IN ACTION

Ben Farrell
Gray Norton

/'I MANNING

/ll MANNING PUBLICATIONS
Quality is many small things done right

Early access
Don't wait to start learning! In MEAP, the Manning Early Access

Program, you read books while they're being written.

Access anywhere with liveBook
The Manning liveBook platform provides instant browser-based

access to our content.

Beyond books
Cutting edge liveProjects, liveAudio, and liveVideo courses give
you new ways to learn. Only available at manning.com

Impeccable quality
We believe in excellence. Our customers tell us we produce
the highest quality content you can buy.

Exclusive eBooks
Manning eBooks are only available from manning.com.
You won't find them anywhere else.

Save 35% at manning.com

Use the code humble35 at checkout to save on your
first purchase.

shop at manning.com

https://bit.ly/3h13ZcH
https://bit.ly/3h13ZcH
https://bit.ly/2J2R9OK
https://bit.ly/37r08lZ
https://www.linkedin.com/company/manning-publications-co/
https://www.facebook.com/ManningBooks?ref=nf
https://www.instagram.com/manning_publications/
https://twitter.com/manningbooks
https://www.youtube.com/channel/UCDia_lkNYKLJVLRLQl_-pFw
https://www.twitch.tv/manningpublications
https://bit.ly/2Wmabm6
https://bit.ly/37r08lZ
https://bit.ly/37r08lZ

The Shadow DOM protects from accidental JS and CSS intrusions,
instead allowing just the right interactions when defining an API
for your Web Component.

My Web Component
FPo- T - T T oo T oo oo oo oo n e) App
. H‘ h;. { font151zek.)11px, } css
<hlsheader</hl> iv { color: ue; }
<button>click me</buttons> I Rejected!
</divs> :
| querySelector ('div')
<stly1e> P querySelector('hl')
div { background-color: yellow; } ble A
</style> | Rejected! pp
Shadow Root ! JS
e e e e e e e e I e e e e St comp.method () ;
Properties Methods j comp.property = 5;
— Success!
Shadow DOM terminology
and how the different pieces come together
DOM tree of an HTML page Child (with own inner DOM)
Web Component
(shadow host)
Shadow root
| |
I [
I [
I [
I [
I [
' I Shadow
: Shadow DOM | boundary

Normal elements

Web Componends
i Action

BEN FARRELL
Foreword by Gray Norton

MANNING
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

© 2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Acquisitions editor:
Development editors:

Manning Publications Co.
20 Baldwin Road

PO Box 761 Production editor:
Shelter Island, NY 11964 Copy editor:
Proofreader:

Technical proofreader:

Typesetter:

Cover designer:

ISBN 9781617295775
Printed in the United States of America

Technical development editor:
Review editor:

Brian Sawyer

Kevin Harreld, Kristen Watterson,
and Rebecca Rinehart
Douglas Duncan

Ivan Martinovic
Anthony Calcara
Rebecca Deuel-Gallegos
Tiffany Taylor

Matthew Welke

Dottie Marisco

Marija Tudor

www.manning.com

To my amazing wife,
who writes way more exciting books than those about web development,
nvolving dragons and disasters.

contents

Sforeword xv

preface xvii

acknowledgments xix

about this book xxi

about the cover illustration — xxiv

PART 1 FIRST STEPS . .ceteeeeeesceescesccesccesccsscssoesssssscssosssonsesl

The framework without a framework 3
1.1 What are Web Components? 5

The date picker 5 = The Shadow DOM 6 = What do people
mean when they say Web Components? 8 = The problematic

history of HTML Imports 9 = Polymer Library and X-Tags 10
Modern Web Components 10

1.2 The future of Web Components 12
1.3 Beyond the single component 13

Web Components are just like any other DOM element 13
From individual component to application 14

1.4 Your project, your choice 17

Your first Web Component 18
2.1 Intro to HTMLElement 19

Crash course in inheritance

19 = Inheritance in your favorite
elements 19

viii CONTENTS

2.2 Rules for naming your element 21

2.3 Defining your custom element (and handling
collisions) 23

2.4 Extending HTMLElement to create custom
component logic 24

2.5 Using your custom element in practice 28
2.6 Making a (useful) first component 30

Setting wp our web server 31 = Writing our HTML tag 33
Creating our class 33 = Adding content to our component 34
Styling our component 35 = Component logic 36 = Adding
interactivity 38 = Finishing touches 39 = Improving the
carousel 42

2.7 Notes on browser support 43

Making your component reusable 45

3.1 Areal-world component 46
A 3D search use case 46 = Starting with an HI'TP request 46
Wrapping up our work in a custom component 48
Rendering search results 49 = Styling our component 50
3.2 Making our component configurable 53
Creating our component APl with setters 53
Using our API from the outside looking in 54
3.3 Using attributes for configuration 55
An argument against a component API for configuration 55
Implementing attributes 55 = Case sensitivity 57
3.4 Listening for attribute changes 57
Adding text input 58 = The attribute changed callback 58
Observed attributes 59
3.5 Making more things even more customizable 62

Using hasAttribute to check if an attribute exists 62 = Fully
customizing the HT'TP request URL for development 63

Best practice guides 64 = Avoiding attributes for rich data 64
Property and attribute reflection 65

3.6 Updating the slider component 67

The component lifecycle 73
4.1 The Web Components API 73

CONTENTS ix

4.2 The connectedCallback handler 74

Constructor vs. connected 78

4.3 The remaining Web Component lifecycle methods 80
Disconnected callback 80 = Adopted callback 83

4.4 Comparing to React’s lifecycle 83
4.5 Comparing to a game engine lifecycle 85

4.6 Component lifecycle v0 91

Instrumenting a better web app through modules 93
5.1 Using the <script> tag to load your Web Components 94

Having to deal with many JS and CSS references 95 = Tiny scripls
are more organized, but make the reference problem worse 96
Including CSS for self-reliant components 96 = Dependency

hell 98

5.2 Using modules to solve dependency problems 99

Creating a musical instrument with Web Components and JS
modules 100 = Starting with the smallest component 102
Importing and nesting a Web Component within a Web
Component 103 = Using a Web Component to wrap an entire
web application 105

5.3 Adding interactivity to our component 107

Listening for mouse movement 108 = Passing data to child
components 108 = Making your components shake with
CSS 110

5.4 Wrapping third-party libraries as modules 111

Frontend tooling for wrapping a module with Node.js 112
Not perfect, but does the job 112 = Using the wrapped module
to play some notes 113 = No more audio autoplay 114
Playing the Web Harp 116

PART 2 WAYS TO IMPROVE YOUR COMPONENT
WORKFLOW.eeeeeeecescescescescoscescoscoscoscescescescescese 117

Markup managed 119

6.1 String theory 120

When inline HTML gets ugly 120 = String syntax with the
backtick 121

CONTENTS

6.2 Using template literals 121

Business card creator 121 = Iterating design with just HTML
and CSS 123

6.3 Importing templates 124

Keeping markup out of the main component logic 125
A module just for HTML and CSS 126

6.4 Template logic 128

Crealing menus from data 129 = More generation logic,
harder automation 130

6.5 Element caching 131
Don’t make me query-select in my component 132
6.6 Smart templating 134

Using lit-html 135 = Repeating with templates 135
Should you use it? 136 = Injecting event listeners into
markup 137

6.7 Updating the slider component 139

Templating your content with HTML 144
7.1 RIP.HTML Imports 145
Polyfilling HTML Imports 146 = What’s inside the import 146
7.2 The <template> tag 149

Document fragments 150
Using template content 152

7.3 Choose your own template adventure 154
7.4 Dynamically loading templates 157
7.5 Entering the Shadow DOM with slots 161

Slots without a name 164

The Shadow DOM 166

8.1 Encapsulation 167

Protecting your component’s API 168 = Protecting your
component’s DOM 169

8.2 Enter the Shadow DOM 171

The shadow root 172 = Closed mode 174
Your component’s constructor vs. connectedCallback 177

8.3 The Shadow DOM today 178

CONTENTS xi

Shadow CSS 181
9.1 Style creep 181

Style creep into component descendants 184 = Style creep into
your component 184

9.2 Style creep solved with the Shadow DOM 186
When styles creep 189

9.3 Shadow DOM workout plan 191

Application shell 192 = Host and ID selectors 193
Grid and list containers 196

9.4 Adaptable components 200

Creating the exercise component 200 = Exercise
component style 203

9.5 Updating the slider component 205

Shadow CSS rough edges 208
10.1 Contextual CSS 208

A small bit of interactivity 209 = Contextual style 212
Workaround for host-context 217

10.2 Component themes 219

Shadow and deep selectors 219 = CSS Variables 221
Applying CSS Variables to our demo 223

10.3 Using the Shadow DOM in practice (today) 225
Browser support 225 = Polyfilling 225 = Design systems 226

PART 3 PUTTING YOUR COMPONENTS TOGETHER229

A real-world UI component 231
11.1 Crafting a color picker 232
The components of our component 234
11.2 Coordinate picker component 236

The coordinate picker Web Component class 236 = Coordinate
picker HTML/CSS 239 = Component demos 240

11.3 The color picker 242

Observing attribute changes for interaction 246 = Responding to
input fields 248 = Responding to attribute changes 250

xii CONTENTS

11.4 Adding a common design language 252

Swapping in CSS vars for a consistent design 253
Using imports for more complex CSS 256

Building and supporting older browsers 262

12.1 Backward compatibility 263

Toggling the Shadow DOM 264 = Comparing to
polyfills 267 = Shadow CSS and child elements 268

12.2 Building for the least common denominator 271
12.3 Build processes 272

Using NPM scripts 273
12.4 Building components 274

Why we build 274 = Module bundling with Rollup 276
Running builds with npm 280

12.5 Transpiling for IE 282
Babel 283 = CSS vars ponyfill 287

Component testing 289
13.1 Unit testing and TDD 290
13.2 Web Component tester 291
Writing tests 294
13.3 Comparing to a standard test setup with Karma 298

Karma Web Components 306 = Multiple tests in the same
project 307 = A note on Safari 308

Events and application data flow 310

14.1 Framework offerings 311

14.2 Events 312
Native events and WebComponentsReady 312 = When
custom elements are defined 313 = Custom Fvents 315
Custom Event bubbling 317

14.3 Passing events through Web Components 318
Native event propagation through the Shadow DOM 319
Custom Event propagation through the Shadow DOM 320

14.4 Separate your data 321

Model-view-controller 323 = Local storage 325
Wiring UI to the data model 328

CONTENTS xiii

14.5 Exercise playback view 330
14.6 Passing events with an event bus 335
Static getter event types 337 = Design patlerns as
suggestions 338
Hiding your complexities 340
15.1 Looking to the Web Component future 341
15.2 3D and mixed reality 343

A-Frame 345 = Model-viewer component 349

model-viewer + Poly search 350 = AR with model-viewer 353
Your own 3D component 355

15.3 Video effects 364
Processing pixels with |[S 364 = WebGL shaders 367
15.4 Hand tracking and machine learning 370

appendix ES2015 for Web Components 377
index 399

Joreword

The web has come a long way. What started three decades ago as a relatively simple
means of publishing, sharing, discovering, and consuming content has evolved into a
powerful and flexible application platform supporting a dizzying array of use cases.
Meanwhile, its footprint has expanded from desktop computers to devices of all types.

As a result of this gradual transformation, we web developers have been chasing an
ever-moving target. Today’s websites are orders of magnitude more complex than
their early predecessors, and Ul expectations have shot through the roof.

Thankfully, our toolbox has also evolved. The web platform itself has gained hun-
dreds of new capabilities, and successive generations of libraries, frameworks, and
tools have steadily advanced the state of the art, helping us meet rising demands.

One major enabler of the web’s transformation in recent years has been the wide-
spread adoption of component-based UI development. Factoring our work into com-
ponents—each one responsible for the structure, style, and behavior of a slice of the
user experience—has helped us manage complexity and build more ambitious sites.

Components can be reused throughout a project or shared across projects, increas-
ing our efficiency. Design systems can be expressed as collections of ready-to-use com-
ponents, ensuring consistency and freeing teams to focus on product-specific needs.

Popular frameworks have helped lead the component revolution, and indeed most
components today are specific to a given framework or library. But in parallel, a multi-
year effort has been underway to bring a first-class, native component model to the
web platform.

Web Components is an umbrella term for a new family of web platform features
offering direct support for component-based development. Custom Elements let you
extend the vocabulary of HTML, defining your own tags that work seamlessly with the
browser’s built-in tags and can be used in all of the same places, regardless of what

XV

xvi

FOREWORD

framework you might be using. The Shadow DOM lets you opt into native style encap-
sulation, ensuring that a component’s CSS rules don’t unintentionally break—and
aren’t broken by—the styling of the containing page.

You may be wondering what benefits Web Components bring over framework-
specific component models. For one, Web Components promise to increase interop-
erability, making it simple to share components even across tech stacks. A common
component model also lowers the risk of lock-in, allowing you to carry more work for-
ward as your toolbox changes over time.

The book you’re holding in your hands right now is exceptionally well-timed. The
road to standardizing and landing Web Components has taken some twists and turns,
but I'm happy to say that the destination is in sight: all but one of the major browsers
have now shipped Web Components, and when the next version of Microsoft Edge is
officially released, the puzzle will be complete.

Custom Elements, the Shadow DOM, and the other Web Components features
are, by design, low-level primitives. Some developers will use these features only indi-
rectly, as framework support for Web Components has spiked with increasing browser
support. Many of the most popular frameworks now make it easy to develop and share
Web Components, and a whole new class of Web-Components-centric tools has begun
to emerge.

But you can also use the Web Components features directly, either individually or
in combination. Reading this book will give you a deep understanding of each feature
and how they relate to one another, equipping you to make smart choices for yourself
and your team.

Ben Farrell has been using Web Components since the early days, in a wide range
of applications. Along the way, he has amassed a wealth of valuable knowledge and dis-
covered numerous effective patterns, all of which he’ll share with you in these pages.

Ben teaches by example, demonstrating concepts through compelling projects
that illuminate realistic use cases. You’ll certainly learn a lot, but you’re also bound to
find ideas and code here that you can apply directly to your own projects.

In deciding to pick up Web Components and this book, you’ve chosen well. Enjoy
the journey!

—GRAY NORTON,
TECHNICAL LEAD/MANAGER FOR THE
POLYMER PROJECT, GOOGLE

preface

Web Components, for me, began in 2013. I remember that I was working on a fun lit-
tle Angular vl side project and nerding out on some aspect of managing CSS and
classes that Angular didn’t handle well at the time. I knew I could have easily done
what I needed in plain HTML/CSS/JavaScript, but Angular was making it difficult
just because what I was doing was a bit off the beaten path.

Around this time, I felt like I was really starting to master Angular, so I wrote a few
blog posts around some interesting, nontypical approaches. But this was also when
Angular excitement felt like it was waning, and React excitement was just starting.

Honestly, I was disappointed. I took a long look at a cycle I felt trapped in. In the
span of just two or three years, I was constantly learning and getting good at JS frame-
works. None of these frameworks were compatible with each other. I'd get to a point
where I felt like I could really focus on my project, with the framework off in the back-
ground, and then suddenly something new was released that made me feel like I had
to go back to square one.

At the same time, Google’s Polymer Library had been released as a very early and
unstable version. Creating individual components that could live anywhere sounded
like an amazing promise. Initially, I liked what it was trying to achieve, but a pre-vl API
that was in flux and the fact that I was replacing my workflow with yet another frame-
work made me rethink things. I started looking at the proposed web standards that
made the Polymer Library possible and saw enormous potential. I realized that it
wasn’t the Polymer Library I was excited about—it was really Web Components.

I started blogging and giving talks about Web Components. I also joined Adobe at
around this time. This was significant because my team was working on small prototypes
with one, maybe two, developers for a project. This meant that I could experiment with
the technology and tools of my choice. For almost every project, I continued to push on

xvii

xviii

PREFACE

Web Components while experimenting and continually improving a workflow for work-
ing with them.

It certainly wasn’t easy, of course. Sometimes the rug was completely pulled out
from under me! As Web Components became the standard that they are today, we saw
the API change and features become deprecated, but I stuck with it. I did so because I
really do enjoy working as close to the browser as I can with just HTML/JS/CSS and
saw Web Components as the vehicle to provide structure to my projects and not have
them end up as code spaghetti.

I'wasn’t totally convinced yet of Web Components’ viability. For one, I wasn’t using
the Shadow DOM quite yet. I didn’t want to get lured into something only Google sup-
ported and that had questionable polyfill support. But then Web Components landed
in Safari, and Mozilla promised support as well. The icing on the cake was when
browsers started supporting JS modules/imports natively, and I could properly sepa-
rate out code and, more importantly, HTML and CSS. When all this happened, I knew
Web Components were starting to fulfill their potential.

This was all very slow going over several years, of course. Many developers who
were initially excited about Web Components lost their patience, and I don’t blame
them. I initially approached Manning about a Web Components book prior to some
important key things happening, like the major browser vendors coming together to
finalize vl of the specification. Manning wasn’t confident with Web Components at
the time, especially with books in the industry being cancelled due to unknowns about
where Web Components would go.

Whether I was overly optimistic or had just spent enough time with them to know
Web Components’ potential, Manning contacted me a year later for another pro-
posal. Even then, in early 2018, Web Components still could have taken a bad turn if
the other browser vendors decided to back out. Also at the time, I wasn’t approaching
Web Component development in the same way as most others were—using HTML
Imports as an entry point. However, during the course of the book, LitElement from
the Polymer team started approaching things much like I was, using template literals
to hold markup and style. This, coupled with Web Components landing in the fall of
2018 with Microsoft working on them as well, let me breathe a sigh of relief knowing
that the approaches in my book are lockstep with the present and future of Web Com-
ponents. I'll definitely continue to improve my workflow as new features come to the
browser and are invented in the community, but I'm extremely excited with where
Web Components are right now, as Web Components in Action is about to be published.
And, of course, I can’t wait to share everything with readers of this book!

acknowledgments

This book wouldn’t have been possible without all the amazing people who helped me
along the way. I want to thank my friends in North Carolina and the awesome folks run-
ning and attending NCDevCon for listening to me yammer on about Web Components
on a near-constant basis. More specifically, I'd like to thank Adrian Pomilio for blowing
my mind in his 2011 talk showing Custom Elements before they were really a thing.

I’d also like to thank the GE Design System team for being my Web Component co-
conspirators at a time when they were so new and we weren’t quite sure if everyone
else thought we were insane. Specifically, I’d like to thank Martin Wragg, Jeff Reichen-
berg, and John Rogerson for nerding out with me about this new way to create for the
web. I’d also like to thank the Google Polymer team for help and guidance during this
time, as well as their technical lead/manager Gray Norton for writing the foreword for
this book.

At Adobe, I'd like to thank the entire Adobe Design team (and beyond) for being
so supportive and genuinely excited for me publishing my first book.

Of course, my wife Rebecca Gomez Farrell has not only supported me through this
whole thing, but also happens to be an amazing writer and editor herself. In addition
to getting me a stiff drink when I needed one, she helped a new writer be way better,
with actual, professional advice.

I’d like to thank the Manning editorial team, including development editors Kris-
ten Watterson, Kevin Harreld, and Rebecca Rinehart, as well as technical develop-
ment editor Douglas Duncan, technical proofreader Matthew Welke, production
editor Anthony Calcara, copyeditor Rebecca Deuel-Gallegos, and text proofreader
Tiffany Taylor. Lastly, Id like to thank the reviewers, whose feedback and insight were
instrumental in shaping this book, including Alberto Ciarlanti, Alicia Baker, Birnou
Sébarte, Clive Harber, Daniel Couper, Hernan Garcia, James Carella, John Larsen,

Xix

XX

ACKNOWLEDGMENTS

Juan Asencio, Justin Calleja, Oliver Kovacs, Pietro Maffi, Ronald Borman, Russel Dawn
Cajoles, Ryan Burrows, Sergio Arbeo, Stefan Trost, Thomas Overby Hansen, Timothy
R. Kane, and Kumar S. Unnikrishnan (TR Technology & Ops).

about this book

Web Components in Action isn’t about dictating what approaches developers should take.
Instead of telling readers what to do, I take a more exploratory approach to cover the
basics of Web Components. You should recognize that, while experts may tell you whata
good workflow is today, the exciting thing about standards is that they can be built upon
in ways nobody expects.

In Web Components in Action, I aim to arm you with great ideas and workflows to get
started. I also hope to empower you with the knowledge to take Web Components fur-
ther, in ways I haven’t considered yet and for types of projects I haven’t encountered.

Who should read this book

Web Components in Action is for web developers who are curious about Web Components
and want to know more about the standards behind them and how they come together
with other web technologies to create standalone components or applications.

It’s also for developers who want ideas about how to break free of complicated
frameworks or libraries and get back to writing plain HTML/JS/CSS without needing
any build steps.

How this book is organized: a roadmap

This book is in three parts covering 15 chapters and an appendix.

Part 1 covers the first steps in getting a simple component off the ground:
Chapter 1 outlines what people mean when they talk about Web Components
and the different standards that come together to create one.

Chapter 2 walks through creating your very first Web Component, while intro-
ducing the bare-minimum concepts needed to create something useful.
Chapter 3 brings a minimal component to the next level by making it reusable.

xxi

xxii ABOUT THIS BOOK

Chapter 4 details the Web Components API and lifecycle, comparing them with
others you may have encountered.

Chapter 5 introduces modules for better code reuse and project organization.

The second part builds on a minimal component and covers concepts to improve
developer workflow and project organization:

Chapter 6 details using modules to separate out and import view logic like
HTML and CSS to organize your component better.

Chapter 7 covers an alternate, but nonpreferred, way to organize your compo-
nent with HTML Imports, while breaking it down into pieces that are relevant
to other aspects of Web Components as well.

Chapter 8 introduces the Shadow DOM and how it’s useful for protecting and
encapsulating your component.

Chapter 9 continues with exploring the Shadow DOM to cover its CSS aspects.
Chapter 10 explores some trouble that Web Component developers may have
with CSS in the Shadow DOM and ways in which to avoid or overcome it.

The third and final part covers working with multiple components together to build
something larger:

Chapter 11 reviews the previously covered concepts and uses them to build a
brand-new, more polished component, built on child components already
created.

Chapter 12 takes this brand-new component forward to be more ready for pro-
duction by using build tools that allow it to be used in older browsers that don’t
support Web Components.

Chapter 13 furthers the same component by writing tests for it that run in three
different contexts, to explore the various options available for Web Component
developers.

Chapter 14 discusses passing messages between your components and dives into
some common design pattern when event bubbling doesn’t cut it.

Chapter 15 speculates on the future of Web Components and also the power
they can enable today by hiding complexity and making everything from live
video effects to mixed reality easier to use.

Lastly, the appendix covers newer JS features (ES6/ES2015) and how they help Web
Components.

About the code

Source code is provided for all the examples in this book and is available for download
from the Manning website at www.manning.com/books/web-components-in-action and
in a GitHub repo found at https://github.com/bengfarrell/webcomponentsinaction.
The repo is organized into folders for each chapter, and in those there are typically

www.manning.com/books/web-components-in-action
https://github.com/bengfarrell/webcomponentsinaction

ABOUT THIS BOOK xxiii

subfolders for each section. Exceptions are when working on a big example that encom-
passes the entire chapter.

Code can be run with just a browser and doesn’t need to be compiled until the
later chapters on build tooling. Generally, a simple HTTP server will be needed to run
the associated HTML file that drives the example, but only to deal with cross-origin
issues.

This book contains many examples of source code, both in numbered listings and
inline in normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (=). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

liveBook discussion forum

The purchase of Web Components in Action includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the author and from other users. To access
the forum, go to https://livebook.manning.com/#!/book/web-components-in-
action/discussion. You can also learn more about Manning’s forums and the rules of
conduct at https://livebook.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions, lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

About the author

Ben Farrell is a senior experience developer at Adobe, working on
the Adobe Design Prototyping Team. Ben, alongside his team,
helps shape and realize the UX of products and features in the
middle ground between design and engineering. Ben has been
primarily web-focused his entire career but has worked on award-
winning projects using a wide variety of platforms and languages.

https://livebook.manning.com/#!/book/web-components-in-action/discussion
https://livebook.manning.com/#!/book/web-components-in-action/discussion
https://livebook.manning.com/#!/discussion

about the cover illustration

The figure on the cover of Web Components in Action is captioned “Bourgeois de Lon-
dre,” or a bourgeois man from London. The illustration is taken from a collection of
dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-
1810), titled Costumes Civils Actuels de Tous le Peuples Connus, published in France in
1788. Each illustration is finely drawn and colored by hand. The rich variety of Grasset
de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s
towns and regions were just 200 years ago. Isolated from each other, people spoke dif-
ferent dialects and languages. In the streets or in the countryside, it was easy to iden-
tify where they lived and what their trade or station in life was just by their dress.

The way we dress has changed since then, and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

XXiv

Part 1

Frst steps

You’ve probably been hearing more and more about Web Components

lately. Much of this has to do with all the major, modern browsers now support-
ing them in recent months. This includes Microsoft Edge, because you can
already download a developer preview while we wait for the official Chromium-
backed release. It can get a bit confusing when you look deeper to see what Web
Components actually are, though!

Not only has the collection of standards that make up Web Components
changed a little over time, but, in reality, a Web Component can be created with
Custom Elements alone! You can create your very own element that sits on your
HTML page just like any other browser-provided one. More importantly, by
using the Custom Element API, your element can be given custom logic to be a
made a fully featured, tiny interactive component that looks simple from the
outside and can work together with any other element on the page.

The first part of this book will zero in on how to create your first custom ele-
ments, as well as explore some best practices around them. At the end of the first
part, even just exploring this one concept, you’ll be making Web Components
that are actually useful in real-world situations, even allowing them to be
wrapped up as a single piece managing its own dependencies, perhaps including
other nested Web Components, ready to be dropped onto an HTML page.

The framework
without a framework

This chapter covers

What a Web Component is

The Shadow DOM

Custom Elements

Polymer Library and X-Tags
ES6/ES2015 language features

Hello, and thanks for reading Web Components in Action! I've been using Web Com-
ponents for a few years now on just about every web development project I've had.

As web developers, it’s our job to choose the right tools for any given project.
This can get complicated, because it’s not just the project’s immediate needs that
matter. Your team’s needs do as well, as do whether the project is part of a bigger
ecosystem at your company, how it will be maintained, and how long it will need to
be maintained. The list goes on.

Of course, these decisions aren’t unique to web developers, but one major differ-
ence between us and many software developers is that the web community has put
out an astounding number of tools, libraries, and frameworks. It can get difficult to

CHAPTER 1 The framework without a framework

keep up with all of them—so much so that “framework fatigue” has been a topic of con-
versation for some time now.

Adoption of these new tools seems to happen at lightning speed. Putting aside
frameworks for a moment, even something as niche as task runners for building your
JavaScript (JS) projects has changed dramatically over the past few years. I've seen the
switch from Grunt in 2012 to Gulp just a couple of years later, and now there’s a ten-
dency to go minimal by using the Node.js NPM (Node Package Manager) to run build
scripts. Speaking of package managers, we developers have waffled between NPM,
Bower, and Yarn for running our frontend dependencies.

Build tooling and package managers are one thing. They are small but significant
pieces of our web development workflow. Yet this same churn is happening with how
we actually build our applications and Ul, which is arguably the most central and
important part of web development.

For individual developers, this can definitely be hard to keep up with, although it’s
exciting to learn a new framework or library. Some have a steeper learning curve than
others, and, in many cases, you're learning the framework’s “system” as opposed to
fundamental HTML/]JS/CSS concepts.

As a developer on a team or in a company, there are additional challenges. At the
start of a project, you’ll need to agree on what tools you’ll use to develop with over the
lifecycle of the project. This includes build tools, testing tools, and, of course, any
frameworks or libraries. Not everyone will agree on the best choice. If the team is
large and working on many projects, it can be tempting to let developers on each proj-
ect pick their own tools. After all, it’s good to analyze the needs of the project and use
the appropriate tools. But this also ignores the inevitable, when developers must work
together to create common pieces of Ul or integrate a newly adopted design system
that is mandated companywide. Eventually, using different tools and frameworks may
come back to bite your team.

If everyone agrees, begrudgingly or not, on the same framework, things can be
great for a while. Even then, two or three years down the line, the framework can
become dated. Using older technology begins to feel a little stifling, especially to
junior developers on your team who want to keep their skills up-to-date with the rest
of the web community. At this point, your organization is faced with the choice of
redoing the entire technology stack using a new framework or keeping the old one
and facing the perception of not being an innovative place to work.

It’s a difficult problem and decision for sure! The question that begs asking, of
course, is “What’s the alternative?” I've talked to quite a few people who want to break
free of the constant framework churn for a variety of reasons. “Why can’t we just use
plain HTML, JS, and CSS?” is a common question. One of the biggest benefits of not
buying into a framework is being able to focus on core web development concepts
rather than learning framework-specific skills that may or may not transfer to the next
popular framework. Another huge benefit is being able to try small libraries and
microframeworks that solve specific needs in your project. The barrier of entry to

1.1

111

What are Web Components? 5

these, and even new frontend build tools, is much lower given that you aren’t fighting
a specific development environment provided by the latest popular framework.

Modern frameworks are extremely useful and solve some big problems, but why
don’t we hear more about using so-called “vanilla JavaScript,” given developers’ desire
to try other things? We do, to some extent. Consider this poll by the State of JavaScript,
conducted in 2017: https://2017.stateofjs.com/2017/front-end/results/. You’ll note
that no-framework development is second in popularity, behind only React.

However, we don’t know specifics on why folks claim to prefer no framework, or
vanilla JS. What kinds of things are those developers building? What tools/processes
are they using? I'd be curious to know if they build a framework of sorts themselves to
make up for the lack of structure and code organization that modern frameworks usu-
ally provide.

This last point about structure and code organization is why no-framework web
development has been a nonstarter for me in the past, and it’s why I’ve always turned
to the latest framework. Without structure, your code becomes spaghetti. Maintaining
and writing new features can be madness without predictable project organization.
Nevertheless, I wanted to break free of big, all-encompassing frameworks; when I saw
Web Components for the first time, I saw a huge opportunity to do just that.

So ... how? To really tackle this question, we need to understand what Web Com-
ponents really are. Before I get into the specifics, we’ll use a browser’s date picker as
an example we’ve all likely come across. While it’s not a Web Component, per se, it’s a
similar concept if you peek inside.

What are Web Components?

The popular modern frameworks of today largely offer code reusability in the form of
components or modules. Generally speaking, these are shareable and standalone pieces
of code (HTML/JS/CSS) that offer visual style and interactivity, and possibly have an
API or options you can set to offer customization.

Think about what’s already in your browser. And consider that we already have
reusable, modular pieces that offer style and interactivity, and come with an API.

Of course, I'm talking about HTML tags or DOM elements. These are rendered in
the DOM and have a specific type of functionality. A <div> tag or tag is fairly
generic and is used to hold text or a mixture of elements. A <button> or an <input>
element is more specific in functionality and style. When you place a button in your
HTML, it looks like a standard button, and when you click it, it acts like a button. This
is similar to the different styles of <input>, whether you mean to create a date picker,
slider, or text input field.

The date picker

Take the date picker, for example. To create a date picker, you’d simply put the follow-
ing tag in your HTML:

<input type="date">

https://2017.stateofjs.com/2017/front-end/results/

112

CHAPTER 1 The framework without a framework

Seems easy, doesn’t it? It is! What you actually get from this simple tag is fairly compli-
cated, but it’s all handled for you by your browser. This tag (when using the type
"date") offers a text input field, and you can click on the month, day, or year and step
up or down through any of them. Also, if you click the down arrow to the side, it will
pop open a calendar view that the user can interact with to choose a date, as figure 1.1
shows. Additionally, when on mobile, it acts slightly differently. It will not pop open as
it does in a desktop browser, but instead shows a modal window.

Imm/dd/yyyy C vI

May 2019 ~ 4 ° >

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4

5 6 7 8 9 10 N

12 13 14 15 16 17 18

19 20 21 22 23 24 | 25
26 27 28 29 30 3

Figure 1.1 Expanded date picker Ul

What’s more, the date picker has properties you can query, including value. We can see
this by logging the property in the JS console:

console.log(document.querySelector ('input') .value);

When I log this, I see the picker’s current value in my console. It also dispatches events
that I can listen to when the value changes or is submitted. I can also call methods on
the picker for stepping through dates.

The date picker is a great example of reusable components or modules with fairly
complex visual style and interaction patterns that need to be programmed by the
browser vendors. They work in a variety of situations. The date picker is also a great
example of a popular Web Component concept called the Shadow DOM.

The Shadow DOM

The Shadow DOM is a way to isolate your Web Component and guard against unin-
tentional consequences from your larger application. When you open the dev tools to
look at the DOM, you’ll just see the <input type="date"> tag. However, if you use
Chrome and enable “Show user agent shadow DOM” in the dev tool settings, the same
input tag expands to look like figure 1.2.

Lots more markup is revealed in this hidden shadow root! Personally, the first thing
I’d look for when inspecting this is the calendar pop-up. While it would be great to see
that piece in HTML and CSS, it’s not there because that piece of Ul is part of your
native OS that your browser simply exposes through the element. That said, we have a

What are Web Components? 7

v<input type="date" name="bday">
v #shadow-root (user—agent)
v<div pseudo="-webkit-datetime-edit" id="date-time-edit" datetimeformat=
"M/d/yy"=

v<div pseudo="-webkit-datetime-edit-fields-wrapper'>
<span role="spinbutton" aria-placeholder="mm" aria-valuemin="1"
aria-valuemax="12" aria-label="Month" pseudo="-webkit-datetime-edit-
month-field">mm
<div pseudo="-webkit-datetime-edit-text">/</div>
<span role="spinbutton" aria-placeholder="dd" aria-valuemin="1"
aria-valuemax="31" aria-label="Day" pseudo="-webkit-datetime-edit-
day-field">dd
<div pseudo="-webkit-datetime-edit-text">/</div>
<span role="spinbutton" aria-placeholder="yyyy" aria-valuemin="1"
aria-valuemax="275760" aria-label="Year" pseudo="-webkit-datetime-
edit-year-field">yyyy

</div>

</div>

<div pseudo="-webkit-clear-button” id="clear" style="opacity: 0;

pointer—events: none;"></div>

<div pseudo="-webkit-inner-spin-button” id="spin"></div>

<div pseudo="-webkit-calendar-picker-indicator" id="picker"></div>

</input>

Figure 1.2 Enabling shadow root settings in the Chrome dev tools allows us to see the input
tag’s hidden Shadow DOM.

fair number of elements hidden away in our Shadow DOM that all appear in the input
field element.

Looking closely, you might notice that our Shadow DOM hosts a mix of <div> and
 tags. It might occur to you that this is dangerous! Why? Well, in my applica-
tion’s CSS, I could very well define all <div> tags to have a blue background with a
super-large font size and all tags to display with an opacity of 10%. If you didn’t
know that this additional markup existed, you might accidentally ruin all your date
pickers—except for one major thing: the Shadow DOM protects the inner workings of
your Web Component from the outside. Your blue/large div styles won’t penetrate the
Shadow DOM. What’s more, you would not be able to write some JS to try to get and
manipulate the date picker’s clear button:

let myElement = document.getElementById('clear');

When we attempt to get this element, because it is within the bounds of the Shadow
DOM, the element is not found, and our myElement variable is null. Figure 1.3 shows
various attempts with both CSS and JS.

So, the Shadow DOM protects your shadow root scope. Yes, you can use this shadow
root anywhere. But it makes a ton of sense in a custom element that you built to avoid
unintended breakage when a developer sets a CSS rule that happens to have the same
name as something you used in your component—or when that same developer

113

CHAPTER 1 The framework without a framework

My Web Component
;_ _______________________ i hl { font-size: 1px; } Hg
| <divs M Cootor oTac, 7| S8
| <hlsheader</hl> * v co-or: ue;
I <button>click me</buttons> | Rejected!
: </div> :
| | querySelector ('div')
I <st.yle> Pk querySelector('hl'")
I div { background-color: yellow; } ble - A
I </styles [Rejected! pp
! Shadow Root ! JS
st e comp.method () ;
Properties Methods : comp.property = 5;
= Success!

Figure 1.3 The Shadow DOM protects your component from unintended consequences when CSS
or JS might affect styles and nodes inside that aren’t meant to be altered. Instead, your component
would have a custom-defined API to interact with using methods and properties.

happens to query an element by class, and something in your custom element gets
picked up accidentally.

As you can imagine, the date picker is a useful element for complementing several
other useful elements that we use on a daily basis. Many elements are used for seman-
tic purposes, like the <footer> tag, but others have a specific API and style, like the
<button>, <option>, and <video> tags.

What do people mean when they say Web Components?

As nice as the date picker, and any other element, might be, wouldn’t it be amazing if
we could create our own elements with our own visual style, internal logic, reusability,
and encapsulation?

This is what folks mean when they refer to Web Components. In addition to the
encapsulation provided by the Shadow DOM, we can use the Custom Element API to
create our own components that do things specific to our own needs.

To me, that’s the promise of Web Components. I want to take something I’'m inter-
ested in and create a reusable piece that I can share with the world, my team, or just
myself to use in multiple projects where I need it. Alternately, there might be a piece
of UI that I find boring to create over and over and over again. With Web Compo-
nents, I can create it once, use it in multiple projects, and flesh it out as I need more
features. Even better, maybe someone else created a Web Component for something I
need, and I don’t have the time or expertise to re-create it. They can share it with me,
and I can just use it like a normal DOM element.

114

What are Web Components? 9

The problematic history of HTML Imports

Unfortunately, some in the web development community regard the promise of Web
Components as a broken one. I certainly can’t blame them for feeling this way. When
talking about the specific technical features that Web Components offer, the vision
started to fall apart after the initial hype around Web Components settled down a few
years ago.

Around 2015, it was widely understood that a standard Web Component would be
built using three new features:

Custom Elements
The Shadow DOM
HTML Imports

I haven’t even mentioned HTML Imports yet. That concept was never adopted as a
standard. In fact, in the beginning, Google was largely responsible for creating work-
ing drafts of Web Components. Google took it upon itself to create APIs and ship
them in Chrome as a hopeful experiment to see if Web Components would take off.
HTML Imports never made it; the other browser vendors at the time had no plans to
ship the feature. Firefox, specifically, wanted to hold off to see how big a splash
ES6/ES2015 modules would make and—perhaps, possibly, someday—import not only
JS, but HTML as well.

HTML Imports were a pretty big loss. From the beginning, Google’s plans for
delivering Web Components hinged on them. The HTML Import, as figure 1.4 shows,
was a snippet of HTML for declaring the component’s markup or structure, and it
also included the JS that defined the component’s logic. HTML Imports were the
main entry point for Web Components, and without them, we were at a loss as to how
to use Web Components with markup and style at all.

myfile.html

Web page/app"cation —»| <script src="mycomponent.js">

<link rel="import" href="myfile.html"> <template>

<hl>header</hl>

<button>click me</button>

<my-component>

</templates>

Visual content

Figure 1.4 With HTML Imports, a file containing your component definition
and your component’s markup could be imported right into your document.

10

115

1.1.6

CHAPTER 1 The framework without a framework

The Shadow DOM wasn’t much better at the time. Chrome was the only browser to
adopt it. It took until October 2018 for Firefox to adopt, and we’re waiting for Micro-
soft Edge to ship it, though it is available as a developer preview right now.

Both the Shadow DOM and the Custom Element API have gone from version 0 to
1 as well. For Custom Elements, this was a bit troubling, given that developers who
were familiar with Web Components during that shaky time were told to switch over to
the new APL

Given all this, developers who called Web Components a “broken promise” and
moved on to a framework can hardly be criticized. I can vouch that it was a bit tricky
around 2015 to properly work with them, especially when targeting browsers other
than Chrome.

Polymer Library and X-Tags

Another aspect of what people meant when they talked about Web Components then
were the libraries that emerged at the time, which used Web Components as their
basis. With the instability surrounding plain, no-framework components at the time,
Google’s Polymer Library (https://polymer-library.polymer-project.org) and Mozilla’s
X-Tags (https://x-tag.github.io) were what people thought of as Web Components, or
at least the only way to work with them.

The Polymer Library did a great job pushing the standards and workflows forward,
and it now looks like 3.0 is the last official feature release, as the Polymer Library goes
into maintenance mode. The team is instead breaking off some of the core tools and
features into much smaller and more targeted solutions like lithtml and LitElement
as part of the Polymer Project. These core tools and features are well-aligned with the
no-framework approach I outline in this book.

Even though the team did great work on a series of solid releases and is working
now to focus on smaller and more opt-in features, the Polymer Library’s early days
prior to v1.0 were a little shaky. As expected with any pre-vl.0 library, the APIs
changed a fair bit, especially as it tried to keep up with the changing specifications
and lack of Shadow DOM on every browser except Chrome. The Shadow DOM was
especially hard to deal with. Fullfeatured polyfills that included CSS encapsulation
were too difficult and affected performance. To compensate, the “Shady DOM” was
invented as a lightweight implementation that could be polyfilled.

It was a rocky time for Web Components in general, and the Polymer Library
seemed like yet another framework/library that had to compete with more-solidified
ones that didn’t deal with in-flight web standards.

Modern Web Components

Despite these rocky times, I stuck with Web Components. I was successful at using
them for projects but wasn’t fully satisfied until I started using some new JS language
features. The fat-arrow function turned out to be an amazing way to manage scope
when working with mouse events or timers. More importantly, the import keyword
and the concept of modules were huge.

https://polymer-library.polymer-project.org/
https://x-tag.github.io/

What are Web Components? 11

With import, I was able to move away from the fragile mess of making sure every JS
file I wanted to use was linked in a script tag on my main HTML page. Each Web Com-
ponent could be completely responsible for importing its own code. This meant that
on the main HTML page, I could have a single module-based script tag import a Web
Component that contained my entire application. Each child component would just
import whatever it needed.

This opened the door to reusable code modules written in pure JS and gave me
the ability to create multiple levels of inheritance when I wanted my components to
share an API and be a little smarter than the base HTMLElement API. Lastly, I could
keep my HTML/CSS in a separate template.js file that I could import, separating my
visual concerns from the component’s controller logic.

The last huge JS feature that made Web Components a pleasure to work with was
the template literal. Not only could I keep my HTML/CSS in a separate template file,
but I could replace placeholder expressions in my markup with variables, and nest
multiple templates together using JS functions.

These ES6/ES2015 features suddenly made Web Components a joy to work with.
Even having previously worked with the now-deprecated HTML Imports, I think the
combo of modules and template literals is a much better way to go, by comparison.

As I stated before, the Shadow DOM is 99% here. It’s taken some time, but all the
major browser vendors are in. We’re just waiting for Microsoft to release the Edge
developer preview to everyone. Personally, I've only now gone all in on working with
the Shadow DOM after Firefox shipped.

At the same time, as nice as the Shadow DOM is, it’s also optional. True, it does
give our component’s child elements some nice protection against style and JS creep-
ing in and having adverse effects, but this is a new solution to a problem we’ve always
had. So, if we need to wait a few months for browser support, or just opt out of it alto-
gether for the short term, it’s not the end of the world. That said, I've tempered my
excitement on the Shadow DOM long enough due to previous browser support; now
that we’re about to cross the finish line, I'm thrilled because it’s proving to be such a
joy to use.

As excited as I am for the future of Web Components, I haven’t heard of any sort of
modern vision for them, especially for developers who were confused by them before.
If I had to redefine the “promise of Web Components” for 2019 onward, it wouldn’t
be the three mandatory features of Custom Elements, Shadow DOM, and HTML
Imports anymore.

To me, the 2019 vision for Web Components is shaping up to be a toolbelt of
ES6/ES2015 features and the <template> tag when and if you need it, all in service of
the Custom Element as the core feature. Once the Shadow DOM ships everywhere in
the near future, it will also be a major addition to our toolbelt. This vision is how I’ll
be approaching Web Components in this book. We’ll dive deep into the Custom Ele-
ment and then explore workflows around all the optional tools in our toolbelt.

12

1.2

CHAPTER 1 The framework without a framework

The future of Web Components

It’s never easy to predict the future, especially on the web, where things change at an
insane pace. That said, we have some strong clues indicating where Web Components
might go beyond 2019.

We’ve already seen experiments with React, Angular (https://angular.io/guide/
elements), and Vue (https://vuejsdevelopers.com/2018/05/21/vuejs-web-component/)
on compiling components in each of these frameworks to a standalone Web Compo-
nent, running completely independently of the framework that made those compo-
nents. Additionally, tools like Stencil]S (https://stenciljs.com) and Svelte (https://
svelte.technology) allow you to create with a framework and compile to standalone
Web Components.

What does this mean? Soon, we might all create components with no framework or
with the framework of our choice. We’ll use a React-created Web Component in Angu-
lar or a Vue-created Web Component in a no-framework web page. The artificial walls
we have between developers and their frameworks may be coming down relatively
soon, as depicted in figure 1.5. And this is all thanks to Web Components.

No-framework

plain vanilla
React application WD Graimperiin: Angular application
React component Angular component
r—-—"""—"—"—"—"—"—"—"=—-=—="—-=- il r——-—""""—"=—"——=—==—="—-=- i
- > | |
Lo = - - Lo e - |
React component - - Angular component

Figure 1.5 Web Components could bridge the gap in the future between popular frameworks.
Not only can no-framework Web Components be used in these frameworks, but there are
already experimental projects to compile a component in React, Angular, or Vue to
independently run components that can be used anywhere.

This concept might even extend to allowing completely different languages to operate
together. One application could have different components developed in JS, Type-
script, and CoffeeScript; given that each is a modular component providing an API,
this wouldn’t matter. Even crazier, with the advent of WebAssembly, we could see lan-
guages like G++, Lua, Go, and so on compiled to bytecode and wrapped by a Web
Component, looking like a completely normal element from the outside while simul-
taneously allowing high-performance graphics that can run faster than JS would nor-
mally run.

https://angular.io/guide/elements
https://angular.io/guide/elements
https://angular.io/guide/elements
https://vuejsdevelopers.com/2018/05/21/vue-js-web-component/
https://stenciljs.com/
https://svelte.technology/
https://svelte.technology/
https://svelte.technology/

1.3

13.1

Beyond the single component 13

I also think that using ES6/ES2015 modules and imports will change the way we
think about libraries and frameworks. Already, we are seeing two similar tools, lit-html
and hyperHTML, for advanced markup management. Both of these have modules
that developers can import instead of loading an entire library to target a specific
problem. You’re allowed to opt in or out whenever you want during your project.

In this regard, I think we’ll see lots more amazing libraries. You’ll import only what
you need, when you need it. People might get bored with Web Components as a shiny
new paradigm, but I can see us building on these fundamentals with importable
scripts and libraries. The Polymer Project’s new approach, as the team moves their
original library into maintenance mode, seems to match this exactly. Time will tell if
the major frameworks will break off features, as the Polymer team did with lit-html,
into separate imports we can use outside the framework. But it seems inevitable to me,
especially looking at other languages that have had import functionality forever.

Beyond the single component

So far, I've talked a lot about Web Components as individual components, but as
much as I love standalone Web Components, they wouldn’t be much use if they didn’t
work together to create your application.

Long before Web Components were a thing, we had great ways to interact with
normal DOM elements. We can use these same methods to give structure to whatever
we build with Web Components, just like we do with an ordinary <div>, <video>, or
<input> tag.

Web Components are just like any other DOM element

For starters, every element has some sort of public API. By this, I mean that you can
get and set properties on your element and call functions. For example, with the video
element, you can call pause () and play() functions to control video playback. You
can also check how long a video is by checking the duration property. Lastly, to jump
to a specific point in your video, you can set the currentTime property.

Obviously, methods and functions on objects are common everywhere in program-
ming. DOM elements are no different, as you may be able to tell from figure 1.6; fur-
thermore, custom Web Components are no exception, either.

Somewhat similar to properties are attributes. You see these all the time in HTML.
Something as simple as an tag has a src attribute that points the element to the
image’s location. Attributes are a simple concept, but they are handy for giving your
Web Component different behaviors depending on how you want it to act. Even bet-
ter, Web Components have an API such that you can internally listen for attribute
changes.

In the previous example of the video element, the attributes exposed by the tag
don’t match the properties that the API exposes. While we can set the currentTime
property, we can’t set the same attribute on the tag. Counter to this, many times with

14

1.3.2

CHAPTER 1 The framework without a framework

Tag attributes
<input type="date" step="2">

'

Typical DOM element 8
o T~— 8 .
, S t=O—»2 Web application/JS
Visual content Q =
[‘e—-» q>)
it}
Properties Methods 1
i A4
call method() ;
set get
element .property element.property

Figure 1.6 DOM elements have various properties, methods, events, and attributes that are used
to tell the element how to act and communicate with the outside world.

Web Components you create, you’ll want to use the best practice of reflection. When
setting properties, you'll want to update the attribute (and vice versa), so these attri-
butes and properties are in sync. Of course, this isn’t a hard-and-fast rule, just a widely
accepted best practice. Prior to Web Components, reflection wasn’t necessarily
adhered to. A good example of when things can go wrong is the value attribute on an
<input> tag. A value attribute here sets the initial value, but when it changes, this
value attribute stays the same. Querying the value property through JS will return the
most recent value, assuming it’s been changed. This is confusing! But we just accept it
because that’s how the <input> tag has always worked. When creating new Web Com-
ponents, it’s likely best to avoid this confusion and reflect attributes and properties.
To this effect, the video element’s muted attribute/property is a good example of
reflection.

Lastly, you might want to listen for changes from your custom Web Component.
We use events all the time in other scenarios. Think about clicking a button. Typically,
we’d do the following to listen for the click:

mybutton.addEventListener ('click', functionToCall);

You can also create and dispatch your own Custom Events. You can do this from any-
where, but they are especially handy when you need your application or other compo-
nents within it to listen to events coming from your Web Component.

From individual component to application

Talking about individual components is one thing, but what about when you need to
build an entire web application? Web Components can be as big or as little as you
need them to be. You might build some extremely granular components, like buttons,
and then nest those inside a bigger Web Component, like a custom toolbar.

Beyond the single component 15

Your toolbar component might handle the finer details of working with the buttons,
perhaps toggling them on and off or disabling certain ones under specific circum-
stances. Our toolbar, alongside other components shown in figure 1.7, could be fur-
ther nested inside another parent component, and so on. This can keep going all the
way up until a single, solitary Web Component is the only thing in your <body> tag.

Web application (could be a component as well)

| Drop-down menu

Header & navigation component

component
Toolbar == |Button Content area Main application
component [—— | ¢omponents component component

Footer component

Figure 1.7 Example web application consisting of Web Components, which are themselves made
up of more Web Components. The hierarchy can extend to something small, like a custom button,
or be as large as the entire application wrapped as a Web Component.

Web Components, and no-framework]S, have much to offer you for web application
development. But as your application grows, it will grow in complexity. It can get more
and more difficult to coordinate how your components interact with each other.

Sometimes, you’ll find that even with the inherent structure that Web Components
give you, this just isn’t enough to build your complex application. You might be
tempted to turn to popular frameworks and libraries to help structure things. Frame-
works like Angular offer data binding, MVC patterns, and more. Certainly, they can be
helpful when building a traditional web application. On the other hand, we can write
and import simple JS code based on tried-and-true design patterns that have been
around for ages, avoiding these larger frameworks.

For example, native DOM events might fall short for you. Often, you’ll want one
part of your web application to message a completely different part of your applica-
tion, and you won’t want to worry about how the event bubbles through the DOM.
You could turn to a library like RXjs or Redux, but it might be overkill. Instead, you
could write a simple event bus with a small amount of code. Figures 1.8 and 1.9 con-
trast these two approaches.

In figure 1.8, you might, for example, have form-input components contained in
a Web Component. These input components could trigger text input changes, drop-
down changes, and more, all to that parent component. A good example of this
might be a color picker component with RGB text input and sliders. The parent Web

16

CHAPTER 1 The framework without a framework

/V

' 4

Component #1

Component #2

Component #3

Figure 1.8 Events naturally bubble from the inside out
of nested elements.

Component (the color picker) that hosts these input components would then have
to pass the color on to its parent Web Component in another event to report the
color’s hex value.

This natural event bubbling could break down if the thing whose color you’ve
decided to change is all the way on the other side of your DOM in a different section
of the DOM tree. In this case, you’ll need to use a different strategy, such as an event
bus (figure 1.9).

Component #1

Component #3

Event bus

Component #4

Component #5

Figure 1.9 If normal event bubbling is not desirable, with a bit of code, you
can create an event bus system to route events where you want.

1.4

Summary 17

There’s also a middle ground with microframeworks. Microframeworks can be a great,
minimalist way to organize your application and add specific functionality without get-
ting too opinionated about it like a larger framework would. Worrying about finer
details in your custom-built Web Components, while orchestrating your larger applica-
tion with these smaller libraries, can be a nice way to go. Even minimalist solutions for
data binding and routing can be found through NPM as well.

Your project, your choice

In the end, even though there’s a great case to be made for no-framework Web Com-
ponents, your project and your team will ultimately influence what you use to create
for the web. Like any emerging standard, Web Components don’t offer all the answers
just yet. Then again, no popular framework does.

There will be cases where your web application is extremely straightforward, and a
modern framework might be the perfect answer because it handles everything you
need to do. Other times, you might be working on the type of project in which frame-
works just get in the way. The solutions you can choose from cover a wide spectrum of
options, with some of those options overlapping.

Even if no-framework Web Components aren’t the right answer for you, your favor-
ite framework will likely be built with them one day, although it may not be apparent.
Getting acquainted with the web standards-based underpinnings of any framework is
always a great idea, even if you don’t use them directly.

Despite the somewhat confusing half-start of Web Components a few years back,
we’re at a place right now where they are a real option for making your next project.
I'm sure we’ll see new ideas and methods for your Web Component workflow in the
years to come, but these new ideas will be based on the standards I’ll cover in this
book, along with the latest and emerging current workflows. We’ll cover Web Compo-
nents on an atomic level, all the way up to applications built with many components,
as well as how to manage your HTML/CSS, organize your projects, and more. I hope
you're as excited as I am about the future of the web!

Summary

In this chapter, you learned

How Web Components have evolved in the past few years from a Google-owned
working draft to a real web standard adopted by all the modern browsers
About the Shadow DOM as an optional yet important feature, while being on
the verge of widespread browser adoption

Web Components’ place in modern frameworks, as well as an agnostic part of
any ecosystem

The potential future of Web Components, with an ever-expanding community
of JS modules in the spirit of Polymer Project libraries like lithtml and lit-
element, as well as non-Polymer Project ones like hyperHTML

About the individual Web Component versus an entire Web Component appli-
cation

Your furst
Web Component

This chapter covers

= The basis for almost every element you use: HTMLEl ement
= Extending classes to make your own custom elements
= Giving your custom elements logic and interactivity

= Using custom elements after defining them with
customElements.define

As I promised in the beginning of this book, we’re going to start small. Luckily, with
Web Components, even when we do start small, we can still make something mean-
ingful. After this chapter, you’ll have the know-how to make your first Web Compo-
nent and be able to view it right in your browser! Subsequent chapters through this
book will explore key concepts in more detail, but the basics start here. At the end
of this chapter, we’ll discuss options when your browser doesn’t support custom ele-
ments, as in the case of the latest consumer Edge release (at the time of writing) or
IE. For now, though, please use Chrome, Firefox, or Safari if you’d like to follow
along with the code examples.

18

2.1

211

212

Intro to HTMLElement 19

Intro to HTMLElement

Prior to learning the basics of Web Components, I didn’t really know what an HTML-
Element was. You might not either—it’s an easy thing to never come across, because
while it’s a core concept in how the DOM works, we’ve typically never worked with it
directly until now.

This is because when you add an element to your page, it just works. You don’t nec-
essarily need to know how an <input> tag is related to a <button> or how a <div> is
related to an .

To explain, we’ll have to get a bit into the concept of inheritance. It’s a popular
concept in object-oriented programming, and one we’ll run with later in the book as
we explore code reusability, but to quickly explain, let me start with an example.

Crash course in inheritance

NOTE Ifyou are already familiar with inheritance in object-oriented program-
ming, please skip to section 2.1.2 to explore inheritance in relation to your
favorite DOM element.

Pretend you’re at a zoo. While you're there, you notice that all the animals have some
specific things in common. Animals need to eat, breathe, sleep, and move around. Of
course, some animals are different than others. Mammals have fur, have babies instead
of laying eggs, and are warm blooded. Mammals have all the base characteristics of ani-
mals, but there are extra rules when you call something a mammal. You could even go
further and consider mammals like tigers, lions, and panthers as types of felines. Felines
also have some specific things in common, like whiskers, claws, and eating meat.

In object-oriented programming, we can say that a feline inherits from a mammal,
and a mammal inherits from an animal. If you were writing code, you might start by
defining an Animal object (or class to be more specific), as figure 2.1 shows. Your Animal
might have functions that you can call to make it breath(), sleep(), and eat ().

Next, you might want to create a Mammal object. It would be tiresome and repetitive
to write code for breath(), sleep(), and eat () again for the Mammal object. Because
this is all similar to Animal, we can use inheritance; when creating that Mammal object,
we say Mammal extends Animal. Mammal automatically gets all the functionality of
Animal, but we can add more specific functionality, like growFur (). We can even cre-
ate a Feline object that inherits from Mammal, and because Mammal inherits from
Animal, Feline will have all the functionality of Mammal and Animal.

Inheritance is a core feature of object-oriented programming, typically used in
other languages, and now JavaScript (JS), via classes. If you are not familiar with this
newer |S feature, read up on it in the appendix, “ES2015 for Web Components.”

Inheritance in your favorite elements

Our zoo inheritance example is a lot like HTMLElement. With a few exceptions, like
SVG, any element that you put in your HTML/DOM is inherited from HTMLElement.

20

CHAPTER 2 Your first Web Component

Animal

eat () ;
sleep() ;
breath () ;

Y

Reptile Mammal Bird

growScales () ; growFur () ; growFeathers () ;

Cat

claw () ;

Tiger Lion Panther

Figure 2.1 A not-so-scientific example of inheritance in the animal kingdom

While HTMLElement isn’t the bottom rung of the inheritance chain as far as the browser
is concerned (just like we can keep going with “Animal” to “Multicellular organism,” to
“Living thing,” and so on), it serves as our starting point for Web Components.

To give some real examples of inheritance on actual elements, , <div>, and
<button> are created from HTMLSpanElement, HTMLDivElement, and HTMLButton-
Element, respectively. In turn, all of these inherit from HIMLElement. In fact, you can
see for yourself. Open up the browser console and type the following:

document .createElement ('div') .constructor
The console will return
f HTMLDivElement () { [native code] }

What we’re doing here is creating a new <div> element and asking it what the con-
structor is. The constructor is what’s called first when you create an object like this. It’s
telling you that the constructor is the creator function on a specific class—in this case,
HTMLDivElement.

Feel free to play around with your favorite elements! Button is another we can try:

document.createElement ('button') .constructor
which gives us

f HTMLButtonElement () { [native code] }

2.2

Rules for naming your element 21

HTMLElement

\

HTMLButtonElement HTMLDivElement HTMLCanvasElement

l

Figure 2.2 While there are a large number of classes that inherit from
HTMLElement, here are three that produce common DOM elements that we use
all the time, with the actual tags we write in our HTML.

As you can tell from our experiments and from figure 2.2, elements we use all the
time are derived from a common source: HTMLElement.

Rules for naming your element

One interesting thing about HTML is that you can actually make up any name for a
tag and drop it on your page, and it acts like a <div>.
Try it in your page:

<randomElement>Hi!</randomElement>

You’ll see the text “Hi!”, just like if you were using a <div>. Now, the question is, what
are we inheriting from, here? Let’s try it in our console:

document .createElement (' randomElement') .constructor;
We get back
f HTMLUnknownElement () { [native code] }

Were you expecting HTMLUnknownElement? Probably not! We just created an invalid
element. Because it’s invalid, it inherits from a special Unknown class, and we can’t
extend its functionality.

Why is it invalid? It’s not because we can’t invent our own element names when we
create our own components; it’s because there’s a naming convention to follow. This
naming convention is a simple hard requirement for the custom element specifica-
tion, and that is to use a dash (-) in your element name. Under the hood, it allows the
browser to differentiate between custom and native elements. It makes sense when
you think about it.

Not only will readers like you be creating their own custom components, but
browsers themselves will likely come out with new elements as well. A common use of

22

CHAPTER 2 Your first Web Component

Web Components will likely be tiny pieces of common UL If something useful, like a
progress bar, was created not only by you, but also by other Web Component develop-
ers, and made it into browsers as a native feature, you can imagine how much of a
mess it would be if everyone created something named <progressbar>.

Again, simply add a dash (-) in your element name. If your desired element name
is <progressbar>, try again with a dash: <progress-bar>. Ideally, you'd want to give it a
namespace. A namespace is used to indicate some sort of group that your component
belongs to. For example, in Google’s Polymer Elements Collection, any UI component
built with the design system Material has a namespace of paper. If you go to Google’s
Web Component GitHub repo (https://github.com/PolymerElements), you can find
paper-tooltip, paper-dropdown-menu, and paper-toggle-button (figure 2.3). Some
of these have two dashes, and that’s perfectly OK. You need one or more to be valid.
The important takeaway here is that Google defines a namespace to indicate a set of
related components, and then names the specific component after the dash. You cer-
tainly aren’t required to follow the same logic—you just need that dash.

Let’s revisit our randomElement, but name it with a dash this time to follow proper
conventions:

document.createElement (' random-element') .constructor;
Good news! This prints the following in our console:

f HTMLElement () { [native code] }

{/» paper-badge
34 { 22
Material Design status descriptors for elements
{/ paper-button
116 ¥ 64
Abutton a la Material Design
{» paper-card
90 64
A Material Design piece of paper with unique related data
{/» paper-dropdown-menu
64 ¢ 113
A Material Design browser select element
{/ paper-icon-button
45 }
A Material Design icon button

Figure 2.3 A small sampling of Google’s paper elements. Note that these related Ul Web
Components have the prefix paper. Google also uses the prefix iron for core elements and
neon for animation-related elements.

https://github.com/PolymerElements

2.3

Defining your custom element (and handling collisions) 23

Defining your custom element
(and handling collisions)

It’s one thing, of course, to invent a name for a tag and create it versus actually giving
the tag logic and definition before creating it. It would be fairly useless to create your
own tag without giving it some custom behavior. We’ll need to go beyond HTML-
Element and override it with our own logic.

Thankfully, it’s easy to do just that! This brings us to, in my opinion, the biggest
and most useful piece of the Web Components API. With one simple line of JS and
using an empty class that extends HTMLElement, we can take our desired element
name and give it meaning:

customElements.define('my-custom-tag', class extends HTMLElement {});

There is a catch, though—and it’s one that won’t really affect you until you get into
more complex things. All the same, it’s good to bring this up now: customElements
.define will throw an error if you’ve already defined a tag. This will definitely come
up later when we use a newer JS feature called import, where we include our element
anywhere we need to reference something in it.

For now, we can mimic this bad behavior by calling customElements.define twice
in a row:

customElements.define('my-custom-tag', class extends HTMLElement {});
customElements.define('my-custom-tag', class extends HTMLElement {});

We get the following error:

Failed to execute 'define' on 'CustomElementRegistry': this name has already
been used with this registry
Thankfully, this is easy enough to handle. We can determine if our custom element
has already been defined by asking if customElements.get ('my-custom-tag')
returns something. By wrapping it in an if/then statement, we ensure that our ele-
ment is defined only when we first call it:
if (!customElements.get ('my-custom-tag')) {
customElements.define('my-custom-tag', class extends HTMLElement {});
}
Now, extending HTMLElement to define a custom element is super powerful, but
don’t go too crazy yet. You might think that extending HTMLDivElement or
HTMLButtonElement would work too. It could be nice to build off of a button for fea-
tures it already has, like being able to disable it or working with forms easily. Unfortu-
nately, this isn’t possible yet in all browsers. While the customElement specification
says this is OK, Safari has not yet implemented this functionality, and therefore it's
best to approach extending other elements cautiously, or not at all. HTMLElement is
the only native element definition we’re currently allowed to extend and create cus-
tom elements from everywhere. Anything else will look like it works, but when you
actually use your element, you’ll get an error:

24

2.4

CHAPTER 2 Your first Web Component

Uncaught TypeError: Illegal constructor: autonomous custom elements must
extend HTMLElement

Note the “must extend” part of the error as well. Even passing HTMLELement without extend-

ing itinto customElements.define, as in customElements.define ('my-element', HIML-

Element), will result in this behavior when you use your new element.

Extending HTMLElement to create
custom component logic

The easiest way to write your custom component, as you’ve just seen, is to use a newer
JS feature called a class. JS classes provide a great and readable way to express how our
custom element works and also how it inherits from an HTMLElement.

Let’s start with a very much empty class, which inherits from HTMLElement. To
make something simple that will get more useful as we progress throughout the book,
we’ll start with a slider. A slider is simple to use and make. When finished, it will allow
a user to drag a thumbnail over a track to select a value:

class Slider extends HTMLElement {}

In thinking about an element name, slider is the most obvious choice, but we do
need a namespace! Because this book is called Web Components in Action, and the slider
should be a general UI component that can be used anywhere, lets brand our slider a
wcia-slider. Now, with your new element definition seen juxtaposed against other
common elements in figure 2.4, you can create something custom:

customElements.define('wcia-slider', Slider);

Of course, there is no custom logic because our element is based off an empty class.
For now, it will act just like HIMLElement does, but we can fix this using the
connectedCallback method in this class. This connectedCallback method is the first

HTMLElement

A

HTMLButtonElement HTMLDivElement Slider

l

<wcia-slider>

Figure 2.4 Our HTMLElement inheritance diagram modified to include your own
custom elements at the same level as the native ones

Extending HTMLElement to create custom component logic 25

of several lifecycle methods offered by the Custom Element API and fired when the
component is added to the DOM.

Let’s modify our class in the following listing to give some indication that we have
an effect on it. Here’s a snippet we can include on our page to define our element.

Listing 2.1 Giving our custom tag some custom logic

<script>

class Slider extends HTMLElement { ?: alert to SIgna.l us t:'hat
connectedCallback () { e component Is on the

alert('hi from Slider'); pageandrunmng
}
}
if (!customElements.get('wcia-slider')) {
customElements.define('wcia-slider', Slider);
}
</script>

To see this in action, simply drop your custom tag in the body of your HTML.:

<body>

<wcia-slider></wcia-slider>
</body>
When you try this out, you actually won’t see anything visible on your page except for
the alert dialog that pops up. Now that we’ve verified that we can inject logic into our
new Web Component, let’s build up our Web Component to be something a bit more
visible.

To do this, I should mention scope and how it can work for us in our Web Compo-
nent. It can be easy to lose track of what scope this is referring to in a typical JS con-
text. With Web Components and classes, we can use this in some dead simple and
easy to read ways. With a few notable exceptions, like callback events and timers, this
in your component will refer to the element itself. This includes custom methods and
properties you introduce on the element, but also any methods or properties that the
element already has. To put it another way, any method or property you might use
from an ordinary, noncustom element can be used in this scope and referenced by
this. The keyword this is the scope of our new custom element.

Examples for what you can call from this inside your custom element class
include everything inherited from HTMLElement, like getting the element’s CSS with
this.style, getting the element’s height with this.offsetHeight, or adding an
event listener when the user clicks on your component with this.addEventListener
('click', callback).

To give our element some content—specifically, a background and a thumbnail—
let’s start with the innerHTML property. Again, innerHTML can be used on any element
and serves to set the HTML content inside the element. We can use it similarly here:

this.innerHTML = '<div class="bg-overlay"></div><div class="thumb"></div>";

26

CHAPTER 2 Your first Web Component

While it’s not incredibly readable to just throw HTML in a string like this in one line,
for our purposes, to demo something small, let’s run with it. We’ll definitely improve
on this later in the book.

Let’s also add some style to the slider component. When styling and defining how
a component works, it’s important to think about how it will be used and why we’re
creating it. Given that we already have a slider natively provided by the browser, as fig-
ure 2.5 shows, and created with an <input type="range"> element, ours should serve
a slightly different purpose.

l/'\l Figure 2.5 The native slider
ph— provided by the input element

Our slider will function the same way, with a draggable thumb over a track. However,
we’ll make our track much bigger. In fact, it’ll be more of a background than a track.
The reason for the bigger track is so we can visualize what a user would slide through
better. This slider will be used to change the transparency of a specific color. Figure
2.6 shows the transparency slider we’ll create.

Figure 2.6 Our new transparency slider component

With this particular look for the slider decided, we can start adding some style! As
mentioned previously, this can be used as the scope for our component, which we
can then tap into the style property, just like any other element:

this.style.display = 'inline-block';
this.style.position = 'relative';
this.style.width = '500px"';
this.style.height = '50px';

In addition to accessing the style property on the component’s scope, we can use
another HTMLElement property: querySelector. Normally, we might use query-
Selector on our document to find a child element inside. For example, if we needed
to find an element with a class of myelement on the page somewhere, we might do the
following:

let myElement = document.querySelector('.myelement');

The querySelector function doesn’t have to search as wide as document. Instead, it
can be scoped to any normal element to query-select its children. Given that our com-
ponent is a normal element, we can query-select its children and apply some style to

Extending HTMLElement to create custom component logic 27

them as well. The following listing shows how we can reach into the Web Component
using the scope of this to change style on the component’s children.

Listing 2.2 Query-selecting inner components and setting their style

this.querySelector('.bg-overlay') .style.width = '100%"'; <G AddMgstﬂetothe
this.querySelector ('.bg-overlay').style.height = '100%"'; background overlay
this.querySelector('.bg-overlay') .style.position = 'absolute'; element inside the
this.querySelector('.bg-overlay') .style.backgroundColor = 'red'; component
this.querySelector ('.thumb').style.marginLeft = B — Adding style to the

'100px";] thumbnail element
this.querySelector ('.thumb').style.width = '5px'; inﬁdethecomponent
this.querySelector ('.thumb').style.height = 'calc(100% - 5px)';
this.querySelector ('.thumb').style.position = 'absolute';
this.querySelector('.thumb') .style.border = '3px solid white';
this.querySelector ('.thumb').style.borderRadius = '3px';

Putting it all together, we have what’s shown in the following listing.

Listing 2.3 A complete but simple Web Component example

<html>
<head>

<title>Slider</title>
Setting the HTML
contents of our
Web Component

<script>
class Slider extends HTMLElement ({
connectedCallback () {
this.innerHTML =
'<div class="bg-overlay"></div><div class="thumb"></div>";

this.style.display =

o Setting the overall style
'inline-block';

of our Web Component

this.style.position = 'relative';

this.style.width = '500px"';

this.style.height = '50px"';
this.querySelector('.bg-overlay').style.width = '100%"';
this.querySelector ('.bg-overlay').style.height = '100%"';

(.).
(.).
this.querySelector('.bg-overlay').style.position = 'absolute';
(.).

this.querySelector('.bg-overlay') .style.backgroundColor = 'red';
this.querySelector ('.thumb') .style.marginLeft = '100px"';
this.querySelector('.thumb') .style.width = '5px';

(.) .

(.) .
this.querySelector('.thumb').style.height = 'calc(100% - 5px)';
this.querySelector ('.thumb') .

(.).

(.

style.position = 'absolute';
this.querySelector('.thumb') .style.border = '3px solid white';
this.querySelector('.thumb').style.borderRadius = '3px';
}
}
if (!customElements.get ('wcia-slider')) {

customElements.define('wcia-slider', Slider);

}

</script>

28

2.5

CHAPTER 2 Your first Web Component

</head>
<body>
<wcia-slider></wcia-slider>
</body>
</html>
Of course, now instead of simply having an alert, we can see our component in place
on the page with some proper content!

Using your custom element in practice

At this point, if you're following along, you have your own custom element running
on your page. In addition to the rule stating you need to have a dash contained in
your custom tag, there used to bean additional rule concerning how to use the tag. Cus-
tom elements fell under the type of element that can’t be expressed as a void or self-
closing tag. In other words, the following variations of HTML wouldn’t have worked
until recently:

<wcia-slider /> Or <wcia-slider>

Now, however, in the latest browser versions, even these variations work. So, other
than the dash requirement, your element can be used in all the ways other elements
can be used. When you get into more complex components, you’ll probably have click
logic inside your component, but we can certainly wire a click event to our Web Com-
ponent, just as with any other element:

<wcia-slider onclick="alert('clicked')"></wcia-slider>

Attributes are also great to use, but, of course, there aren’t many situations where
they’d be helpful without logic in your component to use the attribute. Let’s alter how
our component renders with a couple different attributes: color and value. These
attributes can be written inline on the component tag:

<wcia-slider backgroundcolor="#0000ff" value="180"></wcia-slider>

Then, we can change the color of the background element by trading the “red” color
for the value of the attribute:

this.querySelector('.bg-overlay') .style.backgroundColor =
this.getAttribute ('backgroundcolor') ;

Meanwhile, the value attribute can change the position of the slider thumb:

this.querySelector ('.thumb').style.marginLeft = this.getAttribute('value') +
'px';

With these small changes, we can now change the color and slider position to any-
thing we want. Unfortunately, the component is a bit ugly, as figure 2.7 shows, and not
exactly what I showed at the start.

You might have also noticed that I used |S to set style properties instead of what I
should have used: CSS. As with any element, we can target our element and inner chil-
dren with a <style> block and make things look like I originally promised.

Using your custom element in practice 29

Figure 2.7 Slider (now blue with the thumb further to the right) affected
by value and color attributes

Some of the CSS we’re using looks pretty complicated. For this reason, I removed the
attributes for now—we’ll revisit this in later chapters with actual code to get the com-
ponent functional as something you’d really use.

We’ll add a checkered pattern behind the component with some semi-crazy-looking
CSS (background image, position, and size). To be honest, I didn’t create it myself,
either—I found it online! The rules for the linear gradient on the color and the box
shadow on the thumb are also a bit lengthy, but these finer CSS details in the following
listing can lead to some nicer looking UI details.

Listing 2.4 Trading inline styles for CSS

<html>
<head>
<title>Slider</title>

<script>
class Slider extends HTMLElement {
connectedCallback () {
this.innerHTML =
'<div class="bg-overlay"></div><div class="thumb"></div>";

}

if (!customElements.get('wcia-slider')) {
customElements.define('wcia-slider', Slider);
}
</script>
<style> Adding some fairly complex
. oo CSS to our component to get
display: inline-block; thestﬂeiustr@ht
position: relative;
border-radius: 3px;
height: 50px;
width: 500px;
background-image: linear-gradient (45deg, #ccc 25%,
transparent 25%),linear-gradient (-45deg, #ccc 25%,
transparent 25%),linear-gradient (45deg, transparent 75%,
#ccc 75%),linear-gradient (-45deg, transparent 75%, #ccc 75%);
background-size: 1l6px 1l6px;
background-position: 0 0, 0 8px, 8px -8px, -8px Opx;

wcia-slider {

}

.bg-overlay {
width: 100%;

30

2.6

CHAPTER 2 Your first Web Component

height: 100%;

position: absolute;

border-radius: 3px;

background: linear-gradient(to right, #££0000 0%, #£f£000000 100%);
}

.thumb {
margin-top: -1px;
left: 250px;
width: 5px;
height: calc(100% - 5px);
position: absolute;
border-style: solid;
border-width: 3px;
border-color: white;
border-radius: 3px;
pointer-events: none;
box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2),
0 6px 20px 0 rgba(0, 0, 0, 0.19);
}
</style>
</head>
<body>
<wcia-slider></wcia-slider>
</body>
</html>

In this case, we can easily set all of the style right in our CSS. You might notice that
we’re getting a bit disorganized just placing script and style blocks in our HTML.
Don’t worry, we’ll lock this down to be much cleaner as we explore more throughout
this book. For now, even for a simple component, it’s looking like a pretty stylized
slider (figure 2.8) that could be great to dive deeper on later.

m W E N
- EEEEE
' lJllﬁm
E _m_m_m_|

Figure 2.8 Styled slider using CSS

Making a (useful) first component

Let’s face it, as much as we’ve learned so far about custom elements and creating
some custom logic in your first component, it hasn’t been a terribly useful component
so far (for one, it doesn’t slide). Don’t worry! We’ll build on the slider as we go along
in this book, adding interactivity, exploring some standard practices, and allowing it to
operate with other components.

For now, though, it’s time to take what we’ve learned so far, as well as some of our
prior web development knowledge, and create a simple Web Component that can be
immediately useful and meaningful as a standalone component.

26.1

Making a (useful) first component 31

The first thing that comes to mind for a simple use case is something that web cre-
ators have needed for ages, has been made and remade countless times in jQuery, and
is useful in all web contexts, from blogs to web applications. I'm talking about a photo
or image carousel.

The idea here is to create a component that we can drop anywhere on a page, and
that lets us specify an album title and author, and flip through an album of photos
using forward and back buttons. To pull this off, I've chosen some photos from the
popular image-hosting site imgur.com (copied to my GitHub repo so they don’t disap-
pear over time) as places I think would be fun to visit, and put them in an album. My
“future vacation photos” component ended up looking like figure 2.9.

Future Vacation Photos
by Ben Farrell

Figure 2.9 Result of the next demo, where we create a photo carousel

No doubt I could spend more time styling and creating graphics, especially for those
forward and back buttons, but we’re keeping it simple, here. Let’s dive in and go step-
by-step through creating this photo carousel.

Setting up our web server

There are simple things we can do without using a web server. Loading up a plain
HTML file on your local filesystem in the browser of your choice gets you only so far.
When you try to load assets, CSS, or JS files without a server, these files will be blocked.
What to do?

Personally, I like using an integrated development environment (IDE) like Jet-
Brains’ WebStorm, which automatically creates a server for you when you load your
HTML file through its UL. Many web developers live and die by a simple text editor
and HTTP server. Because this is the free option, let’s do it! Node.js is a great choice,
especially because we use it for so many other things in regard to frontend tooling. If
you haven’t installed Node.js yet, go to https://nodejs.org, download, and install it.

https://nodejs.org/

32

CHAPTER 2 Your first Web Component

Once installed, we can use the Node.js package manager, NPM, to install modules
of our choice. Usually with Node, you’ll install modules for your project specifically.
This time around, we’re going to pass the -g flag to install an http-server module we
can use from anywhere. Open up your command line terminal (it doesn’t matter what
directory you happen to be in), and type

npm install http-server -g

When finished, assuming no errors, you’ll have a simple web server you can run from
anywhere on your machine. Now that you have the tooling installed, you can create a
project folder wherever you like. I'm going to call mine “photocarousel” and create an
empty folder for it on my desktop. Once the folder is created, I'm going to create a
dummy HTML file named test.html to be sure that my server works and my file loads.
In your favorite text editor, write the HTML in the following listing (again, just to cre-
ate something you can look at in your browser).

Listing 2.5 A simple web page to test our server

<html>
<head>
<title>Photo Carousel Demo</title>
</head>
<body>
<h3>Hi, from your webserver</h3>
</body>
</html>

Now, in your terminal, navigate to the project folder you made and type
http-server

Since you have the http-server module installed globally, anywhere you issue this
command from will start a web server. When successful, you’ll see the following results:

Starting up http-server, serving ./
Available on:
http://127.0.0.1:8080
http://10.0.0.17:8080
Hit CTRL-C to stop the server

Now, in your browser (let’s use Chrome or Safari), you can hit either one of these
addresses, adding /test.html, and see your barebones HTML file in action.
Awesome! If you see something like figure 2.10, you now have a development envi-

ronment!
< C @® 127.0.0.1:8080/test.html
Hi, from your webserver Figure 2.10 Running our simple
HTML page from a web server

2.6.2

2.6.3

Making a (useful) first component 33

Writing our HTML tag

OK, so, we’re going to write our custom photo carousel tag in the body of our HTML
page. It won’t actually work, but this will help us think about what features we want to
implement when it comes down to the Web Component work.

I'm going to pick the namespace wcia, short for Web Components in Action, for this
component. So, my tag name will be wcia-photo-carousel. I could just add that one
tag to my body like this:
<body>

<wcia-photo-carousel></wcia-photo-carousel>

</body>

We have the opportunity now to think about the different things we might want to
change when it comes to our component from the outside. Personally, I think we’ll
want to give our carousel an album title to display above the photo, and also an author
name for who created the photo album. Most important, though, are the actual pho-
tos we want displayed in our album. For this, we’ll pass in a list of comma-separated
URLs. This means our tag goes from looking like the previous empty one to what’s
shown in the following listing.

Listing 2.6 Our photo carousel component used on a web page

<body> QJ Title attribute
<wcia-photo-carousel
title="Future Vacation Photos" Author attribute
author="Ben Farrell"
photos="images/fBmIASF.jpg, images/3zxD6rz.jpg, images/

nKBgeLOr . jpg, images/yVjJzlyr.jpg" Another attribute containing
></wcia-photo-carousel> a comma-separated list of
</body> photos to show

Now that we’ve thought about the inputs to our Web Component, we can start think-
ing about implementation.

Creating our class

Like I'said earlier in this chapter, there are better ways to organize your code. For now,
though, we’ll just add a <script> tag to our HTML header to register our component
and start our connectedCallback method.

Right after our <title> tag in our header, we can add the script block shown in
the following listing.

Listing 2.7 Adding a script block with a class to define our component

<head>
<title>Photo Carousel</title>
<script> Class to define
class PhotoCarousel extends HTMLElement { our component

connectedCallback () {

34

2.6.4

CHAPTER 2 Your first Web Component

} Defining the tag for our
} QJ component if it was not
if (!customElements.get (aheadydeﬁned
'wcia-photo-carousel')) {
customElements.define('wcia-photo-carousel', PhotoCarousel) ;
}
</script>

</head>

Right here, we’ve created a class that extends HTMLElement called PhotoCarousel.
We’ve created an empty connectedCallback method that we can fill out in a moment.
Below our class definition, we are checking if our wcia-photo-carousel is already
defined and, if not, defining it as a custom element.

Adding content to our component

We can now start thinking about what kinds of elements to put into our component to
get the carousel we’re after. Personally, I thought that a title and an author subtitle
would make sense. Those can be header tags <h2> and <h4>, respectively. We’ll also
need two buttons—one for going to the next photo and one to go to the previous
photo. Lastly, we’ll need a <div> to contain our photos.

We’ll talk about template literals later in the book, which will help us construct our
HTML a better way, but for now, we’ll just set the innerHTML property to a long string
containing all those elements just mentioned. We’ll do this when our component is
added to the page, inside our connectedCallback, as the following listing shows.

Listing 2.8 Setting the HTML contents of our component

this.innerHTML = '<h2>'+ this.getAttribute('title') + '</h2>' +

'<h4>by '+ this.getAttribute('author') + '</h4d>' +

'<div class="image-container"></div>"' +

'<button class="back"><</button>"' +

'<button class="forward">></button>";
Note that we’re using our title and author tag attributes here to display this custom
information. As you can tell from figure 2.11, we’re off to a good start.

You’ll notice almost everything we added here—the title, the subtitle, the two but-

tons—just not the image container. This is because, while the image container has
been added, there’s nothing inside the container, and we haven’t specified its size. So,

< C ® 127.0.0.1:8080/test.html

Future Vacation Photos

by Ben Farrell

<> Figure 2.11 Our carousel component so far,
with title, author, and forward/back buttons

2.6.5

Making a (useful) first component 35

although it’s been added to the DOM, it just isn’t visible. This is a good time to start
styling our content.

Styling our component

Right after our <script> tag in the following listing, we’ll add a style block.

Listing 2.9 Adding some CSS to style our component

</script>

<style> QJ Styling the overall
wcia-photo-carousel { component
width: 500px;
height: 300px;
display: flex;
padding-top: 10px;
flex-direction: column;
border-color: black;
border-width: 1px;
border-style: solid;
} Styling the two headers

wcia-photo-carousel h2, hd { (ﬂﬂeandauthoﬂ

margin-bottom: 0;
margin-top: O;
margin-left: 10px;
} Styling the div element

wcia-photo-carousel .image-container { <*4*thatc°ntams°u“mages

margin-top: 15px;

flex: 1;

background-color: black;
</st;le>
First, we set the overall style of our photo carousel component container. I decided,
arbitrarily, that it will be 500 pixels by 300 pixels. You can change this to whatever you
like. I also want some easy-to-use layout, so I used CSS Flexbox with a column direc-
tion to lay my elements out vertically. I also put a border around my component, as
well as a padding on the top to give the header some breathing room.

Next, I reset the margins on my headers h2 and h4. Headers usually have some
pretty big spacing on the top and bottom, and I don’t want that here. I also shifted
my headers 10 pixels to the left, so they don’t butt up against the left side of my
component.

Last, I set the image container’s <div> top margin to 15 pixels to give some vertical
breathing room from the headers and gave it a black background. Setting flex to 1
here means that this image container will take up whatever remaining space I give it
around the elements that already have height, like my buttons and headers.

Now things are starting to take form! Our limited styling gives us something that
looks like figure 2.12.

36

2.6.6

CHAPTER 2 Your first Web Component

Future Vacation Photos
by Ben Farrell

Figure 2.12 Progress so far after adding CSS to style

There’s enough layout here that we can focus on some component logic now.

Component logic

Thinking about what to do next, you might remember that we haven’t used the list of
image URLs yet that we have on our tag in the body of our page. We also don’t have
some sort of counter that starts at 0 and increments and decrements with our buttons
to use as the index of which photo we are on.
Let’s start there. In our connectedCallback, prior to setting the innerHTML as
we’ve done, let’s add the following:
connectedCallback () {
this._photoIndex = 0;
this._photos = this.getAttribute('photos').split(',");
this.innerHTML = '<h2>'+ this.getAttribute('title') + '</h2>' +
Here, we’re grabbing our photo list and turning it into an array using the commas as
delimiters. Along with the index of which photo we are on, this array of photos is set
to internal properties on the “instance” of our class. The scope within each method
on our class can be accessed with this.
Let’s also create a method to show our photo in the following listing, as well as call-
ing it after we’ve set our innerHTML.

connectedCallback () {
this._photoIndex = 0;
this._photos = this.getAttribute('photos').split(',");

this.innerHTML = '<h2>'+ this.getAttribute('title') + '</h2>' +
'<h4>by '+ this.getAttribute('author') + '</h4d>' +

Making a (useful) first component 37

'<div class="image-container"></div>"' +
'<button class="back"><</button>' +

'<button class="forward">></button>"'; Call showPhoto as soon

as the component starts.

this.showPhoto () ; <

3 The showPhoto method, which sets the
showPhoto () { background image of a div element

this.querySelector('.image-container') .style.backgroundImage =

'url (' + this._photos[this._photoIndex] + ')';

}
Our showPhoto method finds the image container by query-selecting anything with a
class of image-container, but only within the scope of our component, because we
are using this.querySelector instead of document.querySelector, which you might
normally use. It then sets the background image to our current photo. To see this in
action, be sure to have an images folder with the images named the way you have spec-
ified in the initial photos attribute on the component. This book’s GitHub repo has
this folder already set up for your convenience.

There is a problem, though. While this technically works and shows the correct
photo, my photos are too big! All I see is a blue sky, and the rest is off the component’s
canvas and unseen. In the following listing, let’s add a couple more style properties to
our image container.

Listing 2.11 Adding CSS to allow the current image to display correctly

wcia-photo-carousel .image-container {
margin-top: 15px;

flex: 1; Makes our image fit inside
background-color: black; the containing element
background-size: contain;

back d- t: - t; .
background_rep?i . ?OSEZ?ea Don’t repeat the image
ackground-position: ! <T and fill the container.

Centers the image

Let’s dig into those three CSS rules we just added. The background-size: contain;
means that we are setting the size to be whatever allows the image to fit inside the con-
tainer we give it, making sure we show the entire photo. Specifying no-repeat for the
background-repeat will override the behavior of duplicating the image over and over.
Usually, with the default action of repeating, it fills any space left over because the
image isn’t exactly the same size as the container we give it (unless we’re lucky). Here,
a no-repeat disables that space-filling behavior. Lastly, that 50% for the position
means that we’re centering the image both vertically and horizontally in our image
container. With this done, we can see the first photo in the album, nicely sized and
centered as figure 2.13 shows.

38

2.6.7

CHAPTER 2 Your first Web Component

Future Vacation Photos
by Ben Farrell

Figure 2.13 Progress so far to include showing the current image

Adding interactivity

I think that the obvious next step is to get our buttons working to show the next or
previous photo. We’ll begin by adding two lines to the end of our connectedCallback
in the following listing.

. '<button class="back"><</button>' +

'<button class="forward">></button>'; Listens to clicks on the

previous/back button
this.showPhoto () ;

this.querySelector ('button.back') .addEventListener('click', event =>
this.onBackButtonClick (event)) ; <

this.querySelector ('button. forward') .addEventListener ('click', event =>

this.onF dButtonClick t)); < . .
1s.onForwardButtonClick (event)) ! Listens to clicks on the

next/forward button

With these lines, we are finding the back button and forward button and adding an
event listener to them, such that when clicked, they will call the onBack or onForward-
ButtonClick methods.

You might notice the fat arrow: =>. Don’t worry if you’ve never seen it. It’s a newer
JS feature and covered in the appendix. Typically, you might do the following:
this.querySelector ('button.forward') .addEventListener ('click',

this.onForwardButtonClick)) ;

The fat arrow lets us keep the same scope as our class instance when the function is
called. We can access properties and methods of the class instance (this) from the
callback, shown in the following listing.

2.6.8

Making a (useful) first component 39

Listing 2.13 Handling our click event listeners

/ * *
* handler for when user clicks the back button
* @param event
*/
onBackButtonClick(event) { <—— Handler for the back button
this._photoIndex --; .
if (this. photoIndex < 0) { If on the first image, loop
this._photoIndex = this._photos.length-1; around to the last
}
this.showPhoto () ;
}
/ * %
* handler for when user clicks the forward button
* @param event
*/
onForwardButtonClick(event) { <—— Handler for the forward button
this._photoIndex ++;
if (this._photoIndex >= this._photos.length) {

his._ph I = 0; .
) this. photolndex = 0 If on the last image, loop

he fi
this. showPhoto () ; around to the first

}
These methods increment or decrement our photo’s current index and then test if
the index is out of the bounds of our array. If it is out-of-bounds, then we’ll loop to the
beginning or end of our array. Finally, we call our previous method to show the cur-
rent photo given our new this._photoIndex.

Even though the look of our component hasn’t changed, we can now click those
buttons to advance or move back through our photo album!

Finishing touches

Done? Not quite. I'm not happy with the forward and back buttons yet. Let’s put them
on the sides to make our Web Component look like a real carousel.

First, let’s add some more styles in the following listing, this time targeting our
buttons.

Listing 2.14 Adding button styles

wcia-photo-carousel button ({
cursor: pointer;
background: transparent;
border: none;
font-size: 48px;
color: white;
position: absolute;
top: 50%;

Common CSS for both
buttons (buttons won’t
be visible just yet)

}

wcia-photo-carousel button.back { < Style for the back button

40

CHAPTER 2 Your first Web Component

left: 10px;
}

wcia-photo-carousel button.forward { <—— Style for the forward button

right: 10px;
}
Back or forward, we want our buttons to display the pointer cursor when we hover
over them. We also want to get rid of the default browser button look, so we’ll remove
the background and border from our buttons. Next, we’ll make the font size really big
and make the text white. Lastly, we’ll allow the buttons to break free of the flex col-
umn and appear over the image by setting position: absolute;. We’ll also center
them vertically by setting the top value to 50%. For each button specifically, we’ll inset
it from the left or right by 10 pixels.

If you were to look at your progress now, you probably wouldn’t even see your but-
tons anymore! That’s because, if you're like me, your browser window is open fairly
big, and your position: absolute; buttons are centered on the whole page itself
instead of the component. Because they are white buttons against a white page, you
won’t see them. We need to add one more CSS property to position the buttons rela-
tive to the component rather than the page:
<style>

wcia-photo-carousel {
position: relative;
Here, we are setting the position of our entire component to relative. It doesn’t do
anything to our component, but any element inside with a position of absolute is now
relative to the component instead of the page.

Just in case you missed a step here or there, our entire demo code can be seen in

the following listing.

Listing 2.15 Demo code recap

<html>
<head>
<title>Photo Carousel</title>

Class that defines
our component

<script>
class PhotoCarousel extends HTMLElement {
connectedCallback() {
this._photoIndex = 0;
this._photos = this.getAttribute('photos') .split(',"');

this.innerHTML = '<h2>'+ this.getAttribute('title') + '</h2>' +
'<h4>by '+ this.getAttribute('author') + '</hd>' +
'<div class="image-container"></div>"' +
'<button class="back"><</button>"' +
'<button class="forward"> < Component’s HTML

> content
</button>"';

this.showPhoto () ;

Making a (useful) first component

this.querySelector ('button.back') .addEventListener ('click',

41

this.querySelector ('button. forward') .addEventListener ('click',

. >
Button click . .
event listeners event => this.onBackButtonClick (event)) ;
event =>
this.onForwardButtonClick (event)) ;
}
/* *

* handler for when user
* @param event
*/
onBackButtonClick (event)
this._photoIndex --;
if (this._photoIndex
this._photoIndex
}
this.showPhoto() ;
}

/**
* handler for when user

* @param event
*/

onForwardButtonClick (event) {

this._photoIndex ++;

if (this._photoIndex
this._photoIndex

}

this.showPhoto () ;

showPhoto () { <

this.querySelector ('.image-container') .style.backgroundImage
+ this._photos[this._photoIndex] +

= 'url ("

}

} <F4J
if (!customElements.get (

'wcia-photo-carousel')) {

customElements.define('wcia-photo-carousel',

}

</script>

<style> <
wcia-photo-carousel {

position: relative;
width: 500px;
height: 300px;
display: flex;
padding-top: 10px;
flex-direction: column;
border-color: black;
border-width: 1px;
border-style: solid;

clicks the back button

{ < Back button click handler

< 0) {
= this._photos.length-1;

clicks the forward button

<—— Forward button click handler

>= this._photos.length) {

=0;

Shows the current photo by
setting the background image
of the container element

o

Assigns the component
class to a tag

PhotoCarousel) ;

Component styling with CSS

42

2.6.9

CHAPTER 2 Your first Web Component

wcia-photo-carousel h2, hd {
margin-bottom: 0;
margin-top: 0;
margin-left: 10px;

}

wcia-photo-carousel .image-container {
margin-top: 15px;
flex: 1;
background-color: black;
background-size: contain;
background-repeat: no-repeat;
background-position: 50%;

}

wcia-photo-carousel button {
cursor: pointer;
background: transparent;
border: none;
font-size: 48px;
color: white;
position: absolute;
top: 50%;

}

wcia-photo-carousel button.back {
left: 10px;
}

wcia-photo-carousel button.forward ({
right: 10px;
}

</style>

</head>
<body>
<wcia-photo-carousel
title="Future Vacation Photos"
author="Ben Farrell"
photos="1images/fBmIASF.jpg, images/3zxD6rz.jpg, images/
nKBgeLOr. jpg, images/yVjJZlYr.jpg">
</wcila-photo-carousel>
</body>
</html>

Photo carousel component
on our HTML page

We’ll now turn to figure 2.14 to see our component’s final look.

Improving the carousel

Despite creating a fairly useful first Web Component, there are lots of ways we can
improve. Most importantly, we need to package up our carousel as a standalone Web
Component. As it stands right now, using it in a larger project would be a bit of a mess
with the HTML, CSS, and JS embedded right in the main HTML. In chapter 5, we’ll
detail how to package it all up as a single JS module.

2.7

Notes on browser support 43

< C ® 127.0.0.1:8080/test.html

Future Vacation Photos
by Ben Farrell

Figure 2.14 The finished photo carousel component

Second, it would be fantastic to make our component customizable. We could turn on
and off features with an API or attributes in addition to our images list. We’ll cover
those in chapter 3.

Lastly, there are much better ways to organize our HTML and CSS for inclusion in
the component, and even protect them from unintended style creep and DOM
changes. Template literals and the Shadow DOM will be covered later in the book.

Notes on browser support

I mentioned at the start of this chapter that we’re excluding some browsers. This is
because even though custom elements are supported in Chrome, Firefox, and Safari,
Edge development is still in progress. However, you can use the developer preview. I'm
hopeful we’ll see a final Edge release soon, which would cover all the major browsers.

This just leaves IE without custom element support. Luckily, we have polyfills for this!
One such polyfill can be downloaded here: https://unpkg.com/@webcomponents/
custom-elements@1.2.4/custom-elements.min.js.

Alternately, if you have Node.js and can use NPM, you can use the following:

npm install @webcomponents/custom-elements
Whichever method you choose, once you have the polyfill, simply include the script
on your page:
<script src="path/to/custom-elements.min.js"></script>
In addition to the custom element specification, IE doesn’t support newer JS language
features like classes. Don’t worry, this is all easily solvable, but we won’t get into it until
we talk about build processes later in this book. To be exact, I'll show you a way to

transpile your ES2015/ES6 JS to ES5 S for support in older browsers, or just those
that don’t support it yet.

https://unpkg.com/@webcomponents/custom-elements@1.2.4/custom-elements.min.js
https://unpkg.com/@webcomponents/custom-elements@1.2.4/custom-elements.min.js
https://unpkg.com/@webcomponents/custom-elements@1.2.4/custom-elements.min.js
https://unpkg.com/@webcomponents/custom-elements@1.2.4/custom-elements.min.js

CHAPTER 2 Your first Web Component

Using Custom Elements v1

In this chapter and throughout the book, we’ll be using the Custom Elements v1 spec-
ification. Don’t worry, this is the latest and greatest, and | doubt the basics will change
for years to come. | mention this because v1 is fairly recent, and searching for info
about Web Components might tell you that to create a custom element, you’d use

document .registerElement ('my-custom-tag', MyCustomTag) ;

Just know that Web Components, in general, have gone through a recent change and
are now more solidified in their v1 specification. For more details on this point, and
specifically what’s changed, refer to chapter 4, which details the component lifecycle.

Summary

In this chapter, you learned

How tags we use every day in basic web development are derived from HTML-
Element (even if we never knew it!)

Rules for naming and using your custom element on the page (which are
required), as well as standard practices (which you aren’t required to follow)
for naming your element with a namespace

A small taste of the Web Components API with connectedCallback

Adding onto, or customizing, HIMLElement by using a common object-oriented
programming technique called inheritance and creating some samples that use
our new custom element

Making your
component reusable

This chapter covers

Using getters and setters to work with data in your

component

Using attributeChangedCallback to listen for attribute
changes

Identifying which attributes to listen for changes on using
observedAttributes

Working with attributes using hasAttribute(),
getAttribute(), and setAttribute()

In the last chapter, we talked in great depth about simple ways to create your first
Web Component. Specifically, we looked at creating your own custom element and
assigning some minimal custom logic so your component acts a certain way. But
what if you want your component to act differently depending on what parameters
you use to set it up? What if you want your component to be adaptable? Usually, the
goal in any platform, language, or framework is to create reusable code that can be
simply configured to match the widest range of use cases.

45

46

3.1

3.1.1

3.1.2

CHAPTER 3 Making your component reusable

Of course, saying we want to create reusable and configurable Web Components is
one thing. It’s almost meaningless unless we can talk about a concrete example!

A real-world component

One of my recent interests is 3D on the web. I'm especially interested in how virtual
reality (VR) and augmented reality (AR) are making their way into browsers. Delving
into WebGL and Three.js or Babylon is a bit too much to get into here (and off-
subject), but we can do something simple to demonstrate reusable and configurable
components.

A 3D search use case

3D has a bit of a content problem. I love experimenting with the 3D web, but I'm defi-
nitely not an expert in creating assets with complex 3D software. My favorite thing in
VR lately is the explosion of 3D painting and modeling tools. Notably, Google has
been doing some awesome things with Blocks and TiltBrush, its VR tools for modeling
and painting in 3D. Even better, Google has created a hub that creators can publish to
called Poly.

When you go to poly.google.com, you can browse around, search for 3D models,
and pick your favorite to use in your application (many are free to use and modify).
What’s great for our purposes is that Poly has a REST-based API that we can tap into
and use to make a 3D search Web Component of our own! Again, going all in on 3D is
a little much, especially for a Web Components book—but the results we get back are
all image thumbnails, so we don’t have to get complicated at all in order to search and
browse.

As with many services like Poly, we’ll need to get an API key for access. If you’d
rather not do this, you’re still welcome to follow along, as I'll provide a JSON file you
can use in its place, and you can run the example from your own server.

First things first. Head over to https://developers.google.com/poly/develop/web
and follow the instructions for the API key. Once you have it, put it in a safe place for
later.

Starting with an HTTP request

Let’s now test the service and create an HTTP request in the following listing (in
which we search for a parrot).

Listing 3.1 Creating an HTTP request to Google’s Poly service

const url =
'https://poly.googleapis.com/vl/assets?keywords=parrot&format=0BJ&key=
<your_api_key>"; The Poly search API
const request = new XMLHttpRequest(); (insert your own API key)
request.open('GET', url, true);
=> {

request.addEventListener('load',6 (event) Creates a new HTTP request

console.log (JSON.parse (
event.target.response Callback where we
log the API response

https://developers.google.com/poly/develop/web

A real-world component 47

)) i
1)
request.send() ;

When running this, you should see all of the results that come back right in your dev
tools console. It will also be nicely formatted, given that we turned the raw text of the
response back into JSON, as it was intended to be: JSON.parse(event.target
.response).

When we look at the console.log output, we'll see a JSON object returned from
the service. Of course, over time, these results will change, but I do see a lot of parrots
in the results! Exactly what we specified in the keyword search. If we expand the
assets object and look at the array of 3D assets returned in figure 3.1, we see that
each asset has a thumbnail object, which we can expand to look at the thumbnail
URL. This URL is what we’re after!

There’s certainly lots of other data that you could use, especially if you opened up
the “formats” array to reveal actual 3D object links. For our purposes, we’re just going
to use and display those thumbnails.

vassets: Array(20)
» 0: {name: "assets/fBXvsC6pe_V", displayName: "Penguin",..
» 1: {name: "assets/cnimalnLIEA", displayName: "Vines", a..
v2:
authorName: "Poly by Google"
createTime: "2017-10-23T00:28:27.7632212"
description: "#tropical #bird #avian #flying"
displayName: "Parrot"
» formats: (2) [{.}, {.}]
isCurated: true
license: "CREATIVE_COMMONS_BY"
name: "assets/dfNjMLtOOpd"
» presentationParams: {orientingRotation: {..}, colorSpac..
» thumbnail: {relativePath: "dfNjMLtO0@pd.png", url: "htt..
updateTime: "2019-05-06T09:57:19.1434152"
visibility: "PUBLIC"
» _proto__: Object
» 3: {name: "assets/frVFwZAW6z3", displayName: "Macaw", a..
» 4: {name: "assets/35EelLqGHHly", displayName: "Parrot", ..
»5: {name: "assets/7sfRRUS5F_v", displayName: "Scarlet m..
» 6: {name: "assets/dpl7B31PgwWX", displayName: "Parrot", ..
» 7: {name: "assets/fFVqukPnc62", displayName: "Toco Touc..

Figure 3.1 Our HTTP response from Google Poly featuring assets and asset details

48

3.1.3

CHAPTER 3 Making your component reusable

Wrapping up our work in a custom component

Let’s wrap the HTTP request we just made into a new Web Component that allows us
to search for assets by keyword and display the results. We should keep it simple,
though. There’s no need to overburden each Web Component to do too much—I like
to think that we can be extremely granular with every component, and for bigger
pieces of functionality, we can combine two or more components. This is why we’re
going to keep the keyword/search input out of the component. Our Web Component
will only display search results based on data we pass it from the input.

To make our HTTP request snippet into a Web Component, we can use what we’ve
already learned about custom elements and the connectedCallback method of the
Web Components API.

Listing 3.2 Creating a Web Component from our HTTP request

<html>
<head>
<meta charset="UTF-8">
<title>Google Poly Search</title>
<script>
class PolySearch extends HTMLElement ({
connectedCallback() {

this.doSearch(); Calls the search function

} when component is

doSearch () { added
const url =
'https://poly.googleapis.com/vl/assets?keywords=parrot&format=0BJ&key=
<your_api_key>"';
const request = new XMLHttpRequest();
request.open('GET', url, true);
request.addEventListener('load',6 (event) => {
console.log (JSON.parse(event.target.response));
1)

request.send() ; 4—‘ HTTP request from
} last example
customElements.define (

'poly—seérch', PolySearch) ; QAAAAAAAA}DeﬁnesourPOW
</script> search component

</head>

}

<body>

<poly-search></poly-search> QAAAAAAAAWUsesthePoWsemth

</body> element on the page

</html>

Hopefully, there’s nothing earth-shattering in this listing. I did separate out the actual
HTTP request into a doSearch () method. For now, I call it on connectedCallback
when the component is added to the DOM. Because I don’t have a big project that
involves many components in this one example, I chose a simple element name that

3.14

A real-world component 49

Poly-search
component P ——

API key, search term
doSearch () £

EEE |

Figure 3.2 Our custom poly-search Web Component calling out to the Google
Poly API with an API key and the search term “parrot.” We’ll get back a list of
assets and thumbnails to display.

reflects the task I'm doing: poly-search. If I were doing multiple components for a
large app, maybe I’d name it something like <myappname-poly-search>.

You might notice that our component only searches for parrots right now. I agree,
this isn’t incredibly useful. First, however, let’s display our results. Figure 3.2 shows our
component reaching out to the Google Poly API and returning an asset list, which our
component then renders.

Rendering search results

We can start by swapping our console.log (JSON.parse (event.target.response));
with a call to another method that accepts all of the assets we requested:

this.renderResults (JSON.parse(event.target.response).assets);

Then, inside our class, we’ll add that render method to display all of the thumbnails
on our page, as the following listing shows.

Listing 3.3 Render results of the HTTP request in our component

The list of results is passed
renderResults (assets) { < into our render function.

let html = ''; Loops through the result list
for (let ¢ = 0; ¢ < assets.length; c++) {
html += '<img src="' + assets[c].thumbnail.url + '" width="200"

height="150" />'; < For each asset, adds
) a thumbnail image

this.innerHTML = html;

} After the HTML string is built,
adds it all to the component

50

3.1.5

CHAPTER 3 Making your component reusable

All we’re doing here is looping through our asset array, grabbing the thumbnail URL,
making it the source of an image element, and adding that to a long string of HTML.
Once finished, we set this long HTML string to our component’s innerHTML.

Of course, there are other ways to do this, rather than constructing strings. We
could create a new image element with each loop.

Listing 3.4 Alternate way to render results

renderResults (assets) {
for (let ¢ = 0; ¢ < assets.length; c++) { <
const img = document.createElement ('img'); <
img.src = assets[c].thumbnail.url;

Loops through our asset
results list the same way

. . . as before
this.appendChild(img); <+—
} Appends each element to Creates an image element
} the DOM, one at a time each time, rather than

using an HTML string

I personally like the string approach for these cases better. You can create a big chunk
of HTML and have it hit your DOM at the same time, rather than having one element
per loop iteration. Also, HTML is a bit easier to read, especially when we get into tem-
plate literals later on. A big downside to creating each element one by one in the loop
is that with each one, you are causing the browser to re-parse and re-render that entire
block. The same would happen if you were adding each image one at a time and set-
ting innerHTML after each. It will likely be better to stick with an HTML string that gets
built up over time and then set all at once to innerHTML.

Styling our component

If you run the example now, you’ll see some fairly large
images in a vertical list, as figure 3.3 shows. This is not what
we necessarily want for a visual results display, so let’s make Image result
the images smaller and place them in nice wrapping rows

using some CSS, as in the following listing.

Image result

Figure 3.3 Our image results from
poly.google.com before styling. They just
flow down the page and force scrolling to see
more than a few, because they are too large.

Image result

A real-world component 51

Listing 3.5 CSS to style our poly-search component

<style>
poly-search {
border-style: solid;
border-width: 1px;

border-color: #9a9a9a; A gap be'tween the edges of our elen'ient
and the inner results we are displaying

padding: 10px;
A background color to pair
with the border, separating
the element from the page

background-color: #fafafa;
Allows elements to flow

L . horizontally and wrap to the
} margin: Spx; < next line when out of room
</style> Spacing between images

For this listing, I've simply put the style in our <head> tag, as you would normally do
with CSS. Coupling style within the scope of each Web Component is definitely some-
thing we’ll get to later on, but we’ll just go simple right now.

Already, though, we are targeting our poly-search element with a CSS selector.
This is perfectly valid! When you create your own custom element, you are really cre-
ating a custom element that works just like any other element would.

Running the example will give you the best picture of what this style is doing, but
figure 3.4 is a visual approximation of what we accomplished, followed by some expla-
nation of what we did with our CSS.

Gives a nice subtle border around our
entire element

display: inline-block;
text-align: center;

}

poly-search img {

Image result Image result Image result Image result
Image result Image result Image result Image result
Image result Image result Image result Image result

Figure 3.4 Our nicely styled and centered image grid. Images are smaller, have a nice gap
between them, and are set against a subtle, off-white background with a gray border.

52

CHAPTER 3 Making your component reusable

Here’s our entire styled example.

Listing 3.6 Our entire working Web Component, fully styled

<html>
<head>
<meta charset="UTF-8">
<title>Google Poly Search</title>
<script>
class PolySearch extends HTMLElement { <—— Web Component definition
connectedCallback() {
this.doSearch() ;
}

doSearch () { <—— Search function call

const url =

'https://poly.googleapis.com/vl/assets?keywords=parrot&format=0BJ&key=

<your_api_key>"';

const request = new XMLHttpRequest() ;

request.open('GET', url, true);

request.addEventListener ('load',6 (event) => {

this.renderResults (JSON.parse
(event.target.response).assets);
)i
request.send() ;

}
renderResults (assets) { <—— Renders the results
let html = '';
for (let ¢ = 0; ¢ < assets.length; c++) {
html += '<img src="' + assets[c].thumbnail.url +

'" width="200" height="150" />';
}
this.innerHTML = html;

}
customElements.define('poly-search', PolySearch);
</script>

<style> < Component CS$
poly-search {
border-style: solid;
border-width: 1px;
border-color: #9a9a9a;
padding: 10px;
background-color: #fafafa;
display: inline-block;
text-align: center;

}

poly-search img {
margin: 5px;
}
</style>
</head>

3.2

3.2.1

Making our component configurable 53

<body>

<poly-search></poly-search> <—— Uses the component on the page

</body>

</html>

The basics are now in place, and we have something that works visually, but it isn’t very
useful yet as a search component.

Making our component configurable

Now, let’s revisit our glaring problem, and the whole point of this chapter. This com-
ponent isn’t reusable at all. For one, even if I gave you my API key, there’s no way to
properly set it in the component. Second, we’re always searching for “parrots.”
There’s no way to pass this search term to our component, so if someone on your
team used this component you built, they would have to go in and directly modify the
URL string:

const url =

'https://poly.googleapis.com/vl/assets?keywords=parrot&format=0BJ&key=<y
our_api_key>";

Creating our component API with setters

Let’s start by breaking that URL string up a little. We’re going to do this in two differ-
ent ways, which will eventually complement one another. The first method we’ll
explore is to make getters and setters for the API key and search term.

Inside our class, we can add this listing.

Listing 3.7 Getters and setters for our component’s configurable options

set apiKey(value) { <—— Setter for APl key
this._apiKey = value;
this.doSearch() ;

}

set searchTerm(value) { <—— Setter for search term

this._searchTerm = value;

this.doSearch() ;
}
Without a matching getter, JS would throw an error if we tried to read, or “get,” the
property. However, we could easily create a getter as well:
get searchTerm() {

return this._searchTerm;
}
So far, though, getters aren’t really necessary; we just need to inject the search term
and API key variables into our component, as shown in figure 3.5.

Breaking things up like this makes sense. You’ll likely need to set the API key only
once, but as the user keeps searching for different things, the search term will be
updated quite a bit.

54

3.2.2

CHAPTER 3 Making your component reusable

Poly-search
component
Set internal value Set apiKey Web page or
and < r)
doSearch () application
Set search
term

Figure 3.5 Using setters on our component from outside-in lets us perform
logic and set a value, but also keep the component API simple.

Using our API from the outside looking in

With the code in listing 3.7 in place, when we set that property from the outside, it will
run the function. In this regard, if you didn’t know the code in this class, you’d think
you were working with a simple variable, thanks to our setter methods. You also might
notice that I’'m using underscores (_) in my variable names. This doesn’t mean any-
thing special, but since JS doesn’t have the notion of “private” variables (aside from
the exciting new class fields feature in the latest version of Chrome), or variables that
you’re not allowed to access from outside your class, I use underscores to indicate that
we don’t intend for these variables to be accessed from the outside. Using underscores
can be a point of contention for some and is regarded as an older practice. If you’d
like to dive deeper on this concept, please refer to the appendix. Regardless, in this
case, _searchTerm is our internal variable that we’re using, while searchTerm is the
setter for that variable.

By using a setter, we’re not just setting this searchTerm property. When setting it
from outside our component class here, that’s just what it looks like to the user of our
component’s API. Instead, by using a setter method, we inject some logic to both set
that internal property and run our doSearch () method to fire the HTTP request.

Now, if you were to write some]S in your script tag outside the component class,
you could write the following to first select your component and then set each prop-
erty (only after the component has been properly created, of course):
document .querySelector ('poly-search') .apiKey = '<your_api_key>"';
document .querySelector ('poly-search') .searchTerm = 'parrot';

Of course, if we ran a search without an API key or without a search term, our search
would fail, so in the following listing, we can wrap our search method in an if state-
ment to make sure both variables are present before we search.

3.3

3.3.1

3.3.2

Using attributes for configuration 55

Listing 3.8 Wrapping the search method with an if statement

doSearch() {

if (this._apiKey && this._searchTerm) { 4

const url = 'https://poly.googleapis.com/vl/assets?keywords="' +
this._searchTerm + '&format=0BJ&key=' + this._apiKey;
const request = new XMLHttpRequest();
request.open('GET', url, true);
request.addEventListener ('load',6 (event) => {
this.renderResults (JSON.parse(event.target.response) .assets);

)i
request.send () ; Checks that both API key

} and search term are present

}

Giving our components an API like this is a good exercise, but for this particular use
case, there is another method for passing data: attributes. We use attributes all the
time in web development. In fact, that src attribute to set the thumbnail URL in each
image is just one example. Even just setting the style of an element using class or the
href link for a link tag are attribute examples.

Using attributes for configuration

Using attributes on Web Components is so obvious, you might overlook it in favor of
the getter/setter approach. We use attributes so often that we might not think of them
as something that can be used for the inner workings of your Web Component.

An argument against a component API for configuration

With the getter/setter API approach, there is some complexity involved that isn’t
really needed. For one, having to wrap the search method with an if/then to check
that the apiKey and searchTerm are set is good practice when a developer forgets to
set one or the other, but it would be nice if both properties were immediately available
when the component is used as intended.

The other annoyance is having to use JS at all to set these properties. If these proper-
ties were attributes on the HTML tag, we wouldn’t have to set the apiKey and search-
Term over two separate lines. In more complex applications, it can be hard to track
down where you set these in your code. Also, there may be timing issues with your com-
ponent. Perhaps your component hasn’t been properly created yet when you happen to
call these setters. If this happened, it’s possible that your values would just be lost!

These are definitely manageable concerns—but let’s focus on attributes now.

Implementing attributes

Let’s change things up a bit. First, let’s get rid of our setters and our JS to use those set-
ters. We don’t need them. Next, we’ll add our attributes to our custom element tag:
<poly-search apiKey="<your_api_key>"

searchTerm="parrot">
</poly-search>

56 CHAPTER 3 Making your component reusable

Now, we’ll swap in some JS to get our attributes in place of using our variables. Let’s
keep the 1f/then check in the next listing just in case the user of our component for-
gets to use one attribute or the other.

Listing 3.9 Using attributes for configurable options in our search method

doSearch() {

if (this.getAttribute('apiKey') && this.getAttribute('searchTerm')) {
const url = 'https://poly.googleapis.com/vl/assets?keywords="' +
this.getAttribute('searchTerm') + '&format=0BJ&key=' +
this.getattribute('apikey'); 4—‘ Uses attributes instead of properties
const request = new XMLHttpRequest(); fortheconﬁguraﬁonopﬁons
request.open('GET', url, true);
request.addEventListener('load',6 (event) => {

this.renderResults (JSON.parse(event.target.response).assets);
1)

request.send() ;

}

Lastly, since attributes are available as soon as the element is created, we can do an ini-
tial search right away when our component is added to the DOM using connected-
Callback:

connectedCallback() {
this.doSearch() ;
}
For brevity’s sake, I'll leave out our CSS as we look at the current state of our compo-
nent in the following listing.

Listing 3.10 Our complete (minus styling) component example using attributes

<html>
<head>
<title>Google Poly Search</title>
<script>
class PolySearch extends HTMLElement {
connectedCallback () {

this.doSearch () ; When the component is added,

} runs the search function

doSearch () {
if (this.getAttribute('apiKey') &&
this.getAttribute('searchTerm')) {
const url =
'https://poly.googleapis.com/vl/assets?keywords=" +
this.getAttribute('searchTerm') + '&format=0BJ&key=' +
this.getAttribute('apiKey') ;
const request = new XMLHttpRequest() ;
request.open('GET', url, true);
If both search term and request.addEventListener('load', (event) => {
API key are set, adds them this.renderResults (

tOthesemmhendpomt JSON.parse(event.target.response).assets);

1)

Listening for attribute changes 57

request.send(); <—— Send the HTTP request

}

renderResults (assets) {

let html = '';
for (let ¢ = 0; c < assets.length; c++) {
html += '<img src="' + assets([c].thumbnail.url +

Appends an image

'" width="200" height="150" />';
element to the HTML } o
string for every asset this.innerHTML = html; <+——
}

3.3.3

3.4

Sets our component’s HTML

) to the generated string

customElements.define('poly-search', PolySearch);
</script>
</head>

<body>
<poly-search apiKey="<your_api_key>"
searchTerm="parrot">

</poly-search>
/poly Declares the component

on the page with the API

</body> key and search term

</html>
The component is now pretty functional, but the customization we’ve done only goes
so far. That search term will likely change frequently; we’ll need to watch for changes.

Case sensitivity

Note that while I used an uppercase “K” in apiKey, and an uppercase “I” in search-
Term, attributes themselves are not case-sensitive. We could absolutely rewrite our tag
like this, and it wouldn’t affect things at all (though there is a good reason for keeping
things all lowercase, which we’ll get to in a bit):

<poly-search apikey="<your_api_key>"

searchterm="parrot">
</poly-search>

Listening for attribute changes

There’s one remaining problem in regard to our use case, though. It’s true that our
API key will likely never change in our web app, but we do want users to input text and
search for things. Before we get into solving that problem, let’s create a typical text
input that lets a user enter a search term. This aspect is outside of our Web Compo-
nent, so it’s not a lesson in Web Components per se, just something to help us demon-
strate and solve our attribute problem.

58

34.1

3.4.2

CHAPTER 3 Making your component reusable

Adding text input

With this in mind, let’s change the contents of our <body> tag.

Listing 3.11 Text input for our component

<body>
<label>Enter search term: </label>
<input type="text" onchange="updatePolySearch(event)" />

<script>
function updatePolySearch (event) {
document .querySelector ('poly-search') .setAttribute ('searchterm',
event.target.value) ;
}

</script>
<poly-search apikey="<your_api_key>" searchterm="parrot">

We’ve now added a text input with an onchange event listener. Preceding that, we
have a simple label, just to give context in our Ul on what that text input is actually
doing. I don’t typically have inline]S like this on a tag, but for such a simple demon-
stration, it’s easier to show it this way. The onchange event occurs only when the user
“submits” the text, meaning when they press the Enter key or click off the field.

The function that it calls, updatePolySearch, captures the event that gets sent,
which includes the target, or which element sent the event. We can query event . target
.value to get the new search term that the user typed in. From there, we can set the
searchterm attribute of our Web Component.

Feel free to try this out right now! If you open your browser’s development tools to
show the live view of the elements on the page, you can see our <poly-search>
searchterm attribute changing in real time after we change our text input.

Unfortunately, just updating the attribute doesn’t cause the search to rerun and
update our results. We have to do this ourselves. This brings us to our second Web
Component lifecycle method: attributeChangedCallback. Our first lifecycle method,
of course, was connectedCallback, but now we’re ready to get a bit deeper.

The attribute changed callback

The attributeChangedCallback method is like any other Web Component lifecycle
method. You simply add the method in your class to override HTMLElement’s empty
method, and it will be fired when an attribute is changed.

This method accepts three parameters: the name of the attribute that changed, the
old value of the attribute, and the new value of the attribute:

attributeChangedCallback (attrName, oldval, newVal)

Let’s integrate this into our Web Component and see what happens. I'm going to be a
little evil here, but warn you up front. We’re going to integrate this, but it’s not going
to work because of one missing detail that I’ll explain afterward.

3.4.3

Listening for attribute changes 59

The first thing to do is to get rid of the connectedCallback method in our class.
We do this because, in our specific case, our connectedCallback method triggers a
search. However, now our attributeChangedCallback will actually do this as well.
Technically speaking, our attribute does change from nothing to something when our
component starts up, so the attributeChangedCallback triggers. Also, we don’t have
any logic to cancel our HTTP request before triggering it again in our component—
to keep things simple and bug free when both of these callbacks fire at virtually the
same time, let’s just get rid of that connectedCallback.

Next, let’s add our attributeChangedCallback method.

Listing 3.12 AttributeChangedCallback to listen for changes to our searchterm

attributeChangedCallback (name, oldval, newval) {
if (name === 'searchterm') {
this.doSearch() ;

}

Our callback here is really simple. If the attribute name being changed is searchterm,
then run our search again. This aspect is case-sensitive. The name coming in will
always be lowercase. This can be a bit confusing if you write your attribute in HTML in
camel case, and then just write the name over here the same way. To avoid confusion,
it’s wise to write our attributes in lowercase all the time.

As I was writing this, I accidentally made things a bit more complicated before I
caught myself. I initially wrote the following code:
attributeChangedCallback (name, oldval, newval) {

if (name === 'searchterm' && oldval !== newval) {
this.doSearch() ;

}

I thought that I only wanted to call the search if the old value was different than the
new value. There’s no sense in rerunning a search and wasting a network request if
the value doesn’t change, right? Well, if the value didn’t change, this method wouldn’t
get called in the first place, so doing this extra step is redundant.

Now that we’ve captured attribute changes and taken action when they change, it
should work, right? Not yet! This is the part where I left out one little detail of how this
method works. Before I explain what this is, let me give a little context and history.

Observed attributes

At the start of this chapter, I talked a bit about how common attributes are to every-
thing we do in HTML. Each element has numerous potential attributes it can use that
actually mean something. At minimum, elements will likely always have a class ele-
ment for styling. And, of course, we can make up any attribute we want. With all of
these potential attributes everywhere, it could be a huge waste of code execution to

60

CHAPTER 3 Making your component reusable

call attributeChangedCallback every single time something changes if we don’t care
that it changed.

Back in v0 of the Web Components API, the attributeChangedCallback did just
that: it was called each and every time something as common as a CSS class attribute
changed. Early Web Component adopters thought this was a bit annoying and waste-
ful. So now, in vl of the Web Components API, we need to tell our component what
specifically to listen for.

Listing 3.13 Telling our component what attributes to watch changes for

static get observedAttributes() {

return ['searchterm'];
}
If you’re not familiar with the static keyword for a class method, please refer to the
appendix. In short, it’s a method called on the class definition, rather than on the cre-
ated instance.

In this static method, we’ve set our observedAttributes to an array containing
searchterm. If we wanted more attributes to be observed, we could simply add more
elements to the array:
static get observedAttributes() {

return ['searchterm', 'apikey', 'anotherthing', 'yetanotherthing'];

}

With this last piece added to our example in listing 3.14, our example should run.
This new code for watching our searchTerm attribute is depicted in figure 3.6. We
now automatically load our results with the first search term of “parrot,” but when the
user submits other terms, the results will update.

<poly search apiKey="xxxx" searchTerm="parrot"s>

 /
Is attribute name

observedAttributes —» in this list?
attributeChangedCallback <—|
Yes!

Figure 3.6 Before an attributeChangedCallback is fired
inside your component as a result of an attribute change on your
component’s markup, that attribute name must be in the
observedAttributes list.

Listening for attribute changes 61

Listing 3.14 Complete component with attributes that respond to a text input field

<html>
<head>
<title>Google Poly Search</title>
<script>
class PolySearch extends HTMLElement { <— Componentchss
static get observedAttributes() {
return ['searchterm']; <—— Watched attribute
}
attributeChangedCallback (name, oldval, newval) {
if (name === 'searchterm') {
this.doS h(); .
} is.dosearch() When watched attribute changes,
) runs the search request
doS h < .
° eiic (ék)li; etAttribute('apiKey') && Search request, which
)) g priey uses the API key and
this.getAttribute('searchTerm')) {

search term
const url =

'https://poly.googleapis.com/vl/assets?keywords=" +
this.getAttribute('searchTerm') + '&format=0BJ&key=' +
this.getAttribute ('apiKey"') ;
const request = new XMLHttpRequest() ;
request.open('GET', url, true);
request.addEventListener('load', (event) => {
this.renderResults (JSON.parse
(event.target.response) .assets);

)i
request.send () ;
}
}
renderResults (assets) { <—— Renders all assets
let html = '';
for (let ¢ = 0; c < assets.length; c++) {
html += '<img src="' + assets[c].thumbnail.url +
'" width="200" height="150" />';
}
this.innerHTML = html;
}
}
customElements.define(
'poly-search', PolySearch); <—— Map tag name to component class
</script>
<style> < Component CS$

poly-search {
border-style: solid;
border-width: 1px;
border-color: #9a%a%a;
padding: 10px;
background-color: #fafafa;
display: inline-block;
text-align: center;

62

3.5

3.5.1

CHAPTER 3 Making your component reusable

}

poly-search img {
margin: 5px;

}

input {
font-size: 18px;

}

</style>
</head>

<body> Input field to allow user

. rch term
<label>Enter search term: </label><input type="text" to type a search te

onchange="updatePolySearch(event)" />

 As input field changes, sets the
<script> searchTerm attribute on our component
function updatePolySearch(event) {
document .querySelector ('poly-search') .setAttribute ('searchTerm',
event.target.value) ;
}
</script>
<poly-search apikey="<your_api_key>"
searchterm="parrot">
</poly-search>

Component added to
page with APl key set and
starting search term set

</body>

</html>

With that, we’ve allowed our component to react to changes. It doesn’t really make
sense for us to react to API key changes because the API key is typically something that
never changes. That search term is going to change all the time, though, so we defi-
nitely needed a way to react to it.

Making more things even more customizable

Let’s now up our customization game! We can do some small style things, such as set
the image size and component background color.

Using hasAttribute to check if an attribute exists

In listing 3.15, I'm being a bit of a lazy developer. I don’t expect that the image sizes or
background color will need to change at runtime—only when we’re initially writing
the HTML. So, I'm not listening for attribute changes; instead, I'm simply setting
these style properties when the component is added to the DOM.

Listing 3.15 Adding attributes for size and background color

connectedCallback() { If the thumbheight
if (this.hasAttribute('thumbheight')) { < attribute is set, uses
this._thumbheight = this.getAttribute ('thumbheight'); it for image-sizing,
this._thumbwidth = (this.getAttribute('thumbheight') * |and calculates the
1.3333 /*aspect ratio*/); width as well
} else {

If not set, uses
default/hardcoded values.

3.5.2

Making more things even more customizable 63

this._thumbheight = 150;

this._thumbwidth = 200; If the background color
attribute is set, adjusts the style
)) L

if (this.hasAttribute('backgroundcolor' Ofthecomponentrghtawa%

this.style.backgroundColor = this.getAttribute ('backgroundcolor') ;

}

I'm also not forcing the component’s user to have these attributes. Instead, I'm check-
ing if the developer used the attribute in their markup by using hasAttribute and, if
so, set these properties. If not, we have fallback values either with JS for the size or
using the pre-existing style in GSS for background color.

To use my size properties, I've edited the image-rendering method as in the follow-
ing listing.

Listing 3.16 Rendering our thumbnails with configurable sizes

renderResults (assets) {

let html = '';
for (let ¢ = 0; ¢ < assets.length; c++) {
html += '<img src="' + assets([c].thumbnail.url + '" width=""' +
this._thumbwidth + '" height=""' +

this._thumbheight " ' . . .
} +8-_thumbheignt « /> Uses the height and width properties
. to control the image size
this.innerHTML = html;

}

As we’ve added stylistic customization, you can probably imagine so much more! Cer-
tainly, we could customize borders, spacing, and so on. There’s one last thing we’ll
customize, and that’s the search endpoint.

Fully customizing the HTTP request URL for development

This is also the point at which I’'m going to make readers who didn’t want to sign up
for an API key happy. We’re going to break up the HTTP request URL in the follow-
ing listing. We’ll do this by separating out the base of the URL as well as the 3D object
format for good measure.

Listing 3.17 Breaking apart our HTTP request URL to be even more configurable

doSearch() {

if (this.getAttribute('apiKey') && this.getAttribute('searchTerm')) {
const url = this.getAttribute('baseuri') + <
'?keywords="' + this.getAttribute('searchTerm') + '&format=' +

this.getAttribute('format') + '&key=' + this.getAttribute('apiKey');
const request = new XMLHttpRequest () ;
request.open('GET', url, true);
request.addEventListener('load', (event) => {
this.renderResults (JSON.parse(event.target.response) .assets);
1)
request.send() ; Adds base URI as a configurable option to
} allow calling a different search destination

64

3.5.3

3.5.4

CHAPTER 3 Making your component reusable

With the following tag, we can start using all of our customization options.

Listing 3.18 Adding the baseuri attribute to the component tag

<poly-search apikey="<your_api_key>"
format="0BJ"

thumbheight="50" Specifies the search

backgroundcolor="red" ?ndpmnt

baseuri= in the component’s
attributes

"https://poly.googleapis.com/vl/assets"
searchterm="parrot">
</poly-search>
We can now tweak the baseuri attribute to be something else. Of course, different
search services will have different APIs and result formats, but we can test our setup
without Google by pointing to a JSON file that we host:

baseuri="http://localhost:8080/assets.json"

This will differ, of course, depending on how you’ve set up your development server
(it could be localhost, it could be something else, and port 8080 is common, but it dif-
fers wildly depending on your setup).

Best practice guides

Because we’ve now covered both getters/setters and attributes for working with data,
which one should we use? Really, it’s up to you, but there are some emerging best prac-
tices. It’s a bit too early to take these best practices as mandates, but there are some
good ideas, especially if you intend to share your components with other people. One
resource is an incomplete working draft: https://github.com/webcomponents/gold-
standard/wiki. Google has also published some best practices that are further along:
https://developers.google.com/web/fundamentals/web-components/best-practices.

Avoiding attributes for rich data

Within the Google Web Components guide, there are a few best practices for attri-
butes. One such practice is to not use attributes for rich data such as arrays and
objects.

Let’s say, for example, that you have a very complex application, and for some of
your Web Components, setup is insanely complex. Perhaps you have 50 or more prop-
erties to use for configuration—or your configuration data needs to be represented as
a nested structure:

{
Tree: {
Branches: [
{ branch: {
leaves: [
{ leaf: "leaf"},
{ leaf: "leaf"},
{ leaf: "leaf"},

https://github.com/webcomponents/gold-standard/wiki
https://github.com/webcomponents/gold-standard/wiki
https://developers.google.com/web/fundamentals/web-components/best-practices

3.5.5

Making more things even more customizable 65

1}

Either way, separating out these properties for individual attributes would be over-
whelming or impossible.

We can actually stringify a JSON object and shove it into an attribute on our tag:
<my-element data="{"Tree": {"Branches": [{"branch": {"leaves": [{"leaf":

"leaf"}, {"leaf": "leaf"},{ "leaf": "leaf"}1}}1}}
" my-element>

It’s probably easier to do this through code, however:
myElement.setAttribute('data', JSON.stringify(data)) ;

To pull the data out, you’d then have to serialize that string to JSON:
JSON.parse (this.getAttribute('data')) ;

In the end, though, when you have this massive, ugly string in your DOM, your devel-
opment tools get that much harder to read and put up roadblocks for understanding
your DOM structure. In this case, perhaps it’s better to use a method or setter to pass
your data to your component and avoid rich data attributes.

Property and attribute reflection

Another Google-suggested best practice is to do something called reflection for your
attributes and properties. Reflection is the practice of using both getters and setters as
well as attributes for your data, and always keeping them in sync with each other. Espe-
cially when handing your component off to other developers or sharing it with the
world, users may expect a consistent component APIL

Attributes are generally easier to work with when writing HTML, while with JS code,
setting properties on the component is more concise and easier to use. In other words,
JS developers will prefer writing yourcomponent.property = 'something'; and likely
won’t prefer writing yourcomponent .setAttribute ('property', 'something');. At
the same time, someone writing HTML would prefer to just set the attribute in the
markup.

When these two methods don’t do the same thing, or one is supported and not the
other, it can get a bit confusing for your component’s consumer. That’s why, when set-
ting a property through JS, the corresponding attribute should change on the ele-
ment, and vice versa. When an attribute changes, getting the property after that
should reflect the newest value.

One trap that Google has identified with its best practice guide is using attribute-
ChangedCallback to update the setter, which Google is calling re-entrancy; it’s imple-
mented as follows.

66

CHAPTER 3 Making your component reusable

Listing 3.19 A pitfall for reflection from Google’s Web Components best practices guide

// When the [checked] attribute changes, set the checked property to match.
attributeChangedCallback (name, oldvValue, newValue) ({
if (name === 'checked')

his.check = lue; .
this.checked = newvalue When the attribute changes,

} the setter is called.
set checked(value) {
const isChecked = Boolean (value) ;
if (isChecked)
// O0PS! This will cause an infinite loop because it triggers the
// attributeChangedCallback() which then sets this property again.
this.setAttribute('checked’,) ; When the setter is called,

els}el. b Cchecked ') - the attribute is updated,
this.removeAttribute ('checked') ; cauﬁnganinﬁnkeloop

}

In this example, taken straight from Google’s developer documentation, an infinite
loop is caused. The setter is used and sets the attribute, but this causes the attribute-
ChangedCallback to fire, which again uses the setter, which then changes the attribute
... you get the point—it’s an infinite loop, and the flow can be seen in figure 3.7.

Web Component

Set |nt:|;\r::l value Change property
) using setter
setAttribute

A

attributeChangedCallback:
set property using setter

/

<poly search apiKey="xxxx" searchTerm="parrot's>

Figure 3.7 Re-entrancy is a bad way to implement property/attribute
reflection. Setting the attribute when your getter is used causes an
attributeChangedCallback to be fired, which can then set the
property again, continuing on in an infinite loop.

A better way might be to use the attribute as the so-called “source of truth.” I've added
reflection to the searchTerm property in our Poly search example with just an addi-
tional getter and setter, shown in the following listing.

3.6

Updating the slider component 67

Listing 3.20 Adding a getter/setter in addition to existing attributes for reflection

static get observedAttributes() {
return ['searchterm'];

} Getter will simply
get searchTerm() { return access and

return this.getAttribute('searchTerm') ; return the attribute.

(Setter will set

set searchTerm(val) 4
the attribute.

this.setAttribute('searchTerm', wval);

}

attributeChangedCallback (name, oldval, newval) {
if (name === 'searchterm') {

Ehis.dosearch(); When setting, the attributeChangeCallback

) fires and runs the search.

In this example, our getter simply returns the current attribute, while our setter sets
the attribute. There are, of course, additional ways to accomplish reflection, but the
important takeaway is that if you want to maximize the developer experience with
your component, keep your attributes and properties consistent and synced with each
other!

Updating the slider component

Now that we understand how to work with attributes to make a reusable component,
and know about using attribute reflection to our advantage, it’s time to update the
slider component from the last chapter to make it interactive and reactive to the attri-
butes we give it or JS properties we set on it. Right now, our component class is pretty
slim, especially after moving all of the CSS outside the component into a <style> tag.
All it does is render HTML (two <div> tags); the next listing shows the slider minus
the lengthy CSS.

Listing 3.21 Slider component (without CSS)

<html>
<head>
<title>Slider</title>

<script>
class Slider extends HTMLElement {
connectedCallback () {
this.innerHTML = '<div class="bg-overlay"></div>
<div class="thumb"></div>";

}

if (!customElements.get('wcia-slider')) {
customElements.define('wcia-slider', Slider);

68

CHAPTER 3 Making your component reusable

</script>

<style><!— CSS was here --></style>
</head>
<body>
<wcia-slider></wcia-slider>
</body>
</html>
Recall that we temporarily used two properties to control some of the component’s
functionality, or, in other words, its API. Let’s formalize this API and list those proper-
ties here:

= value—The current percentage value of the slider from 0-100
= backgroundcolor—A hexadecimal color of the topmost background layer

With those now defined, we can do two things. The first is to listen for changes to
those attributes. We’ll be adding all of these functions right inside the Slider class.

Listing 3.22 Listening for attribute changes

static get observedAttributes() {

return ['value', 'backgroundcolor']; Listens for both value

and backgroundcolor
attributeChangedCallback (name, oldval, newValue) { attribute changes
switch (name) {
case 'value':
this.refreshSlider (newValue) ;
break;

}

Reacts to changes in the
slider value if set from

case 'backgroundcolor': outside the component
this.setColor (newValue) ; QAW

break; Reacts to background

color changes

}

The second thing to do is to intertwine those attributes with a proper |S API using
reflection, as we’ve just learned. When one of these properties is set through the JS
setter, the attribute is updated on the component. Likewise, when the attribute is set
on the tag, this value can be retrieved through the matching getter. The next listing
shows reflection in our component for these two attributes.

Listing 3.23 Getters and setters for the backgroundcolor and value properties

set value(val) {
this.setAttribute('value', val);

}

get value() {
return this.getAttribute('value');

}

set backgroundcolor (val) {
this.setAttribute ('backgroundcolor', val);

Updating the slider component 69

}

get backgroundcolor () {
return this.getAttribute ('backgroundcolor') ;

}
Remember, with reflection, our attributes are the “source of truth,” so these getters
and setters simply set or get the attribute directly.

We’re almost ready to demo the slider for real! Referring back to listing 3.22,
which holds the component class definition, remember the attributeChanged-
Callback. We have two methods that don’t exist yet. When receiving a new slider
value, we see

case 'value':
this.refreshSlider (newValue) ;
break;

Likewise, with a new background color value, we have

case 'backgroundcolor':

this.setColor (newValue) ;

break;
Just so we can start seeing the results of our work, we should create these functions in
the component class.

Listing 3.24 Functions to set the background color and slider value

Sets the background color (a gradient
from an opaque solid color to the
same transparent color)

setColor (color) { <
if (this.querySelector('.bg-overlay')) {
this.querySelector ('.bg-overlay') .style.background =
‘linear-gradient (to right, ${color} 0%, ${color}00 100%) ;

} Sets the current location of the

slider thumb based on its value

refreshSlider (value) { <

if (this.querySelector('.thumb')) {
this.querySelector ('.thumb').style.left = (value/100 *
this.offsetWidth - this.querySelector('.thumb') .offsetWidth/2)
+ 'pPx';

}

Both functions likely need a bit of explanation, even though they are tiny. First, we’re
checking to see if the DOM element we’re changing exists. There’s a bit of a timing
issue with the attributeChangedCallback. Namely, it will fire first before connected-
Callback if there are attributes on the component at the start. So, these DOM ele-
ments may not exist yet. Once we update this component to use the Shadow DOM later
in the book, this problem won’t exist. This is also the reason we need to add a couple of
lines to the connectedCallback, to make sure the initial attributes are acted on:

70

CHAPTER 3 Making your component reusable

this.setColor (this.backgroundcolor) ;

this.refreshSlider (this.value) ;
Next, when setting the color, the color value we get is a hexadecimal value (complete
with the hash at the beginning). At the beginning, or 0% stop of the gradient, we can
use this color value as normal. In our demo, it’s red, or #f0000. The second color
stop, at 100%, should be the same color but completely transparent. With the excep-
tion of Edge, every modern browser supports adding an additional “00” at the end to
indicate the transparency to complement the red, green, and blue two-digit values in
the larger hexadecimal code. We’ll worry about Edge later!

The refreshSlider function is pretty easy math. We calculate the thumbnail’s hor-
izontal location by taking the fraction (percent divided by 100) of the component’s
overall width. The slightly tricky part here is that we don’t actually want to position
from the leftmost edge of the thumbnail. Instead, the dead center of the thumbnail
should indicate the value. To center it, we need to subtract by half the width of the
thumb graphic.

With these last updates, even though we don’t have interactivity, at least our attri-
butes cause updates to the component. We can now load the HTML file and see some-
thing that looks like figure 3.8.

Figure 3.8 The slider component so far

What’s cool is that, even if we don’t have interactivity yet, the attributes on the demo
can be changed. When the page is refreshed, you’ll see the new color and slide per-
centage. How about a blue background at 70%?

<wcia-slider backgroundcolor="#0000ff" value="70"></wcia-slider>

We’re almost done! The next step is to make that thumbnail draggable.
Let’s finish our component by adding some mouse listeners to the components.
These three listeners can be seen in the next listing.

Listing 3.25 Adding three event listeners to handle mouse move, up, and down

connectedCallback () {
this.innerHTML = '<div class="bg-overlay"></div><div
class="thumb"></div>";

document .addEventListener ('mousemove', Mous?lwtgna@for .
e => this.eventHandler (e)); enabhngshderdraggng

document.addEventListener ('mouseup', e => this.eventHandler (e)) ;
this.addEventListener ('mousedown', e => this.eventHandler(e));

Updating the slider component 71

Due to timing issues with
attributeChangedCallback firing first,
refresh the slider and color now.

this.setColor (this.backgroundcolor) ;

this.refreshSlider (this.value) ; 41

For mouse-down events, we only really care when the user clicks on the slider compo-
nent. Even when clicking outside the thumbnail, it should snap to the horizontal loca-
tion in the slider. Mouse-up events need to be caught everywhere on the overall web
page. If the user clicks inside the component, but then the mouse drags outside, the
user should still be able to release the mouse button, releasing the thumbnail. Like-
wise, for the mouse-move events, even when our mouse is dragging outside of the
component, the thumbnail should still follow (the best it can within the confines of
the slider).
All that’s left now is to add some code for our new eventHandler method.

Listing 3.26 Function to handle events and a function to update the slider percentage

updateX (x) { Offsets the horizontal position to
let hPos = q—‘ use the center of the thumbnail
x - this.querySelector('.thumb') .offsetWidth/2;
if (hPos > this.offsetwidth) {
hPos = this.offsetWidth; T Restricts horizontal position to
} confines of component bounds
if (hPos < 0) {
hPos = 0;
}

this.value = (hPos / this.offsetwidth) * 100;
Calculates the percentage

} horizontal position and sets
eventHandler (e) { the value attribute through

const bounds = this.getBoundingClientRect () ; the setter API

const x = e.clientX - bounds.left; Calculates horizontal position relative
switch (e.type) { to left edge of the component

case 'mousedown':

this.isDragging = true; On mousedown, sets a boolean to indicate
this.updateX(x); the user is dragging, updates the “value”
this.refreshslider (this.value); attribute, and updates the slider position
break;

casethrin:?iigiaégin; C flee On mouseup, sets the boolean to false to
break; ! indicate the user is no longer dragging

case 'mousemove': .
On mousemove, if the boolean

if (this.isDragging) { indicates the user is dragging,

this.updateX(x); updates the “value” attribute and
this.refreshSlider (this.value) ; updates the slider position

}

break;

72

CHAPTER 3 Making your component reusable

With this last addition, our slider component is fully functional! We can even crack
open the dev tools, like in figure 3.9, to watch the value attribute change as we drag
the thumbnail.

.I H_E
HEE N
l.l.I.E]LL
HE N
L H_N_N_ N B
[w ﬂ Elements Console Sources Network Performance Memory
<html> Styles Computed
» <head>..</head> _—
v <body> Filter
.- P<wcia-slider value="49.5">..</wcia-slider> == $0 element.style {
</body> }
</htmt= wcia-slider {

Figure 3.9 Using the slider component and watching the value attribute update in the dev tools

The slider component isn’t done yet! It’s really not shareable if someone else on your
team wanted to use it. This will involve bringing the relevant CSS into the component
(as real CSS, not the JS style setting like in the last chapter) and separating out these
visual concerns from the main component class.

Summary

In this chapter, we’ve expanded our Custom Element API methods repertoire to both
connectedCallback and attributeChangedCallback. In the next chapter, we’ll talk
through the rest of the Web Component lifecycle in depth and compare it to similar
component lifecycles on both the web and beyond. Also in this chapter, you learned

= How to use attributes to call an endpoint for a search service, with ideas on

which attributes need to be watched and which don’t, including how to actually
watch the attributes in practice using the Web Components API

= What reflection is and how it can make your component more robust, such that

it can be used through its tag as well as through a custom JS API, and how to
avoid the problem of re-entrancy

= Strategies for when to use attributes versus a custom API and when to use both

for a better developer experience for your component’s consumers

4.1

The component Lifecycle

This chapter covers

Using the connectedCallback Web Components API
method to listen when your component is added to the DOM
Knowing when and how to use the constructor method,
especially because it occurs before the component has
access to the DOM

Utilizing the disconnectedCallback Web Components API
method to clean up after your component

The seldom-used adoptedCallback Web Components API
method

The Web Components API

Up to now, we've explored a couple different methods from the Web Components
API, but we really didn’t talk about the API as a whole. These methods are the basic
building blocks for building everything from custom components to entire applica-
tions. So, it’s a good idea to take a look at all of them in detail. In the last chapter,
we looked at the attributeChangedCallback and the observedAttributes static
getter. In this chapter, we’ll cover the rest in the same amount of detail.
Additionally, we need to consider that now that Web Components are shipping
in browsers, the specification should be considered a permanent part of the web

73

74

4.2

CHAPTER 4 The component lifecycle

development workflow for years to come. With this in mind, we should have some con-
fidence that Web Components can be used in a variety of situations.

The most obvious use case for Web Components intersects with those use cases
that big frameworks such as Angular, React, and Vue are targeting. Generally speak-
ing, this use case is a data-centric web application that might interact with a REST-
based API. On the other side of the spectrum, as we see more graphic-intensive uses
for the web, like games, 3D, video, and so on, we need to know that the Web Compo-
nents API can handle those too.

To have this confidence, I want to cover the entire API in detail but also compare it
to a couple different component lifecycles. For more traditional web applications, we
can look at a typical React component lifecycle. For more graphic-intensive applica-
tions, we can look at the component lifecycle for an extremely successful 3D/game
engine (not web-based) called Unity.

The connectedCallback handler

We’ve previously tapped into the connectedCallback method in examples from the
last couple of chapters, but let’s revisit it. This time, however, let’s add back an alert
inside a generic component to alert us exactly when our component starts up.

Listing 4.1 Testing when our connectedCallback is called

<script>
class MyCustomTag extends HTMLElement { Alert added to our
connectedCallback () { previous example’s
alert('hi from MyCustomTag') ; connectedCallback
this.innerHTML = '<h2>'+ this.getAttribute('title') +
'</h2><button>click me</button>"';

}

if (!customElements.get ('my-custom-tag')) {
customElements.define ('my-custom-tag', MyCustomTag) ;
}

</script>

<style>
my-custom-tag {
background-color: blue;
padding: 20px;
display: inline-block;
color: white;
}
</style>

<body>

<my-custom-tag title="Another title"></my-custom-tag>

</body>

Of course, what we should see when running this code in our browser is even more
basic than what we had in the last couple of chapters: a simple, ugly Web Component

The connectedCallback handler 75

with a header and a button that says “click me.” With the alert added back in, you’ll
also see a modal box pop up immediately that says “hi from MyCustomTag.”

The question now, based on the limited amount of code we have here, is when does
connectedCallback get called? The name of this method is a clue, but let’s explore by
removing the <my-custom-tag title="Another title"></my-custom-tag> from the
body of our page.

Now, visually we have a completely empty page, but we’re still doing things on this
page. Our script block is still running, so we’re still registering this custom component
as something we could use. We’re just not putting it on the page yet.

With this in mind, and our element removed from the body, let’s refresh the page:
no element, and no alert. Let’s use our component’s constructor to poke at this a bit
more. If you recall from chapter 2, we identified the constructor as the function that
runs when the class is instantiated.

Note that because we’re using a constructor in an inherited class, we must call
super () ; as the first line. By doing this, HTMLElement’s constructor is called as well.
Usually, when calling the inherited method, you might call super.myInherited-
Method () on any line, but here in the constructor, it’s just super () ; on the first line in
the constructor.

Listing 4.2 Alerting from both our constructor and our connectedCallback

<script>
class MyCustomTag extends HTMLElement {
constructor () {
super () ;
alert ('hi from MyCustomTags <—— Alert added to constructor
constructor') ;

) Alert remaining in
connectedCallback () { co""edxdFa"batho
alert('hi from MyCustomTag < | compare timing

connected callback');
this.innerHTML = '<h2>'+ this.getAttribute('title') +
'</h2><button>click me</button>"';
}
}
if (!customElements.get ('my-custom-tag')) {

customElements.define('my-custom-tag', MyCustomTag) ;

</siript>

OK, so if we refresh this page . . . well, nothing happens—again. Note that while we

fully defined our element, we haven’t instantiated or called it into action yet! To test

our theory that the constructor is called on creation, and connectedCallback hap-

pens when added to the DOM, let’s do a bit of manual DOM manipulation with JS.
With the blank page loaded, we’ll open up the browser dev tools and open the

console. In the console, enter

x = document.createElement ('my-custom-tag') ;

76

CHAPTER 4 The component lifecycle

Great! Our constructor alert is fired, and we see the message “hi from MyCustomTags
constructor.” By creating the element, we’ve implicitly called new MyCustomTag() ;
and, as a result, the constructor is called. At the same time, however, the connected-
Callback method has not been called because we haven’t added it to our DOM. Let’s
do that now! In the same console, now that our x variable is set, run the following:

document .body.appendChild (x) ;

As expected, the alert from the connectedCallback is called. Also, you should now
see the component in the page’s body. This flow, from creation to connected-
Callback, is captured in figure 4.1.

v

constructor called

Figure 4.1 The start of a Web Component’s lifecycle:
constructor first, and then connectedCallback after
adding to the DOM

connectedCallback called

What if we tried something a little more indirect? What we just did begs the question
of whether connectedCallback was fired because we added it to any element or if it
was a matter of adding it to our page’s DOM. Let’s test this by refreshing the page and
creating our element again in the console:

myEl = document.createElement ('my-custom-tag') ;

Of course, the constructor alert will still fire and show us the message. Next, let’s cre-
ate yet another element to act as a container:

myContainer = document.createElement ('div');

Now comes the moment of truth. Will our connectedCallback alert us when we add
myEl to myContainer? Let’s try:

myContainer.appendChild (myEl) ;

The connectedCallback handler 77

And the answer is no! Adding the custom component to just any element not yet
attached to the DOM will not trigger the connectedCallback method. We have an iso-
lated node held in the myContainer variable. The node looks like this:
<div>

<my-custom-tag></my-custom-tag>
</div>
Although we’ve proven that our connectedCallback method is not fired when adding
it to something that’s not connected to the DOM, we haven’t yet proven that indirectly
adding to the DOM will fire that method. Let’s continue in the console and try:

document .body.appendChild (myContainer) ;

Confirmed! Instead of adding our custom element directly to the page, we’ve first
added it to another container (a <div>). We then added that container to our
DOM, and our connectedCallback method is still called, proving that the callback
is called only when it’s added to the page and nowhere else, even if not directly
added to the page.

Additionally, if we remove the element and then re-add it, we see that our
connectedCallback is called each time:
document.body.removeChild (myContainer) ;
document .body.appendChild (myContainer) ;
This actually means that if you add, remove, and then add your component again, you
should be careful to do any one-time setup you intend only once.

Figure 4.2 recaps our explanation with four scenarios. A component can be
directly on the page, or even inside another component. If either the component or

is called

is not called

HTML page

Web Component

Web Component

HTML page

Quter element

Web Component

Outer element

Web Component

Figure 4.2 Four different scenarios
for creating your Web Component

78

4.2.1

CHAPTER 4 The component lifecycle

the outer component (and it could be the outer, outer, outer component) is on the
main HTML page, the connectedCallback will be called.

Alternately, even if the component is added inside another element, its connected-
Callback won’t be fired if the outer element is not on the main page. Generally speak-
ing, for that connectedCallback to fire, the component must have an ancestor on the
main HTML page.

Constructor vs. connected

What does this all mean for practical purposes? What logic belongs in the constructor
versus the connectedCallback method? It would be reasonable to think that we can
shove everything into the constructor and keep the connectedCallback method
empty. Unfortunately, no—there is a bit of nuance here.

A big aspect of what you’ll want to do when creating a component is to set the con-
tent of your element. You’ll likely want to set innerHTIML to some markup. It’s how, in
our simple example, we’re adding the header and button. You might also want to get
an attribute of your component. Unfortunately, when the constructor is fired, the ele-
ment isn’t yet ready to be interacted with in this way.

We can prove this by moving the innerHTML line to the constructor, as follows.

Listing 4.3 Trying (and failing) to set innerHTML from the constructor

class MyCustomTag extends HTMLElement {

constructor () {
super () ;
this.innerHTML = '<h2>'+ this.getAttribute('title') +

'</h2><button>click me</button>"';

}

connectedCallback() {}
}
When our page reloads, we can try creating the element again with the create-
Element function, but the following error is seen in our console:
DOMException: Failed to construct 'CustomElement': The result must not have

children

Our browser is telling us that when our custom element is initially created, it’s not
allowed to have children. Furthermore, we can check on our title attribute that
we’ve been using to populate our header tag in the constructor versus the connected-
Callback.

Listing 4.4 Attempting to access attributes on the constructor vs. connectedCallback

class MyCustomTag extends HTMLElement {

constructor () { Acces.sing an attribute
super () ; on this component from

console.log('From constructor', theconstnmtor“aﬂed)
this.getAttribute('title'));

The connectedCallback handler 79

connectedCallback() {
console.log('From connectedCallback', Accessing an attribute on
this.getAttribute('title')); Q—{ this component from the
connectedCallback (success)

}

When we change to the previous listing and reload our page, our console will indicate
that the constructor doesn’t know the title yet, logging null. Our connectedCallback
is just fine, though.

Just by looking at what works and what doesn’t here, we can start to feel out how we
should organize our component. The connectedCallback should contain all the logic
to populate our element visually. For a typical component, lots of logic within, like
adding events, interactions, and so on, will depend on these visuals being present.
This can leave the constructor fairly empty or devoid of meaningful code for many
situations.

Depending on your component, however, there are likely to be exceptions that
should live in the constructor. One such exception is logic that you may want to hap-
pen after your element is initialized, but prior to it being added to the page. You may
want, for example, to create the element in advance and do a network request to pull
information off the internet before you append your component to the DOM. In this
fashion, if your component has all the data it needs to render, it can do so instantly
when on the page. In this case, because there are no dependencies on the visual ele-
ments within your component, the constructor can be a good place for this code.

Listing 4.5 A nicely formatted property list in a constructor

class MyCustomTag extends HTMLElement {

constructor () { <t
super () ; Constructor method

/**

* URL to fetch data to populate our hypothetical list

*/
this. iceURL =
- ?i’/servme / ,) . Adds human-readable
bi//Ccompany. com/Service. Json properties to the constructor
/ * %

* internal counter to track something
*/

this.counter = 0;

/**
* last error message displayed
*/

this.error;

}

connectedCallback() { . . . }

}

As I mentioned at the start of the chapter, one great use of the constructor can be to
contain property declarations. It’s really handy to have a constructor at the top of your

80

4.3

4.3.1

CHAPTER 4 The component lifecycle

class and be able to easily read all the properties that you use within, as seen in listing
4.5. I've found that even if you don’t set your properties to anything yet, it’s still great
for component readability. I should mention again, however, that with the latest ver-
sion of Chrome supporting public and private class fields, we can declare our proper-
ties in the class itself, which is nicer and more inline with every other language that
supports classes. Once other browsers pick up support, the approach I just outlined
will likely be something of a bad practice.

One big caveat to using the constructor versus the connectedCallback for DOM-
related logic arises if you are using the Shadow DOM, which will come up in chapter
7. When using the Shadow DOM, you’re creating a separate mini DOM that’s internal
to your component. In this case, the Shadow DOM is available whenever you create
it—even in the constructor.

This caveat is why you’ll see many modern Web Components use the constructor
for most everything in the component, while the connectedCallback might not be
used much at all.

Will you use the Shadow DOM? Up until recently, I wouldn’t have recommended it,
but Firefox just shipped an update with support for it (along with all Web Component
features), and Edge should ship a release beyond its development preview soon.

As awesome as the Shadow DOM is, you’ll need to weigh whether you need it and
whether it’s supported in the browser of your choice. There will certainly be situations
where the Shadow DOM just doesn’t make sense for your project—knowing the
nuances of the connectedCallback versus constructor methods will be important.

The remaining Web Component lifecycle methods

We’ve discussed four of the six methods of our component lifecycle (constructor,
connectedCallback, attributeChangedCallback, and observedAttributes). There
are just two remaining methods: disconnectedCallback and adoptedCallback.

Disconnected callback

The disconnectedCallback serves a very important purpose, which is to give the com-
ponent an opportunity to clean up after itself. This callback is fired when the compo-
nent is removed from the DOM.

The reason for cleanup is twofold. First, you don’t want stray code running when
you don’t need it. Second is to give garbage collection a chance to run. If you're not
familiar with garbage collection, consider a language like C++. When you store data in
a variable, it will never go away, or get released, to use proper terminology. As a devel-
oper, it is your job to properly release it when you are done. If you’re not careful, all
the variables you’re not using anymore can start adding up and consuming tons of
memory! Luckily, with more modern languages like JS, your unused variables will get
“garbage-collected.” Every once in a while, when the engine (in our case, the JS
engine) knows it has enough idle time to clean up, it will go in and release the vari-
ables you aren’t using. It’s not psychic, though, and can’t predict what you don’t need.

The remaining Web Component lifecycle methods 81

Mouse

listener Variable

Variable Not referenced, so gets

garbage collected

Mouse
listener

Figure 4.3 Memory references inside a Web Component

Instead, if it sees that you don’t reference or link to something in memory, as in figure
4.3, it will release it. This is why the disconnectedCallback is a good opportunity to
reset or null any variables that might link to other objects.

It can definitely be a chore to worry about these finer details when your compo-
nent just works. Occasionally, if we know exactly how we are using our component, we
can ignore some of this. For example, if you know that your application will never be
removed from the DOM, you might be able to ignore cleanup. Of course, the scope of
projects can change, and that component you never expected to be removed might
need to be.

To cite an example of much-needed cleanup, say you query a server every 30 sec-
onds to get updated data. If you removeChild (yourelement); from its parent con-
tainer, it will still run that timer and still query the server. Let’s try a simplified
experiment using a countdown timer example.

Listing 4.6 A demonstration of code running after the element has been removed

<html>
<head>
<meta charset="UTF-8">
<title>Cleanup Component</title>
<script>
class CleanupComponent extends HTMLElement ({
connectedCallback () {

this.counter = 100;
setInterval (() =>
this.update(), 1000); <—— Starts the countdown timer
}
update () {
this.innerHTML = this.counter; Console logs the current timer
this.counter --; value (still running after

console.log(this.counter) ; ~| component is removed!)

82

CHAPTER 4 The component lifecycle

}

customElements.define ('cleanup-component', CleanupComponent) ;
</script>
</head>

<body>
<cleanup-component></cleanup-component>
<button onclick="document.body.removeChild (document.querySelector

('cleanup-component')) ">remove</button> Button to remove

</body> the component

</html>
In this example, we’re also logging our counter value with
console.log(this.counter) ;

I've also added a button with some inline JS code. When you click the Remove button,
the countdown timer component is removed from the DOM.

When you run the example, the timer counts down as usual. After clicking
Remove, you don’t see the timer anymore, but if you open the console log, you'll see
that it’s still counting down! It’s bad enough to leave that timer running—even worse
that we’re muddying up the console log with elements we don’t want anymore. It
would be still worse if we were making network requests we don’t care about or doing
something computationally expensive for an element we don’t need.

So, we can use the disconnectedCallback to clean up our timer. We’ll likely want
to clean any event listeners added as well, such as mouse events. Let’s try cleaning up
our timer when the element is removed in the following listing.

Listing 4.7 Using disconnectedCallback to clean up a timer

class CleanupComponent extends HTMLElement {
connectedCallback() {

this.counter = 100;

this.timer = setInterval(() => this.update(), 1000);
}
update () {

this.innerHTML = this.counter;
this.counter --;
console.log(this.counter) ;

} When component is removed
disconnectedCallback() { (on dlsconnecfedCaIIback),
clearInterval (this.timer) ; <F4~remove5thet"ner

}
We’ve now captured our timer in a variable:
this.timer = setInterval(() => this.update(), 1000);

This way, when we need to clean up using disconnectedCallback, we can clear it
using the same variable:

4.3.2

4.4

Comparing to React’s lifecycle 83

disconnectedCallback() {
clearInterval (this.timer) ;
}
Checking our logs again, we have no more messages, and our element should be
properly garbage-collected on the next pass.

Adopted callback

Despite the fact that even I need to buckle down and use disconnectedCallback
more to write better and more versatile components, this last lifecycle method I truly
can’t see most people ever needing. The adoptedCallback lifecycle method fires
when your Web Component moves to a different document.

Don’t worry if this doesn’t make sense, because it doesn’t usually happen. Usually,
you’ll have only one document per HTML page. The exception to this is when using
iframes (or inline-frames), which have really fallen out of favor for most uses. Basi-
cally, with an iframe, you have a mini HTML page in a frame on your master HTML
page.

Elements can be stolen from the iframe and placed into the surrounding page, or
vice versa. To do this, you’d grab a reference to the element and then move it to the
new document:

const frame = document.getElementsByTagName ("iframe") [0]
const el = frame.contentWindow.document.getElementsByTagName (
"my-custom-component") [0] ;

const adopted = document.adoptNode(el) ;

Once done, the adoptedCallback lifecycle method will fire. But again, on the rare
occasion I've found myself working with iframes, I've never had to move nodes from
one document to the other. Maybe you’ll find a use for this method, and if you do,
know that your component can listen!

Comparing to React’s lifecycle

Let’s now talk about the Web Component lifecycle in relation to the React lifecycle.
After all, with only a handful of lifecycle methods, it can feel like Web Components
might be lacking. Given how popular React is, and its wide audience of developers, it’s
great for measuring Web Components against to see how they stack up.

React is a bit opinionated, like all frameworks and libraries tend to be. It offers a
specific component lifecycle that works for React developers and their use cases. Of
course, there’s absolutely nothing wrong with this, but the point is that we’re looking
at a lifecycle that may or may not apply to how you want to work. I'd like to reiterate
that this is exactly what I love about working with Web Components—they have just
enough features to cover the bare minimum of what you need, and anything beyond
that can be built up with your own code or existing microframeworks or libraries.

The React documentation breaks down its lifecycle methods into four main catego-
ries: mounting, updating, unmounting, and error handling. The error-handling method

84

CHAPTER 4 The component lifecycle

is one we haven’t gotten into yet, and indeed, there is nothing similar in Web Compo-
nents. React’s philosophy here (at least as of v16) is to establish “error boundaries” such
that if you have an error in one component, it doesn’t take the rest of your components
or the application down with it.

While it is true that a JS error has the potential to do some really bad and unex-
pected things anywhere in a Web Components-based application, with React, it was a
little worse. Prior to v16, an error promised to unmount your entire application! Errors
in vanilla JS are usually tamer—unexpected things will happen, but usually your appli-
cation won’t be brought to its knees. As a result, in v16, React created error boundaries
so that each component could handle any badness and not affect the rest. Web Compo-
nents are a little more decentralized, so React’s problems aren’t so similar.

In React, mounting means creating a chunk of HTML that represents your compo-
nent and then inserting that HTML into the DOM. For mounting, there are several
relevant methods.

Like Web Components (and most everything else), React lets you override the con-
structor. The types of things you’d do are very similar to Web Components, in that
you’d likely not want to put tons of component logic here, and you’d ideally initialize
things that you’d use later. The methods componentWillMount and componentDid-
Mount let you do stuff before and after the component is added to the DOM.

While componentDidMount is a lot like Web Components’ connectedCallback,
there doesn’t seem to be lots of purpose for componentWillMount. There’s nothing
here you couldn’t just do with the constructor. In fact, React v16 is already showing
warning messages that this method will be deprecated in the next major version.

Prior to componentDidMount (or when the component changes in some way), you
are allowed to override the render method. With this method, you would mainly
return HTML to represent your component’s inner markup.

With Web Components, render just isn’t necessary as a standard lifecycle method,
though LitElement and others have added this to their Web Components to make
updating HTML more streamlined. With the basic lifecycle as is, we can control our
component’s innerHTML at any time and aren’t limited by our component lifecycle for
when to set our component’s contents, or even which pieces are updated. In this
regard, we are better off being unbound by stiff rules that say where or when we can
create the inner workings of our component! With LitElement and various frame-
works, you’re buying into a design pattern and making the choice to be bound by
some rules that dictate when your component renders. Great, if that’s what you
choose, but as a standard that needs to fit a variety of use cases, I think it’s much better
to opt-in to something like a render method.

For updating the component, React has several methods as well: componentwill-
ReceiveProps, shouldComponentUpdate, componentWillUpdate, getSnapshotBefore-
Update, and componentDidUpdate. In addition to componentWillReceiveProps being
deprecated soon, the rest are helpers for when something changes in your compo-
nent, and it needs to update. They are less relevant to Web Components because
React, as a system, keeps track of a bunch of stuff outside the scope of your actual

4.5

Comparing to a game engine lifecycle 85

HTML element. State, properties, and so on are all things that change and trigger
your component to change. In fact, React has a different suggested usage altogether.
You are supposed to change state or properties, and your component is supposed to
...well ... “react” to these changes.

When you interact with Web Components, on the other hand, you’ll likely do so
much like you’d interact with a normal DOM element: through a custom API or using
attributes. With this difference, the need for these extra methods melts away. Some
might argue that the way React works offers more of a helping hand, but with Web
Components, you have more freedom to do things how you want, specific to your own
project.

Comparing to a game engine lifecycle

Speaking of freedom to implement how we want depending on the project, we
shouldn’t regard traditional web applications as the only use case for building some-
thing on the web. More and more graphics-intensive projects are being built all the
time. A good use case to consider is a game engine. In this regard, I think it’s fair to
compare the Web Component lifecycle to Unity. Unity 3D is one of the most popular
tools for making real-time 3D for games, applications, and even AR/VR.

In Unity, a developer typically works with a 3D object of some sort that has a
Monobehavior attached. Much like our Web Component extends HTMLElement, a cus-
tom Unity behavior extends Monobehavior.

Monobehavior has two lifecycle methods used for starting a behavior. Awake is like
our Web Component constructor. It gets called when the Monobehavior is created,
regardless of whether it’s enabled or not. With Unity, behaviors aren’t necessarily
active and running if they are disabled.

Likewise, our Web Component isn’t really “enabled” if it hasn’t been added to the
DOM, because it’s not visually on the page. Unity has OnEnable and OnDisable meth-
ods to watch for this. A behavior can get enabled multiple times, just like our Web
Component can get added to the DOM multiple times. So here, OnEnable is a lot like
our Web Component’s connectedCallback.

Unity’s Start method gets called the first time the behavior is enabled, including if
it’s enabled when the application starts. Web Components don’t have a similar call,
and like I said, if we add the same element to our DOM more than once, we need to
guard against any re-initialization if it hurts our components. Luckily, this is easy
to overcome—we can just set a variable to true the first time going through our
connectedCallback and avoid calling the same initialization with an 1f/then.

These subtle distinctions only matter if you choose to not use your Web Compo-
nent in the simple way of just writing markup in your HTML, as in when creating, add-
ing, and removing elements with JS. For example, when prototyping or building a
specific application, you’ll probably know exactly how your Web Components are to
be used and be able to adjust as needed. If you're building a library of Web Compo-
nents you intend to share, you may want to consider all of these use cases.

86

CHAPTER 4 The component lifecycle

Next, Unity 3D has several methods in its Monobehavior lifecycle that are called
each render frame, which means they are called many times per second to give the
developer an opportunity to update what gets drawn on screen when graphics are
updated. These methods handle specific things like physics, different render passes,
and so on. For our purposes, I'll condense them down to Unity’s update method
because unless we get into WebGL or other specific cases, they really don’t apply to
Web Components.

While Web Components don’t have a similar update method as part of the lifecycle
API, or even the variety of update methods I've described previously, we arguably
don’t need one. We aren’t necessarily doing games or graphics-intensive things that
need to run every frame with JS, so in those cases, we don’t need it. On the occasion
we do need an update method, there are a couple of ways we can do it.

The first thing we can try is a timer. Let’s take that timer example we had before,
and start there.

Listing 4.8 A countdown timer component

<html>
<head>
<meta charset="UTF-8">
<title>Countdown Timer</title>
<script>
class CountdownTimer extends HTMLElement {

tedCallback N .
connectedta ack() { Creates our internal timer

this.counter = 100; (calls update every second)
setInterval (() =>
this.update(), 1000);
}
update () { QJ Displays the timer’s
this.innerHTML = this.counter; current value

this.counter --;
Decrements every

) timer update

customElements.define ('countdown-timer', CountdownTimer) ;
</script>
</head>

<body>
<countdown-timer></countdown-timer>

</body>

</html>

In listing 4.8, we’ve created a simple example countdown timer component (virtually
the same as earlier in this chapter). When our component is added to the DOM, we
use our connectedCallback to initialize a property called counter and set it to 100.
We also start a standard JS timer and attach that to an internal method called update:

setInterval(() => this.update(), 1000);

Comparing to a game engine lifecycle 87

If you have used the timer before, you know the last parameter of 1,000 makes the
timer fire every 1,000 milliseconds (or every second). On the Update method itself, we
simply set the contents of our component with innerHTML and decrement our variable
by one.

What you’ll see in your browser when you run this is a numeric display that starts at
100 and counts down by 1 every second. setInterval is great for situations like this
where you just need a normal timer; but for animation or graphics that need to
change every 1/30th of a second, for example, JS’s newer requestAnimationFrame
will produce smoother results that are actually tied to the browser’s render cycle.

Let’s swap our setInterval for requestAnimationFrame and do something a little
more animated in the next listing.

Listing 4.9 Swapping setInterval for requestAnimationFrame

<html>
<head>
<title>Visual Countdown Timer</title>
<script>
class VisualCountdownTimer extends HTMLElement {
connectedCallback () {
this.timer = 200;

this.style.backgroundColor = 'green';
this.style.display = 'inline-block'; . L
this.style.height = '50px’; Using requestAnimationFrame

requestAnimationFrame(() => instead of setlnterval
this.update());

}

update () {
this.timer --;
if (this.timer <= 0) {

this.timer = 200; .
) Smoothly animates the

this.style.width = width of our component

this.timer + 'px';
requestAnimationFrame(() =>

) Keeps requestAnimationFrame
this.update());

, going by calling it every update
customElements.define('countdown-timer', VisualCountdownTimer) ;
</script>
</head>

<body>
<countdown-timer></countdown-timer>
</body>
</html>
With the exception of requestAnimationFrame happening only once, thereby forcing us
to call it on every update call, the implementation is mostly the same as setInterval:

requestAnimationFrame(() => this.update());

88

CHAPTER 4 The component lifecycle

Again, I have a counter, but I call it timer now, because we’ll be making our compo-
nent shrink with each animation frame to simulate a countdown timer. I also have
some CSS styling to set the background color, height, and inline-block style of the
component. It’s not awesome that I'm setting style with code here when I could use
CSS, but I want to keep this example dead simple:

this.style.backgroundColor = 'green';
this.style.display = 'inline-block';
this.style.height = '50px"';

On the update method, we decrement our timer and also check if it’s equal to or
smaller than 0. If so, then we reset it to 200, just to keep our component in an infinitely
demo-able loop. After all that, we set the component height and width to the timer
property. Lastly, we call the next animation frame and run our update method again.
We end up with a green visual countdown component that shrinks every frame until it
gets to nothing and then resets to 200 pixels wide again.

In addition to setInterval and requestAnimationFrame, other frameworks and
libraries we may want to use might have their own ways to call a timed update method
like this. For example, if you use a 3D library like Three.js or Babylon, they both have
their own render hooks you can tap into, so you’d implement your component a bit
differently.

The point is that the Web Component lifecycle doesn’t come with an update
method like many other component lifecycles you might see. Because web technology
can be used for so many different things, it’s not wise to dictate how you should do it.
Most of the time in my own work, I never need that update method. Even simple Ul
animation can be handled through CSS. And of course, when I do, I like having the
choice of which method to use.

Maybe you, in your own personal use cases, always need some sort of update
method like Unity has. It certainly makes sense if you are a game developer or similar
and need a render/update method to drive your game and animation.

If this is the case, you're still covered. Web Components support inheritance, and
we can go one level deeper and just add on to the existing component lifecycle. Let’s
steal code from our visual countdown timer animation example and use our request-
AnimationFrame call to power it.

Listing 4.10 Creating an inheritable base for components to update every frame

<html>
<head>

<script> . T
Class provides a base for building

class GameComponentBase
4 game-style components

extends HTMLElement ({

constructor () {

super () ;

this.onUpdate () ; Update method to be filled out by
} component using the base class

update () {} <

Comparing to a game engine lifecycle 89

onUpdate () {

Internal update this.update () ;

method to keep

requeﬁAnhnaﬁon requestAnimationFrame(() => this.onUpdate()) ;
frame going) }
class VisualCountdownTimer Actual component class, which
extends GameComponentBase { 444,eﬂxndsthebasecomponent
connectedCallback () {
this.timer = 200;
this.style.backgroundColor = 'green';
this.style.display = 'inline-block';
this.style.height = '50px"';
}
update () {
this.timer --;
if (this.timer <= 0) {
this.timer = 200;
}
this.style.width = this.timer + 'px';
}
}
customElements.define ('countdown-timer', VisualCountdownTimer) ;
</script>
</head>
<body>
<countdown-timer></countdown-timer>
</body>
</html>

So, in the example in listing 4.10, we’re still doing the exact same simple animation:
making a countdown indicator graphic shrink. But we’ve pulled the logic that deals
with creating an update event every frame out into its own class. Note that I say class
and not component because we’ve done everything to create a new component except
define a custom element and map that to a tag.

Instead, we’re creating a base class, GameComponentBase, that components can inherit
from. Figure 4.4 shows this chain of inheritance, all originating from HTMLElement. I did

attributeChangedCallback +—

made by us)

GameComponentBase GameComponent
HTMLElement (extends HTMLElement) (extends GameComponentBase)
Constructor » |nherited lifecycle methods > |nherited lifecycle methods
connectedCallback update (lifecycle method Custom game logic and

methods

Figure 4.4 Using inheritance to create a subclass of HTMLElement to enable frame updates like a

game engine

90

CHAPTER 4 The component lifecycle

something a bit tricky, though. Instead of directly calling the update method, I have a dif-
ferent method—onUpdate:

onUpdate () {
this.update() ;
requestAnimationFrame(() => this.onUpdate());

}

The reason is best explained by doing it a way I would not suggest first. Let’s not use
both, and only use update.

Listing 4.11 Simpler example with just one overridable update

class GameComponentBase extends HTMLElement ({
constructor () {
super () ;
this.update() ;
}

update () {
requestAnimationFrame(() =>
this.update());
} Single update method

}

This new GameComponentBase is still good and can be used in pretty much the same
way, but let’s take a look at how we’d use it.

Listing 4.12 Using the simpler base class

class VisualCountdownTimer extends GameComponentBase {
connectedCallback () {
this.timer = 200;

this.style.backgroundColor = 'green';
this.style.display = 'inline-block';
this.style.height = '50px"';

}

update () {

this.timer --;
if (this.timer <= 0) {
this.timer = 200;
}
this.style.width = this.timer + 'px';

super.update () Now required to

) call super.update()

Notice we’ve simplified our GameComponentBase class a bit. We’ve condensed the two
update methods into one, but in our VisualCountdownTimer component, we’re now
forcing anyone using GameComponentBase to call super.update(); every time! Of
course, with inheritance, we don’t call update on our underlying GameComponent-
Base unless we use super.update (). I don’t know about you, but I'’d make a new

4.6

Component lifecycle v0 91

component and forget to call super.update() most of the time. A little planning
like this up front can make the developer experience happier.

Unity has two more lifecycle methods, OnDisable and OnDestroy, which serve the
same purpose as Web Components’ disconnectedCallback: to clean up after dis-
abling or destroying the component.

Component lifecycle vO

The Web Components API seems pretty solid now, doesn’t it? We’ve compared and
contrasted it to other component lifecycles, and I hope you have a pretty good feel
that it’ll work well for anything you throw at it. I don’t expect that you’ll know each
and every method by memory, especially when starting out. We all have to Google syn-
tax occasionally. One caveat when you do look up usage with Web Components is that
it’s a relatively new standard, and it’s already gone through one revision.

What this means is that when you look up syntax, you might accidentally stumble
on the old methods. Currently, we are using vl of the Web Components API. What
came before was dubbed v0, and v0 won’t work anywhere except for where it was orig-
inally implemented: Chrome. Even there, as time moves on, it will be more and more

spotty.
IMPORTANT The Web Components API has changed!

Not much has changed really (see table 4.1), though the first thing to note is that
instead of letting you use the constructor in vl, you use the createdCallback method.

Table 4.1 Custom Element/Web Components API changes

Method calls How it changed

Deprecated:
createdCallback

Current:
constructor

Deprecated:
AttachedCallback

Current:
connectedCallback

Deprecated:
detachedCallback

Current:
disconnectedCallback

Former:
AttributechangedCallback

Current:
attributeChangedCallback
and observedAttributes

In v1, the more standard constructor replaces the
createdCallback.

In v1, to listen for when your element has been added to the
DOM, you use the connectedCallback; in vO, it was the
attachedCallback.

The old way of listening for when the element is removed from
the DOM, now the disconnectedCallback in vl, was the
detachedCallback in vO.

The last change is the attributeChangedCallback in vl
The name actually hasn’t changed here, but the usage has. Now
you need to make sure to define those observedAttributes,
as we discussed in the last chapter, to tell the component what
attributes you’d like to listen for. Previously, this callback would
just listen to everything.

92

CHAPTER 4 The component lifecycle

Table 4.1 Custom Element/Web Components API changes (continued)

Method calls How it changed

Deprecated: Lastly, outside of the component lifecycle API, the way you regis-
document .registerElement ter your element has changed as well. Currently, we use

Current: customElements.define ('my-web-component',
customElements.define MyWebComponent) ;

Formerly, in vO, we would use
document .registerElement ('my-web-component',
MyWebComponent) ;

Summary

In this chapter, you learned

= How to round out the lifecycle methods you’ve already learned with the
remaining two methods: disconnectedCallback and adoptedCallback

= The concept of garbage collection, and why you would clean up after your com-
ponent

= How to subclass a Web Component and use it as a base to provide common
functionality, like frame-by-frame animation, to other components

= Differences for and similarities to the React and game engine lifecycle methods,
and how even though both have more methods to their APIs, Web Components
don’t fall short

Instrumeniing a better

web app through modules

This chapter covers

ES2015 modules as an alternative to <script> tags in your
HTML

Creating self-reliant Web Components
Using a Web Component to contain your entire application

Scope management for callbacks with the ES2015 fat-arrow
feature

So far in exercises throughout this book, we’ve been putting our classes and com-
ponent definitions inside the <head> tag in our main HTML page. Typically, you’d
never want to do this on a real project and might want to be a bit more organized
with a <script> tag pointing to a JS file for each component you have. At first
glance, this is perfectly fine. If your project uses Web Components only in a limited
way, this works! CSS is similar—each component can have its own CSS file as well,
which can be linked from the main page. With many components to manage in
your project, however, this could get a little out of hand. In this chapter, let’s
explore ES2015 modules for a better way.

93

94

5.1

CHAPTER 5 Instrumenting a better web app through modules

Using the <script> tag to load your Web Components

To explain why linking to multiple JS/CSS files in our main HTML page can be prob-
lematic, let’s revisit our Web Component from chapter 2. If you recall, this compo-
nent was a photo carousel that allowed us to set a list of photos to navigate through as
well as some metadata for display, such as title and author, as figure 5.1 shows.

Future Vacation Photos
by Ben Farrell

Figure 5.1 Revisiting the photo carousel component from chapter 2

With this component example, all of our JS and CSS code was in the index.html file
with no external references. Of course, things get more maintainable by moving this
code to external files that we can simply link to and bring in. This is fairly typical for a
no-frills web project. When we do this, our HTML file gets more manageable and eas-
ier to read, as shown in the following listing.

<html>
<head>
<meta charset="UTF-8">
<title>Script Source for Loading Web Components</title>

<script src="photocarousel.js"></script> < javaScﬁpthasbeenpuHed

<link href="photocarousel.css" out to a linked file

rel="gstylesheet"

type="text/ess"/> < CSS has been pulled

</head> out to a linked file.

<body>
<wcia-photo-carousel
title="Future Vacation Photos"
author="Ben Farrell"
photos="https://i.imgur.com/fBmIASF.jpg,https://1i.imgur.com/
3zxD6rz.jpg,https://i.imgur.com/nKBgelLOr.jpg, https://
i.imgur.com/yVjJdzlYr.jpg">

511

Photo carousel Hypothetical photo album
component (CSS/JS) browser component (CSS/JS)

Hypothetical login panel component (CSS/JS)
component (CSS/JS)

Using the <script> tag to load your Web Components 95

</wcia-photo-carousel>
</body>
</html>

Having to deal with many JS and CSS references

Now, if you had more Web Components in this project, you might add more and more
<script> tags and more and more <link> tags. There’s nothing wrong with this. Lots
of times when we develop a big project, we pull in a bunch of libraries, and as a final
step before releasing, we concatenate to one file for JS and one file for CSS.

Often, when relying on script references in my HTML, I maintain two separate
HTML files. One is for development, and the other is for releasing my actual project.
In a case where we have many Web Components we intend to pull in, our dev HTML
head tag might look like the following listing, which shows an example of many hypo-
thetical JS and CSS references in a more fully featured photo album application.

Listing 5.2 Example of index.html for development

<head>

<meta charset="UTF-8">

<script src="photocarousel.js"></script>

<link href="photocarousel.css" rel="stylesheet" type="text/css"/>

<script src="photoalbumbrowser.js"></script> <
<link href=" photoalbumbrowser.css" rel="stylesheet" type="text/css"/>

————> <script src="loginpanel.js"></script>

<link href="loginpanel.css" rel="stylesheet" type="text/css"/>

<script src="socialsharing.js"></script> 4
<link href="socialsharing.css" rel="stylesheet" type="text/css"/>

<script src="photouploader.js"></script> <
<link href=" photouploader.css" rel="stylesheet" type="text/css"/>

</head>
Hypothetical photo upload

Hypothetical social sharing
component (CSS/JS)

Meanwhile, our goal would be to pull in fewer dependencies on our production-ready
HTML file. We could run a task via Grunt, Gulp, or even just NPM to concatenate all
JS and all CSS so that our production-ready HTML head tag looks like this:

<head>

<meta charset="UTF-8">

<script src="build.js"></script>

<link href="build.css" rel="stylesheet" type="text/css"/>
</head>

96

5.1.2

5.1.3

CHAPTER 5 Instrumenting a better web app through modules

To be honest, I'm still not perfectly happy here. For one, I have to worry about two
imports for every Web Component I use (CSS and]S). Second, this doesn’t do any-
thing to maximize code reusability. Yes, I can point to external files containing code
for my Web Components, but what if those files themselves need to point to external
files? For example, in chapter 4, we explored extending HTMLElement to create a
game-oriented base component that gives us an update method that is fired every
frame. We need to import that GameComponentBase somehow.

You might say, “Well, importing that GameComponentBase class is easy: we’ll just add
it to the list of JS files we link to in our <head> tag.” Again, depending on your use, this
might be manageable. The counterargument here is that you're accepting the chal-
lenge to keep track of every single dependency in your project. If you just have one or
two dependencies, great! If you have 10 or 20 or more, it can get problematic.

Tiny scripts are more organized,
but make the reference problem worse

Dependencies can come in many forms. Our GameComponentBase is 2 major one, but
you can also consider smaller dependencies. Dependencies can be as small as helper
methods to manage your HIML, or even a super-tiny configuration object. For exam-
ple, we could maintain a project-wide data model that we import into any Web Com-
ponent or JS file that needs it:
appConfig = {

rootURL: 'yourserver.com',

apiVersion: 2,

login: ‘username'
}
This is just a simple object that contains some data about how we want to log in to our
server (if we’re using one), but it could potentially be used in any Web Component
that gets data from this server. It’s a piece of reusable code that we need everywhere.
It’s also such a tiny piece of J[S—which might be linked to along with 20 or 50 other
tiny pieces of [S—that remembering to include all of these in your <head> tag can get
a bit daunting.

Including CSS for self-reliant components

Before we address this, let’s make our Web Component class even more self-reliant by
making it manage the CSS itself. We’re simply eliminating the need to point to an
external CSS file by inserting the <style> rules into the innerHTML along with the
HTML markup. This example, as seen in the next listing, doesn’t change anything
about our component except to leave us with only one file to reference when using
the component in our project.

Using the <script> tag to load your Web Components 97

Listing 5.3 Adding CSS to our component’s innerHTML

this.innerHTML = '<h2>"' + \ <

this.getAttribute('title') + '</h2> \

<h4>by '+ this.getAttribute('author') + '</h4> \

<div class="image-container"></div> \

<button class="back"><</button> \

<button class="forward">></button> \

<style> \ <
wcia-photo-carousel { \
width: 500px; \
height: 300px; \
display: flex; \
padding-top: 10px; \
flex-direction: column; \
position: relative; \
border-color: black; \
border-width: 1px; \
border-style: solid; \

HTML markup that was
previously in our component

CSS added to our component,
previously in an external CSS file

A

wcia-photo-carousel h2, h4d { \
margin-bottom: 0; \
margin-top: 0; \
margin-left: 10px; \

A\

wcia-photo-carousel .image-container { \
margin-top: 15px; \
flex: 1; \
background-color: black; \
background-size: contain; \
background-repeat: no-repeat; \
background-position: 50%; \

A

wcia-photo-carousel button { \
cursor: pointer; \
background: transparent; \
border: none; \
font-size: 48px; \
color: white; \
position: absolute; \
top: 50%; \

A

wcia-photo-carousel button.back { \
left: 10px; \

A

wcia-photo-carousel button.forward { \
right: 10px; \

IAN

</style>"';

For now, we’ve accomplished something pretty good—a completely self-reliant com-
ponent that only needs to be included via a single <script> tag. To be fair, our inner-
HTML is getting a bit long. A criticism could be that we’ve just moved some complexity
from the outside to the inside and made the inside a bit less manageable. Don’t worry,

98

5.14

CHAPTER 5 Instrumenting a better web app through modules

we’ll clean this up in the next chapter by expanding on the concept of modules that
we are learning here.

Listing 5.4 Reducing dependencies with no more CSS references

<head>
<meta charset="UTF-8">
<script src="photocarousel.js"></script>. Reducedcomponent

</head> dependencies from two lines
<body> (CSS and JS) to just JS

<wcia-photo-carousel
title="Future Vacation Photos"
author="Ben Farrell"
photos="https://1i.imgur.com/fBmIASF.jpg, https://
i.imgur.com/3zxD6rz.Jjpg,https://1i.imgur.com/nKBgelOr.jpg, https://
i.imgur.com/yV3jJZlYr.jpg">
</wcia-photo-carousel>
</body>
Honestly, though, when looking at listing 5.4, things look pretty clean. You’d never
know the complexity of the component on the inside; you’re just using it. With only a
single <script> tag for including the Web Component definition, there’s really not
much to manage here. Even if there was just a separate CSS file like there was before,
for someone using this component, it might be a bit confusing. They wouldn’t necessar-
ily know that the CSS file was required, or even where it is or what its file name is.
Again, having a single script dependency to use your component and having it just
work, managing its own dependencies, makes things simple for component consumers.

Dependency hell

Now, if you think our goal to have our Web Component be completely self-reliant is
adding up to more problems than it’s worth, I wouldn’t blame you. Prior to this next
feature that I'm going to show you, using <script> tags and linking to CSS files was
exactly what I did. It worked fairly well.

The problems start when you need to make your Web Components a little smarter
and more organized. In addition to the small |S dependencies I brought up before,
how do you best manage your HTML inside your component? It would be ideal, espe-
cially if there’s a lot of it, to have it outside your class and bring it in. It can be helpful
to keep the markup as a separate concern, not only so it doesn’t clutter your Web
Component class, but also so that multiple team members can work on a single com-
ponent and not all have to work in the same file when working on different concerns
like markup, controller logic, or style.

Another big concern is when you have a custom Web Component inside your cus-
tom Web Component. How do you best deal with this? Consider what would happen if
you made an application driven by a single component in your index.html page. This
component might have eight components within, and then each of those components
could have several components as well.

5.2

Using modules to solve dependency problems 99

JS dependencies in project

‘ Unlinked and
forgotten

Figure 5.2 Using <script> tags on the main HTML page means having
to remember to add every single JS file you use throughout.

HTML page

<script src=

>

<script src=
<script src=

.

<script src=
<script src=
<script src=
<script src=

y/

In this situation, it’s suddenly your job to

= Monitor every single component used in your project

= Make sure you have <script> tags for each component in your index.html file

= Delete references to any components no longer used

= Keep a complete list of any and all component dependencies, including them
in the index.html file

= Manage the load order of every component and component dependency,
ensuring that scripts load before they’re needed

= Stay in close contact with team members, given that you will all be editing the
same index.html file to manage all of this

There are lots of reasons for a better way than the mess figure 5.2 depicts, and, thank-
fully, in every major modern browser, we can use JS modules!

Using modules to solve dependency problems

If you are unfamiliar with the concept of modules and want a bit of a deeper dive,
please see the appendix. In short, however, we’re going to forgo our mess of <script>
tags that we need to maintain and instead load scripts and components using the new
import keyword. With this, we can reduce the fragility of including JS in our main
HTML file and make our Web Components responsible for managing their own
dependencies. It’s an extremely clean and organized way of working with custom com-
ponents. To demonstrate, let’s create a simple Web Component-based application
comprising a few different custom components to highlight this shift in strategy. In
the end, we’ll have an architecture similar to figure 5.3, which is a lot easier to manage
than figure 5.2 and solves our many concerns.

100 CHAPTER 5 Instrumenting a better web app through modules
Component
manages
HTML page dependency
Single link to use for another Same, but with

<script src=

one component component many dependencies

66600

Figure 5.3 The index.html page only references a single component, simplifying our code but still allowing
many dependencies.

5.2.1

Creating a musical instrument with
Web Components and JS modules

In this demo, I want to create a stringed instrument in our browser. I call it a Web
Harp! Each string is made by a Web Component, and, when strummed, it vibrates and
makes some sound. To keep it simple, it won’t be much to look at, as depicted in fig-
ure 5.4, but functionally it should be fun to play with.

Figure 5.4 Output of our Web Harp demo. Each white line is a
strummable string that vibrates and makes some noise.

We will use JS modules to manage all of our dependencies such that we’ll load only a
single JS file in our index.html, despite the fact that we’re using a few Web Compo-
nents. We won’t write our own audio engine, though—instead, we’ll import an exist-
ing one right into the Web Component that needs it.

Using modules to solve dependency problems 101

Another great thing about decentralizing our dependencies is that our initial
HTML page is dead simple, with only one referenced component, as depicted in the
following listing.

Listing 5.5 A minimal application HTML file for our Web Harp demo

Our single Web Component dependency,

html I . .
shne which itself is responsible for all other
<head> .
, , component dependencies in the app
<title>Web Harp</title>
<script type="module"
src="./components/app/app.js"> . .
</script> A.thlrd-part.y CsS sI]ake library to
<link href="csshake.min.css" give our strings a vibrate effect
type="text/css" rel="stylesheet">
link href="main. " .
Shink hrersmain.css N Some light CSS to manage style
type="text/css" rel="stylesheet">
on our overall HTML page
</head>
<body>
<webharp-app strings="8"></webharp-app>
</body>
</html>

Now, I'm cheating a bit with the CSS because I'm using a library to manage anima-
tion. So, the components for this project aren’t self-reliant in that regard, but they are
in every other aspect. The HTML in each component is super simple, too. Since we’re
just making some vertical lines to represent the strings in our harp, there’s very little
markup. All of this simplicity lets us focus on exploring]S dependencies using mod-
ules. We’ll explore using modules for managing HTML and CSS in the next chapter
to make everything much cleaner when a project requires lots of style and markup,
unlike this one.
In this project, we’ll be managing three components:

= <webharp-app> will contain our entire application and manage our mouse
input.

= <webharp-strings> will hold the strings in our application.

= <webharp-string> will be each individual string that we can strum.

These components will each be contained in their own folder, inside a master compo-
nents folder. This is depicted in figure 5.5, where you’ll also notice some extra files to
help us manage sound and animation. We’ll get to those extras as we progress.

Also note that we’ll be building up all of these components first to establish our
application’s minimalistic visual layout. Once done, we’ll finally put the <webharp-app>
in an index.html page, at which point we can preview the application before we move
on to add interactivity, animation, and sound.

102 CHAPTER 5 Instrumenting a better web app through modules

5.3-webharp-final
bin
s wraplib.js D Utility to wrap our audio library
components
app
5 app.js “— Main application component
string
3 string.js
strings
s strings.js
s acoustic_grand_piano-ogg.js

&ss csshake.min.css “— CSShake library for string animation

4 index.html

css Main.css <\/— Main page and light styling for page
5 midi.min.js

s midijs.wrapper.js <\/— Original and module-wrapped audio library

Figure 5.5 Web Harp example file structure

5.2.2 Starting with the smallest component

Let’s start at the smallest level and focus on the
<webharp-string> component. It’s going to be a
simple vertical line that we create using a <div>
tag, which we’ll style to be as tall as the container
and 2 pixels wide with a color of white, as depicted

in figure 5.6. Our component begins in the next
Figure 5.6 A single <webharp-

string> component centered over
a black background

listing.

// file: components/string/string.js

export default class WebHarpString ‘Exponschssasalnoduh

extends HTMLElement { <
strum(params) {} <
stopStrum() {} ‘ Empty function placeholders to fill in later

connectedCallback () {
this.innerHTML = '<div class="line"></div> \ <

Inner HTML of our

<style>\ string component

webharp-string > .line { \
background-color: white;\

Using modules to solve dependency problems 103

height: 100%; \
width: 2px; \

N\
</style>"';
}
}
if (!customElements.get ('webharp-string')) {
customElements.define (<

Registers our custom

'webharp-string', WebHarpString) ; <webharp-string> element

}

Note that we’re using the export default keywords prior to the class definition. This
marks our class as a JS module, which has the ability to be imported elsewhere. Our
connectedCallback, which happens when our component is added to the DOM,
should be no surprise given what you’ve already read in the other chapters. We are
simply setting our innerHTML to have a <div> with the style I mentioned earlier.

We vaguely know that we want to be able to strum this string. If you’ve ever
watched a guitar string, you might remember that it vibrates for a little while, but
eventually stops. So, without a real plan, let’s just stub in a strum method. We can
guess that it takes some parameters based on what note it plays and how forcefully it
was strummed. We’ll circle back to that later, but we can also guess that after a certain
amount of time, we’ll need to stop strumming; hence we can add an empty stopStrum
method.

5.2.3 Importing and nesting a Web Component
within a Web Component

Let’s move on to the <webharp-strings> component (listing 5.7). This component
will serve as the layout container for the several strings we plan to place horizontally
across the application. Given that our <webharp-app> component is just a thin wrap-
per around this main visual component, the <webharp-strings> component is how
the entire end application will look, as seen in figure 5.4.

Listing 5.7 A Web Component that contains multiple Web Harp strings

// file: components/strings/strings.js

import WebHarpString from '../string/string.js'; <F44447|mponsﬂmindwwud
export default class WebHarpStrings extends HTMLElement { <webharp-string> component
connectedCallback () {
let strings = '<div class="spacer"></div>";
for (let ¢ = 0; ¢ < this.getAttribute('strings'); c++) {
strings += ! Loops through and

<webharp-string></webharp-string>"; adds the number of

strings we want as
specified by the

strings += '<style>\ N A
strings attribute

webharp-strings { \
height: 100%; \
display: flex; \

104

CHAPTER 5 Instrumenting a better web app through modules

A
webharp-strings > webharp-string, div.spacer { \
flex: 1; . *1 Each <webharp-string> is laid out
P via a CSS flex container.
</style>"';

this.innerHTML = strings;
this.stringsElements = <
this.querySelectorAll ('webharp-string') ;

} Gets a list of all of our strings
through a querySelector

if (!customElements.get ('webharp-strings')) {

customElements.define ('webharp-strings', WebHarpStrings) ;

}

In our connectedCallback, we’ll create our <webharp-string> components in a for

loop, where the number of times we loop is how many strings we want. This compo-

nent takes an attribute named strings, which feeds into this for loop. As a result, we

can make a harp with as many or as few strings as we want!

Thankfully, we have CSS flexbox, which allows us to lay out our container very eas-
ily. Giving each string a rule of flex: 1, our strings will evenly space horizontally
across our container, which we’ve sized as 100% of the size of our application. I've also
added a spacer <div>; otherwise our first string would start at the very edge of our
container and be virtually invisible. We also use querySelectorall to put all the
<webharp-string> elements we just added into an array we can use later when we
flesh out interactivity in our component.

Most importantly, our very first line is

import WebHarpString from '../string/string.js';

We’ve learned a lot of exciting things so far in this book about Web Components, but
I really feel like this notion of importing another Web Component into this one,
entirely with JS, is a true level-up for the whole ecosystem. With this import, we’ve
enabled our application to know what a <webharp-string> is, and when we add it to
our innerHTML, our custom element acts exactly as it should. What’s more, we don’t
have to do anything in our index.html file to link to our Web Component or register it
in any way. It just works as a dependency of the component that needs it.

Despite this example being simple, there may be situations where we’d like to use
our <webharp-string> here as well as inside another component. With import, even
if importing the same file in multiple places, the request happens only once, with the
subsequent import request simply using the first result.

Additionally, we can safeguard our Web Components by not trying to register them
again if they’'ve already been used elsewhere, like this:

if (!customElements.get ('webharp-string')) {
customElements.define ('webharp-string', WebHarpString) ;

5.24

Using modules to solve dependency problems 105

With this in mind, we can import our Web Components wherever we want with ease.
Let’s now wrap our <webharp-strings> with the final application component,
<webharp-app>, which will hold the entirety of our application and will be the one
component that gets included on our index.html page.

Using a Web Component to wrap an entire web application

When making a web application like this, it can be easy to put your individual compo-
nents in your main HTML page. Perhaps you might put them in your <body> tag and
write some light application logic in a <script> tag to tie it all together.

Likely, your app will grow in size, you’ll keep adding components, and your appli-
cation logic will grow. As this happens, your index.html will get harder and harder to
maintain. When it’s time to start pulling major pieces out and repackaging them as
smaller components, there will likely be some refactoring.

I'd like to suggest something else. Create a Web Component that represents your
entire application. This component will have the same structure and lifecycle as the
rest of your components and import whatever dependencies you need. When this
component starts to become too big over the course of developing your app, you
can easily break pieces off into smaller Web Components. Because they’ll have a sim-
ilar structure to the rest of your components, there will likely be minimal refactor-
ing to do.

Listing 5.8 The Web Harp application Web Component

// file: components/app/app.js
import Strings from '../strings/strings.js';

export default class WebHarpApp extends HTMLElement {
connectedCallback() {
this.innerHTML = '<webharp-strings strings="' +
this.getAttribute('strings') + '"></webharp-strings>"';

}

if (!customElements.get ('webharp-app')) {

customElements.define ('webharp-app', WebHarpApp) ;
}
Our Web Harp application component is fairly simple. Like our last component, we
import any child components we need. In this case, we’re importing <webharp-
strings>, which, again, is the container that holds all our Web Harp’s strings. Similar
to the last component, we’re accepting an attribute called strings to specify how
many strings our Web Harp has and passing that on to the <webharp-strings> com-
ponent. Again, we are using export default prior to our class definition to define
this component as one that can be imported. Meanwhile, our index.html file is always
clean and easy to look at, as seen in the following listing.

106

CHAPTER 5 Instrumenting a better web app through modules

Listing 5.9 The Web Harp HTML file so far

<html>
<head>
<title>Web Harp</title>
<script type="module" <—— Single app component dependency
src="./components/app/app.js">
</script>
<link href="main.css" type="text/css" rel="stylesheet">
</head>
<body>
<webharp-app strings="12"></webharp-app> < Application component
</body>
</html>

When looking at this index.html file, note that the only thing we are linking to with
our <script> tag is our <webharp-app> component. Everything else is a dependency
of components downstream from the app component, as seen in figure 5.7, and we
thankfully don’t need to worry about them here. It’s again important to note that this
is possible because our <script> tag has a type of module. This is what enables module
loading, which in turn allows us to use the import keyword within anything that is
loaded as a result.

Web Harp application component HTML page

[—

- Import webHarpaApp module
Strings component

(String component) (String component) <webharp-app>

</webharp-app>

(I String component j (String componentl)
[[

(String component] (String component)

Figure 5.7 Nested Web Components inside an application Web Component, all imported as a
module from our main HTML page

There’s really nothing special in the main.css file: just the code to set the size and
color of our app and remove margins so that our app runs to the edges of our browser
window, as seen in listing 5.10 and rendered in our browser in figure 5.8.

5.3

Adding interactivity to our component 107

Figure 5.8 The current state of our Web Harp

body {
background-color: black;
margin: 0;
padding: 0;

}

webharp-app {

height: 100vh;

width: 100vw;
}
As of now, we’ve created the main structure of our application. The required compo-
nents are in place, so we can preview it in our browser (remember to use some sort of
local web server, as these modules may be blocked from loading if you just use your
filesystem). The look actually won’t change from now on, but we do need to add some
functionality and interactivity!

Adding interactivity to our component

The next step is to make our application work! Going forward, our goal is to add ani-
mation and sound by strumming the harp strings with our mouse. To do this, we’re
going to listen for mouse input by adding on to our connectedCallback in <webharp-
app>, defined in components/app/app.js.

// file: components/app/app.js

connectedCallback() {

108

53.1

5.3.2

Captures ’

the speed of
the strum

CHAPTER 5 Instrumenting a better web app through modules

this.innerHTML = '<webharp-strings strings="' +
this.getAttribute('strings') + '"></webharp-strings>"';

this. s’frlngsmement - . Saves a reference to the <webharp-
this.querySelector ('webharp-strings') ;

) X strings> element for later use
this.addEventListener ('mousemove',

e => this.onMouseMove (e)); Adds a mousemove listener to
} our application component

To use this element later, we’re querying and saving a reference to our <webharp-
strings> component using this.querySelector ('webharp-strings'); as seen in
listing 5.11. Most importantly, we’re adding an event listener to the component itself
(this) to listen for mouse movement:

this.addEventListener ('mousemove', e => this.onMouseMove (e)) ;

This listener we’ve added is using the fat arrow to preserve class instance scope in our
new onMouseMove callback.

Listening for mouse movement

Of course, the function we’re pointing to doesn’t exist yet. We’ll need to add
onMouseMove to our class in order to capture this event:
onMouseMove (event) {
this.stringsElement.points = {
last: this.lastPoint,
current: { x: event.pageX, y: event.pageY } };
this.lastPoint = { x: event.pageX, y: event.pageY };
}
In this callback, we’re both capturing the current mouse coordinates in a variable
and, before that, sending both the current and last mouse coordinates to our
<webharp-strings> element. Sending both of these coordinates enables us to get the
distance traveled between our moves, which we can then use to guess how forcefully
or fast our strings are being strummed with the mouse.

Passing data to child components

Note that we are sending these points through a getter method in our <webharp-
strings> component, so let’s populate a setter in components/strings.js with the
code in the following listing.

Listing 5.12 Sending points to the Web Harp strings component

// file: components/strings/strings.js

set points (pts) { stringsElements exist
if (!this.stringsElements) { return;
if (!pts.last || !pts.current) { return; }
let magnitude =

Math.abs (pts.current.x - pts.last.x);

J Checks if our query-selected
}

Checks that the current and last
coordinates are populated

Adding interactivity to our component 109

let xMin = <
Math.min (pts.current.x, pts.last.x);
let xMax = Math.max (pts.current.x, pts.last.x);

Captures the lowest and
highest values of the
current and last points

for (let d = 0; <t
d < this.stringsElements.length; d++) {
if (xMin <= this.stringsElements[d] .offsetLeft && xMax >=

this.stringsElements[d] .offsetLeft) {
let strum = { Loops through the

strings and strums the
relevant ones

power: magnitude,

string: d
Y
this.stringsElements[d].strum(strum) ;

}

OK, so this listing is a little complex, but we can break it down. First, you might recall
in the first steps of this example that we looked up each one of our <webharp-string>
components, or each visual string, and saved them all to an array we could use later.
Well, now is when we use them.

First, we should probably acknowledge that we could potentially get a mouse event
coming in before everything is set up, so we’ll test if our string array is populated first
and bail out of the function if not:

if (!this.stringsElements) { return; }

We’ll also check that both current and last coordinates are populated, especially
because during the first mouse-move event, we won’t have that last coordinate:

if (!pts.last || !pts.current) { return; }

Next, we’ll capture the speed of the strum by getting the distance between our two «x,
or horizontal, mouse coordinates, as well as capturing the lowest and highest values of
our current versus last coordinates:

let magnitude = Math.abs (pts.current.x - pts.last.x);

let xMin = Math.min(pts.current.x, pts.last.x);
let xMax = Math.max(pts.current.x, pts.last.x);

With these three helpful values, we can loop through the array of <webharp-string>
components. If the leftmost edge of our string falls in between the last and current x
coordinates, then we know to strum that particular string. We can send the numeric
index of which string was strummed, as well as the magnitude, or how forcefully it was
strummed:

for (let d = 0; d < this.stringsElements.length; d++) {
if (xMin <= this.stringsElements[d].offsetLeft && xMax >=
this.stringsElements[d].offsetLeft) ({
let strum = {
power: magnitude,
string: d
Y

110

5.3.3

CHAPTER 5 Instrumenting a better web app through modules

this.stringsElements[d].strum(strum) ;

}

And with this, we have some interactivity! Unfortunately, while we do successfully
strum our string at this point, our string doesn’t actually do anything when strummed
yet. We can test that things actually work, however, by adding a console.log to com-
ponents/string/string.js
strum(params) {

if (this.timer) { clearTimeout (this.timer); }

this.timer = setTimeout(() => this.stopStrum(), 1000);

console.log (params) ;
}
Now, if you run the experiment and open your console log, you should be able to see
exactly which string is being strummed as well as how hard, right in your console.

Making your components shake with CSS

As you might expect, there are two last things to add: visual and audio feedback (it is an
instrument, after all). Let’s add the visual first, with the caveat that it’s not really a lesson
in Web Components or JS modules, just something we want to add to make this demo
work. To do this, we’ll pull in a CSS-related project called CSShake, which you can find
at http://elrumordelaluz.github.io/csshake/.

The purpose of CSShake is to make your ele- //:
ments look like they are shaking, which I've done
my best to depict in figure 5.9. There are tons of dif-
ferent ways the library allows you to shake things.
It’s one of those well-built libraries you never
thought you’d use, but now that we need it, it’s
great how well-thought-out it is! For the purposes of
this demo, we’ll just link to the CSS file and allow j
style to affect elements in our component as nor-
mal. In chapter 7, we’ll turn this notion around and Figure 5.9 CSShake takes an

element on your page and animates

protect our Web Component from style creeping in it with various ways of shaking.
with the Shadow DOM.

First, let’s add it to our HTML file:

“€lemenyt,

<head>
<title>Web Harp</title>
<script type="module" src="./components/app/app.js"></script>

<link href="main.css" type="text/css" rel="stylesheet">

<link href="csshake.min.css" type="text/css" rel="stylesheet">
</head>
To use CSShake, we simply add classes to and remove them from the elements we
want to shake, as follows.

http://elrumordelaluz.github.io/csshake/

5.4

Wrapping third-party libraries as modules 111

Listing 5.13 Adding CSShake classes to shake our strings when strummed

// file: components/string/string.js

strum(params) {

if (this.timer) { clearTimeout (this.timer); } Adds shake classes: a base

“shake,” a class to indefinitely

let dur = params.power * 10 + 250; b
shake, and a horizontal shake type

this.classList.add(<
'shake',
'shake-constant',
'shake-horizontal') ;

if (Qur < 500) If the strum ist strong,
this.classList.add('shake-little'); only shakes a little bit
}

this.timer = setTimeout(() => this.stopStrum(), dur);

}

stopStrum() {
this.classList.remove ('shake', 'shake-constant', 'shake-horizontal',

shake-little'); : Removes all the classes

once the strum stops

Here, as already mentioned, we begin by clearing a timer if one exists. We’re also cal-
culating a duration variable in milliseconds by factoring in the strum power (or how
fast the string was strummed) and adding a minimum baseline of 250 milliseconds, or
a quarter of a second.

For the visual strum, we can add a few CSS classes to describe the string shaking.
It’s using the base shake class, and we want it to shake constantly and horizontally. If
the strum isn’t very strong, we’ll add a shake-1little style to slightly differentiate a big
versus little strum.

Our strum will be as long as our calculated duration. We’ll stop the strum when the
timer runs out, at which point we’ll remove all the classes we’ve added to the
<webharp-string> component.

Wrapping third-party libraries as modules

We need one last thing to complete our Web Harp experiment, and that is sound! The
Web Audio API is a complex subject, and the same can actually be said for any real-
time audio and tone generation. Luckily, we have]S libraries we can use to hide all
that complexity from us. One such library I've enjoyed playing with is MIDLjs
(https://github.com/mudcube/MIDLjs/). If you're familiar with MIDI, you know
that it’s mainly used to connect music devices and not actually generate sound itself,
but this library offers real-time tone generation as well. If you look at the commit his-
tory, you might notice that the last commit date was in 2015. There’s definitely noth-
ing wrong with authoring a good library like this and then moving onto other things
after it’s sufficiently good. The downside is that this project isn’t using the latest JS lan-
guage features like modules, so we can’t import the library into our Web Component.

https://github.com/mudcube/MIDI.js/

112

54.1

5.4.2

CHAPTER 5 Instrumenting a better web app through modules

Frontend tooling for wrapping a module with Node.js

Or can we? Though it doesn’t appear to be a proper project on its own, Owen Dens-
more published a Medium article in 2017 discussing wrapping JS dependencies as
modules. Inside one of his projects lives a script called wraplib.js (https://github
.com/backspaces/as-app3d/blob/master/bin/wraplib.js). As seen in figure 5.10, the
script takes a third-party library and wraps it up as a module that can be imported into
your project.

Wrapped library

export default {

[Third-party library]— --=---—+

Node.js [Third-party library]
wrapper }
utility

Figure 5.10 Using a Node.js utility to wrap a third-party library as an importable module

I’'ve pulled this script into the project’s bin folder. Also required is the actual MIDIjs
library. Typically, we would have installed MIDLjs from npm, which you can certainly
do by running

npm install midi.js

For convenience’s sake, however, I've put a minified MIDLjs into the project folder in
this book’s GitHub repo, and we can use it directly from there. Assuming you have
Node js installed from before, navigate to your project directory in the terminal and do

node ./bin/wraplib.js midi.min.js MIDI > midijs.wrapper.js

At only 33 lines of code, the wraplib.js script is pretty simple if you open it up. Basically,
with the first argument, you're telling it what file you’d like to wrap; the second is what
global variable name the library is stored under, and then it pipes to an output file.

Not perfect, but does the job

You may have done a double take when I described the second parameter. Wraplib is a
bit of a hack, and a common argument is that it shouldn’t clutter the global name-
space like it does. With our example, once we start the library, if you opened the dev
tools and console logged window.MIDI, you'd see the library we are wrapping. This
pattern of putting things in the global namespace is a bit messy; but, on the other
hand, it’s a hack that enables us to import a library that hasn’t been updated for a few
years. And of course, this node script to wrap the library could easily make it into your
frontend build process with Gulp, Grunt, or even just npm run, as we’ll explore in
chapter 12.

https://github.com/backspaces/as-app3d/blob/master/bin/wraplib.js
https://github.com/backspaces/as-app3d/blob/master/bin/wraplib.js
https://github.com/backspaces/as-app3d/blob/master/bin/wraplib.js

5.4.3

Wrapping third-party libraries as modules 113

Using the wrapped module to play some notes

With midi.js wrapped up as a module, let’s import and use it! In /string/string.js, we’ll
initialize and load a piano soundfont in addition to our previous string markup.

Listing 5.14 Initializing MIDL.js, preparing to play piano notes

// file: components/string/string.js

connectedCallback () { Initializes the MIDI plugin with an
MIDI.loadPlugin ({ acoustic grand piano instrument

soundfontUrl: './',
instrument: 'acoustic_grand_piano',
onsuccess: () => this.onLoaded()
)i
this.innerHTML = '<div class="line"></div> \
<style>\

webharp-string > .line { \
background-color: white;\
height: 100%; \
width: 2px; \

I\
</style>"';
}
onLoaded () { Sets flag to indicate we are ready when
this. ready = true; the plugin has been initialized

Like midi.js, I've included it at the root of the project. Alternately, you may find it and
copy it from the original source repo: https://github.com/mudcube/MIDLjs/
tree/master/examples/soundfont. In the same file, we’ll add a playSound function
and trigger it from our strum method.

Listing 5.15 Adding note playback from the stxrum function

// file: components/string/string.js

strum(params) {
if (this.timer) { clearTimeout (this.timer); }

let dur = params.power * 10 + 250;

this.classList.add('shake', 'shake-constant', 'shake-horizontal');

if (dur < 500) {

this.classList.add('shake-little"');

}

this.timer = setTimeout(() => this.stopStrum(), dur);

this.playSound (params) ; < (Calls playSound function when strumming
}

playSound (params) { Re.turns early from.ful’lction if
if (ithis. ready) { return;)} third-party library isn’t ready yet

let note = 60 + params.string * 5; q—‘ Sets the note we want to play
MIDI.setvolume (0, 127); depending on the string strummed

https://github.com/mudcube/MIDI.js/tree/master/examples/soundfont
https://github.com/mudcube/MIDI.js/tree/master/examples/soundfont
https://github.com/mudcube/MIDI.js/tree/master/examples/soundfont

114

544

CHAPTER 5 Instrumenting a better web app through modules

MIDI.noteOn (0, note, params.power,

0); <«
MIDI.noteOff (0, note, 0.75);
} Starts note playback with same power
Sets the duration of the as how hard the user strummed

playback to % of a second

There are some minor details here that deal with the note we’re playing. Namely,
we’ll start on a C note in the fourth octave and go up in increments of five half steps
for each string index plucked. As we’re venturing into a bit of music theory here,
don’t worry if you don’t understand, but feel free to play with the numbers a bit.
Also, when turning on the note, we’re using the strum power as the note’s velocity
(think of a piano key and how hard you hit it as the velocity). Finally, we’ll set a dura-
tion of 0.75 seconds for the note delay (or how long it sounds after pressing). I'm
using a constant number here because a piano sound doesn’t have a lot of variability
in length before it drops off.

No more audio autoplay

Unfortunately, after I initially wrote this chapter, Chrome started shipping versions in
which background audio could not be played until a user took action, like with a
mouse click. While I can certainly understand how annoying audio playing without
you requesting it is, it’s a bit of a downer for fun experiments like this.

Nevertheless, we need to address it to make the Web Harp work! To do this, we’ll
simply force the user to start the experience by clicking a screen that lives as a <div>
tag covering the initial page. The next listing shows our modified index.html file.

Listing 5.16 Clickthrough covering the page to address Chrome’s autoplay feature

<html>
<head>
<title>Web Harp</title>
<script type="module" src="./components/app/app.js"></script>
<link href="csshake.min.css" type="text/css" rel="stylesheet">
<link href="main.css" type="text/css" rel="stylesheet">
<script>
function clicktostart() {
document .querySelector ('.audio-fix') .style.display = 'none';
document .querySelector ('webharp-app') .style.display =
"inline-block'; B —
} When clicked, makes the
</script> clickthrough display as none and
</head> the Web Harp app display normally
<body>
<webharp-app strings="12"></webharp-app>
<div class="audio-fix" <G
onclick="clicktostart()"> Adds the Clickthrough div that
Click Me To Start covers the entire page, forcing the
</div> user to click to take action
</body>

</html>

Wrapping third-party libraries as modules 115

Lastly, we just need to style the clickthrough <div>, as well as allow both that <div>
and the application to stack on top of each other by absolutely positioning both via
CSS. The next listing shows this CSS added to what we previously had.

body {
background-color: black;
margin: O0;
padding: 0;

} Styles and positions the
. .) clickthrough element
.audio-fix {

position: absolute;

width: 100vw;

height: 100vh;
background-color: #2a2a2a;
color: white;

font-size: xx-large;
display: flex;
justify-content: center;
align-items: center;

}

webharp-app { Initially sets the Web

height: 100vh; Harp app to not display

width: 100vw;

display: none; _ Allows the Web Harp app to go
position: absolute; - underneath the clickthrough

}

With the clickthrough in, the user sees figure 5.11 before being able to start the Web
Harp.

Click Me To Start

Figure 5.11 The user must click to start the Web Harp to enable
audio and not be blocked by Chrome

116

5.4.5

CHAPTER 5 Instrumenting a better web app through modules

Playing the Web Harp

Once done, we can reload our Web Harp, run our mouse across the strings, and play
some music! Some things can definitely be improved with this example. Our inline
HTML and CSS look pretty ugly with all of those slashes to continue the string over
the line breaks. Also, it would be nicer if we could focus on our Web Component logic
in the class and separate the CSS and HTML to somewhere else. These things would
certainly make our component much more readable and organized. In the next chap-
ter, we’ll explore another ES2015 concept called template literals that will help us
clean things up!

Summary

In this chapter, you learned

How Web Components can manage their own dependencies, including other
Web Components, by using modules, as well as how having a single import to
use your Web Component can avoid confusion about how to include the com-
ponent on your page

How Web Components can be a bit more self-reliant by placing CSS inside the
component, avoiding the need to have to manage many CSS files or manage
rules for many components in the same CSS file

Wrapping third-party libraries as a module using Node.js, even if the original
author never intended the library to be used that way, avoiding having to make
an exception for an otherwise self-reliant component

Building a musical instrument in our browser using Web Components, with
even the main application being a Web Component comprising Web Compo-
nent children, keeping the index.html file tiny and manageable

Part 2

Ways to tmprove
your component workflow

C reating your own HTML element through the Custom Element API is
pretty amazing. From the outside, it looks like any other tag on the page, but
inside, it’s as complex or as simple as you need it to be! Now, though, it’s time to
set our sights inward and dive deep on the workflow for creating a great Web
Component. This is where we go beyond Custom Elements and explore the rest
of the collection of standards that make up Web Components.

As with any new technology, Web Components suffered some missteps, as
with the now-deprecated HTML Imports; but this part will take that misstep and
break it down into relevant pieces you can go forward with that do have great
support. We’ll compare one of those pieces, the template tag, with other ways of
authoring your inner HTML and CSS to make up your component’s Ul

Finally, this part of this book ends with the most renowned Web Component
feature: the Shadow DOM. Though not a required part of Web Components, it
is a huge shift in how we work with the browser’s DOM. Creating a separate mini
DOM just for your component is extremely powerful, as it removes frustrations
that web developers have had for ages by creating a protective layer around your
component where styles don’t accidentally creep in, and your inner elements
aren’t tampered with via mistargeted JS.

Because the Shadow DOM is such a powerful feature and such a change
from how we did things before, there are some important caveats to cover as
well. These caveats include polyfilling in the increasingly rare situation where

118 PART 2 Ways to improve your component workflow

your browser doesn’t support Web Components, as well as accommodating situa-
tions where you actually want style to creep in, like when using a design system.

Much of this section is devoted to the Shadow DOM because it’s such a game
changer.

Markup managed

This chapter covers

Multiline string syntaxes

ES2015 template literals (with variables)
Templating HTML/CSS using JS logic and functions
Templating with lit-html

Tagged templates

This chapter will keep building on what we’ve learned from previous chapters,
especially the last one, where we learned about modules. So far, we’ve managed to
create self-reliant Web Components that load their own dependencies, including
other Web Components. With this, our index.html is minimal. Between this, learn-
ing to use attributes, and building our own component API in chapter 4, we essen-
tially cleaned up our use of Web Components from the outside looking in.

We left off with a somewhat messy-looking component on the inside, however.
Shoving lots of markup and CSS into the component’s innerHTML works well but
isn’t very readable, especially the way we’ve been working with multiline strings. In
this chapter, we’ll address this problem, and, in the end, we’ll have clean and orga-
nized components on the inside and out.

119

120

6.1

6.1.1

Each line is enclosed
by single quotes and
followed by a plus to

CHAPTER 6 Markup managed

String theory

Strings are one of the most basic things in JS. You no doubt use them constantly in
every aspect of web development. Why go over such a simple concept? The answer is
that there is a new JS feature in ES2015 that greatly cleans up our Web Components.

So, what’s the big deal? Prior to ES2015, there were a couple different string syn-
taxes that did the same thing—double quotes and single quotes:

"Hi I am a string"
or
'Hi I am a string'

If you recall from prior examples, we were trying to shove all of our HTML into a
string and then set our component’s innerHTML with that string. With a tiny amount of
HTML, it’s fine:

this.innerHTML = '<div class="someclass"></div>";

When inline HTML gets ugly

The problem is when the HTML you want to add starts getting bigger. Even this is
semi-manageable:

this.innerHTML = '<div><input type="text"/><button>Submit</button></div>";

At some point, however, having everything on a single line becomes unreadable and
hard to manage, so we start expanding our string to cover multiple lines. Let’s exam-
ine an input form from Mozilla’s MDN documentation.

Listing 6.1 Sample input form markup in a JS string

this.innerHTML = '<form> \ <—— Each line has a backslash to continue to the next.
<div> \
<label for="example">Let’s submit some text</label> \
<input id="example" type="text" name="text"> \
</div> \
<div> \
<input type="submit" value="Send"> \
</div> \
</form>"';

The alternate way of doing multiline strings in this next listing is a little more verbose.

Listing 6.2 An alternate way of doing multiline strings

this.innerHTML = '<form>' +
t<div>' o+
'<label for="example">Let’s submit some text</label>' +
'<input id="example" type="text" name="text">' +
t</div>' o+
'<div>' +

continue.

6.1.2

Backticks allow multiline
strings without extra
formatting.

6.2

6.2.1

Using template literals 121

'<input type="submit" value="Send">' +
'</div>' o+
'</form>";
Each of these examples is less than ideal. What’s desirable is to let HTML look like it
would on a real HTML page. This means multiple lines, indentation, and, most
importantly, no added overhead from using something special like a backslash or + to
extend over multiple lines.

String syntax with the backtick

Let me introduce a slightly different way of writing a string in the following listing: the
backtick character (7).

Listing 6.3 Using the backtick to enclose HTML strings

this.innerHTML = ‘<form>

<div>

<label for="example">Let’s submit some text</label>

<input id="example" type="text" name="text">

</div>

<div>

<input type="submit" value="Send">

</div>
</form>";
This way of string writing is called template literals, as opposed to the string literal way
we’ve done it before. While the previous example solves our readability and workflow
problems, template literals do much more that can help us! If you’re not familiar with

using template literals or using expressions within, please refer to the appendix.

Using template literals

With this better way of writing strings, you might imagine that there could be some
great ways to pull HTML in from different sources. Perhaps you have some HTML
you’ve written in a different HTML file. You’ve tweaked the markup and style to look
exactly how you want—and then it’s time to integrate it. We’ll now explore a few ways
of bringing this HTML in.

Business card creator

Let’s try a little exercise and create a browser-based business card creator. The idea is
that we’ll provide a few different options that the user can customize; then, theoreti-
cally, they’d be done and ready to print. There won’t be any logic or interactivity
inside the card itself; we just want to display a static card with some values like name,
job title, email, and so on that we can change depending on what variables are used.
Unlike previous exercises, we're really going to focus on layout and style up front, as
opposed to component logic. Once we finish up the next demo, we’ll have results like
those in figure 6.1.

122 CHAPTER 6 Markup managed

O

Emmett Brown

Student of all Sciences

phone: 555-4385
emmett@docbrown.flux / www.docbrown.flux

Figure 6.1 End result of the next demo: a business card that allows us
to customize values like name, job, title, and so on

Think about what we’ve done with Web Components up until now. Any visual treat-
ment has been done by placing our HTML in JS and setting our component’s inner-
HTML property. This is fine if we know the HTML and CSS we want to use, but if layout
and style are a primary concern, this isn’t the best way to create markup and iterate.

No, the best way to do this is to simply go back to web development basics and cre-
ate something right in an HTML file with markup and CSS. It’s easy to preview and
tweak without worrying about any Web Component or JS complexities. In terms of val-
ues we want to replace, we can use our template literal syntax right in the HTML, as
shown in listing 6.5 and rendered in our browser as figure 6.2.

${p first_name} ${p.Jast_name}

${p.title}

phone: ${p.phone}

Figure 6.2 Initial business
card layout without style

${p.email} / ${p.website}

Listing 6.4 Markup for business card with inline expressions

<div class="biz-card">
<div class="logo"></div> Placeholders for first name and
<div class="top-text"> J last name values
<hl>${first_name} ${last_name}</hl>
<h3>${title}</h3> <+— Placeholder for job title
</div>

<div class="bottom-text">

6.2.2

Using template literals 123

<h3>phone: ${phone}</h3> < Placeholder for phone number

<h3>${email} / ${website}</h3>
Placeholders for email

and website

</div>
</div>

Iterating design with just HTML and CSS

It’s fairly simple markup for an HTML file, but it starts to be a bit much to throw in
your Web Component class along with everything else. Our business card has a <div>
container for the entire card, which is made up of a logo, followed by a name and job
title. The text on the bottom of the card includes a phone number, email address,
and website.

What really makes this come together is the CSS. The style rules can be seen in list-
ing 6.5, while the end result is depicted in figure 6.3.

0

${first_name$(}. .$;{ last_name}

phone: ${phone}
${email} / ${website}

Figure 6.3 A business card made with HTML and CSS prior to Web
Component integration

Listing 6.5 Style for the business card

<style>

.biz-card { <—— Main business card style
font-size: 16px;
font-family: sans-serif;
color: white;
width: 700px;
height: 400px;
display: inline-block;
border-color: #9a9a9a;
background-size: 5%;
background-image:
url ("background-pattern.png") ;
box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba
(0, 0, 0, 0.19);

If copying this code, swap
in your own background
. image here.

124

6.3

CHAPTER 6 Markup managed

.biz-card .logo { <+—— Style for logo
height: 100px;
margin-top: 10%;

text-align: center; !fCOPﬁ“gtMSCOqE,SWaP
background-image: in your own logo image
url ("biz-card-logo.png") ; here.

background-size: contain;
background-position-x: center;
background-repeat: no-repeat;

}

.biz-card .top-text { <+

. Remaining styles for the
text-align: center;

) rest of the text

.biz-card .top-text hl {
font-size: 2.5em;
margin-bottom: O0;

}

.biz-card .top-text h3 {
margin: 0;

}

.biz-card .bottom-text {
text-align: center;
margin-top: 10%;

}

.biz-card .bottom-text h3 {
margin: 0;

}
</style>
Of course, I spent some time iterating and tweaking my markup and style to get the
final business card result, but that’s the point! Keeping our visual design away from
the Web Component and our overall project can keep us focused on really designing
and styling it well.

With our browser rendering the raw template literal syntax—${first_name}, for
example—these expressions are a little ugly to look at in context. Even so, we can try
out a variety of different names, email addresses, and so on to make sure our design
holds up in different contexts before ultimately putting the placeholder expression
in. With this, we focused on our markup and style outside the scope of a hypothetical
overall application and even the Web Component itself. With no JS in sight, we could
even pass this off to a designer or front-ender who might be a little afraid of code.
Once we’re happy with our markup and style, how can we then use our business card
in our Web Component?

Importing templates

This is the point where the new]S features we’ve been learning come together
extremely nicely. Specifically, I'm talking about combining template literals with JS
modules.

6.3.1

Importing templates 125

Let’s start a new project to host a business card Web Component. Our index.html
shown in the next listing will again be dead simple, just serving to place the Web Com-
ponent in our DOM and load the component’s JS definition.

Listing 6.6 New page to host our business card component

<html>
<head>
<title>Business Card</title>
<script
type="module"
src="components/bizcard/bizcard.js"> Includes the
. <éscr1pt> Web Component
</head> definition module
<body>
</bogbiz—card></blz—card> Declares the Web
Y Component on the page
</html>

Once finished—and once our component does its job of hosting the HTML and CSS,
and letting us specify the values we’d like to swap in for our placeholder expressions—
we’ll get the result depicted in figure 6.1 at the start of this chapter.

Keeping markup out of the main component logic

Next up, of course, is to work on our component definition class, but with a little bit of
a twist: we won’t include any HTML or CSS in the next listing because we are separat-
ing the concern to another module.

Listing 6.7 Business card customizer component

import Template from './template.js'; Imponsour

class BizCard extends HTMLElement { template module
connectedCallback() {

this.innerHTML = Template.render ({ Usesthetempkueto

first_name: 'Emmett!, render HTML/CSS into
lést_name: Brown', . thecomponenfs
title: 'Student of all Sciences', innerHTML

phone: '555-4385",

email: 'emmett@docbrown.flux',

website: 'www.docbrown.flux'
)i

}

if (!customElements.get('biz-card')) {

customElements.define('biz-card', BizCard);
}
As we don’t have any interactivity right now, and we’re simply displaying a business
card—<biz-card> with some parameterized text—we just have to set our compo-
nent’s innerHTML.

126

6.3.2

CHAPTER 6 Markup managed

Prior to this chapter, we’d simply set the innerHTML to an ugly-looking string in the
component itself. If we had variables to put in the string like we do now, with name,
email, and so on, it would be even uglier! In the spirit of making our projects cleaner
and more organized, let’s import our HTML via a JS module.

You might be asking yourself, why a JS module? Given that our goal here is to have
our component render HTML, why not import HTML? Unfortunately, JS is the only
valid module type supported right now, but perhaps in the future we’ll be able to
import other types. In fact, Chrome now appears intent on implementing both CSS
and HTML modules, but we’ll need to wait a bit for that. In the next chapter, I'll
briefly get into the now-defunct HTML Imports as an early attempt to tackle this prob-
lem, though these were only imported from another HTML directive and not through
JS, as we are trying to do now.

A module just for HTML and CSS

All that said, using JS to hold our HTML is pretty powerful and enables us to insert
some logic when we need it. First, let’s go simple and create the module that holds our
template, shown in the following listing.

Listing 6.8 Defining our template module

export default {
render (props) {
return "${this.html (props)}
${this.css (props)} ;

Combined HTML
and CSS to render

3 Function to return
html(p) { return ‘‘; 3}, < future HTML
css(p) { return “*; } <—— Function to return future CSS

}

You’ll note right away that I don’t have HTML or CSS here yet, and that’s because 1
want to talk about the structure without markup getting in the way.

First off, you might notice that this is not a class, unlike every other module we’ve
been using. You are certainly free to use a class here if you’d like, but there’s really no
reason to do so, and it just adds the extra step of instantiation and storing the instance
if you need to use this module multiple times throughout the class.

Instead, by not making it a class, we can use it right away in our Web Component
by calling on the import and the function it contains:

Template.render (

My render method combines both the HTML and CSS from their respective methods.
I certainly could have just bundled all of the markup into one; but I think it’s more
maintainable to separate them out and offer a bit more flexibility on how we want to
bring in and use either one, as figure 6.4 shows.

Now, how to fill those empty template literals with content? The obvious answer is
to open up the HTML file we created earlier in this chapter and simply copy and

Importing templates 127

Keeping this class minimal by storing all HTML/CSS here

Web Component class Template module
Component lifecycle <divslots of html</div>
. f <style>

Concise component logic render function pulls ezl | }
e 1 HTML/CSS : C
| Render HTML/CSS kq4----—-—-—--——-—- > </style>
o ________ |

Figure 6.4 Keeping your Web Component class small by using another module

paste. If you're just working with one or a few pieces of markup like that, then copy
and paste is pretty easy. However, what if you were working with a large team of pro-
duction assistants who didn’t touch JS code or source control and were churning out
dozens of HTML/CSS templates and constantly iterating with a team of designers?
This might sound far-fetched to some, but I've worked on projects where we were
building an application shell to host many pages of something like a quiz, where each
page had a different enough layout that we couldn’t use a consistent template.

In these cases, you might want to automate the process of taking HTML that can
be previewed standalone in a browser all the way to your JS-based module. I've done
exactly this in the GitHub repo for this section. There, I've created an automated
Node js tool that takes an HTML source file and automatically fills the template mod-
ule we’ll use in our business card (figure 6.5).

6.3-businesscardcomponent Node.js tool then converts

bin HTML/CSS to JS for template

5 htmi2template.js 4[Node.js tool J<— -

components I :
bizcard : :
& bizcard.js Y I
s template.js 4[Template module] :

htmlsource :

4 bizcard.html 4[Source HTML/CSS J—— - =
background-pattern.png

. Normal HTML/CSS is ingested
biz-card-logo.png by Node.js tool

5 index.html

Figure 6.5 Example Node.js-based tool for automating JS module population with an
existing HTML file

128

6.4

CHAPTER 6 Markup managed

The downside is that these use cases are likely to be so different from each other that
my example only serves as a starting point. Wherever the HTML/CSS comes from,
automated tool or no, our business card ends up looking like figure 6.6.

0O

Emmett Brown

Student of all Sciences

phone: 555-4385
emmett@docbrown.flux / www.docbrown.flux

Figure 6.6 Results of integrated template so far

Template logic

JS-driven HTML and CSS has a lot of potential that can be left undiscovered when
using large blocks of markup as is (whether automated or copy and paste). To explore
what I mean, let’s allow a bit of customization for our business card. We’ll allow the
user to select from a list of logos and tiled backgrounds to personalize their card, as
shown in figure 6.7.

Logo: shop big dots

BackgroundZATEENN
squares
stripes
diamond

Emmett Brown

Student of all Sciences

phone: 555-4385
emmett@docbrown.flux / www.docbrown.flux

Figure 6.7 Allowing customization with the business card logo and background

6.4.1

Template logic 129

For this, I'd like to briefly touch on a more DIY approach and then branch out to a
more recent class of options with a lot of potential.

Creating menus from data

Let’s start by writing some JS to generate the option lists shown in figure 6.8.

Logo v mobius strip Backgroun v big dots
shopping bag little dots
copper splash squares
star stripes
cone diamond

Figure 6.8 Two option lists we will be adding to our component in order to
customize the business card

We’re simply going to continue building on top of our business card component with
the generated template.js left intact. To enable this, we’ll add some additional data to
pass into our Template.render method in our bizcard.js Web Component definition,
as shown in the following listing.

Listing 6.9 Passing menu options to the template

this.innerHTML = Template.render ({
first_name: 'Emmett',
last_name: 'Brown',
title: 'Student of all Sciences',
phone: '555-4385",
email: 'emmett@docbrown.flux',

website: ‘'www.docbrown.flux', Business card background options
backgroundChoices: [
{ name: 'big dots', uri: './images/big-dot-pattern.png'},
{ name: 'little dots', uri: './images/tiny-dot-pattern.png'},
{ name: 'squares', uri: './images/square-pattern.png'},
{ name: 'stripes', uri: './images/stripes-pattern.png'},
{ name: 'diamond', uri: './images/diamond-pattern.png'},
1 . Business card logo choices
logoChoices: [
{ name: 'mobius strip', uri: './images/mobius-logo.png'},
{ name: 'shopping bag', uri: './images/bag-logo.png'},
{ name: 'copper splash', uri: './images/splash-logo.png'},
{ name: 'star', uri: './images/star-logo.png'},
{

name: 'cone', uri: './images/cone-logo.png'},

130

6.4.2

CHAPTER 6 Markup managed

To be specific, we’ve added two arrays: one for the tiled background of the card and
one for the logo graphic in the center. We’ll use these to populate two <select> drop-
downs to customize our card.

To populate these drop-downs, we’ll add some HTML to our template.js module,
shown in the next listing.

Listing 6.10 Calling out to a function-based expression to render our menus

html (p) {
return °

<div class="logo-picker">
Logo: ${this.options(p.logoChoices)}

</div>

<div class="background-picker">Background:
S{this.options (p.backgroundChoices) }</div>

<div class="biz-card">

<div class="logo"></div>

<div class="top-text">
<hl>${p.first_name} ${p.last_name}</hl>
<h3>${p.title}</h3>

</div>

Populating HTML
with logo choices

Populating HTML with
background choices

<div class="bottom-text">
<h3>phone: ${p.phone}</h3>
<h3>${p.email} / ${p.website}</h3>
</div>
</div>";
Iy
Note that even though we’re using these option arrays originally defined in the Web
Component definition, just passing the array wouldn’t do much besides render a raw

array. That’s where a custom options method comes in.

More generation logic, harder automation

With these new <select> menus, we’re doing something a bit new with template liter-
als. Instead of simply using a variable to populate, we’re using a function from our
template with a return value containing the string with the menu, as figure 6.9 shows.
Not only that, but we’re using the same function to generate both menus, only differ-
entiated by the list of options we pass in, as shown in the following listing.

Listing 6.11 Function to convert an array of choices to menu options

options (list) {
let choices = '°; Loops through
for (let ¢ = 0; ¢ < list.length; c++) { list of choices
choices += “<option value="${list[c].uri}">${list[c].name}</option>";
}

return ‘<select>${choices}</select>";

Appends option tag
with choice to string
Returns menu populated

with menu items

6.5

Element caching

<div class="logo-picker"> ${iogos} </div>
<div class="background-picker">(${bgs})</div>
1

<div class="logo"></div>
<div class="top-text">
<hl>${p.first name} ${p.last name}</hl>
<h3>${p.title}</h3>
</div>

<div class="bottom-text">
<h3>phone: ${p.phone}</h3>
<h3>${p.email} / ${p.website}</h3>
</div>
</div>

<div class="biz-card"- L _ _ _ ___.

131

|
|
L — m <select>
|
|
-

<option></options>

<option></option>

<option></option>

<option></option>

(J
[)
(opriomeroption:)
[)
[)

</select>

Figure 6.9 Calling out from an HTML template to a JS function to generate menu options from an array

Next, we need to have our business card component react to selections in the menu.

This, in a roundabout way, brings us to a last helper function I like to put in my

template js files.

Element caching

Consider that we’ll need to add event listeners to our <select> menus in order to lis-

ten for change selection. To do this, we’ll naturally need to get references to them. It’s

of course easy enough in the connectedCallback function in our Web Component
definition to do the following after setting the innerHTML.

Listing 6.12 Adding event listeners to react to drop-down changes

this.querySelector ('.logo-picker select').addEventListener('change', e =>

> this.updateGraphics());

this.querySelector ('.background-picker select') .addEventListener (

'change', e => this.updateGraphics());

Adds an event listener to
watch for logo changes

<+

Adds an event listener to
watch for background changes

This method is less than ideal, however. First, query selection takes a bit of CPU time.
These two lines are hardly a problem and happen only once to add the event listener.
On the other hand, let’s look at that updateGraphics function in the bizcard.js Web

Component class, as seen in the following listing.

132

6.5.1

CHAPTER 6 Markup managed

Listing 6.13 On logo/background changes, re-renders both

updateGraphics () { Another query selector
this.querySelector ('.biz-card') to get the card

.style.backgroundImage = ‘url("S${this.querySelector (
' .background-picker select').value}") ;
this.querySelector('.logo") <

.style.backgroundImage = url ("${this.querySelector (

'.logo-picker select').valuel}") " ; Yet another query

selector to get the logo

These two lines of code occur when either of the <select> menus have changed.
First, we query-select the business card container element and assign the value of the
query-selected background menu to the backgroundImage. We do this yet again for
the logo.

Yes, we’re doing some extra processing by query-selecting four times with each
menu change. If things were much more complicated, it would likely be a valid con-
cern. There’s no real problem with this example in particular, but when there are situ-
ations where you need to optimize, it’s certainly worth looking into this extra
processing!

Don’t make me query-select in my component

But take note of the lack of readability in those statements and remember that the
markup is in the template.js module and not here in the Web Component class. Also
consider that markup is bound to change as we iterate on our project, and, worse,
query selection can get more complex when there is more complexity in our HTML.

Because of all these concerns, I like to cache my DOM elements using a method
inside the template.js module itself. As a function right next to the html () { . . . }
function, I can easily reference the markup to create my selectors. A simple <form>
example shows this mapping in figure 6.10.

JS object
<forms = ==l=i== = = === = = = - —— — % formContainer
<label>Text</label> — = —=—=— - — — —p» inputLabel
<input type="text" /> ————F———P| textInput
<button>Click Me</button> = = — — — - gsubmitBtn
</form>

Figure 6.10 Mapping and caching elements from querySelector lookups
to a JS object for easy reference

Element caching 133

In our business card example, I can put the following inside the template.js module.

Listing 6.14 Query-selecting once and saving the references for later use

mapDOM (scope) 4 } Scope parameter is the Web
return { Component reference
logoPicker: scope.querySelector (<

'.logo-picker select'),
backgroundPicker: scope.querySelector ('.background-picker select'),
logo: scope.querySelector('.logo'),

. ne instance of -
background: scope.querySelector('.biz-card') One instance o query

selecting an element and

) saving to the object

With this, we are both caching the elements and creating easy references to them.
Also, these easy references can be as permanent as you need them to be! Meaning, if
needed to change the selector to my logoPicker, for example, I could do it right
here. Maybe it gets changed to scope.querySelector('.card-container > div
.logo-chooser select'). My selector got a bit more complex, but my Web Compo-
nent can continue referring to the logoPicker property.

The only slight complexity here is having to pass in our scope. Since this mapDOM
function lives in another module, and it isn’t a class instance, it doesn’t have a refer-
ence to the Web Component class. To solve this, we can simply pass our Web Compo-
nent reference, or this, into the mapDOM function, as done in the following listing.

Listing 6.15 Keeping query selection out of the component controller logic

import Template from './template.js';

connectedCallback() { have been left out for brevity.

this.innerHTML = Template.render ({. . . }); Mapsourdemenﬁ
this.dom = Template.mapDOM(this) ; <F44444444Jt°ajs°med
this.dom.backgroundPicker.addEventListener (
'change', e => this.updateGraphics());
this.dom.logoPicker.addEventListener (

'change', e => this.updateGraphics());
this.updateGraphics() ;

class BizCard extends HTMLElement { Options have not changed and

Adds a listener to the logo
picker element referenced
) by our element object
updateGraphics () {
this.dom.background.style.backgroundImage = Sets the background
‘url("${this.dom.backgroundPicker.value}") " ; image of our logo
this.dom.logo.style.backgroundImage = element referenced by
‘url("${this.dom.logoPicker.value}")"; our element object

}

if (!customElements.get('biz-card')) {
customElements.define('biz-card', BizCard);

134

6.6

CHAPTER 6 Markup managed

You can see that in our connectedCallback function, we are assigning the object that
holds our cached elements to this.dom, and we can reference it anywhere in our
class. With easy property names that make sense for our context here, we avoid the
ugliness as well as the (minimal) performance hit of the query selections.

Lately, I'm in favor of more automated approaches, which use an attribute to
“mark” each element and then use a script to iterate through and create a similar
mapping for you without explicitly defining it in your code. You can find this
approach in my GitHub repo for this section.

Smart templating

There’s something very interesting happening on the Polymer Project front as I write
this book. To recap, Google’s Polymer Library ran from roughly 2013 to 2018 and was
designed to work with Web Components. This was at a time when Web Components
were so rough around the edges, you really needed a library or framework to help out
and keep up with all of the changing advancements and specs.

The interesting bit is that the Polymer Library, after three major releases, is being
deprecated and moved into maintenance mode. The Polymer Project as a whole lives
on and is very active as the team splits off smaller and more targeted tools and librar-
ies from the project.

Two prominent examples of this are lithtml and LitElement. Both are newly
production-ready and 1.0 (though LitElement was technically listed as 2.0 so as not to
conflict with the other LitElement project when the team took over the name on
NPM). I won’t get into LitElement because as nice as it is, it’s a thin wrapper around
everything we’ve learned in this book! So, the concepts are basically the same. The
Polymer team has added some niceties, such as an expanded lifecycle API as well as
automated reflection (where properties and attributes are always in sync).

One of the more complicated feature sets in LitElement is actually all done through
lithtml. The lit-html project is a set of importable modules for managing your HTML
and CSS, just like what we’ve been using since chapter 5. It’s hard to call it a “library”
because of this. When I think of a JS library like React or a framework like Angular, I
usually think of a big monolithic file that I’d include that might take over my whole
project, and that I would have to do things the React or Angular way throughout.

No, both lithtml and LitElement are opt-in per component. This means I might
use them on one component, but perhaps all of my other components in my project
wouldn’t use them. With lit-html, if there’s a feature I won’t use, I simply wouldn’t
import that module, and it wouldn’t add to my project’s file size, unused.

I think this approach will be the future of Web Components (and maybe the web):
light, opt-in libraries that can easily be replaced as opposed to big, monolithic frame-
works or libraries that force you to do a number of things their way. There are many
tools like this, in fact; but given how prominent the Polymer team is in the Web Com-
ponent space, we’ll likely see some major adoption for lit-html and LitElement by Web

6.6.1

6.6.2

Smart templating 135

Component developers, especially because they are paving the way for maximum
cross-browser support of all Web Component features, even down to IE11.

Using lit-html

There is a learning curve with lithtml, just like any other JS library. What lit-html is
good at is rendering HTML/CSS to your component that you’ve defined in a string,
just like we’ve been doing so far. One benefit of using lit-html is that it replaces only
what’s changed on render, which can lead to better performance. Recall our previous
examples of setting our component’s innerHTML, where we replace the entire con-
tents. With large DOM trees, this can lead to some performance hiccups if you’re not
smart about it. In addition to simple rendering of your HTML/CSS strings, lit-html
offers some advanced templating features. Let’s walk through a quick intro to some of
these features.
To get started, usually you'd npm install the project:

npm install lit-html

However, for simplicity’s sake here, I've just copied the whole thing into the bizcard-
lithml Web Component directory in this book’s GitHub repo.

Repeating with templates

The first thing to try with lithtml is to get rid of our custom]S function to create our
<select> menus. For this, we’ll use lithtml’s repeat module, along with its standard
html module. With this, we can pull from an array of data and repeatedly populate
HTML, as depicted in figure 6.11. We’ll do this by adding lit-html imports to our
template.js module and changing our markup to include a repeating block of HTML,
shown in listing 6.16.

<select>

| Repeat Item: name, URI

|
g |
I ${i.name} [— — with listed - ——
| </option> | items

Item: name, URI

Item: name, URI

AN
[0}
o}
ot
b
(9}
5
[

|<option . . . ¥ Item: name, URI
l<option . . .

—_:—_‘—_:—_—_:—_—_:—_—_:—_:! |tem:name’UR|
| <option |

</select>

Figure 6.11 Using an array of items to repeat a snippet of HTML, populating a menu of options

136

CHAPTER 6 Markup managed

Listing 6.16 Using lit-html to repeat HTML for a menu

import {html} from './lit-html/lit-html.js';
import {repeat} from './lit-html/directives/repeat.js';
export default {
render (props) {
return html®
<div class="logo-picker">Logo: .
<select> Repeats menu optu?ns to create
S {repeat (, a menu of logo choices
props.logoChoices,
(i) => i.id, (i, index) => html’
<option value="${i.uri}">${i.name}</option>")}

</select>
</div>
<div class="background-picker">Background:
<select>
S{repeat (
props.backgroundChoices,
(i) => i.id, (i, index) => html"
.Repeatsnwnu <option value="¢{i.uri}">${i.name}</option>")}
options to create a </select>
menu of background </div>

6.6.3

choices S{this.html (props) }

${this.css (props)}";
b
Note that our structure really hasn’t changed much! We’re still pointing to the html ()
and css () functions to use our original markup. We did have to change those meth-
ods a tiny bit, however. To treat markup as HTML and not raw text within lit-html, we
need to use a more advanced feature of template literals called tagged templates. These
tagged templates mash together a template literal and a function in a concise syntax
that allows the function to parse the template literal, as figure 6.12 shows.

Template literal
|

Tagged function, e | |
which accepts ——|function!| “some text and a ${variable}’
a template literal b=

Figure 6.12 The parts of a tagged function and how it works with a template literal

For this example, html is the function provided by lit-html, and our template literal is
our markup or CSS. You can see us nesting these tagged templates in our custom
render function in figure 6.13.

Should you use it?

And with that, we’ve cut our custom menu generation function out completely! The
question is, and this is a question you need to ask yourself when using any third-party
module or library, was it worth it? You're now depending on an external project,

6.6.4

Smart templating 137

Create html" with:

| USRS UBU SIS UUSIE SRS _
| Repeater for select menu options _:
: Nested html" for remaining elements J'

RS —— Figure 6.13 Our template module
| Nested html" for CSS using lit-html, with nested HTML
tagged functions for various content

though a newly stable one, given that it just reached 1.0. The syntax seems a bit error-
prone until you've used it enough, and it’s potentially a bit difficult to debug. That
said, one big plus with lithtml is the simple render function. When using lit-html to
render your HTML, only pieces that have changed get updated. Compare this to just
setting the innerHTML as we’ve done before—there’s a higher performance cost to
slam all of this markup onto the DOM, so in circumstances where lots of HTML needs
to be updated (especially if it happens often, or if you're not sure it needs to be
updated), lithtml can be a real benefit.

As with any third-party module or library, the more you use it, the more it becomes
second nature. Taken in isolation, litthtml definitely wasn’t worth it for generating our
<select> menus in this tiny Web Component. What if we had dozens or hundreds of
Web Components, many of which had repeating elements generated with data? Also,
what if you could pass off these markup templates to another front-ender who you
don’t want touching your application logic or writing custom JS code to handle these
data-generated elements? These could be good reasons to use just this “repeat” func-
tionality alone.

Injecting event listeners into markup

Another bit of functionality that lithtml offers is the ability to add listeners to your
markup. In our business card example, you might recall that we add our event listen-
ers manually in our Web Component class:

this.dom.backgroundPicker.addEventListener('change',6 e =>
this.updateGraphics());

this.dom.logoPicker.addEventListener('change', e => this.updateGraphics());
If we had a long list of items that we needed to add event listeners to, this could be a
fairly big chunk of code that serves no purpose other than setup. We can let lit-html
help us with this by adding event listeners right inside our template and calling a func-
tion in our Web Component, as in figure 6.14.

To start, let’s adjust our connectedCallback in our Web Component class, using
the code from listing 6.17.

138

CHAPTER 6 Markup managed

Web Component

<select

onchange="5${ (e) => { updateGraphics () {
controller.updateGraphics () - —— ..

}}I|> }

Figure 6.14 Inline event listener to listen for menu changes and calling a function
in our Web Component

Listing 6.17 Removing event listeners in our component to prep for lit-html

connectedCallback () {
render (Template.render (this, {

first_name: 'Emmett',
last_name: 'Brown',
title: 'Student of all Sciences',
phone: '555-4385",
email: 'emmett@docbrown.flux',
website: 'www.docbrown.flux',

Generates a template
literal to pass to lit-html’s
render function

backgroundChoices: [

{ name: 'big dots', uri: './images/big-dot-pattern.png'},
{ name: 'little dots', uri: './images/tiny-dot-pattern.png'},
{ name: 'squares', uri: './images/square-pattern.png'},
{ name: 'stripes', uri: './images/stripes-pattern.png'},
{ name: 'diamond', uri: './images/diamond-pattern.png'},
1,
logoChoices: [
{ name: 'mobius strip', uri: './images/mobius-logo.png'},
{ name: 'shopping bag', uri: './images/bag-logo.png'},
{ name: 'copper splash', uri: './images/splash-logo.png'},
{ name: 'star', uri: './images/star-logo.png'},
{ name: 'cone', uri: './images/cone-logo.png'},
1,
J). this); - Passes our Web Component
this.dom = Template.mapDOM(this) ; scope (this) to let lit-html know
this.updateGraphics () ; where to write the content

}

There are just two changes here. First, we removed adding the event listeners. After
adding the event listeners into our markup using lit-html, as in listing 6.15, we won’t
need them anymore. Second, we want to give lithtml a reference back to our Web
Component to run our updateGraphics function, so we pass this as the first parame-
ter to the Template.render function, where the second parameter is all the data we
are passing.

Now, on to the lithtml magic. In listing 6.18, we want to use the standard change
event to listen for select menu changes; but with lithtml in the mix, we’ll use its @
expression to create the proper bindings. Following through, we can insert an inline

6.7

Updating the slider component 139

function that points back to our Web Component, referenced with a variable named
controller.

Listing 6.18 Injecting event listeners into markup using lit-html

render (controller, props) {
return html"®
<div class="logo-picker">Logo: Menu change listener for logo
<select @change="${(e) => { < menu added with lit-html
controller.updateGraphics ()} }">
${repeat (props.logoChoices, (i) => 1.id, (i, index) =>
html <option value="${i.uri}">${i.name}</option>

V) }</select>
</div> Menu change listener
<div class="background-picker">Background: for backgrou.nd menu
<select @change="${(e) => { ~| added with lit-html

controller.updateGraphics()} }">
S{repeat (props.backgroundChoices, (i) => i.id, (i, index) =>
html <option value="${i.uri}">${i.name}</option>
Y) }</select>
</div>
${this.html (props) }
${this.css(props)} ;
I
Again, though, in our simple example, we only reduced JS code in our Web Compo-
nent by two lines when we removed the event listeners. Was it worth it? Probably not,
but for larger-scale projects with a team, it could definitely be worth it!
Additionally, as the Polymer team rockets forward with the Polymer Project
(www.polymer-project.org), we may see lithtml along with LitElement become a fairly

commonplace solution for Web Components.

Updating the slider component

It’s been a bit since we’ve updated the slider component we started back in chapter 2.
Now, with our ability to import a template and cache elements, we can make the slider
a little better, and shareable as a real component!

We can start by separating out a few files. Until now, the slider HTML, JS, and CSS
were all wrapped up in a single HTML file. Our goal is to end up with a demo HTML
file to show off the slider, a component source class JS file, and, lastly, a template mod-
ule to hold the HTML/CSS for the component. Figure 6.15
shows the new project file structure.

It probably makes the most sense to start out with the
template.js module. It’s new to the slider and features ideas :
from this chapter that we just covered. We’ll pull in the com- i template.js
ponent HTML that was previously in the component class,

i demo.html
35 slider.js

. . . Figure 6.15 The three
and the CSS that was previously in the all-encompassing fjes for the slider

slider HTML file. The next listing shows this module in its component
entirety.

www.polymer-project.org

140 CHAPTER 6 Markup managed

Listing 6.19 Slider component’s template module

export default {
render () {
return "${this.css()}
S{this.html ()} ;

3 Caches the elements

mapDOM (scope) { < of the component

return {
overlay: scope.querySelector('.bg-overlay'),
thumb: scope.querySelector('.thumb'),

. Moves the HTML from
html() { the component class

return ‘<div class="bg-overlay"></div> into this module

<div class="thumb"></div>";

b Moves the CSS from the
old HTML file into this

css() { component/module

return “<style> <
wcia-slider {
display: inline-block;
position: relative;
border-radius: 3px;

}

.bg-overlay {
width: 100%;
height: 100%;
position: absolute;
border-radius: 3px;

}

.thumb {
margin-top: -1lpx;
width: 5px;
height: calc(100% - 5px);
position: absolute;
border-style: solid;
border-width: 3px;
border-color: white;
border-radius: 3px;
pointer-events: none;
box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px

20px 0 rgba(0, 0, 0, 0.19);
}
</style>";

}

You may not have looked at the CSS for this component since chapter 2, so you may
not notice that a few things are missing. Left out of the CSS here are the component’s

Updating the slider component 141

width and height, as well as the (kind of insanely complicated) CSS for the checkered
background.

The reason for this is that it makes the component a bit more customizable from
the outside. If you think about it, you’ll want a generic UI component like this to show
in a variety of sizes in different contexts. You’d use CSS do this with any other element,
and this component should be no different. In terms of the checkered background,
I’'m planning ahead that we’ll want to use this component in another context besides
for setting transparency. Setting the background CSS from the outside allows us to
swap in any other background super easily. The next listing shows the demo page for
the slider component with the size and background CSS pulled out, as discussed.

Listing 6.20 Slider demo page

<html>
<head>
<title>Slider Demo</title>

<script <—— Component class module
type="module"
src="slider.js">

</script>

<style> Extra CSS to control component’s
weia-slider { size and background

height: 50px;

width: 500px;

background-image: linear-gradient (45deg, #ccc 25%,
transparent 25%),linear-gradient (-45deg, #ccc 25%,
transparent 25%),linear-gradient (45deg,
transparent 75%, #ccc 75%),linear-gradient (-45deg,
transparent 75%, #ccc 75%);

background-size: 1l6px 16px;

background-position: 0 0, 0 8px, 8px -8px, -8px 0px;

}
</style>
</head>

<body> Slider component on page
<wcia-slider with some default settings

backgroundcolor="#££0000"
value="50">
</wcia-slider>
</body>
</html>

Last is the slider.js module. Yes, it’s a module now! We can change class Slider to
export default class Slider, so that it can be imported. The following listing
shows the new module without the details that haven’t changed.

142 CHAPTER 6 Markup managed

Listing 6.21 Slider module (slider.js)

import Template from './template.js'; <—— Imports template.js

export default class Slider extends HTMLElement {
connectedCallback () {
this.innerHTML = Template.render () ;

Makes class an
importable module

this.dom = Template.mapDOM (this) ; <+ Caches elements
Offloads
HTML to document .addEventListener ('mousemove', e => this.eventHandler (e));
template document .addEventListener ('mouseup', e => this.eventHandler (e));
module this.addEventListener ('mousedown', e => this.eventHandler (e));

this.refreshSlider (this.getAttribute ('value')) ;
this.setColor (this.getAttribute ('backgroundcolor')) ;
}

static get observedAttributes() { . . . unchanged . . . }
attributeChangedCallback (name, oldval, newValue) { . . . unchanged . . . }
set value(val) { . . . unchanged . . . }

get value() { . . . unchanged . . . }

set backgroundcolor(val) { . . . unchanged . . . }

get backgroundcolor() { . . . unchanged . . . }

setColor (color) {
if (this.dom) { <—— Uses cached elements
this.dom.overlay.style.background = ‘linear-gradient (
wto right, ${color} 0%, ${color}00 100%) " ;

}

refreshSlider (value) ({
if (this.dom) { <—— Uses cached elements
this.dom.thumb.style.left = (value / 100 * this.offsetwWidth -
wthis.dom.thumb.offsetWidth / 2) + 'px';

}

updateX (x) {
let hPos = x - this.dom.thumb.offsetWidth/2; <—— Uses cached elements

unchanged
}
eventHandler (e) { . . . unchanged . . . }
}
if (!customElements.get ('wcia-slider')) {

customElements.define('wcia-slider', Slider);
}
The slider component is now a shareable piece of UI that we can really use as part of
any other project. We’ll do one last thing in a future chapter, and that is to have it use
the Shadow DOM. Using the Shadow DOM isn’t entirely necessary, but it’s an awe-
some feature to have in terms of component encapsulation. I’ll let you be the judge
when you read all about it and we update the slider one last time.

Summary 143

Summary

In this chapter, you learned

A new way to write strings using the backtick (') character, which allowed the
creation of template literals. A new ES2015 feature, these template literals allow
not only multiline strings with no awkward syntax, but also insertion of variables
into the templated string—perfect for inserting HTML and CSS right into our
JS with no tweaking required.

How to use element caching as well as separation of code and markup for better
component readability and maintainability.

About logic-generated templates using custom |S as well as the Polymer Proj-
ect’s lit-html library for repeating markup from data, while additionally using
lithtml to add event listeners in your HTML.

How to build an example Web Component project featuring a business card
customizer, focusing on visual layout and style, which enables us to examine
workflows with more complex HTML and CSS.

Templating your
content with H'TML

This chapter covers

Building on the concepts from (the now-deprecated) HTML
Imports

Document fragments

The <template> tag

Leveraging templates to replace HTML/CSS in a Web
Component

Loading templates from index.html or via a network request
Named and unnamed slots

We’ve come a long way with Web Components so far! In addition to creating some
moderately simple Web Component-based applications, we’ve gone fairly deep on
some strategies for using HTML and CSS in our Web Components.

Of course, these strategies so far have revolved around storing markup in JS
strings. Despite the great separation of concerns we get by storing our HTML/CSS
in importable JS modules, as seen in chapter 6, there will no doubt be situations
where keeping HTML as HTML is preferred.

144

R.I.P. HTML Imports 145

7.1 R.LP. HTML Imports

Web Components, in fact, started with an HTML-first strategy. What I mean by this is
that if you started working with Web Components a few years ago, you wouldn’t have
expected to import JS modules to drive your components—you’d instead have
expected to import actual HTML.

The imported HTML would hold a <script> tag, which itself holds your Web
Component class definition. This class would pull HTML and CSS from the owner
document to use for your custom component’s contents. As this is a bit much to take
in, take a look at figure 7.1, and let’s also break down an example index.html file in
the following listing.

Listing 7.1 Using HTML Imports from a sample project

<html> HTML Import, which loads

<head> a sample Web Component
<title>HTML Import Demo</title>

<script src="html-imports.min.js"></script>
<link rel="import" href="samplecomponent.html"></link>

<style>
button {
background-color: #c09853;
}

</style>
</head>
<body> ?ample Web Component
is declared here
<sample-component></sample-component> <
</body>
</html>
Web page/application myfile.html
Import
HTML file <script src="mycomponent.js">
<link rel="import" href="myfile.html"> >
Script logic
<my -component > loads template <template>
and populates <hl>header</hl>
component <buttons>click me</buttons>
) - template
Visual content </template>

Figure 7.1 HTML Imports allow Web Components to be loaded via an HTML file.

146

7.1.1

7.1.2

CHAPTER 7 Templating your content with HTML

You’'ll notice that the <sample-component> tag is used as we’ve normally used Web
Components. It’s just another custom element we've defined. The difference, of
course, is how we go about defining this Web Component.

In the <head> tag, we are referencing two things. The first is the HTML Import

polyfill:

<script src="html-imports.min.js"></script>

The second is the actual HTML file we’re attempting to import:
<link rel="import" href="samplecomponent.html">

Of course, the reason for the polyfill is that, although Chrome was the only browser to
ever support HTML Imports, the feature is now deprecated in the latest versions.

Polyfilling HTML Imports

Web Components in general were a Google-led invention. The working draft spec was
implemented in Chrome to generate interest, paving the road in hopes that all brows-
ers would follow. Custom Elements ended up being a fairly uncontentious specifica-
tion. Other browser vendors worked with Google to add their two cents, and the spec
morphed from v0 to vl with collaboration from those other vendors. The Shadow
DOM, while much more complicated and therefore a bit slower to be adopted, was on
a similar track, and was ultimately accepted like Custom Elements were.

HTML Imports, on the other hand, don’t appear to have any traction. Firefox, spe-
cifically, didn’t want to adopt something so similar to JS modules when they were
already so new at the time. It’s a good guess that someday modules could import more
than just JS. Perhaps someday, we could use modules to import other file types, like
HTML, which Chrome is already looking into.

Despite the lack of support, the HTML Import-based Web Component has some
decent ideas. With the polyfill, it’s certainly a feasible workflow, even if most Web
Component developers will likely not use the whole thing.

To add a bit more confusion, the official polyfill from Google (https://github
.com/webcomponents/html-imports) has graduated from v0—now no longer sup-
ported natively in any browsers—to a very similar vl implementation. This polyfill
allows easy, drop-in support in any browser. The vl implementation is what we’ll be
covering here.

What’s inside the import

Now that we know what we’re dealing with, let’s peek inside the imported HTML file.
Of course, it really could be any HTML, but for the purposes of creating a Web Com-
ponent, we’re doing some very specific things.

Listing 7.2 Contents of an HTML Imports-based Web Component

<script src="samplecomponent.js"></script>

Web Component

class import
<template> - HTML content provided P

by <template> tag

https://github.com/webcomponents/html-imports
https://github.com/webcomponents/html-imports
https://github.com/webcomponents/html-imports

R.I.P. HTML Imports 147

<style>
span {
padding: 20px;
background-color: yellow;
}
</style>

Hi from an HTML Import component
</template>
Notice the <template> tag in the previous listing. This tag has implications well
beyond the dying HTML Imports and can be directly applicable to modern Web Com-
ponent development, so I'm going to save the detailed explanation of this until the
next section of this chapter. For now, just note that this <template> tag holds the con-
tent that we’d like to populate our component with.

Outside of the <template> tag, on the first line of listing 7.2, we have a script refer-
ence to our Web Component definition class:

<script src="samplecomponent.js"></script>

This Web Component definition looks extremely similar to other component defini-
tions we’ve covered earlier in this book, with some minor exceptions.

Listing 7.3 Populating Web Component markup from an HTML Import template

Non-module (no export and not

class SampleComponent extends HTMLElement {
importable)-based Web Component class

connectedCallback() {

HTMLImports.whenReady (() => {
const template = <
ownerDoc.querySelector ('template') ; Creates a reference

1 = to the template
Clones the ’—l> const clone p

content template.content.cloneNode (true) ;

this.appendChild(clone) ; <F4444444444444‘Addsthecontentto
3 our component

Gets a reference to the
} owning document
const ownerDoc =

HTMLImports.importForElement (document.currentScript) ;
if (!customElements.get ('sample-component')) {
customElements.define ('sample-component', SampleComponent) ;

}

Like those other component definitions, with listing 7.3, we are defining a class that
extends HTMLElement. Because we aren’t importing it as a <script type="module">,
it does not start with export default SampleComponent.

We’re also still using the same Custom Element API to define the tag name as we
have in every component we’ve created before. Right above that line, though, is some-
thing a bit odd. We’re getting this script’s “owner document.” Remember, we’re not
working with our index.html page as usual. We’re now talking about importing
another HTML document entirely into our index.html page.

148

CHAPTER 7 Templating your content with HTML

With another HTML page in play (the imported one), it would be nice for a script
on that imported page to know which of the two pages it’s actually running in. The
use case here is that we can query-select the template from the imported HTML as we
do in the connectedCallback method in listing 7.3. To do this, of course, the script

needs to know what page it’s running on—the owner document.

The general HTML Import flow consists of

Importing the HTML page

Having the imported HTML/]JS find its owner document
Defining the Web Component in that imported page

Getting and cloning a template reference on the imported page

Adding the cloned template to the Web Component

Figure 7.2 represents this generalized HTML Import flow, and it’s the same process we

use in listing 7.3.

Owner document

Create with ref to owner document

Template =

New component instance

<my-component >

— . . .content

</my-component >

' |
' [
: : ownerDoc
| Visual content I querySelect
: | ('template')
' [
Lo o I ‘
cloneNode
l appendChild

Content clone 41

Figure 7.2 A typical HTML Import flow. The owner document contains our Web
Component definition and a template of the desired HTML/CSS. The component is
responsible for cloning this template and inserting the clone as its content.

Once our imported HTML is fully ready, as determined by our HIMLImports
.whenReady callback, we can query-select the template from this owner document,
copy it, and then append it as a child of our component. As a result, we see figure 7.3

when previewing in our browser.

7.2

The <template> tag 149

Hi from an HTML Import component Figure 7.3 Output from our simple

HTML Import-driven component

So, that was fairly easy, right? If it weren’t for the lack of browser support for HTML
Imports, this would be a pretty nice workflow! For those who want to stay away from JS
as a way to write HTML and CSS, this could have had potential.

Again, you’ll notice that I completely breezed through some of the explanation of
working with the <template> tag. That’s because, even though HTML Imports don’t
have any traction, the <template> tag is available in all modern browsers, and some
would consider it an important piece of the modern Web Component workflow. As
such, it deserves some proper explanation away from HTML Imports.

The <template> tag

The <template> tag itself is extremely straightforward. That said, usage of it does
require a little bit of explanation.

Let’s look at some normal, everyday HTML:
<p>

This is content that's not in a template tag.
</p>
Dropping this paragraph and its contents on an HTML page will simply render the
contents. On the other hand, we could use a <template> tag:
<template>

This is content that IS in a template tag.
</template>
Now, this content doesn’t appear anywhere on the page! What happened? If you
inspect the element in Chrome, as shown in figure 7.4, the element exists. Inside the
element, we can see a “document fragment.” You can then expand the fragment to
see the actual text. Firefox shows an empty <template> tag, but if you right-click to
view the DOM properties, you can see a content property, which holds a document
fragment containing the text.

OK, so that doesn’t really answer any questions, it just changes the question to
what a document fragment is!

v<template>
v #document-fragment
"This is content that IS in a template tag."
</template>

Figure 7.4 Inspecting the <template> tag in Chrome

150

7.2.1

CHAPTER 7 Templating your content with HTML

Document fragments

To find out what a document fragment is, let’s just create one through JS, as in the fol-
lowing listing.

Listing 7.4 Using a document fragment

<html>
<head>
<title>Document Fragment Demo</title>
</head>
<body> Creates the
<script> QJ document fragment
const fragment =

document .createDocumentFragment () ;
for (let ¢ = 0; ¢ < 5; c++) {
const 11 = document.createElement('p');

1i.innerText = 'paragraph ' +<Ei44444444444‘AddSCh“drentothe
fragment .appendChild(1i) ; fragment (paragraphs)
}
</Si§§;?int.body.appendChlld(fragment); Adds the fragment to
the page body
</body>
</html>

Here, we are first creating a document fragment and then using a for loop to add five
paragraphs containing some text. After appending to the body, our DOM tree looks
like this:

<p>paragraph 0</p>
<p>paragraph 1</p>
<p>paragraph 2</p>
<p>paragraph 3</p>
<p>paragraph 4</p>

Pretty simple, as figure 7.5 shows, but why bother with a document fragment when we
could just use createElement?

Elements Document fragment Page DOM

|
\

Figure 7.5 Adding elements to the DOM via a document fragment

The <template> tag 151

0

J

Emmett Brown

Student of all Sciences

phone: 555-4385
emmett@docbrown.flux / www.docbrown.flux

Figure 7.6 Adding elements to a parent element before adding to the
page DOM

Well, for one, if we wanted to do the same operation, appending elements to the body
all in one appendChild call with createElement, we’d need to create a parent element
to hold our paragraphs, like in figure 7.6. Our DOM would look like this:

<div>

<p>paragraph 0</p>
<p>paragraph 1</p>
<p>paragraph 2</p>
<p>paragraph 3</p>
<p>paragraph 4</p>
</div>

If that’s what we want, great; but if it’s not, the other alternative would be to append
each <p> one by one onto the body, like in figure 7.7. This is fine, but each time you
append to the body, it causes the page’s entire DOM to recalculate. The less you do
this, the better your performance will be.

Elements Page DOM

O - O
O - O
O - O
O - O

Figure 7.7 Adding elements one by one to the page DOM, with the unfortunate effect of
re-rendering the DOM each time

152

7.2.2

CHAPTER 7 Templating your content with HTML

One other nuance of document fragments is that after you’ve appended those ele-
ments to the DOM from the fragment, they disappear from the fragment itself. In the
previous example, if we console-logged our fragment variable prior to document
.body.appendChild (fragment);, we’d see #documentFragment, which can expand
out and reveal its children. After appending, this logged #documentFragment would
be empty. Keep this in mind, because it’ll be important later as we get started working
with templates.

The document fragment doesn’t seem to be a well-known feature; it certainly
wouldn’t be shocking if you’d never used it before. It seems to fit a very narrow use
case, but the <template> tag has taken document fragments a bit more mainstream!

Using template content

With all we’ve covered so far, you might be able to guess that the <template> is a kind of
holding area for content that isn’t actually rendered on the page. The idea is that your
HTML page holds various <template> tags, each storing some snippet of HTML/CSS
that you’d like to use later on by copying it and adding it to your main DOM.

Let’s populate an HTML file with a few extremely simple templates, as shown in
the following listing.

Listing 7.5 Adding a few templates to a page

<html>
<body>
<template id="button">
<button>Click Me</button>
<p>

First example
| template of three

This is a template with a button
</p>
</template>

<template id="textfield">
<label>Enter</label>
<input type="text">
<p>
This is a template with a text input
</p>
</template>

<template id="list">

Ttem 1</1i>
Ttem 2</1i>
Ttem 3</1i>
Ttem 4</1i>

</template>
<script> ‘(‘iets a rsference to the
const template = < button” template

document .getElementById('button') ;
const clone = < Clones the template

The <template> tag 153

template.content.cloneNode (true) ;
document .body.appendChild (clone) ; qg;rAddsthechned

</script> content to our page

</body>
</html>

Of course, if we run this HTML page in our
browser without that script block, nothing dis- Click Me
plays. But our templates are waiting and ready to
use. With that script block, however, we can grab
one of the templates, and content will appear on
our page, as seen in figure 7.8.

Fetching the <template> we’d like to use is easy!
It’s the same as any other element. We can use querySelector, querySelectorAll, or

This is a template with a button

Figure 7.8 One of our sample
templates added to the browser

getElementById. For this example, we’ll do document.getElementById('button');.
Go ahead and try selecting one of the other two templates and adding it to your page as
well, if you're following along with code.

Once the <template> is stored in our template variable, we can get the document
fragment through the content property. To use the template, we should actually
clone it first, so the template is not empty after appending: template.content
.cloneNode (true). After that, we can add it to the page with document .body . append-
Child(clone). Passing true to cloneNode simply means that we want to deep clone, or
clone the element as well as all its children.

Let’s drill into that best practice of cloning first to explain how the template can be
cleared out. For this limited example specifically, we don’t have to clone anything. We
can simply add the content to our page with document.body.appendChild(template
.content). After appending a document fragment to another element, however, your
fragment will then be empty.

This means that we can add this <template> once, but only once! Subsequent tries
would just result in us adding empty contents. Figure 7.9 shows our elements in
motion, moving from document fragment/template to the page’s DOM.

Document fragment Page DOM

Y
(
-/

Y
-/

(

®,
St SEEE

O

/

®

7N

» o o

7N

» o ®
L e e - = |

Figure 7.9 Appending to the page’s DOM from a document fragment
within a template means that these elements are actually moving out of
the template/fragment.

154 CHAPTER 7 Templating your content with HTML

If we clone our <template> instead of adding it directly, we can use the same one over
and over again, as in the following listing.

Listing 7.6 Cloning multiple times to add to our page

const template = document.getElementById('button');

const clone = template.content.cloneNode (true); <—— Clones a first time
document .body . appendChild (clone) ;
const clone2 = template.content.cloneNode(true); <— Clones a second time

Adds to our page a

document.body.appendChild(clone2) ; QAW
second time

Adds the clone to our
page the first time

7.3 Choose your own template adventure

In the last chapter, we did some customization on a Web Component-based business
card. If you recall, you could swap in different backgrounds and logos. What if we
could choose between different card layouts entirely? Let’s create three separate tem-
plates and layouts, as in figure 7.10.

) First LastName

First LastName Job Title

Job Title
PPhone: #00LX00L000C

emall@emall.com

phone: 0000000 nitpzwebte.com
email@email.com / http:/website.com

Figure 7.10 Three different business card layouts (starting with a blank one)

To do this, let’s simplify and strip out the logo and background customization that we
previously had so we can focus on the general HTML and CSS of the card.

Listing 7.7 Simplified business card example using templates to drive HTML and CSS

export default class BizCard extends HTMLElement {
static get observedAttributes() { return ['layout']; 1}

attributeChangedCallback (<
name, oldvalue, newvalue) {
this.innerHTML = '';
const template = document.getElementById (newvalue) ;
const clone = template.content.cloneNode (true) ;
this.appendChild(clone) ;

Simplified
attributeChangedCallback

) focusing on content

if (!customElements.get('biz-card')) {
customElements.define('biz-card', BizCard);

Choose your own template adventure 155

Keeping it simple and short, this Web Component class definition lives as bizcard.js in
the same file structure we had previously in our business card customizer demo. To
recap, here itis in figure 7.11.

7.3-businesscardtemplates
components
bizcard
s bizcard.js
= background-pattern.png
= biz-card-logo.png

i index.html Figure 7.11 Template-driven business card creator

Also, in the spirit of simplicity, we’ll simply wipe out all of the innerHTML for the com-
ponent every time we want to load a new card layout. With this in mind, note that the
card layout <template> tags live in the main index.html file, outside of this compo-
nent. These templates are selected by their ID, cloned, and then appended to our
Web Component. We’re now appending to an empty node, given that we just cleared
out the innerHTML of the component with this.innerHTML = ''. This simplicity of
just replacing all of the innerHTML is exactly why our new menu in the next section to
select the card’s layout will not live in the component. If it did, this menu would be
wiped out as well!

All this logic is contained on the component’s attributeChangedCallback. This is
done to hinge the layout name we’d like to use based on the component’s layout
attribute. This, of course, means that we need to declare the layout attribute in the
observedAttributes getter:

static get observedAttributes() { return ['layout']; }

We will indeed seed the component with a blank layout called “none,” as we are
declaring on the component tag itself in the index.html. But this blank layout, shown
in figure 7.12, isn’t much to look at yet:

<biz-card layout="none"></biz-card>

Again, with the way attributes work in the Web Components life cycle, this initial value
of “none” will trigger the attributeChangedCallback and populate the component
with this particular layout. Aside from this, however, to actually change the layouts, we
can implement a drop-down menu on the page, with a change event that updates the
layout attribute (see listing 7.8).

156 CHAPTER 7 Templating your content with HTML

Figure 7.12 Starting with an empty/blank card layout

Listing 7.8 Setting the 1ayout attribute from a menu outside of our component

<body>
<p>
<select onchange="updatelLayout (event) ">
<option value="none">none</option>
<option value="default-card">default</option>
<option value="variation">variation</option>
</select>
</p>
<biz-card layout="none"></biz-card>

Menu to choose the
business card layout

<script>
function updateLayout (event) {
document .querySelector ('biz-card') .setAttribute ('layout',

wevent.target.value) ; Changeeventto

update the Web
Component attribute

}
</script>
</body>

Of course, aside from the <head> tag, which contains our script module reference,
there are the actual templates to use. Included in the next listing is the top part of the
index.html file and placeholders for three different templates.

Listing 7.9 HTML page including a business card template

<head>
<title>Business Card</title> Web Component
<script 4 module import
type="module"
src="components/bizcard/bizcard.js">
</script>
</head>

<template id="default-card"> . . . </template> Ourthreetemplates
(placeholders)

74

Dynamically loading templates 157

<template id="variation"> . . . </template>

<template id="none"> . . . </template>

To condense code on the page here, most notably the long CSS in the templates, I've
included only the <template> tags with no inner content. Please refer to my Github repo
if you’d like to see it all (https://github.com/bengfarrell/webcomponentsinaction/
blob/master/chapter7,/7.3-businesscardtemplates/index.html). As shown in figure
7.13, our component reaches out to the document, fetches each template by this ID,
and, as we’ve seen, populates the component.

index.html
<biz-cards> Add template
:’ —————————————— 1| contents
I "
L e e e = = 4
</bizcards>

Get template

<template>...</template> and clone

<template>...</template>

<template>...</template>
Figure 7.13 Component reaching out to the
HTML page and getting a template by ID

Now, while it’s perfectly fine to put all of this in our index.html, it feels a bit messy and
long. I'm on the fence about whether it’s really unorganized—a long list of
<template> tags is easy to pick out because it doesn’t interfere with the actual ren-
dered DOM structure of the page. On the other hand, when there are multiple cus-
tom components, it’s not clear which <template> belongs to which component. In
this regard, it seems difficult to manage depending on your particular use case. Addi-
tionally, with many components used in a project, there could be way too many tem-
plates to keep your HTML page manageable.

Given my reservations, I'd like a way to keep this a bit cleaner. As you might recall,
HTML Imports kept things super clean! Without them, can we come up with another
way to dynamically load templates?

Dynamically loading templates

For this next demo, let’s think about two things. First, I'd like to keep our various
<template> tags inside our component as child nodes. By doing this, it will be clear
that the templates actually belong to the Web Component in question. Second, I'd like
to load our templates from somewhere else instead of cluttering up the component.
You might imagine that we could do this with template literals and modules, as we
have in previous chapters, and we certainly could! Instead, I'm going to avoid this

https://github.com/bengfarrell/webcomponentsinaction/blob/master/chapter7/7.3-businesscardtemplates/index.html
https://github.com/bengfarrell/webcomponentsinaction/blob/master/chapter7/7.3-businesscardtemplates/index.html
https://github.com/bengfarrell/webcomponentsinaction/blob/master/chapter7/7.3-businesscardtemplates/index.html

158

CHAPTER 7 Templating your content with HTML

HTML-in-]JS approach, just because we’ve already done it. Additionally, it might be
interesting to load our templates as another remote resource that we can fetch from a
Server.

The interesting thing about keeping our <template> tags inside our component is
that we have to maintain some fairly permanent markup inside the component, while
also clearing out large chunks of HTML/CSS whenever the layout is updated.

This means that setting this.innerHTML all at once isn’t going to cut it. If we
replace all of our HTML, we’re essentially throwing away our loaded templates. Our
our component’s connectedCallback in the next listing needs to reflect this.

Listing 7.10 Loading templates with a network request

connectedCallback() {

this.cardElement <—— Creates card layout container
document.createElement ('div"') ;
this.templates = <——— Creates template container

document.createElement ('div') ;
this.appendChild(this.cardElement) ;
this.appendChild(this.templates) ;
const request = new XMLHttpRequest () ; Network request to
request.open('GET', 'templates.html', true); fetch templates
request.addEventListener ('load',6 (event) => {

this.templates.innerHTML =

event. target.response;
this.populateCard() ;

Populates template container
with loaded templates

i;&uest.send();
}
Right away, we're creating and adding two <div> elements, this.cardElement and
this.templates. These will act as containers for the business card and our loaded
templates, respectively.

Next, we’re making a network request to load templates.html, which contains all of
the <template> tags that lived in our index.html before. Once loaded, we can simply
set the innerHTML of our this.templates <div>, as in figure 7.14. Both this callback

index.html

<biz-card>
r-—-—""""""""""—""—""—""—=—-- il
I I Fm— =

|
U WS — J I |
R - | Server '
: Template storage -— —: :
L -l _)
</bizcards>

Figure 7.14 Reaching out to a server to
fetch templates for our Web Component

Dynamically loading templates 159

and our attributeChangedCallback call the function populateCard(); to load the
current layout as specified via our layout attribute. But in this case it’s good to check
if this.templates exists yet, given that the attributeChangedCallback may fire
before the connectedCallback, as shown in the following listing.

Listing 7.11 Calling a method to fill in our card layout

static get observedAttributes() { return ['layout']l; }

attributeChangedCallback (name, oldvalue, newvalue) {
if (this.templates) {

this.populateCard(); Calls the method to fill in our card container

) in components/bizcards/bizcard.js

Either way it’s called—a network request to load our template.html or the result of an
attribute change—the populateCard(); function in the next listing has a fairly easy
method to add to the same class in order to swap in our new business card layout.

Listing 7.12 Contents of the populateCard function

populateCard() { o populateCard method in
const template = this.templates.querySelector (components/bizcards/biz
w 'template.' + this.getAttribute('layout')); card.js
if (template) { T

t cl =
Clones const cione Gets reference to template
template template.content.cloneNode (true) ;
this.cardElement.innerHTML = ''; <+——— Clears current temp]ate

Adds clone and fills in HTML/CSS

for current layout

this.cardElement.appendChild(clone) ;
}

}

The first thing we do is grab the template from within the component. Recall that I
moved the templates from the index.html to a separate templates.html file. I did
one slightly different thing. Instead of using IDs for the template names, I'm now
using classes. What was <template id="default-card"> is now <template class=
"default-card">.

Typically, when you look online for how to use the <template> tag, you'll see folks
using the id attribute to identify and fetch their <template> from the DOM. In this
exercise, as we want to keep our templates as a child of the component, it doesn’t
make much sense to use id. Remember, each individual ID can be used only once on
the entire HTML page. When templates live in the page outside of the DOM struc-
ture, IDs make sense because we’re looking at a pool of templates on the entire page,
each called up by their unique ID.

Now, instead of querying the entire page for a unique ID, we are querying not just our
component’s children, but specifically the children of the this.templates container. If
found (and it might not be found due to the template.html file not being loaded yet), it

160

CHAPTER 7 Templating your content with HTML

will clear the contents of our card container with this.cardElement.innerHTML = '',
clone the template, and then append this new child to this.cardElement.

In terms of the templates, because the contents in them are the same as before,
we’ve only traded IDs for classes:

<template class="default-card">
</template>

Of course, with our templates separated out, our index.html gets a lot simpler.

Listing 7.13 With templates removed, our index.html is once again manageable.

<html>
<head>
<title>Business Card</title>
<script type="module" src=
"components/bizcard/bizcard-template-loading.js"></script>

</head> A much shorter body with templates
<body> being loaded by the component
<p>

<select onchange="updateLayout (event) ">
<option value="none">none</option>
<option value="default-card">default</option>
<option value="variation">variation</option>
</select>
</p>
<biz-card layout="none"></biz-card>
<script>
function updateLayout (event) {
document.querySelector ('biz-card') .setAttribute
("layout', event.target.value);
}
</script>
</body>
</html>

With all of that, we have the exact same demo as before, just a lot cleaner. Also, we
could take this further and specify a different HTML file to load. We could even use

an attribute on the component to point to specific HTML files full of templates for a
specific use case:

request.open('GET', this.getAttribute('templatefile'), true);

Done? Not quite. You've probably noticed one feature regression. Our new business
cards in this chapter (as we’ve been using templates) don’t inject custom information
like first name, last name, job title, and so on.

One solution could be to more diligently ensure that each element that we’d like
to replace content on is marked with the appropriate class. We could then query our
layout for the element marked with the class and replace the innerHTML.

7.5

Entering the Shadow DOM with slots 161

For example, if we ensured that every element that contained a placeholder for
firstname had the class firstname, we could do the following:

this.cardElement.querySelector ('firstname') .innerHTML = someObject.firstname;

There is some complication with this method, however. Consider our default tem-
plate, where it lists both email and website in an <h3> header tag:
<div class="bottom-text">

<h3>phone: #xxx.xxx.xxxx</h3>

<h3>email@email.com / http://website.com</h3>
</div>
How do you target and replace the contents of this combined field, especially when it
may be split out to separate elements in other templates? Additionally, in this tem-
plate, a slash separates the email and website values. Setting the innerHTML of this
<h3>, you’d need to know that this slash is the design choice for this template and
make sure to populate that as well!

It’s starting to get complicated. One solution would be to insert tags to
mark each value you’d like to replace and use those for query selection:
<div class="bottom-text">

<h3 class="phone">phone: #xxx.xxx.xxxx</h3>

<h3>email@email.com / <span

class="website">http://website.com</h3>

</div>
It’s an OK solution, but we’re adding a bit more complexity to our HTML when we
really shouldn’t have to. Fortunately, there is a newer solution just for this problem.
Let’s talk about the <slot> tag!

Entering the Shadow DOM with slots

Indeed the <slot> tag is the perfect solution to our custom field dilemma, but before
diving in, there’s something big to know. The <slot> tag only works in conjunction
with the Shadow DOM. It’s a big topic, and I think it’s best to start exploring the
Shadow DOM in depth in the next chapter. In the meantime, we’ll ease in and
explore the <slot> tag! Of course, the result of this will be a business card with our
fields filled in with custom values, replacing our placeholder values, as figure 7.15
shows.

The <slot> tag is a bit like the <template> tag in that it doesn’t actually get ren-
dered in the DOM layout. Unlike the <template> tag, we aren’t copying from it, but
instead content is automatically placed inside. Slots are essentially targets for replac-
ing content. Let’s take one of our <template> layouts and create some slots to target
content that we can swap in as shown in listing 7.14.

162 CHAPTER 7 Templating your content with HTML

default o)

O

Ben Farrell

Web Component Developer

phone:555.555.5555
ben@benfarrell.com / http://website.com

Figure 7.15 Business card using a templated layout and slots to
insert custom values

Listing 7.14 Placing slot tags in our template to allow content replacement

<div class="biz-card">
<div class="logo"></div>
<div class="top-text">
<hl><slot name="firstname">First</slot>

<slot name="lastname">LastName</slot></hl> QAthstshtscontdnhm

<h3> firstname and lastname

<slot name="title">Job