

Save 35% at manning.com
Use the code humble35 at checkout to save on your
first purchase.

Early access
Don’t wait to start learning! In MEAP, the Manning Early Access
Program, you read books while they’re being written.

Access anywhere with liveBook
The Manning liveBook platform provides instant browser-based
access to our content.

Beyond books
Cutting edge liveProjects, liveAudio, and liveVideo courses give
you new ways to learn. Only available at manning.com

Impeccable quality
We believe in excellence. Our customers tell us we produce
the highest quality content you can buy.

Exclusive eBooks
Manning eBooks are only available from manning.com.
You won’t find them anywhere else.

Email

shop at manning.com

https://bit.ly/3h13ZcH
https://bit.ly/3h13ZcH
https://bit.ly/2J2R9OK
https://bit.ly/37r08lZ
https://www.linkedin.com/company/manning-publications-co/
https://www.facebook.com/ManningBooks?ref=nf
https://www.instagram.com/manning_publications/
https://twitter.com/manningbooks
https://www.youtube.com/channel/UCDia_lkNYKLJVLRLQl_-pFw
https://www.twitch.tv/manningpublications
https://bit.ly/2Wmabm6
https://bit.ly/37r08lZ
https://bit.ly/37r08lZ

 Overview

Anyone Can Create an App: Beginning iPhone and iPad Programming will
teach you the essentials of programming using the Swift language. You
don’t need any knowledge of programming to be successful with this
book! Part 1 teaches you the basics of programming, and you’ll create a
few apps to help build your confidence. Part 2 builds on the knowledge
you gained in part 1 and adds new programming concepts. Finally, part 3
teaches you how to build the Like it or Not (LioN) app, which lets users
add items to a list and notate whether they like them. For instance,
suppose you go to a restaurant and try a certain dish, and you want to
remember it for next time—you can add it to the LioN app! The app is
searchable, so can find the dish easily when you want to remember
whether you liked it.

Anyone Can Create
an App

BEGINNING IPHONE AND IPAD PROGRAMMING

WENDY L. WISE

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Christina Taylor
20 Baldwin Road Technical development editor: Robin Dewson
PO Box 761 Review editor: Ozren Harlovic
Shelter Island, NY 11964 Project editor: Tiffany Taylor

Copy editor: Corbin Collins
Proofreader: Melody Dolab

Technical proofreader: Scott Steinman
Typesetter: Dennis Dalinnik

Cover designer: Leslie Haimes

ISBN: 9781617292651
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

www.manning.com

 To my wife, who so patiently puts up with me.
To my parents, who so patiently put up with me for all those years.

And to the rest of my friends and family, who put up with me,
although sometimes not as patiently as I would like.

contents
preface xv
acknowledgments xvii
about this book xviii

PART 1 YOUR VERY FIRST APP..1

1 Getting started 3
1.1 The big picture: iPhone and iPad development 4

Some key terms 4 ■ Am I developing or programming? 4
Objectively Swift 5 ■ Apps you’ll create 6

1.2 Learning what you need to remember 6
Understanding and remembering key concepts 7
Syntax 7 ■ The importance of pseudocode 8

1.3 What you need to create apps for iPhones and iPads 9
You’re going to need a Mac 9 ■ Xcode: the iPhone and iPad
development environment 11 ■ Helpful resources 12

1.4 Summary 13
v

CONTENTSvi
2 Building your first app 14
2.1 Launching Xcode for the first time 15

Step 1: Launch Xcode 15 ■ Step 2: Create a new project 16
Step 3: Set up your project options 16 ■ Step 4: Run the
blank app 18 ■ Step 5: Add the Hello World text 19
Step 6: Run the app 21 ■ Step 7: Pat yourself on the back
(and review) 21

2.2 Summary 22

3 Your first app, explained 23
3.1 Xcode templates, explained 23
3.2 Understanding the single-view application 24
3.3 A label, defined 25
3.4 The Simulator, defined 27

Running Hello World in the Simulator 28

3.5 Summary 29

4 Learning more about your development tools: Xcode 30
4.1 Xcode panels explained 31

Standard Editor 32 ■ Utilities panel 33
Main.storyboard 34 ■ Navigator panel 35

4.2 Xcode icons explained 36
4.3 Feel free to explore 37
4.4 Summary 38

5 Capturing users’ actions: adding buttons 39
5.1 Adding a label and a button 40

Step 1: Start a new project using the Single View Application
template 40 ■ Step 2: Add a button and label to the storyboard,
and run the app to test it 40 ■ Step 3: Connect the button and
the label to the code (wire them up), and run the app to test it 42
Step 4: Add code to change the text on the Label when the button is
clicked, and run the app to test it 46

5.2 Changing how the label appears 48
Step 5: Change how the label looks, and run the app to test it 49

5.3 Summary 51

CONTENTS vii
6 The button app, explained 53
6.1 The button, explained 53

Creating outlets (or “How do I contact Butch?”) 54 ■ Creating
actions 55 ■ Is Xcode clairvoyant? 55 ■ User interfaces and the
front end of apps 56

6.2 Documentation 57
6.3 Commenting: you can never be too wordy, can you? 59

Comments are your friends 59 ■ How to comment your code 59

6.4 Summary 60

7 Capturing user input: adding text boxes 62
7.1 Adding text fields 63

Step 1: Create a new single-view application 63 ■ Step 2: Add
a button and a label to the view 63 ■ Step 3: Add a text field to
the view 64 ■ Step 4: Connect the button, label, and text box to
the code (wire them up), and test the app 64 ■ Step 5: Add code
to change the label, and test the app 66 ■ Step 6: Comment
the code 68

7.2 Summary 68

8 Playing on the playground 69
8.1 Swift Playgrounds: learning to interact with others 69
8.2 Frameworks 71
8.3 Types of variables 72

Not your shoestrings 73 ■ Going back to math class 75
Double, double, toil and trouble 76

8.4 Summary 77

PART 2 THE KEYS TO THE CITY: UNDERSTANDING
KEY DEVELOPMENT CONCEPTS............................79

9 Go with the flow, man! Controlling the flow of your app 81
9.1 Control your flow 81
9.2 If you do that again, I’m going to… 82
9.3 If you do that OR if you… then I’m going to… 84

CONTENTSviii
9.4 If you do that AND you do this, I will… 85
9.5 If you do this, else if you do this, else if you do this… 86

Printing a line with values of variables and strings 87

9.6 If you do that, otherwise… 89
9.7 Summary 90

10 While you’re doing that… 91
10.1 Using the while statement to control your code 91

The while statement in action 92 ■ Wrapping up the while
statement discussion 94

10.2 Turn around now switch (remember Will Smith?)—the
switch statement 94
Assignment 95

10.3 How many fingers am I holding up? 96
Step 1: Add all the components to the storyboard 97 ■ Step 2:
Make the storyboard connections 97 ■ Step 3: Create a variable
to capture the number guessed: numberGuessed 98 ■ Step 4:
Change the numberGuess variable when the stepper is tapped 99
Connecting the Guess! button 100

10.4 Summary 103

11 Collections 104
11.1 Quantum arrays: not really, but that sounds

scary, right? 104
11.2 The for statement and loop 107
11.3 Dictionaries 107
11.4 Creating a state name lookup app 110

Step 1: Create an app named StateAbbreviationLookup 111
Step 2: Add the UI components to the storyboard 111 ■ Step 3:
Connect the UI components to the code 111 ■ Step 4: Create the
dictionary of state abbreviations and names 112 ■ Step 5: Create
the code to look up the state abbreviation when the user types in the
state name 113

11.5 Summary 116

CONTENTS ix
12 Telling stories with storyboards 117
12.1 Storyboards 117
12.2 Creating an example storyboard app 118

Step 1: Create a new app called StoryboardExample 118
Step 2: Add a second scene to the app 118 ■ Step 3: Add a
navigation bar to the second scene 120 ■ Step 4: Link the
Cancel button to the first scene 122

12.3 Segue animation types 122
12.4 Summary 124

13 ViewControllers in depth 125
13.1 Inheritance 125
13.2 The override keyword 128
13.3 ViewController lifecycles 129
13.4 The Lifecycle app 131

Step 1: Create a new project called Lifecycle 131 ■ Step 2:
Add a second ViewController 131 ■ Step 3: Create an unwind
segue 132 ■ Step 4: Override the five functions 133
Step 5: Test the app 133

13.5 Summary 135

14 Put it on my tab: creating tab bars 136
14.1 The Tab Bar Controller 136

Step 1: Create a new app 137 ■ Step 2: Delete the existing
scene 137 ■ Step 3: Add a Tab Bar Controller to the
storyboard 138 ■ Step 4: Add labels to the different tabs 139
Step 5: Add a third tab to the app 142

14.2 Summary 143

15 Table views: more than a coffee table picture book 144
15.1 Delegation 145

Making pizza from scratch 145 ■ Delegating pizza making 145

15.2 Protocols 146
15.3 Data sources 146
15.4 Creating a table view app 147

Step 1: Create a new app 147 ■ Step 2: Add a table view to
the ViewController 147 ■ Step 3: Set up a prototype cell 149

CONTENTSx
Step 4: Set the protocols for UITableView 149 ■ Step 5: Create
a data source for the pizza 154 ■ Step 6: Connect the data
to a table 156

15.5 Summary 158

16 Patterns: learning to sew 159
16.1 Design patterns, defined 160

Clean code 160 ■ Understandable 160 ■ Maintainable 161
Extensibility 161

16.2 Types of design patterns 162
Model-View-Controller design pattern 162 ■ Delegate
pattern 164 ■ The Memento pattern 165

16.3 Summary 166

PART 3 CREATING THE LIKE IT OR NOT APP167

17 Putting it all together: the LioN app 169
17.1 Like it or Not 169
17.2 Getting started 170

Creating the app 171 ■ Adding a Navigation Controller 172
Adding an iPhone 4s Simulator 173 ■ Connecting the data to the
table view 175 ■ Implement the functions for table views 176

17.3 Summary 179

18 Adding data to your LioN app 180
18.1 Adding hardcoded data to your LioN 181

Creating an array of dummy data 181 ■ Wiring lionData to the
table view with hardcoded data 181

18.2 Adding a model to the mix 182
Adding a new Swift file to the project 183

18.3 Changing the layout of the table cell 187
Changing the cell in the storyboard to show the description 187
Updating the function to show the description 189

18.4 Summary 189

CONTENTS xi
19 Displaying details of your LioN 190
19.1 Capturing the tapped row index 190
19.2 Adding a detail page to the storyboard 191

Adding a ViewController to the storyboard 192 ■ Creating a new
ViewController class 193

19.3 Passing data to the DetailViewController 195
Preparing the DetailViewController to accept the LioN 195
Updating the MainViewController to pass data 196

19.4 Summary 200

20 Creating the details of the detail view 201
20.1 Adding some labels to your detail screen 201

Converting an Int to a string using the description 202
Converting an Int to a string using String 202

20.2 Adding new LioNs to the list 204
Adding the + button to the view 204 ■ Creating a function to
handle the action and link the two together 206 ■ Adding
hardcoded values to the LioN list 207 ■ Deleting LioNs from
the list 210

20.3 Summary 211

21 The AddEditView scene 212
21.1 Creating a new detail view 212

Adding a new Table ViewController 213 ■ Adding a new
AddEditViewController class 214 ■ Hooking up the Cancel
and Done buttons 216 ■ Checkpoint 216

21.2 Adding new LioNs 217
Don’t allow the cell to be selected 219 ■ Setting the keyboard
behaviors 220 ■ Dismissing the keyboard on user tap 222

21.3 Summary 223

22 Delegates are everywhere 225
22.1 Connecting your views 225

Implementing the protocol 227 ■ Updating your Cancel and
Done actions 227 ■ Capturing the user input 228

22.2 MainViewController conformance 229

CONTENTSxii
22.3 Adding the LioN object to the lion array 231
Changing the Done button properties 233

22.4 Setting the like and dislike properties 234
22.5 Summary 235

23 Editing LioNs 236
23.1 Editing existing LioNs 236

Setting up the AddEditViewController to accept a LioN object
to edit 237 ■ Filling in the text boxes with the LioN name
and description 238 ■ Showing whether the LioN is liked
or disliked 238 ■ Passing the LioN object to the Add/Edit
controller 241 ■ Saving the LioN when the user taps Done,
but not creating a new LioN 243

23.2 Summary 247

24 Saving LioNs 248
24.1 Playing in the sandbox 248
24.2 Saving your data 250

Changing the class definition for the LioN object 250
Encoding the data for saving 253 ■ Decoding the data for
loading 253 ■ Adding the loadLions() function 255
Loading summary 256 ■ Adding save functionality 256

24.3 Testing the load and save functionality 258
24.4 Summary 259

25 Making your LioN prettier 260
25.1 Basic fixes 260

Creating two sections 261 ■ Adding the Like and Dislike
images 263 ■ Changing the table view background colors 266
Toggling the images based on selection 267 ■ Setting images on
the cells 268 ■ Making the MainView scene prettier 269
Updating the navigation bars 270

25.2 Adding an icon 271
25.3 Updating the launch scene 272
25.4 Summary 272

CONTENTS xiii
26 Working with Auto Layout 273
26.1 Changing the layout to work for all screen sizes 273

Make changes to the AddEditView scene 275 ■ Changing the color
of cells on the main scene 282

26.2 Summary 283

27 Search your LioNs 285
27.1 Adding the search functionality 285
27.2 Filtering LioNs based on user input 288

Creating the filter function 289 ■ Filtering the array using
a closure 289 ■ Changing the table view data source 291
Polishing the app 293

27.3 Searching other fields 294
27.4 Summary 295
27.5 Where do you go from here? 295

appendix A Installing Xcode and Apple developer registration 297
appendix B Running the app on your device 300

index 303

preface
I’m incredibly excited to have finally completed this book. I want to see more people
learning to program, but some are intimidated by the enormous world of program-
ming and have trouble finding a good place to start. I hope this book will help.

 I didn’t major in Computer Science in college, so I probably started my computer
career somewhere close to where you are now. I got my first iPhone when they came
out in 2007, and I was enamored. I wanted to create my own apps, so I found a local
class that taught iOS programming, and away I went. I’ve been programming on the
iPhone in some fashion ever since.

 One of the things you’ll notice after you begin programming is that your friends
will frequently mention that they have a great idea for an app. Then they’ll ask if you
can create it for them, and they’ll promise you a share of what they’re sure will be
huge profits. I’ve received so many of these requests that my general response
includes telling people they should learn to create the app themselves. They usually
follow up with a comment or two about not knowing where to start, not being smart
enough, their brain not working like that, or programming being too hard. I con-
stantly deny these things—writing an app isn’t rocket science, and I think everyone
can do it, given the time and the tools.

 I’ve also been involved in a lot of women’s initiatives: specifically, trying to encour-
age more girls and women to get into science, technology, engineering, and math
(STEM) areas. This STEM interest, combined with my friends asking if I could help
them create an app, led me to want to write a book for absolute beginner programmers.
xv

PREFACExvi
This book isn’t written just for girls and women, but that was definitely an inspiration
when I began.

 Why Manning? Well, I had purchased many Manning books in the past, and they
were high quality. And many years ago, I volunteered to review draft manuscripts; I’ve
reviewed several, so I was familiar (at a very high level) with the publishing process. As
soon as I decided to write the book, I knew it had to be with Manning. I submitted my
idea for the book, waited for a few weeks, and then received word that Manning
wanted me to write it! Let the panic ensue!

 This has been a long, fun journey—one that I wouldn’t trade for anything. It’s
been a labor of love, joy, panic, long nights, stress, and happiness. This is the first book
I’ve ever written, so I appreciate your reading it, and I hope you enjoy it.

 Remember: you are smart enough, and your brain will understand this topic. Be
patient—you can do it!

acknowledgments
There are many people to thank for helping make this crazy dream of mine a reality.
Thank you to my biggest supporter: my wife, Jocelyn Whitfield. You believed in me,
supported me, encouraged me, and picked me up when I was down. I absolutely
could not have completed this book without you. Thank you to my parents for also
encouraging me, helping me, and, of course, raising me! Thank you to all of my fam-
ily and friends, as well. You don’t know just how much your love and support helped
me, especially Clay, Kristine, Nancy, and Ja. I love you all!

 I also want to thanks the wonderful people at Manning who made this book pos-
sible: publisher Marjan Bace and everyone on the editorial and production teams,
including Christina Taylor, Janet Vail, Tiffany Taylor, Corbin Collins, Melody Dolab,
Dennis Dallinik, and many others who worked behind the scenes.

 I can’t thank enough the amazing group of technical peer reviewers led by
Ozren Harlovic—Stephen Byrne, Mark Cooper, Igor Delovski, Olivier Ducatteeuw,
Laurence Giglio, Pieter Gyselinck, Marius Horga, Jocelyn Jeriah, Kelvin Meeks, Drew
Monrad, Jason Pike, and Stuart Woodward—and the talented forum contributors.
Their contributions included catching technical mistakes, errors in terminology,
and typos, and making topic suggestions. Each pass through the review process and
each piece of feedback implemented through the forum topics shaped and molded
the manuscript. Special thanks to Robin Dewson, who served as the book’s technical
editor, and Scott Steinman, who served as the book’s technical proofreader.
xvii

about this book
I assume you bought this book because you want to learn how to make an iOS app but
you’ve never done any coding before (that, or you know me and want to support
me!). Either way, you’re going to learn a lot and have fun in the process. The book is
meant for people who have never written any code, or who have coded a little some-
thing but definitely not an iOS app. It also assumes that you have the patience to read
the book, try the examples, and then rework the examples if they didn’t work per-
fectly the first time. That’s a lot of what coding is: debugging. Even the best developers
miss things, so don’t get frustrated when your code doesn’t work exactly right the first
time. Patience, Grasshopper.

 Why iOS apps? If you tell your friends that you’re learning iOS (or Swift, or devel-
oping for Apple phones), they may say, “Wow, I heard that was pretty hard. Why don’t
you start with something easier?” Your answer can be, “Well, I have an idea for an app,
and I have the patience and willingness to learn. Ergo, I will.” People may encourage
you to learn something easier, like Hypertext Markup Language (HTML, used in web
pages and such). That’s all well and good, but you really wanted to learn to create
apps for Apple devices (using Swift), so you’re reading this book. I’m here to tell you,
you can start with iOS, and you can learn to write apps; and with time, patience, and
resolve, you can be an expert someday if you want to be.

 My goal in this book is to give you just enough of what you need to know to com-
plete the next step, without overwhelming you with a lot of things you don’t need to
know right now. In other words, I’m trying to teach this subject with just-in-time learning
techniques. This means although there may be pages and pages of stuff you could learn
xviii

ABOUT THIS BOOK xix
about a topic, you don’t need to learn all of that up front. I take all of those pages
and distill them down into smaller portions of what you really need to know in order
to get started.

 Many people are leery of learning to program. The programming world is huge—
there are many languages and many acronyms, and it seems as though some program-
mers haven’t seen the Sun in years. Rest assured, you can get started by learning just
the basics, and I’ll walk you through the acronyms and the programmer jargon. Think
of programming as just another hobby at this point. You can spend as much or as little
time on it as you want, but the more time you devote, the better you’ll be at it. Imag-
ine me accompanying you on the path—we’ll get there together.

 Every developer begins slowly, learning the fundamentals. Even the most seasoned
programmer had to start somewhere! There isn’t a “club” that only allows certain peo-
ple to be developers. Everyone can do it, including you. Take the time to learn the
basics, understand the concepts, and work through the exercises, and soon you’ll be
an iOS developer, too.

Who is this book is written for?
This book is for absolute programming beginners who’ve never written a line of code
and don’t know the underlying concepts for doing so. I make these assumptions:

■ You have no development experience.
■ You want to learn to make iOS applications.
■ You have a Mac on which you can code, or you are willing to purchase a Mac.
■ You have patience.

I hope this book proves to be the perfect place for you to begin, because I know you
can do it!

Who is this book not written for?
If you’re a developer and are already familiar with concepts such as for loops, while
loops, and if statements, and you just want to learn more about iOS, this probably
isn’t the book for you. You can find other books that teach the syntax of Swift and dif-
ferences between mobile development and other platform development, and you’ll
probably get bored with this book pretty quickly. But if you’re a programmer and are
only familiar with languages like HTML or COBOL, you can definitely learn some-
thing from this book.

Roadmap
The book is broken into three parts:

■ Part 1 (chapters 1–8)—This is the beginning of your programming career. You’ll
learn the basics of how programming works, you’ll be introduced to Xcode and
the Swift Playground, and you’ll write a few simple apps to get started.

ABOUT THIS BOOKxx
■ Part 2 (chapters 9-16)—These chapters will teach you about some additional skills
and concepts needed to create apps, including the while statement, the switch
statement, arrays and collections, storyboards, ViewControllers, and tables. Part 2
is more advanced than part 1, so make sure you understand part 1 first.

■ Part 3 (chapters 17-27)—In these chapters, you’ll create a LioN (Like it or Not)
app. The LioN app allows the user to add items to a list and rate whether they
like those items. When I’m at the store, I can never remember which toothpaste
I like; so, I open the LioN app and search for toothpaste, and the app shows me
which toothpaste I like. The app will serve as a complete example you can fol-
low as you go on to create your own apps.

Source code downloads
You can download all the projects from this book and refer to them anytime. They’re
available at the Manning website (www.manning.com/books/anyone-can-create-an-app)
and on GitHub (https://github.com/wlwise/AnyoneCanCreateAnApp).

Software/hardware requirements
Here’s what you need to get started:

■ A Mac computer—Chapter 1 gives you the basic requirements if you don’t have a
Mac already.

■ Xcode—This integrated development environment (IDE) is the primary tool
you’ll need to create apps. You probably already use a program like Microsoft
Word to create documents. Well, Xcode is the application you use to create pro-
grams. Appendix A has instructions for installing this free tool, which you’ll
begin using in chapter 2. I’ll also go into more detail about Xcode in chapter 4.

■ A membership in the Apple Developer Program—Appendix A explains how to join.
There are two options: a free membership (which I recommend) and a $99
membership.

Online resources
The resource that will provide you with the most help with this book is the book’s web-
site: www.manning.com/books/anyone-can-create-an-app. You can download the
examples, ask questions about the exercises in the Author Online forum, and chat
with other readers. I’ll try to be as responsive as possible and answer your forum ques-
tions, and of course you can tell me what you think of this book.

 Apple is another great place to explore, including the resources in the Apple
Developer Member Center (http://mng.bz/3OjD). You’ll need to be a member of the
Apple Developer Program; see appendix A for more info. You do not need to read
these documents to use this book—I’m just providing the location in case you want to
learn more about a topic. The Getting Started resources are a good place to start, and
the Guides section is another good type of resource is the Guides section.

http://www.manning.com/books/anyone-can-create-an-app
http://www.manning.com/books/anyone-can-create-an-app
http://mng.bz/3OjD
https://github.com/wlwise/AnyoneCanCreateAnApp

ABOUT THIS BOOK xxi
 Stack Overflow (www.stackoverflow.com) is another great place to get answers
about specific questions. You can search on your exact need, and it’s almost guaran-
teed that someone has asked the question before and someone else has answered it.
Be as specific as possible when searching, or you’ll get back an excess of information.

About the author
Wendy Wise has an extensive background in mobile and application development and
has worked with several Fortune 500 companies. In her 17-year technical career,
Wendy has served as a senior director of software development, a senior product man-
ager for international mobile applications, and a hands-on developer for web and
mobile technologies, among many other technical roles. Wendy fully embraces her
nerd/geek side, as you’ll find out as you read this book. In her spare time, she enjoys
beer, coffee, photography, camping, and being outdoors.

Author Online
Purchase of Anyone Can Create an App includes free access to a private web forum run
by Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the author and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/books/anyone-
can-create-an-app. This page provides information on how to get on the forum once
you’re registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to Author Online remains voluntary (and unpaid). We
suggest you try asking the author some challenging questions, lest her interest stray!
The Author Online forum and the archives of previous discussions will be accessible
from the publisher’s website as long as the book is in print.

http://www.stackoverflow.com
http://www.manning.com/books/anyone-can-create-an-app
http://www.manning.com/books/anyone-can-create-an-app

Part 1

Your very first app

Part 1 introduces you to the basic concepts of programming and aims to
quickly get your feet wet in the programming world. You’ll create your first app
in chapter 2 and then in chapter 3 learn more about what you did and why you
did it. Chapter 4 walks you through the tool (Xcode) that you use to create apps.
You’ll go deeper into the programming world in chapters 5–7 by adding buttons
and text boxes. Finally, in chapter 8, you’ll learn about an exciting tool called
the Swift Playground, which allows you to learn and test code quickly and easily.

Getting started
The world is continuously evolving, and the movement to mobile-first is part of that
evolution. What is mobile-first? It’s the idea that many people use their iPhones or
iPads as their main source of information—whether for email, news, social media,
the internet, shopping, texting, or phone calls. Because of this, companies are con-
sidering how to provide that information on a mobile device (like an iPhone and
iPad) first, rather than the old way, which was to make a web page first and then
add mobile device applications (apps) to support it.

 It’s an exciting time for technology growth and evolution, and you’re going to
be a part of that. This book will teach you what you need to know to get started cre-
ating apps for iPhones and iPads. It assumes you have no previous development
experience and that this is your first foray into the wonderful world of app cre-
ation. If you’ve developed apps before, some if this information may be familiar
because we’re starting from the beginning, but everyone can use a refresher every
now and then, right?

This chapter covers
 An overview of creating iPhone and iPad apps

 Learning strategy—what to remember

 What you’ll need to create apps for iOS
3

4 CHAPTER 1 Getting started
1.1 The big picture: iPhone and iPad development
Creating apps for iPhones and iPads is exciting. I understand that even thinking of
creating apps for these powerful devices may seem daunting, but rest assured that
we’re going to do this together, and you’ll complete several applications by the time
you’re finished with this book. Making apps for iPhones and iPads is complex enough
that it has its own vocabulary, which I’ll teach you.

 Creating an app is known as developing software, and by the time you’re finished
with this book, you’ll have developed several apps and will have a beginner’s knowl-
edge of software terms and basics. Let’s start with the absolute basics to make sure
we’re on the same page (pun intended).

1.1.1 Some key terms

First of all, learning to develop for iPhones and iPads means you’ll create apps that
can be installed on and run only on iPhones and iPads. These applications can’t run
on any other devices, so make sure you understand what you’re getting into. You’ll
learn to develop applications to run on iOS, which is the operating system (OS) that
runs on iPhones and iPads. An operating system is the underlying software that runs on
machines—like Windows 95 (going old school!), Windows 8.1, or Mac OS X (now
macOS). These operating systems do all the hard work of interacting with the elec-
tronic components that make up a computer, so you have to interact with the OS
instead of trying to tell the computer what you mean when you press a key. The early
chapters of this book cover the key concepts of developing for both iPhones and
iPads, but the first examples will focus on iPhones. Developing for iPads is not that dif-
ferent, and I’ll show you the differences as we move into later chapters.

1.1.2 Am I developing or programming?

The term development is synonymous with programming because you’re learning to
develop or program apps that will make a computer do stuff. There are many, many
programming language options to choose from. A programming language is a formally
constructed language used to communicate with a machine. When Apple created the
iPhone, it created a language called Objective-C (the programming language used
before Swift) that, when used by a programmer and compiled or translated by a compil-
ing program called a compiler (more on that later), can be understood and acted upon
by the iPhone. Figure 1.1 shows this programming language at work.

 As the figure shows, using a programming language to create an app for an iPhone
or iPad involves the following steps:

1 You type words on the screen, which are commands or code.
2 The compiler takes those words, and, if there are no errors in the program,

translates them into a language that the machine can understand.

5The big picture: iPhone and iPad development
Learning to program is much like learning a foreign language. You need to under-
stand the words and their meaning, and then you must put them together in the right
order to form sentences.

1.1.3 Objectively Swift

As mentioned, there are many, many programming languages, and they all serve the
same purpose of communicating with a machine, which can then act on those pro-
grams. For programming iPhones and iPads, there are now two choices of program-
ming languages:

 Objective-C
 Swift

I’m not going to give you the history of the two languages, nor will I attempt to con-
vince you that one is better. Objective-C was used as the first language for program-
ming iPhones and iPads and has been around as long as iPhones have (and even
before that). Apple released Swift in 2014, and it’s a completely different language
from Objective-C. Swift takes a different approach to developing for iPhone and iPad.
It simplifies a lot of the complexity that other languages have, making it much easier
to learn. I’m not going to focus on the differences or even discuss why Apple created a
new language. The bottom line is that you will be learning Swift, and in this book
you’ll code in Swift.

 The good news is that you are starting to learn Swift now, like everyone else. It’s a
new language, so there aren’t people out there with five years of experience in Swift.
Think of it: you could be that expert in five years if you want. The coding syntax (how
you form your commands, or sentences, in the foreign language that we’re learning—
more on that soon) is easier to learn in Swift than in Objective-C. If you do want to
learn more about Objective-C, you can find that information on the Apple Developer
site (developer.apple.com).

5 is

greater

than 3

if (x > y){

println("x is greater

than y");

}

Programming language
(Swift), also called “code”

Compiler

'translates'

I understand!

Figure 1.1 The app-creation process (the birds and bees of apps)

http://developer.apple.com

6 CHAPTER 1 Getting started
1.1.4 Apps you’ll create

This is the exciting part: you’re going to create your own apps as you read and work
through this book with me. We’ll start out with some smaller apps to help you learn
the basics, but you’ll eventually build the LioN app, which you can download now for
free from the App Store. Here’s a quick sample of what you’ll develop in this book:

 Hello World—Every developer’s rite of passage in the programming world. The
app will launch and display the message “Hello World.” It isn’t a complex app,
but it ensures that you have everything set up correctly and that you know how
to create an app.

 Hello Button—This app will allow you to press a button and change the text of a
label within the app.

 Textbox—This app will let you type something into a text box, and then the app
will print out the text on the screen.

 How Many Fingers—This app will let you play the game where one person (in
this case, the app) holds up a certain number of fingers behind their back, and
you have to guess how many fingers they’re holding up.

 State Abbreviation Lookups—This app will let you type in the name of a state, and
the app will then display the state’s abbreviation.

 LioN—A useful app for helping you remember whether you “Like it or Not.” I
created the app because I tend to forget what brands I like and don’t like—take
toothpaste, for example. I go to the grocery store and buy one brand because I
remember it, but it turns out that I remember it because I don’t like it. Now I can
open up my LioN app and search for toothpaste, and it tells me that I don’t like
that brand, but I like this other brand. Quite helpful! The app has a search fea-
ture so you can search your LioN items based on the name or description.
You’ll build the LioN app exactly as it is in the App Store, with the exception of
the ads available at the bottom of the screens and the notes.

Before we jump into the Swift language and its syntax, I’ll go over some learning strat-
egies that will make programming much easier for you.

1.2 Learning what you need to remember
The world of programming is enormous, which you’re probably beginning to under-
stand. There is a plethora (I like that word, don’t you?) of resources available on the
internet, and it’s hard to know where to start or what to look for. This book will help
distill a lot of that information down into digestible chunks.

 The key to learning these concepts is to do the programming exercises in their
entirety. You can read through them first if you’d like, but then you need to do the exer-
cises: all of them. There’s no better way of learning and understanding than by doing.

 When you do the exercises, you will make mistakes. Even the best programmers
in the world make mistakes. The key is to have patience and work through those

7Learning what you need to remember
mistakes in order to learn. Make sure you follow the exercises exactly, or they may not
work the way you expect them to. You won’t understand what you type out the first
time you do it, but I’ll explain as we go, so it will all become clear.

1.2.1 Understanding and remembering key concepts

Now, what do you need to remember in this big Wild West of programming? The most
important thing is to remember the concepts I’m teaching you. It’s more important
when starting out to remember the underlying concepts than it is to remember the
exact syntax (the arrangement of the words and symbols used in programming) of
the lines at this point.

 Why? You can always write down the syntax or easily look it up online—but if you
don’t understand the underlying concepts, then you’re merely typing words. Learning
only the syntax would be similar to me asking you to copy a sentence in German
(assuming you don’t know German). You can copy it down and memorize it, but it will
have no meaning to you unless you know German. I’ll make it clear as we walk this
journey together that some topics are concept topics, and some are syntax topics. The
more you understand the concepts, the better and easier your programming experi-
ence will be. Key concepts will be called out in a separate box on the page, whereas
syntax topics will look like this: Syntax: example.

1.2.2 Syntax

If you look up the definition for syntax, you’ll see something along the lines of “the
arrangement of words to create well-formed sentences in a language.” You’re going to
learn the syntax of the Swift language—how to write out “sentences” that form code
for an iPhone or iPad. As I’ve said, this is similar to learning a foreign language. In
some languages (including English), it’s customary to speak or write like this:

 The subject of the sentence first
 Then the verb
 Then the objects

For instance, I read a book yesterday is well understood in the English language. If you
were to speak or write the same sentence in German (for instance), you would form
the sentence as Ich habe gestern ein Buch gelesen. (I have yesterday a book read.) These are
differences in the syntax of the languages.

You can always check your work
You can always download the exercises and source code from the book’s page at the
Manning website (www.manning.com/books/anyone-can-create-an-app) or from GitHub
(https://github.com/wlwise/AnyoneCanCreateAnApp) to see how I wrote them and
compare them to your work.

https://www.manning.com/books/anyone-can-create-an-app
https://github.com/wlwise/AnyoneCanCreateAnApp

8 CHAPTER 1 Getting started
 Each language has syntax rules that make it easy for the writer or speaker to form
the sentences, and for the reader or listener to understand the language. Program-
ming languages also have syntax rules that help the computer make sense of what
you’re trying to do. Being able to write well-formed, syntactically correct code is
important when creating apps—but not nearly as important as understanding the
underlying concepts. You will begin to remember the syntax the more you code, and
remembering your “sentences” will become easier and easier. The underlying con-
cepts I teach in this book are important because they will be the foundation of your
programming understanding.

 So how do you learn the underlying concepts of programming? I’m so glad
you asked.

1.2.3 The importance of pseudocode

Programmers have to understand the underlying concepts or plan of what they want
to accomplish with any code they create. One way to understand and learn the under-
lying concepts of a program is to first write your code for whatever you want the pro-
gram to accomplish in pseudocode.

 Pseudocode—which for the purposes of this book means “fake code”—is a way to
simplify and break down concepts and ideas into a logical progression of steps so they
can be more easily understood. The steps you write in pseudocode are for you to under-
stand and plan—not for the computer. Think about painting a wall in your house for
the first time. You obviously want your work to produce a beautifully painted wall, but
where do you start in order to get there? If you start with the end result in mind (the
wall is painted) and you try to figure out how to get to the result, you’ll need to think
about a clear progression of steps in order to get there. Take a moment to think about
the steps you would need to make the wall be painted and write them down.

 Here are the steps I wrote down:

1 Go to my local hardware store and browse paint sample chips.
2 Select one or more paint samples chips and purchase sample paint.
3 Paint several areas on the wall with the sample paint.
4 Check the painted areas several times during the day to see what it looks like in

different light.
5 Pick one of the colors and decide to go with that one.
6 Go back to my local hardware store and purchase more of the selected paint.
7 Get out rollers, drop cloths, paintbrushes, and overalls (I’m pretty messy with

paint).
8 Tape the edges of everything.
9 Paint.

You may have fewer steps or more steps than what I’ve written down, but that doesn’t
mean that either of our lists is “more correct” or “less correct.” You should be clear on
the steps needed for painting when you look at your list. Does it make sense to you? Is

9What you need to create apps for iPhones and iPads
it complete enough that you can walk through it logically and understand it? Then it’s
good. You wrote pseudocode for painting. There is no right or wrong pseudocode,
unless your end result doesn’t produce a beautifully painted wall. You go through the
steps as many times as needed to get the result you want.

 The steps say, “Get out rollers, drop cloths” and so on. They don’t say “Get out roll-
ers, drop cloths, make sure they are clean, set them in the room to paint, take the
wrapper off the roller if it is new,” and so forth. I’ve painted so many rooms that I
think of this step as part of the “Get out the rollers” step. It makes sense to me. You
need to make sure your steps make sense to you. We’ll walk through many pseudo-
code examples for the exercises and code in this book, so you’ll have plenty of time to
practice and learn. Remember: the key is to list out what it will take to accomplish the
steps so it makes sense to you. There is no right or wrong way to do it, as long as the end
result is achieved in a logical, ordered way.

 Now that you know some of the ways in which you’re going to learn, let’s talk about
what it will take for you to start programming.

1.3 What you need to create apps for iPhones and iPads
So, what do you need to get started?

 First of all, you’re going to need a Mac computer.
 Xcode, which is an integrated development environment (IDE), is the primary tool

you’ll need to create your apps. You probably already use a program like Micro-
soft Word to create documents. Well, Xcode is the program you use to create
programs. Appendix A has instructions for installing this free tool. You’ll begin
using it in chapter 2.

 Join the Apple Developer Program. Appendix A explains how to join the pro-
gram. There are two options to join: the free program (which I recommend) or
the $99 program. Check out appendix A for more info.

I’ll give you an overview of the Mac and Xcode here, and also talk about some helpful
resources, before I send you to appendix A to install Xcode and read more about the
Apple Developer Program.

1.3.1 You’re going to need a Mac

Apple requires that all development for Macs, iPhones, and iPads be done on a Mac.
Some ambitious developers have figured out ways around this, but it requires a lot of
technical know-how. Trust me on this one—get a Mac if you don’t already have one. You
don’t absolutely need a super-duper, brand-new, high-powered Mac, but it will be easier
to write and test code if you have a faster Mac. You need one that has the following:

 Plenty of free disk space on the hard drive.
 At least 8 GB of RAM, but more is better.
 OS X 10.12.x, or Sierra or later (at the time of this writing, macOS Sierra is the lat-

est). It’s important that you use a recent version of the Mac OS—it’s most compat-
ible with the latest versions of Xcode and will support the latest iPhone features.

10 CHAPTER 1 Getting started
You can usually pick up some pretty good Macs on sites like Craigslist or eBay, but
make sure you know what you’re getting before you buy. I recommend getting the
serial number of the Mac you’re going to buy (if it isn’t new) from the seller and
checking the Apple website to make sure it’s legitimate and to see if it’s still under war-
ranty (CheckCoverage.Apple.com). You can use an iMac, MacBook (Pro or Air), or
Mac Mini for your development. The Apple Store online lets you easily select and con-
figure a Mac, as shown in figure 1.2.

Apple provides a handy comparison tool so you can easily see the differences between
the different lineups at www.apple.com/mac/compare. You can also save some money
by buying a refurbished Mac from Apple at www.apple.com/shop/browse/home/
specialdeals/mac. Refurbished Macs come with the same one-year warranty as new
Macs. If you’re in school full time, you can also save money by purchasing from the
Apple Education store. Go to the main apple store page (http://store.apple.com),
scroll all the way to the bottom of the page, and locate the link For Education.

 Make sure you’re running the latest operating system (macOS) on the Mac. If you
have an older Mac that doesn’t have the latest operating system, you can upgrade it by
going to the App Store. Depending on how old your operating system is, there may be
a fee to upgrade it, but many updates are free.

If you don’t know what version of OS X you have installed now, it’s easy to find out.
Click the Apple () in the top-left corner of your screen, and select About This Mac.
You can see in figure 1.3 that my MacBook is running macOS Sierra version 10.12.

Figure 1.2 Apple Store machine options—the online tool lets you compare different Mac setups.

Sierra OS X 10.12 or newer required for book’s exercises
For consistency with the exercises in this book, you’ll want to have at least Sierra (OS
X 10.12 or newer) installed. These exercises were all written using macOS Sierra.

http://store.apple.com
http://CheckCoverage.Apple.com
http://www.apple.com/mac/compare
http://www.apple.com/shop/browse/home/specialdeals/mac
http://www.apple.com/shop/browse/home/specialdeals/mac

11What you need to create apps for iPhones and iPads
1.3.2 Xcode: the iPhone and iPad development environment

Now that you have your Mac, you need to install Xcode. This IDE is the primary tool
you’ll use to create your apps. Think of an IDE as a translator between English and
the iPhone or iPad. The IDE acts somewhat like Google Translate (http://translate
.google.com):

1 You type words into the box for the language you know.
2 You select a language you don’t know and click Translate.
3 It gives you the translation.

If you misspell the English words, Google Translate doesn’t know what to do with that
and shows you an error. If you put in a poorly formed sentence, the translator may
give you an error or a response that you weren’t expecting.

 The IDE acts on the same principles. When you type in well-formed “sentences,”
the IDE translates it into machine language that the iPhone or iPad can understand.
When you misspell words or don’t form “sentences” correctly, you’ll get errors, or the
device will behave in ways you didn’t expect. Many programming languages have their
own IDEs. Apple uses Xcode for all development, including for iPhones and iPads.

 Appendix A has installation instructions for Xcode and details on registering for
an Apple Developer account. Once you finish this chapter, you should go to appendix
A and complete the steps before starting chapter 2.

 Next, we look at some helpful resources to make learning to program for iPhones
and iPads easier.

Figure 1.3 Find the version of your operation system by clicking the Apple icon and then About
This Mac.

http://translate.google.com
http://translate.google.com

12 CHAPTER 1 Getting started
1.3.3 Helpful resources

This book will provide you with all the steps necessary to create several apps, and it will
teach the underlying concepts of doing so. In some cases, you may want to learn more
about a specific topic or you may want to go deeper into a subject. Here are some
great resources to help you do that:

 This book’s website—Here you can download the examples, ask questions about
the exercises in the Author Online Forum, and chat with other readers. The
website is at www.manning.com/books/anyone-can-create-an-app. I’ll try to be
as responsive as possible and answer your Forum questions, and you can tell me
what you think of this book.

 Apple—A good place to start exploring, but it may seem overwhelming at first.
There are some “getting started” resources you can review in the Apple Devel-
oper Member Center (https://developer.apple.com). You’ll need to become a
member of the Developer Program first (see appendix A for more info). You do
not need to read these documents to use this book. I am providing the location
for you if you want to learn more about a topic. The first place to start in Apple
Developer Member Center is the Develop link at the top of the screen; then
select Guides.

 Stack Overflow—This site (www.stackoverflow.com) is another great place to get
answers about specific questions. You can search on your exact need, and
you’re almost guaranteed that the question has been asked before and some-
one else has answered it. Be as specific as possible when searching this or you’ll
get a lot of information back.

Remember that learning to write apps for iPhones and iPads can be a daunting task if
you try to take it on all at once. This book gives you the information when you need it
and suggests further resources if you want to learn more about a topic. Think of the
old adage: How do you eat an elephant? One bite at a time. You can’t try to eat the whole
elephant in one bite. You need to take it step by step and plan your attack. That’s why
I want you to learn the important topics “just in time.” (So we’re clear, I don’t con-
done or recommend eating elephants.) It’s time to turn to appendix A to install the
tools you’ll need to begin developing in Chapter 2.

Concepts to remember
 Hopefully you got excited about creating apps for iPhones and iPads, and you

realized that you can learn this with the help of this book.
 You learned about pseudocode, which means “fake code.” You will create your

own pseudocode as a type of road map to help you develop your apps.
 You learned about syntax, which is the way coding “sentences” are formed.

The computer requires you to use the correct syntax so it can understand
what you are telling it to do.

https://www.manning.com/books/anyone-can-create-an-app
https://developer.apple.com
http://www.stackoverflow.com

13Summary
1.4 Summary
Congratulations—you just finished the first chapter in a technical book! Remember to
take this learning journey step by step. This book will give you what you need to know,
when you need to know it. By the end of the book, you’ll be comfortable with coding
terms. You’ll know some coding lingo, and you’ll have created multiple apps for
iPhones and iPads. Let’s get to it and create your first app in the next chapter (but
first, go to appendix A).

(continued)

 You learned about Xcode, the IDE you will you use to create your code. The
IDE will compile (translate) your code into a language that iPhones and iPads
can understand.

 You know what type of machine it will take to be an iPhone or iPad developer
(a Mac).

 You learned what you need to remember, what you can reference later, and
what you can look up online.

 You learned where to go for additional help.

Building your first app
You’ve done all the setup (if you haven’t done it yet, please go to appendix A to set
up the tools you’ll need to complete this chapter). Now you’re probably eager to
start creating your first app. We’re going to start off as almost every programmer
ever has: with a Hello World application—a rite of passage for coding. A Hello
World application is the first app almost every programmer writes when learning a
new programming language, because it’s a simple app that accomplishes two goals:

 It gets the programmer using the new tools.
 It proves that the programming tools are set up correctly.

Those are the goals of the application, but what does it actually do? Hello World
will launch and display the words “Hello World!” That’s it. It may not seem like
much, but it’s important to take small steps while learning to program.

 I’m going to write my own version of pseudocode here so you know what you
want to accomplish. As I explained in chapter 1, pseudocode is your road map—logical

This chapter covers
 Launching Xcode for the first time

 Creating your first application

 Running your first application
14

15Launching Xcode for the first time
steps required to make the app do what you want it to do. This pseudocode will be a
bit more detailed than future chapters, because it’s your first app. In my version of the
pseudocode, the steps needed to build the Hello World app are as follows:

1 Launch Xcode.
2 Create a new project.
3 Set up your project options.
4 Run the blank app.
5 Add the Hello World text.
6 Run the app.
7 Pat yourself on the back.

It’s going to take seven small steps to create your first app. Get ready—we’re starting!

2.1 Launching Xcode for the first time
I’m going to quickly walk through Xcode, the integrated development environment
(IDE) introduced in chapter 1. I’ll show you only what you need to know to create
your first app in this chapter. Chapter 4 goes into detail about Xcode if you must
jump ahead.

2.1.1 Step 1: Launch Xcode

Step 1 in the pseudocode was to launch Xcode, so find the Xcode icon in Launchpad
on your Mac. If you’re not familiar with Launchpad, it is the easiest way to find appli-
cations installed on your Mac. It looks like a rocket launching (fancy that…Launch-
pad, a rocket…launching), as shown in figure 2.1. Once Launchpad is on your screen,
look for the Xcode icon and click it.

Helpful shortcut alert
You can also find Xcode by holding down the Command key (⌘) and the spacebar
key to launch Spotlight Search. Type xcode into the Search bar. Spotlight will help you
find anything on your Mac.

Figure 2.1 Use Launchpad (left)
to launch Xcode (right).

16 CHAPTER 2 Building your first app
2.1.2 Step 2: Create a new project

The next step in the pseudocode is to create a new project. Once you’ve launched
Xcode, you should see an initial window that says Welcome to Xcode, as shown in fig-
ure 2.2.

When this appears, click to select the second option, Create a New Xcode Project. The
Choose a Template dialog box appears, as shown in figure 2.3.

 We’ll walk through each option a little later. For now, click Application in the left
window pane, if it isn’t already selected. On the right, you now have multiple options.
Click Single View Application, and then click Next. The Choose Options dialog box
will open.

2.1.3 Step 3: Set up your project options

The Choose Options dialog box is used to set up the basic information for your new
app, as shown in figure 2.4. You’ll see these options for each new app you create, so
let’s go over them so you know what they do.

 Product Name is where you enter the name of your new application. In this case,
we’re calling it HelloWorld. This product name will be used by Xcode to fill in several
areas of the application (I show you those areas in later chapters).

 The next box is Organization Name. This field assumes that you are developing for
a company or organization. I do have my own company, so I entered WiseAbility in this

Figure 2.2 Click Create a New Xcode Project to start your first project.

17Launching Xcode for the first time
Figure 2.3 Click Single View Application in the iOS Application section.

Figure 2.4 Configuring your project options—add HelloWorld to the Product Name, add an
Organization Name, and click Next.

18 CHAPTER 2 Building your first app
field. You don’t actually need to be affiliated with a company to develop for iPhones
and iPads, so if you don’t have a company or aren’t affiliated with one, put something
here as a placeholder. You can enter a fictional dream company name if you want, or
your own name, or leave it blank.

 The Organizational Identifier field is used to create unique names for your projects
in the event that you want to publish your app to the App Store. It’s common practice
to use your website domain in reverse for this field. My website is www.wiseability.com,
so I use com.wiseability for the organizational identifier. You must fill in this field, and if
you don’t have a website right now, you can use com.yourlastname (filling in your last
name). You can’t have any spaces in this field, so if your last name has spaces, use
dashes (-) to replace the spaces.

 Once you fill in the Organization Identifier, the Bundle Identifier should show
[your-organization-identifier].HelloWorld, as mine does: com.wiseability.HelloWorld. It isn’t
important to know the details of these settings right now—we still have a lot of the ele-
phant left to eat that I mentioned in chapter 1.

NOTE If you name your project Hello World, the Bundle Identifier will show
Hello-World—what gives? Well, Xcode doesn’t allow spaces in the Bundle
Identifier field, so if you enter spaces in the product name, it replaces them
with dashes (-).

Finally, make sure the Language selection is Swift, and Devices is set to iPhone. Leave
the Use Core Data selection blank, and make sure the Include Unit Tests and Include
UI Tests options are unchecked. Click Next.

 You can now choose where to save your project files on your hard drive. I recom-
mend creating a folder called dev and putting all your work there, so it’s easy to keep
track of.

 Click Create. Xcode will now create a new project for you and open it. This is
pretty easy so far, right?

2.1.4 Step 4: Run the blank app

I know it doesn’t feel like you’ve actually built an application yet, but Xcode has taken
care of the infrastructure and framework for you. How cool is that?

 Your next step is to run the blank app. At top left of the current screen is the Run
button. It looks like a familiar, triangular play button, as shown in figure 2.5.

Figure 2.5 Xcode’s Run button looks like
the play button on most electronics.

http://www.wiseability.com

19Launching Xcode for the first time
This is the universal coding sign for Run. Click it once. The iOS Simulator should pop
up with a blank screen, as shown in figure 2.6.

The iOS Simulator is an application that Apple built to help developers (like you) test
their applications before installing them on an actual iPhone or iPad. Chapter 3 talks
a lot more about the iOS Simulator. For now, you’re going to launch it so you can see
it in action. If you see the blank screen, you’re golden.

2.1.5 Step 5: Add the Hello World text

Step 5 of the pseudocode was to add the Hello World text, so let’s get to it. Back in
Xcode, on the left side of the screen, you should see several filenames, including
Main.storyboard.

 Click the Main.storyboard file. You should see a screen like figure 2.7.

Figure 2.6 If you see a
blank simulated iPhone
screen, you've set up your
project correctly.

Figure 2.7 Select the Main.storyboard file on the left side of Xcode.

20 CHAPTER 2 Building your first app
At bottom right on your Xcode screen, if it isn’t already selected, select the third but-
ton—the one that looks like a circle with a tiny square in it—as shown in figure 2.8.
This is the Object Library, which is like a toolbox with all the things that you’ll need to
build your app. The toolbox is full of items like nuts, bolts, screws, wires, and more.
Chapter 4 talks a lot more about the Object Library, but for now, you’re going to
select a label as the item you need for this app.

At the bottom of the Object Library window, click in the search area, and type label.
The list should be filtered down to the word Label and an icon.

 Click and drag the Label icon (the bigger word Label on the left) to the other
screen, called the storyboard screen, as shown in figure 2.9. Position it near the top-left
corner in the storyboard screen, and then drop it by releasing the mouse button.

Figure 2.8 Showing the Object Library

Figure 2.9 Dragging a label onto the storyboard

21Launching Xcode for the first time
Once your label is on your storyboard, double-click it so you can edit the text. Type
Hello World! and then click somewhere else on the storyboard to stop editing the label.

2.1.6 Step 6: Run the app

We’re finally at step 6 of the pseudocode list: Run the app. You already ran the app
once earlier in step 4, but now you’ll run it again to see the actual Hello World text.

 Click the Run button again. If everything is set up correctly, you should see the iOS
Simulator window pop up with the words “Hello World!” displayed, as shown in fig-
ure 2.10. The size of the storyboard and the size of the Simulator are different, but
you’ll fix that in Chapter 7.

Congratulations! You wrote your first iOS application. Exciting, right? You’re already a
success! Revel in it.

2.1.7 Step 7: Pat yourself on the back (and review)

Step 7 in the pseudocode steps was to pat yourself on the back. Go for it!
 This example was pretty easy, and it’s true that we glossed over a lot of stuff. The

next chapter will explain the details of what you did and why you did it. Remember,
it’s important for you to understand the underlying concepts of development, but the
details can drown you if you don’t wade in slowly. At this point, I want you to focus on

Troubleshooting
If you don’t see your label or your app doesn’t look like figure 2.10, go back to your
storyboard in Xcode, move your label closer to the top left of the storyboard screen,
and run the app again.

Figure 2.10 Your first app
running—congratulations!

Terminology alert
You are now a newbie, or noob, to iOS programming. That means you are a new, inex-
perienced developer. Don’t let anyone tell you it’s a negative term—you’re learning.
Wear your newbie badge with pride.

22 CHAPTER 2 Building your first app
remembering some of the basics: how to create an app, where the Object Library is,
and how to build and run (with the play button) your code.

I hope you feel like you accomplished something, because you did. You wrote your
first iOS application. It may not have done much, but still—you did it. You may also
feel like there’s a lot you don’t know, and that Xcode looks scary with all those buttons,
tabs, and icons. Don’t worry. I’m going to cover the details of it so it won’t look so
daunting. We’ll do it in small chunks, though, and we’ll do it on a just-in-time basis so
you don’t feel like you’re drowning.

2.2 Summary
I told you in chapter 1 that I’d distinguish key programming concepts in each chapter.
This chapter was mostly a how-to—remember, I also told you that you’d learn what
you need when you need it. This chapter taught you the actions to take, and the next
chapter will tell you why you took them. I hope you’re excited about your progress
and curious about what you’ve done so far.

Concepts to remember
 How to launch Xcode
 How to start a new project—you’re going to do this a lot
 How to run an application—you’re going to do this a lot, too
 How to drag and drop objects to your storyboard

If you don’t remember how to do all of these things, walk through this chapter again.
You’ll do these things many, many times in the upcoming chapters, so you’ll have
lots of practice. It’s good to get the basics down early.

Your first app, explained
In chapter 2, you launched Xcode, created a new project, set your project options,
added a label to the app, and ran it in the Simulator for the first time. This chapter
will now explain the steps that you took so you’ll understand not only what you did,
but why you did it.

3.1 Xcode templates, explained
Starting from the top: when you launched Xcode and clicked File > New > Project,
a menu item opened a window of templates. What is a template, anyway? Apple has
created the basic structure or guts of several popular types of mobile applications
within the Xcode application. Think of it as though you’re preparing a difficult
task—like repairing a bicycle. You get out all the parts that you know you’re going
to need, and in some cases, you assemble some parts before you even touch the

This chapter covers
 Xcode templates

 Understanding single-view applications

 Using labels

 The iOS Simulator
23

24 CHAPTER 3 Your first app, explained
bicycle. In the same way, Apple has already made some of the project infrastructure
for you, knowing you’ll need certain things to complete the project.

 The templates are powerful and can help you complete your application in a
shorter amount of time, but it’s important to understand how they work before you
begin relying on them too much. You started your Hello World app in chapter 2 by
selecting the Single View Application template (shown in figure 3.1) during the cre-
ation of your new project. You may be wondering what that is. I’ll explain next.

3.2 Understanding the single-view application
The single-view application is just that: one view that Apple has built for you, which you
need to add something to. When you think about a view, think of a blank page in a book.
There are no words or pictures on the page yet—it’s empty. And it has no other parts to
it. You can’t flip the page to see what’s next, because there isn’t a next page.

 If you think back to the Simulator running Hello World (shown in figure 3.2),
you’ll notice that there are no buttons or controls to take you to another place or any-
thing. Apple gives you the binding that encloses the book (the application itself) and
a blank page for you to do something with (the single view). It’s your job to decide
what to do with the blank page.

Figure 3.1 Template options for new projects. The Single View Application template is like a blank
page in a book, waiting for you to make it into your masterpiece.

25A label, defined
In chapter 2, you added a label to the page when you created Hello World. But what is
a label? I’m so glad you asked.

3.3 A label, defined
A label is kind of like a label in the real
world—something static that the user
can’t interact with. If you label some-
thing in your house (for example, light
switches), you can’t do anything with the
label. You can look at it, and you can
interact with what it labels, but not with
the label itself. If you label your master
bedroom light switch, you can turn the
switch on and off, but the label itself
doesn’t change. Figure 3.3 takes the
empty space (in this case, your app) and
adds a label to it. Voilà!

 The Apple developer website has its
own definition of label in its documenta-
tion. I talk more about documentation in
later chapters, but if you’re interested
now, you can check out http://mng.bz/xd94, which defines a label as follows:

The UILabel class implements a read-only text view. You can use this class to draw one or
multiple lines of static text, such as those you might use to identify other parts of your user
interface. The base UILabel class provides support for both simple and complex styling of
the label text. You can also control over aspects of appearance, such as whether the label
uses a shadow or draws with a highlight. If needed, you can customize the appearance of
your text further by subclassing.

This is a lot to try to take in, so let’s break it down into simpler terms. Here are a few
key points to note about Apple’s definition:

 Apple calls the label a UILabel. The UI prefix stands for user interface, which means
you can use the label on the part of the application that the user will see. You
might see the UI prefix when you’re creating apps and adding things that the
user sees, such as a label. UI labels are classes.

Figure 3.2 The Hello
World app from chapter 2
is a single page with no
navigation or buttons.

Figure 3.3 Our good friend, the label

http://mng.bz/xd94

26 CHAPTER 3 Your first app, explained
 Classes are like the general idea of something in the real world. Consider a pen. When
you think of a pen, you have a pretty good idea of what it is, how it works, and
how to use it. It has some kind of ink, it may or may not have a lid or a cap, and it
may or may not have a spring-loaded button to enable writing—but it is still a
pen. A pen is like a class in programming. It’s the definition of a set of expected
behaviors (making marks on something) and basic structure (it should be cylin-
drical and have some way to hold the ink). Again, the pen “definition” here is like
a class. Hold that concept in mind as we move on to the definition of objects.

 Objects are instances of the class. Imagine you have a pen in front of you that you
can touch and hold. That’s an object. It is a type of pen (the overall class), but is
also an instance of a pen (the object). If you grab a second pen, it may or may
not look anything like your first pen, but it is still a pen. You now have two
instances of the class pen, or two objects of type pen. You can think of objects in
programming in the same way. Objects of the same type (such as pens in the
real world, or labels in the programming world) will behave the same way (mak-
ing marks on something, displaying text) and will look similar (pens can be a
variety of colors and shapes, but you still know they’re pens, and labels can be
a variety of sizes and colors and they’re still labels).

 A label is read-only. Read-only means that the user of the application can’t edit the
label by clicking on it and typing over it. Don’t be confused here. You as the pro-
grammer can change it, but the user cannot. Read-only is a common technical term.

 A label is used to draw static lines of text. Static here means that it doesn’t move. You
can’t interact with it, and it is fixed. This is also a common technical term.

 The definition talks about a base class and subclassing. These are more advanced
topics covered later in the book. Remember that you’re learning just in time.
You don’t need to know everything right now.

Key concept
It’s very important that you understand the concepts of objects and classes. Objects
and classes will be used throughout this book and throughout your programming career.
It’s important that you become clear about these concepts, but don’t worry if they’re
still a little confusing right now. You’ll get a lot of experience using them throughout this
book, and you’ll gain a clearer understanding of them with each chapter.

Terminology alert: class reference
The Apple definition given earlier is known as the class reference. You’ll hear the term
class reference (or reference docs) everywhere in the programming world. It refers to
the documentation that tells you all about the underlying class of something (some-
thing like our definition of pen). You can find the class references in Xcode and on
the web. I show how to access them in chapter 4.

27The Simulator, defined
That was a lot of theoretical detail in this section. Let’s move on to something you can
interact with: the Simulator. I mentioned it in chapter 2, and now we’re going to look
at it in more depth.

3.4 The Simulator, defined
Imagine you’re a pilot learning to fly a plane. You could read all about the instru-
ments and the physics behind flight and watch flying videos. But if you didn’t have a
flight simulator to practice on, eventually you’d have to go get in a real plane to see if
you learned everything you needed. You would need to practice taking off and land-
ing a plane. There would be little room for error, given that crashes are both danger-
ous and expensive. To bypass this costly and dangerous method of learning, someone
created a flight simulator to simulate different planes and different conditions.

 Apple did the same thing. It created the iPhone and iPad Simulator to test apps
before installing them on devices. The Simulator lets you see how the app will look
and behave when it runs on a device.

 What happened when you launched your app by clicking the Run button in chap-
ter 2? Well, Xcode compiled the code and launched the Simulator. I went over this
briefly in chapter 2, but let’s go into a bit more detail here.

 I said Xcode compiled the code. A compiler, illustrated in figure 3.4, is a translator.

The compiler takes your written code and translates it into a language the iPhone can
understand. (Computers only understand ones and zeros, called binary code, and com-
pilers compile your code all the way down to machine-readable ones and zeros.) You
don’t need to know much about how compilers or their underpinnings work right
now. Just know they are powerful and will help you a lot as you test your code.

 Back in chapter 2, once the program was compiled, Xcode launched the iPhone
Simulator for you, which simulated an iPhone and ran the app. The Simulator lets you
test your application quickly and easily without having to put it on an iPhone every
time you want to test it. Testing on the Simulator should always be your first step in
testing your app. Make sure your app does what you planned for it to do! You’ll get a

Hello

World!

textLabel.textr =

@"Hello World!"

Programming language
(Swift), also called “code”

Compiler

“translates”

I understand!

Figure 3.4 The Hello World app is compiled to run on the Simulator.

28 CHAPTER 3 Your first app, explained
lot of experience with the Simulator in no time, but I want to start by showing you a
few neat features.

3.4.1 Running Hello World in the Simulator

Run your Hello World app again by clicking the Run
button in Xcode (the triangular play button). The Simu-
lator should automatically open in front of the Xcode
window so it’s your active application—if it doesn’t, click
the Simulator icon on your toolbar (see figure 3.5).

 Within the Simulator application, click Hardware to
open the submenu items. You should see some options
that are pretty intuitive (shown in figure 3.6), but I’ll
walk you through them anyway:

 Device—This lets you change what kind of hard-
ware you’re simulating your application on.
You can choose to see what your app looks like
on newer and older iPads and iPhones. To add
more types of devices, click Manage Devices. I
talk more about adding different kinds of
devices later in the book.

 Rotate Left and Rotate Right—You can change
the orientation of the hardware so it’s in land-
scape (long horizontally) or portrait mode (tall
vertically). Click the Rotate Left and Rotate
Right buttons in the menu to see what I mean.

 Shake Gesture—You can also “shake” the iPhone
with the Simulator to imitate a user shaking the
phone. Apps can implement the shake gesture
to erase content or to undo the last entry, for
example.

There are a lot of features in the Simulator applica-
tion, and it’s powerful. You may find these key combi-
nations helpful as well:

 Press the Command button (⌘) and 1, 2, 3, 4,
or 5 to scale the size of the simulated screen up or down.

 Press the Command Button (⌘) and the left or right arrow to change the ori-
entation (portrait or landscape).

You can’t hurt anything by playing around with the features, so feel free to explore.
You’ll use the Simulator in every chapter where you’re building apps, so it’s important
that you’re comfortable with the tool.

Figure 3.5 The Simulator icon

Figure 3.6 The Simulator’s
Hardware menu options let you
simulate different actions and
hardware.

29Summary
 How are you feeling? You wrote your first iOS application in chapter 2, and you
learned all about it in this chapter. The app may not do much, but you made it—pat
yourself on the back!

3.5 Summary
You’ve learned a lot already, so let’s recap to make sure it sticks. The Hello World applica-
tion is your rite of passage into programming. Almost every programming language
you learn from here on will start with a Hello World application. The single-view appli-
cation is an Apple template that makes development a little easier, like a blank page in
a book. You used a label—a read-only piece of text that you can use in your applica-
tion. The user interface (UI) is the part of the application he user interacts with. A
class is the underlying definition of something (like the idea of a pen). An object is an
instance of a class (like a real pen you use). The Simulator is a powerful tool to test
your application and see what it will look like on a device. The compiler is an applica-
tion that translates your application into machine-readable code.

 You’re doing great—you’ve accomplished a lot already. In the next chapter, we’ll
walk through Xcode so you get more familiar with its tools and functions.

Concepts to remember
 The difference between classes and objects
 The process for running an app (the code is compiled and then run)
 Xcode templates that help get you started quickly

If you don’t remember these concepts, you may want to walk through this chapter
again. You’ll create apps and add classes many, many times in the upcoming chap-
ters, so you’ll get lots of practice, but it’s good to get the basics down.

Learning more about your
development tools: Xcode
Xcode can look pretty daunting when you first open it. As a beginning program-
mer, you don’t need to know about all the super powerful features, but you do
need to get familiar with the basics.

 You’ve already built a simple app using Xcode, and now we’ll go a little deeper
into Xcode and its features. You’ll get to know the different panels and buttons
and see how some of them work in this chapter. It isn’t terribly important that you
remember the name of each panel and button, but if you do, it will definitely
make working through this book easier. Apple updates Xcode frequently, so your
panels may look slightly different than mine. Don’t worry if they don’t look
exactly the same—some buttons may move around a bit, but the functions should
be the same.

This chapter covers
 Introducing Xcode

 Getting to know the panels and the Standard
Editor

 A guide to Xcode’s icons
30

31Xcode panels explained
4.1 Xcode panels explained
Xcode groups features and buttons into areas called panels so programmers can inter-
act with them more easily. (If you’ve ever used Microsoft Word, you’re already familiar
with panels. Microsoft Word uses panels to group features like font settings in a panel,
and paragraph settings in another panel.)

 This section walks you through the various Xcode panels. Remember to focus on
picking up programming concepts rather than remembering the names of panels.

 This chapter is important because you need to feel comfortable working with
Xcode. After all, you’ll use it for the rest of your iPhone and iPad programming
career. Let’s get started with the main parts of the Xcode IDE, shown in figure 4.1.

Xcode is divided into the three main vertical sections or panels shown in figure 4.1:

 Navigator (left)—You use this panel to find your project files (like Windows
Explorer on a Windows machine or the Finder window on a Mac). The Apple
documentation calls this the Project Navigator or just Navigator.

 Standard Editor (middle)—This is where you’ll actually write your code. You can
think of this space as similar to Microsoft Word—you use it to compose. The
Apple documentation calls this the Editor.

Navigator panel Standard Editor panel Utilities panel

Figure 4.1 Xcode divides the workspace into three panels: Navigator, Standard Editor, and Utility.

32 CHAPTER 4 Learning more about your development tools: Xcode
 Utilities (right)—This panel provides utilities and settings that you need for
your app. You can think of the Utilities panel as the ribbon along the top of
the Microsoft Word screen—the area that you use to change the font, add bul-
lets, and so forth.

Let’s talk a bit more about each panel now.

4.1.1 Standard Editor

The central section is called the Standard Editor, shown in figure 4.2. You’ll spend
the majority of your time here. This section changes depending on which file you
select in the Navigator. Try it now. Click the file AppDelegate.swift, and your Stan-
dard Editor should change to show that file. Xcode uses this file as the beginning of
every app, so it’s kind enough to create it for you (such auto-generation is very help-
ful to programmers).

Figure 4.2 The Standard Editor is the center panel in Xcode.

33Xcode panels explained
I know this AppDelegate file may look
complex—there’s a lot of code here. You
won’t need to know much about this yet,
but look at the top of the file. The first five
or six lines are pretty interesting:

 The first line tells you the name of
the file (AppDelegate.swift).

 The second line tells you the name
of the application (Hello World).
You can then see your name as the
creator and the date you created it.
Pretty cool!

 The next line shows that Xcode added
copyright information to your file.

You’re looking more and more like a pro-
grammer now. These lines may seem famil-
iar to you—you entered them in the
Choose Options dialog box in chapter 2
when you created the Hello World project.

 Apple wanted to make coding as easy as
possible, so there are a few neat features
that show up as you start typing code into
the Standard Editor, which I’ll demon-
strate when you start writing lines of code
in chapter 5. Here’s a sneak peek for those
eager to hear about them:

 Auto-complete—This feature tries to
figure out what you’re going to type
and auto-completes it for you.

 Error notifications—This feature pops
up automatically when you have a
syntax error. Back in chapter 1, you
found out that syntax is the structure
of the code, or how you form “sen-
tences” that the computer will under-
stand.

4.1.2 Utilities panel

The right side of the IDE shows the Utili-
ties panel (see figure 4.3). The Utilities
panel is the one you’ll use the most after

Figure 4.3 Utilities panel—you’ll “utilize”
this a lot.

34 CHAPTER 4 Learning more about your development tools: Xcode
the Standard Editor. As you saw in chapter 2, this is where you can find the items you
want to add to your application, such as labels and buttons. As we move through the
next several chapters, you’ll begin to see just how useful the Utilities panel is when you
develop your apps.

4.1.3 Main.storyboard

Click the Quick Help button at the top of the Utilities panel, the circle with the ques-
tion mark in the center (see figure 4.3). Note that the panel underneath changes
when you click the button.

 In the Navigator panel (the left panel), if it isn’t already selected, select Main.story-
board, and the center panel should show your storyboard with the label on it. Click
the label on your storyboard once, and the Utilities panel (the right panel) will display
the help section for that label. It should look like figure 4.4.

Quick Help has a lot of information available to you. The label description on the Util-
ities panel should look familiar to you from chapter 3, where we reviewed Apple’s
description of the label.

 Now that you’ve had a quick overview of them, let’s learn to use these panels.
Remember, I’m trying to show you just the bits that you need to understand now
rather than go in-depth on a lot of functions and buttons that you won’t need until
part 3 of this book.

Figure 4.4 Clicking the label on the storyboard displays the Quick Help in the Utilities panel.

35Xcode panels explained
4.1.4 Navigator panel

The Navigator panel on the left side of Xcode has three parts, shown in figure 4.5:

 The navigation bar is the bar at the top of the panel with the buttons on it.
 The content area is the middle part of the panel with the largest amount of space.
 The filter bar is the little bar at the bottom of the panel.

Make sure the first button in the navigation bar is selected—the one that looks like a
file folder. This is the default view: the library view, which shows all the files that are
currently part of your project. Xcode created all these files when you selected the Sin-
gle View Application template. I won’t walk through each of these files right now, but
I do talk more about each of them in chapter 15.

 Several folders and files should appear in the content area now. At the bottom of
the screen, in the filter bar, start typing the word AppDelegate: you’ll notice that the
files in the content area are filtered down to a few files that contain that word. This is
helpful when you’re working with a lot of files.

 We’re going to skip over a few of the buttons on the navigation bar because you
don’t need to know or understand them yet. Select the fourth button from the left,
the one that looks like a triangle with an exclamation point in it. This is the issue navi-
gator. Every developer has created “issues” in their code—these might be bugs,
defects, or other issues. This panel will show you whether there are problems in your
code, and it should even give you the name of the file with problem and the problem
description. Click the issue, and Xcode will open the file and highlight the problem.
I’ll go into more detail on this panel and the rest of its buttons, and how to detect,
understand, and fix issues, as we create more apps later in the book.

Navigation bar

Content area

Filter bar Figure 4.5 Parts of
the Navigator panel

36 CHAPTER 4 Learning more about your development tools: Xcode
 Now that you’ve seen some of the neat Xcode features, let’s move on to neat
Xcode buttons.

4.2 Xcode icons explained
You should still have your storyboard displayed. If not, click the file Main.Storyboard
in the Navigator panel. Now look at the top right of Xcode, over the Utilities panel.
See all those icons up there, which I’ve enlarged in figure 4.6? They’re handy because
they help show and hide different parts of the Xcode screens so you can see only what
you need to, depending on what you’re doing. Let’s start with the three buttons on
the far right (shown in figure 4.7):

Figure 4.6 Icons allow you to show and hide different panels.

Shows and hides the
Navigator panel

Shows and hides the
Utilities panel

Shows and hides the
Debugger panel

Figure 4.7 Each button serves a purpose in
showing and hiding different panels in Xcode.

37Feel free to explore
 Navigator panel—The button on the left shows and hides the Navigation panel.
 Debugger panel—The middle button shows and hides the Debugger panel. You’ll

use this panel a lot—it shows when you have errors in your code or if there are
warnings. We walk through it in detail in chapter 7.

 Utilities panel—The far-right button hides and shows the Utilities panel. Click it
on and off to see what I mean.

Now let’s look at the three icons on the far left, shown in figure 4.8:

 Standard Editor button—This button looks like a lot of lines in a box. Click it, and
you’ll see that the Editor shifts back to showing only one file. You can click
through all these settings to show and hide panels (I call this “changing the real
estate”). When you’re doing a lot of typing in the code, you want as much “real
estate” as you can get so you can see what you’re doing. Make sense?

 Assistant Editor button—This button looks like two overlapping circles. If you
click it, you’ll see that the Editor panel divides into two sections, with two files
open. You’ll use this Assistant Editor panel quite a bit as you build more apps,
but you don’t need to know a lot about it right now.

 Version Editor button—The button on the right that looks like two arrows point-
ing in opposite directions is the Version Editor button, which tracks the changes
you’ve made in the project. You don’t need to worry about it right now. Click it
to see what it does, though, so it doesn’t seem intimidating.

If you forget the names of a button, hover your mouse pointer over it, and Xcode will
show you a tooltip with the name of the button.

4.3 Feel free to explore
Xcode can look scary because it’s packed with functionality and features you aren’t
familiar with yet. Take time now to click buttons to see what they do, what they show,
and what they hide. There isn’t much you can do to mess things up, and you need to
be comfortable with your IDE and know how to get back to where you need to if you
accidentally click something you didn’t mean to.

Shows and hides the
Standard Editor

Shows and hides the
Version Editor

Shows and hides the
Assistant Editor

Figure 4.8 You’ll use the Standard Editor and
Assistant Editor for each app you create.

38 CHAPTER 4 Learning more about your development tools: Xcode
 Once you’re done clicking through everything, make sure you can get back to the
panels and the views that were there when you started. If you’re having trouble, begin
from the top (literally):

 In the Editor’s options at top right in Xcode, make sure the left and right pan-
els are viewable and the bottom panel isn’t. You can toggle these on and off by
clicking the appropriate buttons again.

 Make sure the Standard Editor is selected (the box with the lines in it). If your
Navigator panel and your Utilities panel don’t look right, make sure the folder
icon in the Navigator panel is selected.

 Once your project files are visible again, click the Main.storyboard file.
 On the Utilities panel, go ahead and select the File Inspector (the first icon that

looks like a page with the corner flipped down). This should return you to the
view that looks familiar to you.

You learned a lot in this chapter, so I hope you feel proud of yourself. Many people
are afraid to click icons and experiment with software tools because they think they’ll
break something or they don’t know what it does. I like to click something, see what it
does, and, if it does something I don’t understand, try to learn what that is. The other
option is to never click anything and never learn about it—but that way, you’ll you
miss out on features that could be helpful to you. Don’t worry; I’ll explain each button
that you need as you begin to code more apps.

4.4 Summary
In this chapter, you learned more about your IDE, you clicked a lot of icons and but-
tons in Xcode, and you discovered how to get back to where you started. You’ll get a
lot of experience working with Xcode as you go through the projects in this book.
This chapter is just an overview of the Xcode panel terminology and basic features; I’ll
reference these panels and features in later chapters. You can always refer to this chap-
ter if needed. You’re going to build another app in the next chapter, so get ready.

Concepts to remember
 Xcode is a powerful tool that you’ll use for developing your apps. You’ll con-

tinue to learn about Xcode features in future chapters, so you don’t need to
understand everything it can do quite yet.

 You do need to remember how to show and hide the different Xcode panels
so you have access to the tools you need when you need them. The three but-
tons at top right in Xcode show and hide the panels, and the next three buttons
change how the Editor panel looks.

Capturing users’ actions:
adding buttons
You’re going to create another app in this chapter. This one will have a button the
user can tap. Buttons are used throughout iPhone and iPad apps to allow the user to
do some kind of action, such as make a phone call. Each number on the phone
number screen is a button, for example, and the call and hang-up buttons are but-
tons too.

 In this chapter you’ll add a label and a button to the app and write some code.
The code you write will make the button change what the label displays. You’re also
going to change how the label looks by implementing cosmetic changes.

This chapter covers
 Creating an app with a button

 Buttons and how to use them

 Changing labels

Looking at the code
You can download all the projects from this book at www.manning.com/books/
anyone-can-create-an-app or https://github.com/wlwise/AnyoneCanCreateAnApp,
and you can refer to them anytime.
39

https://www.manning.com/books/anyone-can-create-an-app
https://www.manning.com/books/anyone-can-create-an-app
https://github.com/wlwise/AnyoneCanCreateAnApp

40 CHAPTER 5 Capturing users’ actions: adding buttons
5.1 Adding a label and a button
As usual, we’re going to start with pseudocode steps so that we follow a logical road
map for completing this project. Here are the steps:

1 Start a new project using the Single View Application template.
2 Add a button and label to the storyboard, and run the app to test it.
3 Connect the button and the label to the code (wire them up), and run the app

to test it.
4 Add code to change the text on the label when the button is clicked, and run

the app to test it.
5 Change how the label looks, and run the app to test it.

You’ll notice that steps 2, 3, 4, and 5 all end with running the app and testing it. I
always find it helpful to run the app often to make sure it works the way I expect it to.
As you begin adding more and more code to your apps, it’s easier to find problems
with the code if you test it more frequently. Let’s get started.

5.1.1 Step 1: Start a new project using the Single View Application
template

I want you to get used to starting new projects, so go ahead and create a new one:

1 Click File > New > Project.
2 Remember to select Single View Application, and name it ButtonApp.
3 Make sure the language selection is still Swift. Click OK.
4 Save the project to the dev folder on your computer that you created in chapter 2.

5.1.2 Step 2: Add a button and label to the storyboard, and run the
app to test it

As before, the project is loaded, and the files are listed down the left side of Xcode.
Click Main.storyboard so the storyboard shows up in your Standard Editor panel.

STEP 2A: ADDING THE BUTTON

In the bottom-right palette on the Utilities panel, make sure you have the Object
Library showing by clicking the circle with a square inside of it (as you did in chap-
ter 2). Then, at the bottom of the panel, search for button instead of label. You’ll notice
that you have three options to choose from for the buttons. In this case, you want to
add the top one—the one that says Button. Grab it, and drop it on your storyboard
(see figure 5.1). Double-click the new button that you dropped on your storyboard,
and change the text to My Button.

41Adding a label and a button
STEP 2B: ADDING THE LABEL TO THE STORYBOARD

Go back to the Object Library, and search for label to add a label to your storyboard.
Double-click that label, and change the text to Button Demo. (You also did this in chap-
ter 2.)

 Now run the app to make sure it looks okay (click the right arrow at top left in the
Xcode window). Your Simulator should look similar to figure 5.2.

Click the My Button button: it dims when you click it, to show that you’re interacting
with it. Great! It works, although it doesn’t do anything yet. Get ready. You’re going to
add some code now that will change the title of the button when it is clicked. I’ll walk
you through it. Stop your Simulator by clicking the square in Xcode (this looks like a
stop button on most electronics).

Figure 5.1 Drag a button from the
Object Library onto your storyboard.

Figure 5.2 The Simulator running
with the button and the label

42 CHAPTER 5 Capturing users’ actions: adding buttons
5.1.3 Step 3: Connect the button and the label to the code (wire them
up), and run the app to test it

In the next chapter, I’ll explain why you need to do this step, but for now you need to
follow along and make the connections. Okay, let’s change the real estate so you can
see both the storyboard (with your label and button) and the code.

STEP 3A: CONNECTING THE BUTTON TO THE CODE

You’re going to use the Assistant Editor for this, so click the Assistant Editor button (the
one that looks like two interlocking circles at top right). You should see the storyboard
on the left side and ViewController.swift on the right side, as shown in figure 5.3.

I know the ViewController may look daunting, but we’ll walk through it in chapter 13, I
promise. For now, think of it as Vanna White from Wheel of Fortune. The premise of the
show is that three contestants guess letters to a puzzle, and eventually enough letters
are guessed so that someone can guess what the puzzle spells. A contestant on the
show yells out a letter to the puzzle, and if the letter is in the puzzle, Vanna walks over
and turns the letter around so everyone can see it. If the letter is not in the puzzle, she
doesn’t move. The ViewController is like Vanna: the user presses a button (yells out a
letter), and if the button is wired up to your code (if the letter is in the puzzle), the
ViewController (Vanna) performs that code (turns the letter around). If the button
isn’t wired up (the letter is not in the puzzle), nothing happens (Vanna stays still). You
can see episodes of the game show here: www.youtube.com/watch?v=rZmWwPN3H2Y.

 Again, I’m going to show you how to “wire up the button” first and then I’ll explain
what you did afterward. I talk more about wiring up buttons in Chapter 6, but for now

Figure 5.3 The Assistant Editor shows the storyboard on the left and ViewController.swift on the right.

http://www.youtube.com/watch?v=rZmWwPN3H2Y

43Adding a label and a button
think about it as if you’re connecting Vanna to the puzzle board. Vanna needs to know
which puzzle to use:

1 Hold down the Control button on the keyboard, and click My Button on your
storyboard.

2 With the mouse button and Control still held down, drag the mouse pointer
onto the right side of the screen in the ViewController.

3 Hover the mouse under the words class ViewController: UIViewController {.
You should see a blue link that links over to the ViewController and a box that
says “Insert Outlet, Action, or Outlet Collection.”

4 When you see that, let go of both the mouse and the Control button (with your
mouse pointer right under the class ViewController: UIViewController {
line. You now see a pop-up that looks like figure 5.4.

5 Change the Connection type (at the top of the pop-up) from Outlet to Action, type
buttonClick in the Name field, change Type from Any to UIButton, and click Con-
nect (see figure 5.5). You should see on the right panel (the ViewController.swift
side) that Xcode added a new line for you. It should state the following:

@IBAction func buttonClick(sender: AnyObject) {

Figure 5.4 The pop-up box should appear when you release the mouse button and Control button. Change the
Connection option to Action.

44 CHAPTER 5 Capturing users’ actions: adding buttons
6 If the line says @IBOutlet instead, you need to delete the button and repeat the
steps again, but select Action instead of Outlet in the dialog window that pops
up. Your code should now look like figure 5.6.

Figure 5.5 Change the Connection, Name, and Type values.

Figure 5.6 Button demo code after you click Connect. The @IBAction line is new.
Make sure it looks like this.

45Adding a label and a button
STEP 3B: CONNECTING THE LABEL TO THE CODE

Now you’re going to connect the label in almost the same way that you connected
the button:

1 Control-click your label on the storyboard. With the Control key still held
down, drag your mouse pointer over to the ViewController.

2 Let go of the Control key when your mouse is positioned under the class
ViewController: UIViewController { line and above the @IBAction line that
you added.

3 This time, when the dialog pops up, leave the connection as Outlet (at the top
of the box, as shown in figure 5.7).

4 Change the name to myLabel and leave all the other options set as they are.
5 Click the Connect button.

Your code should look similar to figure 5.8.
 Now run the app again to make sure it still works. The app should do exactly what

it did before you wired up the label, because you haven’t added any code yet. You run
it here to make sure that it still works.

Figure 5.7 Connect the label to the code with the Outlet connection, and change the name to myLabel.

46 CHAPTER 5 Capturing users’ actions: adding buttons
5.1.4 Step 4: Add code to change the text on the Label when the
button is clicked, and run the app to test it

Next you’ll go back to the code and add the following line right under the @IBAction
func buttonClick(sender: UIButton) { line:

myLabel.text = "I did it!"

Make sure you add this line after the button-click line, but before the next } line. Your
code should look like figure 5.9.

 That code may look daunting, but I’ll explain more about what you’re doing and
why in chapter 6. Now run the code again, and click the button. If everything
worked, your button should now change the label to “I did it!” when you click it, as
shown in figure 5.10. Great job!

 If it didn’t work, look back at your ViewController file and see if there are any
red exclamation points with a big red highlight. If so, you have an error in your
code. Check to make sure your code looks like my code in figure 5.9, and try again.
If you accidentally created the button as an outlet or the label as an action, it won’t
work. Unfortunately, you can’t delete the code in the ViewController because the
storyboard still thinks there’s a link to the code. To fix this (only if you accidentally
created them backwards), you’ll need to delete the linkage (the wires) between the

b

c

Figure 5.8 There should be two additions: B @IBAction and c @IBOutlet.

47Adding a label and a button
storyboard and the ViewController. Figure 5.11 assumes you accidentally created
your button as an outlet instead of an action, but you can fix any incorrect “wiring”
this way.

 This is exciting—you made an app with a button that changed the text of a label!
Now you’ll change how the label looks, and then I’ll explain what you did in chapter 6.

You added the
myLabel text
in step 4.

You added the
myLabel Outlet
in step 3b.

You added the
buttonClick
action in
step 3a.

Figure 5.9 The final code for the My Button app, with @IBOutlet, @IBAction, and the line of code
to change the text of the label

Figure 5.10 The working buttonDemo
app after you clicked My Button should
change the label text to “I did it!”

48 CHAPTER 5 Capturing users’ actions: adding buttons
5.2 Changing how the label appears
In this section, you’re going to change some attributes of the label. We use the term
attribute to describe information about something (such as a label). A label has proper-
ties, or descriptors of that label. Think back to the pen we talked about in chapter 3.
Remember, the underlying definition of a pen was a class, and the pen in your hand
was the object. Thinking about that class (the pen definition), what things can be
changed on a pen without changing the fact that it’s a pen?

 You could change the type of pen to ballpoint, felt tip, or fountain. You could
change the color of the ink to red, blue, or purple, so the ink color can change and
yet it is still a pen. We could say that the color of the ink is a property of the pen. In
other words, all pens must conform to the property of having an ink color. What if you
tried to make the ink into lead? Well, that breaks the definition of a pen and makes it
a pencil. Lead does not conform to the property of the pen. The color of the ink is a
pen property, and the available colors that you can make the ink are attributes of that
individual pen.

 Think about the label you added to the My Button app. What was the font? What
was the color? How big was the label? Those are all properties of the label. One property
of the label is color. Color is a property of label, and red may be attributed to that
property. You can do the same thing with the font. The font of the label is a property,
and Comic Sans may be the attribute. Again, you can do the same thing with the type

Click the Connections
Inspector button

cSelect the object that you
incorrectly connected.

b

Delete the incorrect connection.dDelete the incorrect code.e

Figure 5.11 If you accidentally connected the objects to the code incorrectly, you need to delete the
connection (wire) and the code following these steps.

49Changing how the label appears
of pen. The type is a property of pen, and an attribute could be ballpoint. These are
key terms in the coding world.

5.2.1 Step 5: Change how the label looks, and run the app to test it

Now you’ll change some properties of the label you added in the last section:

1 Click once on the label in your storyboard. With the label still highlighted, look
at the right side of the Xcode screen.

2 If it isn’t selected already, click the icon that looks like a fat arrowhead pointing
down—this is your Attributes Inspector panel. It should look like figure 5.12.

These are the options for changing the properties of the label. You can change these
settings now. Click the little up arrows next to Font System 17.0. Notice that the size of
the font on your label increases as you click the up and down buttons. As you do this,
you’re changing the attribute for the font property:

 If you make the font too large, some of the letters on the label disappear and
are replaced with ellipses (. . .). You can fix this easily by grabbing the corner of
the label and dragging it out until your label is completely visible again. Grab

Figure 5.12 Select the label on the storyboard, and
the Attributes Inspector will show the options
available to change how the label looks. Click the
Color attribute to change the color of the label.

50 CHAPTER 5 Capturing users’ actions: adding buttons
the squares on the right side of the label and drag to the right. Voilà! You can
see the entire label again.

 Set the Font to System Font 20. Make sure your label is fully visible.

Now you’ll change the color property of the label too, because you can:

1 Click the Colors selector right above the Font selector. A color wheel window
will open, like the one in figure 5.13.

2 Pick a color you like by clicking inside the circle of colors. When you click the
circle, the small box in the lower-left corner changes color to show you what
you selected. You can continue to click different colors until you find the one
you like.

3 Once you have it, close the panel. The label on your storyboard should now be
the color you selected, and the Utilities panel should also show the color. I
selected red for the attribute in figure 5.14.

Run the app again, and check that your label looks good in the Simulator. Take a little
time and click through the label attributes on the Utilities panel to see what happens
to the label. There are a lot of things you can do to make the label look different. If
something changes and you can’t figure out how to change it back, delete the label by
selecting it on your storyboard and pressing the Delete key. Then add another label
by following step 2 again.

Figure 5.13 The color wheel opens after you
click on the text label so you can change the
color. Click any color in the wheel.

51Summary
5.3 Summary
This chapter covered a lot. You created an app with a label and a button, and you
made the words on the button change when you clicked it.

 You learned about outlets, but I didn’t explain them in depth. Chapter 6 covers
them, but for now, think of them as ways for the code to “talk to” the UI elements. The
example we used was how our game-show host Vanna knew which puzzle to turn the
letters around for.

 You learned about actions, which are the way the user interface directs the flow of
your code or tells the code to do something differently. In the code example, the
“action” was for the user to tap the button and the code to then do something. In our
real-world example, it was when the game show contestant yelled out a letter for
Vanna. Chapter 6 covers this concept as well. You also learned about changing the
attributes of a label, such as the font and the color.

Figure 5.14 Change the label Color property to red by choosing red on the color wheel.

Concepts to remember
 Outlets let you access something on the user interface (the UI) by providing a

reference to it (like Vanna being able to touch the letters on the game board
and turn them around).

 Actions tell the code what should happen when a user interacts with a control
object (like your button) on the UI.

 The most important thing to take away from this chapter is a high-level under-
standing of outlets, actions, and attributes. Chapter 6 talks more about out-
lets and actions, so stay tuned. You’ll use these concepts for almost every
app you build from here on.

52 CHAPTER 5 Capturing users’ actions: adding buttons
 The next chapter further explains the concepts from this chapter. This chapter
taught you the basics of wiring up your user controls (buttons and labels) to your
code. You’ll use these actions throughout the rest of this book, so make sure you
understand how to do it.

The button app,
explained
In chapter 5, you created the My Button App with a button and a label, and you
added code to change the title of the button when the user taps it. This chapter will
explain what you did and why you did it. Additionally, we’re going to walk through
the Apple documentation so you know where to go when you want more informa-
tion on topics. We’ll also learn to add comments to the code so you’ll remember
what you did and why you did it when you look back at your code at a later date.

6.1 The button, explained
To refresh your memory, here are the steps you took in chapter 5:

1 Starting a new project using the Single View Application template
2 Adding a button and label to the storyboard, and running the app to test it
3 Connecting the button and the label to the code (wiring them up using an

outlet and an action), and running the app to test it

This chapter covers
 Explaining the button app you created in chapter 5

 Accessing Apple’s documentation

 Learning to comment (appropriately!)
53

54 CHAPTER 6 The button app, explained
4 Adding code to change the text on the label, and running the app to test it
5 Changing how the label looks by changing the attributes, and running the app

to test it

6.1.1 Creating outlets (or “How do I contact Butch?”)

You should be pretty familiar with steps 1 and 2 now, because you did the same thing
in chapters 2 and 5. Step 3 was something totally new, so let’s talk more about wiring
the button and label. To do that, let’s step out of the coding world for a moment and
into the real world. Imagine you meet a guy (let’s call him Butch) and you want to get
to know him better. What is one of the first things you do? You exchange your deets
(slang for details) such as your digits (slang for phone number) or your email address.
His phone number and email address are ways in which you can get a hold of him.
You have no way of contacting him without that reference. In other words, the
email/phone are your outlets to Butch (who, by the way, is an object because he has all
the characteristics of being a guy, but he isn’t the only one out there).

 In the same way (see figure 6.1), the code has no way to reach the label that you
added unless you give the code the details of the label. You created an outlet to the label
(the object) and said that the label’s name was myLabel. That way, anytime you want to
do something with that label, you tell the code to call him using his name: myLabel.

 Outlets are used often in iOS coding, and they’re useful at times when you want to
“call” something on the storyboard (like a button or a label) to exchange details.
Once you have the outlet to the object, you can change the properties or attributes of
the object (such as color, size, and so on).

Hey! There’s

a new guy.

I’m going to

exchange contact

info so I can talk

to him later.

Draft a message

that I want

to meet.

Send the

message that I

want to meet.

Drag a label on

your storyboard.

Add an outlet to

the label, linking

your code to the

storyboard.

Add the code to

change the

attribute of

the label.

The user taps

the button.
Figure 6.1 Comparing the flow of outlets,
actions, and messages in the real world and
the coding world

55The button, explained
6.1.2 Creating actions

Next, in step 4, you added your first real Swift code to the application, by adding an
action for the button. You Control-clicked the button, dragged it to the code, and
changed the drop-down on the dialog from Outlet to Action. You may be able to guess
at this point what you did, but I’ll explain it anyway. In the previous example, you have
Butch’s phone number (the outlet), and now you want to call him (an action).

 The action tells the code that it should do something (“act”) when the button is
tapped. Then you told the code to change the label’s title attribute to “I did it” when
the button was tapped. You were able to change the title of the label because you had
already told the code how to reach him by using the outlet. Here’s the first part of the
code you added:

myLabel.text = "I did it!"

You’re telling myLabel to set the text “text” to “I did it!”.
 You’re now learning your first bit of syntax (how you form coding “sentences”) for

the Swift language. In this case, myLabel is the object (like the pen in your hand men-
tioned in chapter 3), and you want to send it a message to change an attribute (in this
case, text). You’re telling the code the following:

"object"."message that I want you to do something"

If you were going to call Butch and tell him to meet you at 8 p.m., it would look (theo-
retically) like this:

"Butch.setMeetingTime("8pm"...")

That seems pretty straightforward, doesn’t it?

6.1.3 Is Xcode clairvoyant?

In chapter 4, I told you about some of the neat features of Xcode. I mentioned code
completion, which works like a Google search in that it tries to predict what you want
to type.

 You may have noticed code completion while you were typing in the line of code
that sets the label text to “I did it!”. If not, go back and try it again, but this time type a
little slower to give Xcode a chance to predict what you’re typing. Once you start typ-
ing my, Xcode suggests that you want myButton or myLabel (shown in figure 6.2).
Because you’re trying to type myLabel, you can press the Tab key to agree with Xcode
that you were indeed trying to reference myLabel.

Figure 6.2 Xcode tries to auto-
complete when you begin typing.

56 CHAPTER 6 The button app, explained
Now type a period (.) and you’ll see that Xcode pops up a list of messages that you
might want to send to the label. The first one that pops up for me is text:

 If you press the Tab key again here, you’re confirming to Xcode that you want
to set the message.

 Press Tab again to confirm that you want to set the title.

If you want to set something else in the list, you can either start typing the first letter of
the message or use the up and down arrow keys to select different messages. Press Tab
again to accept the “text” message. Xcode automatically tells you that you need to type
in a title and it needs to be of type String, as shown in figure 6.3.

Chapter 8 tells you a lot more about types, which are different kinds of storage mecha-
nisms, such as strings. For now, you should know that a string needs to have double
quotation marks around it—that’s how Xcode knows it’s a string (“I did it!!!” is a
string). Type in your new text, enclosed in double quotation marks (the Shift-apostro-
phe key), and press Tab again.

6.1.4 User interfaces and the front end of apps

Think back to our discussion of labels in chapter 3, where we talked about the term
UI, meaning user interface. The UI is the part of the app that the user can see or inter-
act with, so anything that starts with UI pertains to the front end of the app. Front end is
a coding term for the user interface, whereas back end is the term used for all the code
behind the scenes that the user can’t see.

 A button is a type of UI control (an object the user can interact with that “controls”
the flow of an application). When you tapped the button (the UI control object), it
went into the code based on the action you defined (the action buttonClick). Chap-
ter 9 covers application flow, so don’t worry too much about it here.

 This may seem like a lot to take in right now, but we’ll continue to review these
concepts and build on them throughout the book. Remember, the button is an object
that’s part of the user interface (UI) that can help control the flow of the applica-
tion—therefore it’s a UI control object.

Figure 6.3 Xcode’s first suggestion for changing label attributes is text.

57Documentation
 When you ran the myButton app in the
Simulator, you may have clicked the button
several times to see what happened. You prob-
ably noticed that it only changed the label
once (“I did it!!!”). It actually set the label text
to “I did it!!!” every time you clicked the but-
ton, but you didn’t see the change because
you never told the button to change the title
back to its original state (with the title “Button
Demo”). I show you how to do that in part 2 of
this book, so stay tuned.

6.2 Documentation
Let’s take a break from the heavier concepts
and talk about how to learn what attributes an
object has. Think back to your label—you
changed the look of it. You made the font
larger and changed the color. There are a lot
of things you can do to a label, and we’ve only
scratched the surface.

 Apple does a great job of documenting
such things, so now you’re going to learn
how to access and read the Apple documen-
tation. The documentation is key to your
learning about the different classes, so I want
you to get used to accessing Apple documen-
tation. Go back to Xcode and select your
label on the storyboard. Now, in the Utilities
panel on the far right, select the circle with
the question mark in the middle. This opens
the Quick Help panel, shown in figure 6.4 (it
may look different, depending on your ver-
sion of Xcode).

 You should recognize the description of
the label—I showed it to you in chapter 3
when you first added the label. Let’s walk
through the UILabel Quick Help panel
items now:

 Availability—The Availability line in the panel tells you that this label class has
been around since iOS 2.0. That means that the label has been part of iPhone
and iPad programming since the second version came out—I’m not sure I can
even remember that far back. The supported version of the code (availability) is

Figure 6.4 Quick Help panel explaining
the label—it may look different depending
on your version of Xcode

58 CHAPTER 6 The button app, explained
important to know when coding so you don’t use a feature in the code that’s
only available to the latest release. Some users don’t upgrade their iOS version
on their iPhones and iPads quickly (for instance, from iOS 9 to iOS 10), so if
you release an app that has features only available in iOS 9 and later, iOS 8
users won’t be able to use the app.

 Declared In—The Declared In line tells you where the underlying class is. If you
were looking at the documentation for your pen, for example, this would be the
file that describes your theoretical pen and all its properties. These classes are
pretty dense and are way too complex for our needs. We would like a document
that gives us all we need to know about the class without having to read the code.

 References—Enter the Reference line, stage right! This is the documentation
that describes everything about what a label is and how you can manipulate it.
Go ahead and click the UILabel Class Reference link now. If nothing happens,
it means you need to download the documentation. Go to Xcode > Preferences,
and a new window will open. Click the Components button, and you should see
a screen like figure 6.5.

Make sure you’ve downloaded the latest documentation, and then click the Ref-
erence link again. This document will be a good reference for you in the future
as you begin to interact and customize your apps more and more.

 Guides—Apple guides are useful tools for understanding key concepts that
Apple wants you to know. They’re probably too deep or convoluted to under-
stand at this point in the book, looks just look through them to be familiar with
them right now.

 Sample Code—The next line provides files of sample code so you can see how to
implement certain features. Apple combines a lot of different concepts into the

Figure 6.5 Click Xcode > Preferences > Components to download Guides and Sample Code.

59Commenting: you can never be too wordy, can you?
sample code, though, so you won’t find a sample that only illustrates how to
implement a label. Instead, it covers a lot of advanced topics, and these advanced
topics happen to implement a label.

 The Quick Help panel is going to be a great ally in your programming career,
but don’t be too overwhelmed at this point if you don’t understand it all. I’ll tell
you what you need to get started throughout this book, and the rest will come
with time and practice.

Now that you’ve added your first bit of code to an actual app, it’s time to talk about
commenting your code.

6.3 Commenting: you can never be too wordy, can you?
Remember back in chapter 1 when you created pseudocode for painting a wall?
Those steps don’t have to be thrown away once your app is created. Sometimes you
need to remember what you did, why you did it, and how the app works. Enter com-
ments—stage left!

6.3.1 Comments are your friends

Comments are a way that of documenting your code so that when you or someone
else looks through the code, they can easily understand what you did, why you did it,
and even how you did it. Adding comments to your code is a good habit to get into
now, early in your coding career. Imagine a few weeks into the future when you’re cre-
ating the LioN app and learning and applying new concepts. What will happen if you
take a break for a few days, weeks, or months and then return to your code? Do you
think you’ll remember where you left off? Or why you wrote a line of code the way
you did? It is highly unlikely, which is why comments come in handy. Some developers
feel that comments aren’t necessary—that code should be written in such a way that
comments aren’t needed. I think commenting your code is beneficial for you and for
anyone who picks up the code after you.

6.3.2 How to comment your code

In Xcode, open the ViewController.swift file by clicking it once in the Navigator panel
(the left panel). If you look at the top of the file, you’ll see several lines that start with
//; some lines have other words behind the // and some don’t (as shown in figure 6.6).

Filename

Project name

Author and date

Copyright
information

Figure 6.6 Swift creates some comments for you at the top of each file. You can add additional
comments throughout your code by starting a line with //.

60 CHAPTER 6 The button app, explained
That section with // at the beginning of the line contains comments that Xcode
automagically (a slang coding term for something done behind the scenes without the
programmer having to do anything) adds to all your files.

As I’ve said, you can add your own comments to code by add the // at the beginning
of the line you want to comment. Now add a comment right above the line that you
added in the ViewController.swift file (the set title line). You might add a comment
such as //this sets the title of the button when it is tapped, but only for
the normal state.

 As with pseudocode, it’s important that the comments make sense to you. If you’re
planning on sharing your code with anyone in the future, or if you plan to have sev-
eral people work on your code, it’s also important that they understand it. But for
now, make sure it would make sense to you if you were to come back in a week or two
to revisit the code.

6.4 Summary
Wow—this chapter covered a lot! We walked through how you created the app with a
label and a button in chapter 5. Remember the difference between outlets and
actions: outlets let you access something on the user interface (the UI) by providing
a reference to it (like a phone number or email for your friend Butch). Actions tell

Syntax: example
You’ve learned the importance of adding comments to your code and how to add
them—by starting the line with //. This is important to remember, because you’ll
need use comments throughout your career!

Concepts to remember
 Outlets are ways for the code to talk to UI elements. The example we used

was contacting your friend Butch—you needed an outlet (his phone number).
 Actions are the way the UI directs the flow of your code, or tells the code to

do something differently. In the code example, the action was for the user to
tap the button and the code to then do something. In the real-world example,
it was the action of calling your friend Butch.

 You learned about messages. In the code, you sent a message to your button
to change the title of the button to “I did it!”. In the real world, you told Butch
to meet you at 8 p.m.

 You looked at the Apple documentation to learn more about labels.
 The most important thing for you to take away from this chapter is a high-level

understanding of outlets, actions, and messages. You’ll use these concepts
for almost every app you build from here on.

61Summary
the code what should happen when a user interacts with a control object (like your
button) in the UI. Objects can send messages, like your code sending the message
“change your text” to the label.

 You learned some syntax: how to comment your code with the // characters. You
can (and should) document your code by using // at the beginning of the lines. The
comments should be meaningful to you, especially if you revisit your code after some
time away. Xcode helps with the syntax for Swift with code completion, and you can
accept its guesses by pressing the Tab key. You can access the Apple documentation in
Xcode by selecting the object that you want to know more about and clicking the cir-
cle with a question mark in it on the Utilities panel (right pane).

 In the next chapter, you’re going to capture users’ input by allowing them to
type into the app. The key concepts you learned in this chapter will be used again in
the next.

Capturing user input:
adding text boxes
You’re going to create another app in this chapter, but this time you’ll provide a
box the user can type in. After typing text, the user will tap a button, and what-
ever the user typed in the box will appear down below. Such boxes, called text
boxes (or UITextFields for single lines of text and UITextViews for multiple lines
of text), are used throughout iPhone and iPad programming. You’ve probably
seen them numerous times but may not have known that they were called text
boxes. Figure 7.1 shows an example.

 When you create a new event in the Calendar app on your iPhone, the fields
where you type the event’s title and location are text boxes. Text boxes are impor-
tant components to learn, so let’s get started.

This chapter covers
 Creating a new app that shows what’s typed into

a field

 Capturing user ideas with text boxes

 Connecting objects with actions and outlets again

 Chunking code for a function
62

63Adding text fields
7.1 Adding text fields
As you know, the best way to start any new project is with pseudocode, so let’s write
down the steps you need to create this app:

1 Create a new single-view application.
2 Add a button and a label to the view.
3 Add a text box to the view.
4 Connect the button, label, and text box to the code (wire them up), and test

the app.
5 Add code to change the label, and test the app.
6 Comment the code.

Let’s get started.

7.1.1 Step 1: Create a new single-view application

You should be pretty comfortable by now with creating a new project. In Xcode, start
by clicking File > New > Project and selecting the Single View Application template.
Name this app TextBoxApp. Save your new project to the same folder you created in
chapter 2—mine is named dev.

7.1.2 Step 2: Add a button and a label to the view

When your new project loads in Xcode, you’ll see the same set of files loaded down
the left side of the Navigator panel (left panel) that were loaded in the new projects
you created in chapters 2 and 5. Click the Main.Storyboard file to load the storyboard
in the Standard Editor panel (center panel).

 You’ll first add a label to the storyboard, as you did in chapters 2 and 5. At the bot-
tom left of the Utilities panel (right panel), make sure you have the Object Library
showing by clicking the circle with a square inside of it, and then at the bottom of the
panel search on label. Grab the label and drop it on your storyboard near the middle
of the screen. Double-click the label, and change the text to My Label.

 Go back to the Utilities panel again and search on button. You’ll have three options
to choose from. In this case, you want to add the top one—the one that says Button.
Grab it, and drop it on your storyboard above your label. Double-click it, and change

Figure 7.1 These Title and Location
fields are examples of text fields.

64 CHAPTER 7 Capturing user input: adding text boxes
the text to Change My Label. These actions should be familiar to you from chapter 5—
if not, you can review section 5.1.

7.1.3 Step 3: Add a text field to the view

This part is new, but it isn’t that different from adding a button or a label. Go back to
the Object Library in the bottom-right corner, and search on text. You should see two
results returned: a text field and a text view. Make sure to select the text field and drop
it on your storyboard above your button, as shown in figure 7.2.

7.1.4 Step 4: Connect the button, label, and text box to the code (wire
them up), and test the app

You connected a label and a button in chapter 5, so you should be familiar with this
step. The first thing you want to do is change your real estate (how much of each
panel is showing) to make it easier to connect the components to the code.

 You’re going to use the Assistant Editor again. Click the Assistant Editor button
(the one that looks like two interlocking circles at top right). You should see the story-
board on the left side and ViewController.swift on the right side. (You saw the View-
Controller in chapter 5—we compared it to Vanna White, the game show assistant.)
You’re going to wire up the button, the label, and the text box using the outlet and
actions, and then I’ll explain what you did afterward:

1 Holding down the Control button on the keyboard, click the Change My Label
button on your storyboard.

2 With the mouse button still pressed down and the Control button still pressed,
drag your mouse pointer onto the right side of the screen into the ViewController.

3 Hover your mouse pointer under the following words:

class ViewController: UIViewController {

You should see a blue link that links over to the ViewController and a black box
that says Insert Outlet, Action, or Outlet Collection. When you see that, let go

Figure 7.2 Your storyboard should now
have a text box, a button, and a label.

65Adding text fields
of both the mouse and the control button (with your cursor right under the fol-
lowing line:

class ViewController: UIViewController {

You should now see a pop-up that looks like figure 7.3.

STEP 4A: WIRE UP THE BUTTON

When the pop-up loads, change the Connection type to Action instead of Outlet, and
name the action changeLabelButtonClicked. If you completed that successfully, your
code should now have this line in it:

@IBAction func changeLabelButtonClicked(_ sender: UIButton) {
 }

Now you want to connect the label to the code.

STEP 4B: WIRE UP THE LABEL

First, Control-drag the label into the file, but leave the connection as an outlet and
name it myLabel. If you did this correctly, you should see this line of code in your file:

@IBOutlet weak var myLabel: UILabel!

Finally, you want to connect the text box to the code.

STEP 4C: WIRE UP THE TEXT BOX

Control-drag from the text box to the file, and again leave the connection as outlet.
Name it myTxtField. If you did this correctly, you should see the following code:

@IBOutlet weak var myTxtField: UITextField!

STEP 4D: RUN THE APP TO TEST IT
Run the app again in the Simulator (by clicking the Run button). Nothing should
happen if you type in the text box or press the button yet—you want to make sure the
app still works after your changes.

 Once the Simulator has loaded the app, click the text field—note that the Simula-
tor automatically pops up the iPhone keyboard. How cool is that? You didn’t have to

Figure 7.3 Use the Control button to make
a connection between your button and the
ViewController file, and this dialog will open
when you release the mouse button.

66 CHAPTER 7 Capturing user input: adding text boxes
do anything to have the keyboard pop up, and you can even type into the text field!
This is another way Apple helps by doing some of the work behind the scenes.

 I’ll tell you a lot more about how to change these behaviors when you start build-
ing the LioN app in part 3 of this book.

7.1.5 Step 5: Add code to change the label, and test the app

Now you’re going to write another line of code. Back in step 4A, you connected the
button to the code and specified that the connection should be action instead of out-
let. You named it changeLabelButtonClicked, which should tell you by reading it that
the user tapped (clicked) your Change My Label button.

 This part of the code will run every time the user taps the button. This button can
control the flow of the application because that piece of the code runs every time the
button is tapped. This is why a button is called a UI control. (We discussed UI in chap-
ter 3; it stands for user interface.)

YOU MADE A FUNCTION WITHOUT KNOWING IT
Back in step 4A, when you named the action changeLabelButtonClicked, you actually
created your first function. Functions are self-contained chunks of code that perform a
specific task (like sending a message, for instance). If you look at the line of code that
was added when you connected the button in step 4A, you see @IBAction, which tells
you there’s an action to be performed:

@IBAction func changeLabelButtonClicked(_ sender: UIButton) {
 }

You may be wondering where the @IB part comes from. You don’t really need to know
much about it, but it’s a carryover from much older versions of Xcode. Right after the
@IBAction word, you see the word func, which stands for function. This keyword is tell-
ing Xcode that this is a function, or a contained chunk of code. The next piece is
changeLabelButtonClicked, which you already know as the function name. The part
in parentheses around it—(_ sender: AnyObjectUIButton)—is called a parameter. I’ll
tell you more about those in part 3 when you’re building LioN.

SOME MORE SYNTAX

I said that a function was a “chunk” of code, but how does Xcode know where the
chunk starts and where it ends? {} to the rescue! These brackets have many names,
including curly brackets, brackets, open and close brackets, squiggle brackets, and
more. For this book, I’ll refer to them as curly brackets.

Syntax: example
The curly brackets { and } are used extensively in Swift. They’re used to start and
end functions.

67Adding text fields
Xcode recognizes the chunk of code as anything inside the curly brackets. You want to
tell Xcode to do something when the button is tapped, and in this case, you want
myLabel to change to whatever the user typed in the text field:

@IBAction func changeLabelButtonClicked(_ sender: UIButton) {
 }

Add the following line to your new function between the open curly bracket and the
close curly bracket:

myLabel.text = mytxtField.text

This is saying, “Change the text of myLabel to whatever the text is in myTxtField.”
Pretty cool, huh? Now your entire file should look like figure 7.4.

RUN THE APP, AND TYPE IN THE TEXT FIELD

Now run the app again in the Simulator, type in the text field, and click the Change
My Label button. Can you believe it? The label below changed its text to what you
typed in the text field! Not only that, it will keep changing the label text every time
you update the text field and click the button. Why? Because it’s calling the function
changeLabelButtonClicked every time the button is clicked. How cool is that? You
only wrote one line of code to do that! Amazing, isn’t it?

You added
the text field
in step 3.

You added
the action
in step 5.

Figure 7.4 The complete ViewController—make sure your code looks like mine.

68 CHAPTER 7 Capturing user input: adding text boxes
 If you get an error when you run the app, make sure you have all the connections
connected correctly, that your code looks like mine, and that you have a button, a
label, and a text field on your storyboard. If you made connections in error (for
instance, you created an action instead of an outlet or vice versa), you’ll need to
delete the connections for your code to work. (Refer back to figure 5.11 in chapter 5
for how to delete extra connections.)

7.1.6 Step 6: Comment the code

We talked about the importance of commenting your code back in chapter 6, so let’s
do that here. Remember that the comments are meant for you or a fellow coder to fig-
ure out what you did and why you did it when looking at your code at some point in
the future. You need to add comments that make sense and that are relevant to you.
To add comments, you need to start a line with //; Xcode will ignore whatever else is
on that line.

7.2 Summary
I hope you have a sense of accomplishment, because you’ve written an entire app. As a
reminder, you created a new app; added a text field, a button, and a label to the app;
and wired those items to the code. You wrote a line of code that told the label to set its
text to whatever was in the text field area. You learned about functions (chunks of
code), which have an opening curly bracket ({) and a close curly bracket (}) that
Xcode uses to know where the function code starts and ends. Xcode can do work for
you behind the scenes—you didn’t have to write any code to have the keyboard
appear when you clicked in the text field.

Concepts to remember
 You create outlets and actions for the user interface and code so they’re

connected.
 Functions are chunks of code that perform a specific task. You’ll use these in

every app you write.
 You should now be familiar with the basic steps to create an app, add some

UI elements like buttons and labels to the storyboard, and connect them to
the ViewController. You’ll use these basic steps not only throughout the rest
of this book, but throughout the rest of your programming career. If you still
aren’t completely comfortable doing these steps yet, that’s okay. You have
many more chapters in this book to complete, and you’ll be comfortable by
the end of the book. You can always rework a previous chapter if you feel you
need more practice.

Playing on
the playground
This chapter introduces you to Swift Playgrounds, an Apple app that allows devel-
opers to write code and see the results immediately—without having to run the
app. We’ll also begin discussing the different ways you can manipulate and store
things in your code. This chapter will be interactive. You’ll create something while
also learning.

8.1 Swift Playgrounds: learning to interact
with others
Swift Playgrounds is a helpful interactive tool that provides quick feedback on the
code you’ve written. Recall that in part 1, when you created apps, you ran them sev-
eral times before you were finished writing them, to make sure they still worked.
That’s because Xcode needed to compile them into a format that the iPhone could

This chapter covers
 Swift Playgrounds

 Frameworks

 Types of things
69

70 CHAPTER 8 Playing on the playground
work with, and it checked for errors in your code during that process. Chapter 1
explained this process:

 Writing code
 Compiling it
 Running it

Playgrounds provide you with much faster feedback because it doesn’t require you to
run the code. It takes no time at all to compile and give you almost immediate feed-
back, so it’s a great place to play around (see what Apple did there?) and learn. Let’s
get started with Swift Playgrounds.

 Open Xcode and this time, instead of clicking Create a New Xcode Project, click
Get Started With a Playground—the first option, as shown in figure 8.1.

In the next screen that opens, leave the default as MyPlayground, and leave the plat-
form as iOS. Now save it as you did in part 1 of the book when you created new proj-
ects. I saved mine in my dev folder again. Once you save the file, the new playground
will open, looking like figure 8.2.

Figure 8.1 Start by creating a new playground.

71Frameworks
The first thing you’ll notice at the top is that this looks remarkably similar to files you
worked with in earlier projects. The top line is obviously a comment, because it starts
with //, and it’s green, which denotes a comment.

 The next line, import UIKit, is also at the top of some files in your projects, but I
haven’t explained it before, so let’s look at it. UIKit is a framework, but what is a
framework?

8.2 Frameworks
Imagine trying to build a house and thinking of all the tools that might be required.
You may need lots of different kinds of carpentry tools, plumbing tools, electrical
tools, roofing tools, tiling tools, painting tools, flooring tools, and so on. Now imagine
calling up a supply store and telling them to please deliver all the tools you’ll need to
build a house. Not only would you have an enormous stack of tools dumped in front
of your empty lot, but you probably would spend a lot of time looking for the tool you
need when you need it. This isn’t efficient and it surely isn’t optimized for building a
house. The same concepts apply to writing an app.

 So many features and so much functionality are built into iPhones and iPads that it
would be inefficient if Apple tried to make them all available to the programmer up
front. Each app that you wrote would have a huge stack of tools sitting behind it, and
you might never even need those tools. Apple’s enormous stack of tools might include
photo tools, map tools, HealthKit tools, address book tools, sound tools, video tools,
game tools, and more.

 Now imagine Xcode had to sort through all those tools every time you wanted to
compile and run your program. It would take an enormous amount of time, and it
wouldn’t be efficient or optimized for building an app. Apple packaged together the
needed resources for these different types of tools into one package, called a frame-
work. This framework is like ordering only the plumbing tools for your house when
you need them. You can order the tools (import the framework in Xcode) and have
them sitting there ready for you when you need them. Xcode doesn’t use the tools
until you ask for one—like going out in the front yard and getting a wrench from the
pile of plumbing tools instead of bringing them all in at once. A framework is a single
grouping of resources and compiled code that Xcode can easily access in your project.

Figure 8.2 A new playground opens once you click Save.

72 CHAPTER 8 Playing on the playground
Apple tools such as photos and map are Apple frameworks. You don’t need to remem-
ber the following list—it’s only meant to give you an idea of what they are:

 Photos framework
 MapKit framework
 HealthKit framework
 AddressBook framework
 AVKit framework
 GameKit framework
 And many, many more

Anytime you want to add a feature in your app that has to deal with photos, for
instance, you’ll need to import the Photos framework. This brings us back to the
import UIKit statement at the top of your playground file. UI stands for user inter-
face, the part of the application the user can interact with. So UIKit is exactly what it
sounds like: a kit that provides you with the tools necessary to create the user interface
(or front end) of an application. When you create an app that allows users to interact
with it, you must import the UIKit framework into your code.

 Now let’s move on to the final line in the playground: var str = "Hello, Play-
ground".

8.3 Types of variables
Let’s break down the statement var str = "Hello, Playground" into its different
components:

 var stands for variable, which is the way Swift can store a value and access it
again later. It’s also “variable” in that you can change it to another value of the
same type later if you want.

 str stands for the name of the variable in this case.
 = denotes that the variable name should be set to something.
 "Hello, Playground" is the string that should be stored in the variable

named str.

In pseudocode, I would say, “I would like to store the words Hello, Playground, and I
want to call it str, or, to say it more concisely, set variable str equal to Hello, Playground.”

Syntax: example
When coding in Swift, the syntax for variables is like this: var (which is a keyword in
swift, or a word that is “reserved” for Swift—developers can’t use those words for
anything) name_of_variable (this is the name you enter) = some_value (where you
decide the value). Or:

var name_of_variable = your_value

73Types of variables
Go back to Xcode, and look at your playground again. Start a new line, type str, and
press Enter. (Xcode may try to auto-complete the line to String, but leave it as str—
add a space after str if you need to.) Your playground should look like figure 8.3.

Notice on the right side of the playground there are now two lines that say “Hello,
playground”. This is how the playground provides you with instant gratification, by
showing results without compiling and running your app:

 The line that starts with var shows the output on the right side of the screen in
the gray area. Xcode evaluated the variable str and said it was equal to “Hello,
playground”.

 The next line did the same thing because the first line told Xcode to store the
value “Hello, playground” in the variable named str.

 The next line more or less says, “What is the value of str?”

Swift Playgrounds is great in that you can type str and it will show you what’s stored in
the variable. Xcode doesn’t allow you to do that. Now you’ve learned about variables—
or ways to store values in Swift. But what other kinds of variables are there, you ask?
I’m so glad you asked!

8.3.1 Not your shoestrings

The first type of variable we’ll cover is a string. A string can be anything from a single
letter to a word or sentence that’s enclosed with double quotes (""). Xcode and Swift
Playgrounds know that “Hello, World” is a string type variable because you surrounded
the words with double quotes. Variables can be changed, so you’ll change the variable
str to “This is a string”. Go back to your playground, add a new line, and type str =
"This is a string". The right side of the playground should now say, “This is a
string”, as shown in figure 8.4.

 Xcode stored the value "This is a string" in place of the previous value "Hello,
playground". You may be wondering how Xcode knows that the variable str should
be a string. The Swift language interprets the variable type by how you use it. Swift and
Xcode recognize the value of the variable str as a string because it’s surrounded by
double quotes.

Figure 8.3 Your playground with another str

74 CHAPTER 8 Playing on the playground
You can also explicitly tell Xcode and Swift that this is a string by changing the state-
ment to the following:

var myStr: String = "This is a string"

In English, that says, “Create a new variable name myStr of type string and set it equal
to ‘This is a String’.” You don’t often need to explicitly define the variable type, but
you should recognize the syntax when you see it. Chapter 9 shows you some examples
when we talk about arrays.

If you enter a new line on your playground and add the statement var myStr: String
= "hello", Swift Playgrounds will show you the value of the variable myStr on the right
side, as shown in figure 8.5.

 You’ll use strings through the remainder of this book, and you’ll be familiar with
them by the end. Let’s look at other types of variables.

Figure 8.4 Setting the variable str to a new value will override the previous value stored in the variable.

Coding conventions: use lowercase for variable names
You may notice that the variable names start with a lowercase letter. This is a com-
mon coding convention—the way most people conventionally name variables.

It’s much easier to differentiate a variable that you’ve created (like str or myStr)
from the declaration of a type of variable or class name, which starts with an upper-
case letter (String or ViewController). You can use uppercase to start the name
of variables, but it makes the code harder to read.

I highly recommend sticking with the coding convention of starting your variable
names with lowercase letters. You can learn more about how Apple recommends
naming things in the Swift documentation at http://mng.bz/a7Py.

http://mng.bz/a7Py

75Types of variables
8.3.2 Going back to math class

Regardless of whether it’s been a month or a few decades since you were in a math
class, you probably remember that there are different types of numbers: whole num-
bers, decimals, integers, and so on. If you’re like me, you never thought you would
need this knowledge outside of math class, but guess what? You now get to use that
knowledge again for creating apps, even though you probably thought at the time I’m
never going to use this (thanks, Mr. Bellamy).

 The first type of number we’ll discuss is an integer. In Swift, we use the variable type
Int for integers, which are whole numbers (numbers without decimal places). An Int
can store big numbers like –2,147,483,648 or 2,147,483,648. That’s right: an Int can
be a positive number, negative number, or even zero.

 Let’s try it in Swift Playgrounds to see an example. Add a new line to your play-
ground, and type the following:

"var myCatsAge = 15"

Swift Playgrounds shows you that your cat’s age is equal to 15 on the right side.
Fantastic!

 How old will your cat be in five years? Let’s check. Add a new line to your play-
ground:

"var inFiveYears = myCatsAge + 5"

Swift Playgrounds, as shown in figure 8.6, immediately shows you the number 20.
Wow—instant gratification!

 You should be able to understand this line intuitively: you created a new variable
called inFiveYears and said that it should be equal to however old your cat is now,
myCatsAge, plus 5. You can do math with integers, like you did in math class. That
means you can add (+), multiply (*), divide (/), and subtract (-) integers.

Figure 8.5 Explicitly stating that the variable myStr is of type String also works, although it isn’t necessary.

76 CHAPTER 8 Playing on the playground
Write a new line of code to find out how old your cat was 10 years ago. I’ll wait here.
 Did you do it? You should have added a line something like var tenYearsAgo =

myCatsAge – 10. Swift Playgrounds should then instantly give you the answer 5.
 You’ll use the Int data type extensively in your programming career and you

should be comfortable with it by the end of this book, as we’ll use it a lot. Let’s head
back to math class now and learn about other number types.

8.3.3 Double, double, toil and trouble

The next data type we’ll discuss is a double. A double is a number with decimal points.
They’re sometimes called fractional numbers (whereas a whole number can’t have deci-
mal points). A double can have up to 15 decimal places (15 numbers to the right of
the decimal point) like 3.141592653589793, and it can be positive or negative. Dou-
bles are useful for calculator apps or when trying to find sales tax or a tip percentage.

 Let’s see how to compute the sales tax for an item in Swift Playgrounds. Try this
first, and then check to see if you were right—you can multiply two numbers using
the * symbol:

 Create a variable for the price of an item, say 12.47.
 Create a variable for the tax percent, say 1.07.
 Multiply the two together to get the result of 13.3429.

How did that work—did you get it? Check your work by reviewing figure 8.7.
 You’ll notice in the example that I didn’t create a variable to store the final answer

in, meaning I can’t save the total cost. I could have written it like I did, cost * tax, or
I could store the value for additional manipulation: var total = cost * tax. When
coding in Swift for your apps, you’ll want to use the second method of storing the
value so you can continue to use it in your program. For instance, if I want to print out
the total or display it to the user in an app, I would want to store the total in a variable,

Figure 8.6 Integers can be added together, as shown on the last line.

77Types of variables
so I would need to print or show the variable instead of the calculation. It’s also
important to note that you can’t define the same variable name more than one time
in a chunk of code. They must be unique.

 There are many more data types that we could cover here, but you won’t need to
use all of them, and it’s better to introduce them to you when you need them rather
than have you try to remember them now. I’m trying to give you the information you
need just in time rather than overwhelm you with a lot of information that you won’t
need for a while.

Figure 8.7 Calculating the total cost after tax

Concepts to remember
 Swift Playgrounds is a great tool to help you learn and try new concepts. You

can create new playgrounds and save your work if you want.
 Frameworks are like groups of tools that you’ll need for different apps.
 You must import a framework to have access to its tools, like the UIKit for

user interfaces.
 Variables are used to store values that you want to access later.
 Variable names should always start with a lowercase letter and can’t have any

spaces or special characters.
 Data types are different kinds of data, as defined by the types of values that

they can take like a string (String), a whole number (Int), or a decimal num-
ber (Double). There are many data types, some of which we’ll cover later in
this book.

78 CHAPTER 8 Playing on the playground
8.4 Summary
This chapter covered some of the basic data types that you’ll use in your programming
career, and you’ll begin using some of them in the next chapter. You can experiment
or play with the different data types in Swift Playgrounds so you can get immediate
results. Try adding numbers, dividing, subtracting, and multiplying to get used to
working with the number formats.

 Swift Playgrounds is a great place to experiment and try things without having to wait
for an app to run. Frameworks are a grouping of tools or classes that you’ll need for differ-
ent kinds of apps. The primary framework you’ve been using so far is the UIKit frame-
work, which lets you access the UI features. Remember that variables are ways to store
information that you want to access later. Variables have data types, or kinds of data they
can store and we covered three types in this chapter: String, Int, and Double.

 The next chapter will use the information you’ve learned in this chapter to begin
controlling the application flow using different kinds of statements. You’ll start learn-
ing about what it takes to create your next app: the tip calculator.

 The first part of this book introduced you to programming concepts such as classes
and objects (chapter 1); technical documentation (chapter 3); object attributes, actions,
outlets, and messages (chapter 5); and functions (chapter 7). We’ll build on these key
concepts in part 2. We’ll also begin talking a lot more about the flow of an app and
how to create statements to control that flow. The next two parts of the book are even
more exciting than the first, so buckle up!

Part 2

The keys to the city:
understanding key

development concepts

Part 2 teaches you more about programming concepts, including the while
statement, the switch statement, arrays and collections, and navigation. Chapter 9
talks about program flow. In chapter 10, you’ll create an app that mimics the
game in which one player is asked to guess how many fingers the second player
is holding up behind their back. You’ll create yet another app in chapter 11, in
which you can look up state abbreviations. Chapter 12 explains how to visually
lay out application screens using storyboards. In chapter 13, you’ll learn about
the lifecycle of ViewControllers and create an app to demonstrate that lifecycle.
Chapter 14 discusses how to create tab bars; chapter 15 teaches you an impor-
tant aspect of iOS programming, tables and table views; and chapter 16 wraps up
this part of the book by introducing you to design patterns.

Go with the flow, man!
Controlling the flow

of your app
You learned back in chapter 5 that the flow of an application—how an application
reacts to different events—can be changed when a user interacts with a control,
such as by tapping a button. But there are other ways that the flow can be altered
that don’t require user intervention like tapping buttons. This chapter introduces
some of these ways.

9.1 Control your flow
Controlling the flow of your app is similar to controlling the flow of traffic in the
real world. When you’re driving to school or work, you either know where you’re
going or you’re following directions of some sort. You may know that you need to
turn left at the stop sign, or go through the traffic light and turn right at the second
traffic light. If you didn’t have directions or if your car only went straight, you
wouldn’t get to where you needed to be and your ride would be pretty boring. In
order to get to where you want to be, you’re controlling the direction or flow of

This chapter covers
 How to control the flow of your app

 The if statement

 The while statement
81

82 CHAPTER 9 Go with the flow, man! Controlling the flow of your app
your car. Applications are the same: they can be written to flow in a seemingly straight
line, but that would be pretty uninteresting, wouldn’t it?

 One of the ways you get to school or work is by making turns and following traffic
laws. While driving, you should obey the traffic laws. If the light is red, you should
stop. If it’s yellow, you should proceed with caution or stop. These are ways of control-
ling the traffic and getting where you need to go. You can control the flow of your
application similarly:

 If today’s date is greater or equal to your birthday, then add 1 to the age.
 If this year is a leap year, then it is possible to have February 29.
 If the user entered a valid entry, then do something.

All of these control the flow because you can react to a situation and do something dif-
ferently based on what’s happening, what day it is, what time it is, and so on. One of
the ways you control the flow is by using if statements.

9.2 If you do that again, I’m going to…
I’ve already given you several examples of real-world “if” statements, but let’s break it
down to make it really clear. My mother was clear when I was younger (okay, maybe
she still is today) and doing something that she didn’t approve of (I rarely did that, by
the way). She would always warn me about what I was doing and would tell me the
consequences if I did it again. “If you hit your brother one more time, I’m going to
take TV away for a week!” (Again, not that this ever happened.) There were also the
positive “if” statements: “If you cut the grass, I’ll give you $5.00.” (I was pretty cheap
back then.)

 Then there were the compound “if” statements: “If you cut the grass, I’ll give you
$5.00, or if you cut the grass and edge the yard, I’ll give you $7.50.” These statements
seem pretty straightforward, but how exactly do you translate that into the coding
world? I’m so glad you asked.

 I’m going to create a new playground, but you can either continue using the one
you used before or create a new one (refer to chapter 8, section 8.1, if you don’t
remember how). You’re going to do the following now, in the usual pseudocode form:

1 Create a variable named x, and set the value to 5.
2 Create a variable named y, and set the value to 10.
3 Create a statement that says, “If x is less than y, then print out the word yes.”

You should be able to complete the first two steps—you learned about variables in the
last chapter. I’ll show you how in case you need a refresher:

1 Start your statement by using the keyword var, which stands for variable.
2 Type the letter x, which is the name of the variable.
3 Set it = 5.

Simple, right? Do the same thing for y.

83If you do that again, I’m going to…
 Now for the if statement, which you haven’t seen in code before. The coding con-
vention (the coding style that’s most widely accepted) for if statements is as follows:

if (compare statement) {
 Then do something
}

The compare statement doesn’t need to be enclosed in parentheses, but I did so to
make it easier to read. Mine looks as simple as this:

if x < y {

The greater-than and less-than signs should come back to you from your math classes,
but here’s an explanation, in case they aren’t:

 < means the item to the left of the sign is “less than” the item to the right of the
sign. So this statement would evaluate as true: 5 < 10.

 > means the item to the left of the sign is “greater than” the item to the right of
the sign. So this statement would evaluate as false: 5 > 10.

Now you can compare the two variables—but I also asked you to do something new:
print the word yes. Printing out a line is helpful when you’re coding, because some-
times the code isn’t doing what you think it should be doing. In this case, you want to
verify that x is indeed less than y. This is accomplished with the following statement:

print()

You can read the line as “print line”—because that’s what it stands for. If you want to
print a string like the word “yes,” you put the “yes” between the parentheses like this:

print("yes")

If you create your two variables and then evaluate them, your code should look like
figure 9.1.

 Remember back in chapter 6 where we talked about using the curly brackets to
separate chunks of code? You need them in your if statements so that Xcode knows

Syntax alert!
The print-line statement is going to be one of the best tools in your programming
career. There are times when you’re developing that you think you know what the
code is doing, but then you put a print statement in there and find out that it isn’t
doing what you thought. You should definitely remember this statement as you con-
tinue to learn the Swift language:

print()

84 CHAPTER 9 Go with the flow, man! Controlling the flow of your app
what chunks belong to which statements. That means your if statements will always
have the curly brackets like this:

if (statement){
}

Note that in this example, I’m only using the parentheses around statement for clar-
ity. You don’t need parentheses here. A normal if statement looks like this:

if statement {

}

Now, if you read the preceding code in English, you’re saying, “x is equal to 5, y is
equal to 10. If x is less then y, then print a line that says yes.”

 I find it helpful to start by thinking about what you want to do and writing
pseudocode (as you did earlier), then writing the code, and then verifying by trying
to read it in English to make sure the code matches what you intended to do. In this
case, the code matches exactly you we wanted it to do. But what if x wasn’t less than y?
What then?

9.3 If you do that OR if you… then I’m going to…
You saw the real-world “if” statement in action earlier. I gave these examples:

 “If you cut the grass, I’ll give you $5.00.”
 “If you cut the grass, I’ll give you $5.00, or if you cut the grass and edge the yard,

I’ll give you $7.50.”

And you’ve seen the example of a simple if statement: “If x is less than y, print yes”, so
let’s move on to the compound if statement, which will give you the ability to use the
“or” in the preceding example.

Figure 9.1 Comparing the values
of x and y, and printing the word
“yes” if x is less than y

Syntax alert!
if statements always need to be “chunked” up so that Xcode knows what belongs
in the if statement and what doesn’t. You use the curly brackets { and } to separate
the chunks from other chunks.

85If you do that AND you do this, I will…
 There are cases in programming where you might need to compare three different
variables. For example, you already have your variables x and y, but what if you threw a
z in the mix? Let’s start again by thinking about what you want to do and putting it in
pseudocode:

1 Create a variable named a, and set the value to 5.
2 Create a variable named b, and set the value to 10.
3 Create a variable named c, and set the value to 15.
4 Create a statement that says, “If a is greater than b OR if b is less than c, then

print out the word yes.”

Notice the last bullet is different than the previous example. First, you want to know if
a is greater than b (which it isn’t), or if b is less than c (which it is). So how do you add
an or in your code?

 The or in Swift looks a little weird, I’ll admit. You can’t type in the word or—you
need to use the symbols ||. The key for the || symbols is found on the backslash key \.
You press Shift-\. Press this key twice to create the or statement: ||.

 When I code my compound if statements, I like to separate them by parentheses
so they’re easier to read. My code in English will look like this: “(if statement one) or
(if statement two).”

 Try to create this compound if statement in your code now before looking at my
code. Figure 9.2 shows my code for this comparison.

How did you do? Does your code match my code? I hope so. Notice that I have two if
statements and I have the or operator in the middle (||).

 Now you know how to code a compound if statement using or ||. But what if you
want to do the same thing with and?

9.4 If you do that AND you do this, I will…
Let’s revisit the example we’ve been using: “If you cut the grass, I’ll give you $5.00, or if
you cut the grass and edge the yard, I’ll give you $7.50.” This time, we’re looking at the
and statement: “if (statement 1) AND (statement 2) then …”

 Let’s see how to create new variables as before and create your pseudocode:

1 Create a variable named d with a value of 5.
2 Create a variable named e with a value of 10.

Figure 9.2 If a is greater than b, or if b is
less than c, this should evaluate to true. I
used the or symbol (||).

86 CHAPTER 9 Go with the flow, man! Controlling the flow of your app
3 Create a variable named f with a value of 15.
4 Create an if statement to says, “If d is less than e AND e is less than f, then print

out the word yes.”

The and comparison is && (Shift-7 twice). Take a moment to think about this and then
change the code on your playground. Pay attention: this if statement is different than
the last one. d is less than f in this statement.

 Do you see the word yes printed on the right? (The \n after the word yes is a character
in the playground that denotes the next print line will start on a new line.) Figure 9.3
shows how I did it.

Notice this looks like the or statement earlier, but this time the two comparisons have
the and (&&) operator between them to denote that both must be true. Good job!
You’re coming along nicely, Grasshopper. Now you’re going to work on the else if
statement.

9.5 If you do this, else if you do this, else if you do this…
You learned in section 9.3 how to use the or || statement, but what if you have several
or statements that you want to evaluate? In this exercise, you’ll do the following in
pseudocode:

1 Create a variable named g with a value of 5.
2 Create a variable named h with a value of 10.
3 Create an if statement that says, “If g is less than h, then print a line that shows

the value of g is less than the value of h. In other words, I want to see a line that
says that 5 is less than 10.”

4 Create an else if statement that says, “If g is greater than h, then print a line
that shows the value of g is greater than the value of h. In other words, I want to
see a line that says that 5 is greater than 10—if that were the case.”

There are a few new concepts to discuss here.

Figure 9.3 I used the and operator between my if statements (&&) to print
“yes\n”.

87If you do this, else if you do this, else if you do this…
9.5.1 Printing a line with values of variables and strings

First of all, you need to print a line with actual variable values in them, and you don’t
know how to do that yet. This is pretty simple, and it’s useful to see what’s stored in
a variable.

 If you want to print the value of a variable, you can use

print(g)

which will print out 5. Remember how to print a string? It looks like this:

print("is less than")

If you want to print a line that prints the value of the variable and a string, you need
do the following:

print("\(f) is less than \(h))" \\-> this will print 5 is less than 10\n

The quotes are at the beginning and the end of the statement so that Xcode knows
the entire line should be printed out as a string, but the backslash and the parenthe-
ses around the variable tell Xcode to print the value stored in the variable, not the
variable name itself.

If you left out the backslash, you would see the following:

print("(g) is less than (h)" \\-> this will print (g) is less than (h)

Where did the \n come from?
When you use the print statement with strings, Swift Playgrounds appends \n to the
end of each line. This represents new line or carriage return. Don’t worry that it’s
printing something you didn’t want it to or expect.

Syntax alert!
Printing the values of variables is incredibly helpful while coding. Sometimes you
think a variable is a certain value when it’s something different. You can print the val-
ues of the variables in one of two ways:

 You can use the statement print(variable), which will print the value of
the variable.

 You can print a string around the variable to make it more human-readable. To
do this, you “escape” the variable by adding a backslash in front of it. This is
what it would look like: print("the value of x is \(x)").

You’ll find these print statements useful as you code, so it’s important that you
learn and remember how to use them. You can always look them up later, but it’s
faster to memorize it now!

88 CHAPTER 9 Go with the flow, man! Controlling the flow of your app
That’s one new bit that you didn’t know how to do. Let’s address the second bit.

ADDING AN ELSE IF STATEMENT

How do you add in an else if? Easy: you add else if. You would have something that
looks like this:

if (statement 1){
} else if (statement 2) {
}

Go back and try to complete the exercise:

 Create an if statement that says, “If g is less than h, then print a line that shows
the value of g is less than the value of h. In other words, I want to see a line that
says that 5 is less than 10.”

 Create an else if statement that says, “If g is greater than h, then print a line
that shows the value of g is greater than the value of h. In other words, I want to
see a line that says that 5 is greater than 10—if that were the case.”

Figure 9.4 shows what my code looks like.

How did you do? Did the line print out correctly? When will the second if statement
print? In this case, never. The way you coded the variables, g will always be 5, and h will
always be 10, and as we know, 5 is always less than 10.

 Let’s change the values of g and h so you can test the else if statement. Change
the value of g to a value larger than h to see what happens. The second line should
have printed out. Great job!

 Now you know how to use the following:

 if statements
 compound if statements using and and or
 else ifs

Here’s a question for you: what happens in the preceding code if g is equal to h? Let’s
address that.

Figure 9.4 Remember to use curly brackets around your if statements and to
“escape” your variable names in the print line (use the backslash to print the
value rather than the variable name).

89If you do that, otherwise…
9.6 If you do that, otherwise…
We need to address the final possible scenario with the if statement you created.
What happens if g and h are equal? You could add a statement to determine whether
they are equal, but in some cases, you want to know that neither of the first two state-
ments was true. I call this the “otherwise” scenario.

 Let’s start a new comparison with i and j. You’ll follow the previous example of
printing the lines when i is less than j or i is greater than j, but you’ll add a line that
says “The value of i is equal to the value of j.” In this case, you’re going to end your
series of if statements with the else block. This catches every other possible scenario,
so if the first if statement isn’t true, and the second if statement isn’t true, then do
something. It would look like this:

If (statement 1){
 Do something
} else if (statement 2) {
 do something else
} else {
 otherwise do this
}

Make sense? Try coding the entire statement and make i and j equal to 5. Then code
the final else statement yourself. Figure 9.5 shows what mine looks like.

How did you do? I hope you got that! I know we covered a lot with all these if state-
ments—but you’ll use them a lot in your career.

Figure 9.5 I set my variables both equal to 5 and created a final else statement
to capture all other conditions if i was neither greater nor less than j.

Concepts to remember
This chapter is full of both syntax and concepts. But the concept you really need to
remember in this chapter is controlling the flow of your application through the if
statement. The if statement is logical: “If a variable is this, do something—other-
wise do something else.”

90 CHAPTER 9 Go with the flow, man! Controlling the flow of your app
9.7 Summary
if statements are useful tools when you’re controlling the flow of your application.
You need to be able to handle different situations if one thing happens versus another
thing happening. You now have the if tool in your tool belt to help direct the flow.
You learned several variations of the if statement, including the basic if statement,
the compound if statement using or and and (|| and &&), the if else statement, and
the else (or otherwise) statement.

 Can you see how this will help change the flow of an application? Imagine you’re
creating a new contact on your iPhone. You enter all the information, and the app
pops up a message that says, “Contact already exists. Merge information?” Now that
you know about the if statement, behind the scenes the code might be saying, “If the
contact already exists, display this message to the user.” And when the user clicks Yes
or No to merge the two contacts, the code might say, “If the user clicked Yes, then
merge—otherwise, don’t merge.” Make sense?

 We’ll cover some more helpful statements that help control the flow of the applica-
tion in the next several chapters, so stay tuned!

Syntax alert!
Remember that the if statement is this:

if (comparison) {
Then do something
}

The if or statement is this:

if (comparison1) || (comparison2) {
Then do something
}

The if and statement is this:

if (comparison1) && (comparison2) {
Then do something
}

While you’re doing that…
You learned all about the if statement and how it can help control the flow of your
application in chapter 9. The if statement allows you to evaluate variables and
then execute different code depending on the outcome of the evaluation. Now you
know two ways to control the flow: by the user interacting with your app (by tapping
a button, for instance) and by the if statement.

 There are a lot of other ways to control the flow of your app, though. I’m going
to introduce you to a few more now. This chapter will talk about the while state-
ment and the switch statement, and you’ll write another app.

10.1 Using the while statement to control your code
How many times have you been doing something, and someone (usually a parent
or a spouse) says, “While you’re doing that, will you also do this?” I was hanging a
picture in the house the other day—a simple enough task. I got out a hammer, nail,

This chapter covers
 The while control statement

 The switch statement

 Writing a “How many fingers am I holding up?”
app
91

92 CHAPTER 10 While you’re doing that…
measuring tape, and level (I wanted it to be straight and centered). While I was doing
this, my wife came into the room, saw the tools, and said, “While you’re doing that, do
you mind measuring the height of the bathtub? I want to get a side table.” This is a
classic example of a control statement. I wanted to hang a picture, but the flow of my
work was changed by the “while” statement. Of course, I grumbled a bit to register a
small complaint, but I did end up measuring the tub.

 The while statement in Swift works in much the same way as my wife. The flow
looks similar:

while some condition {
 Do something
}

In my real-world example:

while you already have the tools out and you're using them {
 Measure the height of the bathtub
}

The while statement is straightforward and easy to use. I’ll show you how now.

10.1.1 The while statement in action

Create a new playground in Xcode by clicking File > New > Playground. I saved my
playground as Chapter10, but you can name yours whatever you like. In English, our
example would read like this: “While x is less than y, print a line that states that the
value of x is less than the value of y.” You learned how to create variables and print
lines in chapter 9, and we’re going to build on that knowledge here.

 Create two new variables (see chapter 9) named x and y. Set the value of x to 5 and
the value of y to 10. Let’s add a while statement now:

var x = 5
var y = 10
while x < y {

}

These statements are pretty straightforward, but in case you need a refresher, you’re
creating a variable named x and setting the value equal to 5; then you’re creating a
variable named y and setting its value equal to 10. Then you see your new while state-
ment, which says “While x is less than y,” and you have open and close curly brackets
to show the “chunk of code” that should execute when x is less than y.

 There isn’t any code in there right now, so the playground doesn’t do anything yet.
You’ll add your print line now to print out the line of code. You learned how to write
the print line in section 9.2, so refer back if you need a refresher on the syntax. Add
the following line between the two curly brackets:

print("\(x) is less than \(y)")

93Using the while statement to control your code
This says to print the value of x, then print the words “is less than,” and then print the
value of y. If you add this in now, you’ll notice that Swift Playgrounds begins executing
it immediately, and the right side of the playground keeps increasing the number of
times the statement is executing with no end in sight. This is called an infinite loop.
Infinite loops can be bad! Almost every programmer has most likely accidentally cre-
ated an infinite loop in their lifetime. An infinite loop is a block of code (like your
print line statement) that continues to execute with no way out. It’s like the fun
house mirrors at a carnival, where there’s a mirror image of a mirror image of a mir-
ror image, and you see yourself a thousand times over because of the placement of the
mirrors. The only way to stop seeing all those images of yourself is to step away from
the mirror. In this case, there’s no way for the print line of code to stop executing. x
will always be less than y because 5 is always less than 10. To fix this, you need to
either increment x (add to it) so the statement will not always be true, or you need to
decrement y (subtract from it) so the statement will not always be true. Let’s incre-
ment x, shall we? Add the following line of code under the print line:

x = x + 1

This line says that x should now equal the value of x plus 1. The first time this state-
ment runs, x will be 6, the second time it runs x will be 7, then 8, and so on. Your
print line statement should now run five times and print out the following in your
console:

5 is less than 10
6 is less than 10
7 is less than 10
8 is less than 10
9 is less than 10

That’s pretty neat, isn’t it? You only needed to write your print line statement once,
and it printed out five times.

 Now you know how to increment x, so let’s see how to change the execution code to
decrement y instead. This should be intuitive. You change the line to read as follows:

y = y – 1

Your print line still writes out five times, but now it shows the following:

5 is less than 10
5 is less than 9
5 is less than 8
5 is less than 7
5 is less than 6

Again, you only changed one line of code, and the print line executed five times.
That’s pretty amazing that you could accomplish so much with so little code.

94 CHAPTER 10 While you’re doing that…
10.1.2 Wrapping up the while statement discussion

You learned the while statement, which can be boiled down to the most simplistic
statement of “Perform a set of statements while a condition is true.” Or, said another
way, “Perform a set of statements until a condition is false.”

 When would you use a while statement in a program? Imagine you’re writing a
program and you have two variables like x and y from our previous example. This
time, though, you have no idea what the values are—you only know they’re two num-
bers. You also know that you need to do something while x is greater than y. In our
example, you could probably guess that you needed to print the line 5 times because
the difference between 5 and 10 is 5—regardless of whether you add 1 to 5 or subtract
1 from 10. But what if I gave you two different numbers?

 Let’s assume I gave you 1,024 and 978 and told you to do something while one was
greater than the other. You could do the math to see what the difference is between
the numbers and then do something that many times, or you could “do while” one is
less than the other and let the program figure out the difference. If you update your
code with these two numbers, you’ll immediately see that the difference is 46. That
was so much easier than writing out a print line 46 times, wasn’t it? You wouldn’t want
to use the while statement to do the math mentioned here (1,024 – 978); there are
much easier ways to do that.

10.2 Turn around now switch (remember Will Smith?)—the
switch statement
The next control statement that we’re going to talk about is called a switch statement.
If you think back to section 9.1, when we talked about the if statement, we evaluated
certain conditions by saying something like “If x is less than y, or if y is less than z.” What
if I wanted to know whether a number was prime or not (prime numbers are those that
can’t be divided by any number other than 1)? I could write a lot of if statements to say
something along the lines of “if x==3, or if x==5, or if x==7” and so on, but that would
be a lot of if statements. There’s a much easier way to accomplish this check, and that is
with a switch statement. The switch statement allows you to compare a value to multi-
ple other values. The essence of the switch statement is as follows:

switch "the value to consider" {
 case "value 1":
 "do something"
 case "value 2":
 "do something else"
 default:
 "otherwise do this"
}

The switch statement evaluates a value and then determines which case it falls into.
case is a different way of saying “equals to.” You can read the preceding lines and say
that if the variable is case 2 or you can say if the variable is equal to 2.

95Turn around now switch (remember Will Smith?)—the switch statement
 Let’s see an example to demonstrate this switch statement. You’re going to check
to see whether a number is a prime number. Create a variable named a and set the
value to 11. 11 is not divisible by any number other than 1, so you know it’s a prime
number. Now create a switch statement that looks like this:

var a = 11

switch a {
case 1, 3, 5,7,11,13:
 print("value is a prime")
case 2,4,6,8,9,10,12:
 print("value is not a prime")
default:
 print("value is not within the range")
}

With these few lines of code, you were able to evaluate whether a was prime by com-
paring it to 14 different numbers. Imagine trying to do these evaluations with an if
statement—you would have to write a lot more code than you would if you used a
switch statement. The preceding switch statement uses the keywords switch, case,
and default. The word switch tells the compiler which statement you’re evaluat-
ing—in this case, the variable a. The next keyword, case, tells the compiler what to
evaluate the variable a against. You can have as many case statements as you want. You
aren’t limited to two or three. Finally, the default statement says that if none of the
cases above evaluate to your variable, then perform that final statement. If your cases
don’t handle all possible outcomes, you’ll get a compile error. The switch statement
uses the default keyword, which behaves much like the if else statement. You can
see how this works now by changing the value of a to different numbers. Try changing
it to 9 or 24 to see how the statement flows.

10.2.1 Assignment

Try this assignment without looking at my code first to see if you can do it. You’ll
write another switch statement, but this time you’re going to use directions. Create
a variable named heading and set its value to "east". Now create a switch state-
ment evaluating the heading variable and create a case for each different direction:
east, south, north, west, and default. Question: Does it matter what order you put
the cases in? No, it doesn’t. You can put north first or last and the code will still exe-
cute the same. The only case that must go last is the default case—it must be the last
case in your switch statement or you’ll get an error. For each of your cases, print a
line that says "heading north", "heading south", and so on for each of the cases.
Ensure that the case matches the print line so if you’re evaluating the heading
and it is "east", your code should print "heading east". Add a default statement
that prints a line and says "Where are you headed again?". Do this now, and I’ll
wait here.

96 CHAPTER 10 While you’re doing that…
 Okay. How did you do? Here’s how I did it:

var heading = "east"

switch heading {
 case "north":
 print("heading north")
 case "south":
 print("heading south")
 case "east":
 print("heading east")
 case "west":
 print("heading west")
 default:
 print("where are you headed again?")
}

Now change the value of the heading variable to the different cases and make sure it
works. Change the heading variable to "north" and make sure it prints the "heading
north" line. Change the heading variable to "East" with a capital E; what happens?
The strings are case sensitive, so "east" doesn’t match "East" and the default line
prints. This is important to remember in your programming career: strings are case-sen-
sitive. You may spend a long time trying to figure out why your code isn’t working the
way you expect it to, only to find out that the string you thought you were evaluating
was uppercase.

 The code that you wrote evaluated the heading variable and then selected which
case was appropriate and executed the code in that block—which in this case printed
a line. If the value of the heading variable was "north" in the code, then the cases
"south", "east", and "west" never would be evaluated. The code skips right over
them because it already has a match to the first case. I’ll show you a way to continue
evaluating the switch statement in chapter 11 after we talk about a few other con-
cepts. The switch statement is powerful, and you can do a lot with it. I’ve only given
you a high-level overview here, but you’ll learn more about it in later chapters.

 I don’t like to go too long without writing an app, and I’m sure you are probably
ready now, too. Let’s write an app now and put what you’ve learned into practice.

10.3 How many fingers am I holding up?
Do you know the game where you hold your hand behind your back and ask someone
to guess how many fingers you’re holding up? You’re going to write an app to simulate
that game now—only your app will be the one holding the numbers behind its back
while you guess the number. The WhichNumber app will randomly pick a number
between 1 and 5, and you have to guess what the number is. If you’re right, the app
will tell you that you guessed correctly, and if you’re wrong, it will tell you to guess
again. Your final app will look like figure 10.1.

97How many fingers am I holding up?
 The pseudocode for the app looks like this:

1 Add all the components to the story-
board.

2 Make the storyboard connections.
3 Create a variable to capture the number

guessed: numberGuessed.
4 Change the numberGuessed variable when

the stepper is tapped (don’t worry—I’ll
explain stepper in a moment).

5 When the Guess! button is tapped, cre-
ate a random number and compare it to
the numberGuessed variable.

6 Update the view to tell the user whether
they were right or wrong.

10.3.1 Step 1: Add all the components to
the storyboard

Start by creating a new project and name it
WhichNumber. Then follow these steps:

1 Once the app loads, click the Main.storyboard and drag a label to the top.
Double-click it, and change the text to "How many fingers am I holding up?".

2 Drag another label and drop it right under the first one. Double-click it, and
change the value to 3.

3 The next component you’re going to add is new to you—it’s called a stepper. It
steps the value up or down when the user taps the + or - buttons. The stepper
can be seen in dialog boxes where a user can change the number of copies to
be printed, for example. Type stepper in the Object Library search bar (at the
bottom left of the Xcode window), and you should see the stepper control as
the only option. Drag it onto the storyboard below the 3 label.

4 Grab a button from the Object Library, drop it under the stepper, double-click,
and change the title to "Guess!".

5 Add another label under the button, and change the text to "are you right?".
6 Make sure your storyboard matches mine (in figure 10.1).

Time to start making connections.

10.3.2 Step 2: Make the storyboard connections

Now you need to begin connecting the components on your storyboard to the code.
Do you remember how to do this? (You did it in chapter 3, but I’ll remind you
here.) Start by changing the Xcode view to the Assistant Editor by clicking the but-
ton in the top-right corner that looks like two interlocking rings. This will keep the

Figure 10.1 The WhichNumber storyboard
will look like this when finished.

98 CHAPTER 10 While you’re doing that…
storyboard open on the left side of your screen but will also open the ViewCon-
troller on the right side of your screen. If you need more real estate, hide the Navi-
gator panel by clicking the button on the top right of Xcode that looks like a square
with a bold vertical line on the left. (This should all be familiar to you, but if not,
refer back to chapter 4.)

 You made connections between the storyboard and the code back in chapters 5
and 6 when you created the button app. Follow these steps:

1 The first connection you’re going to make is between the label that you changed
to 3—so Control-click the label and drag it to the ViewController. Leave the
connection type as Outlet and name it "numFingers".

2 Do the same with the stepper control, but name the outlet "stepperControl".
3 Do the same again with the "are you right?" label, but name the outlet

"resultLabel". You’ll use this label to tell the user whether or not their guess
was correct. Make this label wide by dragging the ends of the label so it fits
within the window. Using the Attributes Inspector, center the label within the
space (click the label in the storyboard, open the Attributes Inspector panel,
and click the second button in the Alignment options (fourth from the top).

Next you need to connect the button actions to the code, which you also did in chap-
ter 5. You want the code to do something when the button is clicked and when the
stepper is tapped:

1 Control-click the Guess! button, and drag it to the ViewController, but this time
change the connection type from Outlet to Action and name the action guess-
ButtonClick.

2 Do the same for the stepper: Control-click the stepper, drag it to the ViewCon-
troller, change the connection type to Action, and name the action stepper-
Clicked. Check your code and make sure you have the following connected:

– 3 label outlet connected—@IBOutlet weak var numFingers: UILabel!
– "are you right?" label outlet connected—@IBOutlet weak var resultLabel:

UILabel!

– stepper control label outlet connected—@IBOutlet weak var stepperControl:
UIStepper!

– stepper control action connected—@IBAction func stepperClicked(sender:
UIStepper) {}

– Guess! button action connected—@IBAction func guessButton(sender:

UIButton) {}

If you have all the connections made, run your code to make sure it’s still working. If
you created connections in error, you’ll need to delete them. Refer back to figure 5.11
in chapter 5 if you don’t remember how to delete them.

99How many fingers am I holding up?
10.3.3 Step 3: Create a variable to capture the number guessed:
numberGuessed

You need to create a variable that can store the number that the user guessed. This is dif-
ferent from the label you created on the storyboard—the label is text to show the user
what they guessed. You need an Int variable to store a number. Remember that you can
store variables as different types, such as an Int for whole numbers (numbers without
decimals), a String for words or even sentences, and a Double for numbers with deci-
mals. The numberGuessed variable will start with the number 3, since that’s what the
label states, but you could start (or initialize) the variable to any number you wanted.

 It is important, though, to make sure that the variable you’re using in the code is
in sync with the label that you’re showing the user. You’ll add the variable at the top of
your class under the ViewController line. Start by adding the keyword var to denote
that this is a variable, then add the name of the variable (in this case, numberGuessed,
and then set the value equal to 3. The top of your code should look like this:

class ViewController: UIViewController {
var numberGuessed = 3

10.3.4 Step 4: Change the numberGuess variable when the stepper
is tapped

Now you need to increase or decrease the variable numberGuessed when the stepper is
clicked. Can you guess where this code needs to go? If you guessed in the stepper-
Clicked action, you’re right. You’ll change numberGuessed based on the value that
the stepper tells us. But wait! What’s the value of the stepper? You didn’t set that any-
where yet, so you need to do that before you can change the value.

 Let’s go back to your storyboard for a minute and click the stepper control. In the
Attributes Inspector panel, notice at the top that you can set the minimum and maxi-
mum values for the stepper, as well as the current value and the step value. The values
that you need to put in here should be intuitive to you, but let’s walk through them.

 The minimum value is going to be the smallest number you can guess. In this
case, you want to let the user guess that you aren’t holding any fingers up, so set the
value to 0. The maximum number you can guess is five, unless you’re the six-fingered
man who commissions swords and then doesn’t pay.1 You set the current value of
your numberGuessed variable to 3, and you set the label on the storyboard to 3, so set
the current value of the stepper to 3 so you’re consistent. You want the user to be
able to guess each of the numbers between 1 and 5, so the step should be 1. This
means your stepper will increase by 1 each time the + is tapped and decrease by 1
each time – is tapped.

 Now that you’ve set up the stepper, let’s go back to the code so you can capture the
value that the stepper is incrementing and decrementing. numberGuessed should

1 “Hello, my name is Inigo Montoya. You killed my father—prepare to die,” from the classic movie The Princess
Bride. If you haven’t seen it yet, go see it. The book is awesome, too.

100 CHAPTER 10 While you’re doing that…
equal the value of the stepper, so add the following code in between the two brackets
of the stepperClicked action:

 numberGuessed = stepperControl.value

This does exactly what you want it to do: It gets the value of the stepperControl and
sets it to the numberGuessed, but there’s an error in the code. The error says you “can-
not assign a value of type ‘Double’ to a value of type ‘Int’.” We talked about data types
back in chapter 8, so you probably remember that a Double is used to store values with
decimal points, whereas Ints are used to store whole numbers. You have two options
here: you can either change the numberGuessed data type to Double, or you can create
a new Int using the value of the Double. That’s a heavy sentence, right? The details
about why you can do this are too deep for this book, but know that you can construct
a new Int by using the Double in the constructor (or how the Int is made). Remem-
ber that the learning strategy of this book is to give you enough information to get you
coding but not to overwhelm you.

 Let’s talk about the how instead. This is the easy part. To get rid of the error, you
need to create a new Int using the Double and assign that value to the number-
Guessed. To do this, add Int in front of stepperControl.value and put parentheses
around what you’re changing. Your code should look like this:

numberGuessed = Int(stepperControl.value)

Now you want to update the label on your storyboard to match the numberGuessed
and the stepper. Add the following line right below:

numFingers.text = "\(numberGuessed)"

This line sets the text of the numFingers label to value of numberGuessed. You added
the quotes around the numberGuessed so you could use the value of the variable in
your String. If you don’t put the backslash and the parenthesis around the variable
name, it will print the word numberGuessed. You must put the backslash and the paren-
theses around the variable if you want to print the value stored in the variable. Now if
you run the code again, pressing the stepper up and down should change the label to
the different numbers. Pretty cool, huh?

 Next you’ll hook up the Guess! button.

10.3.5 Connecting the Guess! button

Step 5 of the pseudocode says that you should create a random number and then
compare it to what the user guessed when the user tapped the Guess! button. It
should be easy for you to figure out where this code goes now because you’ve coded
several actions before. Add your code between the curly brackets of the @IBAction
func guessButton(sender: UIButton) {} function.

101How many fingers am I holding up?
 The first thing you need to do is create a random number. This code is most defi-
nitely more than you need to understand right now, so copy it down as is:

let randomNumber = Int(arc4random_uniform(6))

Some of that should look familiar to you. The let keyword indicates that you’re creat-
ing a constant, or a value that you can’t change once it’s set. You named the constant
randomNumber and then set it equal to a random number that was cast to an Int. The
(arc4random_uniform(6)) is a function that returns a random value between 0 and 5.
In Swift, counting always starts with 0 when you’re programming, so the 6 is inclusive
of 0 and 5.

 Part of being a good programmer is knowing which tools to use when you need
to do something. Just as a plumber knows which tools to use for a specific problem,
you’ll learn to determine which types of control statements will work best for certain
situations. You might be trying to figure out how to create a switch statement or a
while statement to compare the random number to the guessed number. In this
case, the simplest way to compare the two numbers is an if statement. Some pro-
grammers spend a lot of time trying to figure out the most elegant way to solve a
problem when sometimes the simplest tools work best. I recommend solving the
problems in the easiest possible way. Then, once it’s working, you can go back and
try to make it more “elegant.” In this case, the if statement is the easiest way to com-
pare the two numbers.

 You need to create an if statement that compares the random number to what the
user guessed and then tells the user whether they were right or wrong (pseudocode
step 6) by updating the resultLabel. It would also be nice to show the user what num-
ber they guessed and what the number was so they know you aren’t cheating.

 Here’s what my code looks like for the if statement:

@IBAction func guessButton(sender: UIButton) {
 let randomNumber = Int(arc4random_uniform(6))
 if numberGuessed == randomNumber {
 resultLabel.text = "Congrats! I was holding \(numberGuessed) fingers up!"
 } else {
 resultLabel.text = "You guessed \(numberGuessed), but it was

\(randomNumber)."
 }
 }

Run your code in the Simulator and see if it works. You can click the stepper button all
the way up to 5 and all the way down to 0 and click the Guess! button, and it should
display the results. You can guess as many times as you want, and each time the app
will generate a new random number between 0 and 5, compare it to the number you
guessed, and tell you the answer. Pretty cool!

102 CHAPTER 10 While you’re doing that…
Figure 10.2 shows the full listing of my code. You can download the entire project
from www.manning.com/books/anyone-can-create-an-app or from GitHub (https://
github.com/wlwise/AnyoneCanCreateAnApp).

Figure 10.2 The entire ViewController code for the app. Check your code against mine if your app isn’t working.

Syntax: example
You learned some great syntax in this chapter:

 The while statement—while comparison { do something}
 The switch statement—switch variable { case: case to compare}

https://www.manning.com/books/anyone-can-create-an-app
https://github.com/wlwise/AnyoneCanCreateAnApp
https://github.com/wlwise/AnyoneCanCreateAnApp

103Summary
10.4 Summary
In this chapter, you learned about the while statement, the infinite loop—which is
generally not a good thing—and switch statements. You also built an app that put
your if statement knowledge to good use. You’re going to learn about how to store
multiple values with arrays in the next chapter, so stay tuned.

Concepts to remember
 The while statement tells your application to perform a set of statements

until a condition becomes false.
 The switch statement can help you reduce the comparisons you need to do

if you were using an if statement.
 Infinite loops are generally not a good thing and can use all the memory in a

device until the app is shut down.

Collections
Almost every app you’ll ever write will need some way to store data. You already
learned about storing data in variables in chapter 8, but sometimes you need to
store several pieces of data together in a grouping of some sort. This is where the
idea of collections comes in—a collection of values that can be stored together. Imag-
ine if you went to the grocery store and had to buy one egg at a time instead of a
nice dozen packaged together. It would be a bit annoying, for sure. This chapter
covers two different collection types (egg cartons) to store your data.

11.1 Quantum arrays: not really, but that sounds
scary, right?
The first kind of collection that we’ll discuss is called the array. Let’s go back to the
egg carton example—but this time, the eggs are numbered 0 through 11 (remem-
ber, in the programming world, counting starts with 0). The eggs were put in the

This chapter covers
 Arrays

 The for statement and loop

 Dictionaries

 Creating a state-name lookup app
104

105Quantum arrays: not really, but that sounds scary, right?
carton in order, starting with egg 0 and ending with egg 11. The only way to get the eggs
out of the carton is also in order. If you want to start cooking and you need an egg, you
must start with the first egg—or to write it in a programming way, you want egg[0].
When you want the second egg, you get egg[1], and so on.

 Let’s assume for a moment that the seventh egg (egg[6]) in the carton appears to
be slightly larger than the rest. You have a recipe that is precise and you want to use
that slightly larger egg. I said you can only get the eggs out in order, so does that mean
you have to pull eggs 0 through 6 out to get egg 7? No! If you know the exact number
of the item you want, you can get that one out by itself. It’s only when you don’t know
the exact number of the one item that you want that you have to go in order to pull
them out. In this case, you want egg[6] from the carton.

 What if you wanted to store some cheese in your egg carton? That wouldn’t make
sense because the storage type is for eggs, not cheese. The same applies to arrays. You
can only store one kind of data type in an array. (You learned about data types in chap-
ter 8, in case you need a review.) The egg carton is specific and can only store one type
of object, and in this case we said it was eggs.

 You’ll create an array now so you can see how easy they are. Create a new play-
ground and save it (I saved mine as Chapter11). Now make a list (array) of tools that
you might need to paint a wall. Your shopping list array will hold the names of items
that you need to buy, and the names will be stored with the data type String. The first
part of the array statement should be familiar to you by now. You’re going to create a
variable named shoppingList. Add the following to your playground:

var shoppingList = ["paint", "painter tape", "roller", "drop cloth"]

The preceding statement creates an array named shoppingList and adds four
items to the list. Notice that there’s nowhere on that line that says the word array,
but you can tell this is an array because it has the square brackets [and] around
the strings. When you see these brackets, you know it’s a collection. You can see that
all the types added are of type String. You can tell pretty clearly that there are four
items in the list, but what if you didn’t know exactly how many were in there? You
could easily check by getting the count of the array as follows: shoppingList.count,
which will return a number as an Int. Check it on your playground by printing out
the count:

print(shoppingList.count)

You’ll see that Xcode returned the number 4—which is great! How easy is this? Now
you know that "roller" is stored in the third position (or index) of 2 (remember,
you start counting from 0). If you wanted to get that item and print it out, you would
do the following:

print(shoppingList[2])

106 CHAPTER 11 Collections
The preceding statement says the following: “Print the item stored in index 2 in the
shoppingList array.” You should see "painter tape" printed on the right side of
the playground. Now you have a shopping list of four items, but that’s hardly worth
going to the hardware store for, so add a few more items to the list. Add a pan:

shoppingList.append("pan")

You can check the count to make sure you now have five items in your array:

print(shoppingList.count)

The append statement adds an item to the end of the list, and the count of the array is
increased by 1.

 Back to the egg example: I said you couldn’t store cheese in the egg carton
because they’re not the same type of object. The same applies to arrays. Try to add an
Int (in this case, the 5 is an Int) to the array so you can see what kind of error is pro-
duced in the playground:

shoppingList.append(5)

You can see the big red exclamation point that shows up on the left-hand margin. If
you click it, you’ll see an error message that says, “Cannot invoke append with an argu-
ment type (Int).” This is telling you that you can’t append an object of type Int to an
array of Strings. Makes sense, right?

 I talked to my wife, and she said she had already bought a pan, so I need to remove
that item from my list:

shoppingList.removeLast()

Great! Now I’m back to having four items on my list. What if I wanted to print out
each item on my list? I could use a print() statement for each item, or I could use
what’s called the for statement.

Syntax alert!
Arrays are used to stored several of the same kind of objects in a collection. They
are created:

var arrayName = [item1, item 2, item3]

You can add an item to an array:

arrayName.append(item4)

You can remove the last item from an array:

arrayName.removeLast()

107Dictionaries
11.2 The for statement and loop
The for statement is used when you want to iterate through an array—move through
the values in the array one item at a time. The syntax is straightforward: for item in
array { }, where array is the name of your array and item is the variable name that you
want to use for the items. An example would make this clearer. Add the following to
your playground:

for item in shoppingList {
 print(item)
}

This for statement is iterating through your shopping list starting with index 0 (the
first item in the array). It assigns the value of the item stored to the variable named
item and then prints out the item. It prints this out for each item in your array. This is
much easier than writing four print() statements. You can name the variable any-
thing you want. Try changing the word item to x, for example:

for x in shoppingList {
 print(x)
}

You’ll notice that nothing changed—you got the exact same results. You can use any
variable name in the for statement.

11.3 Dictionaries
The next kind of collection type we’ll discuss is the dictionary. Dictionaries are exactly
what they sound like. You have a key and you want the corresponding value—or you
have a word and you want to know the definition. Where the array uses indexes ([0],
[1], and so on) for the objects, dictionaries use keys. The syntax looks like this:

var nameOfDictionary = [key : value, key : value]

Again, let’s look at an example to make this clearer. Assume you want to know state
abbreviations and the state names. You’ll create a dictionary so you can store them for
easy lookup later:

var states = ["GA": "Georgia", "WA": "Washington"]

Syntax alert!
The for statement is used for iterating through an array. The for statement looks
like this:

for variableName in arrayName {
 do something
}

108 CHAPTER 11 Collections
This stores two key/value pairs in the dictionary named states. As with the array, you
might want to know how many values are stored in the dictionary. The syntax should
look similar:

print(states.count)

And if you want to add a key/value pair to the dictionary, do the following:

states["OR"] = "Orogon"

Now if you print out the count, you’ll see a total of three states:

print(states.count)

I meant to have the value of "OR" be "Oregon", so update that:

states["OR"] = "Oregon"

The value for key "OR" has now been updated to "Oregon". Now make sure it was
updated by printing out the value of key "OR":

print(states["OR"])

You may notice that Swift Playgrounds is showing a yellow triangle warning. This is
because you’re printing the value of the key OR, and Swift Playgrounds doesn’t know
what kind of variable this is. It will still work, but that yellow triangle is annoying. Click
it to see what Xcode tells you: “Expression implicitly coerced from ‘String?’ to Any.”
That sounds deep, doesn’t it?

 You’re asking Swift Playgrounds to evaluate and print out the value of the key OR
without knowing what might be stored in there. Swift Playgrounds isn’t sure how to
handle that, so it gives you three suggestions. The first is to provide a default value.
You can provide a default value to print out in case nothing is stored in the OR key. To
do so, change your code to

print(states["OR"] ?? "no state")

The ?? operator is a shorthand way of saying, “If there isn’t a value stored for the OR
key, use “no state” instead.

 The second option available to you is to force unwrap the value. Use the Force,
Luke! Okay—not that Force; but you can’t fault a girl for trying. You can force unwrap
a variable by using the ! symbol, which tells Xcode that you’re absolutely sure an
appropriate value is stored in the variable and that it isn’t nil. You can do this by add-
ing the following:

print(states["OR"]!)

109Dictionaries
You should use this only when you’re positive the variable has a value and isn’t nil;
otherwise, your app will crash and burn when you run it (okay, it will throw an excep-
tion and stop working, but “crash and burn” sounds more exciting).

 The third option is to cast the value to “As Any”—to tell Swift Playgrounds to
treat the variable as the nonspecific type Any. This lets Xcode and Swift Playgrounds
know that the variable type could be any of the supported types. This approach is
called casting or typecasting, and you’ll learn more about it in chapter 19. The code
looks like this:

print(states["OR"] as Any)

You don’t use the print statement often when creating real iPhone or iPad apps—it’s
used mostly for debugging and testing, to check the values stored in variables. You do
need to know and remember how to handle variables when Xcode may not know what
type a variable is or whether it’s nil.

 Let’s get back to some other states in the example. Next, check to see whether you
added Indiana into the dictionary:

print(states["IN"])

You’ll see that Swift Playgrounds printed the word nil, which means there’s no key or
value (key/value pair) for the key "IN". If you want to remove a value from the dic-
tionary, you could set its key to nil, which would delete the key/value pair from the
dictionary. Remove the misspelled "Oregon" from the dictionary:

states["OR"] = nil

If you print out the count of the dictionary again, you’ll see that you’re back to two
key/value pairs in the dictionary. If you try to print the name of "OR" again, you’ll see
that nil is returned:

print(states["OR"])

You were able to print all the values in the shoppingList array earlier by using the for
statement, and you can do the same type of thing with the dictionary. You’ll do that
now with the following syntax:

for (dictionaryKey, dictionaryValue) in dictionaryName {
 do something
}

Go back to Swift Playgrounds, and add the following:

for (stateAbb, stateName) in states{
 print("\(stateAbb) : \(stateName)")
}

110 CHAPTER 11 Collections
You should see the state keys and values printed out:

WA : Washington
GA : Georgia

Remember that you can use any variable names in the for statement, but I used
stateAbb and stateName to make what I’m doing easy to remember. I could use x and
y, but that doesn’t describe the key/values in the dictionary, and if I put the code away
and come back in a few months, it would be much more helpful to have descriptive
variable names.

 This might seem like a lot to take in, so next you’ll write an app to see how useful
dictionaries and for statements are.

11.4 Creating a state name lookup app
You’re going to create an app that allows the user to type in a state name and the
app will display the abbreviation of the state. If the state name isn’t found, the app
will display a message that the abbreviation couldn’t be found. The pseudocode
looks like this:

1 Create an app named StateAbbreviationLookup.
2 Add the UI components to the storyboard: a descriptive label, a text box for the

user to type into, a lookup button for the user to tap, and a result label to dis-
play the state name.

3 Connect the UI components to the code.
4 Create the dictionary of state abbreviations and names.
5 Create the code to look up the state abbreviation when the user types in the

state name.

Let’s get started.

Syntax alert!
You can create a dictionary:

var dictionaryName = ["keyName" : "keyValue1", "keyName2" : "keyValue2"]

You can get the number of key/value pairs in the dictionary by getting the count:

dictionaryName.count

You can add to the dictionary:

dictionaryName[newKey] = newValue

You remove an item from the dictionary by setting the key to nil:

dictionaryName[keyToDelete] = nil

111Creating a state name lookup app
11.4.1 Step 1: Create an app named StateAbbreviationLookup

This should be pretty familiar to you by now, but click File > New > Project and select
the SingleViewApplication template. Leave the default settings in the New Project dia-
log when that appears. Name your project StateAbbreviationLookup and save it into
your dev folder.

11.4.2 Step 2: Add the UI components to the storyboard

In Xcode, click the Main.storyboard so the Standard Editor shows the storyboard in
the center panel. Drag a label from the Object Library to the top of the storyboard, dou-
ble-click the label, and change the text to “Enter the State Name:”. Now drag a text box
and put it right under the label. Drag a button to the storyboard, and place it right
under the text box. Double-click it, and change the text to Lookup State Abbreviation.
Grab one more label and put it right under the button. Double-click it, and change the
text to Result. Make sure your result label is long enough to handle the names of your
states. Hover your mouse pointer over the end of the label until the resizing squares
appear on all sides, and then drag it out so it’s longer, as shown in figure 11.1. Your
storyboard should look similar to figure 11.2.

11.4.3 Step 3: Connect the UI components to the code

The next step is to wire the components up to the code, as you’ve done in each of the
apps you’ve created since chapter 3. Start by changing the Xcode layout to the Assistant
Editor (the button on the top right of Xcode that looks like two interlocking rings).
Control-click the text box, drag it to the ViewController on the right side of the screen,
and connect it using an outlet named stateTextField, as shown in figure 11.3.

Figure 11.1 Resizing squares around
the label let you change its size.

Figure 11.2 Layout of the StateAbbreviationLookup
app after pseudocode step 2

112 CHAPTER 11 Collections
Wire up the result label using an outlet also, but name it resultLabel. Now wire up
the action for the app. You’ll need to capture the action from the button, so Control-
click the button, drag over to the ViewController, and change the connection type to
Action. Name the action lookupClicked.

 Notice that I try to name my variables and connections to be consistent with what
they are or what they do. You can name your variables and connections anything you
want, but the closer you name them to what they do, the easier it will be to understand
your code.

 That’s all the connections you need from your storyboard to your ViewController,
so switch back to the Standard Editor (the button at the top right of Xcode that looks
like left aligned text) and select the ViewController in the Navigator panel so it’s
showing in the center panel.

11.4.4 Step 4: Create the dictionary of state abbreviations and names

The next step from our pseudocode is to create a dictionary with the state abbrevia-
tions and names. I’m just going to create a few state dictionary entries, but you can
create as many as you’d like from whichever states you want. If you don’t know your
state abbreviations, you can use mine here or look them up at http://pe.usps.gov/
text/pub28/28apb.htm.

 Add the following code to your ViewController class, under the line class View-
Controller: UIViewController {:

var stateDict = ["Georgia" : "GA", "Washington" : "WA", "North Carolina" :

➥ "NC", "Oregon" : "OR", "Indiana" : "IN"]

This creates a dictionary named stateDict and adds five key/value pairs for states.
Remember, here’s the syntax:

var dictionaryName = ["key1" : "value1", "key2" : "value2"]

Next, you’ll create the code that will take the key that the user entered, search your
dictionary for the key, and display the value of the state abbreviation if there is one.

Figure 11.3 Wire the text box to the code
with an outlet named stateTextField.

http://pe.usps.gov/text/pub28/28apb.htm
http://pe.usps.gov/text/pub28/28apb.htm

113Creating a state name lookup app
11.4.5 Step 5: Create the code to look up the state abbreviation when
the user types in the state name

The first thing you want to do is to look up the key that the user entered to see if it’s in
the dictionary. As you’ll remember from chapter 7, you know how to get the value
from the text box that the user entered the state key into by using codeText-
Field.text. You’ll create a new variable named dictionaryKey and set it equal to
the value that the user entered into the text field:

let dictionaryKey = stateTextField.text

Now check the dictionary to see if that value is in there (add this to the lookup-
Click() function):

if let stateAbb = stateDict[dictionaryKey!]{
 resultLabel.text = stateAbb
}

This statement looks a bit different from the if statements you’ve seen before. Ignore
the if at the front of the statement, and it might look more familiar. You’re first creat-
ing a constant variable name state abbreviation (let stateAbb =) and then setting it
equal to the value that will hopefully be returned from your dictionary lookup
(stateDict[dictionaryKey!]). The dictionary lookup should look familiar since you
did it in the preceding with the print(states["OR"]) code.

 Now, if you add the if statement back into the line, you’re saying if the stateAbb
variable that you just created isn’t nil when you look up the value from the dictionary
(as you did earlier when you tried to print the abbreviation of Oregon after deleting
it). In English, we’re saying “If the state abbreviation for the key that the user typed in
isn’t nil, then set the result label to the abbreviation.” Make sense? Chapter 20 covers
this concept in more depth.

 What if the user enters a value that isn’t in the dictionary? Add an else to your if
statement to respond to that situation:

if let stateAbb = stateDict[dictionaryKey!]{
 resultLabel.text = stateAbb
 }else{
 resultLabel.text = "No state abbreviation found"
 }

Now this else statement should display the message that no state abbreviation was
found for the value that the user entered. Try it now to make sure it works. Remember
that strings are case-sensitive, so you have to type in the state name in camel case
(camel case is another coding term meaning you use uppercase for the first letter of
words all squished together—thisIsCamelCase). Did that work for you? Great!

114 CHAPTER 11 Collections
It isn’t good practice to make the user type in a capital for the first letter—it’s better to
just not give them an option, so you need to fix that. Go back to the storyboard and
select the text box so it’s active. Now on the Attribute inspector on the right side of
Xcode (the button that looks like a big down arrow—if you need a refresher on
Xcode panels, go back to Chapter 4 for review). If you look about halfway down the
Attributes Inspector panel, you’ll see a drop-down for Capitalization. Click it to see
the options and choose Words, as shown in figure 11.4. Run your app again. You
should see now that the user doesn’t need to make the first letter uppercase, which is
exactly what you need.

You know what else is not good practice? Having that result label show up before
you’ve entered any states to look up. The user doesn’t need to see that if there aren’t
any results, so you’ll fix that too. Back in Xcode, click the results label so it’s that active
component and then look over in the Attributes Inspector panel again. You have to
scroll down to the near bottom of the panel to see the Hidden Attribute. Once you
find it, click it and then look at your storyboard again. The Result text now shows in
light gray to indicate that it isn’t visible. If you run your app again, you’ll see that the
result label is indeed hidden from view. That’s great—except now it doesn’t show up
after you searched. You’ll fix that by going back to the ViewController code and add-
ing the following line in the lookupClicked function:

resultLabel.isHidden = false

Now when you run your code, the result label shows up after you click the lookup but-
ton. Great!

Syntax alert!
You may have noticed in the preceding if let statement that the dictionaryKey
has an exclamation point (!) at the end of it. That has to do with a concept covered
later in the book, but it tells Xcode that there should be something in the variable and
to please look at it.

Figure 11.4 Change the attribute
for Capitalization to Words.

115Creating a state name lookup app
 There’s one more thing that would make this app a little better. What if the user
clicks the lookup button without entering any text? You should handle that—and
you can.

 You’re going to surround your previous if statement with another if statement,
making it a nested if statement. Add another if statement checking for no text ("")
and then update the result label to instruct the user to enter a code:

if dictionaryKey == ""{
 resultLabel.text = "Please enter a state name"
}else{
 //this is where your other code is...
}

Make sure to add the final curly bracket } at the end, right before you unhide the
result label.

 Here’s what my entire lookupClicked function looks like now:

@IBAction func lookupClick(_ sender: AnyObject) {
 let dictionaryKey = stateTextField.text
 if dictionaryKey == ""{
 resultLabel.text = "Please enter a state name"
 }else{
 if let stateAbb = stateDict[dictionaryKey!]{
 resultLabel.text = stateAbb
 }else{
 resultLabel.text = "No state abbreviation found"
 }
 }
 resultLabel.isHidden = false
 }

That’s it! You created an app that will do the following:

 Look up an abbreviation based on the state name
 Handle the situation where the user doesn’t enter anything
 Handle the situation where there is no state abbreviation in the dictionary
 Make sure the state name entered starts with a capital letter

Great job!

Concepts to remember
 You can’t mix data types in arrays or dictionaries. Once you create the collec-

tion, you must be consistent with the datatypes (much as you can’t add store
cheese in an egg carton).

 The for statement allows you to iterate through arrays and dictionaries so
you can execute some code for each item in the collection.

116 CHAPTER 11 Collections
11.5 Summary
This chapter covered some important topics related to collections. I find in my pro-
gramming that I generally use arrays more than I use dictionaries, but you’ll probably
need to use both in your programming career. As a reminder, you learned about
arrays, which are ordered, accessed using an index [Int], and can be added to using
array.append(). You also learned about dictionaries, which are not ordered, are
accessed using keys, and can be added to by simply creating another item. We touched
a little on the for statement, which has a few variations that you haven’t learned yet,
but that you’ll use in upcoming chapters.

 If you want to challenge yourself, try creating another app that works like the state-
abbreviation lookup app but that looks up airport codes instead. The only differences
should be the values of the labels and dictionaries. I posted the code for both apps, so
you can see how I did it at www.manning.com/books/anyone-can-create-an-app or
https://github.com/wlwise/AnyoneCanCreateAnApp.

(continued)

 The syntax for arrays and dictionaries is important, but not as important as
remembering how the collections are used. You can use them to store data
when you have more than one value that you need.

https://github.com/wlwise/AnyoneCanCreateAnApp
https://www.manning.com/books/anyone-can-create-an-app

Telling stories
with storyboards
All the apps you’ve created so far have been single view applications with only one
screen that updates based on a user action. In this chapter, you’re going to learn how
to create apps with multiple screens that link to each other through user actions.

12.1 Storyboards
Storyboards are a little bit like what they sound like—a way to visualize a story and
how the parts of the story are related. If you imagine a graphic novel (that’s what
the cool kids are calling comic books these days), there are multiple panels that
together tell a story. Each panel flows into the next so the reader can follow the
story. If you were writing your own graphic novel, you might start out with several
blank panels and lay them out so you could begin planning the novel. You might
sketch in a few details on each panel to start, and then begin filling in more details
as time progresses.

 Storyboards in Xcode are similar to creating a graphic novel. You can lay out
multiple panels (henceforth known as scenes), show how these scenes interact, and

This chapter covers
 Storyboards and how to use them

 More about segues
117

118 CHAPTER 12 Telling stories with storyboards
then add more detail to each scene. The storyboards give you a conceptual view of
your application and how the scenes fit together and flow. Let’s create an app so we
can walk through storyboards and see some of the coolness in action.

12.2 Creating an example storyboard app
Our example app will just have a button on the first scene that links to the second
scene, and then a back button on the second scene that returns the user to the first
scene. Here’s the pseudocode:

1 Create a new app called StoryboardExample using the Single View Application
template, and add a button.

2 Add a second scene to the app, and link the button action to the second scene.
3 Add a navigation bar to the second scene, and add a Cancel button.
4 Link the Cancel button action to the first scene.

Now that we have the pseudocode laid out, let’s get started.

12.2.1 Step 1: Create a new app called StoryboardExample

Let’s start by creating a new application and saving the project as Storyboard-
Example. Select the Single View Application template. Now add a button to the
app—click Main.storyboard from the Project Navigator (on the left side of Xcode).
Once the storyboard loads in the center pane, use the Object Library to add a but-
ton to the storyboard. Change the title of the button to Push Me (sometimes I amaze
myself with my creativity).

12.2.2 Step 2: Add a second scene to the app

You haven’t added a second scene to any of the apps you’ve built so far, so this is some-
thing new. You’ll start by changing your real estate so the Storyboard Editor takes up
more of the panel. Hide the Navigation panel (the left panel in Xcode) by clicking on
the third button from the right at the top of Xcode. Now scroll the main editor a little
so there’s some white space next to the storyboard scene with your button. Mosey on
over to the Object Library and grab the topmost item in the list—the ViewController—
and drop it just to the right of the first scene on your storyboard. It should look like
figure 12.1.

 Now you need to connect the action of the Push Me button to the second scene.
You’ve connected the actions of buttons to the code in previous chapters, but this
time you’re going to connect it to the new scene. Control-click the Push Me button
and drag your mouse over to the new scene (this is the same action you used to con-
nect the button to the code). When your mouse pointer is over the new scene, release
the mouse button, and you’ll see something like figure 12.2 pop up.

119Creating an example storyboard app
When the black box pops up, there will be several options to select. I explain these
options later in chapter 15, but for now select Present Modally. If the connection was
successful, you’re storyboard should look like figure 12.3.

 Notice the arrow pointing from the first scene to the second scene. This is called a
segue. I’ll tell you more about these when I explain the app later in the chapter. For

Figure 12.1 Add a ViewController to the storyboard, and drop it to the right of the first scene.

Figure 12.2 Control-click the Push Me
button and drag to the new scene, and
you’ll see this dialog box pop up.

120 CHAPTER 12 Telling stories with storyboards
now, know that the segue is a way to visually represent that the Push Me button, when
clicked, will show the second scene.

 Run the app to test the Push Me button and make sure it works as you expect it to.
Once you click the Push Me button, it should disappear because the second scene
loaded. It may be hard to see this, so you’ll add a label to the second scene to make it
obvious that it has loaded. Go back to the Object Library, search on label, and drag it
onto the second scene. Double-click the new label and change it to “You have
arrived!” Run the app again, and now when you click the Push Me button, the scene
should change to show the “You have arrived!” scene.

 This is starting to look like an app with two scenes, but there’s a major problem
with the app right now. You led the user into a dead end: there’s no way to return to
the first scene! Users get annoyed when they find dead ends in your app, and they’ll
let you know about it on your app reviews, so let’s fix that now.

12.2.3 Step 3: Add a navigation bar to the second scene

In order to return to the initial scene in your app, you’ll add a navigation bar to the
top of the app. If you open your Phone app on your iPhone, you’ll notice the bar at

This is called a segue.

Figure 12.3 Connect the Push Me button to the second scene, and Xcode adds a segue
to the storyboard.

121Creating an example storyboard app
the top that displays the title of the scene you’re on (Favorites, Contacts, Voicemail) as
well as buttons to the left and right of the title on some scenes. For instance, on the
Favorites scene, you have the Edit button on one side of the title and the add (+) but-
ton on the other. This bar, called a navigation bar, serves several purposes. The title
clearly tells the user which scene they’re on, which is a nice navigational aid so they
don’t get lost in the app. The navigation bar also provides an area to add buttons such
as Back, Cancel, Edit, and Add. You’ll add a navigation bar to the second scene now so
you can let the user go back to the first scene.

 In Xcode, search the Object Library for navigation. You’ll notice that several items
are returned, including Navigation Controller, navigation bar, and navigation item. In
this case, you want the navigation bar. Grab the navigation bar and drag it to the top
of the second scene so it looks like figure 12.4.

Now double-click the title in the navigation bar and change it to Second Screen. Run the
app again in the Simulator, and you should see the Second Screen title in the naviga-
tion bar when you click the Push Me button. Next, you can add a Cancel (or Done)
button the navigation bar so the user can return to the previous scene. In general, you
want to use a Cancel button when there’s something that the user was doing that they
want to cancel out of (for instance, adding a new contact to the address book). You
want to use a Done button when the user is finished with an action.

 Your first inclination may be to look at the Object Library and add a navigation
item to the bar, and that would seem logical—but in this case, it isn’t what you need.
Search the Object Library again for a button. Grab the object Bar Button Item, and
drag it up to the left side of the navigation bar. Once you drop it on the bar, it should
say Item on the button, as shown in figure 12.5.

Figure 12.4 Drag a navigation bar
to the top of the second scene.

Figure 12.5 Drag a bar button item to the
navigation bar, and drop it to the left of the title.

122 CHAPTER 12 Telling stories with storyboards
Now you need to change the Item button to a Cancel button. Apple was kind enough
to add several standard button titles to the Object Library so you don’t have to change
the title for a Cancel button. These options can do a lot more than just change the
title, but that’s all they’ll do for you right now in this chapter. You’ll learn a lot more
about them in the next chapter.

 Back in Xcode, click the Item button so it’s selected, and then go to Attributes
Inspector on the right panel, as shown in figure 12.6. Click the drop-down for Iden-
tifier and you’ll see all of your button options. In this case, you want to use the Can-
cel option.

Run the app again, and click the Push Me button to get to the second scene. Then
click the Cancel button. Nothing happened—because you haven’t specified what kind
of action should happen when the button is clicked. Let’s specify that now.

12.2.4 Step 4: Link the Cancel button to the first scene

Next you’re going to connect the Cancel button’s action to the first scene, much as
you did with the Push Me button. Control-click the Cancel button, and drag it back to
the first scene. Be careful to select the Cancel button and not the entire bar. You’ll see
the same dialog box pop up that you saw when you connected the Push Me button
(figure 12.2). Select Present Modally again. Run the app, and you’ll see that the Can-
cel button now takes the user back to the first scene.

 When you look at your storyboard, you’ll see that there are now two segues (see fig-
ure 12.7)—one that goes from the first scene to the second scene, and one that goes
from the second scene back to the first scene. Congratulations! You just added a sec-
ond scene to your app and allowed the user to navigate to it and back.

12.3 Segue animation types
When you ran the application in the preceding section, you may have noticed that the
second scene slides up from the bottom when you click on the Push Me button. The
same happens when you click the Cancel button. You can easily change how these
pages are displayed by changing the Transition property of the segue. Select the first
segue that you created (the one going from the first scene to the second scene) and
you’ll notice that there are several options in the Attributes Inspector, including one
called Transition, as shown in figure 12.8.

Figure 12.6 The Bar Button Item Attributes
Inspector allows you to change the Style,
Identifier, and Tint.

123Segue animation types
Figure 12.7 Once you connect the Cancel button to the first scene, you’ll see two segues.

Figure 12.8 Storyboard segues have transition
types. Select a different one to see what happens.

124 CHAPTER 12 Telling stories with storyboards
There are four basic transition types for scene loading:

 Cover Vertical—Loads the new scene by sliding it up from the bottom.
 Flip Horizontal—The scene rotates horizontally to load the new scene.
 Cross Dissolve—The page fades or dissolves to load the new scene.
 Partial Curl—The page flips up from the bottom of the scene.

You can change your segue to any of these to see how they work. It’s amazing how
changing one attribute of a segue can change the way the scene loads.

12.4 Summary
Storyboards and segues are important to programming in Swift, and you should feel
comfortable adding components to a scene and creating segues from one scene to the
next. You’ll need to do this for the rest of your programming career. You’ll get plenty
of practice throughout the remainder of this book, but make sure you understand the
basics from this chapter.

 The next chapter talks in a lot of detail about ViewControllers, so grab a cup of cof-
fee if you need one.

Concepts to remember
 Storyboards are a great way to see what scenes look like as you add compo-

nents to them. They also help you visualize the flow of the application, or how
one scene leads to another.

 Segues are visual representation of the transition between two scenes. You
can choose how the transition is animated by changing the transition type.

ViewControllers in depth
You’ve created several apps now and in each app you’ve had a ViewController.
What exactly is a ViewController, anyway? The name definitely gives away a lot: it’s
the code that controls the view that you created. We’re going to go more in depth
now and look at the details of the ViewController, which means we’ll need to talk
about some new programming concepts as well. This chapter includes some under-
lying programming principles, so make sure you understand it before you move on
to the next chapter.

13.1 Inheritance
I know you may be excited here because you think you may get money from an
inheritance, but in this case, it means something different—sorry. Please keep read-
ing anyway, though. Let’s start by going back to Xcode and looking at the ViewCon-
troller file. You’ll need to be familiar with ViewControllers in your programming
career, so it’s important that you get comfortable with them. You can either look at

This chapter covers
 Inheritance

 Override

 ViewController lifecycle
125

126 CHAPTER 13 ViewControllers in depth
one of the ViewControllers that you used in a previous app that you wrote or you can
create a new app so you can look at it. Either way, in Xcode, click the ViewCon-
troller.Swift in your Project Navigator tab (the leftmost tab).

 You should see something like figure 13.1. The first line of code is the import
UIKit line, which is importing the UIKit framework so that you’ll have access to
classes needed for the ViewController. The UIKit offers much more than classes
needed for the ViewController, but you’ll learn more about that later.

As a quick refresher, in chapter 8 we talked about frameworks, which are groupings of
classes that are packaged together so you can use them when needed (I used the
example of a package of plumbing tools when you’re building a house). The next line
is the class definition:

class ViewController: UIViewController {

It’s telling you that this is a class with the name of ViewController and it is a subclass
of UIViewController. What is a subclass, you may be wondering?

 Remember back in chapter 3 when we talked about the “pen” object? Imagine now
that the pen object is a class. PenClass describes what kind of properties the pen can
have (it has ink, a clicker, and so on), and the kinds of things it can do—called
functions—such as writing, or the action of clicking the pen so it can write, or taking the
cap off the pen. In this example, the PenClass class is called a base class or superclass. It’s
the fundamental class that describes the pen. It has methods and functions that are
common to all pens. If you want to create a class about a specific pen that is a felt-tip
pen, you would create a subclass of that pen, such as the FeltTipPenClass, and Felt-
TipPenClass would inherit the properties and functions from the PenClass class. Felt-
TipPenClass is a subclass of PenClass, and PenClass is a superclass of FeltTipPenClass

Figure 13.1 The ViewController.swift file controls the view.

127Inheritance
(see figure 13.2). Imagine if you had to define the basic behavior of a pen every time
you wanted to use one. It would get old fast and you would probably stop using pens
altogether.

Notice in figure 13.2 that PenClass has properties: hasClicker, hasLid, and ink-
Color. It also has one function called write(). You can tell it’s a function because of
the () after the name. The properties and the function are defined in the superclass,
so when FeltTipPenClass declares itself to be a subclass of PenClass, it automatically
has access to those properties and that function. The superclass can choose which
functions and properties to make available to subclasses, and we’ll talk about how
later in the book. The PenClass automatically gives its properties and functions to its
subclass. It can also then define new properties and functions as well. In this case,
FeltTipPenClass also has a property for hasLabel and labelDescription.

 I bring all this up now because ViewController.swift is a subclass of UIViewCon-
troller. That means it has access to the functions and properties that the UIView-
Controller class has. How do you know that the ViewController is a subclass of the
UIViewController? Simple—look at the class definition at the top of the file again:

class ViewController: UIViewController {

This line is saying that the class ViewController is a subclass of UIViewController.
The syntax is as follows:

(Keyword) class className : SuperClass {

I know I got you excited at the beginning of this section when I mentioned the word
inheritance, but then I never used it again. How rude! The topics covered—a class
being based on another class and specifying behaviors that both classes use—describe
inheritance. Consider dogs. If you were trying to tell someone who had never seen a
dog before what a dog looks like, how would you explain it? You couldn’t specify the

PenClass

hasClicker

hasLid

inkColor

Write()

FeltTipPenClass : PenClass

hasClicker

hasLid

inkColor

Write()

hasLabel

labelDescription

FeltTipPenClass
is a subclass

of PenClass

PenClass is a

superclass of

FeltTipPenClass

Figure 13.2 FeltTipPenClass
inherits from PenClass, because
FeltTipPenClass is a subclass
of PenClass.

128 CHAPTER 13 ViewControllers in depth
color because different dogs have different colors and patterns of color. You have to
go to the base definition of dog so it could cover all possible types, sizes, colors, and
shapes of dogs. This is the overall concept of Dog—or the superclass of dog.

 Let’s talk about breeds of puppies and dogs. There are certain properties that you
expect all healthy puppies to inherit from the overall concept of Dog. For instance,
they will all have four legs, a tail, two ears, eyes, awesome puppy breath, and little wet
noses. These puppies inherited those properties from the Dog superclass, regardless
of the breed. A puppy is a subclass of the Dog class, and the dog is a superclass of
puppy. The puppy has certain properties that are inherent to the definition of a dog.
What about a specific breed of puppy, like an Airedale? Does it look exactly like the
Wikipedia picture for “Dog” (or the first Google Image that pops up)? No. It’s a differ-
ent class or breed and has properties set differently than the superclass of Dog. What
about the puppy behaviors? Do all puppies act alike? No. You do know the puppy
should be able to walk (or at least scamper), bark, poop (preferably outside) and eat.
Not all dogs do these things in the exact same way, so let’s talk about how subclasses
can override their inherent behavior next.

13.2 The override keyword
If you look back at ViewController.swift in Xcode, you’ll see two functions that
were added to the class when you created it as part of the Xcode template for the
ViewController:

override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

Now you’re finally going to learn what these things mean. I said earlier that healthy pup-
pies should have inherited the ability to walk, bark, poop, and eat from their parents,
but they all do it a little differently. I have one dog that looks regal when she walks. It’s
almost as if she’s strutting her stuff. I have another dog that looks goofy when he walks,
as if walking is an afterthought for him and his mind is elsewhere. They both are Aire-
dales (the breed), they both are puppies (dogs), and they both perform the function of
walking, but they both implement it slightly differently. They have inherited the ability
to walk from the Dog superclass, which means that to implement their own version of
walking they had to override the superclass definition of walking. They still move all four
legs in a rhythmic fashion (okay, one doesn’t look rhythmic so much, but cut him a little
slack). So let’s compare the dog examples to ViewController now.

 ViewController is a subclass of UIViewController, as mentioned earlier. It has
access to the UIVIewController functions, including the functions viewDidLoad()

129ViewController lifecycles
and didReceiveMemoryWarning(). These two functions are part of the superclass, so
Xcode adds the keyword override to tell the compiler to use this version of the func-
tions instead of the functions in the UIViewController. The override keyword tells the
compiler that you did intend to overwrite a parent function. If you didn’t have this key-
word, the compiler wouldn’t know whether to call the superclass function or this func-
tion, and it would throw an error. The override might look something like this:

override func walk() {
 super.walk()
 // Do any additional setup after loading the view, typically from a nib.
 }

This tells the compiler that the puppyBreed class should override the superclass walk
and implement its own version. In my example, I have one dog that sort of flops his
legs around when he walks (like a clown with enormous shoes on) and another dog
that looks regal when she walks. They both implement their own version of walk, but
they both definitely walk. So in my puppyBreed class, I would show that my dog either
walks regally or floppily.

 When you look inside the function, you see the keyword super, which tells the
compiler to call the function found in the parent class, or superclass (parents, don’t
let that go to your head; it doesn’t mean parents are all “super”). But I thought we
were overriding the superclass function? In order to explain the super keyword, I
need to first talk about application lifecycle (or puppy lifecycles in our example).

13.3 ViewController lifecycles
When my dogs get up in the morning, they usually stretch, yawn (loudly), let me know
they need to go outside to take care of their personal business (poop), and then
expect to eat. This is the beginning of their daily routine, which figure 13.3 compares
to an application lifecycle.

Wakeup()

Sleep()

Yawn

(loudly)

Drink

water()

Yawn

(loudly)

Go for

a walk()

Tell me they

need to

go outside()

Poop()

Eat()

Figure 13.3 My dogs’ daily lifecycle

130 CHAPTER 13 ViewControllers in depth
This lifecycle repeats a few times per day as they seem to nap a lot. The interesting
thing that you’ll note about this lifecycle is that there are no times associated with any
of the activities. sleep()could last 20 minutes or 12 hours, but I know that they yawn
and then want to go out afterward. walk() could last 15 minutes or an hour, but it
happens at least once each day. This isn’t all that my dogs do, or we would all probably
go a little crazy. I’ve simplified it a bit to make it easier to understand and create a
repeating lifecycle. What does this have to do with programming, you may be wonder-
ing? I’m glad you asked.

 The ViewController has the same type of lifecycle when it is launched and when it
is hidden. For the lifecycle shown in figure 13.4, assume that the application has
launched and your ViewController is ready to be shown (the ViewController on your
storyboard that has an arrow point into it from the left).

As you can see from figure 13.4, the steps are as follows:

1 A view is requested.
2 If the view does not already exist, viewDidLoad() is called.
3 Once viewDidLoad() is complete, viewWillAppear() is called.
4 Then viewDidAppear() is called and the view is now visible on the screen.
5 At some point, the view is going to disappear, either through the application

loading a different view or if there is a low memory warning (more on low mem-
ory warnings later). viewWillDisappear() is called at this point.

6 Finally, viewDidDisappear() is called.

3. viewWillAppear()

6. viewDidDisappear()

4. viewDidAppear()

View visible

onscreen

Does this

view exist?

2. viewDidLoad()

1. View requested

5. viewWill Disappear()View not visible

Low memory

warning

Low memory

warning

Start

Figure 13.4 The ViewController lifecycle

131The Lifecycle app
You may be wondering why it’s important to know the lifecycle of the ViewController.
It’s okay if you’re not wondering—I’m going to tell you anyway. I’m cool like that. In
some cases, you need to do some setup work in your ViewController when it loads—
for instance, if you need to initialize a value. You many also be wondering how this
maps to the dog lifecycle above. When the app requests a view for the first time, it is
created between steps 1 and 2 (view requested and viewDidLoad). The view is now
stored in memory for as long as the app is running or until we explicitly destroy it.
This is slightly different then my dog’s daily routine, only in that I assume my dog is
always “running.” I don’t need to create the dog in the morning and destroy it at
night (yikes!).

 This will be easier if you write an app so you can experiment and see how the dif-
ferent functions are called.

13.4 The Lifecycle app
This app is going to be a simple one, with two screens and two buttons. The first but-
ton will be on the first screen, and its only purpose will be to load the second screen.
The second button will be on the second screen, and its only purpose will be to go
back to the first screen. I know that doesn’t sound exciting, but the point of this app is
for you to understand the lifecycle of the ViewController. You’re going to override the
five functions mentioned earlier so you can see when they’re called. As usual, let’s
start out with pseudocode:

1 Create a new project called Lifecycle.
2 Add a second ViewController to the storyboard, add buttons, and wire up the

first button.
3 Create an unwind segue (this is a new concept—as if there weren’t enough

already!).
4 Override the five functions mentioned earlier.
5 Test the app.

Let’s get started.

13.4.1 Step 1: Create a new project called Lifecycle

I know you know the drill by now, but go ahead and create a new project called Lifecy-
cle and make sure it’s using the Swift language and is for the iPhone only. Save the
project to your dev folder as you have in previous chapters.

13.4.2 Step 2: Add a second ViewController

Once the project is loaded, open the main.storyboard file and change your real estate
so you can see the storyboard clearly. Go to the Object Library (bottom right panel)
and drag a ViewController to the right of the existing ViewController. Back in the
Object Library, search on button, add a button to the first ViewController, and change
the title to “Load second view.” Remember, in order to add the button to a specific

132 CHAPTER 13 ViewControllers in depth
screen, you need to tap that screen to make it the active screen. Add another button
to the second ViewController and change the title to “Go back to first view.”

 Now you want to wire up the first button so it loads the second view when the user
taps it. Do you remember how to do this? Control-click the first button and drag it to
the second ViewController. When the second ViewController is highlighted, let go of
your mouse button and select the option Show. Run the app to make sure the button
works. I’ll wait.

13.4.3 Step 3: Create an unwind segue

You may be tempted to wire up the second button in the same way that you did the
first, but you’re going to do something a little different this time. Apple gave us the abil-
ity to unwind—or go back to—previous ViewControllers. This type of segue is easy to
implement and is helpful when you have a series of ViewControllers loaded and you
want to go back to one of the earlier ones. In your ViewController.swift file, add this
function anywhere in the code (I usually add all @IBAction and @IBOutlets at the top
of my code):

 @IBAction func unwindHome(_ segue: UIStoryboardSegue) {
 }

Now go back to your storyboard and click your second ViewController. Notice the
three buttons at the top of the ViewController. If you hover your mouse pointer over
each, you’ll see that the first one is ViewController, the second is First Responder, and
the third is Exit. I’ll explain the first two buttons later, but for now you want to use the
third button, which looks like figure 13.5.

Right-click the Exit button (the third button on the second ViewController), and you
should see the function you added to the first ViewController as an option. Don’t do
anything to it—just verify that the function appears in the black box.

 You need to wire the second button to the Exit segue now. This is pretty easy. Con-
trol-click the second button and drag it up to the Exit button, and you’ll have one
option to select to connect it, as shown in figure 13.6.

Now you can test the app to make sure both buttons work. The first button should load
the second ViewController, and the second button should load the first ViewController.

Figure 13.5 The Exit button on the
ViewController lets you unwind your segues.

Figure 13.6 Connect the second button to the Exit
action segue to complete the unwind connection.

133The Lifecycle app
13.4.4 Step 4: Override the five functions

Now you need to go back to ViewController.swift and override some of the functions.
For each function that you override, you need to first call the superclass’s implementa-
tion of the function to make sure that everything that’s supposed to happen in the
function happens before you add your own implementation. Next, you want to add a
line that will print a message to the console. You’ll start with viewDidLoad(). Add the
following print statement, so your function looks like this:

override func viewDidLoad() {
 super.viewDidLoad()
 print("view did load")
 // Do any additional setup after loading the view, typically from a nib.
}

The only thing I added for this function was the print statement. Now you need to
add the other four functions to the code. Remember that you need to use the key-
word override to ensure that the compiler knows you’re intentionally overriding an
existing function. Add the following four functions—and remember to let the auto-
complete function do as much of the work for you as possible so you don’t create
any typos:

override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(true)s
 print("view will appear")
}

override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(true)
 print("view did appear")
}

override func viewWillDisappear(_ animated: Bool) {
 super.viewWillDisappear(true)
 print("view will disappear")
}

override func viewDidDisappear(_ animated: Bool) {
 super.viewDidDisappear(true)
 print("view did disappear")
}

Make sure your code has these functions added and that you don’t have any errors.

13.4.5 Step 5: Test the app

Now run the app again and watch the console for the different print statements
that you created. Click the first button, then the second button, and then the first
button again. What do you notice? The viewDidLoad() function is only called once.
Why is this? Look back at figure 13.4 to see the lifecycle and pay specific attention to

134 CHAPTER 13 ViewControllers in depth
the left side of the diagram. If the view already exists, the viewWillAppear() func-
tion is called, but the viewDidLoad() function is not called. This is part of how
Apple makes sure the apps are as responsive and fast as possible—the views are
stored in memory rather than disposing of them and having to recreate them each
time they’re needed.

 Why is this important, you may ask? Let’s add a few more things to your code so
you can see why. You’ll create a variable called counter at the top of your code and
initialize it to 0. When you add a variable at the top of the code and not in a spe-
cific function, it is a class level variable and it will be available to all the functions in
your class.

You’re going to use this counter to see how many times the functions are called. Add
this line to your ViewController.swift class, putting it right under the class definition:

var counter = 0

Increment the counter by 1 in the viewDidLoad() function, and print the value of
the counter:

counter = counter + 1
print(counter)

Run the app again. No matter how many times you switch between the first and sec-
ond ViewControllers, the counter is still set to 1. The viewDidLoad() function is only
called once, when the view is first loaded. Next you’ll add the counter to the view-
WillAppear() function and increment it there too:

override func viewWillAppear(animated: Bool) {
 super.viewWillAppear(true)
 print("view will appear")
 counter = counter + 1
 print(counter)
}

Now run the app again and switch between the two screens. Notice that the counter
increments each time you switch between screens. This is important to understand:
you should know where to place your code when you need to update values when new
ViewControllers are loading and unloading.

Key concept: class-level variable
When you add a variable at the top of the code and not in a specific function, it’s a
class-level variable, and it will be available to all the functions in your class.

135Summary
13.5 Summary
This chapter provides a foundation for key concepts in the programming world. It’s
important that you understand these items, so stay with this chapter for a while if they
aren’t clear to you. You should have a basic understanding of inheritance, subclasses,
superclasses, and the ViewController lifecycle. You’ll definitely use these in the LioN
app in part 3 of the book.

Concepts to remember
 Inheritance
 Subclasses
 Superclasses

It’s also important that you understand the ViewController lifecycle and know that every
object has a lifecycle. It may not have the same functions, but every object in your code
will be created and destroyed, and you’ll need to keep this in mind as you code.

Put it on my tab:
creating tab bars
You use a Tab Bar Controller every time you use the phone app on your iPhone,
although you probably didn’t know what it was called until now. The tab bar is the
bar at the bottom of many apps that has several buttons with icons on it. For exam-
ple, in the Phone app, you have bottom icons for Favorites, Recents, Contacts, Key-
pad, and Voicemail. Tab Bar Controllers are powerful and allow for attractive and
smooth navigation through your app.

14.1 The Tab Bar Controller
The easiest way to learn about Tab Bar Controllers is to create an app so you can
see them in action. Let’s do that now, starting with pseudocode as usual:

1 Create a new app called TabBarControllerExample, using the Single View
Application template.

2 Delete the existing scene.
3 Add a Tab Bar Controller to the storyboard and set it as the main interface.

This chapter covers
 Using Tab Bar Controllers

 Creating tab bars

 Adding labels to tabs
136

137The Tab Bar Controller
4 Add labels to the different tabs and change the tab attributes.
5 Add a third tab to the app.

Let’s get started.

14.1.1 Step 1: Create a new app

Create a new app in Xcode, and call it TabBarControllerExample. Make sure to use
the Single View Application Template. Notice that there’s a Tabbed Application
template, but you need to understand how the Tab Bar Controller works from a
high level first.

14.1.2 Step 2: Delete the existing scene

Change your real estate now so that you can view more of the storyboard. Hide the
Navigation panel (the left side panel) using the button in the top right of Xcode,
third from the right, or press Command and the 0 key at the same time (⌘-0). Notice
in the Storyboard Editor that the ViewController has an arrow pointing into it from
the left (as shown in figure 14.1).

This arrow indicates that this ViewController is the initial ViewController, which
means this is the first view and controller when the application starts. Every app needs
to have an initial ViewController for it to work correctly, or Xcode doesn’t know which
scene to display first or which controller to use. In this app, however, you don’t want
this ViewController at all, because you’re going to create a new and different one, so
you’re going to delete it. Click the scene once, and press Delete. The first time I
deleted a scene from a storyboard, I felt like I had ruined the app—but I fixed it, and
you can too.

Figure 14.1 The arrow pointing
into the ViewController shows that
this is the initial ViewController.

138 CHAPTER 14 Put it on my tab: creating tab bars
 If you try to run the app now, Xcode will give you an error message: “Failed to
instantiate the default view controller for UIMainStoryboardFile ‘Main’ - perhaps the
designated entry point is not set?” This is a clear error message telling you that you
need to have an initial ViewController set, which is designating the entry point for the
app. You’ll add one now.

14.1.3 Step 3: Add a Tab Bar Controller to the storyboard

In the Object Library, you can either scroll down a few rows or search on tab to find
the Tab Bar Controller. Grab the object, drag it to the middle of your storyboard, and
drop it.

 You’ll immediately notice that this doesn’t look like the other apps you’ve built
before. The Tab Bar Controller adds what appear to be three scenes on the storyboard
(as shown in figure 14.2).

Figure 14.2 The Tab Bar Controller object creates multiple scenes when you add it to the storyboard.

139The Tab Bar Controller
These aren’t three scenes, though, because the Tab Bar Controller is known as a con-
tainer ViewController—meaning it contains other views but doesn’t display itself. The
first object on the storyboard says Tab Bar Controller at the top and is grayed out, let-
ting you know that you can’t add visual components to it. Its primary purpose is to
control the two views it’s connected to, called Item 1 and Item 2.

 The easiest way to understand this is to run the app, but before you can do that,
you need to set the initial ViewController so Xcode knows which controller to load
first. Click the Tab Bar Controller (the first object) in your storyboard so it is the active
object. In the Attributes Inspector, click the Is Initial View Controller check box to set
it as the initial ViewController, as shown in figure 14.3.

Now run the app, and you’ll see two tabs at the bottom of the app: Item 1 and Item 2.
This is pretty powerful stuff, right? You didn’t even have to add a scene or a segue to
have two different scenes with a tab bar controlling them. Let’s add some UI to the
different tabs so you can see them differentiated.

14.1.4 Step 4: Add labels to the different tabs

Drag a label onto the first tab—named Item 1—and change the text to “Tab 1” (or
something more creative if you’d like). Drag another label onto the second tab (Item 2)
and change the text to “Tab 2” (again, feel free to be creative). When you run the app
now, you should see the different labels on the different tabs when you select the tab
buttons at the bottom of the screen.

 Items 1 and 2 aren’t exciting scenes or button names, so let’s change those, too.
The easiest way to change the tab button labels is to use the Document Outline of the
storyboard. The Document Outline can be shown and hidden using the button at
the bottom left of the storyboard—see figure 14.4.

 Let’s take a moment and look at the Document Outline more closely. Near the bot-
tom you’ll see Tab Bar Controller Scene in bold text, as shown in figure 14.5.

 The Tab Bar Controller scene displays all the items that make up the Tab Bar Con-
troller scene, including the Tab Bar Controller itself, which you added to the story-
board in step 3 earlier. When you added the controller, it automatically added a tab
bar, which is the tab bar that you see at the bottom of the scenes in your storyboard.
I’m going to skip over the First Responder and Exit items right now, because you
don’t need to understand what they do yet. I’ll tell you more about them in part 3 of
this book.

Figure 14.3 Making the Tab Bar
Controller the initial controller

140 CHAPTER 14 Put it on my tab: creating tab bars
Notice that the Tab Bar Controller scene has something called a Storyboard Entry
Point. This is the initial View Controller that you set earlier in step 3. Finally, notice
that there are two relationships below the entry point. These are the segues between
the Tab Bar Controller and the scenes currently called Items 1 and 2. Now let’s look at
the Item 1 Scene components in the Document Outline (figure 14.6).

 If you click the Top Layout Guide item in the list, you’ll see that a blue line appears
in the ViewController on the storyboard. This is a visual representation of the top of
the view—meaning you shouldn’t try to add any components (such as labels or but-
tons) above this guide. There is also a Bottom Layout Guide that does the exact same
thing except for the bottom of the view. Next, the View is the primary area where you

Figure 14.4 Show and hide the Document Outline by clicking this button.

Figure 14.5 The Tab Bar Controller scene in the
Document Outline shows all the components of the scene.

141The Tab Bar Controller
can add components to the tab. You can see the label that you added, and you can tell
by looking at it that it’s a label because its icon appears as an uppercase L with a box
around it (as in figure 14.6). Xcode tries to give you visual cues like this in many
places, and as you continue to code you’ll begin learning them. You don’t have to
learn them all right now, but do notice them.

 Underneath the Tab 1 label, notice the star icon that says Item 1. This is the actual
tab bar button for Tab 1. You want to change the text from Item 1 to Tab 1 so you can
see the difference. Click once on this row so Item 1 is highlighted in the Document
Outline. In the Attributes Inspector on the right side of the screen, change the Title
field from Item 1 to Tab 1, as shown in figure 14.7.

As soon as you click out of the Attributes Inspector, you’ll notice that the button at the
bottom of Scene 1 changes to say Tab 1. That was easy! You’ll also notice that the Tab
Bar Controller on the left also changed the button title to Tab 1. Do the same thing
for the second tab, but call it Tab 2. If you run the app again, you’ll see that the tab
bar buttons at the bottom of the app changed to Tab 1 and Tab 2.

Figure 14.6 The Item 1 Scene contains
the objects for the first tab.

Figure 14.7 Change the title of the tab bar
Item to Tab 1 in the Attributes Inspector.

142 CHAPTER 14 Put it on my tab: creating tab bars
 What if you really wanted Tab 2 to be the first button and Tab 1 to be the second
button? Easy. On the Tab Bar Controller on the left side of the storyboard, grab the
Tab 2 button and drag and drop it to the left of the Tab 1 button. Run your app again,
and see that they changed places.

 Another fun and exciting thing you can do with the tab bar buttons is change the
icon. Right now the icons are rather unattractive squares (I’m not saying all squares
are unattractive; I try to be PC), so let’s change that. Click Tab 1 Item in the Docu-
ment Outline again, but this time in the Attributes Inspector, click the drop-down for
System Item.

Change the System Item to different options to see how the tab button changes. This
method makes it easy to add the most common types of tabs.

 Now let’s add a third tab to the app so you know how to do it.

14.1.5 Step 5: Add a third tab to the app

The Tab Bar Controller has two tabs already created when you add it to the story-
board. What if you want more than two tabs? I’m glad you asked. Let’s go back to
Xcode, and, in the Object Library, find a ViewController. Make sure you grab a View-
Controller and not a view or other kind of controller. Drag it to the storyboard, and
drop it below the Tab Bar Controller. Now you’re going to add a segue as you did in
chapter 12. Control-click from the Tab Bar Controller to the new ViewController, and,
when the black pop-up appears, select the Relationship Segue / View Controllers
option, as seen in figure 14.9.

 Once selected, you’ll notice that a third tab bar item has now been added to the
controller, named Item by default. Run the app again, and you’ll see that you now

Figure 14.8 Apple offers several options to
use for the tabs. These give the buttons an
icon and title.

143Summary
have three tabs working in your dummy app. Xcode and Apple make it easy to create
these kinds of UI, but it’s important to know what is going on behind the scenes (pun
intended!).

14.2 Summary
In this chapter, you learned about the Tab Bar Controller, which is used in many
iPhone and iPad apps. It’s an important tool that provides navigation for users and is
easy for you, the developer, to implement. You can change the color and icons of the
tab bars, although I don’t have room to cover that in this book. Play around with this
app—change the settings, add more components, and experiment.

 I encourage you to build a few apps to practice implementing the features you’ve
learned so far. You’re getting closer to building the LioN app, which will pull all these
concepts together.

Figure 14.9 Click the Relationship Segue /
View Controllers option for the segue.

Concepts to remember
 The Tab Bar Controller is a powerful tool to help you build apps faster, with

great-looking navigation.
 There are a lot more things you can do with Tab Bar Controllers, but that’s

outside the scope of this book. I encourage you to experiment with them!

Table views:
more than a coffee
table picture book
Table views are powerful tools that allow you to present data to your users in a
clean, organized way. You’ve seen table views on your iPhone and iPad many times,
though you probably didn’t know they were called table views. Open your Phone
app, and navigate to the Favorites screen if it isn’t open already. If you aren’t horri-
bly lonely, you should have at least one or two people that you call frequently
enough that you’ve added them to your Favorites. If you don’t have any favorites
added, look at the Contacts screen to see a list of your contacts. Each of your favor-
ites is a row in a table. Each of your contacts is a row in a different table. Who knew?

 You’re going to learn all about table views in this chapter, but we need to cover
some underlying concepts first, so bear with me. Don’t worry—this is fun stuff.

This chapter covers
 Delegation and protocols

 Data source

 Table views

 Tuples
144

145Delegation
15.1 Delegation
Swift uses a concept known as delegation, and you’ve used it in the real world, I’m sure.
Let’s say you want pizza for dinner. There are many options for pizza, including heat-
ing up a frozen pizza, ordering a pizza from a variety of different pizza places, or mak-
ing a pizza from scratch. Let’s start by making a pizza from scratch.

15.1.1 Making pizza from scratch

Think about making pizza in the same way you planned painting a wall way back in
chapter 1. You got out all the things you needed and you painted. In this case, you get
out your ingredients, get out a pizza pan, and so on. Now make the dough for the crust
and spread it out in the pan, add sauce, add cheese, and add pepperoni to the top. Pop
it in the oven (or on the grill—mmmmm) for some time until you have a warm, yummy,
gooey pile of goodness.

 Back in the programming world, let’s make that a method: makePizza(). You’re
method might look a little like this:

func makePizza()
{
 makeDough()
 addSauce()
 addToppings(cheese, pepperoni)
 cook()
}

Great job. Now I’m hungry for pizza, so I’ll be back in bit.

15.1.2 Delegating pizza making

Let’s say you’ve been working for a while and still have a lot more to do, so you don’t
want to stop to go make pizza. You wish someone else would do it for you. Wait—you
can delegate making pizza to someone else! Let’s say you want to get a carry-out pep-
peroni pizza from a restaurant. Either you can call the restaurant and tell them you
want a pepperoni pizza, or you can go there and tell them in person. Either way,
you’re not making the pizza yourself. You’re delegating to a pizza restaurant.

 Each pizza restaurant understands the method makePizza(), but they may imple-
ment it in different ways. Some make thin crusts, some make thick crusts, and some
make double crusts. Some cook in a wood-fired oven, some grill, some cook in an
electric or gas oven, and some probably put it under a heat lamp (doesn’t sound
tasty, and it’s probably square). No matter how they implement makePizza(), the
cool thing is that you aren’t required to make the pizza yourself—all you have to do is
call their version of makePizza(). (They would appreciate it if you also call their ver-
sion of payForPizza(), too.) Once you’ve delegated pizza-making to someone else,
you don’t have to worry about the implementation details of how to make pizzas.
This is fantastic!

146 CHAPTER 15 Table views: more than a coffee table picture book
15.2 Protocols
Although each pizza restaurant implements makePizza() differently, they all have a
method for makePizza(), or they wouldn’t be a pizza restaurant. This means they
must follow the protocol required to be a pizza restaurant. So every pizza restaurant
conforms to what we might call the Pizza Restaurant protocol, which has a method for
makePizza().

 If every restaurant implemented makePizza() the same way, all pizza would taste
the same, look the same, and smell the same, which doesn’t seem like a good idea. So
Pizza Restaurant has a protocol called makePizza(), which told every class, or pizza
restaurant, that wanted to be a Pizza Restaurant that it needed to have a method
called makePizza()so it could conform but could implement it its own way. Pizza Res-
taurant is moving responsibility for the details of makePizza() to the individual pizza res-
taurants. Pizza Restaurant may also have other methods that are considered optional
that not all pizza restaurants need to conform to. For instance, Pizza Restaurant may
have additional methods like serveSoda(), serveBeer(), serveSalad(), and serve-
Pasta(). Not all pizza restaurants have these methods, but some do.

 A protocol is a contract that says any class that wants to conform to the protocol must
implement the required methods. In this case, a pizza restaurant must implement
makePizza() if it wants to conform to the Pizza Restaurant protocol. This will be eas-
ier to understand when you create the app, so stick with me. We need to cover one
more concept before you create your first table view.

15.3 Data sources
Data sources are exactly what they sound like—sources for data. If you look back at
your iPhone and check out the Phone app again, all of those contacts are stored some-
where on your phone. The table views that display the data conform to the table view
data source, which is to say, the table view asks the data source how many rows to dis-
play, what should be in the row, how many sections should be displayed, and more.
There are two distinct concepts here:

 The data that you want to display to a user is stored in a data source that you
create (like an array).

 The table view that you create must conform to UITableViewDataSource, which
means you must implement two required methods each time you implement a
table view.

You’ll learn a lot more about data sources and UITableViewDataSource when you cre-
ate an app next.

147Creating a table view app
15.4 Creating a table view app
You’re going to create an app now to see a demonstration of the concepts covered so
far. The app is a simple one that displays the ingredients used to make pizzas and their
associated fictional nutritional values. You’ll follow these steps:

1 Create a new app called PizzaIngredients.
2 Add a table view to the ViewController and set the properties.
3 Set up a prototype cell.
4 Set the protocols for UITableView.
5 Create a data source for the pizza.
6 Connect the data to a table to display the rows of data.

15.4.1 Step 1: Create a new app

Let’s get started by creating the app. I called mine PizzaIngredients. Save it to your
dev folder as you have all your other apps. Use the same Single View Application tem-
plate, and set the Device to iPhone.

15.4.2 Step 2: Add a table view to the ViewController

Once the project loads, open the Storyboard.storyboard file and change your real
estate so you can view the storyboard easily. In the Object Library, search on tableview,
and three objects should be returned: TableViewController, TableView, and Table-
ViewCell. In this instance, you want the middle option: TableView. Drag the object to
your ViewController on the storyboard and size it so it takes up the entire View-
Controller screen. Now run the app to see your table view. You’ll notice that you have
an entire screen of empty rows and you can scroll up and down—pretty cool, given
that you haven’t written any code yet, right?

 Now you’ll connect the table view properties to the ViewController. While still in
your storyboard, right-click the table view, and you’ll see the connections that are
available for you by default, as shown in figure 15.1.

NOTE Make sure you right-clicked the table view and not the table-view cell.
The table-view cell's first option at the top of the menu is Triggered Segue. If
you see that, you right-clicked the cell, not the table view. Click off of it, and
try again.

Figure 15.1 The Table View connections
properties are available when you right-click
the table view in the storyboard.

148 CHAPTER 15 Table views: more than a coffee table picture book
As you’ve learned in previous chapters, these outlets connect the table view to the
ViewController. Once connected, the table view will look to the ViewController for
the dataSource and delegate properties. With this dialog open, click the open circle
for dataSource and drag it to the yellow icon at the top of the ViewController in the
storyboard, as shown in figure 15.2.

There’s another way you can connect the outlets to the ViewController. On the right
side of Xcode, in the Utilities panel, the last button on the top of the panel is the Con-
nections Inspector. Click this button to display the panel (figure 15.3).

Click the circle next to delegate, and drag it over to the storyboard ViewController
icon (the yellow icon at the top of the view) to make the connection. Now your con-
nections are made for the table view. Like your other apps in earlier chapters, you

Figure 15.2 Connect the dataSource property for the table view to the ViewController in the storyboard.

Figure 15.3 The Connections panel shows
which connections are connected and which
are available for connections.

149Creating a table view app
need to first make the connections in the storyboard, and then in the code. You’ll con-
nect the code later in this chapter, but first I want to show you the prototype cell.

15.4.3 Step 3: Set up a prototype cell

I mentioned in the introduction to this chapter that the table has rows of data (like the
Favorites in your Phone app). Each of the rows has data that’s provided by a data source
(more on that in a minute). The rows of data are displayed in a cell in your table view.

 Again, it will be easier to see when you do it, so open up the storyboard again.
Select the table view in the storyboard, and make sure the Attributes Inspector panel
is open. The top option says that you want Dynamic Prototypes as content, and the
second line says Prototype Cells with the option currently set to 0. Change it to 1, and
notice that a new row appears on the table view in the storyboard. Cool!

 Now, on the storyboard, select the prototype cell so the Attributes Inspector panel
shows the cell’s attributes. The first attribute you can change is the cell style. Change it
to Basic, and notice that the word Title appears in the cell. This is the primary data that
will be displayed in the cell—in the Favorites tab of your Phone app, it would be the
name of your contact. Change it to Right Detail—again, the prototype cell changes and
shows the word Detail on the right of the cell. In your Phone app, this would corre-
spond to the contact type (mobile, home, iPhone, work, and so on). Next, select Left
Detail, and you’ll notice that Title is to the left and the detail comes after. Select Sub-
Title, and you’ll notice the Title is on top of the detail. This is what the left of the cells
looks like in your Voicemail tab. You can play around with the different types of cell
attributes that you can change. It’s pretty fun. I’ll wait—take your time.

 Before you leave the prototype cell, set the properties as follows:

 Style—Basic

 Identifier—myCell

 Accessory—None

 Editing Accessory—None

15.4.4 Step 4: Set the protocols for UITableView

I talked about protocols in section 1.2. Protocols allow the defining class to delegate
the implementation of the methods to other classes. The classes that will implement the
methods must conform to the protocol. You added a UITableView to your storyboard,
so the ViewController class that controls that view must conform to the protocols for
UITableView in order for the application to work properly. If you tried to run your
app now, you’d get a long error message in your console (in the All Output pane,
scroll to the top) that looks something like this:

'NSInvalidArgumentException', reason: '-[PizzaIngredients.ViewController
tableView:numberOfRowsInSection:]: unrecognized selector sent to instance
0x7fb7aaf94280'

Well, doesn’t that look foreign? If you look through your ViewController code, you’ll
notice there isn’t anything that says numberOfRowsInSection, so where is this coming

150 CHAPTER 15 Table views: more than a coffee table picture book
from? You added a table view to the storyboard and didn’t implement the required
method for the ViewController to conform to the protocol. This is telling you that
the table view tried to call numberOfRowsInSection but couldn’t find the method in
your code. At this point, you’re not conforming to the protocol.

ADD THE PROTOCOLS TO THE VIEWCONTROLLER

Look back at figure 15.2. See the black box where you connected the table view data
source and delegate to the ViewController? You need to do the same thing in your code.
In the ViewController source code, you’ll see the definition near the top of the file:

class ViewController: UIViewController {

You need to change that to show that you’ll conform to the protocols for the table
view. Add to the class definition so it looks like this:

class ViewController: UIViewController, UITableViewDelegate,
UITableViewDataSource {

As you can see, you added the UITableViewDelegate and the UITableViewDataSource
to the definition. You told Xcode that you want the class to inherit from UIView-
Controller and to conform to UITableViewDelegate and UITableViewDataSource.
Fantastic! Except now there’s a big red exclamation point in the code that shows some-
thing isn’t right, as you can see in figure 15.4.

If you click the red exclamation point, Xcode tells you that the class doesn’t conform
to the UITableViewDataSource protocol. What gives? What you did in the class defini-
tion is tell it that you want it to conform to the protocol, but you haven’t implemented
the required methods for it to conform yet. If you think back to the pizza restaurant
analogy, it’s as if the pizza store said it wants to be a Pizza Restaurant but it didn’t
implement makePizza(). You need to implement the methods that will make your
ViewController conform to the UITableViewDataSource protocol.

 There are two ways to find out what methods you must implement to conform.
The first is more educational, and the second is more expedient. I’ll show you both of
them, and you can choose which you find more effective based on your learning style.
The first way is to look at the reference documentation, which can be accessed by
Option-clicking the word UITableViewDataSource that you added to the class defini-
tion. When you do this, a new Quick Help window will open (shown in figure 15.5). If
you don’t see this, make sure you hold the Option key down when you click.

Figure 15.4 Xcode says that the ViewController class does not conform to the UITableViewDataSource
protocol. You need to add the methods that are required.

151Creating a table view app
At the bottom of the Quick Help window, you’ll see a link to the Protocol Reference
document. Click this to open the reference doc. Reading this doc is a great way to
learn about the different methods that you can implement, and it also tells you
which methods you must implement. If you scroll down a bit through the documen-
tation, you’ll see something like figure 15.6 (this may change slightly depending on
when Apple updates the documentation and the code, but the definition will
remain the same).

Notice that the tableView(UITableView, cellForRowAt: IndexPath) method must be
implemented (denoted by the word Required). The methods are named in a way that
should help you understand what they do, but there’s also a simple explanation below
the definition. In this case, the method is asking the data source to provide a cell
(which contains the data) for the table to display. You changed the attributes of your
prototype cell in section 15.4.3, so you understand more about how the cell looks—and

Figure 15.5 Option-clicking the UITableViewDataSource protocol opens the Quick Help dialog.

Figure 15.6 The Apple UITableViewDataSource Protocol Reference document tells you which
methods must be implemented in order to conform to the protocol.

152 CHAPTER 15 Table views: more than a coffee table picture book
this is the method that will provide the cell with the data for the cell (like the contact
information in your Phone app).

 Now I want to show you the second way to find the methods that you must imple-
ment to conform to the protocol. Back in your ViewController, Command-click
UITableViewDataSource this time (instead of Option-click). This time, Xcode
opens the actual UITableView file so you can see the code behind the class. Cool! If
you look about halfway down the screen, you should see two methods that start with
func, and then the methods below starting with optional func. The word optional
means—you guessed it—you don’t have to implement these methods to conform to
the protocol, but you can if you choose. This means the other two methods that
don’t have the word optional are required. You can see, as shown in figure 15.7, the
two methods that you must implement in order to conform to the UITableView-
DataSource protocol.

I tend to like this second way of finding the required methods better because I can
copy and paste the functions right into my code. Do that now: copy both required
functions into your ViewController, under (and outside) the viewDidLoad() method.
Positioning isn’t critical as long as you make sure it’s not inside another function and
it’s still inside the class definition. To get back to the previous file you had open, you
can either click the ViewController in your Project Navigator panel or click the back
button at the top of the Editor panel (figure 15.8).

Once you’ve copied the two functions in to your code, you’ll need to add the curly
brackets to the functions: add a { at the end of the method definition line, press
Enter, and add a } to close the function. Xcode is helpful here. Once you enter the
opening bracket on the line and press Enter, Xcode should close it for you so you

Figure 15.7 You may copy the required function definitions from the source file.

Figure 15.8 You can use the back button at the top of the Editor panel to
navigate back to the previous file you were working on.

153Creating a table view app
don’t need to type the }. Great! Now you have two different errors in your file. Let’s
fix those next.

IMPLEMENT THE CODE FOR THE REQUIRED METHODS

The first function you added is to return the number of rows in section. You can see
that it has -> Int at the end of the method, so it is expecting the function to return an
Int. This is called the return type of a function and is part of the function definition.
You’ll eventually return the number of rows in your data source, but for now return 1.
Add the line return 1 inside the curly brackets for that method. Yeah! One of errors is
fixed. Now you need to fix the second one.

 The second method you added is asking for the cell that should be displayed at an
index path. What is an index path, anyway? Officially speaking, it’s a path into a spe-
cific node in a tree of nested array collections. Clear as mud, right? The index path is
basically the index of the row of data you want, but it’s robust enough that if you had
an array with one or more arrays inside it, you could get to the data you needed easily.
In this case, though, you’re only going to have one array of data, so consider it a sim-
ple index of an array. (Remember, arrays start at base 0, so if you wanted the first row,
you’d ask for array[0] to get the first row. In this case, the 0 is the indexPath.)

 You’ll also notice that the function is looking for an actual UITableViewCell as the
return object. Add the following code to the cellForRowAtIndexPath function, and
then we’ll walk through it:

let cell = tableView.dequeueReusableCell(withIdentifier: "myCell", for:
indexPath)

cell.textLabel?.text = "cell \(indexPath.row)"
 return cell;

Let’s start by looking at the first line. let cell is creating a new object called cell—
you should remember this from the earlier chapters. The let keyword is making the
object a constant object, or one that can’t be changed once it’s created (although its
properties can be changed). Next, you’re calling a function on the tableView called
dequeueResuableCellWithIdentifier. Remember the lifecycle of a ViewController
(or a dog) that we talked about back in chapter 13? The lifecycle applies to objects
as well, like the cell. Imagine a table with 200 cells in it. You could create a new cell
for every row, but that would take up a lot of memory on a phone. We always want to
be cognizant of the memory use of our app so we don’t use too much and make
users unhappy.

 Instead of creating 200 cells every time, you’re going to create as many as can be
displayed on one screen. As the user scrolls down, the cells at the top of the screen are
dequeued so they can be used again at the bottom of the screen. Remember earlier
when you set the identifier attribute of your cell to myCell on the storyboard? This is
why! You can now tell Xcode to create a new cell with the name (or identifier) of
myCell for the indexPath that was passed into the function, or reuse a dequeued cell
if one exists. Pretty slick, huh?

154 CHAPTER 15 Table views: more than a coffee table picture book
 The next line sets the text on the cell to the word cell and the indexPath row num-
ber of the cell that was created. So you’re setting the text property of the textLabel
attribute of the cell to "cell 0", "cell 1", based on which row is being displayed.
We’ll talk more about the ? after the textLabel in later chapters: this says that the
textLabel attribute may not exist, but if it does, assign it value "cell 0", and so on.
Finally, you need to return the cell so the tableView can display it. Go ahead and run
the app now—you should see one row of data. How cool!

15.4.5 Step 5: Create a data source for the pizza

You want to create a list of ingredients that will be displayed in the table and then dis-
play more details about the ingredient when the user taps on the row. We talked about
collections back in chapter 11, and you learned about arrays and dictionaries. Let’s
talk about another way to store and pass data around: the tuple. A tuple is a grouping
of values that can be stored as one value. Think about the name of a person: Arlene
Brown is the full name of one person. But what if you wanted to reference her first
name only? You could do it like this:

var name = ("Arlene", "Brown")
var firstName = name.0
var lastName = name.1

You could also name the elements in a tuple so they are easier to reference. Let’s show
this for a person named Matthew Drooker:

var name = (firstName: "Matthew", lastName: "Drooker")
var firstname = name.firstName
var lastName = name.lastName

You could add more to this tuple if you wanted—like this:

var name = (firstName: "Matthew", lastName: "Drooker", nationality:
"Canadian, eh? ")

var firstname = name.firstName
var lastName = name.lastName
var nationality = name.nationality

Let’s create a tuple for your pizza ingredients. The easiest way to create a variable that
can be accessed from all the functions in a class is to make it a class-level variable. If you
create a variable inside a function, it will only be available to that function. If you cre-
ate it at the class level, all functions in the class can access it (this is referred to as
scope). So you’ll create a tuple at the class level and call it ingredient. Add the follow-
ing line of code right under your class definition:

typealias ingredient = (name:String, desc: String, calories: String, fat:
String)

Gives the first
name Arlene

Gives the last
name Brown

Gives the first
name Matthew

Gives the last
name Drooker

Gives the first name Matthew

Gives the last name Drooker

Gives “Canadian, eh?”

155Creating a table view app
Whoa! That’s a new keyword: typealias. A type alias is a way to give a simpler name
to a data type you’ve created. The ingredient definition, which has four named strings,
can now be known as ingredient instead (it was an array of four strings). This will
be much easier to reference. And because you created this at the class level, you can
access it inside all of your other functions. Next you’ll create an ingredient.

 You’re going to create a new ingredient (tuple) called pepperoni with the follow-
ing properties:

 Name—“pepperoni”
 Description—“yummy goodness”
 Calories—“probably none”
 Fat—“less than 0 percent”

Obviously, my love for pepperoni isn’t based on reality, but go with me anyway.
 This is what my code looks like here (I put this code right under the super.view-

DidLoad() line within the viewDidLoad() function):

let pepperoni : (ingredient) = ("pepperoni", "yummy goodness", "probably

➥ none", "less than 0 percent")

Can you see how handy that typealias was? I was able to create a constant variable
(pepperoni) of type ingredient, with the properties that I defined. I can add a sec-
ond ingredient, too. Let’s call it cheese:

 Name—“cheese”
 Description—“yummy gooeyness”
 Calories—“less than 0 calories”
 Fat—“less than 0 percent”

This is what my code looks like for adding the cheese variable:

let cheese: (ingredient) = ("cheese", "yummy gooeyness", "less than 0

➥ calories", "less than 0 percent")

Now we have two ingredients. Let’s add both ingredients to a new array called
ingredients. The array is going to be at the class level, too, so you can access it in all
of your functions. Remember how to create an array? Add this line to your code:

var ingredients:[ingredient] = []

Here you’re creating an array named ingredients, which will have a type of ingre-
dient in it. Notice that I used the plural of ingredients for my array because it will
have many items stored in there. This is a good practice so you can easily identify
your arrays.

156 CHAPTER 15 Table views: more than a coffee table picture book
 Let’s add both ingredients to the array and print the name of pepperoni to make
sure it worked correctly. Add this just under the let cheese: line in the viewDid-
Load() function:

ingredients.append(pepperoni)
ingredients.append(cheese)
print(ingredients[0].name)

Notice that you can print the name of the first ingredient in your array by referencing
name—this is because you created a type alias of the ingredient, which makes the
code much easier to understand. Run the app, and make sure you see pepperoni
printed in your console. Great! Now all you have to do is make the array your actual
data source! This is what my viewDidLoad() function looks like right:

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
let pepperoni : ingredient = ("pepperoni", "yummy goodness", "probably

➥ none", "less than 0 percent")

let cheese: ingredient = ("cheese", "yummy gooeyness", "less than 0

➥ calories", "less than 0 percent")

ingredients.append(pepperoni)
ingredients.append(cheese)
print(ingredients[0].name)
}

15.4.6 Step 6: Connect the data to a table

We are so close to having this whole thing work that I can taste it (pun intended—
pizza on my brain for some reason). So let’s recap before we finish wiring this up. You
added a table view to the storyboard. Then you connected the table view properties
for the data source and delegate to the ViewController in the storyboard. Next, you
added the required methods for the data source to the code with dummy data (you
hardcoded the number 1 into the number of rows returned and hardcoded the word
cell with the row index for the cell data). Then you created an array of data for your
pizza ingredients. Finally, you need to remove your hardcoding of the data source val-
ues and replace them with your array values. Let’s finish this thing!

 Go back to your ViewController, and replace the 1 in numberOfRowsInSection
with the count of your ingredients array. My code looks like this:

return ingredients.count

This will now return the value 2: the count of the array ingredients. If you remove
the cheese, it will return the value 1. If you add an ingredient called sauce to the array
ingredients, it will return 3. Pretty brilliant, huh? That’s all you have to do to have the
tableView display the actual number of cells that you have data for. But you also want

157Creating a table view app
the cell to display the value of your data, not your hardcoded "cell" label. Let’s fix
that now.

 Remove the portion of code in your cellForRowAtIndexPath function that sets the
textLabel?.text to your hardcoded value "cell \(indexPath.row)". Add the follow-
ing in its place: ingredients[indexPath.row].name. The line should look like this:

cell.textLabel?.text = ingredients[indexPath.row].name

Run your app again, and make sure your table view is displaying two rows of data—
one that says pepperoni and one that says cheese. Wow! Amazing! You made your first
table with dynamic data!

 Now that you’ve come this far, why don’t you play around with this to get more
comfortable with it? How about adding a few more ingredients to the array? Or,
instead of displaying the name of the ingredient, displaying the description?

 Figure 15.9 shows what my entire code base looks like so you can check yours
against it. (Don’t forget, you can also go to www.manning.com/books/anyone-can-
create-an-app or https://github.com/wlwise/AnyoneCanCreateAnApp and download
the full solution.)

Figure 15.9 The code required to create two ingredients, store them in an array, and display them in a table view

http://www.manning.com/books/anyone-can-create-an-app
http://www.manning.com/books/anyone-can-create-an-app
https://github.com/wlwise/AnyoneCanCreateAnApp

158 CHAPTER 15 Table views: more than a coffee table picture book
15.5 Summary
Wow! What a dense chapter, right? It had a lot of content. As you’ve seen in this chap-
ter, table views take a lot to explain but not a lot to implement. In order to understand
them, though, you had to learn about delegates and protocols. You’ll use delegates,
protocols, and table views a lot in your coding career, so make sure you understand
the underlying concepts. You’ll see table views, delegates, and data sources again in
the next part of the book, when you work on LioN.

Concepts to remember
 Delegate—A way to get someone else to do the work for you; or, leaving the

implementation details to another class.
 Protocol—A class that wants to implement the delegated methods must con-

form to the protocol defined in the main class.
 Index path—An item that lets you access the exact location of an object in an

array, or an array of arrays. For table views, you use IndexPath.Row to get
the row location.

 Data source—The data the table view uses to display content.
 UITableViewDataSource—The protocol definition that a ViewController must

conform to in order to display data for the table view.

Patterns: learning to sew
Some of you are probably worried that this chapter is about sewing, but relax. It’s
about coding patterns. What in the world are coding patterns? Honestly, they’re kind
of like sewing patterns, hence the analogy. In my goofy mind, there was some guy a
million or so years ago (yes, I’m exaggerating) who wanted to make a shirt. He got
a roll of fabric (or went and shaved his sheep first) and set about cutting it up to
make the required pieces. After trial and error, he finally found the best combina-
tion of pieces to sew together to make a shirt. If he was smart, he probably then
made a copy of the pieces and set those aside so he could trace those patterns the
next time he wanted a shirt and he wouldn’t have to go through the trial and error
again. Pretty smart guy!

 Well, some pretty smart folks have done the same thing in the coding world. Let’s
learn about that now (no sheep were harmed in the writing of this manuscript).

This chapter covers
 Best coding practices

 Model-View-Controller pattern

 Delegate pattern
159

160 CHAPTER 16 Patterns: learning to sew
16.1 Design patterns, defined
The guy who made a shirt probably saved his patterns so he wouldn’t have to go
through the pain of trial and error again. That’s great for him, but what about his
neighbor who wants to make a shirt too? He could do the same thing—cut a bunch of
fabric until he found the right pattern to make his shirt, or the first guy could be
neighborly and share his pattern with the neighbor. In the coding world, some smart
people figured out solutions to common problems in software design and coding, and
they created reusable patterns or templates to help the rest of us out. These patterns
make it easier to write code that’s clean, understandable, maintainable, and extensi-
ble. That’s a lot of “ables,” so let’s walk through them.

16.1.1 Clean code

Clean code is the term programmers use to define code that is well written, is well doc-
umented, and doesn’t include old, commented-out code. When you’re coding an app,
you’ll find that at times you try different methods to figure out what works best—or
what works, period. When you find a line that may be causing problems, sometimes
you’ll comment it out and write a different line to see if that works better.

 Once your app is complete and you’re ready to either file it away or give it to some-
one, you should clean it up first. Remove all the commented lines of code that aren’t
needed, add comments to the lines that need them, and make sure it follows best
practices. We’ll talk about best practices as we continue in this chapter.

16.1.2 Understandable

There are many ways to accomplish certain tasks when you’re programming. Some
ways are more “elegant” than others, and some are more “kludgy” (pronounced clue-jee)
than others. When you’re coding, the most important thing to accomplish is to make
your code work. It may not be the prettiest way it could be done, but it works. That’s
step 1. As you get better and better at coding, you’ll learn better ways to do things in
your code. As you’re finishing your app and you have time, you need to go back in the
code and make it more understandable and more elegant (clear and succinct).

 For example, tell me what this this code is doing:

var x = .555555
var y = 32
var z = 75

var a = x*(z-32)

You might be able to tell me what the code is doing programmatically, but what am I
trying to do? It’s not clear. Here, let me change my variable names:

let fraction59 = .555555 // this represents 5/9
let constant32 = 32
var fahrenheit = 75

var FarToCelcius = fraction59 *(fahrenheit-constant32) //the formula is 5/9

➥ *(fahrenheit – 32)

161Design patterns, defined
Now anyone who reads my code will know exactly what its intent is as well as that
the formula is to convert Fahrenheit to Celsius. This makes my code much more
understandable.

16.1.3 Maintainable

I can’t think of any app that I’ve ever written where I didn’t have to go back and
update something. I might have fixed a bug or implemented a new feature, or
upgraded it to make it compatible with the latest version of iOS. No matter why I had
to maintain my code, I had to. That’s why it’s so important to document your code
and make it as readable, understandable, and elegant as possible. It will make your life
easier down the road. If you ever work with another programmer, you’ll learn to love
or hate that person depending on their coding practices. When you have to follow
behind a sloppy programmer, it takes a lot more time and energy to figure out what
they’re doing, what they intended, and how they did what they did. When you follow
behind a conscientious programmer, it takes much less time to understand their
intent, what they were doing, and why they did it that way.

 I’ve mentioned intent a few times now, so let me explain what I mean by that. Let’s
assume you’re writing an app that needs to retrieve weather data from the web and
display it in your app. You’ve configured the app to get data from different data
sources depending on the user’s location. It makes perfect sense to you because data
source A has much better data for the eastern part of the country, and data source B
has better data for the western side of the country. But a year or two later, you find that
there is a defect in the code, and you need to go back in and fix it. You’ve worked on a
bunch of other apps in those intervening two years, so you need to refresh your mem-
ory when you go in. You begin reading the code and see that you’re calling two differ-
ent data sources based on user location. That doesn’t make any sense to you because
everyone knows that data source C has the best data for the entire country (things
have changed). You have no idea why you would have programmed it that way. Now,
what if you had written some comments in the file that explained the intent of having
two data sources and the intent of the actual functions? You would remember why you
wrote it with two data sources, and you could check the code to make sure the actual
implementation matched the intent. I find this approach is helpful when working
with math issues. A parenthesis in the wrong place changes the entire formula, and if
you don’t have the intent of the formula written down, you’ll spend a lot more time
debugging your app.

16.1.4 Extensibility

Extensibility allows the programmer to add new features or to respond to a change
without having to completely re-architect the app. If you define a good architecture
up front (by using patterns that we’ll discuss shortly), you should be able to add a new
feature to your app without having to completely rewrite entire sections of it.

162 CHAPTER 16 Patterns: learning to sew
NOTE Don’t confuse the extensibility of your app with the Swift keyword exten-
sion. Those are two different concepts. You don’t need to understand exten-
sions right now.

Extensibility helps you write loosely coupled code—so you can change or replace compo-
nents without too much hassle.

 Imagine you wrote an app that allows someone to order pizza. You wrote it so the
user could configure their pizza, add it the cart, and pay for it. Great job! The client is
so happy with the app that now they want you to write an app that will allow someone
to order a hamburger from their other restaurant. Well, if you had planned ahead to
make your app reusable and extensible, you wouldn’t have to make many changes to it.
But if you only wrote it with the idea that you needed to get this app out the door, and
future enhancements didn’t matter as much as getting the current functionality in,
you’d be in a world of hurt. You’d have to change a lot of code in the app in order to
handle hamburgers. You might even have to start over.

 It’s important to think about where you might want to take the app in the future so
you don’t paint yourself into a corner to the extent that you have to rewrite a lot of it.
You’ll get a better sense of this from the rest of this chapter and as you code more.

16.2 Types of design patterns
There are three main categories of design patterns:

 Creational—Ways to create objects
 Structural—Ways to structure your code
 Behavioral—Ways to control the behavior of your code

We’re not going to cover creational or behavioral patterns in this book, because they’re
more advanced topics. We’ll cover structural patterns, because they’re important for
your beginning programming career and for your upcoming LioN app. Structural
design patterns are design patterns that make it easier to create and maintain relation-
ships between objects. They make it easier to create code that is loosely coupled and
with all the “able” properties mentioned earlier (clean, understandable, maintain-
able, and extensible). Let’s start with the Model-View-Controller design pattern.

16.2.1 Model-View-Controller design pattern

The Model-View-Controller (MVC) design pattern is a key design pattern that you’ve
used already but didn’t know it. MVC classifies objects in your app based on the role
that they play within the app. Let’s break it down:

 Controller—You’ve seen this already numerous times; in your apps, it’s called the
ViewController. This role is the mediator between the view and the model.
Remember back when you created buttons on the view in the storyboard? You
made the buttons and then had to wire them to the ViewController. Then, when
the user tapped the button on the view, the ViewController could take action.

163Types of design patterns
Imagine if you created a calculator app and had 12 buttons on your view.
You’d wire those buttons on the view and then create all the code in the View-
Controller to handle the actions of the button tap. But then say you want to
completely change the view of the calculator. You want to delete all 12 buttons
and create 12 different ones. The only action you’d have to take is to delete the
buttons, create new ones, and then wire them to the correct functions in your
ViewController. You wouldn’t have to recode all the functions because nothing
changed for them. That’s because you separated out the view and the controller.
Pretty cool, huh?

 View—Imagine for a moment that you’re creating the calculator app and you
have 12 buttons on your iPhone view. Now you want to make an iPad view with
12 buttons. There are ways you can do this without creating another view (you’ll
learn that in the next chapter), but you could optionally create another view for
the iPad. You could then wire all 12 buttons to the same functions in your class
without having to rewrite code again. Again, pretty cool!

 Model—You haven’t seen much of the model yet, but you definitely will in the
next chapter with LioN. In chapter 15, you created a data source for the data
(ingredients) that you wanted to display in the app. In other words, you mod-
elled the data in the form of an array. The model role holds your application
data and defines the different ways to manipulate it. You haven’t created a class
with the model role yet.

I mentioned that the ViewController was a mediator of sorts between the model and
the view. As you can see in figure 16.1, there are three distinct roles within the app:
the view, the controller, and the model. In this instance, the user performs an action,
the controller tells the model to do something with the data based on that action, the
model notifies the controller that it did something with the data, and the controller
then updates the view.

Controller
updates
the model

Model notifies the
Controller of a change

User
performs
an action

Controller updates
the View

Controller

Model View

Figure 16.1 The MVC design pattern allows the controller to
act as a mediator between the view and the model.

164 CHAPTER 16 Patterns: learning to sew
Figure 16.2 shows an example to make this easier to understand. As you can see, the
user decides to delete a row from the table. The controller receives that action request
from the view and tells the model to delete the row. The model deletes the row and
notifies the controller that the row was deleted. The controller then updates the view,
and the row is no longer visible. You can see from this example how much easier it is
to maintain the code when all the data is in the model, the controller mediates
between the view and the model, and the view is responsible for displaying.

I mentioned the pizza and hamburger apps earlier. If you had used this MVC design
pattern when you created the pizza app, you’d only have to change your model to
hamburger and change the view images and labels to hamburgers. The controller
would still control the interaction between the two. Amazeballs.

 For the MVC design pattern to work, you need to think about the design of your
app before you start coding. The more thought you give to the design before you start
coding, the more organized your code will probably be (does that sound like Yoda?).
I’ll show you how I think about the design when we get to the next chapter and start
work on LioN.

16.2.2 Delegate pattern

Hmmm… Delegate, you say? That sounds awfully familiar, doesn’t it? Yes, you’ve already
used the Delegate design pattern. It allows one object to act in conjunction with or on
behalf of another object. I showed you this in the last chapter when you implemented
the UITableViewDataSource delegate. Apple uses the Delegate pattern in a lot of its
UI elements, so it’s important that you understand the concept. I used a pizza restau-
rant analogy in chapter 15. I’ll stick with that here.

 As a programmer, you’re pretty busy writing, testing, and commenting your code,
and you don’t have time to make dinner. You wish you could delegate that to someone
else. Oh, wait—you can! You can call your local pizza restaurant and ask them to make

Controller tells
the Model to
delete a row

Model notifies the Controller
that it deleted the row

User clicks delete
to remove a row

from a table

Controller updates
the View

Controller

Model View

Figure 16.2 MVC pattern in action. The user deletes a row, and
the controller mediates the action.

165Types of design patterns
you a pizza. You know that they’ll do this because they implement the Pizza Restaurant
functions. In other words, you are confident ordering a pizza from the restaurant
because you know it conforms to the Pizza Restaurant protocol. You know you’ll get
some sort of pizza back when you call its makePizza() function, even though the
implementation details might be different than those of other pizza restaurants. The
Delegate pattern provides this type of functionality: you want to make sure a class
implements certain methods, but you don’t care how exactly they’re implemented, as
long as they are. This is a popular pattern and is used in many apps—including the
LioN app, coming in the next chapter.

16.2.3 The Memento pattern

The Memento pattern kind of does what it sounds like—it saves the data (like saving a
memento, get it?). This saves your stuff somewhere that you specify. One of the ways
Apple implements the Memento pattern is through archiving. Guess what? Archiving
also does exactly what it sounds like. Archiving converts your data into a stream that is
then saved and can be restored later. You’ll use this in LioN, too. The Memento pat-
tern serves another purpose as well: it saves the object for you, and you can restore
that object at any time without having to use several undo commands.

 When you start coding the LioN app in the next chapter, you’ll create a LioN
object, which will include the name of the item, a description, and whether you like
the item. Every time the user creates a LioN object, you’ll need to save it so they can
see it the next time the app loads. You’ll use the Memento design pattern to save the
LioN object and load it when the user wants to see it. Imagine, too, that the user goes
into a LioN item, edits it, and then decides not save their edits. The original object will
still be saved, so you won’t have to implement any undo logic in your code. Your code
will also be clean because there will be a class whose only purpose is to save and load
the LioN object, instead of putting all the code into one big class. The Memento pat-
tern supports the idea of extensibility mentioned earlier—classes should have a separa-
tion of concerns (SOC) so that if you want to change how or where the LioN object is
saved, you can.

Concepts to remember
 Plan your app before you begin coding anything.
 Many, many smart people out there have already solved some of the most com-

mon issues in Swift programming. Learn from them, and follow their patterns.
 It’s important to write good, solid, clean code. Take the time to go back and

clean it up when you’re finished coding. You’ll thank yourself later.
 The MVC pattern is one of the most common patterns in Swift programming,

and you will use it to create good code.

166 CHAPTER 16 Patterns: learning to sew
16.3 Summary
You may be wondering why I told you about patterns in this chapter and then several
times told you that we’ll get to the implementation details later. Well, if you’ll remem-
ber from the beginning of the book, I explained that I wanted to give you just-in-time
instruction so you wouldn’t be overwhelmed. I want to introduce you to these con-
cepts now, and then we’ll go into more detail in later chapters. There are a lot of pat-
terns available for you to use, and many books are devoted to nothing but patterns. I
encourage you to learn more about different types of patterns as you grow as a devel-
oper, but other patterns are too dense for this book.

Part 3

Creating the Like it
or Not app

Part 3 is where the magic starts to happen. You’ll take everything you’ve
learned in parts 1 and 2 and create the Like it or Not app. You can download the
app from the App Store to see what you’ll build at http://mng.bz/en3e. You’ll
be building the LioN app exactly as it is in the App Store, with the exception of
the ads available at the bottom of the screens and the notes.

http://mng.bz/en3e

Putting it all together:
the LioN app
You learned a lot of new concepts in parts 1 and 2 of this book, and now you’re
going to put all those concepts together to build an app called LioN: Like it or Not.
You’ll learn some new concepts as well, but mostly you’ll be putting to practice what
you’ve learned. This is exciting, isn’t it?

17.1 Like it or Not
What is the LioN app, anyway? The best way to understand the app is to go down-
load it from the App Store on your iPhone. Search for LioN—Like it or Not, and tap
Get to install it (it’s free). Figure 17.1 shows it running. I created this app because
I tend to be a bit forgetful about certain details of my life—such as which kind of
toothpaste makes me throw up a little, and which one I like. (I know, you’d think
I’d remember that, but for some reason it seems to be a real mental block for me.)
I’d go into the grocery store, head to the toothpaste aisle, and look at the boxes. I’d
then pick up the one that looks most familiar to me, thinking that because it looks

This chapter covers
 Planning the LioN app

 Navigation controllers

 The override keyword
169

170 CHAPTER 17 Putting it all together: the LioN app
familiar, it must be the one I like. Next thing you know, I’m throwing up a little when
I brush my teeth because I picked up the wrong one. Again. This also happens to me
in restaurants. I order the chicken dish because I know I’ve had it before and have a
strong memory of it, only to find out that it was a strong dislike, not strong like. I may
or may not use it to remember my favorite beer, too.

 Enter LioN! The LioN app lets me add items that I need to remember, and I can
mark that I like or dislike them. I can easily search on items so I don’t have to scroll
through the entire list to find toothpaste, thus saving me that little bit of throw-up
every time I brush my teeth. If you’ve downloaded the app, play with it and add your
own items to the list. You can add, edit, delete, and add notes. I added a lot more func-
tionality to the published app than you will create, but your LioN app will still be able
to add, edit, delete, and add notes.

17.2 Getting started
You learned about using design patterns to create good code in the last chapter, and
we’re going to focus on creating that kind of code throughout the rest of the book.
This means you’ll create something that works, and then you might go back and redo
it (called refactoring) to make it better. Don’t be frustrated by this. It’s how most coders
do it. It’s a process: create, test, refine, test, refine, test, and so on.

 Here are the steps you’ll take in this chapter:

1 Create the app, and save it.
2 Add a Navigation Controller to the storyboard.
3 Add an iPhone Simulator to Xcode.
4 Connect the data to the table view.

Figure 17.1 The LioN app

171Getting started
17.2.1 Creating the app

In Xcode, create a new app and call it LioN. In the Project Settings screen, change the
targeted device from iPhone to Universal, as shown in figure 17.2. This means you
want this app to run on both the iPad and the iPhone. Deselect Include Unit Tests and
Include UI Tests.

Save it to your dev folder, as you normally do. When the project loads, you’ll see the
General tab. Make sure Device is Universal and Deployment Target is set to 10.0 (as of
this writing, this is the latest version of iOS), as shown in figure 17.3. If there’s a later
version of iOS released, use 10.0 anyway.

Figure 17.2 Uncheck the
Include Unit Tests and Include
UI Tests options.

Figure 17.3 The deployment section of the General tab

172 CHAPTER 17 Putting it all together: the LioN app
17.2.2 Adding a Navigation Controller

In the Project Navigator, click the Main.Storyboard file to open the Storyboard Editor.
Click the View Controller window in the Editor, and press Delete. You should have an
empty storyboard now (don’t panic—you can add something to it). Go to your Object
Library, and drag a Navigation Controller onto your storyboard. The first thing you
should notice is that Xcode added what look like two frames onto the storyboard,
even though you only dropped one object. This is normal—let’s talk about Navigation
Controllers so you understand what you did.

 The Navigation Controller is a container view, like the tab view we talked about
back in chapter 14. This means it contains other views but doesn’t display anything
itself (again, like the Tab Bar Controller from chapter 14). Let’s set the Navigation
Controller to be the initial ViewController so you can see what it looks from here.
You’ll do the same thing you did with the Tab Bar Controller, except this time you’ll
set the Navigation Controller as the initial ViewController.

 In Xcode, select the Navigation Controller (the scene on the left) that you added,
and then open the Attributes Inspector panel. In the View Controller part of the
panel, click the option Is Initial View Controller. You should be able to run the app
now. Other than the words Root View Controller (figure 17.4), this app shouldn’t look

Figure 17.4 At launch, the Navigation
Controller shows a Root View Controller
with a table.

173Getting started
that foreign to you. Grab your iPhone, and launch the Contacts app. They look similar
already, don’t they?

 The Contacts app is using a Navigation Controller to control the flow of the app, as
you will with LioN. You set the initial ViewController, which lets Xcode know that the
Navigation Controller was the first scene that should be displayed. The Navigation
Controller is a container view, which means it can display multiple views itself. So the
Root View Controller is essentially the initial view that Navigation Controller should
show: root view, or first view.

 Displaying the words Root View Controller doesn’t mean anything to the LioN app, so
change them to the acronym LioN. Back in Xcode, make sure your storyboard is show-
ing in the Editor window. Now, in the storyboard Document Outline, select the Root
View Controller, which has an icon pointing to the left, as shown in figure 17.5.

Once the Root View Controller is selected, open the Attributes Inspector in the Utili-
ties panel and change the title to LioN. Now run the app again, and you should see the
acronym LioN at the top of the window.

17.2.3 Adding an iPhone 4s Simulator

Back in step 1, when you created the project, you selected the option for the app to
run on Universal devices, meaning it should run on both iPads and iPhones. In
order to test your app on an iPhone 4s Simulator and various iPhone Simulators,
you’ll need to add those Simulators to your device lists. In the Xcode top menu bar,
click Window > Devices. You’ll notice two sections on the left side of the window that
pops up: Devices and Simulators. The Simulators section shows all Simulators that
you’ve used so far and lets you add new ones. It’s important to run your app on all
kinds of different simulated devices with different operating systems to make sure it
runs successfully and looks good. For now, though, you’ll add an iPhone 4 running
iOS 8.4.

NOTE You’re adding this older model phone with an older Simulator just as
an example, so you’ll know how to add Simulators in the future. Apple is an
innovative company and launches new devices and new operating systems fre-
quently, so you need to know how to test on those simulated devices and oper-
ating systems. It's important to make sure your app is compatible with various
devices and operating systems so you don’t disappoint your users.

Figure 17.5 Select the Root View
Controller in the Document Outline.

174 CHAPTER 17 Putting it all together: the LioN app
At the bottom of the window, click the + button to add a new Simulator, as shown in
figure 17.6. Add a new Simulator named iPhone 4s, with a device type of iPhone 4s
and iOS version of 8.4. See figure 17.7 to verify your settings.

Once your new Simulator is created, go back to the main Xcode window. You now
want to run the app on the iPhone 4s Simulator to see how the table view looks. At the
top of Xcode, to the right of the Run and Stop buttons, you’ll notice an icon that
looks like three pencils in the shape of an A with the word LioN next to it. This is the
place where you can select which schema you want to run the app on.

 If you click the right side of the button, you’ll get a list of schemas to select from.
But the iPhone 4s isn’t there! You just created the Simulator, but it doesn’t appear.
This is because you set up the iPhone 4s to run on iOS 8.4, and this project is config-
ured to run on iOS 10 and above only. You can either change the app settings to allow
it to run on a lower iOS version, or test on other Simulators that have a newer iOS ver-
sion. When creating an app, you need to decide which operating system version you
want to target. The lower the version number, the higher the likelihood that most
people have either that version or something newer. The downside of targeting older
operating systems is that you’ll miss out on new functionality, bug fixes, and features
that new operating systems offer. In this case, you want to use newer operating systems
instead of older ones—so let’s not test on the newly created iOS 8.4 device. Instead,
select iPad Pro, as shown in figure 17.8.

Figure 17.6 Click the + button at
bottom left to add a new Simulator.

Figure 17.7 Create
a new Simulator for
an iPhone 4s running
iOS 8.4

175Getting started
Once you’ve selected the iPad Pro schema, run the app again to see what it looks like
on the iPad Simulator. It will take a moment to run the first time, and you’ll see the
screen that looks like a device is powering on. That’s normal. You can see that the app
looks pretty good on the iPad, too, which is exciting!

 Let’s move on to hooking up your UITableView to the ViewController like you did
in chapter 16.

17.2.4 Connecting the data to the table view

Before you hook up the table view, take a minute to make the application code a little
more readable and intuitive. Start by renaming your ViewController to MainView-
Controller so you know this is the main one. Go to the Project Navigator (left panel),
click ViewController once, and then click it again (but not as fast as a double-click) so
that the word ViewController is highlighted (you can also Option-click it if you find that
easier). Change the name of the file to MainViewController.swift. Open that file so it
shows in the Standard Editor panel, and change the class definition as well. Change
ViewController to MainViewController and then change the type from UIView-
Controller to UITableViewController. Your class definition should now look like this:

class MainViewController: UITableViewController {

Do you remember what this means? You’re defining the class MainViewController
and saying it is of type UITableViewController. Now you need to tell your storyboard
that MainViewController is the controller class for the frame it created. Open the

Figure 17.8 Select the iPad Pro schema to run the app on an iPad Pro Simulator.

176 CHAPTER 17 Putting it all together: the LioN app
storyboard again, and select the frame that now has LioN at the top. Open the Identity
Inspector on the Utilities panel (right panel) to change the class, as shown in figure 17.9.
The Identity Inspector is the third button from the left.

Now run the app again to make sure everything still works as expected (which it
should). You’re going to add the data source to the controller class so the table has
something to load. If you worked through chapter 16, you’ll remember that you had
to tell Xcode that the ViewController conformed to the UITableViewDatasource pro-
tocol, and yet this MainViewController isn’t explicitly doing that. Let’s find out why.
In Xcode, click MainViewController so it’s active in the Editor pane. Next, Option-
click the word UITableViewController and look at the Quick Help panel that pops
up, shown in figure 17.10.

The UITableViewController class conforms to the UITableViewDelegate and the
UITableViewDataSource protocols, so your class doesn’t need to explicitly state that
it conforms to these—because it already does. Your MainViewControllerClass is
inheriting from the UITableViewController class, so you inherit all the delegations
that are implemented in the base class. Isn’t this neat? If you remember back in
chapter 16, though, you got an error when you didn’t add the required functions for
UITableViewDataSource. This hasn’t thrown any errors, which seems weird. Ahhh,
inheritance to the rescue! The UITableViewController base class has already imple-
mented the required methods. So your MainViewController is inheriting functions
from the UITableViewController. How cool is that? Except now you want to load

Figure 17.9 Set the Storyboard frame’s base
class to the MainViewController class.

Figure 17.10 The Quick Help panel shows that the UITableViewController
conforms to the UITableViewDelegate and the UITableViewDataSource
protocols.

177Getting started
data into your table, and the UITableViewController implemented the methods, so
how do you load the data? I’m so glad you asked.

17.2.5 Implement the functions for table views

If you remember back in chapter 16, you had to add required functions to your class
so you could conform to the UITableViewDataSource protocol. You’ll do the same
thing now. In order to get the specifications for those methods, first Command-click
the word UITableViewController in your MainViewController class definition (at
the top of the file). This opens the definition of the UITableViewController class in
Xcode, as shown in figure 17.11.

That’s pretty cool, but you really want to know the definition of the UITableViewData-
Source; so, Command-click the word UITableViewDataSource in the class definition of
the UITableViewController class (at the top of the file). This opens the class definition
for the UITableViewDataSource, which is exactly what you were looking for. There are
two function definitions here that you require: copy them by highlighting them and
then pressing Command-C so they’re on your clipboard. Next, click the Back button at
the top of the Editor twice to get back to the MainViewController file. Paste the defini-
tions right below your viewDidLoad function so your code looks like figure 17.12.

Figure 17.11 Command-clicking the UITableViewController in the MainViewController class opens
the class definition in Xcode.

Figure 17.12 Copying the function definitions into your MainViewController so you don’t have to type the
function definition again

178 CHAPTER 17 Putting it all together: the LioN app
Delete the word public from the function definitions. You should still get several
errors in Xcode because these lines don’t look like functions. Do you remember why
not? You have to put brackets around the functions so Xcode knows they’re functions.
At the end of the numberofRowsInSection definition, after the -> Int, put an open
curly bracket {. Press Enter, and Xcode should automatically add another one to close
the function. Now do the same thing for the cellForRowAtIndexPath function. That
should clear out a few of the errors you were seeing, but there still seem to be two
errors. What gives?

 Click the red exclamation button at top right in your Editor panel to display the
messages that Xcode is providing, as shown in figure 17.13. Notice that the first two
error messages say “Overriding declaration requires an ‘override’ keyword”. This goes
back to the awesome topic of inheritance. I told you before that the UITableView-
Controller already implemented the required UITableViewDataSource functions,
right? That means UITableViewController “declared” those functions in its class
definition, and because you’re inheriting from UITableViewController, you have
access to those classes. This means you can’t “re-declare” those functions unless you
tell Xcode that you’re overriding the UITableViewController function definition
so you can implement our own. The superclass UITableViewController already
declared the functions that you want to use in your class, so you can load data into
your table.

To correct the error, you need to tell Xcode that yes, you know these functions are
declared in the superclass, but you want to override those definitions so that your
functions will be used instead. How do you do that? Well, sit back and relax, because
it’s going to take a while to override the functions. Nah, I’m kidding. It’s quick and
easy. All you have to do is add the keyword override in front of your function declara-
tions. Yep—it’s that easy. Awesome! Now those two errors are gone. You’ve successfully
overridden a function definition.

 But wait. If you click the red exclamation point again, you’ll see that there are dif-
ferent errors now. It looks like you declared your functions and said that they should
each be returning something—the arrow to the right defines what the function should
return. The number of rows in section is expecting an Int, so put return 1 between
the brackets. Now you’re down to one error.

Figure 17.13 Clicking the Red
Exclamation Point at the top of the
Editor panel displays the error
messages.

179Summary
 The cellForRowAtIndexPath is expecting a UITableViewCell to be returned, so
you need to create a cell like you did in chapter 16. Add the following code between
the curly brackets of the function cellForRowAtIndexPath:

let cell = tableView.dequeueReusableCell(withIdentifier: "lionCell", for:
indexPath);

cell.textLabel?.text = "my first cell"
return cell

Do you remember what this code does? The first line creates a constant cell (using the
keyword let) and tells the table view to reuse a cell if one is available. It specifically
wants to reuse the cell that’s identified as lionCell. Uh oh. Did you identify any cells
as lionCells? Nope. Let’s go fix that before we keep walking through the code.

 Go back to your storyboard, and click the TableViewCell (use the Document Out-
line panel to make it easier). Then, in the Attributes Inspector panel, add lionCell to
the row asking for an Identifier. Whoo! Sidestepped that error, didn’t you?

 The next line sets the text label’s text to “my first lion”. This isn’t reusable because
you’re hardcoding the value, but remember that you want to take little steps, test,
refactor, little steps, test, refactor, and so forth. Finally, you’re returning the cell to the
tableView to be displayed.

 Run the app and check the output. You should see a single cell with the words “my
first lion”. You can run the app on the iPad Simulator or an iPhone Simulator, and it
looks good on both devices. If your app doesn’t show the cell with “my first lion” on it,
there are three things to check:

 Make sure you used the same cell identifier in the code as you set in the Attri-
butes Inspector for the cell. I generally copy/paste the name because I’ve mis-
typed enough that it drives me crazy.

 Make sure you copied the correct two functions into the code. You want the
cellForRowAtIndexPath and the numberOfRowsInSection functions. It’s easy
to accidentally copy numberOfSectionsInTableView instead—not that I’ve ever
done that.

 Make sure you set the class for LionScene to the MainViewController.

17.3 Summary
You’re well on your way to creating the LioN app. I’ll continue to introduce new con-
cepts in each chapter. I introduced the keyword override in this chapter, which lets
you (the programmer) override an existing function declaration so you can implement
your own code. This is a powerful feature of Swift that you’ll use a lot in your program-
ming career. You also learned how to look at the class definitions of the classes you’re
using by Command-clicking the class in your code. It’s not a super-exciting app yet,
but it’s getting there! If you want to see your app running on your iPhone or iPad,
check out appendix B.

Adding data to
your LioN app
You created the foundation of the LioN app in the last chapter, and you’re going to
add more functionality to it in this chapter. I told you about my approach in chap-
ter 17: you’ll code, test, refactor, and then do it all over again. You may want me to
show you the final output, but this iterative development is part of the process. If
you try to code a big chunk of functionality all at once, you won’t know which parts
work and which don’t when you test it. You’ll have to walk through everything you
wrote to find the error. It’s much easier to start small, test, refactor, and add more.

 In this chapter, you’re going to continue with this process by first adding some
data to an array and displaying it in the table, and then refactoring the data to sep-
arate the model from the view from the controller (the MVC pattern was discussed
in chapter 17).

This chapter covers
 Adding hardcoded data to your LioN app

 Refactoring to be MVC compliant

 Showing the description on the cell
180

181Adding hardcoded data to your LioN
18.1 Adding hardcoded data to your LioN
You hardcoded a single cell of data in chapter 17, and now you’re going to hardcode
several cells of data so you can wire up your data source. You’ll do the following:

1 Create an array.
2 Hardcode some data.
3 Create a LioN object to store data.
4 Make the array the data source for the table, and then test it.

Ready? Let’s get to it!

18.1.1 Creating an array of dummy data

This is the first time I’ve used the term dummy data, but it’s common in the program-
ming world. It doesn’t mean the data has an intellect inferior to that of other data; it
means it’s placeholder data. Programmers often use dummy data to test their code to
make sure it works before wiring it up to real data. It’s a perfectly acceptable practice
to do this, but you need to make sure your dummy data is structured the same way the
real data is structured, or you’ll have a lot of rework on your hands. You’ll see more of
this as you continue to create a model later in this chapter.

 Open your LioN project again, and navigate to MainViewController so you can
edit it. The first thing you need to do is to create an array of dummy data. You need to
create the array at the class level so it’s available to all the functions. Do you remember
how to create an array of strings at the class level? I added the following line below my
class definition line:

var lionData = ["lion1", "lion2", "lion3", "lion4", "lion5", "lion6", "lion7"]

You can make your lion data say whatever you want and add as many or as few items
as you want, as long as it’s in an array called lionData and it contains strings. Now you
need to do something with this data.

18.1.2 Wiring lionData to the table view with hardcoded data

You need to connect the array of strings to your table view. You did this in chapter 16,
so it shouldn’t be new to you. The first thing you want to do is change the numberOf-
RowsInSection function to return the actual number of strings instead of the hard-
coded value 1. Delete the return 1 code in this function, and return the number of
strings in the array. Remember how? I added the following line within the numberOf-
RowsInSection function:

return lionData.count

This returns the count of objects in the lionData array. It doesn’t matter what kind of
objects they are (strings, Ints, and so on). Every time an object is added to or removed
from the array, the count will change, so this method will always return the correct
number of objects. Go ahead and run the app to see what happens.

182 CHAPTER 18 Adding data to your LioN app
 You should see “my first lion” repeated numerous times. The number of times it
repeats will depend on how many strings you added to you lionData array. You
haven’t told the cells to use your array of strings yet, so it’s repeating your hardcoded
value "my first lion". Make sense? Let’s fix it.

 You need to wire the strings in your array to the title label in the cells. This will
require a change in the cellForRowAtIndexPath function. You hardcoded the value
"my first lion" for the cell.textLabel?.text line, so that’s probably the best place
to start. You need to change the hardcoded value to the value of the string in your
array, but you have to do it for each string in the array so it doesn’t repeat one value
over and over again like your hardcoded line.

 You learned about the index path and rows in chapter 17, so this part shouldn’t be
new to you, either. As a refresher, the index path is like an arrow pointing to a specific
location in a collection of collections. The index path in this case should be 0 because
you have only one array in the collection (remember, you start counting at 0) and the
row of that index path will be the actual row in your array. Fortunately, Xcode takes
care of knowing all about the index path and row.

 As mentioned in chapter 17, the cellForRowAtIndexPath function is called once
for every row in the table. The first time it’s called, indexPath.row should be 0
because it’s the first cell in your table. In this case, the cellForRowAtIndexPath func-
tion will be called lionData.count times, because lionData.count is the number of
strings in your array.

 Next, you’ll update the code to remove the hardcoded value and instead use the
row of data in your array. I changed the line to look like this:

cell.textLabel?.text = lionData[indexPath.row]

Run the app and see what happens. You should see all the strings that you added to
your array displayed in the table. Good job!

 So now you have the LioN application with a table view that’s populated with an
array of strings. This is a great start. Next, you’re going to add a LioN model to the
app so you can follow the MVC pattern we talked about in chapter 17.

18.2 Adding a model to the mix
As you may remember from chapter 17, it’s a good practice to separate out the view
(front end) from the model (the data) from the controller (the go-between). This
allows the separation of concerns (SOC) so the view isn’t concerned with what data it
will show, and the model isn’t concerned with how the data will be presented.

 You’re going to add a model to your app that will represent the LioN data. You’ll
take the following steps:

1 Add a new Swift file to project.
2 Model the data.
3 Create a new LioN entry.

183Adding a model to the mix
18.2.1 Adding a new Swift file to the project

You need to add a new file to your project, something you haven’t done before. It’s
easy, though, so let’s walk through it. In Xcode, click File > New > File. A new window
will pop up. Notice at the top of the window that there are groupings of template
types: iOS, watchOS, tvOs, and macOS. (There may be more than this in your version
of Xcode, but there are only four in my version today.) You can use Xcode to create
apps for iOS, the watch, and a Mac—but you’re working with iOS now. The Source
part of the window of the iOS Category shows you all of the different file type tem-
plates that are available to you (figure 18.1).

The only one you need to worry about right now is Swift File, which will create an
empty Swift file for you. Click Swift File, and then click Next. Another dialog will
open, shown in figure 18.2, where you can name the file and choose its location
and target.

 Name the file LioN, and make sure to leave the extension as .swift. Leave the
“where” set to the LioN folder—this defaults to the location where you stored the
project on your hard drive. You can leave Group set to the LioN folder as well, and
make sure Targets is set to the LioN project. Click Create. The dialog box should

Figure 18.1 Click Source under the iOS category, and then select the Swift File template to create
a new file in your project.

184 CHAPTER 18 Adding data to your LioN app
close. The new LioN.swift file should be in your Project Navigator list, and it should be
open in the Editor.

 Let’s add the object to the file now, shall we?

MODELING THE DATA

If you remember, back in chapters 1 and 2 we talked about the pen object and how it
might have a color, it might or might not have a cap, and so on. You’re going to
describe your LioN object in the same way but with its own properties. The first thing

Figure 18.2 Name the file LioN, and make sure the LioN project is the target.

185Adding a model to the mix
you need to do is create the Lion class so you can add properties to it. In your
Lion.swift file, add the following below the import Foundation line:

class Lion {

}

As usual, Xcode is helpful. Once you type class Lion and the opening bracket, all you
need to do is press Enter, and Xcode will add the closing bracket.

 Your LioN object will have a name and a description, and it will have a like or
not-like designation. Let’s think about the best way to store this data. The Name prop-
erty should be a string that users can add something meaningful to, like "Wendy's
toothpaste". Let’s make that one a string. Add the following line below your class def-
inition but between the brackets:

var lionName = ""

What is this line doing? You create a variable named lionName and set the initial value
to a blank. Adding the two "" tells Xcode that you plan to store a string in that field.
Now you’ll add the description below the name. Add a new line with this code:

var lionDescription = ""

Next, you need to add a variable to store whether you like this LioN. You’ll use a Bool-
ean, which stores true if you liked something and false if you didn’t. Go ahead and
create a Boolean to store your like value:

var like = true

I’m setting the default value of the like property true, because I’m a positive person
like that. Your whole Lion.swift file should look like figure 18.3.

This is great work! Now you need to use this new model in your ViewController. Make
sure you save the Lion class (press Command-S).

CREATING A NEW LION ENTRY

Remember I told you that you were going to code, test, and refactor repeatedly? Great—
so don’t be annoyed with me when I tell you to go delete something you’ve already

Figure 18.3 Create a Lion class with
variables to hold the values for lionName,
lionDescription, and like.

186 CHAPTER 18 Adding data to your LioN app
done. Okay, go delete something you’ve already done. In your MainViewController,
delete the array you created at the top of your class, and replace it with this line:

var lionData : [Lion] = []

Instead of creating the array of strings as you did before, you’re telling Xcode that you
want to create an empty array (hence the [and] with nothing between them) but
that you’ll fill it with LioN objects (hence the [Lion] definition).

 Xcode should be giving you an error in the cellForRowAtIndexPath function.
Your array isn’t storing strings anymore; it’s storing Lion objects. Xcode doesn’t know
how to set the cell’s textLabel text equal to a Lion object. Let’s fix that.

 You still want the array lionData, and you still want to point to the right row
(indexPath.row), but you need to tell it which value in the LioN to point to. This is
the cool part. Make sure the project is saved (Command-S), and then add a period
after the closing bracket of the line cell.textLabel?.text = lionData[index-
Path.row]. You should see that Xcode provides three code-complete options for
you—the three properties found in the LioN object, as shown in figure 18.4. How cool
is that? Select lionName.

Run the app again to make sure it works. Don’t be surprised that the table view
doesn’t have data in it—you deleted the hardcoded values, so the lionData array is
empty. But you’ll fix it.

 You finally get to use the Lion class to add data to the array. This is exciting, isn’t it?
You need to create a new LioN object, set its properties, and then add it to the lion-
Data array. You’re going to create the new LioN in the viewDidLoad() function,
because this function is called before the table view gets set up (go back to chapter 13
if you need a refresher on the ViewController lifecycle).

 Add the following code within the viewDidLoad brackets:

let toothpasteLion = Lion()
toothpasteLion.lionName = "Wendy's toothpaste"
toothpasteLion.lionDescription = "the one in the blue box"
toothpasteLion.like = true

The first thing you do is create a new LioN object—I called mine toothpasteLion, but
you can name yours whatever you’d like. The next line sets the lionName value, followed

Figure 18.4 Xcode’s auto-complete function shows you the three properties you created for the LioN object.
Select lionName to display on the cell.

187Changing the layout of the table cell
by the lionDescription, followed by the like Boolean. So now you have a LioN
object with values. Next you’ll add it to your array so it will show up on the table view.
Do you remember how to add something to an array? I’ll give you a hint—you want to
append it to the end of the array:

lionData.append(toothpasteLion)

Run the app again to see if your toothpaste shows up in the table view. Ahhh, man,
this is cool, isn’t it? Go ahead and create a few more LioN objects in the viewDid-
Load() function so your table has more rows. Don’t worry, I’ll wait. I added another
toothpaste to my array with the following:

 Variable name—toothpasteLion2 (I know, not too imaginative)
 lionName—Bad toothpaste
 lionDescription—The one in the red box
 like = false

I have two LioN objects in my array, and you may have more than that, which is fine.
You know what would be good, though? If the cell in the table showed the description
of the LioN object, too. Let’s make it so.

18.3 Changing the layout of the table cell
Right now, the table cell shows the lionName value for each LioN in your array. I think
it would be nice to show the description of the LioN as well. Let’s go back to the draw-
ing board, er, storyboard. You’re going to do the following:

1 Change the cell in the storyboard to show the description.
2 Update the function to show the description.

Let’s go!

18.3.1 Changing the cell in the storyboard to show the description

I’ve said several times throughout this book that Swift is easy to learn and Xcode is
your friend, and this part will demonstrate that yet again. Open your Main.storyboard
file so it’s showing in the Editor panel. Change your real estate by hiding the Project
Navigator panel, and make sure the Document Outline panel is showing to the left of
the Editor. If it isn’t, click the button at the bottom of the Storyboard Editor panel
that looks like a box with a vertical line on the left side of it. Your document outline
should look similar to figure 18.5.

 Notice in the Document Outline that you have the main LioN navigator at the top
(the yellow circle—you renamed the navigator to LioN in chapter 17). Below the
LioN navigator, you have the table view, which has a lionCell below it. The lionCell
is the identifier that you gave the cell (for your reuse of the cell) in the last chapter. If
you expand lionCell by clicking the triangle, you’ll see the Content View. Expand

188 CHAPTER 18 Adding data to your LioN app
it again, and you’ll see the title label. You can tell it’s a label because the icon next to it
has a big blue L (like the monogram on Laverne’s sweater in Laverne and Shirley).
Xcode set all that up for you, and you only changed the title on the navigator and the
identifier on the cell. Amazing.

 I want to show the description on the cell, though, and there isn’t a label there for
a description. What to do? Never fear—Xcode is here. Select lionCell in the Docu-
ment Outline panel. Make sure the Attributes panel is showing on the Utilities panel
(right panel) so you can see which attributes are available to change on the cell. The
first attribute is Style. Change that to Subtitle, as shown in figure 18.6.

Once you change the style to Subtitle, you should see the cell in the Editor change to
include the words Title and Subtitle. If you look back at your Document Outline, you
should see a second label on the Content View. The second label also has a big blue L,
because it’s a label. Run the app again to see the subtitle. If the cells in your table
appear under the top navigation bar, or they’re slightly hidden by the navigation bar,
go back to your storyboard, select the UITableViewController (the one you named
LioN), and uncheck Extend Edges Under Top Bar (see figure 18.7).

Well, I did say that you would see the subtitle, and that’s all you see—the word Subti-
tle. Can you guess why? You haven’t wired anything up to the subtitle label yet, so

Figure 18.5 The Document Outline
panel shows all the objects that are part
of your storyboard.

Figure 18.6 Change the cell style to
Subtitle so it will show both a title and
a subtitle on each cell.

Figure 18.7 Deselect the
Under Top Bars option.

189Summary
Xcode displayed the value of the subtitle label, which is Subtitle. That won’t do, so let’s
wire it up.

18.3.2 Updating the function to show the description

You saw in the last few paragraphs how easy it is to add a subtitle to a cell, because Swift
and Xcode make it so easy. There are still some things that may make you scratch your
head, though, and this section is about one of them. You set the cell title to lionName
earlier, and it’s so easy because you set the cell’s title label to lionName. It’s almost that
easy to set the subtitle, but looking for the right label to update isn’t intuitive.

 Let’s look at the cellForRowAtIndexPath function again:

cell.textLabel?.text = lionData[indexPath.row].lionName

You set the cell’s text label equal to lionName. If you try to use Xcode’s wonderful
auto-complete function to set the subtitle text, you’ll be looking for a long time. The
subtitle label on the cell is detailTextLabel rather than subtitle—which is used on
the storyboard. It isn’t intuitive, but it’s not that big of a problem once you know this.
Next, add a line where you set the lionName:

cell.detailTextLabel?.text = lionData[indexPath.row].lionDescription

This should be pretty understandable, because you set the lionName earlier. Now run
the app again. Oh man, oh man, this is so cool!

18.4 Summary
You accomplished a lot in this chapter. You refactored your code to use the Model-
View-Controller pattern, and then you displayed the LioN description on the cell.
You’re going to add more and more functionality in each chapter, so make sure your
code works at this point before moving on.

Displaying details
of your LioN
If you open the Contacts app on your iPhone, you’ll notice that your contacts are
displayed using a table view, and individual contacts are in a tableView cell. If you
select one of those cells, another page loads with the details of that contact, and
you can edit the contact if you choose. You’re going to add the same type of func-
tionality to your LioN app now.

19.1 Capturing the tapped row index
The first thing you need to do in order to display the details of a specific row is to cap-
ture which row the user tapped. If only there was a function that already captured
this information! Oh, wait—there is. Open your MainViewController again, and
start typing (outside of any other functions but still within the class) the following:

override func tableV

This chapter covers
 Optionals

 Typecasting

 Optional binding
190

191Adding a detail page to the storyboard
Xcode’s auto-complete function will now display the functions that are available for
you to select, as shown in figure 19.1. Let Xcode fill in the auto-complete data and add
the didSelectRowAtIndexPath function to your code.

Next you’ll add a line to print out which row the user tapped to make sure you’re cap-
turing it correctly. Add the following line:

print(lionData[indexPath.row].lionName)

Run the app again, and tap several different rows. Your console should print out the
name of your LioN objects. Mine looks like figure 19.2 after I tap a few rows.

Now you know which row was tapped, so you can print the corresponding name
stored in the LioN array. That’s a good step, but you want to display the details of the
LioN on another screen.

19.2 Adding a detail page to the storyboard
We’re getting into the fun stuff. In this section, you’ll add a new ViewController that
will display the details of the LioN object, and you’ll also add the code to wire it up.
Here are the steps:

1 Add a ViewController to the storyboard, and create a segue.
2 Add a detail ViewController file.

Let’s get to work!

Figure 19.1 Xcode uses auto-complete to display the available functions for the tableView. Select
the didSelectRowAtIndexPath function.

Figure 19.2 Adding the didSelectRowAtIndexPath
method lets you capture which row the user tapped.

192 CHAPTER 19 Displaying details of your LioN
19.2.1 Adding a ViewController to the storyboard

In order for your app to show the details of the LioN object, you need to create a new
view for the user to interact with. The view will be where all the details are displayed,
and the coding norm is therefore to call the view DetailViewController. You’ll start
by creating the view first.

ADDING THE NEW VIEW CONTROLLER

Open Main.storyboard in Xcode again, and make sure you set your real estate so you
can work easily in the Editor. You’ve done this numerous times in previous chapters,
so you should have a sense of what works for you as you show and hide panels. The
first thing you want to do is add a ViewController to the storyboard. This will be the
view that displays the details of the LioN. The ViewController is usually near the top of
your Object Library, so grab one and drag it to the right of the table view with the pro-
totype cell on it.

 Now you need to connect the new prototype cell to the new ViewController so that
when the cell is clicked, the new view will show.

CREATING A SEGUE

You connected two views together back in chapter 12, so you’ve done it before, but
let’s walk through it anyway. On the scene with your table view on it, click once on the
prototype cell (it’s called lionCell) so it’s the active object. Control-click the cell,
hold down the Control key, and drag your mouse pointer over to the new view. Once
the new view turns blue, release the mouse button and the Control key. A new dialog
will pop up, and you can select the kind of segue you would like to use (segues are the
transitions between scenes). In this case, you want to select Show in the Selection
Segue section at the top, as shown in figure 19.3.

Run the app. Did you notice that Xcode automatically added the navigation bar at the
top of the view? This means you can easily get back to the full list of lions by hitting

Figure 19.3 Choose the Show option in the Selection
Segue section when this dialog pops up. This will
connect your lionCell to your new view.

193Adding a detail page to the storyboard
the back button. You may be wondering where the word “LioN” came from on the
back button. Xcode used the navigation bar title label for the back button label. If you
change the navigation bar title label to something else, the back button will be
updated. You can find the Navigation Bar Title attribute in the Attribute Inspector for
the navigation bar. Pretty cool, huh?

RENAMING THE SEGUE

Most apps have more than one segue in them because they have more than one scene
or ViewController that loads. You need to be able to tell the difference between the
segues so you can take different actions depending on what the user action is. In your
storyboard, click the segue—the arrow between your two ViewControllers, as shown in
figure 19.4.

Now you can change the identifier of the segue in the Attributes Inspector. Change
the identifier to showLionDetail. You can run your app again, and it shouldn’t look
any different than the last time you ran it.

 Next you’re going to create a ViewController file to control what’s presented on
this scene.

19.2.2 Creating a new ViewController class

You have a ViewController for your main view (MainViewController), and you need
one for the detail view. You’re going to create a new file in the same way that you cre-
ated the Lion.swift file. Click File > New > File, and select the Swift File template. Save
it as DetailViewController.swift and leave the other fields as they are. Xcode will then
load the empty file in the Editor window.

 This time, instead of creating a Lion class, you want to create a DetailViewCon-
troller class and have it inherit from UIViewController. Do you remember how to
do this? I added the following code under the import Foundation statement:

class DetailViewController : UIViewController {
}

If you remember chapter 8, we talked about frameworks, which are a bunch of classes
bundled together so we can use them when we need them. I suggested an analogy of
building a house and only needing the plumbing tools. In this case, the Swift file that
Xcode created for you is importing the Foundation framework. You don’t need the
Foundation framework—you need the framework that provides all the classes for your
UI controller. Your UI classes are found in the UIKit, so you can delete the import
Foundation statement and instead add import UIKit.

Figure 19.4 Click the segue between your two ViewControllers
to change the Attributes Inspector panel so you can set the
identifier for the segue.

194 CHAPTER 19 Displaying details of your LioN
 You’ll add two functions to handle when the view loads and when the device is run-
ning low on memory. I added the two functions to my class inside the class definition
(the curly brackets):

override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
override func viewDidLoad() {
 super.viewDidLoad()
}

I didn’t retype these functions; I copied them directly from the MainViewController.
I try to be as efficient as possible, and that includes copying existing code.

 Now that you have your DetailViewController set up, you need to wire it to the
ViewController on your storyboard. Right now, these are two separate objects that
know nothing about each other. Open Main.storyboard, and click the top of the View-
Controller that you added earlier. In the Utilities panel, select the Identities Inspector
(the third button from the left). You should see the panel in figure 19.5. Click in the
Class field, and select the DetailViewController you created. If it doesn’t show up,
make sure you’ve saved your work.

Run your code again, and it should work as it did before. This is great! You’ve cre-
ated a new view in the storyboard and created the segue so it will show up when the
user taps a row. You also created a DetailViewController and wired it to the new
view. You’ll use the DetailViewController to (can you guess?) display the details
for the rows.

 Next, you need to pass some data from MainViewController to the DetailView-
Controller so it can be displayed on the new view. This is the same idea as opening
the Contacts app on your iPhone or iPad and tapping one of the rows—a new view
opens with the details of the contact.

Figure 19.5 You must wire the view in your
storyboard to the DetailViewController so
Xcode knows the DetailViewController is
controlling the view you created.

195Passing data to the DetailViewController
19.3 Passing data to the DetailViewController
You have a LioN object that’s stored in an array in the MainViewController class.
When the user taps a row in the table view, you want that one LioN object to show up
on the detail view with all the data present. There are two steps you need to take to
implement this new functionality:

1 Prepare the DetailViewController to accept incoming data.
2 Update the MainViewController to pass the data.

19.3.1 Preparing the DetailViewController to accept the LioN

You have your LioN data stored in an array in the MainViewController class, but you
want the user to be able to see it and eventually edit it when they tap a row in the
table. To do this, you need to pass the Lion data to the DetailViewController.

 Open the DetailViewController again, and add the following line under the
class definition:

var lionDetail : Lion?

You’re creating a variable called lionDetail and telling it that it will be of type Lion.
What’s with the question mark, though? This is something you haven’t seen before,
and it’s a great feature of Swift. Let’s talk about it next.

OPTIONALS

Imagine that you and I are friends and we’re planning on going to a party tonight. I
tell that you I’ll drive my car to the party and you can drive it home (perhaps I’m stay-
ing the night). You get to the party, only to find out that I’m not there, so there’s no
car, and you have no way to get home. This is similar to a null pointer reference in the
coding world.

 You had planned to call my implementation of rideHome() for my car so you could
drive my car; but I didn’t show up with the car, so when you tried to call wendys-
Car.driveHome(), you got an error message because my car didn’t exist. Trust me—
it’s as rude in the coding world as it is in the real world. If you’re expecting an object
to be there (like a car), and you try to do something with the car—openDoor(),
driveHome(), turnLightsOn()—and the car isn’t there, you’ll get what’s called a null
pointer exception. You can’t call a function on an object that doesn’t exist, even if you
think it should exist.

 Null pointer references have probably happened to every developer at some point
in their career. Even when they created all the code, they expected that an object
would be there to use, but for some reason, it wasn’t. Apple created a way to handle
this situation with the optional. The optional is the question mark ?, also known as an
interrogation point, query, or eroteme. The preceding line of code is declaring a variable
named lionDetail, which is of type Lion, and it may or may not be null. As you con-
tinue to add more code to the DetailViewController, the ? will tell Xcode to follow
your instructions if lionDetail isn’t null, or disregard the instruction if it is null.

196 CHAPTER 19 Displaying details of your LioN
Back to my extremely rude behavior. I told you I’d be at the party, so you made plans
to drive my car home. With the optional, I would have told you that I may or may not
be at the party. With that knowledge, you probably would have made a backup plan
to get home in case I didn’t show. I’m not nearly as rude as before—I have commit-
ment issues.

PRINTING THE PASSED DATA

Now your DetailViewController has an optional variable named lionDetail (which
you know may or may not be null). You’ll take small steps to make sure it’s getting
passed correctly and print the value of the variable to the log. Add the following line
within the viewDidLoad() function:

print(lionDetail?.lionName)

Notice the optional again. This line is telling Xcode, “If lionDetail is not null, then
print the lionName.” You have to use the ? each time you refer to lionDetail because
you defined the variable as optional. If you run the app now, the DetailView-
Controller won’t print what you want because lionDetail is in fact null. You’re
going to fix that by editing the MainViewController to pass data into the Detail-
ViewController.

19.3.2 Updating the MainViewController to pass data

Back in section 1.2.1, you named the segue used to transition between the MainView-
Controller and the DetailViewController, and now you get to find out why. Remem-
ber what you’re trying to do here: when you tap a row in the table view, you want the
app to show the detail screen and show the details from the LioN object that was
tapped. When the user taps a row, the segue is used to move to the next screen—so
let’s see what we can do with segues, shall we? Add the followings lines to your code in
MainViewController—and remember that Xcode will try to use auto-complete to pre-
dict the function that you’re trying to add:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

This function is overriding the implementation of the superclass (hence the override
keyword) and the function prepare(for segue gives you the opportunity to do things
before the segue occurs. You can see the parameters for this function are segue,
which is of type UIStoryboardSegue, and sender, which can be any kind of object but
may also be null. The Any? is the object that’s calling the function, and this is saying
that anything can call it.

Syntax alert!
The ? can be added to a variable definition to let Xcode know that the variable might
be null.

197Passing data to the DetailViewController
 Most scenes on a storyboard will have more than one segue going between them,
so it’s a good idea to make sure you’re responding to the correct segue. You’re going
to create an if statement to make sure that your code will run only when the show-
LionDetail segue occurs.

 Add the following code inside the prepare(forSegue:...) function:

if (segue.identifier == "showLionDetail"){
}

Remember, earlier you changed the segue’s identifier attribute to showLionDetail.
Now you’re checking to see whether the identifier is equal to showLionDetail. Add
the following line inside the if statement you wrote:

let controller = segue.destinationViewController as! DetailViewController

This line creates a new variable named controller and sets it equal to the segue’s
destination ViewController. You’re telling Xcode to create a variable named con-
troller and set it equal to whatever ViewController the segue is pointing to on the
storyboard. Back in section 1.2.2, on the storyboard, you set the new ViewController
equal to the class DetailViewController. That’s what the segue is pointing to, right?
You’re saying to set the variable controller equal to the segue’s destinationView-
Controller, which in this case is the DetailViewController. But what’s the deal
with that as!, you may be wondering? I’m glad you’re wondering, because I’m going
to tell you.

THE AS!
Let’s start by looking at segue.destinationViewController. In Xcode, Option-click
the word destinationViewController, and a Quick Help pop-up window should
appear, as shown in figure 19.6.

As you can see in the first line (the declaration), destinationViewController is of
type UIViewController. You created a variable (controller), and you’re setting it
equal to the segue.destinationViewController, which is a UIViewController.
Great! This is all working out nicely, because your DetailViewController is a subclass

Figure 19.6 Option-clicking destinationViewController will load the Quick
Help window.

198 CHAPTER 19 Displaying details of your LioN
of UIViewController (you can see this if you open the class DetailViewController
and look at the class definition line). Again, you set your new controller variable
equal to whatever the segue is pointing to (destinationViewController), which is of
type UIViewController, but you want to specify that you want it to be the Detail-
ViewController. Enter the as!.

The as! keyword is a way of typecasting one object to another. Typecasting allows you
to treat something as if it were of a type of something in its class hierarchy. You know
that your DetailViewController is of type UIViewController, and that the UIView-
Controller is the superclass of the DetailViewController. The class hierarchy looks
like figure 19.7.

Because you’re sure that the DetailViewController is a type of UIViewController,
you can typecast UIViewController to DetailViewController. The as keyword lets
you typecast from one to the other. If you weren’t positive that the two were in the
same class hierarchy, you could check by using the ? again. So the statement would be
like this:

let controller = segue.destinationViewController as? DetailViewController

This is telling Xcode to set your controller variable to the segue’s destinationView-
Controller, and if it’s in the same class hierarchy, typecast it to the DetailView-
Controller. This is a safe way to go because you might not always know that the classes
are in the same hierarchy, but in this case you’re sure, so you use as!. This tells Xcode
that you’re absolutely sure the two are in the same class hierarchy and you’re forcing
the typecast even if it isn’t right. If the two classes weren’t in the same class hierarchy,
this would cause an error in your app.

Syntax alert!
The as? and as! keywords are ways to tell Xcode that one object should be treated
as another object. as? lets Xcode know that the objects might be in the same class
hierarchy, and as! tells Xcode to force the typecast, even if it might be wrong. The
as! will create an error at runtime if the two aren’t in the same class hierarchy.

Superclass

Subclass

UIViewController

DetailViewController

Figure 19.7 Your DetailViewController
is a subclass of UIViewController, and
UIViewController is the superclass of
DetailViewController.

199Passing data to the DetailViewController
 Now that you have a reference to your DetailViewController, you need to pass
the data to it from the row the user tapped. Add the following lines below the let
controller line:

if let indexPath = tableView.indexPathForSelectedRow{
}

You haven’t seen the if let statement before, so let’s talk about that now.

THE IF LET STATEMENT

In previous chapters, you created if statements to check the value of a variable, and
you then executed some code (if x = y, then do something). The if let statement
allows you to do the same thing but using less code and making the code more pre-
cise. If I were to write out the preceding code in longhand, it would look like this:

let indexPath = tableView.indexPathForSelectedRow
if indexPath != nil{
}

Again, I’m setting a new variable called indexPath equal to the tableView’s index-
Path for the cell that the user tapped (typecast as a UITableViewCell). Then I’m
checking to see whether the indexPath variable is null. (Apple uses the keyword nil
for values that are null, so don’t use null, nada, or zippo in your code—use nil.) This is
a long way of doing it. Instead, I can shorten it to this:

if let indexPath = tableView.indexPathForSelectedRow {
}

The two statements do the exact same thing, but one is much more concise. The if
let statement is known as optional binding—if the item isn’t null, then set it equal to
your variable.

 Let’s recap what you’ve done so far. You added a new function (prepare(for-
Segue:...)) that will run after the user taps a row but before you segue to the next
scene. Within that function, you added an if statement to check to make sure you
were operating on the correct segue (showLionDetail).

Within that check, you created a new variable called controller, a reference to the new
DetailViewController scene. The preceding line is getting the indexPath (the loca-
tion) of the row within the tableView that the user tapped. Now that you have the

Syntax alert!
The if let statement is known as optional binding and is a more concise way of check-
ing a variable to make sure it isn’t null and then setting it equal to another variable.

200 CHAPTER 19 Displaying details of your LioN
location of the cell, you can use that location to get the data from your array and pass
it to the DetailViewController. Add this line within the if let statement:

controller.lionDetail = lionData[indexPath.row]

This line is taking the controller (your DetailViewController) and setting the vari-
able lionDetail (that you created earlier in section 1.3.1) equal to LionObject in the
array of lionData at the indexPath.row location.

 Your entire prepare(forSegue:...) function should look like this:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if (segue.identifier == "showLionDetail"){
 let controller = segue.destination as! DetailViewController
 if let indexPath = tableView.indexPathForSelectedRow{
 controller.lionDetail = lionData[indexPath.row]
 }
 }
 }

Run the app again, and you should see the printout of the row you tapped. In my case,
I tapped the first row and then went back and tapped the second row. This is what my
console looks like:

Optional("Wendy\'s toothpaste")
Optional("bad toothpaste")

Remember that you made the variable lionDetail optional, so Xcode is printing that
the optional variable contains “Wendy’s toothpaste” and then “bad toothpaste”.

19.4 Summary
You did quite a bit in this chapter. At a high level, you created the code necessary to
pass data from the MainViewController to the DetailViewController. To do this,
you created a new optional variable in the DetailViewController. Then, in the Main-
ViewController, you captured the row the user tapped and passed that data to the
DetailViewController.

 You learned several new concepts in this chapter:

 Optionals—These are variables that can have a value or might be nil.
 Typecasting—This allows you to cast one class as another class, as long as the two

classes share a hierarchy.
 if let—The if let statement shortens the code by checking to see whether

the variable has data in the same line as setting it equal to a variable.

Remember that if you have a problem with this chapter, you can always download
my source code from www.manning.com/books/anyone-can-create-an-app or https://
github.com/wlwise/AnyoneCanCreateAnApp. Make sure your app runs before mov-
ing on to the next chapter. You’re going to display the details of your LioN object in
the DetailViewController in the next chapter, so this should be fun!

http://www.manning.com/books/anyone-can-create-an-app
https://github.com/wlwise/AnyoneCanCreateAnApp
https://github.com/wlwise/AnyoneCanCreateAnApp

Creating the details
of the detail view
You created the DetailViewController in the last chapter, and you were able to
pass a lion object from the MainViewController to the DetailViewController
and print the Lion name to the console. In this chapter, you’ll add labels to the
DetailViewController scene so you can display the lion object for the user.

20.1 Adding some labels to your detail screen
The first thing you’re going to do is create three labels on the detail screen and
connect them to your code through IBOutlets. You’ve done this several times in
the book, so it shouldn’t be new. Go into your storyboard, and drag three labels
from the Object Library onto the DetailViewController scene. Drop them toward
the top-left corner for now, and make them a little longer so they can display the
lion details when you wire them up.

This chapter covers
 Adding a detail screen to display the lion details

 Using Int values as a string

 Deleting lion objects from the list
201

202 CHAPTER 20 Creating the details of the detail view
 Next, open the Assistant Editor view (click the button at top right that looks like
two interlocking circles). Control-click a label, drag it over to the DetailViewController
.swift file, and drop it right under the class definition. Do this for each of the three
labels, and name them like this:

 lblName

 lblDesc

 lblLike

I named them with the prefix lbl because they’re labels and it will make my code eas-
ier to read in the future, because I know that all variables that start with lbl will be
labels. Now that the three labels are on the scene and they’re connected to your code,
you’ll set the values to the values of your Lion object that you passed in. If you think
about how to do this, you want to set the text of label to the lionDetail object’s lion-
Name. How would you do that? Where would you do it? Here’s how I did it; I put it
inside in the viewDidLoad() function:

lblName.text = lionDetail?.lionName

Do the same for the description label:

lblDesc.text = lionDetail?.lionDescription

The like label won’t work the same way as the description and the name. Do you
know why? You defined the like property as an Int when you created the Lion object,
and the label’s text field is expecting a string. You could go back and change the Lion
object’s like type to a string if you wanted to, but I want it to stay as an Int. There are
many ways to get the Int value into a string value, and some programmers have strong
feelings about the proper way to do it. I’m of the opinion that if it works and it doesn’t
break any coding conventions, then it’s considered proper.

20.1.1 Converting an Int to a string using the description

One way to get a string value of an Int is to use the Int’s description. The description
is what it sounds like—a textual description of the variable. You could do something
like this:

lblLike.text = lionDetail?.like.description

This will return the value of either 1 for like or 0 for dislike.

20.1.2 Converting an Int to a string using String

Another way to get the string value of an Int is as follows:

lblLike.text = "\(lionDetail?.like)"

203Adding some labels to your detail screen
This is called string interpolation. You’re creating a new string value by including the
values inside a string literal (the \() portion). This is probably the most accepted way
of converting an Int to a string value; but again, there are many different ways of
doing it, and my goal is to teach you how to do it so it works. From there you can build
your knowledge about the other ways as you become more and more comfortable with
the coding language. I’m going to use the first option, though, because the descrip-
tion function doesn’t print out the word Optional like the string interpolation
method does. In this case, I want the value 0 or 1 to show up.

 Run the app, and you should see cells load like they did in the last chapter; but
when you click the cells, the new view will load with the details of the lion object. This
is pretty cool, I have to say. My DetailViewController looks like figure 20.1 right now.

To recap where you are with the app: you’ve created the new app with a tableView to
hold the data. The data in the table is still hardcoded, but when you click the row, it
opens the detail view, which displays the details of your Lion object. You can also click
Back to go back to your view of all the Lion objects. This is a lot of functionality with-
out writing a lot of code. Apple tries to make it as easy as it can for programmers by
doing a lot of the plumbing behind the scenes so we don’t have to.

 You still have a lot of work to do on the app—like adding items to the list, making
sure the list saves, and not hardcoding the values. In the next section, you’ll add the
functionality so you can add new items to the lion list.

Figure 20.1 The DetailViewController code up to this
point includes three labels that are displayed based on the Lion
object values.

204 CHAPTER 20 Creating the details of the detail view
20.2 Adding new LioNs to the list
You’re going to add the Add button to the top bar (your navigation bar) so when a
user taps it, it will open a new view for the user to enter the details of the new LioN
item. This is like adding a new contact in your Contacts app on your iPhone. From the
All Contacts screen in the Contacts app, you click the + button at top right, and you’re
presented with the form to create a new contact. You’ll be doing the exact same thing,
except you’ll add LioNs instead of contacts.

 The steps look like this:

1 Add the + button to the view.
2 Create a function to handle the action, and link the two together.
3 Hardcode values to add to your LioN list to test the functionality.
4 Add the ability to delete the items.
5 Change the code so the user can add their own LioN item (you’ll do this in

chapter 21).

This is a lot of new functionality. Let’s get started.

20.2.1 Adding the + button to the view

You need to add a button to your navigation bar at the top of the view so users have a
way to add new items. You won’t believe how easy Apple has made this. Go back to the
storyboard, and select the main LioN scene with the TableViewController on it. In
the Object Library, search for button again, as you have many times before in this
book. This time, however, you’re adding a Bar Button Item instead of a regular But-
ton, as you can see in figure 20.2.

Drag the Bar Button Item to the top of the LioN view, and drop it on the right side of
the navigation bar. Your view should look like figure 20.3.

Figure 20.2 Add the Bar Button Item to allow
the users to add new items to the table.

205Adding new LioNs to the list
Now you have a button on your navigation bar, but you want it to show a + sign so
users can add items. With the Bar Button Item selected, open the Attributes panel,
and you’ll see the Style, System Item, and Tint attributes Click the System Item attri-
bute, and you’ll see all the different types of properties that can be set for this button.
Change the attribute to Add (figure 20.4), and you’ll see that your button changes to
a + button.

Figure 20.3 Drop the Bar Button Item on the top of the navigation bar on the
LioN view.

Figure 20.4 Select the Add property
for the System Item attribute to change
the Bar Button Item to a +.

206 CHAPTER 20 Creating the details of the detail view
You can click through the different options to see how they change the icon on the
button—remember to set it back to Add when you’re done. One thing to note here:
the only thing that happens when you change the System Item attribute is the icon
change. Apple isn’t adding the code behind the scenes for the add functionality.

20.2.2 Creating a function to handle the action and link the
two together

You have a + button on the view, and you need to create a function for that button to
call. Open the MainViewController file so you can add a new function. Add the fol-
lowing code to the class file:

@IBAction func addItem(_ sender: AnyObject) {
print("add clicked")
}

You should know exactly what this does by now: when this function is called, it will
print out the line "add clicked". Next, you’ll wire the + button to the addItem func-
tion on the storyboard. You should know how to wire the + button to the addItem
function because you’ve done similar actions throughout the book, but I’m going to
show you a different way to do it here.

 In the past, you changed your real estate in Xcode to the Assistant Editor view so
you could see both the storyboard and the ViewController. You then Control-clicked
or right-clicked the item in the storyboard and dragged to the ViewController to cre-
ate the link. You did it this way because the act of dragging and dropping to create the
link created the function at the same time. In this case, though, you’ve already created
the function addItem(), so there’s an easier way.

 In your storyboard, Control-click or right-click the + button, and drag to the top of
the view, to the yellow circle with a square in it, as shown in figure 20.5. This is the icon
that represents the MainViewController.

This represents the class
associated with the scene.

Figure 20.5 The yellow icon with the square in it represents the class that’s
associated with the scene. In this case, it’s the MainViewController class.

207Adding new LioNs to the list
If you hover your mouse pointer over the button, you’ll notice that it says LioN, because
that’s the title you have on the Navigation Controller itself. When you release the button
or the Control key, the black box pops up with the options to create the link between
the storyboard button and the function in the MainViewController. Notice the add-
Item() function in the list (figure 20.6). Connect the button to this outlet.

Once you’ve made the connection, run the app again and click the + button to make
sure it’s connected correctly. If all works well, you should see the words “add clicked”
in the console. Great! Now you have a function that’s called when the + button is
clicked. Next you’ll make it add something to your Lion array.

20.2.3 Adding hardcoded values to the LioN list

You need to replace the print statement in the addItem() function with code that will
add values to the list of LioN objects. Delete the print statement to start with so you
don’t clutter up the code. To add a new row to the table, you need to know how many
rows are in the table. If you remember back to chapter 11, when we talked about
arrays, it’s easy to add an object to the end of the array by using the append() func-
tion. Adding rows to a table isn’t that easy, even though your data source for the table
is an array. So you need to know how many rows are in the table and then add an
object to the end of the table.

 The lionData array in the MainViewController holds the LioN objects you’ve cre-
ated so far (“Wendy’s toothpaste” and “bad toothpaste,” in my case). You know that
there are exactly the same number of LioN objects in this array as there are in the
table, because the array is the data source for the table. So the tableView created one
row for each LioN in the array lionData. This means you know the number of rows in
the table by counting the number of objects in the lionData array. Add this code to
the addItem() function in your MainViewController:

let currentIndex = lionData.count

Figure 20.6 Connect the +
button on the storyboard to
the addItem function in the
MainViewController.

208 CHAPTER 20 Creating the details of the detail view
Next, create a new LioN object to insert into the array. See if you can create the object
and set the properties without looking at how I did it. Set the properties as follows:

Like = 1
lionDescription = "hardcoded description"
lionName = "hardcoded name"

How did you do? This is how I created the new LioN and set the properties:

let newLion = Lion()
newLion.like = 1
newLion.lionDescription = "Hardcoded description"
newLion.lionName = "hardcoded name"

You need to add this new LioN object to the lionData array. I’ve already hinted about
how to do this—see if you remember how to do it yourself.

 This is how I did it:

lionData.append(newLion)

Now you know the number of rows in the tableView, you’ve created a new LioN
object with hardcoded values, and you’ve added it to the lionData array. You need to
insert a new row at the end of the tableView to display your new LioN object.

 You may remember that back in chapter 17, we talked about an index path and
how it was a pointer to a row in the table view. Table views have an array of index paths
that hold pointers to the rows for each section of the table view. You only have one sec-
tion of data in the table view, so you only have one index path in the array of index
paths. So you need to create a new variable to point to the row you want to insert. Add
the following line to your code:

let indexPath = IndexPath(row: currentIndex, section: 0)

Here you create a constant variable named indexPath that’s an NSIndexPath. The argu-
ments for creating the index path are forRow:, which takes an Int value, and inSection:,
which also takes an Int value. You may be wondering why you aren’t creating the
indexPath as one value larger than the array count, rather than the array count itself.
If you remember, the count of the lionData array is 2, meaning there are two LioN
objects in the array. You start counting your values at 0, though, remember? If I wanted
to print the values in the array, I’d do so by using index 0 and index 1, not index 1 and
index 2. When you create your indexPath using the count of the objects in the array
(2), you’re indexing a new row. This is the same reason you’re using 0 as the inSection
value—because there’s only one section in your table, and it resides at the first index,
which is 0.

 Now you have a new indexPath variable that points to the new row that you want
to create in your table view, and you need to insert the data. You have one more step
before you can do this, though. Again, as I mentioned in chapter 17, tables use an

209Adding new LioNs to the list
array of indexPaths—so you’ll need to do that here. Add the following line of code to
the function:

let indexPaths = [indexPath]

This line creates a new constant variable called indexPaths, which is an array with
only one object in it (the indexPath variable). You know it’s an array because it has
the square brackets around it.

 You have everything you need to insert a row in the table. The lionData array,
which is the data source for the table, has a new object called newLion. You have the
indexPath for the table view that you want to insert the data into, and you created an
array to hold the indexPath variable so you could pass in the expected arguments to
the function you need to call.

 Let’s call it. Add the following line of code:

tableView.insertRows(at: indexPaths, with: .automatic)

Not surprisingly, you’re calling the insertRowsAtIndexPaths function of the table-
View and passing in two arguments: indexPaths and the type of animation you want.
You pass in the row animation type, which is an animation of how the row appears
when it’s inserted. Many options are enumerated for you (figure 20.7)—you can see
these when you type the entire line of code up to the .Automatic and let Xcode show
the values that are available. You can set the animations to the different options to see
what they do, but I recommend using Automatic.

My complete addItem() function looks like this:

@IBAction func addItem(){
 let currentIndex = lionData.count
 let newLion = Lion()
 newLion.like = 1
 newLion.lionDescription = "Hard coded description"
 newLion.lionName = "hard coded name"
 lionData.append(newLion)
 let indexPath = NSIndexPath(forRow: currentIndex, inSection: 0)

Figure 20.7 The Xcode auto-
complete function will show you
the different animation options for
adding a row to the table view.

210 CHAPTER 20 Creating the details of the detail view
 let indexPaths = [indexPath]
 tableView.insertRowsAtIndexPaths(indexPaths, withRowAnimation: .Automatic)
 }

You can run the app now and click the + button, and you should see one row added
for each time you click the button. You can click the button as many times as you want,
and the app will keep adding rows. You’ll also notice that the new rows aren’t saved
when you close the app and open it again. That’s because you haven’t added the code
to save your data yet, so it’s working as expected. You do want to be delete items from
the list, though, so you’ll do that next.

20.2.4 Deleting LioNs from the list

Apple provides a function that will allow you to easily delete your row, but the name of
the function isn’t as intuitive as you’d expect. If I were to think up a name for it, I’d
call it something like tableView delete row, but alas, I’m not the queen, so we’ll have
to go with Apple’s implementation. Add the following function to your code in the
MainViewController:

override func tableView(_ tableView: UITableView, commit editingStyle:

➥ UITableViewCellEditingStyle, forRowAt indexPath: IndexPath) {
}

Although the name of this function doesn’t seem intuitive (at least, to me), it allows
the table to go into editing mode. If you run the app, you’ll notice that when you
swipe from right to left on a cell (click the mouse button, hold it down, and move it to
the left), you’re presented with the option to delete the row. You haven’t coded any-
thing yet to tell it what to do, but adding this function to your code enables the delete
action on the table.

 You’ll fix that now and add the code to delete an item from the list. Remember
that earlier, when you added a new row, you first had to add it to the array (which is
the data source for the table) and then add it to the table itself. You need to do the
same thing for deleting a row: remove it from the array and the table.

 Add the following line to remove it from the array:

lionData.remove(at: indexPath.row)

And remove it from the table as well:

let indexPaths = [indexPath]
tableView.deleteRows(at: indexPaths, with: .automatic)

As with insert row, you first have to create an array of your one index path because
the delete row function is expecting an array as an argument, not a single index path.
My commitEditingStyle() code looks like this:

override func tableView(_ tableView: UITableView, commit editingStyle:

➥ UITableViewCellEditingStyle, forRowAt indexPath: IndexPath) {

211Summary
 lionData.remove(at: indexPath.row)
 let indexPaths = [indexPath]
 tableView.deleteRows(at: indexPaths, with: .automatic)
 }

Run the app, and see that you can delete a row, and it’s removed from the table. It’s
amazing that all you had to do was use one of the functions that Apple provided and
then add three lines of code in order to delete items from the table.

20.3 Summary
You accomplished a lot in this chapter. You added a new detail screen with three
labels to display the name, description, and like value of each of the LioN objects.
You then passed the LioN object to the detail screen so you could display the details.
Next, you added the code to create new LioN objects and add them to the table.
Finally, you added the code necessary to delete items from the table.

 If you think back to chapter 1, you didn’t know how to write any code, and now you
have an app that can display rows of data, add new data, and delete data. Pretty amaz-
ing, if you ask me.

 Where do we go from here? In the next chapter, I’m going to show you how to add
a new LioN that isn’t hardcoded. You’ll implement the functionality to edit an existing
LioN, and then you’ll learn how to save the data so it reloads every time the app is
launched. Remember, make sure your code is working at this point before moving on
to the next chapter. If you can’t get it working, post on the book forum, and I’ll help
you out, or download my source code at www.manning.com/books/anyone-can-create-
an-app) or https://github.com/wlwise/AnyoneCanCreateAnApp.

https://github.com/wlwise/AnyoneCanCreateAnApp
http://www.manning.com/books/anyone-can-create-an-app
http://www.manning.com/books/anyone-can-create-an-app

The AddEditView scene
You have a good start on the LioN app, and it’s time to add some more functional-
ity. Remember that a lot of programming is adding a bit of functionality, testing it,
editing it, adding more functionality, and so on. It’s generally a good idea to add
small bits of functionality so you can test it and make sure it’s working. If you find
an error, it’s relatively easy to figure out because you only added a few lines of code.
Why am I telling you this again? Because it’s sometimes hard to delete work that
you’ve already completed, but that’s how we’re going to start this chapter.

21.1 Creating a new detail view
You have several steps to follow now, so I’ll list them here:

1 Add a new TableViewController.
2 Add a new AddEditViewController.
3 Hook up the Cancel and Done buttons.

This chapter covers
 Adding functionality to add new LioNs

 Adding keyboard behaviors

 Adding gesture recognizers
212

213Creating a new detail view
21.1.1 Adding a new Table ViewController

You’ll start by deleting the existing DetailViewController from the storyboard.
Select the entire detail view, and click Delete. Don’t worry; you’ll be adding a new one.
Go to the Object Library, and search on table. Grab the top item returned—Table-

ViewController—and drop it next to the main scene (the LioN screen). Next you’ll
connect the row of the MainViewController to a segue which will show the detail
view, just like you did when you created the first DetailViewController. On the story-
board, Control-click the table row in the MainViewController, and drag it to the new
scene. Use the Show Detail option for the action segue type.

 In chapter 20, you added an identifier for the segue from the MainViewController
to the DetailViewController, and you also added a function in the MainView-
Controller to handle the segue. The function is prepareForSegue, and you no lon-
ger need it. You can delete the entire function from the MainViewController—so
delete these lines:

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
 if (segue.identifier == "showLionDetail"){
 let controller = segue.destinationViewController as! AddEditViewController
 if let indexPath = tableView.indexPathForCell(sender as!

UITableViewCell){
 controller.lionDetail = lionData[indexPath.row]
 }
 }
}

Now connect the action of the Add button to the new TableViewController, and
select Present Modally as the action segue type. You should have two segues from the
MainViewController: one from the table row (Show Detail) and one from the add
button (Present Modally). Run the app to make sure the new table shows correctly
when you click the Add button. What did you notice? There’s no way to get back to
your main scene—you’re stranded. It’s never good to leave a user stranded anywhere
in your app, so you definitely need to change that. You need to add a navigation bar at
the top of the screen so you can add buttons for the users to navigate back to the pre-
vious view and to click Done when they’re finished adding an item. Your first instinct
might be to look in the Object Library for a navigation bar, but there’s an easier way.

 Click the new TableViewController scene first; then, in the Xcode menu, select
Editor > Embed In > Navigation Controller. This automatically adds the navigation
bar at the top and a controller to control the actions. Very convenient! If you run the
app again…there’s no change. Well, that was a little anticlimactic. You have the navi-
gation bar, but you need to add the buttons to perform the back and done actions.
You did this in the last chapter when you created the Add button (+ button)—do you
remember how?

 Search on button in the Object Library, and select Bar Button Item. Drag one to
the top left of the navigation bar on your TableViewController and one to the

214 CHAPTER 21 The AddEditView scene
top right of the TableViewController. Your TableViewController should look like
figure 21.1.

Change the left bar button item to Cancel and the right bar button to Done. As you
may remember from chapter 20, you select the button on the scene and then change
the System Item attribute in the Attribute Inspector panel.

 Now, run your app again, and test the new buttons, and…anticlimactic again!
(Does it feel like I keep setting you up for this?) You haven’t added any code yet to
connect the buttons to, so you’ll do that now.

21.1.2 Adding a new AddEditViewController class

You don’t have a class to connect this to yet, but you do still have the DetailView-
Controller class in the project. You don’t need it anymore, so select the class
(DetailViewController.swift) in the project navigator and press Delete. Xcode
will ask if you want to remove the reference or delete the file (Move to Trash). You
want to delete the file, sending it to the Trash on your Mac. If you remove the refer-
ence, it will remove the file from your Xcode project, but the file will still be in the
project files on your computer. You won’t need this in the future, so it’s safe to com-
pletely delete this one.

 Create a new file by going to File > New > File; when the dialog box pops up, select
iOS, Source, Swift File. Like last time, be careful in this dialog box, because there are
several different Swift files to choose from: the iOS Source Swift file, the watchOS
Swift file, the tvOS Swift file, and the macOS Source Swift file. You obviously want the
iOS Source Swift file.

 When you get to the naming dialog, name it AddEditViewController. I happen to
know (because I’m writing the book, after all) that we can use the same ViewCon-
troller for adding and editing LioNs, so I’m naming the file for both the Add and the
Edit functions. If you didn’t do this here, you could rename the file later, but I
decided to make it easier in this case.

 In previous chapters, when you added new files to your project, the first thing you
needed to do was import the proper framework. You can delete the import Foundation

Figure 21.1 The TableViewController scene should have two
bar button items on the top—one at the right and one at the left—after
you add them from the Object Library.

215Creating a new detail view
line at the top of the file and instead add import UIKit so you’ll have the right tools
available to you. Next, you need to create your class definition, so add the following
class definition under the import line:

class AddEditViewController: UITableViewController{
}

You’re defining the AddEditViewController class and saying that it inherits from the
UITableViewController class. If you don’t remember details about the ViewCon-
trollers or inheritance, go brush up on it in chapter 13. You need to add your View-
DidLoad() function too, so add the following lines in the class:

override func viewDidLoad() {
 super.viewDidLoad()
}

You also need to add the didReceiveMemoryWarning(), so add these lines below the
viewDidLoad() function:

override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }

Now you need to let the storyboard know that the AddEditViewController class is the
controller for your new scene. Do you remember how to do this? Go into your story-
board again, select the new scene, and open the Identity Inspector panel on the top
right (figure 21.2). You want to select the AddEditViewController from the drop-
down list for the Class property. If you don’t see it there, go back to your code and make
sure you defined the AddEditViewController as a type of UITableViewController, and
not just a UIViewController, and make sure you saved your code.

If you run the app now, there aren’t any errors—which is a good thing. You need to
hook up your Done and Cancel buttons, though, so users can get back to the main
screen. Let’s do it!

Figure 21.2 Select the new TableViewController
scene on the storyboard, and set Class to AddEdit-
ViewController in the Identity Inspector.

216 CHAPTER 21 The AddEditView scene
21.1.3 Hooking up the Cancel and Done buttons

You need the AddEditViewController scene to dismiss when you’re done with it so
the main scene will show up again. You’re going to add two action outlets, one for the
Cancel button and one for the Done button. Add the following two functions to
the AddEditViewController file:

 @IBAction func doneClicked(){
 }

 @IBAction func cancelClicked(){
 }

You want to dismiss the AddEditViewController when either button is clicked, so the
user will be taken back to the MainViewController scene, and fortunately there’s an
easy way to do this. Add the following line to both functions:

dismiss(animated: true, completion: nil)

Finally, you’ll hook up the buttons to the new functions. Go back to your storyboard,
Control-click the Cancel button, and drag it up to the yellow icon at the top of the
scene (it represents the AddEditViewController object). When you let go, you should
see both the doneClicked and cancelClicked functions available to connect to. If you
don’t see them, it means you didn’t set the scene to be the AddEditViewController
(see section 21.1.2) or you didn’t save the file before moving back to the storyboard.
Do the same thing with the Done button. Once the buttons are connected, you can
run the app again to test it, and both the Cancel and Done buttons should take you
back to the main view.

21.1.4 Checkpoint

Let’s pause for a moment and review where you are and what you just did. First, you
deleted the DetailViewController class from the project navigator, and you also
deleted the scene from the storyboard. You then added a new TableViewController to
the storyboard and embedded a navigation controller into the TableViewController so
you could add Done and Cancel buttons to the scene. If you can’t get the app working
at this point, make sure you added a TableViewController to the storyboard, and not
a table view.

 You then added a new iOS Source Swift file to the project, named it AddEdit-
ViewController, and made it inherit from the UITableViewController class. This
makes sense because you added a TableViewController to your storyboard, doesn’t
it? You then set the class identifier of the TableViewController scene on the story-
board to your new AddEditViewController class so Xcode knows that they’re tied
together.

 Finally, you hooked up your Cancel and Done buttons so the AddEditView-
Controller would be dismissed when either button is clicked. Take a good, deep

217Adding new LioNs
breath now. You’ve made it this far. You’ve implemented the basics for adding and
editing an actual LioN object. Let’s get back to it, shall we?

21.2 Adding new LioNs
In this section, you’re going to build out the Add New Lion screen so it looks like fig-
ure 21.3. Go back to your main storyboard, and click the AddEditViewController’s
table view so it’s the active item. Change the TableView Content attribute to Static
Cells (figure 21.4), and you’ll see three rows appear on your table view. Next, change
the table view style to Grouped. This will group the cells together and add a little color
to the background. Your table view should look pretty good now—make sure it looks
like figure 21.5 before you continue.

Figure 21.3 The Add New Lion scene will
have two text boxes and two buttons.

Figure 21.4 Change the table view Content
to Static Cells, and Style to Grouped.

218 CHAPTER 21 The AddEditView scene
Search the Object Library for text, and the top result will be Text Field (make sure you
grab the Text Field and not the Text View). Drag one text field to the first row, and
size it so it takes up most of the row. Drag a second text field to the second row, and size
it the same as the first. Click the first text field so it’s the active component in your
view, and then add some placeholder text in the Placeholder field in the Attribute
Inspector. Make sure to enter the text below in the Placeholder attribute (the sixth
attribute from the top) and not the Text attribute (figure 21.6). The Placeholder attri-
bute displays text that disappears when the user taps the field, and the Text attribute
puts text in the field that the user must delete before they can type something in. I
entered the following in the Placeholder attribute:

 For the first text box—Enter a Lion Name
 For the second text box—Enter a Lion Description

Next you’ll add the Like and Dislike buttons to the third row. Search the Object
Library for a button, and drag two buttons to the third row. Make sure you select the
Button object and not a bar button item. One button should be on the far right,
the other on the far left. Double-click each button to change the titles. The one on
the far left should be Dislike, and the one on the far right should be Like.

Figure 21.5 The table view
should have three static cells,
and it should be grouped so it
looks like this.

Figure 21.6 Enter placeholder text for
the first and second text fields for the
LioN name and the LioN description.

219Adding new LioNs
 Run the app, and make sure it looks like mine does in figure 21.3. If you can’t see
the Like button and the text boxes are cut off on the right side, go back to the story-
board, make the text boxes smaller, and move the Like button to the left. You’ll fix the
alignment in later chapters so it looks good on all different devices. Click one of the text
fields, and your keyboard should pop up for you to enter text. Notice that the key-
board doesn’t go away, no matter where you tap the scene after you’ve clicked in the
text box. You’ll fix that in a minute. Click the Like or Dislike button, and then click
somewhere on the cell between the two buttons. The cell is now selected, and you
can’t deselect it, either. Let’s see how to fix both of these problems.

21.2.1 Don’t allow the cell to be selected

The table view default is to allow the cells to be selected, so you need to change that. If
you run the app right now and select a row, you’ll notice that the row looks selected—
it changes color to show it’s selected. You don’t want that. Open your AddEditView-
Controller file, and add the following code:

override func tableView(_ tableView: UITableView, willSelectRowAt indexPath:
IndexPath) -> IndexPath? {

 return nil
}

This function is part of the TableView delegate—the user taps a cell, and the table
view calls this function, but you’re returning nil, telling the table view not to select
the row. If you run the app, you should see that you can click between the Like and
Dislike buttons, and the row briefly turns gray and then back to white. This is the time
it takes for the table view to call the function above and return the nil. This flicker of
gray doesn’t look good, so you’ll fix that, too.

 Go back into your storyboard, and click the cell with the two buttons. Change the
Selection attribute to None (figure 21.7). Run the app again, and the behavior of
the cell is much cleaner when you click in it.

Figure 21.7 Change the third cell’s Selection
property to None so the user can’t tap the cell
and select it.

220 CHAPTER 21 The AddEditView scene
21.2.2 Setting the keyboard behaviors

It’s a good practice to dismiss the keyboard when the user taps out of the text field.
This is especially important when you only have so much room on your scene and the
keyboard hides a portion of it so the user can’t take action on items hidden by the key-
board. Although you don’t have that problem with your current real estate, you’re
going to implement it anyway because it’s good practice and you need to know how
to do it.

 The UITextField components have functions to control most of their behavior
already, so you just need to use those functions. How? How can you make use of the
text field functions without implementing everything yourself? Our friend the dele-
gate steps in from stage left to help you out. The UITextField component has a lot of
functionality as part of its definition, so you just need to become delegates of it in
order to access some of it. Do you remember how?

 Open the AddEditViewController file again, and look at the class definition. Ring
any bells? All you need to do to be a delegate for any UITextField component is add
the delegate to the class definition. Change the definition to this:

class AddEditViewController: UITableViewController, UITextFieldDelegate{

Isn’t that amazing? You have access to the functions of the text field component just
by conforming to the protocol. You have to tell the text fields themselves that your
class will be the delegate, so go back into the storyboard, Control-click the text field,
drag it to the yellow square at the top of the scene, and connect the delegate outlet for
each text field (figure 21.8). You’ll have to do this for each text field, so you should
remember how to do this.

Now all you have to do to dismiss the keyboard is to implement a function:

func textFieldShouldReturn(_ textField: UITextField) -> Bool {
 resignFirstResponder()
 return true
 }

Figure 21.8 Connect the text field to the
AddEditViewController’s delegate outlet.

221Adding new LioNs
This function is called by the textField when the user taps the Return key. It asks the
delegate whether the text field should process the Return key press, so you return
true. What about that resignFirstResponder() thing, though? What’s that? It basi-
cally tells the app that it’s relinquishing focus—or it shouldn’t be the active compo-
nent on the view. Test your app again, and you should notice that the keyboard is
dismissed when the user taps Return. This is great behavior for when the user taps
Done after they enter text in the description field, but it’s annoying when the user
presses Done after entering text in the name field. It would be much nicer if the focus
moved from the name field to the description field when the user presses Done, don’t
you think? Let’s fix that next.

 You’ll first add some outlets for the text fields so you can access each of them in
your code. You’ve done this numerous times before. You just need to Control-click the
text field box, drag it into the AddEditViewController code, and name the outlet for
each one. I named mine as follows:

 nameTxt

 descTxt

I have the following two lines at the top of my AddEditViewController class:

@IBOutlet weak var descTxt: UITextField!
@IBOutlet weak var nameTxt: UITextField!

Great! Now I can manipulate these components in my code. You’re going to edit the
textFieldShouldReturn function so when the user is finished entering the name of
the LioN and presses Enter, the description field has focus; and when they press Enter
on the description field, the keyboard hides itself. This sounds like it’s going to be a
lot of code, doesn’t it? Nope! It’s pretty easy now that you have the textFieldShould-
Return function and you have outlets to your two text fields.

 If the text field that’s calling textFieldShouldReturn is equal to nameTxt, then
make the descTxt field the first responder. Otherwise (else), if the text field is the
descTxt field, dismiss the keyboard. This is my pseudocode—can you implement it
without looking at the following code?

 Here’s my code:

func textFieldShouldReturn(_ textField: UITextField) -> Bool {
 if (textField == nameTxt){
 nameTxt.resignFirstResponder()
 descTxt.becomeFirstResponder()
 }else {
 descTxt.resignFirstResponder()
 }
 return true
 }

How did you do? Run the app, and test it out. Clicking in the Name field should bring
up the keyboard, pressing the Return key should move the focus to the Description

222 CHAPTER 21 The AddEditView scene
field, and then pressing the Return key again should dismiss the keyboard. Pretty
cool, huh? You still have one problem, though: iPhones and iPads are touch-enabled,
meaning the user can touch anywhere on the screen. You really want the keyboard to
dismiss if the user taps anywhere on the screen, not just when they press the Return
key. You can see this behavior when you open the Safari app on your device. If you tap
into the address bar, the keyboard pops up so you can enter a URL. If you tap out of
the address bar, the keyboard is dismissed. You’re going to add this functionality to
your app next.

21.2.3 Dismissing the keyboard on user tap

iOS was developed specifically for devices in which the user can tap the screen and
expect a response, like iPhones and iPads. This means Apple must have a way to know
when those taps occur. There are classes that handle all the different kinds of actions
the users can make on a screen:

 UITapGestureRecognizer
 UIPinchGestureRecognizer
 UIRotationGestureRecognizer
 UISwipeGestureRecognizer
 UIPanGestureRecognizer
 UIScreenEdgePanGestureRecognizer
 UILongPressGestureRecognizer

You can see from this list that you can capture every kind of gesture a user makes. In
this case, you only want to capture the tap gesture (the first in the list). You’re going to
create a variable of type UITapGestureRecognizer so that when a tap occurs, you dis-
miss the keyboard. Add the following lines inside the viewDidLoad() function:

let tap = UITapGestureRecognizer(target: self,

➥ action: #selector(dismissKeyboard))
 view.addGestureRecognizer(tap)

The first line creates the variable named tap, which is of type UITapGestureRecog-
nizer, and sets the target of the tap to the view itself. The action: argument is new,
but it’s essentially saying, “When a tap occurs, call a function named dismissKey-
board.” The next line adds the tap gesture recognizer to the view. All you need to do
to complete this is add a dismissKeyboard function to your code! Add the following
lines to your code as a new function:

func dismissKeyboard(){
 view.endEditing(true)
}

This function is called anytime the user taps the screen. If you want to add a print
line to see that, feel free! When this function is called, endEditing(true) resigns the

223Summary
first responder (or loses focus), and true forces the view to resign first responder,
whether it wants to or not.

If you want to implement different types of gesture recognizers to test them out, feel
free. It’s kind of fun capturing those events, because you can actually do it. Run the
app, and test it out. You should be able to tap into the Name field, press Return, get to
the next text field, and then tap anywhere to get rid of the keyboard.

 But there’s still one piece missing that a user will find rather annoying if they use
the app. When the scene first launches, you know the user will want to add a name for
the LioN as the first action. You currently require them to tap in the Name field in
order to start typing, and that’s a tap they shouldn’t have to make. This may seem like
a small thing right now, but you’ll get complaints about your app when you make
users click and tap things that they shouldn’t have to. How do you think you can
make the first text field focus when the scene launches?

 I hope you thought of the viewDidLoad() function, because that’s where you can
make the Name text field the first responder so it has focus when the scene first loads.
You need to have the nameTxt field become the first responder, so add that now:

nameTxt.becomeFirstResponder()

Run the app, and it should behave like a well-thought-out app. It’s important to think
of the user when you design and create your app, not just how you—the developer—
would use the app. Nobody likes apps that require them to do more than they should
have to do, and the reviews in the App Store will definitely let you know that you
didn’t think of the user as you designed it.

21.3 Summary
Wow! You added a lot of cool stuff in this chapter. You created a new class—the Add-
EditViewController class—and connected it to a new view. You created the new view
with three rows for the LioN properties and then added text boxes and buttons to
show and edit those properties. More important, you learned about controlling key-
board functionality, how to make different fields have focus, how to move focus

Important note
I’ve spent a lot of time debugging apps because the action argument name that I
specify in the gesture recognizer doesn’t exactly match the function I’ve created. It’s
important that the action function is identical to the function you create—in this case,
dismissKeyboard. If you want to see what error it generates when it can’t find the
right function, change a single letter in the dismissKeyboard declaration to see the
error you get. You’ll get an “Unrecognized selector” error, and you’ll probably be con-
fused because you just knew you implemented the function correctly. Make sure your
#selector: argument always matches the function you create for it to call.

224 CHAPTER 21 The AddEditView scene
between fields, and how to recognize gestures. These items will probably be used in
every app you ever create—because apps are meant to be interacted with, after all.

 In the next chapter, you’ll create new LioNs and store them in your array. More
fun awaits! As usual, make sure your app works up to this point. If you’re having prob-
lems, download my source code (www.manning.com/books/anyone-can-create-an-app
or https://github.com/wlwise/AnyoneCanCreateAnApp) or drop me a note on the
Author’s Forum or Twitter, and I’ll check it out.

https://github.com/wlwise/AnyoneCanCreateAnApp
http://www.manning.com/books/anyone-can-create-an-app

Delegates are everywhere
You added a lot of functionality in the last chapter, but you still haven’t added the
functionality you need to let a user create a new LioN. You’re going to do that in
this chapter, but you’re also going to use delegates again. You learned about dele-
gates in chapter 16, so refer back there if you need a refresher.

22.1 Connecting your views
As you know, you’ve created the functionality that allows a user to tap the + button
and open the AddEditViewController scene; and when the user taps Done or Can-
cel, they’re returned to the main screen. You want to add functionality that will
allow you to save the text that the user has entered in the text fields and pass that
back to create a new LioN object. If you think about it, though, in order to pass
data between two views, you need to have references to those views. You could have

This chapter covers
 Adding new LioNs

 Implementing the Delegate pattern

 Adding the like and dislike properties
225

226 CHAPTER 22 Delegates are everywhere
your AddEditViewController set the LioN property in the MainViewController by
doing something like this:

1 Create a variable called mainVC that is of type MainViewController in your Add-
EditViewController.

2 Add a function to create a new LioN (addLion) in the MainViewController.
3 Call the mainVC.addLion function from AddEditViewController.

This would work, but it isn’t the right way to do things. That may have been your first
instinct, but I want you to try to think more about protocols and delegates. Here’s
why: in apps with many views, you may want to call the addNew function from numer-
ous different places in the app. If you think about the Contacts app on your device,
you can create a new contact by tapping the + button on the top-right corner. You can
also create a new contact from a phone number when someone calls you. This is the
same New Contact screen, but it’s called from two different places. If you hardcoded
the Done button on the New Contact screen, you wouldn’t know which scene to
return to when it’s tapped. Do you return to the Add New Contact scene or the Phone
Number scene? This is where our friend the delegate steps in (figure 22.1).

When the MainViewController creates the AddEditViewController, it sets itself as
the delegate, so when the user taps Done on the AddEditViewController scene, the
AddEditViewController sends a message to the delegate—and it doesn’t care who
the delegate is. This ensures that any scene that conforms to the AddEditView-
Controller protocol can call it, set itself as the delegate, and know that the AddEdit-
ViewController will return control to it when it’s done. This is called loosely coupled
code, and it’s much easier to maintain in the future if and when you want to add more
functionality and allow other scenes to call the AddEditViewController scene.

 Okay, enough explaining. Let’s implement the code already.

Create new AddEditViewController

Set the AddEditViewController.delegate

= MainViewController

Send message

to delegate

AddEdit

view

controller

Main

view

controller

I’m the delegate!

Figure 22.1 You can use the Delegate pattern to ensure that your two
ViewControllers aren’t tightly coupled. The AddEditViewController sends
a message to the delegate without knowing or caring who the delegate is.

227Connecting your views
22.1.1 Implementing the protocol

You need to create a protocol for the AddEditViewController that will handle two dif-
ferent actions: when the user Cancels out of the scene, and when the user taps Done.
The protocol is created outside the class, so add the following lines between the import
UIKit statement and the class definition:

protocol AddEditViewControllerDelegate: class {
 func addItemViewControllerDidCancel(controller: AddEditViewController)
 func addItemViewController(controller: AddEditViewController,

➥ didFinishAddingItem lionItem: Lion)
}

As you can see, you’re creating a protocol called AddEditViewControllerDelegate,
which has two functions: didCancel and didFinishAddingItem. This is saying that any
class that wants to be a delegate of your AddEditViewController class must conform
to this protocol. Protocol names are generally pretty long because you want them to
be readable and you want what they do to be clear.

 The didCancel function will pass the AddEditViewController back to the dele-
gate so the delegate can dismiss it, but the didFinishAddingItem function passes the
ViewController and the new LioN that will be created. You’ll learn more as you con-
tinue implementing.

22.1.2 Updating your Cancel and Done actions

In your cancel and done functions in the AddEditViewController class, you’re cur-
rently dismissing the ViewController. You don’t want to do that anymore, though. You
want to send a message to the delegate to let it know that one of the two functions is
called and let the delegate handle dismissing the view. But to tell the delegate to han-
dle it, you need to have a reference to the delegate.

 Add the following line under your class definition:

weak var delegate: AddEditViewControllerDelegate?

This line creates a variable named delegate, which is of type AddEditViewController-
Delegate, and it’s an optional. The weak keyword is used for memory management—
which we won’t go into in this book. (If you’re interested in reading up on the topic,
search the Apple documentation for Automatic Reference Counting.)

 Delete both lines for the dismissViewControllerAnimated functions in the cancel-
Clicked and doneClicked actions. Delete both of these lines:

dismiss(animated: true, completion: nil)

Add the following line to the cancelClicked function:

delegate?.addItemViewControllerDidCancel(controller: self)

228 CHAPTER 22 Delegates are everywhere
If you let the auto-complete try to finish the statement, you’ll see that both delegate
functions are available, as shown in figure 22.2.

You need to implement the done() function using your delegate method as well, but
it’s expecting you to pass in the LioN object, and you don’t have one yet. Add the fol-
lowing to the top of the class, under the class definition:

var newLion: Lion?

Now add the didFinishAddingItem to the doneClicked function:

delegate?.addItemViewController(controller: self, didFinishAddingItem: newLion!)

You haven’t created a new LioN yet—you have the placeholder for it. You do know,
however, that every time a user taps the + button on the MainViewController scene,
you’ll need to create a new LioN, so add the following line to the AddEditView-
Controller viewDidLoad() function:

newLion = Lion()

This ensures that a new LioN object is created every time the view loads.

22.1.3 Capturing the user input

You now need to capture whatever the user types into the Name and Description fields
so you can add it to the newLion object. Where do you think you should add this code?
You could add it to the dismissKeyboard function so every time the keyboard is dis-
missed you save the text to the LioN, but the user might not be done entering the
text, and they might tap back into the field. This wouldn’t be a problem, except you’d
be saving the text to the LioN object more often than necessary, and that would make
it slightly slower. You should add it to the doneClicked function, because the user taps
Done when they’re done editing. You’ll do that now. Add the following code above
the delegate message:

newLion?.lionName = nameTxt.text!
newLion?.lionDescription = descTxt.text!

Fantastic! Run the app to make sure it all works. What happens when you click the Done
and Cancel buttons? Nothing. Why doesn’t the app respond anymore when you click

Figure 22.2 You created the protocol definitions so Xcode can auto-complete the definitions when you
implement the cancelClicked functionality.

229MainViewController conformance
these buttons? You implemented the code for the AddEditViewControllerDelegate so
it would send a message to the delegate, but you don’t have any classes that are listening
for that message yet. You need to make MainViewController conform to the AddEdit-
ViewControllerDelegate so it will listen for messages coming from the AddEditView-
Controller. Look back at figure 22.1—you haven’t completed the middle arrow code,
so when the third arrow at the bottom executes (the AddEditViewController sends a
message to the delegate), nobody is waiting for the message. Let’s turn our attention to
the MainViewController to make it conforms to your new protocol.

22.2 MainViewController conformance
Open the MainViewController file, and make it conform to the protocol. Do you
remember how to do this? You did it recently when you made the AddEditViewCon-
troller class conform to the UITextField protocol. Change the MainViewController
class definition to the following:

class MainViewController: UITableViewController, AddEditViewControllerDelegate {

As soon as you finish adding this to the class definition, you should see an error in
Xcode. Click the red exclamation point, and you should see the error indicating that
MainViewController doesn’t conform to protocol AddEditViewControllerDelegate.
Why do you get this error? Remember what protocols and delegates do for you. By say-
ing that your class conforms to the protocol, you’re saying that it implements the
required functions, which you defined as the didCancel and didFinishAdding func-
tions. So you need to add these functions to your MainViewController class to make it
conform to the protocol.

 Add the following code to your MainViewController class and see how auto-
complete helps you with the function:

func addItemViewControllerDidCancel(controller: AddEditViewController) {
}

func addItemViewController(controller: AddEditViewController,

➥ didFinishAddingItem lionItem: Lion) {
}

The Xcode error should go away, because you conform to the protocol. Good! Now
you have all three errors completed in figure 22.1. You need to add some code to these
functions to do something. First, you need to dismiss the AddEditViewController scene
when these functions in the MainViewController are called. Add the following line to
both the didCancel and the didFinish functions:

dismiss(animated: true, completion: nil)

This line should look familiar to you. You originally had this in the AddEditView-
Controller done() and cancel() functions. You’ve transferred the responsibility to
the MainViewController now. Pretty cool, huh?

230 CHAPTER 22 Delegates are everywhere
 You can run your app, but the Cancel and Done buttons still won’t work. You have
one more thing to do first. You need to add the prepareForSegue() function back to
the MainViewController. Add the following code, and then we’ll walk through it:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "add" {
 let navigationController = segue.destination as!

➥ UINavigationController
 let controller = navigationController.topViewController as!

➥ AddEditViewController
 controller.delegate = self
 }
 }

This may seem like a lot of code, but you’ve done most of this already. You already
know that the prepareForSegue function is called before the segue transition
occurs, and you know that you can have identifiers for your segues so you can tell
which one is being used. In this case, you’re looking for the segue that’s identified
as “add”. You haven’t added an identifier to your segue yet, so go do that now before
you forget.

 Open the main storyboard again, select the transition that exists between the + but-
ton on the MainViewController scene (figure 22.3) and the NavigationController
scene, and add the identifier “add” in the Attributes Inspector. Make sure you use the
exact same identifier here as you added in the code, or it won’t work.

Now, back to the code (in MainViewController) that you added earlier (the prepare-
ForSegue function). The let navigationController line is new, and you haven’t
seen it before. Remember back in chapter 21 when you embedded a Navigation Con-
troller in the AddEditViewController scene? This is the Navigation Controller you’re
referring to on this line. You’re grabbing a reference to this Navigation Controller so
you can then grab a reference to the scene that it’s navigating you to. If you look back
at your storyboard, you can see that the MainViewController segues to a Navigation
Controller, which segues to the AddEditViewController. To communicate with the
AddEditViewController, you have to go through the Navigation Controller; hence
the reference to the Navigation Controller, then the AddEditViewController. The final
line in this function tells the AddEditViewController that the MainViewController is
its delegate. This is the blue bubble in figure 22.1 (“Hey, I’m the delegate”). Okay.
Now that you have all that set up, run it and see how it works.

 If you tap the + button, you get the AddEdit scene pop-up, and if you click the Can-
cel or Done button, it goes away. The same is not true if you click one of your rows in
the main view. The AddEdit scene opens, but the Cancel and Done buttons don’t

Figure 22.3 Update the segue to
ensure the identifier is “add”.

231Adding the LioN object to the lion array
work. Why? Walk through your code (review it line by line), and see if you can figure
out why before I tell you.

 Did you figure it out? The prepareForSegue function is checking to see whether
you’re using the segue that you identified as “add” and is then setting the AddEdit-
ViewController delegate property to the MainViewController (self). You aren’t set-
ting the delegate property for the other segue yet, and you don’t have an identifier
for it. Let’s see how to fix that while you’re here.

 Open your storyboard again, and add the identifier “edit” to the segue that exists
for the rows in the MainViewController to the Navigation Controller. Now go back to
the code in the MainViewController, copy the entire if statement, and paste it right
below the other if statement. Change the identifier in the second statement to “edit”,
and then change the second if to else if. Your entire prepareForSegue function
should look like this:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "add" {
 let navigationController = segue.destination as!

➥ UINavigationController
 let controller = navigationController.topViewController as!

➥ AddEditViewController
 controller.delegate = self
 }else if segue.identifier == "edit" {
 let navigationController = segue.destination as!

➥ UINavigationController
 let controller = navigationController.topViewController as!

➥ AddEditViewController
 controller.delegate = self
 }
 }

There’s some redundant code in here, which we generally don’t like, but you’ll fix
that later. Right now, test the app again and make sure the Cancel and Done functions
work for both adding a new item and tapping an existing row. Great! Next you need to
add the LioN object to the lion array.

22.3 Adding the LioN object to the lion array
You created the new LioN object in the AddEditViewController. You captured the
user input and stored it in the new LioN object, and you’re already passing it back to
the MainViewController. Make sure it’s getting back to the MainViewController by
adding a print line to didFinishAdding function. In the MainViewController, add
this line inside the addItemViewController didFinishAdding function:

print(lionItem.lionName)

Run the app again, and see if what you typed in the Name field is printed to the con-
sole when you click Done. Sweet! The LioN object is getting passed from the AddEdit
scene to the MainViewController, and you need to add it to the array. You already did

232 CHAPTER 22 Delegates are everywhere
most of the work when you coded the addItem() function in chapter 20, so you’ll edit
that function so you can pass in the LioN object. The addItem() function is also not
an @IBAction anymore because it isn’t connected the scene, so you can remove the
@IBAction keyword for the function definition while you’re at it. Delete the @IBAc-
tion keyword and add an argument for lionItem of type Lion. This is what my func-
tion definition looks like now:

func addItem(lionItem: Lion){

You still have the code in the function that creates the hardcoded LioN objects, so
you’re going to delete that code. Remove these three lines:

newLion.like = 1
newLion.lionDescription = "Hard coded description"
newLion.lionName = "hard coded name"

Change the lionData.append line to append the lionItem that you’re passing into
the function:

addItem(lionItem: lionItem)

Now, in the MainViewController, go to the didFinishAddingItem function; you can
call the addLion() function and pass in the lionItem. Add this line to the didFinish-
AddingItem function:

addItem(lionItem)

The functions should look like this now:

func addItemViewController(controller: AddEditViewController,

➥ didFinishAddingItem lionItem: Lion) {
 addItem(lionItem: lionItem)
 dismiss(animated: true, completion: nil)
 }

func addItem(lionItem : Lion) {
 let currentIndex = lionData.count
 lionData.append(lionItem)
 let indexPath = IndexPath(row: currentIndex, section: 0)
 let indexPaths = [indexPath]
 tableView.insertRows(at: indexPaths, with: .automatic)
 }

Run the code in the Simulator, add a new LioN, and see what happens. Oh my good-
ness! You can click the + button and type in a name and description: the app saves it to
the array, and it shows up in the table. Wow! This is starting to look good, isn’t it? Now
you can delete your dummy rows, too. Delete everything from the viewDidLoad()
function except the super.viewDidLoad(). The app should behave as before but
without the toothpaste cells.

233Adding the LioN object to the lion array
 What happens when you click the + button and then tap the Done button when
the AddEdit scene opens? An empty LioN object is added to the table. Try it yourself.
You can’t see the empty row after you do it, but if you swipe left on the area where the
top cell should be, you can delete the empty row. This isn’t good behavior for the app,
so you need to fix that.

22.3.1 Changing the Done button properties

Open the AddEditViewController file, and set the Done button property enabled to
false in the viewDidLoad function. Oh, wait—you don’t have a reference to the Done
button; you only have a function to respond when it’s tapped. Open the storyboard in
the Assistant Editor view, Control-click the Done button, drag it into the AddEdit-
ViewController, and name the outlet doneButton. This should add the following line
to your AddEditViewController class:

@IBOutlet weak var doneButton: UIBarButtonItem!

Now you can set the doneButton to disabled when the scene first loads:

doneButton.isEnabled = false

While you’re editing the viewDidLoad() function, move the line that creates a new
LioN object and put it where it belongs: in the doneClicked() function.

 My doneClicked() function looks like this:

@IBAction func doneClicked(){
 newLion = Lion()
 newLion?.lionName = nameTxt.text!
 newLion?.lionDescription = descTxt.text!
 delegate?.addItemViewController(controller: self,

➥ didFinishAddingItem: newLion!)
 }

Now your code is a little cleaner. When do you think you should enable the Done but-
ton again? It should happen when there’s text in the LioN Name field. You know what
you should also do while you’re here? Allow the user to paste text into both fields.
There’s a function that’s called every time the user changes the text, either by enter-
ing letters from the keyboard or pasting into the field. It’s part of the UITextField-
Delegate (those delegates are everywhere, aren’t they?). Add the following function
to the AddEditViewController class:

func textField(_ textField: UITextField, shouldChangeCharactersIn range:

➥ NSRange, replacementString string: String) -> Bool {
 let oldText : NSString = textField.text! as NSString
 let newText : NSString = oldText.replacingCharacters(in: range,

➥ with: string) as NSString
 doneButton.isEnabled = (newText.length > 0)
 return true
 }

234 CHAPTER 22 Delegates are everywhere
Let’s walk through this to see what it does. The first line (let oldText ...) gets the text
from the text field in case the user already has something typed into it. The second
line (let newText ...) replaces any of the characters in the range that the user pasted
over. Finally, the Done button should be enabled if the newText text length is greater
than 0. You don’t need to fully understand the first two lines—they’re standard lines
that are used in this function, but you can research more about them in the Apple
docs if you’re interested.

 Test it out, and you can see that the Done button isn’t enabled when the scene first
loads but is enabled as soon as you type even one character in the Name field. Pretty
slick, right?

22.4 Setting the like and dislike properties
Now you can add a new LioN with a name and a description, but you still haven’t
set the like and dislike properties. Time to fix that. The first thing you need to
do is hook the Like and Dislike buttons up to the code as actions (not outlets).
Open the main storyboard, and use the Assistant Editor to Control-click and drag
each of the buttons into the AddEditViewController class. You’ve done this many
times throughout the book. Remember to set the outlet type to IBAction instead of
IBOutlet.

 My code looks like this:

@IBAction func likeClicked(_ sender: AnyObject) {
}
@IBAction func dislikeClicked(_ sender: AnyObject) {
}

Next you’ll create a class-level variable to store whether the LioN is a like or dislike. At
the top of the class, add the following line:

var likeVar: Int = 1

This creates a variable called likeVar, of type Int, with a default value of 1. This
means if a user doesn’t set the like or dislike value by tapping one of the buttons, it
will automatically be saved as a like (I’m an optimist, what can I say?). Now that you
have your like variable, set it to 1 or 0 depending on which button the user tapped.
In the likeClicked function, set the variable equal to 1, and in the dislike function,
set the variable equal to 0:

@IBAction func likeClicked(sender: AnyObject) {
 likeVar = 1
 }
@IBAction func dislikeClicked(sender: AnyObject) {
 likeVar = 0
 }

235Summary
Next, update the doneClicked() function in AddEditViewController to set the new-
Lion’s like property. Here’s what my code looks like:

@IBAction func doneClicked(){
 newLion = Lion()
 newLion?.lionName = nameTxt.text!
 newLion?.lionDescription = descTxt.text!
 newLion?.like = likeVar
 delegate?.addItemViewController(controller: self,

➥ didFinishAddingItem: newLion!)
 }

The mainViewController doesn’t have a way to display whether the item is liked or
not, so print the value until you add the functionality to display it in the cell. Back in
the MainViewController, add a line to the didFinishAddingItem function to print
the value of the like property of the LioN:

print(lionItem.like)

Run the app again, and see what happens when you don’t click a button and save the
item, and then when you do click a button and save the items. You should see ones or
zeros printed out in the console, depending on which button you clicked.

 You can now add a LioN and save it to your array with all three properties set. In
the next chapter, you’ll update the code so you can edit the LioNs.

22.5 Summary
You added a lot of functionality in this chapter, and I hope you feel good about it.
Remember that you can always download my code from www.manning.com/books/
anyone-can-create-an-app or https://github.com/wlwise/AnyoneCanCreateAnApp if
you run into any problems. It’s definitely better for you do all the work and then
check it against mine, though, so you become more familiar with how to do things.
Remember that there are five steps to making a delegate work. The following steps
assume you have two classes, class 1 and class 2:

1 Create a delegate protocol in class 2.
2 Create a weak optional delegate variable in class 2.
3 Have class 2 send a message to the delegate when needed (Cancel or Done but-

ton tapped, for example).
4 Make class 1 conform to the protocol by adding the name of the protocol in the

class definition (AddEditViewControllerDelegate, for example).
5 Have class 1 set the delegate property of class to itself (using the delegate vari-

able you created in step 2).

In the next chapter, you’ll add the functionality to edit the LioN. I know—this is excit-
ing, isn’t it?

https://github.com/wlwise/AnyoneCanCreateAnApp
http://www.manning.com/books/anyone-can-create-an-app
http://www.manning.com/books/anyone-can-create-an-app

Editing LioNs
You’ve built out the functionality to create new LioN objects, but you don’t have
the ability to edit them yet. You’ll add all the functionality to edit LioNs and display
the edited cells in this chapter. You’ll also add functionality to show whether the
user liked or disliked the LioN by changing the background colors of the Like and
Dislike buttons.

23.1 Editing existing LioNs
You’re now going to add the ability for users to edit the LioNs they’ve already cre-
ated. Based on what you know now, what specifically do you need to do to make
this happen?

1 Set up the AddEditViewController to accept a LioN object to edit.
2 Fill in the text boxes with the existing LioN name and description.

This chapter covers
 Optional binding

 Editing LioNs

 Adding another function to the
AddEditViewControllerDelegate
236

237Editing existing LioNs
3 Show whether the LioN is liked or disliked.
4 Pass the LioN object to the AddEditViewController.
5 Save the LioN when the user taps Done, but don’t create a new LioN.

Let’s get to it.

23.1.1 Setting up the AddEditViewController to accept a LioN object
to edit

When the user taps a row in the main LioN scene, they’re expecting another scene to
open with the LioN data so they can edit it. In order for this to happen, you need to know
which LioN they tapped so you can pass it to the Edit scene and then pass that object
to the AddEditViewController. The first thing you need to do is to create a variable in
the AddEditViewController for the LioN that will get passed in. Add the following
line to the top of your AddEdit controller:

var lionToEdit : Lion?

Why did you add the ? at the end of the LioN? Remember that the ? signifies to
Xcode that this variable is optional, and it may or may not be nil. You know this vari-
able will be nil when the user creates a new LioN and this class is called; but you want
it to not be nil when the user wants to edit a LioN, so optional is the perfect solution.

 Now that you have a variable in the AddEdit controller for the LioN object that you
want to edit, you need to know whether there’s something in that variable. If there
isn’t anything in the variable (the main controller didn’t pass an object in to be
edited), then you know the user tapped + so they could create a new LioN. If there’s
something in the object, then you know the user tapped a row in the table and you
should be editing that object. Add the following code to the viewDidLoad() function:

if let item = lionToEdit {
 title = "Edit LioN"
 } else {
 title = "Add LioN"
 }

In the preceding code, you’re using a feature of Swift called optional binding. This
statement can be read as “If there is a value in the variable lionToEdit, set it equal
to a new variable called item. Then set the title of the scene to Edit LioN. If there
isn’t a value in the variable lionToEdit, set the title of the scene to Add LioN.” Run
the app again, and you should notice that the Add/Edit scene has the title Add
LioN when you add the LioN or edit it. Because you’re not passing the LioN into the
Add/Edit controller yet, it makes sense that lionToEdit will always be nil at this
point, right?

 Let’s go ahead and plan for the time when lionToEdit isn’t nil and see how to fill
in the text fields with the code so it can be edited.

238 CHAPTER 23 Editing LioNs
23.1.2 Filling in the text boxes with the LioN name and description

Now you need to populate the two text fields on your Add/Edit scene so the user
can edit them. In the if let statement you added earlier, add the following two
statements:

descTxt.text = item.lionDescription
nameTxt.text = item.lionName

Here you’re setting the text of the description text field to the lionDescription of
the item variable. You may be wondering why you didn’t use the lionToEdit object to
fill in the text fields—why didn’t you use the following code instead?

descTxt.text = lionToEdit!.lionDescription
nameTxt.text = lionToEdit!.lionName

Although it’s absolutely possible to use the lionToEdit object to populate your text
fields, it isn’t good practice. The variable lionToEdit will be set by the main controller
when the user taps a row to edit it, so that variable is somewhat out of your control.
You don’t know if that variable may be changed by some other part of the app while
you’re trying to use it—you aren’t finished coding the app yet, so there’s a possibility
that another function might change that variable at any time.

 There are many times in a programmer’s coding career when they expect a vari-
able to contain a certain object and are confounded when it doesn’t. They don’t real-
ize that another part of the app is changing the variable behind the scenes. Because
they didn’t make a local copy of the variable, it can change without their knowing it. So
it’s good practice to make a copy of the variable for your class to use that you know can
only be changed by you in that class. Your if let statement should look like this now:

if let item = lionToEdit {
 title = "Edit Lion"
 descTxt.text = item.lionDescription
 nameTxt.text = item.lionName
 } else {
 title = "Add Lion"
 }

You have the two text boxes set to show the values of the lionDescription and the
lionName fields when the object is passed into the AddEdit controller, but what about
the Like/Dislike buttons? Let’s work on that next.

23.1.3 Showing whether the LioN is liked or disliked

You’re eventually going to add some images to your buttons so they look nicer than
having Like and Dislike on them (in chapter 26). For now, you want to give the user
some visual cue for which option they chose. You’re going to set the background
color of the buttons based on the user selection to green for like and red for dislike.
When the user taps Like, the Like button should turn green, and the Dislike button

239Editing existing LioNs
shouldn’t show any color. When the user taps the Dislike button, it should turn red,
and the Like button shouldn’t show any color.

 You set the default value for your like variable to true, which means like. You did
this near the top of the AddEdit ViewController class:

var likeVar: Bool = true

This means when a user creates a new LioN, the default is like and they must tap the
Dislike button to change the value. This also means that when the Add/Edit scene
first loads, the LioN object default is like, which means you should show that to the
user by having the background color of the Like button set to green. In order to set
the properties of the Like and Dislike buttons, you need a reference to them. You
already created action outlets when each of them is tapped, but you didn’t create ref-
erence outlets so you could change the properties of the button. Open the story-
board again, drag from the likeButton to the AddEditViewController, and create
an outlet named likeButton. Do the same for the Dislike button, but name the outlet
dislikeButton.

 Back in the viewDidLoad() function, under the title = "Add Lion" line, add the
following line:

likeButton.backgroundColor = UIColor.green

Run the app again, and you should see the Like button with a green background
when you add a new LioN. The problem is that the green doesn’t go away when you
tap Dislike. You haven’t set the Dislike button background to red anywhere—but
you can fix that. You created a dislikeClicked function earlier, and this seems like
the perfect place to change the background to red, don’t you think?

 In the dislikeClicked function, add the following line:

dislikeButton.backgroundColor = UIColor.red

Perfect! Run the app again, and let’s see what happens. Not quite right, is it? You want
the green color on the Like button to disappear and the red color to stay. In the
dislikeClicked function, you also need to add the following line:

likeButton.backgroundColor = UIColor.clear

Great. Now when you click Dislike, the Dislike button turns red and the Like button is
clear. You need to add the code to turn the Like button green when it’s tapped and
turn the Dislike button clear. Change the likeClicked function so it looks like this:

@IBAction func likeClicked(sender: AnyObject) {
 likeVar = true
 dislikeButton.backgroundColor = UIColor.clear
 likeButton.backgroundColor = UIColor.green
}

240 CHAPTER 23 Editing LioNs
Have you noticed that you seem to be repeating the code for setting colors in several dif-
ferent places in the app? This isn’t a good coding practice and can definitely lead to
problems when you forget to set the color for one condition. It also makes it more diffi-
cult to maintain the code in the future—if you want to change the behavior of the but-
tons (say you want to change the Dislike background color to orange instead), you have
to search through your code to find all the different places that you set the background
color. There’s a better way to do this to make your code easier to read and to maintain.

 You’re going to create a new function in the AddEdit controller class called toggle-
Like. Add the following code in your class:

func toggleLike() {
}

In this function, you need to check what the likeVar is set to and toggle the buttons’
background colors based on that variable. You can take the code out of your like and
dislike click functions and move it to the toggleLike() function.

 Add the following code to your toggleLike() function so it looks like this:

func toggleLike() {
 if likeVar == true {
 dislikeButton.backgroundColor = UIColor.clear
 likeButton.backgroundColor = UIColor.green
 } else {
 dislikeButton.backgroundColor = UIColor.red
 likeButton.backgroundColor = UIColor.clear
 }
 }

This code evaluates the likeVar variable and, if it’s equal to true (like), sets the back-
ground color of the likeButton to green and the background color of the dislike-
Button to clear. If the likeVar variable isn’t equal to true, it must mean dislike, so
the code sets the background color of the Dislike button to red and the background
color of the Like button to clear.

 Now that you have this function, you can call it anytime either the Like or Dislike
button is tapped and when the scene first loads. Clear out the code you put into the
likeClicked() function and the dislikeClicked() function, so they look like this:

@IBAction func likeClicked(_ sender: AnyObject) {
 likeVar = true
 toggleLike()
 }
@IBAction func dislikeClicked(_ sender: AnyObject) {
 likeVar = false
 toggleLike()
 }

Run your app, and see what happens. It looks great, doesn’t it? The only thing you
need to fix is to toggle the button colors when the scene first loads. Add a call to the

241Editing existing LioNs
toggleLike() function at the end of the viewDidLoad() function, and remove the
line where you set the likeButton background to green. This will take the value of
the likeVar and toggle the buttons accordingly. There’s only one problem left: what
happens when the user wants to edit a LioN? The buttons should be set based on the
value of the LioN—set to green/Like if they liked the LioN or to red/Dislike if they
didn’t like the item. You need to set the value of likeVar based on the LioN object
that’s being passed in. Add the following line of code to the if let item = itemToEdit
function, after you set the text field value for the lionName:

likeVar = item.like

Your entire viewDidLoad() should look like this now:

override func viewDidLoad() {
 super.viewDidLoad()
 if let item = lionToEdit {
 title = "Edit Lion"
 descTxt.text = item.lionDescription
 nameTxt.text = item.lionName
 likeVar = item.like
 } else {
 title = "Add Lion"
 likeButton.backgroundColor = UIColor.green
 }
 toggleLike()
 doneButton.isEnabled = false
 nameTxt.becomeFirstResponder()
 let tap = UITapGestureRecognizer(target:

➥ self, action: #selector(dismissKeyboard))
 view.addGestureRecognizer(tap)

 }

Run the app again, and the Like button should be green when the Add/Edit scene
first loads because the default is 1 or like.

 You’re definitely making progress. Now you need to add in the functionality that
will set the lionToEdit variable with the LioN object that you want to edit.

23.1.4 Passing the LioN object to the Add/Edit controller

Let’s check in on what you’ve done before you add more functionality, shall we?
Remember that you want the user to be able to tap a row in the main LioN scene and
have the Add/Edit scene open with the LioN data that they want to edit. To do this,
you need the main scene (MainViewController) to pass the LioN data to the AddEdit-
ViewController so it can display the data for editing.

 You already set up the AddEditViewController to accept the incoming LioN
object by creating a variable called lionToEdit. You then populated the text fields
based on the data in that object and toggled the Like/Dislike buttons based on the

242 CHAPTER 23 Editing LioNs
lionToEdit data. To tie it together, you need to pass the LioN object from the Main-
ViewController to the AddEditViewController. Fortunately, you’ve already done
most of the work.

 Open the MainViewController file, and look at the prepareForSegue function.
You already have the code for “If segue identifier is equal to edit,” so you only need to
pass the LioN object that the user tapped when this function is called. Pretty cool,
huh? The first thing you need to know is which row the user tapped. You already fig-
ured this out when you added the delete functionality in the last chapter, so this
shouldn’t be new to you. You need to get the index path (the pointer to the row that
we want) of the cell in the table view.

 Add the following code inside the prepareForSegue function and inside the if
segue == Edit part:

if let indexPath = tableView.indexPath(for: sender as! UITableViewCell) {
}

We talked about optional binding earlier (the if let statement), and you’re using it
again here. In English, this reads, “If the index for the path that the user tapped in the
table view is not nil, then set it equal to this new variable indexPath.” Now you have
an indexPath, which will give you the row number for the tapped row. You have an
array of LioN data called lionData (appropriately named, don’t you think?) that
you’ll use to get the object that the user wants to edit. Add the following line inside
the if let statement that you created:

controller.lionToEdit = lionData[indexPath.row]

This will set the lionToEdit variable in the AddEditViewController equal to the row
of data in the lionData array. Run the app again, add a new LioN object, and then
click it to edit it. You should see the text fields populated with the LioN data and the
Like/Dislike buttons set based on your choice. Here’s the prepareForSegue function
in case you need to see the whole thing:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "add" {
 let navigationController = segue.destination as!

➥ UINavigationController
 let controller = navigationController.topViewController as!

➥ AddEditViewController
 controller.delegate = self
 } else if segue.identifier == "edit" {
 let navigationController = segue.destination as!

➥ UINavigationController
 let controller = navigationController.topViewController as!

➥ AddEditViewController
 controller.delegate = self
 if let indexPath = tableView.indexPath(for: sender as!

➥ UITableViewCell) {

243Editing existing LioNs
 controller.lionToEdit = lionData[indexPath.row]
 }
 }
 }

Run the app again, and see if you can edit the LioN object. Great—you can! One
annoying thing, though: the Done button isn’t enabled in the details scene until after
you edit text in one of the text fields. You’re going to fix that next.

 You’ll add one line in the viewDidLoad() function of the AddEditViewController.
Inside the if let item = itemToEdit section, add the following line:

doneButton.enabled = true

Now the entire viewDidLoad() function should look like this:

 override func viewDidLoad() {
 super.viewDidLoad()
 doneButton.isEnabled = false
 if let item = lionToEdit {
 title = "Edit Lion"
 descTxt.text = item.lionDescription
 nameTxt.text = item.lionName
 likeVar = item.like
 doneButton.isEnabled = true
 } else {
 title = "Add Lion"
 likeButton.backgroundColor = UIColor.green
 }
 toggleLike()
 nameTxt.becomeFirstResponder()
 let tap : UITapGestureRecognizer = UITapGestureRecognizer(target:

➥ self, action: #selector(dismissKeyboard))
 view.addGestureRecognizer(tap)

 }

If you run your code and try to edit a LioN object, you should notice that your edits
are saved as a new LioN instead of being saved to the original LioN. That won’t
work. You need to overwrite the values of the original LioN when the user is finished
editing them.

23.1.5 Saving the LioN when the user taps Done, but not creating
a new LioN

How do you think you can send the updated LioN object back to the MainView-
Controller so it can be edited instead of saved as a new object? Right now, when the
user taps Done, you’re using the delegate pattern for didFinishAddingItem and pass-
ing the data for the new LioN back. If you thought of using a delegate to pass the

244 CHAPTER 23 Editing LioNs
edited item back, you get a cookie. (I can’t give you a cookie, but consider this permis-
sion to go eat a cookie.)

 You’re going to add a new function definition to the protocol at the top of the
AddEditViewController for passing back the edited LioN. Add the following line
under the didFinishAddingItem description in the protocol:

func addItemViewController(controller: AddEditViewController,

➥ didFinishEditingItem lionItem: Lion)

The entire protocol now looks like this:

protocol AddEditViewControllerDelegate : class {
 func addItemViewControllerDidCancel(controller: AddEditViewController)
 func addItemViewController(controller: AddEditViewController,

➥ didFinishAddingItem lionItem: Lion)
 func addItemViewController(controller: AddEditViewController,

➥ didFinishEditingItem lionItem: Lion)
}

Fantastic! Next you need to add the functionality in the AddEdit ViewController for
didFinishEditingItem. Where do you think you should put it? How about the same
place you put the didFinishAddingItem functionality: in the doneClicked() function.

 If you look at the doneClicked() function, you can see that it creates a new LioN,
sets the properties based on the user input, and then sends a message to tell whatever
delegate is listening that you’re done adding the item (or didFinishAddingItem). You
need to change this to check whether you’re editing an item and then send the appro-
priate delegate message. Sounds like you need to use optional binding again, don’t
you think?

 Add the following lines inside the doneClicked() function:

if let item = lionToEdit {
{ else }
}

As a reminder, this says, “If lionToEdit isn’t nil, then set it equal to this new variable
called item. Otherwise, do something else.” Now you can move all the existing code
inside the doneClicked() function in the else{} section—because you know you’re
adding a new LioN. Your function should look this now:

if let item = lionToEdit {
{ else }
 newLion = Lion()
 newLion?.lionName = nameTxt.text!
 newLion?.lionDescription = descTxt.text!
 newLion?.like = likeVar
 delegate?.addItemViewController(controller: self, didFinishAddingItem:

newLion!)
 }

245Editing existing LioNs
If you run the app, adding a LioN should still work, but saving the edited LioN doesn’t
because you don’t have any code in the first part of your if statement. You can defi-
nitely fix that—you should be able to do this yourself because you did it earlier. Where
do you think you should do it? You’re checking whether lionToEdit has a value
that would indicate the user is editing a LioN, so add the code in the if let item =
liontoEdit{} section above the { else } line.

 Set the properties of the item object equal to the values that the users entered on
the scene. My added lines look like this:

item.like = likeVar
item.lionDescription = descTxt.text!
item.lionName = nameTxt.text!

You’ve set the values of the object item, so you need to send it back to the delegate to
save it. Look at how you sent a message for saving the object to the delegate (didFinish-
AddingItem), and see if you can code the line for saving the object for editing to the
delegate (didFinishEditingItem). My added line looks like this and is under the lines I
previously added:

delegate?.addItemViewController(controller: self, didFinishEditingItem: item)

Wonderful! But you have a problem: Xcode generated a new error (the red excla-
mation point). The MainViewController doesn’t conform to the protocol for the
AddEditViewControllerDelegate anymore because you added a new function to it.
You need to go back into the MainViewController and handle the message when
it’s sent (didFinishEditingItem). Add the following function to your MainView-
Controller:

func addItemViewController(controller: AddEditViewController,

➥ didFinishEditingItem lionItem: Lion) {
}

Now the MainViewController conforms to the AddEditViewControllerDelegate
protocol, so the error message is gone. You need to do something with the LioN
object that was passed back in this message.

 You’re going to save the LioN back to the LioN array in the same row that it was
already in—otherwise you’ll create another object again or overwrite an object you
didn’t mean to. You need to know which row of data you sent over to the Add/Edit
scene, which you don’t know right now. So go back and fix that by creating a new vari-
able at the top of the MainViewController called editIndexPath. You’ll store the
indexPath of the row the user tapped in this variable so you can use it to figure out
which row needs to be edited.

 At the top of the MainViewController class, add this variable declaration:

var editIndexPath: NSIndexPath?

246 CHAPTER 23 Editing LioNs
You need to set this variable before you pass control to the AddEditViewController,
so edit the prepareForSeque function to include the following line, in the segue
.identifier == Edit section:

editIndexPath = indexPath

I put this inside the if let indexPath code, so it looks like this:

} else if segue.identifier == "edit" {
 let navigationController = segue.destination as!

➥ UINavigationController
 let controller = navigationController.topViewController as!

➥ AddEditViewController
 controller.delegate = self
 if let indexPath = tableView.indexPath(for: sender as!

➥ UITableViewCell) {
 controller.lionToEdit = lionData[indexPath.row]
 editIndexPath = indexPath as NSIndexPath?
 }
 }

Back to the didFinishEditingItem function. You need to update the cell in the
table view for the cell that was edited. You know which cell was edited, thanks to the
editIndexPath variable, so add the following code inside the didFinishEditing-
Item function:

if let cell = tableView.cellForRow(at: editIndexPath! as IndexPath) {

➥ cell.textLabel?.text = lionItem.lionName
 cell.detailTextLabel?.text = lionItem.lionDescription
 }
dismissViewControllerAnimated(true, completion: nil)

This code is setting the variable cell equal to the cell in the table view that’s at index
editIndexPath. Then you can set the cell properties equal to the properties of the
edited LioN. Finally, you have to dismiss the ViewController so the main ViewController
scene will be visible. Test out the code and make sure it works. Amazing, isn’t it?

 You’re displaying the right data to the user, but you haven’t updated the LioN
object in the lionData array; let’s see how to do that. You have the index path for the
data, so that means you know the row that you need to edit in the array. Add the fol-
lowing lines inside the if let cell area in the didFinishEditingItem portion of the
code in MainViewController:

lionData[editIndexPath!.row].lionDescription = lionItem.lionDescription
lionData[editIndexPath!.row].lionName = lionItem.lionName
lionData[editIndexPath!.row].like = lionItem.like

You’re setting the properties of the LioN object in the lionData to the properties of
the LioN that was passed back by the AddEditViewController. Now the array is also
updated so when you save the data in the next chapter, it will be ready to go.

247Summary
 Here’s the entire didFinishEditingItem function so you can compare it to yours:

func addItemViewController(controller: AddEditViewController,

➥ didFinishEditingItem lionItem: Lion) {
 if let cell = tableView.cellForRow(at: editIndexPath!) {
 cell.textLabel?.text = lionItem.lionName
 cell.detailTextLabel?.text = lionItem.lionDescription

 lionData[editIndexPath!.row].lionDescription =

➥ lionItem.lionDescription
 lionData[editIndexPath!.row].lionName = lionItem.lionName
 lionData[editIndexPath!.row].like = lionItem.like
 }
 dismiss(animated: true, completion: nil)
 }

23.2 Summary
Can you believe how far you’ve come? You started out not being able to code anything
for iPhones and iPads, and now you have a functioning app that can create new
LioNs, edit them, and even delete them. The only thing that would be better would be
if you could save those LioNs each time you exit the app so they load when you open
the app again. That’s coming in the next chapter.

 In this chapter, you learned

 About optional binding, a way to test whether a variable is nil and set it equal
to another variable

 How to pass data to an edit controller and pass it back to the main controller

Saving LioNs
Now you have the ability to create new LioNs and edit them, but when you close the
app and open it again, all of your data is gone. You can fix that, though, so let’s get
to it. The purpose of this chapter is to save the lionData array to the iPhone so the
data loads every time you load the app, and the data saves to the phone every time
you close the app.

24.1 Playing in the sandbox
Saving data to your iOS device isn’t that different from saving a file to your com-
puter. When you’re on the computer, you pick any location that you have access to
and click Save. When you’re on an iPhone or iPad, though, the programmer (you)
picks the location to save the file, and it’s saved automatically so the user doesn’t
have to. Apple put some security measures in place for the iPad and iPhone so you
can only save the app file to specific locations—called sandboxes.

This chapter covers
 Sandboxes

 Saving LioN objects to a file

 Loading LioN objects from a file

 The NSCoding protocol
248

249Playing in the sandbox
 Imagine two kids, each building a sandcastle in their own sandbox. They don’t
want to share their space in the sand with anyone else. Little Peter doesn’t want little
Bridget to mess up his sandcastle any more than little Bridget wants him to mess up
her sandcastle. Apps behave the same way—they each have their own sandbox to store
files (or build castles), and no other apps can have access to that area. This is a great
security measure. It ensures that the file you save can be accessed by your app only
and not by any others.

 You need to add some code to create a file in the LioN sandbox. I’m going to add
the following function near the bottom of my MainViewController class (I tend to
add utility-type functions near the bottom). Create a new function called getData-
FilePath, and have it return a type URL. Remember how to do that?

 This is what my new function looks like:

func getDataFilePath() -> URL {
}

Next, add the following two lines inside the getDataFilePath() function:

let paths = FileManager.default.urls(for: .documentDirectory, in:

➥ .userDomainMask)
return paths[0].appendingPathComponent("Lion.plist")

The first line gets a list of the directories in your sandbox area. The FileManager
.default.urls function returns an array of strings for the sandbox directories. The
next line returns the first path object from the paths array and appends the string
"lion.plist" to the end to form a full path to save files, including the filename.
lion.plist is the name of the file you’ll save on the user’s phone. What is a plist (pro-
nounced “pea list”), anyway? It stands for property list, and these files can store all kinds
of settings for your app, not just the data you want to save.

 You’re going to make a call to the getDataFilePath() function so you can see where
the sandbox is on your computer. Inside the mainViewController viewDidLoad()
method, print out the returned string from getDataFilePath(). My code looks like this:

print(getDataFilePath())

Run your app, and you should see a long string printed to your console. My string
looks like this:

/Users/wendylwise/Library/Developer/CoreSimulator/Devices/CD3B094F-C3A9-

➥ 44D7-A935-565FC29CEACA/data/Containers/Data/Application/9D0E98E2-0A18-

➥ 464A-A155-B1645F9FC84D/Documents/lion.plist

Wow—that’s a long string, isn’t it? This is the behind-the-scenes look at where Xcode
is saving data for your app. All the crazy letter-number combinations are random IDs
that Xcode picks to make the location unique. Let’s go look at the file, shall we?

 Open a new Finder window on your Mac (either click the icon with the guy smiling
or press Command-N in your Desktop). Once the new Finder window opens, click

250 CHAPTER 24 Saving LioNs
Go > Go to Folder, or press Command-Shift-G. Copy and paste the long string from
the console (do not include the lion.plist part of the string, because you haven’t cre-
ated the file yet) into this new prompt, and click Go. Welcome to your sandbox! It will
be much neater when you create the lion.plist file, so do that and then come back and
look at it again. Your lion.plist file should be empty because you haven’t saved any
LioNs yet.

24.2 Saving your data
Saving your data is pretty straightforward, although it may not seem so at first. You
now know about the sandbox where your data will be saved, and you know that your
data will be saved in a file called lion.plist. The question is, how do you get the data to
save into that file, and, for that matter, how will you get it back it out? (Okay, I know
that’s two questions, but go with me anyway.) You have to take several steps (as usual),
so let’s get to it.

 You’re going to need to take the following steps:

1 Change the class definition for the LioN object.
2 Encode the data for saving.
3 Decode the data for loading.
4 Add a load function to the MainViewController.
5 Add a save function to the MainViewController, and call as appropriate.

Now that you know what you need to do, let’s get started.

24.2.1 Changing the class definition for the LioN object

Go back to Xcode, and open the Lion.swift file. If you remember, this is the class defi-
nition for the LioN object. It states that there are three properties: lionName, lion-
Description, and Like. If you look at the class definition on the top line, it states that
the class Lion doesn’t inherit any functionality from any other objects. You learned
about inheritance back in chapter 13, but as a refresher, inheritance gives you access to
the functions and properties of the superclass. Your LioN object isn’t inheriting from
anything, which means the only functions and properties it has access to are the ones
you create for it. That hardly seems expedient or efficient, does it? There are a lot of
classes that you could inherit from to get some of the functionality you need to save
and load objects from a file.

 The first class that you need to inherit from is the NSObject class. NSObject is the
most basic class in programming for Apple technologies. It’s used pretty heavily in
Objective-C programming—the precursor to Swift programming. You don’t need to
know a lot about this base class other than that it’s required in order to save and
load data from a file. Change the class definition of the LioN object to inherit from
NSObject. My code looks like this:

class Lion : NSObject {

251Saving your data
The second thing you need is NSCoding. This allows you to encode data, save it to disk,
and decode the data to read it from a file. This isn’t a class you’re inheriting from, but
a protocol you want to conform to. Protocols are everywhere, aren’t they? Change the
class definition so it inherits from NSObject and conforms to the NSCoding protocol
(don’t confuse NSCoding and NSCoder—make sure you use NSCoding, or you’ll get an
error). This is what my Lion class definition looks like:

class Lion : NSObject, NSCoding {

If you remember what you’ve learned about protocols and delegates, you must imple-
ment certain functions in order to conform to the NSCoding protocol. Do you recall
the easiest way to find out which functions you must implement? You could Com-
mand-click the word NSCoding to open the protocol definition file. The file itself is
somewhat confusing because it contains several protocol definitions. The other
option is to click the word NSCoding once and look at the Quick Help panel (as shown
in figure 24.1). This shows that NSCoding is a protocol and gives a lot more informa-
tion about the different functions and availability of the protocol (if it doesn’t open
automatically, click the blue question mark).

It doesn’t explicitly tell you which functions you must implement to conform, but
keep reading: near the bottom, you’ll see NSCoding Protocol Reference. Click the
link, and a new window opens with the protocol information. (If a new window doesn’t
open, go to Xcode > Preferences, click Components, and, in the right panel, down-
load the documentation files for Xcode and iOS.)

 When the window opens, there’s a headline for Initializing with a Coder. If you
look inside this, you’ll see that –initWithCoder: is a required function. Great! Now
you know at least one required function you need to conform to. Keep scrolling down,
and you’ll see that encodeWithCoder: is also a required function. Now you know there
are two functions to conform to the NSCoding protocol. (The other way I remember

Figure 24.1 The Quick Help panel
gives a lot of information about the
NSCoding protocol.

252 CHAPTER 24 Saving LioNs
what functions are required for the protocol is to keep notes for myself so I don’t have
to look up the information. Believe it or not, I don’t store everything in my brain—
otherwise I’d be likely to forget the simple things, such as what toothpaste I like. Wait
a minute…)

 How you choose to find the information is up to you. But you’ll still need to imple-
ment the two functions, so let’s do it.

IMPLEMENTING THE INIT(CODER) FUNCTION

The first function required is the init function. You can copy the definition from the
reference file or type it in. I added the following to my Lion class:

required init(coder aDecoder: NSCoder) {
 super.init()
}

This function will be used to read data from the file, which you’ll implement in the
next step.

IMPLEMENTING THE ENCODE FUNCTION

The next required function is the encode function, which you’ll use in a few minutes
to save the data to a file. For now, add the function definition. This is what my code
looks like:

func encode(with aCoder: NSCoder) {
}

IMPLEMENTING THE INIT() FUNCTION

Now that you’ve added the required init with Coder aDecoder : NSCoder, you must
have an init() statement that will be called each time a LioN object is created. You
need to override the superclass’s implementation, which you do with the override
keyword. This is what I added to my code:

override init() {
 super.init()
}

Your entire Lion class should look like this now:

import Foundation

class Lion : NSObject, NSCoding {
 var lionName = ""
 var lionDescription = ""
 var like = 1

 required init(coder aDecoder : NSCoder) {
 super.init()
 }

 func encode(with aCoder: NSCoder) {

 }

253Saving your data
 override init() {
 super.init()
 }
}

You have the class basics, so you can add some functionality to these functions.

24.2.2 Encoding the data for saving

Before you can save your LioN object to a file, you need to tell the system what a LioN
object looks like. The coder must have this information so it knows how to save it.

 Add the following lines to your encodeWithCoder function:

aCoder.encode(lionName, forKey: "lionName")
aCoder.encode(lionDescription, forKey: "lionDescription")
aCoder.encode(like, forKey: "like")

This may look strange, but all you’re doing is telling the coder (aCoder) to encode an
object named "lionName" that has a value of the variable lionName, which in this case
is a string. aCoder can encode many different types of objects, and you can look
through the documentation if you’re interested in learning more.

 Now that you’ve encoded the LioN object so that you can save it to a file, you’re
going to decode it so you can load it from the file.

24.2.3 Decoding the data for loading

The decode function is used when you want to load the LioN object from the file, so
you need to do the exact opposite of what you did in the previous section for the
encoding. You need to set the Lion values based on what’s in the file.

 Add the following lines to your init(coder) function:

lionName = aDecoder.decodeObject(forKey: "lionName") as! String
 lionDescription = aDecoder.decodeObject(forKey: "lionDescription")

as! String
 like = aDecoder.decodeInteger(forKey: "like")

The first line loads the lionName property by decoding the object for LionName, which is
the same key you used when encoding the object. If you don’t encode and decode with
the same key, you’ll get errors because your app won’t be able to find the object you’re
looking for. So you decode the object for key LionName as a string—because that’s the
expected type of the property lionName in your Lion class, and that’s how you stored it.
The lionDescription is treated exactly the same because it’s also a string. The like
variable is treated slightly differently again because it was stored as an Int. You’ll get an
error if you try to decode the like variable as a string (because it’s an integer), so make
sure to check your code and use decodeInteger, not decodeObject.

 I can tell you from experience that it’s important that the encoding key and decod-
ing key are exactly the same; otherwise you’ll get errors. That’s all you have to do the
Lion class to allow it to be saved to a file and loaded from a file.

254 CHAPTER 24 Saving LioNs
 Next you need to add the functionality to the MainViewController class to make
this happen. Before you do that, though, here’s the Lion class with all the edits:

import Foundation

class Lion : NSObject, NSCoding {
 var lionName = ""
 var lionDescription = ""
 var like = 1

 required init(coder aDecoder : NSCoder) {
 super.init()
 lionName = aDecoder.decodeObject(forKey: "lionName") as! String
 lionDescription = aDecoder.decodeObject(forKey: "lionDescription")

as! String
 like = aDecoder.decodeInteger(forKey: "like")
 }

 func encode(with aCoder: NSCoder) {
 aCoder.encode(lionName, forKey: "lionName")
 aCoder.encode(lionDescription, forKey: "lionDescription")
 aCoder.encode(like, forKey: "like")
 }

 override init() {
 super.init()
 }
}

The first thing you need to do to the MainViewController class is add a new initial-
izer. The LioN data is being saved to a file and loaded from a file, so you need to have
an init with a decoder function so you can access the data. This init function will be
called when the app loads, which then loads the MainViewController, so you can use
it to load your LioN objects from the file.

 Add a new function near the top of the MainViewController class that looks like this:

required init?(coder aDecoder: NSCoder) {
}

You need to add a line to call the super init function to ensure that everything is ini-
tialized properly, so add the following line within the new required init function:

super.init(coder: aDecoder)

Good. You’re getting there. Before you can load the data from the file, you need to cre-
ate the array to store the data. You already defined the variable lionData, which is of
type Array and stores LioN objects (look near the top of the MainViewController file to
see this declaration). Now you need to initialize this array in your init function.

 Add the following line under the super.init line:

lionData = [Lion]()

255Saving your data
This line creates the lionData array and defines it as holding LioN objects. Now you
need to ready the LioN data from the file so you can load the lionData array.

 Add this line under the lionData line:

loadLions()

This will be another function that you’ll define to load the LioNs. Let’s see how to cre-
ate this function now.

24.2.4 Adding the loadLions() function

As I’ve said, I tend to add my utility type functions near the bottom of my class, so I
scrolled to the bottom of my MainViewController class to define the loadLions()
function. To start, add the function so your code compiles:

func loadLions() {
}

The first thing you need to do in order to load the data is to know where the data is
stored. Fortunately, you already know this from the work you did earlier in this chap-
ter. You can create a new variable called path and set it equal to the function you cre-
ated previously (getDataFilePath()). This is what I added as the first line in my
loadLions() function:

let path = getDataFilePath()

Next, you need to find out whether the file exists at the path in the sandbox—it might
not, if this is the first time the user launched your app. Apple provides a class called
File Manager to help you manipulate files on the device. File Manager has many prop-
erties and functions that you can use. You’ll use the File Manager to get this informa-
tion, so add the following if statement under the let path statement:

if let data = try? Data(contentsOf: path) {
}

try? is something you haven’t seen before. This is a handy feature that tells Xcode
to try to create the variable data using the contents of the path, but if it can’t create
the data object, return nil. You may be wondering why it would fail. What happens
the first time you run the app? You know that you don’t create the plist until the
user creates the first LioN object; therefore, there won’t be any data to load on first
run. Hence try?.

 If this statement evaluates to true, you need decode it using an unarchiver (who
makes up these names, anyway?). Add the following line inside the if let brackets:

let unarchiver = NSKeyedUnarchiver(forReadingWith: data)
lionData = unarchiver.decodeObject(forKey: "lionData") as! [Lion]
unarchiver.finishDecoding()

256 CHAPTER 24 Saving LioNs
On the first line, you create an unarchiver used for reading in the variable that you
defined as data when you checked to see whether there was data in the file you were
trying to load. The second line uses the unarchiver to decode the file using the key
lionData and cast each object as a LioN object. Don’t worry about the forKey: "lion-
Data"—you haven’t defined it yet because you haven’t added the code to save your
lionData, but you will in the next section. Finally, you tell the unarchiver to clean up
after itself and finishDecoding().

24.2.5 Loading summary

That’s all there is to loading data from a file. I know it may seem complex, or like
there are a lot of steps, but it isn’t that complex when you break it down. You must
make the class that you want to save to a file conform to the NSCoding protocol by
implementing the two required methods. Within those methods, you need to encode
the object based on the object type (String and Int in this case). You then need to
implement the ability to load the object from the file within the object by decoding
the object based on the object type (again, Strings and Int).

 Once you’ve made the Lion class NSCoding-compliant, you need to create an ini-
tializer in the MainViewController class (or whatever class you need to load the data
from a file) to initialize the array and load the data. To load the data, you need to get
the path to the file that’s stored in the sandbox, use the File Manager to determine if
there is data in the file, and then use the unarchiver to decode the data.

 These functions are required anytime you want to save a file to the phone—I do
have a cheat sheet so I don’t have to code this every time I need to save a file. And I
recommend that you do the same, because it does save time.

 Now that you’ve loaded the data, you can go back and add the functionality to save
the data to a file.

24.2.6 Adding save functionality

Create a new function you can call every time you need to save an object. Add a new
save function down near the bottom of the MainViewController file—this is what
mine looks like:

func saveLionItems() {
}

The first thing you’re going to do is create a variable you can use to store the data.
Add the following line inside the saveLionItems function:

let data = NSMutableData()

NSMutableData() is another item that hails from Objective-C. Anytime you see the
word Mutable, it means the variable is a collection type that can grow and shrink based
on the size of the data that’s stored within it. Because you don’t know the number of

257Saving your data
LioN objects that you’re going to save, it makes sense that the data can shrink and
grow as needed.

 When you created the load functions earlier, you used an unarchiver to unarchive
the data, so guess what you’re going to use to the save the data? Did you guess an
archiver? Okay, you get another cookie (again, I can’t give you a cookie, so you’ll have
to reward yourself). Add the following line under the let data line:

let archiver = NSKeyedArchiver(forWritingWith: data)

You’re going to use the archiver to encode the data for your objects, so add the follow-
ing line under the let archiver line:

archiver.encode(lionData, forKey: "lionData")

Remember that in the load section, you loaded data for the keyword lionData, and I
told you it would come into play later in the chapter. Well, here it is. You’re encoding
the array lionData using the keyword lionData. Just like when you loaded the data,
you need to finish encoding it, so add the following line under the archiver.encode-
Object line:

archiver.finishEncoding()

You’ve archived the data, but you still haven’t written it to a file. Add this line under
the finishEncoding() line:

data.write(to: getDataFilePath(), atomically: true)

This line writes the data to the file that you returned in the function getDataFilePath().
As you may notice, the writeToFile function takes a String as the first argument.
Your getDataFilePath() function returns a String, so you use the shortcut of using
the function as your argument in writing data to the file. You could instead create a
new String variable and set it equal to the getDataFilePath(), and then use that
String in the argument, but this is more succinct.

 You’ve now added all the code required to save a file to the app sandbox and load
that data back into the app. The only thing left is to call saveLionItems() when you
need to save an item. Before we talk about that, though, here’s what my entire save-
LionItems() function looks like:

func saveLionItems() {
 let data = NSMutableData()
 let archiver = NSKeyedArchiver(forWritingWithMutableData: data)
 archiver.encodeObject(lionData, forKey: "lionData")
 archiver.finishEncoding()
 data.write(to: getDataFilePath(), atomically: true)
 }

258 CHAPTER 24 Saving LioNs
SAVING THE LIONS FROM THE APPROPRIATE PLACES

When do you think you should call the SaveLionItems() function? You should save it
after you create a new LioN, so add the following line to the end of the didFinish-
AddingItem function in the MainViewController:

saveLionItems()

Believe it or not, that’s all you need to add to the function to save the new LioN to the
sandbox. Where else should you add it? If you answered edit, you get another cookie.
Add the same line to the end of the didFinishEditingItem function.

 Is that it? You’re still missing one place: you added functionality to delete a LioN
from the list, so you need to save there, too. Add the saveLionItems() line to the end
of the commitEditingStyle function to save after the user deletes a LioN.

 That’s it! You did it. All you need to do is test the app to make sure it all works
as expected.

24.3 Testing the load and save functionality
Go ahead and run the app and add a LioN or two. You should still have the file path
printing your console so you know where your sandbox is. If you don’t, go back to the
viewDidLoad() function in the MainViewController and add the following line:

print(dataFilePath())

After you’ve added a few LioNs to the app, stop the Simulator by clicking the Stop but-
ton in Xcode (next to the Run button). In the Finder, press Command-Shift-G or click
Go > Go To Folder. Copy and paste the file path in your Xcode console into the win-
dow that pops up, and press Enter. Again, this is the location of your sandbox and plist
file that you created. You can double-click the lion.plist file, and it will open in Xcode.

 Take a look at figure 24.2. At first glance, this is a weird-looking file, isn’t it?
 If you expand the $objects line by clicking the triangle, you’ll be presented with

several items that are numbered starting with item 0. Xcode puts a bunch of stuff in
the plist file that you don’t need to worry about, but with the $objects expanded, you
should see the LioNs that you created within the file.

Figure 24.2 You can open the lion.plist file in Xcode by double-clicking it in
the Finder window.

259Summary
Close the plist file, run the app again, and you’ll see that your LioNs loaded again.
Pretty cool, huh?

If you want to test it again, you can delete the plist file from your hard drive and then
run the app again. You’ll notice that there are no LioNs in the list.

24.4 Summary
Wow, what a chapter! You accomplished a lot, and I hope you feel accomplished (and
got a few cookies out of it, too). You added all the functionality required to load
objects from a file and to save them off to a file. I’ll reiterate that even I don’t have all
these functions memorized. I use a cheat sheet where I save the functions and steps
required to save and load files. You can use this chapter as your cheat sheet going for-
ward, or you can create your own sheet.

 In this chapter, you learned

 How to add functionality to a class to allow it to be saved to a file
 How to conform to the NSCoding protocol
 How to load data from a file
 How to save data to a file

Your LioN app is coming along. You’ll make it a little prettier in the next chapter.

Key point
Make sure you don’t have the plist file open when you’re running your app, because
this may cause the file to get corrupted. Always stop the app before opening the plist
file and close the plist file before running the app.

Making your LioN prettier
The basic functionality of the Lion app is almost complete. You can do everything
you need to in order to create LioNs, edit them, and delete them, but the app looks
utilitarian and isn’t pretty. It also doesn’t look good on different sizes of devices.
You’ll fix that in this chapter.

25.1 Basic fixes
The first thing you need to do is make some basic fixes so the app looks a little bet-
ter. Open the storyboard, and select the lionName text field on the Add/Edit scene.
In the Attributes Inspector, change Border Style to None. Do the same for the
lionDescription field. Run the app, and see how much better it already looks
without the borders on the text fields (figure 25.1).

This chapter covers
 Aesthetic considerations

 Adding an icon

 The Launch scene

 Sizing images
260

261Basic fixes
25.1.1 Creating two sections

Next, you’ll add two sections to the table view so the Like and Dislike buttons have
separation from the Name and Description fields. The easiest way to do this is by using
sections, so click the table view (make sure to click the table view and not a table view
cell) and change the number of sections to 2 in the Attributes Inspector. You now
have two sections in the table, and each section has all three of the rows, as you can
see in figure 25.2. That’s okay. You’ll fix it.

You want the first section to have the LioN name and description fields, and the sec-
ond section should only have the Like and Dislike buttons. Using the Document Out-
line (the panel to the left of the Storyboard panel—see figure 25.3), select the third
row in the first section (the one with the Like and Dislike buttons) and delete it.
Select the first two rows in the second section (the ones with the LioN Name and LioN
Description), and delete those as well.

 You deleted the third row of the first section—the Like and Dislike buttons—
and these were the buttons that were connected to your code. Now you have to
reconnect the Like and Dislike buttons’ outlets in the second section to the code.
Open the Assistant Editor view so you have the storyboard and the AddEditView-
Controller visible.

 You already have the outlets for the Like and Dislike buttons defined in the Add-
EditViewController file, so you need to reconnect the outlets to the buttons. Notice

Figure 25.1 Changing Border Style to None for the
lionName and lionDescription fields will
make the scene look much nicer.

Figure 25.2 Add a second section to the Add Edit View Controller scene, and
delete the duplicated cells so the final product looks like this.

262 CHAPTER 25 Making your LioN prettier
the left margin (or gutter) in the AddEditViewController file—there are small circles
that are either black or empty. The black circles signify that the outlet or action is con-
nected to the storyboard, and the empty circles signify that the item isn’t connected
(see figure 25.4). Click the empty circle next to the Dislike button outlet in the file,
and drag your mouse pointer over to the Dislike button on the storyboard to connect
the two again. This is the opposite action of connecting the storyboard to the file.
Pretty easy, huh?

If you run the app again, it should work as it did before you split the table into two
sections.

Figure 25.3 Use the Document Outline panel to
easily delete the cells you don’t need for the first
and second sections of the table view.

Figure 25.4 Use the empty circles in
the AddEditViewController file to
reconnect the outlets to the buttons in
the storyboard.

263Basic fixes
25.1.2 Adding the Like and Dislike images

Adding and using images is pretty easy in Xcode 7. Back in the old days, we had to do
a lot of work to use images and make them look good on different kinds of devices. It
was kind of like walking to school in the snow, uphill both ways. Now it’s much easier.
Look in the Project Navigator in Xcode, and you’ll see a blue folder named Assets
.xcassets. Click it, and the Standard Editor opens a new panel. At the bottom of the
panel, click the plus button (+) and select New Image Set. A new item will appear in
the catalog that says Image, and on the right you’ll see placeholders for Universal
images for 1x, 2x, and 3x.

 Apple uses these universal sizes to optimize the app size for download from the
App Store. Why should a user with an iPad download images that are sized for an
iPhone (and vice versa)? The process of providing different sized images is app thin-
ning, and the way Apple optimizes the download is called slicing. If you’re building
apps for iPads and iPhones (and any other screen sizes such as those of tvOS or
watchOS), you should supply the different sized images so that Xcode and Apple can
optimize the bundle size for your users.

 What do 1x, 2x, and 3x stand for? They’re intended to show the size differences of
images. 1x represents older iPhones and iPads; 2x is for newer iPhones; and 3x repre-
sents the newest iPhones and iPads. It isn’t all about screen size, though. It’s also
about resolution. Images are measured in points—a mathematical representation that
most of us don’t need (or care) to know about. In the old days, 1 point was equal to 1
pixel. On retina devices, 1 point is equal to either 2 × 2 pixels or 3 × 3 pixels (depend-
ing on screen size), which is why images look so much clearer. There is more data in
each image. Why is all this important, you may be wondering?

 If you don’t provide different sized and scaled images, Xcode and Apple will
upscale and downscale your images to make them work with the various sized devices.
You’ll usually lose a lot of clarity in the images, and processing will take longer and use
more memory to complete this. That’s why you should provide the different-sized
assets for your app to make it look better and to improve its performance and mem-
ory usage.

 This was a great (in my opinion) discussion of the different sized images you must
provide, but what are the sizes, other than 1x, 2x, and 3x? The easiest way to under-
stand the sizes is to use an example. Let’s assume you have an image that you want to
display on an iPad, and it’s 150 × 150 pixels. That would be your 3x image, so it needs
to have the most detail and look the best. You also need to create an image for the 2x
version, so that would 100 × 100, and the 1x image would be 50 × 50. There are no set
sizes for images in your app—it’s based entirely on how you want to use the images.
The Apple developer docs explain which devices need 1x, 2x, and 3x images; the com-
plete list of required images and sizes is available at http://mng.bz/i0h0.

 Now that you understand the 1x, 2x, and 3x image sizes and scales, I want to
introduce you to a simpler way of doing things. I prefer to use vector images that are
saved as PDF images. If you add a PDF image to your project, Xcode will do the

http:// mng.bz/i0h0

264 CHAPTER 25 Making your LioN prettier
work of scaling your images to 2x and 3x for you—it assumes your PDF is the 1x ver-
sion. I know I said earlier that having Apple scale your images may have perfor-
mance and quality impacts, but this is different. Vector images scale easily with
minimal performance impact. In my opinion, it’s easier to use PDFs so you ensure
you have all the correctly sized images at the right quality, but you can make your
own choices (because you’re now a programmer). The graphics for the LioN app
aren’t detailed with various levels of shading and effects, so allowing Xcode to resize
the images isn’t a problem. If you use Adobe Photoshop, you can save your images
as PDF files; otherwise, ask your graphic artist to provide you with the PDF files.
There are also other graphic editing programs that can do this for you if you know
how to use them.

 Luckily, I already have the images needed for the Like it or Not app, and you can
download the image file from www.manning.com/books/anyone-can-create-an-app or
https://github.com/wlwise/AnyoneCanCreateAnApp. Rename the Image Set you
created earlier to likeIt, and change the Scales of the image set to Single Scale (fig-
ure 25.5). Drag the LikeIt.pdf image into Xcode on the dotted square in the image
set (figure 25.6).

Figure 25.5 Change the Scales attribute
to Single Scale for the likeIt image set.

https://github.com/wlwise/AnyoneCanCreateAnApp
http://www.manning.com/books/anyone-can-create-an-app

265Basic fixes
Next, create a second image set, name it orNot, and set it to Single Scale. Drag the
orNot.pdf image into the dotted-line area labeled Universal.

 Open the storyboard again, and make sure the AddEditLion scene is visible. Click
the Like button, and select the likeIt image in the Image attribute on the Attribute
panel, as shown in figure 25.7.

Once you set the Image attribute, note that the Like button shows the image you
added. It isn’t sized quite right yet, though, so drag the corners of the image and size
it smaller so it fits in the cell. Do the same for the Dislike button, resizing it as well
(you’ll need the orNot.pdf file for the Dislike button).

 You can see now that the cell shows Or Not and then Like It—which isn’t correct.
Drag the buttons so the Like It button is on the far left and the Or Not button is on
the right. Run the app again, and make sure it still works as expected. Pretty cool,
huh?

Figure 25.6 Add the likeIt image to the likeIt image set so it looks like this.

Figure 25.7 Change the Image attribute
for the Like button to the likeIt image.

266 CHAPTER 25 Making your LioN prettier
25.1.3 Changing the table view background colors

The Add/Edit scene still looks a bit bland, so you’re going to update it to look a little
more modern (and prettier). Make sure the Add/Edit scene is visible in the story-
board and then click the table view in the Document Outline, or click the table in the
scene. The Attributes Inspector panel will allow you to change the background color
of the table as well as the color of the separator line between the rows. For the separa-
tor, I used the color of the LioN’s mane. To do this, click the drop-down arrows next
to Default below the Separator attribute (figure 25.8), and then click Other at the bot-
tom of the selection box (figure 25.9).

Figure 25.8 Click the drop-down arrows
next to the Default color box to change
the color of the line that separates the
different cells.

Figure 25.9 Click Other to open a new
color box that will allow you to select a
variety of colors.

267Basic fixes
A new color selector panel will open, and there you can choose any color on the spec-
trum—or use the eyedropper to select a color that’s currently visible on the screen.
Click the eyedropper, and a new magnifying circle pops up—this has a small square in
the middle of it.

 Move the circle around until the square is over the dark color of the LioN’s mane
on one of the button images and then click the mouse. You should see the color
under the separator attribute change to the dark brown color; the separator lines in
the table will change to the dark color as well (figure 25.10).

Scroll down the table view’s Attribute panel until you see the Background attribute.
You’re going to select the color in the same way as you did the separator line, but this
time you’ll select the light area under the lion’s nose. This will change the back-
ground color of the table. It’s looking much better now, isn’t it?

25.1.4 Toggling the images based on selection

Create two new image sets called likeItSelected and orNotSelected. Set the Scale Fac-
tor for each one to Single Vector. Next, drag the appropriate files in for each image
set (likeItSelected.pdf and orNotSelected.pdf). You need to change your code to

Figure 25.10 Select the eyedropper tool, which
will open a color circle with a colored square at the
bottom of the box. The square is used to select the
color you want to select.

268 CHAPTER 25 Making your LioN prettier
display these selected images instead of changing the background color of the but-
tons. Open the AddEditViewController file, and find your toggleLike() function.

 Now that you have your images assets stored in the Xcode Assets folder, you can
load the images by name. Add the following code to your toggle function:

func toggleLike() {
 if likeVar == true {
 dislikeButton.setImage(UIImage(named: "orNot"), for: .normal)
 likeButton.setImage(UIImage(named: "likeItSelected"), for:

.normal)
 } else {
 dislikeButton.setImage(UIImage(named: "orNotSelected"), for:

.normal)
 likeButton.setImage(UIImage(named: "likeIt"), for: .normal)
 }
 }

Run the app again, and see that the images toggle for the selected and unselected
states. It looks pretty good, doesn’t it? One thing I would like, though, is for the main
page to show whether you like the item. You’ll do that next.

25.1.5 Setting images on the cells

You can probably figure out the first few steps of getting the images to appear on the
cells. First, create two new image sets named likeItCell and orNotCell. Set each of the
respective Scale Factors to Single Vector. Next, you need to change the cell to show an
image. Open your storyboard, and select the lionCell on the main LioN scene. You
set the cell style to Subtitle back in chapter 18, but in case your cell isn’t set to Subtitle,
here’s how. Make sure you select the cell itself and not the content view—double-
check by looking at the Document Outline for the cell. When the cell is selected, look
at the Attributes Inspector panel, and notice at the top that there are several cell lay-
outs you can choose from. Select the Custom style, and you’ll see that the cell changes
its layout a bit.

 Right under the Style selector, you can select an image. Select the likeItCell image
here, and the happy lion will appear on the cell. Pretty cool, huh? It doesn’t matter
which cell image you select, because you’re going to override it programmatically in
the next step. You need the placeholder image on the cell right now. Your LioN cell
should look like figure 25.11.

Figure 25.11 Change the cell type
to Subtitle, and then set the image to
likeItCell.

269Basic fixes
If you run the app, you’ll see that all the cells are happy lions (likeItCell) because
that’s the image you set for the cell. You need to have the image update based on
whether the user likes the item.

 Let’s think about what you need to do. If the LioN is a like item, then you need the
green, smiling, like lion to show up (likeItCell)—otherwise you want the dislike lion
to appear. Which tool will work best for this? You guessed it: our friend the if state-
ment. You need to add the if statement in several places in your code. Where do you
think those places are?

 If you guessed on first load, on edit, and on add, then you’re correct! If not, don’t
worry, you’re still totally awesome. You need to change the cell image when the LioN
cells first load, and you need to change the image when an item is added or edited.

 Add the following code to the cellForRowAtIndexPath function, above the return
cell line:

if lionData[indexPath.row].like == true {
 cell.imageView?.image = UIImage(named: "likeItCell")
 { else }
 cell.imageView?.image = UIImage(named: "orNotCell")
 }

This should look familiar. You’re checking the LioN object to see if it’s a like (true) or
dislike (false) and then setting the appropriate image. Make sure you use the exact
image literal string that you used when you created your assets, or Xcode won’t be
able to find the images and will throw an error when you run the app. Run the app
now, and make sure the cells and images load correctly.

 Next, you’ll change the add function to reload the cell correctly when it’s added or
edited. Add the following code to the AddItemViewController function inside the if
let bracket:

if lionData[editIndexPath!.row].like == true {
 cell.imageView?.image = UIImage(imageLiteral: "likeItCell")
{ else }
 cell.imageView?.image = UIImage(imageLiteral: "orNotCell")
}

Run the app again, and you’ll see that the lion images appear correctly on the cells for
each lion item—whether the item was added or edited, or if it was reloaded.

25.1.6 Making the MainView scene prettier

You need to make the same type of color changes to the main view scene that you did
for the Add/Edit scene. You’ll change the color of the separator line and the back-
ground. See if you can do it yourself before I walk you through it. The colors will be
easier to select this time because you’ve done it once, and you’re going to use the
same colors.

270 CHAPTER 25 Making your LioN prettier
 Select the table view so the Table View attributes are displayed in the Attributes
Inspector. You should be able to select the separator line color from the drop-down
because it’s a recently used color. You can do the same for the table view background
color, too.

25.1.7 Updating the navigation bars

The navigation bars at the top of each scene will be the same dark brown that’s inside
the lion’s ears. You’ll use white for labels so they stand out from the dark background.
With the main storyboard open, make sure the first Navigation Controller scene is vis-
ible and the Main ViewController is partially visible. Click the Navigation Controller
once so the Document Outline displays the navigation bar (figure 25.12).

Make sure you select the navigation bar in the Document Outline so the Attributes
Inspector shows the right attributes. Click the Bar Tint drop-down in the Attributes
selector, and then select Other at the bottom of the menu option. When the color
selector box opens, click the eyedropper again, but this time select the dark color in
the lion’s ears as the background color. The bar should now turn dark on the Main-
ViewController scene, as shown in figure 25.13.

 With the Navigation Bar attributes still showing, change the Title Color attribute
to white. This is looking better and better, isn’t it? You may notice on the MainView-
Controller scene that the + button is hard to see because it’s blue. You need to
change that to white. Select it on the MainViewController scene so the Attributes

Figure 25.12 Select the navigation bar in
the Document Outline panel so the Attributes
panel displays the correct attributes.

271Adding an icon
Inspector panel displays its attributes. Change the Tint Color to white—now you can
see it better.

 Next, you need to change the navigation bar background color for the AddEdit-
ViewController. It’s easier this time because the dark brown color is available in the
Recently Used Colors drop-down. Select the Navigation Controller between the Main-
ViewController and the AddEditViewController, and, using the Document Outline
panel, select the navigation bar again. Select the dark brown color from the recent
colors under the Bar Tint attribute drop-down. Make sure the title color shows as
white, as well. The Done button on the AddEditViewController also needs to change
to white, so do it the same way you did the + button earlier.

25.2 Adding an icon
Every app is represented by an icon that appears on your iPhone or iPad, which you
tap to launch it. The icon is important—people need to be able to readily recognize
the app. The image properties of such icons are spelled out clearly by Apple, and,
unfortunately, the icon images aren’t handled the same way as the images we’ve been
discussing are. Back in section 1.1.2, you learned that you could either provide the
images in all required sizes or provide one single vector PDF graphic. That doesn’t
apply for icons—you must provide the required sizes for each icon.

 Open the Asset library again in Xcode, and at the top of the list, you should see an
AppIcon placeholder. Click it, and note that the Standard Editor panel shows all the
different sizes of icons that you need to provide. It’s handy that Apple tells you exactly
what sizes to provide, but what a pain to create all those! Thank goodness a) I’ve
already created them so you don’t have to; b) there are plenty of free services out on
the web that allow you to upload a single image, and the scripts will provide a zip file
for you to download all the different sizes required; and c) there are also Photoshop

Figure 25.13 Scroll the Standard Editor Panel so the Navigation
Controller scene and the MainViewController scene are both
partially visible. You need to select the dark color of the lion’s ears.

272 CHAPTER 25 Making your LioN prettier
scripts you can run that create all the required sizes. I chose option c, but you should
choose option a.

 Open the folder where you saved all the icon files, and drag and drop them into
the appropriate icon areas. Each icon file is labeled with the size of the icon so it’s easy
to know which icon files belong in each area. Run the app again; after it loads, click
Hardware > Home to simulate a home button push in the Simulator, or press Com-
mand-Shift-H. Doesn’t that icon look cute on the desktop? I think so.

25.3 Updating the launch scene
The launch image is displayed when the app first launches (big surprise, huh?). Apple
recommends that the launch image look similar to the first scene so it appears that
the app loads more quickly. Some people like to put an image on the scene to pro-
mote their company, their app, or other apps they might have. You’ll stick with
Apple’s best practices and use a launch scene that looks somewhat like the main scene
that loads. The only thing you want to do then is change the background color of the
launch scene that Apple already created for you.

 In the Project Navigator, you’ll see a LaunchScreen.storyboard file. Open it, and
note the title and copyright information at the bottom of the screen. Delete both of
those labels so the scene is completely empty. Now click the empty scene once so the
Attributes Inspector opens for the scene. Change the background color to the same
color as the background of the table views. This will make the app look like it’s load-
ing that much quicker.

25.4 Summary
It’s surprising how much work it takes to make the app attractive, isn’t it? You learned
quite a bit in this chapter, and the app looks great. There are many books about
designing apps, making them look good, and creating a good user experience and
graphics, and they cover these topics in much greater depth than this chapter did.

 You learned the basics well enough that you can experiment with the different
designs. The best way to learn is to try—so keep practicing and you’ll be a master!

 In this chapter, you learned about

 Changing background colors
 Adding images
 Updating the launch screen
 Adding icons

You’ll learn about Auto Layout, stack views, and constraints in the next chapter, so the
app will look good on all different device sizes.

Working with Auto Layout
So far we haven’t focused much on ensuring that apps work across all different
screen sizes, but we will now!

26.1 Changing the layout to work for all screen sizes
It’s important that all of your apps work on the different screen sizes that you’re
building for, or your end users won’t be happy. Apple provides some classes that
make it easy to lay out the scenes so they expand and contract based on the size of
the screen the apps are running on. Stack views are classes that allow you to lay out
the scenes in either rows or columns. If you think about the majority of the apps
you use, most scenes can be divided by imaginary lines into rows and columns.

 Think about stack views like a bookshelf: the bookshelf itself is one stack view,
and each stack of books is like a nested stack view. Figure 26.1 would be considered
five stack views, because the bookshelf is one and each stack of books (horizontal

This chapter covers
 Auto Layout

 Stack views

 Constraints
273

274 CHAPTER 26 Working with Auto Layout
or vertical) is a stack. You can stack books upright so they’re laid out horizontally (as
in a library—the books themselves are vertical, but they’re arranged horizontally on a
shelf), or you can stack them on top of each other so they’re stacked vertically but
the books themselves are lying horizontally. You can do this as many times as you
want on a single shelf, as long as there is plenty of room both horizontally and verti-
cally. You can have the first stack of books lying sideways (so the books are lying on
top of each other) and then you can stack them so they are sitting vertically, as in fig-
ure 26.1.

Stack views provide the same type of functionality, but instead of stacking books,
you’re stacking UI components. You can stack a few components vertically and then a
few horizontally, as long as you have space. The neat thing about stack views is that you
can set different attributes to tell Apple how to scale the components based on the
screen size. You can set the alignment of the items (perpendicular layout), the distri-
bution (along the axis), and the spacing (how far apart the components are), as shown
in figure 26.2.

Stack views work hand-in-hand with Auto Layout, which provides constraints. Constraints
constrain how the different components can change based on varying factors, like
screen size and orientation (landscape or portrait). You can “pin” a component to the
corner of a screen, or you can specify that the component must always be a certain dis-
tance from the margin of the scene. It will be easier to explain if you start making
changes to the LioN app, so you’ll do that now.

Book

Book

B
o
o
k

B
o
o
k

B
o
o
k

B
o
o
k

B
o
o
k

B
o
o
k

B
o
o
k

Book

Book

Book

Wendy’s imaginary bookshelf

B
o
o
k

B
o
o
k

Figure 26.1 Books can be stacked
vertically or horizontally, like stack views.

Distribution

Spacing

Alignment
Book

Book

B
o
o
k

B
o
o
k

B
o
o
k

B
o
o
k

B
o
o
k

B
o
o
k

B
o
o
k

Book

Book

Book

Wendy’s imaginary bookshelf

B
o
o
k

B
o
o
k Figure 26.2 The

StackView class
allows you to specify the
alignment, distribution,
and spacing of the
components and it lets
you nest StackViews
within themselves.

275Changing the layout to work for all screen sizes
26.1.1 Make changes to the AddEditView scene

Open the main storyboard, and make sure the AddEditViewController scene is visi-
ble. The first thing you need to do is make sure the Name and Description fields
shrink and stretch to the size of the table row, regardless of the screen size. You’ll set
some constraints to make this happen. Make sure the Document Outline is visible
(click the square box on the bottom left of the storyboard panel—see figure 26.3),
and then select the lionName text box.

You can set the constraints in the scene or in the Document Outline; I find it easier to
do it in the Document Outline. Again, with the lionName field selected in the Docu-
ment Outline, hold down the Control button and click and drag between the lion-
Name field and Content View (above it). When Content View above the lionName field
is highlighted, let go of the button and the Control button. A black dialog box pops
up, as shown in figure 26.4.

As you can see from the resulting pop-up box, there are many constraints you could
select. Here are some high-level definitions of the different constraints:

 Leading Space to Container Margin—This is the space between the component (in
this case, the name text field) and the containing view that it’s in (in this case,
the content view of the table view cell). This sets the left margin spacing of the
component.

 Trailing Space to Container Margin—This is the space between the component
(again, in this case the name text field) and the right side of the containing

Figure 26.3 Button at the bottom
of the main storyboard panel that
opens the Document Outline

Figure 26.4 Control-click the lionName field, and
drag and drop it to Content View so this dark dialog
box pops up.

276 CHAPTER 26 Working with Auto Layout
view (still the table view cell’s content view). This sets the right margin spacing
of the component.

 Top Space to Container Margin—If I repeat what this does, it might be getting a bit
redundant, don’t you think? This sets the top margin.

 Bottom Space to Container Margin—Okay, can you guess what this one does? It sets
the bottom space.

 Center Horizontally in Container—This will center the component horizontally in
the container. Aren’t you glad I told you that?

 Center Vertically in Container—Your turn to guess what this one does. That’s right;
it centers the component vertically in the container.

 Equal Widths—Sets the component to the same width of the container.
 Equal Heights—Sets the component to the same height as the container.
 Aspect Ratio—Ensures the component has equal width and equal height.

Although these options seem self-explanatory in most cases, I’ve found them to be
tricky at times. That’s in part due to ordering—you can set the container to Equal
Widths as the component, or the component to Equal Widths as the container. It’s a
subtle difference, but it does change the layout. It takes practice to learn to use these
effectively to get the best layouts, but once you’ve mastered them, laying out your apps
is a breeze.

 Come on. I’ll show you how.

LAYING OUT THE TEXT FIELDS

You need to set four constraints for each of the text fields—four for the LioN Name
and four for the Description. You need to set the LioN Name text field’s top margin,
bottom margin, trailing space, and leading space equal to the container’s top, bottom,
trailing, and leading space, respectively. Control-click and drag from the Name text
field to Content View (above it), and select Top Space to Container Margin. Do it
again for each of the other three constraints (figure 26.5).

Notice the small arrow at upper right in the outline view of the Storyboard (at left in
figure 26.6): click it to open a detailed Misplaced Views tab (at right in figure 26.6).

Figure 26.5 Control-click and drag from the
Name text field to Content View, and set the
four constraints for top margin, bottom margin,
leading margin, and trailing margin.

277Changing the layout to work for all screen sizes
Then click the little triangle indicator at right in the Misplaced Views tab. Xcode will
open a new Resolve tab, where you can update the frames. Make sure the Update
Frames option is selected, as shown in figure 26.7, and then click the Fix Misplace-
ment button.

Notice now that the Name text field is the same length as the row. Pretty cool, huh?
The text field will shrink and grow based on the screen size and the rows, and that’s all
you had to do.

 Do the same thing for the Description text field: set the four constraints, and then
update the frames.

Figure 26.6 (Left) Click the small arrow indicator. (Right) In the Misplaced Views tab that opens, click
the small triangle.

Figure 26.7 Select the Update Frames option, and then click Fix
Misplacement to update the size and layout for the component.

278 CHAPTER 26 Working with Auto Layout
SETTING THE ASPECT RATIO FOR THE BUTTONS

The first thing you need to do to the buttons is make sure they don’t stretch too far
one way or the other and end up skewed. Nobody likes a skewed LioN. You need to set
the aspect ratio to 1, meaning it should be as equally tall and wide. Select the Like It
button, and then click the Pin button at the bottom of the Standard Editor (the third
one from the left). A new dialog box will open. Select the Aspect Ratio check box, and
then click Add 1 Constraint at the bottom, as shown in figure 26.8.

The Like It button on the storyboard likely has some red lines across it in several places.
This is okay—it’s Xcode warning you that you haven’t set enough constraints on the but-
ton yet so the layout won’t look exactly right. You’ll fix it, though; never fear. Check the
Document Outline panel (with the Like button still selected), and click down so the
new constraint is visible (under the Like button). If the constraint doesn’t say aspect = 1
(figure 26.9), then the original button wasn’t exactly square. Click the Aspect constraint
in the Document Outline, and notice that the Attribute panel changes to reflect the
aspect constraint. Change the Multiplier field so it’s equal to 1 (figure 26.10).

 Great job! Now do the exact same thing for the Or Not button.

Figure 26.8 Click the Pin button, and then add
the Aspect Ratio constraint to the Like button.

Figure 26.9 The aspect for the Like and
Dislike buttons should be 1.

279Changing the layout to work for all screen sizes
CREATING STACK VIEWS
Next, you need to lay out the buttons relative to each other and relative to the rest of
the view. Click the Like It button in the storyboard; then, while holding down the
Command key, click the other button so they’re both highlighted. In the menu, click
Editor > Embed In > Stack View. The two LioN buttons may have grown incredibly
large now. That’s okay; you can fix it. You need to set the constraints of the stack view
so that its layout is updated relative to the row and surrounding views. Specifically, you
need to set the stack view’s top and bottom margins relative to the content view’s top
and bottom margins. I bet you can do this without reading about it, but I’m making
some money by writing this book, so I feel it’s my duty to tell you how.

 In the Document Outline (left panel), select the new Stack View component; with
the Control button held down, drag to Content View. When the dialog pops up (fig-
ure 26.11), select the Bottom Space to Container Margin setting. Do this again for the
top margin.

You may notice that the size of the buttons didn’t change. Don’t worry; you’ll change
that in a moment. You need to embed two more stack views in the first stack view, one

Figure 26.10 Make sure the aspect ratio for the
button is set to 1 by clicking the constraint in the
Document Outline and changing Multiplier to 1 in
the Attributes Inspector.

Figure 26.11 Control-drag from Stack
View to Content View to display this dialog.
Set each of the top four constraints by
clicking them (you’ll have to Option-click
and drag for each setting).

280 CHAPTER 26 Working with Auto Layout
for each button. You can think of these two new stack views as sections on your book-
shelf. With the first stack view selected in the Document Outline, click the Stack but-
ton on the bottom of the Standard Editor (the first button). You should see another
stack view appear in the Outline. Click it once more so you see a total of three stack
views in the Document Outline.

 You may have noticed that one of the new stack views look horizontal instead of
vertical. Again, you can fix this. With the stack view selected, change the Axis in the
Attributes Inspector to Vertical (instead of Horizontal), as shown in figure 26.12.

Do this for all three stack views if they aren’t already vertical. Next, you need to rear-
range the stack views so they’re stacked correctly (see what I did there?). You can eas-
ily drag and drop the views in the Outline, so make sure you have two stack views lined
up equally under the topmost stack view. The views will want to nest themselves in
each other, but you need to pull them out so two stack views are nested equally under
the top stack view. Once you have that set up, drag and drop the Like It button under
the second stack view and drag and drop the Or Not button under the second stack
view, as shown in figure 26.13.

Next you’ll fix how large the buttons look compared to the row. Open the stack view
Constraints for the top and bottom margins in the Document Outline, and check the
Attributes Inspector to make sure they look right. Figure 26.14 shows the Constraints
for the main Stack View—each Stack View will get its own set of Constraints in the
Document Outline.

Figure 26.12 Select a stack view in the Document
Outline to display the Attributes Inspector panel.
You can change the Axis field this way.

Figure 26.13 Align the stack views so two are nested
equally under the top one. Drop the Like button under
the first nested stack view and the Dislike button under
the second nested view.

281Changing the layout to work for all screen sizes
My Attributes Inspector shows something crazy: the Constant attribute is 443. This is
telling Xcode that I want the buttons to be 443 points larger than the content view. I
don’t want that—I want the buttons to be the same size—so change the Constant attri-
bute to 0. Do this for both the top and bottom constraint, and the buttons should get
back to a normal size.

 This is looking better, but the two buttons are huddled together at the left side of
the row, and you want them spread out equally. Create the leading and trailing con-
straints again for the topmost stack view. Control-click and drag from the topmost
Stack View to Content View, and select the Leading Space to Container Margin option,
as shown in figure 26.15.

Do it again, but this time, select Trailing Space to Container Margin. This will ensure
that the Or Not button stays to the right and the Like It button to the left. This looks
better, but I’d rather have the buttons spaced a little more. Select the Trailing Space
to Container Margin constraint in the Document Outline (figure 26.16), and change
the Constant value to 25 (figure 26.17).

 This will push the button out 25 points from the margin. Do the same thing for the
leading margin. You’re buttons may not look quite right, because you didn’t update
the frame yet. With the topmost stack view selected, click the Resolve Auto Layout
Issues button (at the bottom of the Standard Editor, the rightmost button), and click
Update Frames for the Selected View. This should update the frame so the buttons are
more equally spaced.

Figure 26.14 In the Document Outline, click the arrow
next to Constraints that is at the same indent level as
the first Stack View.

Figure 26.15 Control-click the top Stack
View, and drag to Content View, right above it.
This dialog box will open when you release
your mouse button.

282 CHAPTER 26 Working with Auto Layout
26.1.2 Changing the color of cells on the main scene

The final layout changes you need to make for the app are on the main scene, so the
font and the colors look better. Make sure the LioN scene is visible in the storyboard.
Click lionCell so Content View is visible beneath it, and then expand Content View so
the two text labels and the image are visible (see figure 26.18).

 Let’s start by making the text look better. Back in the storyboard, select the Title
label, open the Attributes Inspector, and make sure Font is set to Helvetica Neue 17.0
and Color is set to black, as shown in figure 26.19.

 Next, select the Description label. Set Font to System 13.0 and Color to Dark Gray
Color, as shown in figure 26.20.

Figure 26.16 Select the
trailingMargin constraint.

Figure 26.17 In the Attributes Inspector,
change the Constant value for Trailing
Margin to 25.

283Summary
26.2 Summary
Understanding topics like Auto Layout, constraints, and stack views will be key for you
as you design your own apps in the future. This chapter was a high-level overview of
some of the things you can do with them. The best way to learn is to try. I don’t find

Figure 26.18 Expand lionCell and Content
View so the Title label, the Subtitle label,
and the likeItCell image are visible.

Figure 26.19 Set the color for the Title label to
black and the font to Helvetica Neue 17.0.

Figure 26.20 Set Color for the Description label
to Dark Gray Color and Font to System 13.0.

284 CHAPTER 26 Working with Auto Layout
these topics that intuitive, so it took me a while to figure things out, and it may take
you a while, too. Be patient, though, and keep experimenting. It will be worth the
effort when you create an awesome app!

 You’re going to add search functionality in the next chapter so you can find the
LioNs that you’ve added.

Search your LioNs
Can you believe how far you’ve come in this book? You’re almost finished with the
LioN app. It would be really nice if you allowed your users to search for the LioNs
they’ve added—otherwise they’ll have to scroll through everything. Let’s see how to
add that feature!

27.1 Adding the search functionality
The first thing you need to do is add the search bar to the LioN scene. Search the
Object Library for search, and two different objects will be returned. The first is
Search Bar, which is just the visual component, and the second is Search Bar and
Search Display Controller. You want the second component, because you can use
the controller to capture and manage users’ searches. Grab the Search Bar and
Search Display Controller, and drop it at the very top of the table view on the Main-
ViewController scene, above the words Prototype Cells. It should automatically take
up the entire scene horizontally, as shown in figure 27.1.

This chapter covers
 Adding search functionality

 Closures

 Cleaning up the code
285

286 CHAPTER 27 Search your LioNs
Now you need to implement all the functions to make the search bar useable. Think-
ing back to what you’ve learned in this book, how do you think the search bar will be
added to MainViewController so you can use some of the functions the search bar
provides? Think back to chapter 22…protocols and delegates! Right! You’ll start by
having your MainViewController conform to the UISearchControllerDelegate pro-
tocol. Change the MainViewController class definition to conform to the UISearch-
ControllerDelegate protocol and the UISearchBarDelegate so it looks like this:

class MainViewController: UITableViewController,
AddEditViewControllerDelegate, UISearchControllerDelegate,

➥ UISearchBarDelegate {

Next you need to create a variable for the Search Controller, so add this line at the top
of the class with your other class-level definitions:

var resultSearchController = UISearchController(searchResultsController: nil)

You learned about ViewControllers in chapter 15, but to refresh your memory: they
control the flow of the app based in part on the users’ interactions on the view they con-
trol. So the MainViewController is the controller for the LioN scene, and the UISearch-
Controller is the controller in the same way for the search bar. It controls what happens
when the user taps inside the search bar, types a search term, clicks the Search button,
and much more.

 What you really want to do is have the table view update to just the LioN objects
that have the letter or series of letters the user is typing in the search bar. If the user
types a T, the table view should immediately limit the LioN objects in the table to ones
that contain the letter T in the title. Then, if the user types the letter H, again the
table view should limit the objects shown to ones that contain TH in the title. The user
doesn’t have to tap the Search button when they want to search—the app should
respond to the letters tapped and filter the results based on their search.

Figure 27.1 The Search Bar and Search Display Controller should be dropped
directly above the words Prototype Cells. The component will resize itself to
span the entire scene horizontally.

287Adding the search functionality
 What you need, then, is some way to “listen” for events that happen to the search
bar. Guess what? You can. Apple made a way to do this easily—you just need to make
sure your class conforms to the UISearchResultsUpdating protocol. First add UISearch-
ResultsUpdating to the class definition so it looks like this:

class MainViewController: UITableViewController,
AddEditViewControllerDelegate, UISearchControllerDelegate,

➥ UISearchBarDelegate, UISearchResultsUpdating {

Now you can add the following function to capture every time the search bar becomes
the first responder (you learned about first responders in section 13.4.3) or has focus:

func updateSearchResults(for searchController: UISearchController){}

Add a print line in the function so you can see when it’s called. It should look like this:

print ("update search results called")

Run the app, and see what happens. Nothing?! Why is that? You made the class itself
conform to the delegates, but you didn’t tell the resultSearchController that the
class would be its delegate. You need to add the following two lines to the viewDid-
Load() function of the MainViewController:

resultSearchController.searchResultsUpdater = self
resultSearchController.searchBar.delegate = self

Now the MainViewController is the delegate for the resultSearchController,
searchResultsUpdates, and searchBar. You have to tie in one last piece for this to
work, though: the table view needs to know that the searchBar is connected to it. Add
the following line just under the lines you added earlier:

tableView.tableHeaderView = resultSearchController.searchBar

Add this line next:

self.definesPresentationContext = true

This line basically says, “Let the main ViewController be the ‘king’ of the views,”
meaning it’s the primary presentation layer.

 Run the app again, and notice that every time you tap the search bar or type a let-
ter in it, a new line is printed out to the console. This means it’s working as expected,
and you can respond to those actions! Pretty cool, huh?

288 CHAPTER 27 Search your LioNs
27.2 Filtering LioNs based on user input
To filter the LioN data, you’ll create a new empty array and add LioN objects to
that array if they match the letters the user typed in the search bar. Figure 27.2
shows the flow of events from top to bottom when a user initiates a search by tap-
ping the search bar:

1 The Table View uses the original lionData array as the data source, which
means that by default all LioN objects will appear in the table view.

2 When the user taps the search bar…
3 …the Search Controller sets itself to active, meaning the search bar has focus,

and then…
4 …the Search Controller calls the function that updates the search results.
5 Based on all of these events, you can then call a function to filter the LioN

objects based on the search text.
6 Once filtered, you need to set the table view’s data source to the filtered LioN

objects so only those that matched the search will show up.
7 When the user cancels the search…
8 …the Search Controller sets the active state to false, and…
9 …you need to set the table view’s data source property back to the original

lionData array so all LioN objects are shown.

Let’s think about what you already have in place so you can figure out where to go
from here. The table view data source is already set to all LioN objects, so step 1 is
complete. Users can tap the search bar by themselves, so nothing to do there—step 2
is complete. The controller sets itself to active when the user taps the search bar, so
nothing to do there either—step 3 is complete. You’ve already seen that the results-
updating function is called every time you interact with the search bar, so you can

Table view data source

User taps into the search bar

Search controller is trueactive

UISearchResultsUpdating fires

Call the filter function

Set the table view data source

User cancels the search

Search controller is falseactive

Set the table view data source

All objects

array

Filtered

objects

array

All objects

array
Figure 27.2 Flow of events when
a user taps the search bar

289Filtering LioNs based on user input
count step 4 as complete, too. Step 5: you need to filter the LioN objects based on
what the user types in the search bar. Nope—haven’t done that yet. Let’s get to it!

27.2.1 Creating the filter function

You need to create a new function that will be called every time the updateSearch-
Results function is called. Add the following code to the MainViewController:

func filterLioNsforSearchText(searchedText: String){}

You can tell by looking at the function that it takes a string as an argument. This
means when you call this function, you need to pass a string in, and the function will
filter the LioN array based on the string that’s passed. Where do you think the string
comes from? I sure hope you answered the search bar, because it’s the string the user
typed in! You’ll call this new function and pass in the search string. Add the following
line of code in the updateSearchResults function:

filterLioNsforSearchText(searchedText: searchController.searchBar.text!)

Next you’ll add another print line so you can see how the flow of the app works. Add
the following line of code in the filterLioNforSearchText function:

print(searchedText)

This will print the value of whatever the user typed in the search bar. Run the app, and
see what happens. Notice that the first time you run it, the “update search results
called” line prints, but nothing prints after that. Great—the user hasn’t had a chance
to type in the search bar yet, so the app is working as expected. Now, type a letter:
you’ll see it appear in the console. Type another one—it appears as well. You’re suc-
cessfully capturing the search text from the search bar, and you need to filter the array
based on that search text.

27.2.2 Filtering the array using a closure

First of all, you need to create a new array that will hold the results of your search. Add
the following line at the top of the MainViewController with the other variables:

var searchLionData : [Lion] = []

Good. Now you have somewhere to store the LioN objects that match the search criteria.
Swift arrays have a method called filter() that will work just fine! Get ready, though—
the filter() method doesn’t look like anything you’ve seen before. You’ll start adding
the filter() method to the filter function you created so you can see what I’m talk-
ing about. Add the following code to the filterLioNsforSearchText function:

self.searchLionData = self.lionData.filter({})

290 CHAPTER 27 Search your LioNs
Given what you know now about parameters, what can you infer from this? It looks
like you’re passing in a function or a block of code as a parameter to the filter()
call, doesn’t it? That’s exactly what this is doing. It’s called a closure, and it looks like
this (I’m only showing the filter part, to demonstrate the closure statement):

filter({(parameter named passed in: parameter type passed in) -> return type in
 Some statements
 Return statement
})

In your case, it will look like this:

filter({(lion:Lion) -> Bool in
 evaluation statements
return (true or false)
})

The evaluation statements will evaluate whether the search text appears in the LioN
name, and then the closure will return the Boolean true (if the text did appear) or
false (if it didn’t appear). The in at the end of the first line lets you know that you’re
looking through the entire lionData array—in other words, you’re iterating through
each LioN to evaluate the search string against the LioN name. Now add the entire
function so you can see it:

func filterLioNsforSearchText(searchedText: String) {
 print(searchedText)
 self.searchLionData = self.lionData.filter({(lion: Lion) -> Bool in
 let stringMatch = lion.lionName.range(of: searchedText)
 return stringMatch != nil
 })
 }

To recap, in this code you do the following:

1 Set the new SearchLionData array equal to the lionData array (self.search-
LionData = self.lionData).

2 Add the filter() method to the lionData, with a closure expression as the
parameter (as indicated by the opening and closing curly brackets, { }).

3 The closure expression takes the lion object from the lionData array as a
parameter (lion:Lion)…

4 …and returns a Boolean (-> Bool).
5 The keyword in is the start of a closure (the next two lines). Closures are a more

advanced topic than is suitable for this book, but at a high level, they’re blocks
of code that can be passed around..

6 You create a string called stringMatch that checks to see whether the lionName
of the lion passed in (lion.lionName) includes the searched text (searched-
Text) in any range of its name (rangeOfString).

7 If searchedText was found in lionName, true is returned from the closure, and
the lion object that was passed in will be added to the searchLionData array. If

291Filtering LioNs based on user input
the searchedText didn’t match the lion name, the stringMatch object will be
nil, so false will be returned, and the lion object won’t be added to the
searchLionData array.

You’ve successfully filtered the array based on the search term, but you can’t see the
results yet. If you look back to figure 27.2, you’ve now completed steps 1–5, but you
need to complete step 6 before you can see what was filtered.

27.2.3 Changing the table view data source

When the user taps in the search bar to search on text, you want the table view to only
show the rows that have that text in the name of the LioN object. This means you
need to change the table view’s data source property to the searchLionData array
instead of the lionData array. The best place to do this in the cellForRowAtIndex-
Path function, so you’re going to add some code there to change the data source
property. Why is this is the best place? Because I said so. No, really, cellForRowAt-
IndexPath is grabbing data from your array, so if you want to display a different array,
you can do it here easily.

 How do you think you can find out whether the search is active? (See what I did
there? I threw in the word active to give you a hint.) That’s right! You can check the
resultSearchController active property to see if it’s set to true or false.

 At the top (but inside) your cellForRowAtIndexPath function, add a new variable
called lion of type Lion:

var lion : Lion

Just under that new line, add an if statement to check the active parameter of the
resultSearchController. If it’s active (meaning the searchBar has focus), set the lion
variable equal to the right searchLionData object:

if self.resultSearchController.isActive {
 lion = searchLionData[indexPath.row]
}

If the resultSearchController isn’t active, set the lion object equal to the appropri-
ate lionData object:

else {
 lion = lionData[indexPath.row]
}

Now you can change the rest of the code in the function to use the lion object instead
of the lionData[indexPath.row] object, because this will be correct only when the
searchBar doesn’t have focus. If you change everything, your full function should
look like this:

override func tableView(_ tableView: UITableView, cellForRowAt indexPath:

➥ IndexPath) -> UITableViewCell {

292 CHAPTER 27 Search your LioNs
 var lion : Lion
 if self.resultSearchController.isActive {
 lion = searchLionData[indexPath.row]
 { else }
 lion = lionData[indexPath.row]
 }
 let cell = tableView.dequeueReusableCell(withIdentifier:

➥ "lionCell", for: indexPath);

 cell.textLabel?.text = lion.lionName
 cell.detailTextLabel?.text = lion.lionDescription
 if lion.like == true {
 cell.imageView?.image = UIImage(named: "likeItCell")
 }else{
 cell.imageView?.image = UIImage(named: "orNotCell")
 }
 return cell
 }

Now you need to return the right number of rows in the numberOfRowsInSection
function:

override func tableView(_ tableView: UITableView, numberOfRowsInSection

➥ section: Int) -> Int {
 if self.resultSearchController.isActive {
 return searchLionData.count
 { else }
 return lionData.count
 }
 }

Next, let’s look at your segue function. When the user taps a row to edit that cell, that
lion object is passed into the AddEditViewController. If your table view data source
is pointing to the wrong array here, you could pass the wrong lion object. You’ll fix
that now, too. Change the segue code for the Edit segue so it looks like this:

else if segue.identifier == "Edit" {
 let navigationController = segue.destination as!

➥ UINavigationController
 let controller = navigationController.topViewController as!

➥ AddEditViewController
 if let indexPath = tableView.indexPath(for: sender as!

➥ UITableViewCell) {
 if resultSearchController.isActive {
 controller.lionToEdit = searchLionData[indexPath.row]
 editIndexPath = indexPath as NSIndexPath?
 { else }
 controller.lionToEdit = lionData[indexPath.row]
 editIndexPath = indexPath as NSIndexPath?
 }
 }
 controller.delegate = self
 }
}

293Filtering LioNs based on user input
The last thing you need to do to make sure your table view is updated appropriately
when the searchBar has focus is to reload the table data. The best place to do this is in
the updateSearchResults function that’s called each time the search bar gets focus.
Add the following line just under the print line:

self.tableView.reloadData()

Run the app, and notice that as soon as you tap in the search bar, the existing table
view cells disappear. This makes sense because you’re setting the data source to the
search array, which doesn’t have anything in it yet. Once you search on text that exists
in a lion name field, you’ll see the cells appear. Pretty cool, huh?

 One thing I don’t like right now is that when you tap in the search bar field, the
table view turns a greyish color in the background. I’d rather it stayed nice and bright,
wouldn’t you? Add the following line to the viewDidLoad function:

resultSearchController.dimsBackgroundDuringPresentation = false

That looks much better, doesn’t it?
 You may have noticed that the search field is case-sensitive, meaning you have to

type the right case in to get a search match. If you search on T, you don’t get any
results back; but if you search on t, you do. That isn’t a very nice experience for your
users, so you’ll fix that, too. Go back to the filter Lions function (filterLioNs-
forSearchText) that you wrote, and change the search string line to this:

let stringMatch = lion.lionName.uppercased().range(of:

➥ searchedText.uppercased())

This changes the lion name text to all uppercase (capital) letters and compares it to
the searched text in all uppercase. Now the user can type in lowercase or uppercase
and still get search results.

 You may be wondering when you’ll get around to steps 7, 8, and 9 from figure 27.2.
You already changed the data source back to the main lion array in the if statement
in the cellForRowAtIndexPath function. You finished the steps without knowing it!

27.2.4 Polishing the app

If you start testing the app by entering search terms, clicking a cell, and then returning
to the main view, you’ll notice that your search stays active. I don’t like this functional-
ity. I want the table view to reset to the lionData array when I return to the mainView.
Let’s see how to add the following new function to your code to reset the search bar
when you return from the AddEditViewController:

func resetSearchBar() {
 resultSearchController.isActive = false
 resultSearchController.searchBar.text = ""
}

294 CHAPTER 27 Search your LioNs
This code sets the active property of the resultSearchController to false and
clears the text from the search bar. Make sure to set the search bar text to "" and not
" " (no space between the quotes), or you’ll have a space in your search bar that will
drive you crazy (I’ve never done this—really—a friend told me it happened to her
one time).

 Where do you think you should call the new resetSearchBar() function from? I’ll
give you a hint—you want to call it from two places:

 When the user finishes editing an item (at the end of didFinishEditingItem)
 When the user cancels out of editing an item (addItemViewControllerDid-

Cancel)

Add the resetSearchBar() call at the end of each of these functions, and you should
be set on the Search Bar functionality.

27.3 Searching other fields
Thinking about your app users, wouldn’t it be nice if they could search both the name
and description fields instead of just the name field? You can do that pretty easily, so
you’ll add that functionality next.

 The search bar changes the scope of the search, meaning which fields you want to
search. Add the following line in the viewDidLoad() function:

resultSearchController.searchBar.scopeButtonTitles = ["LioN: Name",

➥ "Description"]

As you can see, you’re adding two strings into the scopeButtonTitles property.
Run the app, and you can see the two new scope buttons once you tap in the search
field. That was easy! Now you need to change your filter function based on the
scope. The scopeButtonTitles property is expecting an array of strings, which
means the strings themselves will be part of an index. Change the filter function so
it looks like this:

func filterLioNsforSearchText(searchedText: String) {
 self.searchLionData = self.lionData.filter({(lion: Lion) -> Bool in
 if resultSearchController.searchBar.selectedScopeButtonIndex == 0 {
 let stringMatch = lion.lionName.uppercased().range(of:

➥ searchedText.uppercased())
 return stringMatch != nil
 { else }
 let stringMatch = lion.lionDescription.uppercased().range(of:

searchedText.uppercased())
 return stringMatch != nil
 }
 })
 }

295Where do you go from here?
The last thing you need to add is a way to capture the new index when the user taps
the different scope buttons. Add this new function:

func searchBar(_ searchBar: UISearchBar, selectedScopeButtonIndexDidChange

➥ selectedScope: Int) {
 updateSearchResults(for: resultSearchController)
}

This function is called each time the user changes the scope of the search, and the
function in turn calls the updateSearchResults function. Run the app, and you can
search both the Lion Name and Lion Description fields. Awesome!

27.4 Summary
Can you believe it? You created the LioN app all by yourself. The only differences
between the version you created and the version in the App Store are

 The version in the App Store includes a Notes field, which the user can add,
edit, and search on.

 The App Store version includes ads that display to the user.

You now have all the basic tools you need to create an app. I challenge you to add the
Notes field yourself—you can absolutely do it. Here are a few hints to get you started:

 Use a UITextView instead of a UITextField.
 Update the LioN object definition—add the lionNotes to the object, and

update the encode and decode functions
 You’ll need to delete the old version of the LioN app from the Simulator and

your iPhone before you run the version with the notes. Otherwise the decode
function will look for a Notes field that doesn’t exist.

I hope you enjoyed reading this book as much as I enjoyed writing it! Hopefully you
realize now that programming isn’t some mysterious science that only some people
can learn—it’s for everyone.

27.5 Where do you go from here?
As I’ve said before, you have all the basic tools you need to program. You can watch
tutorials online, search for subjects you want to know more about, and join a local pro-
gramming club to keep learning. I’m already working on the follow-up book to this
one, which will teach you the next level of programming—I hope you can wait! The
next book will teach you about the following:

 Categories—Adding categories to the LioN app (like a Beer category, a Wine cat-
egory, and a Household category—for my toothpaste)

 Photos—Taking pictures and saving them to a LioN object; working with the
Camera framework

296 CHAPTER 27 Search your LioNs
 iCloud—Syncing the data to the cloud so it will be available across all your
devices

 MapKit—Tagging locations on the map for the LioN objects so you can save the
location (think restaurants and shops)

And much more!
 Thank you again for reading this far. If you really did read this far, drop me a note

on Twitter, Facebook, or the Manning Author Forum (which you can access at
www.manning.com/books/anyone-can-create-an-app) to let me know your thoughts.
(I don’t think people even read the Summary, so I want to know if you read this far!)

http://www.manning.com/books/anyone-can-create-an-app

appendix A
Installing Xcode

and Apple developer
registration

This appendix explains how to download and install Xcode, your primary iPhone
and iPad development tool. It also explains how to register for the Apple Developer
Program, which is a requirement for developing apps for iPhones and iPads.

A.1 Downloading and installing Xcode
You can download the latest version of Xcode from the App Store on your Mac.
Open the Store, search for Xcode, and there should be a free download in the top
spot. If you’re new to Macs and you don’t know where the App Store icon is, you
can find it easily using Spotlight Search. Press the Command key (⌘) and the space-
bar at the same time, and a search window will appear, as shown in figure A.1.

Figure A.1 Spotlight Search—press Command (⌘) and spacebar to launch it.
297

298 APPENDIX A Installing Xcode and Apple developer registration
Now begin typing what you’re looking for. In this case, you want to search for the App
Store, so type app and it should be the first item to appear in the search results (shown
on the left side of figure A.2). Once the App Store launches, search for Xcode (results
shown at the bottom of figure A.2) and start your download.

Sit back or have a glass of wine now, because the download size is over 2.4 GB, so it takes
quite a while. Once it’s downloaded, go ahead and install it. It’s easiest to accept the
default settings, but read through them and decide if you want to change something.

 If you have an older computer that has Xcode already installed, make sure it’s at
least version 8 so that the basic features are similar to the screen shots and features
depicted in this book. It’s okay to have a version that is newer than 8—the screens may
look slightly different, but the main features and functions should still be okay.

 Next you’ll need to register to be part of the Apple Developer Program.

A.2 Apple requirements for iPhone and iPad development
The Apple Developer Program is like your driver’s license for Apple development—
you have to have it to develop for iPhones and iPads. You have two options for this:

■ You can register for a free account, and this will let you simulate your applica-
tions on your Mac and install them only on your phone.

■ You can register for the paid license ($99) which will allow you to install your appli-
cations on your iPhone and submit them to the App Store when you’re ready.

Figure A.2 The App Store should be the top result when
you start typing app (top left); Xcode search results appear
(bottom left).

299Apple requirements for iPhone and iPad development
It’s up to you to decide which one you want to register for—if you just want to learn
programming, then the free license is for you. The free license will let you program
your apps and see them running on your Mac and your iPhone, but you can’t submit
them to the App Store. If you know you want to program and put the apps on the
Store, you will need the $99 license. The license is good for one year, so you’ll need to
pay each year if you choose this option. You learn to run your apps on the Mac using
the Simulator. Appendix B will help you install them on your phone.

 You have to be part of the program (paid or free) in order to develop iOS apps.
You can always start with the free account and then upgrade in the future if you want,
but you can’t “return” your paid $99 membership. I suggest you start with the free ver-
sion and then upgrade when you’re ready. Consider the Apple Development Program
registration as a membership card into the cool kids’ club. Registering for the mem-
bership isn’t hard. Go to https://developer.apple.com/programs/ios and make sure
you select the iOS Developer Program. There are other programs available that you
don’t need, such as Mac and Safari development. You’ll have the choice to enroll as an
individual or a company/organization. The easiest thing is to register as an individual
for now, even if you think you may want to start a company in the future.

 You’ll need an Apple ID to register—and you should have one if you already have
an iPhone, iPad, or Mac. You can use the same Apple ID here without a problem. If
you don’t already have one, you’ll need to create one now:

■ Enter your credit card information, if required.
■ Select the program (remember, select the iOS Developer Program, not the

macOS Program).
■ Review and submit your information.
■ Agree to the licenses.
■ Purchase.
■ Activate your program.

Can you believe it? You’re now part of the Apple Developer Program—your first step.
I hope you’re excited. I know I was!

https://developer.apple.com/programs/ios

appendix B
Running the app

on your device

Do you want to see what your app looks like on your iPhone or iPad? Great—you’re
definitely in the right place. The first thing to do is open Xcode Preferences and go
to the Account tab. Sign in with your Apple ID (use the + button on the bottom left
of the window). Once you sign in, Apple will retrieve your associated developer
account(s) and display them on the right pane, as shown in figure B.1.

If you signed up for a paid developer account, you’ll see that you are an agent for that
team; if not, you’ll see that you have a free account. Click the team name for which
you are an agent (the paid team) and then click the View Details button to see the
list of what you can create apps for, as shown in figure B.2.

 Click the Create button for the iOS Development identity and then click Done.
Although you can’t tell, Apple has just done some magic in the background. Close
the Preferences window and go back to the main Xcode window now. Open the
Project Navigator (the leftmost panel, first button) so your project files are visible.
Now click the very first object in that group (for me, it’s the LioN app).

Figure B.1 Adding your account information into the Xcode
Preferences > Account panel will show you which development
teams are associated to your Apple ID.
300

301
The General tab for your Project will now show in the Standard Editor (the center
pane). The Bundle Identifier should look familiar—you entered this into the Project
detail pane when you first created your project. If your team name isn’t already
selected in the Team drop-down, select it. Xcode will now show an error code that
states that no provisioning profiles were found and will display a Fix Issues button, as
shown in figure B.3. Click that.

As you soon as you click the Fix Issues button, Xcode communicates with Apple and
then displays another message stating that you must have a device registered with your
team. In other words, Apple wants to know which iPhone or iPad you’ll be using. Go
ahead and connect your device to your Mac. iTunes and iPhoto will most likely open
to sync your device to your computer, but you can ignore those for now.

 In Xcode, the schema selector displays all the Simulator devices that are available
for to test the app on, as shown in figure B.4.

Figure B.2 Clicking the View Details button for your paid account will show you
the Signing Identities you can create apps for.

Figure B.3 The General tab of your project allows you to select the team profile in
the drop-down box.

302 APPENDIX B Running the app on your device
Select your device from the drop-down in the schema. In figure B.5, I selected my
iPhone—which happens to have the name Wonderwoman (I’m a fan, aren’t you?).

Click the Fix Issue button again, and the error message in Xcode should go away. Now
run the app again in Xcode, making sure your device is unlocked, and the files should
be installed on your device so you can see your app run.

 If you get an error message that says you cannot run your app and the reason is
“Security,” don’t despair—you can fix that! On your device, tap the app that you just
installed (in my case, I just installed the LioN app to test it), and a new dialog box will
open asking whether you want to allow the app to run since it’s written by an
untrusted developer (can you believe Apple doesn’t trust you yet?). It’s okay—you’re
going to fix this.

 On your device, open the Settings app and tap General. Scroll nearly to the bot-
tom and you’ll see an option for Profiles and Device Management. When you tap this,
you should see a screen that has your Apple ID under the Developer App section. Tap
your Apple ID and a new screen will open giving you the option to tap the “Trust
<your developer account>” message. Tap that and you’ll receive another message ask-
ing if you want to allow any apps from this developer account to be run on your
phone. Tap Trust and then rerun your app from Xcode.

 Behold! Your app is now running on your device so you can show all your family
and friends just how cool you are! I can remember how excited I was the first time I
ran one of my very own apps on my iPhone. It didn’t do much but I was proud of it—
and you should be too!

Figure B.4 The schema selector shows all the devices you
can run your app on—some are Simulators, like this iPhone 5.

Figure B.5 Select your device name from the drop-
down, and the icon will change to the appropriate
device—an iPhone or iPad.

index
Symbols

? (optionals) 195–196
. (period) character 56
... (ellipses) 49
[] (square brackets) 105
{ } (curly brackets) 66–67
// character 59
\ (backslash key) 85
&& operator 85–86
+ button, LioN app 204–206
| | operator 84–85

A

Account tab, Xcode 300
Add() function 214
AddEdit controller 237–238, 240
AddEdit scene pop-up 230
AddEditView scene

creating stack views 279–281
laying out text fields 276–277
LioN app 275–281
setting aspect ratio for buttons 278

AddEditViewController class
adding 214–215
overview 221–223, 233

AddEditViewController scene 212–224
adding new LioNs 217–224

dismissing keyboard on user tap
222–224

prohibiting cell selection 219
setting keyboard behaviors 220–222

creating detail views 212–217
adding new AddEditViewController

class 214–215

adding new TableViewController 213–214
checkpoints 216–217
connecting cancel buttons to functions 216
connecting done buttons to functions 216

AddEditViewControllerDelegate 227, 229, 235,
245

AddEditViewControllers
passing LioN objects to 241–243
setting up to accept LioN objects 237

addItem() function 206–207, 209, 232
AddItemViewController() function 269
addNew() function 226
AddressBook framework 72
and (&&) operator 85–86
app development, iPhone and iPad 3–13

developing vs. programming 4–5
example apps 6
learning 6–9

key concepts 7
pseudocode 8–9
syntax 7–8

online resources 12
programming languages 5
requirements for 9–12

Macs 9–11
Xcode 11

terminology 4
App Store icon 297
app thinning 263
AppDelegate.swift file 32
appearance 270–271

adding icons 271–272
adding like and dislike images 263–265
changing table view background colors

266–267
creating two sections 261–262
303

INDEX304
appearance (continued)
LioN app 260
making MainView scene prettier 269–270
setting images on cells 268–269
toggling images based on selection 267–268
updating launch scene 272
updating navigation bars 270–271

append() function 106, 207
Apple Developer Member Center 12
Apple Developer Program

overview 9
registration 298–299

apps
naming 111
running 300–302

archiver 257
archiving 165
arrays 104–106

adding objects to 231–234
filtering using closures 289–291
of dummy data, creating 181
wiring to table view 181–182

as! keyword 197–199
Aspect Ratio check box 278
Assistant Editor button, Xcode 37
Attributes Inspector panel, Xcode 49
Auto Layout 273–284

changing layout for cells on main scene
282–284

making changes to AddEditView scene
275–281
creating stack views 279–281
laying out text fields 276–277
setting aspect ratio for buttons 278

auto-complete function, Xcode 209
auto-generation 32
automagically 60
Availability line, Quick Help panel 57
AVKit framework 72

B

background colors, changing 266–267
backslash key 85
Bar Button Item 121, 204, 213
Bar Tint drop-down, Attributes selector 270
base class 26, 126
Bottom Layout Guide item 140
buttonClick 56
buttons 53–57

adding + button to view 204–206
changing Done button properties 233–234
code completion 55–56
creating actions 55
creating outlets 54

front end 56–57
Hello Button app

adding to storyboard 40
wiring 42–44

How Many Fingers app, wiring 100–103
setting aspect ratio for, LioN app 278
StoryboardExample app, linking Cancel button

back to first scene 122
Textbox app

adding to view 63–64
wiring 65

C

camel case 113
cancel buttons, connecting to functions 216
cancelClicked() function 216, 227
case-sensitive, strings 96
cellForRowAtIndexPath() function 153, 178, 182,

186, 189, 291, 293
changeLabelClicked() function 66–67
checkpoints 216–217
Choose a Template dialog box, Xcode 16
chunked statements 84
class level variable 134
class reference 26
classes 26
class-level variable 154
clean code 160
closure 290
closures, filtering arrays using 289–291
code

connecting UI components to 111–112
creating to complete lookup 113–116

code completion 55–56
collections 104–116

arrays 104–106
dictionaries 107–110
for statement 107
loops 107
state name lookup apps 110–116

adding UI components to storyboard 111
connecting UI components to code

111–112
creating code to complete lookup 113–116
creating dictionary of state abbreviations and

names 112
naming apps 111

color wheel 50
Command button, Simulator 28
Command key 297
commenting 59–60

benefits of 59
process of 59–60
Textbox app 68

INDEX 305
commitEditingStyle() function 210, 258
compiler, Xcode 27
constant 153
constraints 274
Container Margin 275–276, 279, 281
container ViewController 139
Content attribute 217
controller variable 197
counter variable 134
Cover Vertical, Storyboard segues 124
Create a New Xcode Project option, Xcode 16
Cross Dissolve, Storyboard segues 124
curly brackets ({ }) 66–67

D

data
adding loadLioNs() function 255–256
adding save functionality 256–257
changing class definition for objects 250–252
decoding data for loading 253–255
encoding data for saving 253
implementing encode() function 252
implementing init() function 252–253
implementing init(coder) function 252
LioN app 248–259
saving objects from appropriate places 258
testing load and save functionality 258–259

data sources
overview 146, 158
PizzaIngredients app 154–156

dataFilePath() function 249, 257
dataSource property 148
Debugger panel, Xcode 37
Declared In line, Quick Help panel 58
decodeInteger 253
decodeObject 253
deets (details) 54
default statement 95
Delegate pattern 164–165
delegates

adding objects to array 231–234
connecting views 225–229
LioN app 225–235
MainViewController conformance 229–231
setting like and dislike properties 234–235

delegation 145
dequeued screen 153
dequeueResuableCellWithIdentifier 153
description function 203
descTxt 221
design patterns 159–165

characteristics of 160–162
clean code 160
extensibility 161–162

maintainable 161
understandable 160–161

types of 162–165
Delegate pattern 164–165
Memento pattern 165
MVC design pattern 162–164

destinationViewController 197
detail views

adding labels 201–203
adding new items to list 204–211
creating 212–217

adding new AddEditViewController
class 214–215

adding new TableViewController 213–214
checkpoints 216–217
connecting cancel buttons to functions

216
connecting done buttons to functions

216
deleting items from list 210–211
LioN app 201–211

DetailViewController class 193–195, 201, 203,
213–214, 216

DetailViewController.swift class 193, 214
DetailViewControllers

optionals 195–196
passing data to 195–200
printing passed data 196

Developer Member Center, Apple 12
Developer Program, Apple 9
developer website, Apple 25
developing software 4
development, iPhone and iPad 3–13

developing vs. programming 4–5
example apps 6
learning 6–9

key concepts 7
pseudocode 8–9
syntax 7–8

online resources 12
programming languages 5
requirements for 9–12

Macs 9–11
Xcode 11

terminology 4
Device option, Simulator 28
dictionaries

of state abbreviations and names, creating
112

overview 107–110
didCancel() function 227, 229
didFinish() function 229
didFinishAdding() function 231
didFinishAddingItem() function 227, 243, 258
didFinishAddItem() function 227

INDEX306
didFinishEditingItem() function 244, 246–247,
294

didReceiveMemoryWarning() function 129, 215
didSelectRowAtIndexPath() function 191
digits 54
dislikeClicked() function 239
dismissKeyboard() function 222–223, 228
dismissViewControllerAnimated() function 227
Document Outline 139
documentation 57–59
done buttons, connecting to functions 216
done() function 228
doneClicked() function 216, 227–228, 233, 235,

244
doubles 76–77
downloading Xcode 297–298
dummy data 181
Dynamic Prototypes 149

E

Edit() function 214
editIndexPath variable 245–246
editing LioNs

passing object to AddEditViewController 241–
243

populating text boxes with name and
description 238

saving when user taps Done 243–247
setting up AddEditViewController to accept

objects 237
showing whether liked or disliked 238–241

Editor’s options, Xcode 38
ellipses (. . .) 49
else if statements 86–88
encode() function 252
encodeWithCoder() function 251, 253
Error notifications feature 33
exclamation points 114
extensibility 161–162

F

FileManager.default.urls() function 249
filter() method 289–290
filterLioNsforSearchText() function 289, 293
finishEncoding() function 257
Fix Issues button, Xcode 301–302
Flip Horizontal, Storyboard segues 124
flow 81–96

controlling 81–82
if statements 82–90

and (&&) operator 85–86
else if statements 86–88
or (| |) operator 84–85

switch statements 94–96
while statements 91–94

for statement 107, 109
fractional numbers 76
frameworks 71–72, 126
front end 56–57
functions, defined 66

G

GameKit framework 72
General tab 301
getDataFilePath() function 249
Google Translate 11
Guess! button, Simulator 101
guessButtonClick 98
guides, Apple 58

H

Hardware menu options, Simulator 28
hasClicker property 127
hasLabel property 127
hasLid property 127
heading variable 96
HealthKit framework 72
Hello Button app 39–61

button 53–57
adding to storyboard 40
code completion 55–56
creating actions 55
creating outlets 54
wiring 42–44

commenting 59–60
label

adding code to change text when button is
clicked 46–47

adding to storyboard 41
changing appearance 49
changing color property 50
documentation 57–59
wiring 45

single view application template 40
starting new project 40

Hello World app 14, 23–29
adding text 19–21
creating new project 16
labels 25–27
launching Xcode 15
running blank app 18–19
running completed app 21
running in Simulator 28–29
setting up options 16–18
single-view application template 24–25
Xcode templates 23–24

INDEX 307
How Many Fingers app 96–103
adding components to storyboard 97
numberGuessed variable

changing when stepper is tapped
99–100

creating 99
wiring components 97–98
wiring Guess! button 100–103

I

@IBAction keyword 47, 232
@IBOutlet keyword 44, 47
icons, adding in LioN app 271–272
IDE (integrated development environment) 9
if let statement 199–200
if statements 82–90

and (&&) operator 85–86
else if statements 86–88
or (| |) operator 84–85
overview 115, 269

images
adding 263–265
setting on cells 268–269
toggling based on selection 267–268

import Foundation statement 193
import UIKit 71, 126
Include UI Tests option, LioN app 171
Include Unit Tests option, LioN app 171
index path 158
indexPath variable 199, 208–209, 242
infinite loops 93
inheritance 125, 127–128, 250
init() function, LioN app 252–254
inkColor property 127
installing Xcode 297–298
Int

getting string value using description 202
getting string value using string

interpolation 202–203
integers 75
intent 161
iPhone and iPad app development 3–13

developing vs. programming 4–5
example apps 6
learning 6–9

key concepts 7
pseudocode 8–9
syntax 7–8

online resources 12
programming languages 5
requirements for 9–12, 298–299

Macs 9–11
Xcode 11

terminology 4

iPhone Simulator 27
Item button, Xcode 122

K

key/value pair 108–109
keyboards

behaviors 220–222
dismissing on user tap 222–224

L

labelDescription property 127
labels

adding 201–203
defined 25–27
documentation 57–59
Hello Button app

adding code to change text when button is
clicked 46–47

adding to storyboard 41
changing appearance 49
changing color property 50
wiring 45

TabBarControllerExample app 139–142
Textbox app

adding code to change text 66
adding to view 63–64
wiring 65

LaunchScreen.storyboard file 272
Lifecycle app 131–135

adding second ViewController 131–132
creating new project 131
creating unwind segues 132
overriding functions 133
running app 133–135

likeButton outlet 239
likeClicked() function 239
likeItCell image 268
likeVar 241
LioN app 169–200, 248–272

adding detail page 191–194
adding ViewController to storyboard

192–193
creating new ViewController class 193–194

adding hardcoded data to 181–182
creating array of dummy data 181
wiring array to table view 181–182

adding iPhone Simulator to Xcode 173–175
adding model to 182–187

adding new Swift file 183–184
creating new entry 185–187
modelling data 184–185

adding Navigation Controller to storyboard
172–173

INDEX308
LioN app (continued)
adding new 217–224

dismissing keyboard on user tap 222–224
prohibiting cell selection 219
setting keyboard behaviors 220–222

appearance 260–271
adding icons 271
adding like and dislike images 263
changing table view background colors

266–267
creating two sections 261
making MainView scene prettier 269–270
setting images on cells 268–269
toggling images based on selection 267–268
updating launch scene 272
updating navigation bars 270–271

Auto Layout 273–284
changing layout for cells on main scene

282–284
making changes to AddEditView scene

275–281
capturing tapped row index 190–191
connecting table view and data to

ViewController 175–177
creating 171
creating array of dummy data 181
delegates 225–235

adding objects to array 231–234
connecting views 225–229
MainViewController conformance 229–231
setting like and dislike properties 234–235

detail view 201–211
adding labels 201–203
adding new items to list 204–211
deleting items from list 210–211

editing
passing object to

AddEditViewController 241–243
populating text boxes with name and

description 238
saving when user taps Done 243–247
setting up AddEditViewController to accept

objects 237
showing whether liked or disliked 238–241

implementing functions for table views 177–179
passing data to DetailViewController 195–200

optionals 195–196
preparing to accept 195–196
printing passed data 196

purpose of 169–170
saving data 250–258

adding loadLioNs() function 255–256
adding save functionality 256–257
changing class definition for objects

250–252

decoding data for loading 253–255
encoding data for saving 253
implementing encode() function 252
implementing init() function 252–253
implementing init(coder) function 252
saving objects from appropriate places 258
testing load and save functionality 258–259

searching 285–296
adding search functionality 285–287
fields 294–295
filtering based on user input 288–294

table cell layout 187–189
changing cell in storyboard to show

description 187–189
updating function to show description 189

updating MainViewController to pass data
196–200
as! keyword 197–199
if let statement 199–200

wiring array to table view 181–182
lionCell 192
lionData array 181, 186, 207–209, 288, 290–291,

293
lionDescription field 260
lionDetail variable 195
lionToEdit variable 237
loadLions() function 255
lookup, creating code to complete 113–116
lookupClicked() function 112, 114–115
loops 107
loosely coupled code 162, 226

M

macOS 10
Macs 9–11
Main.Storyboard file 19, 38, 63
mainVC variable 226
MainView, appearance 269–270
MainViewControllers

as! keyword 197–199
conformance 229–231
if let statement 199–200
updating to pass data 196–200

makePizza() method 145–146, 150, 165
MapKit framework 72
Memento pattern 165
model

adding new Swift file 183–184
creating new entry 185–187
modelling data 184–185
wiring array to table view 182–187

MVC (Model-View-Controller) design
pattern 162–164

My Button button, Xcode 41

INDEX 309
myLabel 45
myTxtField 67

N

nameTxt 221
navigation bar, StoryboardExample app

120–122
navigation bars, updating 270–271
Navigator panel, Xcode 34–36
nested if statement 115
noob 21
NSCoding protocol 248, 251, 256, 259
NSObject class 250
numberGuessed variable

How Many Fingers app
changing when stepper is tapped 99–100
creating 99

overview 97
numberOfRowsInSection() function 149, 178,

181, 292
numbers 75–76

O

Object Library 20, 213, 218
Objective-C 5
objects 26
optional binding 199, 237, 242, 244
optionals (?) 195–196
or (| |) operator 84–85
OS (operating system) 4
outlets 54
override keyword 128–129, 133, 178, 196,

252

P

Partial Curl, Storyboard segues 124
patterns 159–165

characteristics of 160–162
clean code 160
extensibility 161–162
maintainable 161
understandable 160–161

types of 162–165
Delegate pattern 164–165
Memento pattern 165
MVC design pattern 162–164

PenClass 126–127
period (.) character 56
Photos framework 72
PizzaIngredients app 147–158

adding protocols to ViewController 150–153
adding table view to ViewController 147–149

create data sources 154–156
delegation 145
implementing code for required methods 153–

154
setting up prototype cell 149–150
single view application template 147
wiring data to table to display rows of data 156–

158
plist 249
points 263
prepareForSegue() function 199, 213, 230–231,

242
Present Modally option 119
print line statement 93
print statement 83, 133
print() function 106
printing, lines with values of variables and

strings 87–88
programming languages 4–5
programming, developing vs. 4–5
Project Settings screen, LioN app 171
Protocol Reference document 151
protocols

overview 146, 158
PizzaIngredients app 150–153

Prototype Cells 149
pseudocode, importance of 8–9
Push Me button 120, 122

Q

Quick Help window, LioN app 197

R

randomNumber constant 101
read-only 26
RedPenClass 126–127
Reference line, Quick Help panel 58
resetSearchBar() function 294
resignFirstResponder() function 221
resultLabel 101
resultSearchController 287, 291
return type 153
rideHome() function 195
Root View Controller 173
Rotate Left option, Simulator 28
Rotate Right option, Simulator 28
Run button, Xcode 18, 28

S

Sample Code line, Quick Help panel 58
sandbox 248–250
saveLionItems() function 256–257

INDEX310
saving data
adding loadLioNs() function 255–256
adding save functionality 256–257
changing class definition for objects

250–252
decoding data for loading 253–255
encoding data for saving 253
implementing encode() function 252
implementing init() function 252–253
implementing init(coder) function 252
LioN app 248–259
saving objects from appropriate places 258
testing load and save functionality 258–259

schema selector 302
scopeButtonTitles property 294
scopes 154
search bar, Object Library 97
Search Display Controller 286
search functionality, adding to LioNs

285–287
SearchBar, resetting 293–294
searchLionData array 290–291
searchResultsUpdates 287
segue animation types

creating unwind segues 132
overview 122–124

segues
creating 192–193
renaming 193

Shake Gesture option, Simulator 28
shoppingList array 106, 109
showLionDetail 193
Simulator

adding to Xcode 173–175
defined 27–28
running Hello World app in 28–29

single view application template
Hello Button app 40
PizzaIngredients app 147
StoryboardExample app 118
TabBarControllerExample app 137
Textbox app 63

Single View Application, iOS Application
section 17

single-view application template, defined
24–25

slicing 263
SOC (separation of concerns) 165, 182
Spotlight Search 15
square brackets ([]) 105
Stack Overflow 12
stack views

creating 279–281
overview 273

StackView class 274

Standard Editor, Xcode 32–33
state name lookup apps 110–116

creating code to complete lookup 113–116
creating dictionary of state abbreviations and

names 112
naming 111
UI components

adding to storyboard 111
connecting to code 111–112

stateAbb 110
stateabbreviation variable 113
StateAbbreviationLookup app 110
stateDict dictionary 112
stateName 110
stateTextField outlet 111
stepper button, Simulator 101
stepperControl outlet 98
stepperControl.value 100
storyboard

adding buttons to 40
adding labels to 41
adding Navigation Controller to 172–173
displaying 34
How Many Fingers app, adding

components 97
TabBarControllerExample app 138–139

Storyboard Entry Point 140
storyboard screen 20
StoryboardExample app 118–122

adding navigation bar 120–122
adding second scene 118–120
linking Cancel button back to first

scene 122
single view application template 118

storyboards 117–124
adding UI components to 111
defined 117–118
example app 118–122

adding navigation bar 120–122
adding second scene 118–120
linking Cancel button back to first

scene 122
single view application template 118

segue animation types 122–124
str variable 74
string interpolation 202–203
stringMatch 290
strings

overview 73–74, 96
printing lines with values of variables

and 87–88
structural design patterns 162
subclassing 26
super.viewDidLoad() function 232
superclass 126

INDEX 311
Swift File template 183
Swift Playgrounds 69–78

frameworks 71–72
overview 69–71
variables 72–77

doubles 76–77
numbers 75–76
strings 73–74

switch statements 94–96
syntax 7–8
System Item attribute 205

T

Tab Bar Controllers, example app 136–143
adding labels to tabs 139–142
adding Tab Bar Controller to storyboard

138–139
adding third tab to app 142
deleting existing scene 137–138
single view application template 137

TabBarControllerExample app 136–143
adding labels to tabs 139–142
adding Tab Bar Controller to storyboard

138–139
adding third tab to app 142
deleting existing scene 137–138
single view application template 137

table cells
changing to show description 187–189
modelling data 187–189
updating function to show description

189
Table View attributes 270
table views 144–158

changing background colors 266
changing data source 291
connecting to ViewController 175–177
data sources 146
delegation 145
example app 147–158

adding protocols to ViewController
150–153

adding table view to ViewController
147–149

create data sources 154–156
implementing code for required

methods 153–154
setting up prototype cell 149–150
single view application template 147
wiring data to table to display rows of

data 156–158
implementing functions for 177–179
protocols 146
wiring array to 181–182

tables, prohibiting selection of cells in 219
TableView

changing data source 292–293
overview 147

TableViewCell 147
TableViewControllers, adding 213–214
templates

overview 23–24
single view application

Hello Button app 40
PizzaIngredients app 147
StoryboardExample app 118
TabBarControllerExample app 137
Textbox app 63

single-view application 24–25
text boxes

populating with LioN name and
description 238

Textbox app
adding to view 64
wiring 65–66

text fields, laying out 276–277
Textbox app 62–68

button
adding to view 63–64
wiring 65

commenting 68
label

adding code to change text 66
adding to view 63–64
wiring 65

running app and typing in text field
67–68

single view application template 63
text box

adding to view 64
wiring 65–66

wiring user interface 64–66
textFieldShouldReturn() function 221
textLabel 186
toggleLike() function 240–241, 268
Top Layout Guide item 140
tuple 154
type alias 155
typecasting 198

U

UI components
adding to storyboard 111
connecting to code 111–112

UI control 56
UILabel class 25
UILongPressGestureRecognizer class 222
UIPanGestureRecognizer class 222

INDEX312
UIPinchGestureRecognizer class 222
UIRotationGestureRecognizer class 222
UIs (user interfaces)

overview 56–57
wiring, Textbox app 64–66

UIScreenEdgePanGestureRecognizer class 222
UISearchControllerDelegate protocol 286
UISearchResultsUpdating protocol 287
UIStoryboardSegue 196
UISwipeGestureRecognizer class 222
UITableView 149
UITableViewCell 153
UITableViewController class 175–178,

215–216
UITableViewDataSource 146, 150, 158,

176–177
UITableViewDelegate 150, 176
UITapGestureRecognizer class 222
UITextField 220
UIViewController 150, 193, 215
unarchiver 255–256
unwind connection 132
updateSearchResults() function 289, 293,

295
user input, filtering LioNs based on 288–294

changing table view data source 291
changing TableView data source 292–293
creating filter() functions 289
filtering arrays using closures 289–291
resetting SearchBar 293–294

user tap
to dismiss keyboard 222–224
using Done to save LioN 243–247

Utilities panel, Xcode 33–34

V

variable names, coding 74
variables 72–77

doubles 76–77
numbers 75–76
printing lines with values of strings

and 87–88
strings 73–74

Version Editor button, Xcode 37
View Details button 300
ViewControllers 125–135

adding new ViewController to
storyboard 192

connecting table view and data to 175–177
creating new class 193–194
creating segue 192–193
example app 131–135

adding second ViewController 131–132
creating new project 131

creating unwind segues 132
overriding functions 133
running app 133–135

inheritance 125–128
lifecycles of 129–131
LioN app 192–193
override keyword 128–129
overview 43, 46, 112
PizzaIngredients app

adding protocols 150–153
adding table view 147–149

renaming segue 193
viewDidAppear() function 130
viewDidDisappear() function 130
ViewDidLoad() function 152, 177, 215, 233,

293
viewing tables 144–158

data sources 146
delegation 145
example app 147–158

adding protocols to ViewController
150–153

adding table view to ViewController
147–149

create data sources 154–156
implementing code for required

methods 153–154
setting up prototype cell 149–150
single view application template 147
wiring data to table to display rows of

data 156–158
protocols 146

views
capturing user input 228–229
connecting 225, 228–229
creating 212–217

adding new AddEditViewController
class 214–215

adding new TableViewController 213–214
checkpoints 216–217
connecting cancel buttons to functions

216
connecting done buttons to functions

216
implementing protocol 227
updating Cancel and Done actions 227–228

viewWillAppear() function 130, 134
viewWillDisappear() function 130

W

weak keyword 227
WhichNumber app 96
while statements 91–94
whole numbers 76

INDEX 313
wiring
arrays to table views 181–182
buttons

Hello Button app 42–44
Textbox app 65

How Many Fingers app
components 97–98
Guess! button 100–103

labels
Hello Button app 45
Textbox app 65

PizzaIngredients app, data to table 156–158
text boxes, Textbox app 65–66

write() function 127
writeToFile() function 257

X

Xcode 11, 30–38
code completion 55–56
downloading 297–298
icons 36–37
installing 297–298
launching 15
panels 31–36

Main.storyboard 34
Navigator 35–36
Standard Editor 32–33
Utilities 33–34

templates 23–24
troubleshooting 21

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Hello World! Second Edition
Computer Programming for Kids and Other Beginners
by Warren Sande and Carter Sande

ISBN: 9781617290923
464 pages
$39.99
December 2013

Hello App Inventor!
Android programming for kids and the rest of us
by Paula Beer and Carl Simmons

ISBN: 9781617291432
360 pages
$39.99
October 2014

Hello Raspberry Pi!
Python programming for kids and other beginners
by Ryan Heitz

ISBN: 9781617292453
320 pages
$24.99
January 2016

https://www.manning.com/books/hello-world-second-edition
https://www.manning.com/books/hello-app-inventor
https://www.manning.com/books/hello-raspberry-pi

 Topics covered

This book covers a variety of programming topics, including these:

 Patterns, including Model, View, Controller (MVC)
 Inheritance
 If else statements
 Switch statements
 Swift Playgrounds
 While Statements
 Collections
 Storyboards
 Saving data
 View controllers
 And much more!

Wendy Wise wrote this book because she truly believes that anyone can
learn to program. There isn’t a secret club you need to be a part of—
you just need a basic understanding of how programming works and a
strong knowledge foundation to build on. This book will provide you
with both the basic understanding and the foundation to further your
knowledge.

 Be patient with yourself, and take the time to walk through each
chapter. Make sure you understand the concepts before moving on. By
the time you’re finished with this book, you’ll have created several apps,
and you’ll have the confidence to take the next steps in your new pro-
gramming adventure!

	Front cover
	contents
	preface
	acknowledgments
	about this book
	Who is this book is written for?
	Who is this book not written for?
	Roadmap
	Source code downloads
	Software/hardware requirements
	Online resources
	About the author
	Author Online

	Part 1—Your very first app
	1 Getting started
	1.1 The big picture: iPhone and iPad development
	1.1.1 Some key terms
	1.1.2 Am I developing or programming?
	1.1.3 Objectively Swift
	1.1.4 Apps you’ll create

	1.2 Learning what you need to remember
	1.2.1 Understanding and remembering key concepts
	1.2.2 Syntax
	1.2.3 The importance of pseudocode

	1.3 What you need to create apps for iPhones and iPads
	1.3.1 You’re going to need a Mac
	1.3.2 Xcode: the iPhone and iPad development environment
	1.3.3 Helpful resources

	1.4 Summary

	2 Building your first app
	2.1 Launching Xcode for the first time
	2.1.1 Step 1: Launch Xcode
	2.1.2 Step 2: Create a new project
	2.1.3 Step 3: Set up your project options
	2.1.4 Step 4: Run the blank app
	2.1.5 Step 5: Add the Hello World text
	2.1.6 Step 6: Run the app
	2.1.7 Step 7: Pat yourself on the back (and review)

	2.2 Summary

	3 Your first app, explained
	3.1 Xcode templates, explained
	3.2 Understanding the single-view application
	3.3 A label, defined
	3.4 The Simulator, defined
	3.4.1 Running Hello World in the Simulator

	3.5 Summary

	4 Learning more about your development tools: Xcode
	4.1 Xcode panels explained
	4.1.1 Standard Editor
	4.1.2 Utilities panel
	4.1.3 Main.storyboard
	4.1.4 Navigator panel

	4.2 Xcode icons explained
	4.3 Feel free to explore
	4.4 Summary

	5 Capturing users’ actions: adding buttons
	5.1 Adding a label and a button
	5.1.1 Step 1: Start a new project using the Single View Application template
	5.1.2 Step 2: Add a button and label to the storyboard, and run the app to test it
	5.1.3 Step 3: Connect the button and the label to the code (wire them up), and run the app to test it
	5.1.4 Step 4: Add code to change the text on the Label when the button is clicked, and run the app to test it

	5.2 Changing how the label appears
	5.2.1 Step 5: Change how the label looks, and run the app to test it

	5.3 Summary

	6 The button app, explained
	6.1 The button, explained
	6.1.1 Creating outlets (or “How do I contact Butch?”)
	6.1.2 Creating actions
	6.1.3 Is Xcode clairvoyant?
	6.1.4 User interfaces and the front end of apps

	6.2 Documentation
	6.3 Commenting: you can never be too wordy, can you?
	6.3.1 Comments are your friends
	6.3.2 How to comment your code

	6.4 Summary

	7 Capturing user input: adding text boxes
	7.1 Adding text fields
	7.1.1 Step 1: Create a new single-view application
	7.1.2 Step 2: Add a button and a label to the view
	7.1.3 Step 3: Add a text field to the view
	7.1.4 Step 4: Connect the button, label, and text box to the code (wire them up), and test the app
	7.1.5 Step 5: Add code to change the label, and test the app
	7.1.6 Step 6: Comment the code

	7.2 Summary

	8 Playing on the playground
	8.1 Swift Playgrounds: learning to interact with others
	8.2 Frameworks
	8.3 Types of variables
	8.3.1 Not your shoestrings
	8.3.2 Going back to math class
	8.3.3 Double, double, toil and trouble

	8.4 Summary

	Part 2—The keys to the city: understanding key development concepts
	9 Go with the flow, man! Controlling the flow of your app
	9.1 Control your flow
	9.2 If you do that again, I’m going to…
	9.3 If you do that OR if you… then I’m going to…
	9.4 If you do that AND you do this, I will…
	9.5 If you do this, else if you do this, else if you do this…
	9.5.1 Printing a line with values of variables and strings

	9.6 If you do that, otherwise…
	9.7 Summary

	10 While you’re doing that…
	10.1 Using the while statement to control your code
	10.1.1 The while statement in action
	10.1.2 Wrapping up the while statement discussion

	10.2 Turn around now switch (remember Will Smith?)—the switch statement
	10.2.1 Assignment

	10.3 How many fingers am I holding up?
	10.3.1 Step 1: Add all the components to the storyboard
	10.3.2 Step 2: Make the storyboard connections
	10.3.3 Step 3: Create a variable to capture the number guessed: numberGuessed
	10.3.4 Step 4: Change the numberGuess variable when the stepper is tapped
	10.3.5 Connecting the Guess! button

	10.4 Summary

	11 Collections
	11.1 Quantum arrays: not really, but that sounds scary, right?
	11.2 The for statement and loop
	11.3 Dictionaries
	11.4 Creating a state name lookup app
	11.4.1 Step 1: Create an app named StateAbbreviationLookup
	11.4.2 Step 2: Add the UI components to the storyboard
	11.4.3 Step 3: Connect the UI components to the code
	11.4.4 Step 4: Create the dictionary of state abbreviations and names
	11.4.5 Step 5: Create the code to look up the state abbreviation when the user types in the state name

	11.5 Summary

	12 Telling stories with storyboards
	12.1 Storyboards
	12.2 Creating an example storyboard app
	12.2.1 Step 1: Create a new app called StoryboardExample
	12.2.2 Step 2: Add a second scene to the app
	12.2.3 Step 3: Add a navigation bar to the second scene
	12.2.4 Step 4: Link the Cancel button to the first scene

	12.3 Segue animation types
	12.4 Summary

	13 ViewControllers in depth
	13.1 Inheritance
	13.2 The override keyword
	13.3 ViewController lifecycles
	13.4 The Lifecycle app
	13.4.1 Step 1: Create a new project called Lifecycle
	13.4.2 Step 2: Add a second ViewController
	13.4.3 Step 3: Create an unwind segue
	13.4.4 Step 4: Override the five functions
	13.4.5 Step 5: Test the app

	13.5 Summary

	14 Put it on my tab: creating tab bars
	14.1 The Tab Bar Controller
	14.1.1 Step 1: Create a new app
	14.1.2 Step 2: Delete the existing scene
	14.1.3 Step 3: Add a Tab Bar Controller to the storyboard
	14.1.4 Step 4: Add labels to the different tabs
	14.1.5 Step 5: Add a third tab to the app

	14.2 Summary

	15 Table views: more than a coffee table picture book
	15.1 Delegation
	15.1.1 Making pizza from scratch
	15.1.2 Delegating pizza making

	15.2 Protocols
	15.3 Data sources
	15.4 Creating a table view app
	15.4.1 Step 1: Create a new app
	15.4.2 Step 2: Add a table view to the ViewController
	15.4.3 Step 3: Set up a prototype cell
	15.4.4 Step 4: Set the protocols for UITableView
	15.4.5 Step 5: Create a data source for the pizza
	15.4.6 Step 6: Connect the data to a table

	15.5 Summary

	16 Patterns: learning to sew
	16.1 Design patterns, defined
	16.1.1 Clean code
	16.1.2 Understandable
	16.1.3 Maintainable
	16.1.4 Extensibility

	16.2 Types of design patterns
	16.2.1 Model-View-Controller design pattern
	16.2.2 Delegate pattern
	16.2.3 The Memento pattern

	16.3 Summary

	Part 3—Creating the Like it or Not app
	17 Putting it all together: the LioN app
	17.1 Like it or Not
	17.2 Getting started
	17.2.1 Creating the app
	17.2.2 Adding a Navigation Controller
	17.2.3 Adding an iPhone 4s Simulator
	17.2.4 Connecting the data to the table view
	17.2.5 Implement the functions for table views

	17.3 Summary

	18 Adding data to your LioN app
	18.1 Adding hardcoded data to your LioN
	18.1.1 Creating an array of dummy data
	18.1.2 Wiring lionData to the table view with hardcoded data

	18.2 Adding a model to the mix
	18.2.1 Adding a new Swift file to the project

	18.3 Changing the layout of the table cell
	18.3.1 Changing the cell in the storyboard to show the description
	18.3.2 Updating the function to show the description

	18.4 Summary

	19 Displaying details of your LioN
	19.1 Capturing the tapped row index
	19.2 Adding a detail page to the storyboard
	19.2.1 Adding a ViewController to the storyboard
	19.2.2 Creating a new ViewController class

	19.3 Passing data to the DetailViewController
	19.3.1 Preparing the DetailViewController to accept the LioN
	19.3.2 Updating the MainViewController to pass data

	19.4 Summary

	20 Creating the details of the detail view
	20.1 Adding some labels to your detail screen
	20.1.1 Converting an Int to a string using the description
	20.1.2 Converting an Int to a string using String

	20.2 Adding new LioNs to the list
	20.2.1 Adding the + button to the view
	20.2.2 Creating a function to handle the action and link the two together
	20.2.3 Adding hardcoded values to the LioN list
	20.2.4 Deleting LioNs from the list

	20.3 Summary

	21 The AddEditView scene
	21.1 Creating a new detail view
	21.1.1 Adding a new Table ViewController
	21.1.2 Adding a new AddEditViewController class
	21.1.3 Hooking up the Cancel and Done buttons
	21.1.4 Checkpoint

	21.2 Adding new LioNs
	21.2.1 Don’t allow the cell to be selected
	21.2.2 Setting the keyboard behaviors
	21.2.3 Dismissing the keyboard on user tap

	21.3 Summary

	22 Delegates are everywhere
	22.1 Connecting your views
	22.1.1 Implementing the protocol
	22.1.2 Updating your Cancel and Done actions
	22.1.3 Capturing the user input

	22.2 MainViewController conformance
	22.3 Adding the LioN object to the lion array
	22.3.1 Changing the Done button properties

	22.4 Setting the like and dislike properties
	22.5 Summary

	23 Editing LioNs
	23.1 Editing existing LioNs
	23.1.1 Setting up the AddEditViewController to accept a LioN object to edit
	23.1.2 Filling in the text boxes with the LioN name and description
	23.1.3 Showing whether the LioN is liked or disliked
	23.1.4 Passing the LioN object to the Add/Edit controller
	23.1.5 Saving the LioN when the user taps Done, but not creating a new LioN

	23.2 Summary

	24 Saving LioNs
	24.1 Playing in the sandbox
	24.2 Saving your data
	24.2.1 Changing the class definition for the LioN object
	24.2.2 Encoding the data for saving
	24.2.3 Decoding the data for loading
	24.2.4 Adding the loadLions() function
	24.2.5 Loading summary
	24.2.6 Adding save functionality

	24.3 Testing the load and save functionality
	24.4 Summary

	25 Making your LioN prettier
	25.1 Basic fixes
	25.1.1 Creating two sections
	25.1.2 Adding the Like and Dislike images
	25.1.3 Changing the table view background colors
	25.1.4 Toggling the images based on selection
	25.1.5 Setting images on the cells
	25.1.6 Making the MainView scene prettier
	25.1.7 Updating the navigation bars

	25.2 Adding an icon
	25.3 Updating the launch scene
	25.4 Summary

	26 Working with Auto Layout
	26.1 Changing the layout to work for all screen sizes
	26.1.1 Make changes to the AddEditView scene
	26.1.2 Changing the color of cells on the main scene

	26.2 Summary

	27 Search your LioNs
	27.1 Adding the search functionality
	27.2 Filtering LioNs based on user input
	27.2.1 Creating the filter function
	27.2.2 Filtering the array using a closure
	27.2.3 Changing the table view data source
	27.2.4 Polishing the app

	27.3 Searching other fields
	27.4 Summary
	27.5 Where do you go from here?

	Appendix A—Installing Xcode and Apple developer registration
	A.1 Downloading and installing Xcode
	A.2 Apple requirements for iPhone and iPad development

	Appendix B—Running the app on your device
	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Back cover

