};

// During enable, each (value) is written to register (key)
const ENABLE_VALUES = {
 WTIME : 0xFF, /* Wait time between cycles in
 low-power mode: 2.78ms (p. 21) */
 PPULSE : FLAGS.PPLEN | FLAGS.PPULSE, // Proximity pulse length and count
 CONFIG2: FLAGS.LED_BOOST,
 GCONF4 : FLAGS.GIEN | FLAGS.GMODE,

284 CHAPTER 9 Building your own thing

 ENABLE : FLAGS.ENABLE
};

// For processing read data
const GESTURE_THRESHOLD_OUT = 30;
const GESTURE_SENSITIVITY = 10;

TECHNICALLY SPEAKING: HOW IT ACTUALLY WORKS The APDS-9960 senses “ges-
tures” by detecting changes in the amount of energy reflected back to it by a
built-in, infrared LED. Details of this LED’s configuration—how much power
is used to drive it, how many times it pulses, and how long each pulse lasts per
detection cycle—pop up frequently in the defined configuration values.

9.3.2 Implementing constructor and initialization methods

Next, you’ll flesh out the constructor as well as the methods for initializing and
enabling the device into gesture mode.

 The basic structure of the constructor is the same as the RemoteSwitch construc-
tor. The constructor also kicks off setup and enable, as shown in the next listing.

function APDS9960 (opts) {
if (!(this instanceof APDS9960)) {

return new APDS9960(opts);
}
five.Board.Component.call(this, opts = five.Board.Options(opts));
this.interruptState = 1; // Interrupt is active LOW
opts.address = opts.address || I2C_ADDR;
this.address = opts.address;
this.io.i2cConfig(opts); // Get I2C comms started for the device

this.io.i2cReadOnce(this.address, REGISTERS.DEVICE_ID, 1, data => {
if (data[0] !== DEVICE_ID) { // DEVICE_ID register should return 0xAB

throw new Error('Unable to establish connection with APDS9960');
}

});
this.resetGesture();
this.setup(this.enable);

}

util.inherits(APDS9960, Emitter);

APDS9960.prototype.resetGesture = function () {
this.gestureData = {

raw: [],
deltas: {},
movements: { // A gesture can have movements along more than one axis

vertical : false,
horizontal: false,

Listing 9.10 APDS9960: constructor and gesture data reset

Registers the component with the active board
Interrupt will pull from

HIGH to LOW to activate;
starts with a HIGH value (1)

Readies
the I2C

address
to pass to
i2cConfig

Retains the I2C address on
the component object, too

this.io is a
reference to

the active
board

instance.

Resets (initializes) gesture-
holding data object

Kicks off setup
(followed by enable)

285Writing software for sophisticated hardware

up : false,
down : false,
left : false,
right : false

},
valid: false, // Was gesture decoding successful?
direction: undefined

};
};

Next, the initialization methods: setup and enable.

APDS9960.prototype.setup = function (callback) {
for (var rKey in SETUP_DEFAULTS) {

this.io.i2cWrite(this.address,
REGISTERS[rKey], [SETUP_DEFAULTS[rKey]]);

}
if (typeof callback === 'function') {

callback.call(this);
}

};

APDS9960.prototype.enable = function () {
// Set up interrupt handling
this.io.pinMode(this.pin, this.io.MODES.INPUT);
// Interrupts from device are active LOW—when pin goes LOW we should act
this.io.digitalRead(this.pin, data => {

if (data !== this.interruptState && data === 0) {
this.readGesture();

}
this.interruptState = data;

});
for (var rKey in ENABLE_VALUES) {

this.io.i2cWrite(this.address,
REGISTERS[rKey], [ENABLE_VALUES[rKey]]);

}
};

READING SENSOR DATA

With that code for initialization and setup squared away, let’s attack the real meat of
the plugin: reading and processing gesture data. When the interrupt pin goes LOW,
readGesture is invoked, reading data from the APDS-9960.

APDS9960.prototype.readGesture = function () {
// GSTATUS value determines whether valid data is available (p.33)
this.io.i2cReadOnce(this.address, REGISTERS.GSTATUS, 1, status => {

Listing 9.11 APDS9960: filling in setup, and enable

Listing 9.12 Reading gesture data

Writes default values
(SETUP_DEFAULTS) for
device setup to various
registers

Invokes callback
(enable, in this case)

Configures the
connected interrupt
as a digital input pin

Reads values
continuously from
the interrupt pinWhen interrupt goes

from HIGH to LOW,
invokes readGesture

Like setup, writes
configuration for gesture-
mode-specific features

286 CHAPTER 9 Building your own thing

if (status & FLAGS.GVALID === FLAGS.GVALID) {
// There should be valid data in the FIFO
// GFLVL will report how many datasets are in the FIFO (p.32)
this.io.i2cReadOnce(this.address, REGISTERS.GFLVL, 1, fifoLevel => {

// Read the number of 4-byte samples indicated by sampleCount
// And split them out into their directional components
this.io.i2cReadOnce(this.address,
REGISTERS.GFIFO_U, (fifoLevel * 4), rawData => {

for (var i = 0; i < rawData.length; i += 4) {
this.gestureData.raw.push({

up : rawData[i],
down : rawData[i + 1],
left : rawData[i + 2],
right: rawData[i + 3]

});
}
return this.readGesture(); // Keep reading data...

});
});

} else { // No (more) data to gather about this gesture
this.processGesture();
this.decodeGesture();
this.resetGesture();

}
});

};

First, readGesture reads a byte from the GSTATUS register. If the value in that register
has its least significant (0th) bit set to 1, you’re in business: there’s valid data to be
read out of FIFO. But how much data? The value of the GFLVL (gesture FIFO level) reg-
ister will tell you how many dataset samples are available in the FIFO at the moment.
Then it goes ahead and reads that many samples out of the FIFO registers, which start
at GFIFO_U (address 0xFC).

 Recall that each dataset is four bytes (one byte for each direction), so the total
number of bytes to read out of the FIFO is fifoLevel * 4. readGestures makes use of
the i2cReadOnce method once more, this time reading fifoLevel * 4 bytes instead
of a single byte. Then it iterates over each full dataset and stuffs individual bytes corre-
sponding to each direction into the raw data structure for later processing. Then it
calls itself (recursively) again to see if there’s more data available to read (figure 9.21).

 This cycle repeats until the GSTATUS register value indicates that no valid data is left
to read—the first conditional fails and execution continues in the else clause. When
the data-read cycle is complete, the processing of that data begins.

PROCESSING AND DECODING GESTURE DATA

The methods in your APDS9960 plugin distinguish between processing and decoding ges-
ture data (figure 9.22).

287Writing software for sophisticated hardware

Figure 9.21 The read cycle begins by checking that the 0th bit in the GSTATUS register is 1. If so,
GFLVL is read to see how many samples are available (0101, that is, 5), and then the indicated
number are read from the FIFO. The cycle continues until GSTATUS<0> is 0.

Figure 9.22 processData performs arithmetic on data; decodeData derives gesture direction from the
computed results and fires events. Finally, the gesture data object is reset on the instance so it’s ready to
collect data from the next gesture.

288 CHAPTER 9 Building your own thing

In the processing step, math happens. The complete raw collection of samples is fil-
tered to include only readings in which every direction’s value exceeds a defined
threshold constant. Then the change (delta) in the ratios of readings over time is
computed on each axis (up/down and left/right).

APDS9960.prototype.processGesture = function () {
const raw = this.gestureData.raw;
const directionDelta = function (el1, el2, dir1, dir2) {

var el2r = ((el2[dir1] - el2[dir2]) * 100) / (el2[dir1] + el2[dir2]);
var el1r = ((el1[dir1] - el1[dir2]) * 100) / (el1[dir1] + el1[dir2]);
return el2r - el1r;

};
const exceedsThreshold = raw.filter(sample => {

return (sample.up > GESTURE_THRESHOLD_OUT &&
sample.down > GESTURE_THRESHOLD_OUT &&
sample.left > GESTURE_THRESHOLD_OUT &&
sample.right > GESTURE_THRESHOLD_OUT);

});
if (!exceedsThreshold.length || raw.length < 4) {

// If not enough data or none exceed threshold, nothing to do
// This will result in gesture data being ignored and discarded
return false;

}

const first = exceedsThreshold[0];
const last = exceedsThreshold[exceedsThreshold.length - 1];
const deltas = {

upDown: directionDelta(first, last, 'up', 'down'),
leftRight: directionDelta(first, last, 'left', 'right')

};
this.gestureData.deltas = deltas;

};

Finally, the decoding step in the following listing translates the deltas computed by the
processGesture method into derived directions for the overall gesture. It then fires a
corresponding event—up, down, left, or right—or, if it can’t determine a clear, single
gesture direction, it will fire a generic gesture event, as shown in the next listing.

APDS9960.prototype.decodeGesture = function () {
const deltas = this.gestureData.deltas;
const verticalMotion = Math.abs(deltas.upDown);
const horizontalMotion = Math.abs(deltas.leftRight);
if (verticalMotion > GESTURE_SENSITIVITY) { // Determine meaningful

 ➥ movement on vertical axis
this.gestureData.valid = true;

Listing 9.13 Processing gesture data

Listing 9.14 Decoding gesture data

Computes deltas by
comparing ratios of
different directions’
readings

Filters samples to
include only those with
readings exceeding the
threshold

Makes sure there is
valid data to process

Ultimately, cooks
up some deltas

289Writing software for sophisticated hardware

this.gestureData.movements.vertical = true;
this.gestureData.movements.up = (deltas.upDown >= 0);
this.gestureData.movements.down = (deltas.upDown < 0);

}
if (horizontalMotion > GESTURE_SENSITIVITY) { // Determine meaningful

 ➥ movement on horizontal axis
this.gestureData.valid = true;
this.gestureData.movements.horizontal = true;
this.gestureData.movements.left = (deltas.leftRight >= 0);
this.gestureData.movements.right = (deltas.leftRight < 0);

}
if (this.gestureData.valid) {

if (verticalMotion > horizontalMotion) {
this.gestureData.direction = (this.gestureData.movements.up) ?

'up' : 'down';
} else {

this.gestureData.direction = (this.gestureData.movements.left) ?
'left' : 'right';

}
}
// Emit a directional event if there is a direction
if (this.gestureData.direction) {

this.emit(this.gestureData.direction, this.gestureData);
}
// Always emit a generic gesture event, even if decoding failed
this.emit('gesture', this.gestureData);

};

With that, the code for the plugin is complete!

9.3.3 Integrating the gesture sensor and remote switches

You can now edit index.js to add some quick testing code, as shown in the following list-
ing. Before you get to the big combination step—hooking up the remote switches—you
can test for different direction swipe events and log them to the console.

const five = require('johnny-five');
const Tessel = require('tessel-io');
const Gesture = require('./APDS9960')(five);

const board = new five.Board({ io: new Tessel() });

board.on('ready', () => {
const gesture = new Gesture({ pin: 'A2'});
gesture.on('right', () => console.log('right'));
gesture.on('left', () => console.log('left'));
gesture.on('up', () => console.log('up'));
gesture.on('down', () => console.log('down'));

});

Run index.js on the Tessel (t2 run index.js --lan) and try moving your hand over
the top of the gesture sensor—the best distance is around eight inches (20 cm).

Listing 9.15 APDS9960 test drive

290 CHAPTER 9 Building your own thing

COMBINING APDS9960 AND REMOTESWITCH

You’ve already got the ingredients to control individual on/off switch combinations
using the gesture sensor and RemoteSwitch. For example, you could do something
like what’s shown in the following listing.

const five = require('johnny-five');
const Tessel = require('tessel-io');
const Gesture = require('./APDS9960')(five);
const RemoteSwitch = require('./RemoteSwitch')(five);

const board = new five.Board({ io: new Tessel() });

board.on('ready', () => {
const gesture = new Gesture({ pin: 'A2'});
const switch1 = new RemoteSwitch({ pins : { on: 'A3', off: 'A4' } });
gesture.on('right', () => switch1.on());
gesture.on('left', () => switch2.on());

});

So far, so good. But wasn’t one of the stated goals way back at the beginning the ability
to turn all of the switches on or off at once? The good news is that you’re about to
make that happen. The other news is that you need to take another step to make it so.

THE CHALLENGES OF ORCHESTRATING SEVERAL SWITCHES

The design of RemoteSwitch takes into account the need to stagger switch activations: it
queues “commands” that come in when one of the buttons is already active, sticks them
in a FIFO queue, and executes the next queued command when it’s no longer active. In
addition, it will invoke a provided callback when it’s done with a command. So you could
execute the code in the following listing without fear of the switch stepping on itself.

switch1.on(); // Happens right away
switch1.off(); // Gets queued
switch1.on(); // Gets queued
switch1.off(() => console.log('hi!')); // Gets queued; logs 'hi!' to the

➥ console when it's done

But, alas, there’s a shortcoming: the queueing is managed individually for each switch
pair. Different RemoteSwitch instances have no idea of each other; see the following
listing.

switch1.on(); // Happens right away
switch1.off(); // Gets queued in `switch1`'s queue
switch2.on(); // `switch2`'s queue is empty...happens right away (uh oh)
switch3.on(); // `switch3`'s queue is empty...happens right away (oh dear)

Listing 9.16 APDS9960 controlling a single switch with the gesture sensor

Listing 9.17 A pair of buttons managed by a RemoteSwitch instance has a queue

Listing 9.18 Each RemoteSwitch has its own queue

291Writing software for sophisticated hardware

It’s quite probable that switch2 and switch3 will try to activate while switch1 is still
busy—the equivalent of mashing several buttons on the remote at the same time. That’s
probably not good. RemoteSwitch was designed in such a way that each switch pair is
unaware of each other. That’s a nice nod toward hardware abstraction, but our reality
is that multiple switch pairs are sharing the same transmitter on a single remote device.

CONTROLLING MULTIPLE SWITCHES WITH COLLECTION

Hooboy, another inflection point in the project. You could tear RemoteSwitch apart
and rewrite it to handle multiple sets of switches and their co-mingled queues. Or you
could write some code for managing multiple switch pairs inside the application-
specific logic.

 Both of those options have drawbacks. It would be tedious to adapt RemoteSwitch
without breaking its existing API or overcomplicating it (this option would seem more
attractive if you were starting from scratch). Dumping related logic into your main
application code would be ugly and distracting. After some mulling, I settled on a
pragmatic—if slightly cobbled-together—third option that takes advantage of a
Johnny-Five mixin called Collection.

 Built-in collection classes like Motors (which you saw in chapter 6) make use of the
Collection mixin in Johnny-Five, which provides features for managing multiple
components within a single container-like object. You can use some of the features
offered by this mixin to create a component that can manage multiple RemoteSwitch
objects. Once finished, you’ll be able to write code like that in the following listing
from within your main application module.

const switches = new RemoteSwitches([
new RemoteSwitch({ pins : { on: 'A3', off: 'A4' } }),
new RemoteSwitch({ pins: { on: 'A5', off: 'A6' } }),
new RemoteSwitch({ pins: { on: 'A7', off: 'B0' } })

]);
// You can act on all switches at once...
switches.on(); // Turn all switches on
// Or a single switch...
switches.off(1); // Turn the second switch off

Create a file called RemoteSwitches.js in your working directory, and add the follow-
ing code.

const util = require('util');

module.exports = function (five, RemoteSwitch) {
return (function () {

function RemoteSwitches (opts) {
if (!(this instanceof RemoteSwitches)) {

Listing 9.19 Using RemoteSwitches

Listing 9.20 RemoteSwitches

292 CHAPTER 9 Building your own thing

return new RemoteSwitches(opts);
}
// RemoteSwitch is the "type" of each individual component object
// that will be managed by this RemoteSwitches instance
Object.defineProperty(this, 'type', { value: RemoteSwitch });
// Make it go: register and initialize the collection component objects
five.Collection.call(this, opts);
this.isActive = false; 1((CO11-1))
this.queue = [];

}
// Use the Collection mixin
util.inherits(RemoteSwitches, five.Collection);

// The nuts-and-bolts logic for (de-)activating a given switch
// Note that this is not on the prototype (inaccessible externally)
const write = function (whichSwitch, turnOn) {

if (this.isActive) {
this.queue.push([whichSwitch, turnOn]);
return;

}
this.isActive = true;
// An individual RemoteSwitch object's "toggle" method
// is invoked
whichSwitch.toggle.call(whichSwitch, turnOn, () => {

this.isActive = false;
if (this.queue.length) {
write.apply(this, this.queue.shift());

}
});

};

// Prototype methods take optional `idx` argument to designate which
// switch to activate. If not provided, all switches will be affected.
RemoteSwitches.prototype.toggle = function (idx, turnOn) {

if (typeof idx !== 'undefined' && this[idx]) {
write.call(this, this[idx], turnOn);

} else {
this.each(whichSwitch => write.call(this, whichSwitch, turnOn));

}
};

RemoteSwitches.prototype.on = function (idx) { this.toggle(idx, true); };
RemoteSwitches.prototype.off = function (idx) { this.toggle(idx, false); };
return RemoteSwitches;

}());
};

9.3.4 Pulling the whole project together

All the pieces are ready now to make a combined project, bringing together software
and circuit modules into a gesture-controlled remote control.

 Combine the two circuits—remote control and gesture—as shown in figure 9.23.
The output sides of the photocouplers should connect to the remote control’s button

293Writing software for sophisticated hardware

contacts. Note that the photocouplers are now connected to different pins on the Tes-
sel to make room for the APDS-9960.

USING FULL-SIZE BREADBOARDS If you use a full-size breadboard, as shown in
figure 9.23, make sure you connect the power rails as shown midway along the
board’s length: the power rail connections have a break in the middle.

You can think of a full-size breadboard as two half-size breadboards glommed
together.

FINALIZING THE SOFTWARE

Your gesture directory should now contain the following:

 APDS9960.js_—Gesture sensor plugin
 RemoteSwitch.js—(Individual) remote switch plugin
 RemoteSwitches.js—Remote switch collection
 index.js—Application logic

To make room for the APDS-9960 connections, the connections for the photocouplers
have to jog down a couple of pins (see figure 9.23)—those updated pin numbers are
accounted for in the final version of index.js, as shown in the next listing.

const five = require('johnny-five');
const Tessel = require('tessel-io');
const Gesture = require('./APDS9960')(five);
const RemoteSwitch = require('./RemoteSwitch')(five);
const RemoteSwitches = require('./RemoteSwitches')(five, RemoteSwitch);

const board = new five.Board({ io: new Tessel() });

Listing 9.21 Pulling it all together in index.js

Figure 9.23 Wiring diagram
showing the combination of the
APDS-9960 breakout board and
the button/photocoupler circuits.

Requires the
RemoteSwitches module

294 CHAPTER 9 Building your own thing

board.on('ready', () => {
const gesture = new Gesture({ pin: 'A2'});
const switches = new RemoteSwitches([

new RemoteSwitch({ pins : { on: 'A3', off: 'A4' } }),
new RemoteSwitch({ pins: { on: 'A5', off: 'A6' } }),
new RemoteSwitch({ pins: { on: 'A7', off: 'B0' } })

]);
gesture.on('up', () => switches.on());
gesture.on('down', () => switches.off());
gesture.on('right', () => switches.on(1));
gesture.on('left', () => switches.off(1));

});

That was a lot of work! But there are some solid results here. You’ve definitely carved a
few more triumphant notches on your pole of electronics-hackery experience. Of
course, there are still wires going everywhere, something you’ll tackle in a bit when we
look into different kinds of project enclosures for different form factors.

 Speaking of form factors, you’ve been giving tons of attention to the Arduino Uno and
the Tessel, using both with Johnny-Five. But there are a lot more options for JavaScript-
controlled hardware out there. It’s time to meet some of the other players.

Summary
 Battery-operated, low-voltage consumer electronics can often be repurposed

into parts and components for your own projects (provided you exercise care!).
Photocoupler components can help isolate the circuitry in those electronics
from your microcontroller circuits.

 Invention requires ingenuity but also persistence and patience. It often
requires thinking creatively to solve unexpected problems.

 Datasheets can be overwhelmingly data-dense, but they’re vital, and over time
you’ll learn the ropes and be able to find key information within them—like
memory register addresses and configuration steps—more quickly.

 Even personal hobby projects can benefit from an organized development
approach: identifying goals and scope, researching, prototyping, and iterating.

 Encapsulating behavior into modular, component-level chunks is a good devel-
opment practice, especially for abstraction and cross-platform support. With
Johnny-Five, you can create component plugins, and you also took advantage of
the Collection mixin.

You can, of course, change
which gestures correspond
to what switch behavior.

Part 4

Using JavaScript
 with hardware in

 other environments

This part of the book explores some other environments in which you can
use JavaScript to control hardware, and it looks toward the future.

 You’ll start in chapter 10 by looking at JavaScript and JavaScript-like environ-
ments on highly constrained devices, prototyping some experiments with the
Espruino Pico and Kinoma Element devices.

 Both chapters 10 and 11 walk through a set of reusable steps for getting to
know new platforms, quickly. In chapter 11, we’ll turn our attention to beefier
hardware: general-purpose single-board computers (SBCs) that have onboard
I/O capabilities. You’ll get up and running with the Raspberry Pi 3 and Beagle-
Bone Black and adapt some Johnny-Five experiments to run on both platforms.

 Chapter 12 provides a taste of some other pieces of the IoT ecosystem and
examines what’s possible from within a web browser. You’ll use a cloud service to
package and deploy a Johnny-Five application to a BeagleBone Black, and you’ll
explore the leading edge of Web Bluetooth and the Physical Web with the Espru-
ino Puck.js device.

 When you’re finished with this part of the book, your JavaScript on Things
toolkit will be well-stocked, and you’ll be ready to strike out on your own into the
brave, inspiring world of JavaScript and embedded systems.

297

JavaScript and
 constrained hardware

This chapter covers
 How JavaScript-capable embedded hardware

platforms compare with host-client and single-board-
computer (SBC) platforms

 Steps for familiarizing yourself with a new
development platform

 Examining two representative embedded JavaScript
platforms: Espruino Pico and Kinoma Element

 Developing projects with the Espruino Pico

 Crafting text and shapes with Nokia 5110 LCD
displays and the Espruino Graphics library

 Reusing trusty components: using the BMP180
multisensor and HMC5883L compass in new ways on
different platforms

 A case-study view of the Kinoma Element

298 CHAPTER 10 JavaScript and constrained hardware

In the first half of this book, electronics fundamentals were demonstrated by using a
tethered Arduino Uno—a host-client setup. In the past few chapters, though, you’ve
met the Tessel 2, which has the oomph to run Node.js natively within its OpenWrt
operating system—that’s a single-board-computer (SBC) setup.

 Now we’re going to take a look at a third class of JavaScript-controlled platforms:
constrained embedded hardware with native support for JavaScript (or, often, some-
thing that’s JavaScript-like). To accomplish this feat with such limited hardware
resources, these platforms tend to rely on highly optimized custom JavaScript engines.

 These devices are evolving quickly, entering (and exiting) the market more rapidly
than can be captured well in print. At this very moment, the Espruino platform—we’ll
be looking at the Espruino Pico shortly—seems to be maintaining robust momentum
(figure 10.1). The Kinoma Element—also on-deck for our investigations—has been in
prerelease for quite some time. Although Kinoma’s embedded runtime has been held
up as an early pioneer in supporting most ECMAScript 6 features, the Element prod-
uct may not end up taking off. It’s hard to say with things moving so quickly.

 Obsolescence is pretty much guar-
anteed for IoT hardware and software
information committed to print,
which is why this chapter focuses
more on tasks and puzzles common
across embedded JavaScript plat-
forms. Specific products and plat-
forms come and go, but there are a
bunch of common research steps that
can help you get up to speed, quickly,
on whichever product you choose.

For this chapter, you’ll need the following:

 1 Espruino Pico

 1 Kinoma Element

 1 USB micro cable

 18 (two strips of 9 each) 0.1" male breakaway header pins

 1 USB 2.0 A to USB A female (a.k.a. a USB extension cord) cable

 1 Adafruit BMP180 I2C multisensor breakout board

 1 Nokia 5110 84x48 LCD display module

 1 100 � resistor

 1 Adafruit HMC5883L magnetometer (compass) breakout board

Figure 10.1 Two embedded JavaScript platforms:
Espruino Pico and Kinoma Element

299The Espruino Pico platform

 1 full-sized breadboard

 Jumper wires

10.1 The Espruino Pico platform
The Espruino Pico has less memory and less computational power than the Tessel 2.
There’s no WiFi and no USB peripheral support, so why use it? Because it shines at
other things: it’s cheaper, it’s tiny, it’s reliable, and it’s power-efficient—hallmarks of
low-power embedded platforms.

 Espruino describes both the hardware family itself and the firmware runtime inter-
preter that comes preflashed on Espruino devices. Espruino-the-interpreter supports
most JavaScript features, but not all of them. You can’t get away with omitting semico-
lons, for example, and regular expressions aren’t supported.

 It’s important to differentiate JavaScript and JavaScript-esque from Node.js: this
isn’t Node.js, so you can’t use Johnny-Five or any npm modules.

300 CHAPTER 10 JavaScript and constrained hardware

 Instead, Espruino provides its own JavaScript API for interacting with the hardware
I/O (www.espruino.com/Reference#software). You’ve got enough experience under
your belt now that aspects of the API likely ring familiar—there’s an analogRead func-
tion, for example, that takes a pin number as an argument. There are also Espruino-
specific modules that encapsulate the behavior of specific electronic components, as
you’ll see.

 Before examining the Pico in more depth, you’ll get it set up and take a Hello
World LED-blinking script for a spin.

10.1.1 Setting up the Pico

The Pico needs to be soldered onto header strips (figure 10.2). Your Pico may have
come with header strips, but if not you’ll need two strips of nine pins each.

The Pico plugs right into a USB port. Some versions of the Pico have an additional
USB micro connection, but you may well be stuck with just the USB A connection. This
can be convenient, because you can plug your Pico right into your computer, but if
you want to use the Pico on a breadboard—which is necessary when you want to try
out any of the I/O pins—it gets a little tricky. The Pico is designed to connect to a USB
A female connector. You can use the kind of cable marketed as a USB extension cable
to get the USB A to USB A female connections the Pico needs (figure 10.3).

 Things are evolving quickly enough in the Espruino family that including exhaus-
tive setup instructions here would be foolish. Instead, head to https://espruino.com
to get started.

Figure 10.2 The Pico has 18 pins (two rows of 9 each) at a 0.1-inch pitch—breadboard-compatible.
They’ll need to be soldered onto header pins. One end of the Pico board is shaped so that it can be
plugged directly into a USB port.

https://espruino.com
http://www.espruino.com/Reference#software

301The Espruino Pico platform

These are the basic steps, after plugging your Pico into USB:

1 Get the Pico ready for your platform:
a Mac users likely don’t need to do anything else.
b Windows users will probably need a driver.
c Linux users may need to adjust permissions.

2 Install the Espruino IDE Chrome app (and the Chrome browser if you don’t
have it installed).

3 Launch the Chrome app, and connect to and update the Pico’s firmware.

For the purposes of experimenting with the Pico, you’ll be using Espruino’s web-based
IDE (Chrome app)—that means you’ll connect to, communicate with, and deploy
code to the Pico from within the Chrome app.

Figure 10.3 You can use a USB
extension cable to connect your Pico to
your computer, allowing the Pico to be
placed on a breadboard. The Pico’s USB
end slots into a USB A female connection.

Figure 10.4 The Espruino Chrome app IDE

302 CHAPTER 10 JavaScript and constrained hardware

On the left side of the app’s interface, you’ll see a terminal-like console area. Once
you’re connected to a Pico, you can type expressions here directly, sort of like a
Node.js interpreter or the Johnny-Five REPL. On the right side is an area where you
can compose scripts.

10.1.2 Hello World LED blink

Let’s try it out with the requisite blinking
of an LED. For this experiment, you’ll be
using one of the Pico’s onboard LEDs, so
you can plug the Pico into your USB port
directly or stick it on a breadboard with a
USB extension cable: the choice is yours.

 An assortment of variables are avail-
able at a global level in Espruino scripts,
pertaining to platform features and
pins. This includes the variables LED1
and LED2 for the Pico’s built-in red and
green LEDs, respectively (figure 10.5).

 Fire up the Espruino IDE Chrome
app and connect to the Pico. Enter the
code shown in the following listing into
the code-composition area of the screen
(the right side) and click the Send to
Espruino icon in the center (figure 10.6).

var ledStatus = false;
function toggleLED () {

if (!ledStatus) {
digitalWrite(LED1, 1);
digitalWrite(LED2, 0);

} else {
digitalWrite(LED1, 0);
digitalWrite(LED2, 1);

}
ledStatus = !ledStatus;
setTimeout(toggleLED, 500);

}

toggleLED();

This example uses Espruino’s digitalWrite function to alternately set LEDs HIGH
and LOW. Once you deploy the code to the Pico, you should see the Pico’s red and
green LEDs blinking, one at a time. You’ll also see some output on the left side of the
IDE window.

Listing 10.1 Blinking the Pico’s LEDs

LED1 (the red onboard
LED) and LED2 (green) are
available in Pico scripts.

Uses setTimeout to
make the function call
itself every 500 ms

Kicks off
the toggling

Figure 10.5 This experiment will cause the
Pico’s onboard LEDs—one red, one green—to
blink alternately. Access to the LEDs is provided
via the global variables LED1 and LED2.

303Learning about new platforms

10.2 Learning about new platforms
Now that you’ve gotten hands-on, let’s back up a bit. How do you know that the Pico
has two built-in LEDs (red and green), and how do you know that there are variables
LED1 and LED2? By now, conventions like digitalWrite being a name for a function
that writes logic levels to digital outputs probably seems sensible. But it may still seem
somewhat magical or random. Where does one start?

 There are a series of sleuthing steps you can apply when facing a new platform to
get you scooting along in short order. You’ll tackle these to learn about the Pico spe-
cifically now, but you can reuse them to evaluate different embedded platforms in the
future:

1 Discover the platform’s core features
2 Find a pinout or hardware diagram
3 Learn about the configuration and development workflow
4 Find examples and simple tutorials and get hands-on
5 Use the reference API documentation

Let’s look at each of these.

10.2.1 Discovering a platform’s core features

Before you even get your hands on a new dev board or platform, you’ll probably want
an overall sense of what it can do.

Figure 10.6 Entering the LED-blink code into the Espruino IDE (font size increased for visibility)

304 CHAPTER 10 JavaScript and constrained hardware

 Often the key details are summarized on the manufacturer’s or supplier’s web site.
In the Pico’s case, a list of features the Pico’s web page gives us the scoop: it’s a 3.3 V
device, petite in form factor (33 mm x 15 mm), it’s powered by a STM32F401CDU6
microcontroller (no, my cat didn’t just walk on my keyboard; ST—the manufacturer—
has naming conventions that are unromantic, but quite precise), and it uses an ARM
Cortex M4 processor (www.espruino.com/Pico).

 Also in the key features list are bullet points about power consumption (figure 10.7).
Even if the specific numbers cited here don’t hit home, you can see that they’re making
noise about being power efficient.

 There are 22 GPIO pins on the device, including 3 I2C interfaces and 3 (hardware)
SPI interfaces—not shabby for something so small. If you click through to the micro-
controller’s datasheet (http://mng.bz/i7r8), you can see that you have the
STM32F401D/E family to thank for that (there’s a section about communication inter-
faces on the front page).

Figure 10.7 The Espruino Pico’s key features, listed on Espruino’s website

http://mng.bz/i7r8
www.espruino.com/Pico

305Learning about new platforms

A couple of other features jump out. One is
a nice nod to the ubiquity of 5 V logic—”All
GPIO is 5 volt tolerant (Arduino compati-
ble)”—a kindness to those of us who have
to swap between the two a lot. Output will
always be 3.3 V, but 5 V input won’t give the
Pico heartburn.

 Another detail worth noting: although
18 pins (two rows of 9) are at a breadboard-
standard 0.1" pin pitch, 8 pins on one short
end are only 0.05" apart (figure 10.8). You
won’t be using those pins in your explora-
tions, as they don’t slot easily into a bread-
board, but there are physical shims you can
get to make it possible.

 Granted, this particular list of features
doesn’t mention that this a JavaScript-
powered device, which is kind of key, but
you can certainly glean that from Espru-
ino’s home page (www.espruino.com).

Another thing that’s handy to understand is the platform’s financial and licensing
model. Is the hardware or software (or both) open source, or are they proprietary?
This can be relevant if you’re considering using a platform commercially, extending
hardware or software, or otherwise making contributions to a platform. (Espruino
platforms are fully open source.)

ARM Cortex M MCUs and embedded JavaScript
Both the Espruino Pico and the Kinoma Element are based on microcontrollers from
the ARM Cortex M family. Just as ATmega MCUs are found on all sorts of Arduino-
compatible, host-client-class boards (like the Arduino Uno and its brethren), ARM Cor-
tex M MCUs are very popular for the class of embedded platforms that include the
Element and the Pico. ARM’s site claims that 10s of billions of devices have been
produced using products from the Cortex M family.

The 32-bit microcontrollers in the Cortex M family outclass 8-bit ATmegas while still
operating at low power (most are predictably not quite as cheap). Embedded Java-
Script (or JavaScript-like) runtimes need more processing power than an 8-bit ATmega
can provide.

As you continue to experiment with new platforms, chances are you’ll continue to
encounter Cortex M variants.

Figure 10.8 Eight of the Pico’s I/O pins are
at a 0.05 inch pitch: too narrow to slot into
breadboards.

http://www.espruino.com

306 CHAPTER 10 JavaScript and constrained hardware

10.2.2 Finding a pinout diagram

Maybe it’s because I have a love for maps, but finding and analyzing a board’s pinout
diagram is usually when things really click home. These diagrams show you which pins
can do what: communication interfaces, PWM, power pins, and so on.

 From the Pico’s diagram (figure 10.9), we can note a few things (see it in a larger size
with more detail on Espruino’s Pico documentation page: www.espruino.com/Pico). For
one, pin numbers aren’t sequential; they jump around a bit, and you’ll find both A and
B pins on both of the two sides you’ll be using. You can also see that there’s PWM support
on nearly every GPIO pin. Finally, you can see which pins have hardware support for I2C
and SPI, and which can support ADC (analog-to-digital conversion).

 A combination of sensible overall pin layout (hardware design) and high-quality
pinout diagrams can make for a better development experience.

Figure 10.9 Detail of pinout diagram for the Espruino Pico

http://www.espruino.com/Pico

307Learning about new platforms

10.2.3 Learning about configuration and workflow

How is code written? Deployed? How is the device managed, configured, and
updated? Is it supported for your operating system? Is the configuration process over-
whelming and tedious? That could be a sign of an ongoing headache.

 In the Pico’s case, we’ve taken the recommended route of using the Chrome app
IDE. This can be convenient—code authoring, device management, and deployment
are in one place—but if you’re the kind of person who has an attachment to your own
editor or IDE for writing JavaScript, it might drive you nuts.

 Get a sense of the high-level software constructs: are there plugins or other modu-
larized components? Is there a general hardware-oriented API? Espruino has both of
these.

10.2.4 Finding examples and tutorials

Stepping through some Hello World examples is next, and you’ve already done that
with the Pico. When experimenting with a new platform, figure out how to accomplish
some common tasks, such as blinking LEDs, reading data from an analog sensor, work-
ing with displays, and controlling I2C devices. Ideally, you’ll get hands-on at this step,
getting a sense for how it really feels to interact with the platform during development.

 Once you’ve got your head around the big picture, and seen (and tried) a few
applied examples, hitting up reference documentation can help fill in the details.

10.2.5 Using reference API documentation

If you glance at Espruino’s API documentation (10.10), you’ll see familiar JavaScript
classes—String, Math, Boolean, JSON—along with Espruino-specific classes relevant to
hardware stuff: I2C, SPI, WLAN. The Globals section lists hardware functions like
digitalWrite() available to Espruino scripts, and also some standard JavaScript global
goodies like setTimeout() and eval().

 There’s also a page that lists available modules for Espruino and how to use them
(www.espruino.com/Modules). More on that as we explore the Pico more fully.

 As you learn more about a platform and gain experience with it, you’ll find your-
self moving from a learning phase, where you’re seeking out prebaked examples, con-
cepts, and tutorials, to a reference phase, where you’re searching for details on how to
accomplish specific tasks.

http://www.espruino.com/Modules

308 CHAPTER 10 JavaScript and constrained hardware

10.3 Experimenting with the Pico
Next, you’ll take the Pico for a spin and try out a few experiments. First, you’ll revisit
the BMP180 weather multisensor, but you’ll be combining it with a Nokia 5110 LCD
display component to build a nice-looking, self-contained mini weather station.

10.3.1 The Pico and the BMP180 multisensor

What you’ll need
 1 Espruino Pico

 1 full-size breadboard

 1 USB extension cable

 1 BMP180 breakout board

 Jumper wires

Figure 10.10 Espruino’s API documentation at www.espruino.com/Reference

✔

http://www.espruino.com/Reference

309Experimenting with the Pico

Because you’re using the Web IDE, working with Espruino modules is as easy as using
a require() statement in the Espruino code with the name of the module you’re
after. These modules provide encapsulated support for different types of components.
And, huzzah, there’s an existing module for your trusty BMP180 temperature and pres-
sure multisensor. The module’s called BMP085 because it’s also compatible with the
similar BMP085 sensor. Once the module is imported, you can use the API it provides
to interact with the BMP180 sensor. Let’s see what that looks like.

THE BMP085 ESPRUINO MODULE

This experiment will log the current temperature (in Celsius) and pressure (in pas-
cals) as obtained from the I2C BMP180 sensor.

 The code required to log readings from a BMP180 isn’t too dense, as you’ll see in
listing 10.2. It makes use of the exposed I2C1 global to configure an I2C interface that
it then passes to the connect method of the BMP085 module.

 As you’ve seen, Johnny-Five provides several constructs for performing continuous,
periodic actions like sensor reads—board.loop, for example. But you’re not using
Johnny-Five here. Instead, you’ll follow Espruino convention, which makes use of
setInterval for repeated I/O.

I2C1.setup({ scl: B6, sda: B7});
var bmp = require('BMP085').connect(I2C1);
setInterval(function () {

bmp.getPressure(function (readings) {
console.log('Pressure: ' + readings.pressure + ' Pa');
console.log('Temperature: ' + readings.temperature + ' C');

});
}, 1000);

How do you know that pins B6 and B7 support I2C SCL and SDA respectively? From the
pinout (figure 10.11).

BUILDING THE BMP180 CIRCUIT

To construct this, you’ll want to put the Pico on a full-size breadboard and use a USB
extension cable. Construct the circuit shown in figure 10.11.

Listing 10.2 Using the BMP085 Espruino module

Sets up the Pico’s first I2C interface (I2C1),
using pins B6 for SCL and B7 for SDA

Requires the BMP085
module and invokes its
connect function, using
the I2C1 interface

The getPressure
method of the

instantiated bmp
object is async;

registers a
callback…

Performs sensor reads every second (1000 ms)

Figure 10.11 Wiring diagram for the Espruino Pico and BMP180 sensor

310 CHAPTER 10 JavaScript and constrained hardware

The setup may seem a bit cockamamie at the moment. “Why stick the BMP180 sensor
so far away from the Pico?” you may reasonably be wondering. There’s a method to
this madness: the resulting gap will allow for the expansion of this circuit to accommo-
date the Nokia 5110 LCD component in upcoming experiments.

FULL-SIZE BREADBOARD CONNECTIONS If this is your first time using a full-size
breadboard, note that it really is effectively two half-size breadboards joined
end-to-end, in terms of electrical connections. A gotcha with full-size bread-
boards is that the power rails have a break in their connections halfway down
the board (figure 10.12).

DEPLOYING THE CODE

Enter the code from listing 10.2 into the right side of the IDE, and click the Send to Espru-
ino up-arrow icon to execute the code on the Pico. The logged pressure and temperature
will appear on the console/terminal (left) side of the IDE window (figure 10.13).

10.3.2 The Pico and the Nokia 5110 LCD

What you’ll need
 1 Espruino Pico

 1 Nokia 5110 48x84 LCD breakout board

 1 full-size breadboard

 1 100 � resistor

 Jumper wires

The Nokia 5110 48x84 pixel display (figure 10.14) was originally used in the popular
Nokia 51xx family of phones, which date from the late 1990s (great phones, by the
way—they were known for their durability, excellent battery life, and ease of use).

Figure 10.12 Don’t forget! The power rails on a full-size breadboard have a
break midway down the board.

✔

311Experimenting with the Pico

Nokia 5110 LCD units can be found online for as little as $6, but they’re easier to find
at around $10 each. They’re great little components: 48x84 pixels isn’t infinite real
estate, but it’s a lot more than the 16x2 we’ve seen so far. There’s room to draw, ani-
mate, and do fun things.

Figure 10.13 Once the BMP180 script is uploaded to the Pico, you should see output logging to the left side of
the screen once per second.

Figure 10.14 The Nokia 5110 LCD has 48x84 pixel resolution and an SPI interface provided
by its Phillips Semiconductor PCD8544 driver. The display is shown here the right side up.

312 CHAPTER 10 JavaScript and constrained hardware

The display is controlled by a Philips Semiconductor driver named, in that non-
memorable way that such components often have, the PCD8544. The PCD8544
provides an SPI interface to the display, and (yay!) there’s an Espruino module for this
controller.

 You’ll start by creating a visual countdown timer using the Nokia 5110 on its own,
and then you’ll combine it with the BMP180 to make a little weather station.

Nokia 5110/PCD8544 pinouts
Different PCD8544/Nokia 5110 modules have different pinouts! Check your board’s
pin labeling before trying to follow the wiring diagram in figure 10.15. The connections
should be silkscreened on the board.

The layout used in the wiring diagram is based on the 5110 variant available on
SparkFun’s product page (http://mng.bz/IId1), with connections as shown in the fol-
lowing figure. It’s worth noting that the SparkFun module’s pinout is different from
the one assumed in the “Pico LCD Display Hello World” tutorial on Espruino’s site
(http://mng.bz/604s), but the layout documented by SparkFun seems to be more
common.

See table 10.1 for the specifics of which LCD modules pins connect to what on the
Pico.

The wiring diagram in this chapter is based on the SparkFun version of the Nokia 5110 and
assumes a pinout as shown here. Check your 5110’s pinouts and adjust the connections in the
circuit if they differ.

http://mng.bz/IId1
http://mng.bz/604s

313Experimenting with the Pico

CONNECTING THE LCD TO THE PICO

Leave the BMP180 connected from the previous experiment—you’ll use it again in a
minute—and connect the Nokia 5110 to a free section of the full-sized breadboard as
shown in figure 10.15 (and summarized in table 10.1).

Table 10.1 Nokia 5110 LCD connections

LCD module pin LCD pin function Connect to Pico pin
Wire color in

diagram

VCC or Vin 3.3 V source power 3.3 V Red

GND Ground GND Black

CE or SCE SPI chip select B14 Blue

RST Reset B15 White

DC or D/C Data/command B13 Orange

MOSI or DN SPI master out, slave in B10 Green

SCK or SCLK SPI clock B1 Yellow

LED 3.3 V source for LED backlight 3.3 V, through 100 � resistor Red

Figure 10.15 Wiring diagram for the addition of a Nokia 5110 LCD component to the circuit

Wiring diagrams and aesthetics
If you study figure 10.15, you’ll notice a few details that are a nod toward clarity and
aesthetics, both in the diagram itself and the resulting circuit.

For example, note the power connections (red wires). The BMP180 and Nokia 5110’s
backlight LED are now sharing one of the positive power connections. The LCD’s
backlight LED power is connected through a 100 � resistor—it’s an LED, so this
resistor value of 100 � is a good one for a 3.3 V circuit.

314 CHAPTER 10 JavaScript and constrained hardware

Figure 10.16 The timer’s display. The filled-in rectangle
is “animated” and grows to the right as time elapses.

MAKING A VISUAL COUNTDOWN TIMER WITH

THE NOKIA 5110

To get acquainted with the Nokia
5110 and Espruino’s Graphics capa-
bilities, this experiment creates a
10-second timer that shows its prog-
ress using an animated progress bar
on the LCD (figure 10.16). You can, of
course, adjust the timer’s duration in
the code. The timer is started by press-
ing the Pico’s itty-bitty built-in button.

(continued)
Keep in mind that the full-size breadboard’s power rails have a break in their connec-
tions midway along the long side of the breadboard (a full-size breadboard really is
equivalent to two half-size boards stuck together). Hence the short extra ground wire
in this diagram: it connects the ground power to the other half of the board’s ground
rail, bridging the connectivity gap.

When you work with circuit diagrams, you’ll often see affordances made to keep the
circuit “tidy” in appearance, like that split ground connection. Yet another example in
figure 10.15 is the orange wire for the Nokia 5110’s D/C (data/command mode); the
connection is split into two segments so that it doesn’t have to overlap other compo-
nents or wires visually. Other connections are bridged across the breadboard’s cen-
tral notch before using separate wires to complete the connections.

There are many ways to achieve the same resulting circuit. Each of the multiwire con-
nections could be made with a single wire, if you’re looking to save on time or wires
needed.

The same circuit, without making affordances for tidiness

315Experimenting with the Pico

THE ESPRUINO PCD8544 MODULE

To write a program for the timer, you’ll use the Espruino PCD8544 module. The code first
sets up some variables and creates an initialization function to set up the timer (10.3),
as shown in the next listing.

var lcd;
var progress = 0; // Current timer progress
var frameDuration = 200; // ms (5fps)
var timerSeconds = 10;
var timerLength = timerSeconds * 1000 / frameDuration;
var timerActive = false;

function onInit () {
SPI1.setup({ sck: B3, mosi: B5 });
lcd = require('PCD8544').connect(SPI1, B13, B14, B15);

}

onInit();

Next, you need to find a way for a user to activate the timer. You can use the Pico’s
onboard push button as a trigger to start the timer by making use of some Espruino global
goodies: the setWatch(function, pin, options) function and the virtual BTN pin.

 The setWatch() function provides interrupt-like behavior, allowing you to register
a callback that’s invoked when the watched pin’s value changes. In listing 10.4, set-
Watch() is used to watch BTN continuously. Before starting the timer, the code makes
sure there isn’t another timer already running, and then it resets the timer’s progress
and kicks things off.

INTERRUPT-LIKE BEHAVIOR? The setWatch function provides interrupt-like
behavior. The technicality is explained in Espruino’s API documentation on
setWatch (http://mng.bz/EE71): “Internally, an interrupt writes the time of
the pin’s state change into a queue, and the function supplied to setWatch is
executed only from the main message loop.”

// variables
function onInit() { /* ... */ }
setWatch (function (e) {

if (!timerActive) {
progress = 0;
setInterval(draw, frameDuration);
timerActive = true;

}
},

BTN,
{ repeat: true });

Listing 10.3 Setting up the timer

Listing 10.4 Starting the timer

Determines how
many “ticks”
(frames) long

the timer lasts
Keeps track
of whether

the timer is
currently

running

Configures an SPI
interface for the LCD

Uses the PCD8544 Espruino module to
instantiate an object representing the LCD

Invokes the
onInit()

function to
get things

going

Invokes the draw function
every frameDuration (200
ms)

The second
argument to

setWatch
specifies the

pin to watch—
the Pico’s

onboard button.
The third argument is options, here
specifying that the watching should
continue indefinitely (repeat: true).

http://mng.bz/EE71

316 CHAPTER 10 JavaScript and constrained hardware

The timer runs by repeatedly invoking a function named draw at a calculated interval.
But what is the draw function? You’ll need to write it! Your draw function’s tasks will
include incrementing the timer’s progress and rendering its proportional progress
onto the LCD screen.

 The object returned by the PCD8544 module’s connect method—assigned in your
code to the variable lcd—provides a few LCD-specific methods like flip(), which
takes the current contents of a buffer and displays them on the screen, and setCon-
trast()—that method does what it sounds like it would do. In addition, the object
inherits from Espruino’s Graphics library (www.espruino.com/Graphics), giving you
tools to render text strings as well as draw lines and shapes.

 The draw function in listing 10.5 uses the drawRect(x1, y1, x2, y2) method to
draw the outline of a box representing the total timer duration. Then fillRect(x1,
y1, x2, y2) is used to draw a filled-in progress bar at a width representative of the
time elapsed so far. The only real math the draw function needs to do is determine
how wide that filled rectangle should be—how many of the LCD’s available 84 hori-
zontal pixels represent the proportion of time that has elapsed. That’s calculated and
assigned to the rightEdge variable. To summarize: an empty rectangle—the progress
bar’s outline—is drawn, vertically centered on the screen, and then a filled rectangle
of the calculated width is drawn inside of it.

// ...
function draw () {

progress++;
if (progress > timerLength) {

clearInterval();
timerActive = false;

}

var rightEdge = Math.floor((progress / timerLength) * 84) - 1;
lcd.clear();
lcd.drawRect(0, 19, 83, 27);
lcd.fillRect(0, 19, rightEdge, 27);
lcd.flip();

}

Paste the timer code into the right side of the Espruino IDE, connect to the Pico, and
upload the code. Press the Pico’s button to start the timer.

 You can make adjustments to the code if you’d like. You could change the timer’s
duration, or you could make the LCD display a message when the timer is complete,
for example.

Listing 10.5 Drawing the timer

If the timer is done,
turns it off and stops

Calculates the x-axis position
of the right side of the filled

progress rectangle

Uses
drawRect(x1,
y1, x2, y2) to

draw an empty
box vertically

centered,
 eight px high Uses fillRect(x1, y1, x2, y2) to

draw a filled box representing
progress so far

Draws everything
to the LCD screen

317Experimenting with the Pico

Figure 10.17 The weather
gadget’s output will show
temperature and air
pressure, nicely formatted.

10.3.3 Building a power-efficient weather gadget with the Pico

You’re getting to be rather an expert at building mini weather
gadgets, and here’s another one to add to the arsenal. By com-
bining your old friend the BMP180 sensor with the Nokia 5110
display, you can cobble together an independent, nicely for-
matted, low-power weather device (figure 10.17).

 If you followed along through the previous two experi-
ments, you already have the circuit you need: the BMP180
and the Nokia 5110 connected to the Pico on a full-sized
breadboard (figure 10.18). You’ll rely on some more fea-
tures of the Espruino Graphics library to allow you to draw
vector fonts and more shapes to format the display of the
data, and you’ll deploy the resulting code to the Pico’s flash
memory so that the Pico will independently run the pro-
gram any time it’s provided with power.

 As with the timer, you’ll start by setting up some variables and an initialization func-
tion, shown in listing 10.6. Pressure readings on the BMP180 are considerably more accu-
rate if you adjust them for your local altitude (in meters). The getSeaLevel method,
available on objects returned by the BMP085 module’s connect() function, gives you a
handy way to perform that altitude correction. Note that the getPressure method is
used here to read both pressure and temperature at the same time. Make sure to adjust
the value of the altitude variable in the next listing to your local altitude (in meters).

var altitude = 300; // Local altitude in meters: CHANGE ME!
var lcd;

function onInit () {
clearInterval();
I2C1.setup({ scl: B6, sda: B7});
var bmp180 = require('BMP085').connect(I2C1);
SPI1.setup({ sck: B3, mosi: B5 });
lcd = require('PCD8544').connect(SPI1, B13, B14, B15, function () {

setInterval(function () {
bmp180.getPressure(function (readings) {

draw(readings.temperature,
bmp180.getSeaLevel(readings.pressure, altitude));

});
}, 1000);

});
}

onInit();

Listing 10.6 Setting up the weather gadget

Once the LCD is
set up, then kick

off the setInterval.

Invokes draw with the
current temperature

and the pressure
adjusted for altitudeDon’t forget to invoke

the onInit function!

318 CHAPTER 10 JavaScript and constrained hardware

LINES, CIRCLES, AND TEXT WITH ESPRUINO GRAPHICS

As with the timer, you need to write the draw function. The code in listing 10.7 makes
use of more shape-drawing methods from the Graphics library: drawLine(x1, y1,
x2, y2) and drawCircle(x, y, radius) (figure 10.18). It also avails itself of some
methods for deriving dimensions: getWidth() and getHeight(), for example, which
return the display’s usable area, in pixels, for the x and y axes, respectively. Finally,
stringWidth(str) calculates the pixel width of the given string, using the current
font settings.

Let’s talk fonts. There’s a tiny bitmap font available whose characters are 4 x 6 pixels
in size. To use the bitmap font, you use the setFontBitmap() method to make that
font active. In this example, however, you’ll use a vector font. The vector font can be
used at various sizes—it scales. The setFontVector(size) method will set the active
font to a scaled vector font with a height of size pixels.

 There are a lot of numbers in the following draw function. It’s a bit finicky-looking,
but everything here is unsophisticated pixel arithmetic to position elements of text
and shapes. Note that the string “mb” in the drawing function (the abbreviation for
millibars) is “hand-kerned,” because I found that drawing the string in one go at that
font size ran the letters together illegibly.

function draw (temperature, pressure) {
lcd.clear();
// Convert temperature to Fahrenheit and format to one decimal place
var tempString = (temperature * (9 / 5) + 32).toFixed(1);
// Convert pressure from pascals to millibars and format to one decimal

 ➥ place

Listing 10.7 Rendering the weather display

Figure 10.18 Using Espruino’s Graphics support to create shapes and draw text strings

319Experimenting with the Pico

var pressString = (pressure / 100).toFixed(1);

// Draw a vertically centered line across the display
lcd.drawLine(0, (lcd.getHeight() / 2), lcd.getWidth(),

 ➥ (lcd.getHeight() / 2));

// Set the active font to 18 pixels high
lcd.setFontVector(18);
// Calculate the pixel width of the temperature value at 18px font
var tempWidth = lcd.stringWidth(tempString);
// Calculate the pixel width of the pressure value at 18px font
var pressWidth = lcd.stringWidth(pressString);
// The temperature will be horizontally centered
// Determine the x coordinate for where the value should be displayed
var xTemp = ((lcd.getWidth() - tempWidth) / 2);

// Render the temperature at point (xTemp, 2)
lcd.drawString(tempString, xTemp, 2);
// Render a degree symbol (circle) of radius 2px
// at point (xTemp + tempWidth + 4, 5)
// The center of the circle will be 4px to the right of the
// end of the temperature value string
lcd.drawCircle(xTemp + tempWidth + 4, 5, 2);
// Render the pressure value left-aligned, 2px below vertical center
lcd.drawString(pressString, 0, (lcd.getHeight() / 2 + 2));

// Set a smaller font for the unit characters
lcd.setFontVector(8);
// Draw an "F" to denote Fahrenheit
lcd.drawString('F', xTemp + tempWidth + 2, 12);
// Draw "mb" (millibar) string.
lcd.drawString('m', pressWidth + 3, (lcd.getHeight() / 2 + 12));
lcd.drawString('b', pressWidth + 12, (lcd.getHeight() / 2 + 12));
lcd.flip();

}

Put all of the code for the weather gadget into the code side of the Espruino IDE, and
use the Send to Espruino icon to run the code on the Pico. It’ll show the temperature
and pressure until it’s unplugged from the USB port of your computer.

 But you can do a little better! On the left side of the IDE, type the command
save() and press Enter. This will flash the code to the Pico. Now, anytime the Pico has
power, it will resume running this code. Try it out by plugging the Pico into a USB
power source, like a phone charger.

POWER EFFICIENCY AND THE LCD’S BACKLIGHT To make the weather gadget
more power-efficient, you might consider disconnecting the LCD’s LED back-
light connection from power. You won’t be able to read the LCD in a dark
room, but it’ll draw less power.

320 CHAPTER 10 JavaScript and constrained hardware

10.4 Experimenting with the Kinoma Element platform
To rinse and repeat the process of platform exploration, we’ll take a brief look at
another embedded-JavaScript platform: the Kinoma Element.

 The Element is a small, JavaScript-powered IoT platform with 16 programmable
pins (figure 10.19). Like the Espruino Pico, it’s inexpensive—an Element will set you
back about $20 or maybe a little more. Also like the Pico, it lacks the bells and whistles
of its more beefy (and costly) brethren—you won’t find onboard USB, Ethernet,
SDCard, or other peripheral goodies—but it has the basic bits needed for IoT prod-
ucts in an efficient little package. Also, it has built-in WiFi support.

10.4.1 The Element’s core features

Chipmaker Marvell produces the Element (http://mng.bz/w1lR), which features its
Marvell MW302 System-on-a-Chip (SoC), which in turn uses a 200 MHz ARM Cortex
M4. The board, enclosure, JavaScript runtime, and framework software are open
source.

 To run JavaScript natively with only 512 KB RAM, the Element uses a technology
called XIP (execute in place). The Element runs FreeRTOS, a streamlined and mini-
mal open source operating system. The board’s operating voltage is 3.3 V.

 The Element comes packaged in an enclosure, which makes it look less like a
board and more like a finished device (the enclosure design is open source too).
Instead of having dedicated power pins, you configure any of the Element’s 16 pins (8
on each side of the board) as 3.3 V or ground as needed.

 Kinoma uses its own (Apache-licensed) JavaScript engine, XS6, which, with minor
exceptions, claims ES6 compatibility. Note that the Element’s IDE software is available
for Mac and Windows (beta), but it doesn’t have Linux support.

Figure 10.19 The Kinoma Element

http://mng.bz/w1lR

321Experimenting with the Kinoma Element platform

10.4.2 Pinout and hardware diagram

The Element’s pin layout is rather straightforward (figure 10.20). It’s a simpler device
than the Pico in terms of I/O feature support; for example, there are two I2C inter-
faces but no support for SPI. On the flip side, it’s less complex to figure out which pins
do what, and the numbering is easy to follow.

10.4.3 Configuration, management, workflow

The Element is a tidy, self-contained package that won’t require any soldering or prep.
Jumper wires can plug right into it directly.

 The configuration and workflow is similar to the Pico in that there’s an IDE for
configuring, authoring, and deploying. If you have an Element on hand, you can head
over to the quick-start guide for details (http://mng.bz/84cS), but these are the gen-
eral steps:

1 Download and install the Kinoma Code IDE.
2 Get the Element set up on your WiFi network.
3 Apply the firmware update.

Code projects for the Element, developed in the Kinoma Code IDE (figure 10.21), can
be deployed over USB or WiFi b/g/n. Setup involves getting the Element on your
local WiFi network. It will be assigned its own IP address.

 Application projects for the Element have some structure to them. For example,
each must contain a project.json file, which defines an entry point—the script that will
get executed on the device. The entry point defaults to main.js.

 As with Espruino, Kinoma provides some global objects to help you interact with
hardware, and there is the notion of modules for the encapsulation of component

Figure 10.20 Pinout diagram
for the Kinoma Element

http://mng.bz/84cS

322 CHAPTER 10 JavaScript and constrained hardware

behavior. Kinoma modules for controlling hardware components are known as Blinking-
Light Libraries (BLLs) and they involve interacting with the hardware through a (built-
in) Pins module. You can use CommonJS style require statements to pull other JS files
into your projects and any built-in or custom BLL modules (but remember, this isn’t
Node.js: you can’t use npm modules).

10.4.4 Examples and tutorials

Kinoma’s site has some code examples for the Element: http://mng.bz/1BaB. Look-
ing at the blinking-LED example code (http://mng.bz/5t61), it’s immediately evident
that the structure of Kinoma projects is more formal than that of some other plat-
forms (figure 10.22). Blinking an LED involves a project.json file to define the project,
a main.js (entry point) to initialize the board and configure the pin for the LED, and
an led.js BLL module that provides the logical support for blinking via a toggle
method. (The .project file and the XML file in the project appear to be for Kinoma-
site-specific build and metadata support.)

 You’ll also need to bring your own LED and resistor to the party, as there’s no evi-
dent onboard LED you can use. The code inside of this project’s main.js file assumes
you’re using pins 9 and 10 (ground), but there’s no wiring diagram provided.

 You’ll learn more about what the code in a Kinoma main.js script looks like in just
a bit.

Figure 10.21 Kinoma Code IDE software

http://mng.bz/1BaB
http://mng.bz/5t61

323Experimenting with the Kinoma Element platform

10.4.5 API reference

Kinoma modules provide the API for hardware interaction. The most immediately rel-
evant module is Pins, which provides basic I/O support for the kinds of things you’d
expect: digital and analog input and output; pulse-width modulation (PWM); serial
(I2C, for example). You can find a programmer’s guide on the Kinoma site
(http://mng.bz/w1lR).

10.4.6 Case-study project: live-updating compass readings

What you’ll need
 1 Kinoma Element

 1 USB A to USB micro cable

 1 breadboard

 1 HMC5883L magnetometer breakout board

 Jumper wires

The Element, with its onboard WiFi and web utility libraries, lends itself to acting as a
web server a little more obviously than the Pico.

 In this experiment, you’ll take a look at the high-level process of creating a project
with the Element, crafting a custom BLL to support the HMC5883L I2C magnetometer
(compass). you’ll use Kinoma’s available WebSocket module to run a WebSocket

Figure 10.22 The source for a blinking-LED Kinoma example project. The structure of a Kinoma project
is more involved than that of an Espruino project.

✔

http://mng.bz/w1lR

324 CHAPTER 10 JavaScript and constrained hardware

server on the Element that can emit changes when the
compass heading changes. Finally, you’ll construct an
HTML document that will connect to the Element’s Web-
Socket server and update as the compass heading
changes (figure 10.23).

 The HMC5883L module will be connected to a bread-
board. By rotating the breadboard, you can change the
magnetometer’s orientation and see the updated head-
ing within the browser—in real time.

BUILDING THE CIRCUIT

Place the HMC5883L on a breadboard and connect it to the Element as shown in fig-
ure 10.24. The SDA and SCL pins on the breakout board connect to the Element’s
pins 13 and 14, which, as shown in the pinout in figure 10.20, have support for I2C.
Any pin on the Element can be configured as power or ground; pins 11 and 12 are
used here because of their proximity to the I2C pins.

STRUCTURING THE PROJECT

The Element live-compass project consists of four files (figure 10.25):

 A package.json file with Kinoma project metadata
 A main.js file serving as the app’s main module (entry point)
 An HMC5883L.js file, which is the custom Kinoma BLL module for the compass
 An index.html file, which is the client-side code—you view it in a web browser

WebSocket browser support
You’ve met the WebSocket protocol before. In chapter 8, you used socket.IO in the
Tessel 2 weather station application to show live-updating temperature and pressure.
Socket.IO uses WebSockets for browsers that have WebSockets support, and it falls
back to other methods for browsers that don’t support WebSockets.

In this example, you’ll use WebSockets proper: the application won’t work in brows-
ers that don’t support WebSockets. A lack of WebSockets support is exceedingly rare
in browsers these days, so it’s unlikely you’ll run into problems.

Figure 10.24 Kinoma Element and HMC5883L

Figure 10.23 Detail of
browser display, showing
compass heading. The compass
heading will update, live,
without requiring a browser
reload. In this case, the current
heading was 190.62 degrees—
a little bit west of south.

325Experimenting with the Kinoma Element platform

First, create the package.json file and enter some metadata, as shown in the next listing.

{
"id": "compass.websockets.lyza.com",
"title": "hmc5883L",
"Element": {

"main": "main"
}

}

CREATING THE APPLICATION’S STRUCTURE

Kinoma project application modules—main.js in this case—have a general structure.
They need to export a default function that implements some event handlers, such
as onLaunch() and onQuit(). The launch handler configures the board’s pins and
kicks things off.

 The module’s basic structure is as follows.

Listing 10.8 project.json

Figure 10.25 The structure for the Element live-compass project. The main.js file provides
application logic and a WebSocket server, relying on support from the BLL in HMC5883L.js to
interact with the magnetometer. The project.json file defines the project, using Kinoma conventions.
Index.html is run in a web browser on your computer and shows live-updating compass headings.

ID strings should be in “dotted
domain name style” according
to the documentation.

The app’s entry
point will be main.js.

326 CHAPTER 10 JavaScript and constrained hardware

import Pins from 'pins';
import { WebSocketServer } from 'websocket';

var formatMsg = heading => JSON.stringify({ heading: heading.toFixed(2) });
var main = {

onLaunch () {
Pins.configure({

// Configure the HMC5883L via a custom BLL module that still needs
 ➥ to be written

}, success => {
if (success) {

// Set up a WebSocket server
// read compass headings and emit changes

} else {
// Handle failure with the built-in `trace` function
trace('Failed to configure\n');

}
});

}
};

export default main;

Once the custom HMC5883L module is ready, you’ll come back and fill in the blanks in
main.js.

A CUSTOM BLL FOR THE HMC5883L
A BLL, or blinking-light library, encapsulates Kinoma-compatible component behavior
in a module. A BLL module needs to do certain things. According to the Kinoma doc-
umentation, a BLL must export at minimum a pins object defining the type of pins it
uses, a configure function, and a close function.

 The following listing shows an excerpt from the completed HMC5883L BLL module.

// From datasheet: various register addresses for the device
var registers = {

CRA: 0x00,
CRB: 0x01,
MODE: 0x02,
READ: 0x03,

};

/* ... */

// Required export object
// Configure the pins involved as I2C at address 0x1E (from datasheet)

Listing 10.9 Structure of main.js

Listing 10.10 BLL code detail

This is the built-in Pins module, upon
which much in Kinoma apps depends. Kinoma has a built-in websocket

module; you’ll need to use the
WebSocketServer from it.

This is a convenience function for
formatting compass headers (not used yet).

onLaunch()
will be invoked
automatically
on launch.

Pins.configure takes a
callback function, invoked
when it’s complete.

327Experimenting with the Kinoma Element platform

exports.pins = {
compass: {type: 'I2C', address: 0x1E }

};

// Required export function
exports.configure = function () {

this.compass.init(); // Get I2C going
// Derived from Johnny-Five Compass class support for HMC5883Ls
this.compass.writeByteDataSMB(registers.CRA, 0x70);
this.compass.writeByteDataSMB(registers.CRB, 0x40);
this.compass.writeByteDataSMB(registers.MODE, 0x00);

};

// Required export function
exports.close = function () {

this.compass.close(); // Cleanup; boilerplate
};

// Can be invoked repeatedly to read data from sensor
exports.read = function () {

// Derived from Johnny-Five Compass class, again
var bytes = this.compass.readBlockDataSMB(registers.READ, 6, 'Array');
var data = {

x: int16(bytes[0], bytes[1]),
y: int16(bytes[4], bytes[5]),
z: int16(bytes[2], bytes[3])

};
return toHeading(data.x, data.y);

};

Listing 10.10 only shows a portion of the completed BLL. The complete version of
the 5883L BLL can be found in the book’s code repository. You’ll need it if you want to
build this experiment: place it in the same directory as the other project files.

writeByteDataSMB() is
provided by the Kinoma
I2C API; it reads from a

specific register address.

readBlockDataSMB(),
again from the API, is
used to get six bytes

from the READ
register as an array.

HMC5883L data consists of two
bytes for each of the three axes.

int16() is a utility function to make
a 16-bit integer from two bytes
(implementation not shown).

toHeading() uses math to
derive a heading from the data
(implementation not shown).

Credits for the HMC5883L Kinoma BLL module
I cobbled together this BLL myself as an exploration into how BLL modules and I2C
work on the Element, but the code draws heavily from pre-existing work. It’s effec-
tively a port of the Johnny-Five support logic for the sensor (http://mng.bz/TxHV),
written by Johnny-Five inventor Rick Waldron. The Johnny-Five code in turn relies on
an earlier implementation for Arduino (http://mng.bz/nB4V), which in turn relies on
the datasheet for the device (http://mng.bz/j67k).

This kind of complex pedigree is par for the course in open source software, but as
a reminder, always check your licenses and make sure you honor them. Also, give
shout-outs to the inspiration for your work.

http://mng.bz/TxHV
http://mng.bz/nB4V
http://mng.bz/j67k

328 CHAPTER 10 JavaScript and constrained hardware

FINISHING THE APPLICATION CODE

With the BLL sewn up, the bits in main.js that rely on on the BLL can be filled in. As
shown in the following listing, the onLaunch handler sets up the compass sensor on
the Element by passing a settings object to Pins.configure().

/* ... */
var main = {

onLaunch () {
Pins.configure({

compass: {
require: 'HMC5883L',
pins: {
compass: { sda: 13, clock: 14 },
ground: { pin: 12, type: 'Ground' },
power: { pin: 11, type: 'Power' }

}
},

}, success => { });
}

};

You also pass a callback function as a second argument to Pins.configure().
 Within that callback, you first need to get a WebSocket server going, as shown in

the next listing. This code uses the API of the built-in Kinoma WebSocketServer (Web-
SocketServer was required in listing 10.9).

/* ... */
var main = {

onLaunch () {
Pins.configure({

/* ... */
}, success => {

if (success) {
const clients = new Set();
const wss = new WebSocketServer(80);
let lastResult = 0;

wss.onStart = client => { // When a client (browser) connects
clients.add(client);
// Immediately send the latest compass heading
client.send(formatMsg(lastResult));
// Clean up when closing later
client.onclose = () => clients.remove(client);

};
}

});
}

};

Listing 10.11 Configuring pins

Listing 10.12 WebSocket server setup

The custom BLL module, by
filename, no extension

Callback function

ES6 feature
support, so Set

can be used
Starts a WebSocket
server on the
Element’s port 80

Holds the
 last compass

heading reading

329Experimenting with the Kinoma Element platform

The code in listing 10.12 emits an initial compass reading when a client connects, but
how are compass readings obtained in the first place, and how does the client receive
updates when the readings change? The last bits of code for main.js, shown in the fol-
lowing listing, take care of those things.

/* ... */
var main = {

onLaunch () {
Pins.configure({

/* ... */
}, success => {

if (success) {
/* ... */
Pins.repeat('/compass/read', 500, result => {
if (Math.abs(result - lastResult) >= 0.5) {

clients.forEach(recipient => {
recipient.send(formatMsg(result));

});
}
lastResult = result;

});
}

});
}

};

CLIENT CODE (HTML)
Finally, you’ll need an HTML page to serve as a WebSocket client and to show the com-
pass headings in real time. This page can be viewed in a browser.

<!doctype html>
<html lang="en">

<head>
<meta charset="utf-8">
<title>Live Compass Heading</title>

Listing 10.13 Reading and updating compass headings

Listing 10.14 Client code (HTML page) for showing compass heading

Reads
 every

 500

If the new result (the
heading, in degrees)
differs from the last
result by some
threshold amount…

…it has meaningfully changed.
Send the new value to each of
the connected clients.

Functions as paths in BLLs
Functions in BLLs are referenced externally by path:

Pins.repeat('/compass/read', 500, result => { });

Here, /compass/read is a “path” to the read function in the BLL module. The line
of code here repeatedly invokes read every 500 ms, and a callback function receives
the result of the latest read operation. See it in play in listing 10.13.

330 CHAPTER 10 JavaScript and constrained hardware

<style>
#compass {

text-align: center;
font-size: 2em;
font-family: "Helvetica", sans-serif;
margin: 2em;

}
</style>
<script>

window.addEventListener('load', function () {
var ws = new WebSocket('ws://10.0.0.17:80');
ws.onmessage = function (message) {
var data = JSON.parse(message.data);
document.getElementById('direction').innerHTML = data.heading;

};
});

</script>
</head>
<body>

<div id="compass">
<label for="direction">Compass Heading</label><div id="direction">...

 ➥ </div>
</div>

</body>
</html>

DEPLOYING THE COMPASS CODE

Code is deployed to the Element via the Kinoma Code IDE. Note that the index.html
file isn’t served from the Element in this example. Instead, you open that file in a
browser once the Element is running the compass application. See the Element quick-
start guide (http://mng.bz/84cS) for step-by-step instructions about how to connect
to and deploy code to your Element from the Kinoma Code IDE, if you haven’t done
so already.

 Once the code is deployed and running, you can open up the index.html file in a
browser and rotate the breadboard with the attached compass to see the display
update in real time.

Summary
 Embedded JavaScript platforms use optimized hardware and firmware to exe-

cute subsets of JavaScript natively. Both Kinoma and Espruino maintain their
own, open source JavaScript engines (KinomaJS and Espruino JavaScript,
respectively) to make this possible.

 Embedded JS platforms tend to have more sophisticated processors—often
32-bit—but still have significant constraints on memory and program space.

 Espruino’s open source family of products includes the Pico, a diminutively
sized development board. Espruino projects can make use of Espruino-specific
modules to work with different kinds of components.

Styling for the heading display

On load, connects
to the WebSocket

server Important! You need to
change this to your own
Element’s IP address.

When new
data comes
 in, updates
the HTML in

the #direction
element to
display the

new heading

http://mng.bz/84cS

331Summary

 The Kinoma Element is another open source JavaScript-powered device. Creat-
ing projects for the Element involves the use of component modules called
BLLs (blinking-light libraries).

 Although there are many platform options out there, you can speed your learn-
ing process with new platforms by following certain steps: learning about core
details, finding hardware and pinout information, understanding the workflow,
trying out examples, and seeking out API documentation.

332

Building with Node.js
 and tiny computers

Single-board computers (SBCs) are tiny powerhouses that combine general-purpose
computing with the characteristics of embedded systems (figure 11.1). These itty-
bitty computers pack a host of peripherals and goodies into a small package: multiple
USB ports, Bluetooth, WiFi, Ethernet—the features you’d expect from a desktop

This chapter covers
 Getting started with Node.js hardware development

on single-board computer (SBC) platforms

 Corralling components and setting up a Raspberry Pi
3 Model B system

 How GPIO works on the Raspberry Pi, and some
different options for controlling it with JavaScript

 Adapting a Johnny-Five weather station app to work
on several different platforms—Tessel 2, Raspberry
Pi, Arduino, and BeagleBone Black

 Working with the GPIO-rich BeagleBone Black open
source SBC

333

computer. But they have several features that lend themselves well to embedded appli-
cations: their cut-down size, lower price point, GPIO support, and relative power effi-
ciency (while not as power-miserly as simpler embedded platforms, they certainly
require less juice than their desktop brethren).

 This isn’t the first time you’ve seen SBCs in this book, but let’s revisit what an SBC
is, broadly speaking. There’s no formal definition of the term, but SBC platforms tend
to do the following:

 Run high-level operating systems; in most cases you can install a different OS if
you choose (typically, but not always, Linux)

 Offer general-purpose desktop-like features, such as support for USB peripherals,
displays, sound, and so on

 Provide GPIO options, though these sometimes play second fiddle to other fea-
tures of the platform

The juggernaut in this category is the Raspberry Pi platform, a family of SBCs that are
enjoying epic popularity. Accordingly, we’ll spend most of this chapter diving into
Node.js and the Raspberry Pi 3 Model B. But we’ll also take a briefer tour of the
BeagleBone Black board as a second example of a platform in this SBC class.

Figure 11.1 Single-board computers (SBCs), left to right: Intel Edison module with Arduino breakout, Raspberry
Pi 2 Model B, and BeagleBone Black

334 CHAPTER 11 Building with Node.js and tiny computers

For this chapter, you’ll need the following:
 1 Raspberry Pi 3 Model B and 5 V power supply
 1 microSD card and adapter
 1 Adafruit T-Cobbler, SparkFun Pi Wedge, or similar, or an assortment

of male-to-female jumper wires
 1 standard LED, any color
 1 100 � resistor
 1 Adafruit BMP180 multisensor breakout board
 Jumper wires
 1 BeagleBone Black
 1 Arduino Uno
 1 half-size breadboard

335Working with tiny computers

11.1 Working with tiny computers
SBCs are certainly more sophisticated than their simpler dev-board brethren. They can
also be, correspondingly, more involved to set up and configure out of the box. In many
cases, you’ll be dealing with copious amounts of choice in both software and hardware
realms. Don’t panic, though: getting from zero to zoom on a Raspberry Pi 3 using an SD
card preflashed with NOOBS (New Out-of-Box Software) for Raspberry Pis can be
breathtakingly simple. But you’ll need to roll up your Linux sleeves and spend some
time in a terminal to get a comfortable, Node.js-centric workflow sorted out.

 Don’t be nervous. Should anything go awry when following the setup steps for
either of the SBCs we’ll examine—the Raspberry Pi 3 and the BeagleBone Black—you
can always start again from scratch without doing irreparable harm.

The Tessel 2 and the definition of single-board computers
The Tessel 2 is almost a device category unto itself. Its USB peripherals, networking
capabilities, and high-level OS (OpenWrt Linux) seem to suggest SBC territory. Yet its
limited RAM and Flash storage, as well as its lack of desktop-like peripheral support
(such as a display) are signs that it’s designed for embedded applications.

So is it an SBC? I’d tend to lean toward a qualified yes, but if your own definition of
SBC emphatically involves the ability to plug in a display and use it as a desktop com-
puter, then nope!

SBCs, embedded systems, and (Debian) Linux
There has been a Big Bang of Linux projects and distributions targeted at embedded
and mobile devices over the past several years. For example, the Tessel runs a pared-
down Linux originally developed for routers: OpenWrt.

As we dig into higher-performance SBCs, you’ll see that there are decisions to be
made—most platforms will happily run a number of different Linux distributions.

With the Raspberry Pi, we’ll stick with the default and most common choice: Rasp-
bian, a Debian-based Linux. For consistency, the BeagleBone Black exploration at the
end of the chapter reflashes the board with Debian Linux instead of using the default
(Ångström) that it ships with.

Debian releases are named after Toy Story characters. At the time of writing, Debian
stable is at version 9 (Stretch), but most embedded and SBC platforms are still using
builds of version 8 (Jessie). One sometimes sees version 7 (Wheezy) builds, though
they’re becoming less common.

336 CHAPTER 11 Building with Node.js and tiny computers

11.1.1 The Raspberry Pi platform

The Raspberry Pi (figure 11.2) is everywhere you look. What the Arduino platform is
to simpler dev boards, the Pi platform is to SBCs: ubiquitous.

 With each sequential numbered Pi generation (1, 2, and 3 so far), the platform has
become more powerful, efficient, stable, and jam-packed with features. The exception
is the Pi Zero family, which is even smaller and cheaper—but at the cost of some per-
formance and features.

 Despite its power and flexibility, the Raspberry Pi platform isn’t always the ideal
choice for electronics beginners. The sheer number of things you can do with a Pi can
be distracting, as can the task of handling Linux administration and other configura-
tion details. It’s easy to get off on a Google-search tangent, wallowing for hours amidst
forums and project ideas and options.

 In addition, Pi pinouts are fairly complex and have multiple, confusing numbering
and naming systems. Despite the large number of pins, some GPIO support is com-
pletely missing. There’s no onboard analog-to-digital conversion (ADC), for instance.
Other key GPIO features are limited. Of the 40 GPIO pins on a Raspberry Pi 3 Model B
(figure 11.3) only two are PWM-capable.

 On the other hand, you’ve learned enough about the basics that some of these poten-
tial pitfalls may not seem so daunting anymore. Raspbian—the Pi’s default Debian-based

Figure 11.2 Raspberry Pi 2 Model B (left), Raspberry Pi Zero (center foreground), and Raspberry Pi 3
Model B (in a case, with attached SparkFun Pi Wedge)

337Working with tiny computers

OS—is widely used, sensible, and reliable. Because so many people use Pis, there are
scads of resources designed to assist even rank beginners, and there are vast troves of
forums, wikis, Stack Overflow and blog posts, and so on, to aid you with every last detail.

GETTING YOUR KIT IN ORDER

The following sections provide two different options for setting up a Raspberry Pi 3
Model B-based system:

 Traditional configuration—The traditional and more beginner-friendly way to
configure a Raspberry Pi is to treat it like a desktop computer—plug in a USB
mouse, a USB keyboard, and an HDMI display, and work at it directly.

 Headless configuration—If you don’t want to devote that many peripherals to
your Pi, you can opt to treat it more like an embedded system. If that notion
appeals, the headless configuration section is for you!

For a first-time setup, Pi starter kits, available from all of the major online electronics
retailers—are a great, if more costly, way to go (versus buying the Pi board and sup-
porting components separately). Here are some things to look for in a kit:

 A microSD card preflashed with NOOBs or Raspbian—Preferably also with an
SD card adapter so that you can use a standard-sized card reader/writer to
update the card’s contents

 An enclosure (case)—This gives your Pi physical stability, protection, and, in
some cases, a suave appearance.

Figure 11.3 The Raspberry Pi 3 Model B

338 CHAPTER 11 Building with Node.js and tiny computers

 Power supply—The Pi’s power connection is USB micro, so you could alterna-
tively use a 5 V USB device charger. Keep in mind, however, that the Pi’s current
needs may not be met by all phone chargers: the Pi website recommends an
adapter that can supply 2.5 A or more.

 Hardware to provide easier access to the Pi’s GPIO pins—These come in the
form of the Adafruit Cobbler, the SparkFun Wedge, and other similar options
(figure 11.4).

Kits may offer other useful goodies—the SparkFun one includes a USB microSD card
reader, for example—but they have the downside of often including things you proba-
bly already have: breadboards, jumper wires, LEDs, and the like.

 A Raspberry Pi 3 Model B board on its own is about $40, whereas full kits are about
$90. The current Pi 3 starter kits from Adafruit and SparkFun contain all the parts you
need for this section.

Figure 11.4 Constructed Raspberry Pi 3 Model B SparkFun kit with Pi Wedge, here shown connected
to a breadboard. Also shown is an Adafruit T-Cobbler (right), which provides the same kind of
functionality as the Wedge.

Making GPIO connections on the Pi
The pins on Pis are male—if you connect directly to them, you’ll need male-to-female
jumper wires, and you may end up with a rat’s nest and frustration, because there
isn’t silkscreened info on the Pi itself.

There are third-party hardware components aimed at making the Pi’s GPIO easier
to work with. SparkFun’s Pi Wedge and Adafruit’s T-Cobbler are two examples:
these breakouts organize pins into more intuitive groupings (with silkscreened
hints) and provide a breadboard-compatible form factor. Your Pi kit may come with
them, or they can be purchased separately.

339Working with tiny computers

What you’ll need

Steps follow for both a traditional, desktop-style Pi setup and a headless setup. You’ll
want to choose only one of these options, but no matter which path you follow, you’ll need
the following:

 1 Raspberry Pi 3 Model B

 1 5 V USB micro power supply

 1 enclosure (optional but recommended)

 1 Adafruit T-Cobbler, SparkFun Pi Wedge, or similar; or a set of male-to-female
jumper wires

Assembled Adafruit T-Cobbler and SparkFun Pi Wedge (shown with connected 40-pin cable)

FTDI (Future Technology Devices International)
FTDI makes chips that allow for asynchronous serial communication between embed-
ded devices and computers. FTDI chips translate the TTL or RS-232 signals (RS-232
is another asynchronous serial protocol) coming from a device into USB signals that
a computer can understand, and vice versa. FTDI connections can be used to monitor
serial output from a device. In some cases, they can also be used to program or con-
trol the device.

SparkFun’s Pi Wedge includes an FTDI interface. You also need a cable or a breakout
board to connect to the FTDI pins (a SparkFun FTDI breakout board with mini-USB con-
nector is visible connected to the Pi Wedge in figure 11.4).

✔

340 CHAPTER 11 Building with Node.js and tiny computers

11.1.2 Configuration option 1: the traditional way

What you’ll need

In addition to the parts listed in the previous section, you’ll also need the following:

 1 microSD card, preflashed with NOOBS or Raspbian OS (with desktop)

 1 USB keyboard

 1 USB mouse

 1 monitor

 1 HDMI cable for the monitor

This configuration option involves plugging in peripherals and power and following
on-screen instructions. Pop in a microSD card preflashed with NOOBS and power it
up. NOOBS gives you the option of installing one of several OSs. Go ahead and select
the first choice—Raspbian. The installation process takes a few minutes.

 Once the OS is installed and configured, you’ll be able to boot into the PIXEL (Pi
Improved Xwindows Environment, Lightweight) environment. Setting up the WiFi is
straightforward: start by clicking on the WiFi icon in the top-right menu bar (fig-
ure 11.5).

 If you want to be able to shell in to your Pi later, without having to work at the Pi
directly, you need to enable SSH. To do this, use the Preferences > Raspberry Pi Con-
figuration menu option. Navigate to the Interfaces tab and click the Enabled option
next to SSH. Click OK to apply the change.

 That’s it for the moment! If you run into any difficulty whatsoever, head on over to
the Raspberry Pi Software Guide (http://mng.bz/P8Hu), which is illustrated and
user-friendly.

✔

Figure 11.5 The PIXEL desktop. Note the WiFi icon at top right.

http://mng.bz/P8Hu

341Working with tiny computers

11.1.3 Configuration option 2: headless

This more pared-down, straight-to-the-essentials approach obviates the need for
peripherals and cables. On the flip side, it’s a less common approach, and it requires
more time in a terminal. Raspbian is ever-evolving, but the following steps worked reli-
ably as of mid-2017.

 If you’ve already set up your Pi using the desktop approach, you can skip this set of
steps. You can skip forward to section 11.8.

What you’ll need
In addition to the parts listed at the end of section 11.1, you’ll need the following:

 1 microSD card

 1 SD card adapter

 1 SD card reader/writer (or a computer that has a built-in reader)

 1 Ethernet cable

Because you’re going headless, you’ll need to configure the Pi so that you can com-
municate with it in some way, as you’ll lack a keyboard and monitor.

 First you’ll need to create a bootable SD card that will enable you to ssh to the Pi
over a wired Ethernet connection. Then you’ll shell in and configure WiFi on the
command line.

CREATING A BOOTABLE RASPBIAN DISK IMAGE

You’ll need to put an operating system on a microSD card so that the Pi can boot:

1 Download Raspbian (not NOOBS) from the Raspbian download page
(www.raspberrypi.org/downloads/raspbian/) (figure 11.6).

✔

Figure 11.6 Download the full version of Raspbian from Raspberry Pi’s Raspbian download page.

http://www.raspberrypi.org/downloads/raspbian/

342 CHAPTER 11 Building with Node.js and tiny computers

Once the large download is complete, unzip the resulting zip file. If things go
right, you should end up with an IMG file (a bootable disk image).

BIG, HONKING RASPBIAN ZIP FILE As noted on the Raspbian download page
(figure 11.6), the resulting zip file is big, and your default unzip utility may
not be up to the task of unzipping it (mine wasn’t). As suggested there, try
The Unarchiver for Mac or 7Zip for Windows if you run into problems.

2 Create a bootable microSD card:
a Install the free Etcher application (https://etcher.io/), available for Win-

dows, Mac, or Linux. This will allow you to take the Raspbian IMG file and
burn it onto the microSD card.

b Insert the microSD card into the SD card adapter, and then insert the whole
kaboodle into your computer or SD card reader/writer.

c Launch Etcher and follow the steps to put the IMG file on the microSD card
(figure 11.7).

3 Add a file to the microSD card to enable SSH:
a When Etcher is done—it takes several minutes to create the disk image—the

microSD card will be soft-ejected (unmounted) from your computer. Unplug
it, plug it back in, and open up the boot partition (this may be the only parti-
tion you can see).

b Create an empty file named “ssh”—no extension—and place it at the top
level of boot. This will enable SSH on the Pi, which is otherwise disabled by
default in Raspbian.

Figure 11.7 Etcher is a straightforward utility: select the disk image file, select the drive (it often
auto-selects for you), and go.

https://etcher.io/

343Working with tiny computers

4 Install the OS:
a Eject the SD card adapter from your computer, remove the microSD card

from the adapter, and insert the microSD card into the Pi 3.
b Boot the Pi.

5 Establish communication with your Pi over Ethernet:
a Connect the Pi 3’s Ethernet interface directly to your wireless router with an

Ethernet cable.
b Find your Pi’s IP address. Your Pi 3 should automatically get assigned an IP

address (via DHCP), but you’ll need to figure out what that IP address is.
There are many ways to skin this cat. Google “IP scanner” or “LAN scan-

ner” and you’ll find a plethora of free utilities for various platforms, or you
can use a command-line tool. I use LanScan for the Mac (figure 11.8). The
idea is to determine what IP was assigned to your Pi.

6 Once you’ve obtained the Pi’s IP address, open a terminal and enter this
command:

$ ssh pi@<your Pi’s IP>

DEFAULT PI USERNAME AND PASSWORD The default username on Raspberry Pi
is pi and the password is raspberry. It’s a good idea to change the password
for the pi user. You can do this (when logged in as the pi user) by typing
passwd at the command prompt and following the onscreen instructions. Do
it. Do it now.

Figure 11.8 Using LanScan for Mac, I can see that the Raspberry Pi’s Ethernet interface was assigned the IP
address 192.168.1.13.

344 CHAPTER 11 Building with Node.js and tiny computers

CONFIGURING WIFI ON THE PI

The last step is to get WiFi configured for your Pi so you don’t have to use a wired Ether-
net connection. This involves messing with the Pi’s wpa_supplicant setup. Sometimes
this can be finicky and frustrating if you try to edit the configuration file directly. I’ve
found that the most failsafe way is to use the wpa_cli command-line utility:

RASPBERRY PI 3’S WIFI SUPPORT The Pi 3, like the Tessel 2, doesn’t support 5
GHz WiFi networks.

1 SSH into your Pi if you haven’t already.
2 Start an interactive wpa_cli session by entering this command:

$ sudo wpa_cli

This will put you in an interactive mode. You can type subsequent commands at
the > prompt.

3 Scan for available wireless networks to make sure your Pi can see the desired
WiFi network. To do so, type this:

> scan

Then this, to see the results of the scan:

> scan_results

Does your network show up? If not, check your router’s settings and make sure
it’s a compatible WiFi network (not 5 GHz). If it does, yay! Carry on.

4 Execute each of the following commands to add, configure, and enable the
desired WiFi network connection in the Pi’s wpa_supplicant config:

> add_network 0
> set_network 0 ssid "<your network’s SSID>"
> set_network 0 pwk "<your network’s password>"
> enable network 0
> save_config

5 Press Ctrl-C to exit the wpa_cli.
6 To verify that it worked, type this:

$ ifconfig wlan0

If it’s all good, you should see an assigned IP address (figure 11.9).

You can unplug the Ethernet connection if you like. The Pi will now automatically
connect to the WiFi network configured here every time it boots up. Handy!

345Learning about the Raspberry Pi 3

IF YOU NEED A DO-OVER It’s not too hard to start over if your Pi is misbehaving
or you feel confused or stuck. Power the Pi down, eject the microSD, and
reflash it with the desired OS: NOOBS for a user-friendly, visual setup; Rasp-
bian; or any other compatible OS of your choice. Booting from that updated
SD card will give you a clean slate.

11.2 Learning about the Raspberry Pi 3
Now that you’ve a configured Pi with WiFi connectivity, let’s apply the platform-learning
steps first outlined in chapter 10 to get a better understanding of the Raspberry Pi 3
platform overall.

11.2.1 Core features

SBCs really up the ante for processing power, commensurate with their additional bells
and whistles. Microcontrollers from ARM’s 32-bit Cortex M family are at the heart of a
slew of platforms that can run embedded JavaScript. With full-blown SBCs, you’ll be tak-
ing another step up in processor oomph. These 32- and 64-bit processors often sport
multiple cores, 3D graphics acceleration, higher clock speeds, and complex subsystems.

 The Pi 3 boasts a quad-core, 64-bit ARM (A8) CPU running at 1.2 GHz. That’s a far
cry from the Uno’s 8-bit ATmega at 20 MHz (at the risk of comparing apples to oranges).
Other specs noted on the product information page (figure 11.10) include 1 GB of
RAM, onboard WiFi and Bluetooth, 4 USB ports, video and stereo outputs, HDMI inter-
face, and more (www.raspberrypi.org/products/raspberry-pi-3-model-b/).

 GPIO-wise, it’s a mixed bag. There are multiple SPI and I2C interfaces, and lots
of pins overall. As mentioned earlier, there’s no ADC support, and PWM is limited.
Add-on accessories and certain peripherals may require connections to some of the

Figure 11.9 After configuring WiFi, the Pi now has two IP addresses—one for the Ethernet interface and one for
its WLAN (WiFi) interface.

www.raspberrypi.org/products/raspberry-pi-3-model-b/

346 CHAPTER 11 Building with Node.js and tiny computers

pins, meaning you might not have I/O access to all of the 40 pins, depending on your
configuration.

 Because of the Pi 3’s general-purpose market, the core feature list on its product
page doesn’t mention that its GPIO logic level voltage is 3.3 V, but you should know
that: the Raspberry Pi 3 is a 3.3 V device.

SERIOUSLY, THE PI IS A 3.3 V DEVICE Don’t apply 5 V power to any of the Pi’s
pins or you might find yourself with a dead Pi.

11.2.2 GPIO features and pinouts

Pi pinouts are complicated. For starters, there are a lot of pins (40), many different
pin numbering and naming schemes, and a given pin may already be monopolized by

Figure 11.10 Highlights of the Raspberry Pi 3 Model B specs on the Raspberry Pi website

347Learning about the Raspberry Pi 3

a component, process, or peripheral. Groups of related connections, such as SPI or
I2C pins, aren’t necessarily physically adjacent to each other, either. The pinout.xyz
website is a good resource for the nitty-gritty details on Pi pinouts.

 As an example of the many faces of a single Raspberry Pi GPIO pin, physical pin 33
(figure 11.11) is alternately known as BCM 13 (Broadcom pin number), by its primary
functional name of PWM1 (it’s one of the PWM-capable pins), and as WiringPi pin 23.
It also has several functionally named aliases, such as AVEOUT VID 9. And will it even
be available for GPIO use? It won’t be if you have a parallel external display connected
to the Pi—it’s one of the pins needed for that. And it might not be if you want to use a
JTAG debugging interface or SMI (Secondary Memory Interface) device; it’s one of
the pins used in those kinds of connections too.

Figure 11.11 pinout.xyz is a website entirely devoted to Raspberry Pi pinout information. This detail from
pinout.xyz shows the many aliases of physical pin 33.

SBCs and platform-specific hardware terminology
It seems like each SBC platform adds more jargon terms to the IoT vocabulary. Just
as Arduino-compatible expansion boards are called shields, boards that fit on the
Raspberry Pi are typically called hats, and those that mesh with the BeagleBone Black
are called capes.

348 CHAPTER 11 Building with Node.js and tiny computers

11.2.3 Configuration and workflow

The possibilities of what you can do and how you can do it are virtually unbounded on
the Pi platform—it’s a full-fledged computer, after all. Let’s narrow that a bit by con-
centrating on config and workflow options for a Node.js-centric electronics-hacking
setup.

 At this point you should have a working Pi—whether it’s set up as a standalone
computer or a headless device. You have three more steps to take to get the configura-
tion and workflow solid:

1 Make sure the Pi’s software is up to date.
2 Get a tolerably recent version of Node.js installed on the Pi.
3 Figure out a way to author code and get it onto the Pi’s filesystem.

UPDATING THE PI’S SOFTWARE

Make sure the Pi has the latest software updates:

1 ssh into the Pi (headless) or use a terminal (desktop). Make sure the Pi is con-
nected to the internet.

2 Run the following command:

$ sudo apt update

This may take a few minutes to complete.

3 Run this command:

$ sudo apt full-upgrade

This also may take several minutes to do its job.

UPGRADING NODE.JS ON THE PI

Still logged in to the Pi or in a terminal window, try running this command:

$ node --version

This will output the current version of Node.js on the Pi. At time of writing, the prein-
stalled Node.js version was v0.10.29, which is archaic. Bring that up to LTS (Long-Term
Support), so we don’t run into compatibility or security issues in your projects:

1 If you haven’t just run a full system update (as shown in the previous section),
first run this command:

$ sudo apt update

2 Download and run a Node.js setup script for the target version by executing this
command:

$ curl -sL https://deb.nodesource.com/setup_6.x | sudo -E bash -

349Learning about the Raspberry Pi 3

At time of writing, LTS was v6.x. This will have changed by the time you read
this, so you’re welcome to replace the setup_6.x portion of the URL with the
appropriate major version number. See the NodeSource Binary Distributions
repository for more info (https://github.com/nodesource/distributions).

3 Install Node.js:

$ sudo apt install -y nodejs

4 Verify that it worked by running this command:

$ node --version

MANAGING FILES ON THE PI

The JavaScript files and resources for your Pi projects will be executed on the Pi and
need to exist on the Pi’s filesystem. There are, unsurprisingly, an awful lot of ways to
get your files on the Pi. Here are some options:

 Author the files on the Pi itself. You can use a terminal-based editor, such as vi
or nano. Or, if you have a desktop setup for your Pi, you can use a GUI editor
like the preinstalled Leafpad application. Or you can install any number of
additional text-editing applications.

 Use a utility to copy files from your computer to the Pi. You could use the Unix
command-line tool scp (secure copy) to move files, or a GUI application that
supports it, for example.

 Set up a file server on the Pi so you can access it as a remote share from other
computers on your network. One of the many possible methods for doing this is
to use a Samba (SMB) server.

Configuring a Samba (SMB) server on the Pi
One way to make your Pi’s files easy to get at is to set up a file server on the Pi itself.
The following steps set up a Samba (SMB) share called projects that can be read-
write accessed by the pi user. Once configured, this share should show up in your
system’s Finder or File Explorer as a networked drive. Note that these instructions
assume a general familiarity with the Linux command line:

1 ssh into the Pi as the pi user (headless) or use a terminal application (desktop).
2 Make sure you’re in the pi user’s home directory by typing this command:

$ pwd

You should see the following output:

/home/pi

3 Create a directory to keep project files in:

$ mkdir projects

https://github.com/nodesource/distributions

350 CHAPTER 11 Building with Node.js and tiny computers

(continued)
4 Install Samba:

$ sudo apt install samba

5 Set up a Samba password for the pi user by entering the following command
and following the prompts:

$ sudo smbpasswd -a pi

6 Samba doesn’t use system passwords; it maintains its own.
7 Edit the Samba configuration file. First make a backup to your home directory,

just in case:

$ sudo cp /etc/samba/smb.conf ~/

8 Now edit the configuration:

$ sudo vi /etc/samba/smb.conf

9 (You can use a different editor, such as nano, if you prefer, in place of vi.)
Scroll down to the very bottom of the file and add these lines, including the
spaces around the = characters:

[projects]
path = /home/pi/projects
valid users = pi
read only = No

10 Save the file and exit.
11 Restart the Samba service:

$ sudo service smbd restart

12 Check your config if you like:

$ testparm

You should now be able to connect to the SMB share from other computers on the
same network (using Map Network Drive in Windows File Explorer or Connect to
Server or Cmd-K on a Mac). The connection string takes this form:

smb://user@host/sharename

You should end up with something like this:

smb://pi@<your Pi’s IP>/projects

Samba shares can be imperfect at times, and it’s possible you may need to adjust
permissions or user metadata to make it work just right. There are tons of user
forums and help articles on the web if you need support.

351Learning about the Raspberry Pi 3

CREATE A “PROJECTS” AREA Creating a directory called “projects” inside of
the pi user’s home directory is one of the steps in the sidebar on configuring
a Samba server. Even if you don’t set up a share on the Pi, go ahead and cre-
ate a directory to corral your upcoming code experiments. The rest of the
chapter will assume the existence of a ~/projects directory (a directory
called “projects” inside your home directory).

11.2.4 Examples and tutorials

There’s no one way to blink an LED on a Raspberry Pi—the options are almost count-
less. You’ll try a few ways here, emphasizing JavaScript options.

What you’ll need
 1 configured Raspberry Pi 3

 1 SparkFun Pi Wedge, Adafruit T-Cobbler, or similar; or male-to-female jumper wires

 1 standard LED, any color

 1 100 � resistor

 1 breadboard

 Jumper wires

BUILDING AN LED CIRCUIT

Each of the following examples uses the same physical circuit configuration: the LED’s
anode should be connected to the Pi’s physical pin 7 (WiringPi pin 7, BCM pin 4).
The cathode should be connected to a GND pin.

 Wiring diagrams are shown for direct-to-Pi connections (figure 11.12), Adafruit’s
T-Cobbler (figure 11.13), and SparkFun’s Pi Wedge (figure 11.14).

✔

The right way to sudo
Because of the conservative permissions for interacting with GPIO in Raspbian, you’ll
likely need to execute the following code examples using sudo. For example,

$ sudo ./blink.sh

or

$ sudo node index.js

Without sudo, you may get permissions errors like these:

./blink.sh: line 4: /sys/class/gpio/gpio4/direction: Permission denied

./blink.sh: line 5: /sys/class/gpio/gpio4/value: Permission denied

./blink.sh: line 7: echo: write error: Operation not permitted

Try to only use sudo with commands that require it, such as when executing these
scripts. Don’t use sudo to install npm modules or create files, or the like. You might
end up creating things with wonky permissions if you do that. When in doubt, try to
do something first without sudo and see if it works.

352 CHAPTER 11 Building with Node.js and tiny computers

Figure 11.12 Wiring diagram for connecting the LED
directly to the Pi’s pins, using male-to-female jumper wires

Figure 11.13 Wiring diagram,
using Adafruit’s T-Cobbler

353Learning about the Raspberry Pi 3

BLINKING AN LED WITH SYSFS

Sysfs is a Linux pseudo-filesystem that organizes the configuration of attached devices
and systems into a filesystem hierarchy. Each entity exported by sysfs into the user
space is represented by a directory. Sysfs mounts at /sys, and from within
/sys/class/gpio it’s possible to control the Pi’s GPIO pins.

 For each pin you want to use, you need to do the following:

1 Export the pin. This is done by writing the pin number to the file at /sys/class/
gpio/export using the BCM number scheme. This will create a directory for the
pin (<pin_directory>).

2 Configure the pin, such as by writing the value 'in' or 'out' to /sys/class/
gpio/<pin_directory>/direction.

3 Interact with the pin, such as by reading from the /sys/class/gpio/<pin_direc-
tory>/value file or writing a value to it.

4 Clean up. Unexport the pin by writing the pin number to the file at /sys/class/
gpio/unexport.

Figure 11.14 Wiring diagram,
using SparkFun’s Pi Wedge

354 CHAPTER 11 Building with Node.js and tiny computers

This is likely easier to understand by example. Blinking an LED connected to physical
pin 7, BCM GPIO 4, a single time—turning it on then off again—can be accomplished
by using a shell script, as shown in the following listing.

 To try out sysfs, create a “blink-sysfs” directory inside your ~/projects directory.

#! /bin/bash
Export the pin so we can work with it
echo "4" > /sys/class/gpio/export
Set the pin up as an output pin
echo "out" > /sys/class/gpio/gpio4/direction
Turn on the LED by setting the pin to HIGH ("1")
echo "1" > /sys/class/gpio/gpio4/value
Do nothing for one second
sleep 1
Turn off the pin by setting it to LOW ("0")
echo "0" > /sys/class/gpio/gpio4/value
sleep 1
Unexport the pin to clean up after ourselves
echo "4" > /sys/class/gpio/unexport

To run the blink.sh script, you need to make the file executable. You should be able to
do that by running this command inside the ~/projects/blink-sysfs directory:

$ chmod +x ./blink.sh

Now try it out by typing the following:

$ sudo ./blink.sh

BLINKING AN LED WITH SYSFS AND NODE.JS
At the end of the day, these are just filesystem actions, so you can also do this with
Node.js using the built-in fs module, as shown in the next listing.

const fs = require('fs');
const sysfsPath = '/sys/class/gpio';
const ledPin = '4';
const blinkTotal = 10;

var blinkCount = 0;
var ledStatus = false;

// Export and configure the pin as an output
fs.writeFileSync(`${sysfsPath}/export`, ledPin);
fs.writeFileSync(`${sysfsPath}/gpio${ledPin}/direction`, 'out');

var blinker = setInterval(() => {

Listing 11.1 A bash script to blink an attached LED once

Listing 11.2 Blinking an LED with sysfs and Node.js

Note that the pin number
and all written values in
this example are strings.

355Learning about the Raspberry Pi 3

if (ledStatus) {
// The LED is on. Turn it off.
fs.writeFileSync(`${sysfsPath}/gpio${ledPin}/value`, '0');
blinkCount++; // This completes one blink cycle
if (blinkCount >= blinkTotal) {

console.log('All done blinking');
// Clean up after ourselves
fs.writeFileSync(`${sysfsPath}/unexport`, '4');
clearInterval(blinker);

}
} else {

// The LED is off. Turn it on.
fs.writeFileSync(`${sysfsPath}/gpio${ledPin}/value`, '1');

}
ledStatus = !ledStatus; // The LED has swapped status

}, 1000);

Try it out by using this command:

$ sudo node index.js

You could fill an encyclopedic tome with all of the things you can do with sysfs, but
let’s move on. It’s good to know about sysfs, but working with it directly requires
patience and involves a learning curve.

WIRINGPI

WiringPi is an abstracting wrapper that attempts to make pin numbering more sane,
and it exposes an API that’s more familiarly Arduino-style. It’s written in C, but Ruby
and Python libraries for it are popular. There’s an npm package that provides Node.js
bindings: wiring-pi.

 If you want to try this out, create a directory in your ~/projects area named blink-
wiring-pi. Inside of that directory, run this command:

$ npm install wiring-pi

Don’t forget to unexport
You really do need to unexport objects in the gpio directory when you’re done or it’ll
be problematic for you next time you want to use that pin. If you see an error like this
when trying to run the Node.js blinking script, it’s likely the pin didn’t get unexported
correctly:

Error: EBUSY: resource
busy or locked, write

You can execute the following command in a terminal to clean up manually:

$ echo "4" > /sys/class/gpio/unexport

356 CHAPTER 11 Building with Node.js and tiny computers

Then create an index.js file with the contents shown in the following listing. In this script,
the status value toggles between 0 and 1, turning the LED off and on, respectively.

const wpi = require('wiring-pi');
const ledPin = 7;
const blinkTotal = 10;
var blinkCount = 0;
var status = 1;

wpi.setup('wpi');
wpi.pinMode(ledPin, wpi.OUTPUT);

var blinker = setInterval(() => {
wpi.digitalWrite(ledPin, status);
if (!status) {

blinkCount++;
if (blinkCount >= blinkTotal) {

console.log('All done blinking!');
clearInterval(blinker);

}
}
status = +!status;

}, 1000);

To run the script, use this command:

$ sudo node index.js`

JOHNNY-FIVE WITH THE RASPI-IO I/O PLUGIN

To round out the blinking extravaganza, we’ll return to our old friend Johnny-Five.
Just as the tessel-io Johnny-Five I/O plugin makes it possible to use Johnny-Five with
the Tessel, the npm package raspi-io allows you to use J5 on the Raspberry Pi.

 Go ahead and create one more directory in the ~/projects directory called blink-j5.
 Inside of the blink-j5 directory, run this command to install the Johnny-Five and

raspi-io packages:

$ npm install johnny-five raspi-io

For your next trick, you’ll take one of the very first LED scripts you ever tried—from
way back in chapter 2—and adapt it to work on the Pi, as shown in the following list-
ing. The only changes required are including and using the raspi-io plugin to pro-
vide I/O, and changing the pin number for the LED. That’s it!

Listing 11.3 index.js

Same physical pin as before, but
using WiringPi numbers, which
are actually JavaScript Numbers
(not Strings)Note status

is a Number
(0 or 1), not
Boolean as
before.

pinMode() and the OUTPUT
constant echo the Arduino
Language API.

status here is either 1
(HIGH) or 0 (LOW).

Inverts the Boolean equivalent
of status and makes it a Number
again (+ operator)

357Writing Johnny-Five applications for different platforms

const five = require('johnny-five');
const Raspi = require('raspi-io');

const board = new five.Board({io: new Raspi()
});

board.on('ready', () => {
const led = new five.Led(7);
var blinkCount = 0;
const blinkMax = 10;

led.blink(500, () => {
blinkCount++;
console.log(`I have changed state ${blinkCount} times`);
if (blinkCount >= blinkMax) {

console.log('I shall stop blinking now');
led.stop();

}
});

});

Raspi-io supports multiple Pi pin-numbering schemes. Pins passed as JavaScript Num-
ber values are automatically assumed to be WiringPi numbers. But you can also use
physical pin numbers and functional names (such as GPIO4). See the plugin’s docu-
mentation for more details (https://github.com/nebrius/raspi-io).

11.2.5 API documentation

Given that there are umpteen ways to control hardware with a Pi, there’s no single
source of API documentation. Instead, we’ll be making use of Johnny-Five, Node.js,
and the raspi-io I/O plugin, so you’ll want to keep the documentation websites for
those APIs at your fingertips as we explore.

11.3 Writing Johnny-Five applications for different platforms
As seen in listing 11.4, adapting Johnny-Five applications to work on different plat-
forms (such as migrating from Arduino Uno to Raspberry Pi) can be quite easy. Often
it’s a matter of selecting the right I/O plugin and updating some pin numbers in the
code.

 In the next several experiments in this section, you’ll adapt the live-updating
BMP180-based weather application originally created for the Tessel in chapter 8 (fig-
ure 11.15). In keeping with your exploration of SBCs and the Raspberry Pi 3 specifi-
cally, you’ll implement the weather station first on the Pi 3 and then subsequently
make it work on an Arduino Uno.

 You can find the source code for the Tessel version of the weather station applica-
tion in the book’s source code repository on GitHub.

Listing 11.4 Blinking the LED with Johnny-Five

Requires the raspi-io
I/O plugin module

Uses a Raspi
object for io

Uses the WiringPi
numbering scheme

https://github.com/nebrius/raspi-io

358 CHAPTER 11 Building with Node.js and tiny computers

11.3.1 Adapting the mini weather station for the Pi 3

What you’ll need
 1 configured Raspberry Pi 3

 1 SparkFun Pi Wedge, Adafruit T-Cobbler, or similar; or male-to-female jumper wires

 1 BMP180 multisensor breakout board

 1 breadboard

 Jumper wires

As a refresher, the weather application has two main components:

 Server code—This includes Johnny-Five code to handle I/O and reading sensor
data, a static web server (using express), and a socket.IO server that emits
events representing weather data updates (socket.IO clients can listen for those
events).

 Client code—This is in the form of a single HTML page—index.html—which
will be served by the express static web server. Once loaded in a browser,
index.html connects to the socket.IO server as a client, so it can receive and dis-
play weather data without a user having to refresh the page.

This pattern—I/O handling and web server combined with a browser-based front
end—can be reused to build many different kinds of IoT applications. It’s a useful pat-
tern to have in your back pocket.

BUILDING THE CIRCUIT

First, you need to build the circuit by connecting the BMP180 breakout to your Pi. As with
the blinking LED, the specifics will depend on your setup. Wiring diagrams are provided
for direct connections to the Pi (figure 11.16), SparkFun Pi Wedge (figure 11.17), and
Adafruit’s T-Cobbler (figure 11.18).

Raspi-io AND I2C The BMP180 is I2C. Raspi-io supports I2C just fine, but to
enable it you’ll need to reboot (if you haven’t yet) after installing raspi-io.
(Hint: sudo reboot is a handy command.)

Figure 11.15 The mini weather app provides live-updating temperature and pressure data that can
be viewed in a browser on any computer on the same network.

✔

359Writing Johnny-Five applications for different platforms

Figure 11.16 Wiring diagram for the BMP180,
showing direct connections to the Pi

Figure 11.17 Wiring
diagram for the BMP180
and the SparkFun Pi Wedge

360 CHAPTER 11 Building with Node.js and tiny computers

TESTING THE BMP180
Before adapting the Tessel’s weather station software, you're going to whip up a basic
script to log BMP180 temperature and pressure data to the console. This will con-
firm that the combination of Raspbian, raspi-io, I2C, and the BMP180 are working
together in harmony:

1 Establish a working area. Create a directory called “weather” within your Pi’s
projects directory:

$ mkdir weather

2 Inside of the weather directory, run this command:

$ npm install johnny-five raspi-io

3 Create an index.js file and populate it with the code shown in the next listing.

Figure 11.18 Wiring diagram for the
BMP180 and the Adafruit T-Cobbler

361Writing Johnny-Five applications for different platforms

const five = require('johnny-five');
const Raspi = require('raspi-io');

const board = new five.Board({
io: new Raspi()

});

board.on('ready', () => {
const bmp180 = new five.Multi({

controller: 'BMP180'
});
bmp180.on('change', () => {

var temperature = bmp180.thermometer.fahrenheit.toFixed(2);
var pressure = bmp180.barometer.pressure.toFixed(2);
console.log(`${temperature}°F | ${pressure}kPa`);

});
});

In the preceding listing, note that you don’t have to designate which pins the BMP180
is connected to in the instantiation of the Multi sensor component (assigned to the
bmp180 variable). Raspi-io “knows” where the I2C-capable pins are on the Raspberry
Pi and takes care of configuring the interface for you! That’s handy.

 Try it out. Still inside of the weather directory, run this command:

$ sudo node index.js

You should see temperature and pressure data logging to the console, something like
the following.

>> 77.54°F | 98.05kPa
77.54°F | 98.05kPa
77.54°F | 98.05kPa
77.54°F | 98.05kPa
77.54°F | 98.06kPa
77.54°F | 98.05kPa
77.72°F | 98.06kPa
77.72°F | 98.06kPa
77.54°F | 98.05kPa

MAKING PI-SPECIFIC CHANGES

Now you’ll make some Pi-specific changes. Create a new working area, a directory
called “pi-weather”. Copy the original weather application source files from the book’s
GitHub repository into this directory, but omit .tesselinclude. You should end up with
a structure that looks like the following.

Listing 11.5 Testing the Pi, Johnny-Five, raspi-io, and BMP180

Listing 11.6 Sample output for the test BMP180 script

Once again, uses the
raspi-io plugin for I/O

362 CHAPTER 11 Building with Node.js and tiny computers

pi-weather/
 app
 index.html
 style.css
 index.js
 package.json

DON’T COPY OVER THE NODE_MODULES DIRECTORY If you inadvertently end up
with a node_modules directory inside of pi-weather (copied from earlier
experiments with the Tessel), blow it away before proceeding:

$ rm -rf node_modules

There are two places in the code that need changes:

 package.json—You’ll need to update dependencies.
 index.js—You’ll need to use raspi-io for I/O.

UPDATING THE PACKAGE.JSON DEPENDENCIES

Start by editing package.json. It should contain, in part, a dependencies object, which
should look similar to what’s shown in the following listing, though your version num-
bers may be different. Remove the tessel-io dependency, as you won’t need it for
the Raspberry Pi version.

"dependencies": {
"express": "^4.14.1",
"johnny-five": "^0.10.4",
"socket.io": "^1.7.3",
"tessel-io": "^0.9.0"

}

Now install the remaining dependencies:

$ npm install

Then add a new dependency—raspi-io—using the --save flag to write the change
to the dependencies in package.json:

$ npm install --save raspi-io

UPDATING INDEX.JS
The changes needed in index.js are simple.

1 Replace this line,

const Tessel = require('tessel-io');

Listing 11.7 Project directory and file structure

Listing 11.8 Package.json dependencies from the Tessel project

Don’t forget to delete the
trailing comma if the tessel-
io entry is the last one.Delete

this line.

363Writing Johnny-Five applications for different platforms

with this one:

const Raspi = require('raspi-io');

2 Update the board instantiation to use raspi-io instead of tessel-io, changing
this line,

const board = new five.Board({ io: new Tessel() });

to look like this:

const board = new five.Board({ io: new Raspi() });

The resulting index.js contents should look like the following.

const five = require('johnny-five');
const Raspi = require('raspi-io');
const express = require('express');
const SocketIO = require('socket.io');

const path = require('path');
const http = require('http');
const os = require('os');

const app = new express();
const server = new http.Server(app);
const socket = new SocketIO(server);
app.use(express.static(path.join(__dirname, '/app')));

const board = new five.Board({ io: new Raspi() });

board.on('ready', () => {
const weatherSensor = new five.Multi({

controller: 'BMP180',
freq: 5000

});

socket.on('connection', client => {
weatherSensor.on('change', () => {

client.emit('weather', {
temperature: weatherSensor.thermometer.F,
pressure: (weatherSensor.barometer.pressure * 10)

});
});

});

server.listen(3000, () => {
console.log(`http://${os.networkInterfaces().wlan0[0].address}:3000`);

});
});

Listing 11.9 A Pi-compatible version of index.js

364 CHAPTER 11 Building with Node.js and tiny computers

No changes are needed in app/index.html because that’s client-side code—it runs in
the user’s browser, and it isn’t affected by platform changes.

 Run the application by using this command from within the weather directory:

$ sudo node index.js

Once the server code is initialized, it will log out the URL where you can access the
weather display from other computers on the same network as the Pi (as shown in the
following listing). Point your computer’s browser to the logged URL to see the weather
station in action.

pi@raspberrypi:~/projects/weather $ sudo node index.js
1499532864338 Available RaspberryPi-IO
1499532864960 Connected RaspberryPi-IO
1499532864984 Repl Initialized
>> http://192.168.1.16:3000

11.3.2 Adapting the mini weather station for the Arduino Uno

Making the weather application work on other Johnny-Five-supported platforms is
similarly straightforward. It’s quick work to make the weather application work on an
Arduino Uno tethered to your own computer, instead of on the Pi.

What you’ll need
 1 Arduino Uno

 1 breadboard

 1 BMP180 multisensor breakout board

 Jumper wires

1 Copy the Pi version of the application—the weather directory and its contents,
minus the node_modules directory, to your computer.

2 Edit package.json. Remove the raspi-io dependency; I/O support for Arduino
platforms is built into Johnny-Five and doesn’t require an I/O plugin.

3 Install dependencies:

$ npm install

4 Edit the index.js file:
a Remove the require statement for raspi-io.
b Change the board instantiation. Remove the reference to Raspi such that it

reads as follows:

const board = new five.Board();

5 Connect the BMP180 to the Arduino Uno as shown in figure 11.19.

Listing 11.10 Sample output when starting the weather station application

✔

365Using the Raspberry Pi as a host

Connect the Uno to your computer and run the application. You won’t need sudo
here:

$ node index.js

11.4 Using the Raspberry Pi as a host
Remember, the Raspberry Pi 3 is a “real” computer, so there’s no reason you can’t use
it as the host in a host-client setup, with its own tethered Arduino, just like you do with
your own computer.

What you’ll need
 1 configured Raspberry Pi 3

 1 Arduino Uno

 1 breadboard

 1 BMP180 multisensor breakout board

 Jumper wires

1 Copy the Arduino Uno version of the weather application code—again, without
the node_modules directory—to the Pi.

2 Install dependencies:

$ npm install

Figure 11.19 Wiring diagram for the BMP180 and the Arduino Uno

✔

366 CHAPTER 11 Building with Node.js and tiny computers

3 Plug the Arduino Uno—connected to the BMP180 as in figure 11.23—into one
of the Pi’s four USB ports.

4 Run the application:

$ node index.js

(You don’t need to use sudo here as you’re not using the Pi’s GPIO.)

WEATHER STATION WITH RASPBERRY PI 3 AND TESSEL 2 There’s no technical
reason you can’t deploy the Tessel 2 version of the weather app to the Tessel
from the Pi (instead of from your own computer). First, however, you’ll need
to install t2-cli on the Pi and provision the Tessel from it as detailed in Tes-
sel’s “Install Tessel 2” page (http://tessel.github.io/t2-start/).

At the end of the day, the Raspberry Pi platform is a vast world of options and choice.
A true computer in its own right, the Pi 3 packs the punch to act as a host in a host-client
setup, which is especially nice if you don’t want to bother with the Pi’s somewhat con-
voluted GPIO. But if you do want to dive into the Pi’s onboard GPIO, there are certainly
a multitude of ways to get the job done.

11.5 Case study: BeagleBone Black
The Pi isn’t the only game in town—there are a host of other SBC platforms. To get a
sense of the commonalities and differences between them, let’s take a brief tour of the
BeagleBone Black (figure 11.20), one of the BeagleBoard family of SBCs.

Figure 11.20 The BeagleBone Black SBC

http://tessel.github.io/t2-start/

367Case study: BeagleBone Black

11.5.1 Learning about the BeagleBone Black

Comparing any two SBCs is often an apples-to-oranges affair; different platforms are
targeted at different applications. The Pi 3 wins the CPU and peripherals contest (mul-
ticore CPU, higher clock speed, more USB ports, and so on), but the BeagleBone
Black outstrips the Pi in terms of GPIO features, and it’s more power-efficient at idle.
Rev C of the BeagleBone Black also ups the RAM ante: it has 4 GB.

 Another important distinction is that, although the various Linux distributions you
can run on the Raspberry Pi are open source, its hardware is not. Pis are exclusively
manufactured by the Raspberry Pi Foundation and contain some closed-source com-
ponents. BeagleBoards, in contrast, are open source hardware.

 A rev C BeagleBone Black will set you back about $55.

CORE FEATURES

As alluded to moments ago, the BeagleBone Black’s CPU is single-core and runs at 1.0
GHz, which is slower than the Pi 3’s 1.2 GHz. Both are ARM v8 chips, however, so
they’re not too dissimilar overall. If you get the rev C, you’ll score 4 GB of RAM (older
versions have 512 MB). Like the Pi, the BeagleBone Black has a microSD slot, but it
also has 4 GB of onboard eMMC flash storage. It has a single USB port, a mini-HDMI
interface, and an Ethernet interface (figure 11.21).

Figure 11.21 The BeagleBone Black’s information page on BeagleBoard’s website

368 CHAPTER 11 Building with Node.js and tiny computers

GPIO FEATURES AND PINOUTS

The BeagleBone Black boasts a smorgasbord of GPIO. There are 92 (ninety-two!) pins.
There’s hardware support for 4 UARTs, 65 interrupt-capable digital I/O pins, 8 PWM
pins, and 7 analog inputs. Whereas the Pi is a computer that also does GPIO, the Bea-
gleBone is more like a GPIO champ that also does computing.

 The BeagleBone Black’s pins are laid out in two sets of expansion headers with 46
pins in each. With the board’s DC power connection at the top, expansion header P9
is on the left, P8 on the right (and as to what happened to P1–P7: no idea). As with
the Pi, many of the BeagleBone Black’s pins can play multiple roles.

 You’re going to use another Johnny-Five I/O plugin to control the BeagleBone
Black’s GPIO. Figure 11.22 shows the pins supported by the beaglebone-io Johnny-
Five I/O plugin and their features. To reference a pin with beaglebone-io, you prefix
the pin’s physical number with the header number, such as P9_11 for pin 11 on P9.
You’ll only be using the I2C interface, so you won’t need to provide pin numbers at
all—beaglebone-io will know automatically to use pins P9_19 (SCL) and P9_20 (SDA).

BEAGLEBONE BLACK VOLTAGE The analog input pins on the BeagleBone Black
only accept input voltages up to 1.8 V.

It’s important to note that the pin features shown in figure 11.22 aren’t indicative of
all of the hardware support that the BeagleBone Black provides on those pins, but the
support that the beaglebone-io plugin provides (for Johnny-Five scripts).

 For example, there’s no UART/TTL serial support shown here, but the BeagleBone
Black does have several UARTs. Sometimes the search for a relevant pinout diagram
can be complicated by the reality that what the pins actually do depends on how
you’re using them.

BBB GPIO BEYOND JOHNNY-FIVE Do you plan on using your BeagleBone Black
in other, non-Johnny-Five, contexts? You’ll want to seek out a more complete
pinout diagram. There are tons of other BeagleBone Black pinout diagrams
available on the web. The BeagleBone Black has a bumper crop of 96 pins,
each capable of playing upward of five or six different roles and referenced by
different naming conventions. This can lead to some rather overwhelming
diagrams. Take your time and be patient: it’s not you—it really is a lot of
information to take in visually.

The BeagleBone Black and non-Ethernet connectivity options
The basic BeagleBone Black doesn’t have onboard WiFi, but you can add support
using a third-party adapter. You can find a list of supported WiFi adapters on the Bea-
gleBone Black page of the Embedded Linux Wiki (http://mng.bz/Uj9d).

Another networking approach allows you to ssh to your BeagleBone Black over a USB
connection. This may require you to install some drivers or tweak some other config-
uration; see the “Getting Started” page on BeagleBoard’s site for more details
(http://beagleboard.org/getting-started).

http://mng.bz/Uj9d
http://beagleboard.org/getting-started

369Case study: BeagleBone Black

CONFIGURATION AND WORKFLOW

One way to configure the BeagleBone Black closely mirrors the Raspberry Pi 3 setup
from earlier in the chapter, minus the WiFi setup (there’s no WiFi to configure).

 The board ships with Ångström, an embedded Linux distribution, but this setup
process replaces that with Debian. For more details about creating a bootable
microSD (steps are abbreviated here), refer to the previous Raspberry Pi 3 setup in
section 11.4:

1 Download the latest Debian image for BeagleBone at http://beagle-
board.org/latest-images.

2 Burn the image to an SD card using the Etcher application.
3 Instead of repeatedly booting from the SD card, what you want to do is flash the

OS image to the onboard eMMC flash storage. This requires an additional,
slightly finicky, step here: a configuration file needs a simple edit.

After you flash the SD card with the Debian image, it may not be readable by
your computer (it wasn’t with mine). Instead, you can go ahead and boot the
BeagleBone Black directly from the SD card, once, so that you can edit that con-
fig file:

a Insert the microSD card with the Debian image on it into the BeagleBone
Black.

b Connect the BeagleBone Black directly to your router with an Ethernet
cable, and then plug in power to the BeagleBone Black. It’ll take a minute or
two for the BeagleBone Black to boot up and get an IP address on your net-
work.

Figure 11.22 BeagleBone Black pin features available via the beaglebone-io Johnny-Five I/O plugin

http://beagleboard.org/latest-images
http://beagleboard.org/latest-images

370 CHAPTER 11 Building with Node.js and tiny computers

c Fire up your LAN- or IP-scanning utility to figure out the BeagleBone Black’s
IP address.

d From your computer, in a terminal, ssh into the BBB with the debian user
(ssh is enabled by default in the Debian image you’re using here):

$ ssh debian@<BBB IP>

There’s a default password for that user, which will be displayed to you on
first login.

e Edit the configuration file in question:

$ sudo vi /boot/uEnv.txt

(or use your preferred editor if you don’t like vi).

Toward the bottom of the file, find the following line and uncomment it
(remove the #):

#cmdline=init=/opt/scripts/tools/eMMC/init-eMMC-flasher-v3.sh

Save and exit the file. Uncommenting that line will allow the BeagleBone
Black to run a script on startup that will copy (flash) the contents of the SD
card to the built-in eMMC.

4 Now power down the BeagleBone Black. With the SD card still inserted, hold
down the BOOT/USER button (figure 11.23) and reconnect the power. Keep
holding the button down for a few more seconds until all of the onboard LEDs
light up solid for a moment. Then you can let the button go.

5 The eMMC-flashing process takes a while—BeagleBoard’s site says 30–45 min-
utes. You can tell when it’s done because all of the BeagleBone Black’s blue
LEDs will turn off (frankly, a welcome respite from all of its default blinking!).

Figure 11.23 The BOOT/USER
button on the BeagleBone Black

371Case study: BeagleBone Black

6 Power down the BeagleBone Black and eject the SD card. Power it back on
again.

7 From your computer, ssh into the BeagleBone Black as the debian user.
8 Run this command:

$ lsb_release -a

You should see output similar to the following:

No LSB modules are available.
Distributor ID: Debian
Description: Debian GNU/Linux 8.7 (jessie)
Release: 8.7
Codename: jessie

9 To see what Node.js version you have, run this command:

$ node --version

I got v4.8.0.

10 You’re welcome to update the Node.js version if you’d like, but v4.8.x is good
enough to support the rest of the code examples in this section.

EXAMPLES AND TUTORIALS

Next you’ll take the BeagleBone Black for a Hello World spin, LED-style, using Johnny-
Five and the beaglebone-io plugin. There’s an onboard LED you can access, so this is
a quick endeavor (no circuitry required).

 Connect to your BeagleBone Black over SSH and create a working area (a projects
directory or similar). Inside of this directory, install Johnny-Five and the beaglebone-
io I/O plugin:

$npm install johnny-five beaglebone-io

Create an index.js file and add the contents from the following listing.

var five = require('johnny-five');
var BeagleBone = require('beaglebone-io');

var board = new five.Board({
io: new BeagleBone()

});

board.on('ready', function () {
var led = new five.Led();
led.blink(500);

});

Listing 11.11 LED blinking on the BeagleBone Black

Using the beaglebone-io plugin

No pin number is given here:
beaglebone-io will automatically
use the onboard LED.

372 CHAPTER 11 Building with Node.js and tiny computers

Now run it! As with the Pi, you’ll need sudo here:

$ sudo node index.js

You should now see one of the BeagleBone Black’s blue LEDs blinking on and off
every 500 ms.

API DOCUMENTATION

Once again, you’re taking the Johnny-Five route here. Documentation for the bea-
glebone-io plugin contains vital information about pin support and plugin usage
details (https://github.com/julianduque/beaglebone-io).

11.5.2 Adapting the weather station for the BeagleBone

What you’ll need
 1 configured, networked BeagleBone Black and power supply

 1 breadboard

 1 BMP180 multisensor breakout board

 Jumper wires

By now, the overall adaptation pattern for the weather application is getting familiar:

1 Connect the BMP180 to the BeagleBone Black, as shown in figure 11.24.
2 Make a weather directory on the BeagleBone Black, and copy the original (Tes-

sel variant) weather station source code into it, without node_modules.
3 Edit package.json to remove the tessel-io dependency.
4 Run $ npm install to install dependencies.
5 Run $npm install --save beaglebone-io to install the beaglebone-io plugin

and save it to package.json.
6 Edit index.js:

a Remove the tessel-io dependency and replace it with beaglebone-io:

const BeagleBone = require('beaglebone-io');

b Change the board instantiation to use the beaglebone-io plugin:

const board = new five.Board({
io: new BeagleBone()

});

The BeagleBone Black is going to require just a couple more quick tricks from you.

✔

https://github.com/julianduque/beaglebone-io

373Case study: BeagleBone Black

As it turns out, the BeagleBone Black, by default, already has a server running at port
3000. And it doesn’t have WiFi, so there’s no wlan0 network interface. To account for
this, edit the code for server.listen() as follows.

server.listen(4000, () => {
console.log(`http://${os.networkInterfaces().eth0[0].address}:4000`);

});

All done! Make it so:

$ sudo node index.js

Now open the logged URL in a browser on your computer.
 Keeping the I/O details sequestered to I/O plugins makes Johnny-Five applica-

tions relatively portable between platforms. Details do pop up, like the unavailability
of port 3000 on the BeagleBone Black, but overall it’s usually not too bad to move
things between platforms. If you’d like, you can also run the Arduino-compatible vari-
ant of the weather application, using the BeagleBone Black as a host. SBCs give you a
whole constellation of options.

Listing 11.12 Updated server.listen()

Figure 11.24 Wiring diagram for the BMP180 and the BeagleBone Black

Change the port number to
something else; 4000 works fine.

Use eth0 instead of wlan0 here,
and also update the port number.

374 CHAPTER 11 Building with Node.js and tiny computers

Summary
 Single-board computers (SBCs) add tons of features and general-purpose good-

ies, but they use more power and are more complicated to configure and
administer than more constrained platforms.

 The Raspberry Pi 3 is the third-generation Raspberry Pi platform, and it can be
used for general-purpose computing as well as for embedded applications.
Raspbian is a Debian-based Linux OS specifically optimized for the Pi family.

 Common setup steps for SBCs and Node.js development include flashing (or
otherwise installing or upgrading) an OS, configuring networking, updating
Node.js versions, and establishing a filesystem workflow.

 Sysfs is a Linux pseudo-filesystem that allows interaction with connected com-
ponents and hardware via virtual directories and files.

 There are myriad ways to hack hardware on a Raspberry Pi, with frameworks
and libraries for nearly any programming language you can think of.

 WiringPi is a popular abstraction for Raspberry Pi GPIO. It’s written in C, but there
are libraries for it in several other languages. Other frameworks not based on Wir-
ingPi (including the raspi-io plugin) support WiringPi’s pin-numbering
scheme because its Arduino-emulating clarity can be less confusing than other
numbering schemes.

 The raspi-io and beaglebone-io I/O plugins support Johnny-Five compatibil-
ity on the Raspberry Pi and BeagleBone Black platforms, respectively.

 Adapting Johnny-Five applications to work cross-platform commonly involves
swapping out I/O plugins and updating pin numbers. Often those are the only
changes necessary.

 The Raspberry Pi can also be used in a host-client setup, acting as the host. It
can control a tethered Arduino Uno (client), for example.

 The BeagleBone Black is an open source SBC with features in the same ball-
park, overall, as a Raspberry Pi 3, but it’s more targeted to embedded and GPIO
applications.

375

In the cloud, in
 the browser, and beyond

For this chapter, you’ll need the following:
 1 BeagleBone Black and 5 V power supply
 1 Espruino Puck.js

This chapter covers
 Using a cloud-based service (resin.io) to deploy and

manage an application across a fleet of devices

 Bleeding-edge web platform technologies for
interacting with hardware, including Web Bluetooth
and the Generic Sensor API

 Building the Physical Web with the open Eddystone
protocol and Bluetooth Low Energy (BLE) beacons

 Controlling hardware from a web page using Web
Bluetooth and Puck.js

 Reading data from and writing commands to a BLE
device

376 CHAPTER 12 In the cloud, in the browser, and beyond

 1 Adafruit BMP180 multisensor breakout board
 1 half-size breadboard
 Jumper wires

This chapter opens up some grand vistas. Yet this grandness of scale bumps up against
limited space. Topics merely touched upon here are entire specialties; there’s enough
to learn about each to fill books, shelves, or even entire libraries: security; the web
standards process; the intricacies of Bluetooth and Bluetooth LE (BLE) architecture;
provisioning and managing fleets of IoT devices, at scale.

 As such, this chapter doesn’t mark the end of a learning journey but is instead a
springboard for subsequent adventures. Its first half pulls back the curtains on the
world of cloud-based IoT service offerings. The second half wears a futurist’s hat,
pushing at the edges of what we can do on the web and in a browser today, and at what
might be coming tomorrow.

CODE IS NOT PRODUCTION-READY The code in this chapter isn’t ready for a
production environment. Security, performance, graceful degradation, and
accessibility diligence are sacrificed here in pursuit of clarity and brevity.

377IoT and the cloud

12.1 IoT and the cloud
This book has been primarily concerned with illustrating core electronics principles
and wrangling hardware with JavaScript. But the cloud is an indispensable part of IoT—
you can’t have the internet of things without the internet. Commercial IoT cloud ser-
vices provide inventors and entrepreneurs with ways of bringing their IoT visions to life,
offering supporting services like data stores, deployment tools, RESTful APIs, analytics,
security, testing, benchmarking, debugging, monitoring, development frameworks—
wow! It turns out that IoT is complex. And, boy, is there a lot of jargon involved!

 The already-vague notion of IoT cloud services is muddied further by the fact that
some IoT companies’ products aren’t limited to software. Indeed, some companies
combine physical hardware platforms with their cloud services, creating a top-to-bottom
package (figure 12.1).

 Particle, for example, manufactures the Electron board, which has onboard 2G/3G
connectivity. You deploy your code to and read data from a given Electron using cellu-
lar networks—depending on Particle’s proprietary cloud services for this deployment
and I/O, naturally. In this case, the company—Particle—is providing the hardware
(the Electron device), the software (you program your Particle boards using their

Figure 12.1 Both Particle (https://www.particle.io) and Samsung’s ARTIK services (https://www.artik.io) are
so-called “end-to-end” offerings for IoT.

https://www.particle.io
https://www.artik.io

378 CHAPTER 12 In the cloud, in the browser, and beyond

API), and the cloud infrastructure (you deploy to your Particle device fleet using their
centralized web-based tools).

 Another example of this so-called end-to-end product offering is Samsung’s ARTIK
platform. You could use one of the ARTIK hardware “modules” standalone—their 5-, 7-,
and 10-series boards are all capable SBCs that ship with Fedora Linux—but the hardware
itself is just one part of their integrated ecosystem. They’re hoping you’ll opt to use their
cloud services too.

 This is a deep ocean to dive into. It can be overwhelming if you have no familiar
landmarks against which to chart your voyage, and there’s a painful amount of jargon
and buzzword business-speak. In an attempt to temper this novel onslaught, we won’t
start a project from scratch but will instead adapt our old friend, the mini weather sta-
tion with the browser interface, to work on the BeagleBone Black.

 We’ll take the same weather-station application code—with some minor tweaks—
but instead of working directly on the device to manage the OS and run the app code,
we’ll have resin.io do that work for us.

12.2 Containerized deployment with resin.io

What you’ll need
 1 BeagleBone Black and power supply

 1 Ethernet cable

 1 microSD card and adapter

 1 breadboard

 1 BMP180 multisensor breakout board

 Jumper wires

Resin.io (https://resin.io/) is a service that offers containerized deployment to and
management of internet-connected, provisioned Linux IoT devices. That’s a mouth-
ful—there’s some of that jargon I warned you about—so let’s unpack it by coming at it
from the angle of what problems services like resin.io are actually trying to solve.

 Recall from chapter 11 that SBCs (like the BeagleBone Black) are typically capable
of running various flavors of Linux, but that the tradeoff for such flexibility is that the
installation and administration of Linux can add some overhead (and pain) to an
SBC-based workflow. Getting code files onto a device from your preferred develop-
ment environment (such as your laptop) can be a chore. Managing environment set-
tings and configuration can be a headache. You may have an itch to work iteratively,
using familiar software development methodologies and tools (such as Git for version
control) and collaborating with other devs. Getting that all set up piecemeal can take
time and energy, or it may even stump you entirely.

 Now imagine that your IoT application needs to run not just on one BeagleBone
(or Pi, or other SBC) but on an entire fleet of them, possibly scattered geographically
across states, provinces, countries. Keeping tabs on the devices, keeping things in
sync, sending the right version of the code to each device, monitoring devices for

✔

https://resin.io/

379Containerized deployment with resin.io

failures, pushing out OS or security updates—doing all of this manually isn’t going to
scale well. Then there are all of those requirements for software and hardware
products that are used by real people: analytics (how much use has a particular device
been getting?), security (let’s make sure we’re uploading that user’s heart rate over a
secure connection!), and so on.

 There’s a lot going on here. To accomplish much of it, resin.io (and some other
similar services) employ several key strategies:

 Containerization—The key idea here is that you want the same application to run
in the same way on each of your devices. Resin.io uses Docker containers to
package applications and their dependencies cleanly and reliably. Your app’s
container gets deployed to each of your provisioned devices.

 Provisioning—A given device needs to be able to get a hold of resin.io, identify
itself, and receive application updates. To accomplish this, you download a cus-
tom disk image from resin.io and boot each device from it. Once a device has
been successfully provisioned, it will appear on the web dashboard for the asso-
ciated resin.io app, as you’ll see shortly.

 Version control integration—Pushing code to a particular remote of a specified Git
repository automatically triggers redeployment of the application to all con-
nected, provisioned devices. Part of setting up a resin.io project is defining
which Git repository to use as the application source.

Once a resin.io project and its devices are set up, you can develop your app iteratively.
When you push changes to your resin.io Git remote, resin.io rebuilds your applica-
tion’s container with the updated code and deploys that container to all of the con-
nected, provisioned devices for that app, wherever they may be (figure 12.2).

Containers, containers, containers!
You can’t swing a cat on the internet these days without running into someone who’s
saying something (usually vague, but almost always laudatory) about containers. You’ll
read that containers are the greatest solution ever for app deployment, for security,
for performance, for ensuring world peace, and so on, but what’s harder to track down
is an explanation of what the heck a container is and what it, in real terms, does.

A container serves both to encapsulate and isolate an application and the bits and bobs
it requires to function correctly (dependencies, settings, and the like). A single server
or computing device may run numerous separate containers at the same time without
them interfering with each other. Likewise, the same container can be deployed to a
whole bunch of different computers, and—because the container holds all of the things
needed to define the app’s environment as well as all of its dependencies—you can
feel confident that the app will behave the same way on each of the different devices.

Resin.io uses Docker containers. Docker is both the name of a particular container-
ization technology platform and the company that created it. Docker is, by far, the
most popular container technology in the industry.

380 CHAPTER 12 In the cloud, in the browser, and beyond

GIT-TING UP TO SPEED Code for your resin.io application will be managed
within a Git repository—you’ll need to have Git installed on your computer.
The “Installing Git” section on the git-scm website documents how to do this
on several different platforms (https://git-scm.com/book/en/v2/Getting-
Started-Installing-Git).

Although the instructions for building a resin.io app include all of the Git com-
mands you’ll need to get an app up and running on a BeagleBone Black, a work-
ing knowledge of Git should be part of every dev’s mental toolbox. It takes
minutes to learn the Git basics (though, honestly, a lifetime to master). GitHub
has an interactive tutorial (https://try.github.io/levels/1/challenges/1), and
there are copious other online Git-education resources—many of them free.

12.2.1 Creating a resin.io application

You’re going to create a resin.io app for your weather station software, for deployment to
your BeagleBone Black. Resin.io offers a free tier that allows deployment and management
for up to five devices. Head on over to https://resin.io/ and create an account (figure 12.3).

 Next, create an application. You’ll be prompted for a name and a device type for your
application. You can name it whatever you like—I called mine beagleweather. For the
Device Type field, select BeagleBone Black from the long list of options (figure 12.4).

NO BEAGLEBONE BLACK? No BeagleBone Black on hand? You can use a Rasp-
berry Pi instead, if you like. You’ll need to use the Pi version of the weather
application code (find it in the chapter-11 folder of the book’s GitHub repos-
itory)—with the raspi-io I/O plugin—but otherwise the steps should be the
same. Oh, and, of course, make sure to select Raspberry Pi 3 instead of Bea-
gleBone Black as the Device Type for your resin.io application.

Figure 12.2 Devices that will run the application are provisioned by installing and booting a custom-
tailored resin.io OS image on each. Pushing application code to a project-specific resin.io Git remote
triggers the rebuilding of the app’s container and its redeployment to connected, provisioned devices.

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://try.github.io/levels/1/challenges/1
https://resin.io/

381Containerized deployment with resin.io

Figure 12.3 Sign up for an account at resin.io.

Figure 12.4 Detail of application-creation
step showing the list of supported device types

382 CHAPTER 12 In the cloud, in the browser, and beyond

12.2.2 Provisioning the BeagleBone Black

Resin.io generates a custom OS image for every project. The resin.io OS is a lightweight
Linux. It can run your app’s Docker container, and it also takes care of housekeeping
jobs like provisioning the device and keeping an eye out for deployed updates.

 Once you’ve defined your resin.io application, you can go ahead and download
the generated OS image (there’s a link provided, as shown in figure 12.5) and install it
on your devices (or, in our case, a single device). See section 11.2.3 in chapter 11 for
more details on the steps here:

1 Download the OS image.
2 Using the Etcher app, burn the IMG file to the microSD card.
3 Insert the microSD card into the BeagleBone Black and connect the Beagle-

Bone Black’s Ethernet interface to your router.
4 Hold down the USER/BOOT button (figure 12.6) and plug power into the Bea-

gleBone Black. Keep holding down the button until the LEDs start blinking
madly. Release the button.

Figure 12.5 Detail of the resin.io project dashboard
during the provisioning process for a BeagleBone
Black device. The device, automatically named “red-
night” by resin.io, is midway through installing the
app-specific resin.io OS image.

Figure 12.6 Hold down the
BeagleBone Black’s BOOT/USER
button to boot from the SD card.

383Containerized deployment with resin.io

Back at your own computer, you should see the device show up on your resin.io appli-
cation’s dashboard after a few moments. From the dashboard, you’ll be able to track
the device’s progress through the provisioning process.

12.2.3 Adapting the weather application software

To get the weather app software running on the provisioned BeagleBone Black, there
are a few more steps:

1 Set up and configure a Git repository for the app.
2 Configure the Docker container for the app.
3 Define a script to start the app (in package.json).
4 Make a couple of tweaks to the software itself.
5 Commit and push to GitHub.
6 Give the app a public URL.

INITIALIZING A GIT REPOSITORY

First you need to establish a working area. Create a directory to contain the project
(beagleweather, perhaps?) on your computer.

 Inside of this directory, initialize a Git repository by running this command:

$ git init

To deploy your application, you need to be able to push your repository’s master
branch to resin.io. You’ll need to add a resin.io-specific Git remote so that you can
push to resin.io later. Resin.io conveniently shows you the exact command you need
to run to get this remote set up: find it at the top right of the dashboard for your appli-
cation. Execute the displayed command in your local repository (figure 12.7).

You can see all of your repository’s remotes by running this command:

$ git remote -v

Figure 12.7 Detail of resin.io application dashboard showing where to find the command for
adding your application’s resin.io Git remote

384 CHAPTER 12 In the cloud, in the browser, and beyond

You should see output something like this:

resin <your resin username>@git.resin.io:<your resin username>/

➥ beagleweather.git (fetch)
resin <your resin username>@git.resin.io:<your resin username>/

➥ beagleweather.git (push)

Next, copy the source files from the original BeagleBone weather application to your
new working Git project directory—index.js, package.json, and the app directory and
its contents.

DEFINING THE DOCKER APP CONTAINER

The base resin.io OS for your application that’s now running on your BeagleBone
Black consists of a stripped-down Linux and also contains some helpful, supporting
tools. But you still need to create the Docker container that will run on your app’s
device(s) and tell it how to behave and what to do.

 Create a file called Dockerfile.template in your project directory (the “template”
extension allows the use of certain handy variables inside the file) and add the con-
tents shown in the following listing. Most of the listing is boilerplate, sourced directly
from resin.io’s documentation.

base-image for node on any machine using a template variable
FROM resin/%%RESIN_MACHINE_NAME%%-node:6

Defines our working directory in container
WORKDIR /usr/src/app

Copies the package.json first for better cache on later pushes
COPY package.json package.json

This install npm dependencies on the resin.io build server,
making sure to clean up the artifacts it creates in order to reduce the

➥ image size.
RUN JOBS=MAX npm install --production --unsafe-perm && npm cache clean &&

➥ rm -rf /tmp/*

This will copy all files in our root to the working directory in the

➥ container
COPY . ./

Enable systemd init system in container
ENV INITSYSTEM on

server.js will run when container starts up on the device
CMD ["npm", "start"]

Listing 12.1 Dockerfile.template

Uses a base image with
Node.js, version 6

You’ll need to define an npm
start script that starts your
application.

385Containerized deployment with resin.io

MORE ABOUT RESIN.IO MACHINE NAMES, BASE IMAGES, AND TAGS Inside of
resin.io Dockerfiles, you can specify a lot of details about devices, features,
and Linux distributions and versions. There’s too much to go into here, but if
you’re curious about this stuff, the resin.io documentation is thorough
(https://docs.resin.io/raspberrypi/nodejs/getting-started/).

ADDING AN NPM START SCRIPT

This line appears at end of the Dockerfile.template configuration:

CMD ["npm", "start"]

This tells the builder to run the command npm start once the container is started.
You don’t have a start script yet, but you can easily add one by editing package.json.

 Edit the scripts field in package.json so that it looks like the following listing.

"scripts": {
"start": "node index.js",
"test": "echo \"Error: no test specified\" && exit 1"

},

Now when the build process runs the command npm start, it will have the same effect
as executing node index.js—it will start up your weather application.

TWEAKING THE APP CODE

There are two small changes to make to index.js before you’re done.
 Johnny-Five’s REPL and resin.io don’t get along. You can disable the REPL easily, by

adding a property to the board-instantiation options object (repl: false).

const board = new five.Board({
io: new BeagleBone(),
repl: false

});

The existing port defined for the web server (4000) in server.listen() would work
fine, but there’s a really nifty trick you’re going to pull off momentarily, so change the
port to 80.

server.listen(80, () => {
console.log(`http://${os.networkInterfaces().eth0[0].address}:80`);

});

Listing 12.2 Package.json scripts

Listing 12.3 Disable Johnny-Five REPL

Listing 12.4 Change web server port to 80

https://docs.resin.io/raspberrypi/nodejs/getting-started/

386 CHAPTER 12 In the cloud, in the browser, and beyond

COMMITTING AND PUSHING

Add and commit the project files to Git (make sure you’re in the project’s top-level
directory):

$ git add index.js package.json Dockerfile.template app/
$ git commit -m "first commit"

Now push to trigger the deployment to your BeagleBone Black:

$ git push resin master

The first time you do this, it will take several minutes (it’s faster subsequently). You
can track the progress on your resin.io dashboard (figure 12.8). You’ll be able to view
the app in a browser on your computer at its local IP address.

To iterate on your app, you can make changes in your local repository, commit, and
push as often as you need to.

GIVING YOUR APP A PUBLIC URL
You’ve been building a lot of web-based interfaces for your gadgets, but so far you’ve
only been able to visit your web applications from the same network. Resin.io has a
nifty feature that will generate a public URL for a device, allowing external access to
port 80 on that device (now you know why you changed the port number!).

 To enable public URLs for the application as a whole, head to the Actions section
from your application’s dashboard (figure 12.9).

Figure 12.8 Resin.io application dashboard during deployment

387Containerized deployment with resin.io

Next, get into a device-specific view by navigating to the Devices section and clicking
on the name of the device you’d like to manage—red-night in my case (figure 12.10).

Figure 12.9 Enable public URLs for your application from the application’s Actions tab.

Figure 12.10 See the public URL for a device by navigating to the device-specific Actions tab.

388 CHAPTER 12 In the cloud, in the browser, and beyond

Head to the Actions section again—these are actions for just this device instead of the
whole application. You should be able to see—and, helpfully, click on—the public
URL for your application running on your BeagleBone Black (figure 12.11).

12.3 Hardware and the web browser
The weather station application takes advantage of a relatively modern web API, Web-
Sockets (more accurately, it uses socket.IO, which uses the WebSockets API in brows-
ers that support it). This API is used to maintain a connection between the client
(browser) and server (running on the BeagleBone Black, in this case). The server is
able to emit updated sensor data that the client can “hear” and process accordingly.
But that’s still indirect—the browser relies on the server to handle the actual interac-
tion with the BeagleBone Black’s I/O and attached sensor. Is it possible to interact
with hardware, directly, from within the browser itself?

 The answer is complex—a combination of “it depends” and “in some browsers,”
with a hefty dose of “wait and see just a bit longer.”

 The web is, without doubt, a much more physically capable platform than it was
just a few years ago. It wasn’t that long ago that you’d have to create a native applica-
tion to be able to access a mobile device’s location services or its camera, or to send
push notifications. Now all of that can be done in the browser.

 The web platform is a (vast) collection of technologies and APIs. Sure, there are the
headlining stars—HTML, ECMAScript, and CSS (though, technically, CSS isn’t one thing
but a collection of modules)—but there are also dozens and dozens of other pieces: Web
Workers, WebGL, XMLHttpRequest, Web Audio, WebSocket, WebRTC (I could go on all
day). Different technologies and APIs are at different stages in the standardization pro-
cess, and some aren’t technically on the standards track at all, yet.

Figure 12.11 The weather station app, running on a BeagleBone Black, accessed by a resin
.io-generated public URL

389Hardware and the web browser

12.3.1 The Web Bluetooth API

The Web Bluetooth API allows for interaction with Bluetooth Low Energy (BLE)
devices via the Generic Attribute Profile (GATT). There’s an active community group
for Web Bluetooth on the W3C (the World Wide Web Consortium, the main body that
develops web standards), and it’s implemented in some versions of Chrome, Opera,
and the Android browser. But it’s neither a standard nor even on the standards track
yet (though it is headed in that general direction). It’s complicated.

 Web Bluetooth has also hit a snag typical of web-hardware APIs: security concerns.
It doesn’t take a genius to conjure up a few visions of how physical devices exposed to
the web could pose a security nightmare. At this point, Mozilla (Firefox) isn’t pursu-
ing Web Bluetooth implementation because it’s dissatisfied with the (current) secu-
rity model.

 But lest this sound bleak, these struggles are’t atypical of proposed standards. It’s
just hard to predict where Web Bluetooth will be in six months or two years. And you
can—and will—use it today in Chrome.

12.3.2 The Generic Sensor API

Web Bluetooth isn’t the only nascent, hardware-related web API in town (though it
does have the most complete browser implementations at this point). The W3C’s
Device and Sensors Working Group (https://www.w3.org/2009/dap/) is tasked with
creating APIs that “interact with device hardware, sensors, services and applications
such as the camera, microphone, proximity sensors, native address books, calendars
and native messaging applications.”

 The group’s Generic Sensor API (https://www.w3.org/TR/generic-sensor/), cur-
rently in draft stage, defines an abstract Sensor base class, which does nothing on its
own but is intended to be extended by component-specific APIs. An example of this is
the Ambient Light Sensor API (also a draft, https://www.w3.org/TR/ambient-light/),
which defines an interface—based on Sensor—for interacting with ambient light sen-
sors. If you review the specs’ details, it may come as no surprise that one of the editors
of the generic and other sensor APIs is Rick Waldron—the inventor of Johnny-Five.
There are certainly aspects of the API’s component-behavior encapsulation that are in
harmony with how Johnny-Five abstracts behavior.

 These APIs aren’t concerned with the nuts and bolts of how hardware is detected
and connected to so much as defining a higher-level API for interacting with compo-
nents. As such, early implementations of Ambient Light Sensor rely on the presence
of built-in hardware (typically a device’s camera), and on the browser exposing that
hardware accordingly. Ambient Light Sensor is available (behind a flag—you have to
explicitly enable it within the browser’s settings) in Chrome and in Microsoft Edge.

https://www.w3.org/2009/dap/
https://www.w3.org/TR/generic-sensor/
https://www.w3.org/TR/ambient-light/

390 CHAPTER 12 In the cloud, in the browser, and beyond

12.3.3 The Physical Web

The Physical Web is a discovery service that greatly simplifies interacting with objects
via simple Bluetooth LE beacons, taking advantage of one of the greatest gifts the web
gives us: the URL.

 We looked at the Physical Web briefly way back in chapter 1. The scenario envi-
sioned there was of a beacon-enabled bus stop. The beacon constantly broadcasts
a URL that corresponds to a page where the next bus arrivals can be tracked (fig-
ure 12.12).

 Or say you’re walking through a sculpture garden. Some of the works have a bea-
con near or on them, broadcasting a URL to a web page with information about that
piece and its artist. As you wander, you can see the beacons near you and opt to inter-
act with one of them, visiting the URL it’s advertising.

 Google is championing the Physical Web and the related open BLE protocol, Eddy-
stone. Because the technical demands are so straightforward—a BLE device merely
needs to advertise a URL using a certain protocol—the hardware needs are minimal
and beacon batteries can last a long, long, long time. Apps, available now for Android
and iOS, allow you to find any beacons near you.

Figure 12.12 With the Physical Web, Bluetooth Low Energy (BLE) beacons attached to or embedded
in a physical object broadcast a URL pertinent to interacting with that device. Nearby users can
detect and engage with devices, opening their associated web pages in a browser.

391Exploring Bluetooth LE with Puck.js

12.4 Exploring Bluetooth LE with Puck.js
Espruino makes a device that allows you to experiment—today! right now!—with Web
Bluetooth and the Physical Web. The Puck.js is a button-shaped device that runs the
Espruino interpreter and communicates using BLE (figure 12.13). You’ll harness that
to get hands-on with both Web Bluetooth and the Physical Web.

12.4.1 Core features

Puck.js is built around an ultra-low-power Nordic Semiconductor SoC (system on a
chip) that includes Bluetooth LE and NFC support as well as an ARM Cortex M4 CPU
that’s not too dissimilar from the Pico’s. Although both the Pico and Puck.js run the
same underlying Espruino software, Puck.js differs from the Pico in the way that you
communicate with it: over BLE versus the Pico’s direct USB connection.

 Puck.js’s onboard components include a built-in magnetometer, thermometer,
and three LEDs (red, green, blue). The red LED can also be used as an ambient light
sensor.

 The Puck.js is a 3.3 V device powered by a coin-cell battery. It’s roughly comparable
to a Pico, though somewhat more constrained: slower clock speed, a little less mem-
ory, and fewer I/O pins (figure 12.14).

 Puck.js has a flexible silicone cover. The whole thing can operate as a big button,
making a tactile click as you press down on it (and activate its built-in button).

Figure 12.13 Puck.js is a BLE beacon
device that—like the Pico—runs the
Espruino JavaScript interpreter.

392 CHAPTER 12 In the cloud, in the browser, and beyond

12.4.2 GPIO features and pinouts

Puck.js has various GPIO capabilities, including I2C, PWM, SPI, and ADC (figure 12.15).
You’ll make use of its onboard hardware (only) in these experiments.

Figure 12.14 Some of Puck.js’s features, as listed on Espruino’s website

393Exploring Bluetooth LE with Puck.js

12.4.3 Configuration and workflow

Head on over to Espruino’s Puck.js Getting Started Guide: http://www.espruino
.com/Puck.js+Quick+Start. You’ll need to disassemble the device to remove a protec-
tive battery tab.

 What happens after that depends on your development platform OS and the state
of Web Bluetooth at the moment. Chrome on Mac OS supports it—that’s easy. Linux
users may have an extra step and may need to enable a flag or two in Chrome. Web
Bluetooth support in Windows (in Chrome) is potentially imminent (mid-2017).
Refer to the Getting Started Guide for up-to-date information.

Figure 12.15 A detail of the Puck.js pinout from Espruino.com. Pin D11 can sense capacitive input.
I2C, SPI, and USART support is available on any pin (there’s support for one hardware interface each,
but unlimited software support for I2C and SPI).

http://www.espruino.com/Puck.js+Quick+Start
http://www.espruino.com/Puck.js+Quick+Start
http://www.espruino.com/Puck.js+Quick+Start

394 CHAPTER 12 In the cloud, in the browser, and beyond

If you followed along with the Pico experiments in chapter 11, you may have already
installed the Espruino Chrome app IDE. If not, don’t worry, because you can actually
work with Puck.js using the web-based IDE at https://www.espruino.com/ide (no instal-
lation required). The Web IDE (figure 12.16) is a spittin’ image of the Chrome app IDE.

IF YOU CAN’T GET WEB BLUETOOTH SUPPORT... A browser that supports Web
Bluetooth is required for the web-controlled LED and remote doorbell exper-
iments later in the chapter. You don’t need Web Bluetooth support for the
basic Hello World LED blinking, nor for the Physical Web example—Puck.js
can be controlled from within the IDE for those.

You won’t be able to use the web-based IDE at https://www.espruino.com/ide
if you don’t have Web Bluetooth support. Instead, you’ll need to install the
Web IDE (see Puck.js’s Getting Started Guide for details: http://www.espruino
.com/Puck.js+Quick+Start).

Recall also from chapter 11 that Espruino code authoring involves the use of Espruino
modules—encapsulated behavior and support that can be imported into Espruino
scripts.

 There are three main ways to get Puck.js to do something:

 Once it’s connected, Puck.js will execute any commands typed into the left side
of the IDE interface, similar to a REPL or console.

Figure 12.16 Espruino’s web-based IDE

https://www.espruino.com/ide
http://www.espruino.com/Puck.js+Quick+Start
http://www.espruino.com/Puck.js+Quick+Start
http://www.espruino.com/Puck.js+Quick+Start
https://www.espruino.com/ide

395Exploring Bluetooth LE with Puck.js

 Code written in the right side of the IDE can be uploaded using the send-to-
Espruino icon.

 Data and commands can be sent to and received from Puck.js over Web Blue-
tooth. This is done within the browser execution context, relying on a small
client-side JavaScript library provided by Espruino. (This method is unique to
Puck.js, unlike other Espruino boards.)

12.4.4 Examples, tutorials, and API documentation

Fire up the IDE and connect to your Puck.js so you can try out a Hello World LED
blink and poke at a few of Puck.js’s features.

 Try typing some of the following commands into the left side of the IDE. After you
press Enter, the command will sent over BLE to Puck.js and be executed there:

 Turn the red onboard LED on with LED1.set().
 Turn the red onboard LED off with LED1.reset().
 Try the preceding commands with the other two LEDs: LED2 (green) and LED3

(blue).
 The red LED also serves as an ambient light sensor. Make sure that all of the

LEDs are off (LEDx.reset()), and then try Puck.light() to return an ambient
light reading. Try covering up Puck.js with your hand and sending the
Puck.light() command a second time to see the difference.

 Try E.getTemperature() to get a temperature reading. E is Espruino’s utility
class. The temperature should be accurate to about +/-1 degree (Celsius).

Espruino’s API documentation (http://www.espruino.com/Reference) covers the API
available to all Espruino devices, as well as the Puck-specific capabilities exposed on
the Puck global object.

12.4.5 Controlling the LED from a web page

What you’ll need
 1 Puck.js

 1 Web Bluetooth–enabled web browser

As you’ve seen, you can control Puck.js by using the IDE: sending it commands or writing
a script and deploying it to the device. This is a similar workflow to the Espruino Pico.

 But there’s another way: you can control Puck.js from your own code within the
browser. In this experiment, you’ll build a web page that allows a user to turn Puck.js’s
red LED on and off by clicking buttons in the browser (figure 12.17).

 The page’s JavaScript will need to pair with Puck.js and communicate with it (send
it commands) using Web Bluetooth.

 Espruino makes this part easy for you by providing a small client-side library (a
JavaScript file) that you can use in our page. The library abstracts away the details of
the Web Bluetooth API, giving you a simple interface you can use to pair and interact
with Puck.js.

✔

http://www.espruino.com/Reference

396 CHAPTER 12 In the cloud, in the browser, and beyond

That client-side library can be found at https://www.puck-js.com/puck.js. You’ll
include it in the index.html page of the project.

WEB BLUETOOTH: STILL CURIOUS? If you’re curious about how Web Bluetooth
works under the covers, you can read the source of the puck.js JavaScript file,
which is well-commented: https://www.puck-js.com/puck.js.

The JavaScript library from puck-js.com gives you utilities for connecting to and com-
municating with Puck.js, but you’ll still need to write your own specific logic for han-
dling button clicks and sending commands to Puck.js to turn the LED on and off.

SETTING UP THE PROJECT STRUCTURE

First you need to establish a working area—make a directory called led-toggle. Then,
inside of that directory, run this command:

$ npm install express

That’s the only project dependency.
 Next, create an application entry point in index.js, which spins up a super-basic

static web server for assets in app/, as shown in the next listing.

const express = require('express');
const path = require('path');
const http = require('http');

Listing 12.5 index.js

Figure 12.17 Puck.js’s LED can be controlled via a web page in a Web Bluetooth–capable browser.

https://www.puck-js.com/puck.js
https://www.puck-js.com/puck.js

397Exploring Bluetooth LE with Puck.js

const app = new express();
const server = new http.Server(app);

app.use(express.static(path.join(__dirname, '/app')));
server.listen(3000);

Now it’s time to create the application’s HTML page. To do so, create an app directory
in the project and add index.html with the contents shown in the following listing.

<html>
<head>
<title>Puck.js LED Toggle</title>
<style>

h1 {
font-family: "Helvetica";

}
button {

display: block;
width: 6em;
height: 4em;
margin: 2em;
background-color: #eee;
border: 1px solid #ccc;
font-size: 1.75em;

}
</style>

</head>
<body>
<h1>Web Bluetooth Puck.js Toggle</h1>
<div id="message"></div>
<button id="onButton">ON</button>
<button id="offButton">OFF</button>
<script src="https://www.puck-js.com/puck.js"></script>
<script>

// ... TBD
</script>
</body>

</html>

The HTML page doesn’t do anything on its own: it has some CSS and includes the
script from the puck-js.com site that allows you to communicate with Puck.js using
Web Bluetooth. It also has the markup for the ON and OFF buttons, but they don’t do
anything yet.

CREATING THE LED-TOGGLING LOGIC

Let’s talk about click handlers for the ON and OFF buttons. When a button is clicked,
you need to send a command to the Puck to turn its red LED on or off. As you saw in sec-
tion 12.4.4, this is the command that Puck.js needs to execute to turn on the red LED:

LED1.set();

Listing 12.6 index.html

Container to hold messaging if
Web Bluetooth isn’t supported

Provides a Puck object
for communicating
with Puck.js using
Web Bluetooth

The application’s client-side
logic: you need to write it!

398 CHAPTER 12 In the cloud, in the browser, and beyond

That’s the command that you need to send to Puck.js from the browser, using the
puck.js client-side library as a messenger. The command needs to be sent to Puck.js
as a string, including the \n (line break) character. This is the resulting command
string:

'LED1.set();\n'

To send this to Puck.js, you’ll use the write() method on the Puck object, which is
globally available in your page’s JavaScript because you included the client-side
puck.js library (figure 12.18).

Puck.write('LED1.set();\n');

Figure 12.18 Your browser-executed JavaScript invokes the write() method on the Puck object
provided by the puck.js library. That library uses Web Bluetooth to send the string to the physical
Puck.js, which evaluates it. The \n at the end of the string command lets Puck.js know the command
is complete; it’s almost like typing into a virtual REPL and hitting Enter.

What does Puck.js even mean?
There’s a Puck object in the browser, a different Puck object you can send commands
to in the Puck.js IDE, and Puck.js and puck.js are totally different things. Yikes!

The naming conventions are admittedly a tad brain-melting. Here’s a summary:

 Puck.js—The Puck.js physical device itself
 puck.js—A client-side JavaScript library, provided by Espruino, used in the

browser for communicating with a Puck.js device via Web Bluetooth (BLE)

399Exploring Bluetooth LE with Puck.js

The following listing defines what goes between the <script> tags in index.html: the
click event listeners and the commands sent to Puck.js.

window.addEventListener('load', () => {
if ('bluetooth' in window.navigator) {

const onButton = window.document.getElementById('onButton');
const offButton = window.document.getElementById('offButton');
onButton.addEventListener('click', () => Puck.write('LED1.set();\n'));
offButton.addEventListener('click', () => Puck.write('LED1.reset();\n'));

} else {
const mEl = window.document.getElementById('message');
mEl.innerHTML = "Looks like your browser doesn't support Bluetooth!";

}
});

The ersatz feature detection in listing 12.7—if ('bluetooth' in window.navigator)—
is admittedly ham-fisted and naive. Just because a browser exposes navigator.blue-
tooth doesn’t mean it correctly implements what’s needed for Puck.js. There’s a more
correct and thorough check for browser support in a function called checkIf-
Supported(), inside of the JavaScript code that gives you the Puck object. Unfortunately,

Listing 12.7 Event listeners for toggling LEDs

 Puck object—Confusingly, this is one of two (totally different) things depend-
ing on where the code is executing:
– In the IDE or scripts running on Puck.js directly—It’s the Espruino Puck

global class (http://www.espruino.com/Reference#Puck), which adds
some hardware-interaction functionality specific to Puck.js—that is, func-
tionality that’s not available on other Espruino boards (such as using
Puck.light() to get a reading from Puck.js’s ambient light sensor)

– In a browser, assuming the inclusion of the puck.js client-side library—
Provides access to some methods for communicating with Puck.js over
Web Bluetooth (such as Puck.write() and Puck.connect()). Keep in
mind that any commands sent are evaluated on Puck.js itself, in the Espru-
ino interpreter.

This means that in a browser script—assuming the puck.js client library is
included—the following statement is valid:

Puck.write('Puck.light();\n');

Puck.write() is executed in the browser’s context, which means it refers to the
object provided by the included puck.js library. But the command it sends via
write() is evaluated on Puck.js itself: the Puck object in Puck.light() is a refer-
ence to the global Espruino Puck object. Whew!

http://www.espruino.com/Reference#Puck

400 CHAPTER 12 In the cloud, in the browser, and beyond

that function isn’t exposed to the Puck object—it’s not in any scope you have access to—
so you can’t invoke it directly.

 Try it out! Start the web server using node index.js, and open a Web Bluetooth–
capable browser to localhost:3000.

 When you first click on a button, you’ll see a pairing request pop up, similar to fig-
ure 12.19. Once the pairing is complete, you should be able to click ON and OFF and
see Puck.js’s red LED turn on and off.

12.4.6 The Physical Web and Puck.js

What you’ll need
 1 Puck.js

 1 mobile device running Android or iOS

The Physical Web is composed of beacons using a specific format—Eddystone—to
broadcast an associated URL, and these broadcasts can be picked up by apps running
on mobile devices.

 Puck.js can serve as a Physical Web–compatible beacon quite easily. To get this
going, you’ll need to do the following:

 Install a Physical Web discovery utility application, or enable this feature in
Chrome, on a mobile device.

Figure 12.19 You’ll be prompted to pair with Puck.js when you first click a button.

✔

401Exploring Bluetooth LE with Puck.js

 Determine what URL you’d like Puck.js to broadcast.
 Make Puck.js start advertising itself as a compatible beacon.

THE EDDYSTONE PROTOCOL

Eddystone is an open BLE beacon protocol created by Google. Physical Web beacons
use this format to broadcast their associated URL, and client applications detect these
Eddystone beacons.

 Eddystone is straightforward. There are only a few kinds of information—frame
types—that an Eddystone-speaking beacon can send, the most pertinent one being
Eddystone-URL.

CONFIGURING THE PUCK.JS AS A BEACON

Setting up Puck.js as an Eddystone-compatible Physical Web beacon is almost breath-
takingly easy. There’s a ble_eddystone Espruino module just waiting for you! Fire up
the Web IDE, connect to your Puck.js, and enter the following command on the left
side of the IDE:

require("ble_eddystone").advertise("https://www.lyza.com");

(Feel free, of course, to replace my domain’s URL with any you like.)
 Disconnect the IDE from your Puck.js so that it can start broadcasting in Eddystone

format.

ENABLING PHYSICAL WEB DISCOVERY ON YOUR MOBILE DEVICE

You can detect your Puck.js Physical Web beacon with devices that run Android or iOS
(figure 12.20); instructions can be found on the Physical Web website (https://goo-
gle.github.io/physical-web/try-physical-web). Once it’s configured, your mobile
device should be able to see your Puck.js beacon.

 It’s time to go out with a bang (well, a ding, anyway). Our last experiment will com-
bine Web Bluetooth, Web Audio, and data sent from Puck.js.

Length constraints of Eddystone-URL
The maximum length of an Eddystone-URL URL is 17. That’s tight. But it’s not as
restrictive as it sounds. A separate byte is also used to hold a representation of the
URL’s scheme prefix, (https://www., http://, and so on)—those characters don’t count
against the 17. Also, common top-level domains (.com, .org, and the like) can be rep-
resented with a single character, leaving 16 characters free. It’s assumed that devel-
opers will use URL shorteners (such as https://goo.gl) to minimize URL lengths.

The URL https://www.lyza.com is 20 characters long in its normal form, but it only
requires 5 of the available 17 bytes.

https://google.github.io/physical-web/try-physical-web
https://google.github.io/physical-web/try-physical-web
https://goo.gl
https://www.lyza.com

402 CHAPTER 12 In the cloud, in the browser, and beyond

12.4.7 A web-based Bluetooth doorbell

What you’ll need
 1 Puck.js

 1 Web Bluetooth–enabled web browser

This experiment plays a (high-quality) sound and displays a visual alert in a browser
whenever the paired Puck.js button is pressed. Think of it as a web-based doorbell. It
takes advantage of the Web Audio API—yet another handsome web API—to load and
play a (public-domain) chime sound.

 The application logic uses the client-side puck.js library to connect to Puck.js over
Web Bluetooth, configures the Puck.js to monitor its onboard button, and parses
data—string output that will signify button presses—emitted by Puck.js.

SETTING UP THE PROJECT STRUCTURE

Start by establishing a working area. Make a directory (“doorbell”) and install express
as a dependency in that directory:

$ npm install express

Figure 12.20 Physical Web support via the
Chrome widget on iOS. Puck.js is configured to
broadcast the URL https://www.lyza.com using
the Eddystone protocol.

✔

https://www.lyza.com

403Exploring Bluetooth LE with Puck.js

Create index.js, the static web server. You can reuse the code in listing 12.5, which will
run a static web server on port 3000.

CREATING THE HTML AND EVENT LISTENERS

Create an app directory inside of doorbell. Add an index.html file with the following
content.

<html>
<head>
<title>Puck.js Remote Chime</title>
<style>

body {
max-width: 90%;
font-family: "Times New Roman";
margin: 1em auto;
color: #111;
background-color: transparent;
transition: background-color 0.5s ease-in-out;

}
.ding {

background-color: #e60a62;
transition: all 0.1s ease-in-out;

}
button {

width: 100%;
height: 100%;
border: 5px solid #e60a62;
font-family: "Times New Roman";
text-transform: lowercase;
font-variant: small-caps;
background-color: transparent;
font-size: 3em;
font-weight: 600;
cursor: pointer;

}
button:hover {

color: #fff;
border-color: #b5084d;
background-color: #f62c7d;

}
.active {

opacity: 0;
transition: all 1s;

}
</style>

</head>
<body>

<button id="goButton">Turn it on</button>
<script src="https://www.puck-js.com/puck.js"></script>
<script src="PuckChime.js"></script>
<script>

// ... add event listeners

Listing 12.8 index.html

404 CHAPTER 12 In the cloud, in the browser, and beyond

</script>
</body>

</html>

If you were to view index.html in a browser now, you’d see what’s shown in figure 12.21,
but it wouldn’t do anything yet.

The button (#goButton) will ultimately have a click-event handler that will enable the
doorbell. You may be wondering why this extra click step is needed—why not just acti-
vate the doorbell on page load? For privacy and permissions reasons, there needs to
be an explicit user interface action before Bluetooth pairing is allowed by the
browser—if you tried to do this without active user input, you’d get an error.

 The index.html file contains a chunk of CSS. Some of the styling is to format the big
Turn It On button, but there are also styles to make the screen flash when the doorbell
chimes and to fade out the Turn It On button (the .active class) once the doorbell
is activated.

 You can now fill in the <script> content with the code in the following listing.
This code assumes the existence of a PuckChime class, whose creation we’ll get to next.

window.addEventListener('load', () => {
const onButton = window.document.getElementById('goButton');
onButton.addEventListener('click', function () {

Listing 12.9 Click handler for the Turn It On button

Figure 12.21 Right now, index.html shows a really big button, but it doesn’t have any functionality.

405Exploring Bluetooth LE with Puck.js

var chime = new PuckChime();
chime.init().then(() => {

onButton.classList.add('active');
});

});
});

CODING THE PUCKCHIME CLASS

The logic for the BLE doorbell is more involved than dispatching one-line commands
to Puck.js in click event handlers, as in the previous LED-controlling web page.

 It makes sense to encapsulate the code in a class, PuckChime, inside a new file,
app/PuckChime.js. The API surface for PuckChime is shown in the following listing.
You’ll fill it out in the next few steps.

class PuckChime {
constructor () {

}

init () {
/**
* - establish connection to Puck.js
* - reset Puck.js
* - send command to Puck.js: observe builtin button for presses
* - invoke `chime()` as aural/visual confirm when successful
*/

}

connect () {
/**
* - connect to Puck.js with BLE
* - add an event handler for Puck.js `data` events
*/

}

send (cmd) {
// format and send `cmd` to Puck.js

}

reset () {
// send a `reset` command to Puck.js and wait 1.5 seconds for it to "take"

}

watchButton () {
/**
* send a command to Puck.js to watch its button for presses
* and log (over Bluetooth) a string when button is pressed
*/

}

parseData (data) {
/**

Listing 12.10 The API surface for PuckChime

Once the chime.init() Promise
resolves, you’ll know the BLE
Puck.js chime has been set up
successfully.You don’t need the button anymore, so you

can add the active class to make it fade out.

406 CHAPTER 12 In the cloud, in the browser, and beyond

* `data` event handler for incoming data chunks from Puck.js
* - append `data` to buffer
* - parse buffer into lines (split on `\n`)
* - send each line (`cmd`) to `parseCommand()`
*/

}

parseCommand (cmd) {
// if `cmd` is `CHIME`, invoke `chime()`

}

chime () {
// play a chime sound and make visual chime

}
}

Let’s look at how the constructor and init() methods can be implemented in the
next listing.

constructor () {
this.connection = null;
this.dataBuffer = '';
this.sound = new Sound('/chime.mp3');

}

init () {
return this.connect().then(() => {

return new Promise((resolve, reject) => {
this.reset()
.then(this.watchButton.bind(this))
.then(() => {

this.chime();
resolve();

});
});

});
}

The constructor readies a sound—chime.mp3—by instantiating a Sound object. If
Sound seems like a magical class that came out of nowhere, and chime.mp3 a file of
mysterious origin, you’re right! Hang tight; more details on them in a little bit.

 The init method returns a Promise that resolves when the following steps are
complete:

1 A connection is established with Puck.js
2 Puck.js is reset
3 Puck.js is instructed to watch its button for presses

Listing 12.11 PuckChime: constructor and initialization methods

Holds the connection to Puck.js;
it’s initially null until connected

A buffer for holding and
parsing incoming data
from Puck.js

Sound is a convenience class
for loading and playing a sound
with the Web Audio API.

After init’s work is complete,
invokes chime() once

407Exploring Bluetooth LE with Puck.js

Only when those things are all done does the Promise returned by init() resolve;
chime() is also invoked as a confirmation (the doorbell will ring once when it’s ready
to go).

 Moving along, the methods connect(), send(cmd), reset(), and watchButton()
communicate with Puck.js, each returning a Promise. These methods rely on the client-
side puck.js communication code provided by Espruino:

 connect()—Connects to Puck.js and adds an event handler (parseData) for
Puck.js data events

 send(cmd)—Formats the string cmd appropriately and sends it to Puck.js, wrap-
ping the callback-oriented connection.write() method with a Promise for
consistency

 reset()—Sends a reset command to Puck.js and also waits 1.5 s for Puck.js to
be ready again before resolving the Promise it returns

 watchButton()—Sends a more complex command to Puck.js to set up a watch
on its built-in button

These methods are fleshed out in the following listing.

connect () {
return new Promise ((resolve, reject) => {

Puck.connect(connection => {
this.connection = connection;
this.connection.on('data', this.parseData.bind(this));
resolve(this.connection);

});
});

}

send (cmd) {
cmd = `\x10${cmd}\n`;
return new Promise ((resolve, reject) => {

this.connection.write(cmd, () => { resolve(cmd); });
});

}

reset () {
return new Promise((resolve, reject) => {

this.send('reset()').then(() => { setTimeout(resolve, 1500); });
});

}

watchButton () {
const cb = "function() { Bluetooth.println('CHIME'); LED1.set();

 ➥ setTimeout(() => LED1.reset(), 250);}";
const opts = "{repeat:true,debounce:250,edge:'rising'}";
const cmd = `setWatch(${cb},BTN,${opts});`;
return this.send(cmd);

}

Listing 12.12 Methods for communicating with Puck.js

408 CHAPTER 12 In the cloud, in the browser, and beyond

Let’s zoom in on the command sent by watchButton()—it’s a bit of a doozy as format-
ted—and get a better understanding of what’s going on with sending and receiving
Puck.js data and commands.

 As you saw in the web-controlled LED example in section 12.4.5, commands need to
be formatted as strings before sending them to Puck.js from the browser. In the simpler
LED experiment, this was done with individual calls to Puck.write() (see figure 12.18).

 In this more complex case, where data is going in both directions, you’re instead
establishing a persistent connection (in the connect() method). Once the connec-
tion is established, commands are sent to Puck.js using connection.write(). Data is
received from Puck.js via emitted data events on the connection (figure 12.22),
which are handled by the registered data event handler, parseData(). We’ll get to
that in a moment.

PuckChime objects send two commands to Puck.js: a reset() command during the
init phase to clear any cobwebs or oddities out of Puck.js, and then a more complex
command in watchButton(). The command constructed in that method, disabused
of all its stringiness and ignoring line-break constraints, is shown expanded in the fol-
lowing listing. It makes use of the Espruino global setWatch(<callback>, <pin>,
[<options>]) function.

Figure 12.22 For the two-way communications in the doorbell example, the puck.js client library
is used to establish a persistent connection between the browser and Puck.js. Commands can be sent
to Puck.js over the connection, and any output to Bluetooth by Puck.js triggers a data event on the
connection.

409Exploring Bluetooth LE with Puck.js

setWatch(
function () {

Bluetooth.println('CHIME');
LED1.set();
setTimeout(() => {

LED1.reset();
}, 250);

},
BTN,
{

repeat: true,
debounce: 250,
edge: 'rising'

}
);

The callback registered on Puck.js for button presses logs out a string via Bluetooth
and also lights up the onboard red LED briefly as visual feedback.

 Data is emitted from Puck.js any time something is output on Bluetooth. This hap-
pens when Bluetooth.println('CHIME') is executed in the button-watching call-
back, but not everything that comes from the Puck.js will be a CHIME command. For
instance, several lines of debugging and version output are generated (automatically)
right after a connection is established. Those lines aren’t relevant to your logic, so the
parseCommand(cmd) makes sure you have an actual match for the string CHIME.

 Before you can feed the commands into parseCommand(), though, you have to
parse out the “commands” from the other incoming data. Data comes in chunks, so
it’s up to the parseData() handler to keep a simple buffer and break the incoming
string data into lines—delimited by \n (line-break) characters. Those lines are each
passed to parseCommand() to see if they do, in fact, represent a valid command—
CHIME being your only valid command. See the following listing.

parseData (data) {
this.dataBuffer += data;
var cmdEndIndex = this.dataBuffer.indexOf('\n');
while (~cmdEndIndex) {

var cmd = this.dataBuffer.substr(0, cmdEndIndex).replace(/\W/g, '');
this.parseCommand(cmd);
this.dataBuffer = this.dataBuffer.substr(cmdEndIndex + 1);
cmdEndIndex = this.dataBuffer.indexOf('\n');

}
}

Listing 12.13 Puck.js command, expanded

Listing 12.14 Parsing data from Puck.js

The first argument to
setWatch(): a callback function

Logs the string CHIME
over Bluetooth; this will
trigger a data eventTurns the

red LED on

Turns the red LED off
again after 250 ms

The pin
to watch

Keeps
watching this
pin repeatedly

Debounces the pin (button) to 250
ms to avoid triggering multiple
times per press or interfering with
previous presses

Triggers on a rising edge—the
transition from LOW to HIGH

-1 is the only value that will produce 0 (false)
in the face of the bitwise NOT (~) operator. Strips any non-

alphanumeric
characters in case

a control character
got crammed in

Passes this line to
parseCommand()
to see if it means
anythingSnips the current command off the front of the

data buffer and sees if there are more lines

410 CHAPTER 12 In the cloud, in the browser, and beyond

parseCommand (cmd) {
if (cmd.match('CHIME')) {

this.chime();
}

}

The final method in the PuckChime class is the chime() itself. The Sound that was
instantiated in the constructor gets played (with play()) and a class—.ding—gets
added to the body element and is then removed after 500 ms, as shown in the follow-
ing listing. The .ding class creates a visual chime in the browser by changing the back-
ground color of the entire page temporarily.

chime () {
window.document.body.classList.add('ding');
this.sound.play();
window.setTimeout(() => {

window.document.body.classList.remove('ding');
}, 500);

}

WEB AUDIO AND THE SOUND CLASS

Sound is a JavaScript class that encapsulates the loading and playing of the sound file
at the url passed to its constructor. It uses the Web Audio API. Its source is repro-
duced in listing 12.16; you can put it at the top of the PuckChime.js file. Alternatively,
you can find the entire PuckChime.js source, including the Sound class, in the book’s
GitHub repository.

 In the same directory as the hosted PuckChime.js source, you can also find the
chime.mp3 sound file—or feel free to use your own sound file (don’t forget to update
the Sound instantiation in PuckChime’s constructor if you give it a different filename).

class Sound {
constructor (url) {

// Context in which to do anything related to audio.
// It is prefixed with `webkit` in some browsers
const AudioContext = window.AudioContext || window.webkitAudioContext;
this.url = url;
this.context = new AudioContext();
this.buffer = null;

}
/**
* Using XMLHttpRequest, Load the audio file at this.url
* decode and store it in this.buffer
* @return Promise resolving to this.buffer
*/

load () {

Listing 12.15 The chime itself

Listing 12.16 The Sound class

411Exploring Bluetooth LE with Puck.js

return new Promise((resolve, reject) => {
if (this.buffer) { resolve(this.buffer); }
var request = new window.XMLHttpRequest();
request.open('GET', this.url, true);
request.responseType = 'arraybuffer';
request.onload = () => {

this.context.decodeAudioData(request.response, soundBuffer => {
this.buffer = soundBuffer;
resolve(this.buffer);

});
};
request.send();

});
}
/**
* Load an AudioBuffer, then create an AudioBufferSourceNode to play it.
* Connect the AudioBufferSourceNode to the destination (output)
*/

play () {
this.load().then(buffer => {

// Create a new AudioBufferSourceNode which can play sound from
// a buffer (AudioBuffer object)
const source = this.context.createBufferSource();
source.buffer = buffer;
// Connect the AudioBufferSourceNode to the destination
// (e.g. your laptop's speakers)
source.connect(this.context.destination);
source.start(0);

});
}

}

The Web Audio API is powerful, and it’s correspondingly somewhat involved. MDN’s
Web Audio API documentation is comprehensive: https://developer.mozilla. org/en-
US/docs/Web/API/Web_Audio_API.

TRYING OUT THE DOORBELL

To recap, the Puck.js doorbell project should contain the following files:

 index.js—A simple web server.
 app/index.html—Includes styling and markup for the big Turn It On button,

as well as a click-event handler for the button to initialize the doorbell (Puck-
Chime object). It also includes the Puck.js client JavaScript library for communi-
cating with Puck.js, as well as PuckChime.js.

 app/PuckChime.js—Includes both the Sound and PuckChime classes.
 app/chime.mp3 (or another sound file of your choosing)—The sound played

when the doorbell is pressed.

Start the web server:

$ node index.js

https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API

412 CHAPTER 12 In the cloud, in the browser, and beyond

Open up your browser to localhost:3000. It may help to also open up the Web Inspec-
tor’s console in your browser to see any logged messages or errors. When you click the
Turn It On button, you should see a pairing request pop up (figure 12.23).

 After pairing, the initialization process takes a few seconds—you’ll see some log-
ging in the console. You’ll know it’s done and successful if you hear the doorbell
sound play and see the screen flash pink briefly (figure 12.24).

Figure 12.23 Clicking the Turn It On button will prompt for pairing to Puck.js.

Figure 12.24 When Puck.js’s button is pressed, the chime sound plays and the screen flashes hot
pink—one might even call it pank, it’s so bright—momentarily.

413Summary

12.5 Pushing the frontiers of JavaScript and hardware
This BLE doorbell experiment is a good illustration of where the frontiers are in the
world of physical devices and JavaScript. Puck.js runs the Espruino interpreter, which
is almost, but not quite, full JavaScript—optimizations are in place to make it possible
to execute JavaScript on such constrained hardware. Web Bluetooth works in some
browsers, but there are some shortcomings. At the time of writing, you have to re-pair
on every page reload, which is a drag. And you may find it to be intermittently unreli-
able in tricky-to-debug ways.

 But the very fact that Puck.js exists, and that Web Bluetooth is implemented in
some browsers, is remarkable, and it’s a huge leap from just 12 or 18 months ago. The
continued popularity and I/O plugin growth of Johnny-Five, which turned five years
old in 2017, is an indication that interest in these areas from JavaScript developers
remains strong. This growing interest in the melding of JavaScript and other web tech-
nologies with physical devices is also echoed in the explosion of Node.js-capable
cloud-managed options for IoT hardware, especially within the SBC class of devices
that are capable of running Linux.

 Building electronic-hacking competency doesn’t mean planting a flag deeply and
inflexibly. JavaScript doesn’t have to be your hammer, your dogmatic single approach.
Instead, it can serve as a paradigm for exploration, a familiar lens through which to
examine the unfamiliar. JavaScript may indeed get you all the way to where you need
to go. But for other cases, an open and curious mind is invaluable.

 Thus, I encourage you not only to keep learning through JavaScript, but also, as
you get more comfortable, to explore further. Read more about how different serial
protocols work, dive deeper into bitwise manipulation, learn to write C-based firm-
ware. And although it would be flip to say that C is easy, it’s certainly approachable:
Many have found the Arduino programming language (which, put very roughly, is
basically C++ with some extra hardware-controlling goodies thrown in) a helpful gate-
way to C++ proficiency.

 Tinker. Build. Ask questions. Read about technology. Break things on purpose.
Know that, even if this is your very first time building circuits and working with physi-
cal I/O, you can figure out how to build the things you dream up. Happy hacking!

Summary
 There has been an explosion of cloud-based services for managing and deploy-

ing IoT applications, many targeted at the enterprise. Many of these services
that are targeted at Linux-capable SBCs offer support for Node.js.

 Containerization is an approach that isolates applications and their dependen-
cies from the vagaries of environment variations, and it’s a popular choice for
IoT application deployment.

 The Web Bluetooth API is not yet on the official web standards track, but imple-
mentations exist in several browsers. Some of its features aren’t ironed out yet,
and security and permissions models remain contentious.

414 CHAPTER 12 In the cloud, in the browser, and beyond

 Espruino provides a small client-side JavaScript library that uses Web Bluetooth
to communicate with Puck.js.

 The Generic Sensor API and further sensor APIs based on it, such as the Ambi-
ent Light Sensor API, are in their early days of standards definition, but they’re
under active development.

 To participate in the Physical Web, a BLE device can advertise a URL using the
open Eddystone protocol. Nearby users with compatible discovery software can
browse and interact with these beacons.

415

index

Symbols

character 370
= character 350
Ω symbol 52
>> and << bitshifting operators

119–120

A

Accelerometer class, Johnny-
Five 210

accelerometers, adding shake-to-
swap display features
with 209–213

Adafruit sensors 232
ADC (analog-to-digital

converter) 29, 81, 229
adjustTime() function 135
alertLED 141
altDisplay 211
altitude variable 317
always-connected pins 65
Ambient Light Sensor API 389
Amp hours 246
Amps (amperes) 51
analog input 29
analog sensors 84–101

analog-to-digital
conversion 84–85

photoresistors 85–89, 92–97
frequency 95–97
scale 95–97
threshold 95–97

voltages in circuits 85–89
processing input with Johnny-

Five 93–94
using analog temperature

sensors 97–101
interacting with compo-

nents using Johnny-
Five REPL 99–101

TMP36 temperature
sensors 98

voltage divider circuits 89–92
AnalogFirmata 42
analogRead function 300
animating LEDs with PWM

114–117
Animation class, Johnny-

Five 114
anode 31
anonymous callbacks 96
APDS-9660 gesture sensors

combining with
RemoteSwitch 290

gathering information
about 273–275

Johnny-Five support for
272–284

configuration settings
281–284

constants 281–284
goals for gesture sensor

plugins 272–273
prototyping proof-of-

concept 276–279
working with 274–275
writing plugins 279–280

API documentation
for Kinoma Element 323
for platforms 307
for Puck.js 395
for Raspberry Pi 3 357

applications
building on Tessel 234–235
creating with resin.io 380
tweaking code 385

Arduino platform
configuring as client 40–42
controlling with

JavaScript 39–47
Firmata 44–45
host-client method 44–45
Johnny-Five 42–47

programming language
35–36

workflow 33–39
Arduino Uno digital

pins 33–34
connecting LED to digital

pins 36
programming blinking

LED 37–39
sketches with Arduino

IDE 34–36
Arduino Uno 28–33

adapting weather stations
for 364–365

creating circuits with 30–33
digital pins 33–34
uploading Firmata to 41–42

ARM Cortex M4 processor 304

INDEX416

asynchronous serial
communication 185–196

building GPS circuits
194–196

software serial with GPS break-
out boards 189–190

UARTs 187–188
ATmega328P

microcontroller 216
Atmel ATmega328P

microcontroller 29

B

back electromotive force 150
back voltage, managing with

flyback diodes 150–151
bandwidth 84
Barometer class, Johnny-

Five 207
batteries

overview 23
powering LEDs with 77
powering projects with 76–77,

244–250
battery terminals 152
beacons, configuring Puck.js

as 401
BeagleBone Black platform,

provisioning 382–383
bitmasking 281
bitshifting 107, 119–120
BLE (Bluetooth Low

Energy) 19, 389
ble_eddystone module 401
Blend Micro board 219
blink method 46, 111
blinkCount 46
blinkMax 46
BLLs (Blinking-Light

Libraries) 322
Bluetooth doorbells, web-

based 402–412
coding PuckChime class

405–410
creating HTML 403–405
setting up project

structure 402–403
Web Audio API and Sound

class 410–411
BMP180 multisensors

building circuits for 309–310
Pico and 308–310

BMP085 Espruino
module 309

deploying code 310
testing 360–361

bmp180 variable 361
Board.Fn object 121
board.loop frequency 206
boards

Arduino-compatible 27
development 6

Bocoup 42
breadboard-friendly 21
breadboards

prototyping circuits with
57–58

wiring LED circuits on 58–65
circuit diagrams and

schematics 60–62
powering circuits 62–63
selecting resistors for

LEDs 59–60
series and parallel

circuits 63–65
breakaway header pins 157
breakout boards

GPS, software serial with
189–190

overview 21
brightness method 112
browsers 18–19
Button class, Johnny-Five 81
buttons

as digital inputs 101–105
Johnny-Five Button

classes 105
logic levels 102
wiring buttons with

pull-down
resistors 103–104

connecting 127–128
expanding series circuits

with 65–66
testing 127–128

C

callbacks 270–272
capacitors. See decoupling

capacitors
capes 347
cathode 31
center() function 160
change() function 96, 120
chassis 161

checkIfSupported()
function 399

chime.init() function 405
chime() function 137, 142, 406
chimes, adding audible piezo

chimes to timers 141–143
See also visual chimes

circuits 6–8
building 57–77

current dividers 71–76
expanding series circuits

with buttons 65–66
for BMP180

multisensors 309–310
for controlling motors with

Johnny-Five 153–154
for controlling motors with

push-button
switches 152

for Raspberry Pi 3 358
for robots 248
for switch projects 266
for timers with LCDs

126–131
LED circuits on Raspberry

Pi 3 351
LEDs in series circuits 67–71
parallel circuits 71–76
powering projects with

batteries 76–77
prototyping circuits with

breadboards 57–58
servo circuits 158–160
wiring LED circuits on

breadboards 58–65
creating with Arduino

Uno 30–33
current 49–57

Ohm's law 53–56
problems with 56–57

diagrams of 60–62
powering 62–63
powering motors in 152
protecting circuits with decou-

pling capacitors 157–158
resistance 49–57
solderless 57
using photocouplers to

isolate 262
voltages 49–57, 85–89
See also GPS circuits; motor

circuits; parallel circuits;
series circuits; short
circuits; voltage divider
circuits

INDEX 417

clear() method 132
CLI (command-line

interface) 222
clients

configuring Arduino as 40–42
controlling with SBCs 220

close function 326
closed circuit 66
cloud-based services 18–19
cloud, IoT and 377–378
CMOS (complimentary metal-

oxide-semiconductor) 188
coin-cell battery 391
collection classes 291
Collection mixin, controlling

multiple switches with 291
compass

combining with LCD
outputs 203–206

building multisensor
code 204–206

configuring magnetic
declinations 204

digital with I2C
magnetometer 200–202

Compass class, Johnny-Five
200–201

component plugins 267
configure function 326
configuring

APDS-9960 281–284
Arduino as client 40–42
Kinoma Element 321–322
magnetic declinations 204
platforms 307
Puck.js 393–395, 401
Raspberry Pi 3 348–351

connecting to WiFi
network 344–345

headless 341–345
managing files on 349–351
traditional 340
updating software 348
upgrading Node.js on

348–349
Tessel 222–224

connecting 222
connecting to WiFi

network 223
finding 222
installing CLI 222
provisioning 223
renaming 222

connect() method 309, 407
console.log() function 99, 225

constants, for APDS-9960
281–284

constructors,
implementing 284–289

decoding gesture data
286–289

processing gesture data
286–289

reading sensor data 285–286
consumer electronics,

hacking 255–262
contrast-control potentiome-

ters, wiring 129–130
converting analog to digital

84–85
current 49–57

Ohm's law 53–56
problems with 56–57

avoiding short circuits
56–57

avoiding too much
current 56

current dividers 71–76
current limiters 57
current-limiting resistor 64
cutting wires 24

D

DAC (digital-to-analog
conversion) 230

Dark Sky service 123
data event 94
data exchange 217
data pins 131
DC (direct current)

connector 29
DC adapter 23
debugging interface, JTAG 347
declinations, magnetic 204
decoding gesture data 286–289
decoupling capacitors, protect-

ing circuits with 157–158
default function 325
deg value 160
dependencies object 362
deploying code 310
desoldering braid 192
development boards

6, 20–21, 57
Device and Sensors Working

Group, W3C 389
DEVICE_ID register,

APDS-9660 277

diagrams
of circuits 60–62
of hardware, for Kinoma

Element 321
of pinouts

finding for platforms 306
for Kinoma Element 321

digital data
parallel communication

of 183–184
serial communication of

183–184
digital inputs 101–105

using buttons as 101–105
Johnny-Five Button

classes 105
logic levels 102
wiring buttons with

pull-down
resistors 103–104

digital pins 29
connecting LED to 36
in Arduino Uno 33–34

digitalWrite function 36, 302
dimming LEDs 121
diodes

flyback, managing back
voltage with 150–151

overview 31
disassembling remote control

units 256
disk images, creating

for BeagleBone Black
382–383

for Raspberry Pi 3 341–343
displays

parallel LCD displays 125–138
adding visual LED

chimes 136–138
making full-featured timers

with LCDs 125–136
updating to show temperature

and pressure 208–209
Docker app containers,

defining 384–385
Dockerfile.template 384
downButton 127, 135
drain pin, MOSFET 153
draw function 316, 318

E

E.getTemperature()
function 395

eases out function 114

INDEX418

easing functions 114
EBUSY error 355
Eddystone protocol 390, 401
EEPROM (electrically erasable

programmable ROM) 10
electrical flow 52
electrical pressure 52
electromagnet 147
electronic components 22
embedded systems 10
EN (enable) pin 131
enable connections, on

SN754410 motor driver 167
enable method 274, 285
enclosures 10
Espruino API 15
Espruino BMP085 module 309
Espruino Graphics library

318–319
Espruino PCD8544

module 315–316
Espruino Pico platform

299–302
blinking LEDs with 302
setting up 300–302

Etcher application 342
eth0 interface 373
eval() function 307
expansion headers 368
Express 235

F

fading, LEDs with PWM
109–114

farads 157
FETs (field-effect

transistors) 153
files, managing on Raspberry Pi

3 349–351
Firmata protocol 40–42, 44–45
firmware 8–10
firmware protocols 14
flash memory 10
flexbox 241
flip() function 316
floating 102
flyback diodes, managing back

voltage with 150–151
forward current 68
forward voltage 226
forward voltage drop 68, 77, 86
frame types 401
frames 186
freq parameter 96

frequency, adjusting 95–97
Fritzing software 277
fs module 354
full-size breadboard 57

G

gate pin, MOSFET 153
GATT (Generic Attribute

Profile) 389
GCONF register 282
gear reduction 161
general-purpose input/output

pin. See GPIO
Generic Sensor API 389
Genuino 27
gesture data

decoding 286–289
processing 286–289

gesture sensors
integrating 289–291

combining APDS-9960 and
RemoteSwitch 290

controlling multiple
switches with
Collection 291

orchestrating several
switches 290–291

plugins 272–273
See also APDS-9660 gesture

sensors
getHeight() function 318
getPressure method 317
getSeaLevel method 317
getWidthIO function 318
GFLVL (gesture FIFO level)

register 286
Git repositories

committing project files
to 386

initializing 383–384
goButton 127
GPIO (general-purpose

input/output) pin
features of Puck.js 392
features of Raspberry Pi

3 346–347
GPS breakout boards, software

serial with 189–190
GPS circuits, building 194–196
Graphics library, Espruino 316
GSTATUS register 286

H

H-bridge drivers, controlling
motors with 162–164

hacking consumer
electronics 255–262

half-size breadboard 57
hardware

JavaScript and 413
Kinoma Element, diagrams

of 321
prototyping 263–264
toolkits 20–25

development boards 20–21
electronic components 22
input components 21–22
power 23
tools 23–25

writing software for 272–294
implementing

constructors 284–289
implementing initialization

methods 284–289
integrating gesture

sensors 289–291
integrating remote

switches 289–291
Johnny-Five support for

APDS-9660 gesture
sensors 272–284

HMC5883L Honeywell chip 200
hookup wires 23
host-client method 11–14,

44–45
host-client setups, wireless 219
host, using Raspberry Pi 3

as 365–366
How to Use a Multimeter

tutorial, SparkFun 259
HTML (hyper-text markup

language) 403–405

I

I/O layers 216–217
I/O pins 17, 29
I/O plugins 217
I2C (Inter-Integrated

Circuit) 198–202
i2cRead method 279
i2cReadOnce method 279
IC (integrated circuit) chips 164
IDE (integrated development

environment) 28
init() function 134, 138, 406

INDEX 419

initialization methods,
implementing 284–289

decoding gesture data
286–289

processing gesture data
286–289

reading sensor data 285–286
inputs 5

combining with LED
outputs 117–121

components 21–22
processing from analog

sensors with Johnny-
Five 93–94

Sensor classes 94
sensor data events 94

See also digital inputs
installing

Johnny-Five Node.js
framework 42–43

Tessel CLI 222
inverted signals 170
invertPWM option 172
io option property 187
IoT (Internet of Things), cloud

and 377–378
IP scanner 343
isActive property 269
isolating circuits with

photocouplers 262
isOn property 269

J

JavaScript language
combinations with

hardware 16–19
controlling Arduino with

39–47
configuring Arduino as

client 40–42
Firmata 44–45
host-client method 44–45
Johnny-Five 42–47

embedded 15–16, 219
Espruino Pico platform

299–302
blinking LEDs with 302
setting up 300–302

experimenting with Kinoma
Element

API reference 323
configuration 321–322
core features of 320
examples and tutorials 322

management 321–322
pinout and hardware

diagrams 321
workflow 321–322

experimenting with Pico
BMP180 multisensors

and 308–310
building power-efficient

weather gadgets
317–319

Nokia 5110 LCD and
310–316

hardware and 413
Kinoma Element 320–330
new platforms 303–307

configuration of 307
core features of 303–305
examples and tutorials 307
pinout diagrams 306
reference API

documentation 307
workflow 307

Pico 308–319
running on SBCs 17–18
using with hardware 19–20

Johnny-Five platform
adapting mini weather station

for Arduino Uno 364–365
for Raspberry Pi 3 358–364

blinking LEDs with 43
Button classes 105
controlling LCDs with 132
controlling motors with

152–155
building circuits for

153–154
using transistors as

switches 153
controlling remote switches

with component
plugins 263–272

prototyping switch
projects 263–266

writing RemoteSwitch
plugins 266–272

controlling servos with
157–160

building servo circuits
158–160

protecting circuits with
decoupling
capacitors 157–158

installing Node.js
framework 42–43

processing input from analog
sensors 93–94

raspi-io I/O plugin with
356–357

reading GPS data with 195–196
REPL (read-evaluate-print

loop) 99–101
sensor data events in 94
setting up Tessel projects 226
structuring scripts with 45–47
support for APDS-9660 ges-

ture sensors 272–284
configuration settings

281–284
constants 281–284
gathering information

about APDS-9960
273–275

goals for gesture sensor
plugins 272–273

prototyping proof-of-
concept 276–279

writing APDS-9960
plugins 279–280

testing motors with 171–172
using Sensor classes 94

JTAG debugging interface 347
jumper wires 23, 66

K

keyframes 115
keypress package 250
Kinoma Element platform

320–330
API reference 323
configuring 321–322
core features of 320
examples of 322
hardware diagrams 321
managing 321–322
pinout diagrams 321
tutorials 322
workflow 321–322

KVL (Kirchoff’s voltage law)
67, 86

L

LAN scanner 343
lcd.clear() function 136
LCDs

combining compass with
outputs 203–206

INDEX420

LCDs (continued)
building multisensor

code 204–206
configuring magnetic

declinations 204
completing connections

130–131
connecting 128–129
controlling with Johnny-

Five 132
making full-featured timers

with 125–136
building circuits for

126–131
programming timer

logic 133–136
parallel displays 125–138

LDR (light-dependent
resistor) 85

Led class, Johnny-Five
45, 93, 186

LED.reset() function 395
LED.set() function 395
Led.stop method 111
LEDs (light-emitting

diodes) 109–125
animating with PWM 114–117
blinking

programming to blink
37–39

with Espruino Pico 302
with Johnny-Five 43, 46–47
with sysfs 353–355
with Tessel 224–229

building circuits on Rasp-
berry Pi 3 351

building weather balls
122–125

combining input with LED
output 117–121

connecting to digital pins 36
controlling from web

pages 395–400
creating LED-toggling

logic 397–400
setting up project

structure 396–397
creating circuits 31–33
creating LED-toggling

logic 397–400
fading with PWM 109–114
in parallel circuits 75–76
in series circuits 67–71
powering with batteries 77
RGB LEDs 121–122

visual chimes, adding
136–138

wiring 3.3 V circuits 226–227
wiring circuits on

breadboards 58–65
circuit diagrams and

schematics 60–62
powering circuits 62–63
selecting resistors for

LEDs 59–60
series and parallel

circuits 63–65
writing blinking code

228–229
level shifting 232
Light class, Johnny-Five 118
light-dependent resistor 118
LiPo (lithium polymer)

batteries 246
load, circuit 56
logic 8–10
logic connections, on SN754410

motor driver 167–170
controlling motor

direction 168–169
controlling motor speed

169–170
logic-level voltage 232
loop section 47
LTS (Long Term Support) 221

M

magnetic declinations,
configuring 204

magnetometers, making digital
compass with 200–202

mAh (milliamp hours) 246
Map Network Drive,

Windows 350
MCUs (microcontrollers) 6
metal tab, MOSFET 153
metronomic animation 114
microcontroller 6
MIDI messaging 40
mobile devices, enabling Physi-

cal Web discovery on 401
modular shields 27
modules 388
momentary switches 65, 101
MOSFETs (metal-oxide-semicon-

ductor field-effect
transistors) 153

motor circuits, completing 170

Motor class, Johnny-Five
152, 154

motor power source 167
motor-test.js file 171
motors 146–155

controlling direction of
168–169

controlling robots 166–176
completing motor

circuits 170
driving robots 176
finishing chassis

construction 172
SN754410 enable

connections 167
SN754410 logic

connections 167–170
SN754410 power

connections 167
testing motors with Johnny-

Five 171–172
writing robot software

172–176
controlling speed of 169–170
controlling with H-bridge

drivers 162–164
controlling with Johnny-

Five 152–155
building circuits for

153–154
using transistors as

switches 153
controlling with push-button

switches 148–152
building circuits for 152
managing back voltage

with flyback diodes
150–151

powering motors in
circuits 152

overview 146–148
powering 247–248
robots and 162–164

Motors class, Johnny-Five 172
Mozilla Developer Network 120
multimeter tool 24
multiplier band 59
multisensors, adding to

devices 206–207

N

N-channel type transistors 153
nanotimer package 141
negative terminal 32

INDEX 421

Netduino 27
NMEA (National Marine Elec-

tronics Association) 189
Node.js

blinking LEDs with, on
Raspberry Pi 3 354–355

installing Johnny-Five
framework 42–43

upgrading on Raspberry
Pi 3 348–349

NodeBots Community
Forum 43

NodeSource Binary Distribu-
tions repository 349

noise margin 102
Nokia 5110 LCD

making visual countdown
timers with 314

Pico and 310–316
connecting to Pico

313–314
Espruino PCD8544

modules 315–316
non-directional motor 154
NOOBS (New Out-of-Box

Software) 335
npm init command 226

npm init --yes command 173
npm install command 42
npm start scripts, adding 385
Number values 357

O

Ohm's law 53–56
ohms 52
ON LED lights 30
onLaunch() function 325
onQuit() function 325
open circuit 63
OpenWrt 220
opto-isolators 262
optocouplers 262
outputs 5

building robots 161–176
chassis base 164–166
controlling robot

motors 166–176
robots and motors 162–164

components 21–22
LCD, combining compass

with 203–206
LEDs 109–125

animating with PWM
114–117

building weather balls
122–125

combining input with LED
output 117–121

fading with PWM 109–114
RGB LEDs 121–122

making noise with
piezos 139–143

motors 146–155
controlling with Johnny-

Five 152–155
controlling with push-button

switches 148–152
overview 146–148

parallel LCD displays
125–138

adding visual LED
chimes 136–138

making full-featured timers
with LCDs 125–136

servos 155–160

P

package.json, updating
dependencies 362

packaging 10
parallel circuits 63–65, 71, 76
parallel communication

183–184
parallel interface 125
parallel LCD displays 125–138

adding visual LED
chimes 136–138

making full-featured timers
with LCDs 125–136

building circuits for
126–131

controlling LCDs with
Johnny-Five 132

programming timer
logic 133–136

parseCommand() function 409
parseData() method 408
PCB (printed circuit board) 259
pcDuino 27
photocell 85
photoconductive 85
photocouplers, using to isolate

circuits 262
photoresistor.value 120
photoresistors 85–89, 92–97

adjusting frequency 95–97

adjusting scale 95–97
adjusting threshold 95–97
processing analog sensor

input with Johnny-
Five 93–94

Sensor classes 94
sensor data events 94

voltages in circuits 85–89
physical output 5
Physical Web 19, 390

Puck.js and 400–401
configuring Puck.js as

beacon 401
Eddystone protocol 401
enabling Physical Web

discovery on mobile
devices 401

Pico, Espruino 308–319
BMP180 multisensors

and 308–310
BMP085 Espruino

module 309
building BMP180

circuits 309–310
deploying code 310

building power-efficient
weather gadgets with
Pico 317–319

Nokia 5110 LCD and 310–316
connecting to Pico

313–314
Espruino PCD8544

modules 315–316
making visual countdown

timers with 314
Piezo class, Johnny-Five 141
piezoelectric effect 139
piezos

making noise with 139–143
playing tunes on 141–143

pinMode() function 38, 356
pinouts

diagrams
finding for platforms 306
of Kinoma Element 321

in Puck.js 392
in Raspberry Pi 3 346–347

pins
high impedance of 102
microcomputers 6
overview 229–230
See also digital pins

Pins.configure() function 328

INDEX422

PIXEL (Pi Improved Xwindows
Environment,
Lightweight) 340

platforms 303–307
discovering core features

of 303–305
finding examples and

tutorials 307
finding pinout diagrams

for 306
learning about configuration

of 307
learning about workflow 307
using reference API

documentation 307
plugins

basics of component
structure 267

coding 268–269
for Johnny-Five

components 263–272
gesture sensors 272–273
writing for APDS-9960

279–280
polarity symbol 218
positive terminal 32
potential energy 50
potentiometers, contrast-

control 129–130
power 6–8, 23

circuits 62–63
on SN754410 motor

driver 167
power rails 57
pressure, updating displays to

show 208–209
process.exit() function 175
processGesture method 288
processing 6
product page, SparkFun 312
program memory,

microcontroller 9
proof-of-concept,

prototyping 276–279
prototyping

circuits with breadboards
57–58

hardware 263–264
proof-of-concept 276–279
software 264–266
switch projects 263–266

prototyping boards 20
Puck.connect() function 399
Puck.js, Espruino 391–412

API documentation 395

configuration of 393–395
controlling LEDs from web

pages 395–400
creating LED-toggling

logic 397–400
setting up project

structure 396–397
core features of 391
GPIO features 392
Physical Web and 400–401

configuring Puck.js as
beacon 401

Eddystone protocol 401
enabling Physical Web

discovery on mobile
devices 401

pinouts 392
tutorials 395
web-based Bluetooth

doorbells 402–412
coding PuckChime

class 405–410
creating event

listeners 403–405
creating HTML 403–405
setting up project

structure 402–403
Web Audio API and Sound

class 410–411
workflow 393–395

Puck.light() function 395, 399
Puck.write() function 399
PuckChime class, coding

405–410
pull-down resistors, wiring

buttons with 103–104
push deployments, in Tessel 244
push-button switches, con-

trolling motors with
148–152

building circuits for 152
managing back voltage with

flyback diodes 150–151
powering motors in

circuits 152
PWM (pulse-width

modulation) 107, 112, 155
animating LEDs with 114–117
fading LEDs with 109–114

Q

queuing 270–272

R

Raspberry Pi 17
Raspberry Pi 3 platform

336–339, 345–357
adapting weather stations

for 358–364
building circuits 358
making Pi-specific

changes 361–364
testing BMP180 360–361

API documentation 357
configuration 348–351

managing files on Pi
349–351

updating Pi software 348
upgrading Node.js on

Pi 348–349
core features of 345–346
GPIO features 346–347
hats 347
headless configuration

341–345
configuring WiFi on

Pi 344–345
creating bootable Raspbian

disk image 341–343
kit 337–339
pinouts 346–347
traditional configuration 340
tutorials 351–357

blinking LED with
sysfs 353–355

building LED circuits 351
Johnny-Five with the

raspi-io I/O plugin
356–357

WiringPi 355–356
using as host 365–366

raspi-io I/O plugin, Johnny-Five
with 356–357

read function 329
read-evaluate-print loop. See

REPL (read-evaluate-print
loop)

readGesture 286
ready event 43, 45
reboot command 358
refactoring index.js to use

RemoteSwitch 269
remote control units

adding onto circuitry
257–261

disassembling 256

INDEX 423

remote switches,
integrating 289–291

combining APDS-9960 and
RemoteSwitch 290

controlling multiple switches
with Collection 291

orchestrating several
switches 290–291

remotes 383
RemoteSwitch component 266

combining with APDS-
9660 290

refactoring index.js to
use 269

writing plugins 266–272
callbacks 270–272
coding plugins 268–269
component plugin

structure basics 267
queuing 270–272
refactoring index.js to use

RemoteSwitch 269
RemoteSwitch module 267
renaming Tessel 222
REPL (read-evaluate-print

loop), in Johnny-Five
interacting with components

using 99–101
request package 123
require statement 225, 364
require() function 309
reset button 30
reset() method 407
resin.io 378–388

adapting weather app
software 383–388

adding npm start
scripts 385

committing and
pushing 386

defining Docker app
containers 384–385

initializing Git
repository 383–384

public URLs for apps
386–388

tweaking app code 385
creating apps 380
provisioning BeagleBone

Black 382–383
resistance

Ohm's law 53–56
overview 49, 52–57

resistors 32
pull-down, wiring buttons

with 103–104
Raspberry Pi 3 59–60

reverse piezoelectric effect 139
reverse-biased diode 151
RF-controlled outlet switches,

modifying 255–262
adding onto remote control

circuitry 257–261
disassembling remote control

units 256
using photocouplers to

isolate circuits 262
RGB LEDs 121–122
robots 161–176

battery-powered with
Tessel 246–250

building robot circuits 248
powering motors 247–248
updating rover code 250

building chassis base of
164–166

controlling motors of
166–176

completing motor
circuits 170

driving robots 176
finishing chassis

construction 172
SN754410 enable

connections 167
SN754410 logic

connections 167–170
SN754410 power

connections 167
testing motors with Johnny-

Five 171–172
with H-bridge drivers

162–164
writing robot software

172–176
motors and 162–164

RoHS (Restriction of Hazardous
Substances Directive) 191

rovers, updating code 250
RS (register select) pin 131
RX (receive) 44

S

satellites 189
save flag 362
save() function 319

SBCs (single-board
computers) 16, 335–345

controlling clients with 220
Raspberry Pi 3 336–339

headless configuration
341–345

kit 337–339
traditional configuration

340
scale, adjusting 95–97
schematics 60–62
scheme prefix 401
scripts field 385
scripts, structuring with Johnny-

Five 45–47
send(cmd) method 407
Sensor class, Johnny-Five 81, 94
sensors 5

data events in Johnny-Five 94
reading data 285–286
See also analog sensors; tem-

perature sensors
serial communication

asynchronous 185–196
building GPS circuits

194–196
software serial with GPS

breakout boards
189–190

UARTs 187–188
basics of 184–185
of digital data 183–184
shake-to-change multisensor

widgets 202–213
adding multisensors to

devices 206–207
adding shake-to-swap

display features with
accelerometers
209–213

combining compass with
LCD outputs 203–206

updating displays to show
temperature and
pressure 208–209

synchronous 196–202
I2C 198–200
making digital compass

with I2C
magnetometer
200–202

SPI 197–198
serial data 176

INDEX424

Serial Peripheral Interface. See
SPI (Serial Peripheral
Interface)

series circuits 63–65
expanding with buttons

65–66
LEDs in 67–71

server.listen() function 373
Servo class, Johnny-Five 160
servos, controlling with Johnny-

Five 157–160
building servo circuits

158–160
protecting circuits with decou-

pling capacitors 157–158
setContrast() method 316
setInterval 46, 141
setTimeout function 141, 302
setup method 285
setup section 47
setWatch() function 315, 409
Shadow chassis, SparkFun 162
shake-to-change multisensor

widgets 202–213
adding multisensors to

devices 206–207
adding shake-to-swap display

features with
accelerometers 209–213

combining compass with LCD
outputs 203–206

building multisensor
code 204–206

configuring magnetic
declinations 204

updating displays to show
temperature and
pressure 208–209

shake-to-swap display features,
adding with
accelerometers 209–213

shields 27
short circuits, avoiding 56–57
showRemaining()

function 134–135
single-board computers. See

SBCs (single-board
computers)

sketchbook 35
sketches 28

Arduino IDE with 34–36
uploading for blinking 38–39

SMI (Secondary Memory
Interface) 347

SN754410 motor driver
enable connections 167
logic connections 167–170

controlling motor
direction 168–169

controlling motor
speed 169–170

power connections 167
snubber diode 151
Socket.IO, displaying live data

with 237–243
software

prototyping 264–266
writing for robots 172–176
writing for sophisticated

hardware 272–294
implementing

constructors 284–289
implementing initialization

methods 284–289
integrating gesture

sensors 289–291
integrating remote

switches 289–291
Johnny-Five support for

APDS-9660 gesture
sensors 272–284

software page, Arduino 34
software serial, with GPS

breakout boards 189–190
solder wick 192
soldered joints 194
soldering 190–194

assembling kits 191–192
step-by-step guide to 192–194

soldering iron 190
solderless circuits 57
Sound class, Web Audio API

and 410–411
source pin, MOSFET 153
speed, of motors 169–170
SPI (Serial Peripheral

Interface) 197–198
StandardFirmataPlus 41–42
start() function 141, 155
static web servers, setting up on

Tessel 235–236
stop() function 155
stripping wires 24
surface-mount components 31
switches

controlling with
Collection 291

orchestrating 290–291

prototyping projects 263–266
building out circuits 266
prototyping hardware

263–264
prototyping software

264–266
remote, controlling with

Johnny-Five component
plugins 263–272

RF-controlled outlet switches,
modifying 255–262

using transistors as 153
See also push-button switches

synchronous serial
communication 196–202

I2C 198–200
making digital compass with

I2C magnetometer
200–202

SPI 197–198
sysfs, blinking LEDs with

353–355

T

T-Cobbler, Adafruit 358
t2 erase command 244
t2 list command 223
t2 push command 231, 244
t2 run command 228
t2 update command 223
t2 version command 222
temperature sensors,

analog 97–101
interacting with components

using Johnny-Five
REPL 99–101

TMP36 temperature
sensors 98

temperature, updating displays
to show 208–209

terminal rows 57
Tessel 2 platform 220–221,

230–244
battery-powered robots

with 246–250
building robot circuits 248
powering motors 247–248
updating rover code 250

blinking external LEDs
with 225–229

setting up Johnny-Five Tes-
sel projects 226

wiring 3.3 V LED
circuits 226–227

INDEX 425

Tessel 2 platform (continued)
writing LED-blinking

code 228–229
blinking LEDs on 224–225
building apps on 234–235
capabilities of 229–230
configuring 222–224

connecting Tessel 222
connecting Tessel to WiFi

network 223
finding Tessel 222
installing CLI 222
provisioning Tessel 223
renaming Tessel 222

exploring pins 229–230
push deployments 244
setting up 221–230
setting up static web

servers 235–236
t2 push deployment 244
updating 223–224
using Socket.IO 237–243

tessel-cli npm module 16
tessel-io package 228
testing

BMP180 multisensors 360–361
buttons 127–128
motors with Johnny-Five

171–172
Thermometer class, Johnny-

Five 81, 98, 207
third hand tool 192
threshold, adjusting 95–97
through-hole components 31
Through-Hole Soldering

tutorial, SparkFun 193
tick() function 135
timer-advanced.js file 127
timers

adding audible piezo chimes
to 141–143

playing tunes on
piezos 141–143

countdown, visual 314
making with LCDs 125–136

building circuits for 126–131
controlling LCDs with

Johnny-Five 132
programming timer

logic 133–136
tin 193
tiny computers. See SBCs

(single-board computers)
TMP36 temperature

sensors 98–99

toggle method 269
tolerance band 59
tools 23–25
transducers 81, 83
transistors, using switches as 153
TTL (transistor-transistor

logic) 187
Turn It On button 404
turnOff() function 266
turnOn() function 266
tutorials

finding 307
for Kinoma Element

platform 322
for Puck.js 395

tweening 115
TX (transmit) 44

U

UARTs (Universal Asynchronous
Receiver/Transmitters)
187–188

upButton 127, 135
updateData function 242
updating

index.js 362–364
package.json

dependencies 362
Raspberry Pi 3 software 348
rover code 250
Tessel 223–224

upgrading Node.js on Rasp-
berry Pi 3 348–349

uploading
blink sketches 38–39
Firmata to Arduino Uno

41–42
URLs, public 386–388
USBs, as power sources 217–218

V

Verify button 38
virtual output 5
visual chimes, LEDs 136–138
voltage 49–57

in circuits 85–89
managing back voltage with

flyback diodes 150–151
Ohm's law 53–56

voltage divider circuits 89–92
voltage regulators 218, 232

W

Waldron, Rick 327
watchButton() method 407
weather app software,

adapting 383–388
adding npm start scripts 385
committing and pushing 386
defining Docker app

containers 384–385
initializing Git

repository 383–384
public URLs for apps

386–388
tweaking app code 385

weather gadgets, building with
Pico 317–319

weather stations
adapting for Arduino

Uno 364–365
adapting for Raspberry

Pi 3 358–364
building circuits 358
making Pi-specific

changes 361–364
testing BMP180 360–361

Web Audio API, Sound class
and 410–411

Web Bluetooth API 389
web pages, controlling LEDs

from 395–400
creating LED-toggling

logic 397–400
setting up project

structure 396–397
web-based Bluetooth

doorbells 403–405
wheels 161
WiFi networks

configuring on Raspberry Pi
3 344–345

connecting Tessel to 223
wire coils 146
wireless, host-client setups 219
wires 23
wires-free projects 217–220

data exchange 217
I/O layers 217
I/O plugins 217
options for

communication 219–220
controlling clients with

SBCs 220
embedded JavaScript 219

INDEX426

wires-free projects (continued)
wireless host-client

setups 219
powering projects with

batteries 244–250
Tessel 230–244

displaying live data with
Socket.IO 237–243

push deployments 244
setting up 221–230
setting up static web

servers 235–236
USBs as power sources

217–218
using Tessel 2 220–221

wiring
buttons with pull-down

resistors 103–104
contrast-control

potentiometers 129–130
wiring diagram 61
WiringPi 355–356
wlan0 interface 373
workflow

in platforms 307
Kinoma Element 321–322
of Arduino 33–39

Arduino Uno digital
pins 33–34

connecting LED to digital
pins 36

programming LED to
blink 37–39

sketches with Arduino
IDE 34–36

Puck.js 393–395
write() method 398

X

XIP (execute in place) 320
XOR (exclusive OR)

operator 119

Y

-y flag 226

	JavaScript on Things
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	Who should read this book?
	Code conventions and downloads
	Book forum
	About the author

	Part 1: A JavaScripter’s introduction to hardware
	Chapter 1: Bringing JavaScript and hardware together
	1.1 The anatomy of hardware projects
	1.1.1 Inputs and outputs
	1.1.2 Processing
	1.1.3 Power, circuits, and systems
	1.1.4 Logic and firmware
	1.1.5 Enclosures and packaging
	1.1.6 Embedded systems

	1.2 How JavaScript and hardware work together
	1.2.1 Host-client method
	1.2.2 Embedded JavaScript
	1.2.3 Other hardware-JavaScript combinations

	1.3 Is JavaScript a good fit for hardware?
	1.4 Putting together a hardware toolkit
	1.4.1 Development boards
	1.4.2 Input and output components
	1.4.3 Other electronic components
	1.4.4 Power, wires, and accessories
	1.4.5 Tools

	Chapter 2: Embarking on hardware with Arduino
	2.1 Getting to know the Arduino Uno
	2.1.1 Creating your first circuit with an Arduino Uno

	2.2 Working with the Arduino workflow
	2.2.1 Arduino Uno’s digital pins
	2.2.2 Sketches and the Arduino IDE
	2.2.3 Connecting the LED to a digital pin
	2.2.4 Programming the LED to blink

	2.3 Controlling the Arduino with JavaScript
	2.3.1 Configuring the Arduino as a client
	2.3.2 Installing the Johnny-Five Node.js framework
	2.3.3 Hello World blinking LED with Johnny-Five
	2.3.4 Firmata, Johnny-Five, and the host-client method
	2.3.5 Structuring scripts with Johnny-Five

	Chapter 3: How to build circuits
	3.1 Voltage, current, and resistance
	3.1.1 Ohm’s law
	3.1.2 Problems and dangers

	3.2 Building circuits
	3.2.1 Using breadboards to prototype circuits
	3.2.2 Wiring a simple LED circuit on a breadboard
	3.2.3 Expanding a series circuit with a button
	3.2.4 LEDs in series
	3.2.5 Parallel circuits and current dividers
	3.2.6 Powering your project with batteries

	Part 2: Project basics: input and output with Johnny-Five
	Chapter 4: Sensors and input
	4.1 Working with analog sensors
	4.1.1 Analog-to-digital conversion
	4.1.2 Working with photoresistors
	4.1.3 Voltage dividers
	4.1.4 Wiring and using a photoresistor
	4.1.5 Using an analog temperature sensor

	4.2 Digital inputs
	4.2.1 Using a button as a digital input

	Chapter 5: Output: making things happen
	5.1 Lighting things up
	5.1.1 Fading LEDs with pulse-width modulation (PWM)
	5.1.2 Animating LEDs with PWM
	5.1.3 Combining input with LED output
	5.1.4 Going full-color with RGB LEDs
	5.1.5 Build your own “weather ball”

	5.2 Working with parallel LCD displays
	5.2.1 Making a full-featured timer with LCD
	5.2.2 Adding a visual LED “chime”

	5.3 Making noise with a piezo
	5.3.1 Adding an audible piezo chime to the timer

	Chapter 6: Output: making things move
	6.1 Making motors spin
	6.1.1 How motors work
	6.1.2 Controlling a motor with a push-button switch
	6.1.3 Controlling a motor with Johnny-Five

	6.2 Making servos go
	6.2.1 Controlling a servo with Johnny-Five

	6.3 Building your first robot!
	6.3.1 Robots and motors
	6.3.2 Building the robot’s chassis base
	6.3.3 Controlling the robot’s motors

	Part 3: More sophisticated projects
	Chapter 7: Serial communication
	7.1 Communicating digital data in parallel and in serial
	7.2 The basics of serial communication
	7.3 Asynchronous serial communication
	7.3.1 UARTs
	7.3.2 Trying out software serial with a GPS breakout board
	7.3.3 Learn to solder!
	7.3.4 Building the GPS circuit

	7.4 Synchronous serial communication
	7.4.1 Serial Peripheral Interface (SPI)
	7.4.2 I2C
	7.4.3 Making a digital compass with an I2C magnetometer

	7.5 Pulling it together: shake-to-change multisensor widget
	7.5.1 Step 1: combining a compass with LCD output
	7.5.2 Step 2: adding a multisensor to the device
	7.5.3 Step 3: updating the display to show temperature and pressure
	7.5.4 Step 4: adding a shake-to-swap display feature with an accelerometer

	Chapter 8: Projects without wires
	8.1 Why you’ve been tethered so far
	8.1.1 Data exchange, the I/O layer, and I/O plugins
	8.1.2 USB as a power source
	8.1.3 Options for wires-free project communication

	8.2 Toward wires-free projects using the Tessel 2
	8.3 Getting your Tessel set up
	8.3.1 Configuring the Tessel
	8.3.2 “Hello World” LED blinking on the Tessel
	8.3.3 Blinking an external LED with the Tessel
	8.3.4 Exploring the Tessel’s pins and capabilities

	8.4 Projects without wires on the Tessel
	8.4.1 Wires-free data: a remote weather station

	8.5 Powering projects with batteries
	8.5.1 A battery-powered robot with the Tessel

	Chapter 9: Building your own thing
	9.1 Hacking consumer electronics
	9.1.1 Modifying RF-controlled outlet switches

	9.2 Controlling the remote switches with a Johnny-Five component plugin
	9.2.1 Prototyping the switch project
	9.2.2 Writing the RemoteSwitch plugin

	9.3 Writing software for sophisticated hardware
	9.3.1 Project: Johnny-Five support for APDS-9660 gesture sensor
	9.3.2 Implementing constructor and initialization methods
	9.3.3 Integrating the gesture sensor and remote switches
	9.3.4 Pulling the whole project together

	Part 4: Using JavaScript with hardware in other environments
	Chapter 10: JavaScript and constrained hardware
	10.1 The Espruino Pico platform
	10.1.1 Setting up the Pico
	10.1.2 Hello World LED blink

	10.2 Learning about new platforms
	10.2.1 Discovering a platform’s core features
	10.2.2 Finding a pinout diagram
	10.2.3 Learning about configuration and workflow
	10.2.4 Finding examples and tutorials
	10.2.5 Using reference API documentation

	10.3 Experimenting with the Pico
	10.3.1 The Pico and the BMP180 multisensor
	10.3.2 The Pico and the Nokia 5110 LCD
	10.3.3 Building a power-efficient weather gadget with the Pico

	10.4 Experimenting with the Kinoma Element platform
	10.4.1 The Element’s core features
	10.4.2 Pinout and hardware diagram
	10.4.3 Configuration, management, workflow
	10.4.4 Examples and tutorials
	10.4.5 API reference
	10.4.6 Case-study project: live-updating compass readings

	Chapter 11: Building with Node.js and tiny computers
	11.1 Working with tiny computers
	11.1.1 The Raspberry Pi platform
	11.1.2 Configuration option 1: the traditional way
	11.1.3 Configuration option 2: headless

	11.2 Learning about the Raspberry Pi 3
	11.2.1 Core features
	11.2.2 GPIO features and pinouts
	11.2.3 Configuration and workflow
	11.2.4 Examples and tutorials
	11.2.5 API documentation

	11.3 Writing Johnny-Five applications for different platforms
	11.3.1 Adapting the mini weather station for the Pi 3
	11.3.2 Adapting the mini weather station for the Arduino Uno

	11.4 Using the Raspberry Pi as a host
	11.5 Case study: BeagleBone Black
	11.5.1 Learning about the BeagleBone Black
	11.5.2 Adapting the weather station for the BeagleBone

	Chapter 12: In the cloud, in the browser, and beyond
	12.1 IoT and the cloud
	12.2 Containerized deployment with resin.io
	12.2.1 Creating a resin.io application
	12.2.2 Provisioning the BeagleBone Black
	12.2.3 Adapting the weather application software

	12.3 Hardware and the web browser
	12.3.1 The Web Bluetooth API
	12.3.2 The Generic Sensor API
	12.3.3 The Physical Web

	12.4 Exploring Bluetooth LE with Puck.js
	12.4.1 Core features
	12.4.2 GPIO features and pinouts
	12.4.3 Configuration and workflow
	12.4.4 Examples, tutorials, and API documentation
	12.4.5 Controlling the LED from a web page
	12.4.6 The Physical Web and Puck.js
	12.4.7 A web-based Bluetooth doorbell

	12.5 Pushing the frontiers of JavaScript and hardware

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

