

WEB DESIGN
PLAYGROUND

WEB DESIGN
PLAYGROUND

HTML + CSS THE INTERACTIVE WAY

Paul McFedries

M A N N I N G
Shelter Island

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of
the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the
books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing
also our responsibility to conserve the resources of our planet, Manning books are printed on paper
that is at least 15 percent recycled and processed without the use of elemental chlorine.

∞

	 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

	 Development editor:	 Karen Miller
	Technical development editors:	� Doug Sparling and

Helen Sparling
	 Review editor:	 Aleksandar Dragosavljević
	 Production editor:	 Deirdre Hiam
	 Copyeditor:	 Kathy Simpson
	 Proofreader:	 Michelle Melani
	 Technical proofreader:	 Louis Lazaris
	 Typesetting:	 Happenstance Type-O-Rama
	 Cover designer:	 Monica Kamsvaag

ISBN 9781617294402
Printed in the United States of America

For Karen and Chase

vii

Contents
Preface . . xi
Acknowledgments . . xiii
About This Book. . xv
About the Author. . xix

PART 1  GETTING STARTED WITH HTML AND CSS
Chapter 1  Getting to Know HTML and CSS . . 3

What Is HTML?. . 4
What Is CSS?. . 7
What Can’t You Do with HTML and CSS?. . 10
How HTML and CSS Create the Web. . 10
Introducing the Web Design Playground . . 11
Adding HTML Tag Attributes. . 15
Some Helpful Features of the Playground . . 19

Chapter 2  Building Your First Web Page. . 21
Getting Your Web Page off the Ground. . 22
Learning the Most Common Text Elements. . 26

Chapter 3  Adding Structure to Your Page. . 37
HTML Elements for Structuring Page Text. 38
Organizing Text Into Lists . . 44

Chapter 4  Formatting Your Web Page. 51
Styling Text . . 52
Working with Text Styles. . 57
Styling Paragraphs. . 60
Working with Colors . . 64

Chapter 5  Project: Creating a Personal Home Page. 69
What You’ll Be Building . . 70
Sketching the Layout. . 70
Choosing Typefaces. . 71
Choosing a Color Scheme. . 71
Building the Page. . 72
From Here. . 81

viii

PART 2  WORKING WITH IMAGES AND STYLES
Chapter 6  Adding Images and Other Media. 85

Understanding Image File Formats. . 87
Getting Graphics . . 88
Inserting an HTML5 Figure. . 89
Setting Up an Image as a Link. . 90
Using an Image as a Custom Bullet . . 91
Aligning Images and Text. . 92
Controlling the Background Repeat . . 95
Setting the Background Position. . 96
Adding a Hero Image. . 97
The Background Shorthand Property. 99
Optimizing Images. . 99
Adding Video and Audio to the Page. . 100

Chapter 7  Learning More About Styles. . 109
Adding Styles to a Page. . 110
Units of Measurement in CSS. . 119

Chapter 8  Floating and Positioning Elements. 121
Understanding the Default Page Flow. . 122

Chapter 9  Styling Sizes, Borders, and Margins. 139
The Anatomy of an Element Box . . 140
Watch Out for Collapsing Margins!. . 152

Chapter 10  Project: Creating a Landing Page 155
What You’ll Be Building . . 156
Sketching the Layout. . 156
Choosing Typefaces. . 157
Choosing a Color Scheme. . 158
Building the Page. . 159
From Here. . 178

PART 3  LAYING OUT A WEB PAGE
Chapter 11  Learning Page Layout Basics . . 183

The Holy-Grail Layout. . 184
Understanding Web Page Layout Methods. . 185
Learning the HTML5 Semantic Page Elements . . 186
Creating Page Layouts with Floats. . 191
Creating Page Layouts with Inline Blocks. . 196

ix

Chapter 12  Creating Page Layouts with Flexbox. 203
Understanding Flexbox . . 204

Chapter 13  Designing Responsive Web Pages. 229
Creating a Responsive Layout. . 233

Chapter 14 � Making Your Images and Typography
Responsive . . 251

Making Images Responsive. . 252
Making Typography Responsive . . 257
Gallery of Responsive Sites. . 263

Chapter 15  Project: Creating a Photo Gallery. 269
What You’ll Be Building . . 270
Getting Your Photos Ready . . 270
Sketching the Layout. . 270
Choosing Typefaces. . 271
Choosing the Colors. . 272
Building the Page. . 272
Adding a Few Tricks . . 281
From Here. . 286

PART 4  MAKING YOUR WEB PAGES SHINE
Chapter 16  More HTML Elements for Web Designers 289

More about Links. . 298
Inserting Special Characters. . 302
Using the HTML5 Entity Browser . . 303
Adding Comments. . 304

Chapter 17 � Adding a Splash of Color
to Your Web Designs . . 305

Understanding Colors. . 306
Adding Colors with CSS. . 309
Choosing Harmonious Colors. . 317
Using the Color Scheme Calculator. . 318
Color Scheme Gallery. . 320
Applying a Color Gradient. . 322

Chapter 18  Enhancing Page Text with Typography 331
Specifying the Typeface. . 332
Working with Text Styles. . 340
Web Typography Gallery. . 346

x

Chapter 19  Learning Advanced CSS Selectors. 349
Working with ID Selectors . . 350
Web Page Genealogy: Parents, Descendants, and Siblings. 352
Working with Contextual Selectors . . 353
Taking Things up a Notch by Combining Selectors. . 359
Resetting CSS with the Universal Selector. . 362
Styles: What a Tangled Web Page They Weave. . 363

Chapter 20  Project: Creating a Portfolio Page 371
What You’ll Be Building . . 372
Sketching the Layout. . 372
Choosing Typefaces. . 373
Choosing a Color Scheme. . 375
Building the Page. . 376
From Here. . 392

Appendix � From Playground to Web:
Getting Your Pages Online. . 395

Index. . 407

xi

Preface
In today’s world, lots of people crave the experience of expressing themselves

online. They can do that through fixed-format media such as Facebook,

Twitter, and Instagram, but for many people, these sites are too restrictive.

Instead, they prefer to build their own presence on the web, and the way

to do that with the maximum amount of freedom and creativity is to learn

HTML and CSS.

In programming circles, many people believe that the best way to learn

how to code is by coding. Reading about the language is fine and necessary,

but if you really want to learn the language, you must use it. My own belief

is that the best way to learn to code is to play with code. For HTML and CSS,

this means two things:

•	 In standard HTML/CSS teaching, you’re given some code—a tag,
say, or a template—and are told how it works. In playful HTML/
CSS teaching, you’re given some code and encouraged to play
with it: change the font size, expand the padding, apply colors,
and so on.

•	 In standard HTML/CSS teaching, you’re given simple or trivial
examples, such as the classic Hello World! demonstration. In
playful HTML/CSS teaching, you’re given substantive, useful
projects to build from scratch and customize to suit your needs.

This spirit of playfulness and experiment pervades Web Design Playground,

and I encourage you to view HTML and CSS as tools for creativity and

expression.

xiii

Acknowledgments
The English essayist Joseph Addison once described an editor as someone

who “rides in the whirlwind and directs the storm.” I don’t know if that’s true for

editors in some of the more sedate publishing nooks (novels and cookbooks

and such), but I think it applies perfectly to the rigors of computer-book editing.

Why? Well, the computer industry (and the web in particular) is so exacting that

even the teensiest authorial (or editorial) lapse could result in a book that sows

confusion and consternation rather than certainty and delight.

The good folks at Manning Publications minimize book blunders by

subjecting each manuscript to a barrage of reviews, not only by editorial

specialists, but also by a team of dedicated outsiders (in a process I call

“gang reviewing”). Instead of a process in which single-digit numbers of

eyeballs look at the manuscript, a Manning book is scrutinized by dozens,

so you get a book that contains accurate and relevant information and

a book that has passed muster with some of the sharpest eyes and ears in

the business. My name may be the only one that appears on the cover, but

tons of people had a big role in creating what you now hold in your hands.

Those reviewers were Conor Redmond, Eric Cantuba, Itai Polatnick, Jose San

Leandro, Liam Kemp, Nitin Ainani, Prabhuti Prakash, Richard Fieldsend, Sachin

Kumar, Scott Dierbeck, Sebastian Maier, Shawn Eion Smith, Thomas Overby

Hansen, Vasile Boris, and Zoheb Ainapore. Of those I worked with directly,

I’d like to extend warm thanks to publisher Marjan Bace, acquisitions editor

Brian Sawyer, development editor Karen Miller, editorial director Bert Bates,

development manager Rebecca Rinehart, designer Monica Kamsvaag, review

editor Aleksandar Dragosavljević, MEAP coordinator Matko Hrvatin, assistant

acquisitions editor Nicole Butterfield, technical editors Doug Sparling and Helen

Sparling, technical proofreader Louis Lazaris, copyeditor Kathy Simpson,

proofreader Michelle Melani, production editor Deirdre Hiam, design editor

Janet Vail, and quality reviewer Barbara Mirecki.

The members of the editorial team aren’t the only people who had their

fingers in this publishing pie. Flip back a few pages, and you’ll find a list of

other professionals who worked long and hard to produce this book. I tip my

authorial hat to all of them. I’d also like to thank all the people who took the

time to review the early manuscripts of the book and to offer comments and

suggestions. Your couple of cents’ worth was very much appreciated.

Finally, I’d be remiss if I didn’t extend a hearty and heartfelt thanks to my

agent, Carole Jelen, whose hard work made this project possible and whose

breathtaking knowledge of the technical-publishing industry fills me with

awe and makes me grateful every day to have Carole working on my behalf.

xv

About This Book
In this book, I teach you how to create beautiful web pages in no time flat. I

understand that the very idea of trying to create something that looks as good

as what you see on the web sounds like an intimidating challenge. However,

it’s my goal in this book to show you that it’s quite straightforward and that

anyone can build an attractive and sophisticated web page with his or her

bare hands. I even try to have—gasp!—a little irreverent fun as I go along.

You’ll also be happy to know that this book doesn’t assume that you have

any experience in web design, HTML, or CSS. You start from scratch and

slowly build your knowledge until, before you know it, you have your very

own tract of web real estate. All the information is presented in short, easy-to-

digest chunks that you can skim to find the information you want. The online

Web Design Playground (https://webdesignplayground.io) also offers instruction

and exercises that you can work through to hone your knowledge.

I’m assuming that you have a life away from your computer screen, so Web

Design Playground is set up so that you don’t have to read it from cover to

cover. If you want to know how to add an image to your web page, for example,

turn to the chapter that covers working with images (that would be Chapter

6). Beginners, however, will want to read at least chapters 1 through 4 before

moving on to more esoteric topics. To make things easier to find, the following

section gives you a summary of the book’s 20 chapters (and one appendix).

Road Map
Chapter 1 introduces you to HTML and CSS. You learn about the benefits

and limitations of these essential web design technologies, and you learn

how HTML tags and CSS properties work. You also get a brief introduction to

the book’s companion website, the Web Design Playground.

Chapter 2 takes you on a journey to build your first web page. You learn

how to set up the basic structure of a page and then add a title and some

text. From there, you learn how to mark up important and emphasized text,

quote text, add headings, and create links.

Chapter 3 shows you how to add some structure to a web page by giving

you the HTML tags that divide page text into paragraphs, add line breaks,

organize page text into separate chunks, and create inline containers for

styling words and phrases. You also get the lowdown on building numbered

and bulleted lists.

Chapter 4 shifts back to CSS and shows you how to format text by

applying a typeface, a type size, and bold and italic styling. You also learn

how to align and indent paragraphs and how to apply colors to the page text

and background.

xvi	 ABOUT THIS BOOK 

Chapter 5 covers the first project of the book. In this case, you gather

the HTML and CSS knowledge from chapters 1 through 4 and use it to build

a personal home page for yourself.

Chapter 6 shows you how to augment your web pages with nontext

elements. Most of the chapter covers images, such as photos and illustrations,

but you also learn how to add video and audio files.

Chapter 7 furthers your CSS education by showing you the three ways you

can add styles to a page. You also learn how to wield class selectors, which

are among the most useful and powerful CSS techniques. I also introduce

you to the various measurement units you can use in your CSS rules.

Chapter 8 gives you the tools you need to take charge of your page

elements by taking them out of the default page flow used by the web

browser. You learn how to float elements on the page and also how to

position elements relative to other elements or to the browser window itself.

Chapter 9 introduces you to one of the most powerful concepts in all of

CSS: the box model. You learn what the box model is all about, and you use

it to set an element’s width and height, add padding around an element’s

content, and augment an element with a border and a margin.

Chapter 10 takes you through the book’s second project, which is a

landing page for a product or service. You run through the full page-building

process, from sketching the design to choosing the typefaces and colors to

building the page structure and content.

Chapter 11 gets you started on the all-important topic of web page

layout. I introduce you to HTML5’s semantic page layout tags—including

<header>, <article>, and <footer>—and show you how to create page

layouts by using both floated elements and inline blocks.

Chapter 12 gives you a complete tutorial on using the powerful, popular

flexbox layout technology. You learn what flexbox is and what it can do; you

learn the fundamentals of the technology; and then you put flexbox to work

creating a standard web page layout.

Chapter 13 introduces responsive web pages, one of the hottest topics

in modern web design. You learn techniques that enable you to structure

your web pages so that they adapt to changing device screens, from giant

desktop monitors to tiny smartphone screens.

Chapter 14 continues your education in responsive web design by

showing you how to configure your images and your page typography to

respond to screen size. This chapter also includes a gallery of sites that do

the responsive thing right so you can see how the pros do it.

Chapter 15 covers the book’s third project, which is an attractive,

sophisticated photo gallery. You sketch the layout, choose font and colors,

and then build the page step-by-step.

	 ABOUT THIS BOOK	 xvii

Chapter 16 takes you on a tour of many more HTML tags that will come

in handy during your web design career. You also learn how to use more-

sophisticated linking techniques, add special characters (ones that aren’t

readily accessible via the keyboard), and make your page source code easier

to understand with comments.

Chapter 17 is all about color, and you learn some color theory; you also

learn how colors work in CSS, and the various techniques that you can

use to apply a color. This chapter gives you some pointers on choosing a

harmonious color scheme for your pages. Finally, you learn how to apply a

color gradient to a page element.

Chapter 18 focuses on web page typography. You learn more about how

to apply a typeface, including using third-party fonts (such as those from the

Google Fonts collection) and how to host your own fonts. You also learn

how to apply small caps and set the line height for easier reading.

Chapter 19 presents several advanced but vitally important CSS concepts.

You learn lots more about CSS selectors, and you get some background on

three crucial CSS ideas: inheritance, the cascade, and specificity.

Chapter 20 presents the book’s fourth and final project: a website

for showing off your personal portfolio. After building the basic structure, you

learn how to add site navigation, portfolio images, contact info, and more.

The appendix is devoted to getting your web code online. You learn

the various ways you can get your code from the Web Design Playground

to your computer. From there, I talk about how to choose a web hosting

provider and how to obtain a domain name. I close by showing you how to

upload and validate your files.

Code
To encourage play and experimentation, the book has a companion website

called the Web Design Playground (located at https://webdesignplayground.io).

The site lets you type your HTML and CSS code in the editors provided, and

the browser’s rendering of that code appears automatically in the Results

window.

The Web Design Playground also gives you access to all the book’s example

files, which you can customize and play with as your creativity takes you. To

facilitate experimentation and to reinforce the overall sense of play, the book’s

tutorial chapters also offer numerous hands-on exercises that direct you to

use the Playground to modify the provided code in various ways. This helps

you not only learn the material, but also see the range of what’s possible.

The Playground has an extensive help system to show you how everything

works, but you can find the basics in Chapter 1. Instructions for getting the

code from the Playground to your computer are provided for you in the

appendix.

xix

About the Author
PAUL McFEDRIES has been a professional technical writer for more than

25 years. He has nearly 100 books to his credit, which collectively have sold more

than 4 million copies worldwide. When he’s not writing books, Paul is building

web pages, which he’s been doing since 1996. Paul has hand-coded many sites,

including his web home (https://mcfedries.com); Word Spy (https://wordspy.com);

WebDev Workshop (https://webdev.mcfedries.com); and this book’s companion

site, Web Design Playground (https://webdesignplayground.io).

https://mcfedries.com
https://wordspy.com
https://webdev.mcfedries.com
https://webdesignplayground.io

Part 1
Getting Started

with HTML and CSS
This book begins at the beginning by defining HTML and CSS,
introducing you to tags and properties, and showing you what
you can (and can’t) do with these web design technologies.
With Chapter 1’s brief but necessary introduction out of
the way, in Chapter 2 you dive in and create your first web
page, complete with formatted text, headings, and links.
The rest of Part 1 builds on this foundation by showing you
how to add structure to your page (Chapter 3) and how to
style typefaces, paragraphs, and colors (Chapter 4). Chapter
5 brings everything together with a project that shows you
how to build a personal home page to show off to the world.

Chapter

	 WEB DESIGN PLAYGROUND	 3

1

1

Getting to Know
HTML and CSS

This chapter covers
▪	Viewing the fundamentals of HTML and CSS
▪	Introducing the Web Design Playground
▪	�Learning how to construct HTML tags and CSS

properties

When a jazz musician creates an improvisation, no matter how intricate,
she plays by using combinations of seven musical notes (A through G).
When an artist creates a picture, no matter how detailed, he paints by using
combinations of three primary colors (red, yellow, and blue). When poets
create verse, no matter how inventive, they write by using words that are
combinations of the 26 letters of the alphabet. These examples show that
creativity and play don’t require elaborate resources or complex raw materials.
Imagination and curiosity combined with a few building blocks are all you
need to express yourself in almost any art, including the art of web page
design. As you learn in this chapter and throughout this book, HTML and CSS
provide those building blocks. And although there are more of those blocks
than there are musical notes, primary colors, or even letters of the alphabet,
there aren’t too many, but more than enough to let you express yourself on
an exciting modern canvas: the web.

Getting to Know HTML and CSS

4	 WEB DESIGN PLAYGROUND 

What Is HTML?
The hardest thing about HTML by far is its name. HTML stands for Hypertext

Markup Language, which sounds about as inviting as a tax audit. But it

becomes a lot less intimidating when you break down its terms.

I’ll begin with hypertext. A link, as I’m sure you know, is a special word or

phrase (or even an image) in a web page that “points” to another web page.

When you click one of these links, your browser transports you to the other

page immediately. The folks who invented the web used the geeky term

hypertext link for this special text. (The prefix hyper means beyond.) Because

these hypertext links are the distinguishing features of the web, pages are

often known as hypertext documents. So HTML has hypertext in it because

you use it to create these hypertext documents. (It would be just as accurate

to call this language WPML, or Web Page Markup Language.)

My dictionary defines markup as (among other things) “detailed stylistic

instructions written on a manuscript that is to be typeset.” For the purposes

of this chapter, I can rephrase this definition as follows: “detailed stylistic

instructions typed in a text document that is to be published on the World

Wide Web.” That’s HTML in a nutshell. It has a few simple alphabetic codes—

called tags  —for detailing things such as herding text into paragraphs,

creating bulleted lists, inserting images, and (of course) defining links. You

type these tags in the appropriate places in an ordinary text document, and

the web browser handles the dirty work of translating—or rendering  —the

tags. The result? Your page is displayed the way you want automatically.

The word language may be the most intimidating because it seems

to imply that HTML is a programming language. Fortunately, you can rest

assured that HTML has nothing to do with computer programming. Rather,

HTML is a “language” in the sense that it has a small collection of words that

you use to specify how you want your text to appear—as a heading or as a

numbered list, for example.

In short, playing with HTML means inserting a few codes strategically

between stretches of regular text in such a way that you end up with an

honest-to-goodness web page. As far-fetched as this may sound to you

now, you’ll create a working web page by the end of this chapter, and by

the end of this book, you’ll have created several impressive HTML projects.

What Can You Do with HTML?
When you add HTML to a document, you're essentially giving the web browser

a series of instructions that specify how you want the page to be laid out within

the browser window. You use HTML to specify, in its succinct way, the overall

structure of the page and to let the browser know what you want each part of

the page to be. You use HTML to supply instructions similar to the following:

•	 Use this line as the main heading of the page.

•	 Treat these lines as subheadings.

What Is HTML?

	 WEB DESIGN PLAYGROUND	 5

•	 Make this chunk of text a separate paragraph.

•	 Turn these five consecutive items into a bulleted list.

•	 Convert these six consecutive steps to a numbered list.

•	 Make this phrase a link.

These instructions likely seem a bit abstract to you now, so I’ll show you

a concrete example of HTML in action.

From Plain Text to HTML: An Example
Figure 1.1 shows a plain-text document displayed in a web browser. As you

can see, except for the occasional line break, the browser displays a wall of

unformatted, unwrapped text. This text is extremely difficult to read, and

it’s exceptionally hard to extract meaning from the text because it's almost

entirely undifferentiated.

HTML rides to the rescue, not only providing the means to make plain

text more readable, but also allowing you to display the text in a way that

your readers will find meaningful. Figure 1.2 shows the text from Figure 1.1

with some HTML applied.

IIFigure 1.1 
The browser can display
plain-text files, but they're
awfully hard to read.

Getting to Know HTML and CSS

6	 WEB DESIGN PLAYGROUND 

Image

Link

Quotation

Bulleted list

Heading

Heading

Link

Italic text

IIFigure 1.2  With some HTML applied, the text from Figure 1.1 becomes easier
to read, navigate, and understand.

Here, I've used headings to display both the article title at the top and

a section title near the bottom. Notice that the section title is rendered

in a type size that's slightly smaller than the main title, making the article

hierarchy immediately clear. I also used HTML to add an image for visual

interest. To help put the H in this page's HTML, I set up two of the words as

links to (in this case) other sites. Although you see a bit later in this chapter

that text formatting usually is the domain of CSS, you can also use HTML

to add a bit of formatting flourish to your pages, such as the italics I added

here. I also set up a quotation, which the browser renders indented from the

regular text, and I added italics to that quotation for added differentiation.

Finally, I used HTML to set up a bulleted list.

Now that you know what HTML can do, it's time to take a closer look at

how you tell the browser what you want your page to look like.

What Is CSS?

	 WEB DESIGN PLAYGROUND	 7

What Is CSS?
When you build a house, one of the early jobs is framing, which involves

putting up the basic structure for the floors, walls, and roof. That foundational

framing is what you're doing when you add HTML to your page: You specify

what you want to appear on the page, what you want the page's various

items to be (such as a heading, paragraph, or list), and the order in which you

want these items to appear.

But as a house isn't a home without finishing touches such as molding,

paint, and flooring, your document isn’t a modern example of a web page

until you've used CSS to add some finishing work. CSS stands for Cascading

Style Sheets, and as is the case with HTML, its name is more complicated

than what it does. I’ll break down the words, although in this case, I'll address

them slightly out of order for simplicity's sake.

First, a style is an instruction to the browser to modify how it displays

something on the page. (That something could be a word, a paragraph, or

every instance of a particular HTML element.) These modifications usually

are formatting-related, such as changing the typeface or the text color, but

you can also use styles to control page layout and even to create animated

effects. If you've ever used styles in a word processing program, you already

have a good idea of what web page styles can do.

Okay, so what's a sheet? In the early days of publishing, firms maintained

manuals that defined their preferred formatting for typefaces, headings,

pulled quotes, and so on. This formatting was known as house styles, and

the manual was called a style sheet. In web design, a style sheet performs

essentially the same duties. It's a collection of styles that get applied to a

particular web page.

To understand the cascading part of CSS, you need to know that, in

the same way that water running down a hill can take different routes to

the bottom, styles can take different routes before they get applied to an

element. Some styles come from the web browser; some styles come from

the user (if the user configures her browser to use a different default type

size, for example); and some styles come from your style sheets. When these

styles overlap, the web browser uses a complex algorithm to decide which

style gets applied, and that algorithm is called the cascade.

You use CSS, in other words, to define how your page looks. It may seem

that you use CSS only to add "eye candy" to a page, and it's certainly true

that CSS offers you the tools to make only trivial or frivolous modifications.

How your page looks, however, is every bit as important as what your page

contains, because few people will bother to read text that's formatted poorly

or incoherently.

Beware
The idea of the cascade
is by far the most
complex and convoluted
aspect of CSS. I get into
it later in the book (see
Chapter 19), but for now,
I highly recommend
that you transfer it to a
mental back burner until
you get that far.

Getting to Know HTML and CSS

8	 WEB DESIGN PLAYGROUND 

A Note about the Separation of Structure and Presentation
While you're trying to wrap your head around the differences between HTML

and CSS, let me offer a key distinction. Although I'm generalizing somewhat,

here's the basic difference between the two:

•	 HTML defines the overall structure of the web page.

•	 CSS defines the visual presentation of the web page.

Some overlap exists here (HTML can affect the presentation of the page,

for example, and CSS can affect the layout), but for the most part, HTML

and CSS enable you to separate structure and presentation, respectively.

This distinction is important because when you keep these two aspects of a

web page separate, your page will be easier to build, easier to maintain, and

easier to customize.

What Can You Do with CSS?
When you add CSS to a document, you're telling the web browser how you

want specific elements to look. Each style is a kind of formatting instruction

to the browser. You can use these instructions in a wide variety of ways that

are similar to the following examples:

•	 Display all the links in red text.

•	 Use a specific font for all the headings.

•	 Create a bit of extra space around this paragraph.

•	 Add a shadow to this photo.

•	 Use lowercase Roman numerals for all numbered lists.

•	 Always display this section of text on the far-right side of the
window.

•	 Rotate this drawing by 45 degrees.

I’ll make this list more concrete by showing you an example.

From Structure to Presentation: A CSS Example
Earlier in this chapter, I took a plain-text document (Figure 1.1) and applied a

bit of HTML to give it some structure and improve its readability (Figure 1.2).

In Figure 1.3, I've applied a few styles to make the page look a bit nicer.

What Is CSS?

	 WEB DESIGN PLAYGROUND	 9

Here's a summary of the major styles changes I made:

•	 Displayed the title in a larger text size, centered and in
small caps

•	 Added a shadow to the photo

•	 Made all the text slightly smaller

•	 Removed the underline from the links

•	 Displayed the quotation in lighter-color text

•	 Converted the bullets to a two-column list

•	 Increased the side margins

IIFigure 1.3 
The example web page with
a few styles applied

Getting to Know HTML and CSS

10	 WEB DESIGN PLAYGROUND 

What Can’t You Do with HTML and CSS?
Earlier, I mentioned that HTML isn’t a programming language, so it's fairly

straightforward to learn and to deploy it in your web pages, which is good

news. The bad news is that HTML can’t handle many higher-level operations

because it's not a programming language. The list of what you can't do with

HTML alone is quite long, but I'll mention the following because one or

more of them may be on your to-do list:

•	 Get data from a server database or other remote address

•	 Process data submitted through a form

•	 Handle user accounts, logins, and passwords

•	 Add, hide, or remove web page elements on-the-fly

Performing tasks like these requires a programming language such as

JavaScript or PHP, which are well beyond the scope of this book.

How HTML and CSS Create the Web
One of the most extraordinary facts about the web is that (with the

exception of extra features such as images, videos, and sounds), its pages

are composed of nothing but text. That's right—almost everything you see

as you surf the web was created by stringing together the letters, numbers,

and symbols that you can tap on your keyboard.

That idea is a mysterious one, to say the least, so I’ll give you a quick look

at how it works. Figure 1.4 shows the process.

The following steps explain the process in detail:

1	 You use a text editor or similar software to create your HTML and

CSS files.

2	 You upload your HTML and CSS files to an online service called a web

hosting provider, which runs a web server.

When you sign up for an account, the hosting provider issues you a

unique address, such as www.yourdomain.com. So if you upload a file

named index.html, the address of that page is www.yourdomain.com/

index.html.

3	 A site visitor uses her web browser to type the address of your page.

4	 The web browser uses that address to request your page from the

web server.

5	 After making sure that the address is correct, the web server sends the

page to the user’s web browser.

6	 The web browser interprets the page’s HTML tags and CSS properties

through a process called rendering, and the rendered code appears

on the user’s device.

Introducing the Web Design Playground

	 WEB DESIGN PLAYGROUND	 11

1. Create your HTML
and CSS files.

2. Upload the
files to the web.

3. Someone visits
your page.

4. The browser requests
your page from the server.

5. The server
sends the page
files to the
browser.

6. The browser
renders the page
for the visitor.

Web
Server

HTML
CSS

Web
Browser

Your
Computer

Site Visitor

As you can see, the fact that the web is made of simple stuff doesn't

mean that getting that stuff on the web is a simple matter. In fact, the

procedure is a bit convoluted, especially when you’re starting. That's why I

devote appendix A to the process.

Introducing the Web Design Playground
Right now, though, you're probably itching to start playing around with

HTML and CSS and seeing what these fascinating technologies can do. I

don't blame you. One of this book's core ideas is that the best way to learn

HTML and CSS is to have fun playing with your new knowledge, trying out

different tags and properties, and experimenting with different values. To

help you do all that with the least amount of fuss, I've built an online tool

called the Web Design Playground, shown in Figure 1.5, which you can

access at https://webdesignplayground.io/.

IIFigure 1.4 
To go from HTML and CSS
to a web page, you send
your code to a web server,
and visitors use their web
browsers to retrieve and
render your code into
a page.

Getting to Know HTML and CSS

12	 WEB DESIGN PLAYGROUND 

Type your
HTML and
CSS here...

...and what your code looks like in
the web browser appears here.

IIFigure 1.5 
The Web Design Playground
lets you play with HTML and
CSS online.

You can use this site to try out HTML tags and CSS properties, load

the book's example files, run through lessons that help you learn a topic,

access various "construction kits" for experimenting with features, save your

work, and even download the resulting file to your computer. The next few

sections provide the details.

Playing with HTML and CSS
The main purpose of the Web Design Playground is to provide an easy-to-

use tool for playing around with HTML tags and CSS properties. Here's how

it works:

1	 In the Web Design Playground, use the HTML Editor to type the

HTML tags you want to try.

If a tag requires one or more attributes, be sure to add them as well.

2	 Use the CSS Editor to type the CSS property definitions you want to use.

3	 Examine the Results box, which displays what your HTML and CSS will

look like in a web browser.

4	 Repeat steps 1–3 to fix any problems or perform further experiments.

Loading the Lesson Files
This book contains a ton of HTML and CSS code. As a general rule, you'll

learn these subjects in a deeper way if you type the examples by hand

Introducing the Web Design Playground

	 WEB DESIGN PLAYGROUND	 13

(which gives you what I call a "fingertip feel" for the code). I understand,

however, that you're a busy person who may not have the time to type each

example. To help you, the Web Design Playground includes a menu that

links to every lesson from the book. When you select a lesson, you see an

introduction followed by one or more examples and then by one or more

activities that help you learn the lesson material. In each case, the code

appears automatically, and you can play around with it as you see fit.

Here are the steps to follow to load a lesson:

1	 In the Web Design Playground, click Menu at the right end of the

toolbar. A menu of the site's links appears.

The Book Lessons section contains an item for each chapter in the book.

2	 Click the chapter that contains the lesson you're looking for.

3	 In the submenu that appears, click the lesson you want to play with.

The lesson introduction appears.

4	 Click the Next Page button.

The lesson example's HTML tags and text appear in the HTML Editor,

and the example's CSS code appears in the CSS Editor.

5	 Click Next Page to work through the activities for the lesson.

6	 To jump to another lesson in the same chapter, click the drop-down

menu above the Previous Page and Next Page buttons, and then click

the lesson you want to see.

Preserving Your Work
You’ll spend most of your time in the Web Design Playground performing

experiments and trying out this book's exercises. Occasionally, however,

you'll create some code that you want to save. The Web Design Playground

gives you two ways to do that:

•	 Copy some code. To copy code for use elsewhere, use the
HTML Editor or the CSS Editor to select the code you want
to copy; click the editor's Menu icon; and then click Copy to
Clipboard.

•	 Download your work. Click Menu, and below the Sandbox
heading, click Download Code. This command saves the HTML
and CSS and separate files, which are stored in a zip archive and
downloaded to your web browser's default downloads folder.

Now that you know what you can do with HTML and CSS and how to

use the Web Design Playground, you're ready to use the Playground to

understand how to work with HTML tags and CSS properties.

Getting to Know HTML and CSS

14	 WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io/1-1-0

HTML works its magic through short codes called tags. Each tag consists of

three parts:

•	 An opening left angle bracket (<), also known as the less-than sign.

•	 The name of the element you want to use. Element names are
short alphanumeric codes such as p for a paragraph, em for
emphasis, and h1 for a first-level heading.

•	 A closing right angle bracket (>), also known as the greater-than sign.

In most cases, the tag tells the browser to start

laying out the page according to the element you

specified. If you add the tag, for example, you're

telling the browser to display the text that follows in

italics. (em is short for emphasis.) You also have to

tell the browser when you want it to stop displaying

the text with that element, so you need to add a

companion called the closing tag. (The original tag is

the opening tag.) The closing tag is the same as the

opening tag except that it requires a forward slash

before the element name. A closing tag consists of

the following four parts:

•	 An opening left angle bracket (<)

•	 A forward slash (/)

•	 The name of the element

•	 A closing right angle bracket (>)

Figure 1.7 shows the closing tag for an h1 element.

Together, the opening and closing tags create a kind

of container to which you add some text (or even other

elements); the browser displays the text according to

the element that you specify in the tags. In Figure 1.1

earlier in this chapter, the text How New Words Are

Created appears at the top of the file. To turn that text

into the article's main heading as shown in Figure 1.2, I

applied the <h1> tag, which displays the text as a first-

level heading. The following example shows how I did it.

Play
The addresses that
appear here and
elsewhere in this chapter
refer to locations
in the Web Design
Playground, this book's
companion online site.
See "Introducing the
Web Design Playground"
earlier in this chapter.

Master
Throughout this book, I
use the word element to
refer to a specific item
of HTML, such as p or
em, and the word tag to
refer to the element and
its surrounding angle
brackets, such as <p>
or .

IIFigure 1.6 
The structure of a
typical HTML tag

<h1>

Angle brackets

Element name

IIFigure 1.7 
The structure of the
closing tag for the
h1 element

</h1>

Angle brackets

Forward slash

Master
Although most HTML
elements have both an
opening and a closing
tag, not all of them do.
The element that you use
to insert an image, for
example (see Chapter 6),
doesn't require a closing
tag. These tags are known
as self-closing tags.

Lesson 1.1:  �Introducing HTML Tags
Covers: HTML tags

Adding HTML Tag Attributes

	 WEB DESIGN PLAYGROUND	 15

ððOnline: wdpg.io/1-1-0

HTML works its magic through short codes called tags. Each tag consists of

three parts:

•	 An opening left angle bracket (<), also known as the less-than sign.

•	 The name of the element you want to use. Element names are
short alphanumeric codes such as p for a paragraph, em for
emphasis, and h1 for a first-level heading.

•	 A closing right angle bracket (>), also known as the greater-than sign.

In most cases, the tag tells the browser to start

laying out the page according to the element you

specified. If you add the tag, for example, you're

telling the browser to display the text that follows in

italics. (em is short for emphasis.) You also have to

tell the browser when you want it to stop displaying

the text with that element, so you need to add a

companion called the closing tag. (The original tag is

the opening tag.) The closing tag is the same as the

opening tag except that it requires a forward slash

before the element name. A closing tag consists of

the following four parts:

•	 An opening left angle bracket (<)

•	 A forward slash (/)

•	 The name of the element

•	 A closing right angle bracket (>)

Figure 1.7 shows the closing tag for an h1 element.

Together, the opening and closing tags create a kind

of container to which you add some text (or even other

elements); the browser displays the text according to

the element that you specify in the tags. In Figure 1.1

earlier in this chapter, the text How New Words Are

Created appears at the top of the file. To turn that text

into the article's main heading as shown in Figure 1.2, I

applied the <h1> tag, which displays the text as a first-

level heading. The following example shows how I did it.

Play
The addresses that
appear here and
elsewhere in this chapter
refer to locations
in the Web Design
Playground, this book's
companion online site.
See "Introducing the
Web Design Playground"
earlier in this chapter.

Master
Throughout this book, I
use the word element to
refer to a specific item
of HTML, such as p or
em, and the word tag to
refer to the element and
its surrounding angle
brackets, such as <p>
or .

IIFigure 1.6 
The structure of a
typical HTML tag

<h1>

Angle brackets

Element name

IIFigure 1.7 
The structure of the
closing tag for the
h1 element

</h1>

Angle brackets

Forward slash

Master
Although most HTML
elements have both an
opening and a closing
tag, not all of them do.
The element that you use
to insert an image, for
example (see Chapter 6),
doesn't require a closing
tag. These tags are known
as self-closing tags.

IIExample   �ðOnline: wdpg.io/1-1-1
This example uses the h1 element to turn the text How New Words Are Created into a
first-level heading.

Text rendered as
an h1 heading

W
E

B
 P

A
G

E

<h1>How New Words Are Created</h1>

The opening tag The affected text

The clos ing tag

H
T

M
L

By adding a few characters, you're telling the browser to do a whole bunch

of things to the text:

•	 Display the text in its own paragraph.

•	 Add a bit of vertical space above and below the text.

•	 Format the text as bold.

•	 Format the text larger than the regular-page text to make clear
that the text is a heading.

You learn more about headings in Chapter 2, but you can see that this

deceptively simple code lets you do many things without much work. That's

the magic of HTML.

Adding HTML Tag Attributes
Many HTML elements require no embellishment: You add the tag to the

page, and the browser does the rest. A few tags, however, do require extra

information before the web browser can process them correctly. You use

the tag, for example, to insert a picture into a web page, but you need

to tell the web browser where your image is located. Similarly, to create a

link, you use the <a> tag, but again, the web browser needs more info. In

this case, it needs to know what you want to link to (such as the address of

another website).

You supply these and similar extra bits of data to the browser by adding

one or more attributes to the tag. An attribute is a name-value pair in which

the name tells the browser the specific attribute and the value assigns it the

particular setting you want to use.

Play
The text in Figure 1.1
has several single-
word paragraphs that
are intended to be
headings. Line 7, for
example, consists of
the text Combining.
Given what you've
learned about applying
a first-level heading to
the article title, apply
a second-level heading
to the Combining text.

ðOnline: wdpg.io/1-1-3

Getting to Know HTML and CSS

16	 WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io.com/1-2-0/

CSS consists of a large collection of items called properties that control

aspects of your page such as the text color, the font size, and the margins

that surround an object. For each property you want to use, you assign

a value, and that property-value pair (also known as a declaration) is the

instruction that the browser carries out.

You have multiple ways to define a style, as you see in Chapter 7. For now,

I’ll go through the two most common methods. Figure 1.9 shows the general

form of the first method.

 selector {
 property1: value1;
 property2: value2;
 ...
 }

The web page element
to be styled

The property-value pairs are
surrounded by opening and
closing braces

One or more
property-value pairs

IIFigure 1.9 
The syntax to use for
defining CSS properties

Lesson 1.2:  � Introducing CSS Properties
Covers: CSS properties

When you're writing a link, for example, you specify the link address by

adding the href attribute and setting its value to the address you want to

use. Figure 1.8 shows an example.

Attribute name

Attribute value

Here, the href (short for hypertext reference) attribute is assigned the

value https://wordspy.com/, which is the address the user will be taken to

if she clicks this link. Notice that the attribute value is surrounded by double

quotation marks. These quotation marks are optional, but using them makes

your code easier to read and maintain.

When combined with attributes, HTML can do some useful, powerful

things. But HTML isn't the only web page tool you get to play with. In many

ways, CSS is far more powerful and fun than HTML, and you begin learning

how it works in the next section.

IIFigure 1.8 
You can use attributes to specify extra data for
some HTML elements, such as the link address for
an <a> tag.

Remember
Although technically,
you're allowed to
mix lowercase and
uppercase letters in
HTML element names
and attribute names, I
highly recommend using
only lowercase letters.
All-lowercase is the norm
in web design because
it’s easier to type and
read. You should also use
lowercase for attribute
values except when a
specific value requires
some uppercase, such as in
a filename or an address.

Adding HTML Tag Attributes

	 WEB DESIGN PLAYGROUND	 17

From Figure 1.9, you see that defining a style consists of the following

five parts:

•	 A reference to the web page element or elements to which you
want the style applied. This reference is known as a selector
because you use it to choose which page elements you want
the browser to style.

•	 An opening left brace ({).

•	 The name of the property you want to apply. Property names
are short alphabetic codes such as color for the text color,
font-size for the text size, and margin for the margin size.
The property name is always followed by a colon (:) and then a
space for readability.

•	 The value you want to assign to the property, as well as the unit
you want to use, if necessary. To specify a text size in pixels, for
example, you add px to the value. The value is always followed
by a semicolon (;).

•	 A closing right brace (}).

Taken together, these five parts comprise a style rule. The following

example shows the style rule I used to tell the browser to set the font size

for the main (h1) heading in Figure 1.2.

IIExample   �ðOnline: wdpg.io/1-2-1
This example uses CSS to apply the font-size property to the h1 element.

Text rendered with
a 36-pixel type size

W
E

B
 P

A
G

E

h1 {
 font-size: 36px;
}

The item you want to style and
the opening brace

The style property
and its valueThe clos ing brace

C
SS

<h1>How New Words Are Created</h1>

H
T

M
L

Getting to Know HTML and CSS

18	 WEB DESIGN PLAYGROUND 

The style begins by referencing the h1 HTML element, which tells the

browser to apply what follows to every <h1> tag in the current web page.

After the opening brace ({), the next line specifies the property-value pair:

font-size: 36px;. This line instructs the web browser to display every

instance of h1 text at a font size of 36 pixels. Finally, the closing brace (})

completes the style rule.

Here, you see one of the great advantages of using styles. If your page

has a dozen h1 headings, this rule applies to them all, which gives the page

a consistent look. Even better, if you decided that a size of 48px would look

nicer for your headings, you’d have to change the value only once in the

style rule, and that change would get reflected automatically in all your h1

headings.

Note that you're not restricted to a single declaration in your style

definitions. As you can see in the following example, you can add multiple

declarations as needed.

Play
How would you format a
web page's second-level
headings with a font size
of 30 pixels? ðOnline:
wdpg.io/1-2-2

IIExample   �ðOnline: wdpg.io/1-2-3
This example uses specifies multiple properties in a single CSS definition.

Text rendered at 36-pixels,
centered, and small caps

W
E

B
 P

A
G

E

h1 {
 font-size: 36px;
 text-align: center;
 font-variant: small-caps;
}

This property centers the heading.

This property disp lays the heading
in smal l capita l letters.The clos ing brace

C
SS

<h1>How New Words Are Created</h1>

H
T

M
L

Here, I've added the declarations text-align: center; to center the

heading and font-variant: small-caps; to display the heading in small

capital letters.

Master
In this section's
examples, I used four
spaces to indent the
declarations. This
indentation isn't
required, but it makes
CSS much easier to
read, so it's a good
idea to get into the
habit of indenting your
properties.

Some Helpful Features of the Playground

	 WEB DESIGN PLAYGROUND	 19

I mentioned earlier that you have another way to specify a style. You can

insert the declaration directly into an HTML element by using the style

attribute:

<element style="property1: value1; property2: value2; etc.">

Here’s an example:

<h1 style="font-size: 36px; text-align: center">

When you use this method, your styles apply only to the HTML element

in which they’re declared. I talk more about this method in Chapter 7.

CSS is slightly more complicated than HTML, but with that complication

comes immense power and expressiveness. As you see throughout the rest

of this book, CSS is your royal road to creating fantastic, fun web pages.

When your HTML structure is festooned with CSS formatting, you can

create beautiful web pages that are a pleasure to read and navigate.

Some Helpful Features of the Playground
Now that you know what HTML tags and CSS properties look like, you can

return to the Web Design Playground and run through a few features that

are designed to help you enter your tags and properties correctly:

•	 The HTML tags and CSS property names and values appear in
colors that are different from the regular text. These colors help
you differentiate between code and noncode.

•	 In the HTML box, when the text cursor is inside a tag, the editor
automatically highlights both that tag and its companion tag. In
Figure 1.10, you see that when I have the cursor in the opening
<p> tag (which is the tag for creating a paragraph—see Chapter 2),
the editor highlights that tag as well as its closing </p> tag. This
highlighting gives you a visual indicator that you've closed your tags.

Menu

•	 The CSS editor has a similar feature: When the cursor is
immediately to the left or right of a brace, the editor highlights the
companion brace. This highlighting helps you make sure to enter
both the opening and closing braces when you define a style.

Play
How would you format
a web page's second-
level headings with a
font size of 30 pixels
and right alignment?

ðOnline: wdpg.io/1-2-4

IIFigure 1.10 
The Web Design
Playground's HTML editor
highlights both the opening
and closing tags when
the cursor is inside one
of them.

Here, I've added the declarations text-align: center; to center the

heading and font-variant: small-caps; to display the heading in small

capital letters.

Master
In this section's
examples, I used four
spaces to indent the
declarations. This
indentation isn't
required, but it makes
CSS much easier to
read, so it's a good
idea to get into the
habit of indenting your
properties.

20	 WEB DESIGN PLAYGROUND 

•	 You can adjust the relative sizes of the editors by dragging the
vertical border that separates the editors.

•	 The Web Design Playground can do a limited amount of error
checking if you click an editor’s Menu icon (pointed out in
Figure 1.10) and then click Display Errors. If the editor detects
something wrong, you see a red error indicator in the margin
to the left of the line that has the problem. Hovering the mouse
pointer over that icon displays the error message. If you forget
the forward slash in a closing tag, for example, you see the error
Tag must be paired, as shown in Figure 1.11.

The closing tag’s forward slash is missing.

Summary
•	 HTML defines the structure of your web page, whereas CSS

defines the presentation.

•	 An HTML tag is a short code surrounded by angle brackets—
such as <h1> or <p>—that applies an effect or inserts an object.
Most tags also require a closing tag, such as </h1> or </p>.

•	 A CSS property is a name-value pair, and a CSS definition (or
rule) is one or more properties surrounded by braces ({ and })
applied to a specified element (such as a tag name).

•	 To see this book's lessons and to play around with HTML and
CSS code, use this book's companion website, the Web Design
Playground: https://webdesignplayground.io/.

IIFigure 1.11 
If the Web Design Playground
detects a problem, an error
icon appears in the margin
to the left of the code, and
hovering the mouse over
the icon displays the error
message.

Getting to Know HTML and CSS

	 WEB DESIGN PLAYGROUND	 21

2

Chapter

Building Your
First Web Page

Whatever you can do, or dream you can do,
begin it. Boldness has genius, power, and
magic in it! —William Hutchinson Murray

This chapter covers

▪	Learning the basic page structure and elements
▪	�Learning the most common text elements and

styles
▪	Creating links

Many of the modern technologies that we have to learn—whether it's building
spreadsheets with Microsoft Excel, enhancing images with Adobe Photoshop,
or maintaining a music collection with Apple’s iTunes—require us to master
complex features bristling with settings and plagued by unintuitive interfaces.
So it’s with great pleasure that we come across technologies such as HTML
and CSS that have no complicated tools, settings, or interfaces to figure out.
In fact, they have no interfaces at all. They’re mere text—a blissfully simple
symphony of letters and numbers and symbols. They’re simple, yes, but not
unsophisticated. With HTML tags and CSS properties, you can build a web
page that reflects who you are, that shows off your creativity, and announces
to the world, "Yes, I built this!"

2

Building Your First Web Page

22	 WEB DESIGN PLAYGROUND 

That’s why, after the brief introduction in Chapter 1, you get your HTML

and CSS education off to a proper start by building your first web page.

You learn the underlying structure that's common to all pages, as well as all

the standard text elements, and you learn how to add headings and links.

If you’ve got something to say, in this chapter you learn how to say it with

HTML and CSS.

Getting Your Web Page off the Ground
This book’s goal is to help you create your own web pages and thus lay

claim to a little chunk of personal cyberspace real estate: a home page away

from home, if you will. Before you can live in this humble abode, however,

you have to pour the concrete that serves as the foundation for the rest

of your digital domicile. In this section, I show you a few HTML basics that

constitute the underlying structure of all web pages.

ððOnline: wdpg.io.com/2-1-0

All your web page projects, from the simplest page to the most sophisticated

business site, begin with the same basic structure, which I outline in

Listing 2.1.

IIListing 2.1 
A Basic HTML Structure for Starting Any Web Page Project

<!DOCTYPE html> #1
<html lang="en"> #2
 <head> #3
 <meta charset="utf-8"> #4
 <title></title> #5
 <style></style> #6
 </head> #3
 <body> #7
 </body> #7
</html> #2

No doubt this code looks a little intimidating to you. I apologize for that

complication, but it's a necessary one that's baked into the way web pages

are built. Fortunately, I can soften the blow somewhat by offering you two

bits of good news:

•	 This code is by far the most complex you'll see in this chapter,
so if you can muddle through the next few paragraphs, the
sailing the rest of the way will be much easier.

Master
Here, I've used four
spaces to indent the
tags when they fall
inside other tags. This
indentation isn't strictly
necessary, but it's a
good idea; indentation
makes your code easier
to read and troubleshoot
because you can more
readily see each pair of
opening and closing tags.

Lesson 2.1:  �Laying Down the Basic Page Structure
Covers: Page-structure elements

Getting Your Web Page off the Ground

	 WEB DESIGN PLAYGROUND	 23

•	 When you work in the Web Design Playground, you don't even
see the code in Listing 2.1, because the Playground hides it
behind the scenes. (You're welcome.)

The structure begins with <!DOCTYPE html> right at the top (#1), and

this line tells the web browser which version of HTML you're using. This

declaration tells the browser that you're using HTML5, which is the latest

version and the version you learn in this book. The next part of the structure

consists of the <html> tag and its closing </html> tag (#2), which together

define the overall container for the rest of the page's HTML and CSS. The

<html> tag includes the lang="en" attribute, which tells the web browser

that the primary language of the page is English.

The rest of the structure is divided into two sections: the header and

the body.

The header section is defined by the <head> tag and its closing </head>

tag (#3). The header section acts like an introduction to the page because

web browsers use the header to glean various types of information about

the page. One important bit of data is the character set used by the page,

which is what the <meta> tag is doing (#4). You also use the head section

to define the page title (#5), which I talk about in the next section. Most

important for this book, the <style> tag and its closing </style> tag (#6)

are where you enter your style definitions.

The body section is defined by the <body> tag and its closing </body>

tag (#7), and this section is where you'll enter most of your HTML tags. The

text and tags that you type in the body section are what appear in the web

browser.

Play
You can copy and paste
the basic web page
structure from the Web
Design Playground.

ðOnline: wdpg.io/2-1-0

Remember
In the Web Design
Playground, I've
deliberately hidden
elements such as
<!DOCTYPE>, <html>,
<head>, <style>, and
<body> because (at
least in the Playground)
you don’t work with
these elements directly.
When you type tags in
the HTML Editor, the
Playground adds them
between the <body> and
</body> tags behind
the scenes. Similarly,
when you type styles
in the CSS Editor, the
Playground adds them
between the <style>
and </style> tags in
the background.

ððOnline: wdpg.io/2-2-0

You may be tempted to think of the page title as the text that appears at the

top of the page. In HTML, however, the page title is what appears on the

web browser’s title bar (or the page's tab, if you're using tabbed browsing),

as shown in the following example.

Lesson 2.2:  �Adding a Title
Covers: The <title> tag

Building Your First Web Page

24	 WEB DESIGN PLAYGROUND 

Here are a few things to keep in mind when thinking of a title for your page:

•	 Make sure that your title reflects what the page is about.

•	 Make the title unique with respect to your other pages.

•	 Because a longish title often gets truncated when it’s displayed
in the narrow confines of a browser tab, put a truly descriptive
word or two at the beginning of the title.

•	 Use a title that makes sense when someone views it out of
context. A person who really likes your page may bookmark it,
and the browser displays the page title in the bookmarks list, so
it’s important that the title makes sense when that person looks
at the bookmarks later.

IIExample   �ðOnline: wdpg.io/2-2-0
The text that you add between the header section's <title> and </title> tags appears either
on the page's browser tab, as shown in this example, or on the browser’s title bar.

The web page title

W
E

B
 P

A
G

E

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Neologisms</title>
 <style></style>
 </head>
 <body>
 </body>
</html>

Place the page t it le
between the <t it le>
and </t it le> tags.

H
T

M
L

Getting Your Web Page off the Ground

	 WEB DESIGN PLAYGROUND	 25

ððOnline: wdpg.io/2-3-0

If you tried to load a page containing only the basic structure from Listing 1.1,

you wouldn't see anything in the browser. Although the browser uses the

tags in the header section internally, including displaying the title in the

browser's current tab or title bar, the browser's content area displays only

the tags and text that you place between the <body> and </body> tags.

Ultimately, users visit your website for its content.
Everything else is just the backdrop. —Jakob Nielsen

In the example below, I added the text Hello HTML World! to the body

section.

IIExample   �ðOnline: wdpg.io/2-3-1
The text that you add between the <body> and </body> tags appears in the browser
window.

The text between the <body> and </body>
tags appears in the browser’s content area.

W
E

B
 P

A
G

E

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>The Web Design Playground</title>
 <style></style>
 </head>
 <body>
 Hello HTML World!
 </body>
</html>

Place the page text
between the <body>
and </body> tags.

H
T

M
L

Lesson 2.3:  �Adding Some Text
Covers: Adding web page text

Building Your First Web Page

26	 WEB DESIGN PLAYGROUND 

Here are a few things you should know about adding text to a web page:

•	 If you're working in the Web Design Playground, remember that
the HTML Editor assumes that what you type in that box will be
inserted between the <body> and </body> tags, so you don't
need to enter them.

•	 You may think that you can line things up and create some
interesting effects by stringing together two or more spaces. Alas,
no, that effect won't work. Web browsers chew up all those extra
spaces and spit them out into the nether regions of cyberspace.
Why? Well, the philosophy of the web is that you can use only
HTML tags to structure a document and CSS to style it. So a run
of multiple spaces—whitespace, as it’s called—is ignored.

•	 Tabs also fall under the rubric of whitespace. You can enter tabs
all day long, but the browser ignores them.

•	 Other things that browsers like to ignore are carriage returns.
It may sound reasonable that pressing Enter or Return starts a
new paragraph, but that’s not so in the HTML world. I talk more
about this topic in the next section.

•	 Earlier, I mentioned that web pages consist only of the
characters that you can peck out on your keyboard. Does that
mean you’re out of luck if you need to use characters that don’t
appear on the keyboard, such as the copyright symbol or an
em dash? Luckily, you’re not. HTML has special codes for these
kinds of characters, and I talk about them in Chapter 16.

Learning the Most Common Text Elements
Having great content is essential for any web page, and as you've seen so far

in this chapter, you can get started on a web page by typing some text. But

content is only the beginning. Figure 2.1 shows an example of a text-only

web page.

IIFigure 2.1  A web page with nothing but text

Learning the Most Common Text Elements

WEB DESIGN PLAYGROUND	 27

Content precedes design. Design in the absence of
content is not design, it’s decoration. —Jeffrey Zeldman

What you're seeing in Figure 2.1 is a page in which the text isn't adorned

with any HTML elements. Yes, you can read the page, but would you really

want to? I didn't think so. The page as it stands is fundamentally unappealing

because it's a bunch of undifferentiated text, which makes it both difficult

to read and dull to look at. By contrast, check out the revised version of the

page shown in Figure 2.2.

Ah, that's better! Now the page is easy to read and reasonably nice to

look at. The difference is that in this version, I used some basic HTML text

elements to redisplay the text in a form that's readable and understandable.

You'll learn how I did that as you read this chapter. In the next section, you

learn how to use the HTML required to mark text as important.

IIFigure 2.2  The web page from Figure 2.1 with some basic HTML text elements added

ððOnline: wdpg.io/2-4-0

In your web page, you may have a word, phrase, or sentence that you want

to be sure that the reader sees because it’s important. This text may be a vital

instruction, a crucial condition, or a similarly significant passage that needs

to stand out from the regular text because you don't want the reader to miss

it. In HTML, you mark text as important by using the strong element:

important text goes here

All browsers render the text between the and tags

in a bold font. The following example shows some web page text with

an important passage displayed in bold and the HTML markup used with

the text.

Master
All web browsers define
a default style for every
text element, such as bold
for text marked up with
the strong element. You
don’t have to stick with the
browser styling, however,
because in all cases you
can augment or override
the defaults by using your
own styles. You get into this
topic big-time in Chapter 4.

Lesson 2.4:  �Marking Important Text
Covers: The strong element

Building Your First Web Page

28	 WEB DESIGN PLAYGROUND 

IIExample   �ðOnline: wdpg.io/2-4-1
This example uses the tag to mark an important passage of the text as bold.

Text marked with the tagW
E

B
 P

A
G

E

That's because, according to the linguist Victoria Neufeldt (writing
in her book A Civil But Untrammelled Tongue),
most word invention goes on as a matter of course

Text marked as important
with the tag

H
T

M
L

Play
To learn more about
the strong element,
try the exercises on the
Web Design Playground.

ðOnline: wdpg.io/2-4-2

The following example shows some web page text with a keyword displayed

in bold and the HTML markup used with the text.

IIExample   �ðOnline: wdpg.io/2-5-1
This example shows some web page text with a keyword displayed in bold thanks to the
b element.

Text marked with the tag

W
E

B
 P

A
G

E

The combining process marries a word either with one or
more affixes (a prefix, infix, or suffix) or with another word.

Text marked as a keyword
with the tag

H
T

M
L

Play
How would you mark
up an article so that its
lede sentence appears
in bold? ðOnline:
wdpg.io/2-5-2

ððOnline: wdpg.io/2-5-0

In some cases, you want to draw attention to a word or phrase not because

it’s important per se, but because the text in question plays a role that makes

it different from regular text. That text could be a product name, a company

name, or an interface element such as the text associated with a check box or

command button. Again, the text you're working with isn't crucial—it’s different

in some way—so you want it to look different from the regular page text.

Each of these items indicates a keyword (or keyphrase) that has meaning

beyond the regular page text, and in HTML5, this type of semantic item is

marked up with the b element:

keyword

Web browsers render the text between the and tags in a bold

font. At this point, I imagine you scratching your head and wondering what

the difference is between the strong element and the b element, because

both render as bold text. That's a fair point, and I'll admit that the difference is

a subtle one. I should say that it’s a semantic one because HTML5 uses these

two separate elements to differentiate between important text and keywords.

In the future, I hope, screen readers and similar assistive technologies for

disabled readers will use this semantic difference to alert the visitor in some

way that this text is important and that text is a keyword.

Use It
Other candidates for
web page keywords
include the name of
a person (such as the
infamous “boldface
names” that appear in
celebrity gossip columns)
and the first few words
or the opening sentence
of an article.

Lesson 2.5:  �Formatting Keywords
Covers: The b element

Learning the Most Common Text Elements

	 WEB DESIGN PLAYGROUND	 29

The following example shows some web page text with a keyword displayed

in bold and the HTML markup used with the text.

IIExample   �ðOnline: wdpg.io/2-5-1
This example shows some web page text with a keyword displayed in bold thanks to the
b element.

Text marked with the tag

W
E

B
 P

A
G

E

The combining process marries a word either with one or
more affixes (a prefix, infix, or suffix) or with another word.

Text marked as a keyword
with the tag

H
T

M
L

Play
How would you mark
up an article so that its
lede sentence appears
in bold? ðOnline:
wdpg.io/2-5-2

ððOnline: wdpg.io/2-6-0

It’s often important to add emphasis to certain words or phrases in a page.

This emphasis tells the reader to read or say this text with added stress.

Consider the following sentence:

Verdana is a sans-serif typeface.

Now read the same sentence with emphasis (expressed in italics) added to

the word sans:

Verdana is a sans-serif typeface.

The meaning of the sentence and how you read the sentence change with

the addition of the emphasis (in this case, to stress the fact that Verdana isn’t

a serif typeface).

In HTML5, this type of semantic item is marked up with the em (for

emphasis) element:

text

FAQ
What's the difference
between the strong
element and the em
element? You use strong
when the text in question
is inherently crucial for
the reader; you use em
when the text in question
requires an enhanced
stress to get a point across.

Lesson 2.6:  �Emphasizing Text
Covers: The em element

Building Your First Web Page

30	 WEB DESIGN PLAYGROUND 

Web browsers render the text between the and tags in italics.

The following example shows a web page with emphasized text displayed in

italics, as well as the HTML markup that creates the effect.

IIExample   �ðOnline: wdpg.io/2-6-1
This example shows some web page text with a word emphasized via the em element.

Text marked with the tag

W
E

B
 P

A
G

E

But for every word with a definite origin, there are hundreds,
nay thousands, whose beginnings are unknown and probably
unknowable. Text marked as emphasized

with the tag

H
T

M
L

ððOnline: wdpg.io/2-7-0

It’s common in prose to need markup for a word or phrase to indicate that

it has a voice, mood, or role that’s different from that of the regular text.

Common examples of alternative text are book and movie titles. In HTML5,

this type of semantic text is marked up with the i (for italics) element:

<i>text</i>

Web browsers render such text in italics. The i element may seem to be

precisely the same as the em element, but there’s a significant semantic

difference: em adds stress to enhance the emphatic nature of the affected

text, whereas i tells the reader that the text is to be interpreted in an

alternative way to the regular text. Again, this subtle difference is potentially

useful in terms of accessibility; a screen reader would (at least in theory)

emphasize em text and let the user know about alternative text marked up

with the i element.

Use It
Other examples of
alternative text include
publication names,
technical terms, foreign
words and phrases, and
a person’s thoughts.

Lesson 2.7:  �Formatting Alternative Text
Covers: The i elementPlay

You can nest text-level
elements within other
text-level elements for
extra effect. You can
mark up a sentence as
important by using the
strong element, and
within that sentence,
you can mark up a
word with emphasis by
using the em element.

ðOnline: wdpg.io/2-6-3

Learning the Most Common Text Elements

	 WEB DESIGN PLAYGROUND	 31

The following example shows a web page with alternative text displayed

in italics, as well as the HTML markup that does the job.

IIExample   �ðOnline: wdpg.io/2-7-1
This example shows some web page text with a book title formatted as alternative text
using the i element.

Text marked with the <i> tag

W
E

B
 P

A
G

E

That's because, according to the linguist Victoria Neufeldt
(writing in her book <i>A Civil But Untrammelled Tongue</i>), most
word invention goes on as a matter of course: Text marked as

alternative with
the <i> tag

H
T

M
L

Play
To get familiar with the i
element, try the exercises
on the Web Design
Playground. ðOnline:
wdpg.io/2-7-2

ððOnline: wdpg.io/2-8-0

Many web pages include quotes from other works, which could be web

pages, people, books, magazines, or any written source. To ensure that your

readers don’t think that the quoted material is your own (which could lead

to charges of plagiarism), you should mark up the text as a quotation. How

you do this depends on the length of the quotation.

A short quotation should appear inline with your regular page text. You

mark up this text as a quotation by using the q element:

<q cite=”url”>quotation</q>

Most web browsers display text marked up with the q element the same

way as the regular page text but surrounded by double quotation marks. If

your quotation comes from another web page, you can include the optional

cite attribute and set its value to the URL of the web page.

A longer quotation should appear on its own for readability. You mark up

a longer quotation by using the blockquote element:

<blockquote>
Long quotation
</blockquote>

Lesson 2.8:  �Quoting Text
Covers: The q and blockquote elements

Building Your First Web Page

32	 WEB DESIGN PLAYGROUND 

The web browser displays text marked up with the blockquote element

in a separate paragraph that’s indented slightly from the left and right margins

of the containing element.

The following example shows some web page text that includes a short

quotation inline with the regular text and a longer quotation separated from

the regular text, as well as the HTML markup.

IIExample   �ðOnline: wdpg.io/2-8-1
This example shows some web page text with both a short quotation inline with the
regular text and a longer quotation separated from the regular text.

Shorter, inline quotation marked with the <q> tag

Longer, separated
quotation marked
with the
<blockquote> tag

W
E

B
 P

A
G

E

That’s because, according to the linguist Victoria Neufeldt
(writing in her book <i>A Civil But Untrammelled Tongue</i>),
most word invention goes on as a matter of course</
strong>:
<blockquote>
Neology, far from being a separable linguistic phenomenon that
manifests itself periodically or sporadically in response
to social stimuli, in fact rises out of ordinary linguistic
competence, what might be called the linguistic collective
unconscious of the speech community.
</blockquote>
This <q>ordinary linguistic competence</q> manifests as various
mechanisms that people use to forge new words:

Text marked as a longer quotation
with the <blockquote> tag

Text marked
as a short
quotation with
the <q> tag

H
T

M
L

Play
To get familiar with the
q and blockquote
elements, try the
exercises on the Web
Design Playground.

ðOnline: wdpg.io/2-8-2

Learning the Most Common Text Elements

	 WEB DESIGN PLAYGROUND	 33

ððOnline: wdpg.io/2-9-0

A heading is a word or phrase that appears immediately before a section

of text and is used to name or briefly describe the contents of that text.

Almost all web pages have a main heading at or near the top of the page that

serves as the title of the content. (Don’t confuse this heading with the text

between the <title> and </title> tags in the page’s <head> section. The

main heading appears in the page itself, whereas the text within the title

element appears only on the browser tab.)

Besides the title heading, many web page contents are divided into several

sections, each of which has its own heading. These sections may be further

divided into subsections with, again, each subsection having a heading, and

so on. Taken together, the title, section headings, and subsection headings

form an outline that neatly summarizes the structure and hierarchy of the

web page.

Well-written, thoughtful headings interspersed
in the text act as an informal outline or table
of contents for a page. —Steve Krug

In HTML, you mark up your page’s heading text by using the various

heading elements, which run from h1 for the highest level of your page

hierarchy (usually, the page’s main title) to h2 for the section headings, h3

for the subsection headings, and all the way down to h6 for the lowest-level

headings. The web browser displays each heading in its own block, formats

the text as bold, and (as you see in the example that follows) adjusts the text

size depending on the element used: h1 is the largest; h6 is the smallest.

Lesson 2.9:  �Working with Headings
Covers: The h1 through h6 elements

Building Your First Web Page

34	 WEB DESIGN PLAYGROUND 

IIExample   �ðOnline: wdpg.io/2-9-1
This example shows how the web browser renders the six HTML heading elements.

W
E

B
 P

A
G

E

<h1>Level 1 Heading</h1>
<h2>Level 2 Heading</h2>
<h3>Level 3 Heading</h3>
<h4>Level 4 Heading</h4>
<h5>Level 5 Heading</h5>
<h6>Level 6 Heading</h6>

H
T

M
L

Although HTML5 offers other ways to create semantic page divisions (see

Chapter 11), using heading elements is an easy, common way to tell the

browser and the reader how your web page text is organized, as shown in

the following example, which includes the heading from the web page you

saw earlier.

IIExample   �ðOnline: wdpg.io/2-9-2
This example shows how the web browser renders the h1 heading element.

<h1> heading

W
E

B
 P

A
G

E

<h1>How New Words Are Created</h1> <h1> heading

H
T

M
L

Play
You’re given a document
with a title, main
sections (Section 1,
Section 2, and so on),
subsections (Section 1.1,
Section 1.2, and so on),
and sub-subsections
(Section 1.1a, Section 1.1b,
and so on). Work up a
heading scheme for this
structure. ðOnline:
wdpg.io/2-9-3

Learning the Most Common Text Elements

	 WEB DESIGN PLAYGROUND	 35

ððOnline: wdpg.io/2-10-0

I mentioned in Chapter 1 that one of the defining characteristics of HTML (in

fact, the H in HTML) is hypertext: links to pages on your own site or to sites

anywhere on the web. In fact, it’s a rare page that doesn’t include at least a

few links, so you need to know how to craft hypertext by using HTML.

The HTML tags that you use to create a link are <a> and its corresponding

 closing tag. The a element is a little different from most of the other

elements you’ve seen in this chapter, because you don’t use it by itself.

Instead, you insert the address—often called the URL (short for Uniform

Resource Locator)—of your link into it. Figure 2.3 shows how this element

works:

The <a> tag takes the href attribute,

which stands for hypertext reference.

Set this attribute equal to the URL of the

web page you want to use for the link,

enclosed in double (or single) quotation

marks. Most link addresses are one of the

following:

•	 Local —A link to another page
on your website. To keep things
simple, I'm going to assume that
all your website's page files reside in the same directory. (For
the slightly more complex case of having page files in multiple
directories, see Chapter 16.) In that case, the <a> tag's href
attribute value is the name of the page file you're linking to.
Here's an example:

•	 Remote —A link to a page on another website. In that case, the
<a> tag's href attribute value is the full URL of the page on the
other site. Here’s an example:

Next, you replace link text with the descriptive link text that you want the

user to click, and then finish everything with the closing tag. By default,

most web browsers display the link in blue underlined text, as shown in the

following example.

IIFigure 2.3  The syntax to use for
the <a> tag

link text

The href
attribute

The text
the user clicks

The closing tagThe link
address

Beware
Using uppercase versus
lowercase letters can
be crucial in entering a
URL. On most (but not
all) websites, if you enter
even a single letter of a
directory or filename
in the wrong case, you
likely won’t get where
you want to go (that
is, you’ll get a 404 Not
Found error).

FAQ
Does the a in the <a> tag
stand for anything? The
a is short for anchor,
which comes from the
fact that you can create
special links called
anchors that send your
readers to other parts of
the same page instead
of sending them to a
different page. You learn
how this feature works
in Chapter 16.

Lesson 2.10:  �Crafting Links
Covers: The a element

IIExample   �ðOnline: wdpg.io/2-9-2
This example shows how the web browser renders the h1 heading element.

<h1> heading

W
E

B
 P

A
G

E

<h1>How New Words Are Created</h1> <h1> heading

H
T

M
L

Play
You’re given a document
with a title, main
sections (Section 1,
Section 2, and so on),
subsections (Section 1.1,
Section 1.2, and so on),
and sub-subsections
(Section 1.1a, Section 1.1b,
and so on). Work up a
heading scheme for this
structure. ðOnline:
wdpg.io/2-9-3

36	 WEB DESIGN PLAYGROUND 

IIExample   �ðOnline: wdpg.io/2-10-1
This example shows some web page text with two links created using the a element.

The links appear as blue, underlined text

W
E

B
 P

A
G

E

Where do new words come from? Sometimes we’re lucky enough
to know the answer. For example, the word

scofflaw

originated as a contest winner and

Frankenfood

came from a letter to the editor of a newspaper.

The <a> tag includes
the l ink address

The text that the
browser disp lays

as a l ink

The
clos ing
tag

H
T

M
L

 Summary
•	 In the basic HTML page structure, the header is defined by

the <head> and </head> tags, and it includes the page title
(between the <title> and </title> tags) and the page
CSS (between the <style> and </style> tags).

•	 In the basic page structure, you type your HTML tags and text
between the <body> and </body> tags.

•	 Use for important text and for keywords.

•	 Use to emphasize text and <i> to format alternative text.

•	 You can create a strong visual hierarchy in your page by taking
advantage of the heading tags: <h1> through <h6>.

•	 You set up a link by surrounding text with the <a> and
tags. In the <a> tag, use the href attribute to specify the name
of a local file or the URL of a remote file.

Building Your First Web Page

	 WEB DESIGN PLAYGROUND	 37

Chapter

3

Adding Structure to
Your Page

Organizing is what you do before you do something, so
that when you do it, it is not all mixed up. —A. A. Milne

This chapter covers

▪	Dividing page text into paragraphs and sections
▪	Adding numbered lists
▪	Building bulleted lists

You learned in Chapter 2 that you can create an effective web page by typing
some text and then using headings and elements such as strong and em to
make the text more readable and easier to understand. Headings in particular
are crucial page devices, not only because they help the reader see where
one part of the page ends and another begins, but also because they give the
reader a general sense of the page hierarchy. All this falls under the general
rubric of page structure, and that's the focus of this chapter.

3

Adding Structure to Your Page

38	 WEB DESIGN PLAYGROUND 

IIExample   �ðOnline: wdpg.io/3-1-1
In this example, you can see that the web browser ignores the whitespace created by the
carriage returns but happily renders text into paragraphs when you use the p element.

The web browser ignores
the carriage returns.

The browser uses the <p> tags to render
the text into separate paragraphs.

W
E

B
 P

A
G

E

Line 1
Line 2
Line 3

Line 4

<p>Paragraph 1</p>
<p>Paragraph 2</p>
<p>Paragraph 3</p>
<p>Paragraph 4</p>

Wrong: Separate l ines created
by pressing only Enter/Return

Right: Paragraphs created
by using the p e lement

H
T

M
L

Play
Using the Web Design
Playground, modify
the first five lines in this
example so that the
text snippets Line 1,
Line 2, Line 3, and
Line 4 each appear in
a separate paragraph.

ðOnline: wdpg.io/3-1-2

Thinking about the structure of your web page is important, because a

wall of unstructured text is difficult to scan and read, as well as difficult to

style. When you add structure (such as the headings from Chapter 2 and

the paragraphs, sections, containers, and lists that you learn about in this

chapter), each of those substructures is seen by the browser as a separate

entity to which you can apply many style properties. As a rule, the more

structured your page, the greater the control you have over how it looks.

Fortunately, as you see in this chapter, HTML comes with several useful and

straightforward tools for adding structure to a page.

HTML Elements for Structuring Page Text
If you work with a word processor, you know that almost all documents

have a structure: a title, possibly a subtitle, one or more topic headings, and

one or more paragraphs within each topic. This makes the document easy

to browse and comfortable to read because the structure guides readers

and enables them to focus on the text. You can get those same advantages

in your web pages by taking advantage of the various structural elements

offered by HTML. I’ll begin with one of the most common structures: the

paragraph.

ððOnline: wdpg.io/3-1-0

I mentioned in Chapter 2 that web browsers ignore whitespace, including

carriage returns created by pressing Enter or Return, which is normally how

you'd separate text into paragraphs in a text editor or word processor. The

most common way to create a paragraph in HTML is to place a <p> (for

paragraph) tag at the beginning of the text and a closing </p> tag at the end

of the text.

The following example shows you both the wrong and right ways to

create paragraphs.

Lesson 3.1:  �Working with Paragraphs
Covers: The p element

HTML Elements for Structuring Page Text

	 WEB DESIGN PLAYGROUND	 39

IIExample   �ðOnline: wdpg.io/3-1-1
In this example, you can see that the web browser ignores the whitespace created by the
carriage returns but happily renders text into paragraphs when you use the p element.

The web browser ignores
the carriage returns.

The browser uses the <p> tags to render
the text into separate paragraphs.

W
E

B
 P

A
G

E

Line 1
Line 2
Line 3

Line 4

<p>Paragraph 1</p>
<p>Paragraph 2</p>
<p>Paragraph 3</p>
<p>Paragraph 4</p>

Wrong: Separate l ines created
by pressing only Enter/Return

Right: Paragraphs created
by using the p e lement

H
T

M
L

Play
Using the Web Design
Playground, modify
the first five lines in this
example so that the
text snippets Line 1,
Line 2, Line 3, and
Line 4 each appear in
a separate paragraph.

ðOnline: wdpg.io/3-1-2

Adding Structure to Your Page

40	 WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io/3-2-0

When you separate page text into paragraphs, the web browser renders this

text by (among other things) creating a bit of space between paragraphs.

This space is normally what you want because that vertical gap gives the

reader a visual clue as to where one paragraph ends and the next one begins,

as well as a chance to take a quick breather between sections of text. This

space isn’t always what you want, however. If your page text is a poem,

for example, you almost certainly don’t want paragraphs between lines. The

same is true if your text is programming code or song lyrics.

When you want to start a new line but don’t want to have any space

between the two lines, you need the br (short for line break) element. As you

can see in the following example, the web browser renders the br element

by inserting a carriage return and beginning the next line immediately below

the previous one.

Lesson 3.2:  �Inserting Line Breaks
Covers: The br element

IIExample   �ðOnline: wdpg.io/3-2-1
In this example, you can see that the web browser renders the br element by inserting a
carriage return and beginning the next line immediately below the previous one.

W
E

B
 P

A
G

E

<h3>Contact Info</h3>
Manning Publications Co.

PO Box 761

Shelter Island, NY 11964

support@manning.com

203-626-1510

The
 tag tel ls
the browser to
start the fol lowing
text on a new l ine .

H
T

M
L

Use It
Use a line break for
poems, lyrics, addresses,
contact information, or
programming statements,
or to show a sample of
HTML or CSS code.

Play
Render the poem “Break,
Break, Break,” by Alfred
Lord Tennyson, correctly
by adding line breaks
to each line that isn’t
the end of a stanza.

ðOnline: wdpg.io/3-2-2

HTML Elements for Structuring Page Text

	 WEB DESIGN PLAYGROUND	 41

ððOnline: wdpg.io/3-3-0

In Chapter 11, I show you the HTML5 sectioning elements, including

<section> and <article>. These elements enable you to structure your

page semantically by designating containers as sections and articles within

those sections, as well as headers, footers, navigation, and more. Not all text

falls neatly into any of the HTML5 semantic categories, however. For text that

requires a container but for which none of the semantic elements (including

the p element) is appropriate, HTML offers the div (short for division)

element. The <div> tag and its corresponding </div> end tag create a

simple container for text. The web browser applies no inherent formatting

to the text, including not rendering any space between consecutive div

elements, as you see in the following example.

Lesson 3.3:  �Dividing Web Page Text
Covers: The div element

IIExample   �ðOnline: wdpg.io/3-3-1
This example uses the div element to divide a web page into two text blocks.

The <div>
blocks

W
E

B
 P

A
G

E

<h2>Shortening</h2>
<div>
The shortening process is based mostly on a kind of
linguistic laziness called clipping that causes us to lop
off great chunks of words. For example, we end up with <i>fridge</
i> from <i>refrigerator</i> and flu from <i>influenza</
i>. Often we clip everything after the first syllable: <i>dis</i>
(from <i>disrespect</i>) and <i>gym</i> (from <i>gymnasium</i>).
</div>
<div>
A related process is the creation of acronyms, which
form a pronounceable word using the first letters of each word
in a phrase. For example, <i>UNICEF</i> from United Nations
International Children’s Emergency Fund, and <i>NATO</i>
from North Atlantic Treaty Organization.
</div>

The <div> and </div> tags div ide your
web page text into blocks.

H
T

M
L

Play
The br element is
often a poor choice
for structuring page
text because it doesn’t
provide a container for
the text, so you can’t
style the text. On the
Web Design Playground,
replace the br elements
with div elements.

ðOnline: wdpg.io/3-3-2

Adding Structure to Your Page

42	 WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io/3-4-0

Elements such as div and p are important because they provide containers

in which you add and style text. Sometimes, however, you want to style just

a subset of the text within such a container. You may want to apply a font

effect or color to a few words or to a sentence, for example. In that case,

you can create an inline container by surrounding the text with the

tag and its end tag. The following example creates several inline

containers, and a CSS property is defined for the span element to apply a

yellow background to each container.

Remember
Elements such as div
and p are known as
block-level elements
because they create a
boxlike container that
begins on a new line and
within which the content
(such as text) flows.
Elements such as span
are known as inline
elements because each
one creates a container
that exists within some
larger element and
flows with the rest of the
content in that larger
element.

Lesson 3.4:  �Creating Inline Containers
Covers: The span element

IIExample   �ðOnline: wdpg.io/3-4-1
This example creates several inline containers, and a CSS property is defined for the
span element to apply a yellow background to each container.

W
E

B
 P

A
G

E

span {
 background-color: yellow;
}

This style defin it ion tel ls the
browser to apply yel low as the
background color to al l the span
e lements.

C
SS

HTML Elements for Structuring Page Text

	 WEB DESIGN PLAYGROUND	 43

<p>
Throughout this document, screen items that you click and text
that you type appear with a yellow background. Here
are some examples:
</p>

 Click the File menu and then click
Save.
 Set the number of copies and then click Print.</
li>
 Click Search, type blockquote,
and then press Enter.

The and tags
create in l ine containers.

H
T

M
L

Play
To get some practice
with the span element,
try the exercises on the
Web Design Playground.

ðOnline: wdpg.io/3-4-2

ððOnline: wdpg.io/3-5-0

As I mention earlier, the p element automatically adds whitespace between

paragraphs, and for other block-level elements such as div, you can use

CSS to create your own vertical spacing between blocks. Sometimes,

however, you want a more direct or more emphatic visual indicator of

a break between blocks. In such a case, you can insert the hr (short for

horizontal rule) element. As you can see in the following example, the web

browser displays a horizontal line across the page. If you don’t want the line

to extend the width of its container, you can use the width CSS property

and set it to the width (measured in, say, pixels or a percentage) you prefer.

Lesson 3.5:  �Adding a Visual Break between Blocks
Covers: The hr element

Adding Structure to Your Page

44	 WEB DESIGN PLAYGROUND 

IIExample   �ðOnline: wdpg.io/3-5-1
This example shows that when you add the hr element, the web browser displays a
horizontal line across the page.

The <hr> tag
creates a line.

W
E

B
 P

A
G

E

<h2>Word Origins: Introduction</h2>
<div>In a cynical world where attention spans are 140-characters
long and where much of the populace is obsessed with the low-
brow goings-on of Kim or Miley or Kylie, one amazing fact rises
above the muck: it's rare to meet someone who isn't in some way
interested in words and language. From slang-slinging youngsters to
crossword-solving oldsters, from inveterate punsters to intrepid
neologists, some aspect of language appeals to everyone.</div>
<hr>
<div>Is there one slice of the language pie that everyone likes?
Probably not. People are just too complex to like any one thing
universally. However, in my own admittedly limited experience (I
haven't met every person in the world), I have yet to come across
a person who doesn't appreciate a good story about the origins of
a word or phrase.</div>

The <hr> tag inserts a horizontal
l ine between two text blocks.

H
T

M
L

 I should note here that many web-design gurus recommend that instead

of using the hr element to get a horizontal line between two blocks, you

should add a bottom border to the top block or a top border to the bottom

block. See Chapter 7 for more info on styling borders.

Organizing Text Into Lists
It’s tough to surf the web these days and not come across a list or three in

your travels—a top-ten list, a best-of list, a point-form summary of an event,

or any of a thousand other variations on the list theme. A list is often the

perfect way to display certain types of information, such as a series of steps

or an unordered collection of items.

Organizing Text Into Lists

	 WEB DESIGN PLAYGROUND	 45

HTML offers these two list types:

•	 A numbered list (sometimes called an ordered list) presents its
items in numeric order, with each item’s number on the left and
the item text indented to the right.

•	 A bulleted list (sometimes called an unordered list) presents its
items in the order you specify, with each item having a bullet
(usually, a small dot) on the left and the item text indented to
the right.

Remember
Although this type of
list is used far less than
numbered and bulleted
lists, you should also be
aware of description list,
which is a list of terms
and descriptions. The
entire list uses the <dl>
and </dl> tags as a
container; you specify
each term within the
<dt> and </dt> tags
and each description
within the <dd> and
</dd> tags.

ððOnline: wdpg.io/3-6-0

If the things you want to display have an inherent numeric order, such as

you might find in the steps of a procedure or the elements in a series, a

numbered list is the way to go. The good news is that you don’t have to

enter the numbers yourself, because the browser takes care of them for you

automatically. The first item in the list is given the number 1, the second is

given 2, and so on. If you insert or delete items, the browser adjusts all the

list numbers as needed to keep everything in numeric order.

You start to construct a numbered list by creating a container that consists

of the tag (short for ordered list) and its closing tag. Between

those tags, you add one or more (short for list item) tags followed by

the item text and the closing tag:

Item text

The browser displays the item with a number on the left (the value of

which is determined by the item’s position in the list), followed by item text,

which is indented from the number, and the entire item is indented from the

left margin of whatever element contains it.

The following example shows a basic numbered list and the HTML tags

and text used to create it.

Use It
Use a numbered list for
any collection that must
appear in sequential,
numeric order. Examples
are the steps the reader
must follow in a how-to
procedure, the tasks
involved in a recipe, the
sections in a document
(particularly a contract
or other legal document),
or the items in a ranking
such as a top-ten list.

Lesson 3.6:  �Adding a Numbered List
Covers: The ol element

Adding Structure to Your Page

46	 WEB DESIGN PLAYGROUND 

IIExample   �ðOnline: wdpg.io/3-6-1
This example shows how to use a numbered list to set up a top-ten list.

W
E

B
 P

A
G

E

<h3>Top 10 Modern Words of Unknown Origin</h3>

 jazz (1909)
 jive (1928)
 bozo (1920)
 dork (1964)
 pizzazz (1937)
 humongous (1970)
 gismo (1943)
 zit (1966)
 reggae (1968)
 mosh (1987)

Use the and tags as
the container for the numbered l ist .

Within the container,
enter each item’s
text between the
 and tags.

H
T

M
L

By default, the numbers used in the list are standard decimal values (1, 2, 3,

and so on). You can change the number type by specifying the list-style-
type CSS property. Table 3.1 lists the most common numbered-list values for

this property.

Play
To get some practice with
the ol and li elements,
try the exercises on the
Web Design Playground.

ðOnline: wdpg.io/3-6-2

Organizing Text Into Lists

	 WEB DESIGN PLAYGROUND	 47

IITable 3.1  Common Numbered-List Values for the list-style-type CSS Property

Value Description Example Numbers
decimal Decimal numbers 1, 2, 3, 4, …

decimal-leading-zero
Decimals numbers with a
leading 0

01, 02, 03, 04, …

lower-alpha Lowercase letters a, b, c, d, …

upper-alpha Uppercase letters A, B, C, D, …

lower-roman
Lowercase Roman
numerals

i, ii, iii, iv, …

upper-roman
Uppercase Roman
numbers

I, II, III, IV, …

lower-greek Lowercase Greek letters α, β, γ, δ, …

upper-greek Uppercase Greek letters Α, Β, Γ, Δ, …

Learn
Quite a few values for
list-style-type are
associated with various
other languages, such
as Chinese, Hebrew,
and Japanese. See the
following page for the
complete list: https://
developer.mozilla.org
/en-US/docs/Web/CSS
/list-style-type.

ððOnline: wdpg.io/3-7-0

If the items you want to display have no inherent numeric order, such as you

might find in a to-do list or a set of characteristics, a bulleted list is the way to

go. Each item appears in its own paragraph, preceded by a bullet (usually, a

black dot). You don’t have to enter the bullets manually because the browser

adds them automatically.

You start building a bulleted list by creating a container that consists of

the (short for unordered list) tag and its closing tag. Between

these tags, as with a numbered list, you add one or more tags, followed

by the item text and the closing tag:

Item text

The browser displays the item with a bullet on the left, followed by item

text, which is indented from the bullet, and the entire item is indented from

the left margin of the element that contains it.

The following example shows a basic bulleted list and its underlying

HTML tags and text.

Use It
Use a bulleted list for
any collection of items
that are related in some
way but don’t have to
appear in numeric order.
Examples include a to-do
list or grocery list, a set
of traits or properties
associated with an
object, or a collection
of prerequisites for a
course.

Lesson 3.7:  �Adding a Bulleted List
Covers: The ul element

Adding Structure to Your Page

48	 WEB DESIGN PLAYGROUND 

By default, the bullets used in the list are filled circles (•). You can change

the number type by specifying the list-style-type CSS property. Table 3.2

lists the available bulleted-list values for this property.

IITable 3.2  The Bulleted-List Values for the list-style-type CSS Property

Value Description Example Bullet
disc Filled circle w

circle Unfilled circle y

square Filled square u

Play
To get some practice
with the ul and li
elements, try the
exercises on the Web
Design Playground.

ðOnline: wdpg.io/3-7-2

IIExample   �ðOnline: wdpg.io/3-7-1
This example shows you how to build a bulleted list.

W
E

B
 P

A
G

E

<p>This <q>ordinary linguistic competence</q> manifests as
various mechanisms that people use to forge new words:</p>

 Combining
 Shortening
 Shifting
 Borrowing
 Onomatopoeia
 Mistakes
 Retronyms
 Ex Nihilo

Use the and tags as the
container for the bul leted l ist .

Within the container,
enter each item’s
text between the
 and tags.

H
T

M
L

Summary

	 WEB DESIGN PLAYGROUND	 49

Summary
•	 To structure your page text into paragraphs, use the p element.

•	 To separate one line from the next, insert the br element to add
a line break.

•	 Use the div element to divide the page into text blocks.

•	 You can create an inline container for text by surrounding the
text with the and tags.

•	 Use the hr element to separate text blocks with a horizontal rule.

•	 Use the tag to create a numbered list and the tag
to create a bulleted list. In both cases, you use the tag to
designate each item in the list.

	 WEB DESIGN PLAYGROUND	 51

Chapter

4

Formatting
Your Web Page

Digital design is like painting, except the
paint never dries. —Neville Brody

This chapter covers

▪	Styling the text font, size, and style
▪	Aligning and indenting paragraphs
▪	Adding text and background colors

You now know how to display important and emphasized text, create links
and headings, and display items in bulleted or numbered lists, but although
these important techniques give your web page a bit of visual interest, they
won't win you any design awards. To get people to sit up and take notice of
your page, you need to concentrate on the CSS side of things for a bit, and
that's what you'll do in this chapter. First, you'll learn a few ways to style your
web page text, including specifying the typeface you want to use and setting
the size of the text. You'll also learn how to apply bold to any text (not only
important terms or keywords), as well as how to add italic to any text (not only
emphasized words or alternative terms). From words and phrases, you jump
to paragraphs, learning how to align text horizontally and indent paragraph
text. The chapter closes on a colorful note as you learn how to apply CSS
colors to text and to the page background.

4

Formatting Your Web Page

52	 WEB DESIGN PLAYGROUND 

As you'll see, these basic CSS techniques are straightforward to learn

and implement, but don't let their inherent simplicity fool you. These are

powerful tools that you'll use over and over to make your pages look great

and to give them your personal touch. Those design awards are right around

the corner.

Styling Text
Each browser uses default styles to render text such as headings and

paragraphs. Although some differences exist among browsers, for the most

part these styles are rendered similarly in Google Chrome, Mozilla Firefox,

Apple Safari, and so on. These styles are perfectly good design choices, but

if you use these default styles, you run the risk of having your web page end

up with a default look. That’s the last thing you want as a web page designer,

so one of your most important tasks is to override those defaults and specify

your own text formatting.

Web typography is a huge, fascinating topic that you'll learn in depth in

Chapter 14. For now, I’ll keep things simple by focusing on four of the most

important text-formatting features: typeface, type size, bolding, and italics.

Styling the Typeface
I like to describe fonts as the architecture of characters. When you examine

a building, certain features and patterns help you identify the building's

architectural style. A flying buttress, for example, usually is a telltale sign

of a Gothic structure. Fonts, too, are distinguished by a unique set of

characteristics, and those characteristics are embodied in the typeface.

A typeface is a distinctive design that's common to any related set of

letters, numbers, and symbols. What’s the difference between a typeface

and a font? For all practical purposes, the two terms are interchangeable.

For all impractical purposes, however, a font is a particular implementation

of a typeface, meaning the typeface as rendered with a specific size, weight,

and style. Helvetica is a typeface; Helvetica 16-point bold is a font.

The typeface design gives each character a shape and thickness that's

unique to the typeface and difficult to classify. Five main categories serve to

distinguish most typefaces you’ll come across in your web-design career:

Styling Text

	 WEB DESIGN PLAYGROUND	 53

Serif —A serif (rhymes with sheriff) typeface contains fine
cross strokes (called feet) at the extremities of each char-
acter. These subtle appendages give the typeface a tradi-
tional, classy look, but they can get lost when displayed on
a screen at small sizes.

Sans serif —A sans-serif typeface doesn't contain cross
strokes on the extremities of characters. These typefaces
usually have a clean, modern look that’s well suited to
screen text, particularly at small sizes.

Monospace —A monospace typeface (also called a fixed-
width typeface) uses the same amount of space for each
character, so skinny letters such as i and l take up as much
space as wider letters such as m and w.

Cursive —The cursive typefaces are designed to resemble
handwritten pen or brush writing.

Fantasy —Fantasy typefaces usually are fanciful designs
that have some extreme elements (such as being
extra-thick).

In CSS, you tell the web browser which typeface you want to apply to an

element by using the font-family property. You have several ways to set

the font-family value, but I begin by looking at the method that requires

the least amount of work.

USe It
On a screen, serif
usually works best for
headings and other text
set at large sizes; sans
serif makes good body
text; monospace works
well for code listings;
cursive is best for short
bits of text that require
elegance or playfulness;
and fantasy should be
used only when a special
effect is required.

ððOnline: wdpg.io/4-1-0

The simplest way to use font-family is to specify a generic font, which is a

standard font implemented by all modern web browsers. There are five generic

font families, and their names correspond to the five typeface categories

discussed in the preceding section: serif, sans serif, monospace, cursive,

and fantasy. The following example puts the font-family property

through its paces.

Lesson 4.1:  �Specifying a Generic Font
Covers: The font-family property and generic fonts

Formatting Your Web Page

54	 WEB DESIGN PLAYGROUND 

IIExample   �ðOnline: wdpg.io/4-1-1
This example shows you how to use the font-family property to apply the sans-
serif generic font to the h3 element and the serif generic font to the p element.

The h3 element

The p element

W
E

B
 P

A
G

E

h3 {
 font-family: sans-serif;
}
p {
 font-family: serif;
}

The h3 e lement gets the
sans-serif generic font .

The p e lement gets the
serif generic font .

C
SS

<h3>The Web Design Playground</h3>

<p>Why work towards web design proficiency when you can play your
way there?</p>

H
T

M
L

Generic fonts are useful because they're supported by all web browsers,

but with only five font families, they lack variety. If you'd like a bit more choice

for your web page text, you need to access a broader collection of fonts.

ððOnline: wdpg.io/4-2-0

Besides the built-in generic fonts, each web browser can access the fonts

that a site visitor has installed on her computer. Most computers have the

serif typeface Times New Roman installed, for example, so your web page

could use that typeface instead of the generic serif font. These installed

typefaces are known as system fonts.

When you specify a system font, here are two things to keep in mind:

•	 If the font name includes one or more spaces, numbers, or
punctuation characters other than a hyphen (-), surround the
name with quotation marks:

font-family: "Times New Roman";

Remember
Using quotation marks
and capitalizing the
first letter of each word
in a system font name
are optional, but they’re
good habits to get into
because they make your
code more readable.

Lesson 4.2:  �Specifying a System Font
Covers: The font-family property and system fonts

Styling Text

	 WEB DESIGN PLAYGROUND	 55

•	 Capitalize the first letter (or, for multiword names, capitalize the
first letter of each word):

font-family: Georgia;

Note that it's perfectly legal to specify more than one font name as long

as you separate the names with commas. In that case, the browser checks

the fonts in the order in which they appear and uses the first one that's

installed on the user's computer. This arrangement is useful because you

can't be sure which system fonts each user has installed. In particular, it’s

good practice to include a similar generic font family after the system font.

If you specify a serif system font such as Times New Roman or Georgia (or

both), for example, include the serif generic font as the last item in the

font-family value:

font-family: "Times New Roman", Georgia, serif;

The following example applies the Verdana system font to the div

element, which (as you might recall from Chapter 2) is the element you use

to divide the web page content into separate sections.

IIExample   �ðOnline: wdpg.io/4-2-1
This example applies the Verdana system font to the div element and adds the
sans-serif generic font as a backup.

The div element

W
E

B
 P

A
G

E

div {
 font-family: Verdana, sans-serif;
}

The div e lement
gets the Verdana
system font.

C
SS

<div>
The clean, modern look of a sans serif typeface makes it ideal for
web page text.
</div>

H
T

M
L

Remember
Some system fonts are
installed on at least 90
percent of both Macs
and Windows PCs. For
sans-serif, these fonts
are Arial, Arial Black,
Tahoma, Trebuchet MS,
and Verdana. For serif,
these fonts are Georgia
and Times New Roman.
For monospace, this font
is Courier New.

Learn
To get the installation
percentages for many
popular system fonts,
see https://www
.cssfontstack.com.

www.cssfontstack.com

Formatting Your Web Page

56	 WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io/4-3-0

In the same way that the web browser defines a default typeface for each

element, it defines default type sizes, particularly for the heading elements h1

(largest) through h6 (smallest). Again, these defaults are usually reasonable,

but I'm going to urge you to forget about the defaults and set up your own

type sizes. Why? One of the secrets of good web design is assuming control

of every aspect of the design, which is the only way to be sure that the web

page looks the way you or your client wants it to look. One of your main jobs

as a web page designer is to set your own type sizes not only for headings,

but also for all your page elements, including body text, captions, sidebars,

and navigation.

You specify the type size of an element by setting the font-size property

equal to a value in pixels, which you indicate with the unit px. The example

that follows tells the web browser to render all text that appears within a

div element at a text size of 24 pixels. By comparison, the example also

shows some text within a p element displayed in the default size, which in all

modern browsers is 16 pixels.

REMEMBER
You can specify font
sizes in units other
than pixels. I take you
through all the available
CSS units in Chapter 7.

Lesson 4.3:  �Setting the Type Size
Covers: The font-size property

IIExample   �ðOnline: wdpg.io/4-3-1
This example formats the div element with a text size of 24 pixels.

The h1 element

The p element

The div element

W
E

B
 P

A
G

E

div {
 font-size: 24px;
}

The div e lement is given
a font s ize of 24px.

C
SS

Working with Text Styles

	 WEB DESIGN PLAYGROUND	 57

<h1>From Milan to Markup</h1>

<div>
The strange-but-true story of one woman’s epic journey from
fashion designer to web geek.
</div>

<p>
Hyperia Marcupala always loved design, but one day she discovered
she’d rather work with pixels than pleats.
</p>

H
T

M
L

Working with Text Styles
When you have your typeface picked out and your page elements set up

with different type sizes, you're well on your way to making typographically

pleasing web pages. But to make your pages stand out from the herd, you

need to know two more CSS properties related to styling text. The next

couple of sections take you through these styles.

ððOnline: wdpg.io/4-4-0

In Chapter 2, you learned that you can display text as bold by using the

 tag or the tag. You use these tags when the affected text has

semantic significance: The strong element is for important text, whereas

the b element is for keywords. But what if you have text that doesn't fit into

either of these semantic categories, but you want it to appear bold anyway

for the sake of appearance? In that case, you can turn to the CSS property

font-weight. Table 4.1 lists the weights and keywords you can assign to

this property.

Use It
Nonsemantic uses for
bold text include a title
used at the beginning of
each item in a bulleted
list, the lead words or
the lead sentence in a
paragraph, and contact
information.

BEWARE
Not all the values in
Table 4.1 work in all
systems. If whatever
typeface you’re using
doesn’t support one or
more of the weights,
specifying that weight
won’t have any effect.

Lesson 4.4:  �Making Text Bold
Covers: The font-weight property

Formatting Your Web Page

58	 WEB DESIGN PLAYGROUND 

IITable 4.1  Possible Values for the font-weight Property

Weight Keyword Description
100 Thin text

200 Extra light text

300 Light text

400 normal Regular text

500 Medium text

600 Semibold text

700 bold Bold text

800 Extra-bold text

900 Black text

The following example gives you a taste of what bold text looks like by

applying the weights 100, 400, and 700 to several span elements. (Recall

from Chapter 2 that you use span to create an inline container that applies

to a word or three.)

IIExample   �ðOnline: wdpg.io/4-4-1
This example demonstrates the weights 100, 400, and 700 of the Calibri typeface by
applying each weight to a separate span element.

100 400 700

W
E

B
 P

A
G

E

span {
 font-family: Calibri, sans-serif;
 font-size: 5em;
}

C
SS

A
A
A

The span e lements
apply the various
weights to the
letter A.

H
T

M
L

FAQ
When would I ever
use the normal (or
400) value? When
you're working with an
element that defaults
to bold styling, such as
a heading. To prevent
such an element from
appearing with bold text,
assign its font-weight
property a value of
normal (or 400).

Working with Text Styles

	 WEB DESIGN PLAYGROUND	 59

ððOnline: wdpg.io/4-5-0

As you learned in Chapter 2, you can display text in italics semantically by

using the tag when you want to emphasize text or the <i> tag when

you want to format alternative text. If you have text that isn't semantic, but

you want it to appear italic anyway, use the CSS property font-style, and

set it to the value italic. Here's an example:

IIExample   �ðOnline: wdpg.io/4-5-1
This example applies the italic font style to the span element. There are two instances:
the that's nested within the h1 element and the span that's nested at the
beginning of the div element.

W
E

B
 P

A
G

E

body {
 font-family: Georgia, serif;
}
span {
 font-style: italic;
}
div {
 font-size: 1.25em;
}

The span e lement is
formatted as ita l ic .

C
SS

<h1>Italic Text: A History</h1>

<div>
The first use of italics came in 1500 when Aldus
Manutius of the Aldine Press wanted a typeface that resembled
the handwritten humanist script that was then in common use. He
asked his typecutter Francesco Griffo to make the typeface, which
Manutius first used in the frontispiece of a book of the letters
of Catherine of Siena. He produced the first book set entirely in
italics the next year.
</div>

The first
span instanceThe second span instanceH

T
M

L

Use It
Nonsemantic uses for
italic text include pull
quotes, the lead words
or the lead sentence in a
paragraph, and article
metadata (such as the
author name and date).

Lesson 4.5:  �Making Text Italic
Covers: The font-style property

Formatting Your Web Page

60	 WEB DESIGN PLAYGROUND 

Styling Paragraphs
When (or perhaps I should say if) people think of typography, they tend to

look at individual letters or letter combinations. That's important, for sure,

but it's only the "trees" view of typography. If you want your web pages to

look their best, you also need to take in the "forest" view, which encompasses

the larger text blocks on the page, including titles, subtitles, headings, and

especially paragraphs. As you see in the next couple of sections, paying

attention to important styling touches such as alignment and indents can go

a long way toward changing your pages from drab to fab.

Remember
When you're working
with an element that
defaults to italic styling,
such as cite or var
(see Chapter 16), you can
prevent that element
from appearing with
italic text by assigning
the keyword normal
to its font-style
property.

ððOnline: wdpg.io/4-6-0

To control how a paragraph or block of text is aligned horizontally—that is,

with respect to the left and right page margins—use the CSS text-align

property, which takes any of the keywords shown in Table 4.2.

IITable 4.2  Possible Values for the text-align Property

Keyword Description

left
Aligns the left edge of the text block with the left margin; the right edge of the
text block is not aligned (and so is said to be ragged); this is the default in lan-
guages that read left to right.

right
Aligns the right edge of the text block with the right margin; the left edge of the
text block is not aligned (ragged); this is the default in languages that read right
to left.

center
Centers each line of the text block between the left and right margin; both the
left and right edges of the text block are ragged.

justify
Aligns the left edge of the text block with the left margin and the right edge of the
text block with the right margin.

The four modes of alignment (centered, justified,
flush left, and flush right) form the basic grammar
of typographic composition. —Ellen Lupton

The following example tries each of the four text-align values.

Use It
For most web page text
blocks, left-aligned
text is easiest to read.
Centered text is useful
for page titles and
subtitles. Use justified
alignment when you
want your text to have a
more elegant look.

Beware
The web browser justifies
text by adding spaces
between words in a
line. If your text block is
narrow or includes one
or more long words, you
can end up with large,
unsightly gaps in the text.

Lesson 4.6:  �Aligning Paragraphs Horizontally
Covers: The text-align property

Styling Paragraphs

	 WEB DESIGN PLAYGROUND	 61

IIExample   �ðOnline: wdpg.io/4-6-1
This example shows the four alignment styles at work: centered for the title and subtitle,
and left, right, and fully justified text blocks.

Left-aligned

Right-aligned

Centered

Justified

W
E

B
 P

A
G

E

h1, h2 {
 text-align: center;
}

Centers the h1 and
h2 e lements

C
SS

<h1>Aligning Web Page Text</h1>
<h2>Notes From the Field</h2>
<div style="text-align: left;">
We read text (in English, anyway) from left to right. This means
that when we get to the end of each line, to continue we must
jump down one line and then scan to the beginning of that line.
That leap-and-scan is most easily made when we "know" where the
next line begins. That's why left-justified text is the easiest
alignment to read. </div>
<div style="text-align: right;">
Compare the left-justified text block above with this right-
justified paragraph. In this case, when you reach the end of each
line, jumping down to the next isn't a problem, but because the
left side of the text block is set ragged, the beginning of each
line isn't in a predictable place, which makes right-justified
text a tad more difficult to read. </div>
<div style="text-align: justify;">
Many books are set with justified paragraphs because it looks
more elegant without the right-ragged edges. However, pro book
designers use sophisticated layout software to manage things like
hyphenation (particularly if the text includes a long word such as
<i>honorificabilitudinitatibus</i>). These aren't available for
the web, so it's often best not to justify. </div>

Left-a l igns the first paragraph

Right-a l igns the second paragraph

Just if ies the third paragraph

H
T

M
L

Formatting Your Web Page

62	 WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io/4-7-0

You can indent paragraph text by using the CSS text-indent property,

which takes either of the values shown in Table 4.3. Note that the indent

applies only to the beginning of the first line of the text block.

IITable 4.3  Values You Can Apply to the text-indent Property

Value Description
length A numeric value entered with a unit, such as px.

percentage
A percentage value. The computed indent is the width of the text
block multiplied by the percentage.

As with most things typographical, much debate exists about whether

text blocks should be indented. Some typographers eschew indents because

they believe that nonindented text is more aesthetically pleasing; others

embrace indents because they believe that indented text is more readable.

Whichever side you end up on, you should keep the following points in mind:

•	 Never indent the first paragraph of the page or the first
paragraph after a heading. The purpose of an indent is to
separate the paragraph from the one above it, but that doesn’t
apply to the first paragraph.

•	 If you indent your paragraphs, you don’t need to add space
between paragraphs.

•	 If you don’t indent your paragraphs, you should add some
margin or padding between the paragraphs for readability.
See Chapter 6 to find out how to set the margins and padding.

Using paragraph spacing and indents together
squanders space and gives the text block a
flabby, indefinite shape. —Ellen Lupton

Learn
Some browsers support
the text-align-last
property, which sets the
alignment of the last line
in a text block when the
text-align property
is set to justify.
Possible values include
left, right, center,
and justify. See http://
caniuse.com/#feat=css-
text-align-last to follow
the support for this
property.

Remember
A commonly used value
for a paragraph indent
is 16px.

Beware
If you want to create
an outdent for a text
block, make sure that
the block has a left
margin that’s wide
enough to accommodate
the outdented text. See
Chapter 7 to learn how
to set the left margin for
a text block.

Lesson 4.7:  �Indenting Paragraph Text
Covers: The text-indent property

Styling Paragraphs

	 WEB DESIGN PLAYGROUND	 63

IIExample   �ðOnline: wdpg.io/4-7-1
This example displays the three possible indent styles: flush (the first paragraph); a
positive indent (second paragraph); and a negative indent (third paragraph), which is
usually called an outdent or a hanging indent .

Flush

Outdented

Indented

W
E

B
 P

A
G

E

<div>
The first word of the first line is the critical word of that
particular body of text. Let it start flush, at least. —William
Addison Dwiggins
</div>
<div style=”text-indent: 16px;”>
Typographers generally take pleasure in the unpredictable length
of the paragraph while accepting the simple and reassuring
consistency of the paragraph indent. —Robert Bringhurst
</div>
<div style=”text-indent: -64px;”>
Outdents work
well when dramatic effect is desired. They sometimes have a second
emphasis factor, such as a style or case change, that
contrasts with the body text. —Kristin Cullen
</div>

The text-indent property isn ’t set, so the first
l ine is flush with the rest of the paragraph.

Indents the first l ine
of the paragraph

Outdents the first l ine
of the paragraph

H
T

M
L

Formatting Your Web Page

64	 WEB DESIGN PLAYGROUND 

Working with Colors
By default, most web browsers display the page by using black text on a white

background. That combination is certainly readable but not interesting. Our

marvelous eyes are capable of distinguishing millions of colors, so a palette

of only black and white seems wrong somehow. Fortunately, CSS enables

you to put your designer eyes to good use by offering several methods for

accessing any of the 16 or so million colors that are available in the digital

realm. Alas, most of those methods are a bit complicated, so I'm going to put

them off until later (see Chapter 13).

For now, you get access to colors using the keywords that CSS defines.

Table 4.4 lists the keywords for a few common colors.

IITable 4.4  The CSS Keywords for Nine Common Colors

Keyword Color
red

lime

blue

yellow

magenta

cyan

black

gray

white

There are more than 140 defined keywords in all, so you shouldn't have

any trouble finding the right shade (or shades) for your next web project. I’ve

put the complete list of color keywords on the Web Design Playground at

wdpg.io/colorkeywords. Figure 4.1 shows a partial list.

Remember
In each grayscale
keyword, you can
replace the word gray
with the word grey,
and the result will be
the same color for
all browsers (except
Internet Explorer 7 and
earlier). The keywords
darkgray and darkgrey
produce the same shade,
for example.

Working with Colors

	 WEB DESIGN PLAYGROUND	 65

IIFigure 4.1  To see a complete list of the CSS color keywords on the Web Design Playground, surf to wdpg.io/colorkeywords.

ððOnline: wdpg.io/4-8-0

Several CSS properties have a color component, including borders,

backgrounds, and shadows. You learn about all those properties and more

in this book (including backgrounds in the next section), but so far you know

about text, so I’ll start there. Here’s the general CSS syntax for applying color

to a text element:

selector {
 color: keyword;
}

The selector can be an HTML element, such as an h1 heading or p

element, or it can be any of the CSS selectors that you see in Chapter 7. The

real work is done by the color property and its associated value, which can

be any of the CSS color keywords (or any of the other color values supported

by CSS, which you learn about in Chapter 17).

The following example shows the color definition for purple h1 text.

The text item to which you
want the color appl ied

The color property
and its value

Lesson 4.8:  �Applying Color to Text
Covers: The color property

Formatting Your Web Page

66	 WEB DESIGN PLAYGROUND 

IIExample   �ðOnline: wdpg.io/4-8-1
This example uses a keyword to assign the color purple to the h1 element.

<h1>

W
E

B
 P

A
G

E

h1 {
 color: purple;
}

Specify the h1 e lement to style .

Use the keyword purple to set
the color property value.

C
SS

<h1>Royalty: A History</h1>

H
T

M
L

Play
Style the a element to
display the link text
as yellow. Then add
a second rule that
displays the link text
red and underlined
when you hover the
mouse over the link.

ðOnline: wdpg.io/4-8-4

ððOnline: wdpg.io/4-9-0

So far, I’ve looked only at setting the color of the foreground—the web page

text—but you can use CSS to apply a color to a background. This color could

be the background of the entire page (that is, the body element), a heading, a

paragraph, a link, or part of a page such as a <div> or tag.

Here’s the general CSS syntax for applying a background color to a web

page item:

selector {
 background-color: keyword;
}

The selector can be an HTML element or any of the CSS selectors that

you learn about in Chapter 7. The key is the background-color property

and its associated value, which can be any of the color keywords you learned

about earlier.

The following example shows a web page with a Table of Contents

sidebar that has a black background and white text. The example also gives

you a partial look at the HTML and CSS used to set it up.

The item to which you want the
background color appl ied

The background-color
property and its value

Lesson 4.9:  �Applying Color to a Background
Covers: The background-color property

Working with Colors

	 WEB DESIGN PLAYGROUND	 67

IIExample   �ðOnline: wdpg.io/4-9-1
This example shows a web page with a Table of Contents sidebar that has a black
background and white text.

<div>

W
E

B
 P

A
G

E

div {
 background-color: black;
 color: white;
 float: right;
 font-size: 16px;
 font-weight: bold;
 margin-left: 0.5em;
 padding: 0 10px 5px 10px;
 text-align: left;
}

The background-color property
sets the <div> background to black.

The color property sets
<div> text to white .

These properties apply various
styles to the <div>.

C
SS

<div>
 <h3>Table of Contents</h3>
 Color Psychology

 Color Schemes

 Color Caveats

 A Few Examples

 Best Practices

 CSS and Color
</div>

The <div> tag and
its associated HTML
and text

H
T

M
L

68	 WEB DESIGN PLAYGROUND 

Summary
•	 You can use the font-family property to assign a typeface to

a page element. This typeface can be one of the five generic
fonts—serif, sans-serif, monospace, cursive, or fantasy—
or a system font that's already installed on the user's computer.

•	 Use the font-size property to control the size of your text
elements.

•	 Use the font-weight property to apply bolding
nonsemantically.

•	 Use the font-style property to apply italics nonsemantically.

•	 Use text-align to set the horizontal alignment, such as
centering headings and left-aligning text.

•	 Use text-indent to indent or outdent the first line of a text
block.

•	 To color an element’s text, use the color property.

•	 To color an element’s background, use the background-color
property.

Play
How would you modify
the CSS in this example
to display the Table
of Contents sidebar
with light gray text on
a purple background?

ðOnline: wdpg.io/4-9-2

Play
Write a CSS rule
that styles links
with blue text and a
yellow background.

ðOnline: wdpg.io/4-9-4

Formatting Your Web Page

	 WEB DESIGN PLAYGROUND	 69

Chapter

5

PROJECT:   Creating a
Personal Home Page

Creation is a better means of self-expression than
possession; it is through creating, not possessing,
that life is revealed. —Vida Dutton Scudder

This chapter covers

▪	Planning and sketching your personal home page
▪	Choosing typefaces for your page
▪	Adding the header and navigation links
▪	Adding the body text

With four chapters under your belt, it's time to put your newfound HTML and
CSS knowledge to work by building something substantial. Specifically, this
chapter takes you through the process of putting together a simple personal
home page. Simple is the operative word here because you don't yet know
enough HTML tags and CSS properties to construct anything complex.
Fortunately, you know more than enough to create a great-looking home
page for yourself. You know about headings and paragraphs; you know how
to create sections by using the <div> and tags; you know how to
create bulleted and numbered lists; you know how to create links; you know
how to add typographic touches such as bold and italics; and you know how
to apply colors to the background and to the text. As you see in this chapter,
all that is more than enough to create a home page to be proud of.

5

Project:  Creating a Personal Home Page

70	 WEB DESIGN PLAYGROUND 

What You’ll Be Building
This project is a basic "Look, Ma, I'm on the web!" home page that enables

you to take the tools and techniques you learned in this book's first four

chapters and apply them in the virtual world of the web. The result is a

simple but beautiful page that enables you to stake out a bit of online turf. To

what end? That depends on you, but most personal home pages serve as an

introduction to anyone who comes surfing by: who you are, what you like

(and even what you dislike), what you've done in the past, what you're doing

now, and what you'd like to do in the future. As I go along, I'll show you an

example based on my information, but naturally, you'll want to replace my

text with your own. Your web page is your house, and you can fill it with

whatever you want.

Sketching the Layout
All your web projects should begin with a pen or pencil and a cocktail napkin or

other handy writing surface. Creating a web page is first and foremost a design

process, so before you start slinging code, you need to have a decent idea of

what you're building. Sure, you can construct a mental image of the page, but

it's better to begin with the more tactile approach afforded by pen and paper.

As you can see in Figure 5.1, this sketch doesn't have to be detailed. Lay

out the main sections of the page with a phrase or sentence that describes

the content of each section.

PAGE TITLE

S O C I A L M E D I A L I N K S

Very short page
introduction

A sentence or three about what I do for a living
and why I do it.
A bulleted list of the things and activities that
interest me:
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~

Copyright and contact info

IIFigure 5.1 
Before starting to code your
HTML and CSS, use a pen or
pencil to work up a quick
sketch of the page layout
and content.

Choosing a Color Scheme

	 WEB DESIGN PLAYGROUND	 71

Figure 5.1 shows the layout of a page with the following six sections:

•	 The title of the page

•	 A short introduction to the page

•	 Links to social media sites such as Facebook and Twitter

•	 Text about what I do for a living

•	 Text and a bulleted list of things that interest me

•	 The page footer with a copyright notice and contact info

Your next page-planning task is deciding which typefaces you want to

use for your page.

Choosing Typefaces
Because I haven't discussed images yet in this book, this first version of your

personal home page is dominated by text, particularly what's known as body

text  —the large blocks of nonheading text that comprise the bulk of your

page. Because a good chunk of your audience will be reading your page on

devices such as laptops, tablets, and smartphones, it's important to take a

bit of time up front to choose typefaces that will be legible and readable on

these smaller screens.

You could build your page with a single typeface, but mixing two

typefaces—one for headings and the other for body text—adds dynamism

and contrast to the page. My preferred use is a sans-serif typeface for

headings and a serif typeface for body text, but feel free to reverse them or

to use two serifs or sans serifs. The only criterion to look for is two typefaces

that work in harmony.

For this project, I'm going to use two perennial web favorites: the sans-

serif typeface Verdana for the headings and the serif typeface Georgia for

the body text. In my CSS, I'll use the following rules to specify these families:

font-family: Georgia, serif;
font-family: Verdana, sans-serif;

With the page layout in place and your typefaces chosen, the next step is

to pick out a color scheme.

Choosing a Color Scheme
In this simple page, colors won't play a huge role, but you'll want to inject

some color to avoid the monotony of all black text on a white background.

You can add a background color or even a gradient by using the Web Design

Playground's Gradient Construction Kit (see wdpg.io/kits/gradient). I prefer a simple

white background for this project, so my own colors focus on the text. Using

the Web Design Playground's RGB Color Scheme Calculator (see wdpg.io/

colorcalc), I chose a color scheme based on the color value #ffc200, as shown

in Figure 5.2. You, of course, should choose a color scheme that suits your style.

Project:  Creating a Personal Home Page

72	 WEB DESIGN PLAYGROUND 

IIFigure 5.2  A split complementary color scheme based on the hex color value #ffc200

With the page layout in place and your colors chosen, it's time to translate

this rough sketch into precise HTML and CSS code.

Building the Page
To build your personal home page, you'll start with the skeleton code that

I introduced you to in Chapter 2. From there, you'll go section by section,

adding text, HTML tags, and CSS properties.

The Initial Structure
To start, take the basic page structure from Chapter 2 and add the tags and

some placeholder text for each of the page's six sections. Here's a summary

of those tags:

•	 The page title is an h1 heading element.

•	 The page introduction is an h2 heading element.

•	 The social media links are within an h3 heading element.

•	 The first text block is a div element.

•	 The second text block is another div element, which is
followed by a ul element for the bulleted list.

•	 The page footer is another div element.

Building the Page

	 WEB DESIGN PLAYGROUND	 73

IITry This   �ðOnline: wdpg.io/projects/home-page/1
Here are the elements that make up the personal home page's initial structure.

Header <div>

<h1> <h2> <h3>

<p>

<hr>

<p><p>
Footer <div>

Content <div>

W
E

B
 P

A
G

E

body {
 width: 550px;
 color: #444;
 font-size: 16px;
 text-align: left;
}

In it ia l CSS for the body e lement

			

C
SS

continued

Project:  Creating a Personal Home Page

74	 WEB DESIGN PLAYGROUND 

Notice that the initial structure also includes a few CSS properties applied

to the body element. These global properties set the width of the page and

the default values for the text color, font size, and alignment. The most

surprising might be the width value of 550px. Why restrict the width at all,

and why use such a relatively small value? One key element in good web

typography is line length. If your lines are too long, they become hard to

scan, and if they're too short, the text becomes choppy. In both cases, the

resulting text is difficult to read. For screen text, the optimum line length is

between 65 and 75 characters, so you need to set the width so that all or

most of the lines in your body text fit within that range.

FAQ
Why didn't you use #000
or black as the default
text color? With a white
page background,
pure black text can be
difficult to read because
of the extreme contrast
between the two colors.
Backing off the text color
to #444 or #333 makes
it easier to read.

Play
I've left-aligned
everything in the page
to get a nice clean
line down the left side
of the page. There's
no reason why you
couldn't mess with the
alignment, however. Try
centering the three page
header elements (title,
introduction, and social
media links). ðOnline:
wdpg.io/projects/home-
page/2

<!--START OF HEADER-->
<div>
 <h1>Page Title</h1>
 <h2>Very short page introduction</h2>
 <hr>
 <h3>Social media links</h3>
 <hr>
</div>
<!--END OF HEADER-->
<!--START OF CONTENT-->
<div>
 <p>
 First text block
 </p>
 <p>
 Second text block
 </p>

 First item
 Second item
 Etc.

</div>
<!--END OF CONTENT-->
<!--START OF FOOTER-->
<div>
 <hr>
 <p>
 Copyright and contact info
 </p>
</div>
<!--END OF FOOTER-->

Comments denote the beginning
and end of each section .

The header section

The content section
(two paragraphs and
a bul leted l ist)

The footer section

H
T

M
L

Building the Page

	 WEB DESIGN PLAYGROUND	 75

Here are a few other things to note about the HTML tags used in the

initial structure:

•	 The page is divided into three sections: a header, the content,
and a footer.

•	 Each section is embedded within a <div></div> block. This
block organizes the structure and enables you to apply a style
(such as a font family) to everything within a particular section.

•	 Each section of the page is surrounded by special tags called
comments that mark the beginning (e.g., <!—START OF
HEADER-->) and the end (e.g., <!—END OF HEADER-->) of the
section. I use all-uppercase characters to help the comments
stand out from the regular code, but that practice is optional.
See Chapter 16 to learn more about using comments in your
code.

The Page Title
Not surprisingly, you want your page title to be more prominent than the

rest of the page text. Setting the text within an h1 element is a good start,

but you'll likely need to style the text even more to get the effect you want.

Here are some ideas:

•	 Apply a different color. If you make the color unique, the title
will stand out from the rest of the text.

•	 Apply a larger font size. Because your page title may be
something as simple as your name, a larger size makes it pop.

In the following example, I used my name as the title, but feel free to use

whatever text you prefer. I applied the sans-serif system font Verdana to the

header section's div element (which means that this font is also applied to

the rest of the headings). I've also styled the page title (the h1 element) with

one of the colors from my color scheme (#1800ff) and a 52px font size.

Play
To help you get a feel for
the ideal line lengths for
onscreen reading, I've
set up an exercise on the
Web Design Playground.
Given a paragraph
of text, adjust the
body element's width
property to bring the
line lengths into the ideal
65- to 75-character
range. Try changing the
font-size property
to see what effect that
change has on line
length. ðOnline: wdpg
.io/projects/home-page/3

rEMEMBER
Don't be shy about
adding comments to
your code. Comments
help you keep track
of the page structure,
and they're often
indispensable when
someone else needs to
read your code or when
you haven't looked at
your page code for a few
months.

Notice that the initial structure also includes a few CSS properties applied

to the body element. These global properties set the width of the page and

the default values for the text color, font size, and alignment. The most

surprising might be the width value of 550px. Why restrict the width at all,

and why use such a relatively small value? One key element in good web

typography is line length. If your lines are too long, they become hard to

scan, and if they're too short, the text becomes choppy. In both cases, the

resulting text is difficult to read. For screen text, the optimum line length is

between 65 and 75 characters, so you need to set the width so that all or

most of the lines in your body text fit within that range.

FAQ
Why didn't you use #000
or black as the default
text color? With a white
page background,
pure black text can be
difficult to read because
of the extreme contrast
between the two colors.
Backing off the text color
to #444 or #333 makes
it easier to read.

Play
I've left-aligned
everything in the page
to get a nice clean
line down the left side
of the page. There's
no reason why you
couldn't mess with the
alignment, however. Try
centering the three page
header elements (title,
introduction, and social
media links). ðOnline:
wdpg.io/projects/home-
page/2

Project:  Creating a Personal Home Page

76	 WEB DESIGN PLAYGROUND 

The Page Introduction
The page introduction acts as a kind of subtitle. It should be a brief snippet of

text that introduces you to the reader. Because the text is a subtitle, the font

size should be smaller than the title text but larger than the body text. Again,

setting the text within an h2 element should do the job, but you'll want to set

the size yourself, depending on what you used for the title.

In the following example, I styled my page introduction with gray text

(#666) and a 22px font size. I also used an inline tag to style a

key phrase—technical writer  —with another color from my color scheme

(#ffc200). Note as well that this h2 element inherits the font that I applied

to the header's <div> tag in the preceding section.

IITry This   � ðOnline: wdpg.io/projects/home-page/4
This example styles the personal home page title with a color, font, and larger font size.

<h1>

W
E

B
 P

A
G

E

h1 {
 color: #1800ff;
 font-size: 52px;
}

The CSS code for
the h1 e lement

C
SS

<div style="font-family: Verdana, sans-serif;">
 <h1>PAUL MCFEDRIES</h1>

The header
section's div
e lement with
the font appl iedThe h1 e lement with text added

H
T

M
L

Play
If your page title is
long, it will likely wrap
to a second line. That's
fine, but you'll want to
reduce the line height
to bring the two lines
closer together. For the
h1 element, try setting
the line-height
property to a value
below 1 (such as 0.8 or
0.9). ðOnline: wdpg.
io/projects/home-page/5

Building the Page

	 WEB DESIGN PLAYGROUND	 77

IITry This   � ðOnline: wdpg.io/projects/home-page/6
This example styles the personal home page introduction with a color and a larger font
size. Within the text, a tag applies a different color to the key phrase technical
writer.

<h2>

W
E

B
 P

A
G

E

h2 {
 color: #666;
 font-size: 22px;
}

The CSS code for
the h2 e lement

C
SS

<h2>I’m a technical writer
specializing in HTML, CSS, web design, and web typography</h2>

An in l ine span e lement appl ies a different
color to the enclosed phrase.

H
T

M
L

The Social Media Links
The final element of the page header is the collection of links to your social

media sites, such as Facebook, Twitter, and Pinterest. This collection is a key

element of the page, so you should make it stand out from regular body text

by using a larger font size or a unique color (or both).

For my own page, as shown in the following example, I styled the social

media text with a sans-serif font and a 16px font size, and I typed the names

in uppercase letters. For the links, I applied the third color from my color

scheme (#0092ff) and removed the underline. Hovering over each link

changes the text to the #ffc200 color and underlined. Note, too, the use of

a vertical-bar symbol (|) to separate items.

Play
The page introduction
should be short—ideally,
no more than two lines.
At the same time, it
should be balanced
visually on the screen,
with each line extending
as close to the right
edge of the text block
as possible. I've set up
an exercise on the Web
Design Playground
to help give you some
practice doing this.

ðOnline: wdpg.io/
projects/home-page/7

Project:  Creating a Personal Home Page

78	 WEB DESIGN PLAYGROUND 

The Body Text
The bulk of the personal home page is taken up by text that describes who

you are, what you do for a living, what you do for fun, and so on. This text is

the page's body text, and its content is entirely up to you.

You’ve already set the default text color, font size, and text alignment for

the body element, and those values are inherited by the div element that

contains the content section of the page. All that remains is to apply the

body text typeface, which in my example is the serif font Georgia. To ensure

that this typeface gets applied to the entire content section, I add the font to

the div element's font-family property.

IITry This   � ðOnline: wdpg.io/projects/home-page/8
This example styles the personal home page’s social media text with a font, font size,
uppercase letters, and link colors and underlines that change when each link is
hovered over.

<h3>

W
E

B
 P

A
G

E

h3 {
 font-size: 16px;
}
a {
 color: #0092ff;
 text-decoration: none;
}
a:hover {
 color: #ffc200;
 text-decoration: underline;
}

The CSS code for
the h3 e lement

The CSS code for
the regular l ink text

The CSS code for the l ink text
when the reader hovers over it
using the mouse pointer

C
SS

<h3> FACEBOOK</
a> | TWITTER | PINTEREST | CODEPEN | <a href="https://
www.linkedin.com/in/paulmcfedries">LINKEDIN</h3>

H
T

M
L

FAQ
What happened to the
<hr> tags? In the initial
page structure, I used
horizontal rules above
and below the social
media links to separate
them from the other
page text. With the styles
I've applied to the links,
however, they already
appear fully separate
from the rest of the text,
so the horizontal rules
became redundant.

Building the Page

	 WEB DESIGN PLAYGROUND	 79

IITry This   � ðOnline: wdpg.io/projects/home-page/10
This example styles the personal home page text with the Georgia typeface. It also
changes the bulleted list’s bullets to circles.

<p>

<p>

W
E

B
 P

A
G

E

ul {
 list-style-type: circle;
}

The list-style-type property is
set to circle to change the bul let .

C
SS

<div style="font-family: Georgia, serif;">
 <p>
 I've been a professional technical writer for more than 25 years.
 I have over 90 books to my credit, which have sold more than four
 million copies worldwide. I’ve been building websites since 1996, so
 have intimate knowledge of HTML, CSS, and web design. My passion
 is to write books and articles to pass along that knowledge and to
 create tools that help people build awesome web pages.
 </p>
 <p>
 That’s my work side, so what about my personal side? That is, what
 do I do in my spare time? I’m glad you asked! Here’s a partial (and
 alphabetical) list of things and activities that interest me:
 </p>

 Chariot racing
 Dog polishing
 Duck herding
 Extreme ironing
 Navel fluff sculpture
 Staycationing

</div>

The content section's div
e lement with the Georgia
font stack appl ied

A <p></p> block is used
for each paragraph.

H
T

M
L

Project:  Creating a Personal Home Page

80	 WEB DESIGN PLAYGROUND 

In this example, note two things:

•	 I embedded each of the two paragraphs inside a <p></p> block
to honor the semantic role of the text.

•	 To give the bulleted list a bit of pizzazz, I set the ul element's
list-style-type property to circle to change the default
bullets.

The Page Footer
The final element of the personal home page is the page footer. As you

can see in the following example, I used the footer to display a copyright

notice and my contact information (which in this case consists of my email

address). Feel free to use the footer to add any other information you see fit,

such as a "thank you for reading" message, a slogan or favorite epigram, or

extra contact details.

Master
Your body text also
helps you determine
the optimum width for
the page. When you set
text left-aligned, the
right side of each text
block is ragged, meaning
that each line ends at a
different point. Ideally,
you should adjust the
width so that your text
blocks aren't too ragged
(that is, one or more
lines have too much
whitespace at the end).

Play
Although dark gray
(#333 or #444) text is
most often used with a
white background, other
text colors can achieve
subtle effects. A dark
brown text color exudes
warmth, for example.
On the Web Design
Playground, I've set up
an example. ðOnline
wdpg.io/projects/home-
page/11

IITry This   � ðOnline: wdpg.io/projects/home-page/12
This example separates the footer text from the body text by adding a horizontal rule and
by styling the footer text with a lighter gray color, a smaller font size, and italics.

W
E

B
 P

A
G

E

hr {
 color: #666;
}

The hr e lement is
given a l ighter color.

C
SS

<div style="font-family:Georgia, serif; color: #666; font-size:
14px; font-style: italic;">
 <hr>
 © 2019 Paul McFedries

 Contact: mail at my-last-name dot com
</div>

The div e lement is styled
with a font, l ighter color,
smal ler font s ize, and ita l ics .

The emai l address
is obfuscated.

H
T

M
L

From Here

	 WEB DESIGN PLAYGROUND	 81

From Here
The final version of the personal home page (mine is shown in Figure 5.3)

is pretty much what you'd expect: a simple, straightforward page that

establishes your first home on the web. (If you're itching to get your code

out there for all to see, check out Appendix A to get the details.)

Even though you’re only getting started with HTML and CSS, you still

have plenty of ways to add personal touches to your humble home page.

You can always add more text, of course, including a numbered list (such

as a top-ten list of your favorite books or bands). You can also play with the

colors, try different typefaces, mess with typographical details such as the

font size and alignment, and add some links.

If you find yourself slightly disappointed with your page, that's to be

expected. After all, at this early stage in your web-design education, you

have only limited control of the elements on the page, and you're missing

key design ingredients such as images, margins, and page layout. Not to

worry—you'll be learning all that and more in Part 2.

FAQ
Why does your email
address look so weird?
If you're going to include
your email address in
your contact info, never
display the address in
plain text; you run the
risk of the address being
harvested by spammers.
Instead, obfuscate the
address in a way that
foils the spammers' bots
but is still easy for a
human to figure out.

Beware
When adding a
copyright notice,
you may be tempted
to include both the
word Copyright and
the copyright symbol
(©), but this format is
redundant. Use one or
the other, but not both.

IIFigure 5.3  A personal home page, ready for the web.

In this example, note two things:

•	 I embedded each of the two paragraphs inside a <p></p> block
to honor the semantic role of the text.

•	 To give the bulleted list a bit of pizzazz, I set the ul element's
list-style-type property to circle to change the default
bullets.

The Page Footer
The final element of the personal home page is the page footer. As you

can see in the following example, I used the footer to display a copyright

notice and my contact information (which in this case consists of my email

address). Feel free to use the footer to add any other information you see fit,

such as a "thank you for reading" message, a slogan or favorite epigram, or

extra contact details.

Master
Your body text also
helps you determine
the optimum width for
the page. When you set
text left-aligned, the
right side of each text
block is ragged, meaning
that each line ends at a
different point. Ideally,
you should adjust the
width so that your text
blocks aren't too ragged
(that is, one or more
lines have too much
whitespace at the end).

Play
Although dark gray
(#333 or #444) text is
most often used with a
white background, other
text colors can achieve
subtle effects. A dark
brown text color exudes
warmth, for example.
On the Web Design
Playground, I've set up
an example. ðOnline
wdpg.io/projects/home-
page/11

82	 WEB DESIGN PLAYGROUND 

Summary
•	 Sketch out the page you want to build.

•	 Choose the typefaces for the headings and body text.

•	 Choose a color scheme.

•	 Build the initial page structure: the barebones HTML tags and
the global CSS properties applied to the body element.

•	 Fill in and style each section one by one: the title, the
introduction, the social media links, the body text, and the
footer.

Project:  Creating a Personal Home Page

Part 2
Working with

Images and Styles
HTML tags are vital parts of every web designer's toolbox.
You simply must familiarize yourself with all the basic HTML
tags—from <a> to <var>—to build a decent page. But
even if you memorized all the 100 or so tags in the HTML5
specification, any page you make that consisted only of tags
and text would look . . . well, boring. Alas, it would also look
utterly generic because the default renderings for things
like text, headings, and lists are more or less the same in all
modern browsers.

I know you're not reading this book because you want to
be boring and generic! So here in Part 2, you expand your
web design horizons with tools and techniques that go well
beyond the basics. You learn about images, video, and audio
in Chapter 6, and you gain advanced-but-practical style-
sheet know-how in Chapter 7. In Chapter 8, you learn how

to position web page elements like a pro, and Chapter 9
introduces you to the all-important CSS box model, which
lets you size elements and add borders and margins around
elements.

Finally, in Chapter 10, you summon all your newfound HTML
and CSS knowledge and use it to build a slick landing page
for a product.

	 WEB DESIGN PLAYGROUND	 85

6

Chapter

Adding Images
and Other Media

It's like what they say about the perfect picture book.
The art and the text stand alone, but together, they
create something even better. —Deborah Wiles

This chapter covers

▪	Embedding an image on a web page
▪	Working with background images
▪	Optimizing images for the web
▪	Adding videos, music, and other media

When you come across a page that's nothing but text, how does it make you
feel? It probably makes you feel disappointed or perhaps even sad. And unless
the text is absorbing and the typography exceptionally good, it also probably
makes you want to click the Back button and look for some place where your
sore eyes can catch a break. You don't want people feeling disappointed, sad,
or eager to leave your site, so throw them a visual bone or two by sprucing
up your pages with images and perhaps even a video once in a while. In this
chapter, I show you how it's done.

6

Adding Images and Other Media

86	 WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io/6-1-0

So far in this book, you've seen that the innards of a web page are text with

a few HTML tags and CSS rules sprinkled strategically here and there. So

you may be wondering how images fit into this text-only landscape. The

short answer is that they don't! Unlike with a word processing document

or a presentation, you don't insert images directly into a web page. Instead,

you upload the image as a separate file to your website and then insert into

your page text a special HTML tag that tells the browser where to locate the

image. Then the browser retrieves the file from the server and displays the

image on the page in the location you specified.

The special tag that gets the browser to add an image to a web page is

the img element, which uses the partial syntax shown in Figure 6.1.

A description
of the image

The location
of the image

Tooltip text for
the image

You have three attributes to consider here:

•	 src—This attribute (short for source) specifies where the image
file is located. If the file is on a remote server, use the full URL
of the file; if the file is in the same directory as the HTML file,
use the name of the file; otherwise, use the image's path and
filename. If you've created in your site's main folder a subfolder
named images, and your image file is logo.png, your src value
would be /images/logo.png.

•	 alt—This attribute (short for alternative) is a word or short phrase
that describes the image and that could be used in place of the
image in case the image file can't be displayed. A company logo,
for example, might use the alternative text logo, preceded by the
company name. Alt text is also used by screen readers and Braille
apps to give the user some idea of what the image is.

•	 title—You can use this optional attribute to specify tooltip text
that appears when the user hovers the mouse pointer over the
image, as shown in the example that follows.

IIFigure 6.1 
You insert an image into
a web page by using the
 tag.

FAQ
Do I have to include the
alt attribute? Yes. Your
web page won’t validate
unless every one of your
 tags has an alt
attribute present. If
you don't want to use
alt text for decorative
or other nonessential
images, you can set the
alt attribute equal to
the empty string ("").

Lesson 6.1:  �Adding an Image to the Page
Covers: The img element

The following example shows an img element in action.

IIExample   �ðOnline: wdpg.io/6-1-1
This example shows you how to use the tag to add an image to a web page.

Tooltip

Image

W
E

B
 P

A
G

E

span {
 font-family: Optima, Verdana, sans-serif;
 font-size: 3em;
}

C
SS

<img
 src="/images/atomic-logo.png"
 alt="Atomic Web Design logo"
 title="Logo for Atomic Web Design">
Atomic Web Design

The location of
the image fi le

The alternative text

The toolt ip text

H
T

M
L

Your website needs a proper balance between
textual and visual content. Awesome images or
videos without text will give your visitor little to no
useful data, but you might find it hard to engage
users with large slabs of plain text. —Helen Stark

Understanding Image File Formats
In the preceding example, you may have noticed that the image file was

named atomic-logo.png, meaning that it uses the PNG image file format.

That format is common on the web, but it's not the only one you can use.

In fact, the web has standardized on four formats that account for almost all

web imagery, and I summarize them in Table 6.1.

Remember
 If you don't yet have the
image you want to use
but know the image's
final dimensions, you
can insert a placeholder
image to occupy the
same space on the page
until the image is ready
to use. You have several
ways to do this, but
the easiest is to use a
placeholder server, such
as https://placeholder.
com. In the tag,
add src="https://
via.placeholder.
com/wxh", where w
and h are the width
and height, respectively.

ðOnline: wdpg.io/6-1-2

wdpg.io
/6
-1-0
wdpg.io/6-1-1
wdpg.io
/6
-1-2

Understanding Image File Formats

	 WEB DESIGN PLAYGROUND	 87

The following example shows an img element in action.

IIExample   �ðOnline: wdpg.io/6-1-1
This example shows you how to use the tag to add an image to a web page.

Tooltip

Image

W
E

B
 P

A
G

E

span {
 font-family: Optima, Verdana, sans-serif;
 font-size: 3em;
}

C
SS

<img
 src="/images/atomic-logo.png"
 alt="Atomic Web Design logo"
 title="Logo for Atomic Web Design">
Atomic Web Design

The location of
the image fi le

The alternative text

The toolt ip text

H
T

M
L

Your website needs a proper balance between
textual and visual content. Awesome images or
videos without text will give your visitor little to no
useful data, but you might find it hard to engage
users with large slabs of plain text. —Helen Stark

Understanding Image File Formats
In the preceding example, you may have noticed that the image file was

named atomic-logo.png, meaning that it uses the PNG image file format.

That format is common on the web, but it's not the only one you can use.

In fact, the web has standardized on four formats that account for almost all

web imagery, and I summarize them in Table 6.1.

Remember
 If you don't yet have the
image you want to use
but know the image's
final dimensions, you
can insert a placeholder
image to occupy the
same space on the page
until the image is ready
to use. You have several
ways to do this, but
the easiest is to use a
placeholder server, such
as https://placeholder.
com. In the tag,
add src="https://
via.placeholder.
com/wxh", where w
and h are the width
and height, respectively.

ðOnline: wdpg.io/6-1-2

wdpg.io/6-1-1
wdpg.io
/6
-1-2

Adding Images and Other Media

88	 WEB DESIGN PLAYGROUND 

IITable 6.1  Image File Formats

Name Extension Description Uses

GIF .gif

The original web graphics format (the name
is short for Graphics Interchange Format and
it’s pronounced giff or jiff). GIFs are limited
to 256 colors, can have transparent back-
grounds, and can be combined into short
animations.

Use GIFs if you want to combine multiple
images into a single animated image.

JPEG .jpg
.jpeg

This format (which gets its name from Joint
Photographic Experts Group and is pro-
nounced jay-peg) supports complex images
that have many millions of colors. The
main advantage of JPEG files is that they're
compressed, so even digitized photographs
and other high-quality images can be a
reasonably small size for faster downloading.
Note, however, that JPEG compression is
lossy, which means that it makes the image
smaller by discarding redundant pixels. The
higher the compression, the more pixels
are discarded and the less sharp the image
appears.

If you have a photo or similarly complex
image, JPEG is almost always the best choice
because it gives the smallest file size. How
small is small enough for the web? You learn
about that topic in "Optimizing Images" later
in this chapter.

PNG .png

This format (short for Portable Network
Graphics and pronounced p-n-g or ping)
supports millions of colors. It's a compressed
format, but unlike JPEGs, PNGs use lossless
compression. Images retain sharpness, but
the file sizes can get quite big. PNG also
supports transparency.

If you have an illustration or icon that
uses solid colors, or a photo that contains
large areas of near-solid color, PNG is best
because it gives you a reasonably small file
size while retaining excellent image quality.
You can also use PNG if you need transpar-
ency effects.

SVG .svg

This format (short for Scalable Vector Graph-
ics) uses vectors rather than pixels to gener-
ate an image. These vectors are encoded as
a set of instructions in XML format, meaning
that the image can be altered in a text
editor and can be manipulated to produce
animations.

If you have a logo or icon and have a graph-
ics program that can save files as SVG (such
as Adobe Illustrator or Inkscape), this format
is a good choice because it produces small
files that can be scaled to any size without
distortion.

Learn
If you want to join the
animated-GIF fun, lots
of sites on the web can
help. The easiest route
is to use an online tool
such as GIFCreator
(http://gifcreator.me)
or GIFMaker.me
(http://gifmaker.me).

Getting Graphics
The text part of a web page is, at least from a production standpoint, a

piece of cake for most folks. Graphics, on the other hand, are another kettle

of digital fish entirely. Creating a snazzy logo or eye-catching illustration

requires a modicum of artistic talent, which is a bit harder to come by than

basic typing skills.

http://gifcreator.me
http://gifmaker.me

Inserting an HTML5 Figure

	 WEB DESIGN PLAYGROUND	 89

If you have such talent, however, you're laughing: Create the image in your

favorite graphics program and save it in JPEG or PNG format. The nonartists in

the crowd have to obtain their graphics goodies from other sources. Besides

uploading your own photos or scanning your own images, you can find no

shortage of other images floating around. Here are some ideas:

•	 Many programs (including Microsoft Office and most paint and
illustration programs) come with clip-art libraries. Clip art is
professional-quality artwork that you can incorporate into your
own designs. In almost all cases, you're free to use the clip art in
your own designs without worrying about copyright.

•	 Take advantage of the many graphics archives online. Sites all
over the web store hundreds and even thousands, of images:
stock photos, illustrations, icons, and more. Many of these
images are free, but check each site's terms of use.

•	 Grab an image from a web page. When your browser displays
a web page with an image, the corresponding graphics file
is stored temporarily on your computer's hard disk. In most
browsers, you can right-click the image to save that file
permanently. As I elaborate in the note off to the side, however,
there are copyright concerns, because you shouldn't use images
that you don't own without permission and/or credit.

Inserting an HTML5 Figure
Although many of your images are purely decorative or designed to catch

a site visitor's eye, you may also use plenty of graphics that tie in with your

page text. When you reference an image directly in the text, that image is

known as a figure. In HTML5, a figure is a semantic page element that you

designate with the figure element. If the figure has a caption, that caption

too is a semantic element that you designate with the figcaption element.

Here's the basic structure to use:

<figure>

 <figcaption>Caption text</figcaption>
</figure>

Beware
Don't forget that
many images are the
property of the people or
companies that created
them in the first place.
Unless you're absolutely
sure that a picture is in
the public domain (for
example, it comes with
a Creative Commons
license that lets you
reuse the image), you
need to get permission
from the owner before
using it. Either way,
be sure to give credit
to the image owner on
your site.

Adding Images and Other Media

90	 WEB DESIGN PLAYGROUND 

Following is an example.

IIExample   �ðOnline: wdpg.io/6-1-4
This example shows you how to use the figure and figcaption elements to
designate an image as a figure.

W
E

B
 P

A
G

E

<p>
 During our recent rebranding, we came up with a
 snazzy new logo, shown in Figure 8.3.
</p>
<figure>
 <img
 src="/images/atomic-logo.png"
 alt="Atomic Web Design logo"
 title="Logo for Atomic Web Design">
 <figcaption>
 Figure 8.3: The new Atomic Web Design logo
 </figcaption>
</figure>

Enclose the
caption in the
figcaption
e lement.

Enclose the image in
the figure e lement.

H
T

M
L

Setting Up an Image as a Link
You already know that you can set up a word or phrase as a link, but you can

do the same with images. You arrange things in the same way, surrounding

the tag with the <a> and tags, like so:

Here's an example.

Beware
I've shown the code for
turning an image into
a link on one line for a
purpose. If you place
these tags on separate
lines—particularly the
closing tag—you
end up with weird
artifacts in the text
(essentially, underlined
carriage returns).

wdpg.io/6-1-4

Using an Image as a Custom Bullet

	 WEB DESIGN PLAYGROUND	 91

IIExample   �ðOnline: wdpg.io/6-1-6
This example shows you how to use the a element and the img element to turn an
image into a link.

W
E

B
 P

A
G

E

<img src="/images/atomic-logo.png" alt="Atomic Web Design logo"
title="Logo for Atomic Web Design">
Atomic Web Design

Enclose the image in the a e lement.

H
T

M
L

Using an Image as a Custom Bullet
As you learned in Chapter 2, CSS offers the list-style-type property

that enables you to specify another type of bullet character to use with an

unordered list. You can kick that property up a notch by using the list-
style-image property to specify an image to use as a custom bullet:

ul {
 list-style-image: url(file);
}

As with the tag, the file value specifies the location of the image

file. Note, however, that you don't have to surround the value with quotation

marks. Following is an example.

Setting Up an Image as a Link
You already know that you can set up a word or phrase as a link, but you can

do the same with images. You arrange things in the same way, surrounding

the tag with the <a> and tags, like so:

Here's an example.

Beware
I've shown the code for
turning an image into
a link on one line for a
purpose. If you place
these tags on separate
lines—particularly the
closing tag—you
end up with weird
artifacts in the text
(essentially, underlined
carriage returns).

wdpg.io/6-1-6

Adding Images and Other Media

92	 WEB DESIGN PLAYGROUND 

IIExample   �ðOnline: wdpg.io/6-1-7
This example shows you how to use the list-style-image property to specify an
image as a custom bullet.

W
E

B
 P

A
G

E

ul {
 list-style-image: url(/images/checkmark.png);
}

Set the list-style-image
property to the image fi le

location .

C
SS

<h3>
 Prepare Images for the Web:
</h3>

 Remove unnecessary images
 Choose the correct image format
 Size the images appropriately
 Compress JPEGs as needed
 Optimize PNGs

H
T

M
L

 Aligning Images and Text
The tag is an inline element, so you can insert it into, say, a paragraph

or similar block element, and it will flow along with the rest of the content.

By default, the bottom edge of the image aligns with the baseline of the

current line, but you can control that vertical alignment by using the

vertical-align property:

element {
 vertical-align: baseline | bottom | middle | top;
}

•	 baseline—The bottom of the image is aligned with the
baseline of the current line (the default).

wdpg.io/6-1-7

Aligning Images and Text

	 WEB DESIGN PLAYGROUND	 93

•	 bottom—The bottom of the image is aligned with the bottom of
the current line (that is, the bottommost extent of descending
letters such as y and g).

•	 middle—The middle of the image is aligned with the baseline
of the current line, plus one half of the x-height of the current
font.

•	 top—The top of the image is aligned with the top of the current
line.

The following example shows the vertical-align property at work.

IIExample   �ðOnline: wdpg.io/6-1-10
This example shows you how to use the vertical-align property to align an image
vertically with surrounding content.

Baseline

Middle Top

Bottom

W
E

B
 P

A
G

E

<div>
 <img src="/images/animalpath.jpg"
 style="vertical-align: baseline"> Animal path
</div>
<div>
 <img src="/images/bridleway.jpg"
 style="vertical-align: bottom"> Bridleway
</div>
<div>
 <img src="/images/coffintrail.jpg"
 style="vertical-align: middle"> Coffin trail
</div>
<div>
 <img src="/images/desireline.jpg"
 style="vertical-align: top"> Desire line
</div>

Appl ies the
baseline a l ignment

Appl ies the bottom
a l ignment

Appl ies the middle
a l ignment

Appl ies the
top a l ignment

H
T

M
L

Master
If you need even finer
control of the vertical
placement of an image,
you can specify a length
value, in pixels (px), for
the vertical-align
property. To move the
image up, specify a
negative value.

wdpg.io/6-1-10

Adding Images and Other Media

94	 WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io/6-2-0

To add some visual interest to an element, you can use the background-
image property to specify an image file to use as the background:

element {
 background-image: url(file);
}

The file value specifies where the image file is located. If the file is on

a remote server, use the full URL of the file; if the file is in the same directory

as the HTML file, use the name of the file; otherwise, use the image's path

and filename.

The following example shows this property in action.

Lesson 6.2:  �Working with Background Images
Covers: background-image and related properties

IIExample   �ðOnline: wdpg.io/6-2-1
This example shows you how to use the background-image property to apply an
image as the background of an element.

Original image Tiled background images

W
E

B
 P

A
G

E

div {
 background-image: url(/images/bg.png);
 width: 500px;
 height: 200px;
}

The div e lement
gets a background
image.

C
SS

wdpg.io
/
6-
2
-0
wdpg.io/6-2-1

Controlling the Background Repeat

	 WEB DESIGN PLAYGROUND	 95

<div>
 <h1>Tiling</h1>
 <p>When you add a background image, the browser doesn’t just
add the image once and move on to the next task. Instead, it takes
the image and repeats it until it fills the entire parent block
element, a process known as <i>tiling</i>.
 </p>
</div>

The image is disp layed on
its own for comparison.

H
T

M
L

When working with background images, you should assume that the

image may not load properly for some reason. Therefore, it's always a good

idea to specify the background-color property with a value that matches

the main color of the image. Here's an example:

div {
 background-color: #fec72f;
 background-image: url(/images/bg.png);
}

Controlling the Background Repeat
You saw in the preceding example that the browser's default behavior for

a background image that's smaller than the element is to repeat the image

horizontally and vertically until the element is filled. This behavior is called

tiling the background, and it's usually the behavior you want. However,

you can control whether the background repeats horizontally, vertically, or

doesn't repeat by using the background-repeat property:

element {
 background-image: url(file);
 background-repeat: repeat | repeat-x | repeat-y | no-repeat;
}

•	 repeat—Tiles the image horizontally and vertically (the default)

•	 repeat-x—Tiles the image only horizontally, as shown in
Figure 6.2

•	 repeat-y—Tiles the image only vertically, as shown in
Figure 6.3

•	 no-repeat—Displays the image once

Beware
A background image
can add a nice bit of eye
candy to a page, but
it leaves a bitter taste
if it interferes with the
legibility of your page
text. Always ensure
that you've got lots of
contrast between the text
and the background.

Remember
The repeat value is
the default, so declaring
background-repeat:
repeat is optional.

Play
You can try out all the
background-repeat
values interactively
in the Web Design
Playground. ðOnline:
wdpg.io/6-2-2

wdpg.io
/
6-
2
-
2

Adding Images and Other Media

96	 WEB DESIGN PLAYGROUND 

Setting the Background Position
By default, the background image tiling starts in the top-left corner of the

parent element. You can change that setting by applying the background-
position property:

element {
 background-image: url(file);
 background-position: horizontal vertical;
}

•	 horizontal—Specifies the starting horizontal position of the
background image tiling. You can use the keywords left,
center, or right; a percentage; or a pixel value.

•	 vertical—Specifies the starting vertical position of the
background image tiling. You can use the keywords top,
center, or bottom; a percentage; or a pixel value.

Figure 6.4 is a composite that shows the nine possible positions when

you use the three horizontal keywords (left, center, and right) and three

vertical keywords (top, center, and bottom). Note that in each case, I set

the background-repeat property to no-repeat.

IIFigure 6.2 
With background-
repeat: repeat-x,
the background image
repeats horizontally.

IIFigure 6.3 
With background-
repeat: repeat-y,
the background image
repeats vertically.

Remember
The left top value is
the default, so declaring
background-
position: left
top is optional.
Note, too, that this
value is equivalent
to background-
position: 0px 0px
or background-
position: 0% 0%.

Play
You can try out all
the background-
position keywords
interactively in the Web
Design Playground.

ðOnline: wdpg.io/6-2-3

wdpg.io
/
6-
2
-
3

Adding a Hero Image

	 WEB DESIGN PLAYGROUND	 97

Left top

Center top

Center center Center bottom

Right top

Right center

Right bottom

Left center

Left bottom

IIFigure 6.4  The nine possible keyword-based positions for the
background-position property

Play
Another way to use
an image as a custom
bullet is to set the image
as the background
for the li element,
which enables you to
use background-
position to control
the alignment of the
bullet and the item text.

ðOnline: wdpg.io/6-2-4

Adding a Hero Image
One of the most popular web design trends of the past few years is the hero

image: an eye-catching photo or illustration that takes up the entire width

(and usually the entire height) of the browser window when you first land on

a page. Using a hero image is a great way to grab a visitor's attention right

off the bat.

To set up a hero image, you need to do the following:

1	 Begin the page with a block element (such as a div) that's styled to

take up the entire browser window:

width: 100vw;
height: 100vh;

2	 For that same block element, add a background image and set its

position to background-position: center center.

3	 Add the declaration background-size: cover, which tells the

browser to size the image so that it covers the entire background of

the block element.

Following is an example.

Remember
The vw and vh units
represent one one-
hundredth of the
browser window's width
and height, respectively.
For more on these units,
see Chapter 7.

wdpg.io
/
6-
2
-
4

Adding Images and Other Media

98	 WEB DESIGN PLAYGROUND 

IIExample   �ðOnline: wdpg.io/6-2-5
This example shows you how to add a hero image to a page.

W
E

B
 P

A
G

E

.hero-image {
 width: 100vw;
 height: 100vh;
 background-image: url(/images/toronto.jpg);
 background-position: center center;
 background-size: cover;
}

Element sized to the
browser window

Image is
displayed and
centered.Image covers

the entire
element.

C
SS

<div class="hero-image">
 <h1>Welcome!</h1>
 <h2>Are you ready to see Toronto in an entirely new way?</h2>
</div>
<div class="main">
 The main page content goes here.
</div>

Block element for
the hero image

H
T

M
L

wdpg.io/6-2-5

Optimizing Images

	 WEB DESIGN PLAYGROUND	 99

The Background Shorthand Property
CSS has five main background-related components: color, image, repeat,

attachment, and position. These components are represented, respectively, by

the CSS properties background-color, background-image, background-
repeat, background-attachment, and background-position. Handily,

you can apply any or all of these properties with a single statement by

using the background shorthand property, which takes the syntax shown

in Figure 6.5.

This syntax is a straightforward repetition of everything you've learned so

far, and you're free to enter the properties in any order you prefer.

Optimizing Images
There's a common saying in web-design circles: "Color is free on the web."

This saying means that you can add colors to text, backgrounds, borders, and

other elements without paying a performance price. This is decidedly not the

case with images, which, thanks to their potential to be huge (particularly those

hero images I talked about earlier), can come with high performance costs

indeed. To help ensure that your pages aren't bandwidth hogs that take ages

to load, here are a few tips to bear in mind for optimizing the images you use:

•	 Don't use unnecessary images. Before adding an image to a page,
ask yourself whether the image is needed to convey your message.
If so, go for it. If not, leave it behind. Your users will thank you.

•	 Watch your image sizes. Web browsers can resize images as
needed, but they shouldn't have to. If you want a 100x100 logo
in the top-left corner, don't upload a 2,048x2,048 version of
that image and force the browser to resize (by, say, specifying
the smaller width and height in your CSS). That bigger file will
take a long time to download, which is a waste of bandwidth.

•	 Choose your file format wisely. As a general rule, you should use
the image file format that produces the smallest file size while
still retaining a satisfactory level of image quality for the job
at hand. A hero image should look good, but a tiny thumbnail
doesn't have to be high-resolution.

Beware
If you plan to overlay
text on your hero image,
make sure that the
image includes an area
that's not too busy so
that your text will be
readable. Also, make
sure that you have
sufficient contrast
between the colors
of your image and
your text.

Play
You can make the
background stay in
place while you scroll
the rest of the page by
adding the declaration
background-
attachment: fixed.

ðOnline: wdpg.io/6-2-6

Play
One of the most
surprising aspects of
background images
is that you can use
multiple backgrounds
on the same element.
You can repeat the same
background image in
two or more places
or use two or more
background images (or
both!). ðOnline:
wdpg.io/6-2-7

IIFigure 6.5  You can apply up to five background properties at the same time by using the background
property.

background: background-color background-image background-repeat background-attachment
background-position;

Image file Repeat AttachmentColor

Starting position

wdpg.io
/
6-
2
-
6
wdpg.io
/6
-2-7

Adding Images and Other Media

100	WEB DESIGN PLAYGROUND 

•	 Take advantage of JPEG compression. If you're saving your
image in the JPEG format, your imaging software allows
you to choose a compression level for the file. You'll need to
experiment a bit to get the right level, but for most uses, a
compression level in the range of 60 to 75 percent is a good
place to start. More compression usually leads to poor image
quality, and less compression usually results in large file sizes.

•	 Optimize PNG images. When you're working with a PNG image,
decide whether you can get away with 8-bit color, which is a
mere 256 colors. For a simple logo or icon, 8-bit color may be
more than enough, and you'll end up with quite a small file.
For more complex images, you'll probably need the full 24-bit
palette.

Adding Video and Audio to the Page
You know that people love their cat videos and podcasts, so you want a

piece of the action by adding video or audio content to your own web pages.

Great idea! I’ll begin with the good news: HTML5 comes with the <video>

and <audio> tags, which offer a somewhat straightforward way to embed

media content in a page. Notice that I said somewhat. Why the hedge? Ah,

that's where the bad news rears its complexifying head. Right now, web

media is a crazy quilt of standards, compression algorithms, and file formats.

It's borderline absurd, but if you want to serve your visitors sights or sounds,

you need to wade into the deep end.

I’ll begin by defining two aspects of web media formats:

•	 Container —The file format, called a container because it acts
like the media equivalent of a zip file—that is, it's an archive
that contains multiple items, particularly the media codecs
(discussed next) and the media metadata.

•	 Codec —The algorithm used to encode and compress the video
or audio in a digital format and to decode and decompress the
media for playback. (The word codec is a blend of code/decode
and compress/decompress.)

So a web media file that you'd embed in a page comes in a specific

media format that uses a particular container, and within that container are

all the codecs that the format supports. Sounds simple enough, right? The

absurdity comes into play when you understand that there's no such thing

as a standard or universal media format.

Learn
If you need to use 24-bit
PNGs, software tools
are available that can
help reduce the size of
those files. If you use a
Mac, try ImageAlpha
(https://pngmini.com);
if you run Windows,
check out PNGoo
(https://pngquant.org).

https://pngmini.com
https://pngquant.org/PNGoo.0.1.1.zip

Adding Video and Audio to the Page

	 WEB DESIGN PLAYGROUND	 101

Web Video Formats
For video, in fact, you have three main formats to worry about:

•	 WebM —This format uses the WebM container, inside which is
either the VP8 or VP9 video codec, as well as the Vorbis or Opus
audio codec. This format is open source and royalty free. File
extension: .webm.

•	 Ogg —This format uses the Ogg container, inside which is the
Theora video codec, as well as the Vorbis or Opus audio codec.
This format is open source and royalty free. File extension: .ogg
or .ogv.

•	 MPEG-4 —This format uses the MPEG-4 container, inside which
is the H.264 video codec, as well as the AAC audio codec. This
format is patented but free for end users. File extension: .mp4.

Which one should you use? Most of the time, you can get away with

using the MPEG-4 format, which is supported by all major browsers. That

support is a bit problematic, however. First, Firefox doesn't support MPEG-4

natively; instead, it relies on the operating system's built-in support for

MPEG-4. Second, Google has hinted that it may not support MPEG-4 in

future releases of Chrome. It's a good idea to serve your visitors both an

MPEG-4 version and a WebM version (which is newer and better supported

than Ogg).

Web Audio Formats
For audio, there are even more formats:

•	 MP3 —This format is both the container and the audio codec.
This format is patented but free for end users. File extension:
.mp3.

•	 WAV —This format is both the container and the audio codec.
File extension: .wav.

•	 WebM —This format uses the WebM container, inside which is
Vorbis or Opus audio codec. This format is open source and
royalty free. File extension: .webm.

•	 Ogg —This format uses the Ogg container, inside which is the
Vorbis or Opus audio codec. This format is open source and
royalty free. File extension: .ogg. or .oga.

•	 MPEG-4 —This format uses the MPEG-4 container, inside which
is the AAC audio codec. This format is patented but free for end
users. File extension: .m4a.

Things are a bit saner in the audio world, where every browser now

supports the MP3 format, so you can get away with using the one file type.

Learn
Many tools are
available to convert
videos to formats
supported by HTML5.
Two online tools that
are worth checking
out are Zamzar (https://
www.zamzar.com) and
Online-Convert (https://
www.online-convert.com/).

Learn
The two online tools I
mentioned earlier also
support the HTML5
web audio formats. You
may also want to have a
look at media.io (https://
media.io).

https://www.zamzar.com
https://www.zamzar.com
https://www.online-convert.com/
https://www.online-convert.com/
https://media.io
https://media.io

Adding Images and Other Media

102	WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io/6-3-0

HTML5's video element offers a no-nonsense way of embedding video

content in your web page. Well, no-nonsense may be wishful thinking. You

can use two syntaxes, depending on the number of video file formats you

want to serve.

First, here's the syntax to use if you're offering a single video format:

<video src="file"
 poster="file"
 width="value"
 height="value"
 controls
 autoplay
 loop>
</video>

•	 src—Specifies the location of the video file, so it's much the
same as the src attribute for the tag

•	 poster—Specifies the location of an image, such as a title frame
or still frame from the video, to display before video playback
begins

•	 width and height—Specify the dimensions of the video
playback window

•	 controls—When included, tells the browser to display the
playback controls in the video window

•	 autoplay—When included, tells the browser to automatically
start playing the video as soon as it has downloaded enough of
the video file

•	 loop—When included, tells the browser to begin playback from
the beginning each time the video ends

Following is an example.

Lesson 6.3:  �Embedding Video in a Web Page
Covers: The video element

wdpg.io
/
6-
3
-0

Adding Video and Audio to the Page

	 WEB DESIGN PLAYGROUND	103

IIExample   �ðOnline: wdpg.io/6-3-1
This example shows you how to embed a single video-file format in a web page.

W
E

B
 P

A
G

E

<video src="/videos/movie.mp4"
 poster="/images/movie-poster.jpg"
 width="625"
 height="480"
 controls
 autoplay
 loop>
</video>

H
T

M
L

To offer two or more video formats, you need to remove the src attribute

from the <video> tag and replace it with multiple source elements, one for

each format you want to offer:

<video poster="file"
 width="value"
 height="value"
 controls
 autoplay
 loop>
 <source src="file"
 type='type; codecs="codecs"'>
</video>

•	 src—As before, the src attribute for each <source> tag
specifies the name and/or location of the video file.

wdpg.io/6-3-1

Adding Images and Other Media

104	WEB DESIGN PLAYGROUND 

•	 type—This string (surrounded by single quotation marks)
specifies the video format type (as shown earlier in this chapter
in the “Web Video Formats” section), a comma-separated and
double-quotation-mark-surrounded list of the format's video
and audio codecs:

•	 MPEG-4 —Use the following:

type='video/mp4; codecs="avc1.4D401E, mp4a.40.2"'

•	 WebM —Use one of the following:

type='video/webm; codecs="vp8, vorbis"'
type='video/webm; codecs="vp9, vorbis"'
type='video/webm; codecs="vp9, opus"'

•	 Ogg —Use one of the following:

type='video/ogg; codecs="theora, vorbis"'
type='video/ogg; codecs="theora, opus"'

Here's an example.

IIExample   �ðOnline: wdpg.io/6-3-2
This example shows you how to embed multiple video-file formats in a web page.

W
E

B
 P

A
G

E

wdpg.io/6-3-2

Adding Video and Audio to the Page

	 WEB DESIGN PLAYGROUND	105

<video poster="/images/movie-poster.jpg"
 width="625"
 height="480"
 controls
 autoplay
 loop>
 <source src="/videos/movie.mp4"
 type='video/mp4; codecs="avc1.4D401E, mp4a.40.2"'>
 <source src="/videos/movie.webm"
 type='video/webm; codecs="vp8, vorbis"'>
 <source src="/videos/movie.ogv"
 type='video/ogg; codecs="theora, vorbis"'>
</video>

H
T

M
L

ððOnline: wdpg.io/6-4-0

You'll be delighted to hear that embedding audio in a web page is nearly

identical to embedding video, because the <audio> and <video> tags have

many of the same attributes.

First, here's the syntax to use if you're offering a single audio format:

<audio src="file"
 controls
 autoplay
 loop>
</video>

•	 src—Specifies the location of the audio file

•	 controls—When included, tells the browser to display the
playback controls in the audio window

•	 autoplay—When included, tells the browser to automatically
start playing the audio as soon as it has downloaded enough of
the audio file

•	 loop—When included, tells the browser to begin playback from
the beginning each time the audio ends

Following is an example.

Lesson 6.4:  �Embedding Audio in a Web Page
Covers: The audio element

wdpg.io
/
6-
4
-0

Adding Images and Other Media

106	WEB DESIGN PLAYGROUND 

IIExample   �ðOnline: wdpg.io/6-4-1
This example shows you how to embed a single audio-file format in a web page.

W
E

B
 P

A
G

E

<audio src="/audio/music.mp3"
 controls
 autoplay
 loop>
</audio>

H
T

M
L

To offer two or more audio formats, remove the src attribute from the

<audio> tag and replace it with multiple <source> tags, one for each format

you want to offer:

<audio controls
 autoplay
 loop>
 <source src="file"
 type="type">
</audio>

•	 src—As before, the src attribute for each <source> tag
specifies the name and/or location of the audio file

•	 type—Specifies the audio format type (as shown earlier in the
section “Web Audio Formats”)

Here's an example.

wdpg.io/6-4-1

Summary

	 WEB DESIGN PLAYGROUND	107

IIExample   �ðOnline: wdpg.io/6-4-2
This example shows you how to embed multiple audio-file formats in a web page.

W
E

B
 P

A
G

E

<audio controls
 autoplay
 loop>
 <source src="/audio/music.mp3"
 type="audio/mp3">
 <source src="/audio/music.wav"
 type="audio/wav">
 <source src="/audio/music.webm"
 type="audio/webm">
 <source src="/audio/music.ogg"
 type="audio/ogg">
 <source src="/audio/music.m4a"
 type="audio/mp4">
</audio>

H
T

M
L

Summary
•	 There are four main image-format types—GIF, JPEG, PNG, and

SVG—although most of your pages will use JPEG for photos and
complex images, and PNG for illustrations, logos, and icons that
use mostly solid colors and/or transparency.

•	 To add an image to the page, use the tag:

•	 To infuse your images with HTML5 semantic flavor, surround
the img element with the figure element and, optionally, add a
figcaption element.

•	 To make an image do double duty as a link, surround the img
element with the a element.

wdpg.io/6-4-2

108	WEB DESIGN PLAYGROUND 

•	 You can set up an image as an element background by adding
the following property to the element's CSS:

background-image: url(file);

•	 You can control the background image's display by adding
one or more of the following properties: background-repeat,
background-position, and background-attachment.

•	 You can set all three of these properties, as well as the
background-color and background-image properties, by
using the background shorthand property.

•	 You embed a video in a web page by using the <video> tag, and
you embed sound in a web page by using the <audio> tag.

•	 With both the <video> tag and the <audio> tag, you can specify
multiple formats by adding a separate <source> tag for each.

Adding Images and Other Media

	 WEB DESIGN PLAYGROUND	109

Chapter

7

Learning More
About Styles

Style is a way to say who you are without
having to speak. —Rachel Zoe

This chapter covers

▪	�Learning the three methods for adding styles to a
web page

▪	Adding power and flexibility with classes
▪	�Understanding the units of measurement you can

use in your CSS

How do you craft pages that rise above the humdrum? How do you design
pages that go beyond the same old, same old? One word: styles. If you've
seen a web page that you think is well designed, know that the page uses
styles to achieve that look. If there's a web designer whose work you admire,
know that the designer mastered styles that make her work stand out. You
saw several useful styles in Part 1 of the book, but those styles are only a taste
of what's out there. To help you get started down the road to becoming truly
style-savvy, this chapter takes your style knowledge to the next level.

7

Learning More About Styles

110	WEB DESIGN PLAYGROUND 

<element style=”property1: value1; property2: value2; ...”>

One or more
property-value pairs

The web page element
to be styled

The style atribute

Here are a few points to keep in mind when you use inline styles:

•	 If you want to include two or more property-value pairs
in a single inline style, be sure to separate each pair with a
semicolon (;).

•	 If a value needs to be quoted, use single quotation marks (').

•	 An inline style affects only the element in which you place the
style attribute.

Following are a couple of examples of inline styles.

IIExample   �ðOnline: wdpg.io/7-1-1
This example shows an inline style applied to a <p> tag, as well as an inline style with
multiple property-value pairs applied to a tag.

The <p> text

The text

W
E

B
 P

A
G

E

IIFigure 7.2  The syntax to use for inline styles

Beware
Because the style
attribute's value is itself
surrounded by double
quotation marks, be
careful if one of your
property-value pairs
requires quotation
marks of its own. In that
case, surround the value
with single quotation
marks (for example,
style="font-
family: 'PT
Sans';").

Use It
 A good use for inline
styles is to perform
a quick test of a CSS
property or two. If
you're getting started
with a page and haven't
yet set up an external
style sheet (see Lesson
7.3), inline styles are a
quick way to test-drive
some CSS.

Adding Styles to a Page
I mentioned in Chapter 1 that a web page is a text file filled with words,

numbers, and a few strategically placed HTML tags that provide structure

for the text. You'll be happy to hear that CSS is also a text-based business,

so you don't need anything grander than a simple text editor (or this book's

handy Web Design Playground) to get started with styles.

That said, although what styles consist of is simple enough, how you add

styles to a web page is a bit more complex. First, recall from Chapter 1 that a

single style declaration consists of a property-value pair that uses the syntax

shown in Figure 7.1.

The property name is almost always

written in lowercase letters (although it doesn’t

have to be). If the value includes one or more

spaces, numbers, or punctuation characters

other than a hyphen (-), surround the value

with quotation marks.

The added complexity of CSS comes from

the fact that you have not one, not two, but

three ways to tell the web browser what style

declarations you want to use:

•	 Inline styles

•	 Internal styles

•	 External styles

The next three lessons introduce you to these methods.

Remember
A style is an instruction
to the browser to
modify how it displays
something on the page,
and a style sheet (the
SS part of CSS) is a
collection of styles. So
throughout this book, I
use the terms CSS and
styles interchangeably.

IIFigure 7.1 
The syntax of a property-
value pair

property: value;

Value of the
property

Name of the
CSS property

Property and value are
separated by a colon (:) and
a space.FAQ

Do I have to add a space
after the colon? Strictly
speaking, no, the space
isn't required. I do
recommend adding the
space, however, because
it makes your styles
more readable.

ððOnline: wdpg.io/7-1-0

Probably the most straightforward way to add styles to your web page is to

insert them directly into the element you want to modify. This technique is

called an inline style, and you insert a style by including the style attribute

within the HTML element you want to change. Figure 7.2 shows the general

syntax to use.

Lesson 7.1:  �Inserting Inline Styles
Covers: The <style> attribute

Adding Styles to a Page

	 WEB DESIGN PLAYGROUND	 111

<element style=”property1: value1; property2: value2; ...”>

One or more
property-value pairs

The web page element
to be styled

The style atribute

Here are a few points to keep in mind when you use inline styles:

•	 If you want to include two or more property-value pairs
in a single inline style, be sure to separate each pair with a
semicolon (;).

•	 If a value needs to be quoted, use single quotation marks (').

•	 An inline style affects only the element in which you place the
style attribute.

Following are a couple of examples of inline styles.

IIExample   �ðOnline: wdpg.io/7-1-1
This example shows an inline style applied to a <p> tag, as well as an inline style with
multiple property-value pairs applied to a tag.

The <p> text

The text

W
E

B
 P

A
G

E

IIFigure 7.2  The syntax to use for inline styles

Beware
Because the style
attribute's value is itself
surrounded by double
quotation marks, be
careful if one of your
property-value pairs
requires quotation
marks of its own. In that
case, surround the value
with single quotation
marks (for example,
style="font-
family: 'PT
Sans';").

Use It
 A good use for inline
styles is to perform
a quick test of a CSS
property or two. If
you're getting started
with a page and haven't
yet set up an external
style sheet (see Lesson
7.3), inline styles are a
quick way to test-drive
some CSS.

continued

Learning More About Styles

112	 WEB DESIGN PLAYGROUND 

Although inline styles are the easiest way to add CSS code to your page,

they're not the most convenient method for anything other than the simplest

of pages because they require you to add the style attribute directly to

every element you want styled. If your page consists of, say, a dozen h2

elements, and you want to apply the same style to them all, you must add a

dozen style attributes. Even worse, if you later decide to change how your

h2 elements appear, you have to change every instance of the style value.

That's a lot of work, so most web designers eschew inline styles or use them

only for specific instances.

What do these designers do instead? Ah, that's where internal styles

come in.

Play
Can you spot the style
attribute error in the
following <a> tag? <a
href="https://
www.w3.org/TR/
css-style-attr/"
style="color:
indianred; font-
weight: bold,
text-decoration:
none;"> ðOnline:
wdpg.io/7-1-3

<p style="font-size: 1.5em"> The <i>snowclone</i> is a kind of
<i>phrasal template</i> since it comes with one or more empty
"slots" that get filled with words to create a new phrase. Some
examples:</p>
<ul style="color: darkgreen; font-family: 'Trebuchet MS',
sans-serif; font-size: 1.25em;">
 I'm not an X, but I play one on TV
 In X, no one can hear you Y
 X and Y and Z, oh my!

The p e lement's in l ine style sets the font s ize.

The ul e lement's
in l ine styles set
the text color,
typeface, and size.

H
T

M
L

ððOnline: wdpg.io/7-2-0

The second method for getting styles into a web page involves adding a

<style></style> tag pair in the page's head section (that is, between

the page's <head> and </head> tags) and then defining the styles within

those tags. This method is called an internal style sheet (or sometimes an

embedded style sheet), and it uses the following general syntax:

Lesson 7.2:  �Adding an Internal Style Sheet
Covers: The style element

Adding Styles to a Page

	 WEB DESIGN PLAYGROUND	 113

<style>
 selectorA {
 propertyA1: valueA1;
 propertyA2: valueA2;
 ...
 }
 selectorB {
 propertyB1: valueB1;
 propertyB2: valueB2;
 ...
 }
 ...
</style>

From this syntax, you can see that an internal style sheet consists of

one or more style rules, each of which defines one or more property-value

pairs to be applied to the specified web page elements. Each rule has the

following characteristics:

•	 A selector that specifies the web page elements to which you
want the style applied. This selector is often a tag name, but
it can also specify any other type of CSS selector (such as the
class selector, described in Lesson 7.4).

•	 An opening left brace: {.

•	 One or more property-value pairs, separated by semicolons.

•	 A closing right brace: }.

In CSS lingo, a property-value pair is called a declaration, and the

collection of declarations applied to a selector—that is, the braces and

the property-value pairs between them—is called a declaration block. The

combination of a selector and its declaration block is called a style rule.

The following example uses an internal style sheet to format the dt

element.

One or more
declarations

Declarations are
surrounded by opening
and clos ing braces.

The web page elements
to be styled

A style rule

Learning More About Styles

114	WEB DESIGN PLAYGROUND 

Here, you see one of the great advantages of using internal styles. If your

page has a dozen dt elements, this one style applies to them all, which gives

the page a consistent look. Even better, if you decided that a size of 20px

would look better for your dt text, you'd have to change the value only once

in the style declaration; that change would get reflected automatically in all

your dt elements.

Internal styles work beautifully if your site consists of a single web page.

Such sites aren't rare, but it's far more likely that your or your client's site

will consist of several pages, perhaps even several dozen. If you want your

pages to have a consistent look—and you should, because consistency

IIExample   �ðOnline: wdpg.io/7-2-1
This example uses an internal style sheet to apply a font size and bolding to each of the
<dt> tags.

The <dt> text

W
E

B
 P

A
G

E

<style>
 dt {
 font-size: 18px;
 font-weight: bold;
 }
</style>

The CSS rule for
the dt e lement

C
SS

<p>Some CSS jargon to commit to memory:</p>
<dl>
 <dt>Gaffer</dt>
 <dd>The head electrician.</dd>
 <dt>Best Boy</dt>
 <dd>The gaffer's assistant.</dd>
 <dt>Grip</dt>
 <dd>A person who moves equipment.</dd>
</dl>

The <dt> tags and textH
T

M
L

Master
Declaration blocks can
get quite long, with some
containing a dozen
or more property-
value pairs. One way
to make reading and
working with these big
blocks easier is to add
the declarations in
alphabetical order by
property name.

Adding Styles to a Page

	 WEB DESIGN PLAYGROUND	 115

across pages is one of the hallmarks of good web design—using internal

style sheets means copying the same <style> tag to each and every page.

Also, if you change even one aspect of any style rule, you must make the

same change to the same rule in every page.

The bigger your site is, the less appealing all that maintenance sounds

and the more likely you'll be to switch to external style sheets.

ððOnline: wdpg.io/7-3-0

The third and final method for adding styles to a page involves creating a

second text file that you use to define your style rules. This method is called

an external style sheet, and by tradition, its filename uses the .css extension

(as in styles.css). Within that file, you use the same syntax that you saw

earlier for an internal style sheet, but you do without the style element:

selectorA {
 propertyA1: valueA1;
 propertyA2: valueA2;
 ...
}
selectorB {
 propertyB1: valueB1;
 propertyB2: valueB2;
 ...
}
 ...

To let the web browser know that you have an external style sheet, you

add a <link> tag to your web page's head section. Figure 7.3 shows the

syntax.

<link href=”location/filename.css” rel=”stylesheet”>

Tells the web browser that
the linked file is a style sheet

Where the external style
sheet file is located

The name of the external
style sheet file

The web page elements
to be styled

Declarations are
surrounded by opening
and clos ing braces.

One or more
declarations

A style rule

Remember
Traditionally, you save
an external style sheet
text file with the .css
extension (styles.css).

IIFigure 7.3 
The <link> tag syntax for
attaching an external style
sheet to a web page

Lesson 7.3:  �Referencing an External Style Sheet
Covers: The link element

Learning More About Styles

116	WEB DESIGN PLAYGROUND 

In this syntax, the location value is perhaps the trickiest. There are four

possibilities:

•	 Referencing a CSS file in the same directory. Leave out the
location and reference only the filename, like so:

<link href="styles.css" rel="stylesheet">

•	 Referencing a CSS file in a subdirectory of the web page
directory. The location is the name of the subdirectory. If
the subdirectory is named css, for example, you'd use the
following:

<link href="css/styles.css" rel="stylesheet">

•	 Referencing a CSS file in a subdirectory of the website's main
subdirectory. The location is the root directory (/) followed by
the name of the subdirectory. If the subdirectory is named css,
for example, you'd use the following:

<link href="/css/styles.css" rel="stylesheet">

•	 Referencing a CSS file on a remote server. The location is the full
URL of the CSS file. Here's an example:

<link href="https://fonts.googleapis.com/css?family=Lato"
rel="stylesheet">

Using an external style sheet brings three major advantages to your web

pages:

•	 It makes applying a consistent look across multiple pages much
easier. If you attach the same external style sheet to several
pages, and that CSS styles, say, your h1 elements, those tags will
look exactly the same on all the pages.

•	 It makes updating and maintaining your pages much easier. If
you make a change to the CSS in an external style sheet, that
change is automatically propagated to every web page that links
to the CSS file.

•	 It enhances the separation between structure and presentation.
By using an external style sheet, you separate your project into
two distinct layers: a structural layer of files that contain only
HTML tags and a presentation layer of files that contain only CSS
rules. Nice.

Remember
As with the <style>
tag, you may see
some CSS external
file <link> tags
that include the
type="text/
css" attribute. That
attribute was required
with HTML 4.01, but
you don't need it with
HTML5.

Adding Styles to a Page

	 WEB DESIGN PLAYGROUND	 117

This isn’t to say that you should use only external style sheets rather than

inline styles or internal style sheets. You have plenty of good reasons to use

the style element, and you’ll find that some web-page design problems

are most easily solved by using a style attribute in an HTML tag. There’s no

need for taking a dogmatic approach to CSS; do what works.

ððOnline: wdpg.io/7-4-0

Earlier, you learned that when you're defining a style rule, the first thing you

specify is the web page object you want styled, followed by the declaration

block:

selector {
 property1: value1;
 property2: value2;
 ...
}

The specified object is called a selector, and so far in this book, you've

seen it used only with tag names, such as h1 and div. This selector is known

as the type selector because it targets a specific type of HTML element.

Type selectors are handy, and you'll use them frequently in your web-design

career, but it doesn’t take long before you come across a conundrum: What are

you supposed to do when you have multiple instances of the same element that

need different styling? A web page can easily have a few dozen <div> tags, so

what's a coder to do if some of those divs require, say, right-aligned, italic, light

gray text set at 20px and others require centered, bold, dark gray text set at 24px?

You could insert all these styles as inline styles, sure, but that task quickly gets

unwieldy when you're working with more than a half dozen elements.

You work around this and similar problems by taking advantage of

the many other types of CSS selectors available. CSS derives most of its

tremendous flexibility and power through these selectors. I don't think

I'm exaggerating in the least when I say that if you want to become a CSS

wizard—or (which is sort of the same thing) if you want to make yourself

irresistibly hirable as a web designer—mastering selectors is the royal road

to that goal. To get started down that road, check out perhaps the most

powerful CSS selector: the class selector.

One of the most common web design scenarios is having multiple page

objects that require the same styling. Whenever you have a set of elements

that require the same styling, you can group those elements under a single

HTML-and-CSS umbrella. In HTML, that umbrella takes the form of the

class attribute, and the syntax appears in Figure 7.3.

Remember
Although exceptions
occur, for purposes of
this book, your class
names must begin with
a letter; the rest of the
name can include any
combination of letters,
numbers, hyphens (-),
and underscores (_). See
wdpg.io/7-4-3/.

Lesson 7.4:  �Using Class Selectors
Covers: The .class selector

Learning More About Styles

118	WEB DESIGN PLAYGROUND 

The following code assigns the class

name custom-bullet-text to a tag:

The key point here—and the source of

the power inherent in using classes—is that

you can assign the same class to multiple

elements. When that's done, you can use an

internal or external style sheet to define the styles for that class by using the

class name, preceded by a dot (.) as the selector in your CSS:

.class-name {
 property1: value1;
 property2: value2;
 ...
}

The following example shows you how to use a class selector.

IIFigure 7.4 
Use the class attribute to
assign a class name to an
HTML element.

<element class=”class-name”>

The web page
element

The name
of the class

The class attribute

Beware
Class names are case-
sensitive, meaning that
the browser treats, say,
myClassName and
myclassname as two
separate classes.

IIExample   �ðOnline: wdpg.io/7-4-1
This example assigns a class name to each tag and then uses a CSS class
selector to apply a rule to those span elements.

class=“custom-bullet-text”

The styles aren’t applied to the bullets.

W
E

B
 P

A
G

E

.custom-bullet-text {
 color: brown;
 font-size: 18px;
 line-height: 1.5;
}

Rule for the custom-bullet-text class

C
SS

Units of Measurement in CSS

	 WEB DESIGN PLAYGROUND	 119

<h3>Cube, Dice, or Mince? What's the Diff?</h3>

 Chop: To cut into small
pieces.
 Cube: To cut into cube-
shaped pieces.
 Dice: To cut into small,
cube-shaped pieces.
 Mince: To cut into very
small pieces.
 Shred: To cut or tear
into long, thin irregular strips.

The custom-bullet-text class is
assigned to each span e lement.

H
T

M
L

Units of Measurement in CSS
Many web page styles require measurement values, including font sizes,

border widths, and margin sizes. So far in this book, I’ve used pixels (px) to

specify measurements, but you can use several other units, which I’ve laid

out in Table 7.1.

IITable 7.1  Units of Measurement for CSS Properties

Unit Name Description
px pixel An absolute measurement equal to 1/96 of an inch

pt point An absolute measurement equal to 1/72 of an inch

em em
A relative measurement equal to the element's default, inherited, or
defined font size

rem root em
A relative measurement equal to the font size of the root element of
the web page

vw viewport width
A relative measurement equal to 1/100 of the current width of the
browser window

vh viewport height
A relative measurement equal to 1/100 of the current height of the
browser window

Master
Why not apply the CSS
to the li element in
this example? Such a
rule would also style the
bullet. By wrapping each
list item in a , you
can style only the text.

120	WEB DESIGN PLAYGROUND 

Table 7.1 lists two types of units: absolute and relative. Absolute measures

have a fixed size—a pixel is a pixel, for example—so you can be sure that

an element sized with an absolute measure always appears consistently.

As a designer, you may think this fact is a good thing, but it isn’t always—

especially on the web, where users sometimes change the default size of

text in their browser settings. As a designer, your job should be to honor

that change, not override it. Absolute values are frowned upon because they

overrule type size changes set by the user, which is a design no-no. Also, as

you’ll see in Chapter 14, absolute values make your page design too rigid, so

it doesn’t show up well on both large and small screens.

Therefore, modern web-design best practices eschew absolute units in

favor of relative units, usually rems or percentages. Relative measures don’t

have a fixed size. Instead, they’re based on whatever size is supplied to the

element. This size could be inherited from the parent element, or it could

be the default specified by the user. If the browser's default type size is 16px,

and you set your <p> type to 1.5rem, your paragraph text will be rendered

at 24px. If the user bumped up the default text size to 20px, your paragraphs

will render at 30px, thus preserving the relative size of the text. Also, relative

measures scale well on devices of different sizes, so a design that looks good

on a desktop screen can be made to look as good on a smartphone screen.

(Again, Chapter 14 is the place to get the details.)

Summary
•	 Inline styles are added directly to a tag using the style

attribute.

•	 You create an internal style sheet by adding your definitions to
the <style> tag.

•	 An external style sheet exists as a separate .css file and is
referenced through a <link> tag.

•	 A class selector applies CSS rules to any element that uses the
specified class name.

•	 For CSS properties that require measurement values, use one of
the following units: px, pt, em, rem, vw, or vh.

Beware
Don't confuse the em unit
of measurement with
the em element used to
emphasize text in HTML.

Remember
The root element of a
web page is the html
element. This element is
automatically assigned
either the browser's
default type size (usually
16px) or the type size
set by the user in the
browser's preferences.

Play
Classes are even more
powerful than I've
shown here, because
you can apply multiple
classes to a single
element by separating
class names with a space
in the class attribute
value. The code <span
class="red-text
big-text">, for
example, applies both
the red-text class
and the big-text
class to a span element.

ðOnline: wdpg.io/7-4-2

Learning More About Styles

	 WEB DESIGN PLAYGROUND	 121

8

Chapter

Floating and
Positioning Elements

The float property is a valuable and powerful
asset to any web designer/developer working
with HTML and CSS. —Noah Stokes

This chapter covers

▪	Learning how elements flow down the page
▪	Interrupting the normal flow by floating elements
▪	Using floats to create drop caps and pull quotes
▪	�Interrupting the normal flow by positioning

elements

Left to its own devices, the web browser imposes an inflexible structure on
your web pages, and your site is in danger of becoming boring (at least from
a design perspective). To avoid that fate, you need to take control of your
page elements and free them from the web browser's fixed ideas about how
things should be laid out. You do that by wielding two of the most powerful
CSS tools in the web designer's arsenal: floating and positioning. With these
tools, you can break out of the browser's default element flow and build
interesting, creative pages that people will be itching to visit. This chapter tells
you everything you need to know.

8

Floating and Positioning Elements

122	WEB DESIGN PLAYGROUND 

<p>

<div class=”toc”>

<p class=”quotation”>

<h1>

<h2>

<h2>
IIFigure 8.2  The block-level elements from Figure 8.1, filled with inline elements

Understanding the Default Page Flow
When you add elements to a web page, the

browser lays out those elements in the order in

which they appear in the HTML file according to

the following rules:

•	 Block-level elements are stacked vertically,
with the first element on top, the second
element below it, and so on.

•	 Each inline element is rendered from left
to right (in English and other left-to-right
languages) within its parent block element.

Figure 8.1 shows a schematic diagram of a few

block-level elements, stacked as the browser would

render them. Figure 8.2 shows the corresponding

web page with inline elements added. IIFigure 8.1 
The browser stacks block-
level elements one on top
of another.

<h1>

<div class=”toc”>

<p class=”quotation”>

<p class=”quotation”>

<p class=”quotation”>

<h2>

<p>

<h2>

Understanding the Default Page Flow

	 WEB DESIGN PLAYGROUND	 123

ððOnline: wdpg.io/8-1-0

You can interrupt the top-to-bottom flow of elements by floating one or

more elements to the left or right. Floating means that the browser takes

the element out of the usual flow and places it as far as possible to the left

or to the right (depending on the value you provide) and as high as possible

(depending on other content) in its parent element. Then the rest of the

page content flows around the floated element.

You float an element by setting its float property:

element {
 float: left|right|none;
}

In Figure 8.2, for example, the page would look nicer and make better

use of space if the table of contents could be pushed to the right with the

quotations flowing around it. That's readily done with the float property, as

shown in the following example.

Master
Because the nearby
nonfloated page
elements wrap around
the floated element,
you should ensure that
adequate whitespace
exists between them by
adding a margin around
the floated element.

Remember
Unlike with a nonfloated
element, the top and
bottom margins of a
floated element do not
collapse. See Chapter
9 to learn more about
collapsing margins.

Lesson 8.1:  �Floating Elements
Covers: The float property

IIExample   �ðOnline: wdpg.io/8-1-1
This example uses the float property to float the table of contents to the right.

W
E

B
 P

A
G

E

continued

Floating and Positioning Elements

124	WEB DESIGN PLAYGROUND 

Clearing Floated Elements
In the preceding example, notice that not only do the three quotations wrap

around the floated table of contents; so do the first h2 element ("Color

Psychology") and part of the paragraph that follows it. That behavior normally

is what you want. But what if, for aesthetic or other reasons, you prefer that

the h2 element and its text do not wrap around the table of contents?

You can do that by telling the browser that you want the h2 element

to clear the floated element. Clearing a floated element means that the

browser renders the element after the end of the floated element. You clear

an element by setting its clear property:

element {
 clear: left|right|both|none;
}

You use left to clear element of any elements that have been floated

left, right to clear element of any elements that have been floated right, or

both to clear element of both left- and right-floated elements. To clear the

h2 element in the example, I'd use the following code:

h2 {
 clear: right;
}

FAQ
Can I float only block-
level elements? No,
you can also apply the
float property to an
inline element, such as
a span. When you do,
however, the browser
takes the element out
of the normal flow,
turns it into a block-
level element, and then
floats it.

Beware
If you float an inline
element, be sure to give
it a width so that the
browser knows how
much space to give the
element.

Play
You can float multiple
elements. ðOnline:
wdpg.io/8-1-3

.toc {
 float: right;
 margin-left: 2em;
 margin-bottom: 2em;
 etc.
}

The float property appl ied
to the toc class

C
SS

<h1>Using Colors Effectively</h1>
<div class="toc">
 <h3>Table of Contents</h3>
 <div>Color Psychology</div>
 <div>Color Schemes</div>
 <div>Color Caveats</div>
 <div>A Few Examples</div>
 <div>Best Practices</div>
 <div>CSS and Color</div>
 <div>Color Resources</div>
</div>
<p class="quotation">
“There are only 3 colors, 10 digits, and 7 notes; its what we do
with them that's important.” —Jim Rohn
</p>
etc.

This <div> tag uses
the toc class .

H
T

M
L

Understanding the Default Page Flow

	 WEB DESIGN PLAYGROUND	 125

Clearing Floated Elements
In the preceding example, notice that not only do the three quotations wrap

around the floated table of contents; so do the first h2 element ("Color

Psychology") and part of the paragraph that follows it. That behavior normally

is what you want. But what if, for aesthetic or other reasons, you prefer that

the h2 element and its text do not wrap around the table of contents?

You can do that by telling the browser that you want the h2 element

to clear the floated element. Clearing a floated element means that the

browser renders the element after the end of the floated element. You clear

an element by setting its clear property:

element {
 clear: left|right|both|none;
}

You use left to clear element of any elements that have been floated

left, right to clear element of any elements that have been floated right, or

both to clear element of both left- and right-floated elements. To clear the

h2 element in the example, I'd use the following code:

h2 {
 clear: right;
}

FAQ
Can I float only block-
level elements? No,
you can also apply the
float property to an
inline element, such as
a span. When you do,
however, the browser
takes the element out
of the normal flow,
turns it into a block-
level element, and then
floats it.

Beware
If you float an inline
element, be sure to give
it a width so that the
browser knows how
much space to give the
element.

Play
You can float multiple
elements. ðOnline:
wdpg.io/8-1-3

Figure 8.3 shows the page with the h2 (Color Psychology) now clearing

the floated table of contents.

Preventing Container Collapse
Floated elements have a few gotchas that you need to watch for. The biggest

one is that under certain circumstances, a floated element will overflow or

drop right out of its parent container. To see what I mean, take a look at the

following code (see Figure 8.4), which has two <p> tags in a <div> container

that has been styled with a light blue background and a red border:

CSS:

div {
 border: 1px solid red;
 background-color: lightcyan;
}

HTML:

<div>
 <p>
 If you float two consecutive elements, the second floated
element will always appear either beside the first floated element
or below it.
 </p>
 <p>
 For example, if you float the elements left, the second
will appear to the right of the first. If there isn’t enough room
to the right, it will appear below the first element.
 </p>
</div>

IIFigure 8.3 
The Color Psychology h2
element now clears the
floated table of contents.

Floating and Positioning Elements

126	WEB DESIGN PLAYGROUND 

.self-clear::after {
 content: "";
 display: block;
 clear: both;
}

...insert an empty string...

...make it a block...

...and clear both left and right.

After the parent...

This class tells the browser to insert an empty string, rendered as a block-

level element, and have it clear both left- and right-floated elements. The

following example shows the fix in action and the full code.

IIFigure 8.6
A class that enables a parent
element to clear its own
child elements

Remember
This solution is
sometimes called a
clearfix hack.

Master
Some web developers
prefer to use a more
semantic name for the
class, such as group.

Figure 8.5 shows the result when I style the <p> tags with a width and

float them to the left:

CSS:

.col {
 float: left;
 width: 300px;
}

HTML:

<p class="col">

The <div> has collapsed.

Bizarrely, the <div> container nearly disappears! That red line across the

top is all that's left of it. What happened? When I floated the <p> elements, the

browser took them out of the normal flow of the page. The <div> container

saw that it no longer contained anything, so it collapsed on itself. This always

occurs when a parent element contains only floated child elements.

To fix this problem, you can tell the parent element to clear its own child

elements, thus preventing it from collapsing. Figure 8.6 shows a class that

does this.

IIFigure 8.4 
Two <p> elements inside a
<div> container

IIFigure 8.5 
When I float the <p>
elements, the <div>
container collapses on
itself.

Understanding the Default Page Flow

	 WEB DESIGN PLAYGROUND	 127

.self-clear::after {
 content: "";
 display: block;
 clear: both;
}

...insert an empty string...

...make it a block...

...and clear both left and right.

After the parent...

This class tells the browser to insert an empty string, rendered as a block-

level element, and have it clear both left- and right-floated elements. The

following example shows the fix in action and the full code.

IIFigure 8.6
A class that enables a parent
element to clear its own
child elements

Remember
This solution is
sometimes called a
clearfix hack.

Master
Some web developers
prefer to use a more
semantic name for the
class, such as group.

IIExample   �ðOnline: wdpg.io/8-1-5
This example fixes the collapsing parent problem by telling the parent to self-clear its
own floated child elements.

W
E

B
 P

A
G

E

div {
 border: 1px solid red;
 background-color: lightcyan;
 width: 675px;
}
.col {
 float: left;
 width: 300px;
}
.self-clear::after {
 content: "";
 display: block;
 clear: both;
}

This rule styles the
div e lement.

This class adds a width and
floats the element.

This class prevents the
parent from col lapsing.

C
SS

continued

Floating and Positioning Elements

128	WEB DESIGN PLAYGROUND 

Floating a Drop Cap
Floats have many uses, but one of my favorites is creating a drop cap, which

is a paragraph's large first letter that sits below the baseline and "drops" a

few lines into the paragraph. The trick is to select the opening letter by using

the ::first-letter pseudo-element and float that letter to the left of the

paragraph. Then you mess around with font size, line height, and padding to

get the effect you want, as shown in the following example.

<div class="self-clear">
<p class="col">
If you float two consecutive elements, the second floated element
will always appear either beside the first floated element or
below it.
</p>
<p class="col">
For example, if you float the elements left, the second will
appear to the right of the first. If there isn’t enough room to the
right, it will appear below the first element.
</p>
</div>

H
T

M
L

IIExample   �ðOnline: wdpg.io/8-1-6
This example uses float and the ::first-letter pseudo-element to create a
drop cap.

Drop cap

W
E

B
 P

A
G

E

Understanding the Default Page Flow

	 WEB DESIGN PLAYGROUND	129

.first-paragraph::first-letter {
 float: left;
 padding-top: .1em;
 padding-right: .1em;
 color: darkred;
 font-size: 5em;
 line-height: .6em;
}

1 . Select the first letter.

2 . Float it to the left .

3 . Style to taste.

C
SS

<p class="first-paragraph">
Starting an article doesn’t have to be boring! Get your text off
to a great beginning by rocking the opening paragraph with a giant
first letter. You can use either a <i>raised cap</i> (also called
a <i>stick-up cap</i> or simply an <i>initial</i>) that sits on
the baseline, or you can use a <i>drop cap</i> that sits below the
baseline and nestles into the text.
</p>

H
T

M
L

Floating a Pull Quote
Another great use for floats is to add a pull quote to an article. A pull quote is

a short but important or evocative excerpt from the article that’s set off from

the regular text. A well-selected and well-designed pull quote can draw in a

site visitor who might not otherwise read the article.

You create a pull quote by surrounding the excerpted text in an element

such as a span and then floating that element, usually to the right. Now style

the element as needed to ensure that it stands apart from the regular text:

top and/or bottom margins, a different font size, style, or color, and so on.

Following is an example.

Master
If you prefer a raised
cap to a drop cap, you
can modify the example
code to accommodate
this preference. You
need to remove the
float declaration
and the padding-top
and padding-right
declarations.

Floating and Positioning Elements

130	WEB DESIGN PLAYGROUND 

IIExample   �ðOnline: wdpg.io/8-1-7
This example uses float to create a pull quote.

Pull quote

W
E

B
 P

A
G

E

.pullquote {
 float: right;
 width: 50%;
 margin: 1.25em 0 1em .25em;
 padding-top: .5em;
 border-top: 1px solid black;
 border-bottom: 1px solid black;
 font-size: 1.05em;
 font-style: italic;
 color: #666;
}
.pullquote::before {
 content: "\0201c";
 float: left;
 padding: .1em .2em .4em 0;
 font-size: 5em;
 line-height: .45em;
}

This code floats the element.

This code styles the
pul l quote.

Creates an optional
large quotation mark.

C
SS

Understanding the Default Page Flow

	 WEB DESIGN PLAYGROUND	 131

<p>
A <i>pull quote</i> is a short excerpt or an important phrase or
quotation that has been copied (“pulled”) from a piece of text and
displayed as a separate element between or, more often, to one
side of the regular text.

It’s the job of the pull quote to entice the would-be reader.

It’s important that the pull quote be styled in a way that not only
makes it stand apart from the regular text (with, for example, a
different font size, style, or color), but also makes it stand out
for the reader. After all, it’s the job of the pull quote to entice
the would-be reader and create a desire to read the article.
</p>

The pul l quote element

H
T

M
L

Despite head-scratching behaviors such as parent collapse, floating

elements are useful for breaking them out of the default flow to achieve

interesting layouts and effects. Floats get the browser to do most of the

work, but if you want even more control of the look of your pages, you need

to get more involved by specifying the positions of your elements.

ððOnline: wdpg.io/8-2-0

I mentioned earlier in this chapter that the default layout the browser uses

for page elements renders the elements in the order in which they appear in

the HTML file, stacking block-level elements and allowing inline elements to

fill their parent blocks left to right. This system rarely produces a compelling

layout, so another technique you can use (besides floating elements) to

break out of the default flow is positioning one or more elements yourself,

using the CSS position property combined with one or more of the CSS

offset properties:

element {
 position: static|relative|absolute|fixed;
 top: measurement|percentage|auto;
 right: measurement|percentage|auto;
 bottom: measurement|percentage|auto;
 left: measurement|percentage|auto;
 z-index: integer|auto;
}

Lesson 8.2:  �Positioning Elements
Covers: The position property

Floating and Positioning Elements

132	WEB DESIGN PLAYGROUND 

For the first four offset properties—top, right, bottom, and left—you

can use any of the CSS measurement units you learned about in Chapter 7,

including px, em, rem, vw, and vh. You can also use a percentage or auto (the

default). The z-index property sets the element's position in the stacking

context, which defines how elements are layered "on top" of and "under"

one another when they overlap. An element with a higher z-index value

appears layered over one with a lower value.

For the position property, here's a quick summary of the four

possibilities:

•	 static—Ignores the offset properties (this is the default
positioning used by the browser)

•	 relative—Positions the element offset from its default position
while keeping the element’s default position within the page flow

•	 absolute—Positions the element at a specific place within the
nearest ancestor that has a nonstatic position while removing
the element from the page flow

•	 fixed—Positions the element at a specific place within the
browser viewport while removing the element from the page flow

The next few sections give you a closer look at relative, absolute, and

fixed positioning.

Relative Positioning
When you position an element relatively, the element’s default position

remains in the normal page flow, but the element is shifted by whatever

value or values you specify as the offset:

•	 If you supply a top value, the element is shifted down.

•	 If you supply a right value, the element is shifted from the right.

•	 If you supply a bottom value, the element is shifted up.

•	 If you supply a left value, the element is shifted from the left.

Having the element's default page-flow position maintained by the browser

can lead to some unusual rendering, as shown in the following example.

Remember
These shifts assume
that you supply positive
values to each property.
Negative values are
allowed (and are used
often in web-design
circles) and result in
shifts in the opposite
direction. A negative
top value shifts the
element up, for example.

Understanding the Default Page Flow

WEB DESIGN PLAYGROUND	 133

IIExample   �ðOnline: wdpg.io/8-2-1
This example sets the span element to relative positioning with a top offset.

Gap where the span
element would have been

The shifted
span element

W
E

B
 P

A
G

E

span {
 position: relative;
 top: 3em;
 border: 2px solid blue;
}

Appl ies relat ive posit ion ing
and a top offset to the
span e lement

C
SS

<div>
Relative positioning shifts an element out of its default position
while preserving the element’s original space in the page flow.
This can cause page weirdness. For example, if you set the top
property, the element shifts down. This leaves a gap
where the element would have been, which can look odd.
</div>

The span e lement

H
T

M
L

You probably won't use relative positioning much for laying out page

elements directly, but as you see in the next section, it comes in handy when

you want to prepare elements to use absolute positioning.

Play
Use relative positioning
to add watermark
text to a paragraph.

ðOnline: wdpg.io/8-2-2

Floating and Positioning Elements

134	WEB DESIGN PLAYGROUND 

Absolute Positioning
When you position an element absolutely, the browser does two things: It

takes the element out of the default page flow, and it positions the element

with respect to its nearest nonstatic (that is, positioned) ancestor. Figuring

out this ancestor is crucial if you want to get absolute positioning right:

•	 Move up the hierarchy to the element's parent, grandparent,
and so on. The first element you come to that has had its
position property set to something other than static is the
ancestor you seek.

•	 If no such ancestor is found, the browser uses the viewport,
meaning that the element's absolute position is set with respect
to the browser's content area.

With the ancestor found, the browser sets the element's absolute position

with respect to that ancestor as follows:

•	 If you supply a top value, the element is moved down from the
ancestor's top edge.

•	 If you supply a right value, the element is moved left from the
ancestor's right edge.

•	 If you supply a bottom value, the element is moved up from the
ancestor's bottom edge.

•	 If you supply a left value, the element is moved right from the
ancestor's left edge.

Remember
As with relative
positioning, negative
values are allowed and
position the element in
the opposite direction.
A negative left value
moves the element left
with respect to the
ancestor's left edge, for
example.

Understanding the Default Page Flow

	 WEB DESIGN PLAYGROUND	 135

IIExample   �ðOnline: wdpg.io/8-2-3
This example sets both a span element and a strong element to absolute positioning.

<div>Browser window

W
E

B
 P

A
G

E

h1, div {
 position: relative;
 z-index: 2;
}
span {
 position: absolute;
 top: 0;
 left: 0;
 z-index: 1;
 padding: 0.25em 6em 3em 0.25em;
 background-color: yellow;
 color: blue;
}
strong {
 position: absolute;
 top: 0;
 left: 0;
 z-index: -1;
 padding: 0.25em 5em 2.5em 0;
 background-color: orange;
 color: purple;
}

The div e lement
is nonstat ic .

The span and strong
e lements are posit ioned
absolute ly .

C
SS

continued

Floating and Positioning Elements

136	WEB DESIGN PLAYGROUND 

<h1>
Absolute Positioning
</h1>
<div>
Absolute positioning moves an element from its default position,
but doesn’t preserve the its original space in the page flow. The
element’s new position is set with respect to the nearest ancestor
in the hierarchy that has a non-static position, or the browser
window if no such ancestor exists. Intro
</div>
Lesson 8.6 The strong

e lementThe span e lement

H
T

M
L

In this example, two elements are positioned absolutely:

•	 span—This element has no nonstatically positioned ancestor, so
it's positioned with respect to the browser window. When you
set both top and left to 0, the span element moves to the
top-left corner of the window.

•	 strong—This element is nested inside a div element that’s
positioned relatively. Therefore, the strong element's absolute
position is with respect to the div. In this case, when you set
both top and left to 0, the strong element moves to the top-
left corner of the div.

Fixed Positioning
The final position property value that I’ll consider is fixed. This value

works just like absolute, except for two things:

•	 The browser always computes the position with respect to the
browser window.

•	 The element doesn't move after it has been positioned by the
browser, even when you scroll the rest of the page content.

As you might imagine, this value would be useful for adding a navigation

bar that's fixed to the top of the screen or a footer that’s fixed to the bottom.

You see an example of the latter in Chapter 15.

See it
To see an animation
of how the browser
positions the elements
in this example, open
the example in the Web
Design Playground and
click the See It button.

ðOnline: wdpg.io/8-2-3

Master
This example also
demonstrates the
z-index property. The
h1 and div elements
have been given a
z-index value of 2. The
span element is given a
z-index of 1; therefore,
it appears "behind" the
h1. The strong element
is given a z-index of
-1; therefore, it appears
"behind" the div.

FAQ
Why did you use -1 for
the strong element's
z-index? The strong
element is a descendant
of the div element, and
in CSS, the only way
to make a descendant
appear lower in the
stacking context than
its ancestor is to give the
descendant a negative
z-index value.

Play
You can use absolute
positioning to add
tooltips (pop-up
descriptions) to your
links. ðOnline:
wdpg.io/8-2-4

Summary

	 WEB DESIGN PLAYGROUND	 137

Summary
•	 In the default page flow, block-level elements are stacked

vertically, and inline elements are rendered from left to right
within their parent blocks.

•	 To pull an element out of the default page flow, set its float
property to left or right.

•	 To position an element, set its position property to relative,
absolute, or fixed; then specify the new position with top,
right, bottom, and left.

•	 Set an element's position within the stacking context by using
the z-index property, which layers higher-value elements over
smaller-value elements.

In this example, two elements are positioned absolutely:

•	 span—This element has no nonstatically positioned ancestor, so
it's positioned with respect to the browser window. When you
set both top and left to 0, the span element moves to the
top-left corner of the window.

•	 strong—This element is nested inside a div element that’s
positioned relatively. Therefore, the strong element's absolute
position is with respect to the div. In this case, when you set
both top and left to 0, the strong element moves to the top-
left corner of the div.

Fixed Positioning
The final position property value that I’ll consider is fixed. This value

works just like absolute, except for two things:

•	 The browser always computes the position with respect to the
browser window.

•	 The element doesn't move after it has been positioned by the
browser, even when you scroll the rest of the page content.

As you might imagine, this value would be useful for adding a navigation

bar that's fixed to the top of the screen or a footer that’s fixed to the bottom.

You see an example of the latter in Chapter 15.

See it
To see an animation
of how the browser
positions the elements
in this example, open
the example in the Web
Design Playground and
click the See It button.

ðOnline: wdpg.io/8-2-3

Master
This example also
demonstrates the
z-index property. The
h1 and div elements
have been given a
z-index value of 2. The
span element is given a
z-index of 1; therefore,
it appears "behind" the
h1. The strong element
is given a z-index of
-1; therefore, it appears
"behind" the div.

FAQ
Why did you use -1 for
the strong element's
z-index? The strong
element is a descendant
of the div element, and
in CSS, the only way
to make a descendant
appear lower in the
stacking context than
its ancestor is to give the
descendant a negative
z-index value.

Play
You can use absolute
positioning to add
tooltips (pop-up
descriptions) to your
links. ðOnline:
wdpg.io/8-2-4

	 WEB DESIGN PLAYGROUND	139

Chapter

9

Styling Sizes, Borders,
and Margins

Understanding the CSS box model is crucial
for getting your designs to behave as you
want them to. —Craig Campbell

This chapter covers

▪	Understanding the CSS box model
▪	Setting the width and height of an element
▪	Adding padding around an element’s content
▪	Applying a border to an element
▪	Surrounding an element with a margin

When you learn about design, one of the first concepts that comes up is the
principle of proximity: Related items should appear near one another, and
unrelated items should be separated. This practice gives the design clear
visual organization, which makes it easier for the reader to understand and
navigate the design. The principle of proximity applies to your web page
designs as well, but there’s a problem. If you stick with the browser’s default
styling, your web page elements have no proximity structure; no elements
are grouped or separated, so there’s no organization. Fortunately, CSS offers
a robust set of properties that enable you to apply the principle of proximity
by sizing, spacing, and separating elements on the page. You learn about web
page layout in earnest in Part 3, but this chapter introduces you to some vital
foundations.

9

Styling Sizes, Borders, and Margins

140	WEB DESIGN PLAYGROUND 

The Anatomy of an Element Box
The key to getting your web page content to bend to your will is to

understand that every element you add to a page—every <div>, every <p>,

every , even every and every —is surrounded by an

invisible box. Why is that such a big deal? Because you can use CSS to control

many aspects of that box, including its height, width, spacing, borders, and

position on the page. To get there, you need to become acquainted with the

various parts of the box.

Figure 9.1 gives you an abstract look at the basic box parts, and Figure 9.2

shows how these same parts affect some actual page content.

Margin

Padding

BorderContent

IIFigure 9.1 
The main parts of an
element box

IIFigure 9.2 
The element box parts as
they appear with actual
page content Margin

Padding

Border

Content

The Anatomy of an Element Box

	 WEB DESIGN PLAYGROUND	 141

At the risk of over-repeating myself: every element
in web design is a rectangular box. This was my
ah-ha moment that helped me really start to
understand CSS-based web design and accomplish
the layouts I wanted to accomplish. —Chris Coyier

There are four parts to each element box:

•	 Content —This area is the inner rectangle of the box, consisting
of the content—such as some text or an image—that's
contained within the box.

•	 Padding —This area between the content and the border
represents extra whitespace added outside the top, right,
bottom, and left edges of the content area.

•	 Border —This part runs along the outer edges of the padding
area and surrounds the content and padding with lines.

•	 Margin —This area is the outer rectangle of the box, representing
extra whitespace added outside of the top, right, bottom, and
left borders.

The combination of the content area, padding, border, and margin is

known in CSS circles as the box model. Surprisingly, this box model applies

not only to the usual block-level suspects (such as <div>, <h1>, and <p>),

but also to all inline elements (such as , , and <a>). Why is the

box model so important? There are two main reasons: appearance and

positioning.

Appearance is crucial because the box model enables you to control the

whitespace  —the padding and margins—that surround the content. As any

designer will tell you, making good use of whitespace is a key part of any

successful layout.

Positioning is vital because CSS also gives you quite a bit of control of

where the element boxes appear on the page. Rather than the default—and

boring  —layout of one element stacked on the next all the way down the

page, CSS offers box model-related properties that let you shift each box to

the position that gives you the layout you prefer.

Keeping all this in mind the best you can, it's time to turn your attention

to the useful and powerful CSS properties that enable you to manipulate any

element box. First up: changing the box dimensions.

Styling Sizes, Borders, and Margins

142	WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io/9-1-0

Web browsers perform a great many automatic calculations when they

load a page. Two of those automatic values are the width and the height

of each element box on the page, which are set according to the following

guidelines:

•	 The width of each element box is set to the width of the
element's container, which by default is the width of the
browser window.

•	 The height of each element box is set to a value that’s tall
enough to contain all the element's content.

One of the main tenets of good web design is that you should override

these and similar browser defaults so that you have maximal control of

the look and layout of your page. To do that with the dimensions of any

block-level element box, use the CSS width and height properties. These

properties take any of the CSS measurement units you learned about in

Chapter 7, including px, em, rem, vw, and vh. You can also set width or

height to a percentage or to auto (the default, which allows the browser to

set the dimensions automatically).

At this point, you may be asking yourself an important question. When

you set the width or height, which of the element box's four rectangular

areas—content, padding, border, or margin—are you sizing? Intuitively,

you might guess the border, because that area contains the content and

padding, or what feels like the “inside” of the element box. Surprisingly, that's

not the case. By default, the width and height properties apply only to the

content area. That's most unfortunate, because when you size an element,

to get its true size as rendered on the page you must add the values of its

padding and border. If that sounds like an unnecessarily complicated way to

go about things, you're right. Instead, you can set the box-sizing property

to border-box for the element:

element {
 box-sizing: border-box;
}

This code tells the web browser to apply the width and height values all

the way out to (and including) the border of the element box. Note that the

margin is not included in the width and height.

Remember
I should clarify here
that these calculations
apply only to block-level
elements such as <div>
and <p>. Inline elements
such as and
<a> flow with the text, so
width and height are
ignored.

Master
If you want to work
with an inline element's
width, height, and
other block-related
properties but keep
the element inline, add
display: inline-
block to the element's
CSS. To make the
element a true block-
level element, add
display: block,
instead.

Beware
You should rarely, if
ever, set an element's
height property.
Setting the height is
useful for images, but
with text, there are
too many variables to
know for sure whether
everything will fit into
the height you specify.
Let the content create
the element’s height
naturally.

Master
Rather than apply
box-sizing to
individual elements,
assign it once by using
the universal element
(*), and it will be applied
to every element. Also, if
you ever want to return
to the default sizing
behavior for an element,
use the declaration
box-sizing:
content-box.

Lesson 9.1:  � Setting the Width and Height
Covers: The width and height properties

The Anatomy of an Element Box

	 WEB DESIGN PLAYGROUND	143

ððOnline: wdpg.io/9-1-0

Web browsers perform a great many automatic calculations when they

load a page. Two of those automatic values are the width and the height

of each element box on the page, which are set according to the following

guidelines:

•	 The width of each element box is set to the width of the
element's container, which by default is the width of the
browser window.

•	 The height of each element box is set to a value that’s tall
enough to contain all the element's content.

One of the main tenets of good web design is that you should override

these and similar browser defaults so that you have maximal control of

the look and layout of your page. To do that with the dimensions of any

block-level element box, use the CSS width and height properties. These

properties take any of the CSS measurement units you learned about in

Chapter 7, including px, em, rem, vw, and vh. You can also set width or

height to a percentage or to auto (the default, which allows the browser to

set the dimensions automatically).

At this point, you may be asking yourself an important question. When

you set the width or height, which of the element box's four rectangular

areas—content, padding, border, or margin—are you sizing? Intuitively,

you might guess the border, because that area contains the content and

padding, or what feels like the “inside” of the element box. Surprisingly, that's

not the case. By default, the width and height properties apply only to the

content area. That's most unfortunate, because when you size an element,

to get its true size as rendered on the page you must add the values of its

padding and border. If that sounds like an unnecessarily complicated way to

go about things, you're right. Instead, you can set the box-sizing property

to border-box for the element:

element {
 box-sizing: border-box;
}

This code tells the web browser to apply the width and height values all

the way out to (and including) the border of the element box. Note that the

margin is not included in the width and height.

Remember
I should clarify here
that these calculations
apply only to block-level
elements such as <div>
and <p>. Inline elements
such as and
<a> flow with the text, so
width and height are
ignored.

Master
If you want to work
with an inline element's
width, height, and
other block-related
properties but keep
the element inline, add
display: inline-
block to the element's
CSS. To make the
element a true block-
level element, add
display: block,
instead.

Beware
You should rarely, if
ever, set an element's
height property.
Setting the height is
useful for images, but
with text, there are
too many variables to
know for sure whether
everything will fit into
the height you specify.
Let the content create
the element’s height
naturally.

Master
Rather than apply
box-sizing to
individual elements,
assign it once by using
the universal element
(*), and it will be applied
to every element. Also, if
you ever want to return
to the default sizing
behavior for an element,
use the declaration
box-sizing:
content-box.

The width property is useful for setting the text line length for optimum

reading. For ideal screen reading, your body text blocks should contain

between 50 and 80 characters per line (including spaces and punctuation).

In most cases, a line length of around 65 characters is optimum, but it’s okay

to set a longer line if you’re using a larger font size or a shorter line if you’re

using a smaller font size. You set the line length by adjusting the text block’s

width property. Consider the text shown in Figure 9.3.

With line lengths of well over 150 characters, this text is hard to scan. You

can fix that problem by adjusting the width of the text's containing element,

as shown in the following example.

IIFigure 9.3  In the default width on a large screen, the line lengths of this text are too long
for comfortable reading.

Play
If you set the height of
an element, you may
find that its content
overflows its element
box. To control this
behavior, you can use
the overflow property.

ðOnline: wdpg.io/9-1-4

IIExample   �ðOnline: wdpg.io/9-1-1
This example reduces the width of the containing div element to make the line lengths
easier to read.

630px

W
E

B
 P

A
G

E

continued

Styling Sizes, Borders, and Margins

144	WEB DESIGN PLAYGROUND 

div {
 box-sizing: border-box;
 width: 630px;
}

border-box is appl ied .

The width is set for the ideal l ine length.

C
SS

<div>
On March 19, 1988, a man named Robert Muller Jr. was a passenger
in a car driving along US Route 441 in Florida. At some point in
the journey, the car was cut off (or, at least, it appeared that
way), enraging the car's occupants. Unfortunately, Mr. Muller had
access to a gun, which he subsequently used to shoot out the back
window of the other car, wounding 20-year-old Cassandra Stewart
in the neck. Police described the shooting as an incident of "road
rage," and a name for an all-too-common form of motorist madness
was born.
</div>

H
T

M
L

Play
You can specify a
maximum width for an
element by using the
max-width property;
similarly, you can set
the minimum width by
using the min-width
property. ðOnline:
wdpg.io/9-1-3

ððOnline: wdpg.io/9-2-0

In the element box, the padding is the whitespace added above, below, to

the left, and to the right of the content. If you add a border to your element,

as described in Lesson 9.3, the padding is the space between your content

and the border. The padding gives the element a bit of room to breathe

within its box, ensuring that the content isn't crowded by its own border or

by nearby elements.

You set the padding by applying a value to each of the four sides:

element {
 padding-top: top-value;
 padding-right: right-value;
 padding-bottom: bottom-value;
 padding-left: left-value;
}

Each value can take any of the standard CSS measurement units,

including px, em, rem, vw, and vh, or you can set the value to a percentage.

Here's an example:

.pullquote {
 padding-top: 1em;
 padding-right: 1.5em;
 padding-bottom: .75em;
 padding-left: 1.25em;
}

Lesson 9.2:  � Adding Padding
Covers: The padding-* properties

The Anatomy of an Element Box

WEB DESIGN PLAYGROUND	145

You can also use a padding shorthand property to set all the padding

values with a single declaration. You can use four syntaxes with this property,

as shown in Figure 9.4.

padding: value;
padding: value1 value2;
padding: value1 value2 value3;
padding: value1 value2 value3 value4;

Applies value1 to the top,
value2 to the right, value3 to
the bottom, and value4 to
the left

Applies value1 to the top,
value2 to the right and left,
and value3 to the bottom

Applies value1 to the top and
bottom and value2 to the right
and left

Applies value to all four sides

You can duplicate the rule in the preceding example by using the

shorthand syntax as follows:

.pullquote {
 padding: 1em 1.5em .75em 1.25em;
}

To see how you can use padding to make your web page more readable,

consider the simple navigation bar shown in Figure 9.5.

The big problem is that it's impossible to tell by looking how many

navigation items there are. You could have as many as six (Home, Research,

Papers, Blog, Contact, and Info) or as few as three (Home, Research Papers

Blog, and Contact Info). To fix this problem, you can use padding to add

some horizontal breathing room between the items, as shown in the

following example.

Horizontal navigation with tight spacing
between nav items is a common issue I often
encounter on otherwise well-designed sites.
Without adequate padding, navigation
items begin to run together and become more
difficult to quickly scan. —Jeremiah Shoaf

IIFigure 9.4 
The syntaxes of the
padding shorthand
property

IIFigure 9.5 
A navigation bar without
any horizontal padding

Master
This example transforms
an unordered list into
a navigation menu
by doing two things:
setting the ul element's
list-style-type
property to none to
hide the bullets, and
setting the li element's
display property to
inline-block, which
tells the browser to treat
the items as blocks but
display them inline.

Styling Sizes, Borders, and Margins

146	WEB DESIGN PLAYGROUND 

IIExample   �ðOnline: wdpg.io/9-2-1
This example uses the padding-right property to create space between elements in
a navigation menu.

1em

W
E

B
 P

A
G

E

ul {
 list-style-type: none;
 text-transform: uppercase;
}

li {
 display: inline-block;
 padding-right: 1em;
}

padding-right is appl ied
to the li e lements.

C
SS

 Home
 Research Papers
 Blog
 Contact Info

The li e lements

H
T

M
L

See it
To see an animation
of how the browser
adds the padding in the
above example, open
the example in the Web
Design Playground and
click the See It button.

ðOnline: wdpg.io/ 9-2-1

ððOnline: wdpg.io/9-3-0

In the element box, the border is the line that defines the outer edge of

the padding on four sides: top, right, bottom, and left. In this way, the

border comes between the element's padding and its margin. The border is

optional, but it's often useful for providing the reader a visual indicator that

the enclosed content is separate from any nearby content.

Use It
Add a border to an
element to provide a
visual indication that the
content is self-contained
or separate from the
surrounding page
content.

Lesson 9.3:  � Applying a Border
Covers: The border-* properties

The Anatomy of an Element Box

	 WEB DESIGN PLAYGROUND	 147

To create a basic border around an element, use the border property, as

shown in Figure 9.6.

element {
 border: width style color;
}

The border width

The border style

The border color

The element to style

The width value can take any standard CSS measurement unit, including

px, em, rem, vw, and vh. You can also set the value to any of the following

keywords: thin, medium, or thick. For the style value, you can use any

of the following keywords: dotted, dashed, solid, double, groove, ridge,

inset, or outset. For the color parameter, you can use any of the color

names that you learned about in Chapter 4.

Here's an example:

.pullquote {
 border: 1px solid black;
}

This rule defines the pullquote class with a one-pixel wide, solid, black

border.

The following example takes the navigation list from Lesson 9.2 and adds

a border around it.

IIExample   �ðOnline: wdpg.io/9-3-1
This example adds a border around the navigation menu.

Border

W
E

B
 P

A
G

E

IIFigure 9.6  The syntax of the border property

ððOnline: wdpg.io/9-3-0

In the element box, the border is the line that defines the outer edge of

the padding on four sides: top, right, bottom, and left. In this way, the

border comes between the element's padding and its margin. The border is

optional, but it's often useful for providing the reader a visual indicator that

the enclosed content is separate from any nearby content.

Use It
Add a border to an
element to provide a
visual indication that the
content is self-contained
or separate from the
surrounding page
content.

continued

Styling Sizes, Borders, and Margins

148	WEB DESIGN PLAYGROUND 

ul {
 border: 1px solid black;
 padding-top: .75em;
 padding-bottom: .75em;
 list-style-type: none;
 text-align: center;
 text-transform: uppercase;
}

li {
 display: inline-block;
 padding-right: 1em;
}

li:first-child {
 padding-left: 1em;
}

The border

Padding added to
the top and bottom

The items are centered.

Extra padding on the left

C
SS

 Home
 Research Papers
 Blog
 Contact Info

H
T

M
L

Use a border when you need to separate content
into logical sections if your design requires
content to be separate, and without it the design
would appear cluttered. —Andrew Stoker

One odd detail may have you furrowing your brow: The li:first-
child element gets a padding-left value of 1em. What's going on? Recall

from Lesson 9.2's example that you needed to add 1em of padding between

the menu items to separate them. You did that by using the padding-right

property, but doing so also meant adding 1em of padding to the right of the

Contact Info item. To compensate for that extra padding on the right, you

need to add an equal amount on the left so the menu centers properly. The

li:first-child rule adds the required padding to the first li element.

Play
The CSS box model
can be confusing at
first because it’s hard
to visualize the box
that surrounds each
element. To help, use
the outline property,
which adds a line
around the outside
edge of the box border.
The outline property
uses the same syntax as
the border property.

ðOnline: wdpg.io/9-3-3

The Anatomy of an Element Box

	 WEB DESIGN PLAYGROUND	149

ððOnline: wdpg.io/9-4-0

In the element box, the margin is the whitespace added above, below, to

the left, and to the right of the border. The margin lets you control the space

between elements. Positive margin values, for example, keep the page

elements from bumping into one another or overlapping, and also keep the

elements from brushing up against the edges of the browser viewport. On

the other hand, if your design requires elements to overlap, you can achieve

this effect by using negative margin values.

You apply the margin by setting a value to one or more of an element’s

four sides:

element {
 margin-top: top-value;
 margin-right: right-value;
 margin-bottom: bottom-value;
 margin-left: left-value;
}

Each margin value can use any of the standard CSS measurement units,

such as px, em, rem, vw, and vh. You can also use a percentage or the auto

keyword (to have the browser set the margin automatically to fit the available

space). Here's an example:

.pullquote {
 margin-top: 1.5em;
 margin-right: 2.5em;
 margin-bottom: 2em;
 margin-left: 3em;
}

As with padding, a margin shorthand property lets you apply the margins

by using a single declaration. Figure 9.7 shows the four syntaxes you can use

with this property.

margin: value;
margin: value1 value2;
margin: value1 value2 value3;
margin: value1 value2 value3 value4;

Applies value1 to the top,
value2 to the right, value3 to
the bottom, and value4 to
the left

Applies value1 to the top,
value2 to the right and left,
and value3 to the bottom

Applies value1 to the top and
bottom and value2 to the right
and left

Applies value to all four sides

Master
Positive margin values
serve to push the element
away from surrounding
elements (or the edges of
the browser viewport).
Sometimes, however,
you'll want to bring
elements closer, and you
can do that by setting a
negative margin value.

ðOnline: wdpg.io/9-4-5

Use It
Margins are especially
useful for establishing
the spacing between
your page's text
blocks, particularly its
paragraphs. A good
general rule for spacing
each paragraph is to set
the bottom margin to
1em.

IIFigure 9.7 
The syntax possibilities
of the margin shorthand
property

Lesson 9.4:  � Controlling the Margins
Covers: The margin-* properties

Styling Sizes, Borders, and Margins

150	WEB DESIGN PLAYGROUND 

You can rewrite the rule in the preceding example by using the shorthand

syntax like so:

.pullquote {
 margin: 1.5em 2.5em 2em 3em;
}

It's important to remember that the web browser sets a default margin

for all the elements by using its internal style sheet. That sounds handy, but

one of the key principles of web design is to gain maximum control of the

look of the page by styling everything yourself. A big step in that direction is

adding the following code to the top of your style sheet:

We think of our CSS as modifying the default
look of a document—but with a "reset" style sheet,
we can make that default look more consistent
across browsers, and thus spend less time
fighting with browser defaults. —Eric Meyer

html, body, abbr, article, aside, audio, blockquote, button,
canvas, code, div, dl, dt, embed, fieldset, figcaption,
figure, footer, form, h1, h2, h3, h4, h5, h6, header, iframe,
img, input, label, legend, li, nav, object, ol, option, p,
pre, q, section, select, table, tbody, td, tfoot, th, thead,
tr, ul, video {
 margin: 0;
 padding: 0;
}

This code gets rid of the browser's default margins and padding on all

these elements, enabling you to adjust these settings yourself as needed on

your page. If your page is small, you can use the following simplified version:

* {
 margin: 0;
 padding: 0;
}

Note, however, that you do need to set your margins. To see why,

Figure 9.8 shows the simple navigation bar when the margins have been

reset to 0.

The Anatomy of an Element Box

	 WEB DESIGN PLAYGROUND	 151

As you can see, the navigation bar is rendered tight to the top, right, and

left edges of the browser window, with little room between the bottom of

the navigation bar and the text. To fix this problem, you can set the navigation

bar's margins to add some welcome whitespace around it, as shown in the

following example.

IIFigure 9.8 
The navigation bar without
any margins

Play
You can also use a
margin trick to center a
child element vertically
within its parent.

ðOnline: wdpg.io/9-4-4.

IIExample   �ðOnline: wdpg.io/9-4-1
This example uses the margin properties to create space around the navigation menu.

.75em

2em

2em

1em

W
E

B
 P

A
G

E

continued

Styling Sizes, Borders, and Margins

152	WEB DESIGN PLAYGROUND 

ul {
 border: 1px solid black;
 margin-top: .75em;
 margin-right: 2em;
 margin-bottom: 1em;
 margin-left: 2em;
 padding-top: .75em;
 padding-bottom: .75em;
 list-style-type: none;
 text-align: center;
 text-transform: uppercase;
}
div {
 margin-right: 2em;
 margin-left: 2em;
}

Margin properties appl ied
to the ul e lement

Margin properties appl ied
to the div e lement

C
SS

 Home
 Research Papers
 Blog
 Contact Info

<div>
Welcome! You’ve landed at the web home of Monday Morning Ideas,
the inventors of the Helium Paperweight, the Water-Resistant
Sponge, the Teflon Bath Mat, and the world-famous Inflatable
Dartboard.
</div>

H
T

M
L

 Play
If you've set an element's
width, you can quickly
center the element
horizontally by using the
declaration margin:
top/bottom auto,
where top/bottom is the
value for both the top
and bottom margins.

ðOnline: wdpg.io/9-4-3.

Watch Out for Collapsing Margins!
In the preceding example, I added margin-bottom: 1em to the ul element

to separate it from the div text. Suppose that I decide that I want 2em of

space between these elements, so I adjust the div rule as follows. Figure 9.9

shows the result:

div {
 margin-top: 1em;
 margin-right: 2em;
 margin-left: 2em;
}

A top margin
added to the
div e lement

Summary

	 WEB DESIGN PLAYGROUND	 153

1em

No, your eyes aren’t deceiving you: The space between the navigation

bar and the div text is exactly the same as it was before! What's going

on here is a tricky CSS phenomenon known as collapsing margins. When

one element's bottom margin meets another element's top margin, the

web browser doesn't add the two values, as you might expect. Instead, it

determines which of the two margin values is larger, and it uses that value

as the vertical margin between the two elements. It throws out the smaller

margin value, thus collapsing the two margins into a single value.

If you ever find that the top or bottom margins of one or more page

elements are behaving strangely—that is, are bigger or smaller than you

think they should be—there's an excellent chance that collapsing margins

are the culprit.

Summary
•	 The four main parts of a CSS element box are the content, the

padding around the content, the border around the padding,
and the margin around the border.

•	 You specify an element's dimensions by setting its width and
height properties.

•	 You add padding around an element's content by using the four
padding properties: padding-top, padding-right, padding-
bottom, and padding-left. Alternatively, use a padding shortcut
property, such as padding: top right bottom left.

•	 The simplified border syntax is border: width style color.

•	 You add a margin around an element by using the four margin
properties: margin-top, margin-right, margin-bottom, and
margin-left. Alternatively, use a margin shortcut property,
such as margin: top right bottom left.

IIFigure 9.9  The div text with a 1em top margin added

Master
If you do want extra
vertical space between
two elements, you can
increase the larger of
the two margin values
(setting margin-
bottom: 2em on the
ul element, for example).
Alternatively, change
the collapsing margin
to padding (such as by
replacing the margin-
top property with
padding-top: 1em
on the div element).

RemembER
The left and right
margins never collapse.
Also, margin collapse
doesn’t occur for
elements that are floated
or positioned absolutely
(see Chapter 8).

	 WEB DESIGN PLAYGROUND	 155

Chapter

10

10

PROJECT:   Creating
a Landing Page

The one key feature of the online marketing landscape
is the landing page—that (hopefully welcoming)
doorway to your online storefront, which you present
to your Web site visitors. —Martin Harwood

This chapter covers

▪	Planning and sketching your landing page
▪	Choosing fonts and colors for the page
▪	Understanding and implementing banded content
▪	Adding the images and text

Okay, you're nine chapters into this adventure, and you've come a long
way. Here in Part 2 alone, you've mastered using images and media; making
style sheets; using classes; floating elements; using absolute and relative
positioning; and manipulating sizes, borders, and margins. That's a lot, and
(most important) it's enough know-how to start building some amazing
pages. As proof, in this project you'll be putting all those HTML and CSS skills
to good use to create a professional-looking landing page for a marketing
campaign for a product or service. If that project sounds out of your depth,
not to worry: You know more than enough to ace this assignment, and I'll be
building my own (rather silly, as you'll see) landing page right alongside you.
If you get stuck, I (or, at least, my code) will be right there with you to help or
give you a nudge in the right direction. Let's get started!

PROJECT: Creating a Landing Page

156	WEB DESIGN PLAYGROUND 

What You’ll Be Building
In its most general sense, a landing page is the page visitors first see when

they navigate to (land on) your website. That's often your home page, but it

could also be any page that the person comes across via a Google search or

a link that someone else posts to social media.

But a more specific sense of the term is relevant to this project. In this

sense, a landing page is the first page that people see when they click a

link in an ad, blog post, or social media update that's part of a marketing or

awareness campaign for a specific product or service. The landing page's

job is to explain the product or service and to induce the user to perform

some action, such as buy the item, subscribe to the service, or sign up for a

newsletter.

This project takes the HTML and CSS skills you learned in the preceding

nine chapters and shows you how to use them to build a basic landing page

for a product or service. It includes images, descriptive text, and "call-to-

action" buttons that ask the reader to perform some action (such as buy or

subscribe). The general structure of the pages uses a popular modern layout

called banded content, in which the text and images appear in horizontal

strips that run the full width of the browser window. As you go along, I'll

build an example landing page based on a fictitious book that I'm "selling,"

but of course you'll want to build your own page with your own text and

images.

Sketching the Layout
Because you've likely seen a landing page or two in your day, you may have a

reasonable idea of what you want your landing page to look like. If so, great!

You're way ahead of most people at this stage of the project. But believe me,

a design that exists only in your head is hard to translate into HTML and CSS

code. To make the transition from design to code much easier, you need

to get that design out of your head and into concrete form. You can use a

graphics program such as Adobe Photoshop or Illustrator for this purpose,

but I prefer to sketch the basic components of the page with pencil and

paper.

As Figure 10.1 shows, your sketch doesn't have to be a work of art or even

all that detailed. Draw the main sections of the page and include some text

that describes the content of each section.

Choosing Typefaces

	 WEB DESIGN PLAYGROUND	 157

Product Subt i t le

Product Ti t le
P r o d u c t S u b t i t l eProduct

Image
Very short product
introduct ion

A few testimonials

Pricing table

Longer product description

Buy Button

Option A
$9.99

Buy Button

Option B
$14.99

Buy Button

Option C
$19.99

Buy Button

Some social media links

Site links and copyright

Header

Pricing table

Footer

Your next page-planning task is deciding which typefaces you want to

use for your landing page.

Choosing Typefaces
As a rule, landing pages shouldn't burden the user with tons of text. You

want to highlight the key features of your product or service, give the users

reasons why they should want it, and then give them the opportunity to get

it. So if you’re building a page without lots of body text, your typeface needs

to be clean and legible, and it shouldn't call attention to itself (and thus take

attention away from the product).

IIFigure 10.1 
Before you begin coding,
get a pencil and some
paper and create a quick
sketch of the page layout
and content.

PROJECT: Creating a Landing Page

158	WEB DESIGN PLAYGROUND 

In such cases, a sans-serif typeface is often the best choice, because

the lack of serifs gives these fonts a clean appearance. Sans serifs also have

a more modern feel than serifs, which gives you the added advantage of

making your product look new and fresh.

One of my favorite system fonts is Optima, a gorgeous sans-serif

designed by Hermann Zapf (whom you may know from the famous Zapf

Dingbats typeface available on most PCs). Alas, although Optima is installed

on all Mac computers, it's available on few Windows PCs. So as a backup

font for Windows, I'll also specify the Calibri typeface, which has similar

characteristics. In my CSS, I'll use the following rule to apply these families

to all the page text:

body {
 font-family: Optima, Calibri, sans-serif;
}

With your page layout sketched and your typeface chosen, the next step

is picking out a color scheme.

Choosing a Color Scheme
Because the landing page uses a single typeface, you need to turn to other

page elements to add some dynamism and contrast. A good place to do that

is the color scheme:

•	 Accent color —This color is used as the background for page
elements such as the call-to-action buttons and text that you
want to make sure the reader doesn't miss. As such, it should be
a bold, unmistakable hue that stands out.

•	 Secondary color —This color is mostly used as the background
for some of the content bands. It should be similar to the
accent color: bold enough to tell the reader that the content is
important but not so bold that it clashes with or overshadows
the accent color.

•	 Tertiary color —This color is used as the background for content
that’s less important.

Figure 10.2 shows the colors I chose for my landing page. You, of course,

should choose a color scheme that suits your style.

With the page layout in place and your fonts and colors chosen, it's time

to bring everything together by slinging some HTML and CSS code.

Remember
When you specify
multiple typefaces in
the font-family
property, the web
browser checks to see
whether they're installed
on each user’s computer
in the order in which
they appear and uses the
first typeface it finds.

Learn
If you’re not comfortable
choosing colors, a
great online tool called
Palettable (https://www
.palettable.io) can help.
Enter your initial color,
and Palettable suggests
a compatible color. Click
Like to keep it or Dislike
to try another.

Building the Page

	 WEB DESIGN PLAYGROUND	159

Secondary color

Accent color Tertiary color

Building the Page
To construct your landing page, start with the skeleton code that I

introduced in Chapter 1. From there, go section by section, adding text,

HTML tags, and CSS properties.

The Initial Structure
To get started, take the basic page structure from Chapter 1 and add the

tags, a placeholder image, and some placeholder text for each of the page's

main sections.

IITry This   �ðOnline: wdpg.io/projects/landing-page/1
Here are the elements that make up the landing page's initial structure.

Header content band

Other content bands

W
E

B
 P

A
G

E

IIFigure 10.2 
The color scheme for my
landing page

continued

PROJECT: Creating a Landing Page

160	WEB DESIGN PLAYGROUND 

<div class="header">
 <div class="header-image">

 </div>
 <div class="header-info">
 Product title, subtitle, intro, etc.
 </div>
</div>
<div class="description">
 Product description
</div>
<div class="testimonials">
 Product testimonials
</div>
<div class="product-versions">
 Pricing table for the different versions of the product
</div>
<div class="social">
 Social media links
</div>
<div class="footer">
 Site links and copyright notice
</div>

Header
content
band

Descript ion
content band

Testimonia ls
content band

Pricing
table

content
band

Socia l media
content band

Footer content
band

H
T

M
L

Here are a few things to note about the HTML tags used in the initial

structure:

•	 The page is divided into six sections: header, description,
testimonials, pricing table, social media, and footer.

•	 Each section is embedded within a <div></div> block.

•	 Each div element is assigned a class, which enables you to
apply CSS properties to everything within that section.

The Header
The header is probably the most important section of the landing page, because

it's the first section that visitors see when they arrive. You want the header not

only to have an impact, but also to start the job of selling your product. The

project's header accomplishes these goals by including the following features:

•	 Hero background image —This image should be visually striking
or should tell a story that's relevant to your product. Either way,
be sure that the image doesn't interfere with the readability of
the header text.

•	 Product image —This image should be a simple illustration or
photo that enables the would-be buyer to see what the product
looks like.

Building the Page

	 WEB DESIGN PLAYGROUND	 161

•	 Product info —At a minimum, this info should include the
product name or title, a short (two or three sentences)
introduction, and the price. I've also chosen to include a surtitle
(which could be something like Available Now! or Special
Offer!) and a subtitle.

•	 Call-to-action button —The user clicks this button to perform
the action you want, such as buying, subscribing to, or
downloading the product.

Because the header is so crucial to the success of a landing page, take

it slow and build the header one feature at a time, beginning with the hero

background.

The Hero Background Image
You may recall from Chapter 6 that a hero image is an eye-catching photo or

illustration that takes up the entire width, and often the entire height, of the

browser window when you first land on a page. The following example shows

the header for my fictitious product with a hero background image applied.

IITry This   �ðOnline: wdpg.io/projects/landing-page/2
This example shows a landing page header's hero background.

W
E

B
 P

A
G

E

continued

PROJECT: Creating a Landing Page

162	WEB DESIGN PLAYGROUND 

.header {
 background: url(/images/landing-page-header-bg.jpg);
 background-attachment: fixed;
 background-position: right center;
 background-size: cover;
 padding-bottom: 1em;
 width: 100vw;
 height: 100vh;
}

Prevent the hero
image from scrol l ing
with the content .

C
SS

<div class="header">
</div>

H
T

M
L

This photo (which you'll barely recognize as a blurred image of a nighttime

city scene) uses the standard code for a hero image that you learned in

Chapter 6. I added the property background-attachment: fixed to prevent

the image from scrolling with the rest of the page, which is a nice effect.

The Product Image
Next, add the photo or illustration that shows the user the product. This

image should be a decent size, big enough to give the reader a good idea

of what the product looks like but not so big that it overwhelms your hero

background. Following is an example.

Remember
I added the height:
100vh definition to
give the header some
height, because it has
no content. Later,
after I add the header
content, I'll take out that
definition.

IITry This   ��ðOnline: wdpg.io/projects/landing-page/3
This example adds the product image to the landing-page header.

W
E

B
 P

A
G

E

Building the Page

	 WEB DESIGN PLAYGROUND	163

.header-image {
 float: left;
 width: 33%;
 margin-top: 3em;
 padding-right: 3em;
 text-align: right;
}

The CSS code
for the image

C
SS

<div class="header">
 <div class="header-image">
 <img src="/images/landing-page-book-cover.png"
alt="Front cover">
 </div>
</div>

The image
is added as
a standard
HTML img
e lement.

H
T

M
L

The image is floated to the left and given some margins and padding to

provide some separation from the rest of the content.

The Product Info
Now it's time to add the product info to the header. Again, this info needs to

include at least the product title and a brief introduction, but feel free to add

elements such as a surtitle and subtitle, as shown in the following example.

IITry This   ��ðOnline: wdpg.io/projects/landing-page/4
This example adds the product info to the landing-page header.

W
E

B
 P

A
G

E

continued

PROJECT: Creating a Landing Page

164	WEB DESIGN PLAYGROUND 

.header-info {
 float: right;
 width: 67%;
 margin-top: 4em;
 color: white;
}

The CSS code for the
product info div

C
SS

<div class="header">
 <div class="header-image">
 <img src="/images/landing-page-book-cover.png" alt="Front
cover">
 </div>
 <div class="header-info">
 <div class="surtitle">Coming Soonish!</div>
 <h1 class="title">The Web Designer</h1>
 <h3 class="subtitle">
 A story of HTML, CSS, and the big city</h3>
 <p class="intro">
 She knew HTML. She knew CSS. But did she know love?
Read this destined-to-be-remaindered novel that The New
York Times Book Review described as “reasonably
grammatical” and the Times Literary Supplement
called “bathroom-worthy.” Pre-order your paperback
copy now for just $14.99.
 </p>
 </div>
</div>

The info is added
within a div e lement.

H
T

M
L

The div element that holds all the product info is floated to the right

and given some margins. The various bits of product info—the surtitle, title,

subtitle, and intro—appear in their own block-level elements. To save space,

I haven't shown the CSS properties applied to these block-level elements,

but they include styles such as margins and font sizes. (See the online version

of the example for the complete code.)

The Call-to-Action Button
The final piece of the header puzzle is the call-to-action button that

the reader can click to order, subscribe, download, or do whatever your

preferred action is for the landing page. This button should be easy to find,

so make it visible and bold, as shown in the following example.

Building the Page

	 WEB DESIGN PLAYGROUND	165

IITry This   ��ðOnline: wdpg.io/projects/landing-page/5
This example adds the call-to-action button to the landing-page header.

W
E

B
 P

A
G

E

.btn {
 max-height: 2.5em;
 border: none;
 padding: .75em 1.25em;
 font-family: inherit;
 font-size: 1em;
 font-weight: bold;
 color: white;
 background-color: darkorchid;
}

The CSS code for
the button

C
SS

 <button class="btn" type="button">I Want It!</button>

The button e lementH
T

M
L

I use the <button> tag to create the button, and then I apply various

styles to make the button stand out, including my accent color (darkorchid)

as the background and bold white text as the foreground.

The Product Description
The next element of the landing page is a brief description of the product,

which is your first chance to try to sell the user on your product or service.

How you go about that depends on the product and on your comfort level

when it comes to playing the huckster, but here are a few ideas:

•	 A simple paragraph that explains the product

•	 A bulleted list of the product's main features

•	 A paragraph or list that tells the user why the product is right for her

•	 A paragraph or list that briefly outlines a series of problems and
explains how the product solves them

For my landing page, I went with a short recap of the book's plot, as

shown in the following example.

PROJECT: Creating a Landing Page

166	WEB DESIGN PLAYGROUND 

IITry This   ��ðOnline: wdpg.io/projects/landing-page/6
This example shows the product description added to the landing page.

W
E

B
 P

A
G

E

.description {
 width: 100%;
 padding: 1em 0;
 font-size: 1.25em;
 background-color: white;
}

The CSS code for the
description class

C
SS

<div class="description">
At High Falutin High, the arts high school in her home town, Daisy
Fontana fell in love. Not with a boy, or even with a girl, for
that matter, but with something altogether more interesting: web
design. Instead of a BFF, she had CSS. Instead of singing and...
</div>

H
T

M
L

Setting Up the Content Bands
At this point in the construction of your landing page, you've run into a

problem. In the preceding example, the text in the description extends

across the entire width of the browser window, which makes the line lengths

too long for comfortable reading. The solution is to structure the landing

page by using horizontal bands of content that have two characteristics:

•	 A background color or image that extends across the entire
browser window.

•	 Foreground content that’s given a maximum width to retain
readability. This content usually appears in the center of the
browser window.

Building the Page

	 WEB DESIGN PLAYGROUND	 167

Depending on the width of the browser window and the maximum width

you assign to the content block, however, that block takes up only part of

the window width. The problem, then, is how to get the background to

extend across the entire width of the window while restricting the content

to some subset of that width.

The answer is to structure each content band with two div elements:

•	 An outer div element that spans the width of the browser
window and is styled with the background color or image you
want to use with the band

•	 A nested div element that contains the content, is given
a maximum width, and is centered horizontally within the
browser window

In the following example, I've applied the nested div (using a class named

container) to both the header and the product description.

IITry This   ��ðOnline: wdpg.io/projects/landing-page/7
This example shows the nested div element that will hold the content
within each content band.

W
E

B
 P

A
G

E

continued

PROJECT: Creating a Landing Page

168	WEB DESIGN PLAYGROUND 

.container {
 max-width: 800px;
 margin: 0 auto;
 clear: both;
}

.container::after {
 content: "";
 display: block;
 clear: both;
}

The CSS code for the
content container

This CSS enables the container
to clear its own floats .

C
SS

<div class="header">
 <div class="container">
 ...
 </div>
</div>
...
<div class="description">
 <div class="container">
 ...
 </div>
</div>

The nested div e lements
that hold the band content

H
T

M
L

The container class does three things:

•	 It uses max-width to set a maximum width of 800 pixels for the
content.

•	 It uses the margin: 0 auto shorthand to center the element
horizontally. This declaration sets the top and bottom margins
to 0 and the left and right margins to auto. The latter tells the
web browser to set the margins automatically based on the
element width. Because both left and right are set together,
the browser parcels out the same margin size to each, thus
centering the element.

•	 It uses clear: both to place the element after any floated
elements that come before it in the document flow.

The container::after pseudo-element uses the clearfix trick that

you learned about in Chapter 8, enabling the element to clear any floated

elements that it contains and preventing the container from collapsing.

Building the Page

	 WEB DESIGN PLAYGROUND	169

The Product Testimonials
It's always a good idea to add some third-party positivity to your landing

page, such as glowing reviews from the media, favorable user ratings from

another site, or positive feedback you've received directly from product

testers or users. The following example shows my landing page with a few

reviews added, as well as a related illustration.

IITry This   ��ðOnline: wdpg.io/projects/landing-page/8
This example adds the testimonials section to the landing page.

W
E

B
 P

A
G

E

.testimonials {
 width: 100%;
 padding: 1em 0;
 font-size: 1.25em;
 background-color: plum;
}
.testimonials-text {
 float: left;
 width: 75%;
}
.testimonial {	
 margin-bottom: .75em;
}
.testimonials-image {
 float: right;
}

The CSS code for the
test imonia ls content band

The CSS code for the
test imonia ls text container

The CSS code for an
indiv idual test imonia l

The CSS code for the
test imonia ls image

C
SS

continued

PROJECT: Creating a Landing Page

170	WEB DESIGN PLAYGROUND 

The pricing table should have at least two versions or packages but

generally not more than four. One of those versions should be your preferred

version—the one you ideally want each person to choose. That version may

be the one that nets you the most money, offers the best value to the user, or

has some other advantage over the others. This preferred version should stick

out from the others in some way. You could add a Best Value! heading over

it, for example, or use one of the bold accent colors in your color scheme.

On my own landing page, I precede the pricing table with a content band

that acts as a kind of title but is in fact an exhortation to the user to choose

a package, as you can see in the following example.

IITry This   ��ðOnline: wdpg.io/projects/landing-page/9
This example adds a content band before the pricing table.

W
E

B
 P

A
G

E

.product-versions-title {
 padding: 1em 0;
 font-size: 2em;
 text-align: center;
}

The CSS code for
the content band

C
SS

<div class="container">
 <h2 class="product-versions-title">Select the version that's
right for you!</h2>
</div>

The HTML code for
the content band

H
T

M
L

For the pricing table itself, the standard format is to place each version

or package in a vertical column that tells the reader everything she needs

to know: the title, price (if any), and features. Then you add a call-to-action

button at the bottom of the column. The following example shows one

column from the pricing table on my fictitious landing page.

Use It
On most landing pages,
the preferred option is
the one that returns the
seller the highest net
profit. You can use other
criteria to determine
which option you want
to feature, such as
most popular, most
cost-effective, and best
overall value.

<div class="testimonials">
<div class="container">
<div class="testimonials-text">
<p class="testimonial">“I’ve never seen a novel with so much HTML
and CSS code. I mean there is a lot of code in this book!
So much code. Code, code, code.” —T. J. Murphy, Nowhere, OK</p>
<p class="testimonial">“I particularly loved the scenes where
Daisy is by herself in her room writing HTML and CSS. It’s hard
to make writing tags and properties interesting, and the author
almost does it.” —M. Dash, Tightwad, MO</p>
<p class="testimonial">“I couldn’t put it down. No, really, I
could not physically put this book down. Thanks to the
cheap cover stock, the book was literally glued to my hands. I
had to go to the emergency room to get the thing off me.” —A.
Pendergast, Walla Walla, WA</p>
</div>
<div class="testimonials-image"
alt="Illustration of people talking">

</div>
</div>
</div>

The test imonia ls content
band element

The test imonia ls text container

An indiv idual
test imonia l

The test imonia ls
image

H
T

M
L

In this example, the content band is a div element with a class named

testimonials, which is styled with a plum background color. Within the

content container are a testimonials-text element that's floated left and

a testimonial-image element that's floated right.

The Pricing Table
In your ideal world, someone visiting your landing page will be so enamored

of your product or service that he'll click the call-to-action button that

you've placed in the page header. Failing that, you need to give the person

a second chance to purchase or subscribe. One of the best ways to do that

is to create a pricing table, which outlines the versions of your product that

are available and the pricing for each version. If your product doesn’t have

versions (or even if it does), you can create packages that include other

items, such as a companion e-book, a newsletter subscription, a discount

coupon for future purchases, and so on.

Building the Page

	 WEB DESIGN PLAYGROUND	 171

The pricing table should have at least two versions or packages but

generally not more than four. One of those versions should be your preferred

version—the one you ideally want each person to choose. That version may

be the one that nets you the most money, offers the best value to the user, or

has some other advantage over the others. This preferred version should stick

out from the others in some way. You could add a Best Value! heading over

it, for example, or use one of the bold accent colors in your color scheme.

On my own landing page, I precede the pricing table with a content band

that acts as a kind of title but is in fact an exhortation to the user to choose

a package, as you can see in the following example.

IITry This   ��ðOnline: wdpg.io/projects/landing-page/9
This example adds a content band before the pricing table.

W
E

B
 P

A
G

E

.product-versions-title {
 padding: 1em 0;
 font-size: 2em;
 text-align: center;
}

The CSS code for
the content band

C
SS

<div class="container">
 <h2 class="product-versions-title">Select the version that's
right for you!</h2>
</div>

The HTML code for
the content band

H
T

M
L

For the pricing table itself, the standard format is to place each version

or package in a vertical column that tells the reader everything she needs

to know: the title, price (if any), and features. Then you add a call-to-action

button at the bottom of the column. The following example shows one

column from the pricing table on my fictitious landing page.

Use It
On most landing pages,
the preferred option is
the one that returns the
seller the highest net
profit. You can use other
criteria to determine
which option you want
to feature, such as
most popular, most
cost-effective, and best
overall value.

PROJECT: Creating a Landing Page

172	WEB DESIGN PLAYGROUND 

IITry This   ��ðOnline: wdpg.io/projects/landing-page/10
This example adds the first column of the pricing table.

W
E

B
 P

A
G

E

.product-versions {
 padding: 1em 0;
 background-color: plum;}
.product-version {
 float: left;
 width: 33.33%;
 border: 1px solid gray;
 text-align: center;
 background-color: white;}
.version-title {
 padding: .75em 0;
 font-size: 1.5em;}
.version-price {
 padding: .75em 0;
 font-size: 2em;
 background-color: lightgray;}
.version-item {
 border-bottom: 1px solid gray;
 width: 100%;
 padding: .75em 0;
 font-size: 1.25em;}
.version-item:last-child {
 border-bottom: 0;}
.btn-plain {
 font-weight: normal;
 color: black;
 background-color: lightgray;}

C
SS

Building the Page

	 WEB DESIGN PLAYGROUND	 173

<div class="product-versions">
 <div class="container">
 <div class="product-version">
 <h3 class="version-title">eBook Version</h3>
 <h4 class="version-price">$9.99</h4>
 <div class="version-item">
 300-page PDF
 </div>
 <div class="version-item">
 Free ebook
 </div>
 <div class="version-item">
 Free newsletter subscription
 </div>
 <div class="version-item">
 10% off your next purchase
 </div>
 <div class="version-item">
 <button class="btn btn-plain" type="button">Order
Now!</button>
 </div>
 </div>
 </div>
</div>

The content band

The content container

The product version container

The version
t it le The version

price

The version items

H
T

M
L

Seven classes are used here, and this is what they do:

•	 product-versions—This outer div creates the content band.
It's given a plum background.

•	 container—This class is the content div.

•	 product-version—This div creates the column for a single
version or package. It’s floated left and, because there are three
columns, is given a 33.33 percent width.

•	 version-title—This div holds the title of the version or
package.

•	 version-price—This div holds the price of the version or
package. For most of the versions, the price is given a plain gray
background.

PROJECT: Creating a Landing Page

174	WEB DESIGN PLAYGROUND 

<div class="product-version">
 <h3 class="version-title">Print Version</h3>
 <h4 class="version-price">$14.99</h4>
 <div class="version-item">
 300-page paperback
 </div>
 <div class="version-item">
 Free ebook
 </div>
 <div class="version-item">
 Free newsletter subscription
 </div>
 <div class="version-item">
 10% off your next purchase
 </div>
 <div class="version-item">
 <button class="btn btn-plain" type="button">Order Now!</
button>
 </div>
</div>
<div class="product-version">
 <h3 class="version-title">eBook+Print Bundle</h3>
 <h4 class="version-price version-price-featured">$19.99</h4>
 <div class="version-item">
 PDF and paperback versions
 </div>
 <div class="version-item">
 Free ebook
 </div>
 <div class="version-item">
 Free newsletter subscription
 </div>
 <div class="version-item">
 15% off your next purchase
 </div>
 <div class="version-item">
 <button class="btn" type="button">Order Now!</button>
 </div>
</div>

The HTML code
for the high l ighted

price

H
T

M
L

Remember
When you specify two
classes on an element—
as I do in the following
example in the second h4
element—the web browser
applies the properties
of both classes to the
element.

Master
If your CSS specifies two
classes on an element,
and those classes have
one or more properties in
common, the properties
in the second class (that
is, the class that appears
later in the CSS file) take
precedence.

•	 version-item—This class holds the rest of the items in the
version or package, with one div for each feature plus another
at the bottom for the call-to-action button.

•	 btn-plain—This class is used for call-to-action buttons that
you don't want to highlight. The text is given a normal weight;
the text color reverts to black; and the background is set to
light gray.

To complete the pricing table, you add the versions or packages, using

the same styles as before, but styling your optimum version in a way that

highlights it for the reader, as shown in the next example.

IITry This   ��ðOnline: wdpg.io/projects/landing-page/11
This example completes the pricing table, including one column that
highlights a version for the reader.

W
E

B
 P

A
G

E

.version-price-featured {
 color: white;
 background-color: darkorchid;
}

The CSS code
for high l ight ing
an item price

C
SS

Building the Page

WEB DESIGN PLAYGROUND	 175

<div class="product-version">
 <h3 class="version-title">Print Version</h3>
 <h4 class="version-price">$14.99</h4>
 <div class="version-item">

300-page paperback
 </div>
 <div class="version-item">

Free ebook
 </div>
 <div class="version-item">

Free newsletter subscription
 </div>
 <div class="version-item">

10% off your next purchase
 </div>
 <div class="version-item">

<button class="btn btn-plain" type="button">Order Now!</
button>
 </div>
</div>
<div class="product-version">
 <h3 class="version-title">eBook+Print Bundle</h3>
 <h4 class="version-price version-price-featured">$19.99</h4>
 <div class="version-item">

PDF and paperback versions
 </div>
 <div class="version-item">

Free ebook
 </div>
 <div class="version-item">

Free newsletter subscription
 </div>
 <div class="version-item">

15% off your next purchase
 </div>
 <div class="version-item">

<button class="btn" type="button">Order Now!</button>
 </div>
</div>

The HTML code
for the high l ighted

price

H
T

M
L

Remember
When you specify two
classes on an element—
as I do in the following
example in the second h4
element—the web browser
applies the properties
of both classes to the
element.

Master
If your CSS specifies two
classes on an element,
and those classes have
one or more properties in
common, the properties
in the second class (that
is, the class that appears
later in the CSS file) take
precedence.

PROJECT: Creating a Landing Page

176	WEB DESIGN PLAYGROUND 

The Social Media Links
The next content band on the landing page is a collection of social media

links, which appear centered on the page, with each social network's icon

used as the link. The following example shows the links I set up for my

landing page.

IITry This   ��ðOnline: wdpg.io/projects/landing-page/12
This example adds the social media links content band to the landing
page.

W
E

B
 P

A
G

E

.social {
 padding: 1em 0;
 font-size: 1.5em;
 text-align: center;
} #A
.social-links {
 margin-top: .75em;
}
.social-link {
 margin: 0 .25em;
}

The CSS code
for the socia l
media l inks

C
SS

<div class="social">
 <div>
 Follow Logophilia Books on social media:
 </div>
 <div class="social-links">
 <img src="/images/
facebook.tif" alt="Facebook icon">
 <img src="/images/twitter.
tif" alt="Twitter icon">
 <img src="/images/
googleplus.tif" alt="Google Plus icon">
 <img src="/images/
linkedin.tif" alt="LinkedIn icon">
 </div>
</div>

The HTML
code for
the socia l
media l inks

H
T

M
L

Building the Page

	 WEB DESIGN PLAYGROUND	 177

Three classes are used here:

•	 social—This outer div creates the content band. It's given a
white background, and the text-align property is set to center.

•	 social-links—This div creates the container for all the links.

•	 social-link—This class is used to style the individual links.

Note that you don't need a container element in this content band

because the text and links are centered on the page.

The Page Footer
The final element of the landing page is the footer. As you can see in the

following example, I used the footer to display a copyright notice and my

contact information (which consists of my email address). Feel free to use

the footer to add any other information you see fit, such as a "thank you for

reading" message, a slogan or favorite epigram, or extra contact details.

IITry This   ��ðOnline: wdpg.io/projects/landing-page/13
This example separates the footer text from the body text by styling the
footer with a light gray background color, a smaller font size, and italics.

W
E

B
 P

A
G

E

.footer {
 padding: 1em 0;
 font-variant: small-caps;
 text-align: center;
 background-color: lightgray;
}

.footer-links {
 margin-bottom: .75em;
 font-size: 1.5em;
}

.foote r-link {
 margin: 0 .5em;
}

.copyright {
 font-style: italic;
 font-size: 1em;
}

The CSS code
for the footer

C
SS

continued

PROJECT: Creating a Landing Page

178	WEB DESIGN PLAYGROUND 

<div class="footer">
 <div class="footer-links">
 About
 Contact
 Site Map
 Privacy
 </div>
 <div class="copyright">
 Copyright 2018 Logophilia Books
 </div>
</div>

The HTML
code for
the footer

H
T

M
L

Four classes are used here:

•	 footer—This outer div creates the content band. It's given a
lightgray background, and the text-align property is set to
center.

•	 footer-links—This div creates the container for all the footer
links. Note that each link URL points to #, which is a placeholder
that, when clicked, takes the user to the top of the page. In a
production landing page, you’d replace each # with the URL of
an file on your site.

•	 footer-link—This class styles the individual footer links.

•	 copyright—This class styles the copyright notice.

Again, you don't need a container element in this band because the

content is already centered on the page.

From Here
Considering that you’re only halfway through the book, I have to say that

the final version of the landing page (mine is shown in Figure 10.3) is a fine-

looking web page. It's easy to read, easy to understand, and isn't boring. (If

you're as pleased with your landing page as I think you ought to be and are

looking forward to getting your code online, check out Appendix A to get

the details.)

From Here

	 WEB DESIGN PLAYGROUND	 179

IIFigure 10.3 
The landing home page for
my book

180	WEB DESIGN PLAYGROUND 

If there's a problem with the landing page, it's that we had to use lots of

padding and margin fiddling (among other CSS hacks) to get things to line

up somewhat neatly. That fussing happened because we're not using a true

page layout. With our elements floated here and there we're almost in layout

land, but not quite. But that's no problem because page layouts are the topic

of Part 3, so you'll soon learn all you need to know to create rock-solid

layouts for your landing pages and all your other pages.

Summary
•	 Sketch out the page you want to build.

•	 Choose the typeface for the text.

•	 Choose a color scheme.

•	 Build the initial page structure: the barebones HTML tags and
the global CSS properties.

•	 Fill in and style each section one by one: header, description,
testimonials, pricing table, social media links, and footer.

PROJECT: Creating a Landing Page

Part 3
Laying Out
a Web Page

A big part of designing web pages is the ability to lay out
the page elements in a way that’s not only pleasing to the
eye, but also easy to understand and navigate. That sounds
like a tall order, I’m sure, but the chapters here in Part 3
will help you do that. You start with a look at some page
layout basics in Chapter 11, including learning the important
HTML5 semantic page elements such as <header> and
<article>. From there, Chapter 12 takes you on a tour of
one of the hottest and most powerful modern page layout
technologies: flexbox.

Modern web design is all about responsive web design that
enables pages to look good and work well on any size screen,
and that’s the subject of Chapters 13 and 14. Finally, you put all
this newfound page layout know-how to work in Chapter 15
as you build a sophisticated photo-gallery page.

	 WEB DESIGN PLAYGROUND	183

Chapter

11

Learning Page
Layout Basics

Don't make me think! —Steve Krug
(Krug's First Law of Usability)

This chapter covers

▪	�Understanding web page layout types,
technologies, and strategies

▪	�Getting to know the HTML5 semantic page layout
elements

▪	�Examining modern, real-world page layouts

The first half of this book served to lay down a solid foundation for creating
web pages. When you got past the basics of HTML and CSS, you learned about
text tags, fonts, colors, CSS classes, the box model, floating and positioning
elements, and images and other media. So congratulations are in order:
You've graduated from being able merely to build web pages to being able
to design them.

11

Learning Page Layout Basics

184	WEB DESIGN PLAYGROUND 

Alas, you'll have little time to bask in your newfound glory, because this

chapter dives right into the next stage of web design. Here, you take a step

back from the "trees" of HTML tags and CSS properties to examine the "forest"

of page layout. This refers to the overall structure and organization of a web

page, and if that sounds trivial or unimportant, consider this: Every single

person who visits your page will, consciously or not, be asking a bunch of

questions. What is the page about? Am I interested? Does this page have the

information I'm looking for? If so, where can I find it?

All those questions are—or, at least, should be—answerable by glancing

at your layout. If your structure is wonky or your organization is haphazard, I

guarantee you that most people will move on after a few seconds. Avoiding

that fate means taking a bit of time to plan and code a layout that shows

your content in its best, visitor-friendliest light.

The Holy-Grail Layout
To help you learn the various web page layout techniques, I'm going to use a

version of the so-called holy-grail layout that consists of the following parts:

•	 A header at the top of the page

•	 A navigation bar below the header

•	 Two full-height columns consisting of the main page content in
the left column and a sidebar of related content in the right (or
sometimes the left) column

•	 A footer at the bottom of the page

There are a number of variations on this theme, depending on how strictly

you want to define the layout. You may want three columns between the

navigation bar and the footer instead of two, for example. Another common

variation is to have the footer appear at the bottom of the browser window

if the content doesn't extend that far.

Figure 11.1 shows a schematic of the layout you're going to build.

use It
The holy-grail layout
is useful for blog posts,
articles, essays, how-tos,
and similar content-
focused pages.

Understanding Web Page Layout Methods

	 WEB DESIGN PLAYGROUND	185

To build this layout, you need to understand the available page layout

methods.

Understanding Web Page Layout Methods
As I mentioned in Chapter 7, by default the web browser lays out HTML

content with the blocks stacked in the order in which they appear in the

source document. Within each block, the text runs left to right (for languages

that read that way). For the simplest web pages (such as the personal home

page you built in Chapter 5), that default layout is fine, but at this point in

your web-design career, you're already way beyond that. At this level, you

need to know how to break out of that default layout to gain some control

of how web content appears on the page.

Fortunately, you have no shortage of ways to do that, but you need to

know about three main methods:

•	 Floats —As you learned in Chapter 8, you can use the float
property to break an element out of the normal page flow and
send it to the left or right inside its parent container. By doing
this with multiple items, you can organize content into columns
and other sophisticated page layouts. See "Creating Page
Layouts with Floats" later in this chapter.

•	 Inline blocks —The display: inline-block declaration takes
a block-level element out of the default vertical page flow and
adds it to the horizontal (usually, left-to-right) flow of the other

IIFigure 11.1 
A version of the holy-grail
web page layout

Learning Page Layout Basics

186	WEB DESIGN PLAYGROUND 

inline elements. This creates many interesting page layout
opportunities, and you learn about some of them in "Creating
Page Layouts with Inline Blocks" later in this chapter.

•	 Flexbox —This powerful but underused CSS module enables you
to organize page content in containers that can wrap, grow, and
shrink in flexible ways. See Chapter 12 to learn how it works.

Which one should you use? I recommend that you not use floats or inline

blocks. I do recommend that you learn how floats and inline blocks work for

layout—which is why I talk about them in this chapter—because you need to

understand the techniques used on so many legacy sites, and you may find

these techniques handy for small page components. That leaves flexbox, which

you learn about in Chapter 12 and put to good use in Chapter 15’s project.

Flexbox is certainly something you should take
seriously. It paves the way for the modern style of
laying out content, and it’s not going away anytime
soon. It has emerged as a new standard. So, with
outstretched arms, embrace it! —Ohans Emmanuel

Learning the HTML5 Semantic Page Elements
The last piece of the page layout puzzle you need to know before getting

started is the collection of HTML5 elements that enable you to create

semantic layouts. Why is this important? Because every page you upload to

the web will be read and parsed in some way by automated processes, such

as search-engine crawlers and screen readers for the disabled. If your page is

nothing but a collection of anonymous <div> and tags, that software

will be less likely to analyze the page to find the most important content.

To help you solve that problem, HTML5 offers a collection of semantic

elements that you can use to specify the type of content contained in each

area of your page. There are quite a few of these elements, but the following

seven are the most important:

<header>
<nav>
<main>
<article>
<section>
<aside>
<footer>

The next few sections explain each of these elements.

Beware
Another common page
layout technology is
a front-end library
named Bootstrap
(https://getbootstrap.com).
The library comes with
prefab HTML, CSS, and
JavaScript components
that enable you to get
your projects off the
ground quickly. Most
modern web designers,
however, eschew
complex solutions such
as Bootstrap in favor of
writing their web page
code themselves.

Learning the HTML5 Semantic Page Elements

	 WEB DESIGN PLAYGROUND	 187

Proper semantics . . . increase accessibility,
as assistive technologies such as screen
readers can better interpret the meaning
of our content. —Anna Monus

<header>
You use the header element to define a page area that contains introductory

content. This content is most often the site title (which should be marked up

with a heading element, such as h1), but it can also include things such as a

site logo. Here's an example:

<body>
 <header>

 <h1>Semantics Depot</h1>
 </header>
 etc.
</body>

<nav>
You use the nav element to define a page area that contains navigation

content, such as links to other sections of the site or a search box. This

element can appear anywhere on the page but typically appears right after

the page's main header element:

<body>
 <header>

 <h1>Semantics Depot</h1>
 </header>
 <nav>
 Home
 Blog
 Contact
 About Us
 </nav>
 etc.
</body>

<main>
The main element is used as a container for the content that’s unique to

the current page. Whereas the header, nav, aside, and footer elements

are often common to all or most of the pages in the site, the main element

is meant to mark up the content that's unique. The main element typically

appears after the header and nav elements:

<body>
 <header>
 …

Learning Page Layout Basics

188	WEB DESIGN PLAYGROUND 

 </header>
 <nav>
 …
 </nav>
 <main>
 Unique content goes here
 </main>
 etc.
</body>

<article>
The article element is used to mark up a complete, self-contained

composition. The model here is the newspaper or magazine article, but this

element can also apply to a blog entry, a forum post, or an essay. Most pages

have a single article element nested within the main element:

<body>
 <header>
 …
 </header>
 <nav>
 …
 </nav>
 <main>
 <article>
 Article content goes here
 </article>
 </main>
 etc.
</body>

It’s perfectly acceptable, however, to have multiple article elements

within a single main element. Note, too, that it's okay to nest a header

element inside an article element if doing so is semantically appropriate:

<article>
 <header>
 <h2>Isn't It Semantic?</h2>
 <p>By Paul McFedries</p>
 </header>
 Article content goes here
</article>

<section>
You use the section element to surround any part of a page that you'd want

to see in an outline of the page. That is, if some part of the page consists of

a heading element (h1 through h6) followed by some text, you'd surround

the heading and its text with <section> tags. This typically happens within

an article element, like so:

<article>
 <section>
 <h3>Introduction</h3>
 Introduction text
 </section>
 <section>

Learning the HTML5 Semantic Page Elements

	 WEB DESIGN PLAYGROUND	189

 <h3>Argument</h3>
 Argument text
 </section>
 <section>
 <h3>Summary</h3>
 Summary text
 </section>
</article>

<aside>
You use the aside element to mark up a page area that isn’t directly related

to the page's unique content. A typical example is a sidebar that contains the

latest site news, a Twitter feed, and so on. The aside element can appear

anywhere within the main element (and, indeed, can appear multiple times

on the page), but it's a best practice to have the aside appear after the

page's article element, as shown here:

<body>
 <header>
 …
 </header>
 <nav>
 …
 </nav>
 <main>
 <article>
 …
 </article>
 <aside>
 …
 </aside>
 </main>
 etc.
</body>

<footer>
You use the footer element to define a page area that contains closing

content, such as a copyright notice, address, and contact information.

Here's the semantic layout of a typical HTML5 page:

<body>
 <header>
 …
 </header>
 <nav>
 …
 </nav>
 <main>
 <article>
 <section>
 …
 </section>
 <section>
 …
 </section>
 <aside>

Learning Page Layout Basics

190	WEB DESIGN PLAYGROUND 

 …
 </aside>
 </article>
 </main>
 <footer>
 …
 </footer>
</body>

The Holy-Grail Layout, Revisited
Earlier, you learned about the holy-grail layout, which I can reintroduce

within the context of the HTML5 semantic page elements. Figure 11.2 shows

the same schematic that you saw in Figure 11.1, but with HTML5 semantic

layout tags identifying each part.

Here's the bare-bones HTML code for the layout:

<header>

 <h1>Site Title</h1>
</header>
<nav>

 Item 1
 etc.

</nav>
<main>
 <article>
 <section>
 <h2>Article Title</h2>

IIFigure 11.2 
The holy-grail web
page layout with HTML5
semantic tags

Creating Page Layouts with Floats

	 WEB DESIGN PLAYGROUND	 191

 <p>Article paragraph</p>
 etc.
 </section>
 <aside>
 <p>Sidebar paragraph</p>
 etc.
 </aside>
 </article>
</main>
<footer>
 <p>Footer paragraph</p>
 etc.
</footer>

Creating Page Layouts with Floats
I'm simplifying somewhat, but building a page layout with floating elements

consists of repeating the following three steps:

1	 Let the elements flow in the default manner.

2	 When you need two or more elements to appear beside each other,

float them (usually to the left).

3	 When you want to resume the default page flow, clear the floats.

If you look at the source code for any page that has side-by-side content

or content arranged in columns, most of the time that site used floated

elements to achieve the effect. That said, floats are losing favor with web

designers who yearn for a more straightforward and solid approach to layout.

That approach will one day be flexbox combined with a new technology

called CSS Grid, but until that day comes, you should be familiar with float-

based layouts because they're still used so often.

Learn
To get up to speed with
CSS Grid basics, see the
tutorial “Getting Started
with CSS Grid” on the
Web Design Playground.

ðOnline: wdpg.io/grid

ððOnline: wdpg.io/11-1-0

The holy grail includes three instances of side-by-side content:

•	 In the header, you usually want a site title beside the site logo.

•	 In the navigation bar, you usually want the navigation items to
appear in a row.

•	 The sidebar must appear to the right of the main content.

All these instances require the use of the float property to get the

elements out of the default page flow and rendered beside each other.

Begin with the header, as shown in the following example.

Lesson 11.1:  � Creating the Holy Grail Layout with Floats
Covers: Layout with the float property

Learning Page Layout Basics

192	WEB DESIGN PLAYGROUND 

IIExample   �ðOnline: wdpg.io/11-1-1
This example shows you how to use float to get the header logo and title side by side.

W
E

B
 P

A
G

E

header {
 border: 1px solid black;
 padding: .25em 0;
}
header img {
 float: left;
 padding-left: 1em;
}
h1 {
 float: left;
 padding-left: .5em;
}
.self-clear::after {
 content: "";
 display: block;
 clear: both;
}

Float the img e lement to the left .

Float the h1 e lement to the left .

Clearfix to prevent the
header from col lapsing.

C
SS

<header class="self-clear">

 <h1>Site Title</h1>
</header>

H
T

M
L

Remember
I'm using type selectors
(such as header img)
here to make the code
as simple as possible.
In practice, it’s usually
better to assign classes
to each element and
then select the classes in
your CSS.

As you can see, both the img element and the h1 element are assigned

float: left, which places them beside each other on the left edge of

the header element. Because these elements are out of the default page

flow, you'll usually have to adjust the padding or margins to get them placed

where you want them, as I've done in the example.

Now float the navigation bar's items, as shown in the following example.

Creating Page Layouts with Floats

	 WEB DESIGN PLAYGROUND	193

IIExample   �ðOnline: wdpg.io/11-1-2
This example shows you how to use float to get the navigation bar items side by side.

W
E

B
 P

A
G

E

nav {
 border: 1px solid black;
 padding: .5em;
}
nav ul {
 list-style-type: none;
}
nav li {
 float: left;
 padding-right: 1.5em;
}

Float the li e lements to the left .

C
SS

<nav class="self-clear">

 Home
 Item
 Item
 Item

</nav>

H
T

M
L

In this case, the li elements are assigned float: left, which places

them beside each other on the left edge of the nav element. Again, I've used

padding to adjust the placement of the elements.

Next, float the main element's <article> and <aside> tags to create the

two-column content layout. The following example shows how it's done.

Learning Page Layout Basics

194	WEB DESIGN PLAYGROUND 

In this case, both the article element and the aside element are

assigned float: left, which places them beside each other on the left

side of the main element. (You could float the aside element to the right to

get the same layout.) You also need to assign a width value to each element

to set the size of your columns.

The width of your columns depends on what you'll be using them for.

In general, if one of the columns is a sidebar, it shouldn't take up much

more than 25 percent of the available width. Note, too, that if you've applied

box-sizing: border-box, your column percentages can add up to 100 to

fill the width of the main element.

IIExample   �ðOnline: wdpg.io/11-1-3
This example shows you how to use float to get the article and aside elements
side by side in a two-column layout.

W
E

B
 P

A
G

E

article {
 float: left;
 width: 75%;
 border: 1px solid black;
}
aside {
 float: left;
 width: 25%;
 border: 1px solid black;
}

Float the article e lement to the left .

Set the width of the article e lement.

Float the aside e lement to the left .

Set the width of the aside e lement.

C
SS

<main>
 <article>
 <h2>Article Title</h2>
 <p>Article paragraph 1</p>
 <p>Article paragraph 2</p>
 </article>
 <aside>
 <h3>Sidebar Title</h3>
 <p>Sidebar paragraph</p>
 </aside>
</main>

H
T

M
L

Creating Page Layouts with Floats

	 WEB DESIGN PLAYGROUND	195

Note, too, that the bottom borders of the two columns don't line up

because, in the absence of a CSS height declaration, the browser assigns

a height to an element based on the height of its contents. This problem is

common with floated columns, but I'll show you a workaround after the next

example.

Finally, you're ready to add the footer element, as shown in the example

that follows.

IIExample   �ðOnline: wdpg.io/11-1-4
This example shows adding the footer to the bottom of the page by clearing the
floated columns. Colors have been added to all the elements, but most aren’t shown in
the code.

W
E

B
 P

A
G

E

footer {
 padding: .25em 1em;
 background-color: #b6d7a8;
}

C
SS

<footer class="self-clear">
 <p>Footer paragaph</p>
</footer>H

T
M

L

Note, too, that in this example the article and aside columns are the

same height. How did I do that? I faked it by using a technique called faux

columns. Here's how it works:

1	 Put a wrapper element around both the article and the aside

elements.

In this example, the main element can serve as the wrapper.

Play
How would you
modify this layout
to display the sidebar
on the left instead of
the right? ðOnline:
wdpg.io/11-1-6

Play
How would you modify
this layout to display
three content columns: a
sidebar to the left and to
the right of the article
element? ðOnline:
wdpg.io/11-1-7

Learning Page Layout Basics

196	WEB DESIGN PLAYGROUND 

2	 Assign the same background color to the wrapper and the aside

element.

In the example, I assigned the color #b6d7a8 to both.

3	 Assign a different background color to the article element.

In the example, I assigned white to the article background.

Because the wrapper and the aside use the same background color, the

sidebar appears to reach all the way down to the footer. Here's a skeleton

version of the code:

<main class="self-clear">
 <article>
 </article>
 <aside>
 </aside>
</main>
<footer class="self-clear">
</footer>
<style>
 main, aside {
 background-color: #b4a7d6;
 }
 article {
 background-color: white;
 }
 .self-clear {
 content: "";
 display: block;
 clear: both;
 }
</style>

Using floats to lay out web page content is an old, common CSS trick. As

you saw in this section, however, it has some problems. You must remember

to clear your floats when needed, for example; margins tend to collapse;

and you often have to resort to kludgy tricks such as faux columns to make

things look good. You can solve some of these problems by using inline

blocks, which I turn to in the next section.

Creating Page Layouts with Inline Blocks
Building a page layout with inline block elements is similar to using floats:

1	 Let the page elements flow in the default manner.

2	 When you need two or more elements to appear beside each other,

display them as inline blocks.

Notice that one of the main advantages of using inline blocks is that you

don't have to explicitly clear elements.

Creating Page Layouts with Inline Blocks

	 WEB DESIGN PLAYGROUND	 197

ððOnline: wdpg.io/11-2-0

As before, the holy grail includes three instances in which you need content

side by side: the header, the navigation bar, and the content columns. All

these instances require the use of the display: inline-block declaration

to get the elements out of the default page flow and rendered beside each

other. By default, inline blocks are displayed left to right (or according to the

default inline orientation), so they're similar to declaring float: left.

I begin at the beginning with the header, as shown in the following

example.

IIExample   �ðOnline: wdpg.io/11-2-1
This example shows you how to use inline blocks to get the header logo and title side by
side.

W
E

B
 P

A
G

E

header {
 border: 1px solid black;
 padding: .5em 0 .1em 1em;
}
h1 {
 display: inline-block;
 padding-left: .5em;
 font-size: 2.5em;
}

Disp lay the h1 e lement
as an in l ine block.

C
SS

<header>

 <h1>Site Title</h1>
</header>

H
T

M
L

Remember
I'm using type selectors
(such as header img)
here to make the code
as simple as possible. In
practice, it’s usually better
to assign classes to each
element and then select
the classes in your CSS.

Lesson 11.2:  � Creating the Holy-Grail Layout with Inline Blocks
Covers: Layout with the inline-block property

Learning Page Layout Basics

198	WEB DESIGN PLAYGROUND 

The img element is an inline block by default, and I’ve declared the h1

element with display: inline-block, which places these two elements

beside each other from left to right.

Now convert the navigation bar's items to inline blocks, as shown in the

following example.

IIExample   �ðOnline: wdpg.io/11-2-2
This example shows you how to use inline blocks to get the navigation-bar items side by
side.

W
E

B
 P

A
G

E

nav {
 padding: .5em;
 border: 1px solid black;
}
nav ul {
 list-style-type: none;
 padding-left: .5em;
}
nav li {
 display: inline-block;
 padding-right: 1.5em;
}

Disp lay the li e lements
as in l ine blocks.

C
SS

<nav>

 Home
 Item
 Item
 Item

</nav>

H
T

M
L

In this case, the li elements are declared display: inline-block,

which places them beside each other on the left edge of the nav element.

Next, convert the main element's <article> and <aside> tags to inline

blocks, which gives you the two-column content layout. The following

example shows how it's done.

Creating Page Layouts with Inline Blocks

	 WEB DESIGN PLAYGROUND	199

IIExample   �ðOnline: wdpg.io/11-2-3
This example shows you how to use inline blocks to get the article and aside
elements side by side in a two-column layout.

W
E

B
 P

A
G

E

article {
 display: inline-block;
 width: 75%;
 border: 1px solid black;
}
aside {
 display: inline-block;
 vertical-align: top;
 width: 25%;
 border: 1px solid black;
}

Disp lay the article
e lement as an in l ine block.

Disp lay the aside e lement
as an in l ine block.

Al ign the aside e lement
text with the top.

C
SS

<main>
 <article>
 <h2>Article Title</h2>
 <p>Article paragraph 1</p>
 <p>Article paragraph 2</p>
 </article><aside>
 <h3>Sidebar Title</h3>
 <p>Sidebar paragraph</p>
 </aside>
</main>

No whitespace between
the column elements

H
T

M
L

In this case, both the article element and the aside element are

assigned display: inline-block, which places them beside each other

on the left side of the main element. You also need to assign a width value

to each element to set the size of your columns.

Notice, too, that in the HTML code, I crammed the </article> end tag

and the <aside> start tag together so that there's no whitespace between

them. This is crucial when working with inline blocks because otherwise,

the browser will add a bit of space when it renders the elements, which can

mess up your width calculations.

Learning Page Layout Basics

200	WEB DESIGN PLAYGROUND 

You've no doubt noticed that as with floats, the bottom borders of the two

columns don't line up. You’ll use the same workaround to fix that problem.

Finally, add the footer element, as shown in the example that follows.

IIExample   �ðOnline: wdpg.io/11-2-4
This example shows how to add the footer element to the bottom of the page,
although in this case, there's no need to clear anything. Colors have been added to all the
elements, but most aren’t shown in the code.

W
E

B
 P

A
G

E

footer {
 padding: 1em;
 background-color: #b6d7a8;
}

No clear is needed with in l ine blocks.

C
SS

<footer>
 <p>Footer paragaph</p>
</footer>H

T
M

L

Play
How would you modify
this layout to display the
sidebar on the left instead
of the right? ðOnline:
wdpg.io/11-2-6

Play
How would you modify
this layout to display
three content columns: a
sidebar to the left and to
the right of the article
element? ðOnline:
wdpg.io/11-2-7

As I did with the floated layout, I made the article and aside columns

appear to be the same height by using faux columns. (Note that these faux

columns work properly only as long as the article element is taller than

the aside element.)

Using inline blocks to lay out web page content isn’t common despite the

ease with which you can create fairly sophisticated layouts. Inline blocks have

their drawbacks, of course. You have to watch your vertical alignment; you

often have to ensure that there's no whitespace between the blocks; and you

can't send elements to the right side of the parent as you can with float:
right. To solve these problems and gain extra power over your layouts, you

need to shun these old technologies in favor of the newest layout kid on the

block: flexbox. You learn everything you need to know in Chapter 12.

Summary

	 WEB DESIGN PLAYGROUND	201

Summary
•	 You can make your pages more semantic by using the HTML5

page layout tags: <header>, <nav>, <main>, <article>,
<section>, <aside>, and <footer>.

•	 To use a float-based layout, let the elements flow in the default
manner; then, when you need two or more elements to appear
beside each other, float them (usually to the left). Remember
that when you want to resume the default page flow, clear the
floats.

•	 To use an inline block-based layout, let the page elements
flow in the default manner; then, when you need two or more
elements to appear beside each other, display them as inline
blocks.

IIExample   �ðOnline: wdpg.io/11-2-4
This example shows how to add the footer element to the bottom of the page,
although in this case, there's no need to clear anything. Colors have been added to all the
elements, but most aren’t shown in the code.

W
E

B
 P

A
G

E

footer {
 padding: 1em;
 background-color: #b6d7a8;
}

No clear is needed with in l ine blocks.

C
SS

<footer>
 <p>Footer paragaph</p>
</footer>H

T
M

L

Play
How would you modify
this layout to display the
sidebar on the left instead
of the right? ðOnline:
wdpg.io/11-2-6

Play
How would you modify
this layout to display
three content columns: a
sidebar to the left and to
the right of the article
element? ðOnline:
wdpg.io/11-2-7

	 WEB DESIGN PLAYGROUND	203

Chapter

12

Creating Page
Layouts with Flexbox

Flexbox is the first CSS layout technique that
works for the modern web. —Paddi MacDonnell

This chapter covers

▪	Understanding how flexbox works
▪	�Learning the techniques for working with flexbox

containers and items
▪	Putting flexbox to good use with real-world ideas
▪	Building the holy grail layout with flexbox

In Chapter 11, you saw that floats and inline blocks can get the job done, but
not without running into problems, quirks, and workarounds such as clearing
floats, creating faux columns, and avoiding whitespace. Even with all that,
these layout strategies can't accomplish one of the features of the holy-grail
layout: displaying the footer at the bottom of the screen if the page content
doesn't fill the screen height.

This chapter's layout strategy prevents all these quirks, solves the footer
problem, and has the fresh-faced appeal of a modern technology. I'm
talking about flexbox, and before you can start using it for layout, you need
to understand what it is and how it works. The next few sections explain
everything you need to know.

12

Creating Page Layouts with Flexbox

204	WEB DESIGN PLAYGROUND 

Understanding Flexbox
Flexbox is the welcome shorthand for this method's cumbersome official

moniker: Flexible Box Layout Module. The underlying principle behind

flexbox is to provide a way around the rigid, cumbersome way that the

browser handles blocks of content. The default is to stack them. Consider

the following collection of div elements:

<div class="container">
 <div class="item itemA">A</div>
 <div class="item itemB">B</div>
 <div class="item itemC">C</div>
 <div class="item itemD">D</div>
 <div class="item itemE">E</div>
 <div class="item itemF">F</div>
</div>

Not shown here are the classes I’ve applied to give each item element a

unique background color, and Figure 12.1 shows the results. As you can see,

the div elements are stacked and extend the width of the browser window.

IIFigure 12.1 
The default browser layout
of the div elements

Understanding Flexbox

	 WEB DESIGN PLAYGROUND	205

Even if you break out of this default flow with floats or inline blocks,

the uncomfortable sense remains that the browser is still in charge and is

fitting your blocks where it thinks they should go. Yes, you can tame the

browser somewhat by styling your floats and inline blocks just so, but there's

a brittleness to these tweaks. Try to imagine what happens to the float and

inline-block holy-grail layouts if the sidebar text is longer than the article

text. (Hint: It's not pretty.)

Flexbox rides to the rescue by offering simple but extremely powerful

methods for laying out, distributing, aligning, sizing, and even ordering the

child elements in a parent container. The flex part of the name comes from

one of this technology's main tenets: The child items in a container should

be able to change dimensions (width and height) by growing to fill in empty

space if there's too much of it or by shrinking to allow for a reduction in

space. This happens whether the amount of content changes or the size

of the screen changes (such as by maximizing a window or by changing a

device's screen orientation).

So flexbox is perfect, then? No, it's not. It has two main drawbacks:

•	 Its inherit flexibility means that it sometimes behaves in ways
that appear nonsensical. It can be maddening at first, but
when you've used it a few times, you begin to see why flexbox
behaves the way it does.

•	 It's not suitable for large-scale layouts. Flexbox works
wonderfully for components of a page—such as a header or
sidebar—and is fine for small-scale layouts (such as the holy-
grail practice layout). But big, complex projects are almost
always too much for flexbox to handle. (If you have the time,
wait for CSS Grid Layout to have sufficient browser support.)

When you work with flexbox, you work with two kinds of page objects:

containers and items. A flex container is any type of parent block element—

div, p, any of the HTML semantic page elements you learned in Chapter 11,

even the body element—that surrounds one or more elements. These child

elements are called flex items.

Okay, that’s enough theory. It’s time to start learning how flexbox works.

Working with Flexbox Containers
Before you can do anything with flexbox, you need to decide which block-

level element will be the flex container. When you've done that, you convert

that element to a container with a single CSS declaration: display: flex.

The following rule turns the header element into a flex container:

header {
 display: flex;
}

Learn
To learn CSS Grid basics
now, see my tutorial
“Getting Started with
CSS Grid” on the Web
Design Playground.

ðOnline: wdpg.io/grid

Creating Page Layouts with Flexbox

206	WEB DESIGN PLAYGROUND 

Using the div elements shown in Figure 12.1 earlier in this chapter, here's

how you'd turn the parent div into a flex container by using the right-to-left

(row) direction:

.container {
 display: flex;
 flex-direction: row;
}

Figure 12.2 shows the results, and Figure 12.3 shows what happens when

you use flex-direction: row-reverse.

Cross axis

Main axis

Cross axis

Main axis

Figure 12.2 shows the same result as using float: left or display:
inline-block, and Figure 12.3 shows the same result as using float:
right (and isn't possible with inline blocks). With flexbox, however, you get

the result by adding a couple of declarations to the container rather than

styling each child element, as you do with floats and inline blocks. Right off

the bat, you can see that flexbox is easier and more efficient.

Remember
The row value is the
default, so declaring
flex-direction:
row is optional.

Play
You can try out all the
flex-direction
values interactively
on the Playground.

ðOnline: wdpg.io/12-1-2

IIFigure 12.2  The div elements with a flex container and the row direction applied

IIFigure 12.3  The div elements with a flex container and the row-reverse direction applied

Remember
If you applied flex-
direction: column
to this example, you'd
get the layout shown
in Figure 12.1 earlier in
this chapter; the main
axis would run from
top to bottom, and the
cross axis would run left
to right. If you applied
flex-direction:
column-reverse,
you'd get the same
layout with the div
elements in reverse
order; the main axis
would run bottom to top,
and the cross axis would
remain left to right.

Play
How would you use
flexbox to display a
numbered list in reverse
order? ðOnline: wdpg
.io/12-1-4

The container's child elements automatically become flex items; no

extra rules or declarations or code are required. From there, you can start

customizing your flex container and its items to suit the task at hand.

I find that the best way to learn about and use flexbox is to ask yourself a

series of questions—one set for containers and another for items. Here are

the container questions:

•	 In which direction do you want the container’s items to run?

•	 How do you want the items arranged along the main axis?

•	 How do you want the items arranged along the cross axis?

•	 Do you want the items to wrap?

•	 How do you want multiple lines arranged along the cross axis?

(Don't worry if you're not sure what I mean by main axis and cross axis.

All will be revealed in the next section.) The next few sections ask and show

you the possible answers to each of these questions.

In which direction do you want the container to run?
The first thing that's flexible about flexbox is that it doesn't dictate one and only

one direction for the container's items. Although the browser's default layout

rigidly enforces a vertical direction, and although floats and inline blocks work

only horizontally, flexbox is happy to go either way. With flexbox, you decide.

Perhaps the most important flexbox concept to grasp right from the get-

go is the notion that flexbox containers always have two axes:

•	 Main —The axis that runs in the same direction as the container's
items

•	 Cross —The axis that runs perpendicular to the main axis (the
cross axis is also called the secondary axis)

You determine the main-axis direction when you set the flex-direction

property on a container:

container {
 display: flex;
 flex-direction: row|row-reverse|column|column-reverse;
}

•	 row—Sets the main axis to horizontal, with items running from
left to right (the default)

•	 row-reverse—Sets the main axis to horizontal, with items
running from right to left

•	 column—Sets the main axis to vertical, with items running from
top to bottom

•	 column-reverse—Sets the main axis to vertical, with items
running from bottom to top

Understanding Flexbox

	 WEB DESIGN PLAYGROUND	207

Using the div elements shown in Figure 12.1 earlier in this chapter, here's

how you'd turn the parent div into a flex container by using the right-to-left

(row) direction:

.container {
 display: flex;
 flex-direction: row;
}

Figure 12.2 shows the results, and Figure 12.3 shows what happens when

you use flex-direction: row-reverse.

Cross axis

Main axis

Cross axis

Main axis

Figure 12.2 shows the same result as using float: left or display:
inline-block, and Figure 12.3 shows the same result as using float:
right (and isn't possible with inline blocks). With flexbox, however, you get

the result by adding a couple of declarations to the container rather than

styling each child element, as you do with floats and inline blocks. Right off

the bat, you can see that flexbox is easier and more efficient.

Remember
The row value is the
default, so declaring
flex-direction:
row is optional.

Play
You can try out all the
flex-direction
values interactively
on the Playground.

ðOnline: wdpg.io/12-1-2

IIFigure 12.2  The div elements with a flex container and the row direction applied

IIFigure 12.3  The div elements with a flex container and the row-reverse direction applied

Remember
If you applied flex-
direction: column
to this example, you'd
get the layout shown
in Figure 12.1 earlier in
this chapter; the main
axis would run from
top to bottom, and the
cross axis would run left
to right. If you applied
flex-direction:
column-reverse,
you'd get the same
layout with the div
elements in reverse
order; the main axis
would run bottom to top,
and the cross axis would
remain left to right.

Play
How would you use
flexbox to display a
numbered list in reverse
order? ðOnline: wdpg
.io/12-1-4

Creating Page Layouts with Flexbox

208	WEB DESIGN PLAYGROUND 

How do you want the items arranged along the main axis?
When you've used flex-direction to set the main axis for the container,

your next decision is how you want the items to be arranged along that axis.

Use the justify-content property on a container:

container {
 display: flex;
 justify-content: flex-start|flex-end|center|space-between|space-
around;
}

•	 flex-start—Places the items at the beginning of the container
(the default)

•	 flex-end—Places the items at the end of the container

•	 center—Places the items in the middle of the container

•	 space-between—Places the items with the first item at the
beginning of the container, the last item at the end, and the rest
of the items evenly distributed in between

•	 space-around—Distributes the items evenly within the
container by supplying each item the same amount of space on
either side

Figure 12.4 shows the effect that each value has on the arrangement of the

items within the container when the main axis is horizontal. (Note that I've

added an outline around each container so you can visualize its boundaries.)

How do you want the items arranged along the cross axis?
With the items arranged along the main axis, your next task is choosing

an arrangement along the cross axis. You set this by using the container's

align-items property:

container {
 display: flex;
 align-items: stretch|flex-start|flex-end|center|baseline;
}

•	 stretch—Expands each item along the cross axis to fill the
container (the default)

•	 flex-start—Aligns the items with the beginning of the cross axis

•	 flex-end—Aligns the items at the end of the cross axis

•	 center—Aligns the items in the middle of the cross axis

•	 baseline—Aligns the items along their baseline of the flex
container

Beware
The space-around
value doesn't quite work
as advertised because
you always get less space
before the first item and
after the last item (see
Figure 12.5 later in this
chapter). That happens
because each item is
given a set amount of
space on either side, so
inside items have two
units of space between
them, compared with
one unit of space before
the first item and after
the last item.

Remember
The flex-start
value is the default, so
declaring justify-
content: flex-
start is optional.

Play
You can play around
with the justify-
content values
interactively on the
Playground. ðOnline:
wdpg.io/12-1-5

Remember
The stretch value is
the default, so declaring
align-items:
stretch is optional.

Understanding Flexbox

	 WEB DESIGN PLAYGROUND	209

flex-start

flex-end

center

space-between

space-around

One unit
of space

Two units
of space

IIFigure 12.4  The justify-content values at work

Figure 12.5 shows the effect that each value has on the arrangement of

the items within the container when the cross axis is vertical. (I've added an

outline around each container so you can visualize its boundaries.)

Creating Page Layouts with Flexbox

210	WEB DESIGN PLAYGROUND 

stretch

baseline

center

flex-end

baseline

flex-start

IIFigure 12.5  The align-items values in action

Do you want the items to wrap?
By default, flexbox treats a container as a single row (if you've declared flex-
direction as row or row-reverse) or as a single column (if you've declared

flex-direction as column or column-reverse). If the container's items

are too big to fit into the row or column, flexbox shrinks the items along

the main axis to make them fit. Alternatively, you can force the browser to

wrap the container's items to multiple rows or columns rather than shrinking

them. You do this by using the container's flex-wrap property:

container {
 display: flex;
 flex-wrap: nowrap|wrap|wrap-reverse;
}

•	 nowrap—Doesn't wrap the container's items (the default)

•	 wrap—Wraps the items to as many rows or columns as needed

•	 wrap-reverse—Wraps the items at the end of the cross axis

Play
You can try out the
different align-items
values interactively
on the Playground.

ðOnline: wdpg.io/12-1-6

FAQ
Are these alignment
options confusing, or
is it just me? Almost
everyone getting started
with flexbox finds
alignment to be the most
confusing part. It may
help to think of the main
axis as the justification
axis, because you
use the justify-
content property to
arrange items on that
axis. Similarly, think
of the cross axis as the
alignment axis, because
you arrange items on it
using the align-items
property.

Understanding Flexbox

	 WEB DESIGN PLAYGROUND	 211

Figure 12.6 shows the effect that each value has on the arrangement of

the items within the container when the main axis is horizontal. (I've added

an orange outline around each container so you can visualize its boundaries.)

nowrap

wrap-reverse

wrap

How do you want multiple lines arranged along the cross axis?
Your final container-related decision is how you want multiple lines—that is,

multiple rows or columns—arranged along the cross axis. This is similar to

arranging individual flex items along the main axis, except that here, you're

dealing with entire lines of items. You control this arrangement by using the

container's align-content property:

container {
 display: flex;
 align-content: stretch|center|flex-start|flex-end|space-
between|space-around;
}

•	 stretch—Expands the wrapped lines along the cross axis to fill
the container height (the default)

•	 center—Places the lines in the middle of the cross axis

•	 flex-start—Places the lines at the beginning of the cross axis

Remember
The nowrap value is
the default, so declaring
flex-wrap: nowrap
is optional.

IIFigure 12.6  How the flex-wrap values work

Play
You can wrap your head
around the three flex-
wrap values by trying
them out interactively
on the Playground.

ðOnline: wdpg.io/12-1-8

Do you want the items to wrap?
By default, flexbox treats a container as a single row (if you've declared flex-
direction as row or row-reverse) or as a single column (if you've declared

flex-direction as column or column-reverse). If the container's items

are too big to fit into the row or column, flexbox shrinks the items along

the main axis to make them fit. Alternatively, you can force the browser to

wrap the container's items to multiple rows or columns rather than shrinking

them. You do this by using the container's flex-wrap property:

container {
 display: flex;
 flex-wrap: nowrap|wrap|wrap-reverse;
}

•	 nowrap—Doesn't wrap the container's items (the default)

•	 wrap—Wraps the items to as many rows or columns as needed

•	 wrap-reverse—Wraps the items at the end of the cross axis

Play
You can try out the
different align-items
values interactively
on the Playground.

ðOnline: wdpg.io/12-1-6

FAQ
Are these alignment
options confusing, or
is it just me? Almost
everyone getting started
with flexbox finds
alignment to be the most
confusing part. It may
help to think of the main
axis as the justification
axis, because you
use the justify-
content property to
arrange items on that
axis. Similarly, think
of the cross axis as the
alignment axis, because
you arrange items on it
using the align-items
property.

Creating Page Layouts with Flexbox

212	WEB DESIGN PLAYGROUND 

•	 flex-end—Places the lines at the end of the cross axis

•	 space-between—Places the first line at the beginning of the
cross axis, the last line at the end, and the rest of the lines
evenly distributed in between

•	 space-around—Distributes the lines evenly within the container
by supplying each line with a set amount of space on either side

Figure 12.7 shows the effect that each value has on the arrangement of

the lines within the container when the main axis is horizontal. (I've added an

orange outline around each container so you can visualize its boundaries.)

Beware
As with justify-
content, the space-
around value gives one
unit of space before the
first line and after the
last line but two units
of space between all the
other lines.

Remember
The stretch value is
the default, so declaring
align-content:
stretch is optional.

stretch

space-
between

center

flex-endflex-start

space-
around

IIFigure 12.7  Using the align-content values

Play
You can try out all the
align-content values
interactively on the
Playground. ðOnline:
wdpg.io/12-1/10

ððOnline: wdpg.io/12-1-1

By far the most common question related to web page layouts is a deceptively

simple one: How do I center an element horizontally and vertically? That is,

how can you use CSS to place an element in the dead center of the browser

window? Over the years, many clever tricks have been created to achieve this

goal, with most of them using advanced and complex CSS rules. Fortunately,

you don't have to worry about any of that because flexbox lets you dead-

center any element with four lines of CSS, as shown in the following example.

Lesson 12.1:  �Dead-Centering an Element with Flexbox
Covers: flex and other flex container properties

Understanding Flexbox

	 WEB DESIGN PLAYGROUND	 213

IIExample   �ðOnline: wdpg.io/12-1-1
This example shows you how to center an h1 element horizontally and vertically within
the browser window.

W
E

B
 P

A
G

E

div {
 display: flex;
 justify-content: center;
 align-items: center;
 height: 100vh;
}

Center the h1 horizontal ly .

Center the h1 vertical ly .

Set the div to the
height of the window.

C
SS

<div>
 <h1>Center Me!</h1>
</div>H

T
M

L

This example works by turning the div element into a flex container,

which automatically converts the h1 element to a flex item. By setting both

justify-content and align-items to center, and by giving the div the

full height of the browser window (it's the width of the browser window by

default), you center the h1 in the window.

Working with Flexbox Items
Now that you know everything that's worth knowing about flexbox

containers, turn your attention to the flexbox items inside those containers.

As before, learning about and using flex items is best approached by asking

yourself a series of questions:

•	 Do you want the item to grow if there's extra room?

•	 Do you want the item to shrink if there's not enough room?

•	 Do you want to suggest an initial size for an item?

•	 Do you want to change an item's order?

•	 Do you want to override an item's alignment?

Creating Page Layouts with Flexbox

214	WEB DESIGN PLAYGROUND 

The next few sections discuss these questions and provide you some

answers.

Do you want the item to grow if there's extra room?
If you look back at Figure 12.4, notice that in the flex-start example, the

flex items are bunched up at the beginning of the container, leaving a chunk

of empty space to the right. This effect may be what you want, or you may

prefer to have the items fill that empty space. You can do that by applying

the flex-grow property to the item you want to expand:

item {
 flex-grow: value;
}

By default, all flex items are given a flex-grow value of 0. To grow items

to fill a container's empty space, you assign positive numbers to those items

as follows (see Figure 12.8):

•	 If you assign any positive number to one flex item in a container,
the amount of empty space in the container is added to that item.

•	 If you assign the same positive number to multiple flex items
in a container, the amount of empty space in the container is
divided evenly among those items.

•	 If you assign different positive numbers to multiple flex items
in a container, the amount of empty space in the container is
divided proportionally among those items, based on the values
you provide. If you assign the values 1, 2, and 1 to three items,
those items get 25 percent, 50 percent, and 25 percent of the
empty space, respectively.

Master
To calculate what
proportion of the empty
space is assigned to
each item, add all the
flex-grow values
for a given container
and then divide the
individual flex-grow
values by that total.
Values of 1, 2, and 1 add
up to 4, for example, so
the percentages are 25
(¼), 50 (2⁄4), and 25 (¼),
respectively.

flex-grow: 1

flex-grow: 1

flex-grow: 1

flex-grow: 0

flex-grow: 2

Empty space in
flex container

IIFigure 12.8  The effect of different flex-grow values

Play
You can play with
various flex-grow
values interactively
on the Playground.

ðOnline: wdpg.io/12-2-2

Understanding Flexbox

	 WEB DESIGN PLAYGROUND	 215

Do you want the item to shrink if there's not enough room?
The opposite problem of expanding flex items to fill a container's empty

space is shrinking flex items when the container doesn't have enough space.

This shrinking is activated by default, so if the browser detects that the flex

items are too large to fit the container, it automatically reduces the flex items

to fit.

How much each item shrinks depends on its size in relation to the other

items and the size of the container. Suppose that you’re working with a

horizontal main axis (that is, flex-direction is set to row) and that the

container is 1200px wide, but each of its five items is 400px wide. That's

2000px total, so the browser must reduce the items by 800px to fit the

container. In this case, because all the items are the same width, the browser

reduces the width of each by 160px.

If the items have different widths, the calculations get more complicated,

so I won't go into them here. Suffice it to say that the amount each item's

width gets reduced depends on its initial width. The greater the initial width

is, the more the item shrinks.

Rather than let the browser determine how much each item gets reduced,

you can specify that a particular item be reduced more than or less than the

other items. You do that by applying the flex-shrink property to the item:

item {
 flex-shrink: value;
}

By default, all flex items are given a flex-shrink value of 1, which

means that they're all treated equally when it comes time to calculate the

shrink factor. To control the shrink factor yourself, assign positive values to

those items as follows (see Figure 12.9):

•	 If you set flex-shrink to a number greater than 1, the browser
shrinks the item more than the other items by a factor that's
somewhat proportional to the value you provide. (Again, the
math is quite complicated.)

•	 If you set flex-shrink to a number greater than 0 but less than
1, the browser shrinks the item less than the other items.

•	 If you set flex-shrink to 0, the browser doesn’t shrink the item.

Learn
Mike Reithmuller has
a lucid explanation
of the math involved
in calculating item
shrinkage here: https://
madebymike.com.au/
writing/understanding-
flexbox.

Beware
The browser won't
shrink an item to a size
less than the minimum
required to display its
content. If you keep
increasing an item's
flex-shrink value,
and the item refuses to
get smaller, the item is
probably at its minimum
possible size.

flex-grow: 1

flex-grow: 1

flex-grow: 1

flex-grow: 0

flex-grow: 2

Empty space in
flex container

IIFigure 12.8  The effect of different flex-grow values

Play
You can play with
various flex-grow
values interactively
on the Playground.

ðOnline: wdpg.io/12-2-2

Creating Page Layouts with Flexbox

216	WEB DESIGN PLAYGROUND 

flex-shrink: 0

flex-shrink: 0.5

flex-shrink: 2

flex-shrink: 1

Do you want to suggest an initial size for an item?
You've seen that flex items can grow or shrink depending on how they fit in

the container and that you have some control of this process via the flex-
grow and flex-shrink properties. But when I say that flex items can grow

or shrink, what are they growing and shrinking from? That depends:

•	 If the item has a declared width value (if flex-direction is set
to row) or a declared height value (if flex-direction is set to
column), the item grows or shrinks from this initial size.

•	 If the item doesn’t have a declared width or height, the item’s
dimensions are set automatically by the browser to the
minimum values required to fit the item's content. The item can
grow from this initial value, but it can't shrink to a smaller value.

The latter case—that is, not having a declared width (for flex-
direction: row) or height (for flex-direction: column)—causes two

problems. First, it prevents an item from shrinking smaller than its content.

Second, the initial size (that is, the minimum required to display the content)

may be smaller than you require. You can solve both problems by declaring a

flex basis, which is a suggested size for the item. You do that by applying the

flex-basis property:

item {
 flex-basis: value|auto|content;
}

•	 value—Sets a specific measure for the width (with flex-
direction: row) or height (with flex-direction: column).
You can use any of the CSS measurement units you learned

IIFigure 12.9  The effect of different flex-shrink values. Each
item is 300px, and the container is 600px.

Play
You can try out various
flex-shrink values
interactively on the
Playground. ðOnline:
wdpg.io/12-2-5

Understanding Flexbox

	 WEB DESIGN PLAYGROUND	 217

about in Chapter 7, including px, em, rem, vw, and vh. You can
also set value to a percentage.

•	 auto—Lets the browser set the initial value based on the
item's width or height property (the default). In the absence
of a declared width or height, auto is the same as content,
discussed next.

•	 content—Sets the initial width or height based on the content
of the item.

Using the flex shorthand property
You should know that flexbox offers a shorthand property for flex-grow,

flex-shrink, and flex-basis. This property is named flex, and it uses

any of the following syntaxes:

item {
 flex: flex-grow flex-shrink flex-basis;
 flex: flex-grow flex-shrink;
 flex: flex-grow flex-basis;
 flex: flex-grow;
 flex: flex-basis;
}

Here's an example declaration that uses the default values for each property:

flex: 0 1 auto;

This example sets flex-grow to 1 and flex-shrink to 0:

flex: 1 0;

This final example styles an item with a fixed size of 10em:

flex: 0 0 10em;

Do you want to change an item's order?
One of the most surprising—and surprisingly handy—tricks offered by

flexbox is the ability to change the order of the items in a container. When

would you use this feature? Here are two common scenarios:

•	 One of the important tenets of accessibility is to place a page's
main content as near the top of the page as possible. If you have
ads or other nonessential content in, say, a left sidebar, that
content necessarily appears first in the source document. With
flexbox, however, you can put the sidebar's code after the main
content and then change its position so that it still appears on
the left side of the page.

•	 A similarly important tenet of mobile web design is to place the
main content on the initial screen seen by mobile users. If you
don't want to restructure the content for desktop users, you can
add a CSS media query that uses flexbox to change the content
order, depending on the device being used.

Creating Page Layouts with Flexbox

218	WEB DESIGN PLAYGROUND 

You change the order of a flex item by using the order property:

item {
 order: value;
}

By default, all the items in a flex container are given an order value of 0.

You can manipulate the item order as follows:

•	 The higher an item's order value, the later it appears in the
container.

•	 The item with the highest order value appears last in the
container.

•	 The item with the lowest order value appears first in the
container.

Figure 12.10 puts a few order values through their paces.

order: 0

order: 1

order: –1

order: 1 order: 2

order: 3

Do you want to override an item's alignment?
You saw earlier that you can use the align-items property to arrange items

along a container's cross axis. Rather than align all the items the same way, you

may prefer to override this global alignment and assign a different alignment to

an item. You can do that by setting the item's align-self property:

item {
 align-self: stretch|flex-start|flex-end|center|baseline;
}

Master
Negative order values
are allowed, so an easy
way to move an item to
the front of its container
is to set its order value
to -1.

IIFigure 12.10  The effect of different order values

Play
You can mess around
with some order values
interactively on the
Playground. ðOnline:
wdpg.io/12-2-6

Understanding Flexbox

	 WEB DESIGN PLAYGROUND	219

The possible values act in the same manner as I outlined earlier (see

"How do you want the items arranged along the cross axis?"). You can also

assign the value auto to revert the item to the current align-items value.

Figure 12.11 shows a container with align-items set to flex-start but

with the last item having align-self set to flex-end.

align-items: flex-start

align-self: flex-end

Flexbox Browser Support
The good news about flexbox browser support is that it works in all current

browsers. In fact, it works even in the vast majority of recent browsers, so for

the most part, you don’t have to worry about using browser prefixes.

If you have to support old browsers, however, some prefixing is required

to get flexbox to work. These prefixes can get complex because the flexbox

syntax changed between versions, so supporting older browsers means

supporting these older syntaxes. Rather than run through all these prefixes,

I'm going to pass the buck to a fantastic tool called Autoprefixer (http://

autoprefixer.github.io), shown in Figure 12.12. You paste your nonprefixed code

into the left pane, and fully prefixed code appears automagically in the right

IIFigure 12.11  You can override a container's align-items value with
align-self.

Creating Page Layouts with Flexbox

220	WEB DESIGN PLAYGROUND 

pane. It also comes with a Filter box that you can use to specify how far back

you want to go with browser support:

•	 Type last x versions to support that most recent x versions
of all browsers (such as last 4 versions).

•	 Type > y% to support only web browsers that have at least y%
market share (such as > .5%).

IIFigure 12.12 
Use the online version of
Autoprefixer to add browser
vendor prefixes to your
flexbox code.

ððOnline: wdpg.io/12-2-0

A common web page component is a simple thumbnail list that has a

thumbnail image on the left and a description or other information on the

right. These elements are used for photo galleries, user directories, book

lists, project summaries, and much more. Getting the image and the text to

behave is tricky with garden-variety CSS, but it's a breeze with flexbox, as

shown in the following example.

Lesson 12.2:  �Creating a Thumbnail List
Covers: The flex-grow and flex-shrink properties

Understanding Flexbox

	 WEB DESIGN PLAYGROUND	 221

IIExample   �ðOnline: wdpg.io/12-2-1
This example shows you how to use flexbox to create a thumbnail list of items.

W
E

B
 P

A
G

E

.dictionary-container {
 list-style-type: none;
}
.dictionary-item {
 display: flex;
}
.dictionary-image {
 flex-shrink: 0;
}
.dictionary-entry {
 flex-grow: 1;
}

Each li becomes a flex
container.

Prevent the thumbnai l
from shrinking.

Al low the text to use the
rest of the container.

C
SS

<ul class="dictionary-container">
 <li class="dictionary-item">
 <div class="dictionary-image">
 <img src="/images/animalpath.jpg" alt="Photo of an
animal path">
 </div>
 <div class="dictionary-entry">
 <h4>animal path</h4>
 <p>A footpath or track made by the constant and long-
term walking of animals.</p>
 </div>

 etc.

H
T

M
L

Creating Page Layouts with Flexbox

222	WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io/12-3-0

Okay, now you can turn your attention to building the holy-grail layout with

flexbox. As before, the holy grail includes three instances in which you need

content side by side: the header, the navigation bar, and the content columns.

In all three instances, you’ll place the elements in a flexbox container with a

horizontal main axis.

First, however, note that you want these elements stacked, which means

that they need a flex container that uses a vertical main axis. The <body> tag

does the job nicely, so set body as a flex container with a vertical main axis

and the content starting at the top:

body {
 display: flex;
 flex-direction: column;
 justify-content: flex-start;
 max-width: 50em;
 min-height: 100vh;
}

Note, too, that I specified a maximum width for the container and a

minimum height. You'll see why I used 100vh when I talk about adding a footer

a bit later.

Now do the header, as shown in the following example.

Lesson 12.3:  �Creating the Holy-Grail Layout with Flexbox
Covers: Layout with flex and other flexbox properties

IIExample   �ðOnline: wdpg.io/12-3-1
This example shows you how to use flexbox to get the header logo and title side by side.

W
E

B
 P

A
G

E

Understanding Flexbox

	 WEB DESIGN PLAYGROUND	223

header {
 display: flex;
 justify-content: flex-start;
 align-items: center;
 border: 1px solid black;
 padding: 1em;
}
header img {
 flex-shrink: 0;
}
h1 {
 flex-grow: 1;
 padding-left: .5em;
 font-size: 2.5em;
}

Disp lay the header
e lement as a flex
container.

Prevent the logo
from shrinking.

Let the h1 e lement use the
rest of the header space.

C
SS

<header>

 <h1>Site Title</h1>
</header>

H
T

M
L

In this code, I converted the header element to a flex container with the

items arranged at the start of the main (horizontal) axis and centered on the

cross (vertical) axis.

Now convert the navigation bar to a horizontal flex container, as shown

in the following example.

IIExample   �ðOnline: wdpg.io/12-3-2
This example shows you how to use flexbox to get the navigation-bar items side by side.

W
E

B
 P

A
G

E

continued

Creating Page Layouts with Flexbox

224	WEB DESIGN PLAYGROUND 

nav {
 padding: .5em;
 border: 1px solid black;
}
nav ul {
 display: flex;
 justify-content: flex-start;
 list-style-type: none;
 padding-left: .5em;
}
nav li {
 padding-right: 1.5em;
}

Disp lay the ul e lement
as a flex container.

C
SS

<nav>

 Home
 Item
 Item
 Item

</nav>

H
T

M
L

In this case, the ul element is converted to a flex container, meaning that

the li elements become flex items arranged horizontally from the start of

the container.

Next, convert the main element's <article> and <aside> tags to flex

items, which gives you the two-column content layout. The following

example shows how it's done.

IIExample   �ðOnline: wdpg.io/12-3-3
This example shows you how to use flexbox to get the article and aside elements
side by side in a two-column layout.

W
E

B
 P

A
G

E

Understanding Flexbox

	 WEB DESIGN PLAYGROUND	225

main {
 display: flex;
 flex-grow: 1;
}
article {
 flex-grow: 3;
 border: 1px solid black;
}
aside {
 flex-grow: 1;
 border: 1px solid black;
}

Disp lay main as
a flex container.

Let it grow vertical ly .

Let article use
three units of space

Let aside use one
unit of space.

C
SS

<main>
 <article>
 <h2>Article Title</h2>
 <p>Article paragraph 1</p>
 <p>Article paragraph 2</p>
 </article>
 <aside>
 <h3>Sidebar Title</h3>
 <p>Sidebar paragraph</p>
 </aside>
</main>

H
T

M
L

A couple of interesting things are going on here. First, note that the main

element does double duty: It acts as the flex container for the article and

aside elements, and it's a flex item in the body element's flex container.

Setting flex-grow to 1 for the main element tells the browser to give main

all the empty vertical space in the body container. Again, why you’re doing

this will become apparent when you get to the footer.

For the article and aside flex items, I assigned flex-grow values of 3

and 1, respectively, meaning that article gets 75 percent of the available

horizontal space and aside gets the remaining 25 percent.

Finally, add the footer element in the same way that you did with the

float and inline block layouts in Chapter 11. Figure 12.13 shows the result.

Master
Note, too, that the
article and aside
items are the same
height—a pleasant
bonus that comes
courtesy of the body
container's default
stretch value for
align-items. You get
a true full-height sidebar
and don't have to resort
to a faux column.

Creating Page Layouts with Flexbox

226	WEB DESIGN PLAYGROUND 

Can you see what's different? That's right: The footer element appears

at the bottom of the browser window, which is where it should be in a true

holy-grail layout. You got that nice touch by doing three things:

•	 Turning the body element into a flex container with a vertical
main axis

•	 Declaring min-height: 100vh on the body element, which
forces the body element to always be at least the same height
as the browser window

•	 Setting flex-grow: 1 on the main element to force it to use
any available empty vertical space in the body container

IIFigure 12.13  The complete holy-grail layout using flexbox

Play
How would you modify
this layout to display
the sidebar on the left
instead of the right?

ðOnline: wdpg.io/12-3-5

Play
How would you modify
this layout to display
three content columns: a
sidebar to the left and to
the right of the article
element? ðOnline:
wdpg.io/12-3-6

Summary

	 WEB DESIGN PLAYGROUND	227

Summary
•	 In which direction do you want the container to run? Use
flex-direction.

•	 How do you want the items arranged along the main axis? Use
justify-content.

•	 How do you want the items arranged along the cross axis? Use
the align-items property.

•	 Do you want the items to wrap? Use flex-wrap.

•	 How do you want multiple lines arranged along the cross axis?
Add the align-content property.

•	 Do you want the item to grow if there's extra room? Use
flex-grow.

•	 Do you want the item to shrink if there's not enough room? Use
flex-shrink.

•	 Do you want to suggest an initial size for an item? You can use
the flex-basis property.

•	 Do you want to change an item's order? You can use the order
property.

•	 Do you want to override an item's alignment? Use align-self.

	 WEB DESIGN PLAYGROUND	229

Chapter

13

Designing Responsive
Web Pages

Rather than tailoring disconnected designs to each
of an ever-increasing number of web devices, we can
treat them as facets of the same experience. We can
design for an optimal viewing experience, but embed
standards-based technologies into our designs to
make them not only more flexible, but more adaptive
to the media that renders them. In short, we need to
practice responsive web design. —Ethan Marcotte

This chapter covers

▪	�Learning why you should avoid fixed-width
layouts

▪	�Creating page layouts that are liquid and flexible
▪	�Using media queries to build pages that adapt to

changing screen sizes
▪	�Creating layouts designed first for mobile screens

I’ll begin by defining what I mean when I describe a web page as responsive: A
responsive page is one that automatically adapts its layout, typography, images,
and other content to fit whatever size screen a site visitor is using to access
the page. In other words, the page content should be usable, readable, and
navigable regardless of the dimensions of the screen it's being displayed on.

13

	 WEB DESIGN PLAYGROUND	229

Designing Responsive Web Pages

230	WEB DESIGN PLAYGROUND 

Responsive web design—or RWD, as it's colloquially known in the web-

design community—wouldn't be a big deal if only the occasional site user

were surfing with a smartphone or tablet. However, sometime back in 2014

the worldwide percentage of web users on mobile devices surpassed that of

users with desktop browsers.

Web design is responsive design. Responsive web
design is web design, done right. —Andy Clarke

There are many reasons why it's good practice to make all your pages

responsive, and you'll learn about many of them as you progress through

this chapter. But arguably the most important reason is also the most basic:

When reading a web page, nobody should have to scroll horizontally.

Although it's true that a few pages are designed to be navigated by

scrolling from left to right, the vast majority of pages are oriented vertically,

so you read or scan them from top to bottom. One of the most annoying

and maddening web page experiences occurs when a page doesn't fit the

width of your screen, so seeing all the content requires scrolling to the right,

back to the left, then to the right again, and so on. It's maddening and a sure

way to drive people to another site—any site—within seconds.

ððOnline: wdpg.io/13-1-1

Why don't web pages fit whatever screen they're being displayed on? In most

cases, the culprit is the use of large, fixed-width elements. These elements

stay the same size no matter how wide a screen they're shown on, so if their

width is greater than that of the screen, the dreaded horizontal scrollbar

appears. To see what I mean, consider the following example.

Lesson 13.1:  �Why Fixed-Width Layouts Are the Enemy
Covers: Fixed-width page layouts

	 WEB DESIGN PLAYGROUND	 231

IIExample   �ðOnline: wdpg.io/13-1-1
This example shows you the bare-bones version of a typical fixed-width layout.

body {
 width: 960px;
}
header {
 padding: 16px;
}
article {
 float: left;
 width: 640px;
 padding: 16px;
}
aside {
 float: left;
 width: 320px;
 padding: 12px;
}
footer {
 padding: 16px;
}

The body e lement uses
a fixed width of 960px.

The article e lement uses
a fixed width of 640px.

The aside e lement uses
a fixed width of 320px.

C
SS

<header>
 <h1>Responsive Web Design</h1>
</header>
<main>
 <article>
 <h2>A Brief History</h2>
 <p>Early in the new millennium, etc.</p>
 </article>
 <aside>
 <h3>Links</h3>
 etc.
 </aside>
</main>
<footer>
 <p>© Logophilia Limited</p>
</footer>

H
T

M
L

This example is a basic two-column floated layout where the body and

the page's two columns—the article and aside elements—all used widths

with fixed values in pixels. If the browser viewport is at least 960 pixels wide,

this web page displays well, as shown in Figure 13.1. But what happens when

Designing Responsive Web Pages

Designing Responsive Web Pages

232	WEB DESIGN PLAYGROUND 

the page is accessed by a smaller screen? As you can see in Figure 13.2, a

tablet in portrait mode isn't wide enough, so some content gets cut off, and

the horizontal scrollbar appears. Even worse is the page on a smartphone

screen, as shown in Figure 13.3, where even less of the content is visible,

which means even more horizontal scrolling for the poor reader.

IIFigure 13.1 
The web page fits a desktop
screen.

IIFigure 13.2  The web page is a bit too wide
for a tablet screen.

Scroll Bar

IIFigure 13.3  The web
page is far too wide for a
smartphone screen.

Scroll Bar

Creating a Responsive Layout

	 WEB DESIGN PLAYGROUND	233

Developing fixed-size web pages is a fundamentally
flawed practice. Not only does it result in web pages
that remain at a constant size regardless of the
user’s browser size, but it fails to take advantage
of the medium’s flexibility. —Jim Kalbach

Creating a Responsive Layout
Now that you know fixed-width layouts are bad, you can take steps to make

sure that your layouts display nicely on any size screen. You have several ways

to achieve this responsive ideal, and the next few sections take you through

these methods. But first, you need to take care of some prerequisites.

First, you need to make sure that all your block-level elements are being

sized out to the border and not to the content, which is the default sizing. As

I explained in Chapter 9, the easiest way to do this is to include the following

rule at the top of your CSS:

* {
 box-sizing: border-box;
}

Second, you need to configure the browser viewport's default width and

scale by adding the following tag somewhere within your page's <head>

section:

<meta name="viewport" content="width=device-width, initial-
scale=1.0">

By setting width=device-width, you're telling the browser to set the

width of the page to be the same as the width of whatever device the page

is being displayed on. By setting initial-scale=1.0, you're telling the

browser to display the page initially without zooming in or out.

With those tweaks added, you're ready to get responsive.

ððOnline: wdpg.io/13-2-0

As you saw earlier, the real problem with a fixed-width layout is setting the

width property to an absolute value, such as 960px. You can remedy that

problem by converting your absolute width values to relative widths that

use percentages instead of pixels. This solution is often called a liquid layout.

Converting a fixed-width layout to a liquid layout is most often a three-

stage process. The first stage is deciding a maximum width for your layout.

Remember
A layout that uses
relative measurement
units, such as
percentages, is known as
a liquid layout.

Lesson 13.2:  �Creating a Liquid Layout
Covers: Using percentages for liquid layouts

Designing Responsive Web Pages

234	WEB DESIGN PLAYGROUND 

The goal of a liquid layout is to allow the content to scale down when faced

with smaller screen sizes and to scale up when a larger screen comes along.

Most of the time, however, you don't want the content to get too wide,

because that can result in text lines that are too long for comfortable reading.

Examine your content and then decide on the maximum width that still

allows for good reading and navigation. With that number in mind, apply the

max-width property to the outermost container (such as the body element).

The following example declares the body element with a maximum width of

960 pixels:

body {
 max-width: 960px;
}

The second stage is determining the percentage widths to use for the rest

of the elements. By default, any block-level element takes up 100 percent

of its parent's width, so you need to calculate percentages only for elements

that you want to use less than the full parent width. If an article element

is 1,000 pixels wide, and a child div is declared with width: 75%, that div is

750 pixels wide. If the screen is resized so that the article element is 800

pixels wide, the child div automatically scales down to 600 pixels wide.

To convert your fixed-width elements to percentages, you apply the

following formula to each:

element percentage = (element fixed width / parent fixed width) * 100

The example shown in Lesson 13.1 earlier in this chapter has two fixed-

width components:

•	 An article element set to 640 pixels wide. Because the parent
(the body element) is 960 pixels wide, the article element's
percentage width value is (640 / 960) * 100 = 66.67%.

•	 An aside element set to 320 pixels wide. Again, the parent
(the body element) is 960 pixels wide, so the aside element's
percentage width value is (320 / 960) * 100 = 33.33%.

The third stage in converting a fixed-width layout to a liquid layout is

applying the same formula to any other horizontal items that are part of

the layout, such as margins and padding. If an element is declared with

padding: 12px, and its parent is 960 pixels wide, the liquid margin width

becomes (12 / 960) * 100 = 1.25%.

The following updates the earlier example with a liquid layout.

Remember
When using percentages
for widths, remember
that CSS doesn’t base
that percentage on the
viewport width. Instead,
it calculates that
percentage based on the
width of the element's
parent.

Creating a Responsive Layout

	 WEB DESIGN PLAYGROUND	235

IIExample   �ðOnline: wdpg.io/13-2-1
This code shows the conversion of the fixed-width layout to a liquid layout.

body {
 max-width: 960px;
}
article {
 float: left;
 width: 66.67%;
 padding: 1.67%;
}
aside {
 float: left;
 width: 33.33%;
 padding: 1.25%;
}

The body e lement now has a
maximum width of 960px.

The article e lement now
has a width of 66.67%.

The padding properties are now percentages.

The aside e lement now
has a width of 33.33%.

C
SS

<header>
 <h1>Responsive Web Design</h1>
</header>
<main>
 <article>
 <h2>A Brief History</h2>
 <p>Early in the new millennium, etc.</p>
 </article>
 <aside>
 <h3>Links</h3>
 etc.
 </aside>
</main>
<footer>
 <p>© Logophilia Limited</p>
</footer>

H
T

M
L

With the liquid layout in place, you can see in Figure 13.4 that a tablet in

portrait mode displays the web page content completely. Looking good!

Figure 13.5 shows that a smartphone screen also displays the content

without requiring the reader to scroll horizontally. Nice. But you can also

clearly see that the resulting columns are alarmingly narrow, which makes

reading difficult. To fix that problem, you need to learn another responsive

design technique. But first, an aside on viewport units.

Play
You can get some
practice converting a
fixed-width layout to
a liquid layout on the
Playground. ðOnline:
wdpg.io/13-2-2

Designing Responsive Web Pages

236	WEB DESIGN PLAYGROUND 

Liquid Layouts with Viewport Units
When dealing with percentage units, it's important to remember that

assigning a percentage width to an element means that you're styling that

element to be a percentage of its parent's width. If a parent element is

800 pixels wide, and you declare width: 75% on a child element, that child

is 600 pixels wide. It doesn't matter whether the browser's screen width is

2,000 pixels; that child takes up only 600 pixels across the screen.

What if you want that child element to be 75 percent of the screen instead

of its parent? In that case, you need to switch from percentages to viewport

units, which act as percentage-like units that apply to the entire browser

viewport. The four units you can use are

•	 vw—The viewport width unit, where 100vw equals 100 percent
of the current viewport width. If the viewport is 1,600 pixels
wide, 1vw is equivalent to 16px.

•	 vh—The viewport height unit, where 100vh equals 100 percent
of the current viewport height. If the viewport is 2,000 pixels
high, 1vh is equivalent to 20px.

IIFigure 13.4  With a liquid layout, the web page fits a
tablet screen perfectly.

IIFigure 13.5  The liquid layout also
fits a smartphone screen but at the
cost of too-narrow columns.

Creating a Responsive Layout

	 WEB DESIGN PLAYGROUND	237

•	 vmin—The viewport minimum unit, where 100vmin equals
100 percent of the smaller of the two viewport dimensions. If
the viewport is 800 pixels wide and 600 pixels high, 1vmin is
equivalent to 6px (because in this case, the viewport height is
the smaller of the two dimensions).

•	 vmax—The viewport maximum unit, where 100vmax equals 100
percent of the larger of the two viewport dimensions. If the
viewport is 1,200 pixels wide and 1,024 pixels high, 1vmax is
equivalent to 12px (because the viewport width is the larger of
the two dimensions).

Suppose that you want to display an image so that it automatically

takes up the entire height of the viewport. You can do that by applying the

following rule to the image:

.image-full {
 height: 100vh;
 width: auto;
}

I added the width: auto declaration to tell the browser to calculate

the width automatically based on the height, which maintains the image's

original aspect ratio.

Play
You can try out this
full-height image
technique on the
Playground.

ðOnline: wdpg.io/
13-2-4

ððOnline: wdpg.io/13-3-0

When the screen gets too narrow to display side-by-side content effectively,

it's time for your layout to change. Specifically, you need your layout to stop

using side-by-side columns and switch to a more vertical layout that gives

each element the full width of the screen.

You'll see in the next section that CSS offers a technique that enables you

to directly access the width of the current device. That tool is a powerful one,

but for many layouts it's overkill, because you have ways to get elements to

wrap automatically and create a so-called flexible layout.

One possibility is to convert your floats to inline blocks. When you set

the widths to percentages and add a min-width declaration to ensure that

your blocks are always greater than or equal to some minimum size, your

blocks will wrap when the viewport no longer has enough horizontal room

to display the blocks. Unfortunately, if you use the faux-column trick that I

told you about in Chapter 11, there are certain widths at which the block gets

wrapped but you can still see part of the faux column, which is unsightly.

Inline blocks are suitable only if you don't use the faux-column technique.

Remember
 A layout in which
elements wrap when
there isn't enough
horizontal room to
display them side by side
is known as a flexible
layout.

Play
You can see the inline-
block technique in action
on the Playground.

ðOnline: wdpg.io/
13-3-2

Lesson 13.3:  �Creating a Flexible Layout
Covers: Using flexbox to wrap elements

Designing Responsive Web Pages

238	WEB DESIGN PLAYGROUND 

A better solution is flexbox, which offers the flex-wrap property to

activate wrapping within a container. It also enables you to use flex-grow

to ensure that your blocks use the proportions you want, and you can

establish minimum block widths by adding a flex-basis value and setting

flex-shrink to 0.

The following updates the earlier example with a flexible layout.

IIExample   �ðOnline: wdpg.io/13-3-1
This code shows the conversion of the liquid layout to a flexible layout.

body {
 display: flex;
 flex-direction: column;
 align-items: center;
}
.container {
 display: flex;
 flex-direction: column;
 max-width: 960px;
}
main {
 display: flex;
 flex-wrap: wrap;
 flex-grow: 1;
}
article {
 flex-grow: 2;
 flex-shrink: 0;
 flex-basis: 300px;
}
aside {
 flex-grow: 1;
 flex-shrink: 0;
 flex-basis: 150px;
}

The body e lement is a
column flex container.

The container e lement
is a column flex container.

The main e lement is a flex
container that wraps.

The article e lement can
grow, but not shrink, from
a basis of 300px.

The aside e lement can
grow, but not shrink,
from a basis of 150px.

C
SS

Creating a Responsive Layout

	 WEB DESIGN PLAYGROUND	239

<div class="container">
 <header>
 <h1>Responsive Web Design</h1>
 </header>
 <main>
 <article>
 <h2>A Brief History</h2>
 <p>Early in the new millennium, etc.</p>
 </article>
 <aside>
 <h3>Links</h3>
 etc.
 </aside>
 </main>
 <footer>
 <p>© Logophilia Limited</p>
 </footer>
</div>

H
T

M
L

Here, I'm using the body element as a column flex container, which enables

me to center the div horizontally by using align-items: center. The main

element is also set up as a flex container with flex-wrap: wrap declared. The

article and aside elements (which are flex items) get flex-grow values of

2 and 1, respectively, which are the flex equivalents of the 66.67 percent and

33.33 percent width values from the liquid layout. In both cases, I also added

a flex-basis to each (300px and 150px, respectively) and set flex-shrink

to 0, which creates a minimum width value for each element.

The web’s greatest strength, I believe, is often
seen as a limitation, as a defect. It is the nature
of the web to be flexible, and it should be our
role as designers and developers to embrace this
flexibility and produce pages which, by being
flexible, are accessible to all. —John Allsop

Designing Responsive Web Pages

240	WEB DESIGN PLAYGROUND 

Figure 13.6 shows the flexible page layout as it appears on a smartphone

screen. If you scroll down, as shown in Figure 13.7, you see that the aside

element has wrapped under the article element.

IIFigure 13.6 
The top portion of
the flexible page
layout as viewed on
a smartphone screen

IIFigure 13.7 
The bottom portion of
the flexible layout shows
that the aside element
has wrapped under the
article element.

ððOnline: wdpg.io/13-4-0

In Lesson 13.3, you learned how to use flexbox to get liquid elements to wrap

when the device viewport gets too narrow to accommodate the elements'

minimum widths. That technique is handy, but it's not always going to

be one you can turn to, because there may be times when you can't use

flexbox (because you need to support older versions of Internet Explorer,

for example).

On a different but related note, take a look back at Figure 13.6. See

how the page title (Responsive Web Design) barely fits the width of the

smartphone viewport? If that element were even a few pixels bigger or a few

letters longer, it would wrap and look quite awful, as shown in Figure 13.8.

Lesson 13.4:  �Creating an Adaptive Layout
Covers: Using @media queries

Creating a Responsive Layout

	 WEB DESIGN PLAYGROUND	241

How are these scenarios related? You can solve the underlying problems

by asking questions about the width of the browser viewport:

•	 Is the viewport width less than 450 pixels? If so, remove the
floats from the elements so that they display in the default
stacked layout.

•	 Is the viewport width less than 350 pixels? If so, reduce the type
size of the page title to 24px.

•	 Is the viewport width greater than 1,024 pixels? If so, display the
aside element.

You can ask these and many other types of questions by defining media

queries within your CSS. A media query is an expression accompanied by a

code block consisting of one or more style rules. The expression interrogates

some feature of the screen, such as its width. If that expression is true for

the current device, the browser applies the media query's style rules; if the

expression is false, the browser ignores the media query's rules. A layout that

uses media queries is often called an adaptive layout because it adapts itself

to the screen on which it's displayed.

Here's the general syntax:

@media (expression) {
 selector {
 declarations
 }
 etc.
}

The expression is most often min-width or max-width, followed by

a colon and a value.

IIFigure 13.8 
Increase the size of the
page title a bit, and the
design breaks.

Remember
A layout that uses media
queries to adjust page
elements and properties
based on screen features
such as width, is known
as an adaptive layout.

Remember
Technically, the @media
rule can be followed by
a keyword that specifies
the type of media, such
as print or tv. The
default keyword is
screen, however, which
is the value you want on
the web, so you can leave
this out.

Designing Responsive Web Pages

242	WEB DESIGN PLAYGROUND 

If you want to apply styles on a screen no wider than a specified value,

use max-width. The following code tells the browser to display the h1

element with a type size of 24px whenever the screen width is less than or

equal to 350 pixels:

@media (max-width: 350px) {
 h1 {
 font-size: 24px;
 }
}

If you want to apply styles on a screen that’s at least as wide as a specified

value, use min-width. The following code sets display: inline-block

on the aside element whenever the screen width is greater than or equal

to 1,024 pixels:

@media (min-width: 1024px) {
 aside {
 display: inline-block;
 }
}

The following code updates the example to use a media query that

removes the floats from the article and aside elements whenever the

screen width drops to 450 pixels or less.

For good measure, the media query also does the following:

•	 It applies width: 100% to the article and the aside element.

•	 It reduces the font size of the h1 element (that is, the page title)
to 24px.

•	 It changes the background color of the main element to white,
which effectively turns off the faux-column effect because you
don't need it while the aside element isn't floated.

Learn
The vast majority of
the media queries
you’ll write use min-
width or max-width
in the expression.
But you can query
several other media
features, including
height, resolution, and
aspect ratio. To see the
complete list, check out
the Mozilla Developer
Network page at https://
developer.mozilla.org/
en-US/docs/Web/CSS/@
media#Media_features.

Play
Given a three-column
flexbox layout, write
a media query that
displays the middle
column first on smaller
screens. ðOnline:
wdpg.io/13-4-3

Creating a Responsive Layout

	 WEB DESIGN PLAYGROUND	243

IIExample   �ðOnline: wdpg.io/13-4-1
This code uses a media query to remove the floats from the article and aside
elements, as well as perform a few other tasks as noted.

h1 {
 float: left;
 font-size: 32px;
}
main {
 background-color: #b4a7d6;
}
article {
 float: left;
 width: 66.67%;
}
aside {
 float: left;
 width: 33.33%;
}
@media (max-width: 450px) {
 article {
 float: none;
 width: 100%;
 }
 aside {
 float: none;
 width: 100%;
 }
 h1 {
 font-size: 24px;
 }
 main {
 background-color: white;
 }
}

The media query appl ies to
screen widths up to 450px.

F loats are removed from the
article and aside e lements.

The page t it le is
reduced to 24px.

The main e lement background
color is changed to white.

C
SS

Designing Responsive Web Pages

244	WEB DESIGN PLAYGROUND 

Figure 13.9 shows how the page layout appears on a screen with a width

greater than 450 pixels. As shown in Figures 13.10 and 13.11, however, the

layout changes on a screen with a width of 450 pixels or less.

IIFigure 13.9 
Here's the page
layout you see
when the screen
width is greater
than 450 pixels.

IIFigure 13.10  Here's the top
portion of the page layout that
appears on a screen that is less
than 450 pixels wide.

IIFigure 13.11  The bottom portion
of the screen confirms that the
floats have been removed from the
article and aside elements.

Play
Given a version of
the example layout
in which the aside
element is hidden by
default, write a media
query that displays the
aside element when the
viewport is at least 1,024
pixels wide. ðOnline:
wdpg.io/13-4-2

Creating a Responsive Layout

	 WEB DESIGN PLAYGROUND	245

A Note about Media Query Breakpoints
You may be tempted to set up your media queries to target specific device

widths, such as 320px for an iPhone 5 and earlier, 400px for a Galaxy Note,

768px for an iPad 4 and earlier, and so on. Alas, that way lies madness. There

are just too many devices with too many different widths for you to have a

hope of targeting them all. Even if you could somehow do that, your code

would be out of date by the end of the day, because new devices with new

widths are being released constantly. Forget it.

Instead, it's much better to let your content dictate the min-width and

max-width values you use in your media queries. On a desktop screen, for

example, you might determine that your text lines are at their most readable

when they have about 75 characters per line. If you can get that line length

when the container element is 600 pixels wide, it makes sense to set that

element's max-width property to 600px. Suppose that you also determine

that your lines remain readable down to about 50 characters per line and

that you get that line length when the container element is 400 pixels wide.

Experiment with different screen widths to see when that container's

width falls below this 400-pixel threshold. This depends on your overall

page layout, but suppose that it happens when the screen width falls below

550 pixels because you've got the container floated next to a 150-pixel-wide

sidebar. Your page becomes less readable below that width, so the design

breaks at 550px. That value becomes the breakpoint for a media query:

@media (max-width: 550px) {
 .container {
 float: none;
 width: 100%;
 }
}

In general, you vary the width of the browser window and watch for

widths at which the design breaks: text lines getting too short or too long, a

type size becoming too big, a block element that ends up in a weird place,

and so on. Then use the width as a breakpoint for a media query.

Designing Responsive Web Pages

246	WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io/13-5-0

In Lesson 13.4, you saw how to use media queries to target mobile screens

and adjust layout features such as removing floats. That works fine, but a

school of web-design thought says that all CSS should be additive instead of

subtractive. That is, your CSS should add or modify properties values, never

remove them. Why? In a sense, CSS is like cooking; it's a lot easier to add salt

and other seasonings than to remove them. In your web-design kitchen, it's

always best to start with the most minimal layout that works and then add

things to it.

In almost every conceivable web page scenario, the most minimal layout

is the one that's designed to work on the smallest devices, which these days

means smartphones. The idea, then, is to build your page to look and work

well on the smallest smartphone screen (typically, 320 pixels wide). Only

then do you add to and modify the layout for larger screens. This layout is

called a mobile-first layout, and it's at the heart of responsive web design

today.

One of the tenets of mobile-first design is to include in the initial,

mobile-focused layout only those page elements that are essential to the

user's experience of the page. Many mobile users are surfing over slow

connections with limited data plans, so as a conscientious web designer, it's

your job to ensure that these users are served nothing frivolous. What counts

as "frivolous" or "nonessential" is often a tough call, because what's trivial to

one person might be vital to another. You'll need to exercise some judgment

here, but that's why they pay you the big bucks.

Mobile devices require software development
teams to focus on only the most important
data and actions in an application. There
simply isn't room in a 320 by 480 pixel screen
for extraneous, unnecessary elements. You
have to prioritize. —Luke Wroblewski

Remember
You don't necessarily
have to start with a
width as small as 320px.
If you have access to
your site analytics, they
should tell you what
devices your visitors
use. If you find that all
or most of your mobile
users are on devices that
are at least 400 pixels
wide, you should start
there.

Remember
A layout that begins with
a structure designed for
mobile devices and adds
complexity only when
the screen is wide enough
is known as a mobile-
first layout.

Lesson 13.5:  �Creating a Mobile-First Layout
Covers: Using @media for nonmobile screens

Creating a Responsive Layout

	 WEB DESIGN PLAYGROUND	247

As an illustration, suppose that you modify the example page so that it

includes a second aside element on the left, which you’ll use to display

a quotation related to responsive web design. This touch is nice but not

essential, particularly because in the normal flow of the web page, this element

would appear before the article element. As shown in the following code,

add this new aside element with the display: none declaration to hide it

by default. Then use a media query to display the element on screens that

are at least 750 pixels wide.

IIExample   �ðOnline: wdpg.io/13-5-1
This code uses a media query to display the otherwise-hidden <aside
class="quotation"> element on screens that are at least 750 pixels wide.

.quotation {
 display: none;
}

@media (min-width: 750px) {
 .quotation {
 display: block;
 }
}

The quotation class is
h idden by default .

On screens at least 750px
wide, the element is disp layed.

C
SS

<header>
 <h1>Responsive Web Design</h1>
</header>
<main>
 <aside class="quotation">
 <h3>Quote</h3>
 etc.
 </aside>
 <article>
 <h2>A Brief History</h2>
 <p>Early in the new millennium, etc.</p>
 </article>
 <aside>
 <h3>Links</h3>
 etc.
 </aside>
</main>
<footer>
 <p>© Logophilia Limited</p>
</footer>

The new quotation e lement

H
T

M
L

Designing Responsive Web Pages

248	WEB DESIGN PLAYGROUND 

Figure 13.12 shows that on a smartphone, the layout doesn’t include the

quotation sidebar, but it does appear on a wider screen like the tablet shown

in Figure 13.13.

IIFigure 13.12  The quotation
sidebar doesn’t appear on a narrow
smartphone screen.

IIFigure 13.13  The quotation sidebar does appear
on a wider screen, such as a tablet.

Which Layout Is the Responsive One?
That's a good question. The answer is that together, they all add up to

the modern conception of a responsive layout: one that uses relative

measurements, a flexible grid, and media queries, all presented with a

mobile-first approach. If you incorporate these concepts into your pages,

you'll be well along the road to your ultimate destination: a fully responsive

web design.

But you're not quite there yet. To complete the journey, you need to

know how to make your images and text responsive. You learn how to do

that in Chapter 14.

Remember
A layout that uses
relative measurement
units, a flexible grid,
media queries, and a
mobile-first approach is
known as a responsive
layout.

Summary

	 WEB DESIGN PLAYGROUND	249

Summary
•	 Avoid fixed-width layouts in which page elements are sized by

using absolute measurements such as pixels.

•	 Use liquid layouts in which horizontal measures such as widths,
paddings, and margins are expressed in percentages.

•	 If doing so is appropriate for your design, use flexbox or inline
blocks to create a flexible layout that allows page elements to
wrap as the screen size gets smaller.

•	 To create an adaptive layout, use media queries to adjust
element sizes, change the layout, and hide or display elements
depending on the screen size.

•	 Use a mobile-first approach in which your initial page layout
is optimized for a smartphone, and use media queries to add
features and change the layout as needed for larger screens.

Chapter

	 WEB DESIGN PLAYGROUND	 251

14

14

Making Your Images
and Typography
Responsive

The most important thing about responsive design
is flexibility. Everything must be flexible: layouts,
image sizes, text blocks—absolutely everything.
Flexibility gives your site the fluidity it needs
to fit inside any container. —Nick Babich

This chapter covers

▪	Making fluid images that respond to screen size
▪	�Delivering different-size images based on the

user's screen size
▪	�Making text adapt to the screen size by specifying

responsive font sizes
▪	�Making other page elements adapt to the screen

size by specifying responsive measurements

In Chapter 13, you learned not only why you shouldn't use a fixed-width
layout, but also why (and how) you should use responsive layouts that are
both flexible and adaptive. Having your page layout change in response to
different screen widths is a must in these days of wildly different screen sizes,
but it's only part of the total responsive package. To make your pages truly
adaptable to any device, you need to sprinkle both your page images and

Making Your Images and Typography Responsive

252	WEB DESIGN PLAYGROUND 

page typography with responsive pixie dust. You need to style images to

scale up or down depending on the screen width, deliver different images

based on the screen size, and use responsive type sizes. You learn these and

other powerful responsive techniques in this chapter.

Making Images Responsive
Making an image responsive is one of the biggest challenges that web

designers face. The scale of the challenge comes from two problems

associated with making images responsive:

•	 Making a fixed-size image fit into a container with fluid dimensions.
An image that's 600 pixels wide will fit nicely inside an element
that's 800 pixels wide, but it overflows if that element is scaled
down to 400 pixels wide. Solving this problem requires making
images fluid so that the size adjusts to the changing screen size.

•	 Delivering a version of an image that's sized appropriately for
the user's screen dimensions. It’s one thing to offer up a 2,000 x
1,500-pixel image to desktop users, but sending the same image
to smartphone users is a waste of upload time and bandwidth.

The next two lessons show you some basic methods for overcoming

these problems.

ððOnline: wdpg.io/14-1-0

An image comes with a predetermined width and height, so at first blush,

it seems impossible to overcome these fixed dimensions. Fortunately, an

 tag is another page element. Yes, by default the image is displayed

at its full width and height, like a div or any other block element. But in the

same way that you can make a block element fluid by using percentages,

you can make an image fluid.

You need to be a bit careful when working with images:

•	 In most cases, you don't want the image to scale larger than
its original size since, for most images, this scaling will result in
ugly pixilation and jagged edges.

•	 If you change one dimension of an image, it will almost certainly
appear to be skewed because its original aspect ratio—the ratio of the
width to the height of the image—will have been altered. Therefore,
you have to change both the width and the height proportionally to
retain the image’s original aspect ratio. Fortunately, you can get the
browser to do some of the work for you.

Lesson 14.1:  �Creating Fluid Images
Covers: Styling the img element for responsiveness

Making Images Responsive

	 WEB DESIGN PLAYGROUND	253

To handle both concerns, you can create a fluid image that responds to

changes in screen size by applying the following rule:

img {
 max-width: 100%;
 height: auto;
}

Setting max-width: 100% allows the image to scale smaller or larger as

its parent container changes size but also specifies that the image can never

scale larger than its original width. Setting height: auto tells the browser

to maintain the image's original aspect ratio by calculating the height based

on the image's current width.

The following code shows an example.

IIExample   �ðOnline: wdpg.io/14-1-1
This code creates a fluid image that scales smaller or larger as the screen size changes
but doesn’t scale larger than its original dimensions.

img {
 max-width: 100%;
 height: auto;
}

The rule that makes
images flu id

C
SS

<header>
 <h1>Responsive Web Design</h1>
</header>
<main>
 <aside class="quotation">
 <h3>Quote</h3>
 etc.
 </aside>
 <article>
 <h2>A Brief History</h2>
 <p>Early in the new millennium, etc.</p>
 </article>
 <aside>
 <h3>Links</h3>
 etc.
 <img src="/images/rwd.tif" alt="Responsive Web Design
image">
 </aside>
</main>
<footer>
 <p>© Logophilia Limited</p>
</footer>

An image added to
the aside e lement

H
T

M
L

Play
In some cases, you don't
want the image height
to scale larger than
its original height, so
you need to set max-
height: 100% and
width: auto on the
image. ðOnline:
wdpg.io/14-1-2

Making Your Images and Typography Responsive

254	WEB DESIGN PLAYGROUND 

Figures 14.1 and 14.2 show how the image size changes as the width of

its parent aside element changes.

IIFigure 14.1  The image as it appears when its
aside parent element is given the full width of
a smartphone screen

IIFigure 14.2  When the aside element is displayed at a narrower width,
the image scales down accordingly.

Making Images Responsive

	 WEB DESIGN PLAYGROUND	255

ððOnline: wdpg.io/14-2-0

The other side of the responsive-image coin involves delivering to the user a

version of the image that has a size that's appropriate for the device screen.

You might deliver a small version of the image for smartphone screens, a

medium version for tablets, and a large version for desktops. In the past, you

needed a script to handle this task, but in HTML5, you can do everything

right in your tag thanks to two new attributes: sizes and srcset.

The sizes attribute is similar to a media query in that you use an

expression to specify a screen feature, such as a minimum or maximum

height, and then specify how wide you want the image to be displayed on

screens that match that configuration. You can specify multiple expression-

width pairs, separated by commas. Here's the general syntax:

sizes="(expression1) width1,
 (expression2) width2,
 etc.,
 widthN"

Notice that if the last item doesn't specify an expression, the specified

width applies to any screen that doesn't match any of the expressions.

Suppose that you want images to be displayed with width 90vw on screens

that are less than or equal to 500px and 50vw on all other screens. Here's

how you'd set that up:

sizes="(max-width: 500px) 90vw, 50vw"

Next, add to your tag the srcset attribute, which you set to a

comma-separated list of image file locations, each followed by the image

width and letter w. Here's the general syntax:

srcset="location1 width1w,
 location2 width2w,
 etc.">

This code gives the browser a choice of image sizes, and it picks the

best one based on the current device’s screen dimensions and the preferred

widths you specified in the sizes attribute. Here's an example:

srcset="/images/small.tif 400w,
 /images/medium.tif 800w,
 /images/large.tif 1200w">

The following example puts everything together to show you how to

deliver images responsively.

Beware
When you're testing
the srcset attribute
by changing the
browser window size,
you may find that the
browser doesn't always
download a different-
size image. Although the
browser may detect that
a smaller image should
be used based on the
srcset values, it may
opt to resize the existing
image, because it has
already downloaded
that image.

Remember
The default image—that
is, the image specified
with the src attribute—
is the fallback image that
will be displayed in older
browsers that don't
support the srcset
attribute. Good mobile-
first practice is to make
the default image the
one you prefer to deliver
to mobile users.

Lesson 14.2:  �Delivering Images Responsively
Covers: The sizes and srcset attributes

Making Your Images and Typography Responsive

256	WEB DESIGN PLAYGROUND 

IIExample   �ðOnline: wdpg.io/14-2-1
This example uses the tag's sizes and srcset attributes to deliver an image
responsively based on the browser viewport size.

<img
 src="/images/img-small.tif"
 sizes="(max-width: 700px) 100vw, 75vw"
 srcset="/images/img-small.tif 450w,
 /images/img-medium.tif 900w,
 /images/img-large.tif 1350w">

The default image
for older browsers

The sizes to
disp lay the image

The images that
the browser can
choose among

H
T

M
L

Figures 14.3 through 14.5 show how the image that's delivered to the

browser changes as the size of the screen changes.

IIFigure 14.3 
A wide browser viewport
gets the large image.

Making Typography Responsive

WEB DESIGN PLAYGROUND	257

IIFigure 14.4  A tablet-size viewport gets the medium image. IIFigure 14.5  A smartphone-size
viewport gets the small image.

Making Typography Responsive
Is your goal to enrage some of the people who visit your website? I thought

not, but you may be doing that if you use pixels for your site typography.

Web browsers such as Google Chrome and Mozilla Firefox enable users to

specify a default font size, which is set to 16px in all modern browsers, but

people with aging eyesight or visual impairments often bump this default

to 24px, 32px, or even higher. If you use the declaration font-size: 16px

for, say, your page's body text, all your visitors—and in particular those who

increased their default font size—will see your text at that size. Cue the rage.

Fortunately, it's easy to avoid that scenario by switching to relative

units for your font-size values. One possibility is the em unit, where 1em

corresponds to the browser's default font size—or, crucially, the user's

specified default font size. If that default is 16px, 1.5em corresponds to

24px, and 3em corresponds to 48px. If the default is 24px, 1.5em would

render at 36px, and 3em would render at 72px.

Remember
To run your own tests
in Chrome, change the
default font size by
opening Settings, clicking
Customize Fonts, and
then using the Font Size
slider to set the size you
want.

Making Your Images and Typography Responsive

258	WEB DESIGN PLAYGROUND 

That solution may seem to be perfect, but there's an inheritance fly in this

responsive soup. First, let me point out that inheritance means that for certain

CSS properties, if a parent element is styled with the font-size property, its

child and descendant elements are automatically styled the same way. (See

Chapter 19 to learn more about this crucial CSS concept.) To see the problem,

first consider the following HTML and CSS and then answer one question: If

the default font size is 16px, what is the font size, in pixels, of the h1 element?

HTML:

<body>
 <header>
 <h1>What’s My Font Size?</h1>
 </header
</body>

CSS:

body {
 font-size: 1em;
}
header {
 font-size: 1.5em;
}
h1 {
 font-size: 2em;
}

Your intuitive guess may be that because the h1 element is declared with

font-size: 2em, it must get rendered at 32px. Alas, that's not the case,

and to understand why, you need to know that the font-size property is

inherited, which leads to the following sequence:

1	 The body element's font size (1em) is set to 16px.

2	 The header element inherits the font size from the body element, so

the header element's font size (1.5em) is set to 24px.

3	 The h1 element inherits the font size from the header element, so the

h1 element's font size (2em) is set to 48px.

That's not a deal-breaker when it comes to using em units; you need to be

aware of this fact and take the inherited font sizes into account.

If you don't feel like doing the math required to work successfully with em

units, there's an alternative: the rem unit. rem is short for root em and refers to

the font size of the page root, which is the html element. Two things to note:

•	 Because the root's font size is the same as the default font size,
and because the rem unit scales in the same way as the em unit,
the rem unit is responsive.

•	 Because the rem unit always inherits its font size only from the
html element, there are no inheritance gotchas to worry about.
An h1 element declared with font-size: 2rem will always
render at twice the default font size.

Remember
To run your own tests
in Firefox, change the
default font size by
clicking Menu, clicking
Preferences (Mac) or
Options (Windows),
clicking the General
tab, and then using the
Size list in the Fonts &
Colors section to set your
preferred size.

Making Typography Responsive

	 WEB DESIGN PLAYGROUND	259

This isn't to say that you should always use rem over em. There may be

situations in which you want a child element's font size to be relative to its

parent's font size, in which case em units are the best choice.

ððOnline: wdpg.io/14-3-0

The following code updates the example page to replace the font-size

property's absolute px units with relative rem units.

IIExample   �ðOnline: wdpg.io/14-3-1
This code updates the example page to replace the font-size property’s absolute px
units with relative rem units.

h1 {
 font-size: 2rem;
}
h2 {
 font-size: 1.5rem;
}
h3 {
 font-size: 1.25rem;
}
@media (min-width: 750px) {
 h1 {
 font-size: 2.5rem;
 }
 h2 {
 font-size: 2rem;
 }
 h3 {
 font-size: 1.5rem;
 }
}

The header elements are given
mobi le-first rem font s izes.

The header elements are
also given large-screen
rem font s izes.

C
SS

Lesson 14.3:  �Using Responsive Font Sizes
Covers: Using rem units for font-size

Making Your Images and Typography Responsive

260	WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io/14-4-0

Unfortunately, the bad design results that come from using absolute units

such a px aren’t restricted to font sizes. To see what I mean, consider the

following code, the results of which are shown in Figure 14.6:

HTML:
<header>
 <h1>Responsive Web Design</h1>
</header>
CSS:
header {	
 height: 64px;
}
h1 {
 font-size: 2rem;
}

Looks good! But what happens when I change the default font in my web

browser (Firefox) to 30px? Figure 14.7 shows the sad story.

At the larger default size, the heading is larger than the header element

in which it's contained, resulting in an overall crowded feel to the text and

(much worse) to cutting off the descenders of the p and g.

Why did this happen? The header element's height property uses an

absolute value of 64px. That height won't budge a pixel no matter what font

size you use as the default. But consider the following revised code and the

result shown in Figure 14.8:

HTML:
<header>
 <h1>Responsive Web Design</h1>
</header>
CSS:
header {	
 height: 4rem;
}
h1 {
 font-size: 2rem;
}

IIFigure 14.6  The h1 text looks good at 2rem.

IIFigure 14.7  The element doesn't render so well when a larger default font is used.

Remember
This example is artificial
because in practice,
you’d rarely set an
explicit height on an
element. Instead, it’s
always better to let
the content dictate
an element’s height
naturally.

Lesson 14.4:  �Using Responsive Measurements
Covers: Using rem units for measurements

Making Typography Responsive

	 WEB DESIGN PLAYGROUND	261

The only change I made was to declare height: 4rem on the header

element. Using the relative unit makes the height responsive, so it increases

(or decreases) along with the font size when the default font value is changed.

How you use relative units for measurements depends on many factors,

not least of which is the design effect you're trying to achieve. It’s possible,

however, to suggest a few guidelines:

•	 For vertical measures such as padding-top, padding-bottom,
margin-top, and margin-bottom, use rem units.

•	 For horizontal measures such as width, padding-right,
padding-left, margin-right, and margin-left, use
percentages.

•	 For horizontal measures in which you want more control of
properties such as width, max-width, and min-width, use rem
units.

•	 For vertical measures that you want to scale in relation to the
viewport height, use vh units.

•	 For horizontal measures that you want to scale in relation to the
viewport width, use vw units.

IIFigure 14.8  With the header element's height property now using relative rem units,
the header scales along with the text as the default font size changes.

BEware
Because a percentage
is relative to the parent
element, you may find
that using percentages
for padding or margins
leads to unexpected or
bizarre results. In such
cases, you should switch
to rem units for more
control.

262	WEB DESIGN PLAYGROUND 

Making Your Images and Typography Responsive

IIExample   �ðOnline: wdpg.io/14-4-1
This code updates the example page to replace all the absolute px measurements with
relative rem or percentage units.

.container {
 max-width: 60rem;
}
header {
 padding: 1rem
1.67%;
}
h1 {
 padding-left: 1.67%;
}
.quotation {
 padding-right: 1.67%;
}
article {
 flex-basis: 20rem;
 padding-top: 1rem;
 padding-left: 1.67%;
}
p {
 margin-bottom: 1rem;
}
aside {
 flex-basis: 10rem;
 padding: 1rem
 1.67%;
}
div {
 padding-bottom: .5rem;
}
footer {
 padding: 1rem
 1.67%;
}

rem units used for
greater control

rem units used on al l
vertical measures

Percentages used on al l the
other horizontal measures

C
SS

	 WEB DESIGN PLAYGROUND	263

Gallery of Responsive Sites

Gallery of Responsive Sites
IIHicks Design (https://

hicksdesign.co.uk)
offers a gallerylike layout
that presents a clean,
uncluttered look that scales
perfectly to any size screen.

264	WEB DESIGN PLAYGROUND 

Making Your Images and Typography Responsive

IIThe Andersson-Wise site
(www.anderssonwise.com)
gracefully restructures its
layout as it scales from the
desktop version to the tablet
and smartphone versions.

	 WEB DESIGN PLAYGROUND	265

Gallery of Responsive Sites

IIThe Boston Globe front
page (www.bostonglobe
.com) responsively changes
from a three-column layout
on the desktop to a two-
column layout on a tablet
and to a one-column layout
on a smartphone.

266	WEB DESIGN PLAYGROUND 

Making Your Images and Typography Responsive

IIThe Authentic Jobs site
(https://authenticjobs.com)
displays a simple job list on
a smartphone-size screen
and progressively adds
more detailed information
as the screen size increases.

Summary

	 WEB DESIGN PLAYGROUND	267

Summary
•	 Make your images fluid by styling them with the declarations
max-width: 100% and height: auto.

•	 In your tags, add the sizes and srcset attributes
to scale and deliver images that are appropriate for any
screen size.

•	 When styling font sizes, avoid absolute pixel values in favor of
rem units.

•	 Also use rem units when styling vertical measures such as
height, padding, and margins.

Chapter

	 WEB DESIGN PLAYGROUND	269

PROJECT:   Creating
a Photo Gallery

People love photos. If you start publishing
photos, they will quickly become the most
popular part of your site. —Brian Bailey

This chapter covers

▪	Planning and sketching your photo gallery
▪	Choosing typefaces for your page
▪	Adding the header and navigation links
▪	Adding the image thumbnails
▪	�Adding dynamic captions and links to full-size

images

Unlike with your first two projects—the personal home page that you built
in Chapter 5 and the landing page you built in Chapter 10—you now know
enough to create a page that looks like it was designed and coded by a
professional. If that seems like a stretch at this point in your web-design
journey, this chapter will prove that I'm right. Here, I'll take you through the
construction of a full-featured photo gallery, complete with dynamically
generated captions, links to full-size versions of each thumbnail, and much
more. You'll be leveraging many of the tools and techniques that you've
learned so far, including class selectors, the CSS box model, images (of
course), and layouts. Let's get to work!

15

15

PROJECT: Creating a Photo Gallery

270	WEB DESIGN PLAYGROUND 

What You’ll Be Building
This project is an online gallery for showing off your photos. The page will

consist of at least half a dozen thumbnails, which are reduced-size versions

of your images. The idea is that a site visitor should be able to click one

of these thumbnails to display the full-size version of the image. Each

thumbnail should also display a short caption that describes the image.

On the surface, this project is a simple one. Truthfully, the resulting page

will look simple, as well. It will look nice, mind you, but it will project to

the visitor an air of simplicity. The fact that the site looks unsophisticated,

however, doesn't mean that it's built that way. As you'll soon learn, this page

has some rocking technology under the hood, including a flexbox-based

layout, viewport-based sizing, and sophisticated positioning techniques.

Getting Your Photos Ready
You should begin this project by getting at least some of your photos ready

to use. You'll want to use JPEGs for everything, because they give you

smaller file sizes while maintaining good photo quality. You'll also need two

versions of each image: a regular-size version and a thumbnail version. In

the page layout I use, all the thumbnails need to be the same size. It doesn't

matter what size you use, but in my project, I resized all my thumbnails

to a 300-pixel width and a 200-pixel height. The full-size versions can be

whatever size you want.

Sketching the Layout
As you’ve seen in the earlier projects (see Chapters 5 and 10), your web

projects should begin with a pencil and paper (or whatever variation on that

theme you're most comfortable with). You're learning how to design web

pages, and any design worthy of the name always begins with a quick sketch

to get an overall feel for the page dimensions and components. Quick is

the operative word. You don't need to create an artist's rendering of the

final page. As shown in Figure 15.1, you need to lay out the main sections of

the page and indicate the approximate location, size, and contents of each

section.

Figure 15.1 shows the layout of a page with the following four sections:

•	 A header with a site logo and title

•	 A navigation area with links to other gallery pages

•	 The main section of the page containing the image thumbnails

•	 The page footer with a copyright notice and links to social
media sites

With that out of the way, it's time to turn your attention to the typeface

or typefaces you want to use for the page.

Beware
Your full-size images
can theoretically be any
size, but bear in mind
that large photos may
weigh in the double-digit
megabytes. You don't
want to use too much
compression on these
versions, so keep the size
within reason. I used
2048x1365 images in my
project.

Master
If you're not sure what
size thumbnails you
want to use, use a single
image for now and
repeat it throughout the
gallery. When you've
settled on the ideal size,
you can process the rest
of the photos you want
to use.

Choosing Typefaces

	 WEB DESIGN PLAYGROUND	 271

Page Tit le
G A L L E R Y L I N K S

Site
Logo

Thumbnail Thumbnail Thumbnail

Thumbnail Thumbnail Thumbnail

Thumbnail Thumbnail Thumbnail

Copyright and social media links

Choosing Typefaces
This page has little type, so the choice of a typeface shouldn't take up too

much of your time. There are three areas where your choice of typeface will

come into play:

•	 Heading —Something that looks handwritten would be nice. For
my project, I'm going to keep things simple and use the default
cursive typeface. For something that has good coverage on
both Windows PCs and Mac, you could go with Brush Script MT.

•	 Navigation and footer —The text here consists mostly of links, so
a nice, clean sans-serif font is a good choice. For my project, I'm
going with Calibri (installed on most Windows PCs) and Optima
(installed on most Macs).

•	 Thumbnail-image captions —These captions are fairly small, so
I recommend a typeface that remains readable even at small
sizes. I'll stick with Calibri and Optima for my captions.

In my CSS, I'll use the following declarations to specify these families:

font-family: cursive;
font-family: Optima, Calibri, sans-serif;

Now turn your attention to a color scheme for the photo gallery.

IIFigure 15.1 
Before diving in to the
page's HTML and CSS
details, use pencil and
paper to get a sense of the
overall page layout and
content.

PROJECT: Creating a Photo Gallery

272	WEB DESIGN PLAYGROUND 

Choosing the Colors
This page is simple, color wise, so you don’t need to build an elaborate color

scheme. In fact, in my version of this project, I'm using just three main colors:

•	 Header and footer background —This design looks balanced when
the header and the footer have the same color. Because the main
background (discussed next) should be relatively plain to show
off the thumbnails, the header and footer background gives you a
chance to pick something with a bit of pizzazz to liven up the page.

•	 Main background —This area takes up the bulk of the page, and it's
used to show both the image thumbnails and the navigation links.
A color such as black or dark versions of gray, brown, or blue work
best for this purpose.

•	 Text —This color needs to read well in all three sections of the page:
header, main, and footer. Assuming these sections are using dark
backgrounds, an off-white color such as #eee would work fine, as
would something along the lines of a not-too-bright yellow.

Figure 15.2 shows the colors I chose for my project.

Text color

Header and footer background Main background

With the page layout sketched and your typefaces and colors chosen,

it's time to make things more concrete (virtually speaking) by translating

everything into HTML and CSS code.

Building the Page
To build your photo gallery, start with the skeleton code that I introduced

you to in Chapter 1. From there, go section by section, adding text, HTML

tags, and CSS properties.

IIFigure 15.2 
The color scheme for my
project

Building the Page

	 WEB DESIGN PLAYGROUND	273

The Initial Structure
To get things started, take the basic page structure from Chapter 1 and add

the gallery layout. I'm going to use the HTML5 semantic elements:

•	 The page header section uses the header element, and it
consists of two items: an img element for the site logo and an
h1 element for the site title.

•	 The navigation section uses the nav element, and it consists of
an unordered list of links to other pages of the gallery.

•	 The main section uses the main element, and it consists of
several img elements, each of which points to a thumbnail
version of a photo.

•	 The page footer section uses the footer element, and it consists
of a copyright notice and links to several social media sites.

IITry This   �ðOnline: wdpg.io/projects/photo-gallery/01
Here are the elements that make up the photo gallery's initial HTML
structure.

Header
section

Navigation
section

Main
section

Footer section

W
E

B
 P

A
G

E

continued

PROJECT: Creating a Photo Gallery

274	WEB DESIGN PLAYGROUND 

<header>

 <h1>Page Title</h1>
</header>
	 <nav>	

 Gallery 1
 Gallery 2
 Gallery 3
 Gallery 4

</nav>
<main>

</main>
<footer>
 <p>Copyright and social media links</p>
</footer>

The
header
section

The navigat ion
section The main

section
(the image
thumbnai ls)

The footer
section

H
T

M
L

 Remember
The initial page layout
also includes a CSS
reset that sets the
margin and padding
to 0 and the box sizing
to border-box.

The gallery isn't much to look at right now, but you’ll soon fix that

problem. You start by setting up the page's overall layout.

The Overall Layout
After spending all that time learning how to use flexbox in Chapter 12,

you'll be pleased to hear that you'll be putting that effort to good use here,

because this project uses flexbox for all its layout.

Get things rolling by setting up the initial flexbox container. The <body> tag

will do nicely for that purpose, and you’ll use it as a single-column container,

which gives you a vertical main axis. You want the items aligned with the

start of that axis (that is, the top of the page). You also want everything to be

centered horizontally, and you want the footer to appear at the bottom of

the screen, even when there isn't enough content to fill the rest of the page.

The following example shows you how to set everything up.

Building the Page

	 WEB DESIGN PLAYGROUND	275

IITry This   �ðOnline: wdpg.io/projects/photo-gallery/02
This example shows you how to configure the body element as a flexbox
container for the entire page.

body {
 display: flex;
 flex-direction: column;
 justify-content: flex-start;
 align-items: center;
 min-height: 100vh;
 font-family: Optima, Calibri, sans-serif;
 background-color: #221900;
 color: #ecd078;
}

Set up the flexbox
container.

Set a
min imum

height .

Apply a font
stack and the
background and
text colors.

				

C

SS

The one comment I'll add here concerns the min-height property. By

declaring this property to be 100vh, you're telling the browser that the body

element is always at least the height of the browser's viewport. Having the

body element height greater than or equal to the height of the viewport

ensures that the footer section appears at the bottom of the screen, even if

there isn't enough content to fill the viewport vertically.

The Header Section
The header section consists of a header element that contains two items:

an img element for the site logo and an h1 element for the site title. You also

want the header to have the following features:

•	 Because the header background is different from the page
background, the header will look best if it extends across the
width of the browser window. To do this, declare width: 100%
on the header element.

•	 The site logo and title should be centered both horizontally
and vertically within the header. Configure the header element
as a flexbox container with a horizontal main axis and both
justify-content and align-items set to center.

The following example shows the HTML and CSS that I used to accomplish

these goals and to style the rest of the header section.

Remember
Flexbox now enjoys
near-universal
browser support, so
to keep things simple
and uncluttered, the
code you see here and
on the Playground
doesn't include any
vendor prefixes. If you
need to support old
browsers, however, use
Autoprefixer (https://
autoprefixer.github.io) to
generate the prefixes.

PROJECT: Creating a Photo Gallery

276	WEB DESIGN PLAYGROUND 

IITry This   �ðOnline: wdpg.io/projects/photo-gallery/03
This example styles the photo-gallery header section as a flexbox
container that centers the site logo and title horizontally and vertically.

W
E

B
 P

A
G

E

header {
 display: flex;
 justify-content: center;
 align-items: center;
 padding: 1em 0;
 width: 100%;
 background-color: #542437;
}
h1 {
 padding-left: .5em;
 font-family: cursive;
 font-size: 3em;
}

The header is a
flexbox container.

The header uses the
ful l window width.

Styles for the
site t it le

C
SS

<header>
 <img src="/images/ampersand-photography.tif" alt="Ampersand
Photography logo">
 <h1>Ampersand Photography</h1>
</header>

H
T

M
L

The Navigation Section
The next area of the page is the navigation section, which consists of several

links to other gallery pages. This section uses the nav element and contains

an unordered list of links. Here's a list of the goals you want to accomplish

for this section:

•	 The links should be centered both horizontally and vertically
within the navigation section. Set up the nav element as
a flexbox container with a horizontal main axis and both
justify-content and align-items set to center.

•	 The links should appear as a horizontal bulleted list without
the bullets. To do this, configure the ul element as a flexbox
container and set the list-style-type property to none.

The following example shows the HTML and CSS that I used to accomplish

these goals and to style the rest of the navigation section.

Building the Page

	 WEB DESIGN PLAYGROUND	 277

IITry This   �ðOnline: wdpg.io/projects/photo-gallery/04
This example styles the photo gallery's navigation section as a flexbox
container that displays the unordered list items horizontally.

W
E

B
 P

A
G

E

nav {
 display: flex;
 justify-content: center;
 align-items: center;
 width: 100%;
 background-color: inherit;}
nav ul {
 display: flex;
 list-style-type: none;}
nav li {
 padding: 1em 2.5em;
 text-transform: uppercase;}

The nav is a
flexbox container.

The ul is a flexbox
container, and its
bul lets are hidden.

Styles for the
li e lements

C
SS

<nav>

 Gallery 1
 Gallery 2
 Gallery 3
 Gallery 4

</nav>

H
T

M
L

You should see two problems with the navigation links right away:

•	 The link text is the standard blue that browsers use for links. By
default, links don't pick up the parent's text color, so you need
to tell the browser to use that color for links. In most cases, the
easiest way is to declare color: inherit on the a element.

•	 Nothing indicates which gallery page is currently being
displayed. To solve this problem, apply a special style to the
navigation text for the current page. I created a class named
current-page and used it to style the current li element with
the background and text colors switched.

The following example shows the revised navigation links.

Master
You could declare the
page's text color explicitly,
but if you decide to
change the text color later,
you have to make the
change in two places: the
body element and the a
element. When you use
inherit, the a element
automatically picks up any
change you make in the
body element's text color.

PROJECT: Creating a Photo Gallery

278	WEB DESIGN PLAYGROUND 

IITry This   �ðOnline: wdpg.io/projects/photo-gallery/05
This example styles the navigation links to use the body element's text
color. It also adds a class named current-page to the current page item
to use reverse text.

Current page Hovered link

W
E

B
 P

A
G

E

.current-page {
 padding: .75em;
 background-color: #ecd078;
 color: #221900;
}
a {
 color: inherit;
 text-decoration: none;
}
a:hover {
 color: #d95b43;
 text-decoration: underline;
}

The current-page class
creates a reverse text
effect.

The a e lement inherits
the body text color.

Hover styles
for the l inks .

C
SS

<nav>

 Gallery 1
 Gallery 2
 Gallery 3
 Gallery 4

</nav>

H
T

M
L

The Main Section
The real meat of the photo gallery is, of course, the photos themselves.

The basic idea of a gallery is to display a thumbnail of an original photo and

enable the visitor to view the original. The simplest way is to set up each

thumbnail as a link that points to the original, as I've done in the following

example. Note, too, that I set up main as a flexbox container that centers the

thumbnails horizontally and allows them to wrap.

Building the Page

	 WEB DESIGN PLAYGROUND	279

IITry This   �ðOnline: wdpg.io/projects/photo-gallery/07
This example sets up the main element as a flexbox container. The flex
items are the photo thumbnails, each of which links to its original photo.

W
E

B
 P

A
G

E

main {
 display: flex;
 justify-content: center;
 flex-wrap: wrap;
 max-width: 960px;
 font-family: Optima, Calibri, sans-serif;
}

The main e lement is
a flexbox container.

Set the maximum
width.

C
SS

<main>

 <img src="/images/image01-thumbnail.jpg" alt="Thumbnail for
image 1">

 <img src="/images/image02-thumbnail.jpg" alt="Thumbnail for
image 2">

 <img src="/images/image03-thumbnail.jpg" alt="Thumbnail for
image 3">

 etc.
</main>

Open each l inked image
in a new tab.

H
T

M
L

The Footer Section
The final element of the photo gallery page is the footer section, which

you’ll use to display a copyright notice and links to social media sites. To

align these items horizontally and vertically, configure the footer element

as a flex container.

REMEMBER
In this project’s main
element, the secondary
axis runs vertically, so
the declaration align-
content: flex-start
tells the browser to keep
all the thumbnails aligned
with the top of the main
element.

PROJECT: Creating a Photo Gallery

280	WEB DESIGN PLAYGROUND 

Note as well that you want the footer element to appear at the bottom

of the page, even when the main element doesn't fill the browser window

vertically. You need to set the main element's flex-grow property to 1

to force it to fill in the space. That solution creates weird vertical spacing

in the thumbnails, however. To fix that problem, add align-content:
flex-start to the main element. The following example shows how.

IITry This   �ðOnline: wdpg.io/projects/photo-gallery/07
This example configures the footer element as a flex container and adds
properties to the main element to force it to fill any empty space between
the main and footer elements.

W
E

B
 P

A
G

E

main {
 display: flex;
 justify-content: center;
 flex-wrap: wrap;
 align-content: flex-start;
 flex-grow: 1;
 max-width: 960px;
 font-family: Optima, Calibri, sans-serif;
}
footer {
 display: flex;
 justify-content: center;
 align-items: center;
 width: 100%;
 padding: 1em 0;
 text-transform: uppercase;
 background-color: #542437;
}
footer p {
 padding: 0 1.5em;
}

The main e lement now fi l ls the
space down to the footer.

The footer e lement is
a flexbox container.

The footer uses the
ful l window width.

C
SS

<footer>
 <p>© Ampersand Photography</p>
 <p>Facebook</p>
 <p>Twitter</p>
 <p>Instagram</p>
</footer>

H
T

M
L

Adding a Few Tricks

	 WEB DESIGN PLAYGROUND	281

Adding a Few Tricks
As it stands, your photo gallery is a decent page that looks good and works

well. That may be all you’re looking for, and if so, you need read no further.

If you've been thinking that the gallery is a bit ho-hum and run-of-the-mill,

however, the next few sections show you how to add some dynamic and

useful features to the gallery.

Making the Footer Fixed
Earlier, you set things up so that your footer section displays at the bottom

of the screen even if there isn’t enough content in the main section to fill the

browser window. When the main element has more content than will fit in

the browser window, it pushes the footer down, and the user must scroll to

see it. What if you prefer to have your footer always visible?

You can implement the following:

•	 Set the footer element's position property to fixed.

•	 Set the footer element's bottom property to 0, which tells the
browser to fix the footer to the bottom of the viewport.

•	 Add some padding to the bottom of the main element to ensure
that the last of its content isn't obscured by the fixed footer. Set
the padding-bottom value to the same value as the height of the
footer element (3.5em, in this case).

The following example shows the added code that accomplishes all

these tasks.

IITry This   �ðOnline: wdpg.io/projects/photo-gallery/08
This example fixes the footer element to the bottom of the viewport.

Fixed
footer

W
E

B
 P

A
G

E
Beware
When adding a
copyright notice,
you may be tempted
to include the word
Copyright and the
copyright symbol
(©), but using both is
redundant. Use one or
the other, but not both.

continued

PROJECT: Creating a Photo Gallery

282	WEB DESIGN PLAYGROUND 

main {
 display: flex;
 justify-content: center;
 flex-wrap: wrap;
 align-content: flex-start;
 flex-grow: 1;
 max-width: 960px;
 padding-bottom: 3.5em;
}
footer {
 display: flex;
 justify-content: center;
 align-items: center;
 position: fixed;
 bottom: 0;
 width: 100%;
 text-transform: uppercase;
 background-color: #542437;
}

Bottom padding on
main equals the
height of footer.

The footer is
fixed.

The footer is posit ioned
at the bottom of the
viewport.

C
SS

 Making the Nav Bar Sticky
You may not be interested in having a fixed footer, but it's a common

layout request to have the navigation bar onscreen full time, no matter how

far down the user scrolls. In this case, however, you can't use the same

technique that you used for the footer in the preceding section. If you fix

the nav bar in place, you also have to fix the header; otherwise, you'd end

up with some ugly scrolling. But fixing the header is a waste of screen real

estate, so you need a different solution.

One possibility is to switch the positions of the header and nav elements.

With the latter now at the top of the screen, you could declare position:
fixed and top: 0 on the nav element, and add padding-top: 3.5em to

the body element.

That solution is a nice one, but what if (like me) you prefer the nav element

to appear below the header? In that case, you can turn to a relatively new

CSS position value called sticky. Combined with a specific top or bottom

value, sticky tells the browser to scroll the element normally until it hits the

specified position and then stick in place.

To set this feature up for your navigation bar, you need to do the following:

•	 Set the nav element's position property to sticky.

•	 Set the nav element's top property to 0, which tells the browser
to stick the nav bar when it's scrolled to the top of the viewport.

•	 Set the nav element’s z-index property to a positive number
(such as 10) to ensure the nav bar always appears on top of the
rest of the page elements as they scroll by.

Play
The full code for the fixed
nav element is available
on the Playground.

ðOnline: wdpg.io/
projects/photo-gallery/09

Beware
The sticky value is
in the early stages of
becoming a full member
of CSS. As I write this
book, it's supported by
the most recent versions
of Google Chrome,
Mozilla Firefox, Apple
Safari (desktop and iOS),
Microsoft Edge, and
Chrome for Android, but
not by Internet Explorer.

Remember
To make an element
sticky in desktop and
iOS Safari, you need
to use position:
-webkit-sticky.

Adding a Few Tricks

	 WEB DESIGN PLAYGROUND	283

The following example shows the code you need to add to make this

happen.

IITry This   �ðOnline: wdpg.io/projects/photo-gallery/10

Sticky
nav

W
E

B
 P

A
G

E

nav {
 display: flex;
 justify-content: center;
 align-items: center;
 position: sticky;
 top: 0;
 z-index: 10;
 height: 3.5em;
 width: 100%;
 background-color: inherit;
}

Make the
nav st icky.

St ick when it 's
scrol led to the top.

Ensure that it 's
a lways vis ib le .

C
SS

Adding Dynamic Captions
One thing your photo gallery lacks is captions for the thumbnails. One

straightforward way to add captions is to wrap each thumbnail in a div and

configure that div as a flex container with flex-direction set to column.

Then you could add the caption as, say, a figcaption element, and it will

appear below the thumbnail. The following example demonstrates this

technique.

PROJECT: Creating a Photo Gallery

284	WEB DESIGN PLAYGROUND 

IITry This   �ðOnline: wdpg.io/projects/photo-gallery/11
This example shows one method for adding captions below each
thumbnail.

W
E

B
 P

A
G

E

.image-thumbnail {
 display: flex;
 flex-direction: column;
 align-items: center;
}

A flexbox div wrapper surrounds
each image and caption .C

SS

<div class="image-thumbnail">

 <figure>
 <figcaption>Ladies gossiping in Montreal</figcaption>
 </figure>
</div>
<div class="image-thumbnail">

 <figure>
 <figcaption>To an ant, a flower is a world</figcaption>
 </figure>
</div>

A flexbox div wrapper
surrounds each image
and caption .

The
captions

H
T

M
L

That solution works fine, but I'd like to show you a more advanced technique

that comes with a considerable "wow" factor. In this technique, you keep the

figcaption wrapper but add the image-caption class and expand it with p

elements that you can use for both a caption title and the caption itself:

<div class="image-thumbnail">

 <figcaption class="image-caption">
 <p class="caption-title">Les Chuchoteuses</p>
 <p class="caption-text">Sculpture of ladies gossiping in
Montreal</p>
 </div>
</div>

The caption
t it le and text is
enclosed in this

figcaption .

Adding a Few Tricks

	 WEB DESIGN PLAYGROUND	285

Your goal is to hide the caption and display it only when the user hovers

the mouse over the thumbnail. In your CSS, you set up the image-thumbnail

class with relative positioning and a width and height equal to the actual

width and height of the thumbnail image:

.image-thumbnail {
 position: relative;
 width: 300px;
 height: 200px;
}

Now that image-thumbnail is positioned, you’re free to use absolute

positioning on the image-caption class. That's important, because you

want to style this class with the same width and height as the thumbnail and

then position it in the top-left corner (that is, at top: 0 and left: 0) so that

when you display it, it covers the thumbnail. Here's the full CSS for this class:

.image-caption {
 display: flex;
 flex-direction: column;
 justify-content: flex-end;
 position: absolute;
 left: 0;
 top: 0;
 width: 300px;
 height: 200px;
 background-color: rgba(32, 32, 32, 0.75);
 color: #ecd078;
 opacity: 0;
}

Notice that you’ve set up a flex container with a vertical main axis

and the items aligned with flex-end so that they appear at the bottom

of the container. The background color is set to a dark gray that’s slightly

transparent, so you’ll still be able to see the thumbnail. Finally, the caption

has opacity set to 0, which means that it’s hidden by default.

To show it, add the hover pseudo-class to the image-caption class and

use it to set the opacity to 1:

.image-caption:hover {
 opacity: 1;
}

Figure 15.3 shows an example.

Set these to the same di-
mensions as the thumbnai l .

Caption is a
flex container.

Posit ioned absolutely
at top left

Same dimensions as the thumbnai l

Dark gray, s l ight ly
transparent background

Hidden by default

IIFigure 15.3 
Hover the mouse over
a thumbnail to see the
caption.

Play
The full code for this
example is available
on the Playground.

ðOnline: wdpg.io/
projects/photo-gallery/12

286	WEB DESIGN PLAYGROUND 

From Here
The final version of the photo gallery (mine is shown in Figure 15.4) is a great

showcase for your photos. (If you want to get your code on the web sooner

rather than later, check out Appendix A for the details.)

Even though you’ve built a full-featured photo gallery (especially if you

added the extra features from the last section), you still have many ways to

add to or modify the gallery. You can always add more images, of course, and

if you have a ton of photos to show off, you can add more gallery pages. You

can also change the colors, try different typefaces and type sizes, and so on.

Summary
•	 Prepare thumbnail and full-size versions of the photos you want

to display.

•	 Sketch out the photo gallery you want to build.

•	 Choose the typefaces for the page title and text.

•	 Choose colors.

•	 Build the initial page structure: the barebones HTML tags and
the global CSS properties applied to the body element.

•	 Add the flexbox layout.

•	 Fill in and style each section one by one: header, navigation,
main, and footer.

•	 Optionally add a few tricks such as a fixed footer, a sticky nav
bar, and dynamic captions.

IIFigure 15.4 
A full-featured photo
gallery

PROJECT: Creating a Photo Gallery

Part 4
Making Your

Web Pages Shine
It has been roughly 20 years since most of us started to
take notice of the World Wide Web (as we would have long-
windedly called it back then). That’s not long in the timeline
of human history, but it’s long enough for us to have mostly
forgotten what the web was like back in, say, 1995. If you’re
old enough to have used the web back then, let me refresh
your memory: It was drab. That dreariness was caused by
several things, including a universal lack of color, no style
sheets, and only a few rudimentary HTML tags. Back then, it
didn’t even occur to most web surfers that pages could look
decent. Ah, now we know better. Now we know that pages
can not only look good, but also positively shine.

Your own web designs will shine as well when you get
through the chapters here in Part 4, where you learn how
to use a few sophisticated HTML tags (Chapter 16), how to

apply colors and gradients (Chapter 17), gain some advanced
web typography skills (Chapter 18), and pick up some
professional-level CSS techniques (Chapter 19). Chapter 20
brings everything together by showing you how to build a
shiny personal portfolio page.

	 WEB DESIGN PLAYGROUND	289

Chapter

16

More HTML Elements
for Web Designers

HTML has only a few dozen elements, but we busy
developers often forget to use the right tag for the job in
hand. It’s all too easy to add a <div> or a when
there are more suitable alternatives. —Craig Buckler

This chapter covers

▪	�Checking out some underused but important
HTML elements

▪	Linking to files on your site
▪	Linking to a specific element on a page
▪	Adding special characters and comments

You may have noticed that after a flurry of HTML-related activity in the early
chapters of the book, subsequent chapters had a decidedly CSS flavor. That's
not too much of a surprise, because after you know a few basic elements such
as <div>, <p>, and , you can hang a lot of CSS baggage on them and
create some fine-looking web pages. But there's more to HTML than these
basic elements. You saw a few useful page structure elements in Chapter 11,
but in this chapter, you'll extend your HTML know-how even further with
elements for everything from abbreviations to variables, advanced uses of
the <a> element, adding nonkeyboard characters to your pages, and even
adding comments to make your code more readable. It's a regular HTML
extravaganza!

16

More HTML Elements for Web Designers

290	WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io/16-1-0

I've mentioned a few times in this book that it's important to construct the

HTML portion of your web page code semantically. That is, you should use

elements that tell the web browser—not to mention other web designers

and developers reading your code—what meaning each element has in the

context of the page. This is particularly true when it comes to the overall

layout of the page; as you saw in Chapter 11, tags such as <header>, <nav>,

and <article> make your code much easier to understand. These elements

are block-level elements, but you can also use inline elements and mark

them up semantically. HTML5 defines quite a few such text-level elements,

and although you may use them only rarely, you should know what they are

and what semantic freight they’re meant to pull.

<abbr>
This element identifies text as an abbreviation or an acronym. Add the title

attribute to tell the browser the full version of the abbreviation or the full

expansion of the acronym. Most browsers display the title value in a

tooltip when you hover the mouse pointer over the element. Some browsers

(particularly Google Chrome and Mozilla Firefox) add a dotted underline to

the text.

Lesson 16.1:  �Other Text-Level Elements You Should Know
Covers: Text-level elements

IIExample   �ðOnline: wdpg.io/16-1-1

W
E

B
 P

A
G

E

<abbr title="fear of missing out">FOMO</abbr>

H
T

M
L

	 WEB DESIGN PLAYGROUND	291

Other Text-Level Elements You Should Know

<cite>
Use the cite element to mark text that’s a reference to a creative work, such

as a book, article, essay, poem, blog post, tweet, movie, TV show, play, or

work of art. Most browsers display the cited text in italics.

IIExample   �ðOnline: wdpg.io/16-1-2

W
E

B
 P

A
G

E

<q>A fine quotation is a diamond on the finger of a man of wit,
and a pebble in the hand of a fool</q>. —<cite>Joseph Roux,
Meditations of a Parish Priest</cite>H

T
M

L

<code>
This element identifies text as programming code. Most browsers display the

marked-up text in a monospace font.

IIExample   �ðOnline: wdpg.io/16-1-3

W
E

B
 P

A
G

E

Use the CSS <code>rgb()</code> function.

H
T

M
L

More HTML Elements for Web Designers

292	WEB DESIGN PLAYGROUND 

<dfn>
You use this element to mark the initial or defining instance of a term. Most

browsers display the text in italics.

IIExample   �ðOnline: wdpg.io/16-1-4

W
E

B
 P

A
G

E

A <dfn>header</dfn> is an element that appears at the top of the
page.

H
T

M
L

<kbd>
You use the kbd element to indicate text that’s entered via the keyboard

(such as typed characters or a pressed key, such as Enter or Return) or, more

generally, to indicate any type of user input (such as a voice command).

Most browsers display the text in a monospace font.

IIExample   �ðOnline: wdpg.io/16-1-5

W
E

B
 P

A
G

E

For example, type <kbd>Helvetica</kbd> and then press
<kbd>Enter</kbd>.

H
T

M
L

<mark>
Use the mark element to highlight page text that has some significance for

the reader, similar to the way you’d use a highlighter to mark a passage of

text in a book. Most browsers display the text with a yellow background.

	 WEB DESIGN PLAYGROUND	293

More HTML Elements for Web Designers

IIExample   �ðOnline: wdpg.io/16-1-6
W

E
B

 P
A

G
E

Futura is a geometric sans-serif typeface that was <mark>designed
by Paul Renner in 1927</mark>.

H
T

M
L

<pre>
The pre element doesn’t have a semantic purpose in HTML5, but it’s

used quite often with other semantic elements, such as code. One of the

problems with displaying programming code and similar text is that it’s

difficult to show structuring elements such as indents because the web

browser ignores such whitespace. When you mark up the code with the pre

(short for preformatted text) element, however, the web browser preserves

all whitespace characters, including multiple spaces and new lines. The

browser also displays the text in a monospace font.

IIExample   �ðOnline: wdpg.io/16-1-7

W
E

B
 P

A
G

E

<pre><code>
function helloWorld() {

 //Greet the reader
 alert('Hello World!');
}</code></pre>

H
T

M
L

More HTML Elements for Web Designers

294	WEB DESIGN PLAYGROUND 

<s>
Use the s element to mark text that’s inaccurate, outdated, or in some other

way incorrect. Why not delete the text instead? Sometimes, you want to

leave the inaccurate text in place for comparison purposes, such as to show

a correction, updated information, or a revised price. The web browser

marks up this text by using a strikethrough effect.

IIExample   �ðOnline: wdpg.io/16-1-8

W
E

B
 P

A
G

E

On sale now for <s>$12.99</s> $9.99.

H
T

M
L

<samp>
The samp element enables you to mark up a passage of text as the sample

output from a computer program or similar system. The web browser

displays this text by using a monospace font.

IIExample   �ðOnline: wdpg.io/16-1-9

W
E

B
 P

A
G

E

The error message said <samp>Comic Sans!? Are you kidding me!?</
samp>.

H
T

M
L

<small>
You use the small element to mark text as an aside from the regular text,

particularly one that has to do with what people often refer to as fine

print: copyright or trademark notices, disclaimers or disclosures, legal rights

or restrictions, warnings or caveats, or source attribution. The web browser

displays this text by using a type size that’s slightly smaller than the regular text.

	 WEB DESIGN PLAYGROUND	295

More HTML Elements for Web Designers

IIExample   �ðOnline: wdpg.io/16-1-10
W

E
B

 P
A

G
E

Thank you for reading this essay.

<small>TypeNerdNews is © 2019 Aldus Manutius. All rights
reserved.</small>H

T
M

L

<sub>
The sub element marks text as a subscript, which is handy if your web page

requires chemical or mathematical formulas. The web browser displays

this text by using a small type size that’s set partially below the regular text

baseline.

IIExample   �ðOnline: wdpg.io/16-1-11

W
E

B
 P

A
G

E

Many illuminated manuscripts are written using iron gall ink,
which is iron sulfate (FeSO₄) added to gallic acid
(C₇H₆O₅).H

T
M

L

<sup>
The sup element marks text as a superscript, so it’s often used for

mathematical formulas, but many web authors also use it to specify footnote

markers. The web browser displays this text by using a small type size that’s

set partially above the regular text baseline.

More HTML Elements for Web Designers

296	WEB DESIGN PLAYGROUND 

IIExample   �ðOnline: wdpg.io/16-1-12

W
E

B
 P

A
G

E

The W3C standard cautions us not to use subscripts and
superscripts "for typographical presentation for presentation's
sake."^[1]H

T
M

L

<time>
You use the time element to indicate that a particular bit of text is a date, a

time, or a combination of the two:

<time datetime="machine-value">human text</time>

The idea is to represent the date and/or time in two ways:

•	 The text between the <time> and </time> tags is a human-
friendly way of showing the date or time, such as 1 p.m. on
August 23, 2019.

•	 The value of the datetime attribute is a machine-friendly
version of the date and/or time, such as 2019-08-23T16:00:00-
05:00. The general syntax to use is shown in Figure 16.1.

Hour

YYYY–MM–DDThh:mm:ss±HH:MM

Minute Second

Year Month Day

Time ahead (+) or behind
(–) Greenwich Mean Time

Hour Minute

The web browser doesn’t format the date/time in a special way. Instead,

you use the time element to give the browser and other software-based

visitors to your page a meaningful, readable date and/or time. It’s often

useful to include the date and time when a page was created or last edited,

for example.

You use the time element to indicate that a particular bit of text is a date,

a time, or a combination of the two.

IIFigure 16.1 
The syntax to use for the
<time> tag’s datetime
attribute

	 WEB DESIGN PLAYGROUND	297

More HTML Elements for Web Designers

IIExample   �ðOnline: wdpg.io/16-1-13
W

E
B

 P
A

G
E

This web page was last modified on <time datetime="2019-08-
23T09:25:00-05:00">August 23rd, 2019 at 9:25AM</time>.

H
T

M
L

<u>
The u element has no semantic use that I can discern. The World Wide Web

Consortium (W3C) standard says that it “represents a span of text with an

unarticulated, though explicitly rendered, non-textual annotation.” I have no

idea what that means. The W3C unhelpfully suggests that a possible use may

be “labeling the text as being misspelt,” but that seems dubious.

The real problem with the u element is that all web browsers render the

text as underlined, which means that every person who visits your page

will think that the text is a link, and a large subset of those visitors will try

to click it (and grow frustrated when nothing happens). You may think that

underlining is useful for emphasizing text, but that’s what the tag is for.

In short, you have no good reason to use the <u> tag and plenty of good

reasons not to use it. I include it here because you may come across it when

looking at the source code of some (no doubt poorly designed) web pages.

IIExample   �ðOnline: wdpg.io/16-1-14

W
E

B
 P

A
G

E

It's a really bad idea to use the <code>u</code> element because
its text <u>looks just like a link</u>.

H
T

M
L

More HTML Elements for Web Designers

298	WEB DESIGN PLAYGROUND 

<var>
The var element enables you to mark up a word or phrase as a placeholder.

This placeholder could be a programming variable, a function parameter,

or a word or phrase used to represent a general class of things. The web

browser displays this text by using italics.

IIExample   �ðOnline: wdpg.io/16-1-15

W
E

B
 P

A
G

E

Here's the syntax to use for the <code>time</code> element:

<code><time datetime="<var>machine-value</var>"><var>human
text</var></time>.</code>H

T
M

L

More about Links
When I showed you how to wield the <a> tag way back in Chapter 2, you

learned that creating a link is a straightforward matter of setting the link

address as the value of the <a> tag's href attribute. That's all true as far as it

goes, but there's more to the <a> element because your web page links can

come in any of the following three varieties:

•	 Remote links to web pages outside your site

•	 Local links to other web pages on your site

•	 In-page links to other sections of the current web page

You learned about remote links in Chapter 2, and you learn about in-

page links in the next section. But now, I’m going to talk about local links to

your other web pages.

Linking to Local Files
The first thing to note is that for local links, the URL doesn’t require either

the protocol or the domain name. With an internal link, the browser assumes

that the protocol is HTTP (or HTTPS, if you use the secure version of HTTP

on your site) and that the domain name is the name of your host server.

That’s straightforward enough, but before continuing with the link lesson, I

want to take a short side trip to help you understand how directories work

in the web world.

More about Links

	 WEB DESIGN PLAYGROUND	299

When you sign up with a company that will host your web pages, that

company gives you your own directory on its server. If you’re putting

together only a few pages, that directory should be more than adequate.

If you’re constructing a larger site, however, you should give some thought

to how you organize your files. Why? Well, think of your own computer. It’s

unlikely that you have everything crammed into a single directory. Instead,

you probably have separate directories for the different programs you use

and other directories for your data files.

There’s no reason why you can’t cook up a similar scheme in your web

home. With this type of multidirectory setup, however, how you link to files

in other directories can be a bit tricky. As an example, consider a website that

has three directories:

/
articles/
journal/

There are three scenarios to watch out for:

•	 Referencing a file in the same directory —This scenario is easiest
because you don’t have to include any directory information.
Suppose that the HTML file you’re working on is in the journal
directory and that you want to reference a page named rant.
html that’s also in that directory. In this case, you use only the
name of the file, like this:

•	 Referencing a file in a subdirectory from the main directory —
This scenario is common because your home page (which is
almost certainly in the main directory) is likely to have links to
files in subdirectories. Suppose that you want to link to a page
named design.html in the articles subdirectory of your
home page. Your <a> tag takes the following form:

•	 Referencing a file in a subdirectory from a different
subdirectory —This scenario is the trickiest one. Suppose that
you have a page in the articles subdirectory, and you want to
link to a page named poem.html in the journal subdirectory.
Here’s the <a> tag:

In the last example, the leading slash (/) tells the browser to first go

up to the main directory and then go into the journal directory to find the

poem.html file.

This is the main directory.

These are subdirectories
of the main directory.

More HTML Elements for Web Designers

300	WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io/16-2-0

When a surfer clicks a standard link, the page loads, and the browser displays

the top part of the page in the window. It’s possible, however, to set up a

special kind of link that forces the browser to display some other part of the

page, such as a section in the middle.

When would you ever use such a link? Most of your HTML pages probably

will be short and sweet, and the web surfers who drop by will have no trouble

finding their way around. But for longer pages, you can set up links to various

sections of the page, which enable a reader to jump directly to a section

rather than scroll through the page to get there.

To create this kind of link, you must set up a special identifier that marks

the spot to which you want to link. To understand how in-page links work,

think of how you might mark a spot in a book you’re reading. You might dog-

ear the page, attach a sticky note, or place something (such as a bookmark)

between the pages. An in-page link identifier performs the same function: It

marks a particular spot in a web page, and you can use an a element to link

directly to that spot.

To set up an identifier for an in-page link, you add an id attribute to a tag

and supply it a value:

<h2 id="best-practices">Best Practices</h2>

The value you assign to the id attribute must meet the following criteria:

•	 It must be unique in the web page.

•	 It must start with a letter.

•	 The rest of the characters can be any combination of letters,
digits (0–9), hyphens (-), underscores (_), colons (:), or periods (.).

How you set up your in-page link depends on whether it resides in the

same page as the link or a different page. If the identifier and the link are in

the same page, you link to it by using the id value, preceded by the hash

symbol (#):

Go to the Best Practices section

If the identifier is defined in a separate web page, your link’s href value

is the URL of that page, followed by the hash symbol (#) and the id value:

See my primer on best
practices

The following example shows a few in-page links in action.

Lesson 16.2:  �Linking to the Same Page
Covers: In-page links

More about Links

	 WEB DESIGN PLAYGROUND	301

IIExample   �ðOnline: wdpg.io/16-2-1
This example shows a page that uses some in-page links.

In-page links

In-page link address

W
E

B
 P

A
G

E

<h1>Organizing Your Web Page Text</h1>
<h4>Contents:</h4>
Benefits

Workflow

Best Practices
<p>
All great documents have something in common: excellent
organization. Content and formatting are important, but their
effectiveness is diminished or even nullified if the document
has a slipshod organization. However, even a page with only so-so
content and negligible formatting can get its point across if it's
organized coherently and sensibly.
<h2 id="benefits">Benefits</h2>
There are many reasons to organize your web page text, but three
are the most important: narrative flow, accessibility, and search
engine optimization.
Narrative Flow</h3>
Research has shown — and poets and storytellers have known
for thousands of years — that humans have an innate hunger
for story. We learn better and take in data more effectively when
it's organized as a narrative.
<h3>Accessibility</h3>
Visually impaired visitors to your web page will often use special
screen readers to read aloud the page contents. These tools are
designed to look for and read web page headings so the user can
quickly get an overall sense of the page structure.
<h3>Search Engine Optimization</h3>
Most search engines include page headings as part of their
algorithms for determining where a page should rank in the
results. In general, text that resides higher up in the page
hierarchy is given more importance in the search results.
<h2 id="workflow">Workflow</h2>
<h2 id="best-practices">Best Practices</h2>

Link for Benefits
heading

Link for Workflow
heading

Link for
Best
Practices
heading

Ident ifier for Benefits
heading

Ident ifier for
Workflow headingIdent ifier for Best Practices

heading

H
T

M
L

More HTML Elements for Web Designers

302	WEB DESIGN PLAYGROUND 

Inserting Special Characters
Your HTML and CSS files consist only of text, but that doesn’t mean that

they consist only of the letters, numbers, and other symbols that you can

type with your keyboard. If your web text needs an em dash (—), a copyright

symbol (©), or an e with an acute accent (é), you can add those elements to

your page by using special codes called character entities. These entities are

available in three flavors: hexadecimal code, decimal code, and entity name.

The hex and decimal codes are numbers, and the entity names are friendlier

symbols that describe (although often cryptically) the character you’re trying

to display. You can display the registered trademark symbol (™), for example,

by using the hex code ™, the decimal code ™, or the entity

name ™.

Note that all three references begin with an ampersand (&) and end with a

semicolon (;). Don’t forget either symbol when you use character entities in

your own pages. Figure 16.2 shows a few common character entities.

Play
Set up an external link
to the following address:
https://www.w3.org/TR/
html5/text-level-semantics
.html. Set up an external
in-page link to the
identifier named
the-a-element on the
same page. ðOnline:
wdpg.io/16-2-4

Remember
If you include
the tag <meta
charset="utf-8">
in your page’s header
section, you can type
characters such as
the em dash (—) and
copyright symbol
(©) directly in your
code. You type an
em dash by pressing
Alt+0151 in Windows or
Option+Shift+- (hyphen)
in macOS, for example.

IIFigure 16.2  Some HTML5 character entities and their codes

Using the HTML5 Entity Browser

	 WEB DESIGN PLAYGROUND	303

Using the HTML5 Entity Browser
HTML5 has nearly 1,500 defined character entities, so it’s not surprising

that two of the biggest frustrations associated with using character entities

are knowing what characters are available and finding the character you

want. Having been through this frustration many times myself, I decided

to do something about it. To that end, I built the HTML5 Entity Browser,

which organizes character entities by category (so you can easily see what’s

available) and offers a search feature (so you can find any character quickly).

Here’s how it works:

1	 In the Web Design Playground (https://webdesignplayground.io), choose

Menu > HTML5 Entity Browser.

2	 Use the Category list to select the type of entity you’re looking for.

The app filters the list of entities to show only those in the category

you selected, as shown in Figure 16.3.

3	 To search the list of entities, use the Search the Entities text box to

enter all or part of the entity name or description.

If you want to see a specific entity, you can enter that entity’s hex or

decimal code.

IIFigure 16.3 
With the HTML5 Entity
Browser, choose a category
to filter the list of entities,
as shown here, or search
the entities.

304	WEB DESIGN PLAYGROUND 

Adding Comments
A comment is a chunk of text that, although it resides in your HTML file,

is skipped by the web browser, so it doesn’t appear when your page is

rendered. That behavior may strike you as odd, but comments have quite a

few good uses:

•	 You can add notes to yourself in specific places of the page
code. You can add a comment such as Here’s where the
logo goes when it’s finished, for example.

•	 You can add explanatory text that describes parts of the page. If
you have a section that comprises the header of your page, you
can add a comment before the section such as This is the
start of the header.

•	 You can skip problematic sections of your page. If you have a
section that isn’t working properly or a link that isn’t set up yet,
you can convert the text and tags to a comment so as not to
cause problems for the browser or the user.

•	 You can add a copyright notice or other info for people who
view your HTML source code.

To turn any bit of text into a comment, surround it with the HTML

comment tags. Specifically, you precede the comment with <!-- and follow

it with -->, like this:

<!--This text is a comment-->

Summary
•	 If you're linking to a local file in the same directory, set the <a>

tag's href attribute to the name of the file; otherwise, you need
to precede the filename with the directory name.

•	 To create an in-page link, add the id attribute to the link
location; then set your <a> tag's href attribute to the id value,
preceded by a hash tag (#).

•	 To specify a special character, enter the character directly, if
possible, or use the decimal code, hexadecimal code, or entity
name, each of which begins with an ampersand (&) and ends
with a semicolon (;).

•	 To add a comment to your code, surround the comment text
with <!-- and -->.

Beware
Although comment text
isn’t displayed in the
browser, it’s easy for
another person to see
it by viewing the page
source code. Therefore,
don’t put sensitive
information inside a
comment tag.

More HTML Elements for Web Designers

	 WEB DESIGN PLAYGROUND	305

Chapter

17

Adding a Splash
of Color to Your
Web Designs

Boldly be a pop of color in a black and
white world. —Kate Smith

This chapter covers

▪	Learning some color basics
▪	Understanding how CSS uses color
▪	Applying a color to an element
▪	Adding background colors
▪	Creating color gradients

CSS offers all the tools you need to add a dash of color to your headings, text,
links, and backgrounds. You learn how to use those tools in this chapter, as
well as how to wield a few special CSS tools for building color gradients that
will raise the “wow” factor on your pages.

17

Adding a Splash of Color to Your Web Designs

306	WEB DESIGN PLAYGROUND 

Understanding Colors
The good news about understanding colors for use in your web designs is

that you don’t need to understand much. Yes, entire books have been written

on color theory, but you don’t need to be versed in the physics of optics

to create beautiful, eye-catching web pages. You need to know only two

things: how to combine colors harmoniously and how colors are created.

For the former, see “Choosing Harmonious Colors” later in this chapter; for

the latter, read on.

Color is free on the web. While there's nothing wrong
with black text on white, using different colors not
only adds a bit of drama to the page, but also creates
hierarchies for the content. —Erik Spiekermann

You can use two methods to create any color. The first method uses

the fact that you can create any color in the spectrum by mixing the three

main colors, which are red, green, and blue, so this method is sometimes

called the RGB method. Painters do this mixing on a palette, but you’re in

the digital realm, so you mix your colors using numeric values, supplying a

number between 0 and 255 (or a percentage between 0 and 100) for each

of the three colors. A lower number means that the color is less intense, and

a higher number means that the color is more intense.

Table 17.1 lists nine common colors and their respective red, green, and

blue values.

IITable 17.1  The Red, Green, and Blue Values for Nine Common Colors

Name Red Green Blue Color
Red 255 0 0

Green 0 255 0

Blue 0 0 255

Yellow 255 255 0

Magenta 255 0 255

Cyan 0 255 255

Black 0 0 0

Gray 128 128 128

White 255 255 255

Master
With 256 available
values for each of the
three colors, you have a
palette of more than 16
million colors to choose
among.

Master
Whenever the red,
green, and blue values
are equal, you get a
grayscale color. Lower
numbers produce
darker grays, and
higher numbers produce
lighter grays.

Understanding Colors

	 WEB DESIGN PLAYGROUND	307

As you can see in Table 17.1, when only one color is specified (that is,

has a value greater than 0), you get the pure color, but when two or more

values are specified, you get a blend of those colors. To help you visualize

this blending process, I’ve put together a short animation on the Web Design

Playground. Choose Menu > RGB Visualizer (or surf directly to wdpg.io/rgbvis),

and you’ll see three circles—one red, one green, and one blue—slowly

approach one another and then overlap. When the overlap occurs, as shown

in Figure 17.1, notice four things:

•	 The overlap of red and blue produces magenta.

•	 The overlap of red and green produces yellow.

•	 The overlap of green and blue produces cyan.

•	 The overlap of all three colors produces white.

The second method of creating a color involves supplying numeric values

for three attributes called hue, saturation, and luminance, so this technique

is sometimes called the HSL method:

•	 Hue —This value (which is more or less equivalent to the term
color) measures the position (in degrees) on the color wheel
with values between 0 and 359, as shown in Figure 17.2. Lower
numbers indicate a position near the red end (with red equal
to 0 degrees), and higher numbers move through the yellow,
green, blue, and violet parts of the spectrum.

IIFigure 17.1 
On the Web Design
Playground, choose Menu >
RGB Visualizer to see
an animation in which
the three circles come
together and the overlaps
produce the blended colors
shown here.

Adding a Splash of Color to Your Web Designs

308	WEB DESIGN PLAYGROUND 

Hue = 120 (green)

Hue = 0 (red)

Hue = 240 (blue)

•	 Saturation —This value is a percentage and a measure of a given
hue's purity. A saturation value of 100 means that the hue is
a pure color. As shown in Figure 17.3, lower numbers indicate
that more gray is mixed with the hue; at 0 percent, the color
becomes part of the grayscale.

Saturation = 67% Saturation = 33%

•	 Luminance —This value (also called lightness or luminosity) is
also a percentage and a measure of how light or dark the color
is. As you can see in Figure 17.4, lower percentages are darker
(with 0 producing black), and higher percentages are lighter
(with 100 creating white).

IIFigure 17.2 
Hue refers to the position
on the color wheel, starting
at 0 (red) and passing
through 120 (green) and
240 (blue).

IIFigure 17.3 
Saturation is a measure of a
color’s purity or how much
gray is mixed in. The color
wheel in Figure 17.2 is set
to 100 percent saturation.
The lower the saturation
percentage, the grayer the
color appears.

Adding Colors with CSS

	 WEB DESIGN PLAYGROUND	309

Luminance = 75% Luminance = 25%

Which method should you use? The answer depends on various factors. If

you want to specify a single color, the RGB method is a bit more straightforward,

but if you want to choose harmonious colors—such as colors that are

complementary or analogous—the HSL method is best. Before you decide,

you need to know the specifics of how you apply colors in CSS.

Adding Colors with CSS
It’s a measure of the importance of color not only in the style sheet world,

but also in web design, that CSS offers at least a half-dozen ways to define

something as apparently simple as a color. Each method has its uses, so

you’re going to learn them all over the next few sections.

IIFigure 17.4 
Luminance measures
the lightness of a color.
The color wheel in
Figure 17.3 is set to 50
percent luminance. Higher
percentages produce
lighter colors, and lower
percentages produce
darker colors.

Lesson 17.1:  �Specifying Red, Green, and Blue with the rgb() Function
Covers: The rgb() function

ððOnline: wdpg.io/17-1-0

Earlier, you learned that you can define any of more than 16 million colors

by specifying a value between 0 and 255 for each of the color’s red, green,

and blue components. One way to do this in CSS is to use the rgb() function,

shown in Figure 17.5.

To use this function, replace

red-value with a number between

0 and 255 to specify the red

component; replace green-value

with a number between 0 and 255

to specify the green component;

IIFigure 17.5 
To specify a color’s red,
green, and blue components,
you can use the rgb()
function.

rgb (red-value, green-value, blue-value)

Red (0-255) Blue (0-255)

Green (0-255)

Adding a Splash of Color to Your Web Designs

310	WEB DESIGN PLAYGROUND 

and replace blue-value with a number between 0 and 255 to specify the blue

component. You can generate purple, for example, by using 128 for red, 0

for green, and 128 for blue. The following example shows how you’d use

CSS to display all your h1 headings with purple text.

IIExample   �ðOnline: wdpg.io/17-1-1
This example uses the rgb() function to assign the color purple to the h1 element.

<h1>

W
E

B
 P

A
G

E

h1 {
 color: rgb(128, 0, 128);
}

Specify the h1
e lement to style .

Use the rgb() function to
set the color property value.

C
SS

<h1>Royalty: A History</h1>

H
T

M
L

You can also specify the rgb() function’s red-value, green-value, and

blue-value parameters by using percentages, with 100% specifying the full

intensity of the color (equivalent to the 255 decimal value) and 0% specifying

the lowest intensity of the color (so it’s the same as 0 in the decimal notation).

Table 17.2 is a repeat of Table 17.1 with the decimal values replaced by their

percentage equivalents.

IITable 17.2  The Red, Green, and Blue Percentages for Nine Common Colors

Name Red Green Blue Color
Red 100% 0 0

Green 0 100% 0

Blue 0 0 100%

Yellow 100% 100% 0

Play
How would you use
the rgb() function to
apply the color red to
an element? ðOnline:
wdpg.io/17-1-2

Adding Colors with CSS

	 WEB DESIGN PLAYGROUND	 311

ððOnline: wdpg.io/17-2-0

If you have a specific hue in mind, you may prefer to define your CSS color

by specifying the color’s hue, saturation, and luminance components. To do

this in CSS, use the hsl() function, shown in Figure 17.6.

To use this function, replace hue-value with a number between 0 and 359

to specify the hue component; replace sat-value with a percentage between

0 and 100 to specify the saturation component; and replace lum-value with

a percentage between 0 and

100 to specify the luminance

component. Sticking with the

purple h1 text example, the

following shows how you’d

use CSS to display all your h1

headings with purple text by

using the hsl() function.

IIFigure 17.6 
To specify a color’s hue,
saturation, and luminance
components, use the
hsl() function.

hsl (hue-value, sat-value, lum-value)

Hue (0-359) Luminance (0-100%)

Saturation (0-100%)

Lesson 17.2:  �Specifying Hue, Saturation, and Luminance with the
hsl() Function
Covers: The hsl() function

Name Red Green Blue Color
Magenta 100% 0 100%

Cyan 0 100% 100%

Black 0 0 0

Gray 50% 50% 50%

White 100% 100% 100%

Here’s the color definition for purple converted to percentages:

color: rgb(50%, 0, 50%)

Play
How would you use the
rgb() function to apply
a light gray color to an
element? ðOnline:
wdpg.io/17-1-3

Adding a Splash of Color to Your Web Designs

312	WEB DESIGN PLAYGROUND 

IIExample   �ðOnline: wdpg.io/17-2-1
This example uses the hsl() function to assign the color purple to the h1 element.

<h1>

W
E

B
 P

A
G

E

h1 {
 color: hsl(300, 100%, 25%);
}

Specify the h1
e lement to style .

Use the hsl() function
to set the color property
value.

C
SS

<h1>Royalty: A History</h1>

H
T

M
L

Play
How would you use
the hsl() function to
apply the color blue to
an element? ðOnline:
wdpg.io/17-2-2

Play
How would you use
the hsl() function to
apply the color white to
an element? ðOnline:
wdpg.io/17-2-3

A Quick Note about Transparency
For the most part, you want your web page text to appear solid and readable.

However, there will be times when, for the sake of adding visual interest to

your page, you consciously decide to sacrifice a tiny bit of readability by

making your text slightly transparent. This means that whatever is behind the

text—it could be a solid color, an image, or even other text—shows through.

You control the transparency (also called the opacity) of your text by

using variants of the rgb() and hsl() functions: rgba() and hsla().

You use these functions like rgb() and hsl(), respectively, except that

you also specify a fourth parameter called the alpha channel. The alpha

channel is a numeric value between 0.0 and 1.0, where 1.0 means that

the text is completely opaque and 0.0 means that the text is completely

transparent.

A Brief Detour into Hexadecimal Numbers
The next CSS color tool I’m going to tell you about uses hexadecimal

numbers, which use base 16 instead of the base 10 used by regular decimal

Adding Colors with CSS

	 WEB DESIGN PLAYGROUND	 313

numbers. If you know about hexadecimal numbers, feel free to skip this

section; otherwise, before moving on with CSS colors, you need to make a

short but necessary detour into the hexadecimal realm.

Hexadecimal values are efficient because they use single-character

symbols for everything from 0 to 15. Specifically, they use 0 through 9 for

the first ten values, just as in decimal, but they use the letters A through F to

represent the quantities 10 through 15. Figure 17.7 shows the decimal and

hexadecimal equivalents for the quantities 0 through 15.

Decimal

Hexidecimal

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

A

11

B

12

C

13

D

14

E

15

F

For two-digit values, a decimal number has two parts: a tens part on

the left and a ones part on the right. The number 10 can be read as “one

ten and zero ones,” and 36 can be read as “three tens and six ones.” A two-

digit hex number also has two parts: a sixteens part on the left and a ones

part on the right. The hex number 10 can be read as “one sixteen and zero

ones” (making it the equivalent of 16 decimal), and 5C hex can be read as

“five sixteens and C (twelve) ones,” making it the equivalent of 92 decimal.

Figure 17.8 shows a few examples.

One
ten

Six
ones

One
sixteen

Zero
ones

Decimal

Hexadecimal

16

10

Three
tens

Six
ones

Two
sixteens

Four
ones

36

24

Nine
tens

Two
ones

Five
sixteens

Twelve
ones

92

5C

IIFigure 17.7 
Hexadecimal uses 0
through 9 the same as
decimal, but it represents
the quantities 10 through 15
with the letters A through F.

IIFigure 17.8 
In the same way that a
two-digit decimal number
consists of a tens place on
the left and a ones place
on the right, a two-digit
hexadecimal number
consists of a sixteens place
on the left and a ones place
on the right.

Adding a Splash of Color to Your Web Designs

314	WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io/17-3-0

Rather than using the rgb() function to specify a color’s red, green, and blue

components, you can use the CSS hexadecimal-based method, shown in

Figure 17.9.

These RGB hex codes always

begin with the hash symbol (#),

followed by the two-digit hex

value for the red component,

the two-digit hex value for the

green component, and the

two-digit hex value for the blue

component. In each case, the

allowed hex values range from 00 to ff. Because these codes consist of

three hex values, they’re often called hex triplets. Table 17.3 lists the RGB hex

codes used for the nine common colors shown earlier in Tables 17.1 and 17.2.

IITable 17.3  The RGB Hex Codes for Nine Common Colors

Name Red Color
Red #ff000

Green #00ff00

Blue #0000ff

Yellow #ffff00

Magenta #ff00ff

Cyan #00ffff

Black #000000

Gray #808080

White #ffffff

The following example shows how you’d use this method to apply purple

to h1 text. The hex equivalent of decimal 128 is 80, so for the color value,

the red component is hex 80, the green component is hex 00, and the blue

component is hex 80.

IIFigure 17.9 
You can specify a color by
using the code #rrggbb,
where rr is the hex value
for the red component,
gg is the hex value for the
green component, and bb
is the hex value for the blue
component.

#rrggbb

Red value (hex 00-ff) Blue value (hex 00-ff)

Green value (hex 00-ff)

Lesson 17.3:  �Using RGB Hex Codes
Covers: RGB hexadecimal codes

Adding Colors with CSS

	 WEB DESIGN PLAYGROUND	 315

IIExample   �ðOnline: wdpg.io/17-3-1
This example uses #rrggbb to assign the color purple to the h1 element.

<h1>

W
E

B
 P

A
G

E

h1 {
 color: #800080;
}

Specify the h1
e lement to style .

Use #rrggbb to set the
color property value.

C
SS

<h1>Royalty: A History</h1>

H
T

M
L

You can use an even shorter code in certain circumstances. If each of the

rr, gg, and bb values use repeated characters—such as 00, 66, or ff—you

can use one of the repeated characters for each color. The following two

codes are equivalent:

#3366cc
#36c

Working with the Color Chooser
Dealing in RGB codes, HSL values, and hexadecimals may be convenient for

a computer, but the connection between those numbers and a particular

color isn’t intuitive for humans. Color keywords are more comprehensible,

but they represent far too few of the available colors. To make it easier for

you to view and ultimately choose a color to use on a web page, the Web

Design Playground offers a tool called the Color Chooser. This tool offers a

color palette control that lets you select a preset color or any combination

of hue, saturation, luminosity, and transparency. The tool shows not only the

resulting color, but also the rgb() function (both decimal and percentage),

the hsl() function, the RGB hex triplet, the color keyword (if applicable),

and the r() and hsla() functions if you set the transparency.

Play
What RGB code would
you use to apply the
color blue to an element?

ðOnline: wdpg.io/17-3-2

Play
What RGB code would
you use to apply the
lightest possible gray to
an element? ðOnline:
wdpg.io/17-3-3

Adding a Splash of Color to Your Web Designs

316	WEB DESIGN PLAYGROUND 

Here how you use the Color Chooser tool:

1	 In the Web Design Playground, choose Menu > Color Chooser (or go

directly to wdpg.io/colorchooser).

2	 Click the Color control to display the palette, as shown in Figure 17.10.

3	 To choose a preset color, click one of the swatches on the left side of

the control.

4	 To specify a color, use the text box to enter an rgb() function,

hsl() function, RGB hex triplet, color keyword, rgba() function, or

hsla()function.

5	 In the large color box, drag horizontally to set the saturation, or drag

vertically to set the luminance.

6	 Use the vertical box to set the hue and the horizontal box to set the

transparency.

7	 When you're done, click Close.

Learn
To learn how to
modify your colors
with transparency,
see the “Changing the
Transparency” lesson
on the Playground.

ðOnline: wdpg.io/17-7-0

Pre-set
colors

Drag to set the
transparency.

Drag to set
the saturation.

Drag to set
the luminance.

Drag to set
the hue.

You can type
a code here.

CSS codes for
the selected
color

Selected color

IIFigure 17.10  Use the Web Design Playground’s Color Chooser tool to select a color
and see its various CSS codes.

Choosing Harmonious Colors

	 WEB DESIGN PLAYGROUND	 317

Choosing Harmonious Colors
Now you know how to apply colors to your page elements, but that's only

half the battle. Colors that are poorly matched or improperly applied can

make a page look worse, not better. This section examines a few basics for

effectively using colors in your page designs.

First, with so many colors available, the temptation is to go overboard and

use a dozen hues on each page. Using too many colors, however, can confuse

your users and even cause eye fatigue. Try to stick to two or three colors at

most. If you must use more, try to use different shades of two or three hues.

When selecting colors, think about the psychological impact of your

scheme on your users. Studies have shown that "cool" colors such as blue

and gray evoke a sense of dependability and trust. Use these colors for a

businesslike appearance. For pages that require a little more excitement,

"warm" colors such as red, yellow, and orange can evoke a festive, fun

atmosphere. For a safe, comfortable ambiance, try using brown and yellow.

For an environmental touch, use green and brown.

Finally, you need to give some thought to how your colors work together.

Some colors naturally clash and, when used together, will make your page

look terrible. Fortunately, every hue has one or more colors that blend well

with it, resulting in harmonious designs that are pleasing to your visitors’

eyes. Note that harmonious doesn’t mean boring! Depending on the colors

you choose, the result can be anything from soothing to vibrant, so the color

scheme you go with is a reflection of what you want your site to say.

Happily, you don’t have to guess which colors will do the job. You can

use the tricks described in the following list:

•	 Choose complementary colors. Complementary colors lie
opposite each other on the color wheel. In terms of the hsl()
function, complementary colors are those with hue values
that are 180 degrees apart. Red—hsl(0, 100%, 50%)—is the
complement of cyan—hsl(180, 100%, 50%). As a rule, with
any complementary color scheme, it’s often best to use one
color as the main hue on the page and the other color as an
accent, particularly for elements you want the user to notice,
such as Subscribe or Buy buttons and similar call-to-action
objects. See “Color Scheme Gallery,” later in this chapter, for an
example web page that uses complementary colors.

Adding a Splash of Color to Your Web Designs

318	WEB DESIGN PLAYGROUND 

•	 Choose analogous colors. Analogous colors lie adjacent to
each other on the color wheel. In terms of the hsl() function,
analogous colors are those with hue values that are plus or
minus 30 degrees from the main color. Red—hsl(0, 100%,
50%)—is analogous to both hsl(30, 100%, 50%) and
hsl(330, 100%, 50%). If you prefer even less contrast (you
want colors that are closer to each other), you can create an
analogous scheme by using colors that are 15 degrees apart. If
you go with a scheme that has more contrast, it’s usually best
to pick one color as the main hue for your page and to use the
other two colors for buttons, borders, and other accents.

•	 Choose triadic colors. Triadic colors are three colors that lie an
equal distance from one another on the color wheel. In terms
of the hsl() function, triadic colors are those with hue values
that are 120 degrees apart. Red—hsl(0, 100%, 50%)—is triadic
to both hsl(120, 100%, 50%) and hsl(240, 100%, 50%).
Triadic colors tend to have a similar level of vibrancy, so they
feel balanced and in harmony. Many sites that use a triadic
scheme pick one color for the page background, another color
for the page content and navigation, and the third color for
borders and other accents.

•	 Choose split complementary colors. A split complementary
color scheme is similar to a complementary color scheme
except that instead of using the opposite hue on the color
wheel, you use the two colors that lie 30 degrees to either
side of that opposite color. Red—hsl(0, 100%, 50%)—is
split complementary with both hsl(150, 100%, 50%) and
hsl(210, 100%, 50%). A good rule of thumb for implementing
a split complementary color scheme is to use the original
color as the page’s main hue and use the other two colors for
content, navigation, and accents.

Using the Color Scheme Calculator
If you know the color you want to use as the main hue on your page, calculating

the rest of your color scheme is straightforward:

•	 Complementary —Add or subtract 180 degrees.

•	 Analogous —Add 30 degrees for one color and subtract 30
degrees for the other.

Using the Color Scheme Calculator

	 WEB DESIGN PLAYGROUND	319

•	 Triadic —Add 120 degrees for one color and subtract 120
degrees for the other.

•	 Split complementary —Add 180 degrees to the hue; then
subtract 30 degrees for one color and add 30 degrees for the
other color.

The math is quite daunting if you know only the RGB code, however. Not to

worry: I’ve put a Color Scheme Calculator on the Web Design Playground.

Here’s how you use it:

1	 Choose Menu > Color Scheme Calculator (or navigate to wdpg.io/

colorcalc).

2	 On the Color Scheme Type tab, select the option for the color

scheme type you want: Complementary, Analogous, Triadic, or Split

Complementary.

There’s also a Monochrome scheme, which generates five colors with

the same hue, but varying saturation and luminance values.

3	 Use the color picker to select your initial color.

You can click the color you want or use the text box to enter an RGB

hex triplet or rgb() function. (You can also type a color keyword or

hsl() function.) The calculator displays the color scheme and shows

the RGB code, rgb() function, and hsl() function for each color, as

shown in Figure 17.11.

IIFigure 17.11 
Use the Web Design
Playground’s Color Scheme
Calculator to generate a
color scheme for a given
RGB code.

320	WEB DESIGN PLAYGROUND 

Adding a Splash of Color to Your Web Designs

Color Scheme Gallery

1bcfc9

�5859

005931

�a200

187816

IIThis web page uses two
complementary colors to
handle the bulk of its color
load, proving that you
don’t need a dozen colors
to create a striking design
(http://www.upstruct.
com/work/amandus-film-
festival-2015).

IIThis site uses an
analogous scheme to
create a colorful, inviting
landing page (http://
toriseye.quodis.com).

	 WEB DESIGN PLAYGROUND	 321

Color Scheme Gallery

af1c8d

�a200

187816

f57b20

6c98b1

1b3148

IIThis website uses its
triadic color scheme for
backgrounds and text
(http://crayola.com).

IIAn example of a site that
uses a split complementary
color scheme in which
the darkest color provides
the background and the
brightest color provides
the eye-grabbing accents
(http://udoncampus.com).

Adding a Splash of Color to Your Web Designs

322	WEB DESIGN PLAYGROUND 

Lesson 17.4:  �Creating a Linear Gradient
Covers: The linear-gradient function

ððOnline: wdpg.io/17-4-0

To specify a linear gradient, you apply the linear-gradient() function

to the background-image property of whatever element you’re styling.

Figure 17.12 shows the general syntax to use.

linear-gradient (angle, color1[%], color2[%], etc.)

Color values

Degrees or keywords

IIFigure 17.12 
To define a linear gradient,
use the linear-
gradient() function to
specify the angle and the
color stops.

Applying a Color Gradient
So far, all the colors you’ve worked with have been a single hue—sometimes

lighter or darker or more transparent, true, but one hue nonetheless. It’s

possible, however, to style a single page element with multiple colors by

using the concept of the gradient. A gradient is a combination of two or

more colors in which one color gradually (or sometimes quickly) transitions

into the next. When used sparingly, gradients can be effective ways to add

visual interest and pizzazz to a web page.

Before you get started on the CSS, you need to know a few things:

•	 Gradients are images that the web browser creates
automatically.

•	 Gradients can be applied only as backgrounds, although a wide
range of elements supports background images.

•	 You can use two types of gradients: A linear gradient transitions
from one color to the next along a straight line; a radial gradient
transitions from one color to the next from a single point
outward in the shape of an ellipse or circle.

In the next couple of lessons, you look at the CSS behind linear and radial

gradients.

Applying a Color Gradient

	 WEB DESIGN PLAYGROUND	323

The angle value can be a number between 0 and 359 followed by

the deg unit or the keyword to followed by the keyword for a horizontal

direction (left or right), a vertical direction (top or bottom), or a diagonal

direction (top left, top right, bottom left, or bottom right). The

color values (color1, color2, and so on) can be any of the color values

that you learned earlier in the chapter. The percentages specify the color

stops, which are the transition positions where the previous color ends and

the next color begins. The first default color stop is 0% (that is, starts at the

beginning) and the last default color stop is 100% (that is, stops at the end),

so you don’t need to enter these values.

The following example shows an empty div element styled with a linear

gradient.

IIExample   �ðOnline: wdpg.io/17-4-1
This example shows a div element styled with a linear gradient that transitions from
yellow to blue.

W
E

B
 P

A
G

E

div {
 background-color: blue;
 background-image: linear-gradient(to bottom, yellow, blue);
 height: 175px;
 width: 100%;
}

A fal lback style for the (rare) browser
that doesn’t support gradients

The l inear gradient
defined to run from

the top to the bottom,
transit ion ing from

yel low to blue

Various styles
appl ied to the
div element

C
SS

<div></div> The div e lement

H
T

M
L

Play
Create a linear gradient
that runs from the top-left
corner to the bottom-right
corner. Use #76a5af as
the starting color and
#073763 as the finishing
color. ðOnline: wdpg
.io/17-4-2

Play
Create a linear gradient
that runs at a 60-degree
angle. For the first
color, use hue 191 with
full saturation and
half luminance; for the
second color, keep the
same hue, but use one-
quarter saturation and
15 percent luminance.

ðOnline: wdpg.io/17-4-3

Adding a Splash of Color to Your Web Designs

324	WEB DESIGN PLAYGROUND 

Notice in the example that I set the background color first and then

applied the gradient. Adding a background-color declaration is a fallback

for browsers that don’t support gradients—mostly Internet Explorer 9 and

earlier. Such browsers render the background color but ignore the gradient

style. Fortunately, all modern browsers support gradients, so only the

increasingly rare older versions of Internet Explorer require this fallback.

If you use three or more colors in your gradient, you need to give some

thought as to where you want each color to stop and the next to begin. If

you don’t specify any stop locations, the browser does the work for you and

assumes that the transition occurs halfway between the colors on either

side. If you specify three colors, the middle color’s transition position is at 50

percent, halfway between the first (0 percent) and third (100 percent) colors.

The following example shows a linear gradient in which the second color

kicks in a bit earlier.

Play
Determine the two colors
that go with the color
#674ea7 in an analogous
color scheme. Create a
linear gradient that uses
all three colors and runs
from bottom right to top
left. ðOnline: wdpg.
io/17-4-8

IIExample   �ðOnline: wdpg.io/17-4-5
This example shows a div element styled with a three-color linear gradient in which the
middle color (white) begin its transition earlier than normal (at the 25 percent mark).

W
E

B
 P

A
G

E

div {
 background-color: blue;
 background-image: linear-gradient(to top right, red, white 25%,
blue);
 height: 175px;
 width: 100%;
}

A fal lback style for the
(rare) browser that doesn’t
support gradients

The l inear gradient defined
to run from the bottom left

to the top right, transit ion-
ing from red to white at

25 percent and then to blue
Various styles appl ied to
the div e lement

C
SS

<div></div> The div e lement

H
T

M
L

Applying a Color Gradient

	 WEB DESIGN PLAYGROUND	325

ððOnline: wdpg.io/17-5-0

To specify a radial gradient, you apply the radial-gradient() function

to the background-image property of an element. Figure 17.13 shows the

general syntax.

radial-gradient (shape, extent at position, color-stops)

Circle or ellipse

Where the last color ends

Starting position
of the shape

The shape value can be circle (the default, so you can omit it) or

ellipse. The extent value is a keyword pair that tells the browser the

side or corner of the element where you want the last color to stop. The

possible values are closest-side, farthest-side, closest-corner, and

farthest-corner. The position value specifies the starting point for the

shape; it can be a set of x-y points (e.g., 45px 100px) or a keyword pair

that combines a horizontal position (left, center, or right) with a vertical

position (top, center, or bottom). The color values and stops are the same

as for a linear gradient.

The default value for extent is farthest-corner, and the default value

for position is center center (which can be shortened to center). The

simplest possible rule for a radial gradient is radial-gradient (color1,

color2), which creates a centered circular gradient that transitions from

color1 to color2 out to the furthest corner of the element.

The following example shows an empty div element styled with a radial

gradient.

Play
Create a five-color
linear gradient that runs
from left to right. The
five colors (and their
stops) are #ffff00
(0%); #05c1ff (20%);
#274e13 (50%);
#05c1ff (80%);
#ffff00 (100%).

ðOnline: wdpg.io/17-4-6

Play
Make attractive
repeating background
patterns using linear
gradients and the CSS
background-size
property. ðOnline:
wdpg.io/17-4-7

IIFigure 17.13  Defining a radial gradient, using the radial-gradient()
function to specify shape, extent, and color stops

Lesson 17.5:  �Creating a Radial Gradient
Covers: The radial-gradient function

Adding a Splash of Color to Your Web Designs

326	WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io/17-6-0

The linear-gradient and radial-gradient properties are supported in all

modern browsers, but not everyone uses a modern browser. The good news

is that all the major browsers have fully supported gradients for a while now,

so you don’t need vendor prefixes. To be safe, however, you should include a

fallback color, which is a default value for the background-color property.

Listing 17.1 shows the cross-browser code you should use for a linear

gradient.

Lesson 17.6:  �Gradients and Older Browsers
Covers: Adding a gradient fallback color

Play
Create a circular radial
gradient with a center
that starts 100 pixels
from the top and 100
pixels from the left. Use
the colors #c27ba0 and
#3c78d8. ðOnline:
wdpg.io/17-5-2

Play
What's the difference
between the radial
gradient keywords
closest-corner and
farthest-corner?
I've set up an exercise
on the Web Design
Playground to help you
find out. ðOnline:
wdpg.io/17-5-3

IIExample   �ðOnline: wdpg.io/17-5-1
This example shows a <div> tag styled with a radial gradient that transitions from
yellow to blue.

W
E

B
 P

A
G

E

div {
 background-color: yellow;
 background-image: radial-gradient(ellipse farthest-corner at
left top, yellow, blue);
 height: 200px;
 width: 100%;
}

A fal lback style for
the (rare) browser that
doesn’t support gradients

The radia l gradient defined
to run from the top left to
the bottom right, transit ion ing
from yel low to blue

Various styles appl ied to
the div e lement

C
SS

<div></div> The div e lement

H
T

M
L

Applying a Color Gradient

	 WEB DESIGN PLAYGROUND	327

IIListing 17.1 Cross-Browser CSS for a Linear Gradient

background-color: color;
background-image: linear-gradient(angle, color-stops);

The cross-browser code begins with the fallback color, in case your page

is visited by someone who uses a browser that doesn’t support gradients.

The W3C standard code appears next so that it gets implemented by every

browser that supports it. Here’s an example:

background-color: cyan;
background-image: linear-gradient(to top left, red, cyan);

Listing 17.2 shows the cross-browser code you should use for a radial

gradient.

IIListing 17.2 Cross-Browser CSS for a Radial Gradient

background-color: color;
background-image: radial-gradient(shape, extent, direction, color-
stops);

As with linear gradients, this cross-browser code consists of a fallback color

to cover old browsers, followed by the W3C standard code. Here’s an example:

background-color: #fff;
background-image: radial-gradient(ellipse farthest-corner at
center, #fff, #00f);

Using the Gradient Construction Kit
Gradients are among the most eye-catching CSS effects, but they’re also

some of the most laborious because of all the keywords, colors, and stops.

To make implementing this important feature on your own pages easier for

you, the Web Design Playground includes a Gradient Construction Kit that

enables you to use a form to select all the elements of your gradient. As you

build your gradient, you see exactly what the result looks like, and the CSS

editor shows the cross-browser code that you can copy and paste into your

project.

The fal lback color for browsers
that don’t support gradients

The W3C standard syntax

The fal lback color for browsers
that don’t support gradients

The W3C standard syntax

Lesson 17.6:  �Gradients and Older Browsers
Covers: Adding a gradient fallback color

Play
Create a circular radial
gradient with a center
that starts 100 pixels
from the top and 100
pixels from the left. Use
the colors #c27ba0 and
#3c78d8. ðOnline:
wdpg.io/17-5-2

Play
What's the difference
between the radial
gradient keywords
closest-corner and
farthest-corner?
I've set up an exercise
on the Web Design
Playground to help you
find out. ðOnline:
wdpg.io/17-5-3

Adding a Splash of Color to Your Web Designs

328	WEB DESIGN PLAYGROUND 

Here’s how you use the Gradient Construction Kit:

1	 In the Web Design Playground, choose Menu > Gradient Construction

Kit (or navigate directly to wdpg.io/kits/gradient).

2	 Select the radio button for the type of Gradient you want to create:

Linear or Radial.

The controls in the Options tab change to reflect your choice.

3	 Select the options for your linear or radial gradient.

4	 In the Colors tab, select your colors and stops.

The Gradient Construction Kit displays the gradient and shows the cross-

browser rules in the CSS editor, as shown in Figure 17.14.

5	 To choose a preset color, click one of the swatches on the left side of

the control.

6	 To specify a color, use the text box to enter an rgb() function,

hsl() function, RGB hex triplet, color keyword, rgba() function, or

hsla()function.

7	 In the large color box, drag horizontally to set the saturation, or drag

vertically to set the luminance.

8	 Use the vertical box to set the hue and the horizontal box to set the

transparency.

9	 When you're done, click Close.

IIFigure 17.14 
Use the Web Design
Playground’s Gradient
Construction Kit to build
a linear or radial gradient
with a few mouse clicks.

Learn
To learn how to
modify your colors
with transparency,
see the “Changing the
Transparency” lesson
on the Playground.

ðOnline: wdpg.io/17-7-0

Summary

	 WEB DESIGN PLAYGROUND	329

Summary
•	 Besides the color keywords you learned about in Chapter 4,

you have five ways to specify a CSS color: the rgb() function,
the hsl() function, an RGB hexadecimal code, the rgba()
function, and the hsla() function.

•	 To color an element’s text, use the color property.

•	 To color an element’s background, use the background-color
property.

•	 To apply a linear gradient to an element’s background, use the
linear-gradient() function; if you prefer a radial gradient
background, use the radial-gradient() function.

	 WEB DESIGN PLAYGROUND	 331

Chapter

18

Enhancing Page Text
with Typography

90 percent of design is typography. —Jeffrey Zeldman

This chapter covers

▪	Setting the typeface
▪	Working with Google fonts
▪	Styling your web page words and paragraphs

Do you want to know the secret of great web design? Specifically, do you want
to know the one design element common to almost all the best websites?
The hidden-in-plain-sight design secret shared by nearly every outstanding
website can be summed up in just two words:

Typography matters.

Typography—styles applied to enhance the legibility, readability, and appearance
of text—is the web’s secret sauce, its magic dust. When you come across a site
that has aesthetic appeal, chances are that a big chunk of that appeal comes
from the site’s use of fonts, text sizes and styles, spacing, and other matters
typographical. The site has text appeal.

18

Enhancing Page Text with Typography

332	WEB DESIGN PLAYGROUND 

Lesson 18.1:  �Working with Font Stacks
Covers: The font-family property

ððOnline: wdpg.io/18-1-0

You may recall from Chapter 4 that when you use the font-family

property, you can use multiple font families as long as you separate them

with commas in what is known as a font stack.

Why would you specify more than one font family? With few exceptions,

you can’t be certain that a system font is installed on the user’s device.

Although the sans-serif font Helvetica is installed on 100 percent of Macs,

for example, it’s installed on a mere 7 percent of Windows PCs. Similarly, the

serif font Cambria is installed on more than 83 percent of Windows PCs but

available on only about 35 percent of Macs. When you specify a font stack,

the browser checks the first family to see whether it’s installed. If not, the

browser tries the next font family in the list, and the process continues until

the browser finds an installed system font. If none is found, it’s always good

practice to include a similar generic font family at the end of the font stack.

If your system fonts are serifs, for example, include the serif generic font

at the end of the stack.

Besides the generic font, are there any other sure bets that you can

include in your font stack? Alas, not really, although some fonts are installed

on at least 90 percent of both Macs and Windows PCs. The sans-serif fonts

are Arial, Arial Black, Tahoma, Trebuchet MS, and Verdana. The serif fonts are

Georgia and Times New Roman. The monospace font is Courier New.

Learn
To get the installation
percentages for many
popular system fonts, as
well as suggested stacks
for each font, see the CSS
Font Stack at https://
www.cssfontstack.com.

If you want the same appeal on your own web pages, you need only

remember those two all-important words: Typography matters. Typefaces

matter. Type sizes and styles matter. Spacing, alignment, and indents matter.

Fortunately, as you see in this chapter, CSS comes with a large set of

typographical tools that you can wield to spruce up your text. No, you don’t

have the level of control that you get in a desktop page-layout program, but

there are enough CSS properties and values to show the world that you care

about your web page text.

Specifying the Typeface
To shift your typography into high gear, you need to go beyond the generic

and system fonts that I talked about in Chapter 4 and embrace the powerful

concepts of the font stack and web fonts.

Specifying the Typeface

	 WEB DESIGN PLAYGROUND	333

Another font stack strategy is to include the font families in the following

order:

•	 Your preferred font

•	 A close facsimile of the preferred font

•	 A similar font that’s nearly universal in both Mac and Windows

•	 The generic font from the same style

Here's an example:

font-family: "League Spartan", Futura, Tahoma, sans-serif;

The following example creates two font stacks: one for the h3 element

and one for the p and li elements.

IIExample   �ðOnline: wdpg.io/18-1-1
This example shows a serif-based font stack applied to the h3 element, as well as a
sans-serif-based font stack applied to the p and li elements.

The li elements

The p elementThe h3 element

W
E

B
 P

A
G

E

h3 {
 font-family: "Lucida Bright", Georgia, serif;
}
p, li {
 font-family: Tahoma, Helvetica, Arial, sans-serif;
}

The h3 element gets a
serif-based font stack.

The p and l i e lements get a
sans-serif-based font stack.

C
SS

continued

Enhancing Page Text with Typography

334	WEB DESIGN PLAYGROUND 

<h3>People of Collar</h3>
<p>The adjectives <i>white-collar</i> and <i>blue-collar</i> are
familiar to most of us, but here are a few more whimsical variants
that you might not have heard of:</p>

 Black-and-blue-collar: Football players
 Green-collar: Environmentalists
 Grey-collar: Employees who perform both white- and blue-
collar tasks
 Open-collar: People who work at home
 Steel-collar: Robots

H
T

M
L

 Here are a few pointers to bear in mind when you build a font stack for

your web design:

•	 If you have a less popular system font you want to try, put it
at the beginning of the stack. If you put it after a font that's
installed on, say, 99 percent of devices, the less-popular font
will rarely be used.

•	 If possible, try to match font characteristics within the stack.
Don't include in the same stack both a narrow font such as Arial
and a relatively thick font such as Verdana, for example.

•	 Always end the font stack with a generic font from the same style.

Specifying Web Fonts
Relying on system fonts is a straightforward way to bump up your typography

a notch from the browser’s default fonts. But system fonts suffer from two

glaring problems: A limited number of system fonts is available, and you can’t

be sure that a given system font is installed on the user’s computer. The latter

is a big problem because it means that you can’t know with any certainty

how your web page will appear to every user. If you believe that typography

matters (and you should), this uncertainty is a major design hurdle.

Fortunately, you can leap gazellelike over that hurdle by implementing

web fonts on your pages. Web fonts are font files that are hosted on the

web and referenced by a special CSS directive named @font-face. The web

browser uses that directive to load the font files, thus ensuring that every

user sees the same fonts.

You have two ways to host web fonts:

•	 Use a third-party host.

•	 Host the font files on your own site.

The next two lessons provide the details as well as the pros and cons

associated with each method.

Specifying the Typeface

	 WEB DESIGN PLAYGROUND	335

ððOnline: wdpg.io/18-2-0

By far the easiest way to implement web fonts is to link to the fonts hosted

on a third-party site. Many font-hosting services are available, including Fonts.

com (https://www.fonts.com) and Adobe Typekit (https://typekit.com). In most cases,

you can purchase a font outright or pay a monthly fee, which gives you access

to a wide variety of fonts. Most new web designers, however, use Google

Fonts (https://fonts.google.com), which offers hundreds of free web fonts.

The main advantage of using a third party is that all rights to use the

web fonts have been cleared. Fonts are intellectual property, so you need

permission from the creator to use them, particularly on a website. Font

hosts have already obtained the necessary licenses, so their fonts are hassle-

and guilt-free.

Web font services . . . handle the bulk of the licensing
and hosting work, leaving you to do what you do best—
build amazing and beautiful websites. —Dan Eden

The main disadvantage of using a third party is that the font files reside on

a remote server, so it can sometimes take a bit of extra time for your fonts

to load. The more fonts you link to, the slower the load time. Most big-time

font-hosting services have optimized delivery mechanisms, however, so this

font lag usually isn’t a big problem.

The method by which you specify which fonts you want to use varies

depending on the service, but the general procedure usually goes something

like this:

1	 On the font host’s website, locate and select the typeface you want

to use.

2	 Customize the typeface by adding extra fonts such as italic, bold, and

possibly bold italic.

3	 Copy the <link> tag generated by the font host and paste the tag

into the head section of your web page (that is, between the <head>

and </head> tags).

This tag loads from the host a CSS file that includes the required font

code. Here’s the <link> tag generated by Google Fonts for the Lato

Beware
Remember that the more
fonts you add, the slower
your web pages will load.
Link only to fonts you
absolutely need. Besides
the regular font, most
web pages need only
italic and bold.

Lesson 18.2:  �Using Third-Party Hosted Fonts
Covers: The link element

Enhancing Page Text with Typography

336	WEB DESIGN PLAYGROUND 

typeface (where 400 refers to the regular font, 400i refers to regular

italic, and 700 refers to bold):

<link href="https://fonts.googleapis.com/
css?family=Lato:400,400i,700" rel="stylesheet">

4	 Add the font to your styles.

The following property tells the web browser to use the Lato font fam-

ily for all paragraph text (with the addition of a generic font name to

display in case the third-party font file can’t be loaded):

p {
 font-family: Lato, sans-serif;
}

FAQ
What do numbers such
as 400 and 700 refer to?
They refer to the weight
of the font, where 400
designates a regular font
and 700 designates a
bold font. See Chapter 4.

IIExample   �ðOnline: wdpg.io/18-2-1
This example shows two snippets of text. The first doesn’t appear within a <p> tag, so it
uses the browser’s default font, and the second appears within a <p> tag, so it uses the
font family specified by the property shown in the CSS section.

W
E

B
 P

A
G

E

p {
 font-family: Lato, sans-serif;
}

The p element uses
the Lato font fami ly .

C
SS

<link href="https://fonts.googleapis.com/
css?family=Lato:400,400i,700" rel="stylesheet">

This text just uses the browser's default font.

<p>
This text resides within an HTML paragraph, so it uses the font
specified in the style definition for the p tag.
</p>

Tel ls the browser to down-
load the font from Google No p element

is specified,
so the default

font is used.

This text is with in a p element, so
it ’s formatted with the Lato font.

H
T

M
L

Specifying the Typeface

	 WEB DESIGN PLAYGROUND	337

ððOnline: wdpg.io/18-3-0

Using a third-party font host is the easiest way to get out of the default-font

rut and make your pages shine with an interesting typeface or two. Some

web designers, however, dislike having the look of their pages at the mercy

of some remote server, which might work slowly or not at all. In such cases,

designers go the host-it-yourself route, in which the actual font files reside

on the same server as the web page.

Unfortunately, you have a price to pay for the inherent speed and

reliability of hosting your own fonts: complexity. Whereas using third-party-

hosted fonts is a straightforward matter of generating and using a <link>

tag for a remote stylesheet, hosting your own fonts has two major factors

that raise the complexity level.

The first complicating factor is font licensing. Most commercial fonts

come with a license that prevents them from being used on the web. Before

you can host a font yourself, you must purchase a license to use the font on

the web (assuming such a license is offered), or you can look for an open-

source font that allows web use.

For the latter, here are a few font collections to try:

•	 Font Squirrel (https://www.fontsquirrel.com)

•	 Fontspring (https://www.fontspring.com)

•	 Fontex (www.fontex.org)

•	 Open Font Library (https://fontlibrary.org)

The second complicating factor is the mess that’s otherwise known as

font file formats. You might think that you need to upload a single font file

to your server, but the state of the font art isn’t so simple. There are, in fact,

three file formats:

•	 EOT (Embedded Open Type)—Supported by Internet Explorer
and the only font file format supported by Internet Explorer
before version 9.

•	 WOFF (Web Open Font Format)—Supported by Internet Explorer
9 and later, Mozilla Firefox 3.6 and later, and Google Chrome
6 and later. A newer version called WOFF 2.0 (or WOFF2) is
supported by Microsoft Edge 14 and later; Chrome 36 and later;
Firefox 39 and later; Opera 23 and later; Safari 12, and later, iOS
Safari 10.2, and later; and Android 62, and later.

•	 TTF/OTF (TrueType Font/OpenType Font)—Supported by all
browsers except Internet Explorer 8 and earlier.

Play
Use Google Fonts to
generate a <link> tag
for a stylesheet that
defines just the regular
font of the Merriweather
typeface. Set up a style
that applies the regular
font to all page text and
includes a generic font
name as a fallback.

ðOnline: wdpg.io/18-2-2

FAQ
Is a local font file always
faster than a remote font
file? Not necessarily.
Many font providers
use content delivery
networks (CDNs) that
are very fast, so the lag
can often be less than
with a local file.

Beware
Fonts are intellectual
property and should be
treated as such. Before
hosting any font on your
site, make sure that you
have a license to use
the font for personal
and/or commercial
use (depending on the
nature of your site).

Lesson 18.3:  �Hosting Your Own Fonts
Covers: The @font-face at-rule

Enhancing Page Text with Typography

338	WEB DESIGN PLAYGROUND 

The good news indeed is that you no longer need most of these formats.

EOT is out because few people still use Internet Explorer 8 or earlier, and

TTF/OTF are redundant because they're contained in the WOFF and WOFF2

formats. (A fourth format, called SVG, is now considered to be obsolete.)

In short, you need to worry about only two font file formats: WOFF and

WOFF2. Not bad!

Theoretically, the idea is that you download your licensed font file, which

may be in the TTF file format, and then you somehow use that file to generate

the other formats. Practically, that’s difficult to do, so most folks use a Font

Squirrel service called the Webfont Generator (https://www.fontsquirrel.com/tools/

webfont-generator), which takes your downloaded font file and automatically

creates a package that includes the other file formats.

Even better, the Webfont Generator package includes the necessary CSS

code to use the fonts on your site. This code uses the @font-face at-rule,

and the generic syntax looks like this:

@font-face {
 font-family: 'Font Name';
 src: url('font_filename.woff2') format('woff2'),
 url('font_filename.woff') format('woff');
}

To apply the @font-face rule, use its font-family value as the

font-family property of the element you want to style.

Beware
Using only WOFF and
WOFF2 could mean
that a tiny portion of
your site visitors won't
see your font, including
users running the
following (and earlier
versions of each):
Android 4.3, Chrome
4, Firefox 3.5, Internet
Explorer 8, iOS 4.3,
Opera 10.1, and Safari
5. If this situation is a
problem, use the full @
font-face syntax
shown in wdpg.io/18-3-3.

Master
Mirroring the current
font file format reality,
the Webfont Generator
only generates WOFF
and WOFF2 fonts by
default. If you need other
font file formats, be sure
to activate the Expert
radio button; then use
the check boxes to choose
the formats you want.

Font names with spaces must
be enclosed in quotation marks.

Remember
For best cross-browser
results, set up the
@font-face rule
so that the WOFF2
font format appears
before the WOFF
format. The Webfont
Generator should do this
automatically.

IIExample   �ðOnline: wdpg.io/18-3-1
This example sets up an @font-face rule for the Bree Serif font and applies it to the
ul element.

 text

W
E

B
 P

A
G

E

Specifying the Typeface

	 WEB DESIGN PLAYGROUND	339

The good news indeed is that you no longer need most of these formats.

EOT is out because few people still use Internet Explorer 8 or earlier, and

TTF/OTF are redundant because they're contained in the WOFF and WOFF2

formats. (A fourth format, called SVG, is now considered to be obsolete.)

In short, you need to worry about only two font file formats: WOFF and

WOFF2. Not bad!

Theoretically, the idea is that you download your licensed font file, which

may be in the TTF file format, and then you somehow use that file to generate

the other formats. Practically, that’s difficult to do, so most folks use a Font

Squirrel service called the Webfont Generator (https://www.fontsquirrel.com/tools/

webfont-generator), which takes your downloaded font file and automatically

creates a package that includes the other file formats.

Even better, the Webfont Generator package includes the necessary CSS

code to use the fonts on your site. This code uses the @font-face at-rule,

and the generic syntax looks like this:

@font-face {
 font-family: 'Font Name';
 src: url('font_filename.woff2') format('woff2'),
 url('font_filename.woff') format('woff');
}

To apply the @font-face rule, use its font-family value as the

font-family property of the element you want to style.

Beware
Using only WOFF and
WOFF2 could mean
that a tiny portion of
your site visitors won't
see your font, including
users running the
following (and earlier
versions of each):
Android 4.3, Chrome
4, Firefox 3.5, Internet
Explorer 8, iOS 4.3,
Opera 10.1, and Safari
5. If this situation is a
problem, use the full @
font-face syntax
shown in wdpg.io/18-3-3.

Master
Mirroring the current
font file format reality,
the Webfont Generator
only generates WOFF
and WOFF2 fonts by
default. If you need other
font file formats, be sure
to activate the Expert
radio button; then use
the check boxes to choose
the formats you want.

Font names with spaces must
be enclosed in quotation marks.

Remember
For best cross-browser
results, set up the
@font-face rule
so that the WOFF2
font format appears
before the WOFF
format. The Webfont
Generator should do this
automatically.

@font-face {
 font-family: 'Bree Serif';
 src: url('/fonts/breeserif.woff2') format('woff2'),
 url('/fonts/breeserif.woff') format('woff');
}
ul {
 font-family: 'Bree Serif';
}

The font-fami ly name is used to
apply the font to the element.

C
SS

<p>
Prefer to get your word origins on the web? Looking to kill some
time at work? Wondering when this incessant questioning will end?
Here are some fun websites that'll give your clicking finger a
workout:
<p>

 Online Etymology Dictionary (www.etymonline.com)
 Oxford English Dictionary (www.oed.com)
 The Phrase Finder (www.phrases.org.uk)
 The Word Detective (www.word-detective.com
 Word Spy (www.wordspy.com)
 World Wide Words (www.worldwidewords.org)

H
T

M
L

Here are some notes to bear in mind when using directories with the

@font-face rule filenames:

•	 If the font files reside in the same directory as the CSS file
(or the HTML file that contains the CSS code), no directory is
required:

url('breeserif.woff2')

•	 If the font files reside in a subdirectory of the location where
the CSS (or HTML) file is stored, precede the filename with the
directory name and a backslash (/):

url('fonts/breeserif.woff2')

•	 If the font files reside in a subdirectory of the site's root
directory, precede the filename with a backslash (/), the
directory name, and then another backslash (/):

url('/fonts/breeserif.woff2')

Enhancing Page Text with Typography

340	WEB DESIGN PLAYGROUND 

Lesson 18.4:  �Styling Small Caps
Covers: The font-variant property

ððOnline: wdpg.io/18-4-0

When you want some page text to be noticed, most of the time you'll turn to

bold or italics to get the job done. For something a bit different, however, try

small caps. Small caps are an all-uppercase style of text in which lowercase

letters are converted to uppercase equivalents that are slightly smaller than

normal uppercase letters. (Original uppercase text is left unchanged.)

You style text as small caps by using the font-variant property and

setting its value to small-caps.

Use It
Small caps are also
often used to make
all-uppercase text (such
as acronyms) blend in
a bit better with the
surrounding text.

Working with Text Styles
When you have your typeface (or typefaces) picked out and can format them

with different type sizes, you're well on your way to making typographically

pleasing web pages. But to make your pages stand out from the herd, you

need to know a few more CSS properties related to styling text.

IIExample   �ðOnline: wdpg.io/18-4-1
This example uses the font-variant property set to small-caps to style the
names in the text as small caps.

W
E

B
 P

A
G

E

span {
 font-variant: small-caps;
}

This styles the span element
to use smal l caps.

C
SS

Movable type was invented by Johannes Gutenberg in
the mid-fifteenth century. The first printing press in England was
set up by William Caxton in 1876.

The names within the span elements
are rendered using smal l caps.

H
T

M
L

Working with Text Styles

	 WEB DESIGN PLAYGROUND	341

ððOnline: wdpg.io/18-5-0

The last major factor in making your web page text look typographically

solid is the line height, which is the distance between the baselines of two

adjacent lines of text. For a given line of text, the baseline is the invisible line

upon which lowercase characters such as o and x appear to sit.

You set the line height by using the CSS property named line-height.

The types of values you can assign to this property are outlined in Table 18.1.

IITable 18.1  Values You Can Apply to the line-height Property

Value Description
number

A numeric value entered without a unit. The computed line height is
the current type size multiplied by the number.

length A numeric value entered with a unit, such as em.
percentage

A percentage value. The computed line height is the current type size
multiplied by the percentage.

normal
A keyword that tells the browser to set the line height automatically
based on the current type size.

The line height is crucial for readable text, as you can see in Figure 18.1.

The text on the left is set with line-height equal to 0.75, which results in

the lines being unreadably close together. The text on the right is set with

line-height equal to 2, which results in the lines being too far apart for

comfortable reading. The text in the middle has its line-height set to 1.2,

which looks just right.

Typography is two-dimensional architecture,
based on experience and imagination, and guided
by rules and readability. —Hermann Zapf

Master
Another way to
manipulate the case of
text is with the text-
transform property.
Set this property to
lowercase to convert
the text to lowercase
letters or uppercase
to convert the text to
uppercase. You can also
use capitalize to
apply uppercase to only
the first letter of each
word.

Lesson 18.5:  �Setting the Line Height
Covers: The line-height property

Enhancing Page Text with Typography

342	WEB DESIGN PLAYGROUND 

IIFigure 18.1 
When the line height is
too small (left) or too large
(right), the text is difficult
to read.

IITry This   �ðOnline: wdpg.io/18-5-2
This example sets the line-height property of the p element to 0.9, which
results in so-called tight leading. Try a normal leading value of around 1.2, as well
as a loose leading value of 1.5 or higher.

W
E

B
 P

A
G

E

p {
 font-size: 1.5em;
 line-height: 0.9;
}

Adjust the p element's l ine-height
value to create t ight, normal , and
loose leading.

C
SS

<p>
The name <i>line height</i> is often used synonymously with
<i>leading</i> (it's pronounced <i>ledding</i>). This term comes
from the movable type profession, where typesetters often use a
strip of lead to set the amount of space between two lines of text.
</p>.

H
T

M
L

Working with Text Styles

WEB DESIGN PLAYGROUND	343

ððOnline: wdpg.io/18-6-0

As you've seen so far in this book, there are six main font-related components

for CSS typography: typeface, type size, bolding, italics, small caps, and line

height. These components are represented, respectively, by the CSS properties

font-family, font-size, font-weight, font-style, font-variant, and

line-height. Handily, you can apply any or all of these properties with a

single statement by using the font shorthand property, which takes the syntax

shown in Figure 18.2.

font: font-style font-weight font-variant font-size/line-height font-family

Italics

Bolding Font size Typeface

Small caps Line height

This syntax is a straightforward repetition of everything you've learned so

far, although you need to keep the following notes in mind:

• You can use some or all of the values, but at minimum, you
must provide the font-size and the font-family values, in
that order.

• You can add the font-style, font-weight, and font-variant
values in any order, as long as they all come before the font-size
value.

• You’ve no doubt noticed, and are more than a little curious
about, the font-size/line-height part of the syntax. That
slash is borrowed from traditional print typography, in which as
shorthand, one might say that text was “set 12/18,” meaning that
it uses 12-point type and an 18-point line height.

IIFigure 18.2 
You can apply up to six
font properties at the same
time by using the font
property.

Lesson 18.6:  �Using the Shorthand Font Property
Covers: The font property

Enhancing Page Text with Typography

344	WEB DESIGN PLAYGROUND 

IIExample   �ðOnline: wdpg.io/18-6-1
This example sets the font property of the div, dt, and span elements.

The <div> text

These are
<dt> text.

These are
 text.

W
E

B
 P

A
G

E

div {
 font: bold 1.5em/1.3 Lora;
}
dt {
 font: italic 1.1em/1.25 Lora;
}
span {
 font: small-caps 1em Lora;
}

The div text is bold Lora with
type size 1 .5em and l ine height 1 .3 .

The dt text is ita l ic Lora
with type size 1 . 1em and
l ine height 1 .25.

The span text is smal l caps
Lora with type size 1em.

				

C

SS

Working with Text Styles

	 WEB DESIGN PLAYGROUND	345

<link href="https://fonts.googleapis.com/
css?family=Lora:400,400i,700,700i" rel="stylesheet">

<h1>Typography</h1>
<div>A Glossary of Terms</div>
<dl>
<dt>ascender</dt>
<dd>The part of a tall lowercase letter such as <i>b</i> or <i>h</
i> that extends above lowercase letters such as <i>a</i> and
<i>c</i>.
<dt>baseline</dt>
<dd>The invisible line upon which lowercase characters such as
<i>o</i> and <i>w</i> appear to sit.</dd>
<dt>descender</dt>
<dd>The part of a lowercase letter such as <i>g</i> or <i>y</i>
that extends below the baseline.
<dt>leading</dt>
<dd>(pronounced <i>ledding</i>) See line height.</
dd>
<dt>line height</dt>
<dd>The distance between the baselines of two
adjacent lines of text.</dd><dt>x-height</dt>
<dd>The height of a typeface's lowercase <i>x</i>.</dd>
</dl>

This e lement embeds the Lora
typeface from Google Fonts.

H
T

M
L

346	WEB DESIGN PLAYGROUND 

Enhancing Page Text with TypographyEnhancing Page Text with Typography

Web Typography Gallery

P22
Underground

Caslon

Cotoris

Flama Medium

Adelle Light

IIThe Anchor & Orbit site
(www.anchorandorbit.com)
uses a combination of three
typefaces: P22 Underground
for the headers, Caslon for
the body text, and Cotoris for
the logo.

IIThe Scytale site (https://
scytale.pt) uses Flama
Medium for the headers and
Adelle Light for the body text.

	 WEB DESIGN PLAYGROUND	347

Web Typography GalleryWeb Typography Gallery

Capriola

Capriola
Archer Light Pro

IIThe website of designer
Kait Bos (www.kaitbos.com)
uses the Capriola typeface for
the navigation and the body
text, and the Archer Light
Pro typeface for the main
heading.

IIThe website for the Rule
of Three copywriting studio
(https://rule-of-three.co.uk)
uses a single typeface, Sorts
Mill Goudy, at various type
sizes.

348	WEB DESIGN PLAYGROUND 

Enhancing Page Text with Typography

Summary
•	 Use hosted or local font files rather than rely on system fonts.

•	 Choose a typeface that suits your text and your overall
message.

•	 Use font-variant: small-caps as an alternative way to
emphasize or highlight text.

•	 Give your text blocks room (but not too much room) between
the lines by setting the line-height property.

•	 Save time by using the font property as shorthand.

	 WEB DESIGN PLAYGROUND	349

Chapter

19

Learning Advanced
CSS Selectors

HTML elements enable web page designers to
mark up a document's structure, but beyond trust
and hope, you don't have any control over your
text's appearance. CSS changes that. CSS puts the
designer in the driver's seat. — Håkon Wium Lie

This chapter covers

▪	Learning the powerful ID and universal selectors
▪	�Leveling your style game with the descendant,

child, and sibling selectors
▪	�Targeting your styles by combining two or more

selectors
▪	�Becoming a style master by understanding CSS

inheritance, cascading, and specificity

On the surface, CSS seems like a simple topic: You apply values to some
properties, combine them into a rule, and then apply that rule to a page
element. Repeat a few more times, and voilà: your page is beautiful. But the
apparent simplicity of CSS is only skin-deep. Underneath the straightforward
implementation of declarations and rules are obscure caves of complexity
and unfathomed depths of dynamism. This chapter serves as an introduction
to this hidden world, which is home to some of the most powerful and
practical CSS concepts.

19

Learning Advanced CSS Selectors

350	WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io/19-1-0

Back in Chapter 16, you learned that you can link to a specific element in a

web page by adding the id attribute to that element and then including the

id value in your link address. You can also use an element's id value to apply

CSS styling to that element. To do this in an internal or external style sheet,

you type the id value preceded by a hash symbol (#) to create the selector:

#id-value {
 property1: value1;
 property2: value2;
 ...
}

The following example shows ID selectors in action.

Remember
As with class names,
your id value must
begin with a letter
and can include any
combination of letters,
numbers, hyphens (-),
underscores (_).

Beware
Again, like class
names, id values
are case-sensitive.

Lesson 19.1:  �Using ID Selectors
Covers: The #id selector

Working with ID Selectors
In Chapter 7, I introduced you to CSS selectors, which enable you to specify

the page object you want to style:

selector {
 property1: value1;
 property2: value2;
 ...
}

So far, you've learned that the selector part of this CSS rule can be the

name of an HTML tag (a type selector) or the name of a CSS class (a class

selector). A rather large collection of CSS selectors exists, however. Many of

these selectors are rather obscure, but the more common ones are powerful

tools indeed. The lessons in this chapter introduce five of these selectors,

beginning with the ID selector.

Learn
My WebDev Workshop
includes a complete
rundown of all the CSS
selectors, with examples.
Check it out: https://
webdev.mcfedries.
com/code/selector-
reference/.

Working with ID Selectors

	 WEB DESIGN PLAYGROUND	 351

IIExample   �ðOnline: wdpg.io/19-1-1
This example adds an ID to each of two <div> tags—section-quote and
section-summary—and then uses the corresponding ID selectors to apply rules to
each div element.

id= “section-quote”

id= “section-summary”

W
E

B
 P

A
G

E

#section-quote {
 color: darkgray;
 font-size: 1.25em;
 font-style: italic;
 text-align: right;
}
#section-summary {
 color: dimgray;
 font-size: 1.5em;
 font-weight: bold;
 text-align: center;
}

Rule for the
section-quote id

Rule for the
section-summary id

C
SS

<h1>
 Metaphors for New Words
</h1>
<div id="section-quote">
“Because in our brief lives we catch so little of the vastness of
history, we tend too much to think of language as being solid as
a dictionary, with a granite-like permanence, rather than as the
rampant restless sea of metaphor which it is.”
–Julian Jaynes
</div>
<div id="section-summary">
We make metaphors for many things, but when we make many metaphors
for one thing, it says that thing is important to us. We make
metaphors for new words almost as readily as we make new words.
</div>

The section-quote id
assigned to a div element

The section-summary id
assigned to a div element

H
T

M
L

Learning Advanced CSS Selectors

352	WEB DESIGN PLAYGROUND 

Best Practices: Classes Versus IDs
When should you use an ID selector versus a class selector? Ask yourself the

following questions:

•	 Will the styles I want to use be applied to one and only one
element?

If so, use an ID selector on that element.

•	 Will the styles I want to use be applied to multiple elements?

If so, use a class selector on each of those elements.

•	 Will the styles I want to use be applied to only one element now
but could be applied to other elements in the future?

If so, use a class selector on that one element now. You can always

apply the class selector to other elements as needed down the road.

Web Page Genealogy: Parents, Descendants, and Siblings
Before continuing with the selectors, you need to take a mercifully brief

detour into the hierarchical structure of a web page so that you can learn

a few key concepts. Figure 19.1 shows the hierarchy of a typical web page.

Now traverse this (upside-down) tree structure:

•	 The html element is the root of the structure.

•	 The html element has two main branches: head and body.

•	 The head element has two branches: title and style.

•	 The body element has three branches: an h1 element and two p
elements.

•	 The first of the p elements has a div branch.

•	 That div branch has two p branches.

•	 The second of those p branches has a section branch.

•	 The section branch has two p branches.

Given this hierarchy, I can define a few useful terms that you'll need to

understand the CSS selectors that follow:

•	 Parent —An element that contains one or more other elements.
In Figure 19.1, html is the parent of the head and body elements,
and the div element is the parent of the two p elements.

•	 Grandparent —An element that contains a second level of
elements. In Figure 19.1, html is the grandparent of (among
others) the title and h1 elements, and the div element is the
grandparent of the section element.

Beware
ID selectors, because
they apply to a single
element, make your CSS
code harder to maintain
and troubleshoot. You’ll
understand why when
I talk about specificity
later in this chapter.
Therefore, the true best
practice when it comes
to ID selectors is to never
use them.

Working with Contextual Selectors

	 WEB DESIGN PLAYGROUND	353

•	 Ancestor —An element that contains one or more levels of
elements. In Figure 19.1, html is an ancestor of every other
element, and the body element is an ancestor of the div
element and every element contained within the div element.

•	 Child —An element that’s contained within an element that lies
one level above it in the hierarchy. That is, the element has a
parent in the structure. In Figure 19.1, title is a child of head,
and the div is a child of its containing p element.

•	 Descendant —An element that’s contained within an element
that lies one or more levels above it in the hierarchy. That is,
the element has an ancestor in the structure. In Figure 19.1,
title is a descendant of html, and the four p elements are all
descendants of their containing div element.

•	 Sibling —An element that lies on the same level as another
element. In Figure 19.1, the three child elements of the body
element—that is, the h1 and the two p elements—are all siblings.
Note in particular that a sibling that comes right after another
sibling is called an adjacent sibling.

Working with Contextual Selectors
With the terms from the preceding section in mind, I want now to talk about

how you use the web page hierarchy to construct some powerful CSS rules

by using three contextual selectors (so-named because they define an

element's context within the web page).

IIFigure 19.1 
The tree structure of a
typical web page

<p>

This <p> tag is the adjacent
sibling of the <h1> tag.

These four <p> tags
are descendants of
the <div> tag.

These two <p> tags are
children of the <div> tag.

<title>

<head>

<style>

<p>

<h1>

<html>

<p>

<div>

<p>

<body>

<section>

<p>

<p>

Learning Advanced CSS Selectors

354	WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io/19-2-0

One common CSS scenario is applying a style rule to all the elements

contained within (that is, are descendants of) some other element (the

ancestor). To do that, use the descendant selector, which separates the

ancestor and descendant elements with a space, as shown in the following

syntax:

ancestor descendant {

 property1: value1;
 property2: value2;
 ...
}

Your page may have a couple of p elements at the beginning that serve as

a summary of the page and quite a few more p elements that hold the body

text. Assuming you want to style the summary text differently from the body

text, a generic p selector won't work. If, instead, you enclose all the body

text p elements in a div element, you can target all the p elements with the

following selector:

div p

The following example uses the descendant selector to style a page's

body text.

The element's parent element

The element you
want to style

The styles you
want to apply

Remember
In CSS lingo, the
character that you place
between two elements
to form a selector (such
as the space used in the
descendant selector) is
called a combinator.

Master
Yep, a space is a head-
scratching character
choice to define a CSS
selector, but the latest
CSS specs introduce
an explicit descendant
combinator: the double
greater-than sign (div
>> p instead of div p).
No browsers support
this yet, but all will in the
future.

Beware
The descendant selector
is powerful because it
targets every descendant
of an ancestor, no
matter how far down
the hierarchy those
descendants reside.
To avoid unexpected
results, if you want to
target a descendant one
level below an ancestor,
you should use the child
selector (discussed in
Lesson 19.3).

Lesson 19.2:  �The Descendant Selector
Covers: The x y selector

Working with Contextual Selectors

	 WEB DESIGN PLAYGROUND	355

IIExample   �ðOnline: wdpg.io/19-2-1
This example uses the descendant selector div p to target only those p elements that
are contained within the div element.

These <p> tags are
descendants of a <div>.

This <p> tag is not a
descendant of a <div>.

W
E

B
 P

A
G

E

body {
 color: blue;
 font-family: Verdana, sans-serif;
 font-size: 1.2em;
}
div p {
 color: #444;
 font-family: Georgia, serif;
 font-size: 0.75em;
}

Styles appl ied
to al l text

Styles appl ied only to
p elements that are
descendants of a div
element

C
SS

<h2>Weird Word Origins</h2>
<p>Welcome to the always wonderful, sometimes weird, and often
downright wacky world of word histories</p>
<div>
 <p>Never thought you’d hear adjectives such as <i>wacky</
i> and <i>weird</i> associated with the history of words? Think
again, oh soon-to-be-even-wiser-than-you-are-now reader! The
study of word origins isn't about memorizing technical terms or
resurrecting dead languages or puzzling over parts of speech.
Instead, it's all about telling stories.</p>
 <p>The history of a word is a narrative, plain and simple:
where the word began, how it changed over time, and how it got
where it is today. Delightfully, these narratives are often full
of plot twists, turning points, heroes and villains, and surprise
endings.</p>
</div>

H
T

M
L

Learning Advanced CSS Selectors

356	WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io/19-3-0

Rather than select every descendant of a specified element, you often need

to target only its children. To do that, use the child selector, which separates

the parent and child elements with a greater-than sign (>), as shown in the

following syntax:

parent > child {

 property1: value1;
 property2: value2;
 ...
}

Referring to Figure 19.1, you can style the div element's two p children

with the following selector:

div > p

The following example uses the child selector to style those p elements

that are children of a div element.

The element's parent element

The element you
want to style

The styles you
want to apply

Master
To select an element
that’s the first child
of its parent, use the
element:first-
child pseudo-class.
Similarly, to select an
element that’s the last
child of its parent, use
the element:last-
child pseudo-class.

ðOnline: wdpg.io/19-3-4

Master
Another powerful child
pseudo-class is :nth-
child(n), where n
specifies which children
you want to select. Use
:nth-child(odd)
to select the odd (first,
third, and so on)
children, or :nth-
child(even) to select
the even (second, fourth,
and so on) elements.

ðOnline: wdpg.io/19-3-5

Lesson 19.3:  �The Child Selector
Covers: The x > y selector

Play
Create a rule that
applies a green color
and a font size of 1.2em
to any <code> tag that
is a descendant of a
<div> tag. ðOnline:
wdpg.io/19-2-2

Working with Contextual Selectors

	 WEB DESIGN PLAYGROUND	357

IIExample   �ðOnline: wdpg.io/19-3-1
This example uses the div > p child selector to set a font size of 1.25em and a color of
dark green to only those p elements that are direct children of a div element.

These <p> tags
are children of
a <div>. These <p> tags

are not children
of a <div>.

W
E

B
 P

A
G

E

p {
 color: darkblue;
 font-size: 1em;
 font-weight: bold;
}
div > p {
 font-size: 1.25em;
 color: darkgreen;
}

Styles for al l p text

Styles for p elements
that are chi ldren of
div elements

C
SS

<h1>Contextual Selectors</h1>
<div>
 <p>The Descendant Selector</p>
 <p>The Child Selector</p>
 <section>
 <p>The First Child Selector</p>
 <p>The Last Child Selector</p>
 <p>The Nth Child Selector</p>
 </section>
 <p>The Sibling Selector</p>
</div>

The chi ld p
elements

H
T

M
L

Learning Advanced CSS Selectors

358	WEB DESIGN PLAYGROUND 

ððOnline: wdpg.io/19-4-0

Instead of selecting an element's children or descendants, you might need

to target its siblings. To do that, use the sibling selector, which separates the

reference element and the sibling element with a tilde (~), as shown in the

following syntax:

element ~ sibling {

 property1: value1;
 property2: value2;
 ...
}

In Figure 19.1, you can style the two p elements that are the siblings of the

h1 element with the following selector:

h1 ~ p

The following example shows the sibling selector in action.

The reference element

The element you
want to style

The styles you
want to apply

Lesson 19.4:  �The Sibling Selector
Covers: The x ~ y selector

Play
Given a numbered list
that's nested within
another numbered list,
use the child selector to
create a rule that styles
the nested list to use
lowercase letters instead
of numbers. ðOnline:
wdpg.io/19-3-2

IIExample   �ðOnline: wdpg.io/19-4-1
This example uses the h1 ~ div sibling selector to set a sans-serif font stack and a
bold font weight to only those div elements that are siblings of the h1 element.

The <h1> tag

These <div> tags
are not siblings

of the <h1>.

These <div> tags
are siblings of
the <h1>.

W
E

B
 P

A
G

E

div {
 font-family: Georgia, serif;
 font-weight: normal;
}
h1 ~ div {
 font-family: Verdana, sans-serif;
 font-weight: bold;
}

Styles for
al l d iv text

Styles for div
elements that are
sib l ings of h1

C
SS

Taking Things up a Notch by Combining Selectors

	 WEB DESIGN PLAYGROUND	359

<h1>
 A Smart Vocabulary—Contents
</h1>
<div>
 Chapter 1: Names of Things You Didn't Know Had Names
 <div>From the indentation on your upper lip to the indentation
on the bottom of a wine bottle.</div>
</div>
<div>
 Chapter 2: Making Word Whoopee
 <div>Codswallop, nincompoop, willy-nilly, and other words that
will bring a smile to your face.</div>
</div>

The sib l ing div e lements

H
T

M
L

Taking Things up a Notch by Combining Selectors
CSS selectors are useful tools because they enable you to target areas

of your web page that you want styled. By specifying a particular class

or an element's descendants, you gain much more control of your page

presentation. But what if instead of needing to use either the class selector

or the descendant selector, you need to use both? That is, what if you want

to target not the element that has been assigned a particular class, but its

descendants? Table 19.1 demonstrates a few ways to combine CSS selectors.

IITable 19.1  Some Ways to Combine Selectors

Example Description

<div class="sidebar alert">
Applies both the class named sidebar and the class named alert
to the div element

p.footnote {styles}
Applies a rule to those p elements that have been assigned the class
named footnote

p.footnote > a {styles}
Applies a rule to a elements that are the children of those p elements
that have been assigned the class named footnote

p.footnote a.external {styles}

Applies a rule to a elements that have been assigned the class named
external and that are the descendants of those p elements that have
been assigned the class named footnote

#payables-table li:nth-child(even)
{styles}

Applies a rule to the even numbered li elements in the list that has been
assigned the ID payables-table

Master
To select only the
adjacent sibling of an
element, change the tilde
to a plus sign: element
+ sibling (as in h1
+ p). ðOnline: wdpg
.io/19-4-4

Learning Advanced CSS Selectors

360	WEB DESIGN PLAYGROUND 

Lesson 19.5:  �The ::before and ::after Pseudo-elements
Covers: ::before and ::after

ððOnline: wdpg.io/19-5-0

In CSS, you can create web page objects that aren’t officially part of the page

hierarchy, and these objects are known as pseudo-elements. Two common

examples are ::before and ::after, which you use to insert content before

and after, respectively, the content of whatever element you specify. In CSS,

this content is called generated content because you don’t type the content

yourself; it's created by the browser automatically. Here's the syntax:

element::before|after {

 content: value;
 content_styles;
}

You'll occasionally see the single-colon variants :before and :after.

Sites use this older syntax to provide support for Internet Explorer 8. Because

that browser now stands at around one-tenth of 1 percent global use (and

shrinking), the world has moved on to the double-colon standard that you

see in this book.

The web page element

Where you want the
content added

The content you
want to insert

Optional styles appl ied to
the inserted content

Remember
To insert a special
character as the
custom content, use the
character's hexadecimal
code, preceded by
a backslash (\). The
declaration content:
'\0266f';, for
example, specifies the
musical sharp sign (♯)
as the custom content.
Use the HTML5 Entity
Browser (wdpg.io/charent)
to look up a character's
hex code.

While I’m on the topic of combining things, I should mention that it's

perfectly valid CSS to apply a single style rule to two or more selectors. You

do that by separating the selectors with commas, like so:

selectorA,
selectorB {
 property1: value1;
 property2: value2;
 ...
}

Suppose that you have a class named pullquote that you use to style

the pull quotes in your website's news articles and a class named sidebar

that you use for the sidebars in your website's tutorial pages. If these two

classes use the same rule, you can combine them:

.pullquote,

.sidebar {
 color: #444;
 background-color: #ccc;
}

Taking Things up a Notch by Combining Selectors

	 WEB DESIGN PLAYGROUND	361

You can use the following rule to automatically add a pilcrow (¶), also

called a paragraph mark, after each paragraph:

p::after {
 content: '¶';
}

One of the most common uses for the ::before pseudo-element is

to replace the default bullets in an unordered list with custom bullets. The

following example shows how.

IIExample   �ðOnline: wdpg.io/19-5-1
This example uses list-style-type to remove the bullets from the ul element
and then uses li::before to add a custom bullet character—a pointing finger (hex
code 261e)—and a nonbreaking space (hex 00a0).

Pointing finger character as a custom bullet

W
E

B
 P

A
G

E

ul {
 list-style-type: none;
 margin-left: 0;
 padding-left: 1em;
 text-indent: -1em;
}

li::before {
 content:'\261e\00a0';
 color: red;
 font-size: 1.1em;
}

Removes the default bul let

Ensures that bul let text
wraps correctly

Adds a point ing finger
and space

Styles the
custom bul let

C
SS

continued

Learning Advanced CSS Selectors

362	WEB DESIGN PLAYGROUND 

<div>
 Here are some interesting characters to use in place of the
standard bullets:
</div>

 Circled bullet: ⦿
 Circled white bullet: ⦾
 Rightwards arrow with loop: ↬
 Black star: ★
 White star: ☆
 Triangle bullet: ‣

H
T

M
L

While I’m talking about pseudo-elements, it's

worth mentioning that you can use the ::first-
letter pseudo-element to apply one or more styles

to the first letter of a text block. div::first-letter
{font-size: 1.5em; color: red;}, for example,

styles the first letter of each div element to have size

1em and color red. To style the entire first line of a

text block, use the ::first-line pseudo-element.

Resetting CSS with the Universal Selector
The universal selector (*) applies to every element on the web page, which

may seem to be an odd way of approaching styles. After all, how often

would a particular set of styles apply to every element on a page? Almost

never. The universal selector is useful, however, when it comes to a CSS

reset  —a way of removing the web browser's default styles so that you can

apply your own without having to worry about conflicts with the browser.

Here's a basic CSS reset:

* {
 font-size: 100%;
 margin: 0;
 padding: 0;
}

This reset defines the default font size and removes the browser's default

margins and padding (both of which you learned about in Chapter 9).

Play
CSS offers the
counter-increment
property that lets you
set up a counter for a
numbered list. If you set
the ol element's list-
style-type property
to none, you can use
ol::before to create
custom numbers for a
list. ðOnline: wdpg
.io/19-5-2

Play
An external link is
one that points to a
resource on a different
site. Create a CSS rule
that automatically
adds an icon to denote
external links, the way
that Wikipedia does (see
Figure 19.2). ðOnline:
wdpg.io/19-5-3

IIFigure 19.2 
Wikipedia marks external
links with an icon.

Master
Here are some other
common CSS reset
declarations:
border: 0;
font-family:
inherit;
font-style:
inherit;
font-weight:
inherit;
vertical-align:
baseline;

Styles: What a Tangled Web Page They Weave

	 WEB DESIGN PLAYGROUND	363

Lesson 19.6:  �Understanding Inheritance
Covers: CSS inheritance

ððOnline: wdpg.io/19-6-0

With all that talk earlier in the chapter about ancestors, parents, children, and

descendants, you won't be surprised to learn that CSS comes with a method

for passing traits along from one "generation" to the next. This method

is called, appropriately enough, inheritance, and it means that for certain

CSS properties, if a parent element is styled with that property, its child and

descendant elements are automatically styled the same way.

In the following example, a div element is assigned the class intro,

which styles the element with 1.1em brown text. Notice that the div

element's children—the em, sup, and code elements, as well as the nested

div element—are styled the same way because in each case, they’ve

inherited those styles from the parent div.

What did I mean when I said that only certain properties are inherited?

Although many CSS properties are inherited by descendant elements, not all

of them are. If you were to apply a border around the parent div element in

the preceding example, that same border style wouldn't be applied to any of

its descendants, because it would look odd to have, say, a border around an

em or a sup element.

Play
The a element inherits
style properties such as
color, but you don’t
see this inheritance; the
browser overrides the
inheritance so that your
links stand out from the
regular page text. Can
you think of a way to
force the text of child a
elements to use the same
color as their parent?

ðOnline: wdpg.io/19-6-2

Styles: What a Tangled Web Page They Weave
Most of the style declarations and rules you've worked with so far have

operated in splendid isolation. You style an h1 element with a font size and

a p element with an alignment, and the web browser applies these two rules

independently of each other. However, in the real world of web design, such

simplicity is rare. I'm talking hen's-teeth rare. For all but the most basic web

pages, it's a certainty that your styles are fraternizing and sometimes even

fighting with one another. It’s mayhem, but you can restore some semblance

of order by understanding three key CSS mechanisms: inheritance, the

cascade, and specificity.

While I’m talking about pseudo-elements, it's

worth mentioning that you can use the ::first-
letter pseudo-element to apply one or more styles

to the first letter of a text block. div::first-letter
{font-size: 1.5em; color: red;}, for example,

styles the first letter of each div element to have size

1em and color red. To style the entire first line of a

text block, use the ::first-line pseudo-element.

Resetting CSS with the Universal Selector
The universal selector (*) applies to every element on the web page, which

may seem to be an odd way of approaching styles. After all, how often

would a particular set of styles apply to every element on a page? Almost

never. The universal selector is useful, however, when it comes to a CSS

reset  —a way of removing the web browser's default styles so that you can

apply your own without having to worry about conflicts with the browser.

Here's a basic CSS reset:

* {
 font-size: 100%;
 margin: 0;
 padding: 0;
}

This reset defines the default font size and removes the browser's default

margins and padding (both of which you learned about in Chapter 9).

Play
CSS offers the
counter-increment
property that lets you
set up a counter for a
numbered list. If you set
the ol element's list-
style-type property
to none, you can use
ol::before to create
custom numbers for a
list. ðOnline: wdpg
.io/19-5-2

Play
An external link is
one that points to a
resource on a different
site. Create a CSS rule
that automatically
adds an icon to denote
external links, the way
that Wikipedia does (see
Figure 19.2). ðOnline:
wdpg.io/19-5-3

IIFigure 19.2 
Wikipedia marks external
links with an icon.

Master
Here are some other
common CSS reset
declarations:
border: 0;
font-family:
inherit;
font-style:
inherit;
font-weight:
inherit;
vertical-align:
baseline;

Learning Advanced CSS Selectors

364	WEB DESIGN PLAYGROUND 

IIExample   �ðOnline: wdpg.io/19-6-1
This example demonstrates inheritance by showing how the styles of the parent div
element get passed down to child elements such as em, code, and the nested div.

A child

The
parent
<div>

A child <div>

A child <code>

W
E

B
 P

A
G

E

.intro {
 color: saddlebrown;
 font-size: 1.1em;
 line-height: 1.4;
}

Styles for the
intro class

C
SS

<div class="intro">
Why don’t all CSS properties inherit their parent’s
styles?[*] Because in some cases it would lead to weird
or nonsensical results. For example, if you apply a border around,
say, a <code>div</code> element, it would look odd indeed to apply
the same border to a child <code>span</code> or <code>strong</
code> element. Similarly, applying, say, a <code>p</code>
element’s <code>width</code> value to a child <code>em</code>
element doesn’t make sense.

 <div>
 [*] See www.w3.org/TR/REC-CSS2/propidx.html
 </div>
</div>

The parent div e lement
A chi ld em element

A chi ld code element

A chi ld div e lement

H
T

M
L

Styles: What a Tangled Web Page They Weave

	 WEB DESIGN PLAYGROUND	365

ððOnline: wdpg.io/19-7-0

Besides the fact that styles get passed down from parent elements to

descendant elements though inheritance, CSS also defines the way that the

styles get propagated. This definition is called the cascade, and if inheritance

is the "what" of style propagation, the cascade is the "how." (Before

continuing, let me answer the question that's no doubt on your mind: Yes,

the cascade is the reason why collections of styles are called cascading style

sheets.) To see how the cascade works, consider the following code:

<style>
 div {
 color: red;
 }
</style>

<div style="color: blue;">
 What is the color of this text?
</div>

Here, an internal style sheet tells the div element to use red text, and an

inline style colors the <div> tag's text blue. What color is the text between

the <div> and </div> tags? That is, how will the browser resolve the conflict

between the internal style sheet and the inline style?

To answer both questions, you need to know how the cascade does its

job. First, you already know that there are three main ways to specify CSS:

inline styles, internal style sheets, and external style sheets. Together, these

methods constitute what the W3C calls author style sheets (because they’re

created by the person who wrote the web page; that's you). But two other

style sheets get applied when a web page loads: the browser's default styles

(called the user agent style sheet), and the browser user's custom styles

(called the user style sheet).

The cascade organizes these five sources of style data into the following

hierarchy:

•	 User agent style sheet

•	 User style sheet

•	 External style sheets

•	 Internal style sheets

•	 Inline styles

Learn
The World Wide Web
Consortium (W3C)
maintains a complete
list of CSS properties.
Among other tidbits,
that list helpfully
specifies whether each
property is inherited. See
https://www.w3.org/TR/
REC-CSS2/propidx.html.

Internal style sheet

In l ine style

Remember
Speaking generally, the
closer a style declaration
is to the actual element
that it's styling, the
greater its weight.

Lesson 19.7:  �Learning About the Cascade
Covers: CSS cascade

Learning Advanced CSS Selectors

366	WEB DESIGN PLAYGROUND 

Lesson 19.8:  �Introducing Specificity
Covers: CSS specificity

ððOnline: wdpg.io/19-8-0

You may be wondering what happens to the CSS cascade when two styles

that target the same element come from the same source. Consider the

following code:

<style>
 p.colored-text {
 color: purple;
 }
 .colored-text {

Master
There’s a sixth style
source you need to know:
adding the !important
keyword to the end of
any style declaration.
This keyword carries the
greatest possible CSS
weight, so it overrides
any other source.

ðOnline: wdpg.io/19-7-2

These sources are listed in ascending order of importance (weight, in

CSS lingo). If the browser sees that a particular style rule is defined in two or

more of these sources, it resolves the conflict by applying the style from the

source that has the greatest weight. For the code example I showed earlier,

you can see that an inline style trumps an internal style sheet, so the text

between the <div> and </div> tags will display as blue, as shown in the

following example.

IIExample   �ðOnline: wdpg.io/19-7-1
This example demonstrates the CSS cascade, where the div element's inline style gets
rendered because it carries more weight than the div type selector from the internal
style sheet.

The <div> tag

W
E

B
 P

A
G

E

<style>
 div {
 color: red;
 }
</style>

<div style="color: blue;">
 What is the color of this text?
</div>

Internal style
sheet

In l ine style

H
T

M
L

Styles: What a Tangled Web Page They Weave

	 WEB DESIGN PLAYGROUND	367

 color: blue;
 }
 div p {
 color: green;
 }
 p {
 color: red;
 }
</style>

<div>
 <p class="colored-text">What is the color of this text?</p>
</div>

The style sheet contains four rules, all of which target the p element.

The first rule selects all p elements that use the colored-text class; the

second rule selects all elements that use the colored-text class; the third

rule selects p elements that are descendants of a div element; and the

fourth rule selects all p elements. What color will the browser render the

text between the <p> and </p> tags? The cascade alone doesn't answer

this question because all the rules come from an internal style sheet and

therefore are given equal weight.

To figure out the winner in this CSS fight, you need to know a bit about

a concept called specificity. Specificity is one of the most complex ideas

in all of CSS, but for purposes of this chapter, I can say this about it: The

more specifically a particular selector targets something on a web page,

the greater weight it’s given when the browser is calculating which rules

to apply. You can judge how specifically a selector targets something by

applying the following recipe to the selector:

1	 Count the number of elements (such as p or div) and pseudo-elements

(such as ::before), and assign 1 point to each.

2	 Count the number of classes and pseudo-classes (such as :hover),

and assign 10 points to each.

3	 Count the number of IDs, and assign 100 points to each.

4	 If the selector is part of an inline style sheet, assign 1,000 points.

The points assigned are indicative of the weight each selector carries.

Returning to the example, count the points:

•	 p.colored-text—This selector contains one element and one
class, for a total of 11 points.

•	 .colored-text—This selector contains one class, for a total of
10 points.

•	 div p—This selector contains two elements, for a total of 2
points.

•	 p—This selector contains one element, for a total of 1 point.

Descendant selector

Type selector

Remember
The universal selector
(*) doesn’t contribute to
the specificity score (it’s
worth 0 points). If you
add the !important
keyword to a declaration,
add 10,000 points to the
specificity score.

Beware
Earlier in the chapter, I
cautioned you against
overusing the ID
selector, and here, you
see the main reason
to approach it with
caution. This selector
greatly outweighs
elements, pseudo-
elements, classes, and
pseudo-classes.

	 WEB DESIGN PLAYGROUND	367

Learning Advanced CSS Selectors

368	WEB DESIGN PLAYGROUND 

You can see that the p.colored-text selector has the most points, so

the text between the <p> and </p> tags gets rendered as purple, as shown

in the following example.

IIExample   �ðOnline: wdpg.io/19-8-1
This example demonstrates CSS specificity, where the selector p.colored-text is
more specific that the other selectors, so the browser renders the text as purple.

W
E

B
 P

A
G

E

<style>
 p.colored-text {
 color: purple;
 }
 .colored-text {
 color: blue;
 }
 div p {
 color: green;
 }
 p {
 color: red;
 }
</style>
<div>
 <p class="colored-text">What is the color of this text?</p>
</div>

Specificity = 1 1 points

Specificity = 10 points

Specificity = 2 points

Specificity = 1 point

H
T

M
L

The different weight of selectors is usually the reason
why your CSS rules don't apply to some elements,
although you think they should. To minimize the time
you spend bug hunting, you need to understand how
browsers interpret your code. And to understand
that, you need to have a firm understanding of
how specificity works. —Vitaly Friedman

Summary

	 WEB DESIGN PLAYGROUND	369

Summary
•	 An ID selector applies CSS rules to any element that uses the

specified ID value.

•	 To target all the elements contained within a parent element,
use the descendant selector, which is the parent and
descendant element names separated by a space.

•	 To target all the child elements contained within a parent
element, use the child selector, which is the parent and child
element names separated by a greater-than sign (>).

•	 To target all the elements that are siblings of some other
element, use the sibling selector, which is the names of the two
elements separated by a tilde (~).

•	 Append ::before or ::after to a selector to insert generated
content before or after the element’s content.

•	 Many CSS properties are inherited from the element's parent.

•	 Inheritance occurs via the cascade, which assigns greater
importance to declarations whose sources are closer to the
element. In ascending order, these sources are browser default
styles, user custom styles, external style sheets, internal style
sheets, and inline styles.

•	 For declarations from the same source, specificity tells the
browser to render the styles from the more specific of the
selectors. In ascending order, these selectors are elements and
pseudo-elements, classes and pseudo-classes, IDs, inline styles,
and the !important keyword.

	 WEB DESIGN PLAYGROUND	 371

Chapter

20

PROJECT:   Creating
a Portfolio Page

An online portfolio is a great branding tool
that every job seeker should have. It is a great
way for candidates to differentiate themselves,
offer insight into their personalities, and
showcase their talents. —Alexandra Janvey

This chapter covers

▪	Planning and sketching your portfolio page
▪	Choosing typefaces and colors for your page
▪	Adding the page text and images
▪	Adding contact information

If you do creative work—illustration, writing, music, fine art, or even web
design—you owe it to yourself and your career to put yourself out there and
tell the world how talented you are. How do you do that? Social media is the
standard way of blowing your own horn these days. That's fine, but when
you use someone else's platform to talk yourself up, you're giving up lots of
control over how you present yourself. It's always better to control your own
message, and the best way to do that is to build your own online presence.
For creative types, that online stake in the ground should include a portfolio
page that showcases your best or your most recent work.

20

Project:  Creating a Portfolio Page

372	WEB DESIGN PLAYGROUND 

This chapter takes you through the process of putting together a simple

portfolio page. I'll be concentrating on many of the techniques you learned

here in Part 4 (such as in-page links, typography, and colors), but by the end,

you'll see how to build a sophisticated portfolio page that'll put your best

creative foot forward.

What You’ll Be Building
This project is a basic portfolio page, which refers to a page that’s designed

to show off some of (or even all) your creative work. It's the online equivalent

of a hard-copy portfolio that starving artists have been lugging around from

patron to patron and employer to employer for decades. The main idea of

a portfolio page is to show off your creative work to people who may want

to buy it or may want to hire you to do your creative thing. If your creative

work is a hobby, by all means use your portfolio page to show off your side

projects to anyone you can persuade to stop by.

Sketching the Layout
You've been through several of this book's projects by now, so you know

the drill: Begin by using a pen or pencil to draw the basic layout on a piece

of paper. This drawing gives you a kind of blueprint to use when you start

throwing around HTML tags and CSS properties.

Figure 20.1 shows the example that I'm going to use for my portfolio

page. This page is a variation on a layout that's sometimes called five boxes:

one large box that serves as your introduction followed by four smaller

boxes that you populate with your portfolio images.

Figure 20.1 shows the layout of a page with the following six sections:

•	 A page header that includes a logo, a page title, and a few links
to other page sections

•	 A short introduction to the portfolio

•	 The portfolio with four examples of my work

•	 A section that tells the page visitor about me and my work

•	 A section that enables the reader to contact me

•	 A page footer with a copyright notice and links to social media

The first task on your portfolio to-do list is to choose the typeface or

typefaces you want to use for your page.

Choosing Typefaces

	 WEB DESIGN PLAYGROUND	373

Intro heading

Portfolio

About Me
A short paragraph about who you are and what you do creatively. A novel
isn’t required here. This just needs to be a sentence or three that tells the
reader a bit about your creative side, your experience, any famous clients
you might have worked with, and so on.

Contact Me
Email address
Social media links

Other site links
Copyright notice

Intro subheading Intro
ImageA short introduction to the portfolio.

P a g e T i t l e
Site
Logo

Example #1 Example #2 Example #3 Example #4

Portfolio

Contact

About Contact

Choosing Typefaces
Although the portfolio itself consists of images, your portfolio page contains

a decent amount of text, including headings and body text  —the large

blocks of nonheading text that comprises the bulk of your portfolio's words.

Because a good chunk of your audience will be reading your page on the

screens of laptops, tablets, and smartphones, it's important to take a bit of

time up front to choose typefaces that will be legible and readable on these

smaller screens.

IIFigure 20.1 
Before you start slinging
HTML and CSS, draw up a
quick sketch of the page
layout and content.

Project:  Creating a Portfolio Page

374	WEB DESIGN PLAYGROUND 

You can visit Google Fonts (https://fonts.google.com), view a typeface, type

some text, and then eyeball the result to see how good it looks and how easy

it is to read. But if you want to be a bit more methodical, certain criteria are

common to typefaces that render well on small screens. Here are four things

to look for when you're auditioning type on Google Fonts (or whichever font

provider you use), each of which is demonstrated in Figure 20.2:

•	 Large counters —A counter is the enclosed negative space
inside letters such as A, R, d, and g. A large counter enhances
character legibility.

•	 Large apertures —An aperture is the partially enclosed negative
space inside letters such as C, S, a, and e. A large aperture also
enhances legibility.

•	 Medium to large x-height —The x-height is the distance from the
baseline to the top of lowercase letters such as x and o, or to the
top of the bowl in letters that have ascenders (such as d and h) or
descenders (such as g and y). A decent x-height (say, half the font
size or more) usually leads to large counters and apertures.

•	 Low to medium stroke contrast —Extremely thin strokes can get
lost on a small screen, making text difficult to read. Look for
typefaces that have a minimal difference between the thinnest
and thickest strokes.

You could build your page with a single typeface, but mixing two

typefaces—one for headings and the other for body text—adds dynamism

and contrast to the page. My preferred use is a sans-serif typeface for

headings and a serif typeface for body text, but I'm going to reverse these

preferences for my version of the project. For your own portfolio page, feel

free to use two serif or two sans-serif fonts. The only criterion to look for is

that the two typefaces work in harmony, which means that they have similar

legibility characteristics: counters, apertures, x-height, and stroke contrast.

Finally, make sure that each typeface you choose comes with the fonts you

require, which at minimum usually means regular, italic, and bold fonts.

master
Notice that letters
such as a and e have
both a counter and an
aperture, meaning that
a larger counter implies
a smaller aperture,
and vice versa. To
ensure these common
characters render well
onscreen, look for an
x-height that’s more
than half the font size.

IIFigure 20.2 
When deciding on a
typeface that will render
well even on small displays,
look for larger counters and
apertures, good x-height,
and low stroke contrast.

counters

thick stroke

x-height

thin stroke apertures

Choosing a Color Scheme

	 WEB DESIGN PLAYGROUND	375

Google Fonts offers hundreds of typefaces and dozens that work well

on even the smallest screens. How do you choose? It's certainly fun to play

around on the site, but if you prefer a starting point, Table 20.1 lists a half-

dozen body and heading typeface pairings that work well (and an alternative

sans-serif font for headings).

IITable 20.1  Recommended Google Fonts Pairings for Headings and Body Text

Headings Body Body (Alternative)
Playfair Display Open Sans Raleway

Merriweather Fira Sans Merriweather Sans

Source Serif Pro Source Sans Pro Lato

Domine Roboto Open Sans

Lora Varela Round Lato

Roboto Slab Roboto Raleway

For this project's headings, I'm going to use one of my favorite text

typefaces: Playfair Display. This is a gorgeous font that offers nice big

counters and a generous x-height. It has a high stroke contrast, but that

shouldn’t be much of a problem for the larger heading sizes I’ll be using.

Playfair Display comes in six fonts, so it has a style for every occasion. For

the body text, I'm going to use Open Sans, one of the most popular sans

serifs on the web. It's a sturdy typeface that features large counters and

x-height, as well as minimal stroke contrast. A less-popular but still excellent

alternative is Merriweather Sans, the sans-serif companion to Merriweather.

To use Google Fonts to link to Playfair Display’s bold and bold italic

fonts, and to Open Sans’ regular, italic, and bold fonts, I'll use the following

<link> tag:

<link href="https://fonts.googleapis.com/
css?family=Playfair+Display:700,700i|Open+Sans:400,400i,700"
rel="stylesheet">

In my CSS, I'll use the following declarations to specify these families:

font-family: "Playfair Display", Georgia, serif;
font-family: "Open Sans", Verdana, sans-serif;

With the page layout in place and your typefaces chosen, your next job

is to pick out a color scheme.

Choosing a Color Scheme
The colors you choose depend on the type of portfolio you're highlighting

and the overall image you want to project. The example I'm going to use is for

a book restoration and repair service (which is, alas, hypothetical). I want to

use colors that exude warmth (because people who love old books enough

to want them restored tend to be warm, gentle folk) and security (because

Remember
Although it's unlikely
that Google would fail
to deliver your linked
fonts, there could be
a lag before the fonts
show up. To ensure the
browser doesn't display
the default serif or
sans-serif while it waits,
add a system font to
your stack. Georgia (for
serifs) and Verdana (for
sans serifs) are installed
on almost all new
computers.

Project:  Creating a Portfolio Page

376	WEB DESIGN PLAYGROUND 

those same people don't want to give their precious books to just anyone).

Rich brown colors can set both emotional tones quite effectively. Using the

Web Design Playground’s Color Scheme Calculator (see wdpg.io/colorcalc), I

chose a monochrome color scheme based on the color value #77613c, as

shown in Figure 20.3.

With the page layout in place and your typefaces and colors chosen, it's

time to translate this rough sketch into precise HTML and CSS code.

Building the Page
To build out your portfolio page, start with the skeleton code that I introduced

you to in Chapter 2. From there, go section by section, adding text, tags, and

properties.

The Initial Structure
To start, take the basic page structure from Chapter 2 and add the portfolio

layout, using the HTML5 semantic page layout tags:

•	 The page header section uses the header element, and it
consists of three items: an img element for the site logo, a
navigation area that uses the nav element and consists of an
unordered list of links to other items on the page, and an h1
element for the page title.

•	 The main section uses the main element, and it consists of
several section elements, each of which is a container for a
different section of the page.

•	 The page footer section uses the footer element, and it consists
of a copyright notice and links to several social media sites.

IIFigure 20.3 
A monochrome color
scheme based on the hex
color value #77613c

Building the Page

	 WEB DESIGN PLAYGROUND	 377

IITry This   �ðOnline: wdpg.io/projects/portfolio-page/01
Here are the elements that make up the portfolio page's initial HTML structure.

Main
section

Header
section

Footer section				

W

E
B

 P
A

G
E

<header>

 <nav>

 Portfolio
 About
 Contact

 <h1>Page Title</h1>
 </nav>
</header>
<main>>
 <section>>
 <h1>Portfolio</h1>>
 >
 >
 >
 >
 </section>>
 <section>>
 <h1>About Me</h1>>
 </section>>
 <section>>
 <h1>Contact Me</h1>>
 </section>>
</main>
<footer>
 <p>Copyright and social media links</p>
</footer>

The header
section

The main
section

The footer
section

H
T

M
L

Project:  Creating a Portfolio Page

378	WEB DESIGN PLAYGROUND 

The portfolio page is about as bare-bones as pages come right now, but

it won't stay that way for long. I’ll turn now to structuring the page's overall

layout.

The Overall Layout
As you might imagine, putting together a layout nicknamed five boxes

simply cries out for a flexbox-based structure, and that's what you’ll add

here. You want the content to be centered in the middle of the browser

window. To accomplish this task, use two main flexbox containers for the

overall structure:

•	 The initial flexbox container will be the body element. By
configuring this element with flex-direction: row and
justify-content: center, you create a single-row container
in which all content gets centered horizontally.

•	 For the content itself, nest a div element inside the body
element. That div is a flexbox container with flex-direction:
column and justify-content: flex-start, which gives you
a single-column container with the content aligned with the
top of the container.

The following example shows you how to set everything up.

Remember
The initial page layout
also includes a CSS reset
that, among other tasks,
sets the margin and
padding to 0 and the
font size to 100%.

IITry This   �ð�Online: wdpg.io/projects/portfolio-page/02
This example shows you how to configure the body element and a
nested div as flexbox containers for the entire page.

body {
 display: flex;
 flex-direction: row;
 justify-content: center;
 min-height: 100vh;
 margin-top: 1rem;
 font-family: "Open Sans", Verdana, sans-serif; >
 background-color: #cdc9c1; >
 background-image: radial-gradient(circle farthest-side at
center top, hsl(0, 0%, 100%) 0%, #cdc9c1 100%);>
 color: #362507;
}
.container {
 display: flex;
 flex-direction: column;
 justify-content: flex-start;
 max-width: 60rem;
}

Set up the main
flexbox container.

Apply a font stack
and the background

and text colors.

Set up the nested flexbox
container for the content .

Set a maximum width
for the content .

C
SS

Building the Page

	 WEB DESIGN PLAYGROUND	379

<body>
 <div class="container">
 </div>
</body>

H
T

M
L

The Header Section
The header section consists of a header element that contains three items:

an img element for the page logo, a nav element for the navigation links,

and an h1 element for the page title. I also want the header to have the

following features:

•	 The page logo should be aligned with the left side of the
content container, and the navigation and title should be
aligned with the right side of the content container.

•	 All the header content should be centered vertically within the
header.

The easiest method is to use flexbox, so configure the header element

as a flexbox container with a horizontal main axis and align-items set to

center. For horizontal alignments, separate the header into left and right

sections by using div elements.

The following example shows the HTML and CSS that I used to accomplish

these goals and to style the rest of the header layout.

IITry This   �ðOnline: wdpg.io/projects/portfolio-page/03
This example adds the HTML code for the header and the CSS for the
header structure.

W
E

B
 P

A
G

E

Remember
Flexbox now enjoys
near-universal browser
support, so to keep
things simple and
uncluttered, the code
you see here and on
the Playground doesn't
include any vendor
prefixes. If you need to
support old browsers,
use Autoprefixer (https://
autoprefixer.github.io) to
generate the prefixes.

continued

Project:  Creating a Portfolio Page

380	WEB DESIGN PLAYGROUND 

header {
 display: flex;
 justify-content: center;
 align-items: center;
 padding: .5rem 0;
 width: 100%;
}
.header-left {
 flex: 1 0 33%;
 text-align: left;
}
.header-right {
 flex: 2 0 67%;
 display: flex;
 flex-wrap: wrap;
 justify-content: flex-end;
}

The header is a
flexbox container.

The left header gets one-
third of the width ; the right
gets two-thirds.

The right header is a
flexbox container.

C
SS

<header>
 <div class="header-left">
 <img src="/images/portfolio-logo.tif"
alt="This Old Book logo">
 </div>
 <div class="header-right">
 <nav>

 Portfolio
 About
 Contact

 </nav>
 <h1>This Old Book</h1>
 </div>
</header>

The left s ide
of the header

The
right
s ide

of the
header

H
T

M
L

 With the header structure set up, you can tend to the styling of the

header elements. The logo is fine as is, but you need to turn the navigation

links into proper buttons and to style the page title. The following example

shows the HTML and CSS that I used.

Building the Page

	 WEB DESIGN PLAYGROUND	381

IITry This   �ðOnline: wdpg.io/projects/portfolio-page/04
This example styles the header elements.

W
E

B
 P

A
G

E

h1 {
 padding-top: 1rem;
}
.btn {
 background-color: #362507;
 padding: .25rem .75rem;
 border-radius: .75rem;
 font-size: 1rem;
 color: #cdc9c1;
 text-transform: uppercase;
}
nav ul {
 display: flex;
 list-style-type: none;
}
nav li {
 padding-left: 1rem;
}
a {
 text-decoration: none;
}
a:hover {
 color: #362507;
 background-color: #cdc9c1;
}
h1 {
 font-size: 4rem;
 font-weight: bold;
 font-family: "Playfair Display", Georgia, serif;
}

The h1 e lement is
given some padding.

This class turns the
navigat ion items into
proper buttons.

This CSS styles the l ist
of navigat ion items.

This CSS styles the l inks
(regular and hover) .

This CSS
styles the
page t it le .

				

C

SS

Project:  Creating a Portfolio Page

382	WEB DESIGN PLAYGROUND 

Of special note here is the btn class, which you saw earlier applied to the

<a> tags in the nav section. Each a element is a bulleted-list item, and the

purpose of the btn class is to turn the content of each li element (the link

text) into a proper button. Here’s what the btn class does:

•	 It adds a background color.

•	 It adds padding around the text.

•	 It uses the border-radius property to round the corners.

•	 It sets the font size and color, and converts the text to
uppercase.

The Portfolio Introduction
The portfolio introduction serves to bring the reader into your page by

offering a quick overview of what you do creatively. It should have a title

and perhaps a subtitle, a short paragraph, and another link to your contact

section.

In the following example, I've styled my page introduction with dark

brown text (#362507), an h2 title, an h3 subtitle, a clickable button, and a

related image for visual interest. To keep everything nice and neat, I set up

the introduction (using a class named intro) as a flexbox container.

Master
The border-radius
property rounds the
corners of an element.
You can specify a
measurement value (the
higher the value, the
more the corners are
rounded), or you can
enter a percentage (a
value of 50% rounds the
borders into a circle, for
example).

IITry This   ��ðOnline: wdpg.io/projects/portfolio-page/05
This example adds the introduction to the portfolio page.

<p>

<section class= “intro”>

<div class= “intro-text”> <div class= “intro-image”>

<h2>

<h3>

<a>

				

W

E
B

 P
A

G
E

Building the Page

	 WEB DESIGN PLAYGROUND	383

.intro {
 display: flex;
 align-items: center;
 margin: 2rem 0;
 width: 100%;
 border: 3px solid #77613c;
 color: #362507;
 font-size: 1.25rem;
 background-color: #a99879;
 background-image: radial-gradient(ellipse closest-corner at
center,
#cdc9c1 0%, #a99879 100%);
}
.intro-text {
 flex: 2 0 67%;
 padding: 2rem 0 2rem 2rem;
}
.intro-text p {
 margin: 1.5rem 0;
}
.intro-image {
 flex: 1 0 33%;
 padding-right: 2rem;
 text-align: right;
}
h2 {
 font-size: 2.5rem;
}
h3 {
 font-size: 2rem;
 font-style: italic;
}
h2, h3 {
 font-family: "Playfair Display", Georgia, serif;
}

The CSS for the
intro class

The CSS for the
intro-text class

The CSS for the
intro-image class

The CSS
for the
headings

				

C

SS

continued

Project:  Creating a Portfolio Page

384	WEB DESIGN PLAYGROUND 

<main>
 <section class="intro">
 <div class="intro-text">
 <h2>Book Restoration and Repair</h2>
 <h3>If it’s broke, I’ll fix it</h3>
 <p>Welcome to This Old Book, the online home of book
restorer Paul McFedries. I take old books that have seen better
days and breath new life into them with careful and respectful
repairs and cleaning. Got a precious family Bible that’s a little
worse for wear? Have a rare or important book that could use some
TLC? Let’s talk.
 </p>
 <div>
 Contact Me
 </div>
 </div>
 <div class="intro-image">
 <img src="/images/portfolio-intro.tif"
alt="Illustration showing several old books">
 </div>
 </section>
</main>

H
T

M
L

The Portfolio
Next is the real meat of the page, which is the portfolio itself—a series of

images that show off your work. When deciding how much to show, you

have three choices:

•	 Show all your work. This option is the way to go if your portfolio
is small. If you have a big portfolio, you can show it, but it may
be better to show just a subset and then link to a second page
that shows everything.

•	 Show your most recent work. This option is a good one if you
think that your newest stuff is particularly good, if your style has
changed recently, or if you've landed some high-profile clients.

•	 Show your best work. This route is the one to take if you want
to really show people what you can do.

A typical portfolio has one to three rows, with two to four images per row.

You'll want to precede the portfolio with a heading and perhaps a sentence

or two as a lead-in. The portfolio itself should be configured as a flexbox

container to make everything look tidy. The following example shows how I

did all this on my portfolio page.

Building the Page

	 WEB DESIGN PLAYGROUND	385

IITry This   ��ðOnline: wdpg.io/projects/portfolio-page/06
This example adds the portfolio to the page.

<section class=
“portfolio”>

<h2>

 tags

<p>

<div class=
“portfolio-images”>

<div class=
“portfolio-text”>W

E
B

 P
A

G
E

.portfolio {
 margin-bottom: 1rem;
}
.portfolio-text p {
 margin: .5rem 0 1.5rem;
 font-size: 1.25rem;
}
.portfolio-images {
 display: flex;
 justify-content: space-between;
}
.portfolio-image {
 position: relative;
 cursor: pointer;
 margin-bottom: 1rem;
}

The portfol io images
are housed in a flexbox
container.

				

C

SS

continued

Project:  Creating a Portfolio Page

386	WEB DESIGN PLAYGROUND 

<section class="portfolio" id="portfolio">
 <div class="portfolio-text">
 <h2>Some Recent Work</h2>
 <p>Here are some of my recent restoration projects. The
images you see below are the “before” versions of each book. To
see an “after” version, move your mouse over an image (or tap
it).</p>
 </div>
 <div class="portfolio-images">
 <div class="portfolio-image">

 <img class="image-overlay" src="/images/portfolio-
book1-after.tif">
 </div>
 <div class="portfolio-image">

 <img class="image-overlay" src="/images/portfolio-
book2-after.tif">
 </div>
 <div class="portfolio-image">

 <img class="image-overlay" src="/images/portfolio-
book3-after.tif">
 </div>
 <div class="portfolio-image">

 <img class="image-overlay" src="/images/portfolio-
book4-after.tif">
 </div>
 </div>
</section>

The portfol io container is a section
element with class and id portfol io .

The portfol io text container is a div
element with class portfol io-text .

The portfolio images container
is a div element with class
portfol io- images.

H
T

M
L

The portfolio content resides in a section tag to which I've assigned the

portfolio class. Note, too, that I assigned the id portfolio, which sets up

this section element as a target for the header's Portfolio navigation link

you saw earlier.

The portfolio text resides in a div with class portfolio-text. It consists

of an h2 heading and a p element for the lead-in sentence.

Building the Page

	 WEB DESIGN PLAYGROUND	387

The portfolio images reside in a div with class portfolio-images. It

consists of several div elements (with class portfolio-image). For most

portfolios, you need only include an img element within each of these div

elements. In my project, however, I wanted to present before and after

images, with the latter appearing when the user hovers the mouse over an

image (or taps an image on a portable device). To do that, I added a second

img element with class image-overlay. Here's the CSS for that class:

.image-overlay {
 position: absolute;
 left: 0;
 top: 0;
 width: 200px;
 height: 156px;
 z-index: 1;
 opacity: 0;
 transition: opacity 1.5s ease;
}
.image-overlay:hover {
 opacity: 1;
}

The overlay uses the same dimensions as the before image, and it's

positioned absolutely at the top-left corner of the div element with class

portfolio-image (which uses relative positioning to set a positioning

context for the after image). The overlay is given a z-index value of 1 to

make sure it appears on top of the before image, and it's given an opacity

value of 0 to prevent it from appearing when the page first loads. Then the

hover event changes the opacity value to 1 to make the image appear. The

transition property in the image-overlay class animates the appearance

of the overlay.

The About Section
The next element of the portfolio page is the About section, which you can

use to toot your own horn in whatever way you feel comfortable. You can

talk up your education, your work experience, your appointments, your

awards, and so on. Use whatever works to supply your portfolio the bona

fides required to persuade potential clients, employers, or sponsors that you

have the creative chops they're looking for.

The About section is simple: a heading followed by a paragraph of self-

aggrandizing text. The following shows an example.

Use It
The idea of having
before and after images
in your portfolio is
useful for many creative
pursuits, including
furniture repair, art
restoration, fitness
training, hair styling,
and interior decoration.

Project:  Creating a Portfolio Page

388	WEB DESIGN PLAYGROUND 

IITry This   �ðOnline: wdpg.io/projects/portfolio-page/07
This example adds the About section to the portfolio page.

<section class=
“about”>

<h2> <p>

W
E

B
 P

A
G

E

.about {
 margin-bottom: 1rem;
}
.about-text p {
 margin: .5rem 0 1.5rem;
 font-size: 1.25rem;
}

The CSS for the
About section

C
SS

<section class="about" id="about">
 <div class="about-text">
 <h2>About Me</h2>
 <p>Paul McFedries is a book conservator, bookbinder,
and an expert in the history and conservation of Gothic and Art
Deco bookbindings. He is a graduate of the Canadian Bookbinding
and Book Arts Guild, and apprenticed with some of the top North
American and European book restorers, including Don Palmer, Rose
Eldridge, and Betsy Taylor-Newlove. Paul was formerly president of
the Gothic Book Workers Guild and is currently executive director
of the Historical Art Deco Bookbinding Society. Working with both
institutional and private clients, he has restored hundreds of
books over the years.
 </p>
 </div>
</section>

The About container is a section
element with class and id about.

The About text container is a div
element with class about-text .

H
T

M
L

Building the Page

	 WEB DESIGN PLAYGROUND	389

The About content uses a section element with the about class. I also

assigned the id about, which sets up this element as a target for the About

navigation link in the header.

The Contact Section
The final element of the main section of the portfolio page is the all-

important Contact section, which is where you give interested visitors one

or more ways to get in touch with you. At minimum, you should supply an

email address, but you'll almost always want to include one or more links to

your social networking profiles.

The Contact section is straightforward: a heading, a lead-in paragraph,

and your email address and social network links. The following shows an

example.

IITry This   �ðOnline: wdpg.io/projects/portfolio-page/08
This example adds the Contact section to the portfolio page.

<section class=
“contact”>

<div class=
“contact-text”>

<div class= “contact-social-links”>

<h2> <p>

W
E

B
 P

A
G

E

.contact {
 margin-bottom: 1rem;
}
.contact-text p {
 margin: .5rem 0 1.5rem;
 font-size: 1.25rem;
}
.contact-social-links a {
 margin-right: 1.5em;
}

The CSS for
the Contact
section

				

C

SS
FAQ
Can I have people
contact me using a
form? A form is a great
way to get a message,
but it’s not ideal for
most new web designers
because it requires a
script to process the
form data. However,
some services on the web
not only enable you to
build a form, but also
process the data for you.
Check out TypeForm
(https://www.typeform.
com) and Wufoo (https://
www.wufoo.com).

continued

Project:  Creating a Portfolio Page

390	WEB DESIGN PLAYGROUND 

<section class="contact" id="contact">
 <div class="contact-text">
 <h2>Contact Me</h2>
 <p>If you want to know more about my work, or if you want to
discuss a project, please get in touch:</p>
 <p><i>paul at thisoldbook dot com</i></p>
 <p>Alternatively, click an icon below to reach out using
your favorite social network:</p>
 </div>
 <div class="contact-social-links">
 <img src="/images/
facebook-round.tif" alt="Facebook icon">
 <img src="/images/
twitter-round.tif" alt="Twitter icon">
 <img src="/images/
instagram-round.tif" alt="Instagram icon">
 </div>
</section>

The Contact container is a section
element with class and id contact.

The Contact text container is a div
element with class contact-text .

The Contact socia l media container is a div
element with class contact-socia l - l inks .

H
T

M
L

 Remember
When you add your
email address to the
Contact section, make
sure that you don't
display the address in
plain text so that the
address isn’t harvested
by spammers. Instead,
obfuscate the address
in a way that fools the
spammers' bots but is
still straightforward for
a human to decode.

The Contact content uses a section tag with the contact class and an

id value set to contact, which enables this element to act as an anchor for

the Contact button in the header and the Contact Me button in the portfolio

introduction.

The Page Footer
The final element of the portfolio page is the page footer. As you can see in

the following example, I used the footer to display a copyright notice and

some links to other sections of the site.

Building the Page

	 WEB DESIGN PLAYGROUND	391

IITry This   �ðOnline: wdpg.io/projects/portfolio-page/09
This example adds the footer to the portfolio page.

<footer>

<div class= “footer-copyright”>

<div class= “footer-links”>W
E

B
 P

A
G

E

footer {
 display: flex;
 padding: 1em 0;
 border-top: 1px solid #a99879;
}
.footer-copyright {
 flex: 1 0 50%;
 text-align: left;
 font-style: italic;
 font-size: 1.25em;
}
.footer-links {
 flex: 1 0 50%;
 text-align: right;
 font-size: 1.25em;
}
.footer-links a {
 color: #362507;
 margin-left: 1em;
}

The footer is set
up as a flexbox
container.

C
SS

<footer>
 <div class="footer-copyright">
 Copyright 2019 This Old Book
 </div>
 <div class="footer-links">
 Home
 FAQ
 Site Map
 Privacy
 </div>
</footer>

The footer copyright notice
is a div element with class
footer-copyright .

The footer site links container
is a div element with class
footer- l inks .

H
T

M
L

Project:  Creating a Portfolio Page

392	WEB DESIGN PLAYGROUND 

The footer content uses a footer element that’s configured as a flexbox

container. The copyright notice (with class footer-copyright) is a flexbox

item aligned to the left, and the site links (with class footer-links) is a

flexbox item aligned to the right.

From Here
The final version of the portfolio page (mine is shown in Figure 20.4) offers a

solid start for getting the word out about your creative work.

Beware
When adding a
copyright notice,
don't add both the
word Copyright and
the copyright symbol
(©), because this is
redundant. Use one or
the other, but not both.

IIFigure 20.4 
A portfolio page, ready for
the web

Summary

	 WEB DESIGN PLAYGROUND	393

The biggest thing missing from the portfolio page is responsiveness.

The page looks good in desktop web browsers and even on some tablets in

landscape mode, but the design breaks on smaller screens. I'll leave you the

exercise to add media query breakpoints (see Chapter 13) that help the page

look good all the way down to a smartphone.

This is the last chapter of the book, but that doesn’t mean it’s the last

chapter of your web-design education. Far from it. Be sure to pay a visit

to the Web Design Playground (https://webdesignplayground.io/) for lots of

examples, exercises, and tutorials that will help you sharpen your skills and

expand your knowledge. See you there!

Summary
•	 Sketch out the page you want to build.

•	 Choose the typefaces for the headings and body text.

•	 Choose a color scheme.

•	 Build the initial page structure: the barebones HTML tags and
the global CSS properties applied to the body element.

•	 Set up your main flexbox containers.

•	 Fill in and style each section one by one: the header, the
portfolio introduction, the portfolio itself, the About section, the
Contact section, and the footer.

	 WEB DESIGN PLAYGROUND	395

Appendix

A

From Playground to
Web: Getting Your
Pages Online

When something is such a creative medium as the web,
the limits to it are our imaginations. —Tim Berners-Lee

This appendix covers

▪	�Downloading page files from the Web Design
Playground

▪	Validating HTML and CSS syntax
▪	Understanding and selecting a web hosting service
▪	Uploading page files to your web host

You've covered much ground in this book, and no doubt worked your fingers
to the bone applying the electronic equivalent of spit and polish to buff your
website's pages to an impressive sheen. But you need to perform a couple
of related tasks before you can cross "Make website" off the to-do list: Find a
web home for your site, and move your website files to that new home. This
appendix helps take care of both tasks. You first learn how to look for and
choose a spot on the web where friends, family, and even total strangers
from far-flung corners of the world can eyeball your creation. Then you learn
how to emigrate your web pages from their native land (the Web Design
Playground or your hard disk) to the New World (the web). You’ll learn how to
best prepare your pages for the journey, select a mode of transportation, and
settle the pages in when they've arrived.

From Playground to Web: Getting Your Pages Online

396	WEB DESIGN PLAYGROUND 

From There to Here: Saving Your Playground Work
If you've been using the Web Design Playground to try some experiments

and even build a few sandboxes (the name I use to describe projects on

the Playground), the next step is getting your code from the Playground

to your computer. You have two ways to go about this: copying code and

downloading code. To begin, I’ll show you how to copy code from the

Playground.

Copying Playground Code
The Web Design Playground is chock full of HTML and CSS code: It's in the

lesson pages, it's in the HTML Editor, and it's in the CSS Editor. One way of

getting code to your computer is to copy it from one of these Playground

locations. When you've done that, you can paste the code into an existing

file, using your favorite text editor.

The Web Design Playground offers three ways to copy code:

•	 In a lesson —When a lesson page offers an HTML or CSS code
snippet, you see a Copy to Clipboard button below the code, as
shown in Figure A.1. Click that button to copy the code to your
computer's clipboard (the memory area used to store the most
recently copied or cut data).

•	 In the HTML Editor —The HTML Editor contains the current
lesson's HTML code, existing HTML code that you've modified,
or custom HTML code that you've added to a sandbox.
Whatever the source, you can grab the HTML code by clicking
the menu icon in the top-left corner of the HTML Editor and
then clicking Copy to Clipboard, as shown in Figure A.2. This
step copies the full HTML code to your computer's clipboard.

IIFigure A.1
To copy code from an HTML
or CSS snippet in a Playground
lesson, click the Copy to
Clipboard button.

From There to Here: Saving Your Playground Work

	 WEB DESIGN PLAYGROUND	397

•	 In the CSS Editor —The CSS Editor contains the current lesson's
CSS code, existing CSS code that you've modified, or custom CSS
code that you've added to a sandbox. To place that CSS code
in your computer's memory, click the menu icon in the top-left
corner of the CSS Editor and then click Copy to Clipboard, as
shown in Figure A.3. This step copies the full CSS code to your
computer's clipboard.

When you've run the Copy to Clipboard command, open your HTML

or CSS file in a text editor, position the insertion point where you want the

copied code to appear, and then run the text editor's command for pasting

clipboard data. In the vast majority of editors, you do this by choosing Edit >

Paste or by pressing Ctrl+V (Windows) or Cmd+V (Mac).

Downloading Playground Code
Rather than copy and paste bits of HTML or CSS code, you may prefer to get

the entire contents of both the HTML and CSS editors. This is the way to go if

you want all the code from a particular lesson, or if you've created a sandbox

and have been populating it with custom HTML and CSS code.

Here are the steps to follow:

1	 In the Web Design Playground, open the lesson that has the code you

want, or create a sandbox with your custom code.

2	 Choose Menu > Download Code.

The Playground gathers the code into a zip archive file and tells your

web browser to download the file.

IIFigure A.2
To copy code from the HTML
Editor, click the Editor's menu
icon and then click Copy to
Clipboard.

IIFigure A.3
To copy code from the CSS
Editor, click the Editor's menu
icon and then click Copy to
Clipboard.

From Playground to Web: Getting Your Pages Online

398	WEB DESIGN PLAYGROUND 

3	 Locate the downloaded file, which is named webdesign.zip.

4	 Double-click the webdesign.zip archive to open it.

In the folder that appears, you see two files:

•	 index.html—This file contains a basic HTML page structure
with the contents of the HTML Editor inserted between the
<body> and </body> tags. It also includes a link element in
the <head> section that references the styles.css file.

•	 styles.css—This file contains the contents of the CSS
Editor.

5	 Copy or move these files to the folder where you store the rest of your

web -page files (such as the page image files).

Now that you have your Playground code safely stashed on your Mac

or PC, you're about ready to get that code onto the web. Before you can

do that, however, you need to perform a few more chores to get your files

web-ready. First on this to-do list is setting up your web page folders on

your computer.

Setting Up Your Folders
When you sign up for a home to store your web page files (see "Getting a

Web Host" later in this appendix), you're given your own folder to store files

on the server. That folder is called your website's root folder. The question

you need to ask yourself now is an apparently simple one: Do I need to

create one or more subfolders within the root folder?

I use the word apparently here because it's not always clear whether you

need subfolders. Examine the possible scenarios:

•	 One web project consisting of a single file —The simplest
possible web project is one that consists of a single HTML file.
That file contains only text, HTML tags, CSS styles inserted inline
or in an internal style sheet (that is, between the <style> and
</style> tags), and media (such as images) that use remote
references (that is, references to files that reside on other
websites). In this case, you can store that file in the root folder
and you don't need any subfolders.

•	 One web project consisting of a small number of files —Most
simple or beginning web projects consist of a few files: an
HTML file, a CSS file, and one or more image files. In this case,
it's almost certainly overkill to use subfolders, so you should
store all the files in the root folder.

•	 One web project consisting of a large number of files —It's not
unusual for a large project to have multiple HTML files, several
CSS files, and lots of media files, particularly images. In this

Validating Your Code

	 WEB DESIGN PLAYGROUND	399

scenario, it's fine to place all your HTML files in the root folder,
but to keep things organized, you should create separate
subfolders for each of the other types of files: CSS, images, and
so on.

•	 Multiple web projects —If you get into web design even a little,
you'll find that you can't create only one project. Multiple
projects are the norm, and in this case, you should keep the
projects separate by storing each one in its own subfolder. If a
particular project is large, you'll want to create sub-subfolders
to store the project's various file types (CSS, images, media, and
so on).

Why worry about all this now? You'll make your web design life

immeasurably easier and more efficient if you set up your computer's local

folder structure to mirror what you want to set up remotely after you sign

up with a web host:

1	 Begin by designating a local folder as the main storage area for your

web files.

This folder will be your local equivalent of your root folder on the

web host.

2	 If you'll be working on multiple web projects, set up a subfolder for

each project.

3	 If a project is large enough to require subfolders for certain file types,

create these subfolders within the project folder.

4	 When you download files from the Playground (as described in the

preceding section), or when you create your own HTML, CSS, or

image files and save them for the first time, be sure to store them in

the appropriate folder.

With all that done, your next task is making sure that your code passes

muster by getting it validated.

Validating Your Code
You've seen in this book that although HTML tags and CSS properties aren't

complex, they can be finicky. If you forget a closing tag or brace, leave out

a quotation mark or comma, or spell a tag or property name incorrectly,

there’s a good chance that your web page won't render properly. In some

cases, the error is a glaring one (such as the page’s failing to show anything),

but all too often, the error is subtle and hard to notice.

Either way, you don't want to foist an error-filled page on the web public,

so besides going over your HTML and CSS code with a careful eye, you

can get some help online by submitting your code to one of the available

validation services.

From Playground to Web: Getting Your Pages Online

400	WEB DESIGN PLAYGROUND 

Validating HTML
The World Wide Web Consortium (W3C) hosts a Markup Validation Service

that can examine your HTML code and let you know whether it contains any

errors or warnings. Here's how you use it:

1	 Use a web browser to surf to https://validator.w3.org.

2	 Click the Validate by File Upload tab.

3	 Click Browse (Windows) or Choose File (Mac).

The site prompts you to select the file you want to validate.

4	 Locate and select the HTML file you want to check; then click Open.

The site uploads the file.

5	 Click Check.

The Markup Validation Service checks the HTML code and displays the

results.

Ideally, you'll see the No errors or warnings to show message, as

shown in Figure A.4.

If your HTML file didn’t validate, you'll see one or more error or warning

messages, as shown in Figure A.5.

Remember
Another way to run the
validation is to copy
your HTML code from
your text editor, select
the Validate by Direct
Input tab, paste your
HTML code into the
text box, and then
click Check.

IIFigure A.4 
HTML validation bliss: No
errors or warnings

to show.

IIFigure A.5 
HTML validation misery:
There were errors.

Validating Your Code

	 WEB DESIGN PLAYGROUND	401

Validating CSS
The W3C also offers the CSS Validation Service, which can peruse your CSS

code and alert you to any errors or warnings. Here's how to use it:

1	 Use a web browser to surf to https://jigsaw.w3.org/css-validator.

2	 Click the By File Upload tab.

3	 Click Browse (Windows) or Choose File (Mac).

The site prompts you to select the file you want to validate.

4	 Locate and select the CSS file you want to check; then click Open.

The site uploads the file.

5	 Click Check.

The CSS Validation Service checks the CSS code and displays the

results.

Ideally, you'll see the No Error Found message, shown in Figure A.6.

If your CSS file contains invalid data, however, the service returns one or

more errors or warnings, as shown in Figure A.7.

When you've fixed all the errors in your code, your HTML and CSS files

are ready for the primetime of the web. First, though, you need to secure a

place to put those files. You need, in short, to find a web host.

Remember
An alternative CSS
validation method is to
copy your CSS code from
your text editor, select
the By Direct Input tab,
paste your CSS code into
the text box, and then
click Check.

IIFigure A.6 
CSS validation joy:
Congratulations!

No Error Found.

IIFigure A.7 
CSS validation sorrow:
We found the

following errors.

From Playground to Web: Getting Your Pages Online

402	WEB DESIGN PLAYGROUND 

Getting a Web Host
Back in Chapter 1, you learned that a web page is stored on a special

computer called a web server, which accepts and responds to web browser

requests for the page and its associated files. Before anyone else can view

your web project, you need to get its files on a web server. To do that, you

need to sign up with a service that offers space on its server. Because the

service in effect plays host to your files, such a service is called a web hosting

provider, or web host for short.

When you evaluate a web host, what criteria should you use? The answer

depends on the type of website you want to set up, but the following criteria

are the most common:

•	 Maximum bandwidth —The maximum amount of your data
per month that the host will transfer to web browsers. In
most cases, you pay extra for data that exceeds your monthly
maximum. Some web hosts offer unlimited bandwidth.

•	 Total disk space —The amount of hard disk storage space you
get on the web server. At a minimum, total disk space usually
is a few hundred megabytes, which is more than enough for a
simple site.

•	 Number of websites —The number of root folders you can set up.

•	 Number of email addresses —The number of email addresses
that are included with the hosting service.

•	 Domain name hosting  —Whether the web host also
hosts domain names that you've previously purchased
from a domain name registrar. Some hosts sell domain
names, and others offer free subdomain names of the form
yourdomain.webhostdomain.com.

•	 FTP support —Support for the File Transfer Protocol, which is
the internet service you use to transfer your files to the web
host. Almost all web hosts support FTP, but some offer only
proprietary file transfer services.

As a rule, the cheaper the web host, the fewer of these features you get.

Before you start looking for a web host, make a list of these features and

decide what you need and what’s optional. That might be difficult right now

for something like maximum bandwidth, because bandwidth is determined

in part by how popular your site becomes, but make your best stabs at each

one for now.

When you're looking for a web host, you have three main choices:

•	 Your Internet service provider (ISP)—The company or institution
you use to access the internet may also offer a web hosting

Uploading Your Files

	 WEB DESIGN PLAYGROUND	403

service. Many ISPs offer free web hosting for simple personal
websites, and some organization networks include a web server
that you can use. In most cases, the hosting includes features
such as bandwidth and disk space at the lower end of the scale.

•	 A free web hosting provider —Many services will host your
web pages without charge. The catch is that you usually have
fairly severe restrictions on most hosting features, particularly
bandwidth and disk space, and you almost always get only a
single website. Some free web hosts also display ads, although
that's becoming rare these days.

•	 A commercial web hosting provider —If you want to get a
reasonable set of features for your web presence, you need to
shell out money to rent space with a commercial web hosting
provider. Note that I'm not talking about big bucks. Popular
providers such as Bluehost (https://www.bluehost.com),
GoDaddy (https://www.godaddy.com), and HostGator (http://
www.hostgator.com) offer feature-packed hosting usually for
less than $5 dollars per month. If you think you'll be getting
into web design beyond the creation of a basic home page, you
should definitely consider a commercial web host.

When you've signed up with a web host, it usually takes anywhere from

a few minutes to a few hours before everything is ready. When your hosting

service is good to go, then it's time to get your stuff online.

Uploading Your Files
With your HTML and CSS files coded and validated, your support files (such

as images) in place, your folders set up, and your web host ready to serve

your stuff to a waiting world, all that remains is to send your files from your

computer to the web host's server—a process known as uploading.

How you go about uploading your files depends on the web host, but the

following three methods are by far the most common:

•	 FTP —Most hosts offer support for FTP uploads. First, you need
to get yourself an FTP client, which is a software program that
connects to your web host's FTP server and offers an interface
for basic file chores, such as navigating and creating folders,
uploading the files, and deleting and renaming files. Popular
Windows clients are CuteFTP (https://www.globalscape.com/
cuteftp) and CyberDuck (https://cyberduck.io). For the Mac,
try Transmit (https://panic.com/transmit) or FileZilla (https://
filezilla-project.org). When you've downloaded the software,
check your web host's support pages for information on how to
connect to the host's FTP server.

From Playground to Web: Getting Your Pages Online

404	WEB DESIGN PLAYGROUND 

•	 cPanel —Many web hosts offer an administration tool called
cPanel that presents a simple interface for hosting tasks such
as email and domain management. cPanel also offers a File
Manager component that you can use to upload files and
perform other file management chores.

•	 Proprietary —Some web hosts offer their own interface for
uploading and working with files. See your host's support page
for instructions.

Whatever method is available, upload all your website files and folders

to your root folder on your host. Then load your site into your favorite web

browser to make sure that everything's working okay. It wouldn't hurt to try

your site in a few different browsers and on a few different devices to make

sure thate it works properly for a wide variety of users. Welcome to the web!

Selecting a Text Editor
You can use the Web Design Playground to experiment and play with HTML

and CSS, but when it’s time to get serious about your code, you’ll want to

edit it on your computer. To do that, you need a text editor, preferably one

that was designed with web coding in mind. Such an editor comes with

features such as syntax highlighting (which color-codes certain syntax

elements for easier reading), line numbers, code completion (when you

start typing something, the editor displays a list of possible code items that

complete your typing), and text processing (such as automatic indentation

of code blocks, converting tabs to spaces and vice versa, shifting chunks of

code right or left, removing unneeded spaces at the end of lines, and hiding

blocks of code).

Here, in alphabetical order, are a few editors that offer all these features

(and usually quite a few more):

•	 Atom —Available for Windows and Mac. Free! https://atom.io

•	 Brackets —Available for Windows and Mac. Also free! http://
brackets.io

•	 Coda —Available for Mac for $99, but a free trial is available.
www.panic.com/coda

•	 Notepad++—Available for Windows only. Another freebie.
https://notepad-plus-plus.org

•	 Sublime Text —Available for both Windows and Mac for $80, but
a free trial is available. www.sublimeext.com

•	 TextMate —Available for Mac only for €48.75 (about $57), but a
free trial is available. http://macromates.com

Summary

	 WEB DESIGN PLAYGROUND	405

Summary
•	 Get your code from the Web Design Playground to your

computer either by copying and pasting the code, or by
downloading the contents of the HTML and CSS Editors.

•	 Set up your website folders on your computer.

•	 Use the W3C's online validation services to look for errors in
your HTML and CSS code.

•	 Sign up for a web hosting provider.

•	 Upload your website files to your web host.

Index
A
<abbr> tag  290
absolute positioning  134–136
absolute values  120
adaptive layouts  240–244
adjacent sibling  353
Adobe Typekit  335
::after pseudo-element  360–362
align-content property  279
aligning

images  92–93
overriding item alignment in flexbox 

218–219
paragraphs horizontally  60
text  92–93

align-items property  210, 279
alpha channel  312
alt attribute  86
analogous colors  318
ancestor element  353
anchors  35
Andersson-Wise site  264
apertures  374
article element  240
<article> tag  188
aside element  240, 254
<aside> tag  189
attributes  15
audio

adding to page  100–108
embedding in web pages  105–108
web audio formats  101

Authentic Jobs site  266
author stylesheets  365
auto keyword  149
Autoprefixer  219, 275

B
background-attachment property  162
background-color property  66

background-image property  94
background images  94–99

adding hero images  97
background shorthand properties  99
controlling background repeat  95
hero background images  161–162
setting background positions  96

backgrounds
applying colors to  66–68
controlling repeat  95
setting background position  96

background shorthand properties  99
background-size property  325
banded content  156
::before pseudo-element  360–362
block-level elements  42, 124
blockquote element  31
blocks, adding visual breaks between  43–44
Bluehost  403
body tag  23
body text  71
bold text  57–58
Bootstrap  186
borders  139–153
box model  140–141
breakpoints. See media query breakpoints
breaks. See also line breaks

overview  245
visual, adding between blocks  43–44

br element  40
bulleted lists  45, 47–49, 91

C
Calibri typeface  58
call-to-action buttons  161, 164–165
captions  271, 283–285
cascade  365–366
Cascading Style Sheets. See CSS
CDNs (content delivery networks)  337
centering. See dead-centering elements
character entities  302

407

408	WEB DESIGN PLAYGROUND 

Index

child selectors  356
cite attribute  31
<cite> tag  291
class selectors

overview  117–118
versus ID selectors  352

clear property  124
code

for Web Design Playground
copying  396–397
downloading  397–398

validating  399–401
CSS  401
HTML  400

<code> tag  291
collapsing

containers  125–127
margins  152–153

colon character  17
Color Chooser tool  315–328
color property  65
colors  305–329

adding with CSS  309–316
Color Chooser tool  315–316
hexadecimal numbers  312–313
hsl() function  311
RBG hex codes  314–315
rgb() function  309–311
transparency  312

applying color gradient  322–329
creating linear gradients  322–324
creating radial gradients  325
gradients and older browsers  326–327
using Gradient Construction Kit  327–329

applying to backgrounds  66–68
applying to text  65
choosing color scheme

for home pages  71–72
for landing pages  158
for photo galleries  272
for portfolio pages  375–376

Color Scheme calculator  318–319
harmonious, choosing  317–318
overview of  64–68, 306–309

Color Scheme calculator  318–319

comments  75, 304
complementary colors  317
containers. See also inline containers

in flexbox  205–212
arranging items along cross axis  208–209
arranging items along main axis  208
arranging multiple lines along cross

axis  211–212
direction of container items  206–207
wrapping items  210–211

preventing collapse  125–127
content bands  166–168
content delivery networks (CDNs)  337
contextual selectors, in CSS  353–358

child selectors  356
descendant selectors  354
sibling selectors  358

copyright symbol  81, 281
counter-increment property  362
counters  374
cPanel  404
cross axis

arranging items along  208–209
arranging multiple lines along  211–212

CSS (Cascading Style Sheets)  3–20,
349–369

adding colors with  309–316
Color Chooser tool  315–316
hexadecimal numbers  312–313
hsl() function  311
RBG hex codes  314–315
rgb() function  309–311
transparency  312

::after pseudo-element  360–362
::before pseudo-element  360–362
combining selectors  359–360
contextual selectors  353–358

child selectors  356
descendant selectors  353–354
parent selectors  352–353
sibling selectors  353–358

creating web with  10–11
example of  8–9
ID selectors  350–352
in Web Design Playground  12

	 WEB DESIGN PLAYGROUND	409

Index

limitations of  10
overview of  7–9
properties  16
resetting with universal selectors  362
separating structure and presentation  8
styles  363–369

cascade  365–366
inheritance  363
specificity  366–369

units of measurement in  119–120
uses for  8
validating  401

CSS Editor  397
cursive typefaces  53, 271
CuteFTP  403
CyberDuck  403

D
darkgray keyword  64
dead-centering elements  212–213
declaration block  16, 113
descendant element  353
descendant selectors  353–354
description list  45
<dfn> tag  292
direction of container items  206–207
div element  41
drop caps  128
dynamic captions  283–285

E
elements. See also semantic

page elements
::after pseudo-element  360, 362
::before pseudo-element  360–362
dead-centering with flexbox  212–213
floating  121–137

clearing floated elements  124–125
default page flow  122
floating drop caps  128
floating pull quotes  129–131
preventing container collapse  125–127

positioning  121–137
absolute positioning  134–136

default page flow  122
fixed positioning  136–137
relative positioning  132–133

Embedded Open Type (EOT)  337
embedded style sheet  112
embedding

audio in web pages  105–108
video in web pages  102–104

emphasizing text  29–30
empty string  86
em tag  14
EOT (Embedded Open Type)  337
external link  362
external style sheets  115–117

F
fallback color  326
fantasy typefaces  53
faux-column effect  195, 242
feet  53
figcaption element  89, 284
figure element  89
file formats  87
files

local, linking to  298–299
uploading  403–404

File Transfer Protocol (FTP)  402
FileZilla  403
fixed footers  281
fixed positioning  136–137
fixed-width layouts  53, 232–249
flex-basis property  216, 239
flexbox

browser support  219–220
containers  205–212

arranging items along cross axis  208–209
arranging items along main axis  208
arranging multiple lines along cross

axis  211–212
direction of container items  206–207
wrapping items  210–211

creating holy-grail layouts with  222–227
creating page layouts with

creating thumbnail lists  220
overview  203

410	WEB DESIGN PLAYGROUND 

Index

dead-centering elements with  212–213
flexbox items  213–219

changing order of items  217
flex shorthand property  217
growing items  214
overriding item alignment  218–219
shrinking items  215
suggesting initial sizes for items  216–217

overview of  204–205
flex-direction property  206, 216, 283
flex-grow property  214, 238, 280
flexible layouts  237–240
flex shorthand property  217
flex-shrink property  215, 238
flex-start value  208
flex-wrap property  238
flex-wrap values  211
floating

drop caps  128
elements  121–137

clearing floated elements  124–125
default page flow  122
preventing container collapse  125–127

pull quotes  129–131
float property

creating holy-grail layouts with  191–196
creating page layouts with  191–196
overview  185

flow. See page flow
flush  63
folders  398–399
Fontex  337
@font-face directive   334
font-family property  53, 78, 158, 332
fonts

font stacks  332–334
generic  53–54
hosting  337–339
responsive font sizes  259
shorthand properties  343–348
specifying web fonts  334
system  54–55
third-party hosted fonts  335–336

font-size property  56, 75, 258
Fontspring  337

Font Squirrel  337
font-variant property  340
footer element  195, 225
footer sections  279–280
<footer> tag  189
footers, fixed  281. See also page footers
FTP (File Transfer Protocol)  402

G
generated content  360
Georgia typeface  79
GIF (Graphics Interchange Format)  88
GoDaddy  403
Google Fonts  335, 374
gradient

applying  322–329
creating linear gradients  322–324
creating radial gradients  325
older browsers and  326–327
using Gradient Construction Kit  327–329

Gradient Construction Kit  327–329
grandparent element  352
Graphics Interchange Format (GIF)  88
grayscale keyword  64

H
h1 through h6 tags  14
hanging indent  63
hash symbol  300, 314
<header> tag  187
headers  160–161
headings  33–34
head tag  23
height, setting

of lines  341
overview  142–143

hero images
adding  97
background images  161–162

hexadecimal numbers  312–313
hex triplets  314
Hicks Design  263
holy-grail layouts  190

creating with flexbox  222–227

	 WEB DESIGN PLAYGROUND	 411

Index

creating with floats  191–196
creating with inline blocks  197–201
overview  184–185

horizontal alignment of paragraphs  60
horizontal measures  261
horizontal navigation  145
horizontal rule  43
HostGator  403
house styles  7
href attribute  16, 35
hr element  43
hsl() function  311
HSL (hue, saturation, and luminance)  307, 311
HTML5 (Hypertext Markup Language)

entity browser  303
inserting figures  89
semantic page elements  186–190
<article> tags  188
<aside> tags  189
<footer> tags  189
<header> tags  187
<main> tags  187
<nav> tags  187
<section> tags  188

HTML Editor  396
HTML (Hypertext Markup Language)
<abbr> tag  290
adding comments  304
adding tag attributes  15–16
<cite> tag  291
<code> tag  291
creating web with  10–11
<dfn> tag  292
elements  289–304
example of  5–6
for page structure  38–44

adding visual breaks between blocks 
43–44

creating inline containers  42
dividing web page text  41
inserting line breaks  40
paragraphs  38

HTML5 entity browser  303
inserting special characters  302
in Web Design Playground  12

<kbd> tag  292
limitations of  10
links  298–300

linking to local files  298–299
linking to same page  300

<mark> tag  292
overview of  4–6
<pre> tag  293
<samp> tag  294
<small> tag  294
<s> tag  294
<sub> tag  295
<sup> tag  295
tags  14–15
<time> tag  296
uses for  4–5
<u> tag  297
validating  400
<var> tag  298

html tag  23
hue, saturation, and luminance (HSL)  307, 311
hypertext reference  16, 35

I
ID selectors

in CSS  350–352
versus class selectors  352

images  86–93
aligning  92–93
as custom bullets  91
background images  94–99

adding hero images  97
background shorthand properties  99
controlling background repeat  95
setting background positions  96

creating fluid images  252–254
delivering responsively  255–256
getting graphics  88–89
image file formats  87
inserting HTML5 figures  89
optimizing  99–100
responsive  252–256
setting up as links  90

img element  15, 86

412	WEB DESIGN PLAYGROUND 

Index

!important keyword   367
indenting text  62
indent styles  63
inheritance  258, 363
inline blocks

creating holy-grail layout with  197–201
creating page layouts with  196–201

inline-block technique  237
inline containers  42
inline elements  42
inline styles  110–112
internal style sheets  112–115
ISP (internet service provider), web hosting

by  402
italicizing text  59

J
JPEG (Joint Photographic Experts Group)  88
justification axis  210
justify-content property  208

K
<kbd> tag  292
keyphrase  28
keywords  28–29

L
landing pages  155–180

building  159–178
call-to-action buttons  164–165
headers  160–161
hero background image  161–162
initial structure  159–160
page footers  177–178
pricing tables  170–174
product descriptions  165
product images  162–163
product info  163–164
product testimonials  169–170
setting up content bands  166–168
social media links  176–177

choosing color schemes  158
choosing typefaces  157–158
overview of  156
sketching layout of  156–157

layouts See also holy-grail layouts; page layouts
creating  233–249

adaptive layouts  240–244
flexible layouts  237–240
mobile-first layouts  246–248

identifying  248–249
liquid layouts  233–237
media query breakpoints  245

lightness  308
linear gradients  322, 322–324
line breaks  40
line-height property  76
lines

arranging multiple along cross axis  211–212
setting height of  341

links  298–300
overview  4, 35–36
setting up images as  90
to local files  298–299
to same page  300
to social media  77, 176–177

liquid layouts
creating  233–235
with viewport units  236–237

lists
bulleted lists, adding  47–49
numbered lists, adding  45–46
organizing text into  44–49
thumbnail lists, creating  220

list-style-image property  91
list-style-type CSS property  46, 48
list-style-type property  276
li tag  45
local font file  337
lossless compression  88
luminance

overview  308
specifying with hsl() function  311

M
main axis  208
main sections  278
<main> tag  187
margins  139–153

collapsing  152–153
controlling  149–151

	 WEB DESIGN PLAYGROUND	413

Index

margin-top property  153
margin values  149
<mark> tag  292
markup  4
max-width property  234, 245
measurement

responsive  260–267
units of  119–120

media query breakpoints  245
@media rule   241
meta tag  23
min-width property  144, 245
mobile-first layouts  246–248
monospace typeface  53
MPEG-4 container  101

N
nav bars  282–283
<nav> tag  187
negative indent  63
negative margin values  149
negative order values  218
nested div element  167
nowrap value  211
numbered lists  45–46

O
Ogg container  101
ol tag  45
opacity  312
Open Font Library  337
ordered list  45
order values  218
outdent  63
outer div element  167
outline property  148
overflow property  143

P
padding  144–145
padding-bottom property  281
padding-right property  129, 146
padding-top declaration  129
page flow  122

page footers
of home pages  80
of landing page  177–178
of portfolio pages  390–392

page layouts  183–201
creating  274

adaptive layouts  240–244
flexible layouts  237–240
mobile-first layouts  246–248
with floats  191–196
with inline blocks  196–201

creating with flexbox  203
creating holy-grail layouts with

flexbox  222–227
creating thumbnail lists  220
dead-centering elements  212–213
flexbox browser support  219–220
flexbox containers  205–212
flexbox items  213–219
overview  204–205

fixed-width layouts  232–249
holy-grail layouts  185–190
HTML5 semantic page elements 

186–190
<article> tags  188
<aside> tags  189
<footer> tags  189
<header> tags  187
<main> tags  187
<nav> tags  187
<section> tags  188

liquid layouts
creating  233–235
with viewport units  236–237

methods  185–186
of portfolio pages  378
sketching

of home pages  70–71
of landing pages  156–157
of photo gallery  270
of portfolio pages  372

page structure  37–49
HTML elements for  38–44

adding visual breaks between blocks 
43–44

creating inline containers  42

414	WEB DESIGN PLAYGROUND 

Index

dividing web page text  41
inserting line breaks  40
paragraphs  38

of landing pages  159–160
of photo galleries  273–274
organizing text into lists  44–49

adding bulleted lists  47–49
adding numbered lists  45–46

overview  22–23
Palettable  158
paragraphs  60–62

aligning horizontally  60
indenting text  62
overview  38

parent element  352
parent selectors  352–353
percentages  233
photo galleries, creating  281–285

adding dynamic captions  283–285
choosing colors  272
choosing typefaces  271
fixed footers  281
footer sections  279–280
header sections  275
initial structure of  273–274
main sections  278
navigation sections  276–277
overall layout of  274
overview  269–272
preparing photos  270
sketching layouts  270
sticky nav bars  282–283

pixels  93
Playfair Display  375
playground. See Web Design Playground
PNG (Portable Network Graphics)  88
portfolio pages  371–393

building  376–392
about section  387–389
contact section  389–390
header sections  379–382
initial structure of  376–378
overall layout of  378
page footers  390–392

portfolio introduction  382
portfolios  384–387

choosing color schemes  375–376
choosing typefaces  373–375
overview of  372
sketching layout of  372

positioning
absolute positioning  134–136
elements  121–137, 131–137
fixed positioning  136–137
relative positioning  132–133

position property  132
positive indent  63
positive margin values  149
<pre> tag  293
preformatted text  293
pricing tables  170–174
products

descriptions of  165
images of  162–163
info  163–164
testimonials  169–170

pseudo-elements
::after  360–362
::before  360–362

p tag  38
pull quotes  129–131, 147, 360

Q
quotations  31–32, 54, 248

R
radial gradients  322, 325
RBG (Red, Green, and Blue) hex codes  314–315
referencing external style sheets  115–117
relative positioning  132–133
relative values  120
remote font file  337
repeat, background  95
resetting CSS with universal selectors  362
responsive

images  252–256
creating fluid images  252–254
delivering images responsively  255–256

	 WEB DESIGN PLAYGROUND	415

Index

layouts
creating  233–249
creating adaptive layouts  240–244
creating flexible layouts  237–240
creating mobile-first layouts  246–248
identifying  248–249
liquid layouts  233–237
media query breakpoints  245

responsive font sizes  259
responsive measurements  260–267
typography  251–267, 257–267

rgb() function  309–311
RGB method  306
root element  120, 258
row value  207

S
<s> tag  294
<samp> tag  294
sans-serif typeface  53, 71
saturation

overview  308
specifying with hsl() function  311

Scalable Vector Graphics (SVG)  88
<section> tags  188
selectors

child  356
combining  359–360
contextual  353–358
descendant  353–354
ID selectors  350–352
parent  352–353
sibling  353–358
universal  362

self-closing tags  14
semantic page elements. See HTML5 semantic

page elements
serif typeface  53
shorthand. See background shorthand

properties
shorthand font properties  343–348
shrinking items  215
sibling selectors  353–358
sizes

height, setting  142–143

of type, setting  56
styling  139–153
suggesting for items in flexbox  216–217
width, setting  142–143

sizes attribute  255
sketching layouts

of home pages  70–71
of landing pages  156–157
of photo gallery  270
of portfolio pages  372

small caps  340
<small> tag  294
space-around value  208, 212
span element  42
special characters  302
specificity  366–369
split complementary colors  318
src attribute  86, 103, 255
srcset attribute  255
sticky value  282
stretch value  208
strong element  27, 30
strong tag  57
structure. See page structure
style attribute  7, 110
style rules  17, 113
styles

adding internal style sheets  112–115
adding to pages  110–118
inserting inline styles  110–112
referencing external style sheets  115–117
using class selectors  117–118

style tag  23
<sub> tag  295
<sup> tag  295
SVG (Scalable Vector Graphics)  88

T
tables, pricing  170–174
tags

adding tag attributes  15–16
in HTML  14–15
overview  4

text
adding  25–26

416	WEB DESIGN PLAYGROUND 

Index

aligning  92–93
alternative, formatting  30–31
applying colors to  65
bold  57–58
dividing web page text  41
emphasizing  29–30
important, marking  27
indenting  62
italics  59
of body  78–80
organizing into lists  44–49

adding bulleted lists  47–49
adding numbered lists  45–46

setting type size  56
specifying generic font  53–54
specifying system font  54–55
styles  57–59
styling typeface  52–53

text-align-last property  62
text-align property  60
text editors  404–405
text elements  26–32

emphasizing text  29–30
formatting alternative text  30–31
formatting keywords  28–29
marking important text  27
quotations  31–32

text-indent property  62
text styles  340–348

setting line height  341
shorthand font properties  343–348
styling small caps  340

thumbnail lists  220, 270
tiling background  95
<time> tag  296
title attribute  290
titles

adding  23–24
of pages  75

trademark symbol  302
Transmit  403
transparency  312
triadic colors  318
TTF/OTF (TrueType Font/OpenType Font)  337

typefaces
choosing

for home pages  71
for landing pages  157–158
for photo galleries  271
for portfolio pages  373–375

font stacks  332–334
hosting fonts  337–339
specifying  332–339
specifying web fonts  334
styling  52–53
third-party hosted fonts  335–336

type selector  117

U
<u> tag  297
ul tag  47
Uniform Resource Locator (URL)  35
units of measurement  119–120
universal selectors  142, 362, 367
unordered list  45
uploading files  403–404
URL (Uniform Resource Locator)  35
user agent style sheet  365

V
<var> tag  298
validating code  399–401
vertical-align property  92
vertical-bar symbol  77
vertical measures  261
video

adding to page  100–108
embedding in web pages  102–104
web video formats  101

viewport height unit  236
viewport maximum unit  237
viewport minimum unit  237
visual breaks  43–44

W
W3C (World Wide Web Consortium) 

297, 365, 400

	 WEB DESIGN PLAYGROUND	417

Index

web audio formats  101
Web Design Playground  11–20

copying code  396–397
CSS in  12
downloading code  397–398
HTML in  12
loading lesson files  12–13
saving work in  13, 396–398

Webfont Generator package  338
web hosting provider  10, 402
WebM container  101
Web Open Font Format (WOFF)  337
Web Page Markup Language (WPML)  4
web pages

initial structure of  72–75
page introduction  76

web video formats  101
whitespace  26, 136
width, setting  142–143
WOFF (Web Open Font Format)  337
World Wide Web Consortium (W3C) 

297, 365, 400
wrapping items, in flexbox  210–211

Z
Zapf Dingbats typeface  158
z-index property  132, 136

	Web Design Playground
	Contents
	Preface
	Acknowledgments
	About This Book
	About the Author
	Part 1: Getting Started with HTML and CSS
	1 Getting to Know HTML and CSS
	What Is HTML?
	What Is CSS?
	What Can’t You Do with HTML and CSS?
	How HTML and CSS Create the Web
	Introducing the Web Design Playground
	Adding HTML Tag Attributes
	Some Helpful Features of the Playground

	2 Building Your First Web Page
	Getting Your Web Page off the Ground
	Learning the Most Common Text Elements

	3 Adding Structure to Your Page
	HTML Elements for Structuring Page Text
	Organizing Text Into Lists

	4 Formatting Your Web Page
	Styling Text
	Working with Text Styles
	Styling Paragraphs
	Working with Colors

	5 Project: Creating a Personal Home Page
	What You’ll Be Building
	Sketching the Layout
	Choosing Typefaces
	Choosing a Color Scheme
	Building the Page
	From Here

	Part 2: Working with Images and Styles
	6 Adding Images and Other Media
	Understanding Image File Formats
	Getting Graphics
	Inserting an HTML5 Figure
	Setting Up an Image as a Link
	Using an Image as a Custom Bullet
	Aligning Images and Text
	Controlling the Background Repeat
	Setting the Background Position
	Adding a Hero Image
	The Background Shorthand Property
	Optimizing Images
	Adding Video and Audio to the Page

	7 Learning More About Styles
	Adding Styles to a Page
	Units of Measurement in CSS

	8 Floating and Positioning Elements
	Understanding the Default Page Flow

	9 Styling Sizes, Borders, and Margins
	The Anatomy of an Element Box
	Watch Out for Collapsing Margins!

	10 Project: Creating a Landing Page
	What You’ll Be Building
	Sketching the Layout
	Choosing Typefaces
	Choosing a Color Scheme
	Building the Page
	From Here

	Part 3: Laying Out a Web Page
	11 Learning Page Layout Basics
	The Holy-Grail Layout
	Understanding Web Page Layout Methods
	Learning the HTML5 Semantic Page Elements
	Creating Page Layouts with Floats
	Creating Page Layouts with Inline Blocks

	12 Creating Page Layouts with Flexbox
	Understanding Flexbox

	13 Designing Responsive Web Pages
	Creating a Responsive Layout

	14 Making Your Images and Typography Responsive
	Making Images Responsive
	Making Typography Responsive
	Making Your Images and Typography Responsive
	Gallery of Responsive Sites

	15 Project: Creating a Photo Gallery
	What You’ll Be Building
	Getting Your Photos Ready
	Sketching the Layout
	Choosing Typefaces
	Choosing the Colors
	Building the Page
	Adding a Few Tricks
	From Here

	Part 4: Making Your Web Pages Shine
	16 More HTML Elements for Web Designers
	16
	More about Links
	Inserting Special Characters
	Using the HTML5 Entity Browser
	More HTML Elements for Web Designers
	Adding Comments
	Summary
	17

	17 Adding a Splash of Color to Your Web Designs
	Understanding Colors
	Adding Colors with CSS
	Choosing Harmonious Colors
	Using the Color Scheme Calculator
	Color Scheme Gallery
	Applying a Color Gradient
	Summary
	18

	18 Enhancing Page Text with Typography
	Specifying the Typeface
	Working with Text Styles
	Enhancing Page Text with Typography
	Web Typography Gallery
	Enhancing Page Text with Typography
	Summary
	19

	19 Learning Advanced CSS Selectors
	Working with ID Selectors
	Web Page Genealogy: Parents, Descendants, and Siblings
	Working with Contextual Selectors
	Taking Things up a Notch by Combining Selectors
	Resetting CSS with the Universal Selector
	Styles: What a Tangled Web Page They Weave

	20 Project: Creating a Portfolio Page
	What You’ll Be Building
	Sketching the Layout
	Choosing Typefaces
	Choosing a Color Scheme
	Building the Page
	From Here

	Appendix From Playground to Web: Getting Your Pages Online
	From There to Here: Saving Your Playground Work
	Setting Up Your Folders
	Validating Your Code
	Getting a Web Host
	Uploading Your Files
	Selecting a Text Editor

	Index

