
M A N N I N G

Ben Farrell
Foreword by Gray Norton

IN ACTION

Save 35% at manning.com
Use the code humble35 at checkout to save on your
first purchase.

Early access
Don’t wait to start learning! In MEAP, the Manning Early Access
Program, you read books while they’re being written.

Access anywhere with liveBook
The Manning liveBook platform provides instant browser-based
access to our content.

Beyond books
Cutting edge liveProjects, liveAudio, and liveVideo courses give
you new ways to learn. Only available at manning.com

Impeccable quality
We believe in excellence. Our customers tell us we produce
the highest quality content you can buy.

Exclusive eBooks
Manning eBooks are only available from manning.com.
You won’t find them anywhere else.

Email

shop at manning.com

https://bit.ly/3h13ZcH
https://bit.ly/3h13ZcH
https://bit.ly/2J2R9OK
https://bit.ly/37r08lZ
https://www.linkedin.com/company/manning-publications-co/
https://www.facebook.com/ManningBooks?ref=nf
https://www.instagram.com/manning_publications/
https://twitter.com/manningbooks
https://www.youtube.com/channel/UCDia_lkNYKLJVLRLQl_-pFw
https://www.twitch.tv/manningpublications
https://bit.ly/2Wmabm6
https://bit.ly/37r08lZ
https://bit.ly/37r08lZ

The Shadow DOM protects from accidental JS and CSS intrusions,
instead allowing just the right interactions when defining an API

for your Web Component.

Shadow DOM terminology
and how the different pieces come together

My Web Component

Shadow Root

<div>
 <h1>header</h1>
 <button>click me</button>
</div>

<style>
 div { background-color: yellow; }
</style>

querySelector('h1')

querySelector('div')

Properties Methods

comp.method();

comp.property = 5;

Success!

Rejected!

div { color: blue; }

h1 { font-size: 1px; }

Rejected!

App
CSS

App
JS

Page
DOM

Web Component

Normal elements

(shadow host)

Shadow DOM

Shadow root

Shadow
boundary

Child Child Child

Child (with own inner DOM)DOM tree of an HTML page

Web Components
in Action

BEN FARRELL
Foreword by Gray Norton

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Acquisitions editor: Brian Sawyer
Development editors: Kevin Harreld, Kristen Watterson,

and Rebecca Rinehart
Manning Publications Co. Technical development editor: Douglas Duncan
20 Baldwin Road Review editor: Ivan Martinović
PO Box 761 Production editor: Anthony Calcara
Shelter Island, NY 11964 Copy editor: Rebecca Deuel-Gallegos

 Proofreader: Tiffany Taylor
 Technical proofreader: Matthew Welke

Typesetter: Dottie Marisco
 Cover designer: Marija Tudor

ISBN 9781617295775
Printed in the United States of America

www.manning.com

 To my amazing wife,
who writes way more exciting books than those about web development,

involving dragons and disasters.

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxi
about the cover illustration xxiv

PART 1 FIRST STEPS...1

1 The framework without a framework 3
1.1 What are Web Components? 5

The date picker 5 ■ The Shadow DOM 6 ■ What do people
mean when they say Web Components? 8 ■ The problematic
history of HTML Imports 9 ■ Polymer Library and X-Tags 10
Modern Web Components 10

1.2 The future of Web Components 12
1.3 Beyond the single component 13

Web Components are just like any other DOM element 13
From individual component to application 14

1.4 Your project, your choice 17

2 Your first Web Component 18
2.1 Intro to HTMLElement 19

Crash course in inheritance 19 ■ Inheritance in your favorite
elements 19
vii

CONTENTSviii
2.2 Rules for naming your element 21
2.3 Defining your custom element (and handling

collisions) 23
2.4 Extending HTMLElement to create custom

component logic 24
2.5 Using your custom element in practice 28
2.6 Making a (useful) first component 30

Setting up our web server 31 ■ Writing our HTML tag 33
Creating our class 33 ■ Adding content to our component 34
Styling our component 35 ■ Component logic 36 ■ Adding
interactivity 38 ■ Finishing touches 39 ■ Improving the
carousel 42

2.7 Notes on browser support 43

3 Making your component reusable 45
3.1 A real-world component 46

A 3D search use case 46 ■ Starting with an HTTP request 46
Wrapping up our work in a custom component 48
Rendering search results 49 ■ Styling our component 50

3.2 Making our component configurable 53
Creating our component API with setters 53
Using our API from the outside looking in 54

3.3 Using attributes for configuration 55
An argument against a component API for configuration 55
Implementing attributes 55 ■ Case sensitivity 57

3.4 Listening for attribute changes 57
Adding text input 58 ■ The attribute changed callback 58
Observed attributes 59

3.5 Making more things even more customizable 62
Using hasAttribute to check if an attribute exists 62 ■ Fully
customizing the HTTP request URL for development 63
Best practice guides 64 ■ Avoiding attributes for rich data 64
Property and attribute reflection 65

3.6 Updating the slider component 67

4 The component lifecycle 73
4.1 The Web Components API 73

CONTENTS ix
4.2 The connectedCallback handler 74
Constructor vs. connected 78

4.3 The remaining Web Component lifecycle methods 80
Disconnected callback 80 ■ Adopted callback 83

4.4 Comparing to React’s lifecycle 83
4.5 Comparing to a game engine lifecycle 85
4.6 Component lifecycle v0 91

5 Instrumenting a better web app through modules 93
5.1 Using the <script> tag to load your Web Components 94

Having to deal with many JS and CSS references 95 ■ Tiny scripts
are more organized, but make the reference problem worse 96
Including CSS for self-reliant components 96 ■ Dependency
hell 98

5.2 Using modules to solve dependency problems 99
Creating a musical instrument with Web Components and JS
modules 100 ■ Starting with the smallest component 102
Importing and nesting a Web Component within a Web
Component 103 ■ Using a Web Component to wrap an entire
web application 105

5.3 Adding interactivity to our component 107
Listening for mouse movement 108 ■ Passing data to child
components 108 ■ Making your components shake with
CSS 110

5.4 Wrapping third-party libraries as modules 111
Frontend tooling for wrapping a module with Node.js 112
Not perfect, but does the job 112 ■ Using the wrapped module
to play some notes 113 ■ No more audio autoplay 114
Playing the Web Harp 116

PART 2 WAYS TO IMPROVE YOUR COMPONENT
WORKFLOW..117

6 Markup managed 119
6.1 String theory 120

When inline HTML gets ugly 120 ■ String syntax with the
backtick 121

CONTENTSx
6.2 Using template literals 121
Business card creator 121 ■ Iterating design with just HTML
and CSS 123

6.3 Importing templates 124
Keeping markup out of the main component logic 125
A module just for HTML and CSS 126

6.4 Template logic 128
Creating menus from data 129 ■ More generation logic,
harder automation 130

6.5 Element caching 131
Don’t make me query-select in my component 132

6.6 Smart templating 134
Using lit-html 135 ■ Repeating with templates 135
Should you use it? 136 ■ Injecting event listeners into
markup 137

6.7 Updating the slider component 139

7 Templating your content with HTML 144
7.1 R.I.P. HTML Imports 145

Polyfilling HTML Imports 146 ■ What’s inside the import 146

7.2 The <template> tag 149
Document fragments 150
Using template content 152

7.3 Choose your own template adventure 154
7.4 Dynamically loading templates 157
7.5 Entering the Shadow DOM with slots 161

Slots without a name 164

8 The Shadow DOM 166
8.1 Encapsulation 167

Protecting your component’s API 168 ■ Protecting your
component’s DOM 169

8.2 Enter the Shadow DOM 171
The shadow root 172 ■ Closed mode 174
Your component’s constructor vs. connectedCallback 177

8.3 The Shadow DOM today 178

CONTENTS xi
9 Shadow CSS 181
9.1 Style creep 181

Style creep into component descendants 184 ■ Style creep into
your component 184

9.2 Style creep solved with the Shadow DOM 186
When styles creep 189

9.3 Shadow DOM workout plan 191
Application shell 192 ■ Host and ID selectors 193
Grid and list containers 196

9.4 Adaptable components 200
Creating the exercise component 200 ■ Exercise
component style 203

9.5 Updating the slider component 205

10 Shadow CSS rough edges 208
10.1 Contextual CSS 208

A small bit of interactivity 209 ■ Contextual style 212
Workaround for host-context 217

10.2 Component themes 219
Shadow and deep selectors 219 ■ CSS Variables 221
Applying CSS Variables to our demo 223

10.3 Using the Shadow DOM in practice (today) 225
Browser support 225 ■ Polyfilling 225 ■ Design systems 226

PART 3 PUTTING YOUR COMPONENTS TOGETHER229

11 A real-world UI component 231
11.1 Crafting a color picker 232

The components of our component 234

11.2 Coordinate picker component 236
The coordinate picker Web Component class 236 ■ Coordinate
picker HTML/CSS 239 ■ Component demos 240

11.3 The color picker 242
Observing attribute changes for interaction 246 ■ Responding to
input fields 248 ■ Responding to attribute changes 250

CONTENTSxii
11.4 Adding a common design language 252
Swapping in CSS vars for a consistent design 253
Using imports for more complex CSS 256

12 Building and supporting older browsers 262
12.1 Backward compatibility 263

Toggling the Shadow DOM 264 ■ Comparing to
polyfills 267 ■ Shadow CSS and child elements 268

12.2 Building for the least common denominator 271
12.3 Build processes 272

Using NPM scripts 273

12.4 Building components 274
Why we build 274 ■ Module bundling with Rollup 276
Running builds with npm 280

12.5 Transpiling for IE 282
Babel 283 ■ CSS vars ponyfill 287

13 Component testing 289
13.1 Unit testing and TDD 290
13.2 Web Component tester 291

Writing tests 294

13.3 Comparing to a standard test setup with Karma 298
Karma Web Components 306 ■ Multiple tests in the same
project 307 ■ A note on Safari 308

14 Events and application data flow 310
14.1 Framework offerings 311
14.2 Events 312

Native events and WebComponentsReady 312 ■ When
custom elements are defined 313 ■ Custom Events 315
Custom Event bubbling 317

14.3 Passing events through Web Components 318
Native event propagation through the Shadow DOM 319
Custom Event propagation through the Shadow DOM 320

14.4 Separate your data 321
Model-view-controller 323 ■ Local storage 325
Wiring UI to the data model 328

CONTENTS xiii
14.5 Exercise playback view 330
14.6 Passing events with an event bus 335

Static getter event types 337 ■ Design patterns as
suggestions 338

15 Hiding your complexities 340
15.1 Looking to the Web Component future 341
15.2 3D and mixed reality 343

A-Frame 345 ■ Model-viewer component 349
model-viewer + Poly search 350 ■ AR with model-viewer 353
Your own 3D component 355

15.3 Video effects 364
Processing pixels with JS 364 ■ WebGL shaders 367

15.4 Hand tracking and machine learning 370

appendix ES2015 for Web Components 377

index 399

foreword
The web has come a long way. What started three decades ago as a relatively simple
means of publishing, sharing, discovering, and consuming content has evolved into a
powerful and flexible application platform supporting a dizzying array of use cases.
Meanwhile, its footprint has expanded from desktop computers to devices of all types.

 As a result of this gradual transformation, we web developers have been chasing an
ever-moving target. Today’s websites are orders of magnitude more complex than
their early predecessors, and UI expectations have shot through the roof.

 Thankfully, our toolbox has also evolved. The web platform itself has gained hun-
dreds of new capabilities, and successive generations of libraries, frameworks, and
tools have steadily advanced the state of the art, helping us meet rising demands.

 One major enabler of the web’s transformation in recent years has been the wide-
spread adoption of component-based UI development. Factoring our work into com-
ponents—each one responsible for the structure, style, and behavior of a slice of the
user experience—has helped us manage complexity and build more ambitious sites.

 Components can be reused throughout a project or shared across projects, increas-
ing our efficiency. Design systems can be expressed as collections of ready-to-use com-
ponents, ensuring consistency and freeing teams to focus on product-specific needs.

 Popular frameworks have helped lead the component revolution, and indeed most
components today are specific to a given framework or library. But in parallel, a multi-
year effort has been underway to bring a first-class, native component model to the
web platform.

 Web Components is an umbrella term for a new family of web platform features
offering direct support for component-based development. Custom Elements let you
extend the vocabulary of HTML, defining your own tags that work seamlessly with the
browser’s built-in tags and can be used in all of the same places, regardless of what
xv

FOREWORDxvi
framework you might be using. The Shadow DOM lets you opt into native style encap-
sulation, ensuring that a component’s CSS rules don’t unintentionally break—and
aren’t broken by—the styling of the containing page.

 You may be wondering what benefits Web Components bring over framework-
specific component models. For one, Web Components promise to increase interop-
erability, making it simple to share components even across tech stacks. A common
component model also lowers the risk of lock-in, allowing you to carry more work for-
ward as your toolbox changes over time.

 The book you’re holding in your hands right now is exceptionally well-timed. The
road to standardizing and landing Web Components has taken some twists and turns,
but I’m happy to say that the destination is in sight: all but one of the major browsers
have now shipped Web Components, and when the next version of Microsoft Edge is
officially released, the puzzle will be complete.

 Custom Elements, the Shadow DOM, and the other Web Components features
are, by design, low-level primitives. Some developers will use these features only indi-
rectly, as framework support for Web Components has spiked with increasing browser
support. Many of the most popular frameworks now make it easy to develop and share
Web Components, and a whole new class of Web-Components-centric tools has begun
to emerge.

 But you can also use the Web Components features directly, either individually or
in combination. Reading this book will give you a deep understanding of each feature
and how they relate to one another, equipping you to make smart choices for yourself
and your team.

 Ben Farrell has been using Web Components since the early days, in a wide range
of applications. Along the way, he has amassed a wealth of valuable knowledge and dis-
covered numerous effective patterns, all of which he’ll share with you in these pages.

 Ben teaches by example, demonstrating concepts through compelling projects
that illuminate realistic use cases. You’ll certainly learn a lot, but you’re also bound to
find ideas and code here that you can apply directly to your own projects.

 In deciding to pick up Web Components and this book, you’ve chosen well. Enjoy
the journey!

 —GRAY NORTON,
 TECHNICAL LEAD/MANAGER FOR THE

 POLYMER PROJECT, GOOGLE

preface
Web Components, for me, began in 2013. I remember that I was working on a fun lit-
tle Angular v1 side project and nerding out on some aspect of managing CSS and
classes that Angular didn’t handle well at the time. I knew I could have easily done
what I needed in plain HTML/CSS/JavaScript, but Angular was making it difficult
just because what I was doing was a bit off the beaten path.

 Around this time, I felt like I was really starting to master Angular, so I wrote a few
blog posts around some interesting, nontypical approaches. But this was also when
Angular excitement felt like it was waning, and React excitement was just starting.

 Honestly, I was disappointed. I took a long look at a cycle I felt trapped in. In the
span of just two or three years, I was constantly learning and getting good at JS frame-
works. None of these frameworks were compatible with each other. I’d get to a point
where I felt like I could really focus on my project, with the framework off in the back-
ground, and then suddenly something new was released that made me feel like I had
to go back to square one.

 At the same time, Google’s Polymer Library had been released as a very early and
unstable version. Creating individual components that could live anywhere sounded
like an amazing promise. Initially, I liked what it was trying to achieve, but a pre-v1 API
that was in flux and the fact that I was replacing my workflow with yet another frame-
work made me rethink things. I started looking at the proposed web standards that
made the Polymer Library possible and saw enormous potential. I realized that it
wasn’t the Polymer Library I was excited about—it was really Web Components.

 I started blogging and giving talks about Web Components. I also joined Adobe at
around this time. This was significant because my team was working on small prototypes
with one, maybe two, developers for a project. This meant that I could experiment with
the technology and tools of my choice. For almost every project, I continued to push on
xvii

PREFACExviii
Web Components while experimenting and continually improving a workflow for work-
ing with them.

 It certainly wasn’t easy, of course. Sometimes the rug was completely pulled out
from under me! As Web Components became the standard that they are today, we saw
the API change and features become deprecated, but I stuck with it. I did so because I
really do enjoy working as close to the browser as I can with just HTML/JS/CSS and
saw Web Components as the vehicle to provide structure to my projects and not have
them end up as code spaghetti.

 I wasn’t totally convinced yet of Web Components’ viability. For one, I wasn’t using
the Shadow DOM quite yet. I didn’t want to get lured into something only Google sup-
ported and that had questionable polyfill support. But then Web Components landed
in Safari, and Mozilla promised support as well. The icing on the cake was when
browsers started supporting JS modules/imports natively, and I could properly sepa-
rate out code and, more importantly, HTML and CSS. When all this happened, I knew
Web Components were starting to fulfill their potential.

 This was all very slow going over several years, of course. Many developers who
were initially excited about Web Components lost their patience, and I don’t blame
them. I initially approached Manning about a Web Components book prior to some
important key things happening, like the major browser vendors coming together to
finalize v1 of the specification. Manning wasn’t confident with Web Components at
the time, especially with books in the industry being cancelled due to unknowns about
where Web Components would go.

 Whether I was overly optimistic or had just spent enough time with them to know
Web Components’ potential, Manning contacted me a year later for another pro-
posal. Even then, in early 2018, Web Components still could have taken a bad turn if
the other browser vendors decided to back out. Also at the time, I wasn’t approaching
Web Component development in the same way as most others were—using HTML
Imports as an entry point. However, during the course of the book, LitElement from
the Polymer team started approaching things much like I was, using template literals
to hold markup and style. This, coupled with Web Components landing in the fall of
2018 with Microsoft working on them as well, let me breathe a sigh of relief knowing
that the approaches in my book are lockstep with the present and future of Web Com-
ponents. I’ll definitely continue to improve my workflow as new features come to the
browser and are invented in the community, but I’m extremely excited with where
Web Components are right now, as Web Components in Action is about to be published.
And, of course, I can’t wait to share everything with readers of this book!

acknowledgments
This book wouldn’t have been possible without all the amazing people who helped me
along the way. I want to thank my friends in North Carolina and the awesome folks run-
ning and attending NCDevCon for listening to me yammer on about Web Components
on a near-constant basis. More specifically, I’d like to thank Adrian Pomilio for blowing
my mind in his 2011 talk showing Custom Elements before they were really a thing.

 I’d also like to thank the GE Design System team for being my Web Component co-
conspirators at a time when they were so new and we weren’t quite sure if everyone
else thought we were insane. Specifically, I’d like to thank Martin Wragg, Jeff Reichen-
berg, and John Rogerson for nerding out with me about this new way to create for the
web. I’d also like to thank the Google Polymer team for help and guidance during this
time, as well as their technical lead/manager Gray Norton for writing the foreword for
this book.

 At Adobe, I’d like to thank the entire Adobe Design team (and beyond) for being
so supportive and genuinely excited for me publishing my first book.

 Of course, my wife Rebecca Gomez Farrell has not only supported me through this
whole thing, but also happens to be an amazing writer and editor herself. In addition
to getting me a stiff drink when I needed one, she helped a new writer be way better,
with actual, professional advice.

 I’d like to thank the Manning editorial team, including development editors Kris-
ten Watterson, Kevin Harreld, and Rebecca Rinehart, as well as technical develop-
ment editor Douglas Duncan, technical proofreader Matthew Welke, production
editor Anthony Calcara, copyeditor Rebecca Deuel-Gallegos, and text proofreader
Tiffany Taylor. Lastly, I’d like to thank the reviewers, whose feedback and insight were
instrumental in shaping this book, including Alberto Ciarlanti, Alicia Baker, Birnou
Sébarte, Clive Harber, Daniel Couper, Hernan Garcia, James Carella, John Larsen,
xix

ACKNOWLEDGMENTSxx
Juan Asencio, Justin Calleja, Oliver Kovacs, Pietro Maffi, Ronald Borman, Russel Dawn
Cajoles, Ryan Burrows, Sergio Arbeo, Stefan Trost, Thomas Overby Hansen, Timothy
R. Kane, and Kumar S. Unnikrishnan (TR Technology & Ops).

about this book
Web Components in Action isn’t about dictating what approaches developers should take.
Instead of telling readers what to do, I take a more exploratory approach to cover the
basics of Web Components. You should recognize that, while experts may tell you what a
good workflow is today, the exciting thing about standards is that they can be built upon
in ways nobody expects.

 In Web Components in Action, I aim to arm you with great ideas and workflows to get
started. I also hope to empower you with the knowledge to take Web Components fur-
ther, in ways I haven’t considered yet and for types of projects I haven’t encountered.

Who should read this book

Web Components in Action is for web developers who are curious about Web Components
and want to know more about the standards behind them and how they come together
with other web technologies to create standalone components or applications.

 It’s also for developers who want ideas about how to break free of complicated
frameworks or libraries and get back to writing plain HTML/JS/CSS without needing
any build steps.

How this book is organized: a roadmap

This book is in three parts covering 15 chapters and an appendix.
 Part 1 covers the first steps in getting a simple component off the ground:

 Chapter 1 outlines what people mean when they talk about Web Components
and the different standards that come together to create one.

 Chapter 2 walks through creating your very first Web Component, while intro-
ducing the bare-minimum concepts needed to create something useful.

 Chapter 3 brings a minimal component to the next level by making it reusable.
xxi

ABOUT THIS BOOKxxii
 Chapter 4 details the Web Components API and lifecycle, comparing them with
others you may have encountered.

 Chapter 5 introduces modules for better code reuse and project organization.

The second part builds on a minimal component and covers concepts to improve
developer workflow and project organization:

 Chapter 6 details using modules to separate out and import view logic like
HTML and CSS to organize your component better.

 Chapter 7 covers an alternate, but nonpreferred, way to organize your compo-
nent with HTML Imports, while breaking it down into pieces that are relevant
to other aspects of Web Components as well.

 Chapter 8 introduces the Shadow DOM and how it’s useful for protecting and
encapsulating your component.

 Chapter 9 continues with exploring the Shadow DOM to cover its CSS aspects.
 Chapter 10 explores some trouble that Web Component developers may have

with CSS in the Shadow DOM and ways in which to avoid or overcome it.

The third and final part covers working with multiple components together to build
something larger:

 Chapter 11 reviews the previously covered concepts and uses them to build a
brand-new, more polished component, built on child components already
created.

 Chapter 12 takes this brand-new component forward to be more ready for pro-
duction by using build tools that allow it to be used in older browsers that don’t
support Web Components.

 Chapter 13 furthers the same component by writing tests for it that run in three
different contexts, to explore the various options available for Web Component
developers.

 Chapter 14 discusses passing messages between your components and dives into
some common design pattern when event bubbling doesn’t cut it.

 Chapter 15 speculates on the future of Web Components and also the power
they can enable today by hiding complexity and making everything from live
video effects to mixed reality easier to use.

Lastly, the appendix covers newer JS features (ES6/ES2015) and how they help Web
Components.

About the code

Source code is provided for all the examples in this book and is available for download
from the Manning website at www.manning.com/books/web-components-in-action and
in a GitHub repo found at https://github.com/bengfarrell/webcomponentsinaction.
The repo is organized into folders for each chapter, and in those there are typically

www.manning.com/books/web-components-in-action
https://github.com/bengfarrell/webcomponentsinaction

ABOUT THIS BOOK xxiii
subfolders for each section. Exceptions are when working on a big example that encom-
passes the entire chapter.

 Code can be run with just a browser and doesn’t need to be compiled until the
later chapters on build tooling. Generally, a simple HTTP server will be needed to run
the associated HTML file that drives the example, but only to deal with cross-origin
issues.

 This book contains many examples of source code, both in numbered listings and
inline in normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

liveBook discussion forum
The purchase of Web Components in Action includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the author and from other users. To access
the forum, go to https://livebook.manning.com/#!/book/web-components-in-
action/discussion. You can also learn more about Manning’s forums and the rules of
conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions, lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

About the author

Ben Farrell is a senior experience developer at Adobe, working on
the Adobe Design Prototyping Team. Ben, alongside his team,
helps shape and realize the UX of products and features in the
middle ground between design and engineering. Ben has been
primarily web-focused his entire career but has worked on award-
winning projects using a wide variety of platforms and languages.

https://livebook.manning.com/#!/book/web-components-in-action/discussion
https://livebook.manning.com/#!/book/web-components-in-action/discussion
https://livebook.manning.com/#!/discussion

about the cover illustration
The figure on the cover of Web Components in Action is captioned “Bourgeois de Lon-
dre,” or a bourgeois man from London. The illustration is taken from a collection of
dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–
1810), titled Costumes Civils Actuels de Tous le Peuples Connus, published in France in
1788. Each illustration is finely drawn and colored by hand. The rich variety of Grasset
de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s
towns and regions were just 200 years ago. Isolated from each other, people spoke dif-
ferent dialects and languages. In the streets or in the countryside, it was easy to iden-
tify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.
xxiv

Part 1

First steps

You’ve probably been hearing more and more about Web Components
lately. Much of this has to do with all the major, modern browsers now support-
ing them in recent months. This includes Microsoft Edge, because you can
already download a developer preview while we wait for the official Chromium-
backed release. It can get a bit confusing when you look deeper to see what Web
Components actually are, though!

 Not only has the collection of standards that make up Web Components
changed a little over time, but, in reality, a Web Component can be created with
Custom Elements alone! You can create your very own element that sits on your
HTML page just like any other browser-provided one. More importantly, by
using the Custom Element API, your element can be given custom logic to be a
made a fully featured, tiny interactive component that looks simple from the
outside and can work together with any other element on the page.

 The first part of this book will zero in on how to create your first custom ele-
ments, as well as explore some best practices around them. At the end of the first
part, even just exploring this one concept, you’ll be making Web Components
that are actually useful in real-world situations, even allowing them to be
wrapped up as a single piece managing its own dependencies, perhaps including
other nested Web Components, ready to be dropped onto an HTML page.

The framework
without a framework
Hello, and thanks for reading Web Components in Action! I’ve been using Web Com-
ponents for a few years now on just about every web development project I’ve had.

 As web developers, it’s our job to choose the right tools for any given project.
This can get complicated, because it’s not just the project’s immediate needs that
matter. Your team’s needs do as well, as do whether the project is part of a bigger
ecosystem at your company, how it will be maintained, and how long it will need to
be maintained. The list goes on.

 Of course, these decisions aren’t unique to web developers, but one major differ-
ence between us and many software developers is that the web community has put
out an astounding number of tools, libraries, and frameworks. It can get difficult to

This chapter covers
 What a Web Component is

 The Shadow DOM

 Custom Elements

 Polymer Library and X-Tags

 ES6/ES2015 language features
3

4 CHAPTER 1 The framework without a framework
keep up with all of them—so much so that “framework fatigue” has been a topic of con-
versation for some time now.

 Adoption of these new tools seems to happen at lightning speed. Putting aside
frameworks for a moment, even something as niche as task runners for building your
JavaScript (JS) projects has changed dramatically over the past few years. I’ve seen the
switch from Grunt in 2012 to Gulp just a couple of years later, and now there’s a ten-
dency to go minimal by using the Node.js NPM (Node Package Manager) to run build
scripts. Speaking of package managers, we developers have waffled between NPM,
Bower, and Yarn for running our frontend dependencies.

 Build tooling and package managers are one thing. They are small but significant
pieces of our web development workflow. Yet this same churn is happening with how
we actually build our applications and UI, which is arguably the most central and
important part of web development.

 For individual developers, this can definitely be hard to keep up with, although it’s
exciting to learn a new framework or library. Some have a steeper learning curve than
others, and, in many cases, you’re learning the framework’s “system” as opposed to
fundamental HTML/JS/CSS concepts.

 As a developer on a team or in a company, there are additional challenges. At the
start of a project, you’ll need to agree on what tools you’ll use to develop with over the
lifecycle of the project. This includes build tools, testing tools, and, of course, any
frameworks or libraries. Not everyone will agree on the best choice. If the team is
large and working on many projects, it can be tempting to let developers on each proj-
ect pick their own tools. After all, it’s good to analyze the needs of the project and use
the appropriate tools. But this also ignores the inevitable, when developers must work
together to create common pieces of UI or integrate a newly adopted design system
that is mandated companywide. Eventually, using different tools and frameworks may
come back to bite your team.

 If everyone agrees, begrudgingly or not, on the same framework, things can be
great for a while. Even then, two or three years down the line, the framework can
become dated. Using older technology begins to feel a little stifling, especially to
junior developers on your team who want to keep their skills up-to-date with the rest
of the web community. At this point, your organization is faced with the choice of
redoing the entire technology stack using a new framework or keeping the old one
and facing the perception of not being an innovative place to work.

 It’s a difficult problem and decision for sure! The question that begs asking, of
course, is “What’s the alternative?” I’ve talked to quite a few people who want to break
free of the constant framework churn for a variety of reasons. “Why can’t we just use
plain HTML, JS, and CSS?” is a common question. One of the biggest benefits of not
buying into a framework is being able to focus on core web development concepts
rather than learning framework-specific skills that may or may not transfer to the next
popular framework. Another huge benefit is being able to try small libraries and
microframeworks that solve specific needs in your project. The barrier of entry to

5What are Web Components?
these, and even new frontend build tools, is much lower given that you aren’t fighting
a specific development environment provided by the latest popular framework.

 Modern frameworks are extremely useful and solve some big problems, but why
don’t we hear more about using so-called “vanilla JavaScript,” given developers’ desire
to try other things? We do, to some extent. Consider this poll by the State of JavaScript,
conducted in 2017: https://2017.stateofjs.com/2017/front-end/results/. You’ll note
that no-framework development is second in popularity, behind only React.

 However, we don’t know specifics on why folks claim to prefer no framework, or
vanilla JS. What kinds of things are those developers building? What tools/processes
are they using? I’d be curious to know if they build a framework of sorts themselves to
make up for the lack of structure and code organization that modern frameworks usu-
ally provide.

 This last point about structure and code organization is why no-framework web
development has been a nonstarter for me in the past, and it’s why I’ve always turned
to the latest framework. Without structure, your code becomes spaghetti. Maintaining
and writing new features can be madness without predictable project organization.
Nevertheless, I wanted to break free of big, all-encompassing frameworks; when I saw
Web Components for the first time, I saw a huge opportunity to do just that.

 So . . . how? To really tackle this question, we need to understand what Web Com-
ponents really are. Before I get into the specifics, we’ll use a browser’s date picker as
an example we’ve all likely come across. While it’s not a Web Component, per se, it’s a
similar concept if you peek inside.

1.1 What are Web Components?
The popular modern frameworks of today largely offer code reusability in the form of
components or modules. Generally speaking, these are shareable and standalone pieces
of code (HTML/JS/CSS) that offer visual style and interactivity, and possibly have an
API or options you can set to offer customization.

 Think about what’s already in your browser. And consider that we already have
reusable, modular pieces that offer style and interactivity, and come with an API.

 Of course, I’m talking about HTML tags or DOM elements. These are rendered in
the DOM and have a specific type of functionality. A <div> tag or tag is fairly
generic and is used to hold text or a mixture of elements. A <button> or an <input>
element is more specific in functionality and style. When you place a button in your
HTML, it looks like a standard button, and when you click it, it acts like a button. This
is similar to the different styles of <input>, whether you mean to create a date picker,
slider, or text input field.

1.1.1 The date picker

Take the date picker, for example. To create a date picker, you’d simply put the follow-
ing tag in your HTML:

<input type="date">

https://2017.stateofjs.com/2017/front-end/results/

6 CHAPTER 1 The framework without a framework
Seems easy, doesn’t it? It is! What you actually get from this simple tag is fairly compli-
cated, but it’s all handled for you by your browser. This tag (when using the type
"date") offers a text input field, and you can click on the month, day, or year and step
up or down through any of them. Also, if you click the down arrow to the side, it will
pop open a calendar view that the user can interact with to choose a date, as figure 1.1
shows. Additionally, when on mobile, it acts slightly differently. It will not pop open as
it does in a desktop browser, but instead shows a modal window.

What’s more, the date picker has properties you can query, including value. We can see
this by logging the property in the JS console:

console.log(document.querySelector('input').value);

When I log this, I see the picker’s current value in my console. It also dispatches events
that I can listen to when the value changes or is submitted. I can also call methods on
the picker for stepping through dates.

 The date picker is a great example of reusable components or modules with fairly
complex visual style and interaction patterns that need to be programmed by the
browser vendors. They work in a variety of situations. The date picker is also a great
example of a popular Web Component concept called the Shadow DOM.

1.1.2 The Shadow DOM

The Shadow DOM is a way to isolate your Web Component and guard against unin-
tentional consequences from your larger application. When you open the dev tools to
look at the DOM, you’ll just see the <input type="date"> tag. However, if you use
Chrome and enable “Show user agent shadow DOM” in the dev tool settings, the same
input tag expands to look like figure 1.2.

 Lots more markup is revealed in this hidden shadow root! Personally, the first thing
I’d look for when inspecting this is the calendar pop-up. While it would be great to see
that piece in HTML and CSS, it’s not there because that piece of UI is part of your
native OS that your browser simply exposes through the element. That said, we have a

Figure 1.1 Expanded date picker UI

7What are Web Components?
fair number of elements hidden away in our Shadow DOM that all appear in the input
field element.

 Looking closely, you might notice that our Shadow DOM hosts a mix of <div> and
 tags. It might occur to you that this is dangerous! Why? Well, in my applica-
tion’s CSS, I could very well define all <div> tags to have a blue background with a
super-large font size and all tags to display with an opacity of 10%. If you didn’t
know that this additional markup existed, you might accidentally ruin all your date
pickers—except for one major thing: the Shadow DOM protects the inner workings of
your Web Component from the outside. Your blue/large div styles won’t penetrate the
Shadow DOM. What’s more, you would not be able to write some JS to try to get and
manipulate the date picker’s clear button:

let myElement = document.getElementById('clear');

When we attempt to get this element, because it is within the bounds of the Shadow
DOM, the element is not found, and our myElement variable is null. Figure 1.3 shows
various attempts with both CSS and JS.

 So, the Shadow DOM protects your shadow root scope. Yes, you can use this shadow
root anywhere. But it makes a ton of sense in a custom element that you built to avoid
unintended breakage when a developer sets a CSS rule that happens to have the same
name as something you used in your component—or when that same developer

Figure 1.2 Enabling shadow root settings in the Chrome dev tools allows us to see the input
tag’s hidden Shadow DOM.

8 CHAPTER 1 The framework without a framework
happens to query an element by class, and something in your custom element gets
picked up accidentally.

 As you can imagine, the date picker is a useful element for complementing several
other useful elements that we use on a daily basis. Many elements are used for seman-
tic purposes, like the <footer> tag, but others have a specific API and style, like the
<button>, <option>, and <video> tags.

1.1.3 What do people mean when they say Web Components?

As nice as the date picker, and any other element, might be, wouldn’t it be amazing if
we could create our own elements with our own visual style, internal logic, reusability,
and encapsulation?

 This is what folks mean when they refer to Web Components. In addition to the
encapsulation provided by the Shadow DOM, we can use the Custom Element API to
create our own components that do things specific to our own needs.

 To me, that’s the promise of Web Components. I want to take something I’m inter-
ested in and create a reusable piece that I can share with the world, my team, or just
myself to use in multiple projects where I need it. Alternately, there might be a piece
of UI that I find boring to create over and over and over again. With Web Compo-
nents, I can create it once, use it in multiple projects, and flesh it out as I need more
features. Even better, maybe someone else created a Web Component for something I
need, and I don’t have the time or expertise to re-create it. They can share it with me,
and I can just use it like a normal DOM element.

Figure 1.3 The Shadow DOM protects your component from unintended consequences when CSS
or JS might affect styles and nodes inside that aren’t meant to be altered. Instead, your component
would have a custom-defined API to interact with using methods and properties.

My Web Component

Shadow Root

<div>
 <h1>header</h1>
 <button>click me</button>
</div>

<style>
 div { background-color: yellow; }
</style>

querySelector('h1')

querySelector('div')

Properties Methods

comp.method();

comp.property = 5;

Success!

Rejected!

div { color: blue; }

h1 { font-size: 1px; }

Rejected!

App
CSS

App
JS

9What are Web Components?
1.1.4 The problematic history of HTML Imports

Unfortunately, some in the web development community regard the promise of Web
Components as a broken one. I certainly can’t blame them for feeling this way. When
talking about the specific technical features that Web Components offer, the vision
started to fall apart after the initial hype around Web Components settled down a few
years ago.

 Around 2015, it was widely understood that a standard Web Component would be
built using three new features:

 Custom Elements
 The Shadow DOM
 HTML Imports

I haven’t even mentioned HTML Imports yet. That concept was never adopted as a
standard. In fact, in the beginning, Google was largely responsible for creating work-
ing drafts of Web Components. Google took it upon itself to create APIs and ship
them in Chrome as a hopeful experiment to see if Web Components would take off.
HTML Imports never made it; the other browser vendors at the time had no plans to
ship the feature. Firefox, specifically, wanted to hold off to see how big a splash
ES6/ES2015 modules would make and—perhaps, possibly, someday—import not only
JS, but HTML as well.

 HTML Imports were a pretty big loss. From the beginning, Google’s plans for
delivering Web Components hinged on them. The HTML Import, as figure 1.4 shows,
was a snippet of HTML for declaring the component’s markup or structure, and it
also included the JS that defined the component’s logic. HTML Imports were the
main entry point for Web Components, and without them, we were at a loss as to how
to use Web Components with markup and style at all.

Figure 1.4 With HTML Imports, a file containing your component definition
and your component’s markup could be imported right into your document.

Web page/application

<link rel="import" href="myfile.html">

<script src="mycomponent.js">

<template>
 <h1>header</h1>
 <button>click me</button>
</template>

myfile.html

<my-component>

Visual content

10 CHAPTER 1 The framework without a framework
The Shadow DOM wasn’t much better at the time. Chrome was the only browser to
adopt it. It took until October 2018 for Firefox to adopt, and we’re waiting for Micro-
soft Edge to ship it, though it is available as a developer preview right now.

 Both the Shadow DOM and the Custom Element API have gone from version 0 to
1 as well. For Custom Elements, this was a bit troubling, given that developers who
were familiar with Web Components during that shaky time were told to switch over to
the new API.

 Given all this, developers who called Web Components a “broken promise” and
moved on to a framework can hardly be criticized. I can vouch that it was a bit tricky
around 2015 to properly work with them, especially when targeting browsers other
than Chrome.

1.1.5 Polymer Library and X-Tags

Another aspect of what people meant when they talked about Web Components then
were the libraries that emerged at the time, which used Web Components as their
basis. With the instability surrounding plain, no-framework components at the time,
Google’s Polymer Library (https://polymer-library.polymer-project.org) and Mozilla’s
X-Tags (https://x-tag.github.io) were what people thought of as Web Components, or
at least the only way to work with them.

 The Polymer Library did a great job pushing the standards and workflows forward,
and it now looks like 3.0 is the last official feature release, as the Polymer Library goes
into maintenance mode. The team is instead breaking off some of the core tools and
features into much smaller and more targeted solutions like lit-html and LitElement
as part of the Polymer Project. These core tools and features are well-aligned with the
no-framework approach I outline in this book.

 Even though the team did great work on a series of solid releases and is working
now to focus on smaller and more opt-in features, the Polymer Library’s early days
prior to v1.0 were a little shaky. As expected with any pre-v1.0 library, the APIs
changed a fair bit, especially as it tried to keep up with the changing specifications
and lack of Shadow DOM on every browser except Chrome. The Shadow DOM was
especially hard to deal with. Full-featured polyfills that included CSS encapsulation
were too difficult and affected performance. To compensate, the “Shady DOM” was
invented as a lightweight implementation that could be polyfilled.

 It was a rocky time for Web Components in general, and the Polymer Library
seemed like yet another framework/library that had to compete with more-solidified
ones that didn’t deal with in-flight web standards.

1.1.6 Modern Web Components

Despite these rocky times, I stuck with Web Components. I was successful at using
them for projects but wasn’t fully satisfied until I started using some new JS language
features. The fat-arrow function turned out to be an amazing way to manage scope
when working with mouse events or timers. More importantly, the import keyword
and the concept of modules were huge.

https://polymer-library.polymer-project.org/
https://x-tag.github.io/

11What are Web Components?
 With import, I was able to move away from the fragile mess of making sure every JS
file I wanted to use was linked in a script tag on my main HTML page. Each Web Com-
ponent could be completely responsible for importing its own code. This meant that
on the main HTML page, I could have a single module-based script tag import a Web
Component that contained my entire application. Each child component would just
import whatever it needed.

 This opened the door to reusable code modules written in pure JS and gave me
the ability to create multiple levels of inheritance when I wanted my components to
share an API and be a little smarter than the base HTMLElement API. Lastly, I could
keep my HTML/CSS in a separate template.js file that I could import, separating my
visual concerns from the component’s controller logic.

 The last huge JS feature that made Web Components a pleasure to work with was
the template literal. Not only could I keep my HTML/CSS in a separate template file,
but I could replace placeholder expressions in my markup with variables, and nest
multiple templates together using JS functions.

 These ES6/ES2015 features suddenly made Web Components a joy to work with.
Even having previously worked with the now-deprecated HTML Imports, I think the
combo of modules and template literals is a much better way to go, by comparison.

 As I stated before, the Shadow DOM is 99% here. It’s taken some time, but all the
major browser vendors are in. We’re just waiting for Microsoft to release the Edge
developer preview to everyone. Personally, I’ve only now gone all in on working with
the Shadow DOM after Firefox shipped.

 At the same time, as nice as the Shadow DOM is, it’s also optional. True, it does
give our component’s child elements some nice protection against style and JS creep-
ing in and having adverse effects, but this is a new solution to a problem we’ve always
had. So, if we need to wait a few months for browser support, or just opt out of it alto-
gether for the short term, it’s not the end of the world. That said, I’ve tempered my
excitement on the Shadow DOM long enough due to previous browser support; now
that we’re about to cross the finish line, I’m thrilled because it’s proving to be such a
joy to use.

 As excited as I am for the future of Web Components, I haven’t heard of any sort of
modern vision for them, especially for developers who were confused by them before.
If I had to redefine the “promise of Web Components” for 2019 onward, it wouldn’t
be the three mandatory features of Custom Elements, Shadow DOM, and HTML
Imports anymore.

 To me, the 2019 vision for Web Components is shaping up to be a toolbelt of
ES6/ES2015 features and the <template> tag when and if you need it, all in service of
the Custom Element as the core feature. Once the Shadow DOM ships everywhere in
the near future, it will also be a major addition to our toolbelt. This vision is how I’ll
be approaching Web Components in this book. We’ll dive deep into the Custom Ele-
ment and then explore workflows around all the optional tools in our toolbelt.

12 CHAPTER 1 The framework without a framework
1.2 The future of Web Components
It’s never easy to predict the future, especially on the web, where things change at an
insane pace. That said, we have some strong clues indicating where Web Components
might go beyond 2019.

 We’ve already seen experiments with React, Angular (https://angular.io/guide/
elements), and Vue (https://vuejsdevelopers.com/2018/05/21/vue-js-web-component/)
on compiling components in each of these frameworks to a standalone Web Compo-
nent, running completely independently of the framework that made those compo-
nents. Additionally, tools like StencilJS (https://stenciljs.com) and Svelte (https://
svelte.technology) allow you to create with a framework and compile to standalone
Web Components.

 What does this mean? Soon, we might all create components with no framework or
with the framework of our choice. We’ll use a React-created Web Component in Angu-
lar or a Vue-created Web Component in a no-framework web page. The artificial walls
we have between developers and their frameworks may be coming down relatively
soon, as depicted in figure 1.5. And this is all thanks to Web Components.

This concept might even extend to allowing completely different languages to operate
together. One application could have different components developed in JS, Type-
script, and CoffeeScript; given that each is a modular component providing an API,
this wouldn’t matter. Even crazier, with the advent of WebAssembly, we could see lan-
guages like C++, Lua, Go, and so on compiled to bytecode and wrapped by a Web
Component, looking like a completely normal element from the outside while simul-
taneously allowing high-performance graphics that can run faster than JS would nor-
mally run.

No-framework
plain vanilla

Web ComponentReact application Angular application

React component Angular component

React component Angular component

Figure 1.5 Web Components could bridge the gap in the future between popular frameworks.
Not only can no-framework Web Components be used in these frameworks, but there are
already experimental projects to compile a component in React, Angular, or Vue to
independently run components that can be used anywhere.

https://angular.io/guide/elements
https://angular.io/guide/elements
https://angular.io/guide/elements
https://vuejsdevelopers.com/2018/05/21/vue-js-web-component/
https://stenciljs.com/
https://svelte.technology/
https://svelte.technology/
https://svelte.technology/

13Beyond the single component
 I also think that using ES6/ES2015 modules and imports will change the way we
think about libraries and frameworks. Already, we are seeing two similar tools, lit-html
and hyperHTML, for advanced markup management. Both of these have modules
that developers can import instead of loading an entire library to target a specific
problem. You’re allowed to opt in or out whenever you want during your project.

 In this regard, I think we’ll see lots more amazing libraries. You’ll import only what
you need, when you need it. People might get bored with Web Components as a shiny
new paradigm, but I can see us building on these fundamentals with importable
scripts and libraries. The Polymer Project’s new approach, as the team moves their
original library into maintenance mode, seems to match this exactly. Time will tell if
the major frameworks will break off features, as the Polymer team did with lit-html,
into separate imports we can use outside the framework. But it seems inevitable to me,
especially looking at other languages that have had import functionality forever.

1.3 Beyond the single component
So far, I’ve talked a lot about Web Components as individual components, but as
much as I love standalone Web Components, they wouldn’t be much use if they didn’t
work together to create your application.

 Long before Web Components were a thing, we had great ways to interact with
normal DOM elements. We can use these same methods to give structure to whatever
we build with Web Components, just like we do with an ordinary <div>, <video>, or
<input> tag.

1.3.1 Web Components are just like any other DOM element

For starters, every element has some sort of public API. By this, I mean that you can
get and set properties on your element and call functions. For example, with the video
element, you can call pause() and play() functions to control video playback. You
can also check how long a video is by checking the duration property. Lastly, to jump
to a specific point in your video, you can set the currentTime property.

 Obviously, methods and functions on objects are common everywhere in program-
ming. DOM elements are no different, as you may be able to tell from figure 1.6; fur-
thermore, custom Web Components are no exception, either.

 Somewhat similar to properties are attributes. You see these all the time in HTML.
Something as simple as an tag has a src attribute that points the element to the
image’s location. Attributes are a simple concept, but they are handy for giving your
Web Component different behaviors depending on how you want it to act. Even bet-
ter, Web Components have an API such that you can internally listen for attribute
changes.

 In the previous example of the video element, the attributes exposed by the tag
don’t match the properties that the API exposes. While we can set the currentTime
property, we can’t set the same attribute on the tag. Counter to this, many times with

14 CHAPTER 1 The framework without a framework
Web Components you create, you’ll want to use the best practice of reflection. When
setting properties, you’ll want to update the attribute (and vice versa), so these attri-
butes and properties are in sync. Of course, this isn’t a hard-and-fast rule, just a widely
accepted best practice. Prior to Web Components, reflection wasn’t necessarily
adhered to. A good example of when things can go wrong is the value attribute on an
<input> tag. A value attribute here sets the initial value, but when it changes, this
value attribute stays the same. Querying the value property through JS will return the
most recent value, assuming it’s been changed. This is confusing! But we just accept it
because that’s how the <input> tag has always worked. When creating new Web Com-
ponents, it’s likely best to avoid this confusion and reflect attributes and properties.
To this effect, the video element’s muted attribute/property is a good example of
reflection.

 Lastly, you might want to listen for changes from your custom Web Component.
We use events all the time in other scenarios. Think about clicking a button. Typically,
we’d do the following to listen for the click:

mybutton.addEventListener('click', functionToCall);

You can also create and dispatch your own Custom Events. You can do this from any-
where, but they are especially handy when you need your application or other compo-
nents within it to listen to events coming from your Web Component.

1.3.2 From individual component to application

Talking about individual components is one thing, but what about when you need to
build an entire web application? Web Components can be as big or as little as you
need them to be. You might build some extremely granular components, like buttons,
and then nest those inside a bigger Web Component, like a custom toolbar.

Figure 1.6 DOM elements have various properties, methods, events, and attributes that are used
to tell the element how to act and communicate with the outside world.

Typical DOM element

Properties Methods

Web application/JS

call method();
get

element.property
set
element.property

Tag attributes

Visual content

<input type="date" step="2">step="2"

E
ve

nt
s

E
ve

nt
 li

st
en

er
s

15Beyond the single component
 Your toolbar component might handle the finer details of working with the buttons,
perhaps toggling them on and off or disabling certain ones under specific circum-
stances. Our toolbar, alongside other components shown in figure 1.7, could be fur-
ther nested inside another parent component, and so on. This can keep going all the
way up until a single, solitary Web Component is the only thing in your <body> tag.

Web Components, and no-framework JS, have much to offer you for web application
development. But as your application grows, it will grow in complexity. It can get more
and more difficult to coordinate how your components interact with each other.

 Sometimes, you’ll find that even with the inherent structure that Web Components
give you, this just isn’t enough to build your complex application. You might be
tempted to turn to popular frameworks and libraries to help structure things. Frame-
works like Angular offer data binding, MVC patterns, and more. Certainly, they can be
helpful when building a traditional web application. On the other hand, we can write
and import simple JS code based on tried-and-true design patterns that have been
around for ages, avoiding these larger frameworks.

 For example, native DOM events might fall short for you. Often, you’ll want one
part of your web application to message a completely different part of your applica-
tion, and you won’t want to worry about how the event bubbles through the DOM.
You could turn to a library like RXjs or Redux, but it might be overkill. Instead, you
could write a simple event bus with a small amount of code. Figures 1.8 and 1.9 con-
trast these two approaches.

 In figure 1.8, you might, for example, have form-input components contained in
a Web Component. These input components could trigger text input changes, drop-
down changes, and more, all to that parent component. A good example of this
might be a color picker component with RGB text input and sliders. The parent Web

Figure 1.7 Example web application consisting of Web Components, which are themselves made
up of more Web Components. The hierarchy can extend to something small, like a custom button,
or be as large as the entire application wrapped as a Web Component.

Web application (could be a component as well)

Header & navigation component
Drop-down menu

component

Footer component

Toolbar
component

Main application
component

Content area
component

Button
components

16 CHAPTER 1 The framework without a framework
Component (the color picker) that hosts these input components would then have
to pass the color on to its parent Web Component in another event to report the
color’s hex value.

 This natural event bubbling could break down if the thing whose color you’ve
decided to change is all the way on the other side of your DOM in a different section
of the DOM tree. In this case, you’ll need to use a different strategy, such as an event
bus (figure 1.9).

Figure 1.8 Events naturally bubble from the inside out
of nested elements.

Component #1

Component #2

Component #3

Figure 1.9 If normal event bubbling is not desirable, with a bit of code, you
can create an event bus system to route events where you want.

Event bus

Component #1

Component #3

Component #4

Component #5

17Summary
There’s also a middle ground with microframeworks. Microframeworks can be a great,
minimalist way to organize your application and add specific functionality without get-
ting too opinionated about it like a larger framework would. Worrying about finer
details in your custom-built Web Components, while orchestrating your larger applica-
tion with these smaller libraries, can be a nice way to go. Even minimalist solutions for
data binding and routing can be found through NPM as well.

1.4 Your project, your choice
In the end, even though there’s a great case to be made for no-framework Web Com-
ponents, your project and your team will ultimately influence what you use to create
for the web. Like any emerging standard, Web Components don’t offer all the answers
just yet. Then again, no popular framework does.

 There will be cases where your web application is extremely straightforward, and a
modern framework might be the perfect answer because it handles everything you
need to do. Other times, you might be working on the type of project in which frame-
works just get in the way. The solutions you can choose from cover a wide spectrum of
options, with some of those options overlapping.

 Even if no-framework Web Components aren’t the right answer for you, your favor-
ite framework will likely be built with them one day, although it may not be apparent.
Getting acquainted with the web standards-based underpinnings of any framework is
always a great idea, even if you don’t use them directly.

 Despite the somewhat confusing half-start of Web Components a few years back,
we’re at a place right now where they are a real option for making your next project.
I’m sure we’ll see new ideas and methods for your Web Component workflow in the
years to come, but these new ideas will be based on the standards I’ll cover in this
book, along with the latest and emerging current workflows. We’ll cover Web Compo-
nents on an atomic level, all the way up to applications built with many components,
as well as how to manage your HTML/CSS, organize your projects, and more. I hope
you’re as excited as I am about the future of the web!

Summary
In this chapter, you learned

 How Web Components have evolved in the past few years from a Google-owned
working draft to a real web standard adopted by all the modern browsers

 About the Shadow DOM as an optional yet important feature, while being on
the verge of widespread browser adoption

 Web Components’ place in modern frameworks, as well as an agnostic part of
any ecosystem

 The potential future of Web Components, with an ever-expanding community
of JS modules in the spirit of Polymer Project libraries like lit-html and lit-
element, as well as non-Polymer Project ones like hyperHTML

 About the individual Web Component versus an entire Web Component appli-
cation

Your first
Web Component
As I promised in the beginning of this book, we’re going to start small. Luckily, with
Web Components, even when we do start small, we can still make something mean-
ingful. After this chapter, you’ll have the know-how to make your first Web Compo-
nent and be able to view it right in your browser! Subsequent chapters through this
book will explore key concepts in more detail, but the basics start here. At the end
of this chapter, we’ll discuss options when your browser doesn’t support custom ele-
ments, as in the case of the latest consumer Edge release (at the time of writing) or
IE. For now, though, please use Chrome, Firefox, or Safari if you’d like to follow
along with the code examples.

This chapter covers
 The basis for almost every element you use: HTMLElement

 Extending classes to make your own custom elements

 Giving your custom elements logic and interactivity

 Using custom elements after defining them with
customElements.define
18

19Intro to HTMLElement
2.1 Intro to HTMLElement
Prior to learning the basics of Web Components, I didn’t really know what an HTML-
Element was. You might not either—it’s an easy thing to never come across, because
while it’s a core concept in how the DOM works, we’ve typically never worked with it
directly until now.

 This is because when you add an element to your page, it just works. You don’t nec-
essarily need to know how an <input> tag is related to a <button> or how a <div> is
related to an .

 To explain, we’ll have to get a bit into the concept of inheritance. It’s a popular
concept in object-oriented programming, and one we’ll run with later in the book as
we explore code reusability, but to quickly explain, let me start with an example.

2.1.1 Crash course in inheritance

NOTE If you are already familiar with inheritance in object-oriented program-
ming, please skip to section 2.1.2 to explore inheritance in relation to your
favorite DOM element.

Pretend you’re at a zoo. While you’re there, you notice that all the animals have some
specific things in common. Animals need to eat, breathe, sleep, and move around. Of
course, some animals are different than others. Mammals have fur, have babies instead
of laying eggs, and are warm blooded. Mammals have all the base characteristics of ani-
mals, but there are extra rules when you call something a mammal. You could even go
further and consider mammals like tigers, lions, and panthers as types of felines. Felines
also have some specific things in common, like whiskers, claws, and eating meat.

 In object-oriented programming, we can say that a feline inherits from a mammal,
and a mammal inherits from an animal. If you were writing code, you might start by
defining an Animal object (or class to be more specific), as figure 2.1 shows. Your Animal
might have functions that you can call to make it breath(), sleep(), and eat().

 Next, you might want to create a Mammal object. It would be tiresome and repetitive
to write code for breath(), sleep(), and eat() again for the Mammal object. Because
this is all similar to Animal, we can use inheritance; when creating that Mammal object,
we say Mammal extends Animal. Mammal automatically gets all the functionality of
Animal, but we can add more specific functionality, like growFur(). We can even cre-
ate a Feline object that inherits from Mammal, and because Mammal inherits from
Animal, Feline will have all the functionality of Mammal and Animal.

 Inheritance is a core feature of object-oriented programming, typically used in
other languages, and now JavaScript (JS), via classes. If you are not familiar with this
newer JS feature, read up on it in the appendix, “ES2015 for Web Components.”

2.1.2 Inheritance in your favorite elements

Our zoo inheritance example is a lot like HTMLElement. With a few exceptions, like
SVG, any element that you put in your HTML/DOM is inherited from HTMLElement.

20 CHAPTER 2 Your first Web Component
While HTMLElement isn’t the bottom rung of the inheritance chain as far as the browser
is concerned (just like we can keep going with “Animal” to “Multicellular organism,” to
“Living thing,” and so on), it serves as our starting point for Web Components.

 To give some real examples of inheritance on actual elements, , <div>, and
<button> are created from HTMLSpanElement, HTMLDivElement, and HTMLButton-
Element, respectively. In turn, all of these inherit from HTMLElement. In fact, you can
see for yourself. Open up the browser console and type the following:

document.createElement('div').constructor

The console will return

ƒ HTMLDivElement() { [native code] }

What we’re doing here is creating a new <div> element and asking it what the con-
structor is. The constructor is what’s called first when you create an object like this. It’s
telling you that the constructor is the creator function on a specific class—in this case,
HTMLDivElement.

 Feel free to play around with your favorite elements! Button is another we can try:

document.createElement('button').constructor

which gives us

ƒ HTMLButtonElement() { [native code] }

Figure 2.1 A not-so-scientific example of inheritance in the animal kingdom

Animal

eat();
sleep();
breath();

Bird

growFeathers();

Reptile

growScales();

Mammal

growFur();

Cat

claw();

Tiger Lion Panther

21Rules for naming your element
As you can tell from our experiments and from figure 2.2, elements we use all the
time are derived from a common source: HTMLElement.

2.2 Rules for naming your element
One interesting thing about HTML is that you can actually make up any name for a
tag and drop it on your page, and it acts like a <div>.

 Try it in your page:

<randomElement>Hi!</randomElement>

You’ll see the text “Hi!”, just like if you were using a <div>. Now, the question is, what
are we inheriting from, here? Let’s try it in our console:

document.createElement('randomElement').constructor;

We get back

ƒ HTMLUnknownElement() { [native code] }

Were you expecting HTMLUnknownElement? Probably not! We just created an invalid
element. Because it’s invalid, it inherits from a special Unknown class, and we can’t
extend its functionality.

 Why is it invalid? It’s not because we can’t invent our own element names when we
create our own components; it’s because there’s a naming convention to follow. This
naming convention is a simple hard requirement for the custom element specifica-
tion, and that is to use a dash (-) in your element name. Under the hood, it allows the
browser to differentiate between custom and native elements. It makes sense when
you think about it.

 Not only will readers like you be creating their own custom components, but
browsers themselves will likely come out with new elements as well. A common use of

Figure 2.2 While there are a large number of classes that inherit from
HTMLElement, here are three that produce common DOM elements that we use
all the time, with the actual tags we write in our HTML.

HTMLElement

HTMLButtonElement HTMLDivElement HTMLCanvasElement

<button> <div> <canvas>

22 CHAPTER 2 Your first Web Component
Web Components will likely be tiny pieces of common UI. If something useful, like a
progress bar, was created not only by you, but also by other Web Component develop-
ers, and made it into browsers as a native feature, you can imagine how much of a
mess it would be if everyone created something named <progressbar>.

 Again, simply add a dash (-) in your element name. If your desired element name
is <progressbar>, try again with a dash: <progress-bar>. Ideally, you’d want to give it a
namespace. A namespace is used to indicate some sort of group that your component
belongs to. For example, in Google’s Polymer Elements Collection, any UI component
built with the design system Material has a namespace of paper. If you go to Google’s
Web Component GitHub repo (https://github.com/PolymerElements), you can find
paper-tooltip, paper-dropdown-menu, and paper-toggle-button (figure 2.3). Some
of these have two dashes, and that’s perfectly OK. You need one or more to be valid.
The important takeaway here is that Google defines a namespace to indicate a set of
related components, and then names the specific component after the dash. You cer-
tainly aren’t required to follow the same logic—you just need that dash.

 Let’s revisit our randomElement, but name it with a dash this time to follow proper
conventions:

document.createElement('random-element').constructor;

Good news! This prints the following in our console:

ƒ HTMLElement() { [native code] }

Figure 2.3 A small sampling of Google’s paper elements. Note that these related UI Web
Components have the prefix paper. Google also uses the prefix iron for core elements and
neon for animation-related elements.

https://github.com/PolymerElements

23Defining your custom element (and handling collisions)
2.3 Defining your custom element
(and handling collisions)
It’s one thing, of course, to invent a name for a tag and create it versus actually giving
the tag logic and definition before creating it. It would be fairly useless to create your
own tag without giving it some custom behavior. We’ll need to go beyond HTML-
Element and override it with our own logic.

 Thankfully, it’s easy to do just that! This brings us to, in my opinion, the biggest
and most useful piece of the Web Components API. With one simple line of JS and
using an empty class that extends HTMLElement, we can take our desired element
name and give it meaning:

customElements.define('my-custom-tag', class extends HTMLElement {});

There is a catch, though—and it’s one that won’t really affect you until you get into
more complex things. All the same, it’s good to bring this up now: customElements
.define will throw an error if you’ve already defined a tag. This will definitely come
up later when we use a newer JS feature called import, where we include our element
anywhere we need to reference something in it.

 For now, we can mimic this bad behavior by calling customElements.define twice
in a row:

customElements.define('my-custom-tag', class extends HTMLElement {});
customElements.define('my-custom-tag', class extends HTMLElement {});

We get the following error:

Failed to execute 'define' on 'CustomElementRegistry': this name has already
been used with this registry

Thankfully, this is easy enough to handle. We can determine if our custom element
has already been defined by asking if customElements.get('my-custom-tag')
returns something. By wrapping it in an if/then statement, we ensure that our ele-
ment is defined only when we first call it:

if (!customElements.get('my-custom-tag')) {
 customElements.define('my-custom-tag', class extends HTMLElement {});
}

Now, extending HTMLElement to define a custom element is super powerful, but
don’t go too crazy yet. You might think that extending HTMLDivElement or
HTMLButtonElement would work too. It could be nice to build off of a button for fea-
tures it already has, like being able to disable it or working with forms easily. Unfortu-
nately, this isn’t possible yet in all browsers. While the customElement specification
says this is OK, Safari has not yet implemented this functionality, and therefore it's
best to approach extending other elements cautiously, or not at all. HTMLElement is
the only native element definition we’re currently allowed to extend and create cus-
tom elements from everywhere. Anything else will look like it works, but when you
actually use your element, you’ll get an error:

24 CHAPTER 2 Your first Web Component
Uncaught TypeError: Illegal constructor: autonomous custom elements must
extend HTMLElement

Note the “must extend” part of the error as well. Even passing HTMLElement without extend-
ing it into customElements.define, as in customElements.define('my-element', HTML-
Element), will result in this behavior when you use your new element.

2.4 Extending HTMLElement to create
custom component logic
The easiest way to write your custom component, as you’ve just seen, is to use a newer
JS feature called a class. JS classes provide a great and readable way to express how our
custom element works and also how it inherits from an HTMLElement.

 Let’s start with a very much empty class, which inherits from HTMLElement. To
make something simple that will get more useful as we progress throughout the book,
we’ll start with a slider. A slider is simple to use and make. When finished, it will allow
a user to drag a thumbnail over a track to select a value:

class Slider extends HTMLElement {}

In thinking about an element name, slider is the most obvious choice, but we do
need a namespace! Because this book is called Web Components in Action, and the slider
should be a general UI component that can be used anywhere, lets brand our slider a
wcia-slider. Now, with your new element definition seen juxtaposed against other
common elements in figure 2.4, you can create something custom:

customElements.define('wcia-slider', Slider);

Of course, there is no custom logic because our element is based off an empty class.
For now, it will act just like HTMLElement does, but we can fix this using the
connectedCallback method in this class. This connectedCallback method is the first

Figure 2.4 Our HTMLElement inheritance diagram modified to include your own
custom elements at the same level as the native ones

HTMLElement

HTMLButtonElement HTMLDivElement Slider

<button> <div> <wcia-slider>

25Extending HTMLElement to create custom component logic
of several lifecycle methods offered by the Custom Element API and fired when the
component is added to the DOM.

 Let’s modify our class in the following listing to give some indication that we have
an effect on it. Here’s a snippet we can include on our page to define our element.

<script>
 class Slider extends HTMLElement {
 connectedCallback() {
 alert('hi from Slider');
 }
 }
 if (!customElements.get('wcia-slider')) {
 customElements.define('wcia-slider', Slider);
 }
</script>

To see this in action, simply drop your custom tag in the body of your HTML:

<body>
 <wcia-slider></wcia-slider>
</body>

When you try this out, you actually won’t see anything visible on your page except for
the alert dialog that pops up. Now that we’ve verified that we can inject logic into our
new Web Component, let’s build up our Web Component to be something a bit more
visible.

 To do this, I should mention scope and how it can work for us in our Web Compo-
nent. It can be easy to lose track of what scope this is referring to in a typical JS con-
text. With Web Components and classes, we can use this in some dead simple and
easy to read ways. With a few notable exceptions, like callback events and timers, this
in your component will refer to the element itself. This includes custom methods and
properties you introduce on the element, but also any methods or properties that the
element already has. To put it another way, any method or property you might use
from an ordinary, noncustom element can be used in this scope and referenced by
this. The keyword this is the scope of our new custom element.

 Examples for what you can call from this inside your custom element class
include everything inherited from HTMLElement, like getting the element’s CSS with
this.style, getting the element’s height with this.offsetHeight, or adding an
event listener when the user clicks on your component with this.addEventListener
('click', callback).

 To give our element some content—specifically, a background and a thumbnail—
let’s start with the innerHTML property. Again, innerHTML can be used on any element
and serves to set the HTML content inside the element. We can use it similarly here:

this.innerHTML = '<div class="bg-overlay"></div><div class="thumb"></div>';

Listing 2.1 Giving our custom tag some custom logic

An alert to signal us that
the component is on the
page and running

26 CHAPTER 2 Your first Web Component
While it’s not incredibly readable to just throw HTML in a string like this in one line,
for our purposes, to demo something small, let’s run with it. We’ll definitely improve
on this later in the book.

 Let’s also add some style to the slider component. When styling and defining how
a component works, it’s important to think about how it will be used and why we’re
creating it. Given that we already have a slider natively provided by the browser, as fig-
ure 2.5 shows, and created with an <input type="range"> element, ours should serve
a slightly different purpose.

Our slider will function the same way, with a draggable thumb over a track. However,
we’ll make our track much bigger. In fact, it’ll be more of a background than a track.
The reason for the bigger track is so we can visualize what a user would slide through
better. This slider will be used to change the transparency of a specific color. Figure
2.6 shows the transparency slider we’ll create.

With this particular look for the slider decided, we can start adding some style! As
mentioned previously, this can be used as the scope for our component, which we
can then tap into the style property, just like any other element:

this.style.display = 'inline-block';
this.style.position = 'relative';
this.style.width = '500px';
this.style.height = '50px';

In addition to accessing the style property on the component’s scope, we can use
another HTMLElement property: querySelector. Normally, we might use query-
Selector on our document to find a child element inside. For example, if we needed
to find an element with a class of myelement on the page somewhere, we might do the
following:

let myElement = document.querySelector('.myelement');

The querySelector function doesn’t have to search as wide as document. Instead, it
can be scoped to any normal element to query-select its children. Given that our com-
ponent is a normal element, we can query-select its children and apply some style to

Figure 2.5 The native slider
provided by the input element

Figure 2.6 Our new transparency slider component

27Extending HTMLElement to create custom component logic

nt
them as well. The following listing shows how we can reach into the Web Component
using the scope of this to change style on the component’s children.

this.querySelector('.bg-overlay').style.width = '100%';
this.querySelector('.bg-overlay').style.height = '100%';
this.querySelector('.bg-overlay').style.position = 'absolute';
this.querySelector('.bg-overlay').style.backgroundColor = 'red';

this.querySelector('.thumb').style.marginLeft =

 '100px';
this.querySelector('.thumb').style.width = '5px';
this.querySelector('.thumb').style.height = 'calc(100% - 5px)';
this.querySelector('.thumb').style.position = 'absolute';
this.querySelector('.thumb').style.border = '3px solid white';
this.querySelector('.thumb').style.borderRadius = '3px';

Putting it all together, we have what’s shown in the following listing.

<html>
<head>
 <title>Slider</title>

 <script>
 class Slider extends HTMLElement {
 connectedCallback() {
 this.innerHTML =
 '<div class="bg-overlay"></div><div class="thumb"></div>';

 this.style.display =

 'inline-block';
 this.style.position = 'relative';
 this.style.width = '500px';
 this.style.height = '50px';

 this.querySelector('.bg-overlay').style.width = '100%';
 this.querySelector('.bg-overlay').style.height = '100%';
 this.querySelector('.bg-overlay').style.position = 'absolute';
 this.querySelector('.bg-overlay').style.backgroundColor = 'red';

 this.querySelector('.thumb').style.marginLeft = '100px';
 this.querySelector('.thumb').style.width = '5px';
 this.querySelector('.thumb').style.height = 'calc(100% - 5px)';
 this.querySelector('.thumb').style.position = 'absolute';
 this.querySelector('.thumb').style.border = '3px solid white';
 this.querySelector('.thumb').style.borderRadius = '3px';
 }
 }

 if (!customElements.get('wcia-slider')) {
 customElements.define('wcia-slider', Slider);
 }

 </script>

Listing 2.2 Query-selecting inner components and setting their style

Listing 2.3 A complete but simple Web Component example

Adding style to the
background overlay
element inside the
component

Adding style to the
thumbnail element
inside the compone

Setting the HTML
contents of our
Web Component

Setting the overall style
of our Web Component

28 CHAPTER 2 Your first Web Component
</head>
<body>
 <wcia-slider></wcia-slider>
</body>
</html>

Of course, now instead of simply having an alert, we can see our component in place
on the page with some proper content!

2.5 Using your custom element in practice
At this point, if you’re following along, you have your own custom element running
on your page. In addition to the rule stating you need to have a dash contained in
your custom tag, there used to be an additional rule concerning how to use the tag. Cus-
tom elements fell under the type of element that can’t be expressed as a void or self-
closing tag. In other words, the following variations of HTML wouldn’t have worked
until recently:

<wcia-slider /> or <wcia-slider>

Now, however, in the latest browser versions, even these variations work. So, other
than the dash requirement, your element can be used in all the ways other elements
can be used. When you get into more complex components, you’ll probably have click
logic inside your component, but we can certainly wire a click event to our Web Com-
ponent, just as with any other element:

<wcia-slider onclick="alert('clicked')"></wcia-slider>

Attributes are also great to use, but, of course, there aren’t many situations where
they’d be helpful without logic in your component to use the attribute. Let’s alter how
our component renders with a couple different attributes: color and value. These
attributes can be written inline on the component tag:

<wcia-slider backgroundcolor="#0000ff" value="180"></wcia-slider>

Then, we can change the color of the background element by trading the “red” color
for the value of the attribute:

this.querySelector('.bg-overlay').style.backgroundColor =
 this.getAttribute('backgroundcolor');

Meanwhile, the value attribute can change the position of the slider thumb:

this.querySelector('.thumb').style.marginLeft = this.getAttribute('value') +
 'px';

With these small changes, we can now change the color and slider position to any-
thing we want. Unfortunately, the component is a bit ugly, as figure 2.7 shows, and not
exactly what I showed at the start.

 You might have also noticed that I used JS to set style properties instead of what I
should have used: CSS. As with any element, we can target our element and inner chil-
dren with a <style> block and make things look like I originally promised.

29Using your custom element in practice
Some of the CSS we’re using looks pretty complicated. For this reason, I removed the
attributes for now—we’ll revisit this in later chapters with actual code to get the com-
ponent functional as something you’d really use.

 We’ll add a checkered pattern behind the component with some semi-crazy-looking
CSS (background image, position, and size). To be honest, I didn’t create it myself,
either—I found it online! The rules for the linear gradient on the color and the box
shadow on the thumb are also a bit lengthy, but these finer CSS details in the following
listing can lead to some nicer looking UI details.

<html>
<head>
 <title>Slider</title>

 <script>
 class Slider extends HTMLElement {
 connectedCallback() {
 this.innerHTML =
 '<div class="bg-overlay"></div><div class="thumb"></div>';
 }
 }

 if (!customElements.get('wcia-slider')) {
 customElements.define('wcia-slider', Slider);
 }

 </script>

 <style>
 wcia-slider {
 display: inline-block;
 position: relative;
 border-radius: 3px;
 height: 50px;
 width: 500px;
 background-image: linear-gradient(45deg, #ccc 25%,
 transparent 25%),linear-gradient(-45deg, #ccc 25%,
 transparent 25%),linear-gradient(45deg, transparent 75%,
 #ccc 75%),linear-gradient(-45deg, transparent 75%, #ccc 75%);
 background-size: 16px 16px;
 background-position: 0 0, 0 8px, 8px -8px, -8px 0px;
 }

 .bg-overlay {
 width: 100%;

Listing 2.4 Trading inline styles for CSS

Figure 2.7 Slider (now blue with the thumb further to the right) affected
by value and color attributes

Adding some fairly complex
CSS to our component to get
the style just right

30 CHAPTER 2 Your first Web Component
 height: 100%;
 position: absolute;
 border-radius: 3px;
 background: linear-gradient(to right, #ff0000 0%, #ff000000 100%);
 }

 .thumb {
 margin-top: -1px;
 left: 250px;
 width: 5px;
 height: calc(100% - 5px);
 position: absolute;
 border-style: solid;
 border-width: 3px;
 border-color: white;
 border-radius: 3px;
 pointer-events: none;
 box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2),
 0 6px 20px 0 rgba(0, 0, 0, 0.19);
 }
 </style>
</head>
<body>
 <wcia-slider></wcia-slider>
</body>
</html>

In this case, we can easily set all of the style right in our CSS. You might notice that
we’re getting a bit disorganized just placing script and style blocks in our HTML.
Don’t worry, we’ll lock this down to be much cleaner as we explore more throughout
this book. For now, even for a simple component, it’s looking like a pretty stylized
slider (figure 2.8) that could be great to dive deeper on later.

2.6 Making a (useful) first component
Let’s face it, as much as we’ve learned so far about custom elements and creating
some custom logic in your first component, it hasn’t been a terribly useful component
so far (for one, it doesn’t slide). Don’t worry! We’ll build on the slider as we go along
in this book, adding interactivity, exploring some standard practices, and allowing it to
operate with other components.

 For now, though, it’s time to take what we’ve learned so far, as well as some of our
prior web development knowledge, and create a simple Web Component that can be
immediately useful and meaningful as a standalone component.

Figure 2.8 Styled slider using CSS

31Making a (useful) first component
 The first thing that comes to mind for a simple use case is something that web cre-
ators have needed for ages, has been made and remade countless times in jQuery, and
is useful in all web contexts, from blogs to web applications. I’m talking about a photo
or image carousel.

 The idea here is to create a component that we can drop anywhere on a page, and
that lets us specify an album title and author, and flip through an album of photos
using forward and back buttons. To pull this off, I’ve chosen some photos from the
popular image-hosting site imgur.com (copied to my GitHub repo so they don’t disap-
pear over time) as places I think would be fun to visit, and put them in an album. My
“future vacation photos” component ended up looking like figure 2.9.

No doubt I could spend more time styling and creating graphics, especially for those
forward and back buttons, but we’re keeping it simple, here. Let’s dive in and go step-
by-step through creating this photo carousel.

2.6.1 Setting up our web server

There are simple things we can do without using a web server. Loading up a plain
HTML file on your local filesystem in the browser of your choice gets you only so far.
When you try to load assets, CSS, or JS files without a server, these files will be blocked.
What to do?

 Personally, I like using an integrated development environment (IDE) like Jet-
Brains’ WebStorm, which automatically creates a server for you when you load your
HTML file through its UI. Many web developers live and die by a simple text editor
and HTTP server. Because this is the free option, let’s do it! Node.js is a great choice,
especially because we use it for so many other things in regard to frontend tooling. If
you haven’t installed Node.js yet, go to https://nodejs.org, download, and install it.

Figure 2.9 Result of the next demo, where we create a photo carousel

https://nodejs.org/

32 CHAPTER 2 Your first Web Component
 Once installed, we can use the Node.js package manager, NPM, to install modules
of our choice. Usually with Node, you’ll install modules for your project specifically.
This time around, we’re going to pass the -g flag to install an http-server module we
can use from anywhere. Open up your command line terminal (it doesn’t matter what
directory you happen to be in), and type

npm install http-server -g

When finished, assuming no errors, you’ll have a simple web server you can run from
anywhere on your machine. Now that you have the tooling installed, you can create a
project folder wherever you like. I’m going to call mine “photocarousel” and create an
empty folder for it on my desktop. Once the folder is created, I’m going to create a
dummy HTML file named test.html to be sure that my server works and my file loads.
In your favorite text editor, write the HTML in the following listing (again, just to cre-
ate something you can look at in your browser).

<html>
 <head>
 <title>Photo Carousel Demo</title>
 </head>
 <body>
 <h3>Hi, from your webserver</h3>
 </body>
</html>

Now, in your terminal, navigate to the project folder you made and type

http-server

Since you have the http-server module installed globally, anywhere you issue this
command from will start a web server. When successful, you’ll see the following results:

Starting up http-server, serving ./
Available on:
 http://127.0.0.1:8080
 http://10.0.0.17:8080
Hit CTRL-C to stop the server

Now, in your browser (let’s use Chrome or Safari), you can hit either one of these
addresses, adding /test.html, and see your barebones HTML file in action.

 Awesome! If you see something like figure 2.10, you now have a development envi-
ronment!

Listing 2.5 A simple web page to test our server

Figure 2.10 Running our simple
HTML page from a web server

33Making a (useful) first component
2.6.2 Writing our HTML tag

OK, so, we’re going to write our custom photo carousel tag in the body of our HTML
page. It won’t actually work, but this will help us think about what features we want to
implement when it comes down to the Web Component work.

 I’m going to pick the namespace wcia, short for Web Components in Action, for this
component. So, my tag name will be wcia-photo-carousel. I could just add that one
tag to my body like this:

<body>
 <wcia-photo-carousel></wcia-photo-carousel>
</body>

We have the opportunity now to think about the different things we might want to
change when it comes to our component from the outside. Personally, I think we’ll
want to give our carousel an album title to display above the photo, and also an author
name for who created the photo album. Most important, though, are the actual pho-
tos we want displayed in our album. For this, we’ll pass in a list of comma-separated
URLs. This means our tag goes from looking like the previous empty one to what’s
shown in the following listing.

<body>
 <wcia-photo-carousel
 title="Future Vacation Photos"
 author="Ben Farrell"
 photos="images/fBmIASF.jpg,images/3zxD6rz.jpg,images/
 nKBgeLOr.jpg,images/yVjJZ1Yr.jpg"
 ></wcia-photo-carousel>
</body>

Now that we’ve thought about the inputs to our Web Component, we can start think-
ing about implementation.

2.6.3 Creating our class

Like I said earlier in this chapter, there are better ways to organize your code. For now,
though, we’ll just add a <script> tag to our HTML header to register our component
and start our connectedCallback method.

 Right after our <title> tag in our header, we can add the script block shown in
the following listing.

<head>
 <title>Photo Carousel</title>

 <script>
 class PhotoCarousel extends HTMLElement {
 connectedCallback() {

Listing 2.6 Our photo carousel component used on a web page

Listing 2.7 Adding a script block with a class to define our component

Title attribute

Author attribute

Another attribute containing
a comma-separated list of
photos to show

Class to define
our component

34 CHAPTER 2 Your first Web Component
 }
 }

 if (!customElements.get(

 ➥'wcia-photo-carousel')) {
 customElements.define('wcia-photo-carousel', PhotoCarousel);
 }
 </script>
</head>

Right here, we’ve created a class that extends HTMLElement called PhotoCarousel.
We’ve created an empty connectedCallback method that we can fill out in a moment.
Below our class definition, we are checking if our wcia-photo-carousel is already
defined and, if not, defining it as a custom element.

2.6.4 Adding content to our component

We can now start thinking about what kinds of elements to put into our component to
get the carousel we’re after. Personally, I thought that a title and an author subtitle
would make sense. Those can be header tags <h2> and <h4>, respectively. We’ll also
need two buttons—one for going to the next photo and one to go to the previous
photo. Lastly, we’ll need a <div> to contain our photos.

 We’ll talk about template literals later in the book, which will help us construct our
HTML a better way, but for now, we’ll just set the innerHTML property to a long string
containing all those elements just mentioned. We’ll do this when our component is
added to the page, inside our connectedCallback, as the following listing shows.

this.innerHTML = '<h2>'+ this.getAttribute('title') + '</h2>' +
 '<h4>by '+ this.getAttribute('author') + '</h4>' +
 '<div class="image-container"></div>' +
 '<button class="back"><</button>' +
 '<button class="forward">></button>';

Note that we’re using our title and author tag attributes here to display this custom
information. As you can tell from figure 2.11, we’re off to a good start.

 You’ll notice almost everything we added here—the title, the subtitle, the two but-
tons—just not the image container. This is because, while the image container has
been added, there’s nothing inside the container, and we haven’t specified its size. So,

Listing 2.8 Setting the HTML contents of our component

Defining the tag for our
component if it was not
already defined

Figure 2.11 Our carousel component so far,
with title, author, and forward/back buttons

35Making a (useful) first component
although it’s been added to the DOM, it just isn’t visible. This is a good time to start
styling our content.

2.6.5 Styling our component

Right after our <script> tag in the following listing, we’ll add a style block.

. . .
</script>
<style>
 wcia-photo-carousel {
 width: 500px;
 height: 300px;
 display: flex;
 padding-top: 10px;
 flex-direction: column;
 border-color: black;
 border-width: 1px;
 border-style: solid;
 }

 wcia-photo-carousel h2, h4 {
 margin-bottom: 0;
 margin-top: 0;
 margin-left: 10px;
 }

 wcia-photo-carousel .image-container {
 margin-top: 15px;
 flex: 1;
 background-color: black;
 }
</style>

First, we set the overall style of our photo carousel component container. I decided,
arbitrarily, that it will be 500 pixels by 300 pixels. You can change this to whatever you
like. I also want some easy-to-use layout, so I used CSS Flexbox with a column direc-
tion to lay my elements out vertically. I also put a border around my component, as
well as a padding on the top to give the header some breathing room.

 Next, I reset the margins on my headers h2 and h4. Headers usually have some
pretty big spacing on the top and bottom, and I don’t want that here. I also shifted
my headers 10 pixels to the left, so they don’t butt up against the left side of my
component.

 Last, I set the image container’s <div> top margin to 15 pixels to give some vertical
breathing room from the headers and gave it a black background. Setting flex to 1
here means that this image container will take up whatever remaining space I give it
around the elements that already have height, like my buttons and headers.

 Now things are starting to take form! Our limited styling gives us something that
looks like figure 2.12.

Listing 2.9 Adding some CSS to style our component

Styling the overall
component

Styling the two headers
(title and author)

Styling the div element
that contains our images

36 CHAPTER 2 Your first Web Component
There’s enough layout here that we can focus on some component logic now.

2.6.6 Component logic

Thinking about what to do next, you might remember that we haven’t used the list of
image URLs yet that we have on our tag in the body of our page. We also don’t have
some sort of counter that starts at 0 and increments and decrements with our buttons
to use as the index of which photo we are on.

 Let’s start there. In our connectedCallback, prior to setting the innerHTML as
we’ve done, let’s add the following:

connectedCallback() {
 this._photoIndex = 0;
 this._photos = this.getAttribute('photos').split(',');
 this.innerHTML = '<h2>'+ this.getAttribute('title') + '</h2>' + . . .

Here, we’re grabbing our photo list and turning it into an array using the commas as
delimiters. Along with the index of which photo we are on, this array of photos is set
to internal properties on the “instance” of our class. The scope within each method
on our class can be accessed with this.

 Let’s also create a method to show our photo in the following listing, as well as call-
ing it after we’ve set our innerHTML.

connectedCallback() {
 this._photoIndex = 0;
 this._photos = this.getAttribute('photos').split(',');

 this.innerHTML = '<h2>'+ this.getAttribute('title') + '</h2>' +
 '<h4>by '+ this.getAttribute('author') + '</h4>' +

Listing 2.10 Adding a showPhoto method

Figure 2.12 Progress so far after adding CSS to style

37Making a (useful) first component
 '<div class="image-container"></div>' +
 '<button class="back"><</button>' +
 '<button class="forward">></button>';

 this.showPhoto();
}

showPhoto() {
 this.querySelector('.image-container').style.backgroundImage =
 'url(' + this._photos[this._photoIndex] + ')';
}

Our showPhoto method finds the image container by query-selecting anything with a
class of image-container, but only within the scope of our component, because we
are using this.querySelector instead of document.querySelector, which you might
normally use. It then sets the background image to our current photo. To see this in
action, be sure to have an images folder with the images named the way you have spec-
ified in the initial photos attribute on the component. This book’s GitHub repo has
this folder already set up for your convenience.

 There is a problem, though. While this technically works and shows the correct
photo, my photos are too big! All I see is a blue sky, and the rest is off the component’s
canvas and unseen. In the following listing, let’s add a couple more style properties to
our image container.

wcia-photo-carousel .image-container {
 margin-top: 15px;
 flex: 1;
 background-color: black;
 background-size: contain;
 background-repeat: no-repeat;
 background-position: 50%;
}

Let’s dig into those three CSS rules we just added. The background-size: contain;
means that we are setting the size to be whatever allows the image to fit inside the con-
tainer we give it, making sure we show the entire photo. Specifying no-repeat for the
background-repeat will override the behavior of duplicating the image over and over.
Usually, with the default action of repeating, it fills any space left over because the
image isn’t exactly the same size as the container we give it (unless we’re lucky). Here,
a no-repeat disables that space-filling behavior. Lastly, that 50% for the position
means that we’re centering the image both vertically and horizontally in our image
container. With this done, we can see the first photo in the album, nicely sized and
centered as figure 2.13 shows.

Listing 2.11 Adding CSS to allow the current image to display correctly

Call showPhoto as soon
as the component starts.

The showPhoto method, which sets the
background image of a div element

Makes our image fit inside
the containing element

Don’t repeat the image
and fill the container.

Centers the image

38 CHAPTER 2 Your first Web Component

2.6.7 Adding interactivity

I think that the obvious next step is to get our buttons working to show the next or
previous photo. We’ll begin by adding two lines to the end of our connectedCallback
in the following listing.

. . .'<button class="back"><</button>' +
 '<button class="forward">></button>';

this.showPhoto();

this.querySelector('button.back').addEventListener('click', event =>
this.onBackButtonClick(event));

this.querySelector('button.forward').addEventListener('click', event =>
this.onForwardButtonClick(event));

}

With these lines, we are finding the back button and forward button and adding an
event listener to them, such that when clicked, they will call the onBack or onForward-
ButtonClick methods.

 You might notice the fat arrow: =>. Don’t worry if you’ve never seen it. It’s a newer
JS feature and covered in the appendix. Typically, you might do the following:

this.querySelector('button.forward').addEventListener('click',
this.onForwardButtonClick));

The fat arrow lets us keep the same scope as our class instance when the function is
called. We can access properties and methods of the class instance (this) from the
callback, shown in the following listing.

Listing 2.12 Adding click listeners to our buttons

Figure 2.13 Progress so far to include showing the current image

Listens to clicks on the
previous/back button

Listens to clicks on the
next/forward button

39Making a (useful) first component

/**
 * handler for when user clicks the back button
 * @param event
 */
onBackButtonClick(event) {
 this._photoIndex --;
 if (this._photoIndex < 0) {
 this._photoIndex = this._photos.length-1;
 }
 this.showPhoto();
}

/**
 * handler for when user clicks the forward button
 * @param event
 */
onForwardButtonClick(event) {
 this._photoIndex ++;
 if (this._photoIndex >= this._photos.length) {
 this._photoIndex = 0;
 }
 this.showPhoto();
}

These methods increment or decrement our photo’s current index and then test if
the index is out of the bounds of our array. If it is out-of-bounds, then we’ll loop to the
beginning or end of our array. Finally, we call our previous method to show the cur-
rent photo given our new this._photoIndex.

 Even though the look of our component hasn’t changed, we can now click those
buttons to advance or move back through our photo album!

2.6.8 Finishing touches

Done? Not quite. I’m not happy with the forward and back buttons yet. Let’s put them
on the sides to make our Web Component look like a real carousel.

 First, let’s add some more styles in the following listing, this time targeting our
buttons.

wcia-photo-carousel button {
 cursor: pointer;
 background: transparent;
 border: none;
 font-size: 48px;
 color: white;
 position: absolute;
 top: 50%;
}

wcia-photo-carousel button.back {

Listing 2.13 Handling our click event listeners

Listing 2.14 Adding button styles

Handler for the back button

If on the first image, loop
around to the last

Handler for the forward button

If on the last image, loop
around to the first

Common CSS for both
buttons (buttons won’t
be visible just yet)

Style for the back button

40 CHAPTER 2 Your first Web Component
 left: 10px;
}

wcia-photo-carousel button.forward {
 right: 10px;
}

Back or forward, we want our buttons to display the pointer cursor when we hover
over them. We also want to get rid of the default browser button look, so we’ll remove
the background and border from our buttons. Next, we’ll make the font size really big
and make the text white. Lastly, we’ll allow the buttons to break free of the flex col-
umn and appear over the image by setting position: absolute;. We’ll also center
them vertically by setting the top value to 50%. For each button specifically, we’ll inset
it from the left or right by 10 pixels.

 If you were to look at your progress now, you probably wouldn’t even see your but-
tons anymore! That’s because, if you’re like me, your browser window is open fairly
big, and your position: absolute; buttons are centered on the whole page itself
instead of the component. Because they are white buttons against a white page, you
won’t see them. We need to add one more CSS property to position the buttons rela-
tive to the component rather than the page:

<style>
 wcia-photo-carousel {
 position: relative;

Here, we are setting the position of our entire component to relative. It doesn’t do
anything to our component, but any element inside with a position of absolute is now
relative to the component instead of the page.

 Just in case you missed a step here or there, our entire demo code can be seen in
the following listing.

<html>
<head>
 <title>Photo Carousel</title>

 <script>
 class PhotoCarousel extends HTMLElement {
 connectedCallback() {
 this._photoIndex = 0;
 this._photos = this.getAttribute('photos').split(',');

 this.innerHTML = '<h2>'+ this.getAttribute('title') + '</h2>' +
 '<h4>by '+ this.getAttribute('author') + '</h4>' +
 '<div class="image-container"></div>' +
 '<button class="back"><</button>' +
 '<button class="forward">
 >
 </button>';

 this.showPhoto();

Listing 2.15 Demo code recap

Style for the forward button

Class that defines
our component

Component’s HTML
content

41Making a (useful) first component
 this.querySelector('button.back').addEventListener('click',
 event => this.onBackButtonClick(event));

 this.querySelector('button.forward').addEventListener('click',
 event =>
 this.onForwardButtonClick(event));
 }

 /**
 * handler for when user clicks the back button
 * @param event
 */
 onBackButtonClick(event) {
 this._photoIndex --;
 if (this._photoIndex < 0) {
 this._photoIndex = this._photos.length-1;
 }
 this.showPhoto();
 }

 /**
 * handler for when user clicks the forward button
 * @param event
 */
 onForwardButtonClick(event) {
 this._photoIndex ++;
 if (this._photoIndex >= this._photos.length) {
 this._photoIndex = 0;
 }
 this.showPhoto();
 }

 showPhoto() {
 this.querySelector('.image-container').style.backgroundImage
 = 'url(' + this._photos[this._photoIndex] + ')';
 }
 }

 if (!customElements.get(

 ➥'wcia-photo-carousel')) {
 customElements.define('wcia-photo-carousel', PhotoCarousel);
 }

 </script>

 <style>
 wcia-photo-carousel {
 position: relative;
 width: 500px;
 height: 300px;
 display: flex;
 padding-top: 10px;
 flex-direction: column;
 border-color: black;
 border-width: 1px;
 border-style: solid;
 }

Button click
event listeners

Back button click handler

Forward button click handler

Shows the current photo by
setting the background image
of the container element

Assigns the component
class to a tag

Component styling with CSS

42 CHAPTER 2 Your first Web Component
 wcia-photo-carousel h2, h4 {
 margin-bottom: 0;
 margin-top: 0;
 margin-left: 10px;
 }

 wcia-photo-carousel .image-container {
 margin-top: 15px;
 flex: 1;
 background-color: black;
 background-size: contain;
 background-repeat: no-repeat;
 background-position: 50%;
 }

 wcia-photo-carousel button {
 cursor: pointer;
 background: transparent;
 border: none;
 font-size: 48px;
 color: white;
 position: absolute;
 top: 50%;
 }

 wcia-photo-carousel button.back {
 left: 10px;
 }

 wcia-photo-carousel button.forward {
 right: 10px;
 }

 </style>

</head>
 <body>
 <wcia-photo-carousel
 title="Future Vacation Photos"
 author="Ben Farrell"
 photos="images/fBmIASF.jpg,images/3zxD6rz.jpg,images/
 nKBgeLOr.jpg,images/yVjJZ1Yr.jpg">
 </wcia-photo-carousel>
 </body>
</html>

We’ll now turn to figure 2.14 to see our component’s final look.

2.6.9 Improving the carousel

Despite creating a fairly useful first Web Component, there are lots of ways we can
improve. Most importantly, we need to package up our carousel as a standalone Web
Component. As it stands right now, using it in a larger project would be a bit of a mess
with the HTML, CSS, and JS embedded right in the main HTML. In chapter 5, we’ll
detail how to package it all up as a single JS module.

Photo carousel component
on our HTML page

43Notes on browser support
Second, it would be fantastic to make our component customizable. We could turn on
and off features with an API or attributes in addition to our images list. We’ll cover
those in chapter 3.

 Lastly, there are much better ways to organize our HTML and CSS for inclusion in
the component, and even protect them from unintended style creep and DOM
changes. Template literals and the Shadow DOM will be covered later in the book.

2.7 Notes on browser support
I mentioned at the start of this chapter that we’re excluding some browsers. This is
because even though custom elements are supported in Chrome, Firefox, and Safari,
Edge development is still in progress. However, you can use the developer preview. I’m
hopeful we’ll see a final Edge release soon, which would cover all the major browsers.

 This just leaves IE without custom element support. Luckily, we have polyfills for this!
One such polyfill can be downloaded here: https://unpkg.com/@webcomponents/
custom-elements@1.2.4/custom-elements.min.js.

 Alternately, if you have Node.js and can use NPM, you can use the following:

 npm install @webcomponents/custom-elements

Whichever method you choose, once you have the polyfill, simply include the script
on your page:

<script src="path/to/custom-elements.min.js"></script>

In addition to the custom element specification, IE doesn’t support newer JS language
features like classes. Don’t worry, this is all easily solvable, but we won’t get into it until
we talk about build processes later in this book. To be exact, I’ll show you a way to
transpile your ES2015/ES6 JS to ES5 JS for support in older browsers, or just those
that don’t support it yet.

Figure 2.14 The finished photo carousel component

https://unpkg.com/@webcomponents/custom-elements@1.2.4/custom-elements.min.js
https://unpkg.com/@webcomponents/custom-elements@1.2.4/custom-elements.min.js
https://unpkg.com/@webcomponents/custom-elements@1.2.4/custom-elements.min.js
https://unpkg.com/@webcomponents/custom-elements@1.2.4/custom-elements.min.js

44 CHAPTER 2 Your first Web Component

Summary
In this chapter, you learned

 How tags we use every day in basic web development are derived from HTML-
Element (even if we never knew it!)

 Rules for naming and using your custom element on the page (which are
required), as well as standard practices (which you aren’t required to follow)
for naming your element with a namespace

 A small taste of the Web Components API with connectedCallback
 Adding onto, or customizing, HTMLElement by using a common object-oriented

programming technique called inheritance and creating some samples that use
our new custom element

Using Custom Elements v1
In this chapter and throughout the book, we’ll be using the Custom Elements v1 spec-
ification. Don’t worry, this is the latest and greatest, and I doubt the basics will change
for years to come. I mention this because v1 is fairly recent, and searching for info
about Web Components might tell you that to create a custom element, you’d use

document.registerElement('my-custom-tag', MyCustomTag);

Just know that Web Components, in general, have gone through a recent change and
are now more solidified in their v1 specification. For more details on this point, and
specifically what’s changed, refer to chapter 4, which details the component lifecycle.

Making your
component reusable
In the last chapter, we talked in great depth about simple ways to create your first
Web Component. Specifically, we looked at creating your own custom element and
assigning some minimal custom logic so your component acts a certain way. But
what if you want your component to act differently depending on what parameters
you use to set it up? What if you want your component to be adaptable? Usually, the
goal in any platform, language, or framework is to create reusable code that can be
simply configured to match the widest range of use cases.

This chapter covers
 Using getters and setters to work with data in your

component

 Using attributeChangedCallback to listen for attribute
changes

 Identifying which attributes to listen for changes on using
observedAttributes

 Working with attributes using hasAttribute(),
getAttribute(), and setAttribute()
45

46 CHAPTER 3 Making your component reusable
 Of course, saying we want to create reusable and configurable Web Components is
one thing. It’s almost meaningless unless we can talk about a concrete example!

3.1 A real-world component
One of my recent interests is 3D on the web. I’m especially interested in how virtual
reality (VR) and augmented reality (AR) are making their way into browsers. Delving
into WebGL and Three.js or Babylon is a bit too much to get into here (and off-
subject), but we can do something simple to demonstrate reusable and configurable
components.

3.1.1 A 3D search use case

3D has a bit of a content problem. I love experimenting with the 3D web, but I’m defi-
nitely not an expert in creating assets with complex 3D software. My favorite thing in
VR lately is the explosion of 3D painting and modeling tools. Notably, Google has
been doing some awesome things with Blocks and TiltBrush, its VR tools for modeling
and painting in 3D. Even better, Google has created a hub that creators can publish to
called Poly.

 When you go to poly.google.com, you can browse around, search for 3D models,
and pick your favorite to use in your application (many are free to use and modify).
What’s great for our purposes is that Poly has a REST-based API that we can tap into
and use to make a 3D search Web Component of our own! Again, going all in on 3D is
a little much, especially for a Web Components book—but the results we get back are
all image thumbnails, so we don’t have to get complicated at all in order to search and
browse.

 As with many services like Poly, we’ll need to get an API key for access. If you’d
rather not do this, you’re still welcome to follow along, as I’ll provide a JSON file you
can use in its place, and you can run the example from your own server.

 First things first. Head over to https://developers.google.com/poly/develop/web
and follow the instructions for the API key. Once you have it, put it in a safe place for
later.

3.1.2 Starting with an HTTP request

Let’s now test the service and create an HTTP request in the following listing (in
which we search for a parrot).

const url =
'https://poly.googleapis.com/v1/assets?keywords=parrot&format=OBJ&key=

 <your_api_key>';
const request = new XMLHttpRequest();
request.open('GET', url, true);
request.addEventListener('load', (event) => {
 console.log(JSON.parse(
 event.target.response

Listing 3.1 Creating an HTTP request to Google’s Poly service

The Poly search API
(insert your own API key)

Creates a new HTTP request

Callback where we
log the API response

https://developers.google.com/poly/develop/web

47A real-world component
));
});
request.send();

When running this, you should see all of the results that come back right in your dev
tools console. It will also be nicely formatted, given that we turned the raw text of the
response back into JSON, as it was intended to be: JSON.parse(event.target
.response).

 When we look at the console.log output, we’ll see a JSON object returned from
the service. Of course, over time, these results will change, but I do see a lot of parrots
in the results! Exactly what we specified in the keyword search. If we expand the
assets object and look at the array of 3D assets returned in figure 3.1, we see that
each asset has a thumbnail object, which we can expand to look at the thumbnail
URL. This URL is what we’re after!

 There’s certainly lots of other data that you could use, especially if you opened up
the “formats” array to reveal actual 3D object links. For our purposes, we’re just going
to use and display those thumbnails.

Figure 3.1 Our HTTP response from Google Poly featuring assets and asset details

48 CHAPTER 3 Making your component reusable
3.1.3 Wrapping up our work in a custom component

Let’s wrap the HTTP request we just made into a new Web Component that allows us
to search for assets by keyword and display the results. We should keep it simple,
though. There’s no need to overburden each Web Component to do too much—I like
to think that we can be extremely granular with every component, and for bigger
pieces of functionality, we can combine two or more components. This is why we’re
going to keep the keyword/search input out of the component. Our Web Component
will only display search results based on data we pass it from the input.

 To make our HTTP request snippet into a Web Component, we can use what we’ve
already learned about custom elements and the connectedCallback method of the
Web Components API.

<html>
<head>
 <meta charset="UTF-8">
 <title>Google Poly Search</title>
 <script>
 class PolySearch extends HTMLElement {
 connectedCallback() {
 this.doSearch();
 }

 doSearch() {
 const url =

'https://poly.googleapis.com/v1/assets?keywords=parrot&format=OBJ&key=
 <your_api_key>';
 const request = new XMLHttpRequest();
 request.open('GET', url, true);
 request.addEventListener('load', (event) => {
 console.log(JSON.parse(event.target.response));
 });
 request.send();
 }
 }

 customElements.define(
'poly-search', PolySearch);
 </script>
</head>

<body>
<poly-search></poly-search>
</body>
</html>

Hopefully, there’s nothing earth-shattering in this listing. I did separate out the actual
HTTP request into a doSearch() method. For now, I call it on connectedCallback
when the component is added to the DOM. Because I don’t have a big project that
involves many components in this one example, I chose a simple element name that

Listing 3.2 Creating a Web Component from our HTTP request

Calls the search function
when component is
added

HTTP request from
last example

Defines our Poly
search component

Uses the Poly search
element on the page

49A real-world component
reflects the task I’m doing: poly-search. If I were doing multiple components for a
large app, maybe I’d name it something like <myappname-poly-search>.

 You might notice that our component only searches for parrots right now. I agree,
this isn’t incredibly useful. First, however, let’s display our results. Figure 3.2 shows our
component reaching out to the Google Poly API and returning an asset list, which our
component then renders.

3.1.4 Rendering search results

We can start by swapping our console.log(JSON.parse(event.target.response));
with a call to another method that accepts all of the assets we requested:

this.renderResults(JSON.parse(event.target.response).assets);

Then, inside our class, we’ll add that render method to display all of the thumbnails
on our page, as the following listing shows.

renderResults(assets) {
 let html = '';
 for (let c = 0; c < assets.length; c++) {
 html += '<img src="' + assets[c].thumbnail.url + '" width="200"
 height="150" />';
 }
 this.innerHTML = html;
}

Listing 3.3 Render results of the HTTP request in our component

Figure 3.2 Our custom poly-search Web Component calling out to the Google
Poly API with an API key and the search term “parrot.” We’ll get back a list of
assets and thumbnails to display.

Poly-search
component

Google Poly
API

API key, search term
doSearch()

3D asset list

The list of results is passed
into our render function.

Loops through the result list

For each asset, adds
a thumbnail image

After the HTML string is built,
adds it all to the component

50 CHAPTER 3 Making your component reusable
All we’re doing here is looping through our asset array, grabbing the thumbnail URL,
making it the source of an image element, and adding that to a long string of HTML.
Once finished, we set this long HTML string to our component’s innerHTML.

 Of course, there are other ways to do this, rather than constructing strings. We
could create a new image element with each loop.

renderResults(assets) {
 for (let c = 0; c < assets.length; c++) {
 const img = document.createElement('img');
 img.src = assets[c].thumbnail.url;
 this.appendChild(img);
 }
}

I personally like the string approach for these cases better. You can create a big chunk
of HTML and have it hit your DOM at the same time, rather than having one element
per loop iteration. Also, HTML is a bit easier to read, especially when we get into tem-
plate literals later on. A big downside to creating each element one by one in the loop
is that with each one, you are causing the browser to re-parse and re-render that entire
block. The same would happen if you were adding each image one at a time and set-
ting innerHTML after each. It will likely be better to stick with an HTML string that gets
built up over time and then set all at once to innerHTML.

3.1.5 Styling our component

If you run the example now, you’ll see some fairly large
images in a vertical list, as figure 3.3 shows. This is not what
we necessarily want for a visual results display, so let’s make
the images smaller and place them in nice wrapping rows
using some CSS, as in the following listing.

Listing 3.4 Alternate way to render results

Loops through our asset
results list the same way
as before

Creates an image element
each time, rather than
using an HTML string

Appends each element to
the DOM, one at a time

Image result

Image result

Image resultFigure 3.3 Our image results from
poly.google.com before styling. They just
flow down the page and force scrolling to see
more than a few, because they are too large.

51A real-world component

<style>
 poly-search {
 border-style: solid;
 border-width: 1px;
 border-color: #9a9a9a;
 padding: 10px;
 background-color: #fafafa;
 display: inline-block;
 text-align: center;
 }

 poly-search img {
 margin: 5px;
 }
</style>

For this listing, I’ve simply put the style in our <head> tag, as you would normally do
with CSS. Coupling style within the scope of each Web Component is definitely some-
thing we’ll get to later on, but we’ll just go simple right now.

 Already, though, we are targeting our poly-search element with a CSS selector.
This is perfectly valid! When you create your own custom element, you are really cre-
ating a custom element that works just like any other element would.

 Running the example will give you the best picture of what this style is doing, but
figure 3.4 is a visual approximation of what we accomplished, followed by some expla-
nation of what we did with our CSS.

Listing 3.5 CSS to style our poly-search component

Gives a nice subtle border around our
entire element

A gap between the edges of our element
and the inner results we are displaying

A background color to pair
with the border, separating
the element from the page

Allows elements to flow
horizontally and wrap to the
next line when out of room

Spacing between images

Figure 3.4 Our nicely styled and centered image grid. Images are smaller, have a nice gap
between them, and are set against a subtle, off-white background with a gray border.

Image result Image result Image result Image result

Image result Image result Image result Image result

Image result Image result Image result Image result

52 CHAPTER 3 Making your component reusable
Here’s our entire styled example.

<html>
<head>
 <meta charset="UTF-8">
 <title>Google Poly Search</title>
 <script>
 class PolySearch extends HTMLElement {
 connectedCallback() {
 this.doSearch();
 }

 doSearch() {
 const url =

'https://poly.googleapis.com/v1/assets?keywords=parrot&format=OBJ&key=
 <your_api_key>';
 const request = new XMLHttpRequest();
 request.open('GET', url, true);
 request.addEventListener('load', (event) => {
 this.renderResults(JSON.parse
 (event.target.response).assets);
 });
 request.send();
 }

 renderResults(assets) {
 let html = '';
 for (let c = 0; c < assets.length; c++) {
 html += '<img src="' + assets[c].thumbnail.url +
 '" width="200" height="150" />';
 }
 this.innerHTML = html;
 }

 }
 customElements.define('poly-search', PolySearch);
 </script>

 <style>
 poly-search {
 border-style: solid;
 border-width: 1px;
 border-color: #9a9a9a;
 padding: 10px;
 background-color: #fafafa;
 display: inline-block;
 text-align: center;
 }

 poly-search img {
 margin: 5px;
 }
 </style>
</head>

Listing 3.6 Our entire working Web Component, fully styled

Web Component definition

Search function call

Renders the results

Component CSS

53Making our component configurable
<body>
<poly-search></poly-search>
</body>
</html>

The basics are now in place, and we have something that works visually, but it isn’t very
useful yet as a search component.

3.2 Making our component configurable
Now, let’s revisit our glaring problem, and the whole point of this chapter. This com-
ponent isn’t reusable at all. For one, even if I gave you my API key, there’s no way to
properly set it in the component. Second, we’re always searching for “parrots.”
There’s no way to pass this search term to our component, so if someone on your
team used this component you built, they would have to go in and directly modify the
URL string:

 const url =
'https://poly.googleapis.com/v1/assets?keywords=parrot&format=OBJ&key=<y
our_api_key>';

3.2.1 Creating our component API with setters

Let’s start by breaking that URL string up a little. We’re going to do this in two differ-
ent ways, which will eventually complement one another. The first method we’ll
explore is to make getters and setters for the API key and search term.

 Inside our class, we can add this listing.

set apiKey(value) {
 this._apiKey = value;
 this.doSearch();
}

set searchTerm(value) {
 this._searchTerm = value;
 this.doSearch();
}

Without a matching getter, JS would throw an error if we tried to read, or “get,” the
property. However, we could easily create a getter as well:

get searchTerm() {
 return this._searchTerm;
}

So far, though, getters aren’t really necessary; we just need to inject the search term
and API key variables into our component, as shown in figure 3.5.

 Breaking things up like this makes sense. You’ll likely need to set the API key only
once, but as the user keeps searching for different things, the search term will be
updated quite a bit.

Listing 3.7 Getters and setters for our component’s configurable options

Uses the component on the page

Setter for API key

Setter for search term

54 CHAPTER 3 Making your component reusable
3.2.2 Using our API from the outside looking in

With the code in listing 3.7 in place, when we set that property from the outside, it will
run the function. In this regard, if you didn’t know the code in this class, you’d think
you were working with a simple variable, thanks to our setter methods. You also might
notice that I’m using underscores (_) in my variable names. This doesn’t mean any-
thing special, but since JS doesn’t have the notion of “private” variables (aside from
the exciting new class fields feature in the latest version of Chrome), or variables that
you’re not allowed to access from outside your class, I use underscores to indicate that
we don’t intend for these variables to be accessed from the outside. Using underscores
can be a point of contention for some and is regarded as an older practice. If you’d
like to dive deeper on this concept, please refer to the appendix. Regardless, in this
case, _searchTerm is our internal variable that we’re using, while searchTerm is the
setter for that variable.

 By using a setter, we’re not just setting this searchTerm property. When setting it
from outside our component class here, that’s just what it looks like to the user of our
component’s API. Instead, by using a setter method, we inject some logic to both set
that internal property and run our doSearch() method to fire the HTTP request.

 Now, if you were to write some JS in your script tag outside the component class,
you could write the following to first select your component and then set each prop-
erty (only after the component has been properly created, of course):

document.querySelector('poly-search').apiKey = '<your_api_key>';
document.querySelector('poly-search').searchTerm = 'parrot';

Of course, if we ran a search without an API key or without a search term, our search
would fail, so in the following listing, we can wrap our search method in an if state-
ment to make sure both variables are present before we search.

Figure 3.5 Using setters on our component from outside-in lets us perform
logic and set a value, but also keep the component API simple.

Poly-search
component

Set internal value
and

doSearch()

Web page or
application

Set apiKey

Set search
term

55Using attributes for configuration

doSearch() {
 if (this._apiKey && this._searchTerm) {
 const url = 'https://poly.googleapis.com/v1/assets?keywords=' +
 this._searchTerm + '&format=OBJ&key=' + this._apiKey;
 const request = new XMLHttpRequest();
 request.open('GET', url, true);
 request.addEventListener('load', (event) => {
 this.renderResults(JSON.parse(event.target.response).assets);
 });
 request.send();
 }
}

Giving our components an API like this is a good exercise, but for this particular use
case, there is another method for passing data: attributes. We use attributes all the
time in web development. In fact, that src attribute to set the thumbnail URL in each
image is just one example. Even just setting the style of an element using class or the
href link for a link tag are attribute examples.

3.3 Using attributes for configuration
Using attributes on Web Components is so obvious, you might overlook it in favor of
the getter/setter approach. We use attributes so often that we might not think of them
as something that can be used for the inner workings of your Web Component.

3.3.1 An argument against a component API for configuration

With the getter/setter API approach, there is some complexity involved that isn’t
really needed. For one, having to wrap the search method with an if/then to check
that the apiKey and searchTerm are set is good practice when a developer forgets to
set one or the other, but it would be nice if both properties were immediately available
when the component is used as intended.

 The other annoyance is having to use JS at all to set these properties. If these proper-
ties were attributes on the HTML tag, we wouldn’t have to set the apiKey and search-
Term over two separate lines. In more complex applications, it can be hard to track
down where you set these in your code. Also, there may be timing issues with your com-
ponent. Perhaps your component hasn’t been properly created yet when you happen to
call these setters. If this happened, it’s possible that your values would just be lost!

 These are definitely manageable concerns—but let’s focus on attributes now.

3.3.2 Implementing attributes

Let’s change things up a bit. First, let’s get rid of our setters and our JS to use those set-
ters. We don’t need them. Next, we’ll add our attributes to our custom element tag:

<poly-search apiKey="<your_api_key>"
 searchTerm="parrot">
</poly-search>

Listing 3.8 Wrapping the search method with an if statement

Checks that both API key
and search term are present

56 CHAPTER 3 Making your component reusable
Now, we’ll swap in some JS to get our attributes in place of using our variables. Let’s
keep the if/then check in the next listing just in case the user of our component for-
gets to use one attribute or the other.

doSearch() {
 if (this.getAttribute('apiKey') && this.getAttribute('searchTerm')) {
 const url = 'https://poly.googleapis.com/v1/assets?keywords=' +
 this.getAttribute('searchTerm') + '&format=OBJ&key=' +

this.getAttribute('apiKey');
 const request = new XMLHttpRequest();
 request.open('GET', url, true);
 request.addEventListener('load', (event) => {
 this.renderResults(JSON.parse(event.target.response).assets);
 });
 request.send();
 }
}

Lastly, since attributes are available as soon as the element is created, we can do an ini-
tial search right away when our component is added to the DOM using connected-
Callback:

connectedCallback() {
 this.doSearch();
}

For brevity’s sake, I’ll leave out our CSS as we look at the current state of our compo-
nent in the following listing.

<html>
<head>
 <title>Google Poly Search</title>
 <script>
 class PolySearch extends HTMLElement {
 connectedCallback() {
 this.doSearch();
 }

 doSearch() {
 if (this.getAttribute('apiKey') &&
 this.getAttribute('searchTerm')) {
 const url =

'https://poly.googleapis.com/v1/assets?keywords=' +
this.getAttribute('searchTerm') + '&format=OBJ&key=' +
this.getAttribute('apiKey');

 const request = new XMLHttpRequest();
 request.open('GET', url, true);
 request.addEventListener('load', (event) => {
 this.renderResults(
 JSON.parse(event.target.response).assets);
 });

Listing 3.9 Using attributes for configurable options in our search method

Listing 3.10 Our complete (minus styling) component example using attributes

Uses attributes instead of properties
for the configuration options

When the component is added,
runs the search function

If both search term and
API key are set, adds them
to the search endpoint

57Listening for attribute changes
 request.send();
 }
 }

 renderResults(assets) {
 let html = '';
 for (let c = 0; c < assets.length; c++) {
 html += '<img src="' + assets[c].thumbnail.url +
 '" width="200" height="150" />';
 }
 this.innerHTML = html;
 }
 }

 customElements.define('poly-search', PolySearch);
 </script>
</head>

<body>
<poly-search apiKey="<your_api_key>"
searchTerm="parrot">
</poly-search>

</body>
</html>

The component is now pretty functional, but the customization we’ve done only goes
so far. That search term will likely change frequently; we’ll need to watch for changes.

3.3.3 Case sensitivity

Note that while I used an uppercase “K” in apiKey, and an uppercase “T” in search-
Term, attributes themselves are not case-sensitive. We could absolutely rewrite our tag
like this, and it wouldn’t affect things at all (though there is a good reason for keeping
things all lowercase, which we’ll get to in a bit):

<poly-search apikey="<your_api_key>"
 searchterm="parrot">
</poly-search>

3.4 Listening for attribute changes
There’s one remaining problem in regard to our use case, though. It’s true that our
API key will likely never change in our web app, but we do want users to input text and
search for things. Before we get into solving that problem, let’s create a typical text
input that lets a user enter a search term. This aspect is outside of our Web Compo-
nent, so it’s not a lesson in Web Components per se, just something to help us demon-
strate and solve our attribute problem.

Send the HTTP request

Appends an image
element to the HTML
string for every asset Sets our component’s HTML

to the generated string

Declares the component
on the page with the API
key and search term

58 CHAPTER 3 Making your component reusable
3.4.1 Adding text input

With this in mind, let’s change the contents of our <body> tag.

<body>
 <label>Enter search term: </label>
 <input type="text" onchange="updatePolySearch(event)" />

 <script>
 function updatePolySearch(event) {
 document.querySelector('poly-search').setAttribute('searchterm',
 event.target.value);
 }
 </script>

 <poly-search apikey="<your_api_key>" searchterm="parrot">

We’ve now added a text input with an onchange event listener. Preceding that, we
have a simple label, just to give context in our UI on what that text input is actually
doing. I don’t typically have inline JS like this on a tag, but for such a simple demon-
stration, it’s easier to show it this way. The onchange event occurs only when the user
“submits” the text, meaning when they press the Enter key or click off the field.

 The function that it calls, updatePolySearch, captures the event that gets sent,
which includes the target, or which element sent the event. We can query event.target
.value to get the new search term that the user typed in. From there, we can set the
searchterm attribute of our Web Component.

 Feel free to try this out right now! If you open your browser’s development tools to
show the live view of the elements on the page, you can see our <poly-search>
searchterm attribute changing in real time after we change our text input.

 Unfortunately, just updating the attribute doesn’t cause the search to rerun and
update our results. We have to do this ourselves. This brings us to our second Web
Component lifecycle method: attributeChangedCallback. Our first lifecycle method,
of course, was connectedCallback, but now we’re ready to get a bit deeper.

3.4.2 The attribute changed callback

The attributeChangedCallback method is like any other Web Component lifecycle
method. You simply add the method in your class to override HTMLElement’s empty
method, and it will be fired when an attribute is changed.

 This method accepts three parameters: the name of the attribute that changed, the
old value of the attribute, and the new value of the attribute:

attributeChangedCallback(attrName, oldVal, newVal)

Let’s integrate this into our Web Component and see what happens. I’m going to be a
little evil here, but warn you up front. We’re going to integrate this, but it’s not going
to work because of one missing detail that I’ll explain afterward.

Listing 3.11 Text input for our component

59Listening for attribute changes
 The first thing to do is to get rid of the connectedCallback method in our class.
We do this because, in our specific case, our connectedCallback method triggers a
search. However, now our attributeChangedCallback will actually do this as well.
Technically speaking, our attribute does change from nothing to something when our
component starts up, so the attributeChangedCallback triggers. Also, we don’t have
any logic to cancel our HTTP request before triggering it again in our component—
to keep things simple and bug free when both of these callbacks fire at virtually the
same time, let’s just get rid of that connectedCallback.

 Next, let’s add our attributeChangedCallback method.

attributeChangedCallback(name, oldval, newval) {
 if (name === 'searchterm') {
 this.doSearch();
 }
}

Our callback here is really simple. If the attribute name being changed is searchterm,
then run our search again. This aspect is case-sensitive. The name coming in will
always be lowercase. This can be a bit confusing if you write your attribute in HTML in
camel case, and then just write the name over here the same way. To avoid confusion,
it’s wise to write our attributes in lowercase all the time.

 As I was writing this, I accidentally made things a bit more complicated before I
caught myself. I initially wrote the following code:

attributeChangedCallback(name, oldval, newval) {
 if (name === 'searchterm' && oldval !== newval) {
 this.doSearch();
 }
}

I thought that I only wanted to call the search if the old value was different than the
new value. There’s no sense in rerunning a search and wasting a network request if
the value doesn’t change, right? Well, if the value didn’t change, this method wouldn’t
get called in the first place, so doing this extra step is redundant.

 Now that we’ve captured attribute changes and taken action when they change, it
should work, right? Not yet! This is the part where I left out one little detail of how this
method works. Before I explain what this is, let me give a little context and history.

3.4.3 Observed attributes

At the start of this chapter, I talked a bit about how common attributes are to every-
thing we do in HTML. Each element has numerous potential attributes it can use that
actually mean something. At minimum, elements will likely always have a class ele-
ment for styling. And, of course, we can make up any attribute we want. With all of
these potential attributes everywhere, it could be a huge waste of code execution to

Listing 3.12 AttributeChangedCallback to listen for changes to our searchterm

60 CHAPTER 3 Making your component reusable
call attributeChangedCallback every single time something changes if we don’t care
that it changed.

 Back in v0 of the Web Components API, the attributeChangedCallback did just
that: it was called each and every time something as common as a CSS class attribute
changed. Early Web Component adopters thought this was a bit annoying and waste-
ful. So now, in v1 of the Web Components API, we need to tell our component what
specifically to listen for.

static get observedAttributes() {
 return ['searchterm'];
}

If you’re not familiar with the static keyword for a class method, please refer to the
appendix. In short, it’s a method called on the class definition, rather than on the cre-
ated instance.

 In this static method, we’ve set our observedAttributes to an array containing
searchterm. If we wanted more attributes to be observed, we could simply add more
elements to the array:

static get observedAttributes() {
 return ['searchterm', 'apikey', 'anotherthing', 'yetanotherthing'];
}

With this last piece added to our example in listing 3.14, our example should run.
This new code for watching our searchTerm attribute is depicted in figure 3.6. We
now automatically load our results with the first search term of “parrot,” but when the
user submits other terms, the results will update.

Listing 3.13 Telling our component what attributes to watch changes for

Figure 3.6 Before an attributeChangedCallback is fired
inside your component as a result of an attribute change on your
component’s markup, that attribute name must be in the
observedAttributes list.

<poly search apiKey="xxxx" searchTerm="parrot">

observedAttributes

attributeChangedCallback

Is attribute name
in this list?

Yes!

61Listening for attribute changes

<html>
<head>
 <title>Google Poly Search</title>
 <script>

 class PolySearch extends HTMLElement {
 static get observedAttributes() {
 return ['searchterm'];
 }

 attributeChangedCallback(name, oldval, newval) {
 if (name === 'searchterm') {
 this.doSearch();
 }
 }

 doSearch() {
 if (this.getAttribute('apiKey') &&

this.getAttribute('searchTerm')) {
 const url =

'https://poly.googleapis.com/v1/assets?keywords=' +
 this.getAttribute('searchTerm') + '&format=OBJ&key=' +
 this.getAttribute('apiKey');
 const request = new XMLHttpRequest();
 request.open('GET', url, true);
 request.addEventListener('load', (event) => {
 this.renderResults(JSON.parse
 (event.target.response).assets);
 });
 request.send();
 }
 }

 renderResults(assets) {
 let html = '';
 for (let c = 0; c < assets.length; c++) {
 html += '<img src="' + assets[c].thumbnail.url +
 '" width="200" height="150" />';
 }
 this.innerHTML = html;
 }
 }

 customElements.define(
 'poly-search', PolySearch);
 </script>

 <style>
 poly-search {
 border-style: solid;
 border-width: 1px;
 border-color: #9a9a9a;
 padding: 10px;
 background-color: #fafafa;
 display: inline-block;
 text-align: center;

Listing 3.14 Complete component with attributes that respond to a text input field

Component class

Watched attribute

When watched attribute changes,
runs the search request

Search request, which
uses the API key and
search term

Renders all assets

Map tag name to component class

Component CSS

62 CHAPTER 3 Making your component reusable
 }

 poly-search img {
 margin: 5px;
 }
 input {
 font-size: 18px;
 }
 </style>
</head>

<body>

<label>Enter search term: </label><input type="text"
 onchange="updatePolySearch(event)" />

<script>
 function updatePolySearch(event) {
 document.querySelector('poly-search').setAttribute('searchTerm',
 event.target.value);
 }
</script>
<poly-search apikey="<your_api_key>"
 searchterm="parrot">
</poly-search>

</body>
</html>

With that, we’ve allowed our component to react to changes. It doesn’t really make
sense for us to react to API key changes because the API key is typically something that
never changes. That search term is going to change all the time, though, so we defi-
nitely needed a way to react to it.

3.5 Making more things even more customizable
Let’s now up our customization game! We can do some small style things, such as set
the image size and component background color.

3.5.1 Using hasAttribute to check if an attribute exists

In listing 3.15, I’m being a bit of a lazy developer. I don’t expect that the image sizes or
background color will need to change at runtime—only when we’re initially writing
the HTML. So, I’m not listening for attribute changes; instead, I’m simply setting
these style properties when the component is added to the DOM.

connectedCallback() {
 if (this.hasAttribute('thumbheight')) {
 this._thumbheight = this.getAttribute('thumbheight');
 this._thumbwidth = (this.getAttribute('thumbheight') *
 1.3333 /*aspect ratio*/);
 } else {

Listing 3.15 Adding attributes for size and background color

Input field to allow user
to type a search term

As input field changes, sets the
searchTerm attribute on our component

Component added to
page with API key set and
starting search term set

If the thumbheight
attribute is set, uses
it for image-sizing,
and calculates the
width as well

If not set, uses
default/hardcoded values.

63Making more things even more customizable
 this._thumbheight = 150;
 this._thumbwidth = 200;
 }

 if (this.hasAttribute('backgroundcolor')) {
 this.style.backgroundColor = this.getAttribute('backgroundcolor');
 }
}

I’m also not forcing the component’s user to have these attributes. Instead, I’m check-
ing if the developer used the attribute in their markup by using hasAttribute and, if
so, set these properties. If not, we have fallback values either with JS for the size or
using the pre-existing style in CSS for background color.

 To use my size properties, I’ve edited the image-rendering method as in the follow-
ing listing.

renderResults(assets) {
 let html = '';
 for (let c = 0; c < assets.length; c++) {
 html += '<img src="' + assets[c].thumbnail.url + '" width="' +
 this._thumbwidth + '" height="' +
 this._thumbheight + '"/>';
 }
 this.innerHTML = html;
}

As we’ve added stylistic customization, you can probably imagine so much more! Cer-
tainly, we could customize borders, spacing, and so on. There’s one last thing we’ll
customize, and that’s the search endpoint.

3.5.2 Fully customizing the HTTP request URL for development

This is also the point at which I’m going to make readers who didn’t want to sign up
for an API key happy. We’re going to break up the HTTP request URL in the follow-
ing listing. We’ll do this by separating out the base of the URL as well as the 3D object
format for good measure.

doSearch() {
 if (this.getAttribute('apiKey') && this.getAttribute('searchTerm')) {
 const url = this.getAttribute('baseuri') +
'?keywords=' + this.getAttribute('searchTerm') + '&format=' +
 this.getAttribute('format') + '&key=' + this.getAttribute('apiKey');
 const request = new XMLHttpRequest();
 request.open('GET', url, true);
 request.addEventListener('load', (event) => {
 this.renderResults(JSON.parse(event.target.response).assets);
 });
 request.send();
 }
}

Listing 3.16 Rendering our thumbnails with configurable sizes

Listing 3.17 Breaking apart our HTTP request URL to be even more configurable

If the background color
attribute is set, adjusts the style
of the component right away.

Uses the height and width properties
to control the image size

Adds base URI as a configurable option to
allow calling a different search destination

64 CHAPTER 3 Making your component reusable
With the following tag, we can start using all of our customization options.

<poly-search apikey="<your_api_key>"
 format="OBJ"
 thumbheight="50"
 backgroundcolor="red"
 baseuri=

 "https://poly.googleapis.com/v1/assets"
 searchterm="parrot">
</poly-search>

We can now tweak the baseuri attribute to be something else. Of course, different
search services will have different APIs and result formats, but we can test our setup
without Google by pointing to a JSON file that we host:

 baseuri="http://localhost:8080/assets.json"

This will differ, of course, depending on how you’ve set up your development server
(it could be localhost, it could be something else, and port 8080 is common, but it dif-
fers wildly depending on your setup).

3.5.3 Best practice guides

Because we’ve now covered both getters/setters and attributes for working with data,
which one should we use? Really, it’s up to you, but there are some emerging best prac-
tices. It’s a bit too early to take these best practices as mandates, but there are some
good ideas, especially if you intend to share your components with other people. One
resource is an incomplete working draft: https://github.com/webcomponents/gold-
standard/wiki. Google has also published some best practices that are further along:
https://developers.google.com/web/fundamentals/web-components/best-practices.

3.5.4 Avoiding attributes for rich data

Within the Google Web Components guide, there are a few best practices for attri-
butes. One such practice is to not use attributes for rich data such as arrays and
objects.

 Let’s say, for example, that you have a very complex application, and for some of
your Web Components, setup is insanely complex. Perhaps you have 50 or more prop-
erties to use for configuration—or your configuration data needs to be represented as
a nested structure:

{
 Tree: {
 Branches: [
 { branch: {
 leaves: [
 { leaf: "leaf"},
 { leaf: "leaf"},
 { leaf: "leaf"},

Listing 3.18 Adding the baseuri attribute to the component tag

Specifies the search
endpoint
in the component’s
attributes

https://github.com/webcomponents/gold-standard/wiki
https://github.com/webcomponents/gold-standard/wiki
https://developers.google.com/web/fundamentals/web-components/best-practices

65Making more things even more customizable
]
 }
 }
]
 }}

Either way, separating out these properties for individual attributes would be over-
whelming or impossible.

 We can actually stringify a JSON object and shove it into an attribute on our tag:

<my-element data="{"Tree": {"Branches": [{"branch": {"leaves": [{"leaf":
 "leaf"},{"leaf": "leaf"},{ "leaf": "leaf"}]}}]}}
 " my-element>

It’s probably easier to do this through code, however:

myElement.setAttribute('data', JSON.stringify(data));

To pull the data out, you’d then have to serialize that string to JSON:

JSON.parse(this.getAttribute('data'));

In the end, though, when you have this massive, ugly string in your DOM, your devel-
opment tools get that much harder to read and put up roadblocks for understanding
your DOM structure. In this case, perhaps it’s better to use a method or setter to pass
your data to your component and avoid rich data attributes.

3.5.5 Property and attribute reflection

Another Google-suggested best practice is to do something called reflection for your
attributes and properties. Reflection is the practice of using both getters and setters as
well as attributes for your data, and always keeping them in sync with each other. Espe-
cially when handing your component off to other developers or sharing it with the
world, users may expect a consistent component API.

 Attributes are generally easier to work with when writing HTML, while with JS code,
setting properties on the component is more concise and easier to use. In other words,
JS developers will prefer writing yourcomponent.property = 'something'; and likely
won’t prefer writing yourcomponent.setAttribute('property', 'something');. At
the same time, someone writing HTML would prefer to just set the attribute in the
markup.

 When these two methods don’t do the same thing, or one is supported and not the
other, it can get a bit confusing for your component’s consumer. That’s why, when set-
ting a property through JS, the corresponding attribute should change on the ele-
ment, and vice versa. When an attribute changes, getting the property after that
should reflect the newest value.

 One trap that Google has identified with its best practice guide is using attribute-
ChangedCallback to update the setter, which Google is calling re-entrancy; it’s imple-
mented as follows.

66 CHAPTER 3 Making your component reusable

// When the [checked] attribute changes, set the checked property to match.
attributeChangedCallback(name, oldValue, newValue) {
 if (name === 'checked')
 this.checked = newValue;
}

set checked(value) {
 const isChecked = Boolean(value);
 if (isChecked)
 // OOPS! This will cause an infinite loop because it triggers the
 // attributeChangedCallback() which then sets this property again.
 this.setAttribute('checked', '');
 else
 this.removeAttribute('checked');
}

In this example, taken straight from Google’s developer documentation, an infinite
loop is caused. The setter is used and sets the attribute, but this causes the attribute-
ChangedCallback to fire, which again uses the setter, which then changes the attribute
. . . you get the point—it’s an infinite loop, and the flow can be seen in figure 3.7.

A better way might be to use the attribute as the so-called “source of truth.” I’ve added
reflection to the searchTerm property in our Poly search example with just an addi-
tional getter and setter, shown in the following listing.

Listing 3.19 A pitfall for reflection from Google’s Web Components best practices guide

When the attribute changes,
the setter is called.

When the setter is called,
the attribute is updated,
causing an infinite loop.

Figure 3.7 Re-entrancy is a bad way to implement property/attribute
reflection. Setting the attribute when your getter is used causes an
attributeChangedCallback to be fired, which can then set the
property again, continuing on in an infinite loop.

Web Component

Set internal value
and

setAttribute

attributeChangedCallback:
set property using setter

Change property
using setter

<poly search apiKey="xxxx" searchTerm="parrot">

67Updating the slider component

static get observedAttributes() {
 return ['searchterm'];
}

get searchTerm() {
 return this.getAttribute('searchTerm');
}

set searchTerm(val) {
 this.setAttribute('searchTerm', val);
}

attributeChangedCallback(name, oldval, newval) {
 if (name === 'searchterm') {
 this.doSearch();
 }
}

In this example, our getter simply returns the current attribute, while our setter sets
the attribute. There are, of course, additional ways to accomplish reflection, but the
important takeaway is that if you want to maximize the developer experience with
your component, keep your attributes and properties consistent and synced with each
other!

3.6 Updating the slider component
Now that we understand how to work with attributes to make a reusable component,
and know about using attribute reflection to our advantage, it’s time to update the
slider component from the last chapter to make it interactive and reactive to the attri-
butes we give it or JS properties we set on it. Right now, our component class is pretty
slim, especially after moving all of the CSS outside the component into a <style> tag.
All it does is render HTML (two <div> tags); the next listing shows the slider minus
the lengthy CSS.

<html>
<head>
 <title>Slider</title>

 <script>
 class Slider extends HTMLElement {
 connectedCallback() {
 this.innerHTML = '<div class="bg-overlay"></div>
 <div class="thumb"></div>';
 }
 }

 if (!customElements.get('wcia-slider')) {
 customElements.define('wcia-slider', Slider);
 }

Listing 3.20 Adding a getter/setter in addition to existing attributes for reflection

Listing 3.21 Slider component (without CSS)

Getter will simply
return access and
return the attribute.

Setter will set
the attribute.

When setting, the attributeChangeCallback
fires and runs the search.

68 CHAPTER 3 Making your component reusable
 </script>

 <style><!—- CSS was here --></style>
</head>
<body>
 <wcia-slider></wcia-slider>
</body>
</html>

Recall that we temporarily used two properties to control some of the component’s
functionality, or, in other words, its API. Let’s formalize this API and list those proper-
ties here:

 value—The current percentage value of the slider from 0–100
 backgroundcolor—A hexadecimal color of the topmost background layer

With those now defined, we can do two things. The first is to listen for changes to
those attributes. We’ll be adding all of these functions right inside the Slider class.

static get observedAttributes() {
 return ['value', 'backgroundcolor'];
}

attributeChangedCallback(name, oldVal, newValue) {
 switch (name) {
 case 'value':
 this.refreshSlider(newValue);
 break;

 case 'backgroundcolor':
 this.setColor(newValue);
 break;
 }
}

The second thing to do is to intertwine those attributes with a proper JS API using
reflection, as we’ve just learned. When one of these properties is set through the JS
setter, the attribute is updated on the component. Likewise, when the attribute is set
on the tag, this value can be retrieved through the matching getter. The next listing
shows reflection in our component for these two attributes.

set value(val) {
 this.setAttribute('value', val);
}

get value() {
 return this.getAttribute('value');
}

set backgroundcolor(val) {
 this.setAttribute('backgroundcolor', val);

Listing 3.22 Listening for attribute changes

Listing 3.23 Getters and setters for the backgroundcolor and value properties

Listens for both value
and backgroundcolor
attribute changes

Reacts to changes in the
slider value if set from
outside the component

Reacts to background
color changes

69Updating the slider component
}

get backgroundcolor() {
 return this.getAttribute('backgroundcolor');
}

Remember, with reflection, our attributes are the “source of truth,” so these getters
and setters simply set or get the attribute directly.

 We’re almost ready to demo the slider for real! Referring back to listing 3.22,
which holds the component class definition, remember the attributeChanged-
Callback. We have two methods that don’t exist yet. When receiving a new slider
value, we see

case 'value':
 this.refreshSlider(newValue);
 break;

Likewise, with a new background color value, we have

case 'backgroundcolor':
 this.setColor(newValue);
 break;

Just so we can start seeing the results of our work, we should create these functions in
the component class.

setColor(color) {
 if (this.querySelector('.bg-overlay')) {
 this.querySelector('.bg-overlay').style.background =
 `linear-gradient(to right, ${color} 0%, ${color}00 100%)`;
 }
}

refreshSlider(value) {
 if (this.querySelector('.thumb')) {
 this.querySelector('.thumb').style.left = (value/100 *
 this.offsetWidth - this.querySelector('.thumb').offsetWidth/2)
 + 'px';
 }
}

Both functions likely need a bit of explanation, even though they are tiny. First, we’re
checking to see if the DOM element we’re changing exists. There’s a bit of a timing
issue with the attributeChangedCallback. Namely, it will fire first before connected-
Callback if there are attributes on the component at the start. So, these DOM ele-
ments may not exist yet. Once we update this component to use the Shadow DOM later
in the book, this problem won’t exist. This is also the reason we need to add a couple of
lines to the connectedCallback, to make sure the initial attributes are acted on:

Listing 3.24 Functions to set the background color and slider value

Sets the current location of the
slider thumb based on its value

Sets the background color (a gradient
from an opaque solid color to the
same transparent color)

70 CHAPTER 3 Making your component reusable
this.setColor(this.backgroundcolor);
this.refreshSlider(this.value);

Next, when setting the color, the color value we get is a hexadecimal value (complete
with the hash at the beginning). At the beginning, or 0% stop of the gradient, we can
use this color value as normal. In our demo, it’s red, or #ff0000. The second color
stop, at 100%, should be the same color but completely transparent. With the excep-
tion of Edge, every modern browser supports adding an additional “00” at the end to
indicate the transparency to complement the red, green, and blue two-digit values in
the larger hexadecimal code. We’ll worry about Edge later!

 The refreshSlider function is pretty easy math. We calculate the thumbnail’s hor-
izontal location by taking the fraction (percent divided by 100) of the component’s
overall width. The slightly tricky part here is that we don’t actually want to position
from the leftmost edge of the thumbnail. Instead, the dead center of the thumbnail
should indicate the value. To center it, we need to subtract by half the width of the
thumb graphic.

 With these last updates, even though we don’t have interactivity, at least our attri-
butes cause updates to the component. We can now load the HTML file and see some-
thing that looks like figure 3.8.

What’s cool is that, even if we don’t have interactivity yet, the attributes on the demo
can be changed. When the page is refreshed, you’ll see the new color and slide per-
centage. How about a blue background at 70%?

<wcia-slider backgroundcolor="#0000ff" value="70"></wcia-slider>

We’re almost done! The next step is to make that thumbnail draggable.
 Let’s finish our component by adding some mouse listeners to the components.

These three listeners can be seen in the next listing.

connectedCallback() {
 this.innerHTML = '<div class="bg-overlay"></div><div

class="thumb"></div>';

 document.addEventListener('mousemove',
 e => this.eventHandler(e));

 document.addEventListener('mouseup', e => this.eventHandler(e));
 this.addEventListener('mousedown', e => this.eventHandler(e));

Listing 3.25 Adding three event listeners to handle mouse move, up, and down

Figure 3.8 The slider component so far

Mouse listeners for
enabling slider dragging

71Updating the slider component
 this.refreshSlider(this.value);
 this.setColor(this.backgroundcolor);
}

For mouse-down events, we only really care when the user clicks on the slider compo-
nent. Even when clicking outside the thumbnail, it should snap to the horizontal loca-
tion in the slider. Mouse-up events need to be caught everywhere on the overall web
page. If the user clicks inside the component, but then the mouse drags outside, the
user should still be able to release the mouse button, releasing the thumbnail. Like-
wise, for the mouse-move events, even when our mouse is dragging outside of the
component, the thumbnail should still follow (the best it can within the confines of
the slider).

 All that’s left now is to add some code for our new eventHandler method.

updateX(x) {
 let hPos =
 x - this.querySelector('.thumb') .offsetWidth/2;
 if (hPos > this.offsetWidth) {
 hPos = this.offsetWidth;
 }
 if (hPos < 0) {
 hPos = 0;
 }
 this.value = (hPos / this.offsetWidth) * 100;
}

eventHandler(e) {
 const bounds = this.getBoundingClientRect();
 const x = e.clientX - bounds.left;

 switch (e.type) {
 case 'mousedown':
 this.isDragging = true;
 this.updateX(x);
 this.refreshSlider(this.value);
 break;

 case 'mouseup':
 this.isDragging = false;
 break;

 case 'mousemove':
 if (this.isDragging) {
 this.updateX(x);
 this.refreshSlider(this.value);
 }
 break;
 }
}

Listing 3.26 Function to handle events and a function to update the slider percentage

Due to timing issues with
attributeChangedCallback firing first,
refresh the slider and color now.

Offsets the horizontal position to
use the center of the thumbnail

Restricts horizontal position to
confines of component bounds

Calculates the percentage
horizontal position and sets
the value attribute through
the setter API

Calculates horizontal position relative
to left edge of the component

On mousedown, sets a boolean to indicate
the user is dragging, updates the “value”
attribute, and updates the slider position

On mouseup, sets the boolean to false to
indicate the user is no longer dragging

On mousemove, if the boolean
indicates the user is dragging,
updates the “value” attribute and
updates the slider position

72 CHAPTER 3 Making your component reusable
With this last addition, our slider component is fully functional! We can even crack
open the dev tools, like in figure 3.9, to watch the value attribute change as we drag
the thumbnail.

The slider component isn’t done yet! It’s really not shareable if someone else on your
team wanted to use it. This will involve bringing the relevant CSS into the component
(as real CSS, not the JS style setting like in the last chapter) and separating out these
visual concerns from the main component class.

Summary
In this chapter, we’ve expanded our Custom Element API methods repertoire to both
connectedCallback and attributeChangedCallback. In the next chapter, we’ll talk
through the rest of the Web Component lifecycle in depth and compare it to similar
component lifecycles on both the web and beyond. Also in this chapter, you learned

 How to use attributes to call an endpoint for a search service, with ideas on
which attributes need to be watched and which don’t, including how to actually
watch the attributes in practice using the Web Components API

 What reflection is and how it can make your component more robust, such that
it can be used through its tag as well as through a custom JS API, and how to
avoid the problem of re-entrancy

 Strategies for when to use attributes versus a custom API and when to use both
for a better developer experience for your component’s consumers

Figure 3.9 Using the slider component and watching the value attribute update in the dev tools

The component lifecycle
4.1 The Web Components API
Up to now, we’ve explored a couple different methods from the Web Components
API, but we really didn’t talk about the API as a whole. These methods are the basic
building blocks for building everything from custom components to entire applica-
tions. So, it’s a good idea to take a look at all of them in detail. In the last chapter,
we looked at the attributeChangedCallback and the observedAttributes static
getter. In this chapter, we’ll cover the rest in the same amount of detail.

 Additionally, we need to consider that now that Web Components are shipping
in browsers, the specification should be considered a permanent part of the web

This chapter covers
 Using the connectedCallback Web Components API

method to listen when your component is added to the DOM

 Knowing when and how to use the constructor method,
especially because it occurs before the component has
access to the DOM

 Utilizing the disconnectedCallback Web Components API
method to clean up after your component

 The seldom-used adoptedCallback Web Components API
method
73

74 CHAPTER 4 The component lifecycle
development workflow for years to come. With this in mind, we should have some con-
fidence that Web Components can be used in a variety of situations.

 The most obvious use case for Web Components intersects with those use cases
that big frameworks such as Angular, React, and Vue are targeting. Generally speak-
ing, this use case is a data-centric web application that might interact with a REST-
based API. On the other side of the spectrum, as we see more graphic-intensive uses
for the web, like games, 3D, video, and so on, we need to know that the Web Compo-
nents API can handle those too.

 To have this confidence, I want to cover the entire API in detail but also compare it
to a couple different component lifecycles. For more traditional web applications, we
can look at a typical React component lifecycle. For more graphic-intensive applica-
tions, we can look at the component lifecycle for an extremely successful 3D/game
engine (not web-based) called Unity.

4.2 The connectedCallback handler
We’ve previously tapped into the connectedCallback method in examples from the
last couple of chapters, but let’s revisit it. This time, however, let’s add back an alert
inside a generic component to alert us exactly when our component starts up.

<script>
 class MyCustomTag extends HTMLElement {
 connectedCallback() {
 alert('hi from MyCustomTag');
 this.innerHTML = '<h2>'+ this.getAttribute('title') +
 '</h2><button>click me</button>';
 }
 }

 if (!customElements.get('my-custom-tag')) {
 customElements.define('my-custom-tag', MyCustomTag);
 }
</script>

<style>
 my-custom-tag {
 background-color: blue;
 padding: 20px;
 display: inline-block;
 color: white;
 }
</style>

<body>
<my-custom-tag title="Another title"></my-custom-tag>
</body>

Of course, what we should see when running this code in our browser is even more
basic than what we had in the last couple of chapters: a simple, ugly Web Component

Listing 4.1 Testing when our connectedCallback is called

Alert added to our
previous example’s
connectedCallback

75The connectedCallback handler
with a header and a button that says “click me.” With the alert added back in, you’ll
also see a modal box pop up immediately that says “hi from MyCustomTag.”

 The question now, based on the limited amount of code we have here, is when does
connectedCallback get called? The name of this method is a clue, but let’s explore by
removing the <my-custom-tag title="Another title"></my-custom-tag> from the
body of our page.

 Now, visually we have a completely empty page, but we’re still doing things on this
page. Our script block is still running, so we’re still registering this custom component
as something we could use. We’re just not putting it on the page yet.

 With this in mind, and our element removed from the body, let’s refresh the page:
no element, and no alert. Let’s use our component’s constructor to poke at this a bit
more. If you recall from chapter 2, we identified the constructor as the function that
runs when the class is instantiated.

 Note that because we’re using a constructor in an inherited class, we must call
super(); as the first line. By doing this, HTMLElement’s constructor is called as well.
Usually, when calling the inherited method, you might call super.myInherited-
Method() on any line, but here in the constructor, it’s just super(); on the first line in
the constructor.

<script>
 class MyCustomTag extends HTMLElement {
 constructor() {
 super();
 alert('hi from MyCustomTags

 ➥ constructor');
 }
 connectedCallback() {
 alert('hi from MyCustomTag

 ➥connected callback');
 this.innerHTML = '<h2>'+ this.getAttribute('title') +
 '</h2><button>click me</button>';
 }
 }

 if (!customElements.get('my-custom-tag')) {
 customElements.define('my-custom-tag', MyCustomTag);
 }
</script>

OK, so if we refresh this page . . . well, nothing happens—again. Note that while we
fully defined our element, we haven’t instantiated or called it into action yet! To test
our theory that the constructor is called on creation, and connectedCallback hap-
pens when added to the DOM, let’s do a bit of manual DOM manipulation with JS.

 With the blank page loaded, we’ll open up the browser dev tools and open the
console. In the console, enter

x = document.createElement('my-custom-tag');

Listing 4.2 Alerting from both our constructor and our connectedCallback

Alert added to constructor

Alert remaining in
connectedCallback to
compare timing

76 CHAPTER 4 The component lifecycle
Great! Our constructor alert is fired, and we see the message “hi from MyCustomTags
constructor.” By creating the element, we’ve implicitly called new MyCustomTag();

and, as a result, the constructor is called. At the same time, however, the connected-
Callback method has not been called because we haven’t added it to our DOM. Let’s
do that now! In the same console, now that our x variable is set, run the following:

document.body.appendChild(x);

As expected, the alert from the connectedCallback is called. Also, you should now
see the component in the page’s body. This flow, from creation to connected-
Callback, is captured in figure 4.1.

What if we tried something a little more indirect? What we just did begs the question
of whether connectedCallback was fired because we added it to any element or if it
was a matter of adding it to our page’s DOM. Let’s test this by refreshing the page and
creating our element again in the console:

myEl = document.createElement('my-custom-tag');

Of course, the constructor alert will still fire and show us the message. Next, let’s cre-
ate yet another element to act as a container:

myContainer = document.createElement('div');

Now comes the moment of truth. Will our connectedCallback alert us when we add
myEl to myContainer? Let’s try:

myContainer.appendChild(myEl);

Figure 4.1 The start of a Web Component’s lifecycle:
constructor first, and then connectedCallback after
adding to the DOM

constructor called

connectedCallback called

on
element
created

element
added to

DOM

77The connectedCallback handler
And the answer is no! Adding the custom component to just any element not yet
attached to the DOM will not trigger the connectedCallback method. We have an iso-
lated node held in the myContainer variable. The node looks like this:

<div>
 <my-custom-tag></my-custom-tag>
</div>

Although we’ve proven that our connectedCallback method is not fired when adding
it to something that’s not connected to the DOM, we haven’t yet proven that indirectly
adding to the DOM will fire that method. Let’s continue in the console and try:

document.body.appendChild(myContainer);

Confirmed! Instead of adding our custom element directly to the page, we’ve first
added it to another container (a <div>). We then added that container to our
DOM, and our connectedCallback method is still called, proving that the callback
is called only when it’s added to the page and nowhere else, even if not directly
added to the page.

 Additionally, if we remove the element and then re-add it, we see that our
connectedCallback is called each time:

document.body.removeChild(myContainer);
document.body.appendChild(myContainer);

This actually means that if you add, remove, and then add your component again, you
should be careful to do any one-time setup you intend only once.

 Figure 4.2 recaps our explanation with four scenarios. A component can be
directly on the page, or even inside another component. If either the component or

HTML page

Web Component

connectedCallback

HTML page

Web Component

connectedCallback

Outer element Web Component

connectedCallback

Outer element

Web Component

connectedCallback

is called is not called

Figure 4.2 Four different scenarios
for creating your Web Component

78 CHAPTER 4 The component lifecycle
the outer component (and it could be the outer, outer, outer component) is on the
main HTML page, the connectedCallback will be called.

 Alternately, even if the component is added inside another element, its connected-
Callback won’t be fired if the outer element is not on the main page. Generally speak-
ing, for that connectedCallback to fire, the component must have an ancestor on the
main HTML page.

4.2.1 Constructor vs. connected

What does this all mean for practical purposes? What logic belongs in the constructor
versus the connectedCallback method? It would be reasonable to think that we can
shove everything into the constructor and keep the connectedCallback method
empty. Unfortunately, no—there is a bit of nuance here.

 A big aspect of what you’ll want to do when creating a component is to set the con-
tent of your element. You’ll likely want to set innerHTML to some markup. It’s how, in
our simple example, we’re adding the header and button. You might also want to get
an attribute of your component. Unfortunately, when the constructor is fired, the ele-
ment isn’t yet ready to be interacted with in this way.

 We can prove this by moving the innerHTML line to the constructor, as follows.

class MyCustomTag extends HTMLElement {
 constructor() {
 super();
 this.innerHTML = '<h2>'+ this.getAttribute('title') +
 '</h2><button>click me</button>';
 }
 connectedCallback() {}
}

When our page reloads, we can try creating the element again with the create-
Element function, but the following error is seen in our console:

DOMException: Failed to construct 'CustomElement': The result must not have
children

Our browser is telling us that when our custom element is initially created, it’s not
allowed to have children. Furthermore, we can check on our title attribute that
we’ve been using to populate our header tag in the constructor versus the connected-
Callback.

class MyCustomTag extends HTMLElement {
 constructor() {
 super();
 console.log('From constructor',
 this.getAttribute('title'));
 }

Listing 4.3 Trying (and failing) to set innerHTML from the constructor

Listing 4.4 Attempting to access attributes on the constructor vs. connectedCallback

Accessing an attribute
on this component from
the constructor (failed)

79The connectedCallback handler
 connectedCallback() {
 console.log('From connectedCallback',
 this.getAttribute('title'));
 }
}

When we change to the previous listing and reload our page, our console will indicate
that the constructor doesn’t know the title yet, logging null. Our connectedCallback
is just fine, though.

 Just by looking at what works and what doesn’t here, we can start to feel out how we
should organize our component. The connectedCallback should contain all the logic
to populate our element visually. For a typical component, lots of logic within, like
adding events, interactions, and so on, will depend on these visuals being present.
This can leave the constructor fairly empty or devoid of meaningful code for many
situations.

 Depending on your component, however, there are likely to be exceptions that
should live in the constructor. One such exception is logic that you may want to hap-
pen after your element is initialized, but prior to it being added to the page. You may
want, for example, to create the element in advance and do a network request to pull
information off the internet before you append your component to the DOM. In this
fashion, if your component has all the data it needs to render, it can do so instantly
when on the page. In this case, because there are no dependencies on the visual ele-
ments within your component, the constructor can be a good place for this code.

class MyCustomTag extends HTMLElement {
 constructor() {
 super();

 /**
 * URL to fetch data to populate our hypothetical list
 */
 this.serviceURL =
'http://company.com/service.json';

 /**
 * internal counter to track something
 */
 this.counter = 0;

 /**
 * last error message displayed
 */
 this.error;
 }
 connectedCallback() { . . . }
}

As I mentioned at the start of the chapter, one great use of the constructor can be to
contain property declarations. It’s really handy to have a constructor at the top of your

Listing 4.5 A nicely formatted property list in a constructor

Accessing an attribute on
this component from the
connectedCallback (success)

Constructor method

Adds human-readable
properties to the constructor

80 CHAPTER 4 The component lifecycle
class and be able to easily read all the properties that you use within, as seen in listing
4.5. I’ve found that even if you don’t set your properties to anything yet, it’s still great
for component readability. I should mention again, however, that with the latest ver-
sion of Chrome supporting public and private class fields, we can declare our proper-
ties in the class itself, which is nicer and more inline with every other language that
supports classes. Once other browsers pick up support, the approach I just outlined
will likely be something of a bad practice.

 One big caveat to using the constructor versus the connectedCallback for DOM-
related logic arises if you are using the Shadow DOM, which will come up in chapter
7. When using the Shadow DOM, you’re creating a separate mini DOM that’s internal
to your component. In this case, the Shadow DOM is available whenever you create
it—even in the constructor.

 This caveat is why you’ll see many modern Web Components use the constructor
for most everything in the component, while the connectedCallback might not be
used much at all.

 Will you use the Shadow DOM? Up until recently, I wouldn’t have recommended it,
but Firefox just shipped an update with support for it (along with all Web Component
features), and Edge should ship a release beyond its development preview soon.

 As awesome as the Shadow DOM is, you’ll need to weigh whether you need it and
whether it’s supported in the browser of your choice. There will certainly be situations
where the Shadow DOM just doesn’t make sense for your project—knowing the
nuances of the connectedCallback versus constructor methods will be important.

4.3 The remaining Web Component lifecycle methods
We’ve discussed four of the six methods of our component lifecycle (constructor,
connectedCallback, attributeChangedCallback, and observedAttributes). There
are just two remaining methods: disconnectedCallback and adoptedCallback.

4.3.1 Disconnected callback

The disconnectedCallback serves a very important purpose, which is to give the com-
ponent an opportunity to clean up after itself. This callback is fired when the compo-
nent is removed from the DOM.

 The reason for cleanup is twofold. First, you don’t want stray code running when
you don’t need it. Second is to give garbage collection a chance to run. If you’re not
familiar with garbage collection, consider a language like C++. When you store data in
a variable, it will never go away, or get released, to use proper terminology. As a devel-
oper, it is your job to properly release it when you are done. If you’re not careful, all
the variables you’re not using anymore can start adding up and consuming tons of
memory! Luckily, with more modern languages like JS, your unused variables will get
“garbage-collected.” Every once in a while, when the engine (in our case, the JS
engine) knows it has enough idle time to clean up, it will go in and release the vari-
ables you aren’t using. It’s not psychic, though, and can’t predict what you don’t need.

81The remaining Web Component lifecycle methods
Instead, if it sees that you don’t reference or link to something in memory, as in figure
4.3, it will release it. This is why the disconnectedCallback is a good opportunity to
reset or null any variables that might link to other objects.

 It can definitely be a chore to worry about these finer details when your compo-
nent just works. Occasionally, if we know exactly how we are using our component, we
can ignore some of this. For example, if you know that your application will never be
removed from the DOM, you might be able to ignore cleanup. Of course, the scope of
projects can change, and that component you never expected to be removed might
need to be.

 To cite an example of much-needed cleanup, say you query a server every 30 sec-
onds to get updated data. If you removeChild(yourelement); from its parent con-
tainer, it will still run that timer and still query the server. Let’s try a simplified
experiment using a countdown timer example.

<html>
<head>
 <meta charset="UTF-8">
 <title>Cleanup Component</title>
 <script>
 class CleanupComponent extends HTMLElement {
 connectedCallback() {
 this.counter = 100;
 setInterval(() =>
 this.update(), 1000);
 }

 update() {
 this.innerHTML = this.counter;
 this.counter --;
 console.log(this.counter);

Listing 4.6 A demonstration of code running after the element has been removed

Figure 4.3 Memory references inside a Web Component

Mouse
listener

Variable

Timer

Timer

Mouse
listener

Variable

Not referenced, so gets
garbage collected

Starts the countdown timer

Console logs the current timer
value (still running after
component is removed!)

82 CHAPTER 4 The component lifecycle
 }
 }

 customElements.define('cleanup-component', CleanupComponent);
 </script>
</head>

<body>
 <cleanup-component></cleanup-component>
 <button onclick="document.body.removeChild(document.querySelector
 ('cleanup-component'))">remove</button>
</body>
</html>

In this example, we’re also logging our counter value with

console.log(this.counter);

I’ve also added a button with some inline JS code. When you click the Remove button,
the countdown timer component is removed from the DOM.

 When you run the example, the timer counts down as usual. After clicking
Remove, you don’t see the timer anymore, but if you open the console log, you’ll see
that it’s still counting down! It’s bad enough to leave that timer running—even worse
that we’re muddying up the console log with elements we don’t want anymore. It
would be still worse if we were making network requests we don’t care about or doing
something computationally expensive for an element we don’t need.

 So, we can use the disconnectedCallback to clean up our timer. We’ll likely want
to clean any event listeners added as well, such as mouse events. Let’s try cleaning up
our timer when the element is removed in the following listing.

class CleanupComponent extends HTMLElement {
 connectedCallback() {
 this.counter = 100;
 this.timer = setInterval(() => this.update(), 1000);
 }

 update() {
 this.innerHTML = this.counter;
 this.counter --;
 console.log(this.counter);
 }

 disconnectedCallback() {
 clearInterval(this.timer);
 }
}

We’ve now captured our timer in a variable:

this.timer = setInterval(() => this.update(), 1000);

This way, when we need to clean up using disconnectedCallback, we can clear it
using the same variable:

Listing 4.7 Using disconnectedCallback to clean up a timer

Button to remove
the component

When component is removed
(on disconnectedCallback),
removes the timer

83Comparing to React’s lifecycle
 disconnectedCallback() {
 clearInterval(this.timer);
 }

Checking our logs again, we have no more messages, and our element should be
properly garbage-collected on the next pass.

4.3.2 Adopted callback

Despite the fact that even I need to buckle down and use disconnectedCallback
more to write better and more versatile components, this last lifecycle method I truly
can’t see most people ever needing. The adoptedCallback lifecycle method fires
when your Web Component moves to a different document.

 Don’t worry if this doesn’t make sense, because it doesn’t usually happen. Usually,
you’ll have only one document per HTML page. The exception to this is when using
iframes (or inline-frames), which have really fallen out of favor for most uses. Basi-
cally, with an iframe, you have a mini HTML page in a frame on your master HTML
page.

 Elements can be stolen from the iframe and placed into the surrounding page, or
vice versa. To do this, you’d grab a reference to the element and then move it to the
new document:

const frame = document.getElementsByTagName("iframe")[0]
const el = frame.contentWindow.document.getElementsByTagName(
 "my-custom-component")[0];
const adopted = document.adoptNode(el);

Once done, the adoptedCallback lifecycle method will fire. But again, on the rare
occasion I’ve found myself working with iframes, I’ve never had to move nodes from
one document to the other. Maybe you’ll find a use for this method, and if you do,
know that your component can listen!

4.4 Comparing to React’s lifecycle
Let’s now talk about the Web Component lifecycle in relation to the React lifecycle.
After all, with only a handful of lifecycle methods, it can feel like Web Components
might be lacking. Given how popular React is, and its wide audience of developers, it’s
great for measuring Web Components against to see how they stack up.

 React is a bit opinionated, like all frameworks and libraries tend to be. It offers a
specific component lifecycle that works for React developers and their use cases. Of
course, there’s absolutely nothing wrong with this, but the point is that we’re looking
at a lifecycle that may or may not apply to how you want to work. I’d like to reiterate
that this is exactly what I love about working with Web Components—they have just
enough features to cover the bare minimum of what you need, and anything beyond
that can be built up with your own code or existing microframeworks or libraries.

 The React documentation breaks down its lifecycle methods into four main catego-
ries: mounting, updating, unmounting, and error handling. The error-handling method

84 CHAPTER 4 The component lifecycle
is one we haven’t gotten into yet, and indeed, there is nothing similar in Web Compo-
nents. React’s philosophy here (at least as of v16) is to establish “error boundaries” such
that if you have an error in one component, it doesn’t take the rest of your components
or the application down with it.

 While it is true that a JS error has the potential to do some really bad and unex-
pected things anywhere in a Web Components-based application, with React, it was a
little worse. Prior to v16, an error promised to unmount your entire application! Errors
in vanilla JS are usually tamer—unexpected things will happen, but usually your appli-
cation won’t be brought to its knees. As a result, in v16, React created error boundaries
so that each component could handle any badness and not affect the rest. Web Compo-
nents are a little more decentralized, so React’s problems aren’t so similar.

 In React, mounting means creating a chunk of HTML that represents your compo-
nent and then inserting that HTML into the DOM. For mounting, there are several
relevant methods.

 Like Web Components (and most everything else), React lets you override the con-
structor. The types of things you’d do are very similar to Web Components, in that
you’d likely not want to put tons of component logic here, and you’d ideally initialize
things that you’d use later. The methods componentWillMount and componentDid-
Mount let you do stuff before and after the component is added to the DOM.

 While componentDidMount is a lot like Web Components’ connectedCallback,
there doesn’t seem to be lots of purpose for componentWillMount. There’s nothing
here you couldn’t just do with the constructor. In fact, React v16 is already showing
warning messages that this method will be deprecated in the next major version.

 Prior to componentDidMount (or when the component changes in some way), you
are allowed to override the render method. With this method, you would mainly
return HTML to represent your component’s inner markup.

 With Web Components, render just isn’t necessary as a standard lifecycle method,
though LitElement and others have added this to their Web Components to make
updating HTML more streamlined. With the basic lifecycle as is, we can control our
component’s innerHTML at any time and aren’t limited by our component lifecycle for
when to set our component’s contents, or even which pieces are updated. In this
regard, we are better off being unbound by stiff rules that say where or when we can
create the inner workings of our component! With LitElement and various frame-
works, you’re buying into a design pattern and making the choice to be bound by
some rules that dictate when your component renders. Great, if that’s what you
choose, but as a standard that needs to fit a variety of use cases, I think it’s much better
to opt-in to something like a render method.

 For updating the component, React has several methods as well: componentWill-
ReceiveProps, shouldComponentUpdate, componentWillUpdate, getSnapshotBefore-
Update, and componentDidUpdate. In addition to componentWillReceiveProps being
deprecated soon, the rest are helpers for when something changes in your compo-
nent, and it needs to update. They are less relevant to Web Components because
React, as a system, keeps track of a bunch of stuff outside the scope of your actual

85Comparing to a game engine lifecycle
HTML element. State, properties, and so on are all things that change and trigger
your component to change. In fact, React has a different suggested usage altogether.
You are supposed to change state or properties, and your component is supposed to
. . . well . . . “react” to these changes.

 When you interact with Web Components, on the other hand, you’ll likely do so
much like you’d interact with a normal DOM element: through a custom API or using
attributes. With this difference, the need for these extra methods melts away. Some
might argue that the way React works offers more of a helping hand, but with Web
Components, you have more freedom to do things how you want, specific to your own
project.

4.5 Comparing to a game engine lifecycle
Speaking of freedom to implement how we want depending on the project, we
shouldn’t regard traditional web applications as the only use case for building some-
thing on the web. More and more graphics-intensive projects are being built all the
time. A good use case to consider is a game engine. In this regard, I think it’s fair to
compare the Web Component lifecycle to Unity. Unity 3D is one of the most popular
tools for making real-time 3D for games, applications, and even AR/VR.

 In Unity, a developer typically works with a 3D object of some sort that has a
Monobehavior attached. Much like our Web Component extends HTMLElement, a cus-
tom Unity behavior extends Monobehavior.

 Monobehavior has two lifecycle methods used for starting a behavior. Awake is like
our Web Component constructor. It gets called when the Monobehavior is created,
regardless of whether it’s enabled or not. With Unity, behaviors aren’t necessarily
active and running if they are disabled.

 Likewise, our Web Component isn’t really “enabled” if it hasn’t been added to the
DOM, because it’s not visually on the page. Unity has OnEnable and OnDisable meth-
ods to watch for this. A behavior can get enabled multiple times, just like our Web
Component can get added to the DOM multiple times. So here, OnEnable is a lot like
our Web Component’s connectedCallback.

 Unity’s Start method gets called the first time the behavior is enabled, including if
it’s enabled when the application starts. Web Components don’t have a similar call,
and like I said, if we add the same element to our DOM more than once, we need to
guard against any re-initialization if it hurts our components. Luckily, this is easy
to overcome—we can just set a variable to true the first time going through our
connectedCallback and avoid calling the same initialization with an if/then.

 These subtle distinctions only matter if you choose to not use your Web Compo-
nent in the simple way of just writing markup in your HTML, as in when creating, add-
ing, and removing elements with JS. For example, when prototyping or building a
specific application, you’ll probably know exactly how your Web Components are to
be used and be able to adjust as needed. If you’re building a library of Web Compo-
nents you intend to share, you may want to consider all of these use cases.

86 CHAPTER 4 The component lifecycle
 Next, Unity 3D has several methods in its Monobehavior lifecycle that are called
each render frame, which means they are called many times per second to give the
developer an opportunity to update what gets drawn on screen when graphics are
updated. These methods handle specific things like physics, different render passes,
and so on. For our purposes, I’ll condense them down to Unity’s update method
because unless we get into WebGL or other specific cases, they really don’t apply to
Web Components.

 While Web Components don’t have a similar update method as part of the lifecycle
API, or even the variety of update methods I’ve described previously, we arguably
don’t need one. We aren’t necessarily doing games or graphics-intensive things that
need to run every frame with JS, so in those cases, we don’t need it. On the occasion
we do need an update method, there are a couple of ways we can do it.

 The first thing we can try is a timer. Let’s take that timer example we had before,
and start there.

<html>
<head>
 <meta charset="UTF-8">
 <title>Countdown Timer</title>
 <script>
 class CountdownTimer extends HTMLElement {
 connectedCallback() {
 this.counter = 100;
 setInterval(() =>
 this.update(), 1000);
 }

 update() {
 this.innerHTML = this.counter;
 this.counter --;
 }
 }

 customElements.define('countdown-timer', CountdownTimer);
 </script>
</head>

<body>
 <countdown-timer></countdown-timer>
</body>
</html>

In listing 4.8, we’ve created a simple example countdown timer component (virtually
the same as earlier in this chapter). When our component is added to the DOM, we
use our connectedCallback to initialize a property called counter and set it to 100.
We also start a standard JS timer and attach that to an internal method called update:

setInterval(() => this.update(), 1000);

Listing 4.8 A countdown timer component

Creates our internal timer
(calls update every second)

Displays the timer’s
current value

Decrements every
timer update

87Comparing to a game engine lifecycle
If you have used the timer before, you know the last parameter of 1,000 makes the
timer fire every 1,000 milliseconds (or every second). On the Update method itself, we
simply set the contents of our component with innerHTML and decrement our variable
by one.

 What you’ll see in your browser when you run this is a numeric display that starts at
100 and counts down by 1 every second. setInterval is great for situations like this
where you just need a normal timer; but for animation or graphics that need to
change every 1/30th of a second, for example, JS’s newer requestAnimationFrame
will produce smoother results that are actually tied to the browser’s render cycle.

 Let’s swap our setInterval for requestAnimationFrame and do something a little
more animated in the next listing.

<html>
<head>
 <title>Visual Countdown Timer</title>
 <script>
 class VisualCountdownTimer extends HTMLElement {
 connectedCallback() {
 this.timer = 200;
 this.style.backgroundColor = 'green';
 this.style.display = 'inline-block';
 this.style.height = '50px';
 requestAnimationFrame(() =>
 this.update());
 }

 update() {
 this.timer --;
 if (this.timer <= 0) {
 this.timer = 200;
 }
 this.style.width =
 this.timer + 'px';
 requestAnimationFrame(() =>
 this.update());
 }

 customElements.define('countdown-timer', VisualCountdownTimer);
 </script>
</head>

<body>
 <countdown-timer></countdown-timer>
</body>
</html>

With the exception of requestAnimationFrame happening only once, thereby forcing us
to call it on every update call, the implementation is mostly the same as setInterval:

requestAnimationFrame(() => this.update());

Listing 4.9 Swapping setInterval for requestAnimationFrame

Using requestAnimationFrame
instead of setInterval

Smoothly animates the
width of our component

Keeps requestAnimationFrame
going by calling it every update

88 CHAPTER 4 The component lifecycle
Again, I have a counter, but I call it timer now, because we’ll be making our compo-
nent shrink with each animation frame to simulate a countdown timer. I also have
some CSS styling to set the background color, height, and inline-block style of the
component. It’s not awesome that I’m setting style with code here when I could use
CSS, but I want to keep this example dead simple:

this.style.backgroundColor = 'green';
this.style.display = 'inline-block';
this.style.height = '50px';

On the update method, we decrement our timer and also check if it’s equal to or
smaller than 0. If so, then we reset it to 200, just to keep our component in an infinitely
demo-able loop. After all that, we set the component height and width to the timer
property. Lastly, we call the next animation frame and run our update method again.
We end up with a green visual countdown component that shrinks every frame until it
gets to nothing and then resets to 200 pixels wide again.

 In addition to setInterval and requestAnimationFrame, other frameworks and
libraries we may want to use might have their own ways to call a timed update method
like this. For example, if you use a 3D library like Three.js or Babylon, they both have
their own render hooks you can tap into, so you’d implement your component a bit
differently.

 The point is that the Web Component lifecycle doesn’t come with an update
method like many other component lifecycles you might see. Because web technology
can be used for so many different things, it’s not wise to dictate how you should do it.
Most of the time in my own work, I never need that update method. Even simple UI
animation can be handled through CSS. And of course, when I do, I like having the
choice of which method to use.

 Maybe you, in your own personal use cases, always need some sort of update
method like Unity has. It certainly makes sense if you are a game developer or similar
and need a render/update method to drive your game and animation.

 If this is the case, you’re still covered. Web Components support inheritance, and
we can go one level deeper and just add on to the existing component lifecycle. Let’s
steal code from our visual countdown timer animation example and use our request-
AnimationFrame call to power it.

<html>
<head>
 <script>
 class GameComponentBase
 extends HTMLElement {
 constructor() {
 super();
 this.onUpdate();
 }

 update() {}

Listing 4.10 Creating an inheritable base for components to update every frame

Class provides a base for building
game-style components

Update method to be filled out by
component using the base class

89Comparing to a game engine lifecycle
 onUpdate() {
 this.update();
 requestAnimationFrame(() => this.onUpdate());
 }
 }

 class VisualCountdownTimer
 extends GameComponentBase {
 connectedCallback() {
 this.timer = 200;
 this.style.backgroundColor = 'green';
 this.style.display = 'inline-block';
 this.style.height = '50px';
 }

 update() {
 this.timer --;
 if (this.timer <= 0) {
 this.timer = 200;
 }
 this.style.width = this.timer + 'px';
 }
 }

 customElements.define('countdown-timer', VisualCountdownTimer);
 </script>
</head>

<body>
 <countdown-timer></countdown-timer>
</body>
</html>

So, in the example in listing 4.10, we’re still doing the exact same simple animation:
making a countdown indicator graphic shrink. But we’ve pulled the logic that deals
with creating an update event every frame out into its own class. Note that I say class
and not component because we’ve done everything to create a new component except
define a custom element and map that to a tag.

 Instead, we’re creating a base class, GameComponentBase, that components can inherit
from. Figure 4.4 shows this chain of inheritance, all originating from HTMLElement. I did

Internal update
method to keep

requestAnimation
frame going

Actual component class, which
extends the base component

Figure 4.4 Using inheritance to create a subclass of HTMLElement to enable frame updates like a
game engine

HTMLElement

Constructor

connectedCallback

attributeChangedCallback

GameComponentBase
(extends HTMLElement)

Inherited lifecycle methods

update (lifecycle method
made by us)

GameComponent
(extends GameComponentBase)

Inherited lifecycle methods

Custom game logic and
methods

90 CHAPTER 4 The component lifecycle
something a bit tricky, though. Instead of directly calling the update method, I have a dif-
ferent method—onUpdate:

 onUpdate() {
 this.update();
 requestAnimationFrame(() => this.onUpdate());
 }

The reason is best explained by doing it a way I would not suggest first. Let’s not use
both, and only use update.

class GameComponentBase extends HTMLElement {
 constructor() {
 super();
 this.update();
 }

 update() {
 requestAnimationFrame(() =>
 this.update());
 }
 }

This new GameComponentBase is still good and can be used in pretty much the same
way, but let’s take a look at how we’d use it.

class VisualCountdownTimer extends GameComponentBase {
 connectedCallback() {
 this.timer = 200;
 this.style.backgroundColor = 'green';
 this.style.display = 'inline-block';
 this.style.height = '50px';
 }

 update() {
 this.timer --;
 if (this.timer <= 0) {
 this.timer = 200;
 }
 this.style.width = this.timer + 'px';
 super.update();
 }
}

Notice we’ve simplified our GameComponentBase class a bit. We’ve condensed the two
update methods into one, but in our VisualCountdownTimer component, we’re now
forcing anyone using GameComponentBase to call super.update(); every time! Of
course, with inheritance, we don’t call update on our underlying GameComponent-
Base unless we use super.update(). I don’t know about you, but I’d make a new

Listing 4.11 Simpler example with just one overridable update

Listing 4.12 Using the simpler base class

Single update method

Now required to
call super.update()

91Component lifecycle v0
component and forget to call super.update() most of the time. A little planning
like this up front can make the developer experience happier.

 Unity has two more lifecycle methods, OnDisable and OnDestroy, which serve the
same purpose as Web Components’ disconnectedCallback: to clean up after dis-
abling or destroying the component.

4.6 Component lifecycle v0
The Web Components API seems pretty solid now, doesn’t it? We’ve compared and
contrasted it to other component lifecycles, and I hope you have a pretty good feel
that it’ll work well for anything you throw at it. I don’t expect that you’ll know each
and every method by memory, especially when starting out. We all have to Google syn-
tax occasionally. One caveat when you do look up usage with Web Components is that
it’s a relatively new standard, and it’s already gone through one revision.

 What this means is that when you look up syntax, you might accidentally stumble
on the old methods. Currently, we are using v1 of the Web Components API. What
came before was dubbed v0, and v0 won’t work anywhere except for where it was orig-
inally implemented: Chrome. Even there, as time moves on, it will be more and more
spotty.

IMPORTANT The Web Components API has changed!

Not much has changed really (see table 4.1), though the first thing to note is that
instead of letting you use the constructor in v1, you use the createdCallback method.

Table 4.1 Custom Element/Web Components API changes

Method calls How it changed

Deprecated:
createdCallback

Current:
constructor

In v1, the more standard constructor replaces the
createdCallback.

Deprecated:
AttachedCallback

Current:
connectedCallback

In v1, to listen for when your element has been added to the
DOM, you use the connectedCallback; in v0, it was the
attachedCallback.

Deprecated:
detachedCallback

Current:
disconnectedCallback

The old way of listening for when the element is removed from
the DOM, now the disconnectedCallback in v1, was the
detachedCallback in v0.

Former:
AttributechangedCallback

Current:
attributeChangedCallback
and observedAttributes

The last change is the attributeChangedCallback in v1.
The name actually hasn’t changed here, but the usage has. Now
you need to make sure to define those observedAttributes,
as we discussed in the last chapter, to tell the component what
attributes you’d like to listen for. Previously, this callback would
just listen to everything.

92 CHAPTER 4 The component lifecycle
Summary
In this chapter, you learned

 How to round out the lifecycle methods you’ve already learned with the
remaining two methods: disconnectedCallback and adoptedCallback

 The concept of garbage collection, and why you would clean up after your com-
ponent

 How to subclass a Web Component and use it as a base to provide common
functionality, like frame-by-frame animation, to other components

 Differences for and similarities to the React and game engine lifecycle methods,
and how even though both have more methods to their APIs, Web Components
don’t fall short

Deprecated:
document.registerElement

Current:
customElements.define

Lastly, outside of the component lifecycle API, the way you regis-
ter your element has changed as well. Currently, we use
customElements.define('my-web-component',
MyWebComponent);

Formerly, in v0, we would use
document.registerElement('my-web-component',
MyWebComponent);

Table 4.1 Custom Element/Web Components API changes (continued)

Method calls How it changed

Instrumenting a better
web app through modules
So far in exercises throughout this book, we’ve been putting our classes and com-
ponent definitions inside the <head> tag in our main HTML page. Typically, you’d
never want to do this on a real project and might want to be a bit more organized
with a <script> tag pointing to a JS file for each component you have. At first
glance, this is perfectly fine. If your project uses Web Components only in a limited
way, this works! CSS is similar—each component can have its own CSS file as well,
which can be linked from the main page. With many components to manage in
your project, however, this could get a little out of hand. In this chapter, let’s
explore ES2015 modules for a better way.

This chapter covers
 ES2015 modules as an alternative to <script> tags in your

HTML

 Creating self-reliant Web Components

 Using a Web Component to contain your entire application

 Scope management for callbacks with the ES2015 fat-arrow
feature
93

94 CHAPTER 5 Instrumenting a better web app through modules
5.1 Using the <script> tag to load your Web Components
To explain why linking to multiple JS/CSS files in our main HTML page can be prob-
lematic, let’s revisit our Web Component from chapter 2. If you recall, this compo-
nent was a photo carousel that allowed us to set a list of photos to navigate through as
well as some metadata for display, such as title and author, as figure 5.1 shows.

With this component example, all of our JS and CSS code was in the index.html file
with no external references. Of course, things get more maintainable by moving this
code to external files that we can simply link to and bring in. This is fairly typical for a
no-frills web project. When we do this, our HTML file gets more manageable and eas-
ier to read, as shown in the following listing.

<html>
<head>
 <meta charset="UTF-8">
 <title>Script Source for Loading Web Components</title>
 <script src="photocarousel.js"></script>
 <link href="photocarousel.css"
 rel="stylesheet"
 type="text/css"/>
</head>
<body>
 <wcia-photo-carousel
 title="Future Vacation Photos"
 author="Ben Farrell"
 photos="https://i.imgur.com/fBmIASF.jpg,https://i.imgur.com/
 3zxD6rz.jpg,https://i.imgur.com/nKBgeLOr.jpg,https://
 i.imgur.com/yVjJZ1Yr.jpg">

Listing 5.1 Example of loading Web Components with the <script> tag

Figure 5.1 Revisiting the photo carousel component from chapter 2

JavaScript has been pulled
out to a linked file.

CSS has been pulled
out to a linked file.

95Using the <script> tag to load your Web Components
 </wcia-photo-carousel>
</body>
</html>

5.1.1 Having to deal with many JS and CSS references

Now, if you had more Web Components in this project, you might add more and more
<script> tags and more and more <link> tags. There’s nothing wrong with this. Lots
of times when we develop a big project, we pull in a bunch of libraries, and as a final
step before releasing, we concatenate to one file for JS and one file for CSS.

 Often, when relying on script references in my HTML, I maintain two separate
HTML files. One is for development, and the other is for releasing my actual project.
In a case where we have many Web Components we intend to pull in, our dev HTML
head tag might look like the following listing, which shows an example of many hypo-
thetical JS and CSS references in a more fully featured photo album application.

<head>
 <meta charset="UTF-8">
 <script src="photocarousel.js"></script>
 <link href="photocarousel.css" rel="stylesheet" type="text/css"/>

 <script src="photoalbumbrowser.js"></script>
 <link href=" photoalbumbrowser.css" rel="stylesheet" type="text/css"/>

 <script src="loginpanel.js"></script>
 <link href="loginpanel.css" rel="stylesheet" type="text/css"/>

 <script src="socialsharing.js"></script>
 <link href="socialsharing.css" rel="stylesheet" type="text/css"/>

 <script src="photouploader.js"></script>
 <link href=" photouploader.css" rel="stylesheet" type="text/css"/>
</head>

Meanwhile, our goal would be to pull in fewer dependencies on our production-ready
HTML file. We could run a task via Grunt, Gulp, or even just NPM to concatenate all
JS and all CSS so that our production-ready HTML head tag looks like this:

<head>
 <meta charset="UTF-8">
 <script src="build.js"></script>
 <link href="build.css" rel="stylesheet" type="text/css"/>
</head>

Listing 5.2 Example of index.html for development

Photo carousel
component (CSS/JS)

Hypothetical photo album
browser component (CSS/JS)

Hypothetical login panel
component (CSS/JS)

Hypothetical photo upload
component (CSS/JS)

Hypothetical social sharing
component (CSS/JS)

96 CHAPTER 5 Instrumenting a better web app through modules
To be honest, I’m still not perfectly happy here. For one, I have to worry about two
imports for every Web Component I use (CSS and JS). Second, this doesn’t do any-
thing to maximize code reusability. Yes, I can point to external files containing code
for my Web Components, but what if those files themselves need to point to external
files? For example, in chapter 4, we explored extending HTMLElement to create a
game-oriented base component that gives us an update method that is fired every
frame. We need to import that GameComponentBase somehow.

 You might say, “Well, importing that GameComponentBase class is easy: we’ll just add
it to the list of JS files we link to in our <head> tag.” Again, depending on your use, this
might be manageable. The counterargument here is that you’re accepting the chal-
lenge to keep track of every single dependency in your project. If you just have one or
two dependencies, great! If you have 10 or 20 or more, it can get problematic.

5.1.2 Tiny scripts are more organized,
but make the reference problem worse

Dependencies can come in many forms. Our GameComponentBase is a major one, but
you can also consider smaller dependencies. Dependencies can be as small as helper
methods to manage your HTML, or even a super-tiny configuration object. For exam-
ple, we could maintain a project-wide data model that we import into any Web Com-
ponent or JS file that needs it:

appConfig = {
 rootURL: 'yourserver.com',
 apiVersion: 2,
 login: ‘username'
}

This is just a simple object that contains some data about how we want to log in to our
server (if we’re using one), but it could potentially be used in any Web Component
that gets data from this server. It’s a piece of reusable code that we need everywhere.
It’s also such a tiny piece of JS—which might be linked to along with 20 or 50 other
tiny pieces of JS—that remembering to include all of these in your <head> tag can get
a bit daunting.

5.1.3 Including CSS for self-reliant components

Before we address this, let’s make our Web Component class even more self-reliant by
making it manage the CSS itself. We’re simply eliminating the need to point to an
external CSS file by inserting the <style> rules into the innerHTML along with the
HTML markup. This example, as seen in the next listing, doesn’t change anything
about our component except to leave us with only one file to reference when using
the component in our project.

97Using the <script> tag to load your Web Components

this.innerHTML = '<h2>' + \

 this.getAttribute('title') + '</h2> \
 <h4>by '+ this.getAttribute('author') + '</h4> \
 <div class="image-container"></div> \
 <button class="back"><</button> \
 <button class="forward">></button> \
 <style> \
 wcia-photo-carousel { \
 width: 500px; \
 height: 300px; \
 display: flex; \
 padding-top: 10px; \
 flex-direction: column; \
 position: relative; \
 border-color: black; \
 border-width: 1px; \
 border-style: solid; \
 } \
 wcia-photo-carousel h2, h4 { \
 margin-bottom: 0; \
 margin-top: 0; \
 margin-left: 10px; \
 } \
 wcia-photo-carousel .image-container { \
 margin-top: 15px; \
 flex: 1; \
 background-color: black; \
 background-size: contain; \
 background-repeat: no-repeat; \
 background-position: 50%; \
 } \
 wcia-photo-carousel button { \
 cursor: pointer; \
 background: transparent; \
 border: none; \
 font-size: 48px; \
 color: white; \
 position: absolute; \
 top: 50%; \
 } \
 wcia-photo-carousel button.back { \
 left: 10px; \
 } \
 wcia-photo-carousel button.forward { \
 right: 10px; \
 }\
</style>';

For now, we’ve accomplished something pretty good—a completely self-reliant com-
ponent that only needs to be included via a single <script> tag. To be fair, our inner-
HTML is getting a bit long. A criticism could be that we’ve just moved some complexity
from the outside to the inside and made the inside a bit less manageable. Don’t worry,

Listing 5.3 Adding CSS to our component’s innerHTML

HTML markup that was
previously in our component

CSS added to our component,
previously in an external CSS file

98 CHAPTER 5 Instrumenting a better web app through modules
we’ll clean this up in the next chapter by expanding on the concept of modules that
we are learning here.

<head>
 <meta charset="UTF-8">
 <script src="photocarousel.js"></script>.
</head>

<body>
 <wcia-photo-carousel
 title="Future Vacation Photos"
 author="Ben Farrell"
 photos="https://i.imgur.com/fBmIASF.jpg,https://
 i.imgur.com/3zxD6rz.jpg,https://i.imgur.com/nKBgeLOr.jpg,https://
 i.imgur.com/yVjJZ1Yr.jpg">
 </wcia-photo-carousel>
</body>

Honestly, though, when looking at listing 5.4, things look pretty clean. You’d never
know the complexity of the component on the inside; you’re just using it. With only a
single <script> tag for including the Web Component definition, there’s really not
much to manage here. Even if there was just a separate CSS file like there was before,
for someone using this component, it might be a bit confusing. They wouldn’t necessar-
ily know that the CSS file was required, or even where it is or what its file name is.
Again, having a single script dependency to use your component and having it just
work, managing its own dependencies, makes things simple for component consumers.

5.1.4 Dependency hell

Now, if you think our goal to have our Web Component be completely self-reliant is
adding up to more problems than it’s worth, I wouldn’t blame you. Prior to this next
feature that I’m going to show you, using <script> tags and linking to CSS files was
exactly what I did. It worked fairly well.

 The problems start when you need to make your Web Components a little smarter
and more organized. In addition to the small JS dependencies I brought up before,
how do you best manage your HTML inside your component? It would be ideal, espe-
cially if there’s a lot of it, to have it outside your class and bring it in. It can be helpful
to keep the markup as a separate concern, not only so it doesn’t clutter your Web
Component class, but also so that multiple team members can work on a single com-
ponent and not all have to work in the same file when working on different concerns
like markup, controller logic, or style.

 Another big concern is when you have a custom Web Component inside your cus-
tom Web Component. How do you best deal with this? Consider what would happen if
you made an application driven by a single component in your index.html page. This
component might have eight components within, and then each of those components
could have several components as well.

Listing 5.4 Reducing dependencies with no more CSS references

Reduced component
dependencies from two lines
(CSS and JS) to just JS

99Using modules to solve dependency problems
In this situation, it’s suddenly your job to

 Monitor every single component used in your project
 Make sure you have <script> tags for each component in your index.html file
 Delete references to any components no longer used
 Keep a complete list of any and all component dependencies, including them

in the index.html file
 Manage the load order of every component and component dependency,

ensuring that scripts load before they’re needed
 Stay in close contact with team members, given that you will all be editing the

same index.html file to manage all of this

There are lots of reasons for a better way than the mess figure 5.2 depicts, and, thank-
fully, in every major modern browser, we can use JS modules!

5.2 Using modules to solve dependency problems
If you are unfamiliar with the concept of modules and want a bit of a deeper dive,
please see the appendix. In short, however, we’re going to forgo our mess of <script>
tags that we need to maintain and instead load scripts and components using the new
import keyword. With this, we can reduce the fragility of including JS in our main
HTML file and make our Web Components responsible for managing their own
dependencies. It’s an extremely clean and organized way of working with custom com-
ponents. To demonstrate, let’s create a simple Web Component-based application
comprising a few different custom components to highlight this shift in strategy. In
the end, we’ll have an architecture similar to figure 5.3, which is a lot easier to manage
than figure 5.2 and solves our many concerns.

Figure 5.2 Using <script> tags on the main HTML page means having
to remember to add every single JS file you use throughout.

HTML page

<script src=

<script src=

<script src=

<script src=

<script src=

<script src=

<script src=

JS dependencies in project

Unlinked and
forgotten

100 CHAPTER 5 Instrumenting a better web app through modules
5.2.1 Creating a musical instrument with
Web Components and JS modules

In this demo, I want to create a stringed instrument in our browser. I call it a Web
Harp! Each string is made by a Web Component, and, when strummed, it vibrates and
makes some sound. To keep it simple, it won’t be much to look at, as depicted in fig-
ure 5.4, but functionally it should be fun to play with.

We will use JS modules to manage all of our dependencies such that we’ll load only a
single JS file in our index.html, despite the fact that we’re using a few Web Compo-
nents. We won’t write our own audio engine, though—instead, we’ll import an exist-
ing one right into the Web Component that needs it.

Figure 5.3 The index.html page only references a single component, simplifying our code but still allowing
many dependencies.

HTML page

<script src=

Single link to use
one component

Component
manages
dependency
for another
component

Same, but with
many dependencies

Figure 5.4 Output of our Web Harp demo. Each white line is a
strummable string that vibrates and makes some noise.

101Using modules to solve dependency problems
 Another great thing about decentralizing our dependencies is that our initial
HTML page is dead simple, with only one referenced component, as depicted in the
following listing.

<html>
 <head>
 <title>Web Harp</title>
 <script type="module"
 src="./components/app/app.js">
 </script>
 <link href="csshake.min.css"
 type="text/css" rel="stylesheet">
 <link href="main.css"
 type="text/css" rel="stylesheet">
 </head>
 <body>
 <webharp-app strings="8"></webharp-app>
 </body>
</html>

Now, I’m cheating a bit with the CSS because I’m using a library to manage anima-
tion. So, the components for this project aren’t self-reliant in that regard, but they are
in every other aspect. The HTML in each component is super simple, too. Since we’re
just making some vertical lines to represent the strings in our harp, there’s very little
markup. All of this simplicity lets us focus on exploring JS dependencies using mod-
ules. We’ll explore using modules for managing HTML and CSS in the next chapter
to make everything much cleaner when a project requires lots of style and markup,
unlike this one.

 In this project, we’ll be managing three components:

 <webharp-app> will contain our entire application and manage our mouse
input.

 <webharp-strings> will hold the strings in our application.
 <webharp-string> will be each individual string that we can strum.

These components will each be contained in their own folder, inside a master compo-
nents folder. This is depicted in figure 5.5, where you’ll also notice some extra files to
help us manage sound and animation. We’ll get to those extras as we progress.

 Also note that we’ll be building up all of these components first to establish our
application’s minimalistic visual layout. Once done, we’ll finally put the <webharp-app>
in an index.html page, at which point we can preview the application before we move
on to add interactivity, animation, and sound.

Listing 5.5 A minimal application HTML file for our Web Harp demo

Our single Web Component dependency,
which itself is responsible for all other
component dependencies in the app

A third-party CSS shake library to
give our strings a vibrate effect

Some light CSS to manage style
on our overall HTML page

102 CHAPTER 5 Instrumenting a better web app through modules
5.2.2 Starting with the smallest component

Let’s start at the smallest level and focus on the
<webharp-string> component. It’s going to be a
simple vertical line that we create using a <div>
tag, which we’ll style to be as tall as the container
and 2 pixels wide with a color of white, as depicted
in figure 5.6. Our component begins in the next
listing.

// file: components/string/string.js

export default class WebHarpString
extends HTMLElement {
 strum(params) {}

 stopStrum() {}

 connectedCallback() {
 this.innerHTML = '<div class="line"></div> \
 <style>\
 webharp-string > .line { \
 background-color: white;\

Listing 5.6 A Web Component that defines an individual string for our instrument

Figure 5.5 Web Harp example file structure

CSShake library for string animation

Main application component

Utility to wrap our audio library

Original and module-wrapped audio library

Main page and light styling for page

Exports class as a module

Empty function placeholders to fill in later

Inner HTML of our
string component

Figure 5.6 A single <webharp-
string> component centered over
a black background

103Using modules to solve dependency problems

nent

d
 of
s
 height: 100%; \
 width: 2px; \
 }\
 </style>';
 }
}

if (!customElements.get('webharp-string')) {
 customElements.define(
'webharp-string', WebHarpString);
}

Note that we’re using the export default keywords prior to the class definition. This
marks our class as a JS module, which has the ability to be imported elsewhere. Our
connectedCallback, which happens when our component is added to the DOM,
should be no surprise given what you’ve already read in the other chapters. We are
simply setting our innerHTML to have a <div> with the style I mentioned earlier.

 We vaguely know that we want to be able to strum this string. If you’ve ever
watched a guitar string, you might remember that it vibrates for a little while, but
eventually stops. So, without a real plan, let’s just stub in a strum method. We can
guess that it takes some parameters based on what note it plays and how forcefully it
was strummed. We’ll circle back to that later, but we can also guess that after a certain
amount of time, we’ll need to stop strumming; hence we can add an empty stopStrum
method.

5.2.3 Importing and nesting a Web Component
within a Web Component

Let’s move on to the <webharp-strings> component (listing 5.7). This component
will serve as the layout container for the several strings we plan to place horizontally
across the application. Given that our <webharp-app> component is just a thin wrap-
per around this main visual component, the <webharp-strings> component is how
the entire end application will look, as seen in figure 5.4.

// file: components/strings/strings.js

import WebHarpString from '../string/string.js';

export default class WebHarpStrings extends HTMLElement {
 connectedCallback() {
 let strings = '<div class="spacer"></div>';
 for (let c = 0; c < this.getAttribute('strings'); c++) {
 strings +=
 `<webharp-string></webharp-string>`;
 }

 strings += '<style>\
 webharp-strings { \
 height: 100%; \
 display: flex; \

Listing 5.7 A Web Component that contains multiple Web Harp strings

Registers our custom
<webharp-string> element

Imports the individual
<webharp-string> compo

Loops through an
adds the number
strings we want a
specified by the
strings attribute

104 CHAPTER 5 Instrumenting a better web app through modules
 } \
 webharp-strings > webharp-string, div.spacer { \
 flex: 1; \.
 } \
 </style>';

 this.innerHTML = strings;
 this.stringsElements =
 this.querySelectorAll('webharp-string');
 }
}

if (!customElements.get('webharp-strings')) {
 customElements.define('webharp-strings', WebHarpStrings);
}

In our connectedCallback, we’ll create our <webharp-string> components in a for
loop, where the number of times we loop is how many strings we want. This compo-
nent takes an attribute named strings, which feeds into this for loop. As a result, we
can make a harp with as many or as few strings as we want!

 Thankfully, we have CSS flexbox, which allows us to lay out our container very eas-
ily. Giving each string a rule of flex: 1, our strings will evenly space horizontally
across our container, which we’ve sized as 100% of the size of our application. I’ve also
added a spacer <div>; otherwise our first string would start at the very edge of our
container and be virtually invisible. We also use querySelectorAll to put all the
<webharp-string> elements we just added into an array we can use later when we
flesh out interactivity in our component.

 Most importantly, our very first line is

import WebHarpString from '../string/string.js';

We’ve learned a lot of exciting things so far in this book about Web Components, but
I really feel like this notion of importing another Web Component into this one,
entirely with JS, is a true level-up for the whole ecosystem. With this import, we’ve
enabled our application to know what a <webharp-string> is, and when we add it to
our innerHTML, our custom element acts exactly as it should. What’s more, we don’t
have to do anything in our index.html file to link to our Web Component or register it
in any way. It just works as a dependency of the component that needs it.

 Despite this example being simple, there may be situations where we’d like to use
our <webharp-string> here as well as inside another component. With import, even
if importing the same file in multiple places, the request happens only once, with the
subsequent import request simply using the first result.

 Additionally, we can safeguard our Web Components by not trying to register them
again if they’ve already been used elsewhere, like this:

if (!customElements.get('webharp-string')) {
 customElements.define('webharp-string', WebHarpString);
}

Each <webharp-string> is laid out
via a CSS flex container.

Gets a list of all of our strings
through a querySelector

105Using modules to solve dependency problems
With this in mind, we can import our Web Components wherever we want with ease.
Let’s now wrap our <webharp-strings> with the final application component,
<webharp-app>, which will hold the entirety of our application and will be the one
component that gets included on our index.html page.

5.2.4 Using a Web Component to wrap an entire web application

When making a web application like this, it can be easy to put your individual compo-
nents in your main HTML page. Perhaps you might put them in your <body> tag and
write some light application logic in a <script> tag to tie it all together.

 Likely, your app will grow in size, you’ll keep adding components, and your appli-
cation logic will grow. As this happens, your index.html will get harder and harder to
maintain. When it’s time to start pulling major pieces out and repackaging them as
smaller components, there will likely be some refactoring.

 I’d like to suggest something else. Create a Web Component that represents your
entire application. This component will have the same structure and lifecycle as the
rest of your components and import whatever dependencies you need. When this
component starts to become too big over the course of developing your app, you
can easily break pieces off into smaller Web Components. Because they’ll have a sim-
ilar structure to the rest of your components, there will likely be minimal refactor-
ing to do.

// file: components/app/app.js

import Strings from '../strings/strings.js';

export default class WebHarpApp extends HTMLElement {
 connectedCallback() {
 this.innerHTML = '<webharp-strings strings="' +
 this.getAttribute('strings') + '"></webharp-strings>';
 }
}

if (!customElements.get('webharp-app')) {
 customElements.define('webharp-app', WebHarpApp);
}

Our Web Harp application component is fairly simple. Like our last component, we
import any child components we need. In this case, we’re importing <webharp-
strings>, which, again, is the container that holds all our Web Harp’s strings. Similar
to the last component, we’re accepting an attribute called strings to specify how
many strings our Web Harp has and passing that on to the <webharp-strings> com-
ponent. Again, we are using export default prior to our class definition to define
this component as one that can be imported. Meanwhile, our index.html file is always
clean and easy to look at, as seen in the following listing.

Listing 5.8 The Web Harp application Web Component

106 CHAPTER 5 Instrumenting a better web app through modules

<html>
 <head>
 <title>Web Harp</title>
 <script type="module"
 src="./components/app/app.js">
 </script>
 <link href="main.css" type="text/css" rel="stylesheet">
 </head>
 <body>
 <webharp-app strings="12"></webharp-app>
 </body>
</html>

When looking at this index.html file, note that the only thing we are linking to with
our <script> tag is our <webharp-app> component. Everything else is a dependency
of components downstream from the app component, as seen in figure 5.7, and we
thankfully don’t need to worry about them here. It’s again important to note that this
is possible because our <script> tag has a type of module. This is what enables module
loading, which in turn allows us to use the import keyword within anything that is
loaded as a result.

There’s really nothing special in the main.css file: just the code to set the size and
color of our app and remove margins so that our app runs to the edges of our browser
window, as seen in listing 5.10 and rendered in our browser in figure 5.8.

Listing 5.9 The Web Harp HTML file so far

Single app component dependency

Application component

Figure 5.7 Nested Web Components inside an application Web Component, all imported as a
module from our main HTML page

Web Harp application component

Strings component
Import WebHarpApp module

<webharp-app>

</webharp-app>

HTML page

String component

String component

String component

String component

String component

String component

107Adding interactivity to our component

body {
 background-color: black;
 margin: 0;
 padding: 0;
}

webharp-app {
 height: 100vh;
 width: 100vw;
}

As of now, we’ve created the main structure of our application. The required compo-
nents are in place, so we can preview it in our browser (remember to use some sort of
local web server, as these modules may be blocked from loading if you just use your
filesystem). The look actually won’t change from now on, but we do need to add some
functionality and interactivity!

5.3 Adding interactivity to our component
The next step is to make our application work! Going forward, our goal is to add ani-
mation and sound by strumming the harp strings with our mouse. To do this, we’re
going to listen for mouse input by adding on to our connectedCallback in <webharp-
app>, defined in components/app/app.js.

// file: components/app/app.js

connectedCallback() {

Listing 5.10 Simple CSS for basic body and application style

Listing 5.11 Adding an event listener with the fat arrow

Figure 5.8 The current state of our Web Harp

108 CHAPTER 5 Instrumenting a better web app through modules

C
the s

th
 this.innerHTML = '<webharp-strings strings="' +
 this.getAttribute('strings') + '"></webharp-strings>';
 this.stringsElement =
 this.querySelector('webharp-strings');
 this.addEventListener('mousemove',
 e => this.onMouseMove(e));
}

To use this element later, we’re querying and saving a reference to our <webharp-
strings> component using this.querySelector('webharp-strings'); as seen in
listing 5.11. Most importantly, we’re adding an event listener to the component itself
(this) to listen for mouse movement:

this.addEventListener('mousemove', e => this.onMouseMove(e));

This listener we’ve added is using the fat arrow to preserve class instance scope in our
new onMouseMove callback.

5.3.1 Listening for mouse movement

Of course, the function we’re pointing to doesn’t exist yet. We’ll need to add
onMouseMove to our class in order to capture this event:

onMouseMove(event) {
 this.stringsElement.points = {
 last: this.lastPoint,
 current: { x: event.pageX, y: event.pageY } };
 this.lastPoint = { x: event.pageX, y: event.pageY };
}

In this callback, we’re both capturing the current mouse coordinates in a variable
and, before that, sending both the current and last mouse coordinates to our
<webharp-strings> element. Sending both of these coordinates enables us to get the
distance traveled between our moves, which we can then use to guess how forcefully
or fast our strings are being strummed with the mouse.

5.3.2 Passing data to child components

Note that we are sending these points through a getter method in our <webharp-
strings> component, so let’s populate a setter in components/strings.js with the
code in the following listing.

// file: components/strings/strings.js

set points(pts) {
 if (!this.stringsElements) { return; }
 if (!pts.last || !pts.current) { return; }
 let magnitude =
 Math.abs(pts.current.x - pts.last.x);

Listing 5.12 Sending points to the Web Harp strings component

Saves a reference to the <webharp-
strings> element for later use

Adds a mousemove listener to
our application component

Checks if our query-selected
stringsElements exist

Checks that the current and last
coordinates are populated

aptures
peed of
e strum

109Adding interactivity to our component
 let xMin =
 Math.min(pts.current.x, pts.last.x);
 let xMax = Math.max(pts.current.x, pts.last.x);

 for (let d = 0;
 d < this.stringsElements.length; d++) {
 if (xMin <= this.stringsElements[d].offsetLeft && xMax >=
 this.stringsElements[d].offsetLeft) {
 let strum = {
 power: magnitude,
 string: d
 };
 this.stringsElements[d].strum(strum);
 }
 }
}

Ok, so this listing is a little complex, but we can break it down. First, you might recall
in the first steps of this example that we looked up each one of our <webharp-string>
components, or each visual string, and saved them all to an array we could use later.
Well, now is when we use them.

 First, we should probably acknowledge that we could potentially get a mouse event
coming in before everything is set up, so we’ll test if our string array is populated first
and bail out of the function if not:

if (!this.stringsElements) { return; }

We’ll also check that both current and last coordinates are populated, especially
because during the first mouse-move event, we won’t have that last coordinate:

if (!pts.last || !pts.current) { return; }

Next, we’ll capture the speed of the strum by getting the distance between our two x,
or horizontal, mouse coordinates, as well as capturing the lowest and highest values of
our current versus last coordinates:

let magnitude = Math.abs(pts.current.x - pts.last.x);

let xMin = Math.min(pts.current.x, pts.last.x);
let xMax = Math.max(pts.current.x, pts.last.x);

With these three helpful values, we can loop through the array of <webharp-string>
components. If the leftmost edge of our string falls in between the last and current x
coordinates, then we know to strum that particular string. We can send the numeric
index of which string was strummed, as well as the magnitude, or how forcefully it was
strummed:

for (let d = 0; d < this.stringsElements.length; d++) {
 if (xMin <= this.stringsElements[d].offsetLeft && xMax >=

this.stringsElements[d].offsetLeft) {
 let strum = {
 power: magnitude,
 string: d
 };

Captures the lowest and
highest values of the
current and last points

Loops through the
strings and strums the

relevant ones

110 CHAPTER 5 Instrumenting a better web app through modules
 this.stringsElements[d].strum(strum);
 }
}

And with this, we have some interactivity! Unfortunately, while we do successfully
strum our string at this point, our string doesn’t actually do anything when strummed
yet. We can test that things actually work, however, by adding a console.log to com-
ponents/string/string.js

strum(params) {
 if (this.timer) { clearTimeout(this.timer); }
 this.timer = setTimeout(() => this.stopStrum(), 1000);
 console.log(params);
}

Now, if you run the experiment and open your console log, you should be able to see
exactly which string is being strummed as well as how hard, right in your console.

5.3.3 Making your components shake with CSS

As you might expect, there are two last things to add: visual and audio feedback (it is an
instrument, after all). Let’s add the visual first, with the caveat that it’s not really a lesson
in Web Components or JS modules, just something we want to add to make this demo
work. To do this, we’ll pull in a CSS-related project called CSShake, which you can find
at http://elrumordelaluz.github.io/csshake/.

 The purpose of CSShake is to make your ele-
ments look like they are shaking, which I’ve done
my best to depict in figure 5.9. There are tons of dif-
ferent ways the library allows you to shake things.
It’s one of those well-built libraries you never
thought you’d use, but now that we need it, it’s
great how well-thought-out it is! For the purposes of
this demo, we’ll just link to the CSS file and allow
style to affect elements in our component as nor-
mal. In chapter 7, we’ll turn this notion around and
protect our Web Component from style creeping in
with the Shadow DOM.

 First, let’s add it to our HTML file:

<head>
 <title>Web Harp</title>
 <script type="module" src="./components/app/app.js"></script>
 <link href="main.css" type="text/css" rel="stylesheet">
 <link href="csshake.min.css" type="text/css" rel="stylesheet">
</head>

To use CSShake, we simply add classes to and remove them from the elements we
want to shake, as follows.

<element>

Figure 5.9 CSShake takes an
element on your page and animates
it with various ways of shaking.

http://elrumordelaluz.github.io/csshake/

111Wrapping third-party libraries as modules

// file: components/string/string.js

strum(params) {
 if (this.timer) { clearTimeout(this.timer); }

 let dur = params.power * 10 + 250;
 this.classList.add(
 'shake',
 'shake-constant',
 'shake-horizontal');
 if (dur < 500) {
 this.classList.add('shake-little');
 }
 this.timer = setTimeout(() => this.stopStrum(), dur);
}

stopStrum() {
 this.classList.remove('shake', 'shake-constant', 'shake-horizontal',
 'shake-little');
}

Here, as already mentioned, we begin by clearing a timer if one exists. We’re also cal-
culating a duration variable in milliseconds by factoring in the strum power (or how
fast the string was strummed) and adding a minimum baseline of 250 milliseconds, or
a quarter of a second.

 For the visual strum, we can add a few CSS classes to describe the string shaking.
It’s using the base shake class, and we want it to shake constantly and horizontally. If
the strum isn’t very strong, we’ll add a shake-little style to slightly differentiate a big
versus little strum.

 Our strum will be as long as our calculated duration. We’ll stop the strum when the
timer runs out, at which point we’ll remove all the classes we’ve added to the
<webharp-string> component.

5.4 Wrapping third-party libraries as modules
We need one last thing to complete our Web Harp experiment, and that is sound! The
Web Audio API is a complex subject, and the same can actually be said for any real-
time audio and tone generation. Luckily, we have JS libraries we can use to hide all
that complexity from us. One such library I’ve enjoyed playing with is MIDI.js
(https://github.com/mudcube/MIDI.js/). If you’re familiar with MIDI, you know
that it’s mainly used to connect music devices and not actually generate sound itself,
but this library offers real-time tone generation as well. If you look at the commit his-
tory, you might notice that the last commit date was in 2015. There’s definitely noth-
ing wrong with authoring a good library like this and then moving onto other things
after it’s sufficiently good. The downside is that this project isn’t using the latest JS lan-
guage features like modules, so we can’t import the library into our Web Component.

Listing 5.13 Adding CSShake classes to shake our strings when strummed

Adds shake classes: a base
“shake,” a class to indefinitely
shake, and a horizontal shake type

If the strum isn’t strong,
only shakes a little bit

Removes all the classes
once the strum stops

https://github.com/mudcube/MIDI.js/

112 CHAPTER 5 Instrumenting a better web app through modules
5.4.1 Frontend tooling for wrapping a module with Node.js

Or can we? Though it doesn’t appear to be a proper project on its own, Owen Dens-
more published a Medium article in 2017 discussing wrapping JS dependencies as
modules. Inside one of his projects lives a script called wraplib.js (https://github
.com/backspaces/as-app3d/blob/master/bin/wraplib.js). As seen in figure 5.10, the
script takes a third-party library and wraps it up as a module that can be imported into
your project.

I’ve pulled this script into the project’s bin folder. Also required is the actual MIDI.js
library. Typically, we would have installed MIDI.js from npm, which you can certainly
do by running

npm install midi.js

For convenience’s sake, however, I’ve put a minified MIDI.js into the project folder in
this book’s GitHub repo, and we can use it directly from there. Assuming you have
Node.js installed from before, navigate to your project directory in the terminal and do

node ./bin/wraplib.js midi.min.js MIDI > midijs.wrapper.js

At only 33 lines of code, the wraplib.js script is pretty simple if you open it up. Basically,
with the first argument, you’re telling it what file you’d like to wrap; the second is what
global variable name the library is stored under, and then it pipes to an output file.

5.4.2 Not perfect, but does the job

You may have done a double take when I described the second parameter. Wraplib is a
bit of a hack, and a common argument is that it shouldn’t clutter the global name-
space like it does. With our example, once we start the library, if you opened the dev
tools and console logged window.MIDI, you’d see the library we are wrapping. This
pattern of putting things in the global namespace is a bit messy; but, on the other
hand, it’s a hack that enables us to import a library that hasn’t been updated for a few
years. And of course, this node script to wrap the library could easily make it into your
frontend build process with Gulp, Grunt, or even just npm run, as we’ll explore in
chapter 12.

Figure 5.10 Using a Node.js utility to wrap a third-party library as an importable module

Third-party library

Node.js
wrapper
utility

Wrapped library

export default {

}

Third-party library

https://github.com/backspaces/as-app3d/blob/master/bin/wraplib.js
https://github.com/backspaces/as-app3d/blob/master/bin/wraplib.js
https://github.com/backspaces/as-app3d/blob/master/bin/wraplib.js

113Wrapping third-party libraries as modules
5.4.3 Using the wrapped module to play some notes

With midi.js wrapped up as a module, let’s import and use it! In /string/string.js, we’ll
initialize and load a piano soundfont in addition to our previous string markup.

// file: components/string/string.js

connectedCallback() {
 MIDI.loadPlugin({
 soundfontUrl: './',
 instrument: 'acoustic_grand_piano',
 onsuccess: () => this.onLoaded()
 });

 this.innerHTML = '<div class="line"></div> \
 <style>\
 webharp-string > .line { \
 background-color: white;\
 height: 100%; \
 width: 2px; \
 }\
 </style>';
}
onLoaded() {
 this._ready = true;
}

Like midi.js, I’ve included it at the root of the project. Alternately, you may find it and
copy it from the original source repo: https://github.com/mudcube/MIDI.js/
tree/master/examples/soundfont. In the same file, we’ll add a playSound function
and trigger it from our strum method.

// file: components/string/string.js

strum(params) {
 if (this.timer) { clearTimeout(this.timer); }

 let dur = params.power * 10 + 250;
 this.classList.add('shake', 'shake-constant', 'shake-horizontal');
 if (dur < 500) {
 this.classList.add('shake-little');
 }
 this.timer = setTimeout(() => this.stopStrum(), dur);
 this.playSound(params);
}

playSound(params) {
 if (!this._ready) { return; }

 let note = 60 + params.string * 5;
 MIDI.setVolume(0, 127);

Listing 5.14 Initializing MIDI.js, preparing to play piano notes

Listing 5.15 Adding note playback from the strum function

Initializes the MIDI plugin with an
acoustic grand piano instrument

Sets flag to indicate we are ready when
the plugin has been initialized

Calls playSound function when strumming

Returns early from function if
third-party library isn’t ready yet

Sets the note we want to play
depending on the string strummed

https://github.com/mudcube/MIDI.js/tree/master/examples/soundfont
https://github.com/mudcube/MIDI.js/tree/master/examples/soundfont
https://github.com/mudcube/MIDI.js/tree/master/examples/soundfont

114 CHAPTER 5 Instrumenting a better web app through modules
 MIDI.noteOn(0, note, params.power, 0);
 MIDI.noteOff(0, note, 0.75);

}

There are some minor details here that deal with the note we’re playing. Namely,
we’ll start on a C note in the fourth octave and go up in increments of five half steps
for each string index plucked. As we’re venturing into a bit of music theory here,
don’t worry if you don’t understand, but feel free to play with the numbers a bit.
Also, when turning on the note, we’re using the strum power as the note’s velocity
(think of a piano key and how hard you hit it as the velocity). Finally, we’ll set a dura-
tion of 0.75 seconds for the note delay (or how long it sounds after pressing). I’m
using a constant number here because a piano sound doesn’t have a lot of variability
in length before it drops off.

5.4.4 No more audio autoplay

Unfortunately, after I initially wrote this chapter, Chrome started shipping versions in
which background audio could not be played until a user took action, like with a
mouse click. While I can certainly understand how annoying audio playing without
you requesting it is, it’s a bit of a downer for fun experiments like this.

 Nevertheless, we need to address it to make the Web Harp work! To do this, we’ll
simply force the user to start the experience by clicking a screen that lives as a <div>
tag covering the initial page. The next listing shows our modified index.html file.

<html>
 <head>
 <title>Web Harp</title>
 <script type="module" src="./components/app/app.js"></script>
 <link href="csshake.min.css" type="text/css" rel="stylesheet">
 <link href="main.css" type="text/css" rel="stylesheet">

 <script>
 function clicktostart() {
 document.querySelector('.audio-fix').style.display = 'none';
 document.querySelector('webharp-app').style.display =
 'inline-block';
 }
 </script>
 </head>
 <body>
 <webharp-app strings="12"></webharp-app>
 <div class="audio-fix"
 onclick="clicktostart()">
 Click Me To Start
 </div>
 </body>
</html>

Listing 5.16 Clickthrough covering the page to address Chrome’s autoplay feature

Starts note playback with same power
as how hard the user strummedSets the duration of the

playback to ¾ of a second

When clicked, makes the
clickthrough display as none and
the Web Harp app display normally

Adds the clickthrough div that
covers the entire page, forcing the
user to click to take action

115Wrapping third-party libraries as modules
Lastly, we just need to style the clickthrough <div>, as well as allow both that <div>
and the application to stack on top of each other by absolutely positioning both via
CSS. The next listing shows this CSS added to what we previously had.

body {
 background-color: black;
 margin: 0;
 padding: 0;
}

.audio-fix {
 position: absolute;
 width: 100vw;
 height: 100vh;
 background-color: #2a2a2a;
 color: white;
 font-size: xx-large;
 display: flex;
 justify-content: center;
 align-items: center;
}

webharp-app {
 height: 100vh;
 width: 100vw;
 display: none;
 position: absolute;
}

With the clickthrough in, the user sees figure 5.11 before being able to start the Web
Harp.

Listing 5.17 New CSS to style and overlay the clickthrough

Styles and positions the
clickthrough element

Initially sets the Web
Harp app to not display

Allows the Web Harp app to go
underneath the clickthrough

Figure 5.11 The user must click to start the Web Harp to enable
audio and not be blocked by Chrome

116 CHAPTER 5 Instrumenting a better web app through modules
5.4.5 Playing the Web Harp

Once done, we can reload our Web Harp, run our mouse across the strings, and play
some music! Some things can definitely be improved with this example. Our inline
HTML and CSS look pretty ugly with all of those slashes to continue the string over
the line breaks. Also, it would be nicer if we could focus on our Web Component logic
in the class and separate the CSS and HTML to somewhere else. These things would
certainly make our component much more readable and organized. In the next chap-
ter, we’ll explore another ES2015 concept called template literals that will help us
clean things up!

Summary
In this chapter, you learned

 How Web Components can manage their own dependencies, including other
Web Components, by using modules, as well as how having a single import to
use your Web Component can avoid confusion about how to include the com-
ponent on your page

 How Web Components can be a bit more self-reliant by placing CSS inside the
component, avoiding the need to have to manage many CSS files or manage
rules for many components in the same CSS file

 Wrapping third-party libraries as a module using Node.js, even if the original
author never intended the library to be used that way, avoiding having to make
an exception for an otherwise self-reliant component

 Building a musical instrument in our browser using Web Components, with
even the main application being a Web Component comprising Web Compo-
nent children, keeping the index.html file tiny and manageable

Part 2

Ways to improve
your component workflow

Creating your own HTML element through the Custom Element API is
pretty amazing. From the outside, it looks like any other tag on the page, but
inside, it’s as complex or as simple as you need it to be! Now, though, it’s time to
set our sights inward and dive deep on the workflow for creating a great Web
Component. This is where we go beyond Custom Elements and explore the rest
of the collection of standards that make up Web Components.

 As with any new technology, Web Components suffered some missteps, as
with the now-deprecated HTML Imports; but this part will take that misstep and
break it down into relevant pieces you can go forward with that do have great
support. We’ll compare one of those pieces, the template tag, with other ways of
authoring your inner HTML and CSS to make up your component’s UI.

 Finally, this part of this book ends with the most renowned Web Component
feature: the Shadow DOM. Though not a required part of Web Components, it
is a huge shift in how we work with the browser’s DOM. Creating a separate mini
DOM just for your component is extremely powerful, as it removes frustrations
that web developers have had for ages by creating a protective layer around your
component where styles don’t accidentally creep in, and your inner elements
aren’t tampered with via mistargeted JS.

 Because the Shadow DOM is such a powerful feature and such a change
from how we did things before, there are some important caveats to cover as
well. These caveats include polyfilling in the increasingly rare situation where

118 PART 2 Ways to improve your component workflow
your browser doesn’t support Web Components, as well as accommodating situa-
tions where you actually want style to creep in, like when using a design system.
Much of this section is devoted to the Shadow DOM because it’s such a game
changer.

Markup managed
This chapter will keep building on what we’ve learned from previous chapters,
especially the last one, where we learned about modules. So far, we’ve managed to
create self-reliant Web Components that load their own dependencies, including
other Web Components. With this, our index.html is minimal. Between this, learn-
ing to use attributes, and building our own component API in chapter 4, we essen-
tially cleaned up our use of Web Components from the outside looking in.

 We left off with a somewhat messy-looking component on the inside, however.
Shoving lots of markup and CSS into the component’s innerHTML works well but
isn’t very readable, especially the way we’ve been working with multiline strings. In
this chapter, we’ll address this problem, and, in the end, we’ll have clean and orga-
nized components on the inside and out.

This chapter covers
 Multiline string syntaxes

 ES2015 template literals (with variables)

 Templating HTML/CSS using JS logic and functions

 Templating with lit-html

 Tagged templates
119

120 CHAPTER 6 Markup managed
6.1 String theory
Strings are one of the most basic things in JS. You no doubt use them constantly in
every aspect of web development. Why go over such a simple concept? The answer is
that there is a new JS feature in ES2015 that greatly cleans up our Web Components.

 So, what’s the big deal? Prior to ES2015, there were a couple different string syn-
taxes that did the same thing—double quotes and single quotes:

"Hi I am a string"

or

'Hi I am a string'

If you recall from prior examples, we were trying to shove all of our HTML into a
string and then set our component’s innerHTML with that string. With a tiny amount of
HTML, it’s fine:

this.innerHTML = '<div class="someclass"></div>';

6.1.1 When inline HTML gets ugly

The problem is when the HTML you want to add starts getting bigger. Even this is
semi-manageable:

this.innerHTML = '<div><input type="text"/><button>Submit</button></div>';

At some point, however, having everything on a single line becomes unreadable and
hard to manage, so we start expanding our string to cover multiple lines. Let’s exam-
ine an input form from Mozilla’s MDN documentation.

this.innerHTML = '<form> \
 <div> \
 <label for="example">Let’s submit some text</label> \
 <input id="example" type="text" name="text"> \
 </div> \
 <div> \
 <input type="submit" value="Send"> \
 </div> \
 </form>';

The alternate way of doing multiline strings in this next listing is a little more verbose.

this.innerHTML = '<form>' +
 '<div>' +
 '<label for="example">Let’s submit some text</label>' +
 '<input id="example" type="text" name="text">' +
 '</div>' +
 '<div>' +

Listing 6.1 Sample input form markup in a JS string

Listing 6.2 An alternate way of doing multiline strings

Each line has a backslash to continue to the next.

Each line is enclosed
by single quotes and
followed by a plus to
continue.

121Using template literals
 '<input type="submit" value="Send">' +
 '</div>' +
 '</form>';

Each of these examples is less than ideal. What’s desirable is to let HTML look like it
would on a real HTML page. This means multiple lines, indentation, and, most
importantly, no added overhead from using something special like a backslash or + to
extend over multiple lines.

6.1.2 String syntax with the backtick

Let me introduce a slightly different way of writing a string in the following listing: the
backtick character (`).

this.innerHTML = `<form>
 <div>
 <label for="example">Let’s submit some text</label>
 <input id="example" type="text" name="text">
 </div>
 <div>
 <input type="submit" value="Send">
 </div>
 </form>`;

This way of string writing is called template literals, as opposed to the string literal way
we’ve done it before. While the previous example solves our readability and workflow
problems, template literals do much more that can help us! If you’re not familiar with
using template literals or using expressions within, please refer to the appendix.

6.2 Using template literals
With this better way of writing strings, you might imagine that there could be some
great ways to pull HTML in from different sources. Perhaps you have some HTML
you’ve written in a different HTML file. You’ve tweaked the markup and style to look
exactly how you want—and then it’s time to integrate it. We’ll now explore a few ways
of bringing this HTML in.

6.2.1 Business card creator

Let’s try a little exercise and create a browser-based business card creator. The idea is
that we’ll provide a few different options that the user can customize; then, theoreti-
cally, they’d be done and ready to print. There won’t be any logic or interactivity
inside the card itself; we just want to display a static card with some values like name,
job title, email, and so on that we can change depending on what variables are used.
Unlike previous exercises, we’re really going to focus on layout and style up front, as
opposed to component logic. Once we finish up the next demo, we’ll have results like
those in figure 6.1.

Listing 6.3 Using the backtick to enclose HTML strings

Backticks allow multiline
strings without extra
formatting.

122 CHAPTER 6 Markup managed
Think about what we’ve done with Web Components up until now. Any visual treat-
ment has been done by placing our HTML in JS and setting our component’s inner-
HTML property. This is fine if we know the HTML and CSS we want to use, but if layout
and style are a primary concern, this isn’t the best way to create markup and iterate.

 No, the best way to do this is to simply go back to web development basics and cre-
ate something right in an HTML file with markup and CSS. It’s easy to preview and
tweak without worrying about any Web Component or JS complexities. In terms of val-
ues we want to replace, we can use our template literal syntax right in the HTML, as
shown in listing 6.5 and rendered in our browser as figure 6.2.

<div class="biz-card">
 <div class="logo"></div>
 <div class="top-text">
 <h1>${first_name} ${last_name}</h1>
 <h3>${title}</h3>
 </div>

 <div class="bottom-text">

Listing 6.4 Markup for business card with inline expressions

Figure 6.1 End result of the next demo: a business card that allows us
to customize values like name, job, title, and so on

Figure 6.2 Initial business
card layout without style

Placeholders for first name and
last name values

Placeholder for job title

123Using template literals
 <h3>phone: ${phone}</h3>
 <h3>${email} / ${website}</h3>
 </div>
</div>

6.2.2 Iterating design with just HTML and CSS

It’s fairly simple markup for an HTML file, but it starts to be a bit much to throw in
your Web Component class along with everything else. Our business card has a <div>
container for the entire card, which is made up of a logo, followed by a name and job
title. The text on the bottom of the card includes a phone number, email address,
and website.

 What really makes this come together is the CSS. The style rules can be seen in list-
ing 6.5, while the end result is depicted in figure 6.3.

<style>
 .biz-card {
 font-size: 16px;
 font-family: sans-serif;
 color: white;
 width: 700px;
 height: 400px;
 display: inline-block;
 border-color: #9a9a9a;
 background-size: 5%;
 background-image:
 ➥url("background-pattern.png");
 box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba

 ➥(0, 0, 0, 0.19);
 }

Listing 6.5 Style for the business card

Placeholder for phone number

Placeholders for email
and website

Figure 6.3 A business card made with HTML and CSS prior to Web
Component integration

Main business card style

If copying this code, swap
in your own background
image here.

124 CHAPTER 6 Markup managed
 .biz-card .logo {
 height: 100px;
 margin-top: 10%;
 text-align: center;
 background-image:
 ➥url("biz-card-logo.png");
 background-size: contain;
 background-position-x: center;
 background-repeat: no-repeat;
 }

 .biz-card .top-text {
 text-align: center;
 }

 .biz-card .top-text h1 {
 font-size: 2.5em;
 margin-bottom: 0;
 }

 .biz-card .top-text h3 {
 margin: 0;
 }

 .biz-card .bottom-text {
 text-align: center;
 margin-top: 10%;
 }

 .biz-card .bottom-text h3 {
 margin: 0;
 }
</style>

Of course, I spent some time iterating and tweaking my markup and style to get the
final business card result, but that’s the point! Keeping our visual design away from
the Web Component and our overall project can keep us focused on really designing
and styling it well.

 With our browser rendering the raw template literal syntax—${first_name}, for
example—these expressions are a little ugly to look at in context. Even so, we can try
out a variety of different names, email addresses, and so on to make sure our design
holds up in different contexts before ultimately putting the placeholder expression
in. With this, we focused on our markup and style outside the scope of a hypothetical
overall application and even the Web Component itself. With no JS in sight, we could
even pass this off to a designer or front-ender who might be a little afraid of code.
Once we’re happy with our markup and style, how can we then use our business card
in our Web Component?

6.3 Importing templates
This is the point where the new JS features we’ve been learning come together
extremely nicely. Specifically, I’m talking about combining template literals with JS
modules.

Style for logo

If copying this code, swap
in your own logo image
here.

Remaining styles for the
rest of the text

125Importing templates
 Let’s start a new project to host a business card Web Component. Our index.html
shown in the next listing will again be dead simple, just serving to place the Web Com-
ponent in our DOM and load the component’s JS definition.

<html>
 <head>
 <title>Business Card</title>
 <script
 type="module"
 src="components/bizcard/bizcard.js">
 </script>
 </head>

 <body>
 <biz-card></biz-card>
 </body>
</html>

Once finished—and once our component does its job of hosting the HTML and CSS,
and letting us specify the values we’d like to swap in for our placeholder expressions—
we’ll get the result depicted in figure 6.1 at the start of this chapter.

6.3.1 Keeping markup out of the main component logic

Next up, of course, is to work on our component definition class, but with a little bit of
a twist: we won’t include any HTML or CSS in the next listing because we are separat-
ing the concern to another module.

import Template from './template.js';

class BizCard extends HTMLElement {
 connectedCallback() {
 this.innerHTML = Template.render({
 first_name: 'Emmett',
 last_name: 'Brown',
 title: 'Student of all Sciences',
 phone: '555-4385',
 email: 'emmett@docbrown.flux',
 website: 'www.docbrown.flux'
 });
 }
}

if (!customElements.get('biz-card')) {
 customElements.define('biz-card', BizCard);
}

As we don’t have any interactivity right now, and we’re simply displaying a business
card—<biz-card> with some parameterized text—we just have to set our compo-
nent’s innerHTML.

Listing 6.6 New page to host our business card component

Listing 6.7 Business card customizer component

Includes the
Web Component
definition module

Declares the Web
Component on the page

Imports our
template module

Uses the template to
render HTML/CSS into
the component’s
innerHTML

126 CHAPTER 6 Markup managed
 Prior to this chapter, we’d simply set the innerHTML to an ugly-looking string in the
component itself. If we had variables to put in the string like we do now, with name,
email, and so on, it would be even uglier! In the spirit of making our projects cleaner
and more organized, let’s import our HTML via a JS module.

 You might be asking yourself, why a JS module? Given that our goal here is to have
our component render HTML, why not import HTML? Unfortunately, JS is the only
valid module type supported right now, but perhaps in the future we’ll be able to
import other types. In fact, Chrome now appears intent on implementing both CSS
and HTML modules, but we’ll need to wait a bit for that. In the next chapter, I’ll
briefly get into the now-defunct HTML Imports as an early attempt to tackle this prob-
lem, though these were only imported from another HTML directive and not through
JS, as we are trying to do now.

6.3.2 A module just for HTML and CSS

All that said, using JS to hold our HTML is pretty powerful and enables us to insert
some logic when we need it. First, let’s go simple and create the module that holds our
template, shown in the following listing.

export default {
 render(props) {
 return `${this.html(props)}
 ${this.css(props)}`;
 },

 html(p) { return ``; },
 css(p) { return ``; }
}

You’ll note right away that I don’t have HTML or CSS here yet, and that’s because I
want to talk about the structure without markup getting in the way.

 First off, you might notice that this is not a class, unlike every other module we’ve
been using. You are certainly free to use a class here if you’d like, but there’s really no
reason to do so, and it just adds the extra step of instantiation and storing the instance
if you need to use this module multiple times throughout the class.

 Instead, by not making it a class, we can use it right away in our Web Component
by calling on the import and the function it contains:

Template.render(. . .

My render method combines both the HTML and CSS from their respective methods.
I certainly could have just bundled all of the markup into one; but I think it’s more
maintainable to separate them out and offer a bit more flexibility on how we want to
bring in and use either one, as figure 6.4 shows.

 Now, how to fill those empty template literals with content? The obvious answer is
to open up the HTML file we created earlier in this chapter and simply copy and

Listing 6.8 Defining our template module

Combined HTML
and CSS to render

Function to return
future HTML

Function to return future CSS

127Importing templates
paste. If you’re just working with one or a few pieces of markup like that, then copy
and paste is pretty easy. However, what if you were working with a large team of pro-
duction assistants who didn’t touch JS code or source control and were churning out
dozens of HTML/CSS templates and constantly iterating with a team of designers?
This might sound far-fetched to some, but I’ve worked on projects where we were
building an application shell to host many pages of something like a quiz, where each
page had a different enough layout that we couldn’t use a consistent template.

 In these cases, you might want to automate the process of taking HTML that can
be previewed standalone in a browser all the way to your JS-based module. I’ve done
exactly this in the GitHub repo for this section. There, I’ve created an automated
Node.js tool that takes an HTML source file and automatically fills the template mod-
ule we’ll use in our business card (figure 6.5).

Figure 6.4 Keeping your Web Component class small by using another module

Web Component class Template module

<div>lots of html</div>

<style>

 .lots-of-css { . . . }

</style>

Component lifecycle

Concise component logic

Render HTML/CSS

Keeping this class minimal by storing all HTML/CSS here

render function pulls
HTML/CSS

Figure 6.5 Example Node.js-based tool for automating JS module population with an
existing HTML file

Node.js tool

Template module

Source HTML/CSS

Normal HTML/CSS is ingested
by Node.js tool

Node.js tool then converts
HTML/CSS to JS for template

128 CHAPTER 6 Markup managed
The downside is that these use cases are likely to be so different from each other that
my example only serves as a starting point. Wherever the HTML/CSS comes from,
automated tool or no, our business card ends up looking like figure 6.6.

6.4 Template logic
JS-driven HTML and CSS has a lot of potential that can be left undiscovered when
using large blocks of markup as is (whether automated or copy and paste). To explore
what I mean, let’s allow a bit of customization for our business card. We’ll allow the
user to select from a list of logos and tiled backgrounds to personalize their card, as
shown in figure 6.7.

Figure 6.6 Results of integrated template so far

Figure 6.7 Allowing customization with the business card logo and background

129Template logic
For this, I’d like to briefly touch on a more DIY approach and then branch out to a
more recent class of options with a lot of potential.

6.4.1 Creating menus from data

Let’s start by writing some JS to generate the option lists shown in figure 6.8.

We’re simply going to continue building on top of our business card component with
the generated template.js left intact. To enable this, we’ll add some additional data to
pass into our Template.render method in our bizcard.js Web Component definition,
as shown in the following listing.

this.innerHTML = Template.render({
 first_name: 'Emmett',
 last_name: 'Brown',
 title: 'Student of all Sciences',
 phone: '555-4385',
 email: 'emmett@docbrown.flux',
 website: 'www.docbrown.flux',

 backgroundChoices: [
 { name: 'big dots', uri: './images/big-dot-pattern.png'},
 { name: 'little dots', uri: './images/tiny-dot-pattern.png'},
 { name: 'squares', uri: './images/square-pattern.png'},
 { name: 'stripes', uri: './images/stripes-pattern.png'},
 { name: 'diamond', uri: './images/diamond-pattern.png'},
],
 logoChoices: [
 { name: 'mobius strip', uri: './images/mobius-logo.png'},
 { name: 'shopping bag', uri: './images/bag-logo.png'},
 { name: 'copper splash', uri: './images/splash-logo.png'},
 { name: 'star', uri: './images/star-logo.png'},
 { name: 'cone', uri: './images/cone-logo.png'},
],
});

Listing 6.9 Passing menu options to the template

Figure 6.8 Two option lists we will be adding to our component in order to
customize the business card

Business card background options

Business card logo choices

130 CHAPTER 6 Markup managed
To be specific, we’ve added two arrays: one for the tiled background of the card and
one for the logo graphic in the center. We’ll use these to populate two <select> drop-
downs to customize our card.

 To populate these drop-downs, we’ll add some HTML to our template.js module,
shown in the next listing.

html(p) {
 return `
 <div class="logo-picker">
 Logo: ${this.options(p.logoChoices)}
 </div>
 <div class="background-picker">Background:
 ${this.options(p.backgroundChoices)}</div>
 <div class="biz-card">
 <div class="logo"></div>
 <div class="top-text">
 <h1>${p.first_name} ${p.last_name}</h1>
 <h3>${p.title}</h3>
 </div>

 <div class="bottom-text">
 <h3>phone: ${p.phone}</h3>
 <h3>${p.email} / ${p.website}</h3>
 </div>
 </div>`;
},

Note that even though we’re using these option arrays originally defined in the Web
Component definition, just passing the array wouldn’t do much besides render a raw
array. That’s where a custom options method comes in.

6.4.2 More generation logic, harder automation

With these new <select> menus, we’re doing something a bit new with template liter-
als. Instead of simply using a variable to populate, we’re using a function from our
template with a return value containing the string with the menu, as figure 6.9 shows.
Not only that, but we’re using the same function to generate both menus, only differ-
entiated by the list of options we pass in, as shown in the following listing.

options(list) {
 let choices = ``;
 for (let c = 0; c < list.length; c++) {
 choices += `<option value="${list[c].uri}">${list[c].name}</option>`;
 }
 return `<select>${choices}</select>`;
}

Listing 6.10 Calling out to a function-based expression to render our menus

Listing 6.11 Function to convert an array of choices to menu options

Populating HTML
with logo choices

Populating HTML with
background choices

Loops through
list of choices

Appends option tag
with choice to string

Returns menu populated
with menu items

131Element caching
Next, we need to have our business card component react to selections in the menu.
This, in a roundabout way, brings us to a last helper function I like to put in my
template.js files.

6.5 Element caching
Consider that we’ll need to add event listeners to our <select> menus in order to lis-
ten for change selection. To do this, we’ll naturally need to get references to them. It’s
of course easy enough in the connectedCallback function in our Web Component
definition to do the following after setting the innerHTML.

this.querySelector('.logo-picker select').addEventListener('change', e =>
this.updateGraphics());

this.querySelector('.background-picker select').addEventListener(
 'change', e => this.updateGraphics());

This method is less than ideal, however. First, query selection takes a bit of CPU time.
These two lines are hardly a problem and happen only once to add the event listener.
On the other hand, let’s look at that updateGraphics function in the bizcard.js Web
Component class, as seen in the following listing.

Listing 6.12 Adding event listeners to react to drop-down changes

Figure 6.9 Calling out from an HTML template to a JS function to generate menu options from an array

<div class="logo-picker"> </div>
<div class="background-picker"> </div>
<div class="biz-card">
 <div class="logo"></div>
 <div class="top-text">
 <h1>${p.first_name} ${p.last_name}</h1>
 <h3>${p.title}</h3>
</div>

 <div class="bottom-text">
 <h3>phone: ${p.phone}</h3>
 <h3>${p.email} / ${p.website}</h3>
 </div>
 </div>

${logos}
${bgs}

<select>

</select>

<option></option>

<option></option>

<option></option>

<option></option>

<option></option>

Adds an event listener to
watch for logo changes

Adds an event listener to
watch for background changes

132 CHAPTER 6 Markup managed

updateGraphics() {
 this.querySelector('.biz-card')
 .style.backgroundImage = `url("${this.querySelector(

 '.background-picker select').value}")`;
 this.querySelector('.logo')
 .style.backgroundImage =`url("${this.querySelector(
 '.logo-picker select').value}")`;
}

These two lines of code occur when either of the <select> menus have changed.
First, we query-select the business card container element and assign the value of the
query-selected background menu to the backgroundImage. We do this yet again for
the logo.

 Yes, we’re doing some extra processing by query-selecting four times with each
menu change. If things were much more complicated, it would likely be a valid con-
cern. There’s no real problem with this example in particular, but when there are situ-
ations where you need to optimize, it’s certainly worth looking into this extra
processing!

6.5.1 Don’t make me query-select in my component

But take note of the lack of readability in those statements and remember that the
markup is in the template.js module and not here in the Web Component class. Also
consider that markup is bound to change as we iterate on our project, and, worse,
query selection can get more complex when there is more complexity in our HTML.

 Because of all these concerns, I like to cache my DOM elements using a method
inside the template.js module itself. As a function right next to the html() { . . . }
function, I can easily reference the markup to create my selectors. A simple <form>
example shows this mapping in figure 6.10.

Listing 6.13 On logo/background changes, re-renders both

Another query selector
to get the card

Yet another query
selector to get the logo

Figure 6.10 Mapping and caching elements from querySelector lookups
to a JS object for easy reference

formContainer

inputLabel

textInput

submitBtn

<form>

 <label>Text</label>

 <input type="text" />

 <button>Click Me</button>

</form>

JS object

133Element caching
In our business card example, I can put the following inside the template.js module.

mapDOM(scope) {
 return {
 logoPicker: scope.querySelector(
 '.logo-picker select'),
 backgroundPicker: scope.querySelector('.background-picker select'),
 logo: scope.querySelector('.logo'),
 background: scope.querySelector('.biz-card')
 }
},

With this, we are both caching the elements and creating easy references to them.
Also, these easy references can be as permanent as you need them to be! Meaning, if I
needed to change the selector to my logoPicker, for example, I could do it right
here. Maybe it gets changed to scope.querySelector('.card-container > div
.logo-chooser select'). My selector got a bit more complex, but my Web Compo-
nent can continue referring to the logoPicker property.

 The only slight complexity here is having to pass in our scope. Since this mapDOM
function lives in another module, and it isn’t a class instance, it doesn’t have a refer-
ence to the Web Component class. To solve this, we can simply pass our Web Compo-
nent reference, or this, into the mapDOM function, as done in the following listing.

import Template from './template.js';

class BizCard extends HTMLElement {
 connectedCallback() {
 this.innerHTML = Template.render({. . . });

 this.dom = Template.mapDOM(this);
 this.dom.backgroundPicker.addEventListener(

 'change', e => this.updateGraphics());
 this.dom.logoPicker.addEventListener(

 'change', e => this.updateGraphics());
 this.updateGraphics();
 }

 updateGraphics() {
 this.dom.background.style.backgroundImage =

 `url("${this.dom.backgroundPicker.value}")`;
 this.dom.logo.style.backgroundImage =

 `url("${this.dom.logoPicker.value}")`;
}

if (!customElements.get('biz-card')) {
 customElements.define('biz-card', BizCard);
}

Listing 6.14 Query-selecting once and saving the references for later use

Listing 6.15 Keeping query selection out of the component controller logic

Scope parameter is the Web
Component reference

One instance of query-
selecting an element and

saving to the object

Options have not changed and
have been left out for brevity.

Maps our elements
to a JS object

Adds a listener to the logo
picker element referenced
by our element object

Sets the background
image of our logo
element referenced by
our element object

134 CHAPTER 6 Markup managed
You can see that in our connectedCallback function, we are assigning the object that
holds our cached elements to this.dom, and we can reference it anywhere in our
class. With easy property names that make sense for our context here, we avoid the
ugliness as well as the (minimal) performance hit of the query selections.

 Lately, I’m in favor of more automated approaches, which use an attribute to
“mark” each element and then use a script to iterate through and create a similar
mapping for you without explicitly defining it in your code. You can find this
approach in my GitHub repo for this section.

6.6 Smart templating
There’s something very interesting happening on the Polymer Project front as I write
this book. To recap, Google’s Polymer Library ran from roughly 2013 to 2018 and was
designed to work with Web Components. This was at a time when Web Components
were so rough around the edges, you really needed a library or framework to help out
and keep up with all of the changing advancements and specs.

 The interesting bit is that the Polymer Library, after three major releases, is being
deprecated and moved into maintenance mode. The Polymer Project as a whole lives
on and is very active as the team splits off smaller and more targeted tools and librar-
ies from the project.

 Two prominent examples of this are lit-html and LitElement. Both are newly
production-ready and 1.0 (though LitElement was technically listed as 2.0 so as not to
conflict with the other LitElement project when the team took over the name on
NPM). I won’t get into LitElement because as nice as it is, it’s a thin wrapper around
everything we’ve learned in this book! So, the concepts are basically the same. The
Polymer team has added some niceties, such as an expanded lifecycle API as well as
automated reflection (where properties and attributes are always in sync).

 One of the more complicated feature sets in LitElement is actually all done through
lit-html. The lit-html project is a set of importable modules for managing your HTML
and CSS, just like what we’ve been using since chapter 5. It’s hard to call it a “library”
because of this. When I think of a JS library like React or a framework like Angular, I
usually think of a big monolithic file that I’d include that might take over my whole
project, and that I would have to do things the React or Angular way throughout.

 No, both lit-html and LitElement are opt-in per component. This means I might
use them on one component, but perhaps all of my other components in my project
wouldn’t use them. With lit-html, if there’s a feature I won’t use, I simply wouldn’t
import that module, and it wouldn’t add to my project’s file size, unused.

 I think this approach will be the future of Web Components (and maybe the web):
light, opt-in libraries that can easily be replaced as opposed to big, monolithic frame-
works or libraries that force you to do a number of things their way. There are many
tools like this, in fact; but given how prominent the Polymer team is in the Web Com-
ponent space, we’ll likely see some major adoption for lit-html and LitElement by Web

135Smart templating
Component developers, especially because they are paving the way for maximum
cross-browser support of all Web Component features, even down to IE11.

6.6.1 Using lit-html

There is a learning curve with lit-html, just like any other JS library. What lit-html is
good at is rendering HTML/CSS to your component that you’ve defined in a string,
just like we’ve been doing so far. One benefit of using lit-html is that it replaces only
what’s changed on render, which can lead to better performance. Recall our previous
examples of setting our component’s innerHTML, where we replace the entire con-
tents. With large DOM trees, this can lead to some performance hiccups if you’re not
smart about it. In addition to simple rendering of your HTML/CSS strings, lit-html
offers some advanced templating features. Let’s walk through a quick intro to some of
these features.

 To get started, usually you’d npm install the project:

npm install lit-html

However, for simplicity’s sake here, I’ve just copied the whole thing into the bizcard-
lithml Web Component directory in this book’s GitHub repo.

6.6.2 Repeating with templates

The first thing to try with lit-html is to get rid of our custom JS function to create our
<select> menus. For this, we’ll use lit-html’s repeat module, along with its standard
html module. With this, we can pull from an array of data and repeatedly populate
HTML, as depicted in figure 6.11. We’ll do this by adding lit-html imports to our
template.js module and changing our markup to include a repeating block of HTML,
shown in listing 6.16.

Figure 6.11 Using an array of items to repeat a snippet of HTML, populating a menu of options

<select>
 <option value="${i.uri}">

 ${i.name}

 </option>

 <option . . .

 <option . . .

 <option . . .

 <option . . .
</select>

Repeat
with listed
items

Item: name, URI

Item: name, URI

Item: name, URI

Item: name, URI

Item: name, URI

136 CHAPTER 6 Markup managed

import {html} from './lit-html/lit-html.js';
import {repeat} from './lit-html/directives/repeat.js';
export default {
 render(props) {
 return html`
 <div class="logo-picker">Logo:
 <select>
 ${repeat(
 props.logoChoices,
 (i) => i.id, (i, index) => html`
 <option value="${i.uri}">${i.name}</option>`)}
 </select>
 </div>
 <div class="background-picker">Background:
 <select>
 ${repeat(
 props.backgroundChoices,
 (i) => i.id, (i, index) => html`
 <option value="${i.uri}">${i.name}</option>`)}
 </select>
 </div>
 ${this.html(props)}
 ${this.css(props)}`;
 },

Note that our structure really hasn’t changed much! We’re still pointing to the html()
and css() functions to use our original markup. We did have to change those meth-
ods a tiny bit, however. To treat markup as HTML and not raw text within lit-html, we
need to use a more advanced feature of template literals called tagged templates. These
tagged templates mash together a template literal and a function in a concise syntax
that allows the function to parse the template literal, as figure 6.12 shows.

For this example, html is the function provided by lit-html, and our template literal is
our markup or CSS. You can see us nesting these tagged templates in our custom
render function in figure 6.13.

6.6.3 Should you use it?

And with that, we’ve cut our custom menu generation function out completely! The
question is, and this is a question you need to ask yourself when using any third-party
module or library, was it worth it? You’re now depending on an external project,

Listing 6.16 Using lit-html to repeat HTML for a menu

Repeats menu options to create
a menu of logo choices

Repeats menu
options to create a

menu of background
choices

Figure 6.12 The parts of a tagged function and how it works with a template literal

function `some text and a ${variable}`

Template literal

Tagged function,
which accepts
a template literal

137Smart templating
though a newly stable one, given that it just reached 1.0. The syntax seems a bit error-
prone until you’ve used it enough, and it’s potentially a bit difficult to debug. That
said, one big plus with lit-html is the simple render function. When using lit-html to
render your HTML, only pieces that have changed get updated. Compare this to just
setting the innerHTML as we’ve done before—there’s a higher performance cost to
slam all of this markup onto the DOM, so in circumstances where lots of HTML needs
to be updated (especially if it happens often, or if you’re not sure it needs to be
updated), lit-html can be a real benefit.

 As with any third-party module or library, the more you use it, the more it becomes
second nature. Taken in isolation, lit-html definitely wasn’t worth it for generating our
<select> menus in this tiny Web Component. What if we had dozens or hundreds of
Web Components, many of which had repeating elements generated with data? Also,
what if you could pass off these markup templates to another front-ender who you
don’t want touching your application logic or writing custom JS code to handle these
data-generated elements? These could be good reasons to use just this “repeat” func-
tionality alone.

6.6.4 Injecting event listeners into markup

Another bit of functionality that lit-html offers is the ability to add listeners to your
markup. In our business card example, you might recall that we add our event listen-
ers manually in our Web Component class:

this.dom.backgroundPicker.addEventListener('change', e =>
this.updateGraphics());

this.dom.logoPicker.addEventListener('change', e => this.updateGraphics());

If we had a long list of items that we needed to add event listeners to, this could be a
fairly big chunk of code that serves no purpose other than setup. We can let lit-html
help us with this by adding event listeners right inside our template and calling a func-
tion in our Web Component, as in figure 6.14.

 To start, let’s adjust our connectedCallback in our Web Component class, using
the code from listing 6.17.

Figure 6.13 Our template module
using lit-html, with nested HTML
tagged functions for various content

Repeater for select menu options

Repeater for select menu options

Create html` with:

Nested html` for remaining elements

Nested html` for CSS

138 CHAPTER 6 Markup managed

connectedCallback() {
 render(Template.render(this, {
 first_name: 'Emmett',
 last_name: 'Brown',
 title: 'Student of all Sciences',
 phone: '555-4385',
 email: 'emmett@docbrown.flux',
 website: 'www.docbrown.flux',

 backgroundChoices: [
 { name: 'big dots', uri: './images/big-dot-pattern.png'},
 { name: 'little dots', uri: './images/tiny-dot-pattern.png'},
 { name: 'squares', uri: './images/square-pattern.png'},
 { name: 'stripes', uri: './images/stripes-pattern.png'},
 { name: 'diamond', uri: './images/diamond-pattern.png'},
],
 logoChoices: [
 { name: 'mobius strip', uri: './images/mobius-logo.png'},
 { name: 'shopping bag', uri: './images/bag-logo.png'},
 { name: 'copper splash', uri: './images/splash-logo.png'},
 { name: 'star', uri: './images/star-logo.png'},
 { name: 'cone', uri: './images/cone-logo.png'},
],
 }), this);

 this.dom = Template.mapDOM(this);
 this.updateGraphics();
}

There are just two changes here. First, we removed adding the event listeners. After
adding the event listeners into our markup using lit-html, as in listing 6.15, we won’t
need them anymore. Second, we want to give lit-html a reference back to our Web
Component to run our updateGraphics function, so we pass this as the first parame-
ter to the Template.render function, where the second parameter is all the data we
are passing.

 Now, on to the lit-html magic. In listing 6.18, we want to use the standard change
event to listen for select menu changes; but with lit-html in the mix, we’ll use its @
expression to create the proper bindings. Following through, we can insert an inline

Listing 6.17 Removing event listeners in our component to prep for lit-html

Figure 6.14 Inline event listener to listen for menu changes and calling a function
in our Web Component

<select
onchange="${(e) => {
 controller.updateGraphics()
}}">

updateGraphics() {
 . . .
}

Web Component

Generates a template
literal to pass to lit-html’s
render function

Passes our Web Component
scope (this) to let lit-html know
where to write the content

139Updating the slider component
function that points back to our Web Component, referenced with a variable named
controller.

render(controller, props) {
 return html`
 <div class="logo-picker">Logo:
 <select @change="${(e) => {
 controller.updateGraphics()} }">
 ${repeat(props.logoChoices, (i) => i.id, (i, index) =>

 html`<option value="${i.uri}">${i.name}</option>
 `)}</select>
 </div>
 <div class="background-picker">Background:
 <select @change="${(e) => {
 controller.updateGraphics()} }">
 ${repeat(props.backgroundChoices, (i) => i.id, (i, index) =>

 html`<option value="${i.uri}">${i.name}</option>
 `)}</select>
 </div>
 ${this.html(props)}
 ${this.css(props)}`;
},

Again, though, in our simple example, we only reduced JS code in our Web Compo-
nent by two lines when we removed the event listeners. Was it worth it? Probably not,
but for larger-scale projects with a team, it could definitely be worth it!

 Additionally, as the Polymer team rockets forward with the Polymer Project
(www.polymer-project.org), we may see lit-html along with LitElement become a fairly
commonplace solution for Web Components.

6.7 Updating the slider component
It’s been a bit since we’ve updated the slider component we started back in chapter 2.
Now, with our ability to import a template and cache elements, we can make the slider
a little better, and shareable as a real component!

 We can start by separating out a few files. Until now, the slider HTML, JS, and CSS
were all wrapped up in a single HTML file. Our goal is to end up with a demo HTML
file to show off the slider, a component source class JS file, and, lastly, a template mod-
ule to hold the HTML/CSS for the component. Figure 6.15
shows the new project file structure.

 It probably makes the most sense to start out with the
template.js module. It’s new to the slider and features ideas
from this chapter that we just covered. We’ll pull in the com-
ponent HTML that was previously in the component class,
and the CSS that was previously in the all-encompassing
slider HTML file. The next listing shows this module in its
entirety.

Listing 6.18 Injecting event listeners into markup using lit-html

Menu change listener for logo
menu added with lit-html

Menu change listener
for background menu
added with lit-html

Figure 6.15 The three
files for the slider
component

www.polymer-project.org

140 CHAPTER 6 Markup managed

export default {
 render() {
 return `${this.css()}
 ${this.html()}`;
 },

 mapDOM(scope) {
 return {
 overlay: scope.querySelector('.bg-overlay'),
 thumb: scope.querySelector('.thumb'),
 }
 },

 html() {
 return `<div class="bg-overlay"></div>
 <div class="thumb"></div>`;
 },

 css() {
 return `<style>
 wcia-slider {
 display: inline-block;
 position: relative;
 border-radius: 3px;
 }

 .bg-overlay {
 width: 100%;
 height: 100%;
 position: absolute;
 border-radius: 3px;
 }

 .thumb {
 margin-top: -1px;
 width: 5px;
 height: calc(100% - 5px);
 position: absolute;
 border-style: solid;
 border-width: 3px;
 border-color: white;
 border-radius: 3px;
 pointer-events: none;
 box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px
 20px 0 rgba(0, 0, 0, 0.19);
 }
 </style>`;
 }
}

You may not have looked at the CSS for this component since chapter 2, so you may
not notice that a few things are missing. Left out of the CSS here are the component’s

Listing 6.19 Slider component’s template module

Caches the elements
of the component

Moves the HTML from
the component class
into this module

Moves the CSS from the
old HTML file into this
component/module

141Updating the slider component
width and height, as well as the (kind of insanely complicated) CSS for the checkered
background.

 The reason for this is that it makes the component a bit more customizable from
the outside. If you think about it, you’ll want a generic UI component like this to show
in a variety of sizes in different contexts. You’d use CSS do this with any other element,
and this component should be no different. In terms of the checkered background,
I’m planning ahead that we’ll want to use this component in another context besides
for setting transparency. Setting the background CSS from the outside allows us to
swap in any other background super easily. The next listing shows the demo page for
the slider component with the size and background CSS pulled out, as discussed.

<html>
<head>
 <title>Slider Demo</title>

 <script
 type="module"
 src="slider.js">
 </script>
 <style>
 wcia-slider {
 height: 50px;
 width: 500px;
 background-image: linear-gradient(45deg, #ccc 25%,

 transparent 25%),linear-gradient(-45deg, #ccc 25%,

 transparent 25%),linear-gradient(45deg,

 transparent 75%, #ccc 75%),linear-gradient(-45deg,

 transparent 75%, #ccc 75%);
 background-size: 16px 16px;
 background-position: 0 0, 0 8px, 8px -8px, -8px 0px;
 }
 </style>
</head>
<body>
 <wcia-slider
 backgroundcolor="#ff0000"
 value="50">
 </wcia-slider>
</body>
</html>

Last is the slider.js module. Yes, it’s a module now! We can change class Slider to
export default class Slider, so that it can be imported. The following listing
shows the new module without the details that haven’t changed.

Listing 6.20 Slider demo page

Component class module

Extra CSS to control component’s
size and background

Slider component on page
with some default settings

142 CHAPTER 6 Markup managed

import Template from './template.js';

export default class Slider extends HTMLElement {
 connectedCallback() {
 this.innerHTML = Template.render();
 this.dom = Template.mapDOM(this);

 document.addEventListener('mousemove', e => this.eventHandler(e));
 document.addEventListener('mouseup', e => this.eventHandler(e));
 this.addEventListener('mousedown', e => this.eventHandler(e));

 this.refreshSlider(this.getAttribute('value'));
 this.setColor(this.getAttribute('backgroundcolor'));
 }

 static get observedAttributes() { . . . unchanged . . . }
 attributeChangedCallback(name, oldVal, newValue) { . . . unchanged . . . }
 set value(val) { . . . unchanged . . . }
 get value() { . . . unchanged . . . }
 set backgroundcolor(val) { . . . unchanged . . . }
 get backgroundcolor() { . . . unchanged . . . }

 setColor(color) {
 if (this.dom) {
 this.dom.overlay.style.background = `linear-gradient(

 ➥to right, ${color} 0%, ${color}00 100%)`;
 }
 }

 refreshSlider(value) {
 if (this.dom) {
 this.dom.thumb.style.left = (value / 100 * this.offsetWidth -

 ➥this.dom.thumb.offsetWidth / 2) + 'px';
 }
 }

 updateX(x) {
 let hPos = x - this.dom.thumb.offsetWidth/2;
 . . . unchanged . . .
 }

 eventHandler(e) { . . . unchanged . . . }
}

if (!customElements.get('wcia-slider')) {
 customElements.define('wcia-slider', Slider);
}

The slider component is now a shareable piece of UI that we can really use as part of
any other project. We’ll do one last thing in a future chapter, and that is to have it use
the Shadow DOM. Using the Shadow DOM isn’t entirely necessary, but it’s an awe-
some feature to have in terms of component encapsulation. I’ll let you be the judge
when you read all about it and we update the slider one last time.

Listing 6.21 Slider module (slider.js)

Imports template.js

Makes class an
importable module

Offloads
HTML to
template
module

Caches elements

Uses cached elements

Uses cached elements

Uses cached elements

143Summary
Summary
In this chapter, you learned

 A new way to write strings using the backtick (`) character, which allowed the
creation of template literals. A new ES2015 feature, these template literals allow
not only multiline strings with no awkward syntax, but also insertion of variables
into the templated string—perfect for inserting HTML and CSS right into our
JS with no tweaking required.

 How to use element caching as well as separation of code and markup for better
component readability and maintainability.

 About logic-generated templates using custom JS as well as the Polymer Proj-
ect’s lit-html library for repeating markup from data, while additionally using
lit-html to add event listeners in your HTML.

 How to build an example Web Component project featuring a business card
customizer, focusing on visual layout and style, which enables us to examine
workflows with more complex HTML and CSS.

Templating your
content with HTML
We’ve come a long way with Web Components so far! In addition to creating some
moderately simple Web Component-based applications, we’ve gone fairly deep on
some strategies for using HTML and CSS in our Web Components.

 Of course, these strategies so far have revolved around storing markup in JS
strings. Despite the great separation of concerns we get by storing our HTML/CSS
in importable JS modules, as seen in chapter 6, there will no doubt be situations
where keeping HTML as HTML is preferred.

This chapter covers
 Building on the concepts from (the now-deprecated) HTML

Imports

 Document fragments

 The <template> tag

 Leveraging templates to replace HTML/CSS in a Web
Component

 Loading templates from index.html or via a network request

 Named and unnamed slots
144

145R.I.P. HTML Imports
7.1 R.I.P. HTML Imports
Web Components, in fact, started with an HTML-first strategy. What I mean by this is
that if you started working with Web Components a few years ago, you wouldn’t have
expected to import JS modules to drive your components—you’d instead have
expected to import actual HTML.

 The imported HTML would hold a <script> tag, which itself holds your Web
Component class definition. This class would pull HTML and CSS from the owner
document to use for your custom component’s contents. As this is a bit much to take
in, take a look at figure 7.1, and let’s also break down an example index.html file in
the following listing.

<html>
 <head>
 <title>HTML Import Demo</title>
 <script src="html-imports.min.js"></script>
 <link rel="import" href="samplecomponent.html"></link>

 <style>
 button {
 background-color: #c09853;
 }
 </style>
 </head>

 <body>
 <sample-component></sample-component>
 </body>
</html>

Listing 7.1 Using HTML Imports from a sample project

Web page/application

<link rel="import" href="myfile.html">
<script src="mycomponent.js">

<template>
 <h1>header</h1>
 <button>click me</button>
</template>

myfile.html

<my-component>

Visual content

Import
HTML file

Script logic
loads template
and populates

component

Figure 7.1 HTML Imports allow Web Components to be loaded via an HTML file.

HTML Import, which loads
a sample Web Component

Sample Web Component
is declared here

146 CHAPTER 7 Templating your content with HTML
You’ll notice that the <sample-component> tag is used as we’ve normally used Web
Components. It’s just another custom element we’ve defined. The difference, of
course, is how we go about defining this Web Component.

 In the <head> tag, we are referencing two things. The first is the HTML Import
polyfill:

<script src="html-imports.min.js"></script>

The second is the actual HTML file we’re attempting to import:

<link rel="import" href="samplecomponent.html">

Of course, the reason for the polyfill is that, although Chrome was the only browser to
ever support HTML Imports, the feature is now deprecated in the latest versions.

7.1.1 Polyfilling HTML Imports

Web Components in general were a Google-led invention. The working draft spec was
implemented in Chrome to generate interest, paving the road in hopes that all brows-
ers would follow. Custom Elements ended up being a fairly uncontentious specifica-
tion. Other browser vendors worked with Google to add their two cents, and the spec
morphed from v0 to v1 with collaboration from those other vendors. The Shadow
DOM, while much more complicated and therefore a bit slower to be adopted, was on
a similar track, and was ultimately accepted like Custom Elements were.

 HTML Imports, on the other hand, don’t appear to have any traction. Firefox, spe-
cifically, didn’t want to adopt something so similar to JS modules when they were
already so new at the time. It’s a good guess that someday modules could import more
than just JS. Perhaps someday, we could use modules to import other file types, like
HTML, which Chrome is already looking into.

 Despite the lack of support, the HTML Import-based Web Component has some
decent ideas. With the polyfill, it’s certainly a feasible workflow, even if most Web
Component developers will likely not use the whole thing.

 To add a bit more confusion, the official polyfill from Google (https://github
.com/webcomponents/html-imports) has graduated from v0—now no longer sup-
ported natively in any browsers—to a very similar v1 implementation. This polyfill
allows easy, drop-in support in any browser. The v1 implementation is what we’ll be
covering here.

7.1.2 What’s inside the import

Now that we know what we’re dealing with, let’s peek inside the imported HTML file.
Of course, it really could be any HTML, but for the purposes of creating a Web Com-
ponent, we’re doing some very specific things.

<script src="samplecomponent.js"></script>

<template>

Listing 7.2 Contents of an HTML Imports-based Web Component

Web Component
class import

HTML content provided

by <template> tag

https://github.com/webcomponents/html-imports
https://github.com/webcomponents/html-imports
https://github.com/webcomponents/html-imports

147R.I.P. HTML Imports
 <style>
 span {
 padding: 20px;
 background-color: yellow;
 }
 </style>

 Hi from an HTML Import component
</template>

Notice the <template> tag in the previous listing. This tag has implications well
beyond the dying HTML Imports and can be directly applicable to modern Web Com-
ponent development, so I’m going to save the detailed explanation of this until the
next section of this chapter. For now, just note that this <template> tag holds the con-
tent that we’d like to populate our component with.

 Outside of the <template> tag, on the first line of listing 7.2, we have a script refer-
ence to our Web Component definition class:

<script src="samplecomponent.js"></script>

This Web Component definition looks extremely similar to other component defini-
tions we’ve covered earlier in this book, with some minor exceptions.

class SampleComponent extends HTMLElement {

 connectedCallback() {

 HTMLImports.whenReady(() => {

 const template =

 ownerDoc.querySelector('template');

 const clone =

 template.content.cloneNode(true);

 this.appendChild(clone);

 });

 }

}

const ownerDoc =

 HTMLImports.importForElement(document.currentScript);

if (!customElements.get('sample-component')) {

 customElements.define('sample-component', SampleComponent);

}

Like those other component definitions, with listing 7.3, we are defining a class that
extends HTMLElement. Because we aren’t importing it as a <script type="module">,
it does not start with export default SampleComponent.

 We’re also still using the same Custom Element API to define the tag name as we
have in every component we’ve created before. Right above that line, though, is some-
thing a bit odd. We’re getting this script’s “owner document.” Remember, we’re not
working with our index.html page as usual. We’re now talking about importing
another HTML document entirely into our index.html page.

Listing 7.3 Populating Web Component markup from an HTML Import template

Non-module (no export and not
importable)-based Web Component class

Creates a reference
to the template

Clones the
content

Adds the content to
our component

Gets a reference to the
owning document

148 CHAPTER 7 Templating your content with HTML
 With another HTML page in play (the imported one), it would be nice for a script
on that imported page to know which of the two pages it’s actually running in. The
use case here is that we can query-select the template from the imported HTML as we
do in the connectedCallback method in listing 7.3. To do this, of course, the script
needs to know what page it’s running on—the owner document.

 The general HTML Import flow consists of

1 Importing the HTML page
2 Having the imported HTML/JS find its owner document
3 Defining the Web Component in that imported page
4 Getting and cloning a template reference on the imported page
5 Adding the cloned template to the Web Component

Figure 7.2 represents this generalized HTML Import flow, and it’s the same process we
use in listing 7.3.

Once our imported HTML is fully ready, as determined by our HTMLImports
.whenReady callback, we can query-select the template from this owner document,
copy it, and then append it as a child of our component. As a result, we see figure 7.3
when previewing in our browser.

Owner document

<my-component>

. . .content . . .

</my-component>

Web Component blueprint

Template

New component instance

Visual content

Content clone

cloneNode

appendChild

ownerDoc
querySelect
('template')

Create with ref to owner document

Figure 7.2 A typical HTML Import flow. The owner document contains our Web
Component definition and a template of the desired HTML/CSS. The component is
responsible for cloning this template and inserting the clone as its content.

149The <template> tag
So, that was fairly easy, right? If it weren’t for the lack of browser support for HTML
Imports, this would be a pretty nice workflow! For those who want to stay away from JS
as a way to write HTML and CSS, this could have had potential.

 Again, you’ll notice that I completely breezed through some of the explanation of
working with the <template> tag. That’s because, even though HTML Imports don’t
have any traction, the <template> tag is available in all modern browsers, and some
would consider it an important piece of the modern Web Component workflow. As
such, it deserves some proper explanation away from HTML Imports.

7.2 The <template> tag
The <template> tag itself is extremely straightforward. That said, usage of it does
require a little bit of explanation.

 Let’s look at some normal, everyday HTML:

<p>
 This is content that's not in a template tag.
</p>

Dropping this paragraph and its contents on an HTML page will simply render the
contents. On the other hand, we could use a <template> tag:

<template>
 This is content that IS in a template tag.
</template>

Now, this content doesn’t appear anywhere on the page! What happened? If you
inspect the element in Chrome, as shown in figure 7.4, the element exists. Inside the
element, we can see a “document fragment.” You can then expand the fragment to
see the actual text. Firefox shows an empty <template> tag, but if you right-click to
view the DOM properties, you can see a content property, which holds a document
fragment containing the text.

 OK, so that doesn’t really answer any questions, it just changes the question to
what a document fragment is!

Figure 7.3 Output from our simple
HTML Import-driven component

Figure 7.4 Inspecting the <template> tag in Chrome

150 CHAPTER 7 Templating your content with HTML
7.2.1 Document fragments

To find out what a document fragment is, let’s just create one through JS, as in the fol-
lowing listing.

<html>
<head>
 <title>Document Fragment Demo</title>
</head>
<body>
<script>
 const fragment =
 document.createDocumentFragment();
 for (let c = 0; c < 5; c++) {
 const li = document.createElement('p');
 li.innerText = 'paragraph ' + c;
 fragment.appendChild(li);
 }
 document.body.appendChild(fragment);
</script>
</body>
</html>

Here, we are first creating a document fragment and then using a for loop to add five
paragraphs containing some text. After appending to the body, our DOM tree looks
like this:

<p>paragraph 0</p>
<p>paragraph 1</p>
<p>paragraph 2</p>
<p>paragraph 3</p>
<p>paragraph 4</p>

Pretty simple, as figure 7.5 shows, but why bother with a document fragment when we
could just use createElement?

Listing 7.4 Using a document fragment

Creates the
document fragment

Adds children to the
fragment (paragraphs)

Adds the fragment to
the page body

Document fragment Page DOMElements

Figure 7.5 Adding elements to the DOM via a document fragment

151The <template> tag
Well, for one, if we wanted to do the same operation, appending elements to the body
all in one appendChild call with createElement, we’d need to create a parent element
to hold our paragraphs, like in figure 7.6. Our DOM would look like this:

<div>
<p>paragraph 0</p>
<p>paragraph 1</p>
<p>paragraph 2</p>
<p>paragraph 3</p>
<p>paragraph 4</p>
</div>

If that’s what we want, great; but if it’s not, the other alternative would be to append
each <p> one by one onto the body, like in figure 7.7. This is fine, but each time you
append to the body, it causes the page’s entire DOM to recalculate. The less you do
this, the better your performance will be.

Figure 7.6 Adding elements to a parent element before adding to the
page DOM

Page DOMElements

Figure 7.7 Adding elements one by one to the page DOM, with the unfortunate effect of
re-rendering the DOM each time

152 CHAPTER 7 Templating your content with HTML
One other nuance of document fragments is that after you’ve appended those ele-
ments to the DOM from the fragment, they disappear from the fragment itself. In the
previous example, if we console-logged our fragment variable prior to document
.body.appendChild(fragment);, we’d see #documentFragment, which can expand
out and reveal its children. After appending, this logged #documentFragment would
be empty. Keep this in mind, because it’ll be important later as we get started working
with templates.

 The document fragment doesn’t seem to be a well-known feature; it certainly
wouldn’t be shocking if you’d never used it before. It seems to fit a very narrow use
case, but the <template> tag has taken document fragments a bit more mainstream!

7.2.2 Using template content

With all we’ve covered so far, you might be able to guess that the <template> is a kind of
holding area for content that isn’t actually rendered on the page. The idea is that your
HTML page holds various <template> tags, each storing some snippet of HTML/CSS
that you’d like to use later on by copying it and adding it to your main DOM.

 Let’s populate an HTML file with a few extremely simple templates, as shown in
the following listing.

<html>
<body>
 <template id="button">
 <button>Click Me</button>
 <p>
 This is a template with a button
 </p>
 </template>

 <template id="textfield">
 <label>Enter</label>
 <input type="text">
 <p>
 This is a template with a text input
 </p>
 </template>

 <template id="list">

 Item 1
 Item 2
 Item 3
 Item 4

 </template>

<script>
 const template =
 document.getElementById('button');
 const clone =

Listing 7.5 Adding a few templates to a page

First example
template of three

Gets a reference to the
“button” template

Clones the template

153The <template> tag
 template.content.cloneNode(true);
 document.body.appendChild(clone);
</script>

</body>
</html>

Of course, if we run this HTML page in our
browser without that script block, nothing dis-
plays. But our templates are waiting and ready to
use. With that script block, however, we can grab
one of the templates, and content will appear on
our page, as seen in figure 7.8.

 Fetching the <template> we’d like to use is easy!
It’s the same as any other element. We can use querySelector, querySelectorAll, or
getElementById. For this example, we’ll do document.getElementById('button');.
Go ahead and try selecting one of the other two templates and adding it to your page as
well, if you’re following along with code.

 Once the <template> is stored in our template variable, we can get the document
fragment through the content property. To use the template, we should actually
clone it first, so the template is not empty after appending: template.content
.cloneNode(true). After that, we can add it to the page with document.body.append-
Child(clone). Passing true to cloneNode simply means that we want to deep clone, or
clone the element as well as all its children.

 Let’s drill into that best practice of cloning first to explain how the template can be
cleared out. For this limited example specifically, we don’t have to clone anything. We
can simply add the content to our page with document.body.appendChild(template
.content). After appending a document fragment to another element, however, your
fragment will then be empty.

 This means that we can add this <template> once, but only once! Subsequent tries
would just result in us adding empty contents. Figure 7.9 shows our elements in
motion, moving from document fragment/template to the page’s DOM.

Adds the cloned
content to our page

Figure 7.9 Appending to the page’s DOM from a document fragment
within a template means that these elements are actually moving out of
the template/fragment.

Page DOMDocument fragment

Figure 7.8 One of our sample
templates added to the browser

154 CHAPTER 7 Templating your content with HTML
If we clone our <template> instead of adding it directly, we can use the same one over
and over again, as in the following listing.

const template = document.getElementById('button');
const clone = template.content.cloneNode(true);
document.body.appendChild(clone);
const clone2 = template.content.cloneNode(true);
document.body.appendChild(clone2);

7.3 Choose your own template adventure
In the last chapter, we did some customization on a Web Component-based business
card. If you recall, you could swap in different backgrounds and logos. What if we
could choose between different card layouts entirely? Let’s create three separate tem-
plates and layouts, as in figure 7.10.

To do this, let’s simplify and strip out the logo and background customization that we
previously had so we can focus on the general HTML and CSS of the card.

export default class BizCard extends HTMLElement {
 static get observedAttributes() { return ['layout']; }

 attributeChangedCallback(
 name, oldvalue, newvalue) {
 this.innerHTML = '';
 const template = document.getElementById(newvalue);
 const clone = template.content.cloneNode(true);
 this.appendChild(clone);
 }
}

if (!customElements.get('biz-card')) {
 customElements.define('biz-card', BizCard);
}

Listing 7.6 Cloning multiple times to add to our page

Listing 7.7 Simplified business card example using templates to drive HTML and CSS

Clones a first time

Adds the clone to our
page the first time

Clones a second time

Adds to our page a
second time

Figure 7.10 Three different business card layouts (starting with a blank one)

Simplified
attributeChangedCallback

focusing on content

155Choose your own template adventure
Keeping it simple and short, this Web Component class definition lives as bizcard.js in
the same file structure we had previously in our business card customizer demo. To
recap, here it is in figure 7.11.

Also, in the spirit of simplicity, we’ll simply wipe out all of the innerHTML for the com-
ponent every time we want to load a new card layout. With this in mind, note that the
card layout <template> tags live in the main index.html file, outside of this compo-
nent. These templates are selected by their ID, cloned, and then appended to our
Web Component. We’re now appending to an empty node, given that we just cleared
out the innerHTML of the component with this.innerHTML = ''. This simplicity of
just replacing all of the innerHTML is exactly why our new menu in the next section to
select the card’s layout will not live in the component. If it did, this menu would be
wiped out as well!

 All this logic is contained on the component’s attributeChangedCallback. This is
done to hinge the layout name we’d like to use based on the component’s layout
attribute. This, of course, means that we need to declare the layout attribute in the
observedAttributes getter:

static get observedAttributes() { return ['layout']; }

We will indeed seed the component with a blank layout called “none,” as we are
declaring on the component tag itself in the index.html. But this blank layout, shown
in figure 7.12, isn’t much to look at yet:

<biz-card layout="none"></biz-card>

Again, with the way attributes work in the Web Components life cycle, this initial value
of “none” will trigger the attributeChangedCallback and populate the component
with this particular layout. Aside from this, however, to actually change the layouts, we
can implement a drop-down menu on the page, with a change event that updates the
layout attribute (see listing 7.8).

Figure 7.11 Template-driven business card creator

156 CHAPTER 7 Templating your content with HTML

<body>
 <p>
 <select onchange="updateLayout(event)">
 <option value="none">none</option>
 <option value="default-card">default</option>
 <option value="variation">variation</option>
 </select>
 </p>
 <biz-card layout="none"></biz-card>

 <script>
 function updateLayout(event) {
 document.querySelector('biz-card').setAttribute('layout',
 ➥event.target.value);
 }
 </script>
</body>

Of course, aside from the <head> tag, which contains our script module reference,
there are the actual templates to use. Included in the next listing is the top part of the
index.html file and placeholders for three different templates.

<head>
 <title>Business Card</title>
 <script
 type="module"
 src="components/bizcard/bizcard.js">
 </script>
</head>

<template id="default-card"> . . . </template>

Listing 7.8 Setting the layout attribute from a menu outside of our component

Listing 7.9 HTML page including a business card template

Figure 7.12 Starting with an empty/blank card layout

Menu to choose the
business card layout

Change event to
update the Web
Component attribute

Web Component
module import

Our three templates
(placeholders)

157Dynamically loading templates
<template id="variation"> . . . </template>
<template id="none"> . . . </template>

To condense code on the page here, most notably the long CSS in the templates, I’ve
included only the <template> tags with no inner content. Please refer to my Github repo
if you’d like to see it all (https://github.com/bengfarrell/webcomponentsinaction/
blob/master/chapter7/7.3-businesscardtemplates/index.html). As shown in figure
7.13, our component reaches out to the document, fetches each template by this ID,
and, as we’ve seen, populates the component.

Now, while it’s perfectly fine to put all of this in our index.html, it feels a bit messy and
long. I’m on the fence about whether it’s really unorganized—a long list of
<template> tags is easy to pick out because it doesn’t interfere with the actual ren-
dered DOM structure of the page. On the other hand, when there are multiple cus-
tom components, it’s not clear which <template> belongs to which component. In
this regard, it seems difficult to manage depending on your particular use case. Addi-
tionally, with many components used in a project, there could be way too many tem-
plates to keep your HTML page manageable.

 Given my reservations, I’d like a way to keep this a bit cleaner. As you might recall,
HTML Imports kept things super clean! Without them, can we come up with another
way to dynamically load templates?

7.4 Dynamically loading templates
For this next demo, let’s think about two things. First, I’d like to keep our various
<template> tags inside our component as child nodes. By doing this, it will be clear
that the templates actually belong to the Web Component in question. Second, I’d like
to load our templates from somewhere else instead of cluttering up the component.

 You might imagine that we could do this with template literals and modules, as we
have in previous chapters, and we certainly could! Instead, I’m going to avoid this

<template>...</template>

index.html

<biz-card>

<template>...</template>

<template>...</template>

Get template
and clone

Add template
contents

</bizcard>

Figure 7.13 Component reaching out to the
HTML page and getting a template by ID

https://github.com/bengfarrell/webcomponentsinaction/blob/master/chapter7/7.3-businesscardtemplates/index.html
https://github.com/bengfarrell/webcomponentsinaction/blob/master/chapter7/7.3-businesscardtemplates/index.html
https://github.com/bengfarrell/webcomponentsinaction/blob/master/chapter7/7.3-businesscardtemplates/index.html

158 CHAPTER 7 Templating your content with HTML
HTML-in-JS approach, just because we’ve already done it. Additionally, it might be
interesting to load our templates as another remote resource that we can fetch from a
server.

 The interesting thing about keeping our <template> tags inside our component is
that we have to maintain some fairly permanent markup inside the component, while
also clearing out large chunks of HTML/CSS whenever the layout is updated.

 This means that setting this.innerHTML all at once isn’t going to cut it. If we
replace all of our HTML, we’re essentially throwing away our loaded templates. Our
our component’s connectedCallback in the next listing needs to reflect this.

connectedCallback() {
 this.cardElement =
 document.createElement('div');
 this.templates =
 document.createElement('div');
 this.appendChild(this.cardElement);
 this.appendChild(this.templates);
 const request = new XMLHttpRequest();
 request.open('GET', 'templates.html', true);
 request.addEventListener('load', (event) => {
 this.templates.innerHTML =
 event.target.response;
 this.populateCard();
 });
 request.send();
}

Right away, we’re creating and adding two <div> elements, this.cardElement and
this.templates. These will act as containers for the business card and our loaded
templates, respectively.

 Next, we’re making a network request to load templates.html, which contains all of
the <template> tags that lived in our index.html before. Once loaded, we can simply
set the innerHTML of our this.templates <div>, as in figure 7.14. Both this callback

Listing 7.10 Loading templates with a network request

Creates card layout container

Creates template container

Network request to
fetch templates

Populates template container
with loaded templates

index.html

<biz-card>

</bizcard>

Current layout

Template storage
Server

Figure 7.14 Reaching out to a server to
fetch templates for our Web Component

159Dynamically loading templates
and our attributeChangedCallback call the function populateCard(); to load the
current layout as specified via our layout attribute. But in this case it’s good to check
if this.templates exists yet, given that the attributeChangedCallback may fire
before the connectedCallback, as shown in the following listing.

static get observedAttributes() { return ['layout']; }

attributeChangedCallback(name, oldvalue, newvalue) {
 if (this.templates) {
 this.populateCard();
 }
}

Either way it’s called—a network request to load our template.html or the result of an
attribute change—the populateCard(); function in the next listing has a fairly easy
method to add to the same class in order to swap in our new business card layout.

populateCard() {
 const template = this.templates.querySelector(
 ➥'template.' + this.getAttribute('layout'));
 if (template) {
 const clone =
 template.content.cloneNode(true);
 this.cardElement.innerHTML = '';
 this.cardElement.appendChild(clone);
 }
}

The first thing we do is grab the template from within the component. Recall that I
moved the templates from the index.html to a separate templates.html file. I did
one slightly different thing. Instead of using IDs for the template names, I’m now
using classes. What was <template id="default-card"> is now <template class=
"default-card">.

 Typically, when you look online for how to use the <template> tag, you’ll see folks
using the id attribute to identify and fetch their <template> from the DOM. In this
exercise, as we want to keep our templates as a child of the component, it doesn’t
make much sense to use id. Remember, each individual ID can be used only once on
the entire HTML page. When templates live in the page outside of the DOM struc-
ture, IDs make sense because we’re looking at a pool of templates on the entire page,
each called up by their unique ID.

 Now, instead of querying the entire page for a unique ID, we are querying not just our
component’s children, but specifically the children of the this.templates container. If
found (and it might not be found due to the template.html file not being loaded yet), it

Listing 7.11 Calling a method to fill in our card layout

Listing 7.12 Contents of the populateCard function

Calls the method to fill in our card container
in components/bizcards/bizcard.js

populateCard method in
components/bizcards/biz
card.js

Gets reference to templateClones
template

Clears current template

Adds clone and fills in HTML/CSS
for current layout

160 CHAPTER 7 Templating your content with HTML
will clear the contents of our card container with this.cardElement.innerHTML = '',
clone the template, and then append this new child to this.cardElement.

 In terms of the templates, because the contents in them are the same as before,
we’ve only traded IDs for classes:

<template class="default-card">
. . .
</template>

Of course, with our templates separated out, our index.html gets a lot simpler.

<html>
 <head>
 <title>Business Card</title>
 <script type="module" src=
 ➥"components/bizcard/bizcard-template-loading.js"></script>
 </head>

 <body>
 <p>
 <select onchange="updateLayout(event)">
 <option value="none">none</option>
 <option value="default-card">default</option>
 <option value="variation">variation</option>
 </select>
 </p>
 <biz-card layout="none"></biz-card>

 <script>
 function updateLayout(event) {
 document.querySelector('biz-card').setAttribute
 ➥('layout', event.target.value);
 }
 </script>
 </body>
</html>

With all of that, we have the exact same demo as before, just a lot cleaner. Also, we
could take this further and specify a different HTML file to load. We could even use
an attribute on the component to point to specific HTML files full of templates for a
specific use case:

request.open('GET', this.getAttribute('templatefile'), true);

Done? Not quite. You’ve probably noticed one feature regression. Our new business
cards in this chapter (as we’ve been using templates) don’t inject custom information
like first name, last name, job title, and so on.

 One solution could be to more diligently ensure that each element that we’d like
to replace content on is marked with the appropriate class. We could then query our
layout for the element marked with the class and replace the innerHTML.

Listing 7.13 With templates removed, our index.html is once again manageable.

A much shorter body with templates
being loaded by the component

161Entering the Shadow DOM with slots
 For example, if we ensured that every element that contained a placeholder for
firstname had the class firstname, we could do the following:

this.cardElement.querySelector('firstname').innerHTML = someObject.firstname;

There is some complication with this method, however. Consider our default tem-
plate, where it lists both email and website in an <h3> header tag:

<div class="bottom-text">
 <h3>phone: #xxx.xxx.xxxx</h3>
 <h3>email@email.com / http://website.com</h3>
</div>

How do you target and replace the contents of this combined field, especially when it
may be split out to separate elements in other templates? Additionally, in this tem-
plate, a slash separates the email and website values. Setting the innerHTML of this
<h3>, you’d need to know that this slash is the design choice for this template and
make sure to populate that as well!

 It’s starting to get complicated. One solution would be to insert tags to
mark each value you’d like to replace and use those for query selection:

<div class="bottom-text">
 <h3 class="phone">phone: #xxx.xxx.xxxx</h3>
 <h3>email@email.com / <span

class="website">http://website.com</h3>
</div>

It’s an OK solution, but we’re adding a bit more complexity to our HTML when we
really shouldn’t have to. Fortunately, there is a newer solution just for this problem.
Let’s talk about the <slot> tag!

7.5 Entering the Shadow DOM with slots
Indeed the <slot> tag is the perfect solution to our custom field dilemma, but before
diving in, there’s something big to know. The <slot> tag only works in conjunction
with the Shadow DOM. It’s a big topic, and I think it’s best to start exploring the
Shadow DOM in depth in the next chapter. In the meantime, we’ll ease in and
explore the <slot> tag! Of course, the result of this will be a business card with our
fields filled in with custom values, replacing our placeholder values, as figure 7.15
shows.

 The <slot> tag is a bit like the <template> tag in that it doesn’t actually get ren-
dered in the DOM layout. Unlike the <template> tag, we aren’t copying from it, but
instead content is automatically placed inside. Slots are essentially targets for replac-
ing content. Let’s take one of our <template> layouts and create some slots to target
content that we can swap in as shown in listing 7.14.

162 CHAPTER 7 Templating your content with HTML

<div class="biz-card">
 <div class="logo"></div>
 <div class="top-text">
 <h1><slot name="firstname">First</slot>
 <slot name="lastname">LastName</slot></h1>
 <h3>
 <slot name="title">Job Title</slot>
 </h3>
 </div>

 <div class="bottom-text">
 <h3>phone:
 <slot name="phone">#xxx.xxx.xxxx</slot>
 </h3>
 <h3><slot name="email">email@email.com</slot> /
 <slot name="website">http://website.com</slot></h3>
 </div>
</div>

Here, I’ve wrapped each individual placeholder value in a <slot> tag. Each slot has a
name attribute, as well, to define how we can reference any given slot. So, how do we
replace content? Like I said, for this to actually work, we need to use the Shadow
DOM in our component. Luckily, there are only a few changes to make in the next
listing to use it.

Listing 7.14 Placing slot tags in our template to allow content replacement

Figure 7.15 Business card using a templated layout and slots to
insert custom values

First slots containing
firstname and lastname

Third slot
containing job title

Fourth slot
containing phone number

Last slots containing
email and website

163Entering the Shadow DOM with slots

connectedCallback() {
 this.root = this.attachShadow({mode: 'open'});
 this.cardElement = document.createElement('div');
 this.templates = document.createElement('div');
 this.root.appendChild(this.cardElement);
 this.root.appendChild(this.templates);

In our connectedCallback, we are attaching a shadow root. Think of this like a separate
and protected DOM tree only available to the internal workings of our component.
We can then save that shadow root as this.root (or whatever variable name you’d
like to use) and append any children to it. Despite this.cardElement and this
.templates being inside the shadow root, they’ve already been added to this new
Shadow DOM, so the usage doesn’t change at all. We can use those element refer-
ences just like always and set their innerHTML or append more children.

 Now, to actually fill in our placeholder slots depicted in figure 7.16, we can put the
relevant named values right inside our <biz-card> component, shown in the follow-
ing listing.

<biz-card layout="none">
 Ben
 Farrell
 555.555.5555
 ben@benfarrell.com
</biz-card>

Taking a look at one of the layout results in figure 7.15, we can see that we forgot to
create a value for “website.” Notice that instead of giving some kind of error, the web-
site slot simply falls back to its default content. Keep in mind as well that the entire

Listing 7.15 Altering the createdCallback to use the Shadow DOM

Listing 7.16 Populating slots with values inside the component tag

Creates the Shadow DOM
in order to use slots

Appends elements to the Shadow
DOM instead of the component

One of four slots we’re
populating with the
firstname value

Figure 7.16 Using named slots as placeholders in the business card Web Component

firstname slot lastname slot

title slot

phone slot

email slot website slot

<biz-card>

</bizcard>

slot=lastname

slot=phone

164 CHAPTER 7 Templating your content with HTML
 tag is being inserted into the <slot>. It could easily be a <button slot=

"firstname">Ben</button>, or even another <slot> tag, where only its contents will
be rendered: <slot slot="firstname">Ben</slot>.

 I’ll end the business card example here with a couple of unresolved issues. The
first is, of course, adding that website slot to fill in that last placeholder. More impor-
tantly, we’ve lost a good bit of functionality from the last chapter to this one. Our
background and logo are no longer customizable. If you feel up to the challenge, per-
haps you may want to try reincorporating those!

7.5.1 Slots without a name

Slots can even be a bit more generic. In our example,
we’re using named slots, but they don’t have to be
named at all—you’d just lose the ability to specify and
use multiple slots in the same component, as in the fol-
lowing listing example, with browser results shown in
figure 7.17.

<script>
 class SlotsDemo extends HTMLElement {
 connectedCallback() {
 this.root = this.attachShadow({mode: 'open'});
 this.root.innerHTML = `<div>
 <button>A Button</button>
 <p>
 Some Text

 <slot>placeholder text</slot>
 </p>
 </div>`;
 }
 }

 if (!customElements.get('slots-demo')) {
 customElements.define('slots-demo', SlotsDemo);
 }

</script>
<body>
 <slots-demo>
 Text to put in the slot
 </slots-demo>
</body>

Of course, named slots work better for our business card use case because we can insert
multiple values in all the right spots. I do like the simplicity of using <slot> without the
name, however. Adding simple text as the content of your tag couldn’t be easier!

 What’s a bit weird is that we’ve created a protected DOM that’s not accessible out-
side of our component, yet we are doing this to make placeholders with values that are

Listing 7.17 Using generic, unnamed slots

Creates an unnamed
slot placeholder

Fills in the unnamed
slot placeholder

Figure 7.17 Browser screen to
complement listing 7.17 using
unnamed slots

165Summary
replaced from the outside. It seems a bit counterintuitive, but it does make sense if
you consider how the shadow root slightly changes the usage of our component.

 I’ve been using the JS API in this book quite a bit for setting our component’s
innerHTML from the inside. Equally valid is setting the innerHTML right in your compo-
nent’s usage on the page:

<my-component>This text is the innerHTML</my-component>

When using the Shadow DOM, however, this innerHTML is no longer rendered
because this type of outside content won’t penetrate our Shadow DOM. Only the
innerHTML inside our shadow root is rendered. This creates the perfect opportunity to
use that content inside your tag in a different way. Of course, this different way is using
slots. These slots are allowed to punch through the Shadow DOM in the very specific
ways outlined here. If the Shadow DOM wasn’t used, it might be a bit ambiguous if the
content was meant to be rendered as the actual content of your component or to fill
in your <slot>.

 As we’ll see in the next few chapters, the Shadow DOM is really powerful. Slots are
a great feature to use in conjunction, but it’s likely not the reason you’ll want to use
the Shadow DOM. In the next few chapters, we’ll take an in-depth look at what the
Shadow DOM is and what it can do for your component development workflow,
because we’ve only scratched the surface so far.

Summary
Whether you plan to use templates or not, it’s great to have one more tool in our tool-
belts. I’ve personally had some great experiences using template literals to hold
HTML/CSS in my JS, as we’ve discussed in previous chapters, but not every situation
is the same. This business card creator is a great example of where templates can
really help, especially when we want to create loads of interchangeable templates and
not force front-enders on our team who might not know JS that well to help us out.

 In this chapter, you learned

 How to work with HTML Imports despite them not being on a standards track
anymore, along with a breakdown of how they work, which can be relevant to
modern Web Component development

 A full explanation of the <template> tag, how you’ll get repeated use from
these tags when cloning their contents first, and how document fragments are
the main driver behind them

 How to use templates with a hands-on example in which we completely swapped
out HTML and CSS to introduce brand new layouts and style in the same com-
ponent, loaded from either the index.html page or remotely via a server

 How to replace specific and multiple placeholder contents in the same compo-
nent with the named <slot> tag, or a single placeholder in the <slot> tag, but
without using names

The Shadow DOM
In the last chapter, we peeked briefly at the Shadow DOM to introduce the concept
of slots. If you recall, slots are a way of taking templated content and adding place-
holder values that can be replaced by your Web Component’s end user. We marked
the areas that can accept new HTML content as slots.

 While the <template> tag is a standalone concept and available in all modern
browsers, the <slot> tag is not. In fact, the <slot> tag is dependent on the Shadow
DOM. We’ve covered every core feature of Web Components so far, except for the
Shadow DOM.

 There’s a reason I’m covering it last, and that’s because I want to show that it’s
not entirely necessary to the Web Component story, as awesome as it is. In the past
several chapters, we’ve covered Custom Elements, templates, and HTML Imports,

This chapter covers
 Component and class encapsulation

 How the Shadow DOM protects your component’s DOM

 The open and closed Shadow DOM

 Shadow DOM terminology: shadow root, shadow boundary,
and shadow host

 Polyfilling with the Shady DOM
166

167Encapsulation
as well as non-Web Component-based techniques to back them up, like ES2015 mod-
ules and template literals. All these concepts are either available now for all modern
browsers or easily polyfilled.

 The Shadow DOM is a little more complicated. In terms of browser adoption,
we’re only just now seeing near-universal coverage in modern browsers, with Microsoft
releasing its Chromium-backed latest version of Edge as a developer preview. This is
after Firefox’s October 2018 release with full Web Component support.

 Even with spotty adoption until recently, a lot of Web Component hype these past
several years has been targeted squarely at the Shadow DOM. I agree that it’s a
groundbreaking browser feature for web development workflows, but Web Compo-
nents are much more than this one feature. Regardless, part of the disappointment in
the community around Web Components has been the slowness of Shadow DOM
adoption, coupled with how problematic it is to polyfill.

 And that’s why I haven’t gotten into the Shadow DOM until now in this book. For
me, it’s an optional feature in my daily work, used only when I’m not concerned about
browser support, and I wanted to reflect that here. This concern has greatly dimin-
ished over the past few months, given that we’re waiting for a single browser (Edge);
meanwhile the Polymer team has been hard at work on LitElement and lit-html,
which promise polyfill integration and support even in IE11.

 You can be a Web Component developer and pick and choose which features you
use, the Shadow DOM included. That said, once it’s shipped with all modern brows-
ers, I plan to use it all the time—and that day is quickly approaching and will likely
have arrived by the time this book is published!

8.1 Encapsulation
In terms of hype for the Shadow DOM, the claims I’ve seen are that it removes the
brittleness of building web apps, and that it finally brings web development up to
speed with other platforms. Does it live up to those claims?

 I’ll let you decide, because like anything, the answer depends on your project and
needs. However, both claims are made with one central theme in mind: encapsulation.

 When people talk about encapsulation, they typically mean two things. The first is
the ability to wrap up an object in a way that it looks simple from the outside; but on
the inside, it might be complex, and it manages its own inner workings and behavior.

 Thus far, everything we’ve learned about Web Components supports them being a
great example of this encapsulation definition. Web Components offer

 A simple way to include themselves on an HTML page (custom elements)
 Multiple ways to manage their own dependencies (ES2015 modules, templates,

and even the now-obsolete HTML Imports feature, which can be easily poly-
filled)

 A user-defined API to control them, with either attributes or class-based meth-
ods, getters, and setters

168 CHAPTER 8 The Shadow DOM
This is all great, but often, when people talk about encapsulation, they attach a larger
definition to it. Encapsulation is what we just discussed; but it can also mean that your
encapsulated object is protected from end users interacting with it, even unintention-
ally, in ways you didn’t intend, as figure 8.1 shows.

8.1.1 Protecting your component’s API

In the appendix, I mention a couple ways to make your variables private in your Web
Component class. What’s important is that you, as a developer, have thought about
how your class is used and made some effort to restrict outside usage of your proper-
ties and methods to only how you intend them to be used.

 One important distinction is between actually restricting properties and methods
and restricting them by convention only. A good example of restricting by convention
is using the underscore on properties and variables in your class.

 For example, someone on your team may hand you a component that has a
method to add a new list item element to its UI:

addItemToUI(item) {
 this.appendChild(`${item.name}`);
}

When you use this component for the first time, you might think, “Hey, I’ll just use
this function to add a new item to my list!” What you don’t know is that the compo-
nent’s class has an internal array of the item data. As a consumer of this component,
you’re supposed to use the add() method, which adds an item to the data model and
then calls the addItemToUI function to then add the element:

add(item) {
 this.items.push(item);
 this.addItemToUI(item);
}

When the component is resized or collapsed/hidden and shown again, these list ele-
ments are destroyed and then redrawn using the internal data model. As someone

Object

Planned object
entry points
allow access.

Rejecting object
access when
not using
designed APIs

Figure 8.1 Encapsulation means hiding
the inner workings of an object, but it
often includes choosing how and where
to provide access from the outside in.

169Encapsulation
using this component for the first time, you didn’t know that would happen! When
you used addItemToUI instead of add, the component was redrawn, and that item you
added is now missing.

 In this example, the addItemToUI method shouldn’t be used by the component
consumer; it should be used only internally, by the component. If the original compo-
nent developer took the time and effort to make the method private, it would have
been impossible to call at all.

 Alternately, the component developer could make the method private by conven-
tion. The most popular way of doing so is using the underscore, in which case the
method would be named _addItemToUI. You could still call the method as a user of
the component, but with the underscore, you’d know you really shouldn’t.

 There is more to Web Component encapsulation. This notion of protecting your
component for real, or just doing so by convention, comes into play beyond your com-
ponent’s class definition.

8.1.2 Protecting your component’s DOM

Protecting your custom Web Component class’s methods and properties is likely the
least of your concerns! What else in your component should be protected? Consider
the component in the following listing.

<head>
 <script>
 class SampleComponent extends HTMLElement {
 connectedCallback() {
 this.innerHTML =
 ➥`<div class="inside-component">My Component</div>`
 }
 }

 if (!customElements.get('sample-component')) {
 customElements.define('sample-component', SampleComponent);
 }

 </script>
</head>
<body>
 <sample-component></sample-component>
</body>

As you might notice, there’s not much to this component. It simply renders a <div>
with the text “My Component” inside, shown in figure 8.2.

Listing 8.1 A bare-bones, sample component

A dead simple Web
Component placed
on a web page

Figure 8.2 A simple Web Component
rendering a short string in the browser

170 CHAPTER 8 The Shadow DOM
In terms of encapsulation, how protected is that <div> tag from the outside? It turns
out, not at all. We can add a <script> tag right after our component:

<script>
 document.querySelector('.inside-component').innerHTML +=
 ' has been hijacked';
</script>

In figure 8.3, our browser output shows that our component’s innerHTML has indeed
been set from the outside. Breaking down what happened, an outsider successfully
query-selected the <div> inside our component and set its innerHTML.

Before we talk about what can be done to solve this problem, we should break it down
into two parts. In part one, I’m pretending to have malicious intent when using this
component in a way it shouldn’t be used by deliberately breaking its functionality and
structure from the outside. In this example, I specifically know there is a <div> with a
class named inside-component, I know it has some text that it’s displaying, and I’m
purposely changing it.

 Part two is of a less malicious nature. What if we did something similar acciden-
tally? When a simple custom tag like <sample-component> is on the page, it’s easy to
forget it can contain any number of elements, like an additional button, all with class
names you’ve used over and over again. For example, what if your page had the fol-
lowing HTML, and you wanted to add a click listener to the button when your compo-
nent already has a button inside?

<sample-component></sample-component>
<button>Click Me</button>

Given that in this short snippet, the Click Me button is the button in the page source,
you might be tempted to do this:

document.querySelector('button').addEventListener('click', . . .);

In the hypothetical situation depicted in figure 8.4, our <sample-component> already
contains a button, and worse, it’s styled to not even look like a button! As a result,
you’ve query-selected the wrong button and are completely confused why your button
click doesn’t work when you try it in your browser.

Figure 8.3 Setting the innerHTML of our
component’s DOM from the outside

171Enter the Shadow DOM
8.2 Enter the Shadow DOM
The Shadow DOM attempts to solve both problems but comes up a little short for
malicious users. To explain, let’s try it out!

 What we can try first is not allowing the <div> in our previous example to be
hijacked. Using the Shadow DOM, we can easily block normal access to this <div>,
and for this, we just need to change two lines in our connectedCallback, as follows.

connectedCallback() {
 this.attachShadow({mode: 'open'});
 this.shadowRoot.innerHTML =
 `<div class="inside-component">My Component</div>`
}

There’s not much code here, but it does bear some explanation. The first thing we’re
doing is creating a shadow root and attaching that shadow root to our component. In
this example, we’re using a mode of open to create it. Please note that this is a
required parameter. Because browser vendors couldn’t agree on what the default
should be, closed or open, they’ve passed this issue on to you rather than take a posi-
tion themselves. It’s easier to explain the difference between these modes after explor-
ing what’s going on in the code first.

 Aside from being closed or open, what is the shadow root? Remember back to
chapter 7 and our discussion of the <template> tag. Recall that the basis of the tem-
plate was the document fragment. A document fragment is an entirely separate DOM
tree that is not rendered as part of your main page. The shadow root is, in fact, a doc-
ument fragment. This means that the shadow root is an entirely separate DOM! It’s
not actually the same DOM as the rest of your page.

Listing 8.2 Using the Shadow DOM in a simple component

Button

Web Component

Button

querySelector('button')

Expected

Actual

Figure 8.4 Query-selecting a button on the
page, but unintentionally picking up a button
in our Web Component

Creates an open Shadow DOM and
attaches it to our component

Sets our
component’s HTML

172 CHAPTER 8 The Shadow DOM
 We can view the shadow root in action in this example by opening Chrome’s dev
tools, as figure 8.5 shows. What you might not expect is seeing that elements you use
every day have their own shadow root.

Let’s take a peek at a video tag. We don’t have to properly set it up with a video source
to see its shadow root and the rest of its Shadow DOM. Simply drop a
<video></video> tag in your HTML. Inspecting it in Chrome using the default set-
tings won’t reveal much. To reveal its Shadow DOM, you’ll need to allow it to show the
“user agent Shadow DOM,” as in figure 8.6. Essentially, Chrome will reveal any
Shadow DOM you create, but will hide it by default in the normal browser elements
that use it. The <select> tag is another one that has its own Shadow DOM you can
view in this manner.

8.2.1 The shadow root

As we get into proper terminology like “shadow root,” familiarize yourself with the
related terms shown in figure 8.7:

 Shadow root—The document fragment containing the separate DOM.
 Shadow tree—The DOM contained by the shadow root.

Figure 8.5 Viewing the Shadow DOM and associated shadow
root in Chrome’s dev tools

Chrome’s settings to view the
Shadow DOM of standard elements

Viewing the shadow root with the element inspector in
Chrome’s dev tools

Figure 8.6 Viewing the user agent Shadow DOM/root for everyday elements

173Enter the Shadow DOM
 Shadow host—The node of your page DOM that parents the shadow tree/root.
For our purposes, this is your Web Component, though it could easily be used
outside of a custom element.

 Shadow boundary—Imagine this as a line between your shadow host and shadow
tree. If we reach into the shadow tree from our component and set text on a
button, for example, we could say we’re crossing the “shadow boundary.”

Terminology aside, the important takeaway is that we’re dealing with a new DOM
inside a document fragment. Unlike a document fragment used by the <template>
tag, however, this fragment is actually rendered in the browser, yet still maintains its
independence.

 Once created, we can use the new and automatically created property of our com-
ponent, shadowRoot, to access any of our element’s properties, like innerHTML. This is
what we did in our example:

this.shadowRoot.innerHTML =
 `<div class="inside-component">My Component</div>`

With just this change, we’ve now protected our component from accidental intru-
sions. When we now run the same query selector and try to set the innerHTML, it fails:

document.querySelector('.inside-component').innerHTML +=
 ' has been hijacked';

Our error reads

Uncaught TypeError: Cannot read property 'innerHTML' of null

Page
DOM

Web Component

Normal elements

(shadow host)

Shadow DOM

Shadow root

Shadow
boundary

Child Child Child

Child (with own inner DOM)DOM tree of an HTML page

Figure 8.7 The Shadow DOM, host, root, and boundary (the dotted line)

174 CHAPTER 8 The Shadow DOM
What happens now? Query-selecting our inside-component class comes up with noth-
ing, and setting the innerHTML property is attempted on a null object, as figure 8.8
shows. That’s because we’ve isolated the HTML inside our component with the
Shadow DOM.

8.2.2 Closed mode

Here’s the thing, though. If we wanted to be malicious, we still could be. The same
shadowRoot property is available from the outside. We could adjust our query selector
to be more complex and still set the innerHTML of that <div>:

document.querySelector('sample-component').shadowRoot.querySelector

➥ ('.inside-component').innerHTML += ' has been hijacked';

Here, we’re showing JS that easily sets our component’s innerHTML. Can we stop those
malicious users from coming in and manipulating our component in ways we don’t
want? The answer appears to be no, but that’s where closed mode comes in. Curtailing
malicious users is the intention behind having two modes. To explain, let’s set mode to
closed in the following listing.

connectedCallback () {
 this.attachShadow({mode: 'closed'});
 this.shadowRoot.innerHTML =
 `<div class="inside-component">My Component</div>`
}

This won’t work as intended, however, without changing something else! With the
shadow root closed, the shadowRoot property doesn’t exist (it’s null), so we can’t set
the innerHTML through it. How, then, can we interact with our own component when
working from the inside?

 The call to attachShadow does return a reference to the shadow root, whether
you’re in open or closed mode. If you only need a reference in the same function
where you created the shadow root, you can simply declare a variable, as follows.

Listing 8.3 Setting the shadow mode to closed

Figure 8.8 Attempting to query-select inside the Shadow DOM

.inside-component

querySelector('.inside-component')
(Rejected)

Sets the shadow
mode to closed

175Enter the Shadow DOM

connectedCallback () {
 const root = this.attachShadow(
 {mode: 'closed'});
 root.innerHTML = `<div class="inside-component">My Component</div>`
}

If that’s the only interaction point with your component’s Shadow DOM, problem
solved! You’ve taken steps to close off your component from malicious users . . .
except for one more thing. Let’s pretend we are malicious and will stop at nothing to
sabotage this component. We can change the function definition of attachShadow
after the component class is declared:

SampleComponent.prototype.attachShadow = function(mode) { return this; };

This is being very tricky indeed, but what we’ve done is change the attachShadow
function so that it doesn’t actually create a shadow root and instead does nothing but
pass back the Web Component’s natural scope. The original component creator, who
intended to create a closed shadow DOM, is not creating a shadow DOM at all. The
shadow root reference is what they were supposed to get back, but it ended up really
just being the component’s scope. This trickery still works the same because this, and
the shadow root, have approximately the same API.

 And now we’re back to our original, easy way of taking over the component:

document.querySelector('.inside-component').innerHTML +=
 ' has been hijacked';

Should you expect people who use your component to try to break in in this way?
Probably not. But they could. It’s not real security because it’s so easily bypassed.

 Recall at the start of this chapter when we talked about protecting your component
for real or doing so by convention. There, we discussed using the underscore to pro-
tect private variables and methods in your class instead of using more secure ways.
Here, it’s the same thing, but instead of variable and methods, we’re talking about
your component’s DOM.

 That’s why Google’s own documentation on Web Components says you shouldn’t use
closed mode (https://developers.google.com/web/fundamentals/web-components/
shadowdom). You’re closing off the Shadow DOM to make it secure, but you’re trust-
ing that the folks who use your component won’t bypass it in some very simple ways. In
the end, you’re protecting your component by convention regardless of what you do;
it’s just that closed mode makes it more difficult to develop with.

 Google claims that closed mode will make your component suffer for two reasons.
The first is that by allowing component users into your component’s Shadow DOM
through the shadowRoot property, you’re at least making an escape hatch. Whether
you’re making private class properties with underscores or keeping the Shadow DOM
open, it’s protecting your class or component by convention.

Listing 8.4 Using a variable to reference the shadow root

Sets a variable to the newly
created shadow root

https://developers.google.com/web/fundamentals/web-components/shadowdom
https://developers.google.com/web/fundamentals/web-components/shadowdom
https://developers.google.com/web/fundamentals/web-components/shadowdom

176 CHAPTER 8 The Shadow DOM
 Despite your best intentions for your component, you likely won’t accommodate
all use cases all the time. Having a way into your component allows some flexibility,
but it’s also important to recognize that this way in goes against your better judgement
as a component developer. It’s a signal to the developer who uses your component
that they should do so at their own risk. That’s ill-advised, of course, but when dead-
lines are tight, and a web app needs to be shipped tomorrow, it’s nice to provide a
path forward with an open Shadow DOM using the shadowRoot property to access
things you don’t intend to be accessed at present. You’ll also see that an escape hatch
with the open mode is rather nice for reaching in to perform automated testing, as
we’ll discuss in chapter 13.

 Google’s second gripe with closed mode is the claim that it makes your compo-
nent’s Shadow DOM inaccessible from inside your own component. But it’s more
complicated than that. The shadowRoot property is no longer available in closed
mode, but we can easily make a reference to it.

 Our current example has a locally scoped variable in the next listing.

connectedCallback() {
 const root = this.attachShadow(
 {mode: 'closed'});
 root.innerHTML = `<div class="inside-component">My Component</div>`
}

Now let’s change it to having a property on your class.

connectedCallback () {
 this.root = this.attachShadow(
 {mode: 'closed'});
 this.root.innerHTML = `<div class="inside-component">My Component</div>`
}

On the other hand, making it a public property defeats the purpose. Again, you’re
back to having a public reference to the Shadow DOM; it just happens to be named
root (or any property name you choose) instead of the shadowRoot property, as cre-
ated by an open Shadow DOM. And again, it’s easy to access your component’s DOM
through it. That said, if you did use a stronger way of protecting your class properties,
like using Weak Maps to make your properties private, it’s still wouldn’t be foolproof,
but it would close things off pretty well and allow internal access to your closed DOM
just fine. It might be worth speculating that a truly closed Shadow DOM might be
achievable once we have native private class fields available in all browsers, but we just
aren’t there yet.

 It’s clear that a closed Shadow DOM isn’t worth the trouble for most cases. There is
no bulletproof way to completely lock down your component, and protecting your
component by convention using the open Shadow DOM is the way to go.

Listing 8.5 Locally scoped shadow root variable

Listing 8.6 A public property containing the shadow root

Locally scoped shadow
root variable

The shadow root saved
as a public property

177Enter the Shadow DOM
8.2.3 Your component’s constructor vs. connectedCallback

Back in chapter 4, when discussing the component API, I cautioned that the construc-
tor wasn’t very useful for many things in your component initialization. This is
because when the constructor fires on your component, it doesn’t yet have access to
your component’s DOM-related property and methods, like innerHTML.

 Now, with the Shadow DOM, nothing has changed in relation to the page’s DOM.
Your component, when using the Shadow DOM, still does not have access to the
DOM-related properties and methods for your element until it gets added to the page
DOM with connectedCallback.

 Despite this all being true, it’s no longer actually a concern. We’re no longer rely-
ing on the page’s DOM. We’re creating a separate mini DOM for our component
when we call attachShadow. This mini DOM is immediately available, and we can
write its innerHTML right away!

 This is why you’ll see most examples of Web Components using the constructor to
do all of the initialization work instead of the connectedCallback method, as we’ve
been using so far. Going forward in this book, I’ll likely do everything in the construc-
tor because I’ll be using the Shadow DOM. But it’s important to keep this distinction in
mind, given that the Shadow DOM is just one piece of the Web Component puzzle
and, as such, it is optional (even though you’ll probably want to use it from here on in).
Let’s change our previous simple example slightly to reflect this.

<html>
<head>
 <script>
 class SampleComponent extends HTMLElement {
 constructor() {
 super();
 this.attachShadow({mode: 'open'});
 this.shadowRoot.innerHTML =
 `<div class="inside-component">My Component</div>`
 }
 }

 if (!customElements.get('sample-component')) {
 customElements.define('sample-component', SampleComponent);
 }

 </script>
</head>
<body>
 <sample-component></sample-component>
</body>
</html>

Listing 8.7 Using the constructor instead of connectedCallback

Constructor method

Call to super()
 is required as

we extend
HTMLElement

Sets the innerHTML in
the constructor

178 CHAPTER 8 The Shadow DOM
8.3 The Shadow DOM today
Though the Shadow DOM sounds pretty amazing, it has a history of being a bit unreli-
able. I’m not knocking the implementation or the spec, just the slow inclusion of it as
a supported feature in all modern browsers, as I mentioned at the start of this chapter.
I’ve personally been in a holding pattern until very recently. When Firefox shipped
Web Components this past October, and with the knowledge that Edge is on the way,
I’m now happily using the Shadow DOM in my newer projects.

 What happens when the browser of your choice doesn’t have support for the
Shadow DOM? The obvious answer is to use a polyfill, just like with any other feature.
Unfortunately, this answer is a bit complicated for the Shadow DOM specifically.

 The biggest problem when polyfilling is the subject of the next chapter. In terms of
being defensive against accidental intrusions into your component, we’ve covered
your component’s API and its local DOM as accessed through JS. These are great to
protect against through the encapsulation that the Shadow DOM gives us. I might
argue, however, that protecting against CSS rules that bleed through is the absolute
best use of the Shadow DOM. The reason I love this so much is that web developers
have been struggling with this problem since CSS was a thing, and it’s only gotten
worse as web experiences have become more complex. There are some fairly novel
workarounds, but the Shadow DOM completely negates this problem.

 Currently, the effort to polyfill the Shadow DOM is divided up into these two use
cases. We’ll talk about CSS and its polyfill in the next chapter. Polyfilling JS access to
your DOM is really easy, though. Back in chapter 2, when polyfilling custom elements,
we specifically used the custom element polyfill.

 We can go a little broader, though, and cover everything that’s not supported. The
polyfills found at www.webcomponents.org/polyfills offer some smart feature detec-
tion and fill in features where appropriate. That includes both custom elements and
the Shadow DOM.

 One option is to use

npm install @webcomponents/webcomponentsjs

and then add the <script> tag to your page:

<script src="node_modules/@webcomponents/webcomponentsjs/
 ➥webcomponents-bundle.js"></script>

Additionally, a CDN option is available. In the end, we should have something that
works in all modern browsers, as in the next listing.

<html>
<head>
 <script src="https://unpkg.com/@webcomponents/webcomponentsjs@2.0.0/
 ➥webcomponents-loader.js"></script>
 <script>
 class SampleComponent extends HTMLElement {

Listing 8.8 Component with polyfill

Polyfill loaded from CDN

www.webcomponents.org/polyfills

179Summary
 constructor() {
 super();
 this.root = this.attachShadow({mode: 'open'});
 }

 connectedCallback() {
 if (!this.initialized) {
 this.root.innerHTML = 'setting some HTML';
 this.initialized = true;
 }
 }

 }

 if (!customElements.get('sample-component')) {
 customElements.define('sample-component', SampleComponent);
 }

 </script>
</head>
<body>

<sample-component></sample-component>

<script>
 setTimeout(function() {
 document.querySelector('sample-component').innerHTML =
 ➥'Component is hijacked';
 }, 500);
</script>
</body>
</html>

We’re using the polyfill and then testing it out by attempting to set our component’s
innerHTML. I used a timer here to set the innerHTML to make sure we try to hijack the
component after it tries to set its own text in the connectedCallback. Using the
Shadow DOM in most browsers, setting the innerHTML from outside the component
fails. With the polyfill and the “Shady DOM,” the same behavior happens in those that
don’t support the Shadow DOM, like Microsoft’s Edge (with support coming soon)
and IE.

 As I alluded to before, however, the Shady DOM works pretty well for JS access to
the DOM. Shady CSS is a different story, and one that we’ll jump right into in the next
chapter!

Summary
In this chapter, you learned

 What encapsulation is and how a self-contained object is only half the battle.
Protecting and offering controlled access to your object is also important.

 That the Shadow DOM offers protection to your component’s inner DOM and
is most useful for accidental intrusions from the outside.

Sets our component’s
innerHTML from the outside

180 CHAPTER 8 The Shadow DOM
 That although the Shadow DOM offers a closed mode, it’s impractical, and pro-
tecting your component by convention with an open Shadow DOM is the way
forward, especially because it offers a way to bypass its protective boundary in a
pinch.

 Differences between constructors and connectedCallback for working with
your component’s DOM when using or not using the Shadow DOM.

 How to use polyfill support with the Shady DOM and that there is a separate
solution for CSS encapsulation.

Shadow CSS
Let’s continue on with our Shadow DOM exploration! In the last chapter, we
zeroed in on a really nice aspect of the Shadow DOM. As awesome as DOM encap-
sulation is, the CSS aspect of the Shadow DOM is even better! Despite coming up
with clever ways to mitigate style creep in our web development work over the years,
it has always been a problem.

9.1 Style creep
Style creep can sometimes be a bit of a headache in web development work. To sum
up, it’s when CSS rules come in and affect elements you didn’t intend to affect. You
may be working to style an element in one place, but some style rules you’ve
defined in your CSS for another element on your page are unintentionally picked
up because the CSS selectors match. Although style creep isn’t limited to Web Com-
ponents, let’s take a look at a Web Component example to see how it impacts us.

This chapter covers
 Keeping external style out of your Web Components

 The Shadow DOM for CSS encapsulation

 Shadow DOM CSS selectors

 Rediscovering the ID attribute for Web Components
181

182 CHAPTER 9 Shadow CSS
Figure 9.1 shows a simple little Web Component that is essen-
tially a stylized numerical stepper.

 For this hypothetical use case, let’s say that no matter what
the other buttons look like in our web application, it’s import-
ant that this stepper be red, and that the plus and minus but-
tons are flush around the number in the middle. We’re going
for a very specific look here, and it needs to be perfect. The
next listing shows us how this was achieved.

<html>
<head>
 <script>
 class SampleComponent extends HTMLElement {
 connectedCallback() {
 this.innerHTML = `
 <button class="big-button">-</button>
 5
 <button class="big-button">+</button>
 <style>
 sample-component {
 display: flex;
 }
 sample-component .increment-number {
 font-size: 24px;
 background-color: #770311;
 color: white;
 font-family: Helvetica;
 display: inline-block;
 padding: 11px;
 border: none;
 }

 sample-component button {
 border-radius: 0 50px 50px 0;
 border: none;
 width: 50px;
 height: 50px;
 font-size: 36px;
 font-weight: bold;
 background-color: red;
 color: white;
 }

 sample-component button:first-child {
 border-radius: 50px 0 0 50px;
 }

 sample-component .big-button:active {
 background-color: #960000;
 }

 sample-component .big-button:focus {

Listing 9.1 A stepper component without logic, just style

Stepper
decrement
button

Current
stepper

value
Stepper
increment
button

Component
styles

Component
styles,
continued

Figure 9.1 A stylized
stepper component
comprising two buttons
and a text span

183Style creep
 outline: thin dotted;
 }
 </style>`;
 }
 }

 if (!customElements.get('sample-component')) {
 customElements.define('sample-component', SampleComponent);
 }

 </script>
</head>
<body>
<sample-component></sample-component>
</body>
</html>

Notice how each style rule is prefaced with sample-component. In such a simple exam-
ple with only one component on the page, specifying .sample-component button

isn’t strictly necessary. After all, our component has all of the buttons in the entire
page here. A button is such a common element, however, that as soon as we start add-
ing other content to our page, this button style will start affecting that other content.
By making the rule specific to our .sample-component, we’re avoiding style from this
component leaking out into other elements we didn’t intend.

 It’s good to have a refresher on how global styles like these work. In figure 9.2, we
see that the CSS rules we define in our component become part of the page’s global
style space. In turn, these styles will affect any and all elements on our page.

Sample
component
on page

Web page

Web Component
with CSS

CSS rules
are pushed

globally.

Other DOM elements are
affected by all global styles.

Global styles to be applied
 everywhere on page

Figure 9.2 Without using the Shadow DOM, style defined
in your Web Component will apply to the entire page.

184 CHAPTER 9 Shadow CSS
9.1.1 Style creep into component descendants

Even with this specificity, our button rules could leak the other way as well. What if we
had another component within this one with buttons of its own? Those buttons still
have <sample-component> somewhere in their ancestry, so the CSS here would creep
into any components downstream.

 It’s inevitable that you’ll face some style creep, no matter how specific your selec-
tors are, and you’ll need to debug it. But again, web developers have faced this issue
forever. That said, when using Web Components, it’s easier to overlook these kinds of
problems because we tend to treat the components we work with as standalone,
encapsulated objects and skip over the inner content when scanning the DOM in our
debug tools.

9.1.2 Style creep into your component

So, let’s say you’ve covered all your bases. You’ve carefully planned your class names
and CSS rules to be a good component developer and not let your styles leak out of
your components. That’s only half the battle—style can still creep into your compo-
nent from the page and miscellaneous parent components.

 Let’s pretend your web app is driven by some sort of design system. Design systems,
like Bootstrap, define a consistent look and feel in your web pages or applications. For
example, you’d likely want most buttons in your application to adopt a single look,
like in figure 9.3.

With the next listing, we’ll add this button to our page with a simple button element
and some page-level CSS to style it.

<head>
 <style>
 button {
 border-top: 1px solid #96d1f8;
 background: #65a9d7;
 background: linear-gradient(90deg, #3e779d, #65a9d7);
 padding: 5px 10px;
 border-radius: 8px;
 box-shadow: rgba(0,0,0,.5) 0 8px 8px;
 text-shadow: rgba(0,0,0,.4) 0 2px 2px;
 color: white;
 font-size: 14px;
 font-family: Helvetica;
 text-decoration: none;

Listing 9.2 A styled button coexisting on our page with a Web Component

Figure 9.3 An example globally stylized
button that could come from a design system

Non-component
button styles

185Style creep
 vertical-align: middle;
 }
 button:hover {
 border-top-color: #28597a;
 background: #28597a;
 color: #ccc;
 }
 button:active {
 border-top-color: #1b435e;
 background: #1b435e;
 }
 </style>

 <script>
 . . . same component definition as before
 </script>
</head>
<body>
<sample-component></sample-component>

<button>Button from Design System</button>
</body>
</html>

Looking at the results in figure 9.4, we can already see how the button style is creeping
into our component and doing some bad things.

We’re starting to adopt some of the look of the button in our stepper. We have the
drop shadow, and the blue gradient backgrounds, which of course don’t match the
numeric text in the middle anymore. Things are even more broken when you click
the button—the background changes to red. In short, things are getting messy!

 This is all caused by the generic button styles having just a few different rules than
our stepper component button. The stepper’s background color rule is overridden by
the generic button’s background rule. And of course, the stepper button shouldn’t
have a text shadow or box shadow rule like the generic button does.

 We’re not even getting into rule specificity here! Pretend that our generic button
had a “big-button” variation as well, which just so happens to match the rule name
inside our component.

 Let’s go back and make this variation by increasing the font size and padding of
that button to make it a proper “big button.” Our goal is to get something that looks
like our previous generic buttons in figures 9.3 and 9.4, just bigger in context.

Non-component
button element

Figure 9.4 How a global button style can
negatively affect our stepper component

186 CHAPTER 9 Shadow CSS
 The reality, however, is that when we define this variation by changing all of our but-
ton rules in the CSS outside of the component from button {} to button.big-button
{}, we get some unexpected results. With more rule specificity like this, and the coinci-
dental naming of “big-button” for both buttons (inside our component and out), we’ve
just created a situation in which rules we’ve defined outside of our component are
more specific than those within. This really hurts the shape of our stepper buttons,
shown in figure 9.5, that we’ve carefully defined with the border-radius rule.

We can fix this, of course. We can add even more specificity in our CSS selectors inside
the component, just like we did for the generic button. We can go from button {} to
button.big-button {}. Also, though, we have to negate the properties that aren’t
covered in our component that are defined in our generic button:

sample-component button.big-button {
 box-shadow: none;
 text-shadow: none;
 padding: 0;
}

With these changes, we’re back to our component looking just fine. It’s obvious now
that we have to be a little on guard for these types of problems. How much on guard
really depends on how much you can control the surrounding application and antici-
pate how that style could creep in and affect you. The button versus stepper situation
would have really been helped if rules for the <button> element as a whole weren’t
defined in the global CSS. Creating more unique names would be helpful as well.

 As much as this sounds like a mess, and it is, it’s something we as web developers
have had to deal with forever. All that said, the Shadow DOM promises a fix!

9.2 Style creep solved with the Shadow DOM
In the last chapter, we saw that creating a shadow root on our component created a
separate and independent DOM: access to this DOM was limited, and JS calls couldn’t
leak through to change elements or query-select components. When all was said and
done, it was super easy!

 We can protect our Web Component’s DOM in the same way here. With the next
listing, we can go back to our stepper component and use the Shadow DOM.

Figure 9.5 More specificity and same-
named classes wreck the stepper
component even more.

187Style creep solved with the Shadow DOM

class SampleComponent extends HTMLElement {
 connectedCallback() {
 const root =
 this.attachShadow({mode: 'open'});
 root.innerHTML = `<button class="big-button">-</button>
 5
 <button class="big-button">+</button>
 <style>
 sample-component {
 display: flex;
 }

 span {
 font-size: 24px;
 background-color: #770311;
 color: white;
 font-family: Helvetica;
 display: inline-block;
 padding: 11px;
 border: none;
 }
 button {
 border-radius: 0 50px 50px 0;
 border: none;
 width: 50px;
 height: 50px;
 font-size: 36px;
 font-weight: bold;
 background: none;
 background-color: red;
 color: white;
 }

 button:first-child {
 border-radius: 50px 0 0 50px;
 }

 button:active {
 background-color: #960000;
 }

 button:focus {
 outline: thin dotted;
 }
 </style>`;
 }
}

Not only did I introduce the Shadow DOM into our stepper component, but I also got
a little overly excited and removed all of my specific rules. My CSS selectors now spec-
ify only the rules for the generic <button> and tags. After everything we’ve
had to deal with in this example, as well as over the years of CSS pain in web develop-
ment, this feels lazy and prone to breakage, doesn’t it?

Listing 9.3 Using the Shadow DOM to protect our stepper component’s style

Creates a shadow root
to use the Shadow DOM

With a smaller and more
manageable DOM, CSS selectors
don't need to be so specific.

188 CHAPTER 9 Shadow CSS
 But the point is, now that we have a separate DOM, and we know that our compo-
nent is this simple, as with our stepper component, we can absolutely style our ele-
ments generically here, and it’s perfectly fine! Style won’t creep in, as shown in figure
9.6, and style won’t creep out and affect child components that also use Shadow DOMs.

Listing 9.3 isn’t perfect yet, though. For the most part, figure 9.7 looks OK, but the
stepper component has some bad spacing in it.

What happened here? Well, our component used to have a display style of flex. The
old rule is left in, but it’s not working:

sample-component {
 display: flex;
}

That’s because the <sample-component> tag is now outside of our Shadow DOM.
Technically speaking, the tag that represents our component is the shadow host, and
this host contains the shadow root, which contains our Shadow DOM. Since CSS can’t

Figure 9.6 Web Components using the Shadow DOM are
unaffected by page-level CSS styling.

Web page

Web Component
using Shadow DOM

Other DOM elements

Global styles applied
 everywhere on page

Style rejected

Figure 9.7 The stepper component, almost fixed,
and living side by side with a globally styled button

189Style creep solved with the Shadow DOM
leak into the Shadow DOM, this rule using sample-component is now meaningless for
what we want to achieve here.

 Instead, styling the Shadow DOM comes with a few new ways to use CSS selectors.
The first is the new selector, :host. The :host selector is shorthand for styling what’s
inside the shadow host, as figure 9.8 shows. Changing our selector to

:host {
 display: flex;
}

puts our display: flex rule back in action.

9.2.1 When styles creep

There is a bit of nuance to Shadow DOM CSS encapsulation, however. The Shadow
DOM works pretty well to guard against outside styles coming into your Shadow DOM-
guarded component. The nuance is that we’re guarding against style creep when
defined by a selector and not overall style. To explain what I mean, let’s try another
example in the next listing, where we define some style on the <body> of the page,
outside the Shadow DOM.

<html>
<head>
 <style>
 .text {
 font-size: 24px;
 font-weight: bold;

Listing 9.4 Text rules affecting inside the Shadow DOM

Figure 9.8 CSS on the shadow host (or using the component’s
tag as the selector) won’t penetrate into the shadow root or into
the Shadow DOM.

Web Component

my-component {
 ...style...
}

Style rejected

:host {
 ...style...
}

Shadow root

Shadow host

Some text styling on
the outer page

190 CHAPTER 9 Shadow CSS
 color: green;
 }
 </style>

 <script>
 class SampleComponent extends HTMLElement {
 connectedCallback() {
 const root = this.attachShadow({mode: 'open'});
 root.innerHTML = `Some Text`;
 }
 }

 if (!customElements.get('sample-component')) {
 customElements.define('sample-component', SampleComponent);
 }

 </script>
</head>
<body class="text">
 <sample-component></sample-component>
</body>
</html>

So, what do you expect here? I promised that the Shadow
DOM guards against styles coming into your component,
yet when the example runs, as seen in figure 9.9, the
 tag contains big, green, bold text!

 This is because the nuance I’m talking about is that
we’re really guarding against CSS selectors from the out-
side being able to latch onto classes on the inside. Yet when an ancestor of your com-
ponent (Shadow DOM or no) has some style applied to it that doesn’t require
selecting anything inside your component, that style will still affect the children. Now,
if we removed that text class from the body like so,

<body>

and put that same class on the inside our component like this,

root.innerHTML = `Some Text`;

you’ll see that the text style has no effect, as shown in
figure 9.10.

 The "text" selector from our example can’t pene-
trate the Shadow DOM, yet those same rules as a style
from the outside can. However, even something as sim-
ple as an outside <button> style won’t creep in in the
same way because "button" is still a selector (albeit a
generic one). This can be pretty useful and makes a lot of sense. If all the text on your
overall page is styled a certain way, or your page has a specific background color, you
don’t want your components to depart from these basic styles.

A span
containing

text inside our
component’s
Shadow DOM

Applies the text styling
to the entire page body

Figure 9.9 The large, green,
bold text indicates that
outside style is affecting the
contents of our Shadow DOM.

Figure 9.10 When we place the
class directly on the
tag, the Shadow DOM
successfully blocks the style.

191Shadow DOM workout plan
 What if you didn’t want even that style to creep in? We can do a bit of a trick with
the :host selector.

<script>
 class SampleComponent extends HTMLElement {
 connectedCallback() {
 const root = this.attachShadow({mode: 'open'});
 root.innerHTML = `Some Text
 <style>
 :host {
 all: initial;
 }
 </style>`;
 }
 }

 if (!customElements.get('sample-component')) {
 customElements.define('sample-component', SampleComponent);
 }
</script>

While we certainly could set each individual style rule to "initial" to reset them, it’s
more encompassing to reset everything in our shadow root using the all CSS prop-
erty and the brand-new :host selector.

 To go beyond the :host selector and explore a little more, let’s start a new demo
project to properly give the Shadow DOM a try!

9.3 Shadow DOM workout plan
So, this demo has a bit of a dual meaning. Yes, we will be going through some Shadow
DOM exercises to introduce some new concepts, but the demo we’ll be making is also
an exercise browser and workout creator.

 The final product in this chapter won’t be as interactive as it could be, and that’s
because we’ll keep exploring this demo in chapter 14 as we cover events to implement
the rest of the functionality. For this chapter, we’ll end up with an exercise library on
the left and your custom workout plan on the right, as shown in figure 9.11. Clicking
each exercise in the library will add it to your plan.

 Exercise types are either “strength” or “cardio” and are represented by a blue or
green stripe, respectively. To keep things simple on the page, and because I don’t
personally own a bunch of exercise videos to share with you, my thumbnails and
backgrounds are gray. However, in this book’s GitHub repo, I’ve included GIF links
in my data model, defined in components/exerciselibrary/exerciselibrary.js, so that
each exercise renders with a motion thumbnail that will let you properly preview the
exercise.

Listing 9.5 Resetting the style in the Shadow DOM

Applies initial styles
to all elements in the
shadow root

192 CHAPTER 9 Shadow CSS
9.3.1 Application shell

As a first step, let’s create the overall appli-
cation structure along with some place-
holders for child components. Specifically,
we’ll create an HTML page, CSS file, and
<wkout-creator-app> component, where
the file structure looks like figure 9.12. If
you are following along, please remember
to use some sort of simple web server, given
that we do have dependencies loaded from
our index.html that may not work just
using the file system.

 As with our other demos, our index.html will be extremely simple, as in the follow-
ing listing.

<html>
<head>
 <title>Workout Creator</title>
 <script type="module"
 src="components/workoutcreatorapp/workoutcreatorapp.js">
 </script>
 <link rel="stylesheet" type="text/css" href="main.css">
</head>

Listing 9.6 The index.html for our demo application

Figure 9.11 A demo app to browse exercises from a library and create a custom workout plan

Component import

Figure 9.12 Basic file structure as we start our
demo application

193Shadow DOM workout plan
<body>
 <wkout-creator-app></wkout-creator-app>
</body>
</html>

Our CSS is even simpler, and is just negating the margin and padding of the page
body while sizing the <wkout-creator-app> to the entirety of the page with a bit of
padding.

body {
 margin: 0;
 padding: 0;
}

wkout-creator-app {
 height: calc(100vh - 20px);
 padding: 10px;
}

For the <wkout-creator-app> itself, the component’s code, shown in the next listing,
is also very simple.

import Template from './template.js';

export default class WorkoutCreatorApp extends HTMLElement {
 constructor() {
 super();
 this.attachShadow({mode: 'open'});
 this.shadowRoot.innerHTML = Template.render();
 }
}

if (!customElements.get('wkout-creator-app')) {
 customElements.define('wkout-creator-app', WorkoutCreatorApp);
}

Note that, unlike in past demos, we are now using the Shadow DOM. Also, unlike what
we did earlier in this book, we are doing all of our component setup in the construc-
tor and directly using the shadowRoot property to access our local Shadow DOM.

 Lastly, I’m going to be using Shadow DOM CSS features as well as doing some
things you’d never do without the Shadow DOM. Neither of these are easy to back out
of! So, here I’m going all in on the Shadow DOM with no turning back.

9.3.2 Host and ID selectors

Continuing on from our WorkoutCreatorApp module that defines the <wkout-creator-
app> component, let’s take a peek at the template.js module that holds our HTML and
CSS in the next listing.

Listing 9.7 The main.css for our demo application

Listing 9.8 The main application component for our demo application

Component
declared in HTML

Resets margin and
padding on page

Sizes the application to take
up the entire page

Uses the Shadow DOM
in our component

194 CHAPTER 9 Shadow CSS

export default {
 render() {
 return `${this.css()}
 ${this.html()}`;
 },

 html() {
 return `<wkout-exercise-lib>
 </wkout-exercise-lib>
 <div id="divider-line"></div>
 <wkout-plan></wkout-plan>`;
 },

 css() {
 return `<style>
 :host {
 display: flex;
 }

 wkout-exercise-lib,
 wkout-plan {
 flex: 1;
 height: 100%;
 background-color: #eaeaea;
 }

 #divider-line {
 width: 1px;
 height: 100%;
 margin-right: 25px;
 background-color: black;
 }
 </style>`;
 }
}

First off, we’re creating three child elements. Two of them are components that aren’t
defined yet, so they’ll just be rendered as empty <div> elements; they’re styled with a
background color, so we can visualize their placement thus far, as figure 9.13 shows. In
the middle of these two sits a black divider line.

 Even with just this, we have two points to discuss with the Shadow DOM. First,
we’re using the previously mentioned :host CSS selector to assign some style to our
host component. In this case, we simply want to use a display type of "flex" to lay out
our three elements.

 The second point is an important one. It sounds like a small point, but it’s actually
kind of huge. Our divider line is assigned the ID "divider-line" in <div id="divider-
line"></div>. We then use this ID to assign style with CSS: #divider-line {}.

 Why is this so important? Well, ingrained in every web developer is that we should
use the ID attribute sparingly. The reason is that there can be only one element with
that ID in your entire DOM. If you make a mistake and assign a second element with

Listing 9.9 Application template module that defines our HTML and CSS

Left container for the
exercise library

Divider line with
an ID attribute

Right container for
workout plan list

195Shadow DOM workout plan
the same ID, you’re bound to get CSS or query-selection problems when you’re only
able to select or style one of the multiple elements with the same ID.

 Typically, our selectors will be multiple classes together to get the specificity
required to accurately select or style an element. For our divider line, we might use a
CSS selector that looks like

wkout-creator-app div.divider-line.center.thin {}

Yes, I got a little ridiculous with the selector just now using .center and .thin, but
I’m just trying to underscore the point of overdoing the specificity, which is usually
needed.

 Now, however, we can use the Shadow DOM. Coming back to the point that each
ID in your entire DOM must be unique, remember we’re now using multiple DOMs!
Your ID needs to be unique only inside the scope of your Web Component. An ele-
ment with an ID of #divider could easily exist elsewhere on the page or in other Web
Components, and there would be no conflict.

 Even better, given that there are only three elements in this Web Component, with
just the divider line using a <div> tag, we could easily not bother with an ID, instead
using a selector like this: div {}.

 Personally, I think this is really exciting. Coming back to when I introduced the
Shadow DOM in the last chapter, I said that it removes the brittleness of web develop-
ment. This is a prime example. We can focus on the structure and style of our compo-
nent and not worry about conflicts anywhere else. Our selectors can be as dead simple
and easy to read as our component’s internal structure allows.

Figure 9.13 How our barebones application looks so far in a browser

196 CHAPTER 9 Shadow CSS
9.3.3 Grid and list containers

We’re going to continue on now with more of same concepts we just explored in
order to get a grid of exercises and our workout plan list in place. That’s two more
components, which makes our project structure look like figure 9.14.

Remember, we are actually rendering those <wkout-plan> and <wkout-exercise-
lib> components already in the application component; it’s just that they aren’t
defined yet, so they render as <div> elements. As such, our first step after creating the
new files and folders for the components is to import those modules at the head of
workoutcreatorapp/template.js:

import ExerciseLibrary from '../exerciselibrary/exerciselibrary.js';
import Plan from '../plan/plan.js';

With those defined, let’s get to work fleshing out these components!
 Both are pretty simple, in fact. This is largely due to us not paying any attention to

interactivity yet. The next listing shows our plan/plan.js and plan/template.js files.

// Plan.js
import Template from './template.js';

export default class Plan extends HTMLElement {
 constructor() {
 super();
 this.attachShadow({mode: 'open'});

Listing 9.10 Workout plan component files

Previously added
Workout Creator app
component

New workout plan
component

New exercise library
component

Figure 9.14 Project file structure as our two container components are added for
the exercise library and workout plan

197Shadow DOM workout plan
 this.shadowRoot.innerHTML =
 Template.render();
 }
}

if (!customElements.get('wkout-plan')) {
 customElements.define('wkout-plan', Plan);
}

// Template.js
export default {
 render() {
 return `${this.css()}
 ${this.html()}`;
 },

 html() {
 return `<h1>My Plan</h1>
 <div id="container"></div>
 <div id="time">Total Time:</div>`;
 },

 css() {
 return `<style>
 :host {
 display: flex;
 flex-direction: column;
 }

 #time {
 height: 30px;
 }

 #container {
 background: linear-gradient(90deg, rgba(235,235,235,1)
 0%, rgba(208,208,208,1) 100%);
 height: calc(100% - 60px);
 overflow-y: scroll;
 }
 </style>`;
 },
}

Since our workout plan list is empty at the start of the application, we aren’t rendering
anything except the container, header text, and a footer to show total plan duration.

 Again, we’re using a Shadow DOM, which enables us to use element IDs to target
both the time and container <div> tags for styling. On both of these, we’re just setting
sizing and background fill color, as well as telling our exercise list container to scroll
when it gets too tall. Also again, we’re using the :host selector to tell our component’s
shadow root to display using a vertical flexbox.

 The <wkout-exercise-lib> component is similar, except we actually do want to
feed it with data. The purpose of this component is to show a list of exercises to
choose from, so they should all be present when the application loads. As such, we’ll
be rendering a header and container, just like the last component, but we’ll also be

Assigns HTML/CSS to
our component

HTML to render

CSS to render

198 CHAPTER 9 Shadow CSS
populating the container with all of our exercises. The next listing shows exercise-
library/exerciselibrary.js and exerciselibrary/template.js.

// exerciselibrary.js
import Template from './template.js';

export default class ExerciseLibrary extends HTMLElement {
 constructor() {
 super();
 this.attachShadow({mode: 'open'});
 this.shadowRoot.innerHTML = Template.render([
 { label: 'Jump Rope', type: 'cardio', thumb: '', time: 300, sets: 1},
 { label: 'Jog', type: 'cardio', thumb: '', time: 300, sets: 1},
 { label: 'Pushups', type: 'strength', thumb: '', count: 5, sets: 2,
 estimatedTimePerCount: 5 },
 { label: 'Pullups', type: 'strength', thumb: '', count: 5, sets: 2,
 estimatedTimePerCount: 5},
 { label: 'Chin ups', type: 'strength', thumb: '', count: 5, sets: 2,
 estimatedTimePerCount: 5},
 { label: 'Plank', type: 'strength', thumb: '', time: 60, sets: 1}
]);
 }
}

if (!customElements.get('wkout-exercise-lib')) {
 customElements.define('wkout-exercise-lib', ExerciseLibrary);
}

// template.js
export default {
 render(exercises) {
 return `${this.css()}
 ${this.html(exercises)}`;
 },

 html(exercises) {

 let mkup = `<h1>Exercises</h1>
 <div id="container">`;
 for (let c = 0; c < exercises.length; c++) {
 mkup +=
 `<wkout-exercise class="${exercises[c].type}" ></wkout-exercise>`;
 }
 return mkup + `</div>`;
 },

 css() {
 return `<style>
 host {
 display: flex;
 flex-direction: column;

 }

 #container {
 overflow-y: scroll;

Listing 9.11 Exercise library component files

Component
definition module for
the exercise library

Template module for the
exercise library, which
holds our HTML and CSS

Loops through
exercises

and renders
them

199Shadow DOM workout plan
 height: calc(100% - 60px);
 }
 </style>`;
 }
}

You’ll notice right away the big list of exercises we’re feeding into the Template
.render function. Each exercise has a label as well as a type of either cardio or
strength. Depending on whether you count each rep or just do the exercise for a set
amount of time, the exercise will have a number for count and sets or for time. If
we’re tracking count and sets, the only way we can estimate the total time of our work-
out is to estimate how much time each single rep of our exercise takes, so we use
another property called estimatedTimePerCount.

 Lastly, there is an empty thumb property on each exercise. Like I said at the begin-
ning of this chapter, we’ll just leave this blank to not show a thumbnail in this book.
You can search for your own images or GIFs online to populate these or look at the
GitHub repo for this book for ones I’ve found. Also in my GitHub repo are more exer-
cises for our data model.

 Our exerciselibrary/template.js file is mostly the same as the previous plan/tem-
plate.js. Of course, the main difference is that we’re accepting the list of exercises and
rendering each one. Again, we’re waiting to define the <wkout-exercise> for now
while we focus on everything else, which gives us something that looks like figure 9.15.

Figure 9.15 Filling in the components on the left and right sides of the application

200 CHAPTER 9 Shadow CSS
You’ll notice that even though we’ve rendered our exercises, they aren’t showing up.
That’s because even though they are there in the DOM, they don’t have a size or back-
ground—so, despite being present, they have a zero-pixel height and don’t appear
visually. We’ll address this with the <wkout-exercise> component. It is the last one to
cover, and it’s actually pretty interesting.

9.4 Adaptable components
Why do I find this <wkout-exercise> so interesting? Well, it’s because we’re going to
start on a component that needs to look slightly different depending on how it’s used,
and we’ll learn an alternate way of using the :host selector. In the next chapter, we’ll
push even further on this adaptable component to make it look completely different
in the workout plan container.

9.4.1 Creating the exercise component

Since our workout plan needs some interactivity to function, let’s focus instead on the
exercise library first, as it’s easier to iterate on style for something that appears on
page load instead of requiring the extra step of clicking to add. We’re, of course,
going to need to create the component files, and we’ll end up with the file structure
shown in figure 9.16.

Workout Creator app
component

Workout plan
component

Exercise library
component

Exercise
component

Main HTML/CSS
pages

Figure 9.16 Final file structure for the application

201Adaptable components
Since both the workout plan and exercise library render the exercise component, we
should place that import into both plan/template.js and exerciselibrary/template.js
modules:

import Exercise from '../exercise/exercise.js';

Let’s take a look at the Web Component definition for <wkout-exercise> in the fol-
lowing listing.

import Template from './template.js';

export default class Exercise extends HTMLElement {
 constructor() {
 super();
 this.attachShadow({mode: 'open'});

 const params = {
 label: this.getAttribute('label'),
 type: this.getAttribute('type'),
 thumb: this.getAttribute('thumb'),
 time: this.getAttribute('time'),
 count: this.getAttribute('count'),
 estimatedTimePerCount: this.getAttribute('estimatedtimepercount'),
 sets: this.getAttribute('sets'),
 };
 this.shadowRoot.innerHTML = Template.render(params);
 }

 get label() { return this.getAttribute('label'); }

 set label(val) { this.setAttribute('label', val); }

 // more getters/setters for thumb, type, time, count,
 // estimateTimePerCount, and sets
 serialize() {
 return {
 label: this.label,
 type: this.type,
 thumb: this.thumb,
 time: this.time,
 count: this.count,
 estimatedTimePerCount: this.estimatedTimePerCount,
 sets: this.sets,
 }
 }

 static toAttributeString(obj) {
 let attr = '';
 for (let key in obj) {
 if (obj[key]) {
 attr += key + '="' + obj[key] + '" ';
 }
 }
 return attr;
 }

Listing 9.12 Component files for the exercise component

Getters/setters
for each property

Function to serialize all
properties into an object

Function to assemble an
attribute string for a cloned
exercise component

202 CHAPTER 9 Shadow CSS
}

if (!customElements.get('wkout-exercise')) {
 customElements.define('wkout-exercise', Exercise);
}

To save space here, I’ve eliminated all but one of my getters/setters. In this compo-
nent definition, we’re employing something we picked up in chapter 3. We’re using
reflection to use attributes and properties interchangeably. We can use either element
.setAttribute(property, value) on the element or element.property = value to
set a property. Either way, we’re getting or setting some data that is internally based on
the element’s attribute. If I didn’t cut it short for brevity, we’d have getters/setters for
thumb, type, time, count, estimateTimePerCount, and sets as well.

 The other two methods are ways to gather our data. First, we have serialize, which
just assembles our data into one object we can pass around easily. The other static
method, toAttributeString, is similar. It assembles all of our data like serialize
does but creates a string that we can use to populate attributes. We’ll end up with a
string in the format of

property="value" property2="value2" property3="value3"

This extra method might not seem necessary, but we want to weed out those unde-
fined properties. Remember that because of the variation of the exercises, some will
have a rep count property, like when you lift weights, while others will have a duration
property, like when you’re jogging. So rather than having property="undefined" be
an attribute on our tag when the actual undefined value gets converted to a string, or
having to check for undefined on each property in our templates, making them a bit
long and hard to read, this is a good alternative. All this is to explain why in exercise-
library/template.js, we’ll modify our loop in the html() function to be

for (let c = 0; c < exercises.length; c++) {
 mkup += `<wkout-exercise class="${exercises[c].type}"

${Exercise.toAttributeString(exercises[c])}></wkout-exercise>`;
}

With this, we can create attributes on our new element for each and every valid prop-
erty in our data. As this is a static method (accessed from the class rather than the
instance), we can use it either on the raw data objects we have in exerciselibrary/exer-
ciselibrary.js before the component is created or against an already-created <wkout-
exercise> component to copy those values. Whether a simple object or component,
the properties are all there and can be used the same way by this method. The tag we
get in the end looks like either of the following, depending on the exercise:

<wkout-exercise class="cardio" label="Jog" type="cardio" time="300"
sets="1"></wkout-exercise>

<wkout-exercise class="strength" label="Pushups" type="strength" count="5"
sets="2" estimatedtimepercount="5"></wkout-exercise>

203Adaptable components
9.4.2 Exercise component style

With all of the attributes we need set on the component, and the component defini-
tion created, there’s just one last thing to do: create the HTML and CSS seen in the
next listing.

export default {
 render(exercise) {
 return `${this.css(exercise)}
 ${this.html(exercise)}`;
 },

 html(exercise) {
 return `<div id="info">
 ${exercise.label}
 x
 </div>`;
 },

 css(exercise) {
 return `<style>
 :host {
 display: inline-block;
 background: radial-gradient(circle,
 rgba(235,235,235,1) 0%, rgba(208,208,208,1) 100%);
 /*background-image:

 ➥url('${exercise.thumb}');*/
 border-left-style: solid;
 border-left-width: 5px;
 }

 :host(.cardio) {
 border-left-color: #28a7ff;
 }

 :host(.strength) {
 border-left-color: #75af01;
 }

 #info {
 font-size: small;
 display: flex;
 align-items: center;
 background-color: black;
 color: white;
 }

 :host {
 width: 200px;
 height: 200px;
 background-size: cover;
 }

 :host #info {
 padding: 5px;

Listing 9.13 First pass of the exercise component

Styles the overall
component

Commented out
thumbnail

background

Overall
component style
with a variation

for a class on the
component tag

204 CHAPTER 9 Shadow CSS
 }
 </style>`;
 }
}

With all of this now put together, our <wkout-exercise-lib> component renders all
of the <wkout-exercise> components we have. Seen in figure 9.17, the first minor
thing to notice is our component backgrounds:

background: radial-gradient(circle, rgba(235,235,235,1) 0%,
rgba(208,208,208,1) 100%);

/*background-image: url('${exercise.thumb}');*/

I’ve commented out the background image, but if you’ve searched online and found
some great thumbnails for each exercise and added them to the data in the <wkout-
exercise-lib> component, feel free to uncomment this line. If you didn’t, we’re sim-
ply showing a gradient gray background.

 Notice as well how simple the HTML is. We’re showing a 200 × 200 box with a
black label at the top. This is fine for the library view, but you might imagine that this
could all be a little problematic to display as a list view in the exercise plan.

 Again, we’re using some concepts we’ve covered before in this chapter. We’re iden-
tifying and selecting elements using the ID attribute as well as using the :host selector
for our component’s shadow root context.

Figure 9.17 Newly styled exercise components

205Updating the slider component

t

 Note, however, that we have a small variation on the :host selector:

 :host(.cardio) {
 border-left-color: #28a7ff;
 }

 :host(.strength) {
 border-left-color: #75af01;
 }

Back when rendering each of these components, we did put a class of strength or
cardio on each component:

 mkup += `<wkout-exercise class="${exercises[c].type}"
${Exercise.toAttributeString(exercises[c])}></wkout-exercise>`;

This variation on the :host selector allows us to consider any classes on the compo-
nent’s tag itself and use that for more CSS specificity. To be clearer and more con-
cise, :host(.cardio) enables us to style the element <wkout-exercise class=
"cardio"> based on its cardio class. In practice, these differing border colors enable
the user to differentiate between the two different types of exercises when browsing
the library grid.

 There are a few more CSS selectors you may have seen online that I didn’t get to
here, but they lack support or are deprecated. We’ll finish up making the <wkout-
exercise> component adaptable to different contexts in the next chapter, while
talking about some Shadow DOM gotchas while we’re at it.

9.5 Updating the slider component
Before exploring the Shadow DOM gotchas and updating the Workout Creator app
some more, we’ve learned enough to update the slider UI component we’ve been
working on throughout this book. What’s nice is that not much needs to change!

 First things first, let’s start using the Shadow DOM. Previously, the component ini-
tialization code was in the connectedCallback function, but we know now about the
ability to use the constructor because of the Shadow DOM. The following listing shows
this constructor; keep in mind, we’ve removed the connectedCallback altogether,
moving the setup code to here.

constructor() {
 super();
 this.attachShadow({mode: 'open'});
 this.shadowRoot.innerHTML =
 Template.render();
 this.dom = Template.mapDOM(this.shadowRoot);

 document.addEventListener('mousemove', e => this.eventHandler(e));
 document.addEventListener('mouseup', e => this.eventHandler(e));
 this.addEventListener('mousedown', e => this.eventHandler(e));
}

Listing 9.14 Slider component constructor

Functionality in connectedCallback
moved to constructor

Attaches
he Shadow

DOM Uses the shadowRoot property
instead of this for scope

206 CHAPTER 9 Shadow CSS
Also, because the constructor fires prior to the attributeChangedCallback, the tim-
ing issue we faced before with connectedCallback doesn’t happen anymore. You’ll
notice that we no longer have the following lines in our constructor’s setup code:

this.refreshSlider(this.getAttribute('value'));
this.setColor(this.getAttribute('backgroundcolor'));

We also don’t need to check if the this.dom property exists anymore, like when we
did this:

setColor(color) {
 if (this.dom) { . . .

Of course, this check doesn’t hurt. But with all of the initialization happening prior to
the incoming attribute changes when the component starts, it’s just not needed.

 The template.js module can change slightly as well. In addition to using the :host
selector for the component root, we can use IDs now instead of classes for styling and
selection. As I’ve mentioned, using IDs is a luxury we weren’t afforded before without
an encapsulated DOM like we have now. The next listing shows the new template.js
file for the slider.

export default {
 render() {
 return `${this.css()}
 ${this.html()}`;
 },

 mapDOM(scope) {
 return {
 overlay: scope.getElementById(
'bg-overlay'),
 thumb: scope.getElementById('thumb'),
 }
 },

 html() {
 return `<div id="bg-overlay"></div>
 <div id="thumb"></div>`;
 },

 css() {
 return `<style>
 :host {
 display: inline-block;
 position: relative;
 border-radius: 3px;
 }

 #bg-overlay {
 width: 100%;
 height: 100%;
 position: absolute;
 border-radius: 3px;
 }

Listing 9.15 New slider template module

Using IDs now, we’ll use
getElementById instead of
querySelector.

References elements by
ID instead of class

Uses :host selector to style
overall component

Uses IDs to style
instead of class

207Summary
 #thumb {
 margin-top: -1px;
 width: 5px;
 height: calc(100% - 5px);
 position: absolute;
 border-style: solid;
 border-width: 3px;
 border-color: white;
 border-radius: 3px;
 pointer-events: none;
 box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px
 20px 0 rgba(0, 0, 0, 0.19);
 }
 </style>`;
 }
}

With the Shadow DOM now working in the slider component, we’ve done just about
all we need to do on that particular component. We won’t abandon it yet, though!
The slider will be an integral part of a bigger component that we’ll create in the last
chapters of this book, where we’ll also explore testing, a build process, and running
Web Components in IE11.

Summary
In this chapter, we learned

 How CSS styles can leak into and out of your Web Component just like any-
where else, if you’re not using the Shadow DOM

 That the Shadow DOM completely protects your component’s DOM from out-
side CSS

 That when using the Shadow DOM, we can be a lot less specific with our CSS
selectors, taking full advantage of the separate DOM

 How to use specific Shadow DOM CSS selectors to style your component, and
style it differently in different contexts

Shadow CSS rough edges
In the last two chapters, I painted a fairly rosy picture of the Shadow DOM. Don’t
worry, I won’t take it back! As amazing as the Shadow DOM is, though, there are
some caveats you should know about. Unfortunately, these caveats are likely the
most confusing part of Web Components. Between deprecated features, features
that lack support in certain browsers, or just needing to know how to navigate
browsers that don’t support the Shadow DOM at all, it can all be a bit tricky.

10.1 Contextual CSS
The first rough edge to get to know is the :host-context() selector. It’s not depre-
cated per se—it’s just not supported in any browser except Chrome. Also, it gets a
little worse. Webkit/Safari stated back in 2016 that they will never support it

This chapter covers
 The widely unsupported :host-context() selector

 The deprecated ::shadow and /deep/ Shadow DOM CSS
selectors

 CSS Variables

 Polyfilling the Shadow DOM

 Design systems
208

209Contextual CSS
because they claim it’s an anti-pattern (https://bugs.webkit.org/show_bug.cgi?id=
160038). The folks at Firefox likewise feel that it’s not a great thing to implement in
the Gecko engine because of the performance implications. Firefox has opened up a
ticket (https://github.com/w3c/csswg-drafts/issues/1914) on the W3C specification
that wonders what the best course of action is with a nod to the Chrome/Blink code
base, pointing out the performance tradeoffs on their side.

 So, we’re left with a nice little selector that nobody but Chrome seems to want to
support, but that still seems to be part of the Shadow DOM specification. Even worse,
to find out what’s actually happening, you’d need to search each browser’s public
mailing lists or issue trackers!

 What does this mean? If I had to bet, the :host-context() selector will get kicked
out of the Shadow DOM specification, and Chrome will probably remove it sometime
in the distant future, if only to maintain sanity and a common Shadow DOM feature
set across browsers.

 Interestingly enough, Angular supports the :host-context() selector, and given
that it is a framework, Angular doesn’t necessarily need browser support to offer it. All
in all, this selector presents a bit of a messy situation. Personally, I think it’s important
to think about what this selector offers and how we can overcome it if it’s not available
to us when we do want to use it. If you agree, read on! If not, feel free to jump to sec-
tion 10.2.

WARNING The rest of section 10.1 talks about the :host-context() selector,
which, while not deprecated yet, is likely to be in the future.

10.1.1 A small bit of interactivity

To jump into using this new but ill-fated selector, let’s get back to exploring our Work-
out Creator app. In chapter 9, we left off in a pretty good state. Each exercise in our
data set was visualized by a thumbnail in our library view on the left, while on the
right, we have an empty container waiting to be used, as seen in figure 10.1.

Figure 10.1 Where we left off in chapter 9

https://bugs.webkit.org/show_bug.cgi?id=160038
https://bugs.webkit.org/show_bug.cgi?id=160038
https://bugs.webkit.org/show_bug.cgi?id=160038
https://github.com/w3c/csswg-drafts/issues/1914

210 CHAPTER 10 Shadow CSS rough edges
As you might imagine, the obvious next step is to allow the user to add exercises from
the library on the left to their workout plan on the right. As we started to do in the last
chapter with more subtle contextual styling, we’ll use the same exercise component
for both areas. The difference now is that instead of just differently colored lines to
denote exercise types, our <wkout-exercise> component will look completely differ-
ent in the two different containers.

 With this in mind, we need to enable some interaction. Let’s do a couple things to
wire up the <wkout-creator-app>. For starters, we can cache element references for
both containers (the library and the plan).

 Inside workoutcreatorapp/template.js, let’s add

mapDOM(scope) {
 return {
 library: scope.querySelector('wkout-exercise-lib'),
 plan: scope.querySelector('wkout-plan')
 };
},

It bears remembering that this mapDOM method is just my favorite custom way of saving
references to elements, keeping querySelectors outside the main component class.

 While we’re here in this file, recall that to make things easier to see at the begin-
ning, we added a background color to both components used here, so we could see
them as progress was made. Now that we’ve built things up this far, let’s remove it:

wkout-exercise-lib,
wkout-plan {
 flex: 1;
 height: 100%;
 background-color: #eaeaea;
}

With element references mapped in this module, we can go back to workoutcreatorapp/
workoutcreatorapp.js and add a click listener, as shown in the following listing.

import Template from './template.js';
import Plan from "../../plan/plan.js";
import Exercise from "../../exercise/exercise.js";

export default class WorkoutCreatorApp extends HTMLElement {
 constructor() {
 super();
 this.attachShadow({mode: 'open'});
 this.shadowRoot.innerHTML = Template.render();
 this.dom =
 Template.mapDOM(this.shadowRoot);
 this.shadowRoot.addEventListener('click',
 e => this.onClick(e));
 }

Listing 10.1 Adding a click listener to allow exercise selection

Remove this line

Saves element
references to an
object for later use

Assigns a click listener
to our component

211Contextual CSS
 onClick(e) {
 const path = e.composedPath().reverse();
 for (let c = 0; c < path.length; c++) {
 if (path[c] instanceof Plan) {
 return;
 }
 if (path[c] instanceof Exercise) {
 const exercise = path[c];
 this.dom.plan.add(exercise);
 }
 }
 }
}

if (!customElements.get('wkout-creator-app')) {
 customElements.define('wkout-creator-app', WorkoutCreatorApp);
}

There are just two small additions in the constructor. First, we’re calling the mapDOM
method we just added from the template, so now this.dom holds all of our element
references. Second, we’re adding a click event listener to our component.

 When you look at the contents of the onClick function and how the click listener
is on the <wkout-creator-app> component rather than the exercise library compo-
nent, you might question my methods. And you’d be right! The reason I’m doing
things in this hacky way is so that we can properly explore events and some application
design with this demo in chapter 14.

 Even if you are familiar with events and custom events like I should have used
here, the Shadow DOM does introduce some wrinkles. For now, this is a quick and
dirty way to listen for events and act on them. Here, we’re going through all of the ele-
ments that the click event went through to get to this function, and if it came from the
component defined by the Plan class, then we exit from the function. But if it came
from elsewhere, and there’s a component defined by the Exercise class, then we
know it can be added to the <wkout-plan> component.

 That said, the line this.dom.plan.add(exercise); doesn’t do anything yet. We’ll
need to add this functionality in the <wkout-plan> component. To do this, we can
start with the template module at plan/template.js and add the contents of the next
listing.

mapDOM(scope) {
 return {
 exercises: scope.querySelector('#container')
 }
},

renderExercise(exercise) {
 return `<wkout-exercise class="${exercise.type}"

${Exercise.toAttributeString(exercise.serialize())}></wkout-exercise>`
}

Listing 10.2 Adding new exercises to the workout plan component (template module)

The click handler
method

Queries and saves
a reference to the
list container div

Renders each exercise
(returns a template
literal string)

212 CHAPTER 10 Shadow CSS rough edges
Again, we’re using the mapDOM method to store a reference to an element. This time,
it’s the container that should hold all of our exercises as we add them to the workout
plan. The renderExercise method simply creates a new <wkout-exercise> compo-
nent, as we did in the library component previously. This time, however, the data
source is another <wkout-exercise> component that we’re copying attributes from.
This is done in an improved plan/plan.js class and reflected in the following listing.

import Template from './template.js';

export default class Plan extends HTMLElement {
 constructor() {
 super();
 this.attachShadow({mode: 'open'});
 this.shadowRoot.innerHTML = Template.render();
 this.dom = Template.mapDOM(this.shadowRoot);
 }

 add(exercise) {
 this.dom.exercises.innerHTML += Template.renderExercise(exercise);
 }
}

if (!customElements.get('wkout-plan')) {
 customElements.define('wkout-plan', Plan);
}

In this updated class, only two lines are added: the first is to get an object that contains
our element references, as seen for annotation B of listing 10.3. Second, an
extremely simple add function, shown as annotation C, appends the new exercise
onto our container’s innerHTML by first rendering the HTML from the template mod-
ule. After all this, refreshing our browser and clicking the Jump Rope exercise from
the library, our application now looks like figure 10.2.

10.1.2 Contextual style

So far, so good! We’re now showing an exercise library and allowing the user to click
exercises and add them to a personal workout plan. The problem is, however, that we
really want to show the personal workout plan as a list. We also want to allow users to
customize the duration or reps/sets associated with the exercise they chose.

 It wouldn’t be so far-fetched to think that under these two different contexts, the
exercise component uses are just too different, and we should create two different
components for each context. But that would be a shame; we’d end up duplicating a
significant amount of code, especially code that doesn’t relate to the visual look. We
can also use this opportunity to explore the :host-context() selector.

Listing 10.3 Adding new exercises to the workout plan component (component module)

Saves the list
container element
reference to an
object for later use

B

Adds each exercise to our
list container element

C

213Contextual CSS
Let’s first round out the HTML in exercise/template.js a bit more with some input
fields to support the notion of customizing your exercise in the next listing.

html(exercise) {
 return `<div id="info">

 ${exercise.label}

 <div id="customize">
 <label
 class="${exercise.time?'visible':'hidden'}">
 <input type="number" max="999" style="width:35px;"
 value="${Number(exercise.time)}"> seconds
 </label>
 <label class="${exercise.count?'visible':'hidden'}">
 <input type="number" max="99" style="width:25px;"
 value="${Number(exercise.count)}">
 </label>
 <label class="${exercise.sets?'visible':'hidden'}">x
 <input type="number" max="9" style="width:20px;"
 value="${Number(exercise.sets)}"> set(s)
 </label>
 </div>
 x
 </div>`;
},

Listing 10.4 Adding more functionality to the exercise component for the plan view

Figure 10.2 Application state after allowing exercises to be added to a workout plan

Click here

Exercise is
added
to list here

Exercise name

Checks to see if
property exists

and, if not, hides
the label/input

Delete button

214 CHAPTER 10 Shadow CSS rough edges
We’ve left the elements with IDs of "info" and "label" the same as how we had them
before. These won’t change. We have, however, added a <div id="customize"> con-
tainer holding a few <input> elements, as well as clickable
x to eventually delete this item from our workout plan.

 Each <input> field has a <label> parent that, depending on whether the property
exists on the exercise, will have a CSS rule to be visible or hidden. Now, with this
added markup, the component is pretty messy no matter which context it’s in. We can
fix this, and we’ll use the :host-context selector to do it! The :host-context selec-
tor allows us to specify different CSS rules that take into account where the compo-
nent sits on the page, as seen in figure 10.3.

As an example, let’s look at the HTML we just added. Both the <div> and
should not be visible when the <wkout-exercise> component lives in the <wkout-
exercise-library> component. Therefore, we can add the following CSS:

:host-context(wkout-exercise-lib) #customize {
 display: none;
}

:host-context(wkout-exercise-lib) #delete {
 display: none;
}

We can even start styling the component’s shadow host itself with new sizing rules for
when it appears in the <wkout-plan> component:

:host-context(wkout-plan) {
 width: 100%;
 height: 50px;
 margin-bottom: 1px;
 background-size: contain;
}

Web page

div.container-a

<my-component>

div.container-b

<my-component>

host-context(.container-a) { color: green }
host-context(.container-b) { color: blue }

Figure 10.3 Style differently depending on the context of the component with :host-context().

215Contextual CSS
Here, instead of being a square 200 × 200 component, we’re now saying that in the
context of the <wkout-plan> element, we want it to be 100% wide and 50 pixels tall.

 Now, with the ability to style according to our component’s context, we can create
a set of shared CSS rules, a set of rules for when we’re under the <wkout-plan> com-
ponent, and a set of rules for when we’re under the <wkout-exercise-lib> compo-
nent, as in the following listing.

 <style>
 :host {
 display: inline-block;
 background: radial-gradient(circle, rgba(235,235,235,1) 0%,
 rgba(208,208,208,1) 100%);
 background-image: url('${exercise.thumb}');
 border-left-style: solid;
 border-left-width: 5px;
 }

 :host(.cardio) {
 border-left-color: #28a7ff;
 }

 :host(.strength) {
 border-left-color: #75af01;
 }

 #info {
 font-size: small;
 background-color: black;
 color: white;
 display: flex;
 align-items: center;
 }

 :host-context(wkout-exercise-lib) {
 width: 200px;
 height: 200px;
 background-size: cover;
 }

 :host-context(wkout-exercise-lib) #info {
 padding: 5px;
 }

 :host-context(wkout-exercise-lib) #customize {
 display: none;
 }

 :host-context(wkout-exercise-lib) #delete {
 display: none;
 }

 :host-context(wkout-plan) {
 width: 100%;
 height: 50px;

Listing 10.5 Contextual style in the exercise component’s CSS

Component
styling not

dependent on
context

Component styling
when in the context of
the exercise library

Component styling
when in the context of
the workout plan list

216 CHAPTER 10 Shadow CSS rough edges
 margin-bottom: 1px;
 background-size: contain;
 }

 :host-context(wkout-plan) input {
 background-color: #505050;
 padding: 5px;
 color: white;
 border: none;
 }

 :host-context(wkout-plan) #delete {
 width: 30px;
 height: 100%;
 line-height: 50px;
 font-size: 12px;
 font-family: Arial;
 text-align: center;
 background-color: #404040;
 cursor: pointer;
 }

 :host-context(wkout-plan) #delete:hover {
 background-color: #797979;
 }

 :host-context(wkout-plan) #info {
 width: calc(100% - 80px);
 height: 100%;
 margin-left: 75px;
 background-size: 75px 75px;
 }

 :host-context(wkout-plan) #customize {
 display: inline-block;
 flex: 1;
 }

 :host-context(wkout-plan) #label {
 padding-left: 10px;
 font-size: 16px;
 font-weight: bold;
 display: inline-block;
 flex: 1;
 }

 :host-context(wkout-plan) label.hidden {
 display: none;
 }
 </style>

With all of this style in place, our component is finally starting to look finished! There
are more things to do, like wire up some more interaction around the <input> fields,
the Delete button, and so forth, but in terms of visual style and using the exercise
component in different contexts, we’re pretty good! The application as shown in fig-
ure 10.4 is just missing a couple of small details: some sort of font and color styling.

217Contextual CSS
10.1.3 Workaround for host-context

What I really like about the :host-context() selector is that it gets us thinking about
how to use the same component in very different ways. But in the end, we don’t actu-
ally need the selector to accomplish this level of different layout or styling. Sure, it’s a
tiny bit more work to achieve the same thing, but given the state of this selector as
unsupported by everyone but Chrome, it’s probably wise to pretend that it doesn’t
exist. What can we do instead?

 One option is to just fall back to using :host() for the same purpose and add the
context as a class on the component itself. To explain, we’ll go back to the exercise
library component’s template module in components/exerciselibrary/template.js.

 When we render our HTML, let’s add one more class, as shown in the next listing.

html(exercises) {
 let mkup = `<h1>Exercises</h1>
 <div id="container">`;
 for (let c = 0; c < exercises.length; c++) {
 mkup += `<wkout-exercise
class="${exercises[c].type} library"

Listing 10.6 Adding context via class name

Same components inside two
different containers with
different styles and layout

Figure 10.4 The exercise component has a different style, layout, and controls in
different contexts.

Adding the library
class to indicate the
component lives in the
exercise library

218 CHAPTER 10 Shadow CSS rough edges
${Exercise.toAttributeString(exercises[c])}></wkout-exercise>`;
 }
 Return

Let’s do the same with our workout plan in components/plan/template.js. Recall that
when adding the exercise to our plan, we’re rendering some HTML for each one.
We’ll add the plan class, as in the following listing.

renderExercise(exercise) {
 return `<wkout-exercise
class="${exercise.type} plan"
${Exercise.toAttributeString(exercise.serialize())}>
</wkout-exercise>`
},

Now, let’s head back to the exercise component in components/exercise/template.js
to kill all of the :host-context() selectors. We’ll do this in the next listing, but only
show a few changed CSS rules to avoid repeating the entirety of the style sheet.

:host(.library) #customize {
 display: none;
}

:host(.library) #delete {
 display: none;
}

:host(.plan) {
 width: 100%;
 height: 50px;
 margin-bottom: 1px;
 background-size: contain;
}

:host(.plan) input {
 background-color: #505050;
 padding: 5px;
 color: white;
 border: none;
}

Of course, in this example, it was easy to add the .library or .plan class to the com-
ponents to give them a different context. It gets a bit trickier if we have to replace
:host-context() when the context we want to use is a parent of the parent of the par-
ent of the component. In this case, you just can’t reach as far back as this selector
does. So, you’ll need to get some kind of signal to your component through the DOM
hierarchy to either add the desired class, or maybe just create some sort of API (per-
haps a setter, an attribute, or both) in your application to switch the mode.

Listing 10.7 Adding a different context to the workout plan

Listing 10.8 Changing host-context selectors to host

Adding the plan class to indicate the
component lives in the workout plan

Two selectors changed from using
:host-context to use .library,
directly on the component

Two selectors changed from :host-
context to use .plan, directly on
the component

219Component themes
10.2 Component themes
Typically, when we talk about theming a web application, the way to do it is to use CSS,
which makes its way into every aspect of our UI. In the last chapter, we discussed a
themed button that came from a design system.

 We’re coming full circle now. When discussing this design system button before,
the question was how we could stop the design system and the CSS rules behind it
from coming in and destroying the buttons in our stepper component, shown again
in figure 10.5.

Now, when using the Shadow DOM and successfully blocking those styles from creep-
ing in, the question becomes, “What if we actually want those styles to creep in?” The
answer is a little complicated.

10.2.1 Shadow and deep selectors

WARNING Section 10.2.1 discusses some deprecated features. The ::shadow
and /deep/ selectors are properly deprecated, unlike :host-context() in
section 10.1. It can still be a bit confusing, though, because the deprecation is
fairly recent. As a result, researching can lead you down the wrong path.
Unfortunately, there’s no great replacement for their functionality, so even if
you don’t care about deprecated features, we’ll talk through some options
here.

You’ve been warned—what we’re getting into here is deprecated, but a little history
helps.

 To solve the problem of piercing the Shadow DOM when we actually want to, there
used to be two CSS selectors: ::shadow and /deep/. These selectors were designed to
break through the Shadow DOM boundary in Google’s first version of the Shadow
DOM (v0). They never made it into v1, and were finally removed from Chrome in v63.

 The ::shadow selector would dive into the Shadow DOM and style anything inside.
For example,

::shadow .example {
 color: red;
}

Figure 10.5 A reminder from chapter 9 on the
dangers of style creeping into our component

220 CHAPTER 10 Shadow CSS rough edges
would make the <div> inside the following component (assuming a Shadow DOM is
used) red:

<my-component>
 <div class="example">Some red text</div>
</my-component>

If, however, you also used the example class on something outside the Shadow DOM,
the rule wouldn’t be applied:

<div class="example">This text is not red</div>
<my-component>
 <div class="example">Some red text</div>
</my-component>

To style both, regardless of whether or not they appear inside the Shadow DOM, the
/deep/ selector could be used:

/deep/ .example {
 color: red;
}

When Chrome dropped support, people were understandably confused about what to
do next. The reasoning behind dropping support is certainly well-intentioned. These
selectors are basically Band-Aids—they allow you to go right back into enforcing your
own style rules on an encapsulated component. The component itself loses control of
its own style, as was the problem before the Shadow DOM.

 One solution currently being suggested is the CSS Working Group (CSSWG)
Shadow Parts draft. I won’t cover the details here because it was just introduced in
Chrome, along with a related selector, ::theme, and will likely evolve. That said, if
you’d like to keep tabs on it, you can follow it here: https://drafts.csswg.org/css-
shadow-parts.

 I’d like to quote one passage:

It’s important to note that ::part() offers absolutely zero new theoretical power. It is not a
rehash of the >>>combinator, it is simply a more convenient and consistent syntax for
something authors can already do with custom properties.

This quote is notable because the current recommendation of using Custom Proper-
ties is currently the only way to pierce the Shadow DOM. These Custom Properties,
also known as CSS Variables, can combine with ::part and ::theme selectors, leading
to brand-new ways of managing CSS, overcoming the deprecated features mentioned
so far in this chapter.

 This is a space you’ll definitely want to keep an eye on, because once this gains
adoption, I believe it will lead to new ways of making your components styleable and
pave the way for the design systems of the future. Right now, though, it’s just too early
to predict how this will play out.

https://drafts.csswg.org/css-shadow-parts
https://drafts.csswg.org/css-shadow-parts

221Component themes
10.2.2 CSS Variables

If you skipped the last section due to the discussion of deprecated features, we’re
talking through a small problem. There is no good mechanism right now to carry CSS
rules through to your component if that is indeed what you want. The best we have
right now are CSS Variables.

 You might already be familiar with CSS Variables, or Custom Properties. In fact,
they are supported in all modern browsers (sorry, no IE without a polyfill), and don’t
have anything to do with the Shadow DOM other than the fact that they can cross over
the shadow boundary.

 You can probably imagine what they are. They enable you to define a variable that
represents some CSS property somewhere and use that variable elsewhere in one or
multiple places. Take for example, this listing.

<head>
<style>
 body {
 --text-color: blue;
 }

 .container {
 --text-color: red;
 }

 .child {
 color: var(--text-color);
 }
</style>

</head>
<body>
 <div class="container">
 <div class="child">Some Text</div>
 </div>
</body>

We can define a variable scoped to the container class declaring that the variable
text-color is red. Variables also have the concept of inheritance. This means that we
can also have the same text-color variable defined on something less specific, like
body. The variable scoped to "container" still takes precedence, but if this variable
were removed, our body-scoped variable would kick in, and the text would now be
blue. This behavior can be seen in figure 10.6.

Listing 10.9 Using CSS Variables

Color var defined on body

More specific color var
defined on CSS class

Uses the color variable

222 CHAPTER 10 Shadow CSS rough edges
This works great in the Shadow DOM, too! The next listing shows a rule scoped to a
custom component from the outside crossing right past the shadow boundary into
our component.

 <style>
 sample-component {
 --text-color: blue;
 }

 </style>
 <script>
 class SampleComponent extends HTMLElement {
 connectedCallback() {
 this.attachShadow({mode: 'open'});
 this.shadowRoot.innerHTML = `<div class="inside-component">
 My Component
 </div>
 <style>
 .inside-component {
 color: var(--text-color);
 }
 </style>`
 }
 }

 if (!customElements.get('sample-component')) {
 customElements.define('sample-component', SampleComponent);
 }

 </script>
</head>
<body>
<sample-component></sample-component>
</body>

Listing 10.10 Using CSS Variables in a Web Component’s Shadow DOM

Web page

div.outer-container{
 --my-color: blue}

<my-component>

div.inner-container{
--my-color: green}

<my-component>

:root{
 --my-color: yellow}

<my-component>

Figure 10.6 Using the same CSS Variable at multiple levels in your DOM

Declares a text color CSS Variable

Uses the text
color CSS Variable

223Component themes
CSS Variables don’t have to be scoped—they can be global using the :root { . . . }
pseudo selector, which actually has an even lower specificity than html { . . . }. So,
when we don’t really want to worry about specificity or simply establishing a baseline
of variables, :root is pretty good to use.

10.2.3 Applying CSS Variables to our demo

Let’s get a simple theme started on our Workout Creator example! We can focus on
just a few variables for now, but it’s easy to imagine a bigger design system based on
this.

 First, I’d like to use a different font for our application, so we should modify our
index.html file’s <head> tag to load the font, as seen in the following listing.

<head>
 <title>Workout Creator</title>
 <script type="module"
 src="components/workoutcreatorapp/workoutcreatorapp.js"></script>
 <link rel="stylesheet" type="text/css" href="main.css">
 <link href=
 "https://fonts.googleapis.com/css?family=Roboto+Slab" rel="stylesheet">
</head>

Second, we can define some global variables inside main.css.

:root {
 --inverted-text-color: #eaeaea;
 --text-color: #3a3a3a;
 --label-color: #2a2a2a;
 --header-font-size: 21px;
 --font: 'Roboto Slab', serif;
}

Lastly, we can update each component’s style as in the next listing (showing only the
rules that changed).

// exercise/template.js
:host {
 font-family: var(--font);
 display: inline-block;
 background: radial-gradient(circle, rgba(235,235,235,1) 0%,
 ➥rgba(208,208,208,1) 100%);
 background-image: url('${exercise.thumb}');
 border-left-style: solid;
 border-left-width: 5px;
}

#info {

Listing 10.11 Loading a font with our index.html

Listing 10.12 Defining global variables in CSS for text color and size

Listing 10.13 Allowing light theming in the Workout Creator demo with CSS Variables

Font
reference

Variables are scoped globally
to :root, and define some key
properties to use throughout.

CSS Variable theming in
exercise/template.js

224 CHAPTER 10 Shadow CSS rough edges
 font-size: small;
 background-color: var(--label-color);
 color: var(--inverted-text-color);
 display: flex;
 align-items: center;
}

// exerciselibrary/template.js
:host {
 display: inline-block;
 font-family: var(--font);
 color: var(--text-color);
}

h1 {
 font-size: var(--header-font-size);
}

Updating each component continues on to the following listing, where CSS Variables
are added to the previous one.

// plan/template.js
:host {
 display: flex;
 flex-direction: column;
 font-family: var(--font);
 color: var(--text-color);
}

h1 {
 font-size: var(--header-font-size);
}

// workoutcreatorapp/template.js
#divider-line {
 width: 1px;
 height: 100%;
 margin-right: 25px;
 background-color: var(--text-color);
}

With these text style changes, we can additionally tweak the CSS Variables to iterate
our simple application theme. For example, we could switch to something a bit
greener in this next listing, which themes our application, as shown in figure 10.7.

:root {
 --inverted-text-color: #daf8a1;
 --text-color: #47730c;
 --label-color: #59b624;
 --header-font-size: 18px;
 --font: 'Roboto Slab', serif;
}

Listing 10.14 More light theming with CSS Variables in the the workout plan component

Listing 10.15 Changing variables to switch to a green theme

CSS Variable theming for
plan/template.js

Two CSS rules to change to
shades of green instead of
the original shades of grey

225Using the Shadow DOM in practice (today)
10.3 Using the Shadow DOM in practice (today)
It wasn’t too long ago that I was approaching the Shadow DOM with caution—so
much so that my recommendation was not to use it quite yet and to develop your Web
Components without it. Since then, some awesome things have happened, and we’re
finally in a really good position to use them. Of course, before you go all in, there are
some things to consider!

10.3.1 Browser support

This is the main and most obvious concern. At first, only Chrome supported the
Shadow DOM, and then came Safari. For a while, that’s all we had! Then, in October
2018, Firefox shipped Web Components, which, of course, includes the Shadow DOM.
We knew that Microsoft Edge was working on Web Components (https://developer
.microsoft.com/en-us/microsoft-edge/platform/status/shadowdom). I greatly appre-
ciate the note there that it will be supported on XBOX, Mobile, and Mixed Reality
devices as well. When will it ship? Well, there’s a developer preview out now, so per-
haps we’ll see a proper release just in time for this book to be published! Of course,
that’s just a guess, but regardless, it’s looking like all of the latest versions of modern
browsers (will) have support.

 So, of course, the consideration here is to just keep up with Edge before all users
have a chance to update to this new Chromium-backed version. If your project needs
to support it, and you don’t want to gamble on Microsoft’s Shadow DOM ship date,
then you may want to make your Web Components without the Shadow DOM for now.

10.3.2 Polyfilling

Of course, in the last section, I was talking about native support. More often than not,
features can easily be polyfilled. This is likewise true for Web Components—with the
exception of the CSS implementation of the Shadow DOM.

 The problem here is that a mini-encapsulated DOM is hard to emulate. It’s easier
to protect your DOM from query-selecting and manipulation than it is to protect it

Figure 10.7 Simple change of root-level CSS Variables to adjust theme from black to green

https://developer.microsoft.com/en-us/microsoft-edge/platform/status/shadowdom
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/shadowdom
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/shadowdom

226 CHAPTER 10 Shadow CSS rough edges
from CSS rules creeping in. The former can be achieved by using the ShadyDOM
polyfill. The latter, the CSS, can benefit from the ShadyCSS polyfill.

 Unfortunately, while most every other polyfill is drop in and go, the ShadyCSS
polyfill needs some handholding. Nevertheless, recent developments have increased
my optimism.

 The ShadyCSS polyfill was created by Google for use with the Polymer Library for
Web Component creation. To give Google some credit, the company did its best to
not lock these polyfills into the Polymer Library. They can all be found at https://www
.webcomponents.org and on GitHub at https://github.com/webcomponents.

 With ShadyCSS, the polyfill was a bit too tied into the Polymer Library, which itself
was heavily based on the now-deprecated HTML Import workflow. As a result, the
ShadyCSS documentation and proposed workflow was very focused on how to use the
polyfill via the template you’d bring in with your HTML Import.

 The Polymer team has since stopped feature development of the Polymer Library
and is now recommending smaller and more targeted libraries that they’ve written
and broken off, all under the umbrella of the Polymer Project. We’ve previously dis-
cussed lit-html as one of these. Another is the LitElement project, https://lit-
element.polymer-project.org, which uses lit-html behind the scenes.

 Fortunately for us, this new Web Component workflow they are proposing with
LitElement works exactly like we’ve seen throughout the book: template literals in
your JS to manage HTML and CSS, all managed with a simple Web Components life-
cycle API. As a result, their usage of the ShadyDOM matches ours. Where we previ-
ously needed a template for our HTML, we still do, but that’s all taken care of
automatically by lit-html. What we would put in the shadow root now gets wrapped up
as a template. As a template, ShadyCSS then rewrites our nonspecific CSS rules into
something more unique that acts like an encapsulated Shadow DOM. ShadyCSS then
adds this template as a child of our component.

 The end result is that our Shadow DOM-enabled components work in all major
browsers (yes, even IE). ShadyCSS has a list of known issues to be aware of, so don’t
expect quite everything to work: https://github.com/webcomponents/shadycss. In
the next chapter, we’ll create a battle-ready component with these concerns in mind,
using polyfills where appropriate.

10.3.3 Design systems

Even just theming your application will require rethinking how we use design systems
today. If you’re not familiar with design systems, they are typically a CSS library for
providing a consistent look across your project, including for commonly used UI ele-
ments like buttons, sliders, content containers, and so on. One of the more popular
design systems, Bootstrap, for example, just won’t work with the Shadow DOM as it is.

 Design systems themselves tend to be fairly monolithic, meaning you’ll likely
include one core (and huge) CSS file on your main page. The included CSS will wind
its way through your page and style all of your elements as it should.

https://www.webcomponents.org/
https://www.webcomponents.org/
https://www.webcomponents.org/
https://github.com/webcomponents
https://lit-element.polymer-project.org/
https://lit-element.polymer-project.org/
https://github.com/webcomponents/shadycss

227Summary
 The problem, of course, is that the Shadow
DOM will block all these styles defined for your
page, protecting any elements enclosed in your
component. The good news, however, is that a
design system will likely comprise separate compo-
nents. A snapshot of Bootstrap’s components is
shown in figure 10.8.

 In the end, these CSS components all get built
into that monolithic CSS file, but there is an
opportunity in design systems like these to sepa-
rate out each component as its own importable
CSS, to be used by the exact Web Component that
needs it. Things do get a little complex because, in
Bootstrap’s example, a carousel might depend on
a button, which depends on some basic text, spac-
ing, and color styling. So, dependencies do need
to be managed to pull this off.

 Already, though, some industrious folks are start-
ing to create Web Component variations of popular
design systems like Bootstrap, just as we’ve seen
done with Angular and React variations of design
systems. Google’s Web Components variation of
Material is already well underway (https://github
.com/material-components/material-components-
web-components). We should see lots of effort here, given that the Polymer team has
moved on from the Polymer Library to these more generalized Web Component
libraries.

 There will definitely be challenges. Many times in design systems, you’ll see an ele-
ment’s style be contextually dependent on who its parent element is, or go even far-
ther up the ancestry chain. The :host-context selector sure would be useful here,
but in lieu of that, we just have to be careful in creating or converting existing design
systems.

 It’s certainly early days for using design systems in our Web Components, but we’re
starting to see some great progress. As we go forward, I expect to see lots more usage
of CSS Variables and maybe even lots of CSS Shadow Parts usage, once that proposal is
firmed up and shipped in browsers.

Summary
In this chapter, we’ve seen a lot of benefits to the Shadow DOM in terms of wrangling
your CSS. But, with the downside being that it isn’t quite fully supported everywhere
yet, and never will be for IE, we know to proceed with caution. Going forward as
browsers are updated, we’re armed with some good foundational takeaways.

Figure 10.8 Bootstrap comprises
these components and many more.

https://github.com/material-components/material-components-web-components
https://github.com/material-components/material-components-web-components
https://github.com/material-components/material-components-web-components
https://github.com/material-components/material-components-web-components

228 CHAPTER 10 Shadow CSS rough edges
 In this chapter, you also learned

 To watch out for common selectors that have since been deprecated as the
Shadow DOM spec standardizes.

 That the Shadow DOM, when using CSS, can’t easily be polyfilled. So, if using
the Shadow DOM for CSS, be wary of which browsers support it, how to polyfill,
and any unimplemented features.

 The design systems have a path forward for supporting the Shadow DOM, but
support will take some time. While there are a few projects that are designed for
the Shadow DOM right now, you may have to roll up your sleeves and do some
adaptation work yourself.

Part 3

Putting your
components together

The last part of this book is all about taking everything we’ve learned and
making sure our components are production ready, tested, and working
together as a group—everywhere.

 Since the second chapter, we’ve been building and improving a very simple
component. The first chapter in part 3 brings this component back to build
something greater, with that simple component as a smaller, nested piece of a
bigger Web Component. We put this new component through its paces by intro-
ducing a build and testing process, and finally refactoring it to make sure it
works all the way down to IE11.

 Orchestrating interactions and messaging throughout an entire application
is no small feat either and, as such, is very important to the conversation, espe-
cially when deciding to use Web Components instead of a major framework.
This part discusses some strategies around that before finally ending on some
emerging technologies where Web Components could be useful, like Web 3D,
Mixed Reality, and Machine Learning—all bringing simple examples from the
book back to explore these futuristic subjects.

A real-world
UI component
Now is a great time to step back and take stock of everything we’ve learned. We’ve
done lots with Web Components throughout this book. At the same time, there
haven’t been many great examples of UI components that are good to share. One
example of a UI component that we have been working on is the slider component.

This chapter covers
 Building a brand-new component and refreshing our memories about

what we’ve learned so far, including the Shadow DOM, modules, the
Custom Element API, and reflection

 Breaking a design into multiple components and focusing on
component reusability to use a single, smaller component for a dual
purpose in a bigger context

 Using the MutationObserver feature to watch for attribute changes

 Event bubbling inside your component

 Component best practices as related to switching between using the
Shadow DOM or not

 Using consistent and universal design rules provided by CSS vars and
importable CSS modules
231

232 CHAPTER 11 A real-world UI component
 Figure 11.1 gives a quick reminder of what that slider is capable of. This slider
component has been built from the beginning with the intention of sharing and using
it in a larger context. It is a bit of a simple component, so using it as a small piece of a
larger, more useful and shareable UI component is a great next step!

11.1 Crafting a color picker
So, what are we going to build? What is the larger context that we’ll put the slider
component in? Often when I need a gradient in my CSS, I use some of the simple but
awesome tools offered online. The gradient creator at https://cssgradient.io and
shown in figure 11.2 is one I really think is well-designed and easy to use. I also think it
would make a nice color picker if we reduced the functionality and took out the gradi-
ent creation aspect.

 You might be aware that there already exists an easy-to-use color picker provided
by the <input> tag. We can simply add the element to our HTML:

<input type="color" value="#ff0000">

It gives us a nice, compact, clickable button that pops up a dialog when clicked, as in
figure 11.3.

 As convenient as this is, I happen to be working on a project in which this color
picker would a bit too compact. Also, I’d like it to remain onscreen at all times, so I
can continually tweak the object I’m coloring. Last, that object I’m coloring might be
transparent as well, so I’d prefer a transparency control in addition to my colors.

 With all this in mind, let’s create a great-looking color picker, inspired by cssgradient
.io, with Web Components!

Figure 11.1 Slider UI component we’ve been building throughout the book

Draggable thumbnail
to set the “value” attribute/property

Checkered pattern background
(not actually part of the component,
so customizable in any context)

Colored/fading background layer
can be set to any color using
“backgroundcolor” attribute/property

Properties like border-radius
can be set outside the component
through CSS vars

https://cssgradient.io/

233Crafting a color picker
Brightness and saturation
coordinate picker

Hue and transparency
sliders

Red, green, blue, alpha inputsGradient color stops

Gradient
color stops

Figure 11.2 Gradient creator at cssgradient.io

Color <input> on page

Launches OS color picker
in window (macOS here)

Figure 11.3 Using the input element’s color picker

234 CHAPTER 11 A real-world UI component
11.1.1 The components of our component

The first step here will be to break down what we need. We don’t want our color
picker component to be too complex, so we should think about which pieces of the
UI are separate components of their own.

 Referring to the gradient creator and figure 11.4, we can see two similar-looking
and functioning sliders, one for the hue and one for the transparency. This is great, as
we’ve been building that simple, reusable slider throughout this book explicitly for
the transparency slider! The only real difference between what we built appears to be
the images and colors used for the background in the hue slider versus the transpar-
ency. Recall that the slider component has a <div> inside that shows a single color
that fades from 100% to 0% opacity. If the background color isn’t set, this <div> never
shows. This leaves a completely style-able component background. In the slider’s
demo.html, we use a checkered white and grey pattern to indicate transparency, but
this can easily be swapped out for the rainbow-colored hue slider background.

There’s another piece of UI here that functions a lot like a slider, but it works both
horizontally and vertically. Figure 11.5 shows the saturation and brightness picker.
Dragging left to right adjusts saturation, or how intense the color is, while dragging

Figure 11.4 Two very similar sliders that we can create one Web Component for

Hue slider

Transparency slider

Figure 11.5 Saturation and brightness
picker as a candidate for a web componentIncreasing saturation

D
ecreasing brightness

Draggable thumbnail

235Crafting a color picker
vertically adjusts brightness. The user would be able to drag in both directions simul-
taneously, picking the perfect mix of the two variables.

 Unlike the slider, we only need one of these pickers; but similar to the slider, we
need to be very comprehensive with how the user interacts with it. To make the picker
and the slider respond correctly to user interaction, a number of edge cases must be
handled; this two-directional picker is perfect to break out as its own Web Compo-
nent, so we don’t overburden our main color picker component with too much logic.

 What other elements can we pick out? You might have your own ideas, but I think
it’s fine to stop there. Remember that even though we’re inspired by the gradient cre-
ator at cssgradient.io, we’re not creating gradients, just picking colors. The rest of the
relevant UI elements are text and numeric inputs. We could certainly go more granu-
lar and wrap up all of them or sets of them as different components.

 For example, we might make the numeric entry for the red, green, and blue fields
one component. I’m not sure I see much benefit to that here, especially because when
you step back, each piece of UI has a simple way to interact with it and offers an output
value after interaction (or two, when you consider the horizontal and vertical picker).

 To summarize, we have the following pieces of UI:

 Hue slider offers mouse interaction and outputs a single value
 Transparency slider offers mouse interaction and outputs a single value
 Saturation/brightness picker offers mouse interaction and outputs two values
 Red, green, blue, and alphanumeric inputs offer keyboard/mouse interaction

and output a single value
 Hexadecimal input field offers keyboard interaction and outputs a single value

Like we discussed, we can combine the hue and slider
into a single, reusable component. We’ll also make
that saturation and brightness coordinate picker a
component as well. The rest—the text/numeric entry
UI—will just live alongside our custom components
in the master color picker component. Given this
plan, let’s create a project structure, as shown in fig-
ure 11.6.

 There will likely be more files as we go along, but
we can assume these three components—the slider,
the coordinate picker, and the overarching color
picker—should each have three files. We’ll want a
class to define the component, a template that holds
all the HTML/CSS, and, lastly, an HTML file to
demo the standalone component. Since we’ve been
working on the slider throughout this book, good
news: it’s done! It can be copied right into the com-
ponents folder now.

Figure 11.6 Starting structure for
our color picker component project

236 CHAPTER 11 A real-world UI component
11.2 Coordinate picker component
We’ll cover the coordinate picker component quickly. The reason we can breeze right
through is that in addition to being fairly simple, it functions in almost the exact same
way as the slider component. The only difference is that the thumbnail can be dragged
both vertically and horizontally over the component, as you saw in figure 11.5.

 I call it a coordinate picker because you’re dragging and selecting something on
the x (horizontal) and y (vertical) axes. Specifically, we’ll use the y axis to ultimately
control brightness in the master color picker component, while saturation is con-
trolled by the x axis.

11.2.1 The coordinate picker Web Component class

With the similarities in mind, let’s talk about the one difference between the slider
component and the coordinate picker. Instead of a value attribute, there are now two
different values to use for horizontal and vertical percentages. We’ll use attribute
names of x and y to represent these. Additionally, when updating the visual thumb-
nail, we need to take the vertical position into account as well as the horizontal. We’ll
use the following listing to highlight the first part of the class with similar but slightly
changed attributes and corresponding reflection.

import Template from './template.js';

export default class CoordPicker extends HTMLElement {
 static get observedAttributes() {
 return ['x', 'y', 'backgroundcolor'];
 }

 attributeChangedCallback(
 name, oldVal, newValue) {
 switch (name) {
 case 'x':
 case 'y':
 this.refreshCoordinates();
 break;

 case 'backgroundcolor':
 this.style.backgroundcolor = newValue;
 break;
 }
 }

 set x(val) {
 this.setAttribute('x', val);
 }

 get x() {
 return this.getAttribute('x');
 }

// omitted y and backgroundcolor getters and setters for brevity

Listing 11.1 Coordinate picker API

Imports template module
for HTML and CSS

Defines what attributes to
watch on this component

Watches for changes to
these attributes and
responds accordingly

Getters and setters for x, y, and
backgroundcolor properties

237Coordinate picker component
You might notice that a lot of space is eaten up with reflection. It’s also really boring,
repetitive code—even more so when you consider there’s very little difference
between this component, the last component, or really . . . any other component. This
is why it’ll probably be increasingly rare to see explicit reflection like this in compo-
nents you’ll find in the wild.

 Web Component libraries and utilities are popping up that aim to make reflec-
tion like this a feature that you don’t have to implement yourself (in addition to
other things). This can be accomplished via a base class that itself extends HTML-
Element or, my personal preference, by a mixin approach where you can augment
your class using the prototype keyword, so you can still be free to extend another
base class. Here, though, I think it’s good to show everything needed without hiding
the more boring parts.

 Another complexity that gets hidden a lot as you venture into recent Web Compo-
nent libraries, like the Polymer Project’s LitElement (https://lit-element.polymer-
project.org/), is the initial component setup and HTML rendering. Indeed, the com-
ponent’s constructor in listing 11.2 looks exactly like the slider component, even
down to the event listeners, given that we are duplicating the same dragging capabil-
ity. When writing a lot of your own components, you might choose to attempt to hide
this complexity as well with your own base class or helper utilities.

 constructor() {
 super();
 this.attachShadow({mode: 'open'});
 this.shadowRoot.innerHTML = Template.render();
 this.dom = Template.mapDOM(this.shadowRoot);

 document.addEventListener('mousemove', e => this.eventHandler(e));
 document.addEventListener('mouseup', e => this.eventHandler(e));
 this.addEventListener('mousedown', e => this.eventHandler(e));
 }

 eventHandler(e) {
 const bounds = this.getBoundingClientRect();
 const coords = {
 x: e.clientX - bounds.left,
 y: e.clientY - bounds.top
 };
 switch (e.type) {
 case 'mousedown':
 this.isDragging = true;
 this.updateXY(coords.x, coords.y);
 this.refreshCoordinates();
 break;

 case 'mouseup':
 this.isDragging = false;
 break;

Listing 11.2 Constructor and mouse event handler

Component setup: Shadow DOM,
rendering HTML/CSS, and
element caching

Adds mouse
listeners for

dragging

Captures mouse
coordinates relative
to component

Updates the component
x,y attributes as a
percentage and moves
the thumbnail

https://lit-element.polymer-project.org/
https://lit-element.polymer-project.org/

238 CHAPTER 11 A real-world UI component
 case 'mousemove':
 if (this.isDragging) {
 this.updateXY(coords.x, coords.y);
 this.refreshCoordinates();
 }
 break;
 }
 }

Wrapping up the component, we’ll again see very similar code to the slider compo-
nent in the next listing. Yet again, the only real difference is handling two values, x
and y, instead of a single value.

 updateXY(x, y) {
 let hPos =
 x - this.dom.thumb.offsetWidth/2;
 let vPos = y - this.dom.thumb.offsetHeight/2;
 if (hPos > this.offsetWidth) {
 hPos = this.offsetWidth;
 }
 if (hPos < 0) {
 hPos = 0;
 }
 if (vPos > this.offsetHeight) {
 vPos = this.offsetHeight;
 }
 if (vPos < 0) {
 vPos = 0;
 }
 this.x = (hPos / this.offsetWidth) * 100;
 this.y = (vPos / this.offsetHeight) * 100;
 }

 refreshCoordinates() {
 this.dom.thumb.style.left = (
 this.x/100 * this.offsetWidth - this.dom.thumb.offsetWidth/2) + 'px';
 this.dom.thumb.style.top =
 (this.y/100 * this.offsetHeight - this.dom.thumb.offsetWidth/2) + 'px';
 }
}

if (!customElements.get('wcia-coord-picker')) {
 customElements.define(
 'wcia-coord-picker', CoordPicker);
}

You’ll note that at the top of the class, our method of setting the background color sim-
ply updates the overall component’s background color. We’ll peek next at the

Listing 11.3 Updating the x and y attributes and the position of the thumbnail

Gets centered (against the
thumbnail) coordinates for
both x and y

Constrains x (or horizontal
value) to inside of
component bounds

Constrains y (or vertical
value) to inside of
component bounds

Updates both x and y
attributes through the
component’s JS API

Updates the horizontal and vertical
position of the thumbnail

Defines the element and tag
from the component class

239Coordinate picker component
HTML/CSS to see how to create a perfect, two-directional gradient, but setting the
overall color is as simple as what we placed in the attributeChangedCallback handler:

this.style.backgroundcolor = newValue;

Why make this part of the API when we could set a CSS rule for background color out-
side the component? The simple answer is that we’re making the coordinate picker
API work exactly like the slider component API. It’s much easier to set the back-
groundcolor property on both the slider and this component at the same time with a
similar API, rather than remember to interact with both of them differently, especially
with both having very similar functionality.

11.2.2 Coordinate picker HTML/CSS

Moving on to our template.js, which holds the HTML and CSS for the coordinate
picker, you’ll again not notice much difference from the slider. The following listing
shows the import.

export default {
 render() {
 return `${this.css()}
 ${this.html()}`;
 },

 mapDOM(scope) {
 return {
 thumb: scope.getElementById('thumb')
 }
 },

 html() {
 return `<div id="bg-overlay-a"></div>
 <div id="bg-overlay-b"></div>
 <div id="thumb"></div>`;
 },

 css() {
 return `<style> . . . style to be continued . . . </style>`;
 }
}

As usual, the CSS proves a bit lengthy, so we’ll continue it as follows.

:host {
 display: inline-block;
 position: relative;
}

#bg-overlay-a {
 width: 100%;
 height: 100%;

Listing 11.4 Template.js for the coordinate picker component

Listing 11.4 Template.js for coordinate picker component (continued)

Returns all HTML/CSS
to render component

Only one element needs
to be accessed by the
class: the thumbnail

HTML for component includes
two layered backgrounds and a
thumbnail

First background contains a
white gradient that fades to
transparent from left to right

240 CHAPTER 11 A real-world UI component
 border-radius: 3px;
 position: absolute;
 background: linear-gradient(to right, #fff 0%, rgba(255,255,255,0) 100%);
}

#bg-overlay-b {
 width: 100%;
 height: 100%;
 border-radius: 3px;
 position: absolute;
 background: linear-gradient(to bottom, transparent 0%, #000 100%);
}

#thumb {
 width: 5px;
 height: 5px;
 position: absolute;
 border-style: solid;
 border-width: 3px;
 border-color: white;
 border-radius: 6px;
 pointer-events: none;
 box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0,

0.19);
}

As I mentioned, the overall color is set as the component’s background color. To
accomplish the effect of increasing saturation from left to right, we use a <div> with a
white background color that fades from opaque to transparent as it goes from left to
right. Layered on top of that is a similar gradient that fades from completely transpar-
ent to black as it goes from top to bottom. Put both of these layers on top of a com-
pletely solid background color (the background color of our component), and we have
a nice little saturation and brightness map! But I should give credit where credit is
due—like the slider background, I borrowed this approach from http://cssgradient.io.

11.2.3 Component demos

Let’s finish up this component by creating a demo page for it. In fact, given that these
demo pages are all so similar, let’s knock out two at once. With the next listing, we can
demo the coordinate picker component.

<html lang="en">
<head>
 <title>Coordinate Picker Demo</title>
 <script type="module"
 src="coordpicker.js">
 </script>

 <style>
 wcia-coord-picker {
 width: 400px;
 height: 400px;

Listing 11.5 Coordinate picker demo page

Second background contains a
gradient that fades from
transparent to black vertically

Style for thumbnail

Imports the coordinate
picker component class

Sets a specific size for the
component with CSS

http://cssgradient.io

241Coordinate picker component
 }
 </style>
 </head>
<body>
 <wcia-coord-picker
 backgroundcolor="#ff0000">
 </wcia-coord-picker>
</body>
</html>

Just so I don’t belabor this same point with the final
color picker component and yet another very similar
demo page, let’s create the demo page for our final
component while we’re working on this one. Refresh-
ing our memory with the project structure in figure
11.7, we’ll now create a demo.html file in the compo-
nents/colorpicker folder.

 Unsurprisingly, we can just copy and paste the con-
tents of the coordinate picker demo file into the color
picker demo file. We can then just change a few
things. First the title and script import changes from

 <title>Coordinate Picker Demo</title>
 <script type="module" src="coordpicker.js">
 </script>

to

 <title>Color Picker Demo</title>
 <script type="module" src="colorpicker.js">
 </script>

The size of the component demo is fairly arbitrary, and 400 pixels by 400 pixels will
still work to demo the color picker. Only the CSS selector needs to be changed. Simply
change wcia-coord-picker to wcia-color-picker in the <style> block.

 Last, of course, the component is declared on the page differently:

<wcia-coord-picker backgroundcolor="#ff0000"></wcia-coord-picker>

becomes

<wcia-color-picker></wcia-color-picker>

Before moving on, however, it’s important to reflect on what we’ve achieved thus far.
We’ve now created the first steps for a color picker, or any number of UI components
that might use the slider or the coordinate picker. Something as basic as either of
these is a perfect example of an extremely simple component that could be used
throughout an entire library.

 We may well start a component library with an even simpler UI component: a but-
ton. Wherever you start, however, it’s important to have some foresight to make things
reusable and adaptable to the most scenarios. Our starter components only made it so
far, here. In the slider, we’ve left the underlying background out of the component to

Places the coordinate picker
on the page with an initial
background color of red

Figure 11.7 A reminder of the
files and folders for our component
while adding a new demo

242 CHAPTER 11 A real-world UI component
be able to make a rainbow gradient for the hue slider or a checkered pattern for the
opacity slider. But what about the <div> background inside the component? It only
functions as a fading gradient, even though its color is customizable.

 Perhaps we’ll need the slider in another context, where we want this background
layer to do something different, or maybe need more background layers! This is like-
wise true with the coordinate picker. Maybe instead of making the background a per-
manent part of our component, it might be better to allow backgrounds to be added
via slots. The slider could even be turned into the gradient slider we were originally
inspired by, requiring multiple thumbs to slide.

 Starting these components as the beginnings of a set of UI components requires a
lot of planning and a lot of refactoring, as different use cases come to light. In this
book, we’re considering only two use cases for the slider and only one for the coordi-
nate picker, but if we were continuing on with a component library, there could be
way more. With this in mind, let’s move on to our primary use case: the color picker.

11.3 The color picker
We’re now down to the third and final component, which holds the slider compo-
nent, the coordinate picker component, and some input fields. Together, they form
the overall color picker, as figure 11.8 shows.

With the demo.html file done in place, let’s focus on getting something up and run-
ning visually, even if we can’t interact with it just yet. Also, we’ll worry about the com-
ponent’s API later to focus on its internal workings right now. The first thing we
should do is create the component class (components/colorpicker/colorpicker.js).

import Template from './template.js';

export default class ColorPicker extends HTMLElement {

 constructor() {

Listing 11.6 Component definition for the color picker

Figure 11.8 Color picker component

Imports HTML/CSS
template module

Constructor that creates the Shadow
DOM, renders the HTML/CSS, and caches

the elements we’ll need

243The color picker

 tag
 super();
 this.attachShadow({mode: 'open'});
 this.shadowRoot.innerHTML = Template.render();
 this.dom = Template.mapDOM(this.shadowRoot);
 }
}
if (!customElements.get('wcia-color-picker')) {
 customElements.define('wcia-color-picker', ColorPicker);
}

There’s just enough there to now switch over to the template.js module to work on
HTML and CSS. For the HTML in the next listing, we’ll go ahead and lay out the
slider component, the coordinate picker component, and the input fields with labels.

import Slider from '../slider/slider.js';
import CoordinatePicker from '../coordpicker/coordpicker.js';

export default {
 render() {
 return `${this.css()}
 ${this.html()}`;
 },

 html() {
 return `<div class="container">
 <div class="row">
 <div class="slider-container">
 <wcia-slider
 id="hue-slider"
 value="50">
 </wcia-slider>
 <wcia-slider
 id="transparency-slider"
 value="0">
 </wcia-slider>
 </div>

 <wcia-coord-picker x="50" y="50"
 id="saturation-brightness"></wcia-coord-picker>
 </div>

 <div class="row">
 <div class="text-inputs">

Continuing on with the HTML, we next encounter those input fields. Though they
aren’t custom-made Web Components, we’ll be listening to user input from these in
much the same way as we do our sliders and the coordinate picker.

Listing 11.7 HTML for the color picker component

Defines the color picker
component, mapping it to
the <wcia-color-picker>

Imports the slider
and coordinate

picker components

Returns the
complete HTML/CSS
markup string

Two instances of the
slider, one for hue and
one for transparency

Coordinate picker
component

244 CHAPTER 11 A real-world UI component

 <div>
 <label class="top" for="textInputR">Red</label>
 <input id="textInputR"
 type="number" value="0"
 max="255" size="4" min="0">
 </div>

 <div>
 <label class="top" for="textInputG">Green</label>
 <input id="textInputG"
 type="number" value="0"
 max="255" size="4" min="0">
 </div>

 <div>
 <label class="top" for="textInputB">Blue</label>
 <input id="textInputB"
 type="number" value="0"
 max="255" size="4" min="0">
 </div>

 <div>
 <label class="top" for="textInputA">Alpha</label>
 <input id="textInputA"
 type="number" value="0"
 max="100" min="0" size="4">
 </div>

 <div>
 <label class="top" for="textInputHex">Hex</label>
 <input id="textInputHex"
 type="text" width="50px" size="8">
 </div>
 </div>
 </div>
 </div>`
 }
}

As the final visual step to see what we’re working with, the next listing adds the CSS to
this import module.

css() {
 return `<style>
 :host {
 width: 100%;
 display: inline-block;
 }

 .container {
 padding: 10px;

Listing 11.7 HTML for the color picker component (continued)

Listing 11.8 CSS for the color picker

Red, green, and blue
numeric inputs

(accept values of 0–255)

Alpha/transparency input
(accepts values of 0–100)

Hexadecimal
color input

Style on normal elements
used for layout purposes

245The color picker
 }

 .text-inputs {
 display: flex;
 width: 100%;
 justify-content: center;
 }

 .row {
 display: flex;
 }

 .slider-container {
 flex: 1;
 padding-right: 10px;
 }

Continuing on with the CSS, the prior styles were all for layout and on standard, every-
day elements. The next styles are all on our custom components and, in addition to
simple style and layout, serve to differentiate the sliders through their backgrounds.

 #hue-slider, #transparency-slider {
 width: 100%;
 height: 40px;
 margin-bottom: 5px;
 border-radius: 3px;
 }

 #saturation-brightness {
 width: 90px;
 height: 90px;
 border-radius: 3px;
 }

 #hue-slider {
 background: linear-gradient(to right, red 0%, #ff0 17%,
 lime 33%, cyan 50%, blue 66%, #f0f 83%, red 100%);
 }

 #transparency-slider {
 background-image: linear-gradient(45deg, #ccc 25%,
 transparent 25%),linear-gradient(-45deg, #ccc 25%,
 transparent 25%),linear-gradient(45deg, transparent 75%,
 #ccc 75%),linear-gradient(-45deg, transparent 75%,
 #ccc 75%);
 background-size: 16px 16px;
 background-position: 0 0, 0 8px, 8px -8px, -8px 0px;
 }
 </style>`;
}

Listing 11.8 CSS for the color picker (continued)

Special rainbow-like
background for the hue slider

Special checkered
background to

show transparency

246 CHAPTER 11 A real-world UI component
 Figure 11.9 shows what these sliders will look like once logic is wired up in the next
steps to control these colored layers.

As one last step in this import module, we’ll cache some elements that are important
to wiring up the interaction. The next listing shows these eight elements as we return
references to them.

mapDOM(scope) {
 return {
 hue: scope.getElementById('hue-slider'),
 transparency: scope.getElementById('transparency-slider'),
 satbright: scope.getElementById('saturation-brightness'),
 textInputR:
scope.getElementById('textInputR'),
 textInputG: scope.getElementById('textInputG'),
 textInputB: scope.getElementById('textInputB'),
 textInputA: scope.getElementById('textInputA'),
 textInputHex: scope.getElementById('textInputHex'),
 }
}

We’re working with a few more elements here than in the slider or coordinate picker
components. We’ll want to cache references here for those components, but we’ll
need to interact with each individual text field as well to listen and respond when
users enter values by entering numbers and text.

11.3.1 Observing attribute changes for interaction

Many times when I’m working on a complex component like this, I’ll add event listen-
ers to every element and pair them with a handler to do something when that event
happens. Though we could have done just that, Custom Events were not added to the
slider and coordinate picker components. We’ll cover using Custom Events in Web
Components toward the end of the book, but for now, there’s another way we can
watch for and respond to changes.

Listing 11.9 Important elements to cache and return references used for interaction

Single background with
rainbow linear gradient

Transparency gradient
background overlaid on
checkered background

Figure 11.9 Hue and transparency slider backgrounds

Three of our Web Component
elements cached

RGBA and
hexadecimal input
elements cached

247The color picker

A

d

 You don’t see the DOM Mutation Observer feature talked about that often, but I
think Web Components are a perfect use case for it. When you set up a Mutation-
Observer, you give it a specific chunk of HTML to watch or observe, as depicted in
figure 11.10. You also set a handler to call when these changes occur.

While we won’t need to watch the inner text contents of our HTML tags, our Web
Component attributes are constantly updating as we use them. With some custom
options, we can watch for attribute changes and react to them. Turning back to the
component class (components/colorpicker/colorpicker.js) in the following listing,
we can set up the MutationObserver to watch for these attribute changes.

constructor() {
 super();
 this.attachShadow({mode: 'open'});
 this.shadowRoot.innerHTML = Template.render();
 this.dom = Template.mapDOM(this.shadowRoot);
 const observer = new MutationObserver(e => this.onMutationChange(e));
 observer.observe(this.shadowRoot, { attributes: true, subtree: true });
}

onMutationChange(records) {
 records.forEach(rec => {
 this.data = Handlers.update({
 model: this.data,
 dom: this.dom,
 component: this,
 element: rec.target,
 attribute: rec.attributeName,
 });
 });
}

Now, every time the slider value attribute is changed, or the coordinate picker’s x or y
value changes, we’ll be notified! We’ll also be notified of other things we don’t neces-
sarily care about, like the class attribute or even our backgroundcolor attributes, but
we can ignore those changes.

Listing 11.10 Listening to attribute changes with a MutationObserver

<div class=”div-to-observe”>
 <div>
 <my-component
 someattribute=”value1”
 anotherattribute=”value2”>
 </my-component>
 </div>
</div>

Block of HTML

Attributes
are changed
(doesn’t
matter how)

Mutation Observer

Listen to element (include subtree and watch attributes)

onMutationChanges(records) {
 ... do something with changes
}Both changes

are sent to
function

" "
" "

Figure 11.10 A Mutation Observer in action

Creates a new
MutationObserver with a

handler to listen for changes

Observes the component’s
Shadow DOM, specifying to

watch for attributes and also
watch all the elements within

MutationObserver can report
multiple changes, so we need to loop
through an array to handle them.

 custom
handler
not yet

iscussed

248 CHAPTER 11 A real-world UI component
 To handle these change events, I’ve placed the logic away from the component
class, so it doesn’t grow too complex and unwieldly. The Handlers.update function
comes from another import module. This function is passed two things the Mutation-
Observer gives us: a reference to the changed element and which attribute changed.
We’re also feeding that handler a reference to this, or the color picker component
itself, as well as this.dom, or the cached elements created in the template.js module.
With access to all the elements we need, this update function can change attri-
butes/properties on any of the elements. When the hue changes, for example, this
new module can respond to the change by setting the background color of both the
transparency slider and the coordinate picker, and can update all the input fields
reflecting the new color.

 Lastly, a property on this Web Component class, this.data, is passed into the
Handlers.update function and returned. This property basically accumulates data.

 Using the hue as an example again, the value would be stored and kept in this
data. When the brightness or saturation changes, we don’t want to lose that hue value,
so we keep the this.data property as a persistent object.

 Of course, none of this would work if we didn’t import the module. Adding the
import alongside the template.js module to the top of the Web Component class will
do the job:

import Template from './template.js';
import Handlers from './handlers.js';

The Handlers import actually imports yet another separate module to do all the color
math required. It offers conversion from hexadecimal to RGB, RGB to hexadecimal,
and other handy utilities. I’m not going to cover the logic within either of these mod-
ules here. Neither teaches any Web Component concepts; they just provide logic for
controlling the state of our UI. If you are curious, however, please refer to this book’s
GitHub repo.

 With this extra functionality, our project structure grew by two files. Figure 11.11
shows all of the modules in our component and further details how the interaction
works.

11.3.2 Responding to input fields

It would be super nice if, when the value changes on each <input> element, the attri-
bute changed as well. Unfortunately, that’s not how it works; the value attribute is just
not updated when the user changes the contents of the input. So, another listener is
needed—a simple change listener. You might think to wire each <input> element with
its own event listener, but we can actually listen for change events that bubble up to
our shadow root with a single listener, as figure 11.12 shows. Listing 11.11 puts that
one event listener in practice.

249The color picker

Handlers for MutationObserver,
component attributes, and
input field change event

Color conversion math utilities

Color picker component class

Color picker
Import handlers.js

• Input field changes
• Mutation observer changes
• attributeChangedCallback

Set color and alpha

Handlers
Import colors.js

Calculate color and alpha

Update component DOM

Return color and alpha

Color math

RGB <-> Hex
HSV <-> RGB

Figure 11.11 Project structure with new modules

<my-component>
 <#shadow-root>
 <input type=”text”>
 <input type=”number”>
 <input type=”text”>
 </#shadow-root>
</my-component>

Component HTML
Add change event
listener to shadow root

Input field changes
“bubble up” to

shadow root

Event listener

doSomething(event) {

}

Figure 11.12 Events bubbling to the shadow root

250 CHAPTER 11 A real-world UI component

constructor() {
 super();
 this.attachShadow({mode: 'open'});
 this.shadowRoot.innerHTML = Template.render();
 this.dom = Template.mapDOM(this.shadowRoot);
 const observer = new MutationObserver(e => this.onMutationChange(e));
 observer.observe(this.shadowRoot, { attributes: true, subtree: true });
 this.shadowRoot.addEventListener('change', e =>

this.onInputValueChanged(e));
}

onInputValueChanged(e) {
 this.data = Handlers.update({
 model: this.data,
 dom: this.dom,
 component: this,
 element: e.target,
 });
}

Notice that we’re sending the same exact objects to the Handlers.update function
(except for the attribute name, as that doesn’t apply here). All of the incoming data,
whether it’s from the change event or the MutationObserver, can be treated the
same, which leads the Handlers.update function to be fairly straightforward. With
all of the setup work done so far, it can be a good challenge to try to implement this
module yourself along with the color math (http://www.easyrgb.com/en/math.php),
which I used as a helpful resource to write the conversion functions. Again, the
details of these import modules would be a bit lengthy to describe here and aren’t
Web Component specific at all; so while not included here, they are available in the
GitHub repo for this book.

11.3.3 Responding to attribute changes

There is one last Web Components-related concept to make the color picker func-
tional. Our component should update both color and transparency values for its own
attributes. Color will be represented as a hexadecimal value, and transparency will be a
percentage from 0 to 100. The attributes will be named hex and alpha, respectively.

 To update these values after some aspect of the color has changed, whether it be
a hue slider, the red input field, or the coordinate picker, the Handlers.update
function takes a reference to the component, so it can easily update these attributes
on the component. What needs to be accomplished, however, is listening for changes
from the outside. Another part of the app that the color picker component lives in
could set the color of the component, and it should respond by changing all of the
applicable UI elements (updating the inputs, the sliders, and the coordinate picker).
While the specific logic to achieve this can live in the Handlers.update function, we
still need to respond to changes and send the information along to the module.

Listing 11.11 Listening for change events inside the component’s Shadow DOM

Change event listener
for input fields

Change event handler

http://www.easyrgb.com/en/math.php

251The color picker
 Since we’ve already defined the API as having both hex and alpha properties, it’s
obvious what we need to listen for and implement for reflection. The following listing
shows implementations of the attribute change callbacks and the getters/setters in
components/colorpicker/colorpicker.js.

static get observedAttributes() {
 return ['hex', 'alpha'];
}

attributeChangedCallback(name, oldVal, newValue) {
 switch (name) {
 case 'hex':
 case 'alpha':
 if (oldVal !== newValue) {
 this.data = Handlers.update({
 model: this.data,
 dom: this.dom,
 component: this,
 element: this,
 attribute: name,
 });
 }
 break;
 }
}

set hex(val) {
 this.setAttribute('hex', val);
}

get hex() {
 return this.getAttribute('hex');
}

set alpha(val) {
 this.setAttribute('alpha', val);
}

get alpha() {
 return this.getAttribute('alpha');
}

Though everything is in place now, one last issue with the API should be addressed.
The color picker doesn’t act quite right when loading up because there’s no color
or transparency value to start with if the attribute wasn’t specified! To finish the
functional implementation of the component, let’s specify some default values. We
can use two static getters at the top of the ColorPicker class:

export default class ColorPicker extends HTMLElement {
 static get DEFAULT_HEX() { return '#77aabb'; }
 static get DEFAULT_ALPHA() { return 100; }

Listing 11.12 Implementing the API for our component

Defines which attributes
to listen to changes for

Listens for attribute changes

Responds to changes using
Handlers import module,
passing in the attribute name

Getters and setters for
hex and alpha attributes

252 CHAPTER 11 A real-world UI component
The default values I used here are a bit arbitrary. Feel free to fill them in with whatever
values you prefer. We can then populate these values when the component is added to
the page. The next listing adds a connectedCallback for this purpose.

connectedCallback() {
 if (!this.hex) {
 this.hex = ColorPicker.DEFAULT_HEX;
 }
 if (!this.alpha) {
 this.alpha = ColorPicker.DEFAULT_ALPHA;
 }
}

As the color picker component supports reflection, it’s easy to simply set these proper-
ties through the JS API. As attribute changes are listened to, setting these two will flow
through and make all of the appropriate changes in each piece of UI in the compo-
nent. It’s also important to note that this is on the connectedCallback handler
instead of the constructor. When the constructor is called, it’s just too early in the
component lifecycle for attributes to exist yet!

11.4 Adding a common design language
We’ve done quite a bit so far! Three components are done, and they all work together in
service of an overall color picker component we can use in a real project. While it’s great
to have a component demo, as we do in all three, it’s even better to see the final compo-
nent in a more real-world context. This is why I thought it would be good to set up a test
page with the component in place, change the background color of the page, and set
the opacity of some text. The next listing sets this up for us to give us the more compre-
hensive demo. We’ll just create this in the root of our project as an index.html file.

<html lang="en">
<head>
 <title>Color Picker Component</title>
 <script type=
 "module" src="components/colorpicker/colorpicker.js"></script>
 <style>
 h1 {
 font-family: sans-serif;
 font-weight: bolder;
 color: white;
 text-shadow:
 -1px -1px 0 #000,
 1px -1px 0 #000,
 -1px 1px 0 #000,
 1px 1px 0 #000;
 }
 </style>
</head>

Listing 11.13 Setting color and transparency at the start if not defined

Listing 11.14 A color picker demo that can affect elements on the page

If no hexadecimal color
attribute exists, uses the default

If no alpha attribute exists,
uses the default

Imports the color
picker component

Gives the sample text a black border
against a potential dark background
when we use the color picker

253Adding a common design language
<body>
 <wcia-color-picker
 hex="#7687db"
 alpha="75">
 </wcia-color-picker>

 <h1>Transparency</h1>
 <script>
 document.body.style.backgroundColor =
 document.querySelector('wcia-color-picker').getAttribute('hex');
 document.querySelector('h1').style.opacity =
 document.querySelector('wcia-color-picker').getAttribute('alpha');

 const observer = new MutationObserver(
 function(records) {
 records.forEach(rec => {
 switch (rec.attributeName) {
 case 'hex':
 document.body.style.backgroundColor = rec.target.hex;
 break;

 case 'alpha':
 document.querySelector('h1').style.opacity =
 rec.target.alpha / 100;
 }
 });
 });
 observer.observe(document.querySelector('wcia-color-picker'),
 { attributes: true });
 </script>
</body>
</html>

While this new demo lets us interact with the color picker in a more meaningful way, it
also highlights something else—it’s kind of ugly! Figure 11.13 shows this new demo,
and not much attention is paid to design details.

11.4.1 Swapping in CSS vars for a consistent design

While there’s not much that can go wrong with the slider and coordinate picker
because there aren’t many moving parts, the input fields are completely unstyled, and
many of the finer details, like border radius (rounded corners), are pretty arbitrary.

Adds the color picker
component to the page

Uses the color picker’s initial
values to set the sample text
opacity and the background

color of the page

Observes attribute changes on
the color picker and updates the
sample text and page background

Figure 11.13 The new color picker demo, wired up to change page color and text transparency

254 CHAPTER 11 A real-world UI component
These kinds of details should really be defined on a system-wide level. Thinking in
terms of a larger application, you’ll want to make sure all of these details are consis-
tent. There might be not just a color picker but also a wide variety of components. If
those components all have different style rules, things will look messier than ever!

 Modern design systems are just catching up with Web Components now. Many, like
Bootstrap, are built in such a way that the Shadow DOM will block their styles from
the component altogether. Instead, let’s go way more lightweight and create some
common CSS of our own with JS imports. These rules can be imported into any com-
ponent that needs them!

 Before doing this, let’s lay down some basic ground rules by using CSS Variables in
listing 11.15. This could be a JS import module if we wanted it to be, but given that the
larger context of an application or design system doesn’t exist in our case, we’ll simply
place it at the root of our project in a vars.css file.

:root {
 --text-xsmall: .5em;
 --text-small: .7em;
 --text-medium: 1em;
 --text-large: 1.3em;
 --text-xlarge: 1.5em;

 --color-pureblack: black;
 --color-black: #2a2a2a;
 --color-lightblack: #4a4a4a;
 --color-darkgrey: #6a6a6a;
 --color-grey: #7a7a7a;
 --color-lightgrey: #9a9a9a;
 --color-darkwhite: #dadada;
 --color-white: #fafafa;
 --color-purewhite: #ffffff;

 --text-color: var(--color-lightblack);
 --text-inverted-color: var(--color-white);
 --border-color: var(--color-lightblack);
 --border-color-light: var(--color-darkwhite);
 --border-inverted-color: var(--color-white);
 --background-color: var(--color-white);
 --background-inverted-color: var(--color-lightblack);

 --border-radius: 6px;
 --border-width-thick: 3px;
 --border-width: 1px;
 --padding-medium: 5px;
}

It’s true that I likely went a bit overboard here defining more than what our existing
components might need, but these are good sample rules to lay down and build a
common design language from for your application. We can even start replacing
hard-coded values in the slider component (components/slider/template.js) in the
following listing.

Listing 11.15 CSS vars to use throughout a hypothetical app and our components

Defines various text sizes

Various color variables

Maps color variables to
specific items like text,
border, and background

Various spacing rules

255Adding a common design language

css() {
 return `<style>
 :host {
 ...
 border-radius: var(--border-radius);
 ...
 }

 #bg-overlay {
 ...
 border-radius: var(--border-radius);
 ...
 }

 #thumb {
 ...
 border-width: var(--border-width-thick);
 border-color: var(--border-inverted-color);
 border-radius: var(--border-radius);
 ...
 }
 </style>`;
}

We can now do the same for the coordinate picker component (components/coord-
picker/template.js).

css() {
 return `<style>
 #bg-overlay-a {
 ...
 border-radius: var(--border-radius);
 ...
 }

 #bg-overlay-b {
 ...
 border-radius: var(--border-radius);
 ...
 }

 #thumb {
 ...
 border-width: var(--border-width-thick);
 border-color: var(--border-inverted-color);
 border-radius: var(--border-radius);
 ...
 }
 </style>`;
}

Listing 11.16 Replacing values with CSS vars in the slider component

Listing 11.17 Replacing values with CSS vars in the coordinate picker component

Uses CSS vars on the component
itself to control the border

Uses CSS vars on the overlay background
<div> to control the border

Uses CSS vars on the thumbnail
to control the border

Uses CSS vars on the two overlay
background <div> to control the border

Uses CSS vars on the thumbnail
to control the border

256 CHAPTER 11 A real-world UI component
Last, of course, we can do the same for the color picker component (compo-
nents/colorpicker/template.js).

css() {
 return `<style>
 ...
 #hue-slider,
 #transparency-slider {
 ...
 border-radius: var(--border-radius);
 }

 #saturation-brightness {
 ...
 border-radius: var(--border-radius);
 }

 ...
 </style>`;
}

With just these rules, design consistency goes a long, long way. There is no longer a
risk of using inconsistent colors or rounded corners. These small details really add up.
CSS Variables can only accomplish so much, though. We’re limited to basically one
CSS rule at a time.

11.4.2 Using imports for more complex CSS

Turning back to importable modules, we can cover
the rest. What we’ll do next is a drop in the bucket
when thinking about every single need in a big
design system like Bootstrap or Google’s Material,
but it’s a start. Figure 11.14 indicates the new project
structure with all of the imports for the “design sys-
tem” in place.

 First, in the following listing, we can start with
defining some universal rules.

Listing 11.18 Replacing values with CSS vars in the color picker component

Uses CSS vars on the two
sliders to control the border

Uses CSS vars on the
coordinate picker to
control the border

Figure 11.14 Our project file
structure including the CSS vars
and the design system imports

257Adding a common design language

export default {
 normal() {
 return `
 font-family: sans-serif;
 font-size: 1em;
 line-height: 1.2em;
 color: black;`;
 },

 inverted() { return `color: white;`; }
}

This small set of text rules can then be imported into a module intended for use as a
base rule set for any component (designsystem/base.js):

import Text from './text.js';
export default {
 common() { return `${Text.normal()}`; }
}

Since the extremely limited number of rules here don’t happen to apply to the
already pretty solid-looking slider or coordinate picker components, we can just use
this base component style import in the color picker component (components/
colorpicker/ template.js):

import Base from '../../designsystem/base.js';

Using it is easy—it’s just like using any other template literal:

:host {
 ${Base.common()};
 width: 100%;
 display: inline-block;
}

While it’s great to have some basics down, the few that we have will make only a small
impact on our fairly minimal component. No, the bulk of what needs to be styled are
the input fields with their corresponding labels. We can take this on by defining some
specific rules in a designsystem/inputfields.js module, shown in the following listing.

// designsystem/inputfields.js

import Text from './text.js';

export default {
 css() {
 return `
 .ds-form-input {
 margin-right: 5px;
 }

Listing 11.19 Universal text rules in designsystem/text.js

Listing 11.20 A module containing rules for input fields

Defines some normal text rules
with color, size, and font

Alters the color when it
appears inverted over a
dark background

Imports the text.js module, so we
can use specific text CSS rules

Spacing for the input container

258 CHAPTER 11 A real-world UI component
 .ds-form-input
 ➥.ds-input-field-label {
 border-top-left-radius: var(--border-radius);
 border-top-right-radius: var(--border-radius);
 background-color: var(--background-inverted-color);
 padding: var(--padding-medium);
 display: block;

 font-size: var(--text-xsmall);
 ${Text.inverted()}
 }

 .ds-form-input

 ➥.ds-input-field-label.top {
 display: block;
 }

 .ds-form-input input {
 border-style: solid;
 border-width: var(--border-width);
 border-color: var(--border-color-light);
 padding: var(--padding-medium);
 font-size: var(--text-large);
 } `;
 }
}

As we did previously, we should import this module into the components/color-
picker/template.js module:

import InputFields from '../../designsystem/inputfields.js';
import Base from '../../designsystem/base.js';

We can also add it to our CSS in the same module:

 css() {
 return `<style>
 ${InputFields.css()}

Note that we are importing complete CSS rules with selectors, so the function call can
be embedded right in the <style> tag instead of inside a selector/block, as we did
before with :host. And, as we are using new selectors, we’ll need to add these to the
HTML in the same file. It’s an easy add that applies the same for all of our input fields,
so I’ll just highlight the first:

<div class="ds-form-input">
 <label class="ds-input-field-label top" for="textInputR">Red</label>
 <input id="textInputR" type="number" value="0" max="255" size="4" min="0">
</div>

Let’s take a peek at our styled input fields in figure 11.15.
 We’re almost done! I don’t like how all the UI elements seem to be floating in

space in the layout on the demo page. I’d prefer the component have a white modal
background to visually connect the elements and make it feel popped out from the

Styles the label for the input

With a dark,
inverted

background
color, use

inverted text.
For our demo, we’re putting the
label on top of the input, so
specify top if we want to follow
up in the future with variations.

Styles the actual input field

259Adding a common design language
page. So, with that, let’s make one last CSS import module, designsystem/modal.js, as
the following listing shows.

// designsystem/modal.js

export default {
 css() {
 return `
 .ds-modal {
 ${this.rules()}
 }
 `;
 },

 rules() {
 return `
 background-color: var(--background-color);
 border-radius: var(--border-radius);
 box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2),
 0 6px 20px 0 rgba(0, 0, 0, 0.19);
 `;
 }
}

I separate things out a bit here. The .ds-modal selector points to the rules() func-
tion to embed the actual CSS rules. The reason is that, ideally, I’d prefer to just tack
the .ds-modal onto the color picker component and be done with it, like so:

<wcia-color-picker class="ds-modal" hex="#7687db" alpha="75">
 </wcia-color-picker>

Unfortunately, these CSS rules won’t pierce the shadow boundary from outside the
component (yes, even directly on the component tag itself is still outside the shadow
boundary) and won’t do anything to style the component.

 Still, in other situations that don’t involve a shadow boundary, having that selector
would be nice, so we’ll leave it in our design system. Breaking out those rules makes
things dual-purpose, because in the context of our component, now we can just avoid
calling Modal.css()and instead use our own CSS selector, as in the next listing.

Listing 11.21 Modal CSS module

Figure 11.15 Style input fields after applying a rudimentary design system

Selector and template literal
containing the CSS rules

Just the CSS rules

A shadow around the
element to make it look
popped out from the page

260 CHAPTER 11 A real-world UI component

css() {
 return `<style>
 ${InputFields.css()}

 :host {
 ${Base.common()};
 width: 100%;
 display: inline-block;
 }

 :host(.modal) {
 ${Modal.rules()}
 }

As with all of our extra CSS modules, be sure to add the import in the compo-
nents/colorpicker/template.js file:

import InputFields from '../../designsystem/inputfields.js';
import Base from '../../designsystem/base.js';
import Modal from '../../designsystem/modal.js';

Note the way we inserted the modal rules in our component. We’ve made having the
modal treatment optional. Now, the modal style is only applied if the modal class is
present on the component. We’ll do this in the root index.html file to see it in the full
context as we change the background color of the page with the color picker:

<wcia-color-picker class="modal" hex="#7687db" alpha="75"></wcia-color-picker>

Finally, we have a styled color picker component, as shown in figure 11.16.

Not only did we make the component better looking here, but we can tweak things
globally to give the component (and surrounding application, if we had one) a differ-
ent look and feel. Let’s give it a more playful look as shown in figure 11.17 simply by
increasing the border radius all around. We can do this right in the vars.css file by
changing --border-radius: 6px; to a value like 12 pixels.

Listing 11.22 Adding CSS style rules for a modal

Styles any component with a
.modal class assigned with
the modal CSS rules

Figure 11.16 The color picker component style with a quick and dirty module-based design system

261Summary
If you’re only worried about modern browsers that support Web Components, mission
accomplished! We’ve created a nice-looking color picker thanks to design and techni-
cal inspiration from cssgradient.io. Certainly, the barebones design system we created
has a lot of room to improve if we needed to build a larger application or platform,
but for the purposes of the color picker component, there is plenty of room to style
from the outside without changing a single line of any of our components.

 In the next chapter, we’ll be looking at what happens when the picture isn’t so
rosy, and a target browser we need to support doesn’t offer Web Components natively.
How outdated the browser is will dictate how far we’ll need to go. Don’t worry, this
color picker will work just about everywhere!

Summary
In this chapter, you learned

 How to plan a semi-complex UI component by breaking an inspiration refer-
ence design down into multiple pieces, some of which become their own
smaller components

 To break down a component into its inputs and outputs and plan an API
around them, including using the concept of reflection to enforce a common
API when using tag attributes or JS

 To create separate and universal styling rules, whether through CSS vars or
importable modules that can be used in your components and in the larger sys-
tem to enforce design consistency throughout

Figure 11.17 The color picker design is easily tweaked by changing the CSS modules or the CSS vars

Building and supporting
older browsers
In the last chapter, we finished building a reusable color picker component consist-
ing of a few different custom components itself. It works pretty well, but the ques-
tion now is whether this component works for all your target users. It certainly
could, and we might stop here. The component we’ve built supports Chrome, Fire-
fox, and Safari. This leaves only one modern browser left: Microsoft Edge.

 As of now in this book, we’ve covered nearly every Web Component concept
possible. Our learnings took us from creating Web Components with just Custom
Elements to then capping everything off with the amazing Shadow DOM.

 There is a good reason that we’ve tackled things in this order, and that reason is
because there will be situations where you just can’t or don’t want to use the

This chapter covers
 Module bundling with Rollup

 Transpiling with Babel to allow Web Components in IE11

 Running and combining scripts with npm and package.json

 Using dev dependencies in package.json

 Ponyfilling CSS vars for IE11
262

263Backward compatibility
Shadow DOM. I’m excited to say that these situations are becoming increasingly rare!
The end of 2018 brought us some great news on that front. Web Components landed
in Firefox, which makes Edge the only major browser we’re waiting patiently for. We
knew that the Microsoft Edge team was busy working on Web Component support,
but then in April 2019, the team released a developer preview of a Chromium-based
Edge. Browser diversity worries aside, this looks like great news for Web Components
because this new version of Edge supports Web Components in the same way Chrome
does (no worrying about weird things that Microsoft implemented in a slightly differ-
ent way).

 The big picture here is that there are currently two major browsers that don’t sup-
port Web Components natively: pre-Chromium Edge and IE11. For some lucky web
developers, these browsers just don’t matter. For IE11, this is because on non-Windows
10 machines, it’s already reached its end of life. On newer Windows 10 machines, Mic-
rosoft recommends that folks use Edge, despite having IE11 available. For Edge, it’s
now easy to assume that it’s only a matter of waiting a few months before most normal
consumers have a browser version available that has identical capabilities to Chrome.

 Not all of us are that lucky, however. IE11 continues to be a thorn in the side of
many web developers. Pre-Chromium Edge could also continue to exist for a while as
users slowly upgrade.

 Whatever the reason, when creating components, it’s good to have a plan of action
to take these issues on. So, in this chapter, we're going to take the real-world UI com-
ponent from the last chapter and back up a bit to get it working on Edge with a poly-
fill and some small changes. Finally, we’ll talk about specific build tools to get our
component working in IE11.

12.1 Backward compatibility
So, do you wait for support? While a Chromium-based Edge developer preview is avail-
able today, how long before it’s released to everyone using Windows? How long will it
take for current users to upgrade to the latest? Right now, these questions don’t have
good answers, so it’s worth talking strategy to make the color picker from the last
chapter work for the current version of Edge. This strategy will also take us most of the
way to supporting IE11 if you absolutely need to support that browser. For IE11, there
is a build/transpile step, but, for now, let’s focus on a hypothetical modern browser
that doesn’t support Web Components.

 One great resource to help with this effort is the various polyfills provided at
www.webcomponents.org/polyfills. To be honest, though, I’m not so much a fan of
polyfilling the Shadow DOM. It’s a bit too much like magic, meaning it does a good
number of things behind the scenes that it doesn’t make you aware of, like copying
and rewriting your component’s DOM elements with different unique classes. This
would be fine if the polyfill handled everything seamlessly and had no limitations. The
reality is that even when using the Shadow DOM polyfills, you really have to be aware
of the limitations that come when the Shadow DOM isn’t natively available and work

www.webcomponents.org/polyfills

264 CHAPTER 12 Building and supporting older browsers
around them. With this in mind, we can make a few changes to toggle on and off the
Shadow DOM for our component that will make it compatible with Edge without poly-
filling this specific feature.

 Despite avoiding the Shadow DOM polyfill, the first step is to polyfill for another
aspect of Web Components: Custom Elements. This polyfill is, in fact, drop-in. When
we add the polyfill to our component, we don’t have to worry about caveats or unsup-
ported features. Custom Elements will just work in those browsers that don’t support
them yet.

 The polyfill can be found at https://github.com/webcomponents/custom-elements.
As per the documentation, you can build it yourself, install from NPM, or, as we will do
now, just use it from a content delivery network (CDN). To be thorough, we should add
the polyfill to all three of our demo.html files so that they all work. Simply add the script
link to each—in the index.html demo, for example:

<title>Color Picker Component</title>
<link rel="stylesheet" type="text/css" href="vars.css">
<script type="module" src="components/colorpicker/colorpicker.js"></script>
<script src="https://unpkg.com/@webcomponents/custom-elements"></script>

12.1.1 Toggling the Shadow DOM

If the Shadow DOM was used but is then turned off, one of the great things that hap-
pens is that the shadow root isn’t created; instead, you can fall back to the scope of
your component (this). It works really well because the shadowRoot property can be
interacted with in the same ways as your component. This means that in terms of
using JS to interact with either, none of your code needs to change if you use a simple
property to represent either scope interchangeably.

 The major exception here is something we’ve covered before. This exception is
the use of the constructor to do the heavy initialization work. Remember that when
using the Shadow DOM, you’re creating a separate, mini DOM inside your compo-
nent. So, given that you’re creating it right there in the constructor, this mini DOM is
instantly available. When not using the Shadow DOM, you’re relying on the DOM pro-
vided by the HTML page you’re in. Access to this DOM isn’t available yet in the con-
structor function, so the connectedCallback function is the best place to put DOM
interaction like getting/setting attributes and setting the component’s innerHTML.

 Before we get into the workaround, chances are you’re developing with Chrome,
Firefox, or Safari. Instead of jumping over to Edge to test things where Web Compo-
nents aren’t supported, you can do the bulk of the work in your favorite browser by
creating a toggle on the class that turns the Shadow DOM on and off. This will simu-
late Edge pretty well, and you can just do proper testing in that browser when you’re
done.

 Using the slider component as a starting example, we’ll add a static getter to con-
trol whether we opt in to the Shadow DOM:

export default class Slider extends HTMLElement {
 static get USE_SHADOWDOM_WHEN_AVAILABLE() { return false; }

https://github.com/webcomponents/custom-elements

265Backward compatibility

We’ll do this in components/slider/slider.js, as well as in the other two components
found in components/coordinatepicker/coordinatepicker.js and components/color-
picker/colorpicker.js.

 With this toggle in, we can now turn our attention to the constructor. Remember,
we can’t interact with the DOM here if we’re not using the Shadow DOM, so we’ll
move some things around. Listing 12.1 shows what we started with, and listing 12.2
shows how it can be changed for toggling the DOM off and on.

constructor() {
 super();
 this.attachShadow({mode: 'open'});
 this.shadowRoot.innerHTML = Template.render();
 this.dom = Template.mapDOM(this.shadowRoot);

 document.addEventListener('mousemove', e => this.eventHandler(e));
 document.addEventListener('mouseup', e => this.eventHandler(e));
 this.addEventListener('mousedown', e => this.eventHandler(e));
}

To change this, we can move some code to the constructor and create (or not create)
the Shadow DOM.

constructor() {
 super();

 if (Slider.USE_SHADOWDOM_WHEN_AVAILABLE &&
 this.attachShadow) {
 this.root = this.attachShadow({mode: 'open'});
 } else {
 this.root = this;
 }

 document.addEventListener('mousemove',
 e => this.eventHandler(e));
 document.addEventListener('mouseup', e => this.eventHandler(e));
 this.addEventListener('mousedown', e => this.eventHandler(e));
}

connectedCallback() {
 if (!this.initialized) {
 this.root.innerHTML = Template.render({
 useShadowDOM: Slider.USE_SHADOWDOM_WHEN_AVAILABLE &&
 this.attachShadow });
 this.dom = Template.mapDOM(this.root);
 this.initialized = true;

 if (this.backgroundcolor) {
 this.setColor(this.backgroundcolor);
 }

Listing 12.1 Slider component before allowing Shadow DOM toggling

Listing 12.2 Enabling a Shadow DOM toggle

Creates a shadow root

Renders the HTML/CSS
to innerHTML

 Event
listeners

If opted into using the Shadow
DOM and it’s supported, creates a
shadow root; otherwise sets the
reference to the component (this)

Event listeners don’t need to move because
both the component and document are
available from the constructor.

connectedCallback could happen multiple times
(whenever the component is added to the page),
so make sure initialization happens only once.

Indicates to the HTML/CSS
Template module whether the

Shadow DOM is being used

Updates component based
on current attributes

266 CHAPTER 12 Building and supporting older browsers
 if (this.value) {
 this.refreshSlider(this.value);
 }
 }
}

The very first thing we’re doing here is creating a property on the class called
this.root. If we use the Shadow DOM, set this property to the shadow root. If not,
simply set it as a reference to our component (this). Now, we can use this.root any-
where we need to manipulate the contents of our component, whether we’re using
the Shadow DOM or not.

 We don’t actually need to move the event listeners. We would if they were more
specific. If, for example, we created an event listener on the thumbnail or some ele-
ment that’s not in the DOM yet, it wouldn’t work here. In this example, it just so hap-
pens that the things we’re listening to—the document and the component itself—are
both available from the start.

 The initialization code is moved to a new connectedCallback function, but
remember, this handler is fired each time the component is added to the page. To
make a truly bulletproof component, we should check if it’s already been initialized
with a custom this.initialized property, running code only if it hasn’t been run
yet. For our immediate needs with the color picker, we really don’t need this check,
but, again, if we want to make components that work in a variety of situations, this
really should be prioritized.

 Working with our Template import module is pretty straightforward. Instead of set-
ting the shadowRoot.innerHTML to the HTML/CSS string returned from the import,
we simply set this.root.innerHTML. Whether this.root is the shadow root or the
component, it will work regardless. Similarly, when getting cached element references
with Template.mapDOM, this.root works regardless of which reference it contains.

 Lastly, we have to add one extra bit around our attributes. The reflection (attri-
butes/getters/setters) strategy doesn’t change, but there is a timing issue here. When
we were using the Shadow DOM, we could initialize everything, including rendering
all our HTML, getting element references, and so on, all in the constructor. By the
time the attributeChangedCallback fired with our starting attributes, we’d be set up
and ready to go. Now, however, the attributeChangedCallback fires before the
connectedCallback handler, so our changes are lost without the ability to respond.

 In fact, we do need to error-proof the attributeChangedCallback. Worse than los-
ing these changes, we’ll actually get an error. Since this callback causes code to run
that changes the thumbnail and background, both of which don’t exist yet, the follow-
ing line, for example, will throw an error when the component starts up:

refreshSlider(value) {
 this.dom.thumb.style.left = (value/100 * this.offsetWidth -

this.dom.thumb.offsetWidth/2) + 'px';
}

267Backward compatibility
To take care of this issue, we can simply check if the component has been set up yet in
the attributeChangedCallback and exit out if not:

attributeChangedCallback(name, oldVal, newValue) {
 if (!this.dom) { return; }

But then, of course, our component’s starting attributes have not been used due to
this timing issue, so we checked if they were present and acted on them in the last few
lines of listing 12.2.

 Though we’ve just focused on the slider component, the other two components
can be modified in the exact same way. I won’t spell it all out here, but it’s a good exer-
cise to fill these in on your own. If you get stuck, those components in their finished
form can be found in this book’s GitHub repo.

 That said, there is one tiny consideration to make in the color picker component’s
specific implementation. I’m referring to the onMutationChange handler in compo-
nents/colorpicker/colorpicker.js:

onMutationChange(records) {
 records.forEach(rec => {
 this.data = Handlers.update({

Here, we are handling any attribute changes to our inner DOM elements. Initially, we
were watching for attribute changes on the shadowRoot and any elements within.
Now, we’re just listening for changes on this.root. When not using the Shadow
DOM, we’re observing attribute changes on the component itself! The problem is that
we’re already doing this using the attributeChangedCallback. So now we’re double
listening and double responding to events. To solve this, we’ll simply ignore attribute
changes coming from the component inside the onMutationChange handler:

onMutationChange(records) {
 records.forEach(rec => {
 if (rec.target !== this) {

Here, we’re simply saying that if the target element identified by the change record
(each record is a change recorded by the mutation observer) is not the color picker
component, do all the normal stuff. If the target element is the color picker compo-
nent, no action is taken.

12.1.2 Comparing to polyfills

While it wasn’t overly complex to allow the components to operate without the
Shadow DOM, it wasn’t trivial. We couldn’t just drop in a polyfill and go. In fact, the
only thing a Shadow DOM polyfill would have really given us here is the ability to keep
using this.shadowRoot in the component. It would also offer some encapsulation to
prevent outside JS from manipulating the component’s DOM like a real Shadow
DOM would do. If that’s important to you, the ShadyDOM polyfill might be worth
looking into (https://github.com/webcomponents/shadydom).

https://github.com/webcomponents/shadydom

268 CHAPTER 12 Building and supporting older browsers
 The rest of the work we did, especially around breaking up the constructor to
move the initialization to the connectedCallback, is something that would need to
be done regardless. This one aspect is likely why the W3C spec recommends not hav-
ing initialization code like this in the constructor at all (even when everyone else
seems to ignore this rule). It’s much easier to set things up right from the beginning
and switch off the Shadow DOM if necessary. It’s not a concern if your target browsers
support Web Components natively, but when they don’t, it’s good to start your compo-
nent with these best practices in mind.

12.1.3 Shadow CSS and child elements

Likely the most annoying part of moving back to a world without the Shadow DOM is
HTML and CSS. In creating our HTML markup, I was overly enthusiastic and used
IDs instead of classes to reference elements. Again, a polyfill won’t save us here. Using
the slider component’s template as an example (components/slider/template.js), we
simply need to go in and kill all the IDs. The following listing highlights this change.

mapDOM(scope) {
 return {
 // OLD //
 overlay: scope.getElementById(
 'bg-overlay'),
 thumb: scope.getElementById('thumb')

 // NEW //
 overlay: scope.querySelector(
 '.bg-overlay'),
 thumb: scope.querySelector('.thumb')
 }
},

html() {
 // OLD //
 return `<div id="bg-overlay"></div>
 <div id="thumb"></div>`;

 // NEW //
 return `<div class="bg-overlay"></div>
 <div class="thumb"></div>`;
},

For the limited context of our component on a demo page, we don’t actually need
this step. It just so happens that none of the IDs we were using clashed—they were all
unique. So, if this step was missed, it’s no big deal; everything would work fine. The
problem is that if we kept referencing by ID and forgot about it, we’d have a ticking
time bomb on our hands. Using this component in a larger application with other ID
references could overrule what element gets returned here if more than one is using
the same ID and could have some serious (and mysteriously acting) consequences.

Listing 12.3 Changing ID references to classes

With the Shadow DOM, we
could safely query by ID.

Without the Shadow DOM, it’s
not safe anymore, so we should
switch to classes.

Elements used ID to
reference previously

Change to use classes if no
Shadow DOM is present

269Backward compatibility
 Yet again, we have an instance of a best practice we need to worry about only if
we’re planning to use our components in a Shadow DOM-less context. If this is a pos-
sibility, it’s just best to avoid ID altogether. If it’s not a possibility—well, frankly, I really
do enjoy the luxury of using ID as it was intended: to reference unique elements!

 The last hurdle to overcome is CSS. The ShadyCSS polyfill does help here, but it
comes with lots of baggage, to the point where I just don’t feel like it’s worth it for
cases like this. The problem is that the :host selector doesn’t exist. In fact, in Edge, it
actually breaks your CSS if you even try to use it! Also, simple standalone selectors like
.thumb that worked only on the scope of your Shadow DOM before can now affect
your entire application.

 The ShadyCSS polyfill works around this in the best way it can. You as a developer
are responsible for putting your markup and CSS in a <template> tag. The polyfill
then goes in and rewrites your elements and CSS to use unique selectors such that it
appears the Shadow DOM still works. I’m inclined to think that the setup required
here is the same or even more effort than just handling things ourselves. Yes, the
Shadow DOM does provide protection from outside CSS creeping into our compo-
nent, but the polyfill doesn’t. So, there really doesn’t appear to be much benefit to
using it if we can do something more straightforward.

 This is where our use of template literals comes in handy. Recall back in the com-
ponent class, where we call the Template.render method:

this.root.innerHTML = Template.render({ useShadowDOM:
 Slider.USE_SHADOWDOM_WHEN_AVAILABLE && this.attachShadow });

Passing a boolean here indicates to the render function if we are using the Shadow
DOM or not, and we can then modify the CSS to use the appropriate selectors. For
example, if we were originally using :host as a selector, we should now use the compo-
nent name for a selector. For the slider component, specifically,

:host { . . . } becomes wcia-slider { . . . }

:host .thumb { . . . } or .thumb { . . . } becomes wcia-slider .thumb { . . . }

With this in mind, and focusing on the slider component template module (compo-
nents/slider/template.js), we can create some code in the next listing to use either
one or the other.

render(opts) {
 return `${this.css(opts.useShadowDOM)}
 ${this.html()}`;
},

createHostSelector(useshadow, host) {
 if (useshadow) {
 return ':host';
 } else {
 return host;

Listing 12.4 Switching between Shadow DOM and non-Shadow DOM selectors

Passes a boolean to the css
function to indicate whether
the Shadow DOM is used

Returns the appropriate
selector string for Shadow DOM
or non-Shadow DOM usage

270 CHAPTER 12 Building and supporting older browsers
 }
},

css(useShadowDOM) {
 const comp = 'wcia-slider';
 return `<style>
 ${this.createHostSelector(
 useShadowDOM, comp)} {
 display: inline-block;
 position: relative;
 border-radius: var(--border-radius);
 }

 ${this.createHostSelector(useShadowDOM, comp)} .bg-overlay {
 width: 100%;
 height: 100%;
 position: absolute;
 border

The exact same thing can be done in the coordinate picker component and the color
picker component. There is one selector that’s a bit different in the color picker, how-
ever:

:host(.modal)

Remember that this selector simply states that if the color picker component has a
class named modal on it, the background gets styled as a modal. To get what we want
with no Shadow DOM, we’d want the following selector:

wcia-color-picker.modal

In this case, we’ll add on more function to handle the case in components/color-
picker/template.js, as seen in the next listing.

createHostContextSelector(
 useshadow, host, clazz) {
 if (useshadow) {
 return `:host(${clazz})`;
 } else {
 return host + clazz;
 }
},

css(useShadowDOM) {
 const comp = 'wcia-color-picker';
 return `<style>
 ...

 ${this.createHostContextSelector(useShadowDOM, comp, '.modal')}
 {
 ${Modal.rules()}
 }

Listing 12.5 Handling a special case of class on component

Declares the component tag to use
when generating the selector

Dynamically creates the selector
based on whether using the Shadow
DOM and the name of the component

New function that accepts Shadow
DOM boolean, component name, and
class to use on component

Creates the selector
:host(.modal) or wcia-

color-picker.modal
depending on if the
ShadowDOM is used

271Building for the least common denominator
A good JS homework challenge for you might to be to come up with a single function
that handles all manner of :host variations and then build that into a base class that
we can extend any Web Component’s Template module from. Again, as we look to the
future in Web Components, these kinds of optimizations will be where a lot of exciting
work will be done, and we won’t need new browser features to do it!

12.2 Building for the least common denominator
As you can see, there’s a fair bit to consider when building a component that might
potentially be used when native Web Components aren’t available. It’s great that the
Custom Element API is so easy to polyfill, but the simplicity stops there. It’s probably
becoming apparent that components and, in fact, web development in general, play
by different rules when using or not using the Shadow DOM.

 When developing, whether using a polyfill or not, you’ll need to develop your com-
ponent for the least common denominator. If not using the Shadow DOM, or not cer-
tain you are, you must plan your component as if you are not using it. You’ll also need
to accept that polyfills have some major caveats. The most exciting aspect of the
Shadow DOM is CSS encapsulation, but polyfills just don’t solve that. CSS rules can
still creep in. They can also creep out of your component if your selectors aren’t prop-
erly set up to prevent this by making them specific to your component. Again, don’t
just use .thumb; use my-component .thumb.

 There have been a lot of similarities and repeated code when preparing your com-
ponent to go Shadow DOM-less. When considering this code in combination with the
repetitious code for attribute/property reflection in your components, it might be
tempting to try out a Web Component framework or library.

 LitElement (https://lit-element.polymer-project.org) by the Google Polymer team
is shaping up to be a strong Web Component base class to provide all of this function-
ality. It definitely forces you into a few development patterns and expands upon the
Web Components API with some more functionality. You might be looking to put
some of these concerns and limitations out of your mind, so LitElement can be nice,
especially as it promises to support down to IE11. StencilJS (https://stenciljs.com) by
Ionic offers a slightly different approach. A developer would create a component with
the framework, and it gets compiled down to a vanilla Web Component.

 I’m sure we’ll see even more solutions going forward and solid future releases
from LitElement and StencilJS. Personally, I’d rather avoid these solutions in my
endeavors to avoid framework/library complexity, using only what I need. I also like
to develop components without a build/compile step until releasing them, which
both these solutions use during the development process.

 At the end of the day, you should just use what works for your project. That said, all
of the complexity we covered isn’t necessary when developing for modern browsers
with native support for Web Components. Edge will hopefully be less of a concern in
short order, given that more and more developers are leaving IE11 out of their
browser requirements.

https://lit-element.polymer-project.org
https://stenciljs.com/

272 CHAPTER 12 Building and supporting older browsers

C
st
 What happens when we do need to push forward and support IE11, though? The
Custom Elements polyfill still works, so making our own elements as we have been
doing isn’t a worry. The major problem left is a lack of support for newer JS features
like Class. To move past this, we need to transpile and build! We’ll explore this next.

 Of course, there will always be browser inconsistencies that need to be solved. In
fact, our color picker component doesn’t quite work perfectly yet in Edge. To finish
up here, let’s fix it so the color picker works perfectly in all modern browsers. Refer
back to the slider component class in components/slider/slider.js:

setColor(color) {
 this.dom.overlay.style.background = `linear-gradient(to right, ${color}

0%, ${color}00 100%)`;
}

In this function, we can use the hexadecimal color right in the linear gradient when
showing the transparency fade. All other modern browsers support adding an extra
two digits for an eight-character color. Those last two digits indicate a 0% transpar-
ency. Unfortunately, Edge does not support this. We’ll need to use RGBA-defined col-
ors and get some conversion help from the Color utilities module, which we can
import.

import Template from './template.js';
import Color from '../colorpicker/color.js';

export default class Slider extends HTMLElement {

...

setColor(color) {
 const rgb = Color.hexToRGB(color);
 this.dom.overlay.style.background = `linear-gradient(to right,

rgba(${rgb.r}, ${rgb.g}, ${rgb.b}, 1) 0%, rgba(${rgb.r}, ${rgb.g},
${rgb.b}, 0) 100%)`;

}

After adding these changes, our component can be tested in every modern browser,
including Edge!

12.3 Build processes
So far in this book, we’ve been doing things with no framework and no complicated
workflows that do a bunch of stuff under the hood you aren’t aware of. It’s just us, a
browser, and some HTML, JS, and CSS.

 This isn’t the case with many modern web workflows. Many times, you won’t be
running the same code in your browser as you write in your editor. There may be a
build step in between. From using tools like Sass and LESS to compile your CSS to
generating a big HTML file from various snippets you have organized in many differ-
ent files, there are many reasons for building.

Listing 12.6 Fixing a linear gradient style rule for Edge

hanges the
yle rule for

IE/Edge

273Build processes
 I could go on and on with reasons for using one or several build steps without even
talking about JS. Frontend tasks like these, whether for HTML, CSS, or JS, are almost
always run with Node.js. But which specific system should you use? The major ones that
promise to do it all are Grunt and Gulp, but even more specific systems that promise to
do one thing well tend to overlap. For example, Webpack is designed to bundle assets,
but for many tasks, it can overlap with ones that Grunt and Gulp can do themselves.

 With the web developer community releasing new tools every day, and a plethora
of really solid build systems that can do it all, it can be confusing which tools to
include in your toolbelt and what systems to use to orchestrate everything. Lately,
though, there’s been bit of a trend toward simplicity when possible.

12.3.1 Using NPM scripts

Before delving into why we might want to include a build process in our Web Compo-
nent workflow, let’s talk about a simple way to run tasks. You’ve probably used Node.js,
even if only to install something. To refresh your memory, npm is the piece of the
Node.js ecosystem for installing the JS package of your choice.

 For example, if you wanted to install the Web Component polyfills, you’d go to the
root of your project directory, fire up the terminal, and run

npm install @webcomponents/webcomponentsjs

This package would get installed in your project root in a node_modules folder. Of
course, as you add more and more packages, it’s easy to lose track, which is why you’ll
want some record that keeps track of your dependencies like this as well as other
details of your project. That’s why the package.json file exists. It’s easy to create a new
one from scratch. Again in the terminal, at the root of your project, run

npm init

You’ll be guided through some questions to fill in the details of your project, like
name, email, package name, and so on. With a package.json in place, if you were to
run the previous command to install webcomponentsjs, it would be added to the
dependencies list in the JSON.

 Or, if it’s a dependency intended only for your project’s developer workflow and
not part of your production release, you’d run

npm install @webcomponents/webcomponentsjs --save-dev

Dependencies aside, the package.json file has another pretty powerful aspect. A
scripts object can be added to run whatever you need. We can try running some-
thing simple pretty easily.

{
 "name": "wcia",
 "version": "1.0.0",
 "scripts": {

Listing 12.7 A simple package.json script

274 CHAPTER 12 Building and supporting older browsers
 "test": "echo 'Hello from package.json'"
 }
}

Basically, anything you might run in the terminal can be added here. The simple test
in listing 12.7 uses the Linux echo command, which prints whatever message you give
it as a line in your terminal. Windows users don’t need to feel left out, either, thanks to
the Windows Subsytem for Linux (WSL; https://docs.microsoft.com/en-us/windows/
wsl/install-win10). With this, Windows users can run the same Linux commands as
Mac or Linux users. Even prior to WSL, which is definitely not perfect yet, just install-
ing Git for Windows (https://gitforwindows.org) allowed a limited set of Bash com-
mands that might just be enough.

 The reason to bring this up is that npm scripts are becoming more and more part of
a developer workflow instead of big, complex build systems like Grunt or Gulp. There’s
absolutely nothing wrong with build systems like these for complicated and numerous
tasks as part of a workflow. However, when just running a few simple tasks, there’s no
need for all of the complexity. Build systems tend to have a bit of a learning curve. Run-
ning many different tasks will require researching the plugins you need and ironing
out kinks when they don’t work together, but it also means you don’t need to write
every little task, like copying files, running CSS preprocessors, uploading to a server,
file concatenation, HTML templating, and so on. But if you need only a few tasks, and
they are very easy to code yourself, there’s no reason you can’t go simple.

 Over the next two chapters, we’ll be exploring a few basic ways to build and test.
While the build and test tools themselves have various levels of complexity, the com-
mands to launch them are incredibly simple. Even if you’re on Windows without the
aforementioned WSL and just using the Git Bash emulation, the commands we’re
running work, with one caveat when running tests that I’ll mention in the next chap-
ter. Hence, we’ll be avoiding build systems as we explore build processes here, which
allows us to focus on the specific tasks we’re running while avoiding lots of setup that’s
not directly relevant to what we need to run. Most importantly, the choice of build sys-
tem is up to you, should you want to use one.

12.4 Building components
Web Components are really no different than anything else in terms of how and why
we’d use a build step for our JS. And just like anything else, complexity can grow as
our project or component needs grow. What’s not clear quite yet is why we should
build at all.

12.4.1 Why we build

There are numerous reasons to run a JS build process. One increasingly common rea-
son is that a developer might prefer another language besides JS to code in. Coffee-
Script was a popular language for writing web applications years ago, though these
days, Microsoft’s TypeScript is the most popular non-JS language to create web appli-
cations with. TypeScript isn’t a completely different language, however—it’s a superset

Script to run

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://gitforwindows.org

275Building components
of JS with the addition of typed variables. It also offers the newest proposed JS features
that haven’t made it into browsers yet. In fact, the publisher of this book has two really
solid books on TypeScript that recently came out:

 Angular Development with TypeScript, by Yakov Fain and Anton Moiseev (www.
manning.com/books/angular-development-with-typescript-second- edition)

 TypeScript Quickly, by Yakov Fain and Anton Moiseev (www.manning.com/
books/typescript-quickly)

TypeScript is becoming more and more relevant for Web Component work as well. In
addition to its standing as a popular language to work with in general, the LitElement
and lit-html projects by Google’s Polymer team are written in TypeScript. Though
writing your code with newer language features like decorators isn’t required, it’s
strongly encouraged, as most of the examples are written this way.

 It’s not just CoffeeScript and TypeScript, either—there are tons of languages that
developers use to run code on the web. All of these languages have one thing in com-
mon, however. They don’t actually run in the browser. Your code is written in the lan-
guage of your choice but then transpiled to JS so that it can run.

 If transpiling sounds like a foreign concept, it’s very similar to compiling. Both
allow you to write code and transform it to something that runs on the platform of your
choice, like the web. Compiling means you’re targeting a lower level of abstraction, like
bytecode. The output from a compiler is basically unreadable by human eyes.

 Compilation can be almost thought of like capturing the audio of a spoken lan-
guage and saving it as an audio waveform. It’s impossible to make out what someone is
saying by looking at an audio waveform in your favorite sound editor, but you can cer-
tainly play it back and understand what’s being said perfectly fine.

 Transpiling can be thought of more like translation, like from Spanish to English.
Both Spanish and English are very readable languages if you know them, but, if not, a
translation step helps you read in your native language.

 Transpiling isn’t even about writing things in an entirely new language, either.
Over the years, JS has added many new and exciting features, especially in 2015, when
the ES6/ES2015 standard was released. Developers couldn’t use these features right
away, though. Even if their favorite browser supported them, not all browsers did.
Even now, while the major modern browsers have great support for ES6/ES2015 fea-
tures, developers may want to target older browsers like IE. Even if that’s not the case,
there are some great, brand-new JS language features or even experimental ones that
developers want to use that don’t have any browser support just yet. For these types of
use cases, Babel (https://babeljs.io) is likely the most widely used JS transpiler today.

 Another big reason for modifying your JS code is to take many different source
files and put them in a larger one. When the source code for your application starts
growing into hundreds or thousands of lines of code, it’s bad practice to put all of
your JS in one big file. For one thing, when working with a team, it’s easier to step on
each other’s toes when modifying the same file. Second, your project is way more
organized when the JS is properly split up. Pieces of functionality are easier to find

www.manning.com/books/angular-development-with-typescript-second-edition
www.manning.com/books/angular-development-with-typescript-second-edition
www.manning.com/books/angular-development-with-typescript-second-edition
www.manning.com/books/typescript-quickly
www.manning.com/books/typescript-quickly
www.manning.com/books/typescript-quickly
https://babeljs.io

276 CHAPTER 12 Building and supporting older browsers
when you don’t have to go hunting through one huge file. Additionally, when orga-
nized into smaller, well-named files, it’s easier to look at a project’s file structure and
get a sense of what it does and how things work.

 Despite the developer workflow improvements from smaller files, it’s better for the
browser to have everything together in one file or, even better, smartly bundled into
files that are loaded when functionality is needed. When things are bundled together,
there are fewer network requests for the browser to handle. This is important because
browsers do have a maximum number of requests at a time. Also, scripts may be slow
to load due to network conditions. You can start to imagine what weird things might
happen to your application when some functionality is present to load it, but then
another script isn’t available yet because the network request is taking too long.

 Prior to ES6/ES2015 modules, and ignoring similar solutions like RequireJS, JS
code in separate files would be simply bundled together through concatenation tools.
Essentially, concatenation just means putting the contents of each JS file into a bigger
one in the order you specify. We still do something similar, but with modules, things
need to be a bit smarter. Automated tools need to go through your code, track down
the modules you reference through the import keyword, and bundle that into the
final output. Even smarter, the better tools employ a method called tree shaking. If you
import a module and don’t happen to use it anywhere in your code, it won’t bundle
that particular module. Tree shaking is a smart way to ensure smaller JS bundles that
include only the code you need.

 Tools like Webpack (https://webpack.js.org) differentiate themselves even more
by allowing you to create multiple output bundles and bundling more file types than
just JS. These bundles are organized by functionality you’d need to run specific areas
of your application. Web applications can be huge, and you may think of your applica-
tion organized into different sections.

 For example, if you were working on a banking web app, a user might view their
recent transactions in one section but never visit another section to see their account
info. There’s no reason in this scenario to force the user to load a bundle containing
JS related to account info. Therefore, while the banking application could be one big
module, it’s smarter to organize it into several bundles for each section of the applica-
tion. Figure 12.1 highlights these main differences between simpler tools, like Rollup,
and more complex tools, like Webpack.

 Again, we’re back to a plethora of tools we can use! Either way, both transpiling
and bundling are two major motivators behind having a build process for your JS.

12.4.2 Module bundling with Rollup

Although there are a good many tools for module bundling, Webpack has historically
been fairly tricky and complex to set up for the easiest of tasks, while Rollup has been
the simple but not as configurable alternative. Recent Webpack releases have changed
how steep the learning curve is for doing simple things, while newcomer Parcel.js
(https://parceljs.org) has gained popularity as well!

https://webpack.js.org/
https://parceljs.org/

277Building components
We just need to pick one to move forward with; and with these three great options in
mind, I’d like to pick Rollup (https://rollupjs.org), as I have the most experience with
it and appreciate its simplicity for getting up and running quickly. As with any npm
install for a project, be sure to create a package.json file at the root of your project.
Then, in the terminal, cd to your project root and run

npm install --save-dev rollup

Note that we used the --save-dev option here. Rollup will be added to your package
.json as a dev dependency, meaning you don’t intend to do anything with Rollup
besides have it help you with your development and build process. It’s not code that’s
intended to be shipped with your component. Once finished, your package.json looks
like the following listing (varying, of course, by how you named and versioned your
project).

{
 "name": "wcia",
 "version": "1.0.0",
 "dependencies": {},
 "devDependencies": {
 "rollup": "^1.0.2"
 }
}

Listing 12.8 A package.json file after installing Rollup

Rollup

JS source files Bundled file

Tree-shaking to not
include unused JS

Webpack

JS source files

Other assets
like images,
fonts, and so on

Bundled files custom organized
by desired use in application

Tree-shaking to not
include unused JS

Figure 12.1 Rollup vs. Webpack

Rollup developer dependency

https://rollupjs.org

278 CHAPTER 12 Building and supporting older browsers
Something interesting to note is that you could have installed Rollup (or any package
in general) globally with the -g option, like this:

npm install rollup -g

When doing a global install, Rollup could be run directly from your terminal, any-
where on your computer, simply by issuing the rollup command with some parame-
ters. Here, we installed locally instead, as part of the project. As a local install, Rollup
can still be run in your terminal with the shorthand rollup command because the
install path is likely added to your environmental variables. I still don’t trust this! If
you had several different Rollup installs on different projects, you’d be rolling the
dice on which one you’re actually using. Instead, I like to be a bit more exact and exe-
cute it from within my project at node_modules/.bin/rollup. This seems a bit more
complicated, but is more widely accepted than having a global install.

 The reason it’s better is that if you wanted to get a team member set up with your
project and tooling globally, you’d need to give them a handwritten list of every-
thing they need to install to work with your project, which they’d install one by one.
If there are a lot of dependencies, it’s easy to forget certain things, and it becomes a
pain to debug why their build process doesn’t work. Instead, with a local install,
everything they need is right there in the package.json and can be installed in one
go with npm install.

 It’s still a bit of a pain to have to type that whole path every time you want to run a
build. The command becomes even longer as we add the parameters to indicate
where the main JS entry point is, where the output file should be, and what its name
is. That’s why we can make an entry in our package.json scripts object and add the
command there.

 Before we do that, however, we should
change our Web Component structure a tiny
bit. As an example, let’s start with the slider
component from the last chapter, which was a
small piece of the color picker component.
Figure 12.2 shows its simple file structure
along with the other components and design
system modules.

 Again, though the slider component
worked perfectly in our local development
environment (and is honestly so small it would
probably work fine on the web), we’ll want to
create a bundle such that the end user will load
all the modules (slider.js, template.js, and all of
the relevant bits of the custom-made design sys-
tem). Those files should now be considered
source files that aren’t directly consumed by
end users. As such, we’ll create a src folder in Figure 12.2 Slider component files

279Building components
each component directory and put the slider.js and template.js inside. We’ll do this for
the other components as well. Figure 12.3 shows the new folder structure.

 With this new folder structure, the input file for Rollup is now located at compo-
nents/slider/src/slider.js. Nothing about the code inside this file changes except for
one small detail. The good news is that our import paths are mostly relative to the
component, so they shouldn’t need to change. When we import the Template mod-
ule, it’s still located at ./template.js. The annoying bit is that when we fixed the trans-
parency for Edge, we used the Color module from the color picker component. So
now, instead of

import Color from '../../colorpicker/color.js';

we’ll need to change to

import Color from '../../colorpicker/src/color.js';

In the end, the output can be created where the original slider.js used to be. Those
two parameters are the main ones Rollup needs to function! The command we’ll be
running is

./node_modules/.bin/rollup chapter12and13/components/slider/src/slider.
 js --file chapter12and13/components/slider/slider.js --format umd
 --name slider -m

New src folders to hold each
component’s source files

Figure 12.3 Slider and other
component files with source folder

280 CHAPTER 12 Building and supporting older browsers
The complete directory path includes “chapter12and13” to match this book’s GitHub
repo. The very first parameter is the location of the slider component’s source file. As
the only required parameter, this first parameter is also the only one that doesn’t need
a flag.

 Second, we’ll need to specify the output file, passed by preceding the parameter with
--file. Next is the output format, denoted by --format. There’s no right answer here,
but I suggest using Universal Module Definition (UMD). When bundling as UMD, the
JS can be loaded in a variety of ways. Two of those ways are CommonJS and Asynchro-
nous Module Definition (AMD), which can be used in a variety of different scenarios,
including with RequireJS. The last method that UMD enables is via a simple global defi-
nition, where no JS loading mechanisms are assumed. UMD attaches the slider compo-
nent to the window as a global variable accessible anywhere from your page.

 What’s the name of this global variable? That can easily be answered by using the
--name parameter. We’ll call ours slider. Now, as a global variable, window.slider
exists, but we’ll likely never use it since our component is set up automatically. You
may want to be a bit more careful than me and use a name that could never be con-
flicted with in your application. Your component’s namespace could be a good candi-
date to include here, like MyNamespaceSlider, or your application name could be
used—just something to make it unique.

 An obvious question is whether we’re forgoing the ability to use the slider compo-
nent as a normal ES6/ES2015 module, as we have been. We aren’t! If the larger appli-
cation that contains the slider wants to import the module, it could easily import
src/slider.js and use it, ignoring the generated bundle. This larger application could
then bundle the application itself plus all the components within, using Rollup or
whatever module bundler it prefers.

 The very last flag, -m, turns on “source map” generation. If you’re not familiar with
source maps, they bridge the generated output to the original source files. The “map”
piece is a file with a .map extension, which is fairly unreadable by human eyes but con-
tains lookup information to make this bridge possible. This might sound kind of
meaningless without seeing it in action. You can try it yourself after we run the build,
but figure 12.4 shows source maps in action. I’ve forced an error in my code. Though
we’re using the output bundle we’ll generate next, our error shows the exact line
where the error occurred in our source.

12.4.3 Running builds with npm

Now that we know how to build with Rollup, have planned the component’s file struc-
ture a little better, and know what to expect for the bundled output, let’s simplify bun-
dling with Rollup. As discussed previously, we can easily add the Rollup bundle
command to our package.json file. Normally, something simple would suffice. We
could just call the task build and move on, like in the next listing.

281Building components

{
 "name": "wcia",
 "version": "1.0.0",
 "dependencies": {},
 "devDependencies": {
 "rollup": "^1.0.2"
 },
 "scripts": {
 "build": "./node_modules/.bin/rollup chapter12and13/components/slider/src/
 slider.js --file chapter12and13/components/slider/slider.js --format
 umd --name slider -m"
}

So now, instead of typing a long and complicated command to build, we can simply
run the new build command in the terminal at the root of the project:

npm run build

Ideally, the entire project would be this one slider component. We could then npm
install the slider and use it in whatever project requires it (like the color picker).
However, the way I set up the color picker project for this book, all of the components
are together in the same project (and in the same chapter 12 folder). So, planning a
strategy to accommodate this might be a bit of an odd challenge, but it actually
exposes a neat way to run scripts.

 We can start by adding two more build scripts into the package.json, as seen in the
next listing. Since there are now three in total, we should be a little more specific in
how we name them than just “build.”

{
 "name": "wcia",
 "version": "1.0.0",

Listing 12.9 Adding a Rollup script in package.json

Listing 12.10 Scripts to run each component build

Figure 12.4 Source maps show where an error occurred in your source files, even when bundling output.

Rollup
build

script

282 CHAPTER 12 Building and supporting older browsers
 "dependencies": {},
 "devDependencies": {
 "rollup": "^1.0.2"
 },
"scripts": {
 "build-slider": "./node_modules/.bin/rollup

chapter12and13/components/slider/src/slider.js --file
chapter12and13/components/slider/slider.js --format umd

 --name slider -m",
 "build-coordpicker": "./node_modules/.bin/rollup
 chapter12and13/components/coordpicker/src/coordpicker.js --file
 chapter12and13/components/coordpicker/coordpicker.js --format umd
 --name coordpicker -m",
 "build-colorpicker": "./node_modules/.bin/rollup

chapter12and13/components/colorpicker/src/colorpicker.js --file
 chapter12and13/components/colorpicker/colorpicker.js --format umd
 --name colorpicker -m"
}

You may now be thinking that we have three commands to run instead of the one, but
we can combine scripts! The ampersand or double ampersand isn’t strictly an npm
thing. Instead, it’s just standard Linux, and we can use ampersands to combine com-
mands in the package.json scripts. A single ampersand runs commands in parallel,
and a double ampersand runs them one after another. Additionally, we can reference
other scripts by name in any new commands. We’re going to add another build task
after we finish covering Rollup, so let’s not call this new script build just yet. Instead,
we’ll call it build-rollup:

"build-rollup": "npm run build-slider && npm run build-coordpicker && npm
 run build-colorpicker"

With build-rollup part of the npm scripts now, all three components can be built just
by running

npm run build-rollup

Please note, however, that if you are on Windows, this ampersand approach won’t
work without using WSL, the Git Bash emulator, or something similar.

12.5 Transpiling for IE
I mentioned an additional build step for our components. As of now, the color picker
and two child components work in all major browsers, including Edge if we toggle the
Shadow DOM off. As mentioned before, Edge will soon be updated with Chrome
behind the scenes and will natively support Web Components.

 That leaves us with one problem browser: IE11. It’s troubling because of its age
and lack of updates. Modern browsers auto update, and web developers typically only
have to worry about the latest few versions of each browser. So, we usually get to use
the latest features in fairly short order, assuming all of the browsers keep up with each
other. The thorn in our side here is IE. As IE11 is the last version that will ever be
released, we’re stuck with the features it currently has. Some of us web developers

Rollup task for
coordinate picker

component

Rollup task for color
picker component

283Transpiling for IE
have been able to ignore it as a requirement because its usage is so low, and Microsoft
recommends Edge now for Windows users. But not all web developers are that lucky,
and it’s still a requirement.

 Not only does IE not support Web Components like the current version of Edge
does, but it also does not support ES6/ES2015 language features like classes and fat
arrow functions. We discussed transpiling earlier in this chapter as a way to do things
like translate a language such as TypeScript or CoffeScript to JS, but we can use it now
to solve the IE issue as well by transpiling newer JS to older JS.

12.5.1 Babel

The most popular tool to solve these issues is Babel (https://babeljs.io). We’ll need to
npm install a few packages to make Babel work:

 Babel Core—The main feature set of Babel.
 Babel CLI—Tooling to use Babel on the command line.
 Babel preset-env—Babel can get complicated; this standard setup takes the com-

plicated setup out of Babel configuration.

Let’s go ahead and install these as dev dependencies in the root of the project
because, like Rollup, this is all just build tooling and won’t be part of a component
release:

npm install --save-dev @babel/core

npm install --save-dev @babel/cli

npm install --save-dev @babel/preset-env

After install, since they were saved, these dependencies get added onto the package
.json. As of now, the following listing reflects the latest.

{
 "name": "wcia",
 "version": "1.0.0",
 "dependencies": { },
 "devDependencies": {
 "@babel/cli": "^7.2.3",
 "@babel/core": "^7.2.2",
 "@babel/preset-env": "^7.2.3",
 "rollup": "^1.0.2",
 },
 "scripts": {
 "build-slider": "./node_modules/.bin/rollup
 chapter12and13/components/slider/src/slider.js --file
 chapter12and13/components/slider/slider.js --format umd
 --name slider -m",
 "build-coordpicker": "./node_modules/.bin/rollup
 chapter12and13/components/coordpicker/src/coordpicker.js --file
 chapter12and13/components/coordpicker/coordpicker.js --format umd

Listing 12.11 The latest package.json including Babel dependencies

Babel command
line tooling

Babel core library

Babel preset environment
for easy setup

https://babeljs.io/

284 CHAPTER 12 Building and supporting older browsers
 --name coordpicker -m",
 "build-colorpicker": "./node_modules/.bin/rollup
 chapter12and13/components/colorpicker/src/colorpicker.js --file
 chapter12and13/components/colorpicker/colorpicker.js --format umd
 --name colorpicker -m",
 "build-rollup": "npm run build-slider && npm run build-coordpicker && npm
 run build-colorpicker",
 }
}

With the requirements installed, Babel is super easy to use. Again, like Rollup, since
we installed as a local instead of a global dependency, the Babel executable can be
found in node_modules/.bin/babel.

 Babel does not, however, solve module bundling. For this, we need an extra step.
Plugins exist to take care of this extra step as part of the Rollup process. However,
we’re starting to venture into territory where this entire setup is very opinionated and
really depends on the needs of your project. For these components, my opinion is that
we should make a different build for IE than what we’d deliver to modern browsers.
The reason I think we should have different builds is that it’s unnecessary to overbur-
den modern browsers with bulky transpiled code when there’s no reason to. But
maybe having multiple builds hurts the simplicity of component delivery for you and
your team. Ultimately, the choice is up to you, but for right now, I’m deciding on
delivering two versions.

 Since the Rollup bundle already exists, we can simply use that as a pre-bundled
source that gets fed into Babel, so long as we’re careful to build it first in the build
process. If you’re of the different opinion that these components would be better
served by a single output file, Rollup can be configured to add this step with some
extra configuration. It really depends on your use case and how your component will
be consumed. For us, figure 12.5 represents our build pipeline.

 A Babel configuration file is needed, however, to use the preset-env settings. It’s
really simple, though. At the root of the project, just create a .babelrc file containing
the following:

{
 "presets": ["@babel/preset-env"]
}

Figure 12.5 The color picker build pipeline includes two builds, one for modern browsers
and the other for IE11.

Rollup

JS source files Bundled file

Tree-shaking to
not include unused JS

Babel

Transpiled bundle

Build #1 for
modern browsers

Build #2 for
IE11

285Transpiling for IE
That last bit is all the setup needed to run a Babel transpile. We’re just telling it to use
the preset Babel settings in one line. Next, to run the command with that setting in
place, you’ll just need to run the Babel command with an input file and an output file:

./node_modules/.bin/babel chapter12and13/components/slider/slider.js
 --out-file chapter12and13/components/slider/slider.build.js

The first parameter is the input, and, again, it’s the bundled output from Rollup.
We’ll put the output in the same place, just called something slightly different, like
slider.build.js. Surprisingly, unlike many commands you might run, this won’t produce
any output in your terminal. You can easily verify that this is working by the file it cre-
ates.

 Just like we did with the three Rollup scripts in the package.json file, we can add
scripts for transpiling with Babel. The next listing shows the three new build scripts.

"build-slider-ie": "./node_modules/.bin/babel
 chapter12and13/components/slider/slider.js --out-file
 chapter12and13/components/slider/slider.build.js",
"build-coordpicker-ie": "./node_modules/.bin/babel
 chapter12and13/components/coordpicker/coordpicker.js --out-file
 chapter12and13/components/coordpicker/coordpicker.build.js",
"build-colorpicker-ie": "./node_modules/.bin/babel
 chapter12and13/components/colorpicker/colorpicker.js --out-file
 chapter12and13/components/colorpicker/colorpicker.build.js",

Again, like we did with Rollup, these commands can be combined into a single
transpile step using ampersands:

"build-ie": "npm run build-slider-ie && npm run build-coordpicker-ie &&
npm run build-colorpicker-ie"

Of course, to transpile all three, we could use the terminal and run

npm run build-ie

Even better, let’s create a single script that bundles and transpiles. The next listing
shows the complete package.json with a new “build” script.

{
 "name": "wcia",
 "version": "1.0.0",
 "dependencies": { },
 "devDependencies": {
 "@babel/cli": "^7.2.3",
 "@babel/core": "^7.2.2",
 "@babel/preset-env": "^7.2.3",
 "rollup": "^1.0.2",
 },
 "scripts": {
 . . . previously added scripts . . .

Listing 12.12 A Babel transpile step for each component

Listing 12.13 Current package.json with Rollup bundling and Babel transpilation

286 CHAPTER 12 Building and supporting older browsers
 "build": "npm run build-rollup

 ➥&& npm run build-ie"
 }
}

And now, we’re back to a sane and easy-to-remember build process. Just use npm run
build in your terminal, and all three components will be bundled and transpiled so
IE can run perfectly!

 Since I made the decision to have two different outputs, it makes sense to have two
different HTML files, one for IE and the other for everything else. Of course, the file
structure has changed with the addition of the source folder. Personally, I think it
makes sense to use the original source files instead of the bundled Rollup output, so
we can get instant feedback during development. Adding a Rollup “watch” task could
do the job as well in a more complex system that’s constantly running while you
develop, but in the interest of keeping things basic, we’ll just change the path slightly
in demo.html:

<script type="module" src="src/slider.js"></script>

To get the IE demo to run, the <script> tag needs to be changed even more. As mod-
ules aren’t supported, it cannot contain type="module" anymore. We’ll create a dif-
ferent demo file for IE only called demo-ie.html. The <script> tag will be the only
thing that changes so far:

<script src="slider.build.js"></script>

Of course, this step will be repeated for the other two components. Figure 12.6 shows
the one component’s structure with output files.

New build script that bundles and
transpiles all the components

Transpiled and built

Source map

IE demo HTML

Figure 12.6 Project file structure with bundled and transpiled output.
Tools like Webstorm, pictured here, make the JS file look like a directory to
hide the complexity of generated files like source maps, even though it’s
actually a flat file structure.

287Transpiling for IE
12.5.2 CSS vars ponyfill

On further review of the components when testing in IE11 using the new demo file,
things are a little less than perfect. Figure 12.7 shows some visual discrepancies. Oth-
erwise, everything works just fine.

This isn’t a Web Components problem at all, but we did use CSS vars to make the com-
ponents flexible in terms of style. CSS vars enabled us to tweak a global border radius,
text color, and so on and affect everything on the page. The downside is that it’s a
newer feature. Even with widespread browser support for CSS vars, IE11 just hasn’t
added features lately, so it will fail to use them. Does this mean we need to back off
CSS vars? Nope—like many features, we can make do. Normally I’d say “polyfill,” but
in this case, I’ll be using a “ponyfill.”

 To be honest, I hadn’t heard of ponyfills prior to researching how to handle CSS
vars in IE11. Polyfills tend to modify the runtime environment of the browser. For
example, when polyfilling Web Component Custom Elements, a global is created
called customElements to match modern browsers where this is already present. Add-
ing this global means that we’re modifying the browser, specifically adding the fea-
tures provided to its global space. Ponyfills promise to not modify the browser
environment when making unsupported features work.

 The CSS vars ponyfill isn’t completely drop-in, meaning we’ll need to call a func-
tion to make it run. First, now that we have a package.json file, let’s install the ponyfill
with npm. Since it is a client-side dependency, we’ll save it, but not as a dev dependency
like the other build tools:

npm install css-vars-ponyfill

With this installed, the ponyfill can be added to each demo-ie.html file:

<script src="https://unpkg.com/@webcomponents/custom-elements"></script>
<script src="https://cdn.jsdelivr.net/npm/css-vars-ponyfill@1"></script>
<script src="slider.build.js"></script>

I’ll note that in my <script> tag, I’m using an online version just to give some aware-
ness that it exists, but you could use that one or swap in the one that just installed at
node_ modules/css-vars-ponyfill/dist/css-vars-ponyfill.js.

Figure 12.7 Looking a little broken in IE11

288 CHAPTER 12 Building and supporting older browsers
 As mentioned, the css-vars-ponyfill isn’t a drop-in solution. We still need to call
a function for it to do its job. It works by processing <style> tags on the page and
swapping in CSS that IE will be able to understand. Since the component CSS isn’t
available until after setting the innerHTML in each one, we’ll run the ponyfill after that.
The next listing shows the slider component’s connectedCallback with the CSS vars
ponyfill in place.

connectedCallback() {
 if (!this.initialized) {
 this.root.innerHTML = Template.render({ useShadowDOM:
 Slider.USE_SHADOWDOM_WHEN_AVAILABLE && this.attachShadow });
 this.dom = Template.mapDOM(this.root);
 if (typeof cssVars !== 'undefined') {
 cssVars();
 }
 this.initialized = true;

 if (this.backgroundcolor) {
 this.setColor(this.backgroundcolor);
 }

 if (this.value) {
 this.refreshSlider(this.value);
 }
 }
}

As we’ve just placed the script on the page, our usage just dictates that the cssVars
function is attached to the global space (the opposite of how I described a ponyfill).
This solution does exist as a module, however, that we could import and run that way.
Here, though, we’re giving component consumers an opportunity to use the ponyfill
or not based on if they added the script or not. Note that the syntax of how I check is
a little weird. If I simply checked !cssVars when it didn’t exist, we’d get an error stat-
ing that cssVars is undefined, since it’s not a property of anything and could be just
an undefined variable in the scope we’re checking in. So we’re being a little more
careful in order to not throw the error by looking at its type.

Summary
In this chapter, you learned

 A simple way to run scripts using npm and your package.json without having to
rely on more complex build systems that require lots of setup

 Reasons for a build step, whether bundling your code for production or
transpiling to let newer JS features work in older browsers

 How bundling is good for combining your code into one or more files, while
intelligently leaving out unused imports

Listing 12.14 Adding the CSS vars ponyfill to allow existing CSS vars to work in IE

Tests if the ponyfill exists as
added through the <script>
tag on the demo page

Calls the cssVars function
to replace CSS vars in
the browser

Component testing
Before we consider the color picker component finished, there is one additional
step that should really be taken into account. It’s not a step that everyone puts
effort into, but testing can go a long way in terms of how much the component can
be trusted and how easy it is to maintain. The same can be said for almost anything
you make in software development.

 Testing can be broken down in many ways, but one of those ways is functional
versus unit testing. The lines between these can get fairly blurry, but unit testing
typically involves taking a piece of code that does one single thing, or a unit, and
running a series of tests on it to make sure it doesn’t fall down for some edge case
that wasn’t considered during development. Functional testing, on the other hand,
involves testing a specific piece of functionality that is expected by the user—it’s
not making sure the code does the right things, only that the application does.

This chapter covers
 Running tests with the Web Component Tester (WCT)

 Using Mocha and Chai for creating tests

 Alternate test running with Karma and Karma Web
Components
289

290 CHAPTER 13 Component testing
13.1 Unit testing and TDD
In the color picker component, the color conversion utilities in components/color-
picker/src/color.js are the perfect candidates for unit testing. For example, in the
module, a function exists to convert RGB color to a hex value. A single test might be
to ensure that an object that looks like { r: 255, g: 0, b: 0 } produces the output
of #ff0000. It could work perfectly and in all the right ways, but doesn’t error correct
when invalid values (like those over 255 or negative numbers) are passed. The prac-
tice of writing unit tests is a great way to think of these edge cases.

 Unit tests would throw a wide variety of cases at this function, and, if any of them
failed, you as a developer would know you have something to fix. Of course, if you did
fix it and made lots of changes to do so, you might want to have confidence that you
didn’t break anything else. So, you’d re-run the unit tests. If they all passed, you’d
have confidence that this piece of functionality works as it always has.

 Test running can also track code coverage. For example, if there was an if/then
block in your code, and your unit tests didn’t cover a case that happened over both of
those conditions, a report would be generated indicating that you didn’t cover those
specific lines of code.

 When people normally think of unit testing, especially outside of web develop-
ment, unit tests don’t often include the UI. Modern web development is where those
lines can tend to get blurred. If you think of a component, whether a Web Compo-
nent or one in React, Vue, Angular, and so on, it will have an API. This API can be
thought of as a unit that can be tested. Moreover, lots of JS functionality like this needs
to be tested and can’t be run without a DOM.

 A recent and popular solution to this problem is to completely virtualize the DOM.
JSDOM (https://github.com/jsdom/jsdom) offers a completely virtual DOM that
runs without a browser or even a graphical interface right in Node.js or the browser.
Unfortunately, Web Components aren’t yet supported in JSDOM, so it’s not a solution
that can be used unless you picked apart and tested pieces of your Web Component
without actually running it as a component.

 Because of this, when testing Web Components specifically, we’ll need to fall back
to actually using browsers to run the tests. Despite introducing a browser and UI into
testing, we can still test discrete “units” of functionality.

 Another point of blurriness comes in when thinking about functional testing.
These types of tests can be thought of from the user’s perspective. When the user
clicks a button, something happens that is meaningful to the user, and the output can
be tested. These tests can sometimes be mixed right into unit testing, if desired, and if
the browser is used to run the test, it’s that much easier to do this.

 The reason to bring this up is that there are many different testing methodologies
and tools. What we’ll be discussing here are tools and methods typically thought of as
unit tests, or tests that a developer would typically write from the perspective of Test-
Driven Development (TDD). These are tests that a developer writes as they write code.

https://github.com/jsdom/jsdom

291Web Component tester
In an ideal world, a developer would create a piece of functionality and would write
tests to back up that piece of functionality.

 Testing is a broad subject, with many books written about its various aspects. As far
as Web Components are concerned, however, I think TDD and unit tests are the most
relevant to discuss, given the nuance that we must currently rely on the browser for
this, though the expectation might be that a solution like JSDOM could be used.

13.2 Web Component tester
Another reason to explore this type of testing is that Google’s Polymer team created a
TDD testing tool of their own explicitly for Web Components. This tool is called the
Web Component Tester (WCT) and can be found at https://github.com/Polymer/
tools/tree/master/packages/web-component-tester. What’s great about WCT is that a
lot of things are built into it by default, and it’s really easy to get up and running.

 Testing tools like these are often broken up into a few different parts. For WCT,
browser automation is handled by Selenium. Browser automation simply means that
the browsers you intend to host your tests in need to be automatically launched from
the terminal with the HTML/JS/CSS that runs your tests, and these browsers need to
report back to your terminal with the results.

 The test framework—Mocha, in WCT’s case—is what you’d use as a developer to
organize and write your tests. With Mocha, you’d create suites, or groups of tests in
which each group is filled in with the actual singular tests. Mocha provides hooks to
set things up before your tests, hooks to tear things down when your tests finish, so
you can run the next test from a clean slate, and lots more functionality.

 The last major piece of WCT is the assertion library—in this case, Chai. Assertion
libraries are a small but central piece of any testing solution. Basically, an assertion is a
question that you ask and expect the answer to be true. A plain English example
would be “I expect 1 + 2 to equal 3.” That assertion could be paraphrased with Chai by
writing

assert.equal(1 + 2, 3);

Of course, 1 + 2 is always 3, so this assertion would never fail. In practice, you won’t see
hardcoded values (at least on both sides of the assertion). You’ll likely test that a vari-
able or the result of a function equals another variable or another result. For example,
you might have a simple function that doubles numbers. Your doubleNum(num) func-
tion could take a value and double it. To know that it works, you’d want to run a num-
ber of assertions, such as

assert.equal(doubleNum(2), 4);

More complicated functions can and do fail for various reasons, and testing is a great
way to catch these cases.

 Chai offers different ways to do assertions, but in a nutshell, Chai does this one
thing and does it well. Figure 13.1 shows the entire WCT flow.

https://github.com/Polymer/tools/tree/master/packages/web-component-tester
https://github.com/Polymer/tools/tree/master/packages/web-component-tester
https://github.com/Polymer/tools/tree/master/packages/web-component-tester

292 CHAPTER 13 Component testing
Installing WCT is easy:

npm install --save-dev web-component-tester

This is yet another dev dependency that we’ll want to run locally from the node_
modules/bin folder. I should note, however, that because Selenium is a dependency
and uses Java, one of the sharp technical reviewers of this book found that on his Win-
dows 10 setup, running WCT wasn’t possible until he downgraded to Java 8. I have a
feeling that running different versions of Java will be a moving target on different plat-
forms as multiple dependencies are updated when new versions of WCT and Sele-
nium are released. Ideally, you’ll have luck similar to mine and won’t even need to
think about Java when installing WCT—but in case you don’t, your installed Java ver-
sion is something to pay attention to.

 We’ll need to run tests against some files, however, so now is the time to create a
test folder with a test HTML file for each component. Figure 13.2 shows the new
folder structure with new test files.

 The HTML file in the new test folder will normally be called something like
index.html or index.test.html. But throughout this chapter, we’ll be exploring a few
different ways to test; so to be clear which is which, I’ve named this first HTML file
wct-test.html. Before creating the actual tests in the file, let’s add the script to the
package.json file. The following listing shows the latest package.json file after install-
ing WCT and adding the script.

Figure 13.1 The WCT running flow

WCT
Launches test runner page with one or
more instances of Chrome, Firefox,
Safari, and so on

Component scripts,
CSS, and HTML

WCT client-side library
(includes Mocha and Chai)

Test suites with tests inside

Test suite (run by Mocha)

Individual tests (run by Mocha)

assert.equals(value, other value)
(assert run by Chai)

Your custom test harness HTML page

Selenium

293Web Component tester

{
 "name": "wcia",
 "version": "1.0.0",
 "dependencies": {
 "css-vars-ponyfill": "^1.16.2"
 },
 "devDependencies": {
 "@babel/cli": "^7.2.3",
 "@babel/core": "^7.2.2",
 "@babel/preset-env": "^7.2.3",
 "mocha": "^5.2.0",
 "rollup": "^1.0.2",
 "rollup-plugin-babel": "^4.2.0",
 "web-component-tester": "^6.9.2"
 },
 "scripts": {
 "wcttest": "./node_modules/.bin/wct
--npm chapter12and13/components/**/test/wct-test.html",

Listing 13.1 Adding WCT testing to our project’s package.json

Newly added
test files for WCT

Figure 13.2 Project structure with test files

WCT package

WCT script

294 CHAPTER 13 Component testing
 "build-slider": "./node_modules/.bin/rollup
 chapter12and13/components/slider/src/slider.js --file
 chapter12and13/components/slider/slider.js --format umd
 --name slider -m",
 "build-coordpicker": "./node_modules/.bin/rollup
 chapter12and13/components/coordpicker/src/coordpicker.js --file
 chapter12and13/components/coordpicker/coordpicker.js --format umd
 --name coordpicker -m",
 "build-colorpicker": "./node_modules/.bin/rollup
 chapter12and13/components/colorpicker/src/colorpicker.js --file
 chapter12and13/components/colorpicker/colorpicker.js --format umd
 --name colorpicker -m",
 "build-rollup": "npm run build-slider && npm run build-coordpicker &&
 npm run build-colorpicker",
 "build-slider-ie": "./node_modules/.bin/babel
 chapter12and13/components/slider/slider.js --out-file
 chapter12and13/components/slider/slider.build.js",
 "build-coordpicker-ie": "./node_modules/.bin/babel
 chapter12and13/components/coordpicker/coordpicker.js --out-file
 chapter12and13/components/coordpicker/coordpicker.build.js",
 "build-colorpicker-ie": "./node_modules/.bin/babel
 chapter12and13/components/colorpicker/colorpicker.js --out-file
 chapter12and13/components/colorpicker/colorpicker.build.js",
 "build-ie": "npm run build-slider-ie && npm run build-coordpicker-ie &&
 npm run build-colorpicker-ie",
 "build": "npm run build-rollup && npm run build-ie"
 }
}

WCT is an extremely easy command to run. Simply run the WCT executable with a
file path to one or multiple tests. For our test setup, the HTML files are always found
at a specific location within each component folder. Since we want to run all the
components with one command, we’ll swap the component name with a directory
wildcard: components/**/test/wct-test.html. Lastly, since we’re using npm to run,
WCT needs the --npm flag.

13.2.1 Writing tests

Each HTML test file will have a very familiar setup. Without tests yet, the setup in the
next listing looks no different than any other HTML file. The only dependency
beyond our component are the browser.js files, which provide all the features and cli-
ent-side loading of WCT.

<html>
<head>
 <script src="../../../../node_modules/web-component-tester/browser.js">
 </script>
 <script
 type="module"
 src="../src/slider.js">
 </script>

Listing 13.2 WCT test file setup

Required WCT testing scripts

Slider component import

295Web Component tester
 <style>
 wcia-slider {
 width: 500px;
 }
 </style>
</head>
<body>
<wcia-slider value="50"></wcia-slider>
<script>
// tests go here
</script>
</body>
</html>

As we start writing tests, remember we’re being specific to our test framework and
assertion library here, Mocha and Chai. Mocha actually has two different styles: TDD
and Behavior-Driven (or functional style) Development (BDD). WCT defaults to
TDD, which are ideally unit tests you’d write as you create your component. With that
said, let’s define a group, or suite of tests for the slider component.

suite('slider value getting/setting', function() {
 const sliderWidth = 500;
 const thumbCenterOffset = 5/2 + 3; // width/2 + left border
 const slider = document.body.querySelector('wcia-slider');

The first parameter passed to Mocha’s suite function is the name of the suite of tests.
It’s really handy to be specific here. The better you name a test, the easier you’ll find it
when a named test and suite reports a failure in your terminal.

 Second is the function containing the tests. While we haven’t gotten to defining a
single test yet, there is some light setup to do. This is a good chance to step back and
think about what functionality needs testing. A slider component doesn’t do all that
much, really. Given that it’s a Web Component, and we spent time to support compo-
nent reflection, we should be able to set the slider’s value with an attribute or with the
JS API. Beyond that, the component really only ties its visual state (the thumbnail posi-
tion) to the numeric percentage value. We can test this aspect, but the position (in
pixels) of the thumbnail will depend on the slider component’s size.

 This is what these two variables enable. First, we specify the slider width, which has
already been defined in the CSS on the HTML page. Second, we’ll define how much
the slider is offset to center it in position by subtracting half its width and the left bor-
der size. Lastly, we’ll grab a reference to the slider for the tests.

 We’ll label the first test “slider get initial value.” The component, as set up on the
page, has a value attribute set to 50:

<wcia-slider value="50"></wcia-slider>

Listing 13.3 A start to a test suite for the slider component

Gives the slider some width to
run size-dependent tests

The slider component

Placeholder for tests

Defines the width of the slider
in preparation for tests

Defines the slider center
to aid in future tests

296 CHAPTER 13 Component testing
So, with 50% as the initial slider value, the thumbnail should appear in the center of
the slider. We can assert three things in this first test, shown in the following listing.

test('slider get initial value', function () {
 assert.equal(slider.value, 50);
 assert.equal(
 slider.getAttribute('value'), 50);
 assert.equal(slider.root.querySelector('.thumb').style.left, sliderWidth *

50/100 - thumbCenterOffset + 'px');
});

First, we’re checking that getting the value with JS returns 50. We also need Chai to
assert that we’re getting the same value from the attribute to prove that reflection
works. Next, we’ll test the slider’s position. Given the value of 50, we can calculate
where the thumbnail should be given the component, thumbnail, and border size.
Since we know how the slider internally works, we know that the left property of the
style should be 500 * 50/100 – (5 / 2 + 3), or 244.5 pixels.

 There is something very interesting to call out here. Recall back to when we
learned about the Shadow DOM. There was some discussion of an “open” versus a
“closed” shadow root. Remember that with a closed root, the intended functionality
was that no matter how hard we tried, we’d never be able to reach into the component
and work with the DOM. The open shadow root was a bit more forgiving because we
could get in through the component’s shadowRoot property, knowing that this back
door wasn’t the component developer’s intention. This back door comes in very
handy here. If we couldn’t break through the shadow boundary of a Web Component,
we couldn’t query-select the thumbnail and test it.

 The next listing continues on through the remaining few tests for this component.

 suite('slider value getting/setting', function() {
 const sliderWidth = 500;
 const thumbCenterOffset = 5/2 + 3; // width/2 + left border

 const slider = document.body.querySelector('wcia-slider');

 test('slider get initial value',
 function () {
 assert.equal(slider.value, 50);
 assert.equal(slider.getAttribute('value'), 50);
 assert.equal(slider.root.querySelector('.thumb').style.left,
 sliderWidth * 50/100 - thumbCenterOffset + 'px');
 });

 test('set slider value with JS',
 function () {
 slider.value = 20;

Listing 13.4 A single slider test

Listing 13.5 Slider component test suite

Tests that the slider value
as observed by JS is 50

Tests that the slider value as
observed by attribute is 50

Tests that the slider thumb is in
the middle of the component

Tests the initial
slider value

Tests setting a new
value with the JS API

297Web Component tester
 assert.equal(slider.value, 20);
 assert.equal(slider.getAttribute('value'), 20);
 assert.equal(slider.root.querySelector('.thumb').style.left,
 sliderWidth * 20/100 - thumbCenterOffset + 'px');
 });

 test('set slider value with attributes',
 function () {
 slider.setAttribute('value', 30);
 assert.equal(slider.value, 30);
 assert.equal(slider.getAttribute('value'), 30);
 assert.equal(slider.root.querySelector('.thumb').style.left,
 sliderWidth * 30/100 - thumbCenterOffset + 'px');
 });
});

We can now run these tests with npm run wcttest. Figure 13.3 shows an example of
what you’d see in the terminal when running with a few more tests that we’ll add in a
bit. Note that the passing tests are nice and green!

It’s also helpful to show some failed tests! The practice of writing these tests as you
develop forces you to start thinking of weird edge cases to test. The slider component
is a simple one, but there are some easy ways to make it fail. Think of what would hap-
pen when setting the slider value to more than 100 or less than 0. Doing this makes no
sense in terms of the slider’s visual display—so, ideally, we should restrict the slider
with max and min values. Let’s add two more tests in the next listing to make it fail,
assuming this restriction is in place.

Tests setting a new
value with attributes

Passing tests marked in
green in the terminalFigure 13.3 Passing slider component tests

298 CHAPTER 13 Component testing

test('set slider value too big', function () {
 slider.setAttribute('value', 110);
 assert.equal(slider.value, 100);
 assert.equal(slider.getAttribute('value'), 100);
 assert.equal(slider.root.querySelector('.thumb').style.left, sliderWidth *

100/100 - thumbCenterOffset + 'px');
});

test('set slider value too small', function () {
 slider.setAttribute('value', -10);
 assert.equal(slider.value, 0);
 assert.equal(slider.getAttribute('value'), 0);
 assert.equal(slider.root.querySelector('.thumb').style.left, sliderWidth *

0/100 - thumbCenterOffset + 'px');
});

With the tests failing, as figure 13.4 shows, we’ve defined some functionality that we
need to implement. A good exercise for you to try later is to tweak the slider compo-
nent in a way that these and the previous tests all pass.

 In addition to the homework I just gave you, there are three other components to
get cracking on! I’ve written some tests myself if you get stuck. If so, feel free to visit
this book’s GitHub repo.

13.3 Comparing to a standard test setup with Karma
WCT is fairly nice! The setup was extremely minimal and allowed us to focus on writ-
ing tests without fumbling over complicated configurations, though a configuration
could be added if there were defaults you didn’t care for. More details can be found at
https://github.com/Polymer/tools/tree/master/packages/web-component-tester.

Listing 13.6 Failing slider tests because max and min values aren’t yet implemented

Slider value is over 100, so it
should be coerced back to 100.

Slider value is less than 0, so it
should be coerced to 0.

Figure 13.4 Failing slider tests

Failing tests marked in
red in the terminal

https://github.com/Polymer/tools/tree/master/packages/web-component-tester

299Comparing to a standard test setup with Karma
 The bottom line, though, is that WCT is intended for Web Components, and bun-
dles some key things to test them. For one, the Web Component polyfills are bundled in
and automatically included, should they be needed in your HTML test fixtures. WCT
also waits for your components to be ready by waiting for the browser’s WebComponents-
Ready event. Also provided is a helper for using <template> tags in your tests.

 WCT is still new, though, and a work in progress. If it works for you, great! If it
doesn’t work for you, and you’d rather use a different setup, that’s OK too. What’s
great is that with modern browsers now supporting Web Components, there really
aren’t any gotchas with simple Web Component tests. They just work like any other
web feature.

 With this in mind, let’s try swapping out test runners. We’ll replace Selenium with
Karma but keep Mocha and Chai. This keeps all our tests the same and gives us all the
flexibility and plugins that come with the Karma ecosystem. Figure 13.5 highlights our
new test runner flow with Karma.

The downside of a Karma-based setup, however, is that we’ll need to deal with a bit of
complexity to set it up. For starters, let’s install a few things with npm:

npm install --save-dev karma
npm install --save-dev mocha
npm install --save-dev chai

Mocha and Chai won’t run in Karma without a plugin to bridge the gap, so we’ll
install those as well:

npm install --save-dev karma-mocha
npm install --save-dev karma-chai

Figure 13.5 A new test runner flow with Karma

Karma
Launches test runner page with one or
more instances of Chrome, Firefox,
Safari, and so on

Karma runner client side library
(includes Mocha and Chai)

Test suite (run by Mocha)

Individual tests (run by Mocha)

assert.equals(value, other value)
(assert run by Chai)

Test suites with tests inside
JS only allowed

Your custom test JS file

Karma
runner

300 CHAPTER 13 Component testing
Karma also needs plugins to launch browsers and run our tests:

npm install --save-dev karma-chrome-launcher
npm install --save-dev karma-firefox-launcher

There are a few other dependencies as we get rolling, but these are the basics. One
last thing to do is to again install Karma, but globally, and I’ll explain why:

npm install -g karma

This global install has nothing to do with running your tests. Instead, it provides a
command line utility to generate a configuration file. Running karma init from your
project root after the install gives a series of prompts and questions, as figure 13.6
shows.

Figure 13.6 Karma init questions

301Comparing to a standard test setup with Karma
It’s not imperative that you follow what I did exactly, because we’ll be changing some
options around as we go. The good thing here is that we have a karma.conf.js baseline
file to work with. The next listing shows the initial configuration.

module.exports = function(config) {
 config.set({
 basePath: '',
 frameworks: ['mocha'],
 files: [],
 exclude: [],
 preprocessors: {},
 reporters: ['progress'],
 port: 9876,
 colors: true,
 logLevel: config.LOG_INFO,
 autoWatch: false,
 browsers: ['Chrome', 'Firefox'],
 singleRun: false,
 concurrency: Infinity
 })
}

The very first thing to worry about is the use of modules in our Web Components.
WCT allowed us to ignore this part of setup, but when we roll a testing setup ourselves,
it’s our problem now. Modules and imports don’t work easily because Node.js is work-
ing for us behind the scenes to handle a lot of test running. Node itself doesn’t sup-
port modules yet. So, we’ll need to run a “preprocessing” step before components get
loaded on the page and run tests.

 Rollup was covered in the last chapter, so let’s use it again! As I write this, Rollup
has just moved beyond a 1.0 release. Ordinarily, I’d recommend installing karma-
rollup-preprocessor. Unfortunately, we’re at an inconvenient gap in support where
this module doesn’t support the latest Rollup version. This can happen every so often
when packages fall out of sync with each other, especially with so many working parts.
Luckily, I was able to hunt around and find that someone forked this original project
and made something that does work with the latest version. Perhaps soon, we won’t
have to use this fork, but until then, you can install

npm install --save-dev @metahub/karma-rollup-preprocessor

Because of the @metahub package namespace, the default loading of any plugin with a
name starting with “karma-” doesn’t work here. As annoying as this might be, it does
walk us through a piece of nonstandard setup, which is par for the course when work-
ing on a Karma configuration from scratch. With this in mind, a plugins entry needs
to be added to the config file:

plugins: ['@metahub/karma-rollup-preprocessor', 'karma-*']

Listing 13.7 Initial Karma config (condensed by removing blank lines and comments)

302 CHAPTER 13 Component testing
As we’re overriding defaults here, karma-* needs to be added back into the list as well.
We’ll also add an entry to the preprocessors list to map the JS files to Rollup:

preprocessors: {
 './chapter12and13/components/**/*.js': ['rollup']
}

Here, we’re likely rolling up more than necessary, as there are multiple JS files but
only one JS entry point for each component. The path could be more exact, but I’m
not too worried about shaving a few microseconds off of the preprocessing time.

 Rollup, or plugins in general, needs to be configured as well. The following listing
shows a Rollup configuration that will work for us in the karma.conf.js file.

rollupPreprocessor: {
 options: {
 output: {
 // To include inlined sourcemaps as data URIs
 sourcemap: true,
 format: 'iife',
 name: 'testing'
 }
 }
},

Source maps might not sound necessary here, but that’s only if your tests pass. If they
fail and need debugging, you’ll really want to know what line failed in your original,
nonbundled source. Bundling as IIFE literally means “immediately invoked function
expressions.” Do we want our bundle to immediately invoke after loading and create
the Web Component definition right away? Yes, please. This works great for testing
and is inclusive of how the component was built previously with Rollup. With UMD-
style bundling before, this option and more were allowed (hence the ”universal” part
of the name). The bundle name doesn’t matter too much here, but it’s required, so
“testing” works fine.

 Two last simple adds are Chai to the frameworks we need to use,

frameworks: ['mocha', 'chai'],

and also a configuration to tell Mocha to use TDD-style testing:

client: { mocha: { ui: 'tdd' } }

Now, as we get back to not-so-simple stuff, there needs to be a plan for what files
Karma will serve. With WCT, it was really nice that tests could run from an HTML file.
We’ll loop back around to that in a bit, but as is, Karma only sort of supports HTML
tests like this. The problem is that Karma loads HTML files using HTML Imports.
Since Chrome is the only browser that supports this deprecated feature (and soon
won’t), it’s also the only browser that could run our HTML test pages. With this in

Listing 13.8 Rollup plugin configuration in Karma

Turns on sourcemaps
Bundles format

Bundles package name

303Comparing to a standard test setup with Karma

d
ipt
ner

y
mind, if no other plugins are used, we’ll need tests as JS files, and the file patterns to
serve will look like this:

files: [
 './chapter12and13/components/**/test/karma-test.js',
 './chapter12and13/components/**/*.js'
],

This file pattern serves all component JS files and also component tests named karma-
test.js, which we still need to create. Even though we’re using a different runner, we’re
still using Mocha and Chai, so all the tests previously made can be copied over. There
is just a bit more setup in the next listing with a JS-only test file, and that is to program-
matically attach the component scripts, create the component, and add it all to the
page body.

suite('slider value getting/setting', function() {
 const sliderWidth = 500;
 const thumbCenterOffset = 5/2 + 3; // width/2 + left border
 const container = document.createElement('div');
 container.innerHTML = `<script type="module" src="../src/slider.js">
 </script>
 <wcia-slider style="width: ${sliderWidth}px"
 value="50"></wcia-slider>`;
 document.body.appendChild(container);
 const slider = container.querySelector('wcia-slider');

 test('slider get initial value', function () {
 assert.equal(slider.value, 50);
 assert.equal(slider.getAttribute('value'), 50);
 assert.equal(slider.root.querySelector('.thumb').style.left,

sliderWidth * 50/100 - thumbCenterOffset + 'px');
 });
});

You can refer to this book’s GitHub repo to see all of these new JS tests in place for all
the components, but listing 13.9 does highlight the only real differences using the
slider component as an example.

 Now is a great time to try running the tests! As before, a script called test added to
the package.json file would be a more apt name, but since we’re giving a few different
types of tests a spin, it can be called karmatest:

"karmatest": "./node_modules/karma/bin/karma start karma.conf.js"

This script simply tells Karma to start test running against the config file we just cre-
ated. We need to flip one thing in the configuration to get it running normally. Before
we do, running npm start karmatest kicks off the browsers in the browsers entry
inside the Karma configuration and shows figure 13.7 while the browser is paused in
place after running the tests.

Listing 13.9 A JS-only test file created in the test folder for each component

Puts the
component an
component scr
inside a contai

Adds everything
to the page bod
for testing

304 CHAPTER 13 Component testing
The reason to pause here is that it gives us an opportunity to press the Debug button
and see the tests running in context. We can open up the browser’s dev tools like nor-
mal and see test output, look at the elements on the page, and debug any errors
shown. Figure 13.8 shows this debug mode, though, again, it’s really just the browser
with dev tools open.

Assuming everything works, and we don’t need to debug, it’s desirable to have Karma
fire up the browsers, run the test, and then quit everything. To do this, we just need to
flip the singleRun entry in the Karma configuration from false to true:

singleRun: true

Even better, we have the option to not see the browsers pop up on the screen at all if
the “headless” versions are supported by the Karma launchers like Chrome and Fire-
fox are. Note that it’s not Karma alone that supports this. Both normally installed ver-
sions of these browsers offer a headless mode, and the Karma launchers are simply
tapping into this:

browsers: ['FirefoxHeadless', 'ChromeHeadless'],

Figure 13.7 Karma test
runner page

Figure 13.8 Karma debug page

305Comparing to a standard test setup with Karma
The next listing reviews all of the options we changed in the Karma configuration to
make the Karma/Mocha/Chai tests possible.

module.exports = function(config) {
 config.set({
 basePath: '',
 plugins: [
 '@metahub/karma-rollup-preprocessor',
 'karma-*'],
 frameworks: ['mocha', 'chai'],
 files: [
 './chapter12and13/components/**/test/karma-test.js',
 './chapter12and13/components/**/*.js'
],
 exclude: [],

 preprocessors: {
 './chapter12and13/components/**/*.js': ['rollup']
 },

 rollupPreprocessor: {
 options: {
 output: {
 sourcemap: true,
 format: 'iife',
 name: 'testing'
 }
 }
 },
 reporters: ['progress'],
 port: 9876,
 colors: true,
 logLevel: config.LOG_INFO,
 autoWatch: false,
 browsers: [
 'FirefoxHeadless',
 'ChromeHeadless'],
 singleRun: true,
 concurrency: Infinity,
 client: {
 mocha: {
 ui: 'tdd'
 }
 }
 })
};

Now hopefully when running npm start karmatest, you’ll see all green—successful
output in your terminal! There were quite a few moving parts to get right here, and it
takes a bit of trial and error when configuring it all by yourself; but the benefit over
WCT is that you have a lot more control and a significant number of compatible
plugins with a testing setup like this that’s been around for a while.

Listing 13.10 Final Karma configuration

Added plugins for Rollup and
re-added default karma-*

Added Chai
Added specific files for our setup

Added Rollup preprocessor
and configuration

Changed to headless
versions of browsers

Changed to true

Added TDD testing

306 CHAPTER 13 Component testing
 The only part that’s a little sad in this is the lack of being able to use an HTML test
file like in WCT. Personally, that’s my favorite piece of the WCT ecosystem. Fortu-
nately, there’s a Web Component-specific Karma plugin!

13.3.1 Karma Web Components

The karma-web-components plugin does a few things, but mostly it allows us to use
HTML test files again like WCT does. We happen to have done well with load-timing
issues in the tests run so far; but karma-web-components also listens for your browser’s
WebComponentsReady event before tests start, just to ensure everything is in place for
tests to succeed.

 The first thing to do is install the plugin:

npm install --save-dev karma-web-components

Next, we can add on to each component’s test folder an extra file called karma-wc-
test.html. For the slider component, the next listing shows what’s inside.

<html>
<head>
 <script
 type="module"
 src="../src/slider.js">
 </script>
 <script src="../../../../node_modules/karma-web-components/framework.js">
 </script>

 <style>
 wcia-slider {
 width: 500px;
 }
 </style>
</head>
<body>
<wcia-slider value="50"></wcia-slider>
<script>
// Same exact tests and test suite we've had in the others
</script>
</body>
</html>

Like WCT, the karma-web-components plugin needs to load client-side. But that one
script file is the only thing that needs to change on this page versus the WCT test page.
It’s a different library to load, but the entire test setup can remain the same. Figure
13.9 shows the updated test runner flow. It looks a lot like the WCT setup again.

 Back in the Karma configuration file, we’ll need to add the plugin to our existing
list:

frameworks: ['mocha', 'chai', 'web-components'],

Listing 13.11 HTML test file for use by the karma-web-components plugin

Component module import

Framework provided by
karma-web-components

Slider component on page

307Comparing to a standard test setup with Karma
The only other difference is that the files will need to be served in a slightly different
way, as the following listing shows.

files: [
 './chapter12and13/components/**/src/*.js',
 './node_modules/karma-web-components/framework.js',
 {
 pattern: './chapter12and13/components/**/test/karma-wc-test.html',
 watched: true,
 included: false
 }
],

Of course, the existing Web Components files need to still be served. Also required is
the karma-web-components client-side framework. Lastly, the HTML file containing
the tests needs to be served, but we’ll also need to adjust a couple of settings. The
included flag should be false, so the HTML files aren’t automatically loaded in the
browser. Previous examples have been a bit lazy and inexact in including files that
don’t need to be loaded before. The difference here is that, if it’s included, your test
run will break.

13.3.2 Multiple tests in the same project

That last karma-web-components example meant modifying the Karma configuration
slightly. Instead of modifying the default one, I wanted to leave both Karma configura-
tions in place. In this book’s GitHub repo, you’ll be able to run WCT, the Karma test
runner, and the Karma test runner with karma-web-components, all from the same
project.

Listing 13.12 File-serving Karma configuration to use karma-web-components

Figure 13.9 Karma Web Components test runner flow

Karma
Web

Components

Launches test runner page with one or
more instances of Chrome, Firefox,
Safari, and so on

Component scripts,
CSS, and HTML

Karma Web Components tester
 client-side library

(includes Mocha and Chai)

Test suites with tests inside

Test suite (run by Mocha)

Individual tests (run by Mocha)

assert.equals(value, other value)
(assert run by Chai)

Your custom test harness HTML page
Karma
runner

308 CHAPTER 13 Component testing
 It’s a lot to cover, and while one of these would suffice, there’s no single standard
way to set testing up. Every project has different needs and will likely require a bit of
work to tweak everything to your liking. Covering a few different methods in this chap-
ter will hopefully get your setup far enough along that you’ll at least be able to
research any tweaks you’ll need to make.

 That’s why, in my repo, the karma-web-components setup is in a file called
karma.conf.webcomponents.js. The npm script to run it has yet another name, while
pointing to this new configuration in the parameters:

"karma-wc-test":
 "./node_modules/karma/bin/karma start karma.conf.webcomponents.js",

You won’t have all these similar tests in the same project, but you could have different
types of tests running different things. For example, for pure JS unit tests only, with no
need to rely on the browser, I like to use Tape and JSDOM. And I might have a
Karma/Mocha/Chai setup for the tests that I do need to run in the browser. My point
is that while I’ve gone out of my way to include redundant tests in this project, the
notion of having several separate test runs in one project is fairly normal.

13.3.3 A note on Safari

There is one last thing to call out here. Windows developers won’t be able to run tests
on Safari anyway, but macOS users should expect to. In my examples, I did not install
karma-launcher-safari. Typically, “Safari” is another browser you can add to the
Karma configuration file. Currently, this Karma launcher is a bit broken when run-
ning on Apple’s newest OS, Mojave. Safari will launch, but will require user interven-
tion to give permission to load Karma’s test harness. This is an open issue as I write
this chapter (https://github.com/karma-runner/karma-safari-launcher/issues/29).
In this book’s GitHub repo, I’m now using karma-safarinative-launcher instead of
karma-safari-launcher as a workaround. To use this custom launcher, the only thing
necessary to add to the karma.conf.js file is the following:

customLaunchers: {
 Safari: {
 base: 'SafariNative'
 }
},

With this in place, you can now test with Safari in your karma.conf.js browsers list:

browsers: ['FirefoxHeadless', 'ChromeHeadless', 'Safari'],

Ideally, though, this workaround will not be needed as the issue gets resolved in the
original launcher package. Until then, we can roll with this!

https://github.com/karma-runner/karma-safari-launcher/issues/29

309Summary
Summary
In this chapter, you learned

 What the different styles of testing are and the benefits of TDD when writing
components

 Three different ways of test running to show the diversity of options available
 Ways to think of your code in units and develop tests for each unit

Events and
application data flow
As we get closer to the end of our Web Component journey together, there really
isn’t much left to cover in terms of Web Component features. That said, when con-
trasting what we’ve learned thus far in this book against a modern framework, Web
Components may feel a little lacking in some areas.

This chapter covers
 Creating your own Custom Events versus using the DOM’s

native events

 Event bubbling for the two event types, including using the
composed option to bubble through the Shadow DOM

 The WebComponentsReady event and the
customElements.isDefined promise for handling timing

 Using a centralized data model and an event bus to handle
data flow throughout an application
310

311Framework offerings
14.1 Framework offerings
While Web Component features are now part of standard web specifications, things
like data binding, routing, and model-view-controller (MVC) style application design
patterns are not! To be honest, it would be kind of silly if they were. The web is a big
place, and we’re not all doing applications. Even if we were, application developers
will typically pick the right design pattern for a specific project. Native features that
favor certain ways of doing application development would likely not be a welcome
addition.

 In fact, we almost had some incredibly basic native underpinnings for data binding
with the JS feature Object.observe, which allowed listening to changes on a JS object
(figure 14.1). Popular frameworks, however, ended up not adopting it because it didn’t
fit with their specific solutions for data binding and application state management.

Even though it makes sense that these types of features aren’t part of plain JS Web
Components, a framework can and will pick a favorite way to offer them, especially
when the typical application-oriented user needs some or all of them. This enables
some great tutorials and amazing examples that are in lockstep with each other and
are great for beginners.

 Given the diverse nature of Web Component usage, it’s likely there will never be
one application design pattern to rule them all. You won’t see massive numbers of blog
takes on the same design patterns being used for Web Components, at least not any-
time soon. This lack of crystal-clear direction is why Web Components can feel a bit
lacking to some, especially when making a project decision and inevitably comparing a
framework to any no-framework solution, including Web Components.

 There is good news, however. Common features of modern frameworks are now
more interchangeable than ever. Take the application state management library
Redux. Redux is so strongly associated with React that it might lead you to believe that
the two can’t be separated. Some assume that if you use React, you have to use Redux.
Conversely, people might assume that Redux can’t be used anywhere besides React.
This is an artifact of those amazing demos, blog posts, and tutorials created by the
React community pairing the two. In fact, some React developers have started using
other state management libraries, like MobX.

 My point is that there is a wide variety of interchangeable solutions that the
major frameworks use already; it’s just not immediately obvious when researching a

Figure 14.1 Deprecated data binding feature: Object.observe

{
 aProperty: 5
}

JS object
changes from 4 to 5

object.aProperty = 5
4 function(changes) {

 // receive change event
}

312 CHAPTER 14 Events and application data flow
framework. This ongoing effort to make a library like Redux work in React, Angular,
Vue, and plain JS will only help us Web Component developers.

 Even better, you might not need a complex library like Redux to help manage your
application. In this chapter, we’ll improve chapter 10’s exercise planner to adopt
some extremely simple and custom-built application design patterns. You might won-
der why you’d put thought into design patterns, or even where to start. Like any solu-
tion, it starts with a problem that needs to be solved.

14.2 Events
I think it’s fair to say that underneath every complicated application architecture or
framework, there is some sort of custom message passing. It could have lots more mov-
ing parts built on top of that, but at a very basic level, it all starts with some kind of
event, like the click of a button or the change of an input field. A message is gener-
ated to communicate this change, and then something happens as the result of that
event. So, let’s start at the beginning.

14.2.1 Native events and WebComponentsReady

Not much needs to be said about native events. We’ve been using them throughout
the book when we listen to button clicks, input element changes, and so on. These are
events that the browser generates itself by way of the DOM.

 Since you’re already familiar with native events, I want to give a questionable exam-
ple of a native event that relates to some code you might find when researching Web
Components. It hasn’t been mentioned because it’s not needed much for daily use;
it’s not officially even a Web Component feature but is only available through a poly-
fill. It’s used like a native event, however, so let’s explore! The following listing shows
an extremely basic example to test the WebComponentsReady event.

<html>
<head>
 <title>Web Components Ready</title>
 <script src="https://unpkg.com/@webcomponents/webcomponentsjs@2.0.0/
 webcomponents-loader.js"></script>
 <script>
 document.addEventListener(
 'WebComponentsReady', function(e) {
 console.log('components ready');
 });

 </script>
</head>
</html>

This event simply allows you to be notified when Web Components as a whole are
ready on the page. Readiness really just means that any Web Component definitions
created can be applied to the elements on the page. For example, a custom

Listing 14.1 WebComponentsReady event

Web Components polyfill

WebComponentsReady
event listener

313Events
<sample-component> element you’ve made is an HTMLUnknownElement without
defining it with customElements.define.

 I did say that this was a questionable example, however. True native events are gen-
erated by the browser. While this event is used as if it were generated by the browser,
it’s not. It’s generated by the polyfill. Can this be called a native event if it is used like
one and looks like one? What’s more, it might be a bit confusing that it looks like such
a core feature of Web Components when used—you would expect it to fire even with-
out the polyfill. Why is it only available when polyfilling?

 When the browser natively supports Web Components, specifically the Custom Ele-
ment API, components are ready instantaneously. When not supported and using a
polyfill, however, it takes time to load the polyfill and allow the Web Components to
define themselves. An even worse situation was when HTML Imports were the pre-
ferred way to create Web Components. It takes time to load the desired HTML Import
as well. While waiting for these things, it might not be wise to interact with compo-
nents on your page. The WebComponentsReady event lets you know when it’s safe.

 This sounds useful, but in reality, it’s rarely used. For one, when using a modern
browser where polyfills aren’t needed, Web Components will instantly be ready. Sec-
ond, these timing issues just don’t seem to come up much. We’ve been organizing our
Web Components in this book by creating one big component that represents the
application and comprises child components. Though we do interact with these child
Web Components and assume they are ready from the start, they wouldn’t even exist if
the main application component wasn’t already created. And, of course, that main
application component gets instantiated only when Web Components are ready.

 Additionally, the WebComponentsReady event is not part of the Web Components
specification. Without including the polyfill, the ready event won’t be triggered, sim-
ply because it doesn’t exist normally!

 Despite its lack of everyday usefulness (though it has been helpful for some testing
setups), I did want to bring it up for a few reasons. First, it comes up fairly often in
online searches, to the point where it’s a bit confusing to determine whether it’s a real
Web Component event or just from the polyfill. Second, it demonstrates a “native
event.” Though it might be a bit weird to call it native due to the fact that it’s gener-
ated from a polyfill, it still comes from the DOM—specifically, the document object in
our example. We’ll contrast this to Custom Events next. Lastly, it gives us a good segue
into a related Web Component function (a real one this time).

14.2.2 When custom elements are defined

I’m stretching things a bit to include a “promise” under a section on events. But if you
know what a promise is, it accomplishes a similar thing as an event; and this particular
promise lets us talk about a better way to handle Web Component timing issues if we
run into them.

314 CHAPTER 14 Events and application data flow
 Promises are pretty basic JS functionality. Creating them from scratch is easy, but
using one that already exists is even easier. We’ve explored two out of the three fea-
tures of the Custom Element API in this book so far:

 customElements.define(<tag name>, <class>, <options>) lets us give life
and assign behavior to a custom element name.

 customElements.get(<tag name>) returns the class associated with an existing
custom tag. We’ve used this to determine if a custom element has already been
defined. Hint: if it returns undefined, it’s not defined.

 customElements.whenDefined is the last one, and we’ll discuss it now.

Instead of getting a ready event for when Web Components as a whole are generally
ready, it might make more sense to listen for when a specific Web Component has
been defined, especially when we may want to delay the loading of JS modules or
entire bundles because we’re not using a particular set of components just yet. We
might want to be alerted when particular components are ready, even when other
components have been running for quite some time.

 With this in mind, we can see an example of customElements.whenDefined in
action in the next listing.

<html>
<head>
 <title>Custom Elements When Defined</title>
 <script>
 class SampleComponent
 extends HTMLElement {
 constructor() {
 super();
 this.attachShadow({mode: 'open'});
 this.shadowRoot.innerHTML = 'my component';
 }
 }

 setTimeout(function() {
 if (!customElements.get('sample-component')) {
 customElements.define('sample-component', SampleComponent);
 }
 }, 2000);

 customElements.whenDefined(
 'sample-component').then(()=>{
 console.log('defined now!');
 });
 </script>
</head>
<body>
<sample-component></sample-component>
</body>
</html>

Listing 14.2 Using a promise to detect when a specific component is defined

A very simple component class

Waits 2 seconds, then
defines the component

Creates a promise that alerts
us when the web component
has been defined

315Events
Thanks to this last customElements feature, we have a real way to take or delay action
until we know that a specific Web Component is properly working.

14.2.3 Custom Events

Native events are great, but if you do web development, you’ve likely been using them
as a daily part of your work for ages for things as simple as listening to a mouse click.
So, there’s really nothing exciting about them.

 Custom Events are several years old, and they are far from a secret; but if they
aren’t part of your web development repertoire, they probably should be! Before get-
ting into message passing throughout an application where we’ll be using Custom
Events, let’s quickly cover some basic usage.

 What exactly do they enable you to do? Well, just like native events, they allow you
to receive messages and take action. Like a mouse click event, I could listen for a Cus-
tom Event and do something when the event fires. Unlike with native events, we can
generate and trigger the event ourselves. In the last chapter’s color picker, for exam-
ple, instead of watching for attribute changes as we did, we could instead create our
own event that triggers when the component’s color or alpha changes as a result of us
using the component. With Custom Events, we control the contents of the event, the
name of the event to listen for, and the timing of when it gets fired.

 There are three basic things to do when it comes to working with Custom Events.
The first is to create the event. We’ll create it by using the CustomEvent constructor.
The constructor takes the name of the event as the first parameter and then another,
optional object with event options and details as the second parameter:

const event = new CustomEvent('myevent', { detail: { message: 'hi', number: 5 } });

Just like native events, we have the same detail object for custom key/value pairs.
The detail property likely isn’t widely used by most people with native events. Since
the browser generates native events, it’s all planned ahead of time with specific
key/value pairs on the event object itself. For example, we can get the click location
from the clientX and clientY properties with a normal native click event:

document.addEventListener('click', function(e) {
 console.log(e.clientX, e.clientY)
})

We can get e.detail as well. This property, for the mouse click specifically, holds the
number of times the element is clicked. It seems kind of random to have this value be
in a variable named detail, and that’s exactly what it is: random. It would seem that
the detail property just contains whatever custom property data is needed and
maybe wasn’t properly planned for from the start.

 This seems a bit weird for native events, where the browser controls everything.
But the detail property is a core concept for Custom Events, where we do have cus-
tom data that needs to be passed, like our previous sample data.

316 CHAPTER 14 Events and application data flow
 With the event created, it’s not going anywhere until we trigger or, more formally,
dispatch it. Like native events, Custom Events are dispatched from the DOM (the doc-
ument or elements within). With this in mind, let’s dispatch from the document:

document.dispatchEvent(event);

The last basic step for working with Custom Events is to finally listen for the event!
This is where we can treat it like any native event you’ve ever worked with, just with a
unique event name and custom data in the detail object. We should set up the listener
before we dispatch the event, so we have that listener in place when it’s triggered. The
following listing shows the entire simple example.

<html>
<head>
 <title>Custom Events</title>
 <script>
 document.addEventListener(
 'myevent', function(e) {
 console.log('The message', e.detail.message, 'with number',
 e.detail.number);
 });

 const event = new CustomEvent(
 'myevent', {
 detail: {
 message: 'hi',
 number: 5 }
 });

 setTimeout(function() {
 document.dispatchEvent(event);
 }, 2000);

 </script>
</head>
<body>

</body>
</html>

Since we’re logging output to our console in this example, if you try to run this, open
it in your browser’s dev tools as you do. The custom properties of message: 'hi' and
number: 5 get carried over all the way through to the console.log when the event call-
back is triggered. We can also dispatch the event using a timer. The timer just better
proves to us in this example that the event callback is actually being triggered from
the event itself.

Listing 14.3 Custom Event creation, dispatching, and listening

Event listener and
callback function

Creates the new Custom Event

Custom detail object holding
properties we are passing through

Triggers/dispatches the event, but
waits 2 seconds to prove that the
callback waits for the event

317Events
14.2.4 Custom Event bubbling

Dispatching and listening for an event all from one element is fine and all, but one
nuance with Custom Events is that they don’t “bubble” by default. When we say bubble,
it means that the event passes through many DOM layers, and any of them could be
listened to for the event. For example, when clicking on a button, the click goes
through the button and then to its parent, to the parent’s parent, and all the way up to
the page’s root. Each element that the click passes through could generate its own
click event if you chose to listen for it.

 Native events, like a click event, do this by default. Custom Events don’t. So, we’ll
need to help them along. We’ll show this in practice with the next listing by adding an
additional element for the Custom Event to pass through.

<html>
<head>
 <title>Custom Event Bubbling</title>
 <script>
 document.addEventListener('myevent', function(e) {
 console.log('The message', e.detail.message, 'with number',
 e.detail.number);
 });

 const event = new CustomEvent('myevent', {
 bubbles: true,
 detail: {
 message: 'hi',
 number: 5
 }
 });

 setTimeout(function() {
 document.getElementById('target')
 .dispatchEvent(event);
 }, 2000);

 </script>
</head>
<body>
 <div id="target"></div>
</body>
</html>

Listing 14.4 will work, but only because we’ve added the bubbles: true option to the
Custom Event’s second parameter. Without it, if you chose to comment it out in this
example, the event would start and stop at the <div> with the ID of "target". If the
event listener were added to that <div> instead of the document, the example would
work fine because it wouldn’t need to bubble up to get captured.

Listing 14.4 Custom Event bubbling

Turns on bubbling

Dispatches the element
through another <div>

The additional <div> to
pass the event through

318 CHAPTER 14 Events and application data flow
14.3 Passing events through Web Components
While native events and Custom Events are fairly simple concepts when considered at
a feature level, event-passing strategies in general can be numerous and complex.
One of those complexities arises when working with Web Components and the
Shadow DOM.

 The following listing starts with a simple Web Component example that does not
use the Shadow DOM. It only contains a clickable button.

<html>
<head>
 <title>Web Component Events</title>
 <script>
 class SampleComponent extends HTMLElement {
 connectedCallback() {
 this.innerHTML =
 '<button>Click me</button>';
 }
 }

 customElements.define('sample-component', SampleComponent);

 document.addEventListener(
 'click', function(e) {
 console.log('was clicked', e.target, e.currentTarget,
 e.composedPath());
 });
 </script>
</head>

<body>
<sample-component></sample-component>
</body>
</html>

Typically, in this book, we’ve been listening to click events and similar things within
the component itself. However, in listing 14.5, we’re listening to the click event on the
overall document, but this event originated inside the component. We’re relying on
the ability of the click event to bubble through the component to the document.

 Clicking anywhere in the page would trigger the callback. But if the event can
come from anywhere, can this extremely nonspecific event listener be useful if you
don’t know where the click came from?

 It turns out that we can know exactly where it originated. When clicking on the
button in our Web Component, the event.target property is logged as <button>
Click me</button>. This target is the first stop of the click before it bubbles up
through the rest.

 It’s also not always useful to know where the click came from—rather, we want to
know the actual element that we added the event to. We can get this by using event
.currentTarget. In our example, we add the event to the document, and that’s
exactly what we get when we log event.currentTarget.

Listing 14.5 Web Component example with a click listener on the containing document

Button inside Web Component

Click event listener on document

Console logs the event
origin and path

319Passing events through Web Components
 Also interesting is event.composedPath(). Note that this is a function rather than
a property. Calling this function will return the complete path that the event bubbles
through. In our example, this gives us

[button, sample-component, body, html, document, Window]

Note that it starts on the button we clicked, passes through the Web Component,
through the body and html elements and document object, and ends on the very root
of everything: the Window object. Again, however, note that we aren’t using the
Shadow DOM just yet!

14.3.1 Native event propagation through the Shadow DOM

Recall the two Shadow DOM modes mentioned earlier in this book, closed and open.
If you remember, closed wasn’t recommended because it makes things a bit more dif-
ficult to work with while not offering any real security as was intended. Despite this, it’s
worth mentioning another minor difference between closed and open.

 In the next listing, we’ve changed the simple Web Component slightly to include
the Shadow DOM. Everything else is the same, including the button and the event lis-
tener on the document.

<html>
<head>
 <title>Shadow DOM Events</title>
 <script>
 class SampleComponent extends HTMLElement {
 connectedCallback() {
 const shadow = this.attachShadow(
 {mode: 'open'});
 shadow.innerHTML = '<button>Click me</button>';
 }
 }

 customElements.define('sample-component', SampleComponent);

 document.addEventListener('click', function(e) {
 console.log('was clicked', e.target, e.currentTarget,
 e.composedPath());
 });
 </script>
</head>

<body>
<sample-component></sample-component>
</body>
</html>

Looking at the console log now, event.currentTarget is still the same: the document
that we added the event listener to. Different, however, is event.target. This shows as
the Web Component element <sample-component>. The Shadow DOM is hiding the

Listing 14.6 Web Component with Shadow DOM and a click listener on the document

Uses Shadow DOM this time

320 CHAPTER 14 Events and application data flow
fact that the click originated from the button inside the component. It’s not com-
pletely hiding it, though. When we look at event.composedPath(), we see

[button, document-fragment, sample-component, body, html, document, Window]

With the exception of the additional document fragment layer that represents the
shadow boundary, everything is still the same. We see that the event originates on the
<button> inside the component and propagates through.

 If we change the Shadow DOM mode to closed, though, we don’t even get the full
composedPath. It starts at the <sample-component> element:

[sample-component, body, html, document, Window]

This seems par for the course when dealing with the closed versus open Shadow
DOM, right? The open mode closes things off enough to not do anything bad acci-
dentally, but is open enough to have workarounds if you know you are going against
the intended workflow. Recall that we can’t query-select elements inside the Shadow
DOM from the outside, except when we go through the shadowRoot property. This
seems pretty similar. We can look at the event.target to see where the event origi-
nates, but when the Shadow DOM prevents us from getting the full picture, we can
look at event.composedPath(). The closed mode doesn’t make any of this easy,
despite not really being secure.

14.3.2 Custom Event propagation through the Shadow DOM

Custom Events have one more thing to do to escape the Shadow DOM. In addition to
needing to set bubbles to true to bubble up through the DOM, we’ll also need to set
a property called composed to true as well. Without setting composed to true, the
event just won’t bubble out of the Shadow DOM and hit any parent components or
elements.

 The next listing builds on the last example, where we passed a click event through
the Shadow DOM. Instead of directly passing the click event on, we’ll listen for the
event in the component and generate a custom event that we’ll pass instead.

<html>
<head>
 <title>Shadow DOM Custom Events</title>
 <script>
 class SampleComponent extends HTMLElement {
 connectedCallback() {
 const shadow = this.attachShadow({mode: 'open'});
 shadow.innerHTML = '<button>Click me</button>';
 shadow.querySelector('button').addEventListener(
 'click', e => {
 const customEvent = new CustomEvent('myclick', {
 bubbles: true,
 composed: true,
 detail: {

Listing 14.7 Passing a Custom Event through the Shadow DOM

When button is clicked,
generates a new Custom

Event to dispatch

321Separate your data
 message: 'hi',
 number: 5
 }
 });
 shadow.dispatchEvent(customEvent);
 })
 }
 }

 customElements.define('sample-component', SampleComponent);

 document.addEventListener(
 'myclick', function(e) {
 console.log('was clicked', e.target, e.currentTarget,
 e.composedPath());
 });
 </script>
</head>

<body>
<sample-component></sample-component>
</body>
</html>

While the example works just fine, and the message gets logged, removing either bub-
bles: true or composed: true would disable everything. We’ve covered bubbles:
true previously in this chapter. As Custom Events don’t bubble by default, they’d
never make it out of the Web Component, Shadow DOM or no.

 The composed boolean is required in addition to bubbles. Just because the event
bubbles does not mean it will make it through the shadow boundary. This property
enables breaking through the boundary.

 What actually gets logged is exactly the same as before, except for the composed
path when using the open Shadow DOM mode. The button is no longer part of the
path, of course, because the Custom Event is now being generated from the compo-
nent’s shadow root. So now, the logged event.composedPath() is

[document-fragment, sample-component, body, html, document, Window]

Event bubbling is great, but it can have some major shortcomings when trying to pass
messages to objects that aren’t part of the same ancestry. We’ll explore this in a bit, as it’s
really an application architecture problem. As a beginning step, let’s improve on the
Workout Creator application from chapter 10 to make it usable as a real application.

14.4 Separate your data
Let’s recap what we accomplished so far on the Workout Creator application in chap-
ter 10. As that chapter highlighted, working with the Shadow DOM and CSS, the func-
tionality within was mostly visual. We had created a list full of exercises to choose from
on the left half of the application. Each exercise in the list was an exercise Web Com-
ponent populated with unique data. Clicking on any one of them would add that exer-
cise to the plan on the right side of the application.

Listens for the custom myclick event

322 CHAPTER 14 Events and application data flow
Once in the workout plan, each exercise had some UI for adjusting the number of
times to do each rep or set or adjusting the overall number of seconds to do the exer-
cise. There was also a button on the right of the exercise to delete it from your plan.
Not much of this UI was functional yet, though!

 If you look back at the exerciselibrary component, shown on the left side of fig-
ure 14.2, it didn’t do all that much. It simply rendered a list of available exercises. Any
clicks to add the exercise weren’t handled here, either—the event was bubbled up to
the workoutcreatorapp component. We’ll change this soon and actually handle the
event properly, but the point is that this exerciselibrary component barely does
anything. The following listing shows this component, though it cuts the big exercise
list short for brevity.

import Template from './template.js';

export default class ExerciseLibrary extends HTMLElement {
 constructor() {
 super();
 this.attachShadow({mode: 'open'});
 this.shadowRoot.innerHTML = Template.render([

Listing 14.8 Exercise library component

Figure 14.2 Workout Creator application recap

Left side:
list of exercises
to choose from

Right side:
creates a custom
workout plan

323Separate your data
 { label: 'Jump Rope', type: 'cardio', thumb: '', time: 300, sets: 1},
 ... more exercises ...]);
 }
}

if (!customElements.get('wkout-exercise-lib')) {
 customElements.define('wkout-exercise-lib', ExerciseLibrary);
}

Although placing this huge array of exercises inline as a parameter to the function
that renders the HTML does work, it’s bad practice. When you think about it, if you
wanted to add another exercise or edit what you have, how would a person who is not
familiar with the project know where to look? Why would this list necessarily be in this
particular component versus the workoutcreatorapp component, or exist as a static
getter from the exercise component?

14.4.1 Model-view-controller

None of these components are especially good for storing data like this. A core prac-
tice of a design pattern like MVC is that it separates your model, view, and controller.
While we haven’t paid close attention to MVC in this book, we’ve already separated
out the view from our controller logic.

 To define some terms, the view is presentational. It’s the visual aspect of your appli-
cation, component, or however you slice things up. Given that we are dealing with a
web application, the view will likely be HTML and CSS. We’ve been using a separate
Template import in our recent Web Component, which only holds the HTML/CSS,
or the view.

 The controller is the piece in the middle. It will handle all the logic between your
model and view. It reacts to changes in the UI like button clicks or input field changes
and updates the model accordingly. The model in this case is simply our list of exercises.

 Models typically hold a bunch of data, provide access to that data, or both. A JSON
object could be a data model, but then it’s up to the developer to know how to inter-
face with the underlying data. For example, listing all the users’ names from a hypo-
thetical model might sound easy, until you realize that the JSON object is a bit weird,
and you’d need to loop through lots of objects and child objects, finding the name
object, and then concatenating a first name and a last name property. In this case, a
data model could provide a nice function to do that for you. Or, if the data needs to
come remotely through a REST API, the data model could handle the network
requests for you to get exactly what you need through some sort of asynchronous
function that looks like a simple targeted function.

 MVC, and design patterns in general, aren’t always (or usually, in my experience)
so clear cut. We use them as references to draw from, inspire our application architec-
ture, and communicate those ideas to our team, but never adhere to them at all costs
or at the expense of common sense.

Shortened
exercise list

324 CHAPTER 14 Events and application data flow
 In this component, for example, our controller doesn’t react to any UI changes
(yet). Our data doesn’t change, either. So really, in this particular example, the con-
troller just doesn’t do much to the view or model other than pass it on. That doesn’t
mean we can’t take inspiration from the MVC design pattern, however. We can
remove the data from our controller or component class to have a proper separation
of concerns.

 Let’s create a new folder in our project source called data. We’ll create a new JS file
here called exerciselibrary.js. Figure 14.3 shows the new project structure, and listing
14.9 shows the new exerciselibrary.js data model.

export default {
 get all() {
 return [
 {
 label: 'Jump Rope',
 type: 'cardio',

Listing 14.9 Data model for the exercise library

Figure 14.3 Project structure with the new data folder

New data folder
with a data model module

Getter function to retrieve exercises

Actual (shortened)
list of data

325Separate your data
 thumb: '',
 time: 300,
 sets: 1
 }
 ... more exercises here ...
]
 }
}

When we separate this file out to the new data folder, it becomes pretty obvious where
another developer would go to edit the exercises. Also important is that we could
grow the component more, adding new features as we need them, and it wouldn’t
become a code spaghetti mess of a logic and data. We can also feel free to space things
out a little more in the data file using more lines. As the file now just contains data,
readability of this data is the most important thing here, unlike before, where compo-
nent setup and logic were the most important things.

 You might ask yourself why this needs to be JS. Why can’t it be a JSON file we load
at runtime? Well, it certainly could be! However, we’ve already started a bit of an API
with that first all getter function. If we had way more exercises, we could use this data
model to include some filters, search, pagination, and more. Also, given that it’s not a
class and is globally accessible, we could easily use this data model as a single source of
the exercise library from anywhere in the application.

 We could also include a load function within this module to load up that JSON file
as well, or even pull from a REST-based API. While we won’t introduce these extra fea-
tures here, it paves the way for editing our workout plan.

14.4.2 Local storage

While extra features might be nice in the exercise library, it goes a little above and
beyond a simple demo for this book. It really can be a static, non-changeable list to
make our application function. The workout planner, on the other hand, actually
does need some extra attention.

 Recall that the workout planner is an editable and customizable list containing a
personal workout routine. Given that the data represents just a single workout routine
for the entire application, it can also be a single centralized data model available
everywhere, just like the exercise library. The extra attention required will be to pro-
vide ways to add, remove, and edit items, as well as save the entire list, making it possi-
ble to reload a previously saved plan after you’ve closed the browser.

 To make saving and loading possible, we’ll use a feature that’s been around for a
while called local storage, or web storage. Using it is simple. We take a string of data (yes,
strings only) and save it using a specific name, or a key:

localStorage.setItem("mykey", "a string");

Reading is equally simple:

localStorage.getItem("mykey");

326 CHAPTER 14 Events and application data flow
Any key name used is unique to an origin. An example origin would be
http://mysite.com, which includes the protocol, the domain name, and the port num-
ber (default port if not specified). A key named mykey would return different data if
used on http://mysite.com than on http://anothersite.com. This means that we can
also list all the keys for the current site and won’t get back lots of stuff that is not rele-
vant to us:

Object.keys(localStorage);

With this in mind, let’s create a data model like the workout library, but which allows
us to save, edit, load, add, and remove data. Listing 14.10 has all these features, but
most importantly, it keeps track of the current core exercise list used anywhere in the
application that needs it. This aspect will become super important in a bit as we add
the ability to view and play back the workout.

export default {
 get saved() {
 const savedplans = [];
 Object.keys(localStorage).forEach(function(key){
 savedplans.push(key);
 });
 return savedplans;
 },

 save(name) {
 localStorage.setItem(name, JSON.stringify(this._currentWorkout));
 },

 load(key) {
 this._currentWorkout = JSON.parse(localStorage.getItem(key));
 },

 edit(id, key, value) {
 let exercise;
 for (let c = 0; c < this._currentWorkout.length; c++) {
 if (id === this._currentWorkout[c].id) {
 exercise = this._currentWorkout[c];
 exercise[key] = value;
 }
 }
 },

 add(exercise) {
 if (!this._currentWorkout) {
 this._currentWorkout = [];
 }
 exercise.id = this.createID();
 this._currentWorkout.push(exercise);
 },

 remove(id) {

Listing 14.10 Central data model for workout plan

Method to get a list of all
saved exercise plans

Saves current workout
plan to local storage

Loads a workout
plan from local
storage by name Edits a specific

workout plan
using a unique ID
for reference

Adds an exercise to the
workout plan and assigns it a
unique ID for later reference

Removes an exercise from the
plan, referenced by ID

http://mysite.com
http://mysite.com
http://anothersite.com

327Separate your data
 if (!this._currentWorkout) { return; }
 for (let c = 0; c < this._currentWorkout.length; c++) {
 if (this._currentWorkout[c].id === id) {
 const deleted = this._currentWorkout.splice(c, 1);
 return;
 }
 }
 }
}

Let’s also add on a few more convenience methods that will help elsewhere in the
application, as we continue this listing.

 clear() {
 this._currentWorkout = [];
 },

 get exercises() {
 if (!this._currentWorkout) {
 this._currentWorkout = [];
 }
 return this._currentWorkout;
 },

 createID() {
 return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g,
 function(c) {
 var r = Math.random()*16|0, v = c == 'x' ? r : (r&0x3|0x8);
 return v.toString(16);
 });
 },

get totalDuration() {
 let ttlTime = 0;
 for (let c = 0; c < this._currentWorkout.length; c++) {
 ttlTime += this.getDurationOfExercise(this._currentWorkout[c]);
 }
 return ttlTime;
},

formatTime(seconds) {
 return new Date(1000 * seconds).toISOString().substr(11, 8);
}

The prior save, edit, delete, and load functionality was a fairly standard set of things to
help manage a list. This next set of functions in the continued listing are there to add
some additional help functions used both inside and outside this data model.

 Creating a unique ID is important because when adding multiple exercises that
could be exactly the same type, it’s important to be able to differentiate between them
when removing or editing a specific one—thus we generate a unique ID every time an
exercise is added. To create a unique ID, I’ve simply copied some code from online

Listing 14.10 Central data model for workout plan (continued)

Clears all exercises
from the plan

Read-only getter for
current exercise plan list

Method to create a unique
ID for each exercise

Getter for total duration of
the exercise list to display
the time in the UI

Formats the number of seconds into
an easier-to-read format including
hours, minutes, and seconds

328 CHAPTER 14 Events and application data flow
that generates UUIDs (universally unique IDs). These IDs have a standard format and
an extremely high probability of being unique no matter how many you generate.
Having something that is so long and that has this exact formatting is probably over-
kill for this application, but it’s easy enough to copy over and include here.

 Convenience methods like getting the total duration for the set of exercises and
formatting time consistently are important to centralize here as well. No, it’s not that
hard to do either of these, but they will be done quite a bit from multiple places. It’s
important to not repeat code like this, or else different implementations might acci-
dentally become inconsistent as code gets tweaked over time. Plus, if we suddenly
wanted a different time format, we could change it once in this central location.

 Clearing the data seems a bit too simple to have a separate function here when all
it does is set the data to an empty array. But it paves the way to do more complex
things in the clear function when your application grows while still allowing users of
this data model to perform the same action.

 Now that the underlying data model has been created, it’s a great time to improve
our UI to interact with it! To save time and space in this chapter, I’ll say that this is a
great opportunity to add on to the component class yourself, though if you get stuck,
the final project is available in this book’s GitHub repo. That said, I’ll cover the major
points right now.

14.4.3 Wiring UI to the data model

Buttons to save, load, and clear the list of exercises can be added to this component’s
HTML, found in components/plan/template.js. Additionally, we can even render a
menu to allow the user to choose from available workout plans in this same template
file. By importing the module WorkoutPlanData from '../../data/workoutplan.js',
a function can generate all the names of saved plans and put them in a list for the user
to choose from, as seen in the following listing.

renderSavedPlans() {
 const saved =

WorkoutPlanData.saved;
 let options = '<option value="none">Load a saved plan</option>';
 for (let c = 0; c < saved.length; c++) {
 options += `<option value="${saved[c]}">${saved[c]}</option>`;
 }
 return `<select id="menu">
 ${options}
 </select>`;
},

Once the buttons and the menu are made available in the HTML, we can add event
listeners to them in components/plan/plan.js. By importing the WorkoutPlanData
module from '../../data/workoutplan.js' here as well, we can add the click events
in the next listing.

Listing 14.11 Function to generate saved plans from the data model

Gets a list of saved
workout plan names

Loops through each
plan name and

creates an optionReturns the final select
menu full of options

329Separate your data

this.dom.saveButton.addEventListener(
 'click', e => {
 WorkoutPlanData.save(this.dom.planName.innerText);
});

this.dom.clearButton.addEventListener(
 'click', e => {
 WorkoutPlanData.clear();
});

this.dom.menu.addEventListener('change', e => {
 WorkoutPlanData.load(this.dom.menu.value);
});

Figure 14.4 shows the state of the workout plan after adding this additional UI, but
what hasn’t changed from chapter 10 is how the exercise is added to the visual list.
Clicking on an exercise adds it just fine to the component, but since the data model is
new, it is out of sync with the visuals. Attempting to remove an added exercise, for
example, wouldn’t actually do anything because the exercise doesn’t exist there. This
model will be where all the different pieces of our application are tied together, so
making everything go through this central place is a must!

 This is easy to fix. Formerly, the workoutcreatorapp component (components/
workoutcreatorapp/workoutcreatorapp.js) contained a click listener and onClick
method that used the add function on the workout plan component to add a new exer-
cise. Back in chapter 10, I said this would be temporary. We can take it out right now.

Listing 14.12 Workout plan click listeners for saving, loading, and clearing the plan

Saves the current exercise
list with a specific name
that the user specified

Clears the current list of all exercises

When the user selects a
menu item from the list of
saved plans, loads that plan

Figure 14.4 Additional UI to manage the plan list

330 CHAPTER 14 Events and application data flow
Instead, let’s add this click listener to the exerciselibrary component and use the
data model this time to add it. The next listing shows this new component (compo-
nents/exerciselibrary/exerciselibrary.js).

import Template from './template.js';
import Library from
'../../data/exerciselibrary.js';
import WorkoutPlanData from '../../data/workoutplan.js';

export default class ExerciseLibrary extends HTMLElement {
 constructor() {
 super();
 this.attachShadow({mode: 'open'});
 this.shadowRoot.innerHTML = Template.render(Library.all);
 this.shadowRoot.addEventListener(
 'click', e => {
 if (e.target.constructor.name === 'Exercise') {
 WorkoutPlanData.add(
 e.target.serialize());
 }
 })
 }
}

if (!customElements.get('wkout-exercise-lib')) {
 customElements.define('wkout-exercise-lib', ExerciseLibrary);
}

Let’s pause for a second and reflect on what we’ve done so far. Creating a centralized
data model that we can access from anywhere is great, but could we deal without it?
Absolutely! Each component could own its own data as it did before. Do you want to
query all available exercises in the library? Talk to the exerciselibrary component.
Likewise with the workout plan list and the workout plan component.

 Thus far in our application, with just a few components, it’s very easy to listen for
events and interact with each component’s API. Figure 14.5 shows how easily data
flows among the existing components due to their nature in the DOM’s hierarchy.

 Things can and do get complex, however. What if we had another component that
needed this same data but wasn’t part of the same hierarchy?

14.5 Exercise playback view
What good would creating a workout plan be if we couldn’t play it back and get some
exercise? We need one final component to offer an exercise playback mode. As shown
in Figure 14.6, we’re going to make the player a modal window that appears over the
entire application when activated.

Listing 14.13 Exercise library listening for clicks on exercises and adding to the plan

Imports the exercise
library data model

Listens for clicks from
the exercise library
that bubble up to
this component’s
shadow root

Serializes the data from
the clicked exercise and
adds to the data model

331Exercise playback view
Figure 14.5 Easy data flow with existing component hierarchy

ExerciseLibrary component controls internal
exercise components directly

Plan component controls internal
exercise components directly

Exercise component

Exercise component

Exercise component

Exercise component

Exercise component

Exercise component

Events bubble out to
parent components.

Events bubble out to
parent components.

WorkoutCreatorApp component

Figure 14.6 Workout playback modal

332 CHAPTER 14 Events and application data flow
As this component is an element that should overlay everything on the page, it might
make sense to break it out of the existing application altogether. Our new index.html
for the entire project might look like the following listing.

<html>
<head>
 <title>Workout Creator</title>
 <script type="module"
 src="components/workoutcreatorapp/workoutcreatorapp.js"></script>
 <script type="module" src="components/playback/playback.js"></script>
 <link rel="stylesheet" type="text/css" href="main.css">
 <link href="https://fonts.googleapis.com/css?family=
 Roboto+Slab" rel="stylesheet">
</head>
<body>
 <wkout-creator-app></wkout-creator-app>
 <wkout-playback></wkout-playback>
</body>
</html>

The internal workings of the playback component rely on being able to play and
pause the entire exercise list in sequence, like a music playlist. To get this working, we
should add some playback controls in the workout plan data model (data/workout-
plan.js). The next listing shows these additional functions.

play() {
 if (!this._seconds) {
 this._seconds = 0;
 }
 this._timer = setInterval(() => {
 this._seconds ++;
 this.updateTime(this._seconds);
 }, 1000);
},

stop() {
 this._seconds = 0;
 clearInterval(this._timer);
},

pause() {
 clearInterval(this._timer);
},

updateTime(seconds) {
 let exercise = this.getExerciseForTime(seconds);
 let exerciseChanged = false;
 if (this._currentExercise !== exercise) {
 this._currentExercise = exercise;
 exerciseChanged = true;
 }
},

Listing 14.14 New project’s index.html with workout playback overlay

Listing 14.15 Additional methods to support workout plan playback

Workout playback
component definition

Workout playback on page

Starts playback using a timer

Stops playback, cancelling timer
and setting current time to 0

Pauses playback by
cancelling the timer

Timer callback to update the current
time and current exercise for time

333Exercise playback view
The previous functions are core to providing some playback controls for starting up
and playing an exercise session. Playing starts a timer and makes the more-complicated
updateTime function do the work of figuring out which exercise is happening at the
current time. Pausing stops the timer, while the stop function stops the timer and
resets the time.

 Next, we’ll need to provide common functionality to get some basic info for any-
where that needs it. Even the updateTime function needs to know what exercise is cur-
rently playing for a certain time. And that function will, in turn, need to know the
duration of a specific exercise. So, let’s create some of this common functionality.

getExerciseStartTime(exercise) {
 let time = 0;
 for (let c = 0; c < this._currentWorkout.length; c++) {
 if (this._currentWorkout[c].id === exercise.id) {
 return time;
 }
 time += this.getDurationOfExercise(this._currentWorkout[c]);
 }
},

getExerciseForTime(seconds) {
 let startTime = 0;
 for (let c = 0; c < this._currentWorkout.length; c++) {
 let duration = this.getDurationOfExercise(this._currentWorkout[c]);
 if (seconds <= startTime + duration && seconds >= startTime) {
 return this._currentWorkout[c];
 }
 startTime += duration;
 }
},

get currentExercise() {
 if (!this._currentExercise) {
 this._currentExercise = this._currentWorkout[0];
 }
 return this._currentExercise;
},

getDurationOfExercise(exercise) {
 if (exercise.time) {
 return exercise.time * exercise.sets;
 } else {
 return exercise.estimatedTimePerCount * exercise.count *

exercise.sets;
 }
}

With the data model updated to allow playback, we can easily use those functions from
the playback component. By importing the workout plan data model into this compo-
nent, we can easily call WorkoutPlan.play(), WorkoutPlan.pause(), and Workout-
Plan.stop(). See this book’s GitHub repo for the full component source code.

Listing 14.15 Additional methods to support workout plan playback (continued)

Gets overall start
time, in seconds,
of exercise

Function to find an exercise
for a specific time

Getter for the current exercise

Gets duration of the exercise
passed as a parameter

334 CHAPTER 14 Events and application data flow
Given the placement of this new component in the DOM—outside of the main appli-
cation right on the page—this single and global data model makes a lot of sense.

 Now, things are a bit more complicated! Figure 14.7 shows how we’d need to lis-
ten for events and interact with component APIs with the workout player now in the
picture.

 It’s entirely possible to deal with things this way, but it’s definitely annoying. With-
out the Shadow DOM, we could bubble events up to the main page and then use
query selection to select the right component to perform actions on. With the Shadow
DOM, we are blocked from query-selecting anything inside the child components. To
work around this, we could create an API for each component that needs to give
access to its children. This is fairly brittle because every time we reorganize things in
the DOM to make visual changes, we make sure that API holds up with the new DOM
structure.

 For this use case, and similar use cases, using a global data model like this can be a
good way to go! A data model definitely doesn’t have to be global, either. Each compo-
nent could have its own data model if it makes sense for your application. So far in the
simple exercises in this book, there hasn’t been an overwhelming need to separate
data out like this, but certainly your components could be a lot more complex, and

Figure 14.7 Component interaction after adding the player and with no global data model

Playback component

These components need
to interact with each other
despite being disconnected
in the DOM.

ExerciseLibrary component controls internal
exercise components directly

Plan component controls internal
exercise components directly

Exercise component

Exercise component

Exercise component

Exercise component

Exercise component

Exercise component

Events bubble out to
parent components.

Events bubble out to
parent components.

WorkoutCreatorApp component

335Passing events with an event bus
that’s when, depending on your project, it can make sense to really start enforcing an
MVC or similar pattern on a component level.

 As I said earlier in this chapter, using more robust solutions like Redux or MobX
can be a great solution as well. Like any DIY solution, as you start needing more fea-
tures, it starts making more and more sense to go with tried and tested solutions. In
our simple example, however, a data model is almost enough.

14.6 Passing events with an event bus
Note that I said a data model is almost enough. Sure, we can directly interact with the
data model, but take playback, for example. We can call WorkoutPlan.play(), but
once the timer kicks in and playback begins, the elapsed seconds will change, and the
current exercise will change every so often. It’s not just playback—it’s almost every
aspect of the application. Changing the duration of a single exercise should cause the
total time for your workout to update, and so too should adding and removing exer-
cises from the plan. The list of events we need to listen for is long.

 Earlier in this chapter, we discussed bubbling Custom Events through the DOM.
Again, prior to the new workout player view, we were mostly OK. It just so happened in
our application that the events we needed to listen for would bubble up to where we
needed them because the DOM hierarchy we had matched the data flow we needed.

 The new workout player complicates things. We’d need to bubble any events up to
the index.html page and pass them somehow to the component, as events don’t bub-
ble down to children. Perhaps making an API on the workout player would accomplish
this goal.

 An alternative is to do something similar to our global data model. An event bus is
a single, global object for passing events throughout your application. Moreover, we
can use the same Custom Events we’ve been using. Instead of calling dispatch-
Event(mycustomevent) from the component, we can call EventBus.dispatchEvent
(mycustomevent).

 An event bus, at minimum, needs a way to subscribe to events and a way to send
events. The next listing shows both in a new module saved in data/eventbus.js.

export default {
 addEventListener(type, cb) {
 if (!this._listeners) {
 this._listeners = [];
 }

 let listener = { type: type, callback: cb };
 this._listeners.push(listener);
 return listener;
 },
 dispatchEvent(ce) {
 this._listeners.forEach(function(l) {
 if (ce.type === l.type) {

Listing 14.16 A simple event bus

Adds an event listener; passes in an
event type and a callback function

Adds the listener data onto
an array to reference when
dispatching events

Loops through all listeners

336 CHAPTER 14 Events and application data flow

A
li
e

 l.callback.apply(this, [ce]);
 }
 });
 }
}

The function names I used, addEventListener and dispatchEvent, should look
familiar. They have the same names as the methods you’d use to do the same things
with the DOM. The same parameters and return values are used as well. Even though
this is a custom solution, I think it’s important to keep consistency when you use the
event bus or events that occur on the DOM; it just makes usage that much easier to
remember. The following listing shows a snippet from the workout player, where the
event listener is added after importing the EventBus module.

EventBus.addEventListener(
 'onPlaylistTimeUpdate', e => {
 if (e.detail.exercise) {
 if (e.detail.exerciseChanged) {
 this.dom.currentExercise.innerHTML = e.detail.exercise.label;
 this.dom.window.style.backgroundImage =
 `url("${e.detail.exercise.thumb}")`;
 }
 this.dom.timer.innerHTML =
 Template.renderTime(e.detail.time, e.detail.exercise);
 }
});

Of course, the event needs to be dispatched from somewhere. Given that all of the
playback logic is in the workout plan data model, the next listing shows it added there.

play() {
 if (!this._seconds) {
 this._seconds = 0;
 }
 this._timer = setInterval(() => {
 this._seconds ++;
 this.updateTime(this._seconds);
 }, 1000);
},

updateTime(seconds) {
 let exercise =
 this.getExerciseForTime(seconds);
 let exerciseChanged = false;
 if (this._currentExercise !== exercise) {
 this._currentExercise = exercise;
 exerciseChanged = true;
 }

 let ce = new CustomEvent(

Listing 14.17 Add event listener in workout player to receive time updates

Listing 14.18 Dispatching events to the event bus from the workout plan data model

If the Custom Event type matches
the listener type, calls the function
and passes the event

dds the event
stener to the
vent bus

Looks at a custom property on
event.detail to see if the exercise
changed, and updates the display

Updates the time display
in the component

Calls the timer function to
internally update the
seconds elapsed

Calculates what the current
exercise is and if it changed

Creates the event and dispatches
it from the event bus

337Passing events with an event bus
 'onPlaylistTimeUpdate', {
 detail: {
 exercise: this._currentExercise,
 exerciseChanged: exerciseChanged,
 exerciseIndex: this._currentWorkout.indexOf(this._currentExercise),
 time: seconds,
 }});
 EventBus.dispatchEvent(ce);
},

While we won’t rewrite the entire application here, this book’s GitHub repo will show
all the events added throughout. Aside from UI-related events, like mouse clicks, the
application has been refactored to use the event bus for all event passing. I do have
one last improvement, however, related to the event types.

14.6.1 Static getter event types

In the previous example, sending time updates, the event type used a string. The
exact string was 'onPlaylistTimeUpdate'. A name like onUpdate might suffice, too,
but as your application grows in complexity, and an event bus or even just the DOM
has lots of events flowing through, it can get harder to maintain the uniqueness of
your Custom Event types. Citing an extreme example, naming something change is a
bit dangerous because it’s a native DOM event that regularly happens from input
fields; so your callback function might be confused about which event it’s actually get-
ting if you were to name your Custom Event type change as well.

 Similarly, you might have multiple Custom Events that happen when something
updates in the application. It can be tempting to just name them all onUpdate, but this
will lead to confusion as well. That’s why it helps to have event types that are a bit lon-
ger and more specific.

 On the other hand, maybe it doesn’t matter that your event type is differentiated.
Listening for change can be acted upon regardless of whether it’s a Custom Event or
native event, and just knowing the element that fired the event using event.current-
Target or event.target can tell you all you need to know. Either way, event types can
be nonspecific like this or as specific as helps your use case. Remember, these are just
strings that represent the type of event and not functions themselves, so they can be as
flexible as you need without worrying about an API.

 Having unique events that don’t get confused is exactly why the name onPlay-
listTimeUpdate was used. The problem with these longer event names is that when
reaching across components, it can be difficult to remember what each event is
named. Worse, it can be easy to misspell! The problem with misspelled event types is
that they won’t give an error. The intended listener just won’t be called because you’re
either dispatching or listening to the wrong event.

 We learned about static getters in chapter 3, when discussing the Web Compo-
nent’s observedAttributes function. Custom Events are another perfect use for
them. As the data model isn’t a class and is already static, we can just use a simple get-
ter here:

338 CHAPTER 14 Events and application data flow
get PLAYLIST_UPDATE_EVENT() { return 'onPlaylistTimeUpdate'; },

If it were a class, like a component class we are dispatching Custom Events from, we
could mark it static:

static get PLAYLIST_UPDATE_EVENT() { return 'onPlaylistTimeUpdate'; },

Now, when dispatching events or listening for events, we can avoid the typo-prone
string. The listener can change to

let ce = new CustomEvent(WorkoutPlanData.PLAYLIST_UPDATE_EVENT, {

Adding listeners can be done similarly:

EventBus.addEventListener(WorkoutPlanData.PLAYLIST_UPDATE_EVENT

Because these getters are static, the instanced class or component doesn’t need to be
anywhere in sight to be able to use the getter. These event types are all available glob-
ally. Now if you make a typo, an error will be thrown, immediately alerting you to your
mistake. Even better, if using an IDE like VS Code or WebStorm, the code editor will
automatically suggest the static getter name for you, so you don’t make the mistake in
the first place.

14.6.2 Design patterns as suggestions

I can’t emphasize enough that design patterns like the event bus are merely sugges-
tions. If they help your application, great! If not, don’t use them. There is always
debate and renewed interest over application patterns current and old. And these
debates can get heated. New and popular frameworks tend to reinforce certain design
patterns. Some developers can run with these ways that are new to them and view
them as the only way to solve a problem.

 Just like those patterns aren’t the ultimate answer, the patterns presented in this
chapter aren’t the ultimate answer, either. For example, overusing the event bus can
be bad as well, making your application confusing. Passing UI events through a global
bus that are only relevant to your component can severely impact its share-ability and
how much it can function alone.

 There are much better resources than this chapter that discuss application design
and patterns. The goal here is just to show that Web Components aren’t limited com-
pared to other modern frameworks. All the features aren’t baked into the browser, but
there are countless JS libraries to pull in to help—that is, if a simple custom solution
like the ones outlined in this chapter isn’t enough.

339Summary
Summary
 In this chapter, you learned

 How to create Custom Events and how they differentiate from native events as
they bubble through the DOM, especially the Shadow DOM

 To work with Web Component timing by listening to when they are ready or
defined

 How to use static getters to avoid typos when working with Custom Events
 Some example design patterns, with an emphasis on working with an MVC

paradigm

Hiding your complexities
While this book is coming to a close, Web Components are really just getting
started. It took a while to create their foundations and even longer to get browser
support, but all the same, the last of the modern browsers (Microsoft Edge) is on
the verge of full support.

 The path to get here was a bit fraught with obstacles and dead ends at times.
We’ve seen a few features come and go. Among the deprecated was HTML
Imports, which somewhat coincided with the deprecation of the Polymer Library,
the first Web Components library. I’m sure this wasn’t coincidental, as the Polymer
Library was heavily influenced by HTML Imports as a starting point for every new
Web Component.

This chapter covers
 Using A-Frame to create a VR-enabled immersive scene

 Using Google’s model-viewer component to preview 3D
models onscreen and in AR

 Manipulating a live camera feed with WebGL

 Using Babylon.js to create a 3D scene component

 Tracking your hands with Tensorflow.js via handtrack.js
340

341Looking to the Web Component future
 It was sad to see HTML Imports go away, but that’s just how it goes when working
on a web standard with stakeholders from multiple browser vendors. As much as I love
using JS modules and template literals within to hold HTML and CSS, it’s not a per-
fect solution for everyone. For me, as a developer, it’s great, but not everyone likes
HTML and CSS inside JS.

15.1 Looking to the Web Component future
We’ve been able to do some amazing things on the web with just HTML and CSS for
ages. Requiring JS as a way to create these visual aspects in your component will be a
bit of a sore spot. That’s why I’m excited that the Chrome team has announced its
intention to ship HTML and CSS modules!

 I personally feel like these new module types will be one of a few big next steps for
Web Components. Being able to craft a small snippet of HTML and CSS outside of
your larger application, and outside of the complexity of your Web Component, will go
that much further in making Web Component development accessible to people who
may not be up to speed with the latest in JS techniques. It will allow better focus on
component structure and style, leaving logic and interactivity a truly separate concern.
If you’re like me and love HTML, CSS, and JS all the same, this might not be a big deal
to you. But allowing people to focus on the thing they are good at and use their individ-
ual talents to create the same component as a team is going to be amazing!

 CSS modules could be even more important. Allowing imports of small style sheets
into components begins to address what I see as the biggest rough edge of Shadow
DOM-enabled components. Without styles being able to pierce the Shadow DOM,
years of CSS workflows have gone out the window. The biggest CSS workflow we’re
missing is the concept of an entire design system being able to style your component
or set of components.

 Design systems are already fairly modular in their source code. It’s only when they
are built that they become a monolithic, or semi-monolithic, CSS file that is intended
to style your entire application from the top down. As CSS modules enter our work-
flows, perhaps we’ll have a reliance directly on the tiny, modular source files. Couple
this with (already released in Chrome) shadow parts and the upcoming shadow themes,
and we might have an extremely robust solution in our near future that creates an
even better workflow for design systems in general.

 I predict that design systems and application theming with these new features are
another next big game changer for Web Components. Though, really, it’s not just
Web Components that will benefit. Given that most modern frameworks work with
some form of component (some even using Web Components), these features could
be equally relevant to all of them.

 This is fantastic news for everyone, really. Already we are seeing a trend toward
framework-agnostic solutions. Redux, MobX, lit-html, and more all solve a small, tar-
geted problem. While Redux is popular for React users, and lit-html is popular
for LitElement Web Component users, these solutions can be used anywhere. Going

342 CHAPTER 15 Hiding your complexities
forward, I see this continuing. We may all be using the same solutions for similar prob-
lems no matter which foundational framework—or lack thereof—our project is built
on. Even better, Web Components themselves are agnostic and can be used in other
frameworks, just like any other element.

 Speaking of LitElement, this Google Polymer Project library seems to be catching
on quite nicely. Just recently, LitElement has reached a production-ready 1.0 . . . er,
rather 2.0. The lit-element package was already claimed on NPM (www.npmjs
.com/package/lit-element). Though the Polymer team was able to snag the name
from the previous author, they also wanted to avoid confusion and not get their 1.0
release confused with the previous project. So, LitElement was finally released as 2.0,
skipping right over 1.0. Not to mention, Ionic has had StencilJS for a little while as
well. Stencil has its own ecosystem of sorts, but compiles to a native, no-dependency
Web Component.

 It can be exciting looking to the future, but it’s also important to recognize what
we can do right now and how future changes to Web Components impact us as we go
forward. And that’s the exciting thing. It really does look like the foundational basics
of Web Components aren’t going to be changing anytime soon. Everything in this
book should remain relevant for years to come.

 The things that will change aren’t the fundamental building blocks; instead, the
change will come with the developer workflow for dealing with layout, style, applica-
tion design patterns, and so on. Yet, all of these details will not be visible to developers
who just want to use your component. Even if you are using old and outdated 2019
methods in your component when using it in 2025, it should still work because the
complexities inside your component aren’t really important to usage outside your
component.

 I heard one statistic from the Polymer team in February 2019 about Web Com-
ponent usage. That statistic is that 10% of all page views in Chrome use Web Compo-
nents in some way. This number underscores the biggest takeaway for me, and why
I’m such a big Web Components fan.

 To explain, that 10% is a little surprising, to be honest. It means that we’re all likely
using Web Components and don’t even know it. A Web Component is just another
element on a page. They are incredibly simple to use and consume, but on the inside,
components can be doing incredibly complicated things!

 The hidden complexity of Web Components is what’s so exciting for me. We can
wrap up something potentially insanely complex and expose it to users as an element
with a well-documented API or just a few attributes. The encapsulation provided by
the Shadow DOM lets us sleep at night knowing that despite whatever complexities lie
within, the outside page won’t inject any surprises.

 To be fair, components in any modern framework can offer this. When the first
version of Angular was introduced, I would write some pretty nifty “directives,” essen-
tially the components of the time. The problem is that when Angular v1 fell out of
fashion, the components/directives I had just weren’t relevant anymore, and I had to
rewrite if I wanted to keep using the same intended functionality.

www.npmjs.com/package/lit-element
www.npmjs.com/package/lit-element
www.npmjs.com/package/lit-element

3433D and mixed reality
 So, this notion of hidden complexities is what I’d like to end Web Components in
Action on. The projects and components we’ve created have been fun, but I’ve made
every effort to keep them small so we could discuss most if not all the code in the
pages of this book. Now, however, I’d like to push these artificial boundaries and
explore some more out-there topics!

15.2 3D and mixed reality
I’m not sure there’s much on the web today that’s more complex than 3D and mixed
reality! I’m betting we’re all familiar with 3D. With real-time 3D, we can look at an
object or scene from any angle we choose. Until recently, most of us have only been
able to interact with a 3D scene with traditional UI modalities, perhaps using our
arrow keys to walk around in a game or using a mouse to drag and spin an object to
look at it from any angle.

 This started to change in 2013 with virtual reality. I was one of the Oculus Rift DK1
backers on Kickstarter, and 2013 is when the first units started to ship. Also, around
this time you could purchase a small, inexpensive cardboard kit that held your phone
right in front of your eyes, taking up your entire viewing area.

 Also, because you’ve now stuck a phone on your face, the relative movement of
your head can be tracked. When you look around in the real world, this information
can be sent to the 3D scene. So now, instead of looking around by dragging your
mouse across a flat interface, as we’ve done since the first-person shooter video games
of the ’90s, your own head and eye gaze are how you look around.

 How is this possible? How does a phone know how your head is moving? Standard
now with any phone are accelerometer, gyroscope, and magnetometer sensors. An
accelerometer detects how fast your phone moves in a certain direction, while your
gyroscope can tell how fast your phone rotates in a certain direction. A magnetometer
is the sensor most commonly known as your compass. It can tell which direction your
phone is facing in the world in terms of north, east, west, or south. Sensor fusion algo-
rithms take all of these sensors together and can accurately determine how your head
moves! Combined with a split screen 3D scene where the left viewpoint is slightly off
from the right and then placed over your eyes, you get a full 3D stereo effect, as if
you’re actually in this virtual world.

 You might wonder what relevance this has to the web and Web Components. But
all of these capabilities have been part of the web for a while as separate pieces,
even without VR, and Web Components can definitely encapsulate and hide these
complexities.

 Tons of math and code for sensor fusion head-tracking aside, 3D in general is
super hard! While 3D graphics using normal code on your CPU are possible, they’re
pretty slow. That’s why any modern and serious effort for real-time 3D uses your GPU.
On the web, the only way to take advantage of the GPU is with WebGL.

344 CHAPTER 15 Hiding your complexities
 WebGL is incredibly low-level code, and it’s not JS. The following listing shows an
example WebGL shader that can take an image and do a radial fade to black around
the middle.

attribute vec2 a_position;
attribute vec2 a_texCoord;
uniform vec2 u_resolution;
varying vec2 v_texCoord;
uniform vec2 offset;

void main() {
 vec2 zeroToOne = a_position / u_resolution;
 vec2 zeroToTwo = zeroToOne * 2.0;
 vec2 clipSpace = zeroToTwo - 1.0 + offset;
 gl_Position = vec4(clipSpace.x * 1.0, clipSpace.y * -1.0, 0.0, 1.0);
 v_texCoord = a_texCoord;
}

Note that the aforementioned shader is a so-called “vertex” shader. Vertices are heav-
ily used as interconnected points in space on a 3D model. For us, since we’re going
extremely simple and using this only to manipulate pixels, our points in space are sim-
ply a flat square the exact size of our canvas.

 The following fragment shader complements the vertex shader. Whereas before,
we were drawing vertices and creating a flat canvas of sorts in the WebGL context, we
can now set each color of the pixel we’re drawing in that canvas.

precision mediump float;
varying vec2 v_texCoord;

uniform sampler2D u_image0;

void main(void) {
 vec4 sourcePixel =
 ➥texture2D(u_image0, v_texCoord);
 float multiply = 1.0;
 vec2 center = vec2(0.5, 0.5);

 float dist = distance(v_texCoord, center);
 gl_FragColor = (0.6-dist) * sourcePixel;
}

Of course, a simple effect like this is a far cry from a scene full of 3D models. Yet, the
previous code is a good example of what you have to work with for rendering your
graphics. There is lots of 3D math involved, and orchestrating it all is an HTML
<canvas> element and JS. Given all this underlying complexity, it’s standard practice
to use a higher-level 3D library, like Three.js (https://threejs.org) or Babylon.js
(www.babylonjs.com). At least with these, you aren’t forced to handle the nitty gritty

Listing 15.1 An example WebGL shader

Listing 15.1 An example WebGL shader (continued)

Incoming and shared variables to
help calculate the vertex points

Main function to calculate and set
vertex positions based on canvas size

The coordinate of the
pixel we’re operating on

Incoming texture (like from a photo
we’ve provided to the shader)

Gets the pixel from the texture
at the current pixel location

Sets the darkness of the
pixel as a function of how
far it is from the center

https://www.threejs.org/
www.babylonjs.com/

3453D and mixed reality
graphics rendering, writing shaders that are way more complex than those in listing
15.1. Instead, you can work with virtual objects like spheres, cubes, and any 3D models
you load.

 Even then, moving things around in 3D space is still hard! We’re dealing with
transform matrices, quaternions, and more. Web Components can help with specific
things here to hide all of this insane complexity, depending on your use case.

15.2.1 A-Frame

Technically speaking, A-Frame does not use proper Web Components. If you peek at
its source code, you can get a sense of how much of a technicality this statement really
is. I want to bring it up, however, as an offbeat, yet extremely relevant, Web Compo-
nent use case.

 A-Frame (https://aframe.io) describes itself as “a Web framework for building vir-
tual reality experiences.” This is great, but to me, it’s more than that. I think the
power and appeal of A-Frame is its ability to allow developers and nondevelopers alike
to create 3D scenes on the web that also work in VR.

 The reason that it’s so easy to create with A-Frame is because you’re not really cod-
ing when you start with it. The library lets you create scenes with tags on an HTML
page. Take the next listing, for example. It’s a simple “hello world” 3D scene that A-
Frame has as its first example of many.

<html>
<head>
 <title>Hello, WebVR! • A-Frame</title>
 <script src="aframe.min.js"></script>
</head>
<body>
<a-scene background="color: #ECECEC">
 <a-box position="-1 0.5 -3" rotation="0 45 0" color="#4CC3D9" shadow>
 </a-box>
 <a-sphere position="0 1.25 -5" radius="1.25" color="#EF2D5E" shadow>
 </a-sphere>
 <a-cylinder position="1 0.75 -3" radius="0.5" height="1.5" color=
 "#FFC65D" shadow></a-cylinder>
 <a-plane position="0 0 -4" rotation="-90 0 0" width="4" height="4"
 color="#7BC8A4" shadow></a-plane>
</a-scene>
</body>
</html>

This little bit of HTML gets us an entire 3D scene! Figure 15.1 shows everything that
appears in the browser. Even better, you can see a little VR goggles icon on the lower
right.

 This icon, when pressed, takes you into immersive mode. On a desktop, this isn’t
so interesting—it just goes full-screen. On a phone, it does get more interesting. Nor-
mally, when entering immersive mode, A-Frame splits the screen to show slightly

Listing 15.2 A-Frame hello WebVR scene

Includes A-Frame library

Element that contains
entire 3D scene

Example 3D
object; a
box/cube

https://aframe.io/

346 CHAPTER 15 Hiding your complexities
different content on the left and right for stereoscopic 3D. It also distorts each view
for lenses that you’d find on something like a Google Cardboard, where the lenses
enlarge these views to take up your entire field of view when the phone is millimeters
from your eyes.

 If you have Google Daydream installed on your phone, immersive mode gets even
more interesting, where the Daydream’s Bluetooth controller is now supported as
well. Daydream is Google’s VR platform, which runs on smartphones with an accom-
panying headset and controller. By default here, entering immersive mode will auto-
matically start Daydream.

 Desktop browsers are supported too, as are new VR-focused desktop browsers like
Supermedium and Firefox Reality. This is a bit more complicated than a phone,
because now your browser has to support a number of actual VR headsets and control-
lers. All the same, immersive mode works similarly here using your real headset and
controllers, such as the Oculus Rift, Oculus Go, HTC Vive, and Vive Focus.

 WebVR is such a new and emerging standard that it’s already out of date. WebVR
essentially defines a JS API that browsers implement for displaying VR and accepting
positional and rotation input that informs where your hand controllers and headset
are. Given the new excitement around AR, WebVR’s next version is now being called
WebXR to be inclusive of as many different immersive modalities as possible. This situ-
ation feels a lot like Web Components several years ago. Some browser vendors
went ahead and tried to implement what they thought would be great standards.

Figure 15.1 Example A-Frame scene

a-box element
a-cylinder element

a-plane element Immersive mode button

a-sphere element

3473D and mixed reality
Experiments in the web dev community around WebVR proved that some things
worked, and some things didn’t, and now we’re entering a new round of standards
with WebXR.

 What does A-Frame have to do with Web Components? Well, let’s revisit the
markup. Declaring a 3D scene is done quite easily with what looks like an a-scene
Web Component:

<a-scene background="color: #ECECEC"></a-scene>

When opening up the DOM inspector in your dev tools, as in figure 15.2, you can see
that this component encloses elements in the scene as well as a <canvas> tag for ren-
dering the 3D scene. Interestingly enough, though, elements like <a-box> that repre-
sent the cube or box in the 3D scene are zero height and width and are positioned
nowhere in particular.

 That’s because these elements that represent objects in the <a-scene> element
aren’t actually used visually. A-Frame is using HTML elements as nonvisual data mod-
els to be created in 3D. This is interesting, isn’t it? On one hand, we have the
<a-scene> component handling the incredible complexity of a full 3D scene and also
allowing it to work in a variety of VR settings and hardware.

a-cylinder is not
visually in the DOM.

a-scene holds the 3D canvas
along with a few other
visual elements.

Figure 15.2 Inspecting the A-Frame scene

348 CHAPTER 15 Hiding your complexities
On the other hand, we have a variety of nonvisual components inside <a-scene> that
do nothing but help create the 3D scene. I think the notion of nonvisual components
is super interesting. I go back and forth on whether they are useful or not. As a decent
JS developer, anything that’s not visual I tend to think of as something you should just
do with JS, leaving HTML out of it. Yet, there is a nice approachability to nonvisual
Web Components. Anyone without JS knowledge can just place something nonvisual,
like a background audio player, on the page without having to worry about instantia-
tion, JS libraries, or any other concerns.

 Here, since these nonvisual components and the visual <a-scene> tag help each
other out to create the entire scene and look like one consistent thing in your HTML
markup, I’m definitely a fan! It’s just fun to start editing the scene live in your dev
tools and watch the 3D scene instantly change, like in figure 15.3, where I change the
box color and rotation.

In summary, we have custom element creation, attribute change callbacks, connected
callbacks, and likely more. I did state that this wasn’t technically a Web Component
under the hood at the beginning. The reason why is simple. A-Frame doesn’t use the
Custom Element API at this point. It is using the old API of document.register-
Element with a polyfill to ensure it works everywhere. One of the lead A-Frame
authors has stated they will start using the Custom Element API soon
(https://github.com/aframevr/aframe/issues/3923), but for all intents and purposes,
I do consider A-Frame a great use case for Web Components. Additionally, it isn’t using
the Shadow DOM. Here, there’s really no reason to do so, since the elements aren’t
styled, and it’s preferable to allow unrestricted access to the inner DOM inside
<a-scene> to manipulate the scene however a developer wants. As a result, we don’t

a-cube object

Live editing rotation and
color on element

Figure 15.3 Changing A-Frame objects live in the browser’s dev tools

https://github.com/aframevr/aframe/issues/3923

3493D and mixed reality
have to manage the nonvisual inner child nodes as anything but normal elements. If
using the Shadow DOM, these child nodes would have to be managed as slots.

15.2.2 Model-viewer component

One narrow but popular use case for 3D on the web is simply being able to preview a
3D model—allowing a user to drag to spin it around and zoom in. Google has created
a Web Component for just that called model-viewer. Documentation and examples
can be seen at https://googlewebcomponents.github.io/model-viewer, but I think it’s
worth pulling it down and playing with it a little.

 In this book’s GitHub repo, I’ve done just that. In an HTML file called
simpledemo.html, we can see this component in action. We’ll build up to interactivity
and adding a background color as in the demo as we go along. There’s really nothing
to it beyond linking to the component’s JS, doing a little style to set the component
size, and finally putting the component on the page, as shown in the next listing.

<html>
<head>
 <script src="model-viewer.js"></script>
 <title>Simple Demo for Model Viewer</title>
 <style>
 body {
 margin: 0;
 }
 model-viewer {
 width: 100vw;
 height: 100vh;
 }
 </style>
</head>
<body>
 <model-viewer src="Astronaut.glb"></model-viewer>
</body>
</html>

There’s not much you couldn’t do here on your own; but for your convenience, I’ve
downloaded the Astronaut 3D model and the component JS into this book’s GitHub
repo, so you can follow along without hunting things down yourself. The 3D model is
actually a brand-new 3D format called glTF. Compressed as a binary bundle, the file
format ends up as .glb. This is yet another complexity, as 3D formats need to be
unpacked and parsed to actually create the 3D model in the 3D engine.

 Once it’s up and running, it doesn’t look that impressive with no interaction! It
may as well be an image. The model-viewer component gives us a whole bunch of
attributes to work with. Probably the least impressive is the ability to add a background
color, shown in figure 15.4. Let’s start with a lavender background:

<model-viewer src="Astronaut.glb" background-color="#9999bb"></model-viewer>

Listing 15.3 A model-viewer component demo

Model-viewer component JS

Sizes the component to be the
entire size of the page

Adds the component to
the page showing the
Astronaut model

https://googlewebcomponents.github.io/model-viewer

350 CHAPTER 15 Hiding your complexities
Next, let’s make this 3D context useful. The model-viewer allows autorotation, as if
the astronaut was on a slowly rotating turntable:

<model-viewer src="Astronaut.glb"
 auto-rotate
 background-color="#9999bb"></model-viewer>

Or perhaps you’d like it to be a little more interactive, allowing it to rotate by dragging
across the element:

<model-viewer src="Astronaut.glb"
 controls
 background-color="#9999bb"></model-viewer>

Note the attention to detail when you drag to rotate. There’s a little acceleration when
you drag, and it drops off pretty quickly after release, but it does ease out, so it doesn’t
feel too jarring.

 Consider this tiny usability detail when also thinking about every other little thing
this component does, from rendering geometry to using a WebGL canvas to loading a
3D model with geometry, materials, and textures. A component like this takes time to
create, which is why it’s great that Google already did it and shared it via open source.

 The model-viewer ends up being just one more component that we can include
on our page without having to understand all of the complexities underneath. It frees
us up to turn our attention to other aspects of our application.

15.2.3 model-viewer + Poly search

Remember back in chapter 3, when we created a 3D model search with Google Poly?
Displaying a 3D model and being able to interact with it was a bit too much to get into
back then, and it still is now. But we don’t need to get into those details; we can simply
make our search function and find a real result, previewed in full 3D with the model-
viewer component.

Figure 15.4 Astronaut model
over a colored background

3513D and mixed reality
 The next listing shows this search example augmented to include the glTF URL as
an attribute of each image thumbnail. We can listen to clicks on each thumbnail, grab
that URL, and update the model-viewer component.

<html>
<head>
 <title>Poly Search with Preview</title>
 <script src="model-viewer.js"></script>
 <script src="poly-search.js" type="module"></script>

 <style>
 model-viewer {
 width: 50vw;
 height: 50vh;
 }
 </style>
</head>
<body>
<model-viewer src="../Astronaut.glb" controls></model-viewer>

<label>Enter search term: </label>
<input type="text" onchange="updatePolySearch(event)" />

<poly-search apikey="<enter your API key here>"
 format="GLTF2"
 thumbheight="50"
 backgroundcolor="#99ffff"
 baseuri="https://poly.googleapis.com/v1/assets"
 searchterm="parrot">
</poly-search>

<script>
 function updatePolySearch(event) {
 document.querySelector('poly-search').searchTerm = event.target.value;
 }

 document.querySelector('poly-search').addEventListener('click', e => {
 const model =
 e.target.getAttribute('gltf');
 document.querySelector('model-viewer').setAttribute('src', model);
 });
</script>

</body>
</html>

For brevity here, I’ve wrapped up the Poly search component as its own module and
used a template literal inside to manage its own CSS. We didn’t do either before
because chapter 3 was prior to introducing these concepts. Feel free to try this your-
self or visit this book’s GitHub repo.

Listing 15.4 Poly search component with a model-viewer component to preview

Imports poly-search
component and includes
model-viewer component

Be sure to enter your own
API key from chapter 3 to
get this example working.

Tells poly-search to only include
glTF results (for model-viewer

component compatibility)

On click, gets the glTF URL
and updates the model-

viewer component

352 CHAPTER 15 Hiding your complexities
 The only logic change within was filtering those results to include only glTF files
and grabbing the URL of the result. The next listing shows this change.

for (let c = 0; c < assets.length; c++) {
 for (let d = 0; d < assets[c].formats.length; d++) {
 if (assets[c].formats[d].formatType ===
 this.getAttribute('format')) {
 html += '<img gltf="' +
 assets[c].formats[d].root.url +
 '" src="' +
 assets[c].thumbnail.url +
 '" width="' +
 this._thumbwidth + '" height="' + this._thumbheight + '"/>';
 }
 }
}

The resulting demo loads up “parrot” models initially, but anything we type into that
search box, we’ll likely find a 3D model for. Of course, clicking each result gives a full
interactive preview. In figure 15.5, I’ve typed “spaceship,” and chapter 3’s Poly search
component shows the corresponding results. Clicking any one result passes an event
onto the surrounding HTML page, which sets the src attribute to the result’s glTF
web address.

Listing 15.5 Filtering results by glTF, including the URL on the result image element

Filters by format (glTF as
specified on the
component attribute)Adds a special

attribute to the
image result for

the glTF URL

Figure 15.5 Poly search component with model-viewer preview

model-viewer
component

Search results
from poly-search
component

3533D and mixed reality
Think about what we just did! We took an early simple component from before we
learned much of anything Web Component-related, combined it with a complex Goo-
gle Web Component that we have no idea, really, how it works, and made something
super useful in a very simple way. Again, this is my favorite part of Web Components—
hiding complexity inside a few simple tags and making something greater than the
sum of its parts.

15.2.4 AR with model-viewer

As complex as 3D is, we can go deeper. AR is the next immersive step beyond VR.
While VR lets you view an entirely fake and virtual world, AR allows placement of vir-
tual objects in the real world. This is extremely challenging just in terms of hardware.
Screens that you can’t see through are all around us. On the other hand, creating a
screen that a user can see through while it’s also mounted on their head is a big chal-
lenge that some huge, well-funded companies are struggling to take on right now.

 Notably, the biggest efforts to create hardware like this come from Magic Leap and
Microsoft’s HoloLens. These devices cost thousands of dollars and, frankly, don’t live
up to what you might imagine because of their limited field of view. What I mean by
this is that when you experience one of these devices, the virtual objects in your scene
are limited to an area of your view similar to holding up an 8.5 × 11 sheet of paper at
arm’s length, as in figure 15.6. When these virtual objects are viewed at a distance, it’s
amazing what you can see and how these objects seem to live in the real world. How-
ever, when you get closer, and objects are bigger than that limited field of view, they
get clipped! It really tends to break the immersion of the experience.

 This and similar challenges along with price are why folks are taking a step back
from such devices and going full steam ahead with AR on their everyday phones while
we wait for the ultimate AR headset. Separately (or possibly in conjunction with futur-
istic glasses in their secret hardware labs), Apple and Google are working on their

Figure 15.6 Example AR
glasses field of view

Full human field of view

AR glasses FOV

354 CHAPTER 15 Hiding your complexities
smartphone libraries—ARKit and ARCore, respectively—to give developers a leg up
for creating AR smartphone experiences.

 The complexity that these libraries solve is with attempting to “see” the world.
Using computer vision, ARKit/ARCore find interesting “features” in the real world
through your phone’s camera. These features manifest as 3D points that it finds.
When these 3D points are found, they can be linked together and manifest as a found
surface, like a floor, a table, or a wall. When a surface is found, a 3D object or scene
can be placed on it, as seen in figure 15.7, courtesy of Google’s ARCore Quickstart
(https://developers.google.com/ar/develop/java/quickstart).

These hidden complexities keep piling up! The model-viewer component attempts
to take this on as well. Unfortunately, at the time of this writing, pure web-powered AR
is not supported in your phone. This is because an experimental version of Chrome
(Chrome Canary) with WebVR was needed to try this out. With WebXR now in devel-
opment, Chrome Canary no longer supports the features that model-viewer was
using to give us AR.

 Early days for sure, but you can still try AR out with the model-viewer component
if you have either a Magic Leap device with its “Hello” browser or a newer iPhone with
iOS 12+. If this is you, it’s really easy to try (though I’ll admit, I haven’t tried with a
Magic Leap).

 For the Magic Leap, it’s as easy as setting the corresponding attribute <model-
viewer src="Astronaut.glb" magic-leap> and including the @magicleap/pris-
matic library on your page. Since I don’t have a Magic Leap, and you probably don’t
either, the iPhone option is the most approachable for us.

 Recall that I said that pure web-powered AR isn’t supported right now with model-
viewer. This is because, as it is currently, model-viewer cheats a bit on iOS. To enable
AR, the component uses Apple’s Quick Look feature, which now supports 3D and AR.
When entering immersive mode from your web page, the Quick Look application
opens with your 3D model. Despite the hoops jumped through by the component, it’s

Figure 15.7 Placing a virtual object in the real world using ARCore

https://developers.google.com/ar/develop/java/quickstart

3553D and mixed reality
really easy to try, provided you have a newer iPhone. The following listing shows a sim-
ple alteration to our last example.

<model-viewer src="Astronaut.glb"
 background-color="#45aa22"
 ios-src="Astronaut.usdz">
</model-viewer>

To support Quick Look, the model needs to be provided in Apple’s new 3D format,
USDZ. I’ve downloaded and provided this model in this book’s GitHub repo, so you
can easily check it out.

15.2.5 Your own 3D component

Of course, sometimes you know full well how a complex component works because
you’ve coded it yourself. It’s just helpful to hide that complexity from the rest of the
app, so you can worry about developing one component at a time. Developing for 3D
is such a different context, it can definitely give you a bit of developer whiplash when
the rest of your application is a 2D UI.

 Wrapping up your 3D work in a component containing the <canvas> tag for dis-
play and all the JS needed to run a full 3D scene with a render loop can be a great way
to go. Mixing 3D and 2D sounds like a great use of the color picker we made a few
chapters ago!

 This demo, specifically, will have a 3D scene that holds a simple primitive, like a
sphere, cube, or low-polygon sphere. This scene will include a custom camera and
lights and will feature drag interaction that allows a user to spin the camera to look at
the scene from any angle they wish.

 On the 2D UI end, the color picker will allow changing the 3D primitive’s color
and transparency. Also, we’ll have some really simple buttons that allow a user to
choose whichever 3D primitive they’d like to view. Figure 15.8 shows what we’ll end up
with.

 In total, there will be three components, including the color picker we’ve already
done. The other two are the 3D scene component and the application component
that holds both the 3D scene and color picker. Figure 15.9 shows the folder structure
of the entire application.

 There are a few things to call out that might be a bit abnormal. We’ve been using
two files for each component throughout this book—one for the component class
and one to hold HTML/CSS. This is still true. The scene component has an extra file
containing the Babylon.js library.

 As I mentioned earlier in this chapter, 3D is hard to do, and WebGL is a bit too
low-level for us to be productive in. This is why a 3D library is pretty standard fare
when working on similar things. Three.js is probably the most popular 3D library right
now and, in fact, is used in both the model-viewer component and A-Frame. It’s a

Listing 15.6 AR with the model-viewer component

New ios-src attribute with USDZ
file to enable AR on iOS 12+

356 CHAPTER 15 Hiding your complexities
Figure 15.8 A 3D color picker application

3D object to color edit

Color picker component

Object switcher buttons

Figure 15.9 3D color picker project structure

3D scene component

Bundled color picker component

Application component

CSS vars to style the color picker

3573D and mixed reality
great library, but lately, I’ve simply been preferring Babylon.js. It’s an entirely personal
preference, though. I like how much of a complete package Babylon.js is, whereas
Three.js is more plugin-based if you need anything beyond extremely simple function-
ality. There’s absolutely nothing wrong with this—each has its time and place, and I
would say both are equally awesome.

 Aside from the extra library, the color picker component folder doesn’t exist! I
simply copied over the component build file that we created in chapter 12 with Rol-
lup. The only other thing to call out that you may have forgotten is the CSS file at the
project root containing the CSS vars that helped style the color picker component.

 Let’s start simple and work our way up to the 3D part last. First, the next listing
shows a basic HTML page hosting the application.

<head>
 <title>Material Coloring</title>
 <script
 type="module"
 src="components/app/app.js">
 </script>
 <script
 src="components/scene/babylon.custom.js">
 </script>
 <script
 src="components/colorpicker.js">
 </script>
 <link
 rel="stylesheet"
 type="text/css"
 href="vars.css"/>

 <style>
 body {
 margin: 0;
 padding: 0;
 overflow: hidden;
 }

 mc-app {
 width: 100vw;
 height: 100vh;
 }
 </style>
</head>
<body>
 <mc-app></mc-app>
</body>
</html>

There are two script references that stand out a little here. First, we’ve included
Bablyon.js here instead of in the component where we’re using it. While I’d prefer to
import it as a module, it’s a bit much for our simple example to grab the entire

Listing 15.7 3D color picker index.html

Includes the main
application component

Includes the
Babylon.js 3D library

Includes the color
picker component

Includes CSS vars to
theme the color picker

Makes the application
fill the entire page

Places the application
on the page

358 CHAPTER 15 Hiding your complexities
Babylon source and deal with that. Alternately, it would be nice to include the
<script> tag when setting the innerHTML of the 3D scene component. Unfortunately,
due to security concerns, scripts aren’t allowed to load like this. Instead, we’d have to
create a new script element with JS, set the source, and manually append it. Listing
15.7 is just easier to show you now.

 Second, you’ll notice that the color picker component isn’t imported as a module,
either. Yet again, this is for convenience. Instead of copying the entire component
source over or importing a source where we’d need to back up several levels, and up
through a chapter again in this repo, it’s easier to copy over the build file that we pack-
aged up as something we’d drop in on an HTML page like this.

 Moving on to the application component in components/app, we’ll start with the
template.js file to review the HTML and CSS. The next listing shows these details.

import Scene from '../scene/scene.js';

export default {
 render() {
 return `${this.css()}
 ${this.html()}`;
 },

 mapDOM(scope) {
 return {
 scene:
 scope.querySelector('mc-scene'),
 colorpicker: scope.querySelector('wcia-color-picker')
 }
 },

 html() {
 return `<mc-scene
 object="cube">
 </mc-scene>
 <div id="model-buttons">
 <button class="object-button">cube</button>
 <button class="object-button">sphere</button>
 <button class="object-button">geodesic</button>
 </div>
 <wcia-color-picker class="modal" hex="#99224A">
 </wcia-color-picker>`;
 },

 css() {
 return `<style>
 . . . CSS here
 </style>`;
 }
}

Listing 15.8 Application template module for HTML/CSS

Caches references to the
scene component and the
color picker component

3D scene component with a
default primitive object of cube

Buttons to click and change the
primitive object that the 3D scene shows

Color picker component with
a default color already set

3593D and mixed reality

c

The CSS is rather simple. But it’s a bit different than our usual layout, as we overlay all
of the elements on top of the scene through absolute positioning, as the following list-
ing shows.

:host {
 display: inline-block;
}

#model-buttons {
 position: absolute;
 width: 100%;
 bottom: 10px;
 left: 10px;
}

#model-buttons button {
 font-size: 20px;
}

mc-scene {
 position: absolute;
 width: 100%;
}

wcia-color-picker {
 position: absolute;
 width: calc(100% - 20px);
 margin: 10px;
}

Next, since we’re only tying these two components together (the color picker and 3D
scene), the JS in components/app/app.js is very simple as well. It’s no different than
any other component we’ve done, and the next listing highlights the parts that aren’t
boilerplate Web Component setup.

import Template from './template.js';

export default class App extends HTMLElement {
 constructor() {
 super();
 this.attachShadow({mode: 'open'});
 this.shadowRoot.innerHTML = Template.render();
 this.dom = Template.mapDOM(this.shadowRoot);

 const observer = new MutationObserver(e => this.onMutationChange(e));
 observer.observe(this.dom.colorpicker, { attributes: true });
 this.shadowRoot.addEventListener('click', e => this.onClick(e));
 this.dom.scene.color =
 this.dom.colorpicker.hex;
 this.dom.scene.alpha = this.dom.colorpicker.alpha;
 }

Listing 15.9 Absolutely positioning elements over the 3D scene

Listing 15.10 Application component JS

Model buttons are at the
bottom and over the 3D scene.

The 3D scene takes up the
entire component, but layered
underneath everything else.

The color picker sits at the top of
the page, over the 3D scene and
with some margins at all sides.

Listens for clicks to capture
when the 3D object buttons

are pressed

Listens to
attribute

hanges by the
color picker

Initially sets the color and
alpha of the 3D scene based

on color picker defaults

360 CHAPTER 15 Hiding your complexities
 onClick(e) {
 if (e.target.classList.contains(
 'object-button')) {
 this.dom.scene.object = e.target.innerText;
 }
 }

 onMutationChange(changes) {
 for (let c = 0; c < changes.length; c++) {
 switch (changes[c].attributeName) {
 case 'hex':
 this.dom.scene.color = this.dom.colorpicker.hex;
 break;

 case 'alpha':
 this.dom.scene.alpha = this.dom.colorpicker.alpha;
 break;
 }
 }
 }
}

if (!customElements.get('mc-app')) {
 customElements.define('mc-app', App);
}

Having to use a MutationObserver again for such a simple task hurts a bit here. It’s
overly complicated, so I wish the color picker component had a custom event built in,
as we covered in the last chapter. It might be some great homework for you to go back
and do this yourself and refactor the previous code as well to use it.

 Moving on, though, we now come to the 3D scene component. Given how little
HTML/CSS is here because we’re just using a <canvas> element to show the 3D, we’ll
show components/scene/template.js first.

export default {
 render() {
 return `${this.css()}
 ${this.html()}`;
 },

 mapDOM(scope) {
 return {
 scene: scope.querySelector('canvas')
 }
 },

 html() {
 return `<canvas touch-action="none">
 </canvas>`;
 },

 css() {
 return `<style>
 :host {

Listing 15.11 HTML/CSS for the 3D scene component

With all clicks captured
from the component,
filters by class, only
listening to the 3D
object buttons

Sets color or
alpha

depending on
the mutation

change

Caches the canvas
element for use in the
component class

Only element here is the canvas,
and touch-action="none" enables
Babylon mouse interaction

CSS here only serves to
size the component and
canvas to fill the page

3613D and mixed reality
 display: inline-block;
 width: 100%;
 height: 100%;
 }
 canvas {
 width: 100%;
 height: 100%;
 }
 </style>`;
 }
}

Like I said, really simple stuff where we just need to show a <canvas>. In terms of 3D
coding in general, we’re not doing anything too complicated in the component class
in components/scene/scene.js. Still, though, there is a bit of setup for the scene,
lights, and camera. Splitting up the JS module, let’s cover the standard Web Compo-
nent bits first in the next listing.

import Template from './template.js';

export default class Scene extends HTMLElement {
 static get observedAttributes() {
 return ['object', 'color', 'alpha'];
 }

 set color(val) {
 this.setAttribute('color', val);
 }
 get color() { return this.getAttribute('color'); }
 set alpha(val) { this.setAttribute('alpha', val); }
 get alpha() { return parseFloat(this.getAttribute('alpha')); }
 set object(val) { this.setAttribute('object', val); }
 get object() { return this.getAttribute('object'); }

 attributeChangedCallback(
 name, oldVal, newValue) {
 switch (name) {
 case 'alpha':
 this.updateColor();
 break;

 case 'color':
 this.updateColor();
 break;

 case 'object':
 this.switchMesh(newValue);
 break;
 }
 }

 constructor() {
 super();
 this.attachShadow({mode: 'open'});

Listing 15.12 Web Component setup for the 3D scene component

Attributes we’re
observing (3D object,
color, and alpha)

JS methods to support
component reflection

Attribute change callback
handles color/alpha and
3D object changes with
methods not shown yet

362 CHAPTER 15 Hiding your complexities
 this.shadowRoot.innerHTML = Template.render();
 this.dom = Template.mapDOM(this.shadowRoot);
 this.initScene();
 }
}

if (!customElements.get('mc-scene')) {
 customElements.define('mc-scene', Scene);
}

Yet again, we have lots of space eaten up with reflection. I’ve condensed the code a lit-
tle more than I normally would here because of how much space it takes up. As I said
in a previous chapter, this boring, repetitive code is exactly the type of thing a nice
utility function or library will solve!

 Now, in the next listing, we’ll cover the 3D setup JS. These functions are just more
in the same class.

initScene() {
 this.engine = new BABYLON.Engine(
 this.dom.scene, true);
 this.scene = new BABYLON.Scene(this.engine);
 this.scene.clearColor = new BABYLON.Color3(0.894, 0.894, 0.894);

 const camera = new BABYLON.ArcRotateCamera(
 "Camera",
 Math.PI / 2,
 Math.PI / 2, 4,
 BABYLON.Vector3.Zero(), this.scene);
 const light1 = new BABYLON.HemisphericLight("light1",
 new BABYLON.Vector3(1, 1, 0), this.scene);
 const light2 = new BABYLON.PointLight("light2",
 new BABYLON.Vector3(0, 1, -1), this.scene);
 camera.attachControl(this.dom.scene, true);

 this.engine.runRenderLoop(
 () => this.render());
 window.addEventListener(
 'resize', () => this.onResize());
}

render() {
 this.scene.render();
}

onResize() {
 this.engine.resize();
}

Likely the biggest thing you wouldn’t expect here if you’re used to traditional web devel-
opment is the render function. This is common to 3D and 2D game engines. The scene
needs to be rendered every several milliseconds. The scene.render() function basically
gathers up everything in the scene; transforms it, materials and all; and re-renders every-
thing to the <canvas> based on that point in time. If not done repeatedly, things just get

Listing 15.13 3D scene setup code

Initializes the 3D scene,
not shown yet

Babylon.js engine and
scene setup

Camera and
lighting setup

Attaches interaction controls to
the camera to drag and rotate

Babylon needs a render loop to
constantly re-render and update
the scene when things change.

Changes the 3D scene size
when the overall page resizes

3633D and mixed reality
stuck in place, unmoving. This function is also a good place to add custom code that
continually updates every frame. For example, if you were moving an object from point
A to point B, you might continually increment the position here, so it appears to move
smoothly.

 The last of the code can be seen in the following listing, where we update the 3D
object primitive (or mesh) to a new type if changed, as well as any color or alpha
changes.

updateColor() {
 if (!this.currentMesh) {
 return;
 }
 const material = new BABYLON.StandardMaterial('material', this.scene);
 if (this.color) {
 material.diffuseColor = new

BABYLON.Color3.FromHexString(this.color);
 }
 if (this.alpha) {
 material.alpha = this.alpha/100;
 }
 this.currentMesh.material = material;
}

switchMesh(mesh) {
 if (this.currentMesh) {
 this.currentMesh.dispose();
 }
 switch (mesh) {
 case 'sphere':
 this.currentMesh = BABYLON.MeshBuilder.CreateSphere

 ("sphere", {}, this.scene);
 break;

 case 'cube':
 this.currentMesh = BABYLON.MeshBuilder.CreateBox
 ("cube", {}, this.scene);
 break;

 case 'geodesic':
 this.currentMesh = BABYLON.MeshBuilder.CreateSphere
 ("sphere", { segments: 2 }, this.scene);
 break;
 }
 this.updateColor();
}

With those last changes, we’ve just created a nice little 3D material designer applica-
tion! Maybe you’d like to take it further and add more functionality, like textures,
reflections, bump maps, scene importing and object selection, and so on. That’s more
features than will fit here, but we have a decent start.

Listing 15.14 Functions to update the 3D object, color, and alpha

Creates a brand-new
material (or a sort of 3D

style) for the object

Sets the color of the material
with the current color
property of the component

Sets the alpha/transparency
of the material

Sets the mesh (3D object)
material with the new
material we’ve created

When creating a new mesh, throws out
the current one we have in the scene

Creates a new mesh,
adding it to the scene

With a new mesh, the material
needs to update as well.

364 CHAPTER 15 Hiding your complexities
 We’ve certainly run a good gamut of some wildly different 3D use cases. I’ve done a
fair bit of 3D application development recently myself, and Web Components have
been instrumental in helping organize a project and in separating concerns. As a pro-
totyper, I’ve needed to constantly change these applications from day to day as we
redesign. Many times, it’s as easy as moving a component from one location in my
HTML markup to another. Even if that component represents an entire 3D scene, it’s
not a big deal. And, of course, when I need to work on a major 3D feature, I can men-
tally switch contexts from all my 2D UI, open my 3D component project structure, and
do my work there.

15.3 Video effects
One thing I like about mixed reality is having a window to see the world in a different
way. While AR adds virtual objects to the real world, I’ve always liked completely alter-
ing how you see the world. We’ve had video effects in films and television for a long
time, and being able to do these digitally is nothing new, but it can be really fun to
tweak a live video feed in weird ways.

 Processing pixels can be complex on its own, but if that’s the fun you want to have,
setting up the video feed over and over again can be a drag. In this way, we’re faced
with two different types of complexity. Manipulating pixels from a video feed is a com-
plexity that we aren’t hiding. Instead, we’re hiding the somewhat boring complexity
of getting the stream running and exposing the frame data.

15.3.1 Processing pixels with JS

A while back, I got interested in playing with video and crafted a video component of
my own. I won’t get into the underlying code here, but just use it as a final Web Compo-
nents in Action component to experiment and have some fun! I’ve put this component
in this book’s GitHub repo to play around with.

 There are actually two components for this purpose. The first is a really straightfor-
ward video component that simply uses normal, single-threaded JS to manipulate
video pixels. The following listing is a copy of videofx/demos/video-simple.html.

<html>
<head>
 <title>Demo: Simple Video Playback</title>
 <script
 type="module"
 src="../video.js">
 </script>

 <style>
 wcia-video {
 width: 500px;
 height: 500px;
 }

Listing 15.15 Simple video playback demo

Imports video
component module

Sets video
component size

365Video effects
 </style>
</head>

<body>
<h2>Demo: Simple Video Playback</h2>
<p>
 Simple video playback
</p>
<wcia-video useCamera></wcia-video>
</body>
</html>

While the component can take a src=path/to/video attribute, it’s easier (and more
fun) showing a live camera feed from your computer rather than uploading a big
video somewhere, and that’s exactly what the useCamera attribute does. This live cam-
era feed is exactly what’ll you’ll see when loading the page.

 Even though it’s technically working, it’s not altering the video frames yet. For this,
let’s switch rendering to the component’s internal canvas and tell it how often to ren-
der each frame. Let’s set a couple more attributes:

<wcia-video useCamera useCanvasForDisplay canvasRefreshInterval="50">
</wcia-video>

Here, we’ve chose to refresh the canvas every 50 milliseconds. If we go with something
like 500, we’ll see a very choppy video. If we go too low, our browser will struggle to
keep up. Either way, now that we’re using the internal canvas, we can draw to it!

 I’ve included a set of filters that can be used fairly easily just by setting the filter on
the component with another <script> block on the page, as seen in the next listing.

<wcia-video useCamera useCanvasForDisplay canvasRefreshInterval="50">
</wcia-video>

<script type="module">
 import Filters from
 '../filters/canvas/filters.js';
 document.querySelector('wcia-video').canvasFilter =
 Filters.toBlackAndWhite;
</script>

The black and white filter renders every pixel either black or white and produces a
live video stream looking like figure 15.10—though it’s much cooler live and in
motion!

 The file videofx/demos/video-filters.html contains the black and white filter plus
a few more, but I think it’s better to make the frame data available right on the page.
Listing 15.17 shows changes to the demo and is found at videofx/demos/video-
customfilter.html.

Listing 15.16 Setting a video filter

Includes video
component on page

Adds the video component to
the page using the camera

Imports a filter
library provided
in the component

Sets the filter of the
component to a specific
black and white filter

366 CHAPTER 15 Hiding your complexities

<wcia-video
 frameDataMode="imagedata"
 canvasRefreshInterval="50"
 useCamera
 useCanvasForDisplay>
</wcia-video>

<p>Amount of snow</p>
<input type="range" min="0" step=".01" max="1" value="0.7"
 oninput="snow = event.target.value">

<script>
 var snow = .7;
 const customfilter = function(pxs) {
 for (var c = 0; c < pxs.data.length; c+=4) {
 if (Math.random() < snow) {
 pxs.data[c] = Math.random() * 255;
 pxs.data[c+1] = Math.random() * 255;
 pxs.data[c+2] = Math.random() * 255;
 }
 }
 return pxs;
 };

 document.querySelector('wcia-video').addEventListener
 ('frameupdate', function(event) {
 var data = event.detail;
 data.canvascontext.putImageData(
 customfilter(data.framedata), 0, 0, 0, 0, data.width, data.height);
 });
</script>

So, these video frames are fairly easy to process—we just loop through the data. Each
pixel uses four values, one each for red, green, blue, and alpha. Alpha (pxs.data[c+3]),

Listing 15.17 Custom filter demo to introduce video “snow”

Figure 15.10 A live video stream
with a black and white filter

Sets attribute to allow
frameData event from
video component

Range slider to change
amount of video snow

Custom function to
process and change pixels
in each video frame

Listens to frame
update events,
processes the pixels,
and redraws to video
component canvas

367Video effects
while not used here, could be cool to experiment with if you were to change the compo-
nent to not have a black background.

 Anyway, this custom filter is simply for adding randomly colored pixels at random
locations in each frame. How many randomly colored pixels is determined by the
slider value. The output, shown in figure 15.11, looks like when TV signals were still
analog and had snow or noise when the signal wasn’t strong.

Getting real video frame data can be a powerful thing! We’ll circle back to this at the
very end with a real application for it that doesn’t just change pixels. Before we do
though, it’s worth noting that while processing pixels with JS is pretty neat, it’s also
fairly slow. While my browser easily kept up with refreshing the canvas every 50 ms,
our image processing was fairly simple. In general, using your CPU is not the best way
to go for this. Even worse is doing this in JS in your browser. Since JS is single threaded
(until you get into Web Workers; https://developer.mozilla.org/en-US/docs/
Web/API/Web_Workers_API/Using_web_workers), doing these intensive operations
can block your UI and make things seem sluggish.

15.3.2 WebGL shaders

Offloading your pixels to the GPU is exactly how to avoid this sluggishness when need-
ing to run image processing such as this. Now that GPUs are standard in every device,
it’s becoming more common to offload graphics drawing here. In fact, it was several
years back that many CSS effects got a GPU bump to make everything run much
smoother.

 The way to access the GPU in your browser is to use WebGL. You might recall that
at the beginning of this chapter, I mentioned that 3D on the web, including VR and
AR, was powered by WebGL, but that it was too low-level to be productive for the ordi-
nary person.

 I still hold to that! But I did extend the video component to accommodate WebGL.
Again, what’s great with Web Component classes is that while your class extends

Figure 15.11 Live camera feed
with “snow” effect

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers

368 CHAPTER 15 Hiding your complexities
HTMLElement, you can further extend your Web Component class. With the WebGL
version of the video component, I layered some additional functionality to handle the
low-level shader code, as well as changed the internal canvas to a WebGL context
instead of the typical 2D canvas context. The next listing shows the demo located at
videofx/demos/videogl-filters.html and contains a few different WebGL filters.

<html>
 <head>
 <title>Demo: Copy to Canvas</title>
 <script
 type="module"
 src="../glvideo.js">
 </script>

 <style>
 wcia-glvideo {
 width: 250px;
 height: 250px;
 }
 </style>
 </head>

 <body>
 <h2>Demo: Apply WebGL Filter</h2>
 <p>
 Apply WebGL Filter - possible glfilters are "sepia",
 "greyscale", "sobel_edge_detection", "freichen_edge_detection",
 "freichen_inverted", and "sobel_inverted"
 </p>
 <wcia-glvideo
 useCamera
 useCanvasForDisplay
 canvasRefreshInterval="10"
 useWebGL='{"filter": "freichen_inverted"}'>
 </wcia-glvideo>
 </body>
</html>

Technically speaking, the Freichen and Sobel shader is used to bring out edges of
objects in your video. When you wash out everything but edges, you start approaching
the basics of computer visualization where, if taken further, objects can start to be rec-
ognized in your video frames. That’s way more advanced than we can cover here. But
at its rawest form, if nothing else, it does produce a nice rendition of a line art effect,
so you can be in a version of your own “Take On Me” A-ha music video, as figure 15.12
shows!

 Writing WebGL shaders (the tiny programs that manipulate pixels) is really com-
plicated and infuriating sometimes. Shaders are written as plain strings in JS, with no
great way to debug. It can also be pretty hard to set up an environment where you
can write your own shaders. Once again, however, Web Components like this can

Listing 15.18 WebGL video component demo

Links to WebGL flavor of
the video component

Be sure to use the new
CSS selector for the
different component tags.

Adds the WebGL video
component to the page

Specifies WebGL options,
including the filter to use

369Video effects
make it easier. This same component also allows custom shaders to be written, as in
the next listing.

<html>
<head>
 <script type="module" src="../glvideo.js"></script>

 <script
 id="2d-vertex-shader"
 type="x-shader/x-vertex">
// Use any shader here, or the Vertex shader included in Listing 15.1
 </script>

 <script
 id="2d-fragment-shader"
 type="x-shader/x-fragment">
// Use any shader here, or the Fragment shader included in Listing 15.1
 </script>

 <style>
 wcia-glvideo {
 width: 640px;
 height: 480px;
 }
 </style>

</head>

<body>
<wcia-glvideo
 useCamera
 useWebGL
 useCanvasForDisplay
 canvasRefreshInterval="10">
</wcia-glvideo>

<script type="module">
 import Shaders from '../filters/webgl/shaders.js';

Listing 15.19 Custom shaders used in the WebGL video component

Figure 15.12 Edge detection effect with
a WebGL-based video Web Component

Script tag to hold custom
vertex shader

Script tag to hold custom
fragment shader

Sizes the video component

Places the video
component on the page

370 CHAPTER 15 Hiding your complexities
 import Constants from '../filters/webgl/constants.js';

 var video = document.querySelector('wcia-glvideo');
 video.webglProperties.vertexShader =
 document.getElementById('2d-vertex-shader').text;
 video.webglProperties.fragmentShader =
 document.getElementById('2d-fragment-shader').text;
</script>
</body>
</html>

The output is subtle, but it creates an effect shown in figure 15.13; the subject at the
center of the photo (my cat) has perfect clarity, but as the photo gets farther away to
the outer edges all around, it slowly fades to black.

15.4 Hand tracking and machine learning
As I was writing this final chapter, I knew I wanted to do one last thing with the Web
Harp demo from chapter 5. I had some ideas for generic computer vision and motion
tracking, but then a rather exciting article was posted on hand tracking in JS:
https://hackernoon.com/handtrackjs-677c29c1d585.

 The relatively new field of machine learning involves training a set of data, or
model, against right and wrong things. In the case of hand tracking, this particular
model was trained to recognize images of hands. While all the training for this experi-
ment was performed with Google’s TensorFlow machine learning framework in
Python, the trained model can then be used in our browser with Tensorflow.js.

 The details don’t matter so much, except to explain how it works under the hood.
Also, because of the hard work that went into it, the author really needs to be cred-
ited. His name is Victor Dibia, and Handtrack.js along with a great demo can be found
here: https://github.com/victordibia/handtrack.js/.

 Crediting the author and learning about the technology aside, we can hide his
amazing library and all of the complexities that went into this project by creating a
hand-tracking Web Component! In fact, given that the library uses a source video

Sets the video’s
WebGL shaders
to the script tag
contents

Figure 15.13 Radial fade around
the edges of a live camera feed

https://hackernoon.com/handtrackjs-677c29c1d585
https://github.com/victordibia/handtrack.js/

371Hand tracking and machine learning
element and renders tracking details to another canvas, Handtrack.js is a lot like the
inner workings of the video Web Component we’ve been working on. Just as with the
WebGL flavor, the video component class can be extended to create a specialized
handtracker component. The next listing shows this relatively simple extension.

import Video from './video.js';

export default class HandTracker extends Video {
 static get HAND_LOCATION() { return 'onHandLocation'; }
 constructor() {
 super();
 const modelParams = {
 flipHorizontal: true, // flip e.g for video
 maxNumBoxes: 20, // maximum number of boxes to detect
 iouThreshold: 0.5, // ioU threshold for non-max suppression
 scoreThreshold: 0.6, // confidence threshold for predictions.
 };
 handTrack.load(modelParams)
 .then(lmodel => {
 this._model = lmodel;
 });
 }

 runDetection() {
 if (!this._model) { return; }
 this._model.detect(this.dom.video).then(predictions => {
 const pts = [];
 for (let c = 0; c < predictions.length; c++) {
 const centerpoint = {};
 centerpoint.x = (predictions[c].bbox[0] +
 (predictions[c].bbox[2] / 2));
 centerpoint.y = (predictions[c].bbox[1] +
 (predictions[c].bbox[3] / 2));
 pts.push(centerpoint);
 }
 this._model.renderPredictions(predictions, this.dom.canvas,
 this.canvasContext, this.dom.video);

 const ce = new CustomEvent(HandTracker.HAND_LOCATION,
 { detail: { points: pts }, bubbles: true, composed: true });
 this.dispatchEvent(ce);
 });
 }

 init() {
 super.init();
 handTrack.startVideo(this.dom.video).then((status) => {
 this.onResize();
 console.log(this.visibleVideoRect)
 if (status) { this.runDetection(); }
 });
 }

Listing 15.20 Hand-tracking Web Component

Extends the base video
component class

Loads the Handtrack.js
Tensorflow model

Dispatches Custom Events for center
point of hand locations found

Runs normal video component
initialization plus starts the

hand tracking

372 CHAPTER 15 Hiding your complexities

U

 getCurrentFrameData(mode, noredraw) {
 this.runDetection();
 }
}

if (!customElements.get('wcia-handtracker')) {
 customElements.define('wcia-handtracker', HandTracker);
}

You might be asking, “Is that it?” Well, it’s definitely small, but there is a missing piece.
The library that the author distributes isn’t a module (the source is, but it has Tensor-
Flow dependencies, and I want to keep this example simple); so instead of jumping
through hoops to include it in this component, we’ll simply include it on the demo
HTML page, which I’ll show in the following listing.

<html>
<head>
 <script
 type="module"
 src="../handtracker.js">
 </script>
 <script src="../handtrack.min.js"></script>

 <style>
 wcia-handtracker {
 width: 500px;
 height: 500px;
 }
 </style>
</head>

<body>
 <h2>Demo: Hand Tracker </h2>
 <wcia-handtracker useCamera useCanvasForDisplay
 canvasRefreshInterval="50"></wcia-handtracker>

 <script>
 document.addEventListener('onHandLocation', function(e) {
 if (e.detail.points.length > 0) {
 document.getElementById('loc')

 ➥.innerText = e.detail.points[0].x + ',' + e.detail.points[0].y;
 }
 })
 </script>
</body>
</html>

For such a complex and useful thing, there’s not much here, but it does work like a
charm! Figure 15.14 shows the demo page in action.

 As neat as this is, Victor already has this demo up and running. In isolation, my
component demo doesn’t add anything to this conversation. However, as a Web Com-
ponent with a Custom Event being dispatched to notify any listeners of hand loca-
tions, we can now use this component in the Web Harp application from chapter 5.

Listing 15.21 Handtracker demo HTML file

Keeps running detection every
frame by taking over the original
component’s canvas redraw

Imports handtracker
Web Component

Includes Handtrack.js
library

Places handtracker
component on page

pdates text in the
header to show
where the first
hand found is

373Hand tracking and machine learning
Not only can we use it, it really isn’t that much effort to integrate! First, go into the
index.html for the Web Harp application and add the hand-tracker library:

<script src="../videofx/handtrack.min.js"></script>

As I’ve copied the Web Harp code right into the chapter 15 folder of this book’s
GitHub repo, we can link inside the video component folder we were just using. From
there, we simply have to alter webharp/components/app/app.js.

 Remember, chapter 5 was before we started separating out CSS and HTML into a
template.js file, so we’ll add it to the string that we’re setting innerHTML with. Another
small change is to no longer listen to the mouse move event, but instead directly tap
into the component’s hand-tracking Custom Event. The next listing shows how we’ve
changed this component class.

import Strings from '../strings/strings.js';
import HandTracker from '../../../videofx/handtracker.js';

export default class WebHarpApp extends HTMLElement {
 connectedCallback() {
 this.innerHTML = `
 <style>
 wcia-handtracker {
 position: absolute;
 background: none;
 width: 100%;

Listing 15.22 Web Harp app component integrated with the handtracker component

Figure 15.14 Hand-tracker Web
Component demo

374 CHAPTER 15 Hiding your complexities
 height: 100%;
 }
 webharp-strings {
 position: absolute;
 width: 100%;
 height: 100%;
 }
 </style>
 <wcia-handtracker useCamera useCanvasForDisplay
 canvasRefreshInterval="50"></wcia-handtracker>
 <webharp-strings
 strings="${this.getAttribute('strings')}">
 </webharp-strings>`;

 this.stringsElement = this.querySelector('webharp-strings');
 this.addEventListener(HandTracker.HAND_LOCATION, e =>
 this.onMouseMove(e));
 }

 onMouseMove(event) {
 if (event.detail.points.length > 0) {
 this.stringsElement.points = { last: this.lastPoint,
 current: { x: event.detail.points[0].x, y:
 event.detail.points[0].y } };
 this.lastPoint = { x: event.detail.points[0].x, y:
 event.detail.points[0].y };
 }
 }
}

if (!customElements.get('webharp-app')) {
 customElements.define('webharp-app', WebHarpApp);
}

You can probably start to imagine all sorts of ways to improve this application—per-
haps by getting rid of the demo hand display bounding box info. Most of all, you
might want to get rid of the restriction of only one hand being tracked and use the full
list of points to strum the harp with both hands. That could be a great homework
assignment to continue on with. Right now, though, figure 15.15 shows the Web Harp
as it stands, complete with hand tracking.

 I have to admit that I had a bit too much fun playing with the Web Harp. In fact,
this chapter was really all about playing with fun Web Component examples that I’ve
either created or come across over the past couple of years.

 While I hope you had fun too, I also hope that what you take away from this last
chapter is a bit of the excitement I’m feeling from Web Components. We started in
chapter 2 by building the simplest of all components: a slider. We’re still using that
slider in this last chapter inside a color picker inside a 3D material-editing application.
We’ve gone from an image carousel in a component to creating mixed reality scenes
viewable on an Oculus Rift or Magic Leap headset, and then ended with a video
effects processing component that uses machine learning to track your hands.

New HTML string
including the

handtracker and
CSS to position it

behind the strings
component

Changes event listener from
mouse move to hand location

Sets the points to the first
hand found instead of the
mouse location

375Summary
We’ve done all of this, and it doesn’t really matter what your experience level is. Any
of these components can be added to any ordinary HTML page. It doesn’t matter if
you’re too timid to look inside any particular component—you can just use it. On top
of that, Web Components really do have a simple API, such that any beginner JS devel-
oper can start working with them right away.

 We’ll certainly have more complex workflows get popular as component developers
grow beyond the initial standards. But these initial standards won’t change anytime
soon. With Web Components, we’ll be left with what I’ve always loved about the web.
It’s a place where anyone can contribute by building on the basic building blocks
within, or on top of the shoulders of experts and creatives alike. However you proceed,
I sincerely wish you the best, and I do hope Web Components and this book are a step-
ping stone to some amazing things that you create. Above all, please share! It’s one of
the benefits of people like you creating for the web today. Thank you for reading!

Summary
 In this chapter, you learned

 What may happen in the Web Component future
 How Web Components can make intimidating technologies like mixed reality

and machine learning approachable
 How to hide your own complex systems, like a full 3D scene in a Web Component
 How to use components created throughout this book for emerging technologies

Figure 15.15 Web Harp with hand tracking

appendix
ES2015 for

Web Components

A.1 What is ES2015?
It used to be that changes to the JavaScript language were few and far between.
What you might not know is that “JavaScript” really isn’t the official name—it’s just
something we’ve been calling it since 1996, when Java was king, and Netscape
wanted to give its LiveScript language a boost. That was also the year that Netscape
submitted JavaScript to ECMA International (www.ecma-international.org) for
standardization.

 After acceptance as a new language standard, we should have been calling it
ECMAScript, but the name just doesn’t roll off the tongue. So, for more than 20
years, it’s been known as JavaScript (or JS), while the standard is referred to as
ECMAScript. When ECMAScript 3 came out in 1999, that was pretty much it in
regard to changes for a while.

 It wasn’t until 2009 that the fifth edition of ECMAScript was finalized. The
fourth edition was, unfortunately, scrapped after being based on Adobe Flash’s
ActionScript and proving to be a bit too ambitious of a language change in many
people’s minds. With ECMAScript 5 being a decade old, it’s the standard most of us
are familiar with. People also referred to this version as ES5.

 So, of course, in 2015, when the sixth edition of the language was finalized, folks
were referring to it as ES6—which was, unfortunately, a bit inaccurate! ECMAScript
version 6 was the first edition that the standards committee decided to call by the
year it was released, hence ES2015.

 Since 2015, we’ve seen a new version every year. With the short turnaround, the
changes have been fairly steady and small. These days, it’s more helpful to see if the
language feature you want to use has been adopted by the browsers you are targeting.
377

www.ecma-international.org

378 APPENDIX ES2015 for Web Components
 Despite some great JS language features since 2015, I like to focus on a few core
ES2015 (ES6) language features that really make Web Component development so
much better.

A.2 Rethinking variables with ES2015
Strictly speaking, you’re free to keep using var whenever you want. Declaring vari-
ables this way has worked for as long as JS has been in existence, and it’s not changing
anytime soon.

A.2.1 Variable declaration with let

ES2015 brings us two more ways to declare your variables: let and const. In terms of
usage, not much has changed—things are just a bit stricter and a little saner. With let,
you may declare your variables, just as you always have with var:

var x = 5; // old way
let x = 5; // new way

The difference between let and var is a matter of scope. Variable declarations made
with let are a bit more familiar to users of other programming languages. The vari-
ables will exist only in the block they were created with, as well as any nested blocks
within. Blocks are basically lines of code surrounded by curly braces, like an if/then,
a for loop, or a function declaration.

 Consider the following listing.

for (var c = 0; c < 5; c++) {
 var message = ‘hi’ + c;
}

console.log(message);

With the var declaration, we’re repeatedly setting message to “hi” along with the cur-
rent iteration of the loop. As we limit c to less than 5 in this loop, our console log
prints out “hi4.” The fact that our message variable contains anything at all after this
loop is a bit unique to JS.

 Typically, in other languages, our message variable would be scoped to the block
that it lives in, namely, this for loop. In practice, the variable just wouldn’t exist out-
side this scope! Using let for variable declaration makes this scoping behavior
default.

 Let’s change var to let in the next listing.

for (let c = 0; c < 5; c++) {
 let message = 'hi' + c;
}

console.log(message);

Listing A.1 Declaring a var inside a for loop block

Listing A.2 Declaring a variable with let inside a for loop block

The message variable is
declared inside the for loop.

Same variable declaration
as before, except now with
“let” instead of “var”

379Rethinking variables with ES2015
Not only is message undefined now, but JS throws an error:

Uncaught ReferenceError: message is not defined

Another interesting behavior of let is that it can’t be used before it’s declared,
unlike var. Yes, there’s a little bit to unpack here because if you’re not used to JS, you
might be thinking, “How can I use a variable before it’s declared?!” Well, you can,
thanks to something called hoisting. Hoisting has implications outside of simple vari-
able declaration, but when a variable is declared, it is “hoisted,” or moved up to the
top of the block.

 Consider the following:

x = 5;
var x;
console.log(x);

With variable hoisting, the declaration is actually moved to the top of this block prior
to execution. So, in reality, x is declared prior to it being set to 5, despite what the
code says. Using let to declare x, on the other hand, will cause the following error:

Uncaught ReferenceError: x is not defined

Does this mean that let does not hoist? No—in fact, x would still be hoisted, but a so-
called “temporal dead zone” is created between the start of the block and when the
code defines the variable. Inside this dead zone, variables cannot be accessed or set.
Figure A.1 highlights this temporal dead zone with let versus simple variable hoist-
ing with var.

 Now, the next question you might be asking yourself is, “How is this useful?” Every-
thing I’ve described about let is more restrictive than var! Why strive to introduce
errors? It’s really the code readability that matters here, and the intent you are declar-
ing with your code to anyone who comes and reads it later.

 When folks come in to read your code, with let they will automatically know that
you aren’t using your variable inside any other block besides where they are seeing it.
Are they seeing your variable declared inside a for loop? A reader will be 100%

Figure A.1 Difference between variable access prior to declaration with var vs. let. Using let
introduces a “temporal dead zone” where the variable cannot be accessed.

{

...code...

var x = 5;

}

x is hoisted
to the top of
the function.

x can
be used
anywhere
here.

{

...code...

let x = 5;

}

x is hoisted
to the top of
the function.

...code.. codee.. code...coode.. e.coode

“Temporal
dead zone”
x may not
be used

let x;var x;

380 APPENDIX ES2015 for Web Components
assured that your code isn’t using the same variable reference anywhere else. Even if it
has the same name in another block, they are completely sure that the variables aren’t
referencing the same thing. Using let also reassures the reader of your code that you
aren’t accessing or setting the variable before you declare it.

 Having this very strict behavior with errors helps keep your code to these promises
you are making. If you break this promise, your code just won’t function! On the
other hand, using var for variable declarations makes no such promises, and your
code is pretty ambiguous about what your intent is.

A.2.2 Variable declaration with const

Declaring a variable with const is virtually identical to declaring with let. You are
making the same promises to folks who read your code that you aren’t using the vari-
able before declaring it and that the variable is undefined outside the block that it
lives in.

 The one difference with const is that when you declare a variable with const, it
cannot be set to a different value after it is first set. Let’s try it out:

const x = 5;
console.log(x);
x = 6;

In this example, we set x to 5. The variable logs fine as 5, but when we set x to 6, we get
an error:

Uncaught TypeError: Assignment to constant variable.

So, with const, can a variable really not be changed? It looks like it cannot, but it
depends on what you mean by “changed.” It’s true that we can’t just set x to something
else entirely, but we can certainly edit x, so to speak. If our variable isn’t a primitive
type like a string or a number, but instead an object that has properties of its own, we
can edit those properties:

const x = { a: 5 };
x.a = 6;

The previous example does not throw an error. However, if we set x to another object
altogether, it would definitely throw an error.

A.2.3 Important by convention but not functionality

As you can see, both let and const don’t give you more functionality. With this in
mind, using these new JS features isn’t required in the least. If you still prefer using
var after reading all of this, you really won’t run into any trouble (aside from the read-
ability aspects mentioned). That said, given that you are creating Web Components,
you’ll need to be using at least one ES2015 feature. Because of this, there isn’t much
of an excuse to opt out of using let and const. If other people are reading your code,
they’ll likely be wondering why you’re still using var.

381Classes
A.3 Classes
In other languages, classes can be thought of as blueprints or templates. When you
create this blueprint, you’re creating a well-defined construct that you can instantiate
objects from. The class doesn’t really serve to do anything besides be this template.
Despite just being a blueprint, classes serve to plan out how objects we create from
them will act. Any instance or object created from a certain class will always act a cer-
tain way because the programmer has defined all of the methods, properties, and
logic within the class.

 A class usually looks something like this:

Class MyClass {
 . . .
}

You would instantiate, or create, an instance of the class like the following line of JS,
shown in figure A.2:

const myInstance = new MyClass();

In JS, however, classes are a bit different. As JS is a prototype-based language, true
classes don’t really exist like they do in object-oriented languages. Instead, the new
ES2015 class feature offers some nice syntax that makes JS look a little more object-
oriented. Under the hood, there really is no “blueprint”—you’re simply creating a
runtime object with the class feature that you clone to create the instance.

 With this in mind, even though they look similar and offer some great functional-
ity, classes in JS don’t offer all the same things that classes in other languages do.
There are good resources for learning all about both object-oriented programming
and classes in JS. This section will serve to cover some of the basics to help you learn
concepts relating to Web Components without getting too deep.

Figure A.2 In object-oriented programming languages, class instances are typically
made from a class, kind of like a blueprint.

Class

property1
property2

method1
method2

Class
instance

Class
instance

Class
instance

new Class();

new Class();

new Class();

382 APPENDIX ES2015 for Web Components
A.3.1 Constructor

The constructor is a fairly simple concept but is used and referred to anywhere the dis-
cussion of classes comes up. From a usage standpoint, there’s really no difference
between a constructor in JS and a constructor in most other languages.

 A constructor is a function that describes any user-defined logic that happens
when a class is instantiated. For example, we can define a class in JS with a constructor
that does a simple console.log when the class is instantiated, as shown in the follow-
ing listing.

<script>
 class MyClass {
 constructor() {
 console.log('hi from my class');
 }
 }

 let instance = new MyClass();
</script>

Simply by instantiating this class, our console.log is executed. Typically, any logic ini-
tialization is put in the constructor.

 One extra rule when using inheritance on a class is that you must call super(); as
the very first line, even if the parent class has no constructor. Let’s take a look in the
next listing.

<script>
 class MyParentClass {
 }

 class MyClass extends MyParentClass {
 constructor() {
 super();
 console.log('hi from my class');
 }
 }

 let instance = new MyClass();
</script>

Calling super(); is a way to call the constructor of the inherited class—in this case,
MyParentClass.

Listing A.3 Using the constructor method of a class

Listing A.4 Calling super() is required in a subclass’s constructor

The constructor method

Instantiates the class

Declares base class

Inherits the base class

Calling super() is required in
the constructor if inheriting.

383Classes
A.3.2 Properties

In most languages, a class will generally serve as a blueprint for both method defini-
tions and property definitions. A generic example can be seen in this listing.

class MyClass {
 property1: . . .;
 property2: . . .;

 method1() {
 . . .
 }

 method2() {
 . . .
 }
}

In JS, only methods are defined on the class. Properties are a different story. If you’d
like to create a variable that exists in your class’s scope, you’d need to create it in one
of the methods as a property of this, which represents the scope of your class
instance. Unfortunately, this difference means that your JS code might get a little hard
to read. In other languages, where variables are declared on the class itself, it’s easy to
know exactly what properties are available in your class because they are typically
declared at the top.

 With JS, I usually like to declare my variables inside the constructor to attempt to
make up for this shortcoming. If I wanted to leverage my constructor to make my class
properties a little easier to read, I might try the approach outlined in the next listing.

class MyClass {
 constructor() {
 this.property1;
 this.property2 =
 'a starting value';
 }

 method1() {
 . . .
 }

 method2() {
 . . .
 }
}

Another thing you might find yourself missing if you come from other languages is
the notion of private, protected, and public properties in your class.

Listing A.5 A generic class example for any language

Listing A.6 Declaring your properties in the constructor instead of on the class itself

A property declared on the class
(does not work in vanilla JS)

A method declared on the
class (does work in JS)

Declares a property on a
class that starts as undefined

Declares a property on a class
with an initial value

384 APPENDIX ES2015 for Web Components
A.3.3 Private properties in JS

In traditional object-oriented programming languages, in addition to being able to
declare properties on a class, developers may also specify how these variables are
accessed. There are typically three types of properties on a class in these types of
languages:

 Private
 Protected
 Public

Figure A.3 demonstrates each type of property as an attempt is made to access it from
outside the class.

A private variable is one that is only accessible from within your class. This means that
if you instantiated the class with new and then tried to access the property, it would be
undefined or throw an exception, as seen in the following listing.

Class MyClass {
 private x;

 constructor() {
 x = 5;
 }
}

instance = new MyClass();
instance.x = 6;

Private variables offer your class some protection against consumers of the class com-
ing in and changing its internal workings. As a class creator, you get to define how that
class gets used and how it doesn’t.

Listing A.7 Pseudocode for private class properties in other languages

Figure A.3 Non-JS example of the differences among public, private, and
protected variables

Instance created
from a class

Private property

Protected property

Public property

App
code

Success!

Rejected!

Rejected!

Declares a private variable on a class

Fails because the property is private

385Classes
 Say, for example, that there is a variable you are using inside the class to track
something. For example, you might be tracking the number of times a user clicked a
button. Inside the class, we set counter = 0. Every time a user clicks, we increment
the counter: counter ++. Typically, in many languages, this counter might be a private
or protected variable. This would prevent a developer from setting myinstance
.counter from the outside to whatever they wanted, completely destroying the actual
count!

 Private variables in other languages are also unable to be accessed by a parent
class. Consider the two classes in the next listing.

Class MyParentClass {
 private x;

 constructor() {
 x = 5;
 }
}

Class MyClass extends MyParentClass {
 constructor() {
 super();
 x = 6;
 }
}

In this example, even though MyClass inherits from MyParentClass, variable x can’t
be accessed by MyClass. If x were protected instead of private, this wouldn’t be the
case. With JS, however, these distinctions go out the window. As properties aren’t
declared and are all accessible on the scope of the class using this, there really is no
distinction—all properties are public. This means that after you instantiate your
object from the class, any property or method that can be used inside the class can be
referenced outside the class.

 JS developers have dealt with this for a while, even before classes were a thing.
Some have created some fairly genius, as well as ugly looking, workarounds for this.
I’m a proponent of going simple and using an underscore to prepend my variable
names. Something like this is what I use:

this._property2 = 'a starting value';

An underscore in your variable name doesn’t actually do anything. Instead, it’s a con-
vention many of us use to pretend it’s not public and can’t be accessed from outside.
It’s true that a developer might set myobject._counter from outside of the class, but
by using that underscore, it’s obvious that anyone who reads the code knows they are
doing a “bad” thing.

 Though I do favor the underscore for simplicity and use it in this book, a more
modern approach is to use another ES2015 feature called WeakMap. WeakMap and Map

Listing A.8 Showing bad access of private property in subclass (pseudocode)

Private variable is declared in base class

Variable is set in the base class’s constructor

Throws an exception because x is
private and not declared in this class

386 APPENDIX ES2015 for Web Components
are two similar concepts in JS. Both are used as a key/value store. Not only do Map and
WeakMap have an arguably nicer API than a simple object, they also accept nonprimi-
tive data types as keys (in fact, WeakMap requires nonprimitive keys).

 What this means is that we can actually use an entire class instance as a key for
either of our maps. As we want automatic garbage collection for our maps, we’ll use a
WeakMap for our private variable implementation instead of a Map in the next listing.

const vars = new WeakMap();

const _private = obj => {
 if (!vars.has(obj)) {
 vars.set(obj, {});
 }
 return vars.get(obj);
};

class MyClass {
 constructor() {
 _private(this).test =
 'hi from my class';
 }
}

This might look a bit confusing at first but bear with me. First, we create the WeakMap
to store collections of our private variables. Remember that one class can have many
instances, so we use each instance as a key for the WeakMap managed by the class itself.

 So, if the key is the instance, what is the value? Each value is a JS object that con-
tains even more key/value pairs. Each of these key/value pairs is the name of the pri-
vate variable and the value of the variable itself, as outlined in figure A.4.

 Lastly, we also declare a function, _private, to help manage usage of this WeakMap
and make getting and setting private variables easy. In addition to getting the correct
private variable for an instance, this function creates objects to hold an individual
instance’s private variables.

Listing A.9 Using WeakMap to simulate private properties in JS

Initializes the WeakMap

Object to access private variables,
organized by class instance

Sets a private variable from inside the class

Figure A.4 An implementation that uses private variables going through a WeakMap with keys based on
class instances, with each key referencing an object holding the private variables

Class instance

private(this).myVariable = 'test';

WeakMap

Class instance #1

Class instance #2

Class instance #3

Instance #1 vars

myVariable: 'test'

myOtherVar: 5

anotherVar: 6.2

387Classes
This method seems like a popular, modern way to make your variables private. Unlike
simply using underscores to denote private variables, this method actually makes vari-
ables inaccessible through the instance of the class. There are quite a few work-
arounds like this. Perhaps soon, we’ll really have private variable support (private class
fields are already in Chrome Canary), but in the meantime, we can only choose the
solution that suits our needs by weighing ease of use and true inaccessibility from out-
side the class instance.

A.3.4 Getters and setters

Another set of class features that will be relevant in our Web Component pursuit are
getters and setters. Getters and setters are methods that look like properties from the
outside. Let’s pretend in the next listing that we have a class with a click counter that
we’d rather not let be changed from the outside, but that we’d still like to make avail-
able to read.

class MyClass {
 constructor() {
 this._counter = 0;
 }

 mouseClickHandler() {
 this._counter ++;
 }
}

As detailed in the last section on private variables, using the underscore for
this._counter is a naïve implementation for marking this variable as private. Again,
it’s by convention, meaning it’s understood that we shouldn’t be accessing _counter
like this:

let myInstance = new MyClass();
let myCounter = myInstance._counter;

To make our variable readable but not writeable, we need to define access to it via a
getter method. Again, getters and setters aren’t really properties we can access.
Instead, in the following listing, we are creating a method on our class that acts like a
property.

class MyClass {
 constructor() {
 this._counter = 0;
 }

 get counter() {
 return this._counter;
 }

Listing A.10 An internally tracked mouse-click counter

Listing A.11 Creating a getter method to allow read but not write access to a property

Initializes a counter in
the class’s constructor

Increments the counter in a
hypothetical mouse-click handler

Getter for counter variable

388 APPENDIX ES2015 for Web Components
 mouseClickHandler() {
 this._counter ++;
 }
}

Now we have a way to query counter, but since we’ve not added a setter, setting
counter will not actually accomplish anything. The internal value will still be 0:

let myInstance = new MyClass();
let myCounter = myInstance.counter; // works
myInstance.counter = 5;
console.log(myInstance.counter) // logs 0

This is exactly what we want! We want to provide a way to access how many times a
mouse was clicked but, like in figure A.5, don’t want someone to come in and assign
counter to any number. Of course, in the next listing, we can also add a setter as well
by using set instead of get in our method definition.

class MyClass {
 constructor() {
 this._counter = 0;
 }

 set counter(val) {
 this._counter = val;
 }

 get counter() {
 return this._counter;
 }
 mouseClickHandler() {
 this._counter ++;
 }
}

Of course, in the context of this example, a setter doesn’t make much sense. More-
over, using both getters and setters to read and write from a simple property is a bit
verbose. Why not just make counter an actual public property?

Listing A.12 Defining both getters and setters on a class

Figure A.5 Example of declaring a getter on a class with no setter. The outside application
can get the variable, but cannot set it.

Class instance

get myVariable() {}
Success!

Rejected!

myInstance.myVariable = 5;

let x = myInstance.myVariable;
App

A setter to complement
the counter getter

389Classes
 Defining both getters and setters is useful when you want to perform some logic in
addition to, or in lieu of, reading or writing a variable. For example, perhaps setting
our counter property updates a graphic as well. Here, we can imagine a bar from a
bar chart that grows to the value of the counter, and it’s all done by simply using the
counter setter:

 set counter(val) {
 this.counterElement.style.height = val + "px";
 this._counter = val;
 }

A.3.5 Static methods

Let’s move on to static methods. Static methods are also called class methods because
they are run on the class itself, rather than on an instance of the class.

 Let’s start with a simple but useless example: adding two numbers and returning a
result. Of course, normally you’d just use the + operator and add them, but let’s make
it a method in our class.

class MyClass {
 constructor() {
 }

 add(a, b) {
 return a + b;
 }
}

To use our new add method, we’d need to instantiate the class first:

let myInstance = new MyClass();
let total = myInstance.add(5, 6); // total is set to 11

If you think about it, though, we aren’t using any properties of the instantiated class.
Previously, in our getter/setter click-counter example, we recorded the count as a
property of the class. Without using the instance created from our class to increment
our counter, we’d have no way to know what it was before we tried to increment.

 In this case, however, we aren’t tracking anything—we don’t actually need the
instance of the class; we just want to call a function and get a result.

class MyClass {
 constructor() {
 }

 static add(a, b) {
 return a + b;
 }
}

Listing A.13 An add method on a class

Listing A.14 Example of a class method using the static keyword

An addition method
defined inside a class

390 APPENDIX ES2015 for Web Components
The function in listing A.14 can now be run from the class itself (hence the name class
method):

let total = MyClass.add(5, 6);

Static or class methods are fairly useful, but they are also directly applicable to how we
listen for attributes in Web Components, as you can see in chapter 4, where observed-
Attributes is used to tell your Web Component which attributes to watch for changes.

 Static methods can additionally be combined with getters and setters. Using a
static getter can be a great way to define constant values that need to be shared across
your application.

class MyClass {
 static get URL() {
 return "http://myserviceurl/api/v2";
 }
}

With this static getter, the URL can be shared anywhere, even without instantiation of
the class:

let url = MyClass.URL;

A.4 Modules
To explore what modules are, we should take a peek at a common feature from other
languages: the import. Consider the following class in Java, adapted from a tutorial at
www.javatpoint.com/java-swing.

import javax.swing.*;

public class SwingHelloWorld {
 public static void main(String[] args) {
 JFrame f=new JFrame();
 JButton b=new JButton("click");
 b.setBounds(130,100,100, 40);
 f.add(b);
 f.setSize(400,500);
 f.setLayout(null);
 f.setVisible(true);
 }
}

In this Java-based example, we’re programmatically creating a button and placing it in a
window. If you don’t know Java, this looks pretty easy, right? We could actually do some-
thing pretty similar and concise with HTML and JS. The difference with JS is that we
would be using the document namespace to create our button:

document.createElement('button');

Listing A.15 Static getter to share constant values across your application

Listing A.16 Example of a Java import

Creates instance of button

Sets x axis, y axis,
width, height

Adds
button

to UI

Sets button size

www.javatpoint.com/java-swing

391Modules
A.4.1 Top-level objects in JS

Have you ever thought about all of the methods we use every day from document or
window? There are lots, and even though it can be a bit overwhelming, it’s manageable
once you get used to it. These top-level, or global, objects are designed to control the
DOM and your visual elements within. Meanwhile, there are other global objects that
deal with other concerns. We print logs to our console with console.log and can
parse JSON with JSON.parse. We also have a top-level Math object, which we can use to
do trigonometry, create random numbers, and more.

 When you think about all of these top-level objects that we, as JS developers,
should just know, it can seem a bit chaotic. Alternately, when you consider the Java
example in listing A.16, you’ll notice objects like JFrame and JButton to create the
window and button, respectively—but where did those objects come from?

 To answer this, consider that graphic interfaces aren’t necessarily something that
Java developers do. Many do, but many will be happy doing all backend work. Given
the wide breadth of everything Java needs to do and deal with when it comes to third-
party libraries, Java, as well as most other languages, has an import feature.

 Note the import javax.swing.*; at the top of the class. This is actually shorthand.
To be more concise, we could expand this to be

import javax.swing.JFrame;
import javax.swing.JButton;

Using the .* syntax imports all classes or nested classes in javax.swing and makes
them accessible by their name in the class you imported them in, which is why JButton
has the smarts to create a visual button.

A.4.2 Module syntax for importing and exporting

Until now, browser-based JS has never had a built-in way to manage external depen-
dencies other than by using a <script> tag. Third-party libraries like require.js have
tried to fill this gap, but this was never adopted as a specification. Now, though, we
officially have the native JS feature of modules. In order to use modules, which enable
imports just like other languages, there’s a small bit of setup.

 First, let’s prepare a little JS to be usable as an importable module. In a separate JS
file, we can write just a few lines:

export default function demo() {
 console.log('demo');
}

Breaking this down, it’s obvious that we are defining a function named demo that logs
“demo.” The keyword export is what makes this function able to be imported. The
keyword default is simply declaring to any JS that imports this script that this func-
tion is the default variable, object, or function that is used when importing the script.

 To be a little clearer, let’s look at how we import in the following listing. To do so,
we need to declare that the <script> tag that we’re using is of type module.

392 APPENDIX ES2015 for Web Components

<script type="module">
 import DemoModule from "./moduledemo.js";
 DemoModule();
</script>

We can simply import the few lines of JS we just made. The name DemoModule is a
made-up name in this case. With this import, we could call what we import most any-
thing we wanted, like in figure A.6. Because we’ve declared our function as default in
the imported JS, we don’t need any further specificity.

A.4.3 Working with multiple functions in the same module

We do need a bit more specificity if there are multiple things to import from a JS file,
like the example in the next listing.

export function hi() {
 console.log('hi');
}

export function bye() {
 console.log('bye');
}

Before, we could use shorthand and make up any name we wanted. In the next listing,
we need to use the real names of the functions we defined in the modules as we
import them.

Listing A.17 Setting the <script> tag type to enable JS modules

Listing A.18 Exporting multiple functions in the same module

Uses script type of module

Imports a script

module module file

modulenew ();

module module file

<my-component></my-component>

JS code

import from

import from

JS Class

Web Component
definition

mycomponent.js

myclass.js

Figure A.6 Using imports to link to external JS
files for a variety of purposes, including custom
classes or even other Web Components

A function exported
from a module

An additional function exported
from the same module

393Template literals

<script type="module">
 import { hi, bye } from "./multiplemoduledemo.js";
 hi();
 bye();
</script>

That’s not to say we couldn’t invent our own names if we really wanted to. To accom-
plish this, we can use the as modifier.

<script type="module">
 import { hi as SomeName, bye as SomeOtherName } from

"./multiplemoduledemo.js";
 SomeName();
 SomeOtherName();
</script>

Lastly, we can simply scope both the hi and bye methods to an object with the as
modifier.

<script type="module">
 import * as Greeting from
 "./multiplemoduledemo.js";
 Greeting.hi();
 Greeting.bye();
</script>

Modules are fantastic for use in Web Components. Chapter 5 details how they can be
used to keep your Web Components completely self-reliant, managing all of their own
dependencies.

A.5 Template literals
Templating is long overdue in JS as a core language feature. While it’s true that there
have been many libraries and frameworks offering something similar, it’s nice that we
can now do something without an external library.

 Prior to template literals, JS developers have used single or double quotes to
define strings. Inserting variables in strings as well as creating multiline strings have
always been fairly ugly. This tension is outlined in chapter 6 as I introduce template lit-
erals as a better way to insert markup into our Web Components.

 What does templating do for us in general? Consider the following string:

`Hi, my name is Ben Farrell and I live in Oakland, CA`

Listing A.19 Importing specific and multiple functions from the same module

Listing A.20 Aliasing functions from a module

Listing A.21 Aliasing functions as a group from a module

Imports two exports
from the same
moduleUses the first of

the two exports

Uses the “as” keyword to
reference the imports by a
custom name

Uses * to import
everything under the
object of “Greeting”

394 APPENDIX ES2015 for Web Components
A.5.1 Inserting variables into a template literal

This is good if you happen to be me (and also if I don’t move to a new city), but how
do you personalize this string a bit? To start with, we can use a few variables:

const firstName = 'Ben';
const lastName = 'Farrell';
const city = 'Oakland';
const state = 'CA';

Here, we’ve pulled out the information that personalizes this string into variables—
the idea, of course, being that you can swap any name, city, and state into this string.
Previously, we could do this with string concatenation methods like

const greeting = 'Hi, my name is ' + firstName + ' ' + lastName + ' and I
live in ' + city + ', ' + state;

This way has always been a bit of a chore. It’s not terrible, but remembering to add
spaces in all the right places around your variable, coupled with the fact that it’s JS
code to represent your template, means it’s not really an expression you can bring in
from elsewhere.

 Instead, we can use template literals to do the same thing:

const greeting = `Hi, my name is ${firstName} ${lastName}
 and I live in ${city}, ${state}`;

Note how this is all one string, variables included. We can see a variety of uses in
figure A.7.

A.6 The fat arrow
The fat arrow is a newer JS feature that solves a long-standing problem in the language.
JS’s bind method, in addition to apply, solved this prior to ES2015. The fat arrow, or
the arrow function, now solves the scope problem in a more readable way. This prob-
lem isn’t unique to Web Components, or classes, for that matter. The fat arrow allows
us to preserve scope anywhere we need to. For Web Component classes specifically, it
makes our event listeners and callbacks much more readable and easier to use.

Figure A.7 When combining our variables and our template literal string, we get “Template Literals
are a nifty, new ES2015 feature that lets you use embedded expressions in strings with easy line
wrapping that isn’t ugly.”

‘Template Literals are a ${adjective[0]} , new ES ${2000 + 15} feature

that lets ${who} use embedded expressions in strings with ${adjective[1]}

line wrapping that isn’t ${adjective[2]} ’

let adjective = ['nifty' , 'easy' , 'ugly'];

let who = 'you'’;

395The fat arrow
A.6.1 The callback scope problem

You’re probably familiar with event listeners, as we use them all the time when check-
ing for mouse events, keyboard input, as well as lots of other things. Typically, you’ll
use them with two parameters, the first being a string describing the event to listen for
and the second being the function to call when the thing you’re listening for dis-
patches an event.

 Ignoring the fat arrow syntax for now, the syntax is typically

target.addEventListener('mousemove', function(event) {
 ...do something
});

Or, if you have a function already set up to handle the event:

target.addEventListener('mousemove', myFunction);

In each of these cases, a rather unfortunate thing happens: we’ve lost our original
scope, and in the function that gets called, we have a brand-new scope. To explain,
let’s take a peek at the next listing for an example.

class ScopeTest {
 constructor() {
 this.message = 'hi';
 setInterval(this.onTimer, 1000);
 }

 onTimer() {
 console.log(this.message);
 }
}
let test = new ScopeTest();

With this example, we instantiate a class. Right off the bat, in the constructor, we set a
string called message to “hi”. We also start a timer that fires every second. The timer
calls a function called onTimer, which console-logs our message variable.

A.6.2 Losing scope in classes

The problem is that when you run this code, undefined is logged to the console. Why
doesn’t “hi” get logged? What would happen if we changed our constructor to directly
call the function?

class ScopeTest {
 constructor() {
 this.message = 'hi';
 this.onTimer();
 }

 onTimer() {

Listing A.22 A timer example showing loss of scope within a class

Listing A.23 Directly calling a function to avoid scope loss

Starts a timer with the
onTimer function being
called on every timeout

Undefined, because “this” is
no longer in the class scope

Calls the onTimer function
directly instead of through
setInterval

396 APPENDIX ES2015 for Web Components
 console.log(this.message);
 }
}
let test = new ScopeTest();

In this case, our message of “hi” is indeed logged, but the difference between these
two methods is a matter of scope.

 Scope is the context in which we can access variables, functions, and objects. In fact,
the reference this is that context. Try adding the following console log to your con-
structor:

 constructor() {
 console.log(this);
 this.message = 'hi';
 this.onTimer();
 }

What gets logged is this:

ScopeTest {message: "hi"}

And, of course, if you expand in your dev tools, you’ll be able to see the onTimer func-
tion in there as well. Logging this in your class’s scope gives you a reference to your
class! Exactly what we need for managing code in our class, and it’s why we can access
variables through this or call functions on this.

 On the other hand, if we set up a proper timer in the constructor using set-
Timeout(this.onTimer, 1000) and log this from our timer callback, like so,

 onTimer() {
 console.log(this);
 }

we find ourselves inside an unrecognizable scope:

Window {postMessage: ƒ, blur: ƒ, focus: ƒ, close: ƒ, frames: Window, . . .}

In fact, if you were to run onTimer from the constructor without the timer, your scope
would still be that of your class.

 So, as you can probably see, when you pass a function to something like an event
listener, a timer, or similar to be called back at a later time, your callback function is
suddenly in a new scope! Of course, this is problematic, because the question then
becomes how to reference your class’s scope again from your callback.

 With our example, within our timer callback, we can’t access our message variable.
What if, instead, we wanted to take action on our Web Component’s DOM? A mouse
click wouldn’t be terribly useful to listen for if we couldn’t take some kind of contex-
tual action on it.

A.6.3 Managing scope with the fat arrow

There have been many ways to tackle this problem over time in JS, but we finally have a
new JS feature specifically for it, and that is the fat arrow. Of course, we affectionately
refer to this as the fat arrow because the syntax of => is an arrow with a thick stem.

Will log “hi” because “this”
is still in the class’s scope

397The fat arrow
 To use the fat arrow in the next listing, we pass an arrow function containing an
expression that calls our method instead of the function itself.

class ScopeTest {
 constructor() {
 this.message = 'hi';
 setInterval(() => this.onTimer(), 1000);
 }

 onTimer() {
 console.log(this.message);
 }
}
let test = new ScopeTest();

Using the fat arrow here, we can log this.message, and it’s not undefined; more
importantly, we are preserving the scope of our class even through a callback. Often-
times, you won’t see the empty parentheses in a fat arrow expression. Here, it denotes
that we’re not passing parameters, since setInterval callbacks don’t take them.

 If there were parameters for a given method, those parentheses would be filled in
as you might expect:

callback((x, y, z) => this.onCallback(x, y, z));

For an example that directly applies to us, let’s circle back to our mouse-move listener:

this.addEventListener('mousemove', e => this.onMouseMove(e));

In this case, an event listener passes an event into the callback, and we’re choosing to
use it. We could still ignore this event and use the function with the empty parenthe-
ses, like this:

this.addEventListener('mousemove', () => this.onMouseMove());

Either way, we can use the fat arrow to properly preserve scope, as figure A.8 shows,
where we contrast this against the other methods we discussed. More importantly for

Listing A.24 Using the fat arrow to maintain scope

Passes a fat arrow
expression instead
of a function

Class scope is preserved;
the message “hi” is logged

Figure A.8 Showing loss of scope or context when using a callback with no
way to get back, and how the fat arrow can map scope back to where the
function was called, just like calling a normal function

JS class

this.callFunc() “this”

setTimeout(callFunc, 1000) New scope
“this”

setTimeout(
 () => callFunc(),
 1000)

“this”

398 APPENDIX ES2015 for Web Components
our Web Component use cases, we can keep scope directly to the Web Component
itself, and writing code for our component is kept easy without becoming a maze of
mixed scopes we need to manage.

index

Numerics

3D search component
attribute changed callback 58–59
attributes 55, 57
case sensitivity 57
checking for attribute existence 62–63
getters 53
HTTP requests 46–47, 63–64
observed attributes 59, 62
private variables 54
reflection 65, 67
rendering search results 49–50
setters 53
styling 50, 53
text input 58
wrapping HTTP request 48–49

3D web
components in 355–364
search use case 46

A

accelerometers 343
add() method 168
addEventListener function 336
addItemToUI method 169
adoptedCallback method 83
A-Frame framework 345–349
AMD (Asynchronous Module Definition) 280
Angular 12, 15, 74, 209, 312
APIs (application programming interfaces)

54–55
creating with setters 53
protecting 168–169

Apple Quick Look 354

applications
from components to 14–17
shells 192–193

AR (augmented reality) 353–355
ARCore 354
ARKit 354
arrow function 394–398

callbacks 395
losing scope in classes 395–396
managing scope with 396–398

Asynchronous Module Definition (AMD) 280
AttachedCallback method 91
attachShadow method 174–175
attributeChangedCallback method 58–60, 65–

66, 69, 91, 155, 206, 266–267
attributes 13

avoiding for rich data 64–65
changes in

listening for 57–62
observing 246–248
responding to 250–252

checking for existence 62–63
for configuration 55–57

case sensitivity 57
component APIs with 55

custom elements 28
hasAttribute to check for existence of 62–63
implementing 55–57
observed 59–62
reflections for 65
updating to sync with properties 14

audio
autoplay 114–115
playing notes with wrapped modules 113–114

augmented reality (AR) 353–355
Awake method 85
399

400 INDEX
B

Babel compiler 275, 283–286
Babylon.js 88, 344, 357
backticks 121
backward compatibility 263–271

child elements 268–271
comparing to polyfills 267–268
Shadow CSS 268–271
toggling Shadow DOM 264–267

baseuri attribute 64
best practices 64
Blocks 46
Bootstrap 184, 226–227
Bower 4
browsers, support for 43–44, 225
bubbling Custom Events 317
build processes 272–274
bundling

in general 276
modules with Rollup 276–280

business cards 121–122
business card creator 121, 124
customizing 128, 134

<slot> tags 161, 164
menu selection event listeners 131–132
menus 129–130
separating query selection from component

logic 132, 134
template and layout choices 154, 157

hosting
module for HTML and CSS 126, 128
separating markup from main component

logic 125–126

C

C++ 12
caching elements 131–134
callbacks 395
carousels. See photo carousels
Cascading Style Sheets. See CSS
case sensitivity 57
Chai 291, 295–296, 299, 303
child components 108–110
child elements 268–271
Chrome 208

HTML Imports 9
Shadow DOM 6, 10, 225
Web Component usage 342

classes 381–390
constructors 382
creating 33–34
getters 387–389
JavaScript 24–25

losing scope in 395–396
private properties in JS 384–387
properties 383
setters 387–389
static methods 389–390

click events 28
closed mode 174–176
Coffeescript 12, 274
color pickers 15, 232–235, 242–252, 261

for 3D primitives 355, 360
backward compatibility for Edge 263, 271
building for least common denominator 272
color picker component 234–236, 241–243,

248, 250, 252–253, 256–257, 259–262, 267,
270, 272, 278–279, 282, 290

components of 234–235
coordinate picker component 235–236,

239–240, 242–243, 246, 255, 257, 270, 282
CSS and child elements 268, 271
CSS Variables 253, 256, 287–288
demo page 240, 242
event listeners 246, 248
event responses 250, 252
HTML and CSS 239–240
importing complete CSS rules 256, 261
input fields 248, 250
module bundling 278, 280
observing attribute changes for

interaction 246–248
reflection 236–237
responding to attribute changes 250–252
responding to input fields 248–250
running builds with NPM 280, 282
slider component 231–232, 234–239, 242–243,

254, 264, 267–269, 272, 278, 280–281, 288,
295, 297–298, 303, 306

Test Driven Development 292, 298
test page 252–253
testing with Karma 299, 306
toggling Shadow DOM 264, 267
transpiling with Babel 283, 286
unit testing 290–291

common design languages 252–261
CSS vars for consistent design 253–256
imports for CSS 256–261

CommonJS 280
component APIs 55
component logic 36–37

extending HTMLElement to create 24–28
markup in 125–126

component themes 219–224
CSS Variables 221–224
deep selectors 219–220
shadow selectors 219–220

componentDidMount method 84

401INDEX
componentDidUpdate method 84
components 13–17, 46–53

3D search use case 46
adaptable 200–205
adding content to 34–35
adding interactivity to 107–111

listening for mouse movement 108
making components shake with CSS

110–111
passing data to child components 108–110

building for older browsers 274–282
module bundling with Rollup 276–280
running builds with npm 280–282

configurable 53–55
creating 200–202
creating component APIs with setters 53
custom 48–49
descendants of 184
life cycle of

comparing to game engine life cycles 85–91
comparing to React life cycle 83–85
connectedCallback handlers 74–80
Web Component life cycle methods 80–83
Web Components API 73–74, 91–92

rendering search results 49–50
reusable 45–72

attributes for configuration 55–57
avoiding attributes for rich data 64–65
fully customizing HTTP request URLs 63–64
listening for attribute changes 57–62
using hasAttribute to check whether attribute

exists 62–63
self-reliant 96–98
starting with HTTP requests 46–47
style creep into 184–186
styling ??–3650–53, 203–205
testing 289–309

standard test setup with Karma vs. 298–309
TDD (Test-Driven Development) 290–291
unit testing 290–291
WCT (Web Component Tester) 291–298

to applications 14–17
Web Components vs. DOM elements 13–14

componentWillMount method 84
componentWillReceiveProps method 84
componentWillUpdate method 84
configuring

argument against component APIs for 55
attributes 55–57

case sensitivity 57
implementing attributes 55–57

components 53–55
creating component APIs with setters 53
using APIs 54–55

connectedCallback method 24, 34, 48, 56, 59, 91,
103–104, 107, 131, 137, 148, 158, 177, 179,
205, 252, 264, 266, 268

constructor method vs. 78–80, 177
handlers 74–80
logic in constructor vs. 78, 80

const 380
constructor method 78–80, 177, 382
contextual CSS 208–218

host-context 217–218
interactivity 209–212
styles for 212–216

convenience methods 327–328
coordinate picker component 236–242

CSS 239–240
demos 240–242
HTML 239–240
Web Component class 236–239

createdCallback method 91
createElement function 78
CSS (Cascading Style Sheets)

3D search component 50, 53
contextual 208–218

host-context selector 217–218
interactivity 209–212
styles for 212–216

coordinate picker component 239–240
CSS var ponyfill 287–288
CSS vars for consistent design 253–256
custom elements 28–30
designs 123–124
for self-reliant components 96–98
imports for 256–261
modules for 126–128
multiple references 96–99
photo carousel styling 37
shaking components with 110–111

CSS Variables 221–224
CSShake 110–111
CSSWG (CSS Working Group) Shadow Parts

draft 220
currentTime property 13
Custom Element API 8, 10, 264, 314, 317
Custom Events 14, 315–317
customElements.define method 23–24
customelements.Define method 92
CustomEvent constructor 315

D

dashes (-) 21–22
data

creating menus from 129–130
passing to child components 108–110

402 INDEX
data (continued)
separating 321–330

local storage 325–328
model-view-controller 323–325
wiring UI to data models 328–330

data models 328–330
date pickers 5–8
deep selectors 219–220
Densmore, Owen 112
dependencies 98–107
design patterns 338–339
design systems 184, 226–228, 254
designs

iterating with CSS 123–124
iterating with HTML 123–124

detachedCallback method 91
Dibia, Victor 370, 372
disconnectedCallback method 80, 83, 91
dispatchEvent function 336
dispatching events 316
<div> elements 5, 8, 14, 102, 104, 170–171, 248

inheritance 20
photo carousel image container 34–35
Shadow DOM 7

document fragments 150–152
document object model. See DOM (document

object model)
DOM (document object model)

elements 5, 13–14
protecting 169–170
resolving style creep with 186–191

doSearch() method 48, 54
double quotes 120
duration property 13

E

echo command 274
ECMAScript 377
elements

caching 131–134
custom

defining 23–24, 313–315
using in practice 28–30

inheritance in 19–21
rules for naming 21–22

encapsulation in Shadow DOM 167–170
encapsulation defined 167–168
protecting component API 168–169
protecting component DOM 169–170

error-handling method, React 83
ES2015 (ECMAScript version 6)

arrow function 394–398
callbacks, scope problem with 395

losing scope in classes 395–396
managing scope with 396–398

classes 381–390
constructors 382
getters 387–389
private properties in JS 384–387
properties 383
setters 387–389
static methods 389–390

modules 390–393
multiple functions in 392–393
syntax for exporting 391–392
syntax for importing 391–392
top-level objects in JS 391

overview of 377–378
template literals 393–394
variables with 378–380

importance of 380
variable declaration with const 380
variable declaration with let 378–380

event bubbling 15–16, 321
event bus 335–339

design patterns as suggestions 338–339
static getter event types 337–338

event bus system 15–16
event listeners 14, 137–139
eventHandler method 71
events 312–317

Custom Events 315–317
defining custom elements 313–315
native 312–313
passing through Web Components 318–321

custom event propagation through Shadow
DOM 320–321

native event propagation through Shadow
DOM 319–320

passing with event bus 335–339
design patterns as suggestions 338–339
static getter event types 337–338

WebComponentsReady 312–313
exporting, syntax for 391–392
extending HTMLElement 24–28

F

fat-arrow (lambda) functions 10, 38, 394, 397
Firefox 9, 11, 146, 167, 209, 225
Firefox Reality 346
for loops 104
framework fatigue 4
frontend tooling 112
functional testing 290
functions 392–393

403INDEX
G

-g flag 32
game engines 85–91
GameComponentBase class 89–90, 96
getElementById method 153
getSnapshotBeforeUpdate method 84
getters 387–389
Git Bash 282
Google Cardboard 346
Google Daydream 346
Google TensorFlow 370
grids 196–200
Grunt 4, 95, 273–274
Gulp 4, 95, 273–274
gyroscopes 343

H

hand tracking 370–375
Handtrack.js 370
hasAttribute 62–63
headers, photo carousel 34–35
hoisting 379
host selectors 193–195
:host() selector 217
:host-context() selector 208, 212, 214, 217–218,

227
HTC Vive 346
HTML (Hypertext Markup Language)

coordinate picker component 239–240
inline 120–121
iterating designs with 123–124
modules for 126–128
templates with 144–165

entering Shadow DOM with slots 161–165
HTML Imports 145–149
template tag 149–154

writing tags 33
HTML Imports 9, 145–149

history of 9–10
overview of 146–149
polyfilling 146

HTML tags 5
HTMLButtonElement 20
HTMLDivElement 20
HTMLElement

defining custom elements 23–24
extending to create custom component

logic 24–28
overview of 19–21

HTMLSpanElement 20
HTMLUnknownElement 21
HTTP requests 46–47, 63–64
hyperHTML 13

I

ID selectors 193–195
IE (Internet Explorer) 263, 271, 282–288

JavaScript classes 43
polyfill for custom element support 43

import keyword 10, 99
importing

module syntax for 391–392
templates 124–128

modules for CSS 126–128
modules for HTML 126–128

Web Components within Web
Components 103–105

inheritance 19–21
inline HTML 120–121
innerHTML property 25, 34, 50, 78, 84, 96–97,

122, 126, 174, 212, 266, 358
input fields 248–250
<input> type 5–6
inside-component class 170
interactivity 38–39, 107–111

listening for mouse movement 108
making components shake with CSS 110–111
passing data to child components 108–110

Internet Explorer. See IE

J

JButton objects 391
JetBrains WebStorm 31
JFrame objects 391
JS (JavaScript) 4

different languages operating together 12
modules 100–101
private properties in 384–387
private variables 54
processing pixels with 364–367
top-level objects in 391
vanilla 5

JSDOM 290
JSON 47, 64–65

K

Karma test runner 298–309
Karma Web Components 306–307
multiple tests in same project 307–308
with Safari 308–309

L

lambda (fat-arrow) functions 10, 38, 394, 397
let 378–380

404 INDEX
life cycle methods 80–83
adoptedCallback 83
connectedCallback 24, 34, 48, 56, 59, 91,

103–104, 107, 131, 137, 148, 158, 177,
179, 205, 252, 264, 266, 268

constructor 78–80, 177, 382
disconnectedCallback 80–83
observedAttributes 59–62, 91, 155, 390

list containers 196–200
LitElement 10, 84, 134–135, 139, 237, 271, 342
literals. See template literals
lit-html 10, 13, 134–137, 341

adding listeners to markup 137, 139
tagged templates 135–136

loading templates 157–161
local storage 325–328
Lua 12

M

machine learning 370–375
Magic Leap 353–354
magnetometers 343
mapDOM method 210–212
markup 119–143

element caching 131–134
importing templates 124–128

modules for CSS 126–128
modules for HTML 126–128

in main component logic 125–126
injecting event listeners into 137–139
strings 120–121

inline HTML 120–121
string syntax with backticks 121

template literals 121–124
creating business cards 121–122
iterating designs with CSS 123–124
iterating designs with HTML 123–124

template logic 128–131
templates 134–139

lit-html 135
repeating with 135–136

updating slider components 139–143
menus 129–130
methods and functions 6, 13
microframeworks 17
Microsoft Edge 1, 11, 167, 263, 271
Microsoft HoloLens 353
MIDI.js library 111–113
mixed reality 343–364

A-Frame 345–349
model-viewer 349–353
Poly search 350–353

MobX 311, 335, 341
Mocha 291, 295, 299, 303

model-view-controller 323–325
model-viewer

AR with 353–355
components with 349–350
Poly search and 350–353

modules 11, 93–116, 390–393
bundling with Rollup 276–280
for CSS 126–128
for HTML 126–128
multiple functions in 392–393
solving dependency problems with 99–107

creating musical instruments with Web
Components and JS modules 100–101

importing Web Components within Web
Components 103–105

nesting Web Components within Web
Components 103–105

starting with smallest component 102–103
wrapping web applications with Web

Components 105–107
syntax for exporting 391–392
syntax for importing 391–392
top-level objects in JS 391
wrapped 113–114
wrapping third-party libraries as 111–116

audio autoplay 114–115
Web Harp 116

wrapping with Node.js 112
Monobehavior 85–86
mounting methods, React 84
mouse control 108
MutationObserver method 247, 360
myElement variable 7

N

names 164–165
namespaces 22
naming elements 21–22
nesting Web Components within Web

Components 103–105
Node.js 31, 112, 273
Node.js NPM 4, 32, 43, 95, 273–274, 342
npm (node package manager)

running builds with 280–282
scripts 273–274

numerical steppers
solving style creep with Shadow DOM 186, 189
style creep 182–184, 186

O

Object.observe data binding feature 311
objects in JS 391

405INDEX
observedAttributes 59–62, 91, 155, 390
Oculus Go 346
Oculus Rift 343, 346
older browsers 262–288

backward compatibility 263–271
child elements 268–271
comparing to polyfills 267–268
Shadow CSS 268–271
toggling Shadow DOM 264–267

building components for 274–282
module bundling with Rollup 276–280
running builds with npm 280–282

building for least common denominator
271–272

transpiling for Internet Explorer 282–288
Babel 283–286
CSS var ponyfill 287–288

onBackButtonClick method 38
onchange event listener 58
OnDisable method 85
OnEnable method 85
onForwardButtonClick method 38
onMouseMove callback 108
onMutationChange handler 267
onTimer function 396

P

Parcel.js 276
::part selector 220
pause() function 13
photo carousels 30

adding content 34–35
button placement 39–40
class creation 33–34
component logic 36–37
demo code 40, 42
external references 94, 98
improving 42–43
interactivity 38–39
setting up web server 31–32
styling 36
writing HTML tag 33

pixels 364–367
plan class 218
play() function 13
playSound function 113
Poly search 350–353
polyfilling 146, 225–226, 263–264

native events 312–313
toggling Shadow DOM vs. 267–268

Polymer Elements Collection 22
Polymer Library 10
Polymer Project 13, 134
ponyfilling 287–288

private variables 168–169
promises 314–315
propagating events

custom 320–321
native 319–320

properties 6, 13, 383
in JS 384–387
reflections for 65

prototype keyword 237

Q

query-selecting 132–134
querySelector function 26
querySelectorAll method 104

R

React 12, 74, 83–85, 311
Redux 15, 311, 335, 341
re-entrancy 65
reflections 14, 65
refreshSlider function 70
registerElement method 92
render method 84, 126, 129
rendering search results 49–50
repeating with templates 135–136
requestAnimationFrame 87–88
rich data 64–65
Rollup 276–280, 301
root { . . . } pseudo selector 223
root selector 223
RXjs 15

S

Safari browser 208, 225, 308–309
Sass 272
scene.render() function 362
scope

losing in classes 395–396
managing with arrow function 396–398
problem with callbacks 395
this keyword 25–26

script tags 94–99
dependencies 98–99
including CSS for self-reliant components

96–98
multiple JS and CSS references 96–99

scripts
npm 273–274
tiny 96

search results 49–50
searchterm attribute 58

406 INDEX
selectors
deep 219–220
shadow 219–220

Selenium 291–292, 299
self-reliant components 96–98
sensor fusion algorithms 343
serialize method 202
setInterval 87
setters 53, 387–389
Shadow boundary, defined 173
Shadow CSS 181–228
Shadow DOM 6–8, 10–11, 80, 146, 166–180,

191–200, 225–228
application shells 192–193
browser adoption 167
browser support 225
closed mode 174–176
constructor vs. connectedCallback method 177
CSS modules 341
custom event propagation through 320–321
design systems 226–228
drawbacks of 178–180
encapsulation 167–170

protecting component API 168–169
protecting component DOM 169–170

entering with slots 161–165
grids 196–200
host selectors 193–195
ID selectors 193–195
list containers 196–200
native event propagation through 319–320
polyfilling 225–226
polyfills 263
shadow root 172–174
toggling 264–267

shadow host, defined 173
shadow parts 341
shadow root 6–7, 163, 171–174, 264, 266, 296
::shadow selector 219–220
shadow selectors 219–220
shadow themes 341
shadow tree, defined 172
shadowRoot property 173–175
ShadyCSS polyfill 226, 269
ShadyDOM polyfill 226
shaking components 110–111
shells for applications 192–193
shouldComponentUpdate method 84
showPhoto method 37
single quotes 120
slider components 67–72, 139–143, 205–207
sliders

attribute change listeners 68
attributes and interactivity 67, 72
custom component logic 24, 26–27

importing templates and cache elements 139,
142

reflection 68
Shadow DOM 205, 207

slots
entering Shadow DOM with 161–165
without names 164–165

 tags 5, 8, 11, 13, 95, 97, 99, 145, 147, 149,
152, 157–158, 161, 170, 172

inheritance 20
named slots 162, 164
Shadow DOM 7, 166
slots, defined 161
unnamed slots 164–165

src attribute 13, 55
Start method 85
static getter event types 337–338
static keyword 60
static methods 389–390
StencilJS 12, 271, 342
storage, local 325–328
strings

inline HTML 120–121
multiline 120–121
syntax with backticks 121

style creep 181–186
into component descendants 184
into components 184–186
resolving with DOM 186–191

styling components 50–53
suggestions, design patterns as 338–339
super.update() method 90
super() method 75, 382
Supermedium 346
Svelte 12
syntax

for exporting modules 391–392
for importing modules 391–392
with backticks 121

T

tagged templates 136
tags 155
tags for HTML 33
TDD (Test-Driven Development) 290–291, 298
template literals 11, 121–124, 393–394

creating business cards 121–122
inserting variables 394
iterating designs with CSS 123–124
iterating designs with HTML 123–124

template logic 128–131
template tags 149–154

document fragments 150–152
using template content 152–154

407INDEX
templates 134–139
choosing 154–157
content 152–154
dynamically loading 157–161
importing 124–128

modules for CSS 126–128
modules for HTML 126–128

injecting event listeners into markup 137–139
lit-html 135
repeating with 135–136
with HTML 144–165

entering Shadow DOM with slots 161–165
HTML Imports 145–149
template tags 149–154

Test-Driven Development. See TDD
testing 289–309

multiple tests in same project 307–308
standard test setup with Karma 298–309

Karma Web Components 306–307
multiple tests in same project 307–308
Safari 308–309

TDD 290–291
unit testing 290–291
WCT 291–298

text input 58
::theme selector 220
third-party libraries 111–116

audio autoplay 114–115
frontend tooling for wrapping modules with

Node.js 112
playing notes with wrapped modules 113–114
Web Harp 116

this keyword 25–26
Three.js 88, 344, 355
thumb property 199
TiltBrush 46
tiny scripts 96
toAttributeString method 202
toggling Shadow DOM 264–267
toolbar component 15
transpiling 275
transpiling for IE 282–288

Babel 283–286
CSS var ponyfill 287–288

tree shaking 276
Typescript 12, 274–275

U

UI (user interface)
adaptable components 200–205

component styles 203–205
creating components 200–202

component themes 219–224
CSS Variables 221–224

deep selectors 219–220
shadow selectors 219–220

components 231–261
adding common design languages 252–261
color pickers 232–235, 242–252
coordinate pickers 236–242

contextual CSS 208–218
host-context selector 217–218
interactivity 209–212
styles for 212–216

Shadow DOM 191–200
application shells 192–193
grids 196–200
host selectors 193–195
ID selectors 193–195
list containers 196–200

style creep 181–186
into component descendants 184
into components 184–186
resolving with DOM 186–191

updating slider components 205–207
wiring to data models 328–330

UMD (Universal Module Definition) 280
underscores 54, 385
unit testing 290–291
Unity 85–86, 91
Universal Module Definition (UMD) 280
Unknown class 21
update method 88, 248, 250
updateGraphics function 131, 138
updatePolySearch function 58
updateTime function 333
updating methods, React 84
updating slider components 67–72, 139–143,

205–207
URLs for HTTP requests 63–64

V

value attribute 14
var declaration 378–380
variables

declarations with const 380
declarations with let 378–380
importance of 380
in template literals 394
with ES2015 378–380

vertex shaders 344
video effects 364–370

processing pixels with JS 364–367
WebGL shaders 367–370

video element 13
VS Code 338
Vue 12, 74, 312

408 INDEX
W

WCT (Web Component Tester) 291–299, 308
WeakMap feature 176, 385–386
web applications 105–107
Web Component

DOM elements vs. 13–14
future of 12–13, 341–343
importing within Web Components 103–105
JS modules and 100–101
life cycle methods 80–83

adoptedCallback 83
disconnectedCallback 80–83

loading with script tags 94–99
dependencies 98–99
including CSS for self-reliant

components 96–98
multiple JS and CSS references 96–99
tiny scripts 96

modern 10–11
nesting within Web Components 103–105
overview of 5–11
wrapping web applications with 105–107

Web Component Tester. See WCT
Web Components API 73–74
Web Components API v0 91–92
web development

adoption of new tools 3–4
agreement on tools to use 4–5
no-framework 5, 10, 12, 15, 17

Web Harp 100, 116
audio 111, 115
component 102–106, 108–109
CSShake 110–111
hand tracking 373–374
interactivity 107, 111
mouse movement listener 108
nesting components 103, 105
overview 100–101
passing data to child components 108, 110
representing entire app in component 105,

107
web servers 31–32
WebAssembly 12
WebComponentsReady 312–313
WebGL 343
WebGL shaders 367–370

Webkit 208
Webpack 273, 276
WebStorm 338
WebVR 346, 354
WebXR 347, 354
whenReady callback 148
Windows Subsystem for Linux (WSL) 274, 282
Workout Creator app 191, 205

application shell 192–193
component 192–193, 196–197, 199, 202,

204–205, 210–212, 214–215
contextual style 212, 216
CSS Variables 223–224
event bus 335, 338
exercise library 200, 202
grid and list containers 196, 200
host and ID selectors 193, 195
host context workaround 217–218
interactive exercise selection 209, 212
local storage 325, 328
MVC design pattern 324–325
playback view 330, 335
separating data 321, 330
shadow and deep selectors 219–220
static getter event types 337–338
styling 203, 205
wiring UI to data model 328, 330

wraplib.js script 112
wrapping

modules with Node.js 112
third-party libraries as modules 111–116

audio autoplay 114–115
playing notes with wrapped modules 113–

114
Web Harp 116

web applications with Web Components 105–
107

WSL (Windows Subsystem for Linux) 274, 282

X

X-Tags 10

Y

Yarn 4

Defining which Custom Element attributes are watched

and dispatching change events by using observedAttributes

Template Literals are not only great for general-purpose strings,
but are also invaluable for writing dynamic HTML

and CSS in your Web Component.

<poly search apiKey="xxxx" searchTerm="parrot">

observedAttributes

attributeChangedCallback

Is attribute name
in this list?

Yes!

‘Template Literals are a ${adjective[0]} , new ES ${2000 + 15} feature

that lets ${who} use embedded expressions in strings with ${adjective[1]}

line wrapping that isn’t ${adjective[2]} ’

let adjective = ['nifty' , 'easy' , 'ugly'];

let who = 'you'’;

Ben Farrell

T
he right UI can set your sites and web applications apart
from the ordinary. Using the Web Components API, you
can build Custom Elements and then add them to your

pages with just a simple HTML tag. This standards-based
design approach gives you complete control over the style and
behavior of your components and makes them radically easier
to build, share, and reuse between projects.

Web Components in Action teaches you to build and use Web
Components from the ground up. You’ll start with simple
components and component-based applications, using
JavaScript, HTML, and CSS. Then, you’ll customize them and
apply best design practices to maximize reusability. Through
hands-on projects, you’ll learn to build production-ready
Web Components for any project, including color pickers,
advanced applications using 3D models, mixed reality, and
machine learning.

What’s Inside
● Creating reusable Custom Elements without a framework
● Using the Shadow DOM for ultimate component
 encapsulation
● Leveraging newer JS features to organize and reuse code
● Fallback strategies for using Web Components on
 older browsers

Written for web developers experienced with HTML, CSS,
and JavaScript.

Ben Farrell is a Senior Experience Developer at Adobe working
on the Adobe Design Prototyping Team.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/web-components-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

Web Components IN ACTION

WEB DEVELOPMENT/JAVASCRIPT

M A N N I N G

“Teaches by example,
demonstrating concepts

through compelling
projects that illuminate
 realistic use cases.”
—From the Foreword by

Gray Norton
Polymer Project, Google

“Informative, full of
resources and comprehensive

examples. Defi nitely one of the
best books I’ve read about

 web technology this year.”
—Russel Dawn Cajoles, BlaqClouds

“A solid resource for
frontend developers

experiencing JavaScript
 framework fatigue.”—Matt Welke, GroupBy

“Well-paced and thorough.
Highly recommended.”
—Justin Calleja, Mr Green

See first page

ISBN-13: 978-1-61729-577-5
ISBN-10: 1-61729-577-9

	Web Components in Action
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: a roadmap
	About the code
	liveBook discussion forum
	About the author

	about the cover illustration
	Part 1 First steps
	1 The framework without a framework
	1.1 What are Web Components?
	1.1.1 The date picker
	1.1.2 The Shadow DOM
	1.1.3 What do people mean when they say Web Components?
	1.1.4 The problematic history of HTML Imports
	1.1.5 Polymer Library and X-Tags
	1.1.6 Modern Web Components

	1.2 The future of Web Components
	1.3 Beyond the single component
	1.3.1 Web Components are just like any other DOM element
	1.3.2 From individual component to application

	1.4 Your project, your choice
	Summary

	2 Your first Web Component
	2.1 Intro to HTMLElement
	2.1.1 Crash course in inheritance
	2.1.2 Inheritance in your favorite elements

	2.2 Rules for naming your element
	2.3 Defining your custom element (and handling collisions)
	2.4 Extending HTMLElement to create custom component logic
	2.5 Using your custom element in practice
	2.6 Making a (useful) first component
	2.6.1 Setting up our web server
	2.6.2 Writing our HTML tag
	2.6.3 Creating our class
	2.6.4 Adding content to our component
	2.6.5 Styling our component
	2.6.6 Component logic
	2.6.7 Adding interactivity
	2.6.8 Finishing touches
	2.6.9 Improving the carousel

	2.7 Notes on browser support
	Summary

	3 Making your component reusable
	3.1 A real-world component
	3.1.1 A 3D search use case
	3.1.2 Starting with an HTTP request
	3.1.3 Wrapping up our work in a custom component
	3.1.4 Rendering search results
	3.1.5 Styling our component

	3.2 Making our component configurable
	3.2.1 Creating our component API with setters
	3.2.2 Using our API from the outside looking in

	3.3 Using attributes for configuration
	3.3.1 An argument against a component API for configuration
	3.3.2 Implementing attributes
	3.3.3 Case sensitivity

	3.4 Listening for attribute changes
	3.4.1 Adding text input
	3.4.2 The attribute changed callback
	3.4.3 Observed attributes

	3.5 Making more things even more customizable
	3.5.1 Using hasAttribute to check if an attribute exists
	3.5.2 Fully customizing the HTTP request URL for development
	3.5.3 Best practice guides
	3.5.4 Avoiding attributes for rich data
	3.5.5 Property and attribute reflection

	3.6 Updating the slider component
	Summary

	4 The component lifecycle
	4.1 The Web Components API
	4.2 The connectedCallback handler
	4.2.1 Constructor vs. connected

	4.3 The remaining Web Component lifecycle methods
	4.3.1 Disconnected callback
	4.3.2 Adopted callback

	4.4 Comparing to React’s lifecycle
	4.5 Comparing to a game engine lifecycle
	4.6 Component lifecycle v0
	Summary

	5 Instrumenting a better web app through modules
	5.1 Using the <script> tag to load your Web Components
	5.1.1 Having to deal with many JS and CSS references
	5.1.2 Tiny scripts are more organized, but make the reference problem worse
	5.1.3 Including CSS for self-reliant components
	5.1.4 Dependency hell

	5.2 Using modules to solve dependency problems
	5.2.1 Creating a musical instrument with Web Components and JS modules
	5.2.2 Starting with the smallest component
	5.2.3 Importing and nesting a Web Component within a Web Component
	5.2.4 Using a Web Component to wrap an entire web application

	5.3 Adding interactivity to our component
	5.3.1 Listening for mouse movement
	5.3.2 Passing data to child components
	5.3.3 Making your components shake with CSS

	5.4 Wrapping third-party libraries as modules
	5.4.1 Frontend tooling for wrapping a module with Node.js
	5.4.2 Not perfect, but does the job
	5.4.3 Using the wrapped module to play some notes
	5.4.4 No more audio autoplay
	5.4.5 Playing the Web Harp

	Summary

	Part 2 Ways to improve your component workflow
	6 Markup managed
	6.1 String theory
	6.1.1 When inline HTML gets ugly
	6.1.2 String syntax with the backtick

	6.2 Using template literals
	6.2.1 Business card creator
	6.2.2 Iterating design with just HTML and CSS

	6.3 Importing templates
	6.3.1 Keeping markup out of the main component logic
	6.3.2 A module just for HTML and CSS

	6.4 Template logic
	6.4.1 Creating menus from data
	6.4.2 More generation logic, harder automation

	6.5 Element caching
	6.5.1 Don’t make me query-select in my component

	6.6 Smart templating
	6.6.1 Using lit-html
	6.6.2 Repeating with templates
	6.6.3 Should you use it?
	6.6.4 Injecting event listeners into markup

	6.7 Updating the slider component
	Summary

	7 Templating your content with HTML
	7.1 R.I.P. HTML Imports
	7.1.1 Polyfilling HTML Imports
	7.1.2 What’s inside the import

	7.2 The <template> tag
	7.2.1 Document fragments
	7.2.2 Using template content

	7.3 Choose your own template adventure
	7.4 Dynamically loading templates
	7.5 Entering the Shadow DOM with slots
	7.5.1 Slots without a name

	Summary

	8 The Shadow DOM
	8.1 Encapsulation
	8.1.1 Protecting your component’s API
	8.1.2 Protecting your component’s DOM

	8.2 Enter the Shadow DOM
	8.2.1 The shadow root
	8.2.2 Closed mode
	8.2.3 Your component’s constructor vs. connectedCallback

	8.3 The Shadow DOM today
	Summary

	9 Shadow CSS
	9.1 Style creep
	9.1.1 Style creep into component descendants
	9.1.2 Style creep into your component

	9.2 Style creep solved with the Shadow DOM
	9.2.1 When styles creep

	9.3 Shadow DOM workout plan
	9.3.1 Application shell
	9.3.2 Host and ID selectors
	9.3.3 Grid and list containers

	9.4 Adaptable components
	9.4.1 Creating the exercise component
	9.4.2 Exercise component style

	9.5 Updating the slider component
	Summary

	10 Shadow CSS rough edges
	10.1 Contextual CSS
	10.1.1 A small bit of interactivity
	10.1.2 Contextual style
	10.1.3 Workaround for host-context

	10.2 Component themes
	10.2.1 Shadow and deep selectors
	10.2.2 CSS Variables
	10.2.3 Applying CSS Variables to our demo

	10.3 Using the Shadow DOM in practice (today)
	10.3.1 Browser support
	10.3.2 Polyfilling
	10.3.3 Design systems

	Summary

	Part 3 Putting your components together
	11 A real-world UI component
	11.1 Crafting a color picker
	11.1.1 The components of our component

	11.2 Coordinate picker component
	11.2.1 The coordinate picker Web Component class
	11.2.2 Coordinate picker HTML/CSS
	11.2.3 Component demos

	11.3 The color picker
	11.3.1 Observing attribute changes for interaction
	11.3.2 Responding to input fields
	11.3.3 Responding to attribute changes

	11.4 Adding a common design language
	11.4.1 Swapping in CSS vars for a consistent design
	11.4.2 Using imports for more complex CSS

	Summary

	12 Building and supporting older browsers
	12.1 Backward compatibility
	12.1.1 Toggling the Shadow DOM
	12.1.2 Comparing to polyfills
	12.1.3 Shadow CSS and child elements

	12.2 Building for the least common denominator
	12.3 Build processes
	12.3.1 Using NPM scripts

	12.4 Building components
	12.4.1 Why we build
	12.4.2 Module bundling with Rollup
	12.4.3 Running builds with npm

	12.5 Transpiling for IE
	12.5.1 Babel
	12.5.2 CSS vars ponyfill

	Summary

	13 Component testing
	13.1 Unit testing and TDD
	13.2 Web Component tester
	13.2.1 Writing tests

	13.3 Comparing to a standard test setup with Karma
	13.3.1 Karma Web Components
	13.3.2 Multiple tests in the same project
	13.3.3 A note on Safari

	Summary

	14 Events and application data flow
	14.1 Framework offerings
	14.2 Events
	14.2.1 Native events and WebComponentsReady
	14.2.2 When custom elements are defined
	14.2.3 Custom Events
	14.2.4 Custom Event bubbling

	14.3 Passing events through Web Components
	14.3.1 Native event propagation through the Shadow DOM
	14.3.2 Custom Event propagation through the Shadow DOM

	14.4 Separate your data
	14.4.1 Model-view-controller
	14.4.2 Local storage
	14.4.3 Wiring UI to the data model

	14.5 Exercise playback view
	14.6 Passing events with an event bus
	14.6.1 Static getter event types
	14.6.2 Design patterns as suggestions

	Summary

	15 Hiding your complexities
	15.1 Looking to the Web Component future
	15.2 3D and mixed reality
	15.2.1 A-Frame
	15.2.2 Model-viewer component
	15.2.3 model-viewer + Poly search
	15.2.4 AR with model-viewer
	15.2.5 Your own 3D component

	15.3 Video effects
	15.3.1 Processing pixels with JS
	15.3.2 WebGL shaders

	15.4 Hand tracking and machine learning
	Summary

	appendix ES2015 for Web Components
	A.1 What is ES2015?
	A.2 Rethinking variables with ES2015
	A.2.1 Variable declaration with let
	A.2.2 Variable declaration with const
	A.2.3 Important by convention but not functionality

	A.3 Classes
	A.3.1 Constructor
	A.3.2 Properties
	A.3.3 Private properties in JS
	A.3.4 Getters and setters
	A.3.5 Static methods

	A.4 Modules
	A.4.1 Top-level objects in JS
	A.4.2 Module syntax for importing and exporting
	A.4.3 Working with multiple functions in the same module

	A.5 Template literals
	A.5.1 Inserting variables into a template literal

	A.6 The fat arrow
	A.6.1 The callback scope problem
	A.6.2 Losing scope in classes
	A.6.3 Managing scope with the fat arrow

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides true
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

